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“Good morning” said Bilbo, and he meant it. The sun was
shining, and the grass was very green. But Gandalf looked at
him from under long bushy eyebrows that stuck out further than
the brim of his shady hat.

“What do you mean?” he said. “Do you wish me a good
morning, or mean that it is a good morning whether I want it or
not; or that you feel good this morning; or that it is a morning
to be good on?”

— J.R.R. Tolkien, The Hobbit.
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Introduction

On dit qu’un Allemand a fait un
livre sur un zeste de citron.

Jean-Jacques Rousseau

In 1868, Alfred Clebsch left Giessen for Göttingen. Discussing the person
who would take his position in Giessen, he wrote to his former colleagues
that “it [would] not be easy to find somebody suitable who has, in the same
time, accomplished something from a scientific point of view (among which
I can, unfortunately, not count Dedekind, for example).”1 It took Dedekind,
who was already 37 years old, several more years to publish any major
works. It wasn’t until 1880, that he started to gain the recognition of his
peers with a nomination at the Berlin Akademie der Wissenschaften. By
the next century, Emmy Noether was repeatedly stating that “Everything
is already in Dedekind”, as if in Dedekind’s writings was a most powerful
seed, the whole of modern algebra in waiting.

Richard Dedekind (1831-1916)

In 1855, after Gauss’s death, Johann Peter Gustav Lejeune-Dirichlet left
Berlin for Göttingen to take the chair of mathematics. For Richard Dedekind,
who defended his doctoral dissertation on Eulerian integrals in 1852 and his
Habilitation in 1854 both under C. F. Gauss, meeting Dirichlet turned him
into “a new man”. Dedekind became close to Dirichlet as a student and as a
friend and this was to be, along with his friendship with Bernhard Riemann,
one of the most significant events in Dedekind’s early mathematical life.

Dedekind was chosen to edit Dirichlet’s lectures on number theory, the
Vorlesungen über Zahlentheorie ([Lejeune-Dirichlet, 1863]), after Dirichlet’s
death in 1859. In them, Dedekind tried to stay “as faithful as possible” to
Dirichlet’s lectures on number theory in Göttingen, between 1855 and 1858
and which, according to Dedekind, “contributed so extraordinarily to the
circulation of the newest and the subtlest parts of mathematics.” The Vor-
lesungen, which had four editions in 1863, 1871, 1879 and 1894, were seen

1Quoted in [Dugac, 1976b], 134.
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Chapter 0 - Introduction

as one of Dedekind’s most important contributions to mathematics by his
contemporaries – as were his other editorial works. To the publishers’s re-
quest, Dedekind included supplements presenting additional developments.
In 1871 and in the later editions, Dedekind took this opportunity to publish
his own original work, the Xth and XIth Supplements, in an attempt to
reach a larger audience2 and as a way to mark his desire to work in the
continuity of Dirichlet’s mathematics.

Dedekind’s Xth Supplement, Über die Komposition der binären quadrati-
schen Formen, exposes developments on the theory of binary quadratic
forms. It was initially excluded to avoid moving too far away from Dirichlet’s
own works. An important part of the Xth Supplement is the investigation
of the laws of divisibility of algebraic integers, generalizing Kummer’s works
on the factorization of certain complex numbers such as cyclotomic inte-
gers. For this purpose, Dedekind introduces for the first time the notions
of algebraic integer and of field, module, and ideal. The Xth Supplement is
often said to be the birth place of modern algebra, a game changing work
and, thus, one of the most important works of contemporary mathematics.
In 1917, Edmund Landau wrote that by founding the theory of algebraic
fields, Dedekind brought “the light in the darkness, the order in chaos, and
the methods, which he created here, have had a fruitful influence on other,
very different, problems of number theory and algebra.”3 Bourbaki consid-
ers it a “masterpiece” in which the theory of modules and ideals is “entirely
created” and “brilliantly exposed” ([Bourbaki, 1984], 130). It is presented
by H. Edwards as the “birthplace of the modern set-theoretic approach to
the foundations of mathematics” ([Edwards, 1983]) and by Dugac as “one of
the sources of today mathematics” ([Dugac, 1976b], 29, who, like Edwards,
underlines the role of the Supplement in set theory).

Dedekind came back several times to his algebraic number theory,4 and
rewrote it anew each time, presenting each new version as an improvement
upon the previous one, modifying the “presentation” or the “foundation” of
the theory. Three different versions were published: in 1871, in 1876/77 (and
a similar version in 1879) and in 1894. Except for the 1876/77 which was
published in French in the Bulletin des Sciences Astronomiques et Mathéma-
tiques, all versions were published as supplements of the successive versions
of Dirichlet’s Vorlesungen.5 The theory of algebraic numbers is arguably

2Letter to Lipschitz, 29 April 1876: “I thought that the inclusion of this investigation in
Dirichlet’s Zahlentheorie would be the best way to attract a wider circle of mathematicians
to the field. . . ” (transl. in [Stillwell, 1996], 45)

3[Landau, 1917], quoted and translated in [Dugac, 1976b], 29.
4When using the phrase “algebraic number theory”, I mean “the theory of algebraic

numbers”, rather than “the algebraic theory of numbers”.
5In the dissertation, references to these works will be the following: [Dedekind, 1871]

will be referred to with page numbers referring to Avigad’s translation ([Avigad, 2004]).
The last paragraphs were however not translated and will be in reference to the 1871 edi-
tion of Dirichlet’s Vorlesungen. [Dedekind, 1876-1877] will be referred to with page num-
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Dedekind’s most pivotal work, if only because it introduces the concepts
of field, module and ideal, which will be used in a majority of Dedekind’s
other mathematical works. Besides, Dedekind’s mathematical papers are
often related to the theory of algebraic numbers, for they investigate ques-
tions and problems which arose from the study of algebraic integers and
connected questions deepening aspects of, for example, ideal theory (e.g.,
class of ideals).

Dedekind was not only involved in publishing Dirichlet’s Vorlesungen
über Zahlentheorie, he also participated to the publication of Gauss’s col-
lected works, and was in charge, with Heinrich Weber (1842-1913), of the
publication of Riemann’s collected works. The edition of Riemann’s works,
which involved the tedious process of clearing up Riemann’s manuscripts,
was the beginning of a long friendship with Weber, as attested by their rich
correspondence. One of the most significant side-effect of their collabora-
tion and of their friendship is the co-writing of an article on Riemannian
function theory, published in 1882, Theorie der algebraischen Funktionen
einer Veränderlichen6 which is often presented as a milestone in the devel-
opment of algebraic geometry. In this paper, Dedekind and Weber transfer
to algebraic functions of one complex variable, the methods elaborated by
Dedekind for the theory of algebraic integers. By doing so, they give them-
selves the means to develop a purely “algebraico-arithmetic” theory of alge-
braic functions. Yet, they do not propose a more abstract theory of fields
and/or ideals of which function and number theories would be instances,
nor do they state that they treat functions ‘like’ numbers or that they apply
number theory to function theory. For Dieudonné, Dedekind and Weber
brought together “very remote” domains of mathematics with a “remark-
able originality” which can only be compared “in all the history of algebraic
geometry” to Riemann’s ([Dieudonné, 1974], 61). For him, “this conception
of algebraic geometry is for us the clearest and simplest one, due to our
familiarity with abstract algebra” ([Dieudonné, 1972], 838).

In parallel to these mathematical works, Dedekind was deeply interested,
throughout his career, in foundations of mathematics and in particular in
providing a rigorous definition for the systems of numbers, thereby securing
the foundations of arithmetic. This constitutes two of his most well-known
works: Stetigkeit und irrationale Zahlen in 1872 and Was sind und was
sollen die Zahlen? in 1888. In Stetigkeit und irrationale Zahlen, Dedekind
defines the irrational numbers by means of cuts. In Was sind und was
sollen die Zahlen?, he gives a “logical” definition of the natural numbers.7

bers referring to Stillwell’s translation ([Stillwell, 1996]); [Dedekind, 1879] and [Dedekind,
1894a] will be referred to with page numbers referring to the 1879 and 1894 editions of
Dirichlet’s Vorlesungen respectively.

6References to this work will be to Stillwell’s translation ([Stillwell, 2012]). I will refer
to this article as Algebraische Funktionen for brevity.

7For these works, page references will be to Ewald’s translation [Ewald, 2005]. I will
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The interest in the foundations of mathematics was relatively common at the
time. However, the approach adopted by Dedekind differed sensibly from the
common practice by its use of set-theoretic notions. In addition, it defines
the whole domain of natural numbers as a ‘structure’, with a set of necessary
and sufficient conditions. Dedekind adopts what we can recognize as being
an axiomatic approach. He is thus considered on one hand as a precursor of
Hilbert and on the other hand as one of the fathers of set-theory. Notably,
H. Benis Sinaceur suggests that the presence of “structures” in Dedekind’s
foundational works is hidden by his use of “concept” or “general concept”
for what we call structures:

[In Dedekind’s Zahlen and Stetigkeit], the point is precisely that
of bringing out the structural properties of positive integers and
real numbers respectively. Simply, Dedekind calls “concept” or
“general concept” what we name “structures”, a turn of phrase
of which Hilbert, Emmy Noether, B. L. van der Waerden and
other members of the Göttingen school will inherit, while Bour-
baki will give the pride of place to “structures”.8 ([Sinaceur and
Dedekind, 2008], 108)

Dedekind has been granted a place of choice in the genealogy with which
mathematicians represent the shaping of mathematical knowledge, the accu-
mulation of discoveries leading inexorably to the present day state of math-
ematics. Dedekind introduced several of the most important concepts for
the development of modern algebra to the point that he is often said to have
influenced our practice and knowledge of mathematics more than any other
mathematician of the second half of the 19th century.9 After the reception
of his works remained dormant for about twenty years, Dedekind’s works
eventually changed the face of algebraic number theory – especially through
their adoption by David Hilbert in his Zahlbericht ([Hilbert, 1897]).

The previous pages show how Dedekind has been (and still is, sometimes)
perceived in the history of mathematics and by present-day mathematicians.
Dedekind’s works also often play a key role in certain discussions in contem-
porary philosophy of mathematics.

refer to [Dedekind, 1872] as Stetigkeit and to [Dedekind, 1888] as Zahlen.
8“[Dans Zahlen et dans Stetigkeit], il s’agit bien de dégager les propriétés structurelles

des entiers et des réels respectivement. Tout simplement, Dedekind appelle ‘concept’ ou
‘concept général’ ce que nous nommons ‘structure’, trait d’expression dont hériteront
Hilbert, Emmy Noether, B. L. van der Waerden et d’autres membres de l’école de Göttin-
gen, tandis que Bourbaki fera la part belle aux ‘structures’.”

9It is, notably the case of [Dugac, 1976b], [Bourbaki, 1984], but also [Avigad, 2006]
more recently.
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0.1 State of the art and our expectations about Dedekind

0.1.1 Philosophical readings of Dedekind’s works

For the last ten to fifteen years, philosophers of mathematics have shown a
great interest in Dedekind’s mathematics, and it is among philosophers that
one finds the most vivid scholarship on Dedekind.

It is well known that Dedekind’s mathematics is deeply shaped by epis-
temological questions and values. Because of this and of the decisive role
played by Dedekind in shaping today’s mathematical knowledge, it seems
rather natural that philosophers find food for thought in his works. In par-
ticular, Dedekind’s particular tendency to adopt strong philosophical posi-
tions as directing principles for his mathematical works has made him a very
good subject for philosophers of mathematical practice (especially for [Avi-
gad, 2006], and Tappenden’s inquiries about fruitfulness and definition). On
the other hand, as an historian, it is imperative to take Dedekind’s strong
epistemological concerns into consideration, to account for his practice and
his mathematics. And whatever the assessment of Dedekind’s ideas might
be, the role played by his epistemological concerns is never denied. H. M.
Edwards, for example, wrote that

[Dedekind’s] insistence on philosophical principles was responsi-
ble for many of his important innovations. However, in the case
of ideal theory, this insistence seems to have impelled him to
abandon his first, very simple generalization of Kummer’s theory,
and to replace it with two later formulations which were more
in accord with his philosophical principles but which required
much more space and technique to reach the same objective.
([Edwards, 1980], 349)

The importance given to epistemological values constitutes one of the most
significant aspects of Dedekind’s approach, insofar as he was rarely com-
pletely content with the treatment of certain mathematical theories, whether
they had been written by his contemporaries, or (albeit far less often) by
himself. I will put forward the idea that the key point here is how Dedekind
prized, understood, and worked with certain epistemological values.

In fact, Dedekind’s works have held the philosophers’s attention for a
long time: Husserl, Cassirer, and Cavaillès took a deep interest in Dedekind’s
works. Recently, interest in Dedekind’s works have grown among philoso-
phers, stemming from interest in the concept of number ([Belna, 1996]) and
in foundational issues. In particular, Dedekind has been considered in re-
lation to philosophical positions, such as structuralism (e.g., by Erich Reck
([Reck, 2003], [Reck, 2009]) who tries to identify the structuralism peculiar

17



Chapter 0 - Introduction

to Dedekind’s works10) or logicism. Many considerations of Dedekind as
a logicist are connected to the always renewed interest of philosophers for
Frege.11 Alternate propositions of a Dedekindian logicism have been made
in Ferreirós’s works and by Michael Detlefsen ([Detlefsen, 2012]). Hourya
Benis Sinaceur proposed a different view and argues against a logicist read-
ing of Dedekind (in [Sinaceur and Dedekind, 2008] and more extensively in
[Sinaceur, Forthcoming]). Finally, Dedekind’s impact on or participation in
the early development of set theory ([Ferreirós, 2008]) and of the axiomatic
method ([Sieg and Schlimm, 2005], [Sieg, 2009], [Schlimm, 2011]) also at-
tracted considerable attention.

These works, insightful and epistemologically subtle, adopt an approach
with two characteristic features. Firstly, they tend to only consider a small
part of Dedekind’s mathematics. In particular, if one follows these works,
Dedekind’s mathematics seems to have two facets, his mathematical works
and his foundational works, while in the same time being thought to present
a striking and profound unity, particularly sensible as regards the methodol-
ogy. If philosophers do consider Dedekind’s mathematical works, it is usually
for a very particular point, often isolated from the remaining parts of the
corpus. Notably, philosophical works take a particular interest in Dedekind
and the infinite. While this point is deeply interesting for philosophy of
mathematics, for the history of mathematics, and even for the history of
philosophy of mathematics, Dedekind himself did not seem to consider it
as a particularly problematic issue. In general, philosophical works ten to
detach the foundational works from the mathematical works. Some publi-
cations do escape this tendency. They are those devoted to larger questions
such as set theory (in particular, Ferreirós’s works), epistemological values
in mathematical practice such as Tappenden’s papers or again Avigad’s in-
quiry about “methodology” ([Avigad, 2006], which I will consider in more
details in the dissertation).

The second feature of recent publications on Dedekind is a tendency to
project expectations on Dedekind’s works, which had a strong impact on
the philosophical interpretations of Dedekind’s ideas. This is an important
point, for Dedekind, given the importance of epistemological considerations
for his writings. It prompted many attempts to characterize Dedekind’s
ideas by means of categories that were only elaborated after his own writ-
ings – or at best by Frege – and to try to pinpoint which was the ontological
position underlying Dedekind’s mathematics. Commentators built their in-
terpretations on Zahlen (sometimes adding Stetigkeit and extracts from the
correspondence). The two main positions mentioned above thus emerged:

10See also [Yap, 2009] on Dedekind and structuralism.
11These discussions however fall out of the scope of this dissertation. For a comparison

of Dedekind’s and Frege’s ideas on logic and whether they should be treated in the same
way, one can refer to [Sinaceur, Forthcoming].
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Dedekind is a logicist, and Dedekind is a structuralist.
Dedekind’s statement that “arithmetic is a part of logic” led to con-

sider him, often, as one of the founding fathers of logicism along with Frege,
despite their very opposed ideas on mathematics and logic. This led to
many comparisons of their approaches and discussions of Dedekind’s logi-
cism. More finely-shaded descriptions of a Dedekindian logicism have been
proposed by Ferreirós ([Ferreirós, Unpublished]) and Detlefsen ([Detlefsen,
2012]). By “logicism”, they both mean something different. Ferreirós de-
fends the idea that logicism has been developed in two phases, an “early,
triumphant phase from 1872 to the shocking discovery of the contradictions
in the years 1897–1903” and Russellian logicism. For him, Dedekind is a ma-
jor reference of the first phase of logicism, and adopts “the doctrinal thesis
that the basic principles of mathematics can be derived from logical prin-
ciples.” For Ferreirós, Frege and Dedekind develop their approaches on the
basis of the same fundamental idea: to subsume arithmetic under the con-
cepts of logic. However, Dedekind conceived logic as a theory of inference – a
conception of logic significantly different from Frege’s. In [Sinaceur, Forth-
coming], H. Benis Sinaceur gives a thorough analysis of the fundamental
differences between Dedekind’s and Frege’s conceptions of logic and mathe-
matics to argue that there is no logicism in Dedekind. Sinaceur’s argument
is based on a detailed and subtle analysis of Dedekind’s conception of logic
which suggests convincingly that the standards of logicism are not applica-
ble to Dedekind. Detlefsen’s take on a Dedekindian logicism is significantly
different from Ferreirós (and even from the idea of a Dedekindian logicism
against which Sinaceur argues), since from his viewpoint, Dedekind’s logi-
cism is rooted in his demand that “everything that can be proven ought not
to be believed without a proof”. Dedekind’s logicism, according to Detlef-
sen, is related to the pursuit of rigor all the way to unprovable premisses,
the laws of pure thought, which for Dedekind are laws of logic. Detlefsen’s
ideas will be the starting point of a reflection on rigor, in the last part of
this dissertation, hence I will not develop it more here.

Another possibility which has been discussed at length is Dedekind’s
structuralism. Again, there are many ways to understand Dedekind’s struc-
turalism, but the common denominator is a philosophical, foundational un-
derstanding of “structuralism”. Structuralists, such as Hellman and Shapiro,
consider Dedekind as the first structuralist about objects of mathematics.
Reck has rightly shown ([Reck, 2003]) that Dedekind’s ideas correspond ex-
actly neither to Shapiro’s ante rem structuralism, nor to Hellmann’s modal
structuralism, nor to “set-theoretic structuralism” (the position that as-
sumes the existence of sets and considers objects of mathematics as set-
theoretical structures). In fact, if one follows Reck, the only sort of struc-
turalism that Dedekind’s Zahlen seems to satisfy is what Reck calls “method-
ological structuralism”. The “methodological structuralism” is described by
Reck as a “general, largely conceptual approach [such as that of modern
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abstract algebra] (as opposed to more computational and particularist ap-
proaches). It is typically tied to presenting mathematics in a formal ax-
iomatic way” ([Reck, 2003], 371). From these observations, Reck concludes
that one needs to define a new version of structuralism, peculiar to Dedekind,
which he calls “logical structuralism”. “Logical” refers to Dedekind’s spe-
cific process of abstraction. The “methodological structuralism” identified
by Reck has been recognized in Dedekind’s works by several commentators.12

In particular, for Sieg and Schlimm, Dedekind’s structuralism is linked to his
axiomatic approach, which for them must be understood in connection to
Hilbert’s and Bernays’s conception of axiomatics (a point strongly defended
by Sieg in [Sieg, 2009]13).

To read Dedekind as a structuralist because he introduces some of the
mathematical concepts which will prove capable of supporting a structural-
ist interpretation seems to me to be tendencious.14 It is judging Dedekind’s
works against later philosophical standards. Dedekind never stated that
mathematics is about studying structures, and his mathematical works rather
goes in the opposite direction. In fact, one may offer an alternative expla-
nation of the same phenomena by placing them in the wider context of
Dedekind’s mathematics15.

0.1.2 The historians’s way(s)

I have considered, in the previous pages, the philosophical interpretations of
Dedekind’s works and suggested that the considerations of specific parts of
his works as well as expectations about the conceptions underlying his works
might have created certain biases. The projection of certain expectations can
also happen for mathematical concepts. A typical example would be to read
Dedekind from a set theoretical standpoint and thus to want to recognize
the concept of Abbildung, which Dedekind developed in the 1870s, and actu-
ally used in the 1880s, in the concept of “substitution” which Dedekind first
uses in his lectures on Galois theory in 1865-58. If Dedekind does develop a
rather general notion of “substitution”, his use of the Galoisian terminology
is evidently following Galois’s use. Yet, with a reading Dedekind’s math-
ematics under the light of set theory, the use of “substitution” is seen by

12We saw that for Sinaceur, Dedekind simply uses the word “concept” for what we
would call “structure” ([Sinaceur and Dedekind, 2008], 108).

13On Dedekind and Hilbert, see also [Klev, 2011].
14Corry has invited us to read Dedekind’s algebraic works without the teleology of struc-

tural algebra. It seems likewise important to read Dedekind’s number concept without
anachronistically using today’s philosophical ideas.

15In particular, the fact that Dedekind defines at once the entire domain of natural
numbers by its structure can be related to Dedekind’s demand that the definitions be
uniform, that is, valid for all cases in a determinate framework. Thus, for example, real
numbers should not be defined alternatively as roots, logarithms, etc. Rather one should
be able to provide a definition of all real numbers in one move.
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Ferreirós as an “obscure” terminology.
In the same line of ideas, retrospective readings identified algebraic struc-

tures in Dedekind’s works for a long time, a point that was efficiently op-
posed by Corry in [Corry, 2004b]. Corry argued that Dedekind was not a
(mathematical) “structuralist”, for his mathematical works are not investi-
gating structures themselves but rather using (some) algebraic structures as
tools. Corry has highlighted that while Dedekind does possess the essential
concepts of (would be) structural algebra, in particular fields and ideals,
the roles played by these concepts and the status of each concept are very
different from modern algebra.

Indeed, Dedekind does not consider these ‘structural’ concepts as in-
stances of a more general concept of structures. Dedekind does not define
‘structures’ in an abstract general way (i.e., as a non-empty set with ab-
stract operations) but always for numbers or functions, and he does not
define the ‘structures’ in relation to each other. Rather, he defines and
works with ‘structures’ as if they were “independent mathematical enti-
ties”. While in a structural approach, there is a certain unity in the idea of
structure, Dedekind treats each concept differently and gives them different
roles. Thus, by a close attention to “mathematical knowledge and practice”,
Corry highlighted that Dedekind’s approach does not display the overall ho-
mogeneity of structuralist mathematics. In the course of this dissertation, I
will emphasize this point and investigate in more detail the development of
ideal (and module) theory, so as to highlight how the approach adopted by
Dedekind answers certain requirements of rigor.

In the last decades, historians of mathematics discarded a practice of
historiography that had been dominant until the 1980s and focused on the
grand narrative of the shaping of present day knowledge. The type of “Whig
history of science”16 and/or of a Bourbakist idea of the development of math-
ematics was rejected, while other issues came into focus: larger selections
of actors with notably ‘peripheral’ actors; educational, institutional and
sociological issues; interest for journals, non-academic practices of mathe-
matics, applied vs. pure mathematics. . . One of the main themes of his-
torical researches about 19th and 20th century mathematics has been the
understanding of the (many) sources of our modernity and the desire to
exhibit the many complexities of the development of ‘modern’ mathemat-
ics. Dedekind became mainly interesting as one of the marks of a turning
point, a junction between classical and modern mathematics. For example,
he is the first step in Corry’s history of mathematical structuralism (even
if he is not identified as a structuralist). Dedekind is also considered as
one of the very first important steps in the development of modern mathe-

16That is, is the tendency to judge mathematical works in terms of the modern stan-
dards. See [Shapin and Schaffer, 1989].
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matics. In particular, he plays an important role in paving the way to the
rise of modernism in mathematics in Jeremy Gray’s inquiries on the subject
([Gray, 1992], [Gray, 2008b], [Gray, 2008a]). In this renewed historiography,
Dedekind’s mathematics was approached so as to shed light, by contrast, on
the more ‘traditional’ practice of mathematics in the 19th century, an en-
try door to parts of the history of mathematics that had been left out in
previous historical researches (notably Leopold Kronecker’s works). A point
of convergence of many of these works is a depiction of the mathematical
developments between 1850 and 1880 as the opposition between the “al-
gorithmic” Berlin school of mathematics and the “conceptual approach” in
mathematics (adopted by Dedekind and which took over the conceptions of
mathematics in the 20th century).

Considering the large amount and the great quality of studies about or
involving Dedekind’s works, one can wonder what there is to add. I will
suggest that elements have been overlooked and that some obscure parts
are left to investigate further. I will propose, on the bases of these works,
which have greatly informed my own research, to explore these points.

The first element to consider is, of course, that of the inner unity of
Dedekind’s mathematics which I have mentioned above. Indeed, while
philosophers have been considering mainly foundational works, historians
of mathematics tend to explore Dedekind’s mathematical works (algebraic
number theory, algebraic function theory) and show little interest for founda-
tional works. In fact, it seems that neither philosophers nor historians have
tried to understand Dedekind’s corpus as a united whole. The tendency of
commentators to consider that Dedekind’s overall works have a noticeable
unity (to the point that it is systematically mentioned), but at the same
time to treat both aspects of his works separately has always seemed puz-
zling to me. The approach I would like to propose is a global approach of
Dedekind’s writings between 1854 and 1888, so as to point what can be seen
by looking at Dedekind’s corpus as a whole rather than in separate pieces.

A second point appeared to me as requiring further thought. As I just
mentioned, historiography has emphasized the opposition between the algo-
rithmic and the conceptual approach. The “conceptual approach” is identi-
fied as a tendency in the second half of the 19th century to try to substitute
concepts to computations in mathematics. It is, for example, described by
Ferreirós in the following way:

[The mathematicians working in the conceptual approach] con-
sistently attempted to frame mathematical theories within the
most general appropriate setting, in such a way that “outer forms
of representation” were avoided, new basic objects were chosen,
and a definition of the characteristic “inner” properties of these
objects (i.e., a fundamental concept) was placed at the very be-
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ginning of the theory.17 ([Ferreirós, 2008], 31)

The commonly accepted idea that Dedekind’s mathematics is “conceptual”,
in which “conceptual” can essentially be understood as “non algorithmic”,
does not yield a description as precise as one might wish. I believe much
more can be made to characterize in which ways and how Dedekind actually
developed his “conceptual” mathematics. In the first chapter of this dis-
sertation, I will question this category of analysis for a thorough account of
Dedekind’s approach. I will thus propose to look beyond the mere statement
of “conceptuality” so as to provide a clear account of Dedekind’s elaboration
of new concepts and rewriting of theories.

The last point concerns the insertion of Dedekind in his historical con-
text. Although he brought key innovations and changes in mathematics,
Dedekind was claiming to walk in the footsteps of such central figures of
mathematics as Gauss, Dirichlet or Riemann. He did not consider his works
as marking a strong divergence with common approaches in mathematical
research but rather as developing certain of their ideas and principles. In
addition to Dedekind’s explicit desire to continue some of his predecessors’s
works, he also developed his works on the basis of ideas that were, in fact,
rather common. Notably, Ferreirós explained that Dedekind’s conception of
logic was rather traditional ([Ferreirós, 2008], 119-124 in particular). An-
other particularly important point is Dedekind’s conception of numbers.
The core idea of Zahlen is that numbers are creations of the mind, flowing
directly from the pure laws of thought. As Jahnke and Otte have under-
lined, in the 19th century, “[t]here was the widespread idea that number
theory was the purest expression of the laws ruling our thoughts” ([Jahnke
and Otte, 1981], 30). An account of Dedekind’s mathematics that would
propose an historical approach for his foundational works should acknowl-
edge the importance of these points.

By looking at Dedekind’s texts with the question “What kind of struc-
turalist was Dedekind?” or “How can we extend our idea of logicism so that
Dedekind can fit in?”, one projects the 21th century philosopher’s questions
onto Dedekind – an epistemological reconstruction comparable to the math-
ematical reconstructions that were decried by historians. Where philosophy
could fruitfully be used as a tool for the exegesis, the approach proposed by
the authors mentioned above is an extrapolation of some isolated points of
Zahlen. I would like to explore the idea that a close analysis of the role and
status of arithmetic in Dedekind’s works highlights the fact that his foun-
dational writings and his mathematical researches are intimately linked.

17In this respect, I will suggest that while Dedekind does state the fundamental concepts
he will use in his works at the beginning of his writings, many of his mathematical works
are, in fact, entirely dedicated to providing a suitable definition to the concepts studied
(e.g., real numbers, natural numbers, the Riemann surface), but this is not the main point,
here.
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Let me know expose more precisely the objectives of this dissertation, in
relation with the hypothesis that Dedekind’s his foundational writings and
the methods developed in his mathematical works are deeply connected.

0.2 Aims of this study

0.2.1 Some methodological considerations

0.2.1.1 Retrospections

In 1998, Ken Saito presented his arguments against mathematical recon-
structions and in favor of textual studies for Greek mathematics as going
against the tendency previously exhibited to “rationalize” the arguments of
Ancient mathematics.18 To this approach, he opposed an approach relying
on texts solely and approaching them in a different way, with an “attitude
based on reasonable doubts as to the validity of logical conjectures”:

For example, apparently redundant or roundabout passages call
for more attention, because these might reveal some of the an-
cients’ particular thoughts of which modern minds are unaware.
([Saito, 1998], 135)

Despite ample discussion among historians, these issues are still very preg-
nant in the history of mathematics. For example, in [Chemla, Chorlay, and
Rabouin, Forthcoming], a collective book to be published in which practices
of generality are studied across time, space and disciplines, David Rabouin
proposes a reconsideration of generality in Euclid’s Elements, suggesting
that modern interpretations of generality in ancient texts were biased by
wrong expectations as to what generality should be:

a large part of the “defaults” found in the Elements could be
seen as linked to our expectations about the way “generality” is
supposed to hold in science. This teaches us two lessons: first, we
have criteria for “generality” which do not necessarily coincide
with what was at stake in ancient Greek mathematics; second,
the kind of generality which is to be found in these mathematics
may be not less, but indeed more subtle than the one which we
project on the texts today. ([Rabouin, Forthcoming])

18“Previous scholars (say, from Tannery and Zeuthen to van der Waerden) were, I
believe, confident in the power of something like universal reason, and took it for granted
that a careful mathematico-logical reasoning was able to restore the essence of ancient
mathematics. Today scholars are more skeptical: the type of reasoning that once played
an essential role tends to be regarded as a mere rationalising conjecture. They are even
convinced that the modern mind will always err when it tries, without the guide of ancient
texts, to think as the ancients did.” ([Saito, 1998], 134)
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The projection of our expectations and categories on historical texts is far
from only affecting the history of Ancient mathematics. Closer to us, Paolo
Mancosu, in a 2009 paper ([Mancosu, 2009]), considers the “measure” of
infinite sets. He presents recent mathematical developments which provide
an alternative to Cantor’s theory of infinite, thereby opening the possibility
of a philosophical reflection on the supposed “inevitability” of Cantor’s the-
ory of infinite.19 In this last part of his study, Mancosu criticizes a “Whig”
approach to the history of mathematics and the tendency to consider that
there exists only one “right way” to proceed for the development of, for
example, the theory of infinite, as if mathematics and reason were progress-
ing with an absolute necessity towards the truth as it is now known. This
presents the risk to judge previous authors against Cantor’s works or even
to “assimilate [them] to the later Cantorian accomplishments”. To do so
leads to “a completely anachronistic reading of many of the medieval and
later contributions (this was certainly the case with Duhem’s interpretation
of Gregory of Rimini and Maier’s interpretation of Albert of Saxony; recent
scholarship has been more cautious (Murdoch, Dewender, etc.))” ([Mancosu,
2009], 626). Besides, this often implies that one would miss “the complexi-
ties of the contrasting intuitions that have shaped the attempts to cope with
such a recalcitrant object” (ibid., 636).20

In [Chemla, Chorlay, and Rabouin, Forthcoming] mentioned above, two
papers raise similar historiographical points, of the kind which underlie my
own inquiry. The first one by Frédéric Jaëck ([Jaëck, Forthcoming]) con-
siders the introduction of the concept of Banach space and the writings by
Banach in which former historians have identified the introduction of the
concept of Banach space. Jaëck stresses that historians might have been
mistaken in recognizing this object in Banach’s 1922 Sur les opérations dans
les ensembles abstraits et leur application aux équations intégrales, for, he
argues, the axioms stated here, and later used for the definition of Banach
spaces, do not play the role of defining a new mathematical object. The
concept of Banach spaces only appears in a later work, published in 1932,
which suggests that the development of Banach spaces was made in at least
two steps. This conclusion brings to the fore the important issue of the his-
torian’s assessment of which degree of generality is given to certain axioms,
definitions, theorems, since, Jaëck tells us, a core difference between the 1922
and 1932 papers is the generality of the axioms. Without the close attention
for the interpretation of the texts, here, one is tempted to anachronistically
see, in Banach’s statement of the axioms in 1922, the first emergence of the

19The idea of Cantor’s theory of infinite being “inevitable” was an argument advanced
by Gödel, in [Gödel, 1990].

20Note that the two authors I just mentioned are philosophers, who warn us against the
dangers of retrospective readings in philosophy. The battle against retrospective readings
should not be seen as a battle between philosophers and historians, of course.
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concept itself, while in fact, at that point, the status and meaning of the
axioms do not produce a new concept.

Similar caution can be important in reading Dedekind. A simple example
is the introduction, in his algebraic number theory a concept formally similar
to that of ring appears, which is named Ordnung, but which is not given the
fundamental status it has in modern algebra. It is the most striking case,
but as Corry underlined, Dedekind’s ‘algebraic’ concepts are considerably
different from the concepts of modern algebra, by the role and status they
have in the theory.

The second paper, by Frédéric Brechenmacher ([Brechenmacher, Forth-
coming]), studies different conceptions of generality in the 1870s and sug-
gests (not unlike Rabouin’s point) that our expectations of what “general-
ity” meant for 19th century algebraists kept the variety of conceptions of
generality out of our sight. Brechenmacher emphasizes the importance to
be cautious when identifying epistemological values in mathematical texts.
Studying the controversy between Camille Jordan and Leopold Kronecker
in 1874, he explains that, in fact, this quarrel “sheds light on two conflicting
perspectives on ‘generality’.”21 More interestingly, it seems that Kronecker’s
own historiography of general reasonings and what constitutes a “truly gen-
eral approach” was taken up by Thomas Hawkins. Hawkins called this
particular generality the “generic reasoning in algebra” and identified it as
playing a key role in the history of algebra (since Viète). But by adopt-
ing this particular view of generality and its history, historians might have
missed other conceptions of “generality”, whose various meanings were “an
organization of knowledge of the type that was used before the emergence of
object-oriented disciplines” (ibid.). Historiographical considerations about
generality were thus altered by our own expectations of what a “general”
approach or reasoning was supposed to be.

The point, here, is not to provide a definition of the different kinds of
generality and trace their respective history – neither for Brenchenmacher
nor for me. Rather, it is to emphasize the idea that our readings of the texts
is affected by our preconceived ideas about the epistemological values them-
selves and how they might have played a role in this history of mathematics.
It becomes important to be able to identify the actors’s categories, if one is
to recognize the variety of conceptions (and even understand the benefits of
satisfying such epistemological values). The same issue appears, quite strik-
ingly, in Dedekind’s and Kronecker’s assessment of the “abstraction” or, a
point that I will consider more deeply, of the “arithmeticity” of an approach.

21“[W]hile Jordan criticized the lack of generality of Kronecker’s invariant computations
because they did not reduce pairs of forms to their simplest expression, Kronecker con-
sidered Jordan’s canonical form as a ‘formal notion’ with no ‘objective meaning’ which
therefore failed to achieve true generality. What made one generality true was exactly
what made the other generality false”.
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Any such reflection also ought to avoid the opposite excess, that is,
suggesting that the history of the particular matter considered should be
completely rethought or even rewritten – and it is, of course, not what I am
suggesting in emphasizing these methodological issues. Indeed, the point is
not about Dedekind’s place in the history of mathematics: it is wrong nei-
ther to give Dedekind pride of place in the development of modern algebra
and of modern set theory, nor to recognize in his approaches the premisses
of axiomatic definitions. However, it is important to be able to provide
a non-anachronistic account of his practice of mathematics and of the key
epistemological values which guided them. It seems indeed doubtful that
Dedekind’s ideas and conceptions would be similar to ours – a simple exam-
ple being the co-existence in his definition of the domains of numbers of a
genetic approach and axiomatic definitions (see [Sieg and Schlimm, 2005]).
In particular, his approach should not be assessed or explained in terms of
our own categories. However, in the case of our reading of Dedekind, the pro-
jection / reconstruction is made less at the level of the concepts themselves,
than at an epistemological level. Indeed, our expectations of Dedekind’s
conceptions are distorted by a feeling of proximity resulting from the pre-
ponderance in our mathematics of concepts grown from Dedekind’s ideas.
Not only did he father some of the core concepts of modern algebra, but
certain parts of his writings appear so very familiar to modern day readers
that they need next to no actual “reconstruction” to fit modern standards.
However, Dedekind’s approach, while based on concepts still in use today, is
far from identical to modern algebra or algebraic number theory, for it was
shaped by specific epistemological values and principles, as well as by the
set up of specific strategies to satisfy these values.

Because of the proximity of certain of his works with our mathematics,
the historiographical treatment of Dedekind’s mathematics slipped through
the net of many of the historiographical criticisms mentioned above. How-
ever, one should not forget that Dedekind’s ideas were reinterpreted, fil-
tered so to speak, by mathematicians such as Emmy Noether, and are not,
in themselves, so close to present day knowledge and practice. Indeed, as
Corry emphasized, the concepts invented by Dedekind and to some extent
the approach he advocated for (against Kronecker’s) presents strong differ-
ences with our modern concepts. It should not be overlooked that the actual
adoption of Dedekind’s concepts only occurred after Hilbert’s Zahlbericht
(1897) and that Emmy Noether was greatly responsible in developing both
Dedekind’s ideas and his notoriety. In this dissertation, I would like to ex-
pose the epistemological justification underlying Dedekind’s mathematics so
as to support the idea that his approach is, in fact, very different from ours.
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0.2.1.2 Arithmetical reading and rewriting of Riemannian function theory?

As I have mentioned above, I would like to adopt a global approach of
Dedekind’s corpus. As an historian interested in philosophy, and in an
attempt to propose a comprehensive account of Dedekind’s mathematics,
I would like to be able to understand how the more philosophical aspects
of Dedekind’s works are integrated into his mathematics and mathematical
practices.

The conjunction of a global approach and of a rigorous historical ap-
proach take seriously philosophical questions to guide the historical inquiry
incited me to enter into the Dedekindian corpus using a different road than
the ones followed before. I would like to start the investigation with a pa-
per that is less studied and which comes less evidently in mind as a first
step in an analysis of Dedekind’s works, namely the paper co-written with
Heinrich Weber and published in 1882, Theorie der algebraischen Funktio-
nen einer Veränderlichen.22 By doing so, I hope to suggest a way to observe
Dedekind’s mathematics from a different perspective. I believe that this
allows us to bring to the fore the importance of questions that were not
systematically investigated in previous studies and to propose an account
that sheds light to certain characteristics of Dedekind’s mathematics. By
entering through the side door, interesting questions present themselves al-
lowing us to see how Dedekind developed his mathematical innovations and
in what consisted in practice his “conceptual approach”.

Algebraische Funktionen offers a rewriting of the bases of Riemannian
function theory, by transferring to functions some of Dedekind’s methods
from algebraic number theory. Dedekind and Weber thus propose what
we identify as an “algebraico-arithmetic” definition of the Riemann surface,
together with the reformulation of several basic concepts of Riemannian
function theory, such as the genus, and with new proofs of important the-
orems, such as the Riemann-Roch theorem. This transfer sheds a brighter
light on systematic features of Dedekind’s practice. Here like in algebraic
number theory, the treatment aims at a more uniform and more rigorous
treatments of (the foundation of) certain theories. Interestingly enough, in
both cases, Dedekind achieves this goal through the use of the same concepts
and methods. This treatment yields an arithmetical reading of the theory
and provides an arithmetical treatment of its foundations.

The meaning that a reader gives to a mathematical theorem depends on
her historical and sociological background. Catherine Goldstein highlighted
in [Goldstein, 1995] the fact that mathematical results cannot be taken as
universal and fixed, neither in time nor in space. This idea was pursued by

22Hence the title of my first part, which marks the entry into Dedekind’s mathematics
through a different door than the entry points usually taken – be it ideal theory or the
definition of natural numbers.
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Caroline Ehrhardt23 who considers Galois’s notion of group and highlights
the strong differences of the diverse receptions (in her words, the “reelabo-
rations” of Galois’s memoir).24 Goldstein’s and Ehrhardt’s analyses bring
to the fore how the understandings and interpretations of mathematical re-
sults, concepts and theories are historically, sociologically and epistemolog-
ically correlated. This last point, not present in Goldstein’s and Ehrhardt’s
works, will be one of the pillars of my argument. In particular, as a starting
point for the dissertation, I will follow ideas highlighted in Karine Chemla’s
works on epistemological values in mathematical cultures,25 and suggest
that certain epistemological values, significant in Dedekind’s conception of
mathematics, produced a certain reading of Riemann’s theory of algebraic
surfaces. This reading, I will argue, appears to be deeply arithmetical.
From this, follow several questions that I will investigate throughout the
dissertation: what are the nature and the role of arithmetic in Dedekind’s
mathematics? Which peculiar questions is the resort to arithmetic supposed
to answer? Why is arithmetic considered as the answer to these questions?

The re-definition of the Riemann surface given in 1882 by Dedekind and
Weber is essentially a reinterpretation of Riemann’s ideas, a rewriting of the
fundamental concepts of algebraic function theory. The idea of “rewritings”
was developed in a paper by Norbert Schappacher ([Schappacher, 2010]), in
which he explains that “rewritings on all scales make up the very fabric of
mathematical activity through the centuries.” The first step of his study are
arithmetical rewritings of the notion of points by Dedekind (real numbers
as points of the straight line) and Dedekind and Weber (points of the Rie-
mann surface). The aim of comparisons between the original concept and
its rewriting is to “describe explicit transformations of epistemic objects and
techniques”26 ([Schappacher, 2010], 3260). Dedekind engages into “rewrit-
ings” at many points in his works, proposing a new definition of the Riemann
surface, “new clothes” for Kummer’s ideal numbers, and even rewriting his
own works so that they agree more closely to his epistemological require-
ments.27

23[Ehrhardt, 2012], [Ehrhardt, Forthcoming].
24I will consider this point briefly in Chapter 4.
25See, for example, [Chemla, 2003], [Chemla, 2009], in which she emphasizes how epis-

temological values such as generality “are subject to specific practices, according to the
culture in which they are valued” ([Chemla, 2009], 148). It is important, she writes, that
these values be “identified and described” (ibid) for a profitable study of the mathematical
practices of the actors.

26“Epistemic objects and techniques” are a reference to [Epple, 1999], who himself was
referring to Rheinberger’s works.

27Another “rewriting” of Riemannian function theory is proposed by Heinrich Weber in
his Lehrbuch der Algebra (1895-96) in which the Dedekind-Weber approach is mixed with
Kronecker’s.
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0.2.2 The argument of the thesis. The corpus and its limits

The 1882 paper, while recognized as a major work (of Dedekind and Weber,
and in the history of mathematics), is often mentioned rather quickly as yet
another example of Dedekind’s (“conceptual”) method.28 It is thus treated
as a side work, often taken away from the context of Dedekind’s works. I
rather will propose to consider it as an integral (and important) part of
Dedekind’s corpus. Indeed, this paper combines several important char-
acteristics to be taken into more consideration when studying Dedekind’s
mathematics. It is precisely the transfer from one domain to the other,
the change of framework, that will allow us to capture in a different way
Dedekind’s methods. In particular, the arithmetical form given to the the-
ory appears considerably more striking when one looks closely at the overall
strategy of redefinition of the Riemann surface proposed in the paper.

The arithmetical rewriting in this non-arithmetical context suggests a
specific role played by arithmetic. I will highlight, in Dedekind’s works, the
preeminence of arithmetical methods, that is, methods built on elementary
arithmetical notions, by bringing out their importance in Algebraische Funk-
tionen and following this thread in a selection of Dedekind’s works. This
will bring to the fore the importance to pay a closer attention to the char-
acterization of arithmetic in Dedekind’s works and to question its role, its
status. I will suggest that Dedekind deploys a strategy of arithmetization
and that this strategy is tightly linked to epistemological values and strong
convictions about the ‘right’ approach in mathematics. I will suggest that
this strategy does not only account for Dedekind’s methods in algebraic
number and function theory, it also is reflected in Dedekind’s foundational
researches. That is, I shall argue that to some extent Zahlen, published in
1888, bears the mark of mathematical works, and notably the 1882 func-
tion theory. To be clear, by this I do not mean such a bold statement as a
complete transformation of Dedekind’s ideas on numbers. Rather, I mean
that the definition of the number concept is intrinsically linked to the uses
of arithmetic in Dedekind’s mathematical practice, that arithmetic and the
number concept were affected by the mathematical practice and should be
understood as embedded in a more global perspective of Dedekind’s works.
This thesis relies on the conviction that the practice of mathematics is a
key factor in the shaping and reshaping the objects of mathematics and the
mathematician’s conceptions.

28It is notably the case of [Corry, 2004b] or [Dugac, 1976b]. Exceptions to the rule are
[Geyer, 1981], [Strobl, 1982], [Houzel, 2002] and [Schappacher, 2010].
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0.2.2.1 Issues addressed and plan adopted

To reach this goal and avoid an anachronistic exegesis, my analysis will
focus on understanding Dedekind’s strategy by unfolding the characteristic
elements of practice that can be identified in a selection of texts.29 The
novelty of the work I am proposing is not in the texts selected, but rather
in the project of inquiring into the relationships between the texts which,
I will argue, reveal important characteristics of Dedekind’s conception of
arithmetic. In fact, it rather seemed more relevant to investigate major and
well known texts, so as to highlight the significance of the argument – other
less significant texts being used for precisions when needed.

The dissertation will be organized in four parts, each containing two
chapters. The strategy I propose will thus be the following: in a first part, I
will expose in detail Theorie der algebraischen Funktionen einer Veränder-
lichen, after necessary preliminaries about elements of context. The para-
graphs concerned with the historical and mathematical contexts aim not
only at setting up the scenery, but also at outlining in which ways Dedekind
did not see himself as diverging from his predecessors’s ideas. In study-
ing the 1882 paper, I will highlight its essential features. This shall allow
me to have solid elements on which to rely to show that the treatment of
the (grounds of the) Riemann surface provided is thoroughly “arithmeti-
cal”. This suggests a series of questions about arithmetic, its status and its
characterization in Dedekind’s mathematics.

From there, the three following parts will address these questions. For
this, my general plan of action consists in unraveling the steps of the de-
velopments of Dedekind’s arithmetic, from his Habilitationsvortrag to Was
sind und was sollen die Zahlen?.

In the second Part, I will propose to return to Dedekind’s earlier works.
This will allow us to see in Chapter 3 that in 1854, Dedekind’s Habilita-
tionsvortrag, titled Über die Einfuhrung neuer Funktionen in der Mathe-
matik, presented a characterization of arithmetic as essentially related to
domains of numbers and elementary operations. It appears that in this
context the kind of divisibility questions which will be essential in his next
works and were part of typical number theoretical issues remain absent. A
couple of years later, Dedekind produced his first works in number theory,
which I will present in the following Chapter: his lectures on Galois theory
in 1856-58 and his first published article on number theory in 1857, Abriß
einer Theorie der höheren Kongruenzen in bezug auf einen reellen Primzahl-
Modulus. In these works, ideas about arithmetic start to move away from
simple considerations of domains of numbers to a closer attention to di-
visibility. In particular, emerges the definition of arithmetic operations to

29As a side-effect of this approach, the study of Algebraische Funktionen will concentrate
on Dedekind’s role in the paper. I hope to provide a more thorough consideration of
Weber’s part in future works.
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reinterpret relations of inclusion for concepts such as groups.

This peculiar definition of arithmetic operations is used in the two other
texts I will consider in the third Part, namely the 1871 and 1876-77 (and
1879) versions of algebraic number theory, respectively titled Über die Com-
position der binären quadratische Formen and Über die Theorie der ganzen
algebraischen Zahlen. A full chapter will be devoted to each version of
Dedekind’s famous algebraic number theory. I will propose to study the in-
creasing importance of an arithmetical approach for developing the theory,
a point that should be made clear by a comparison of the changes between
the 1871 and the 1877 versions of the theory. The development of a certain
arithmetical strategy indeed culminates in the 1877 version of ideal theory,
which is later transferred to algebraic functions, resulting in the 1882 paper
with Weber.

The last Part of the dissertation will be more reflexive. In Chapter 7, I
will take a step back in time and review the historiography on the issues,
in the 19th century, of extending concepts of number and of the so-called
“arithmetization of mathematics”. In particular, I will consider Stetigkeit
und irrationale Zahlen and some of Dedekind’s manuscripts. Rather than a
mere survey of an already well researched subject, I aim at exploring the idea
that “arithmetization” in the first sense of the term, i.e., to give an arith-
metical form to a definition or an argument, should be taken into account
in the consideration of Dedekind’s “arithmetization”. I will thus reconsider
the conclusions drawn in Part III, to put forward the hypothesis of a certain
inner coherence of Dedekind’s works. I will suggest that an identification of
the underlying epistemological motives for Dedekind’s methods can provide
a consistent explanation of his recurrent use of arithmetical operations.

One of the core stakes of this dissertation is to offer an interpretation
of what “arithmetic” and its objects are for Dedekind and to understand
the role attributed to arithmetic operations. As a consequence, it is essen-
tial for us to consider these questions in relation to Dedekind’s foundational
researches. In particular, the issues addressed by Dedekind’s foundational
works and the methods employed to do so, are important to exhibit a poten-
tial relation between the foundation of arithmetic and its place in Dedekind’s
mathematics. This will lead me to propose an interpretation of the concept
of number and its definition for Dedekind, in the last Chapter. I will high-
light how Was sind und was sollen die Zahlen? offers an answer to the
demand of a definition of the natural numbers, and does so in a way able to
account for the previous developments of arithmetic. I will conclude with a
suggestion regarding how we could link the definition given to previous and
later works of Dedekind.
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0.2.2.2 About the corpus

In the thesis, I have decided to expose the texts with a great amount of
details so as to identify the most noticeable elements of practice. I will do
so for two reasons. The first reason is that my goal is to draw conclusions
from the texts themselves: the study of Algebraische Funktionen suggests
questions, whose answers ought to be found in Dedekind’s writings, in the
form of claims made by Dedekind and which need to be interpreted in their
context. By this detailed study, I wish to identify recurrent practices and
strategies, without downplaying evolutions.

My second reason for staying close to the texts is inspired by the hope
of identifying clues in the texts likely to allow me to draw information to
understand how the elaboration of Dedekind’s writings was made. Hence, I
wish to involve as little modern mathematical formulations as possible. I will
in particular expose Dedekind and Weber’s theory of algebraic functions, as
well as that of Dedekind’s lectures on Galois theory, the first two versions of
his algebraic number theory, and his definition of several domains of num-
bers. While I have no pretension to exhaustiveness, I do hope to provide a
representative account of Dedekind’s practice of mathematics.

The approach I adopt, which could be seen as micro-historical, has ob-
vious limits. This work relies on a close attention to details. While I do not
intend to treat Dedekind independently from the larger history (hence the
paragraphs of contextualisation), this does entail that my focus is rather
narrow. Consequently, larger timescales and more sociological issues had
to be kept out of the dissertation,30 and the space devoted to comparing
Dedekind’s approaches to alternative ones had to be limited. More signifi-
cantly, the choice of a tight focus also imposed limits to the attention given
to the reception of Dedekind’s works. These later works are remarkable by
the way in which they combine Dedekind’s approach with Kronecker’s, often
replacing Dedekind’s arguments with Kroneckerian ideas. I am conscious of
these limits and have tried to avoid producing a work that would have been
completely airtight to these untreated matters.

Two points, in my defense, should however be underlined. The first is the
academic isolation in which Dedekind put himself and the somewhat delayed
reception of his works, which make a more sociologically oriented study of
Dedekind’s works less prominent than in other cases.31 The second concerns

30Notably, Schappacher suggests, in [Schappacher, 2010], to consider the 1882 paper as
part of larger interrogations about organization of mathematics into disciplines or subdo-
mains. I will not pursue this line of thought.

31Of course, it would be of great interest to understand more clearly the sociological
and mathematical underpinnings of this point. They are already indicated on one hand
by the institutional importance of Kronecker, and on the other hand by Dedekind’s uses
of actual infinities. Dedekind saw the use of infinite sets as an extrapolation of Gauss’s
notion of class but they were hardly accepted by his contemporaries. This, however, is a
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the reception of Dedekind’s works. Dedekind was deeply convinced that his
approach was the most appropriate one, and was rarely open to sugges-
tions (especially on a methodological level). The few mathematicians who
adopted his methods did not, however, perpetuate this idea. Rather than
acknowledging that Dedekind was right (against Kronecker, in particular),
they recognized that some of his ideas and some of his concepts (in particu-
lar the concept of field, and his approach for group theory) were fruitful and
that the divergences between Dedekind’s and Kronecker’s approaches were
far from necessary. I hope that my dissertation will allow us to understand
more clearly the specificities of Dedekind’s thought, and his own arguments
for the superiority of his approach.

completely different issue.
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Through the side-door
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Introduction to Part I

Dedekind is most well-known for his number theoretical works, in which were
introduced the concepts of field and ideal, which would become some of the
most important concepts of today’s mathematics. The “groundbreaking”
new notions introduced in number theory were to be extended, generalized
to more abstract concepts by mathematicians in the early 20th century. For
Dedekind, those notions were tightly related to the context of the study
in which they appeared and were used for the purpose of investigating the
properties of mathematical objects (for example, algebraic numbers). The
elaboration of Dedekind’s ideas was led by the desire to set up a uniform
approach, that is to be able to treat, in one move, entire classes of objects.
The new notions introduced by Dedekind were thus never considered in and
for themselves and out of the precise theoretical framework in which they
were to be used, yet they were defined without reference to the individual
nature of the objects concerned. This peculiar point allowed the transfer
of concepts and methods developed in number theory, to function theory,
in a 1882 paper co-written with Heinrich Weber, Theorie der algebraischen
Funktionen einer Veränderlichen.

In the midst of what historians tend to call the development of a “con-
ceptual approach” in mathematics led by Riemann and Dedekind from the
late 1850s on, Dedekind and Weber wrote a paper whose goal was to rede-
fine the basic notions of Riemann’s function theory and to set up a solid
ground for the investigation of complex functions and Riemann surfaces.
But one should not be mistaken, Dedekind and Weber’s paper is not a shin-
ing proof of the effectiveness of the “conceptual approach”. Initially, it is
a criticism of previous treatments of Riemann’s ideas and an attempt to
go back to Riemann’s true methodological and epistemological principles
hitherto overlooked by his successors. It highlights that the “conceptual ap-
proach” was, in fact, very sparsely adopted – and even when adopted, as it
was the case for Dedekind, the response from the mathematical community
was not an overly enthusiastic one.

For Dedekind and Weber, ever since Riemann’s works in function theory,
mathematicians had failed to follow some of the key precepts of his elab-
oration of the concept of Riemann surface, namely, to treat entire classes
of functions without distinguishing between special cases, without relying
on individual or explicit expressions, and without taking computations as a
ground of the theory when they should be its results. To be able to correct
these flaws, Dedekind and Weber adopt an approach opposite to the usual
approach one. They start by considering fields of algebraic functions, in
which they will be able to transfer and adapt Dedekind’s number theoret-
ical methods. Their goal is to thereby provide a more rigorous and more
uniform treatment of Riemann surfaces.
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A singular paper in the Dedekindian corpus by its subject, the work
on algebraic functions co-written with Weber exhibits nonetheless typical
characteristics of Dedekind’s approach in mathematics. It presents itself as
an interesting entry door into Dedekind’s way of working in mathematics,
which I will propose to take. Indeed, it allows to see Dedekind’s corpus under
a different light and to enter in it with different questions. In particular, I
hope to be able to deepen our understanding of “arithmetic” in Dedekind’s
approach.

To start on this path, I will divide my inquiry in two chapters. First,
I will introduce contextual elements. In particular, I will start by con-
sidering questions of historiography, in which I will highlight that to con-
sider Dedekind’s contribution to mathematics as a part of a “conceptual
approach” might be less fruitful than other approaches. I will also briefly ex-
pose in this chapter historical and mathematical elements about Riemann’s
function theory that will be important for our understanding of Dedekind
and Weber’s paper, as well as some interesting aspects of Weber’s multi-
faceted career.

In a second chapter, I will give a detailed presentation of the content
of Dedekind and Weber’s theory of algebraic functions, which will serve as
an essential basis for my argument. This paper has been largely, in later
years, acknowledged as a milestone of algebraic geometry. However, it is
long, complicated and based on ideas which were already found difficult to
apprehend in Dedekind’s number theory, and its immediate reception is al-
most non-existent. My aim, here, will be to consider the 1882 paper as a
part of Dedekind’s corpus, rather than a piece of cutting-edge mathematics.
With all the mathematical elements at hand, I will call attention to the
“arithmetical” nature of the methods developed by Dedekind and Weber.
The idea will be to provide a thorough presentation of the said paper, which
will allow to show the importance of arithmetic – rather than to exhibit
the arithmetical parts and let the other elements silent. The comprehen-
sive treatment of Dedekind’s mathematics I would like to propose in the
next chapters of the dissertation will grow from the elements highlighted in
reading Algebraische Funktionen. To avoid a characterization of Dedekind’s
approach as merely “conceptual” implies to be able to characterize it in some
other way. With the analysis of the 1882 paper, I would like to suggest that
to look at Dedekind’s works from the viewpoint of the role he attributed
to arithmetic within mathematics yields most interesting insights about his
works.
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Elements of contextualisation

It is commonly accepted that, in the late 1850s in Göttingen, Dirichlet, Rie-
mann and Dedekind, formed the heart of a “conceptual approach” to math-
ematics. The importance of this approach is widely recognized, in particular
for setting the deep transformations in mathematics which happened at the
end of the 19th century. It is also usually acknowledged that this approach
was, for several decades, restricted to a small isolated group of mathemati-
cians. Most readings of Dedekind’s works are so deeply embedded in this
idea, so tainted by this approach, that a critical reflection is inevitable. But
the reference to a “conceptual approach” is, in itself, relatively nebulous. I
will expose the outlines of the “conceptual approach” to point out reasons
for which this reconstruction might not be the most appropriate category
to work with for an account of Dedekind’s mathematics. As a way of ac-
counting for for Dedekind’s ideas, as it was used for example by Edwards,
Avigad, or Ehrhardt, it appears to leave room for further inquiries.

A first way in which the “conceptual approach” can be understood is
as referring to a gradual rejection of purely algorithmic approaches, which
has its roots in algebraic equation theory in the 18th century but reveals
to be as wide as it is slowly growing: from Lagrange to Dedekind, via
Dirichlet and Gauss but also Galois, Abel, Jacobi or Eisenstein – in that case,
Dedekind’s works are merely an accentuation of this tendency. A second
way to understand to “conceptual approach” is to make of Dedekind (and
Riemann) a far-ahead of his time precursor of Hilbert’s and E. Noether’s
works, an idea always dangerous and slightly contradictory with Dedekind’s
insistence on his belonging to the tradition of Gauss’s and Dirichlet’s number
theory.

Following this, the next paragraphs will expose some elements of Rie-
mann’s function theory and Weber’s works, which will be pertinent for the
study of Algebraische Funktionen.
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1.1 Remarks on the “conceptual approach”
Königsberg, in which Jacobi taught from 1829 to 1842, was the first place
to develop a mathematical school, which Klein described as being

a scientifically-oriented neohumanism, which regards as its aim
the inexorably strict cultivation of pure science, and in search of
that aim establishes a specialized higher culture, with a splendor
never seen before, through a concentrated effort of all its powers.1
(Quoted and translated in [Ferreirós, 2008], 8)

The ideas developed in Königsberg and in Berlin, notably by Jacobi and
Kummer, were later brought to Göttingen by Dirichlet.

After Gauss’s death in 1855, Dirichlet accepted the chair of mathematics
in Göttingen. He brought with him deep transformations in the teaching of
mathematics, notably by introducing the teaching system in use in Berlin or
Königsberg universities, in which research and teaching were mixed together
– a system which later became more largely spread in Germany. Dedekind,
who became a Privatdozent in Göttingen in 1854, reports that Dirichlet,
when he came to Göttingen, “opened up a new era for mathematical studies”
by giving brilliant in-depth lectures at the verge of research. Dedekind was
strongly impressed and deeply influenced by Dirichlet, about whom he wrote

[T]hrough his teaching, as well as frequent conversations (. . . ),
he turned me into a new man. In this way he had an enliven-
ing influence on his many students. (Quoted and translated in
[Ferreirós, 2008], 26.)

Importantly enough, Dirichlet seems to have had a decisive influence on
Dedekind’s turn towards number theory. As Dedekind’s letters to his fam-
ily tell us, Wilhelm Weber’s seminar of mathematical physics was, until
Dirichlet’s arrival, the one that attracted Dedekind’s attention the most.2

The mathematical activity in Göttingen became then articulated mainly
around Dirichlet, Riemann and Dedekind. It is often said that these three
mathematicians, all followers of Gauss, formed the first core of the so-called
Göttingen conceptual tradition in mathematics, whose founding and most
important principle was to avoid long computations and to rather use con-
cepts than explicit forms of representation (Darstellungsformen). This prin-
ciple is one of the core precepts of leading Riemann’s approach in function
theory but was overlooked by Riemann’s immediate successors. In 1882, a

1“der naturwissenschactlich gerichtete Neuhumanismus, der in der unerbittlich stren-
gen Pflege der reinen Wissenschaft sein Ziel sieht und durch einseitige Anspannung aller
Kräfte auf dies Ziel hin eine spezialfachliche Hochkultur von zuvor nicht gekannter Blüte
erreicht.”

2Dedekind’s Inauguraldissertation in 1852 was on Eulerian integrals, and his Habilita-
tionsschrift was on transformations of rectangular coordinate systems.
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core motivation for the arithmetical rewriting of Riemann’s function theory
by Dedekind and Weber was to provide an account of it which would meet
the principles which had led Riemann’s approach.

Dedekind and Riemann studied together at Göttingen and became close
friends. Dedekind, who was teaching probability theory, geometry and al-
gebra, also followed Dirichlet’s and Riemann’s classes. He highly valued
Riemann’s works and explicitly stated close links between their mathemat-
ics.

Let us consider briefly the context in which the idea of “conceptual
mathematics” is presented, in particular since the historiography underlines
key changes in mathematics, in this period. I will propose a brief general
overview so as to highlight how Dedekind’s contribution is integrated in the
larger picture.

Many recent works in the history of 19th century mathematics3 have
been referring to the 1850s as the start (or even a golden age) of the “con-
ceptual approach” which was (supposedly) central in Göttingen, especially
as opposed to Berlin tradition of algorithmic and constructive mathemat-
ics. The words “tradition” and “school” should be avoided (as they are by
Ferreirós, Ehrhardt, Stein, etc.). None of the actors was able (for diverse rea-
sons) to start a school or assemble enough followers to build up a tradition.
The vagueness inherent to the word “approach” allows to convey the idea
that they shared certain basic premisses on the methods one should adopt
for doing ‘good’ mathematics and assure its development. In the same time,
it does not engage any strong sociological meaning. In fact, it seems that the
“conceptual approach” can either be understood as a tendency, beginning
long before Dirichlet, to move away from approaches relying strictly on com-
putations in mathematics, or as a movement which might have its roots in
the 1850s Göttingen mathematicians but only really became tangible with
Hilbert’s and Emmy Noether’s works.

In the following, I will question the consistency of this reconstruction, by
suggesting that the net of influences between mathematicians is more com-
plex than it first appears, and that the ideas involved in the “conceptual
approach” should not be considered as peculiar to Dirichlet, Riemann and
Dedekind. This approach is usually associated to a larger transformation in
mathematics. I will thus consider the broader context in which historiogra-
phy locates the key changes in mathematics. In particular, I will bring to
the fore the presentation of Dedekind in this larger context, to better point
out the insufficiencies of this approach.

3See for example, but this list is not exhaustive, [Edwards, 1992], [Edwards, 1983], [Fer-
reirós, 2008], [Ferreirós, 2007], [Ferreirós, 2006], [Laugwitz, 2009], [Stein, 1988], as well as
[Boniface, 2004], [Boniface, 2002], [Ehrhardt, 2012], [Ehrhardt, Forthcoming], and philoso-
phers of mathematics among which [Avigad, 2006], [Reck, 2012], [Reck, 2009], [Tappenden,
2005a], [Tappenden, 2005b], . . .
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Howard Stein ([Stein, 1988]) considers that the change underwent by
mathematics, at that time, were

a transformation so profound that it is not too much to call it
a second birth of the subject – its first birth having occurred
among the ancient Greeks. ([Stein, 1988], 238)

For Detlef Laugwitz, the 1850s in Göttingen were a “golden age” and played
a key role in this general change. It was “an extraordinary time (. . . ) that
prepared to a considerable extent the mathematics of the 20th century”
([Laugwitz, 2009], 24). . . even if it lasted a very short time: Gauss wasn’t
active anymore in the 1850s, Dirichlet died after only four years in Göttin-
gen, Dedekind left for Zurich in 1858. But it still was the time and place
where Riemann wrote his “most important works” and Dedekind made his
first steps in number theory with Dirichlet. Riemann is usually placed at the
very center of the radical changes happening during the second half of the
19th century and Dedekind is considered as a “true conceptual thinker”. Ac-
cording to Laugwitz, the “conceptual approach” is a continuation of certain
aspects in the thoughts of Gauss and Dirichlet by Riemann and Dedekind.
For the latter, “the view of mathematics as a form of thinking in concepts
(Denken in Begriffen) is second nature”. In fact, Dedekind and Riemann
seem to have been the only two mathematicians, at that precise moment, to
be aware that a “gentle revolution” was in march.

For Jeremy Gray, the changes in mathematics that happened in the 19th
century is essentially an ontological revolution, for

although the objects of study remained superficially the same,
the way they were defined, analysed theoretically, and thought
about intuitively was entirely transformed. This new framework
was incompatible with older ones, and the transition to it was
much greater than scientists are accustomed to. ([Gray, 1992],
245)

Riemann and Dedekind are two key figures for this “revolution”. In Gray’s
view, many different parts of mathematics, such as algebraic number theory
or projective geometry, went through such important changes that “central
features as number and line were left dramatically altered in status and
meaning” (ibid.). Riemann and Dedekind are considered to be two of the
most influential mathematicians in bringing about these changes (Riemann
in geometry, Dedekind in number theory), bringing about new mathematics
perceived as “modern”. However, Gray seems to locate the actual passage
to “modernist” mathematics around 1890: Riemannian geometry “provided
the ideology for a revolutionary change in geometrical ideas” ([Gray, 2008b],
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151) and Dedekind laid the foundations for Hilbert’s Zahlbericht. Dedekind’s
approach, according to Gray, is

recognizably modernist in its emphasis on the need for inter-
nal definitions of objects, tailored to meet internally set goals of
the theory. The concept of integer is stretched to include new in-
tegers, and the concept of prime is likewise stretched. (ibid., 150)

The importance of Riemann for the development of new conceptions
and concepts in mathematics during the second half of the 19th century is
indisputable. For M. A. Sinaceur, mathematics was marked in its “style
and orientation” by Riemann’s “genius” ([Sinaceur, 1990]). Riemann is the
instigator of a “new mathematical spirit, by his way of taking head-on a great
number of problems, as well as to provoke radical questions” (ibid., 222).
The desire for a certain “conceptual clarity” is central in both Riemann’s
and Dedekind’s works, and is guided by the idea that

concepts, in mathematics, are used for knowing when computa-
tions are necessary and when they are not. This way of looking
at things is Dirichlet’s. It excessively impregnates Riemann’s
methods: (. . . ) to avoid, as much as possible, the long compu-
tations and to substitute them with ideas.4 (ibid., 223)

This description, philosophically heavy but mathematically vague, is typi-
cal of statements about the “conceptual approach”. It is true that Dedekind
was a strong advocate for substituting concepts to computations. However
he stayed a rather lonely voice until the end of the century. He stated re-
peatedly that mathematicians working in function theory failed to follow
Riemann’s precepts. H. Weber (in particular with his textbooks) revealed
to be instrumental in passing these ideas to the next generation of mathe-
maticians (Hilbert, E. Noether, Van der Waerden, . . . ) who fully developed
them.

Often identified by commentators with Riemann’s ideas, the new “con-
ceptual” approach can be summed up as being non-algorithmic, which “im-
plies a new mode of thought: mathematical objects are no longer given
primarily as formulas but rather as carriers of conceptual properties” ([Laug-
witz, 2009], 34). For Laugwitz, this (supposedly) new possibility had already
surfaced in previous works:

4“les concepts servent, en mathématiques, à savoir où il faut calculer, où il ne faut pas
le faire. Cette façon de voir est celle de Dirichlet. Elle imprègne la méthode de Riemann
jusqu’à l’excès : serrer de près les concepts étudiés ; y adhérer ; les présenter dépouillés
de tout ‘bruit’ avec les seules indications indispensables ; enfin, éviter, autant que faire se
peut les longs calculs et leur substituer les idées.”
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Leibniz had both possibilities in mind, but the algorithmic ap-
proach triumphed beginning with Euler. Then came the day of
the conceptual approach. Bolzano and Cauchy (1817/1821) ca-
sually announce the notion of continuity of functions, and Dirich-
let (1829) deduces the representability by Fourier series for a
class of functions defined by concepts. Riemann defines a com-
plex function by its property of differentiability rather than by
an analytic expression, which he regards as a secondary matter.
In algebra, Dedekind moves from expressions made up of terms
to the concepts of ring, field, and ideal. (ibid., 34)

Changes of this type happened in analysis, geometry, number theory. . . The
emblematic example of the ideas carried by the conceptual approach is taken
to be Riemann’s approach to function theory, by contrast to Weierstrass’s.
Weierstrass starts from the definition of an analytic function of a complex
variable, centered on a certain z0 as a function that can be developed into

f(z) =
∑

ai(z − z0)i.

Riemann, on the other hand, gives a definition of the function which makes
no reference whatsoever to an explicit representation – in series or other-
wise. To characterize functions, Riemann argues that one only needs to
know a certain number of basic properties about the values of a function,
their singularities. For example, an elliptic function is fully characterized by
its zeros, its poles, and the orders of the zeros and the poles. The functions
are determined up to a constant, which is a crucial point of Riemann’s ap-
proach. Indeed, Riemann is the first to propose to consider the functions
not one by one, but in collections, the class of functions i.e., the totality
of functions F (θ, z) which can be rationally expressed in terms of θ and z.
Riemann then talks about classes of polynomial equations equivalent by ra-
tional transformations in two variables to designate what we call “surface”.5

The idea of a Riemann surface of a holomorphic function makes
possible a kind of investigation that is largely independent of
specific expressions and provides a basis for new (topological)
concept formations and methods of proof. ([Laugwitz, 2009],
35)

Classes of functions are infinite systems treated as totalities. The consider-
ation of infinite systems is a crucial element of the new methods developed
by both Riemann and Dedekind. Dedekind considered systems of infinitely
many numbers, such as fields, modules and ideals. In 1876, he explained in a
letter to Lipschitz that his theory of ideals, in which infinite sets of numbers
are considered as “wholes”, was directly inspired by Gauss’s notion of class,
in the Disquisitiones Arithmeticae:

5On Riemann and set theory, see [Ferreirós, 2008].
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Just as we can conceive of a collection of infinitely many func-
tions, which even if they are still dependent on variables, as one
whole, in the same way as when we collect all equivalent forms
in a form-class, denote this again by a single letter, and submit
it to composition, with the same right I allow myself to conceive
of a system a of infinitely many, completely determined numbers
in [the system of integers] o, which satisfies two extremely simple
conditions I. and II., as one whole, and name it an ideal.6 ([Lip-
schitz and al. 1986], 62-63, transl. slightly altered in [Ferreirós,
2008], 110)

In this letter to Lipschitz, Dedekind refers to both Riemann and Gauss as
an inspiration for his introduction of ideals as sets. Let us examine more
closely the potential sources for this new approach.

1.1.1 Before Riemann

If Dedekind is also referring to Riemann in the letter to Lipschitz, it seems
that the common inspiration of a Göttingen conceptual tradition could be
seen as being Gauss himself. Indeed, as soon as in the Disquisitiones Arith-
meticae in 1801, Gauss expresses the idea central to the “conceptual ap-
proach”, when commenting of the following theorem:

The product of all numbers less than a given prime number, when
increased by unity is divisible by this prime number. ([Gauss,
1801], §76, 50)

Gauss remarks that neither Waring, who published it, nor Wilson, to whom
it was attributed, could find a proof for the theorem:

Waring confessed that the demonstration seemed more difficult
because no notation can be devised through which one could ex-
press a prime number. But in our opinion truths of this kind
ought to be drawn out of notions [notionibus, translated in Ger-
man by Begriffen] and not out of notations. (ibid., 50)

Gauss’s statement invites to be careful when choosing modes of proofs. He
emphasizes that the notation itself is not an adequate basis when investi-
gating mathematical truths. In fact, there is a part of arbitrariness in the

6“So gut, wie man einen Inbegriff von unendlich vielen Functionen, die sogar noch von
Variablen abhängen, als ein Ganzes auffasst, wie man z.B. alle äquivalenten Formen zu
einer Formen-Classe vereinigt, diese wieder mit einem einfachen Buchstaben bezeichnet
und einer Composition unterwirft, mit demselben Rechte daß ich ein System a von un-
endlich vielen, aber vollständig bestimmten Zahlen in o, welches zwei höchst einfachen
Bedingungen I. und II. genügt, als ein Ganzes auffassen und ein Ideal nennen.”
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choice of a notation which shouldn’t be a prelude to any mathematical rea-
soning – a point which will be often emphasized later by Dedekind. From
the impetus of Gauss’s works, then, is thus developed the so-called new “con-
ceptual approach”, whose core characteristic is the desire to base proofs or
even theories on notions rather than Darstellungsformen or computations.

Dedekind himself, almost a century after the publication of Gauss’s Dis-
quisitiones, commented on the passage just quoted by saying:

In these last words lies, if they are taken in the most general
sense, the statement of a great scientific thought: the decision
for the internal in contrast to the external. This contrast also
recurs in mathematics in almost all areas; it suffices to think of
function theory, and Riemann’s definition of functions through
internal characteristic qualities, from which the external forms of
representation flow with necessity.7 ([Dedekind, 1895b], 54–55,
partially translated in [Tappenden, 2005b], 8-9)

Gray underlines that the idea expressed here by Dedekind, tightly linked to
Gauss’s and Riemann’s approaches, does not suggest that

objects cannot be studied via their representations, but (. . . )
that one must be vigilant to ensure that one establishes proper-
ties of the objects themselves and not the properties of merely
this or that representation, and to this end it was best to avoid
explicit representations whenever possible. ([Gray, 2008a], 670)

If one takes these ideas to be the core of the “conceptual approach”,
then in fact mathematicians outside of the small group of 1850s Göttingen
mathematicians had expressed similar views. Notably, in 1843, Gotthold
Eisenstein, a student of Dirichlet in Berlin, attests to the fact that in the
actors’s view, these precepts were embraced by a wider circle:

The essential principle of the latest mathematic school, estab-
lished by Gauss, Jacobi and Dirichlet, is in contrast to the past,
such that it would enclose a problem as a whole by a brilliant
method – with one leading idea – and would show the final result
by a single strike in an elegant way, while previous methods tried
to succeed by tedious, complicated calculations and deductions
(as still used in Gauss’s Disquisitiones). ([Eisenstein, 1843], 8)

7“In diesen letzten Worten liegt, wenn sie im allgemeinsten Sinne genommen werden,
der Ausspruch eines großen wissenschaftlichen Gedankens, die Entscheidung für das In-
nerliche im Gegensatz zu dem Äußerlichen. Dieser Gegensatz wiederholt sich auch in der
Mathematik auffast allen Gebieten; man denke nur an die Funktionentheorie, an Rie-
manns Definition der Funktionen durch innerliche charakteristische Eigenschaften, aus
welchen die äußerlichen Darstellungsformen mit Notwendigkeit entspringen.”
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Eisenstein’s vision of what he perceived as a “new school” explicitly mentions
avoiding “tedious, complicated calculations.” However, this statement should
be taken with a grain of salt, for it is more directed towards the simplicity
and elegance of mathematical reasonings. Moreover, for the three mathe-
maticians mentioned here are all great calculators, and this by their own
standards (and so was Eisenstein!). In 1852, in Jacobi’s obituary, Dirichlet
himself points out this new tendency, and carefully underlines that not only
are computations as good as the new approach, but Jacobi distinguished
himself in both:

If it is the more and more prominent trend in the new analysis
to put thoughts in place of computations, there are nevertheless
certain domains in which computation keeps its rights. Jacobi
who had so considerably promoted this trend, also contributed
in these branches by his technical mastery.8 ([Lejeune-Dirichlet,
1852], 245)

Jacobi’s mathematics would hardly be considered “conceptual” by later com-
mentators, and he is never mentioned, for example, by Dedekind. Note that
Dirichlet mentions this “conceptual approach” in relation with the ongoing
efficiency of the computational approach. Moreover, he does not explicitly
consider himself as a part of the new approach, nor does he particularly
praise this new way of working. He clearly sees advantages in both ap-
proaches.

According to [Klein, 1979], Dirichlet had a “single goal, which he strove
for with his whole being, [which] was a clear insight into the ideal coherence
of mathematical thought, a goal which led him to renounce external influ-
ence and success” ([Klein, 1979], 90). A great calculator himself, Dirichlet is
also considered to be at the origin of some of the distinct traits of the con-
ceptual approach. He introduced non-constructive methods in some of his
number-theoretic works, giving proofs of existence without providing means
of construction – an approach he was the first to use, long before Dedekind or
Hilbert’s Nullstellensatz. This was to be a core point of Dedekind’s meth-
ods, and a point of dissension with ‘non-conceptual’ mathematicians like
Kronecker.

Also often taken as a reference by later commentators for a “conceptual”
approach, is the notion of arbitrary function proposed in Dirichlet’s “Sur la
convergence des séries trigonométriques qui servent à représenter une fonc-
tion arbitraire” ([Lejeune-Dirichlet, 1829]) and its German version “Über die
Darstellung ganz willkürlicher Functionen durch Sinus- und Cosinusreihen”
([Lejeune-Dirichlet, 1837]). Here, Dirichlet’s aim is to pursue Fourier’s works

8“Wenn es die immer mehr hervortretende Tendenz der neueren Analysis ist, Gedanken
an die Stelle der Rechnung zu setzen, so giebt es doch gewisse Gebiete in denen die Rech-
nung ihr Recht behält. Jacobi, der jene Tendenz so wesentlich gefördert hat, leistete ver-
möge seiner Meisterschaft in der Technik auch in diesen Gebieten Bewundernswürdiges.”
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on the representation of arbitrary functions in trigonometric series. In the
Théorie analytique de la chaleur, Fourier refers to a notion of function as not
being “subjected to a consistent law” but rather representing the succession
of arbitrary ordinates ([Fourier, 1822], 12). Dirichlet considers an “entirely
arbitrary function” f , i.e., a function for which no explicit representation
is given: no formula and no “rule of formation” by the arithmetic opera-
tions. Dirichlet explicitly follows Fourier’s approach. According to Dirich-
let, Fourier “introduced the way of expressing [in trigonometric series] the
said arbitrary functions” ([Lejeune-Dirichlet, 1829], 117). So, Dirichlet is,
here, using Fourier’s own terminology and not departing from his notion of
function.9 Dirichlet seems to be less inaugurating a new concept of function
than giving a more rigorous treatment of the notion of arbitrary function,
to which he finally gives a more precise definition in the 1837 paper:

We mean by a and b two constant values and by x a variable
quantity which must gradually take all the values between a and
b. Now, to every x corresponds a single, finite y, that is in such a
way that while x continuously runs through the interval between
a and b, y = f(x) likewise gradually changes. Then, y is called
a continuous function of x for this interval. It is at the same
time not necessary that y in this entire interval be dependent of
x with always the same law, so one does not need once to think
of a dependency expressible by the mathematical operations.10

([Lejeune-Dirichlet, 1837], 135)

For the arbitrary function11 f studied, only the necessary properties are
considered: f takes finite values and is continuous in a certain interval [0;h]
with 0 ≤ h ≤ π

2 . This allows Dirichlet to give a general proof of the conver-
gence of the trigonometric series he is studying. As underlined by Fourier
himself in 1822, the definition of the notion of function allows for the ar-
bitrary functions to be “submitted to the ordinary procedures of analysis”
(op. cit., 12). Dirichlet, in fact, essentially proposes, here, a more detailed
and rigorous definition for Fourier’s concept of function. Dirichlet’s concept
of function will be the basis of the very general concept of function used by
Riemann.

9For more details, see [Youschkevitch, 1976] and [Chorlay, Forthcoming].
10“Man denke sich unter a und b zwei feste Werthe und unter x ein veränderliche Grösse,

welche nach und nach alle zwischen a und b liegenden Werthe annehmen soll. Entspricht
nun jedem x ein einziges, endliches y und zwar so, dass, während x das Intervall von a bis b
stetig durchläuft, y = f(x) sich ebenfalls allmählich verändert. So heisst y eine stetige oder
continuirliche Function von x für dieses Intervall. Es ist dabei gar nicht nöthig, dass y in
diesen ganzen Intervall noch demselben Gesetze von x abhängig sei, ja man braucht nicht
einmal an eine durch mathematische Operationen ausdrückbare Abhängigkeit zu denken.”

11The functions studied by Dirichlet are assumed to be continuous.
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Riemann studied with Dirichlet in Berlin and in Göttingen. Like Dedekind,
he was profoundly influenced by Dirichlet’s works and ideas, from what he
called the “Dirichlet principle” to his concept of function:

If one designates by z a variable magnitude which can take grad-
ually all the possible real values, then when to each value cor-
responds a single value of the indeterminate magnitude w, one
calls w a function of z. And if, while z continuously runs through
all the values between two fixed values, w changes continuously
as well, then this function is called continuous [stetig oder con-
tinuirlich] in this interval.12 ([Riemann, 1851], 3)

1.1.2 Riemann’s and Dedekind’s mathematics
I will present, in this section, the outlines of what is commonly considered
as the “conceptual approach”, from its very roots in Dirichlet’s works to
its archetypal expression in Riemann’s function theory and Dedekind’s ideal
theory. This will allow me, in the next paragraph, to point out the insuffi-
ciencies of this reading alone.

Dedekind and Riemann had a close relationship during their time to-
gether in Göttingen, which can be seen in the letters Dedekind sent to his
family and to Riemann’s widow (see [Scharlau, 1981a], [Dugac, 1976b]).
Dedekind expressed his admiration for Riemann’s works at numerous oc-
casions and was profoundly influenced by his approach. Riemann’s impact
on Dedekind was essentially methodological and epistemological, and acted
as an inspiration for his own works, as Dedekind explained in a letter to
Lipschitz:

My efforts in number theory have been directed towards basing
the research not on arbitrary representations or expressions but
on simple fundamental concepts and thereby – although the com-
parison may sound a bit arrogant – to achieve in number theory
something analogous to what Riemann achieved in function the-
ory.13 (Letter to Lipschitz, 6 June 1876, in [Dedekind, 1932] III,

12Denkt man sich unter z eine veränderliche Grosse, welche nach und nach alle
möglichen reellen Werthe annehmen kann; so wird, wenn jedem ihrer Werthe ein einziger
Werth der unbestimmten Grosse w entspricht, w eine Function von z genannt; und wenn,
während z alle zwischen zwei festen Werthen gelegenen Werthe stetig durchläuft, w eben-
falls stetig sich ändert, so heisst diese Function innerhalb dieses Intervalls stetig oder
continuirlich.

13“Mein Streben in der Zahlentheorie geht dahin, die Forschung nicht auf zufällige
Darstellungsformen oder Ausdrücke sondern auf einfache Grundbegriffe zu stützen und
hierdurch – wenn diese Vergleichung auch vielleicht anmaßend klingen mag – auf diesem
Gebiete etwas Ähnliches zu erreichen, wie Riemann auf dem Gebiete der Functionenthe-
orie.”
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468-468, transl. slightly altered in [Edwards, 1983], 11.)

He also explicitly drew this link in the 1877 version of algebraic number
theory:

[S]uch a theory, based on calculation, would not yet offer, in my
opinion, the highest degree of perfection. It is preferable, as in
the modern theory of functions, to try to infer the demonstra-
tions immediately from the fundamental characteristic concepts
rather than from calculations, and to construct the theory in a
way that it is, on the contrary, able to predict the results of the
calculation.14 ([Dedekind, 1876-1877], 102)

Riemann’s influence on Dedekind was, thus, precisely what has been de-
scribed as the adoption of the conceptual approach. Concretely, for both
Riemann and Dedekind – despite the differences of their fields of study –
this can be summed up by the set up of a “higher level”, the recourse to a
collections of functions or numbers to avoid, or hide away, the computations.
According to Laugwitz, then:

The view of mathematics as the study of sets with structures, a
view canonized by Bourbaki in the middle of the 20th century,
can be regarded as a consistent continuation of the Dedekind-
Emmy Noether-van der Waerden line in algebra and the Riemann-
Hausdorff-Frechet line in set-theoretic topology. ([Laugwitz, 2009],
35)

Nowadays, the principles of the conceptual approach, exposed above, ap-
pear as “red-letters clichés”, as Tappenden suggests ([Tappenden, 2008a],
277). However, in the 1870s, Dedekind was not very successful in getting
mathematicians to follow Riemann’s lead (especially not in number theory).
Only at the end of the century were these principles a significantly impor-
tant part of the way in which function theory was taken up to be explicitly
emphasized. For example, they are presented in Stahl’s textbook on elliptic
functions:

. . . the peculiarities of Riemann’s treatment lie first in the abun-
dant use of geometrical presentations, which bring out in a flex-
ible way the essential properties of the elliptic functions and at
the same time immediately throw light on the fundamental val-
ues and the true relations of the functions and integrals which

14“Une telle théorie, fondée sur le calcul, n’offrirait pas encore, ce me semble, le plus
haut degré de perfection ; il est préférable, comme dans la théorie moderne des fonctions, de
chercher à tirer les démonstrations, non plus du calcul, mais immédiatement des concepts
fondamentaux caractéristiques et d’édifier la théorie de manière qu’elle soit, au contraire,
en état de prédire les résultats du calcul.”
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are also particularly important for applications. Second, in the
synthetic treatment of analytic problems which builds up the ex-
pression for the functions and integrals solely on the basis of their
characteristic properties and nearly without computing from the
given element and thereby guarantees a multifaceted view into
the nature of the problem and the variety of its solutions. ([Stahl,
1899], p. iii. Quoted and translated in [Tappenden, 2008b], 276-
277)

1.1.2.1 Riemann’s conceptual mathematics

Riemann, in his 1851 doctoral dissertation on the foundation of the theory of
complex functions, proposed a completely new approach to function theory.
In a transparent allusion to Weierstrass’s works, he explained how his work
brought to the fore the importance of not defining functions by explicit
expressions:

The previous methods of treating such functions always set down
as a definition an expression for the function, whereby its value
was given for every value of its argument; our investigation shows
that, as a result of the general character of a function of a vari-
able complex quantity, in such a definition some of the data are
a consequence of the remaining ones, namely, the proportion of
data has been reduced to those indispensable for the determina-
tion. 15 ([Riemann, 1851], translated in [Laugwitz, 2009], 101).

Riemann emphasized the importance of defining the functions based on in-
trinsic properties (e.g., nature and location of the singularities). The idea
defended by Riemann in 1851 was, thus, that

[a] theory of these functions [algebraic, circular or exponential,
elliptical and Abelian] on the basis provided here would deter-
mine the presentation of a function (i.e., its value for every value
of its argument) independently of its mode of determination by
operations on quantities [i.e., analytical expressions], because one
would add to the general concept of a function of a variable com-
plex quantity just the attributes necessary for the determination
of the function, and only then would one go over to the different

15“Die bisherigen Methoden, diese Funktion zu behandeln, legten stets als Definition
einen Ausdruck der Function zu Grunde, wodurch ihr Werth für jeden Werth ihres Ar-
guments gegeben wurde; durch unsere Untersuchung ist gezeigt, dass, in Folge des allge-
meinen Charakters einer Function einer veränderlichen complexen Grösse, in einer Defi-
nition dieser Art ein Theil der Bestimmungsstücke eine Folge der übrigen ist, und zwar ist
der Umfang der Bestimmungsstücke auf die zur Bestimmung nothwendigen zurückgeführt
worden.”
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expressions the function is fit for.16 (ibid., translated in [Laug-
witz, 2009], 101-102)

Riemann was then arguing for the conjunction of analytical (singularities
and conditions on the imaginary and real parts of the functions) and geo-
metrical (the surface) considerations, so as to define the functions with only
the necessary and sufficient informations, avoiding the redundancies found
in purely analytical treatments. The kind of functions Riemann is interested
in, such as Abelian functions, imply to consider algebraic functions, which
are often multi-valued functions (e.g., the square-root function). In order
to avoid a purely analytic treatment of such functions, Riemann proposes
to consider surfaces multiply covering (parts of) the complex plane – what
we now call Riemann surfaces. The importance of a geometric representa-
tion (the surface) was a core point of his approach. Scholz ([Scholz, 1992])
showed that Riemann’s celebrated notion of manifold (Mannigfaltigkeit) was
elaborated between 1851 and 1854, when he presented these ideas in his
Habilitationsvortrag. The idea of manifolds grew from a desire to find an
acceptable conceptualization for Riemann surfaces, introduced in 1851.

According to Ferreirós, Riemann’s ideas grew more abstract with Rie-
mann’s attempts to find a satisfying foundation to his approach. Riemann
first related his approach to “Analysis Situs”. He went from continuous
manifolds defined “in reference to a ‘variable object’ that admits of different
‘forms of determination,’ i.e., that can be in different states” ([Ferreirós,
2008], 58) to the acceptance of an abstract approach to geometry. Then,
rather than declaring that function theory, and more generally the theory of
magnitudes, depend on geometry, Riemann introduced the concept of man-
ifold, independent of intuition. For Ferreirós, this move “made possible an
abstract derivation of geometry” and was in fact “actually indispensable for
an abstract theory of magnitudes.” The definition of a manifold, given in
1854 is the following:

Notions of quantity are possible only where there already exists
a general concept which allows different realizations. Depending
on whether or not a continuous transition of instances can be
found between any two of them, these realizations form either
a continuous or a discrete manifold; individual instances in the
first case are called points and in the latter case elements of the
manifold.17 ([Riemann, 1854], 273, transl. in [McCleary, 1994],
314)

16“Eine Theorie dieser Functionen auf den hier gelieferten Grundlagen würde die
Gestaltung der Function (d.h. ihren Werth für jeden Werth ihres Arguments) unabhängig
von einer Bestimmungsweise derselben durch Grössenoperationen festlegen, indem zu den
allgemeinen Begriffe einer Function einer veränderlichen complexen Grösse nur die zur
Bestimmung der Function nothwendigen Merkmale hinzugefügt würden, und dann erst zu
den verschiedenen Ausdrücken deren die Function fähig ist übergehen.”

17“Grössenbegriffe sind nur da möglich, wo sich ein allgemeiner Begriff vorfindet, der
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Riemann investigates the concept of manifold in a very general way, linking
it to numbers through the concept of discrete manifolds:

Distinct portions of a manifold, distinguished by a mark or by
a boundary, are called quanta. Their quantitative comparison is
effected in the case of discrete quantities by counting, in the case
of continuous quantities by measurement.18 (ibid., 274, transl.
in [McCleary, 1994], 314)

What interested Riemann the most, however, was continuous manifolds
which form the ground for geometrical and (what we would call) topological
inquiries:

In a concept whose instances form a continuous manifold, if one
passes from one instance to another in a well-determined way, the
instances through which one has passed form a simply extended
manifold, whose essential characteristic (Kennzeichen) is that
from a point in it a continuous movement is possible in only two
directions, forwards and backwards. If one now imagines that
this manifold passes to another, completely different one, and
once again in a well-determined way, that is, so that every point
passes to a well-determined point of the other, then the instances
form similarly a doubly extended manifold.19 (ibid., 275, transl.
in [McCleary, 1994], 315)

Riemann’s Habilitationsvortrag is dedicated to the study of continuous man-
ifolds from the second paragraph to the end. He considers mostly questions
about n dimensionality and the parametrization of n dimensional manifolds.

The demand that the theory of functions, or the theory of magnitudes
in general, be based on characteristic properties (here, singularities and
boundary conditions) embodied by the Riemann surface or the concept of
manifold is the core of Riemann’s “conceptual approach”, and the main

verschiedene Bestimmungsweisen zulässt. Je nachdem unter diesen Bestimmungsweisen
von einer zu einer andern ein stetiger Übergang stattfindet oder nicht, bilden sie eine
stetige oder discrete Mannigfaltigkeit; die einzelnen Bestimmungsweisen heissen im erstern
Falle Punkte, im letztern Elemente dieser Mannigfaltigkeit.”

18“Bestimmte, durch ein Merkmal oder eine Grenze unterschiedene Theile einer Man-
nigfaltigkeit heissen Quanta. Ihre Vergleichung der Quantität nach geschieht bei den dis-
creten Grössen durch Zählung, bei den stetigen durch Messung.”

19“Geht man bei einem Begriffe dessen Bestimmungsweisen eine stetige Mannigfaltigkeit
bilden, von einer Bestimmungsweise auf eine bestimmte Art zu einer andern über, so
bilden die durchlaufenen Bestimmungsweisen eine einfach ausgedehnte Mannigfaltigkeit,
deren wesentliches Kennzeichen ist, dass in ihr von einem Punkte nur nach zwei Seiten,
vorwärts oder ruckwärts, ein stetiger Fortgang möglich ist. Denkt man sich nun, dass diese
Mannigfaltigkeit wieder in eine andere, völlig verschiedene, übergeht, und zwar wieder
auf bestimmte Art, d. h. so, dass jeder Punkt in einen bestimmte Punkt der andern
übergeht, so bilden sämmtliche so erhaltene Bestimmungsweisen eine zweifach ausgedehnte
Mannigfaltigkeit.”
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idea to which Dedekind is referring when he wishes to walk in Riemann’s
footprints.

The elaboration of new concepts and methods so as to satisfy this re-
quirement involves the consideration of actual infinities, such as the con-
tinuous manifold as an infinite collection of points. According to Ferreirós,
Riemann did accept the actual infinite, a point suggested by his definition
of manifold. He considered that infinity was a “well determined” notion,
albeit not directly definable.20 The infinitary aspect of Dedekind’s works
seems to have (at least some) roots in Riemann’s works. Indeed, Dedekind
takes (like Cantor) “Mannigfaltigkeit” to be a synonym for his “System”. It
is, in particular, the case for Dedekind’s concept of ideal,21 which plays an
essential role in his number theory. Dedekind’s ideal theory can be seen as
a typical example of the “conceptual approach”, however I will suggest that
it demands to be nuanced.

1.1.2.2 Dedekind’s ideal theory

Dedekind’s approach is marked by the joined influences of Riemann who
left a deep epistemological imprint; and Dirichlet who was decisive for his
interest for number theory and the importance attached to rigor. Dedekind’s
most important work in number theory, the theory of algebraic integers, in
which is introduced the concept of ideal, is a great example of his methods.
It is also a good example of the limits of an analysis of his innovations as
essentially related to a “conceptual” approach. I will come back to this
point in greater detail below. First, let us outline elements of the definition
of ideals to support this claim.

First published in 1871 as a part of the Xth Supplement to Dirichlet’s
Vorlesungen über Zahlentheorie, which Dedekind edited, the theory of alge-
braic integers is famous for being the birthplace of field and ideal theories.
In this work, among other things, Dedekind successfully extends to any
algebraic integer Kummer’s theory of ideal numbers. Ideal numbers are in-
troduced to “save” the unicity of the decomposition in primes which fails
for the decomposition of certain complex prime numbers (see Sec. 5.1.2).
Ideals are defined by the conditions of divisibility they satisfy and only by
these conditions of divisibility – which implies that they are not defined as
existing objects. For example, consider the system of numbers of the form
a+ b

√
−5, with a and b integers. In this system, one can write the number

20It is well-known that Riemann’s notion of Mannigfaltigkeit inspired Cantor’s set the-
ory.

21Note however that Dedekind’s methodological references for the introduction of ideals
is not solely Riemann, it is also Gauss (see p. 44) which seems to be related to the fact
that being infinite is not the only remarkable property of ideals.
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9 in two essentially different prime decompositions:

9 = 3.3 = (2 +
√
−5)(2−

√
−5)

The ideal factors, here, are β1 and β2 such that β2
1 = 2+

√
−5, β2

2 = 2−
√
−5,

and β1β2 = 3. Then, one has the prime decomposition 9 = β2
1β

2
2 , which is

unique. Kummer’s approach, however, can’t be generalized as such to any
algebraic numbers, and both Dedekind and Kronecker engaged in attempts
to provide a valid generalization.

Dedekind introduces the concept of ideal specifically for this generaliza-
tion. Ideals initially consist in the collection of all numbers divisible by a
certain (existing or ideal) factor p.22 This way, Dedekind avoids the intro-
duction of new (ideal) entities, and he can also avoid the divisibility tests
used by Kummer, which are the kind of long, tedious computations that
should not (according to him) be taken as the basis of concepts. This new
concept, the ideal, is undeniably an archetypical example of the so-called
conceptual approach: in an attempt to avoid relying on Darstellungsformen
and get rid of computations, one introduces a new concept which is ex-
pected to focus on “characteristic properties” – here, a divisibility condition.
Dedekind demands that the definitions allow a better understanding of the
nature of the concept investigated. Darstellungsformen and computations
tend to hide some important properties, and there is a certain arbitrari-
ness involved in the choice of a certain notation, equation or indeterminate
variable, that he wishes to avoid.

Dedekind’s ideals are infinite sets. Their introduction was motivated
by his desire to be able to give a definition “exact and covering all the
ideal numbers that must be introduced in a particular numerical domain
o” ([Dedekind, 1876-1877], transl. slightly altered, 57). This requirement
leads to the following reasoning. What Kummer defined, in his works on
cyclotomic numbers, is the divisibility of ideal numbers which amounts to
the following:

If a number α has a certain property A, consisting always in that
α satisfies one or more congruences, he says that α is divisible by
a determinate ideal number corresponding to the property A.23

(ibid., transl. slightly altered, 57)

Dedekind considers that, in principle, Kummer’s introduction of ideal num-
bers is perfectly rigorous, but not only does it rely too heavily on a compu-
tational approach, it “may [also] lead to hasty conclusions and incomplete
proofs. And in fact this danger is not always completely avoided” (ibid., 57).

22See p. 338.
23“Si un nombre α possède une certaine propriété A, consistant toujours en ce que α

satisfait à une ou plusieurs congruences, il dit que α est divisible par un nombre idéal
déterminé, correspondant à la propriété A.”
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Dedekind detects two additional issues with the approach adopted by
Kummer. First, it does not provide a general definition of ideal numbers.
Kummer’s approach, while efficient for cyclotomic integers, can’t be gen-
eralized for all algebraic integers and Dedekind is interested in definitions
and methods valid for entire classes of objects. Secondly, Kummer does not
give a definition of the multiplication of ideal numbers. This is particularly
problematic for Dedekind for the definition of arithmetical elements.

Dedekind’s ideal theory has a long genesis. Dedekind explains that he
first considered the possibility to extend Kummer’s approach using higher
congruences. This did not yield results of a generality meeting Dedekind’s
expectations :

In my researches, the goal of which has been to arrive at a defini-
tive answer to [the] question [of the divisibility laws for algebraic
integers], I began by building on the theory of higher order con-
gruences, since I had already previously noticed that the appli-
cation of the latter theory could shorten Kummer’s researches
considerably. However, while this method led me very close to
the goal my efforts aimed at achieving, I have not been able to
surmount, by this route, certain apparent exceptions to the laws
holding in other cases. I achieved the general theory, without ex-
ceptions, that I first published in the place mentioned above, only
when I entirely abandoned the old, more formal, approach. . . 24

(ibid., 57)

In fact, Dedekind explains in a 1878 paper, that he detected several short-
comings in the approach using higher congruences, which are essentially
related to the fact that this method requires to base

[the] investigation of a domain of algebraic integers initially (. . . )
on the consideration of a determinate number and the equation
corresponding to it, which is treated as a congruence; and that
the definition of ideal numbers (or rather, of divisibility by ideal
numbers) so obtained, as a result of this determinate chosen form
of representation, does not allow one to distinguish, from the
outset, the character of invariance which is attached to these

24“Dans mes recherches, qui avaient pour but d’amener la question [des lois de divisi-
bilité de entiers algébriques] à une solution définitive, j’ai commencé par m’appuyer sur la
théorie des congruences d’ordre supérieur, parce que j’avais déjà précédemment remarqué
que par l’application de cette théorie les recherches de Kummer pouvaient être consid-
érablement abrégées, mais, bien que ce moyen conduisit jusqu’à un point très-voisin du but
de mes efforts, je n’ai pu toutefois réussir par cette voie à soumettre certaines exceptions
apparentes aux lois constatées pour les autres cas. Je ne suis parvenu à la théorie générale
et sans exceptions, que j’ai publiée pour la première fois au lieu indiqué plus haut, qu’après
avoir entièrement abandonné l’ancienne marche plus formelle. . . ”
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concepts.25 ([Dedekind, 1878], in [Dedekind, 1932] I, 202, my
translation, original emphasis)

An additional reason for Dedekind to discard the first approach was that,
in his view, it was hiding the fact that it is possible to define concepts that
do not depend on the equation initially chosen. With the concept of ideals
adopted later, however, it is possible to define a notion of ideal (and the asso-
ciated notion of divisibility) which holds for any field of algebraic numbers.
And it is possible to do so with no reference whatsoever to a specific number
or equation. The concepts are consequently independent of any reference
to an individual representation of the numbers or the (ideal) factors – they
can be defined a priori without any reference to these individual properties
of (ideal or existing) numbers. For Avigad, avoiding references to the “way
[the objects] are represented” in the definition of ideals allows to understand

why calculations with and properties of the objects [i.e., ideals]
do not depend on these choices of representations. This is why
Dedekind, in the passage above, complains that his first attempt
at a theory of ideal divisors did not allow one to recognize the
invariance the concepts in fact have from the outset. ([Avigad,
2006], 173).

Long complicated computations are avoided, hidden by the use of ideals:
computations were linked to the way ideal numbers were defined and studied
and ideals are defined without reference to ideal numbers. Indeed, Dedekind
notices that the systems “of numbers divisible by a factor p” satisfy prop-
erties of closure: if a is an ideal of a field Ω of algebraic numbers and o the
system of integers of the field, then

I. The sum and difference of two numbers of a are again numbers
of a.
II. The product of any number in a by any number in o is again
a number of a.

It is possible to see that these conditions are also sufficient conditions, that
is, any system satisfying these conditions is a “system of numbers divisible
by a factor p”. This incites Dedekind to take these properties as a definition
for the concept:

A fact of the highest importance, the truth of which I was able
to prove rigorously only after numerous vain attempts, and af-
ter surmounting the greatest difficulties, is that, conversely, each

25“(. . . ) die Untersuchung eines Gebietes von ganzen algebraischen Zahlen sich zunächst
auf die Betrachtung einer bestimmten Zahl und der ihr entsprechenden Gleichung gründet,
welche als Kongruenz aufgefasst wird, und dass die so erhaltenen Definitionen der idealen
Zahlen (oder vielmehr der Teilbarkeit durch die idealen Zahlen) zufolge dieser bestimmt
gewählten Darstellungsform nicht von vornherein den Charakter der Invarianz erkennen
lassen, welcher in Wahrheit diesen Begriffen zukommt.”
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system enjoying properties I and II is also an ideal. That is, a
is the set of all numbers α of the domain o divisible by a deter-
minate existing number or by an ideal number indispensable for
the completion of the theory. (. . . ) This observation naturally
led me to base the whole theory of numbers in the domain o
on this simple definition, entirely freed from any obscurity and
from the admission of ideal numbers.26 ([Dedekind, 1876-1877],
transl. modified, 59-60)

Dedekind’s and Riemann’s approaches are coming from the same ef-
forts to meet new epistemological requisites linked to a desire to distance
the mathematical practice from heavy computational apparatuses. But de-
spite their being “conceptual thinkers”, Dedekind and Riemann worked in
very different ways. According to Dedekind in his biography of Riemann
([Riemann, 1876]), Riemann had “[a] brilliant power of thought and [an]
anticipatory imagination [which] led him frequently to take very great steps
that others could not follow so easily”. And indeed, as P. Ullrich explains

[t]he account [of function theory by Riemann in 1851] is awe-
inspiring but cryptic in the extreme; the topology was left en-
tirely intuitive, and the scope of the approach uncertain, es-
pecially relative to the properties of functions that were then
known. Exegeses of the theory would occupy mathematicians
for generations, with an important stimulus coming in the 1890s
from Henri Poincaré and in 1913 from HermannWeyl (1885–1955).
(p. Ullrich, in [Grattan-Guinness, 2005], 453)

Dedekind, by contrast, confessed, in a letter to Cantor, from August 29
1899, his “Treppen-Verstand” (stepped-understanding, letter reproduced in
[Dugac, 1976b], 261), emphasizing his need to unfold carefully and explicitly
each step of the theory.27 This apparently superficial difference is an impor-
tant point to understand some elements of Dedekind’s approach. Dedekind
strove to make his algebraic number theory as simple and easy to under-
stand as possible, even going so far as rewriting his own works to ease the

26“[U]n fait de la plus haute importance, et dont je n’ai pu démontrer rigoureusement
la vérité qu’à la suite de nombreux et vains efforts et après avoir surmonté de grandes
difficultés, c’est que, réciproquement, tout système a qui jouit des propriétés I et II, est
aussi un idéal, c’est-à-dire que a forme l’ensemble de tous les nombres α du domaine p qui
sont divisibles par un nombre existant déterminé, ou par un nombre idéal, indispensable
pour compléter la théorie. (. . . ) Cette constatation m’a conduit naturellement à fonder
toute la théorie des nombres du domaine o sur cette définition simple, entièrement délivrée
de toute obscurité et de l’admission des nombres idéaux.”

27The analytical researches on Riemann’s Inauguraldissertation which were used by
Weber for [Weber and Riemann, 1900-1901] and later published by M.A. Sinaceur, testify
of Dedekind’s careful unfolding of the mathematical content.
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reader’s way in them. As noted by Ullrich, the tools to develop Riemann’s
theory were not fully or clearly developed in Riemann’s writings. Topolog-
ical concepts were of course not developed in any precise way and neither
were the methods of proof. Dedekind, on the contrary, introduced methods
of proof with his theory of ideals – which were to be later extended but
appeared self-sufficient for Dedekind’s purpose. Rather than merely a ‘con-
ceptual’ approach, it is the possibility to provide what can be identified as
arithmetical methods for the theory of algebraic numbers that is decisive for
Dedekind’s preference for the concept of ideal over other possible general-
izations of Kummer’s ideal factors – a point on which I will come back later
in this dissertation.

Despite the attention given by Dedekind to the elaboration of (what he
considered to be) simple definitions and methods of proof, the reception of
his works stayed cold and almost inexistent until the 1880s (and by then,
not all receptions of his works were enthusiastic ones.28). The reception
of Riemann’s works was as well difficult at first, but the initial difficulties
encountered by the readers with Riemann’s mathematically imprecise disser-
tation started to be dissolved by his later works, whose depth and originality
were quickly recognized. As Bottazzini and Gray explain, Riemann’s 1851
dissertation did not help the “diffusion of Riemann’s message” especially
insofar as

for any who took the trouble to consult the paper, its many
novelties worked against its immediate acceptance. So too did its
vagueness at certain crucial points and its often murky language.
The novelties included the emphasis on such topological concepts
as cuts and connectivity and on the central role of harmonic
functions, but most of all on the way a complex function was to
be specified and hence thought about. ([Bottazzini and Gray,
2013], 277)

An actual reception of Riemann’s ideas happened only by the end of the
1850s, with the lectures given in Göttingen from 1855-56 to 1861-62, which
adopted a more conventional approach. More important is his 1857 paper
on Abelian functions:

The depth of originality in Riemann’s remarkable paper [on
Abelian functions] can be measured by the fact that on read-
ing it no less an authority than Weierstrass withdrew a paper
of his own on the same subject, preferring to wait until he had
assimilated what Riemann had to say. (ibid., 286)

28See notably 5.7.
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The interpretation of Dedekind as a conceptual thinker, while pertinent,
focuses the analysis on Dedekind’s first steps in the set up of new concepts
and methods meeting the requirement that computations and Darstellungs-
formen be avoided or be the result of the theory. It focuses the exegete’s
attention on the elaboration of new concepts. However, the interpretations
following this approach have not examined closely how these concepts can
be associated to new methods of proof, how they are used in practice and
articulated with other parts of the theory.

Modern readings of Dedekind’s and Riemann’s works are deeply marked
by the idea of them as conceptual thinkers. While I will not dwell upon
Riemann’s case, I will suggest that to analyze Dedekind’s works only in
these terms might alter our understanding of some important aspects of the
developments of his works. To refer to the approach as “conceptual” is only
the beginning of the analysis. One should go further and describe the actual
practice to which the adjective corresponds. I will argue that, in Dedekind’s
case, a close analysis of his mathematical texts, to understand how the new
concepts are effectively used in the mathematical practice, brings to the
fore additional elements and shows how his conceptual approach is in fact
impossible to dissociate from his conception of arithmetic.29

1.1.3 Diffuse ideas in space and time?

The undeniable vagueness in the description of the mathematical practices
attached to the “conceptual tradition” is echoed by the fact that this ap-
proach is also not very well delimited, neither in space nor in time. The
opposition often made between the Berlin computational approach and the
Göttingen conceptual one is clearly irrelevant in the case of Eisenstein or
Dirichlet. Moreover, the web of influences between mathematicians is very
complex and leads to close relationships between “conceptual” and “compu-
tational” mathematicians.

We saw that it is often proposed, both by the historians and by the ac-
tors, that Gauss is, in some ways, the pioneer of the conceptual approach.
The timespan between his Disquisitiones Arithmeticae, published in 1801,
and Dirichlet’s or Einsenstein’s statements about a new “conceptual” ap-
proach is rather long, especially insofar as Gauss’s Disquisitiones met im-
mediately a considerable success in the mathematical community (see [Gold-
stein and Schappacher, 2007a] and in this dissertation 1.2.1). Statements
about the growing importance of avoiding the resort to computations can
be found in several other mathematicians’s works. This can be detected in

29In addition, by pushing the investigation further and considering these elements as
embodied in a more global perspective of his works, one can be led to question the role,
status and understanding of arithmetic and numbers for Dedekind, which I will do in the
last third of this dissertation.
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Abel’s works on algebraic equations, in which he explains that (computa-
tional) attempts to find formulae solving equations are not the appropriate
approach anymore, rather one should ask whether it is possible to solve the
equations:

[I]f unfortunately the resolution was impossible, one could look
for it for an eternity without finding it. To infallibly obtain
something on that matter, one has to take another road. One
has to give to the problem a form such that it would always be
possible to solve it, which can always be done for any problem.
Instead of asking for a relation for which we don’t know if it exists
or not, it must be asked if such a relation is indeed possible.30

([Abel, 1839b], 217)

This idea can also be detected in Abel’s works on the so-called Abelian
functions, as Jacobi perceived it himself:

To be sure, mathematics has the property that one can come to
discovery through calculation, for if you make a mistake at the
start, you recognise it so to speak by calculating a falsehood.
Since one calculates with letters, that show how they have been
obtained, the result itself shows the shortest way that one has to
take. This path, through calculation to discovery, is completely
impossible for the Abelian transcendental functions, for if one
departs even so little from the true path one can find no result
at all because of the vast complexity of the calculation. It seems
therefore that the whole of mathematics must be raised to a
higher level31 for the direction of this research. ([Jacobi, 1836-
1837], quoted and translated in [Gray, 1992], 237)

“Higher level” is also the phrase used by Dedekind to refer to his introduc-
tion of ideals (although there is no evidence that he took it from Jacobi).

The idea that computations will not be sufficient to solve problems of
algebraic equation theory can also be found in Galois’s works in 1831 (who,
at that time, hadn’t read Abel’s works):

I believe that the simplifications produced by the elegance of
calculations (intellectual simplifications, of course; there are no

30“[S]i par malheur la résolution était impossible, on aurait pu la chercher une éternité,
sans la trouver. Pour parvenir infailliblement à quelque chose dans cette matière, il faut
donc prendre une autre route. On doit donner au problème une forme telle qu’il soit
toujours possible de le résoudre, ce qu’on peut toujours faire d’un problème quelconque.
Au lieu de demander une relation dont on ne sait pas si elle existe ou non, il faut demander
si une telle relation est en effet possible.”

31For Gray, Riemann is a perfect example of working at a “higher level”.

61



Chapter 1 - Elements of contextualisation

material ones) have their limits; I believe that the time will come
when the algebraic transformations foreseen by the speculations
of the Analysts will find neither the time nor the place for their
realisation; so much so that one will have to be content with
having foreseen them.32 ([Galois, 1831], transl. slightly altered
in [Galois, 2011], 253)

The fundamental idea of the “conceptual approach” is strongly reminiscent
of Galois’s words, in 1831:

Jump with both feet over calculations, put operations into groups,
classify them according to their difficulty and not according to
their form; that is, according to me, the mission of future geome-
ters, that is the path that I have entered in this work.33 (ibid.,
transl. slightly altered, 253)

Such statements can also be found in the testament letter to Chevalier writ-
ten in 1832. When Galois submitted his memoir to the Académie des Sci-
ences, in 1831, this standpoint put him at odds with his contemporaries,
and his memoir was rejected.34 It was published by Liouville in 1846 and
only started to attract attention two decades later.35

Galois also suggests that the long and tedious computations that math-
ematicians now have to jump over are a recent phenomenon. In fact, Galois
states, it is Euler’s inheritance. The increasing difficulty of the computa-
tions after Euler’s works awoke in the mathematicians a desire to design new
methods to shorten these computations and make it so the mind can grasp
a larger set of operations. But for Galois, the elegance that was supposed to
help mathematicians out of too long computations is not sufficient. It has
become necessary to introduce new methods avoiding computations.

Long algebraic calculations were at first hardly necessary for pro-
gress in Mathematics; the very simple theorems hardly gained
from being translated into the language of analysis. It is only
since Euler that this briefer language has become indispensable
to the new extensions which this great geometer has given to
science. Since Euler calculations have become more and more
necessary but more and more difficult, at least insofar as they

32“Or je crois que les simplifications produites par l’élégance des calculs, (simplifications
intellectuelles, s’entend; de matérielles il n’y en a pas) ont leurs limites; je crois que
le moment arrive[ra] où les transformations algébriques prévues par les spéculations des
Analystes ne trouveront plus ni le tems ni la place de se produire; à tel point qu’il faudra
se contenter de les avoir prévues.”

33“Sauter à pieds joints sur les calculs, grouper les opérations, les classer suivant leurs
difficultés et non suivant leurs formes ; telle est, suivant moi, la mission des géomètres
futurs; telle est la voie où je suis entré dans cet ouvrage.”

34See [Ehrhardt, 2011b] and [Ehrhardt, 2012].
35see Sec. 4.1.1
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are applied to more advanced objects of science. Since the begin-
ning of this century algorithmics had attained such a degree of
complication that any progress had become impossible by these
means, unless one used the elegance geometers have learnt to
give to their computations, and by means of which the mind
promptly and with a single glance grasps a large number of op-
erations. It is clear that such praised elegance, and so properly
claimed, has no other goal.36 (transl. modified in [Galois, 2011],
251-253)

Abel and Galois both read Gauss’s Disquisitiones, but they were also
continuing works on the resolution of algebraic equations developed by La-
grange. Lagrange himself was trying to find a priori reasons for which a
method of resolution could effectively work or fail. Indeed, Lagrange con-
sidered that by 1770, when he wrote hisMémoire sur la résolution algébrique
des équations, the theory of equations was “not more advanced than in Car-
dano’s times”.37 So as to allow effective developments, Lagrange proposed
to investigate the “general principles” of the known algebraic methods and
to highlight “a priori why these methods succeed for the third and fourth
degrees and fail for higher degrees.” For this, he introduced the use of per-
mutations and substitutions, by which he

[shows] what the necessary conditions are in order that the equa-
tion in question can admit the resolution, by supposing only the
resolution of equations of a lower degree that the proposed equa-
tion, and [he gives] on that occasion the true principles and, so
to speak, the metaphysics of the resolution of the equations of
third and fourth degrees.38 ([Lagrange, 1770-1771], 357)

The kind of questions and methodological problems found in the new /
36“Les longs calculs algébriques ont d’abord été peu nécessaires au progrès des Mathé-

matiques, les théorèmes fort simples gagnaient à peine à être traduits dans la langue de
l’analyse. Ce n’est guère que depuis Euler que cette langue plus brève est devenue indis-
pensable à la nouvelle extension que ce grand géomètre a donnée à la science. Depuis
Euler les calculs sont devenus de plus en plus nécessaires, mais de plus en plus difficiles à
mesure qu’ils s’appliquaient à des objets de science plus avancés. Dès le commencement
de ce siècle, l’algorithme avait atteint un degré de complication tel que tout progrès était
devenu impossible par ce moyen, sans l’élégance que les géomètres modernes ont su im-
primer à leurs recherches, et au moyen de laquelle l’esprit saisit promptement et d’un seul
coup un grand nombre d’opérations. Il est évident que l’élégance si vantée et à si juste
titre, n’a pas d’autre but.”

37For more on Lagrange and Galois, see Sec. 4.1.1.
38“Je ferai voir ensuite quelles sont les conditions nécessaires pour que l’équation dont

il s’agit puisse admettre la résolution en supposant uniquement celle des équations des
degrés inférieurs à celui de l’équation proposée; et je donnerai à cette occasion les vrais
principes et, pour ainsi dire, la métaphysique de la résolution des équations du troisième
et du quatrième degré..”
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conceptual approach can thus be found in works written a century before
Dedekind’s ideal theory. These works appear to turn towards different ways
of handling problems because, in fact, computations were becoming too com-
plicated to be fruitful.

Thus, we see that actors acknowledged – and sometimes promoted –
modifications in the practices. Actors point out changes that seem to ap-
pear at two levels. First, the questions asked change, albeit gradually, in
particular in algebra in which the central question of the theory of equa-
tions slowly drifts from resolution to resolubility.39 This point becomes
particularly central with Abel’s proof of the impossibility to solve the gen-
eral quintic by radicals, and with Galois’s memoir and its late publication
by Liouville. As emphasized above, Lagrange was already interested in a
priori understanding the success of certain methods of resolution. In fact, in
Lagrange’s works, it is the desire to provide a general (algebraic) method for
solving equations that prompts him to consider this kind of questions. This
is the level in the change actors acknowledge: practices change in the way a
problem is approached. Mathematicians express the desire to treat, in one
move, an entire class of problems, for example to be able to solve the cyclo-
tomic equation of degree p for any prime number p. The demand to “put
ideas in place of computations” appears as a side effect of the conjunction
of these two ideas – a side-effect whose importance later increases drastically.

It seems likely that it is due to change in mathematical practice that
in the 1840s, Galois’s works became acceptable for some mathematicians,
and were in particular praised by Liouville who published Galois’s memoir
in 1846 (see [Ehrhardt, 2011b] and 4.1.1 in this dissertation). Liouville,
who was one of the leading mathematicians in France at the time, was a
close friend and collaborator of Dirichlet’s.40 At that time, Dirichlet was in
Berlin, where he played a great role in the mathematical formation of many
mathematicians such as Lipschitz, Kronecker, or Eisenstein.

Eisenstein, as we saw, wrote the first significative account of this new
“conceptual approach”. He was close friend with Riemann during the latter’s
stay in Berlin. Nevertheless, Eisenstein was a “master of formal manipula-
tion” ([Bottazzini and Gray, 2013], 279). In fact, according to Dedekind’s
biography of Riemann, Eisenstein and Riemann had strongly opposed ideas
on what should be taken as grounding principles of function theory:

39Note that this kind of change is not restricted to algebra. For example, Bolyai’s
development of non-Euclidean geometry is motivated by his failed attempts to prove Euclid
parallel postulate, which led to him to change his questions about geometry and the fifth
postulate, and try to create a new geometry.

40Liouville to Dirichlet, 5 February 1840: “Il n’y a pas de géomètre que j’ai estimé et
aimé autant que vous, avant même de vous rencontrer, et depuis que je vous connais, je
n’ai assurément pas changer d’avis.”
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Riemann later explained that he [and Eisenstein] had discussed
the introduction of complex quantities into the theory of func-
tions but had been of markedly different opinions about the prin-
ciples that should be taken as basic. Eisenstein stood by the
formal calculus, while [Riemann] himself had seen in the partial
differential equations the essential definition of a function of a
complex variable. (Dedekind, in [Riemann, 1876], 576, quoted
in [Bottazzini and Gray, 2013], 279).

The key element of what Eisenstein calls “the new school’s” methods is the
manner in which mathematical problems (and theories) are approached and
solved. The “old methods”, explains Eisenstein, well exemplified by Euler’s
works, would proceed step by step, laboriously going from one intermediary
theorem to another so as to reach a certain goal, whose sight one may very
well have lost during the intermediary steps. This method, according to
Eisenstein, does not allow to “see a theory’s true character, its actual inner
mechanism”. The new method adopts an entirely different viewpoint from
the first contact with the problem, and tries to approach it by presenting a
“formula which, right from the beginning, contains the full scope of truths
of a whole complex” ([Eisenstein, 1843], my emphasis). In fact, it seems
that the difference between the old and the new approaches is less a matter
of technical and computational length, for Eisenstein, than it is a change
in the conception of what should be the scope of a proof. The demand of
the new method, then, is to treat problems by embracing a more general
perspective so as to consider the problem from a standpoint which allows
for a better grasp of “its actual mechanism”. This can be achieved if one
does not proceed by “tedious” progressive steps and keeps sight of the result
aimed for. Eisenstein gives two examples of this new method:

Jacobi built the whole idea of inversion of elliptic integrals on the
single idea that there exists every power of x except the term 1

x
in the differential of a two way power series [i.e., Laurent series];
Gauss built his magnificent idea of circle division, about which
men had, since the time of Euclid despaired, on a peculiar order
of integer numbers following the exponents of their congruent
powers. ([Eisenstein, 1843], 8)

Note the reference to Jacobi’s use of power series, which doesn’t seem to be
in harmony with Riemann’s ideas.

The network of relationships in the context of which a conceptual ap-
proach took shape is usually described as going from Gauss to Riemann
and Dedekind through Dirichlet, when they all were in Göttingen together.
The “new approach” described by Eisenstein summons up some of the same
first actors, even though Eisenstein studied and made his short (but pro-
ductive) career in Berlin. Recall that Berlin, in the historiography describ-
ing the development of a “conceptual approach” is the place in which a
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non-conceptual, computational tradition for mathematics was favored, as
opposed to the Göttingen’s conceptual approach.

In addition, Dirichlet himself also had a profound importance for the
“Berlin school”. Indeed, Dirichlet taught at Berlin university for almost
thirty years and had a strong influence on Kronecker, one of the greatest
representatives of the algorithmic approach. The reception of Dirichlet’s
ideas is very different for Kronecker and for Dedekind. Of course, it is not
the case that Dedekind and Kronecker each deliberately ignored parts of
Dirichlet’s mathematics.

For example, in relation with a strongly “conceptual” element of Dirich-
let’s practice, namely the adoption of non-constructive proofs, Kronecker
merely saw it as a temporary, fixable flaw. It is underlined by Kronecker
in his Vorlesungen über Zahlentheorie, in which he proudly announces to
his students that he was able, in 1885, to provide a constructive proof and
present the perfected result to them:

It was reserved to the great number theorist Gustav Lejeune-
Dirichlet to conduct a completely rigorous proof of Legendre’s
claim. However, he once more made use of a treatment com-
pletely deviating from the Euclidean one, and was therefore not
able to be up to this classical model, and to design his proof
in such a way that he could identify an interval in which a new
prime number of the arithmetical sequence must always be lo-
cated. In 1885, I have then managed to give Dirichlet’s proof its
completion, and in this lecture, I will explain it to you for the
fist time in its more exact version.41 ([Kronecker, 1901], I, 11.)

From Kronecker’s viewpoint, it seems that the non-constructive aspect of
Dirichlet’s result was a temporary insufficiency of the proof, rather than a
methodological stance. And this comes from a student of Dirichlet’s, who
calls him a “great number theorist”. Kronecker, despite his strong opposition
to non-constructive proofs, claimed to be influenced by Dirichlet. Note that
Kronecker was in charge of publishing Dirichlet’s mathematical works after
his death, while Dedekind published Dirichlet’s Vorlesungen über Zahlen-
theorie.

41“Es war dem großen Zahlentheoretiker Gustav Lejeune-Dirichlet vorbehalten, einen
völlig strengen Beweis jener Legendre’schen Behauptung zu führen. Aber er wiederum
bediente sich eines von dem Euklidischen ganz abweichenden Verfahrens und vermochte
daher nicht, dessen klassisches Vorbild zu erreichen und seinen Beweis so auszubilden,
daß er ein Intervall erkennen läßt, in dem notwendig immer eine neue Primzahl der
arithmetischen Reihe liegen muß. Im Jahre 1885 ist es mir dann gelungen, dem Beweise
Dirichlets jene Vollendung zu geben, und in diesen Vorlesungen werde ich ihn zum ersten
Male in seiner exakteren Fassung auseinandersetzen.”
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Dirichlet as well as Gauss, even if they are considered as founding fathers
of the conceptual approach, were not always prone to avoid calculations
and both deeply influenced many different mathematicians. In particular,
Dedekind and Kronecker walked in Gauss’s and Dirichlet’s footprints. The
difference between two receptions of Gauss is sometimes subtle. For example,
both Kronecker and Dedekind invoke Gauss for the consideration of classes of
numbers or functions: Kronecker (followed Gauss and) always worked with
representatives of the class so as to avoid any use of actual infinities, whereas
Dedekind worked directly with the class itself as “one whole”, uninhibitedly
manipulating infinite sets (and sometimes, infinite sets whose elements are
themselves infinite).

The conceptual approach is thus merely a ‘tendency’ slowly developing
in mathematics. It was, by then, far from dominant neither globally in Ger-
man mathematics, nor locally in each of the (supposed) early representatives
of the new approach. If there is, the actors tell us, a new ‘tendency’ in math-
ematics which starts to be noticeable in 1840-50, according to Eisenstein’s
testimony, it stays rather diffuse, sporadic, and far from purely “conceptual”.

1.1.3.1 Was Riemann’s mathematics really conceptual?

In fact, the same kind of observations can apply to the “conceptual” reading
of Riemann’s works as well. To get rid of computations at the foundation
of the theory, in Riemann’s case, is intrinsically linked to changes in “the
type of questions one could ask about a complex function, away from the
computational and towards the conceptual” ([Bottazzini and Gray, 2013],
279). However, this should not be taken as implying that all computations
disappeared from Riemann’s works.

Neuenschwander ([Neuenschwander, 1981]) showed that Riemann was
strongly influenced by Cauchy’s works in complex function theory. He fur-
ther highlighted the importance of Gauss’s works for the development of
Riemann’s ideas. He also stressed the fact that the common interpretation
about how Cauchy, Weierstrass and Riemann were opposed and did not in-
fluence each other was seriously challenged by a closer attention to their
earlier works.

In particular, Neuenschwander emphasized the fact that the relationship
between Riemann and Weierstrass was not that of a deep opposition, as is
often suggested.42 He highlighted mutual influences between Riemann and
Weierstrass. It seems to suggest that the opposition between “conceptual”
and “computational” is probably more superficial than it appears.

42Not only did Riemann stayed in Berlin, in which he completed his mathematical
formation, but Neuenschwander gives several evidences that Riemann’s and Weierstrass’s
personal relationship must have been relatively good (see [Neuenschwander, 1981], 95).
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Neuenschwander explains that after the publication of several of Weier-
strass’s works on Abelian functions in 1856 in Crelle’s Journal, Riemann
published his own work in 1857, explaining his position towards Weierstrass’s
works:

Jacobi’s inversion problem, which is settled here, has already
been solved for the hyperelliptic integrals in several ways through
the persistent works of Weierstrass crowned by such a beautiful
success, of which a survey has been communicated in vol. 47
of the Journ. für Math. (page 289). Until now, however, the
actual working out has been published (vol. 52, page 285 of the
Journ. für Math.) only for part of these works, namely the part
that was outlined in §§1 and 2 of the quoted paper and in the
first half of §3, concerning elliptic functions for the most part.
Only after the presentation of these results and methods shall
we be able to tell to what extent the later parts of these works
presentation agree with the article presented here not only in the
results but also in the methods leading to these.43 ([Riemann,
1857], quoted and translated in [Neuenschwander, 1981], transl.
slightly altered, 94)

And in fact, when Dirichlet praised Riemann’s works on function theory, in
letters to Kummer, he essentially underlined that Riemann had developed
a theory whose basis was “even more comprehensive than the researches of
Weierstrass” (ibid., 94).

After the publication of Riemann’s paper, Weierstrass decided to with-
draw his own work, and later explained that he wanted to understand Rie-
mann’s approach and the “entirely different” foundation of the theory, whose
“algebraic” investigations were difficult for him to fully understand. Once
“this difficulty was overcome, it seemed to [him] that a thoroughgoing over-
haul of [his] paper was necessary.” (ibid., 95).

According to Neuenschwander,

[i]t would be entirely conceivable that the general systematic con-
struction of the Weierstrassian function theory, achieved around
1860 (. . . ) could have been inspired by, among other things, the

43“Das hier erledigte Jacobi’sche Umkehrungsproblem ist für die hyperelliptischen Inte-
grale schon auf mehreren Wegen durch die beharrlichen mit so schönem Erfolge gekrönten
Arbeiten von Weierstrass gelost worden, von denen eine Uebersicht im 47. Bande des
Journ. für Mathm. (S. 289) mitgetheilt worden ist. Es ist jedoch bis jetzt nur von dem
Theile dieser Arbeiten, welcher in den §§1 und 2 und der ersten die elliptischen Func-
tionen betreffenden Hälfte des §3 der angeführten Abhandlung skizzirt wird, die wirkliche
Ausführung veröffentlicht (Bd. 52, S. 285 d. Journ. f. Math.); in wie weit zwischen den
späteren Theilen dieser Arbeiten und meinen hier dargestellten eine Uebereinstimmung
nicht bloss in Resultaten, sondern auch in den zu ihnen führenden Methoden stattfindet,
wird grossentheils erst die versprochene ausführliche Darstellung derselben ergeben können.
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works of Riemann pertaining to the same set of ideas. While Rie-
mann freely employed the methods of others and also took these
up in his lectures, (. . . ) by contrast, Weierstrass seems to have
admitted them into his theory usually only after a systematic
reworking. (ibid., 95)

The idea that Weierstrass studied and assimilated Riemann’s works up to
the point where he thoroughly reformulated them and integrated them in
his own works, without acknowledging Riemann’s insights, is also defended
by [Bottazzini and Gray, 2013] (see later in this dissertation p. 101).

However, after Riemann’s death, Weierstrass became much more critical
of his methods, openly attacking him in letters to many different mathemati-
cians. He also published proofs that some of Riemann’s results were false.44

The academic position of Weierstrass in Berlin, and the fact that Riemann’s
theory still suffered from lack of rigorous and precise treatments of certain
fundamental points made the reception of Riemann’s works complicated –
albeit not impossible.

In addition to the artificial opposition between Weierstrass and Riemann,
H. Edwards has argued that Riemann did not embrace entirely the concep-
tual approach more than Dirichlet did. For Edwards, Riemann’s mathemat-
ics had a strongly algorithmic component:

Surely a mathematician of Riemann’s greatness would want to
simplify and organize his formulas in the clearest possible way,
but to say that Riemann would insist that Darstellungsformen
should always be results, not tools, of the theory is, I believe,
a serious misrepresentation. (. . . ) He was, rather, a virtuoso of
Darstellungsformen. ([Edwards, 2010], 63)

With four examples taken from Riemann’s mathematical works, Edwards
shows how Riemann, while he may have been “primarily interested in grand
general abstract concepts,” at several occasions “did not venture into these
higher realms without doing a lot of serious computation to lay the ground-
work for his flights” (ibid., 64). From Edwards’s viewpoint, Riemann’s great
technical abilities and his leaning towards algorithmic mathematics can also
be found in Riemann surfaces, the archetypal example of conceptual math-
ematics.

To describe a polynomial by its roots or a rational function by its
zeros and poles often serves very concrete algorithmic purposes.
Such a method also gives insight into the number of arbitrary
parameters in an algebraic function of a certain type – which is
the number evaluated by the Riemann-Roch theorem. (ibid., 67)

44See [Neuenschwander, 1981], 96-97.
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The legend surrounding Riemann’s purely conceptual approach is due, ac-
cording to Edwards, to Dedekind and later to Klein – a point which I will
develop in the next section.45

It should be underlined that Dedekind’s testimonies, on which accounts
of Riemann’s conceptual ideals are often heavily relying, albeit stemming
from recollections of conversations with Riemann himself, were written two
decades after Riemann’s death. As we will see, Riemann only had five
students in Göttingen: Abbe, Roch, Hattendorff, Hankel, and Prym. But
among them, Roch, Hankel and Hattendorff died between 1866 and 1882,
and Abbe left mathematics. While the reception and responses to Riemann’s
function theory was rather considerable, albeit difficult on some points (see
Bottazzini and Gray, 2013, 311-339), the spreading of Riemann’s ideas about
a “conceptual” approach in mathematics was far less significant. Dedekind
seems to have been the only true “Riemannian” – something he appeared
to be highly aware of. Incidentally, Dedekind’s methods in number theory,
which appear to be very faithful to the principles (that he himself states) of
what we now see as “conceptual mathematics”, did not find an immediate
reception either, for they were often considered too abstract.

In fact, Klein, during his time in Göttingen, seems to have been the first
to state some of the core ideas of Riemann’s function theory – the intimate
relationship between function and surface, the desire to treat entire classes of
functions. . . – be acknowledged and adopted. This was continued by Hilbert,
and later Weyl.46

Klein gave, in 1894, a discourse about Riemann’s influence on modern
mathematics ([Klein, 1894]), in Vienna, which was reproduced as a foreword
to the French translation of Riemann’s collected works. In this address, he
told that Riemann’s 1857 theory of Abelian functions is

the most brilliant of all the marvelous productions of his genius.
Indeed, the results in it are obtained by means which are not

45This was also defended by Carl Siegel, in his publication of the Riemann-Siegel formula
(1932):

The legend according to which Riemann found his mathematical results
through grand general ideas without requiring the formal tools of analysis,
is not as widely believed today as it was during Felix Klein’s lifetime. Just
how strong Riemann’s analytic technique was is especially clearly shown by
the derivation and transformation of his asymptotic series for ζ(s). (Quoted
and translated in [Edwards, 2010], 67)

Note however that Siegel was very hostile to the evolution of 20th century mathematics
towards more abstract and “conceptual” mathematics.

46Note, however, that this only means that they acknowledged the importance of these
methodological components (which had hitherto been overlooked) for Riemann’s theory. It
does not imply that they adopted Dedekind’s approach itself. The agreement around this
specific methodological point does not necessarily entail an agreement about the actual
treatment of Riemann’s function theory and/or the understanding of what constitutes its
essence.
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tiresome, with the help of immediate thoughts based on the geo-
metrical methods [related to Riemann surfaces].47 ([Klein, 1894],
xxiii)

Klein worked on giving Riemann his good reputation back, and this trans-
lated partly into setting up an important and very influent school in Göttin-
gen. More will be mentioned in the next paragraph about the reception of
Riemann’s works, but as Bottazzini and Gray explain, “neither Berlin nor
Clebsch’s followers could talk up their connection to Riemann”, and Klein’s
ideas which were taken up by Hilbert and his school and became clearly
oriented towards a “conceptual” reading of Riemann, became the dominant
ideas of Riemann’s works in the 20th century.

1.1.3.2 A case of nostrification?

The tradition established by Klein in Göttingen is often considered as a
natural continuation (or a renewal) of the great years of Dirichlet, Dedekind
and Riemann in Göttingen. I will suggest that Hilbert and Klein take up
Dedekind’s reading of Dirichlet and Riemann, and in their interpretation,
they put forward a certain “tradition” of conceptual mathematics in Göt-
tingen.48

Firstly, even if we were to accept that, in the 1850s, the new (concep-
tual) tendency finds a place to grow and develop, with Dirichlet’s arrival in
Göttingen and his impact on Dedekind and Riemann, it should be under-
lined that the group of researchers in Göttingen, working in the context this
conceptual approach or in mathematics in general, was very small at that
moment. Indeed, it only consisted in Dirichlet, Riemann and Dedekind.
Moreover, neither Dirichlet nor Riemann and Dedekind “succeeded in es-
tablishing a viable mathematical school at Göttingen” ([Rowe, 1989]). The
actual impact of a tradition they would have tried to develop is virtually

47“[L]a plus brillante de toutes les merveilleuses productions de son génie. En effet, les
résultats y sont obtenus par des moyens qui ne sont pas pénibles, à l’aide des réflexions
immédiates basées sur les méthodes géométriques”.

48For more on the idea of “nostrification”, see [Corry, 2004a], p. 221, p. 496 and in
particular §9.2. An explanation by Corry is : “There are no available hints as to the
origins of the term or who was the first to use it, but over the first three decades of the
twentieth century, it was widely understood, among German mathematicians at least, that
“nostrification” encapsulated the peculiar style of creating and developing scientific ideas
in Göttingen (. . . ). The Göttingen atmosphere implied a constant discussion and adoption
of new ideas, techniques, and problems that had originally been created or suggested by
others, either at home or outside. Whenever these ideas appeared to be fruitful and
relevant to current concerns of the local community, they were immediately absorbed into
the common scientific patrimony.”
The idea is is also used by Petri and Schappacher in Schappacher and Petri, 2007 in
reference to the Klein and the “nostrification” of the movement of arithmetization.
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nonexistent.49 The Georg-August Universität in Göttingen was famous for
the great minds who taught there, in particular Gauss, Dirichlet, Riemann,
but for a long time (in fact, before Klein’s arrival), it was not as influential
as its fame suggests, and was not the place of choice for students to study
mathematics. In the second half of the 19th century, the Berlin university
was, Rowe explains, “clearly the dominant place for German mathemat-
ics,” closely followed by Königsberg, and a development of the conceptual
approach is considerably challenged by the absence of students:

Few of [Dirichlet’s, Riemann’s and Dedekind’s] students were
ever exposed to this new mathematics, and fewer still were ca-
pable of understanding the work and communicating it to others.
([Rowe, 1989], 187)

Secondly, if both Dedekind and Riemann had a tremendous impact on
the mathematical ideas, concepts and practices of the end of 19th century
and later, their immediate impact was limited – especially Dedekind’s. To
be clear, certain circumstances did not help the forming of a school: Dirich-
let and Riemann died young and so did Riemann’s few students. Dedekind
did not start publishing significant works before the 1870s, and taught in
Braunschweig at the Technische Hochschule all his career, putting himself in
a certain academic isolation. Even when he started publishing, the reactions
to Dedekind’s works in number theory were not particularly positive, and
the preeminence of Kronecker’s works can certainly not be attributed solely
to circumstances. Dedekind’s advocacy for conceptual methods was, in fact,
not really widespread. Dedekind complained of being very little read, in
a letter to Lipschitz. Before 1880, his algebraic concepts were barely used
by anybody but himself. His methods were considered too abstract and
too difficult by his contemporaries. Kronecker wrote, when reporting for
Dedekind’s nomination at the Berlin Akademie der Wissenschaften in 1880,
that Dedekind’s choices of methods and terminology made it difficult to
judge his works – he did, however, recommend Dedekind’s election to the
Akademie. Dedekind and Kronecker worked on the same topics in signifi-
cantly different ways. Kronecker’s prominent position in German mathemat-
ics, at the time, may have been an obstacle to the reception of Dedekind’s
works – problems of rivalry and priority as regards algebraic number and
function theories even arose between Dedekind and Kronecker.

In 1888, Dedekind’s methods still did not reach many mathematicians.
Zahlen was coldly received in Berlin. By 1893, the two mathematicians who
worked closest to Dedekind or using ideas coming from Dedekind’s works
were H. Weber and Frobenius who both had reservations about the abstrac-
tion of his approach, and both worked closely to Berlin mathematicians as

49And it was certainly not Clebsch and his students who were going to continue the
“conceptual” approach, which they considered too imprecise. see Sec. 1.3.2.
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well. Notably, Frobenius, who refers to Dedekind as “our admired friend
and master”, wrote to Weber in December 1893:

I hope you often walk on the paths of Dedekind, but avoid the too
abstract corners, which he now likes so much to visit. His newest
edition contains so many beauties, §173 is highly ingenious, but
his permutations are too disembodied, and it is also unnecessary
to push abstraction so far.50 (Repr. in [Dugac, 1976b], 269,
transl. in [Sieg and Schlimm, 2005], 121)

In the 1890s, the rise of ‘modernism’ marks the beginning of a stronger and
more positive reception of Dedekind’s works, as are his interactions with
other mathematicians. Weber turns to algebra and, with Frobenius, grad-
ually adopt more “Dedekindian” approaches, thereby making his methods
more available. The first important use of Dedekind’s (and Weber’s) ideas
is to be found in Hilbert’s Nullstellensatz (1888). Schappacher, in [Schap-
pacher, 2010], tells us that in articles written in German, “the [Jahrbuch
über die Fortschritte der Mathematik] database lists 69 papers between the
first one in 1882 (an article by Dedekind) and 1914 which have the word
Körper (in the algebraic sense) or the word Zahlkörper already in the title.
The little industry really took off around 1900” (ibid., 3269). Considering
more broadly the papers using also the words “ideal”, the number of papers
published on these topics started to grow in the 1890s with works by We-
ber, Meyer, Fricke, Hurwitz, Hensel and Hilbert. A ‘growth’ relative to the
very small (if not null) number, since there were up to six papers on ideal
theory in 1894, and two of them were by Dedekind himself.51 Only with the
publications of Weber’s Lehrbuch der Algebra and Hilbert’s Zahlbericht, did
Dedekindian number theory start to receive a wider acknowledgement.

If it started to be more widely adopted among mathematicians of later
generations, especially after Hilbert’s Zahlbericht in 1897, the “conceptual
approach” was far from a typical way of doing mathematics. Dedekind’s
ideas are discussed and used by mathematicians such as Hilbert and Hurwitz
– sometimes leading to unpleasant quarrels of priority or to Dedekind be-
ing unhappy with the treatment of ideal theory (in particular in [Dedekind,
1895b]).52 Indeed, Hurwitz, like Hilbert, developed an approach in which
Dedekind’s and Kronecker’s ideas are mixed together – not unlike some parts
of Weber’s Lehrbuch, written around the same time. They “cared little about

50“Hoffentlich gehen Sie vielfach die Wege von Dedekind, vermeiden aber die gar zu
abstrakten Winkel, die er jetzt so gern aufsucht. Seine neueste Auflage enthält so viele
Schönheiten, der §173 ist hochgenial, aber seine Permutationen sind zu körperlos, und es
ist doch auch unnöthig, die Abstraktion so weit zu treiben.”

51These elements come from a keyword research in the Jahrbuch über die Fortschritte
der Mathematik and on Zentralblatt. Galois theory was a slightly more popular topic,
but Dedekind himself published very little on the subject and until 1894 excluded most
considerations about Galois theory from his algebraic number theory.

52see Sec. 5.7 and [Dugac, 1976b].
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the methodological preferences of either Dedekind or Kronecker in this area
of research” ([Schappacher, 2005], 703). In fact, they found “both of them
horrible (scheußlich)” (Hilbert, quoted and translated in [Corry, 2004a], 21).

It seems, in fact, that the idea of a “conceptual approach” has its source
with Dedekind’s reconstruction of Riemann’s and Dirichlet’s “conceptual
approaches”, but that Dedekind seems to have been, at that time, the only
one to truly embrace what he presents as Riemann’s methodological princi-
ples. His view was however later picked up by Minkowski, Klein and Hilbert.
From their own statements, the view of a “conceptual approach” with Rie-
mann and Dirichlet became largely accepted.

Hilbert53 presented in famous Zahlbericht as following attempts to “avoid
Kummer’s elaborate computational machinery” to realize “Riemann’s prin-
ciple” and have proofs be “completed not by calculations but purely by
ideas”54 ([Hilbert, 1897], viii)

Minkowski, in 1905, for the celebration in Göttingen of Dirichlet’s cente-
nary, gave a talk in which, while underlining that strangely enough Dirichlet
never founded an actual school despite his “tremendous influence on many
mathematicians who received from him the strongest impulse of their sci-
entific aspiration,”55 he nevertheless presents Dirichlet as the father of the
so-called conceptual tradition in mathematics. In particular, he mentions
Riemann:

What mathematician could fail to understand that the lumi-
nous path of Riemann, this gigantic meteor in the mathemati-
cal heaven, took its starting-point in the constellation of Dirich-
let. It may be that the sharp sword that Riemann named the
Dirichlet principle was first brandished by William Thomson’s
young arm, but the modern era in the history of mathematics
dates from the other Dirichlet principle, to conquer the problems
with a minimum of blind calculation, a maximum of clear-seeing
thoughts.56 ([Minkowski, 1911] II, 460-61, partially translated

53Hilbert learnt number theory with H. Weber, who used Dirichlet’s Vorlesungen and
many of Dedekind’s ideas.

54“Ich habe versucht, den grossen rechnerischen Apparat von Kummer zu vermeiden,
auch hier der Grundsatz von Riemann verwirklicht würde, demzufolge man die Beweise
nicht durch Rechnung, sondern lediglich durch Gedanken zwingen soll.”

55“So außerordentlich anregend Dirichlet als Lehrer gewirkt hat, eine besondere mathe-
matische Schule hat er nicht gegründet. Aber viele, die sich hernach auf individuell
sehr verschiedene Wege zerstreuten, verdankten ihm die stärksten Impulse ihres wis-
senschaftlichen Strebens.”

56“Welcher Mathematiker hätte kein Verständnis dafür, daß die leuchtende Bahn Rie-
manns, dieses riesigen Meteors am mathematischen Himmel, vom Sternbilde Dirichlets
ihren Ausgangspunkt nahm. Mag auch das von Riemann Dirichletsches Prinzip benan-
nte scharfe Schwert zuerst von William Thomsons jungem Arm geschwungen sein, von
dem anderen Dirichletschen Prinzipe, mit einem Minimum an blinder Rechnung, einem
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in [Stein, 1988], p. 241.)

If Dedekind did read Dirichlet and Riemann as conceptual mathemati-
cians, he was not able to develop that heritage into a “conceptual tradition”
himself, and his works were merely referred to as “too abstract”. In fact,
the “conceptual approach” has been seen by several commentators as begin-
ning later in reference to Hilbert’s and E. Noether’s works. For Dieudonné
and Carrell (quoted in [Boniface, 2004], 53), Hilbert’s Nullstellensatz was
the “first paper in ‘modern algebra’ by its conceptual approach and meth-
ods.” David Rowe explains how “Hilbert’s abstract, conceptual approach”
for the Nullstellensatz and in the Zahlbericht, which was “largely inspired
by Dedekind”, was at odds with “the spirit of Kronecker’s work and, for
that matter, to the entire classical tradition of number theory” ([Rowe,
1989], 199). The conceptual approach is also considered as typical of Emmy
Noether’s approach57, who was described by Alexandrov as

the creator of a new direction in algebra and the leading, the
most consistent and prominent representative of a certain general
mathematical doctrine – all that which is characterized by the
words “begriffliche Mathematik”. (. . . ) It was she who taught
us to think in terms of simple and general algebraic concepts –
homeomorphic mappings, groups and rings with operators, ide-
als – and not in terms of cumbersome algebraic computations;
and thereby opened up the path to finding algebraic principles
in places where such principles had been obscured by some com-
plicated special situation which was not at all suited for the ac-
customed approach of the classical algebraists. (in [Dick, 1970],
156-158)

A viewpoint seconded by Van der Waerden, according to whom Emmy
Noether’s “maxim” was

Any relationships between numbers, functions and operations
only become transparent, generally applicable, and fully produc-
tive after they have been isolated from their particular objects
and been formulated as universally valid concepts. (ibid., 101)

The picture of a “Göttingen tradition” preceding Klein’s arrival at Göttin-
gen, which can be found in some accounts by Hilbert or Minkowski, reflects

Maximum an sehenden Gedanken die Probleme zu zwingen, datiert die Neuzeit in der
Geschichte der Mathematik.”

57Even if, as Hermann Weyl underlines Noether’s “mathematical orbit set out” from
“a formalist like Gordan”. Godan was, according to his friend Max Noether, an “Algo-
rithmiker” whose “strength rested on the invention and calculative execution of formal
processes” (in [Dick, 1970], 120-121).
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rather strongly their own view. It it seems that their interpretation of Dirich-
let’s and Riemann’s thoughts – maybe even, to a certain extent of Dedekind’s
– may have been biased. As suggested by L. Corry ([Corry, 2004a])58, if one
wants “to characterize the peculiar Göttingen scientific culture” in Hilbert’s
and Klein’s times, a key idea is that of “nostrification”, which broadly corre-
sponds to a tendency, particularly strong in Hilbert’s works, to “reinterpret
other people’s thoughts, so as to make them fit [their] own current picture of
the domain in question”. The desire, strongly expressed by Klein, to create
a new kind of scientific institution might have led to the reconstruction of
a history, an inheritance, which selected and overemphasized some isolated
ideas.

Note that as far as Dedekind is concerned, considering the emphasis
put by Emmy Noether on the essential importance of Dedekind’s works for
modern algebra, it is easy to overestimate how close his works actually were
to modern algebra, as well as their immediate impact. It seems that the
emphasis of a “conceptual approach” developed in Göttingen under the im-
petus of Dirichlet’s works could be yet another part of the “nostrification”.
The clear-cut tradition depicted in Klein’s or Minkowski’s writings appears
as a story told with only isolated elements of (their reading of) Dirichlet’s
and Riemann’s practices.

We saw that Eisenstein’s enthusiasm for a “new school” and Dedekind’s
own statements, are the most detailed accounts available, for the 19th cen-
tury. A closer look at the mathematicians of the “new” approach suggested
that the so-called new “conceptual approach” was rather following a ten-
dency towards moving away from 18th century complicated computational
machinery, in attempts to bypass the growing difficulties coming with the
increasing complexity of computations. The “conceptual approach”, during
the second half of the 19th century, thus, corresponds to the slow devel-
opment of the emergence of new mathematical practice shaped by specific
epistemological requisites, which would reveal to be the fertile soil on which
works such as Emmy Noether’s could grow.

If Riemann’s and Dedekind’s approaches are exhibiting clear signs of
being “conceptual”, such a description of their works remains superficial. I
suggest that one can characterize in greater detail not only the the math-
ematical content (or at least not exclusively), but also the account of the
underlying conceptions guiding the development of Dedekind’s works. What
I will propose, in the following chapters, is to analyse Dedekind’s texts so as
to uncover the methods at play to fulfill Dedekind’s “conceptual” demands:

58Some of D. Rowe’s works also abound in this sense. In [Schappacher and Petri, 2007],
it is the “arithmetization of analysis” which is presented as being “nostrified” by Göttingen
after Klein’s talk (see Sec. 7.1.1). What I am proposing, here, follows the same line of
ideas, although I will not consider in any detail the idea of a nostrification of the movement
of arithmetization.
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avoiding computations, providing uniform definitions and proofs, answering
a certain ideal of rigor. . . For example, I have mentioned that Dedekind’s
invention of ideals is a stereotypical example of the “conceptual approach”
but not how Dedekind did prove theorems for algebraic integers, which is,
after all, the essential point of his work.

The definition of ideals consists essentially in an extension of the no-
tion of divisibility in such a way that methods of proof can be elaborated
in a purely arithmetical way. This point plays a central role in Dedekind’s
ideal theory and, as I will show, has important ramifications. I will base
my argumentation on close readings of Dedekind’s texts, to exhibit specific
elements of practice which complement the understanding in terms of “con-
ceptual mathematics” and will lead me to concentrate on questions related
to Dedekind’s conception and use of arithmetic.

1.2 19th century arithmetic in practices
Michael Potter explains in the introduction of his book Reason’s Nearest
Kin. Philosophies of Arithmetic from Kant to Carnap that:

In popular parlance the word ‘arithmetic’ means the study of
calculations involving numbers of all sorts, natural, integral, ra-
tional, real, and complex. Mathematicians, on the other hand,
often use the word to mean only the study of the properties of
the natural (i.e., counting) numbers 0, 1, 2, etc. ([Potter, 2002],
1)

This view is largely embraced by philosophers of mathematics. However,
the term took various meanings in different historical contexts. It will be
useful for my purpose to examine them.

This section will present parts of the mathematical context in which
Dedekind developed his number theoretical works. It will also allow to un-
derline that “arithmetic”, for 19th century mathematicians, such as Gauss
and later Dedekind, does not designate the properties of natural numbers
as a the sequence but number theory in a relatively large sense.59 In fact,
interpretations can go as far as José Ferreirós, who considers that “arith-
metic” was a generic word for all pure mathematics.60 According to him,
“arithmetic” for Dedekind “is understood (. . . ) in a broad sense that em-
braces algebra and analysis”.61 I will suggest that arithmetic had a rather

59On a side note, this is still the case in French nowadays.
60See [Ferreirós, 2007].
61In the introduction to Was sind und was sollen die Zahlen?, Dedekind writes that he

is considering “arithmetic (algebra, analysis) as merely a part of logic”, which does not
keep him from giving a perfectly determinate definition of arithmetic later in the book: the
laws which derive from the definition of numbers. I will consider the status of arithmetic
in more detail in Chapter 8.
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clear meaning for Dedekind.

C. F. Gauss used to repeat,62 according to several witnesses, a motto
inspired by a sentence which Plutarch attributed to Plato63:

å jeäs �rijmtÐzei

God arithmetizes.

This quote, immortalized in an etching of Gauss and W. Weber by A. Weger
appearing in Zöllner’sWissenschaftliche Abhandlungen (1878, vol. 2, part I),
is linked to Gauss’s conviction that arithmetic was at “the top” of the edifice
of science. As Ferreirós underlines in the beginning of his paper titled “The
Rise of Pure Mathematics as Arithmetic with Gauss” ([Ferreirós, 2007]), the
theological assertion behind the motto is somewhat “less interesting than the
way in which his adaptation of Plato’s words reflects changing perceptions of
mathematical knowledge” (ibid., 237). Indeed, one can observe, in the 19th
century, the development of many ‘arithmetical’ approaches to mathematics.
As Hilbert put it, the mathematics of this century developed “under the sign
of number”.

From Gauss’s Disquisitiones Arithmeticae in 1801 to the emphasis put
on a “movement of arithmetization” with Klein in 1895, the meaning of the
term “arithmetic” slowly moved from the theory of integers to being associ-
ated, rather loosely, to another conception of numbers and ideals of rigor and
certainty, or even a priori knowledge. Weierstrass, who famously insisted on
giving rigorous definitions and “sufficiently detailed exposition of the basic
notions and the arithmetical operations” (ibid., 238), demanded, for exam-
ple, that the “definition of complex magnitudes” be “purely arithmetical”
(ibid., 239) – as did Dedekind. Arithmetic was opposed to geometry, which
is the core of claims such as Weierstrass’s:

Furthermore we shall give a purely arithmetical definition of
complex magnitudes. The geometrical representation of the com-
plex magnitudes is regarded by many mathematicians not as an
explanation, but only as a sensorial representation, while the
arithmetical representation is a real explanation of the complex

62And he repeated until his last days, as reported by his physician Dr. Wilhelm Baum
in a letter to A. von Humboldt: “The last days of his life were often very painful owing
to the aggravated complaint of dropsy, which the hypertrophy of his heart produced – but
still he always maintained his freedom and greatness of spirit, the strongest conviction of
his personal permanence, the firmest hope in the still deeper intelligent insight into the
number relationships, which God places in matter and which he would perhaps be able to
recognize in the intensive magnitudes, for he used to say: å jeäs �rijmtÐzei.” (Quoted in
[Ferreirós, 2008], 236).

63The version attributed to Plato is “ å jeäs �eÈ gewmètrei”, i.e., “God geometrizes
eternally”.
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magnitudes. In analysis we need a purely arithmetical founda-
tion, which was already given by Gauss. Although the geomet-
rical representation of the complex magnitudes constitutes an
essential means for investigating them, we cannot employ it, for
analysis must be kept clean of geometry.64 (From Weierstrass’s
lecture of 1874 summer semester, translated and quoted in [Fer-
reirós, 2007], 239)

Opposition to geometry and association to rigor do not suffice, of course,
to precisely characterize what arithmetic consisted of. More precisely, the
epistemological values attributed to arithmetic do not help us circumscribe
the domain of research.

1.2.1 Gauss’s Disquisitiones Arithmeticae

Gauss, in the preface of his celebrated Disquisitiones Arithmeticae, describes
the scope of his investigations in the following way:

The Inquiries which this volume will investigate pertain to that
part of Mathematics which concerns itself in particular with in-
tegers, sometimes fractions, but from which irrational [surds]
numbers are always excluded. (. . . ) Just as we include under
the heading of [Diophantine] Analysis all researches concerning
the general affections of quantities, the considerations of integers
and fractions, insofar as they are expression by means of inte-
gers, constitute the proper object of Arithmetic. ([Gauss, 1801],
transl. modified Clarke and Waterhouse, xviii)

Gauss mentions an ordinary meaning of arithmetic, which he immediately
challenges, a distinction which should allow for a more finely-shaded descrip-
tion of ‘arithmetic’:

One ordinarily calls Arithmetic only the art of forming numbers
and calculating [with] them, i.e., the art of expressing numbers
by suitable symbols (for example by a decimal representation),
and of carrying out arithmetic operations. It sometimes includes
other points, some which do not pertain to arithmetic, like the

64“Wir werden ferner eine rein arithmetische Definition der complexen Grössen geben.
Die geometrische Darstellung der complexen Grössen wird von vielen Mathematikern nicht
als eine Erklärung, sondern nur als eine Versinnlichung betrachtet, während die arith-
metische Darstellung die complexen Grössen wirklich erklärt. Wir bedürfen jedoch für
die Analysis eine rein arithmetische Begründung, die schon Gauss gegeben hat. Obgleich
die geometrische Repräsentation der complexen Grössen ein wesentliches Hülfsmittel zur
Untersuchung derselben ist, können wir sie hier nicht anwenden, da die Analysis von der
Geometrie rein erhalten werden muss.”
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theory of logarithms, and others which are not peculiar to in-
tegral numbers but are common to all quantities. (ibid., transl.
modified, xviii)

The important distinction made, then, is between the part of arithmetic
just described, which Gauss calls “elementary arithmetic”, and the “gen-
eral investigations on the particular properties of integers” which are part
of “higher arithmetic” (“Arithmeticae sublimiori”, translated in German
by “höhere Arithmetik” and usually called “arithmétique transcendante” in
France).

Gauss argued for the consideration of imaginary quantities as actual
numbers and called for their introduction in “higher arithmetic”, expand-
ing its limits and drawing the outlines of a “general arithmetic” including
Gaussian integers:

Accordingly, one soon realizes that in this rich domain of higher
arithmetic, one can only penetrate through completely new roads
(. . . ) for this end, a specific expansion of the entire field of higher
arithmetic is essentially necessary.65 ([Gauss, 1831], transl. mod-
ified in [Ewald, 2005], 308)

What does appear rather clearly is that Gauss seems to consider that arith-
metic is limited to study of discrete domains, continuity falling in the scope
of analysis (sometimes called “Grössenlehre”).66 Ferreirós suggests that
Gauss “placed severe restrictions as to the subject matter and methods of
number theory, namely that one studies discrete domains (from our stand-
point, rings of integers) by characteristically number-theoretical means.”
([Ferreirós, 2008], 262)

Higher arithmetic covers the study of congruences, first defined in Gauss’s
Disquisitiones, and the notions and objects deriving from it, such as binary
quadratic forms or algebraic numbers. For example, in a paper entitled
“Simplification of the theory of binary quadratic forms with positive deter-
minant” (“Vereinfachung der Theorie der binären quadratischen Formen von
positiver Determinante”), read at the Berlin Akademie der Wissenschaften,
on 13 July 1854 ([Lejeune-Dirichlet, 1889-1897], II, 141-158), Dirichlet ex-
plains:

The wider scope the domain of higher arithmetic has gained,
since Gauss’s epoch-making work, and the works which followed
it, the more it appears desirable that the access to this beautiful

65“Man erkennt demnach bald, dass man in dieses reiche Gebiet der höhern Arithmetik
nur auf ganz neuen Wegen eindringen kann (. . . ) dazu eine eigenthümliche Erweiterung
des ganzen Feldes der höhern Arithmetik wesentlich erforderlich ist.”

66That point will be very different in Dedekind’s works, who considers the linear con-
tinuum formed by real numbers to be part of arithmetic.
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branch of Analysis be as facilitated as possible by the simplifi-
cation of its elementary parts.67 (ibid., 141, my translation)

Gauss’s Disquisitiones Arithmeticae marks the birth of number theory
as a discipline in its own right in Germany (see [Goldstein and Schappacher,
2007a]). The book can be divided in three distinct parts. The first part
defines the notion of congruence68 and studies the various properties of con-
gruences of first and second degree. Gauss gives new proofs of Fermat’s the-
orem, Wilson’s theorem and the law of quadratic reciprocity. In the second
part, which takes half of the book’s length, quadratic forms ax2 + bxy+ cy2

(with a, b and c integers) are introduced. While relying on works by Fer-
mat, Euler, Lagrange and Legendre, Gauss proposes a new way of studying
quadratic forms, considering only the triplet of the coefficients of the form
(a, b, c) and using the new notions of discriminant and equivalence of forms.
The third part is dedicated to solving cyclotomic equations, that is, equa-
tions of the form xn − 1 = 0 with n a prime number. Gauss explains in the
introduction that

The theory of the division of the circle, or of regular polygons,
treated in Section VII, of itself does not pertain to Arithmetic,
but its principles can only be drawn upon Higher Arithmetic.
([Gauss, 1801], transl. modified, xx, emphasis in the original)

This Section VII, is probably the best known part of the book, especially
because Gauss gives the conditions to construct regular polygons with ruler
and compass. Gauss underlines an “intimate connection” between Section
VII and the arithmetical inquiries of the book. In addition to the tech-
nical relationship between this section and preceding ones, Goldstein and
Schappacher ([Goldstein and Schappacher, 2007a]) suggest that there are
certain specificities in “the systemic architecture of the treatise” (ibid., 16)
that explain the “intimate connection” between the division of the circle and
the arithmetical considerations developed in the next sections of the book.
Indeed, as they explain, an eighth chapter about the theory of higher con-
gruences was planned by Gauss. This way, the Disquisitiones Arithmeticae
would thus have “come full circle in several respects: beginning with ordi-
nary congruences and ending with higher congruences; encountering various
periodic structures along the way (. . . ); and proving quadratic reciprocity
four separate times in the process” (ibid., 16).

67“Je grosser der Umfang ist, welchen die höhere Arithmetik durch das Epoche machende
Werk von Gauss und andere spätere Arbeiten gewonnen hat, um so wünschenswerther
erscheint es, dass der Zugang zu diesem schönen Zweige der Analysis durch Vereinfachung
des elementaren Theiles desselben so viel als möglich erleichtert werde.”

68“If a number a divides the difference of the numbers b and c, b and c are said to be
congruent relative to a, if not they are noncongruent.” ([Gauss, 1801], 1)

81



Chapter 1 - Elements of contextualisation

As is well known, Gauss’s book had a considerable impact on the de-
velopment of number theory and more largely mathematics, in the 19th
century. Poinsot, in 1807, writes:

The doctrine of numbers, in spite of [the works of previous math-
ematicians] has remained, so to speak, immobile, as if it were to
stay for ever the touchstone of their powers and the measure of
their intellectual penetration. This is why a treatise as profound
and as novel as his Arithmetical Investigations heralds M. Gauss
as one of the best mathematical minds in Europe.69 (in Gazette
nationale ou Le Moniteur universel 80 (1807), 312, quoted and
translated in [Goldstein and Schappacher, 2007a], 3)

Lagrange, in a letter to Gauss on May 31st 1804, displays his admiration of
his work:

Your Disquisitiones have put you at once among the first math-
ematicians, and I consider the last section as one which contains
the most beautiful analytic discovery made in a long time.70

([Lagrange, 1867-1892], XIV, 299, quoted and translated in [Gold-
stein and Schappacher, 2007a], 19)

A few years earlier, the Disquisitiones Arithmeticae were mentioned at the
Académie des Sciences as a geometrical discovery:

Citizen Legendre communicates a geometrical discovery, made
in Germany by M. Charles Frédéric Bruce [sic], from Brunswick,
and published by him in his work entitled Disquisitiones arith-
meticae, Leipsik, 1801.71 (Quoted and translated ibid., 19)

By then, as underlined by Goldstein and Schappacher, Section VII was
the part of the treatise which first retained the mathematicians’ attention,
leading them to consider Gauss’s work as analytical or geometric. In any
case, the delineation of “disciplines” in the Disquisitiones as well as in its
reception, appears to be less clear than Gauss suggested.

69“La doctrine des nombres malgré leurs travaux [antérieurs] est restée, pour ainsi dire,
immobile ; comme pour être dans tous les tems, l’épreuve de leurs forces et la mesure de la
pénétration de leur esprit. C’est pourquoi Monsieur Gauss, par un ouvrage aussi profond
et aussi neuf que ses Recherches arithmétiques s’annonce certainement comme une des
meilleures têtes mathématiques de l’Europe.”

70“Vos Disquisitiones vous ont mis tout de suite au rang des premiers géomètres et je
regarde la dernière section comme contenant la plus belle découverte analytique qui ait été
faite depuis longtemps.”

71“Le Citoyen Legendre communique une découverte géométrique, faite en Allemagne
par M. Charles Frédéric Bruce, de Brunswick, et publiée par lui dans son ouvrage intitulé
Disquisitiones arithmeticae, Leipsik, 1801.” (Procès verbaux de l’Académie des sciences,
registre 114, vol. II, séance du 6 pluviôse an 10 (26 janvier 1802), p. 457)
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1.2.2 After Gauss
Number theory developed essentially in Germany, in a group of mathemati-
cians who followed Gauss’s lead and adopted the meaning of “arithmetic”
and “higher arithmetic” that he proposed. However, as Goldstein and Schap-
pacher underline in [Goldstein and Schappacher, 2007a], the lines between
disciplines become rather blurry, in the works of the second generation of
mathematicians who continued the researches undertaken in Gauss’s trea-
tise. To account for it, Goldstein and Schappacher propose to consider what
they call the “Arithmetic Algebraic Analysis” ([Goldstein and Schappacher,
2007a], 26) and present as a new domain of research which embedded the
different approaches to the Disquisitiones Arithmeticae and number theory,
a domain of research which “knits together reciprocity laws, infinite series
with arithmetical interpretations, elliptic functions and algebraic equations”
([Goldstein and Schappacher, 2007a], 52). This field of research was very ac-
tive until the 1860s, and both Dedekind and Kronecker were in contact with
it during the first years of their mathematical career. By the time Dedekind
started to publish important works, the Arithmetic Algebraic Analysis had
mostly died off. While in the works of mathematicians such as Dirichlet or
Jacobi, “higher arithmetic” meets other domains of research, such as analysis
via infinite series or algebraic equations, the next generation of mathemati-
cians insisted on the importance of finding the ‘right’ methods, leading to
disputes such as the one evoked in the introduction between Jordan and
Kronecker, or of course between Dedekind and Kronecker.

I will concentrate, in the following, in the characterization of arithmetic
for the mathematicians working in Arithmetic Algebraic Analysis, so as to
clarify which idea of arithmetic Dedekind inherited.72

In 1836-1837, Jacobi wrote:

Number Theory in its present state consists of two big chap-
ters, one of which may be called the theory of the solution of
pure equations, the other the theory of quadratic forms. Here
I will deal mainly with the first part whose discovery we owe
to Gauss.73 (Quoted and transl. in [Goldstein and Schappacher,
2007a], 28)

Equations and forms appear as a sort of mathematical and conceptual mid-
dle ground, between higher arithmetic, i.e., the congruences, and analytic
notions such as infinite series. Infinite series are particularly important if

72For a broader view on these questions, one can refer to [Goldstein, Schappacher, and
Schwermer, 2007].

73“Die Zahlentheorie auf ihrem jetzigen Standpunkte zerfällt in zwei große Kapitel, von
denen das eine als die Theorie der Auflösung der reinen Gleichungen, das andere als die
Theorie der quadratischen Formen bezeichnet werden kann. Ich werde hier hauptsächlich
von dem ersten Theile handeln, dessen Erfindung wir Gauß verdanken.” (Theorie der
Zahlen, first course, p.5, Lecture notes by J.G. Rosenhain, copied by hand.)
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one wants to use functions of a real variable and tools from Fourier analysis
in “higher arithmetic.” Goldstein and Schappacher bring to the fore the fact
that although a domain of research in itself, number theory is developed
in close relation with other areas of mathematics, at that moment. It was,
of course, also the case for Dirichlet who imported in number theory tools
from Fourier analysis. Commenting on his own works in which he used
infinitesimal analysis to number theory, in 1839/40, Dirichlet wrote:

The Memoir in question is about the theory of quadratic forms,
a theory which, prepared by some propositions by Fermat and
the ingenious researches by Euler, and definitely founded by La-
grange, later received noticeable developments by the works of
Legendre and mostly those of M. Gauss, who devoted to it the
largest part of his “Disquisitiones Arithmeticae”, such that it
constituted today one of the main branches of the science of num-
bers.74 (“Recherches sur les formes quadratiques à coefficients
et à indéterminées complexes”, in [Lejeune-Dirichlet, 1889-1897]
I, 535, my translation)

Quadratic forms with integral coefficients play a crucial role in the 19th cen-
tury number theory. We will see, in Chapter 5, that Dedekind’s introduction
of ideals is made in a work dedicated to binary quadratic forms. In number
theory, quadratic forms are essentially characterized by the concept of de-
terminant, a positive or negative integer which allows to distinguish classes
of forms for which certain arithmetical properties can be given. Interested
by the dependency between the determinant and the number of correspond-
ing distinct forms, Dirichlet is led to the distinction between positive and
negative determinants:

We identify that the expression of the number of forms corre-
sponding to any given determinant presents two very different
cases depending on whether the determinant is a negative or a
positive number. In the first case, the expression of the law in
question has a purely arithmetical character, while for a posi-
tive determinant, it is of a more composite nature, mixed in a
way, since, in addition to the arithmetic elements on which it
depends, it contains others which present themselves in certain

74“Le Mémoire dont il s’agit se rapporte à la théorie des formes quadratiques, théorie
qui, préparée par quelques énoncés de Fermat et par les ingénieuses recherches d’Euler et
définitivement fondée par Lagrange, a reçu plus tard de notables accroissements par les
travaux de Legendre, et surtout par ceux de M. Gauss qui y a consacré la plus grande
partie de ses ‘Disquisitiones Arithmeticae’, en sorte qu’elle constitue aujourd’hui l’une
des branches principales de la science des nombres.” The work referred to is “Recherches
sur diverses applications de l’Analyse infinitésimale à la Théorie des nombres”, published
in Journal für die reine und angewandte Mathematik, vol 19, 324-369; vol 21, 1-12 and
134-155, in 1839 and 1840.
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auxiliary equations present in the theory of binomial equations,
pertaining thus to Algebra.75 (ibid., 536, my translation)

Here, one can see that arithmetic is more a characteristic of the approach,
than a theory – a point that will be important for our understanding of
Dedekind’s “arithmetical” methods.

Dirichlet explains that, following the “natural” desire to expand the re-
sults already obtained, one is led to try to “solve by [these] means other
analogous questions but of a higher order” (ibid., 536). One can either con-
sider forms of a higher degree, or quadratic forms with complex integers
as coefficients, which is what Dirichlet proposes to consider. The use of
Gaussian integers allows to obtain laws for biquadratic residues which are
of “an extreme simplicity and elegance” and “perfectly analogous” to what
was known for quadratic residues (ibid. 537). But there is more to this “gen-
eralized number theory” than mere simplifications, it opens “a new field to
arithmetical speculations”. Dirichlet’s goal, here, is to “import, in the thus
generalized theory of numbers, the previously considered question” about
quadratic forms. To consider a wider concept of integer, here the Gaus-
sian integers, allows to investigate objects of number theory, here quadratic
forms, in a more general framework, and it opens new possibilities of “arith-
metical speculations.”

Provided that the concept of integral number be extended correctly, as
was done by Gauss with complex integers, then “arithmetic” is, for Dirichlet,
what “is related” to integers. Dirichlet favors efficiency of methods to any
purity ideal:

While the preceding theorems [about determinant and number of
classes of forms] do not contain any element which is not related
to integral numbers, it seems difficult to establish them with
purely arithmetical considerations, whereas the mixed method
we just used and which is based partly on the use of quantities
varying by insensible degrees, led us to them by the most natural
way, and so to speak, effortlessly.76 (ibid., 618, my translation)

75“On reconnaît que l’expression du nombre des formes qui répondent à un déterminant
quelconque présente deux cas très distincts suivant que ce déterminant est un nombre
négatif ou positif. Dans le premier cas, l’expression de la loi dont il s’agit a un caractère
purement arithmétique, tandis que pour un déterminant positif, elle est d’une nature plus
composée et en quelque sorte mixte, puisque, outre les éléments arithmétiques dont elle
dépend, elle en renferme d’autres qui ont leur origine dans certaines équations auxiliaires
qui se présentent dans la théorie des équations binômes et appartiennent par conséquent à
l’Algèbre.”

76“Quoique les théorèmes précédents ne contiennent aucun élément qui ne soit relatif
aux nombres entiers, il paraît difficile de les établir par des considérations purement arith-
métiques, tandis que la méthode mixte dont nous venons de faire usage, et qui est fondée
en partie sur l’emploi de quantités variant par degrés insensibles, nous y a conduit de la
manière la plus naturelle et, pour ainsi dire, sans effort.”

85



Chapter 1 - Elements of contextualisation

Not only were quadratic and biquadratic forms used in the theory of
numbers, so did cyclotomic equations, modular equations and the division
equations of elliptic functions (which originated in the study of algebraico-
aritmetical properties of the integrals). All these theories were considered
as pertaining both to the theory of algebraic equations and to arithmetic, as
[Goldstein and Schappacher, 2007a] makes clear. Arithmetic then developed
in an intricate relation with these theories, widening considerably while at
the same time being still considered as the study of properties related to
integral numbers. Eventually, in the works of Kronecker and Dedekind, a
new more general concept of number is introduced: the algebraic numbers
defined by means of a polynomial equation. Note that Kronecker, whose
works rely essentially on polynomial and modular equations, qualifies his
own works as being arithmetical. At the same time, Dedekind denies him
this quality, finding his approach too formal to be arithmetical.

During the 19th century, the distinction between “arithmetic” and “hi-
gher arithmetic” faded – probably (or at least partly) because, with the
tremendous developments of number theory, congruences soon were consid-
ered as elementary as were basic properties of integers. Divisibility proper-
ties appeared to be the first properties whose study impulsed new develop-
ment in the theory of numbers, notably with Gauss’s congruences. Divisi-
bility was, then, at the core of most of the inquiries. In 1876/77, Dedekind
goes as far as saying that arithmetic is in some way founded on divisibility:

The theory of divisibility of numbers, which serves as a foun-
dation of arithmetic, was already established in its essentials
by Euclid. At any rate, the major theorem that each compos-
ite integral number can always be represented as a product of
only prime numbers is an immediate consequence of the theorem,
proved by Euclid, that a product of two numbers is not divisible
by a prime number unless the prime divides at least one of the
factors.77 ([Dedekind, 1876-1877], transl. modified, 53)

It seems that “foundation”, here, should be taken in a practical sense: di-
visibility is at the foundation of arithmetic as an area of research insofar as
it is its study which motivates its developments.

77“La théorie de la divisibilité des nombres, qui sert de fondement à l’arithmologie, a
déjà été établie par Euclide dans ce qu’elle a d’essentiel ; du moins, le théorème capital
que tout nombre entier composé peut toujours se mettre, et cela d’une seule manière, sous
la forme d’un produit de nombres tous premiers, est une conséquence immédiate de ce
théorème démontré par Euclide, qu’un produit de deux nombres ne peut être divisible par
un nombre premier que si celui-ci divise au moins l’un des facteurs.”
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1.3 Riemannian function theory
We saw, in the first section, the epistemological context in which Dedekind’s
and Riemann’s works grew. I will propose to consider in greater details
the mathematical context in which Riemann worked.78 I will then proceed
to look into Riemann’s 1851 Inauguraldissertation and his 1857 paper on
Abelian functions, so as to expose the core ideas that will be studied by
Dedekind and Weber in 1882. The account will be partial for its goal is to
present the concepts and results which Dedekind and Weber are going to
work on, in their 1882 paper, in which they do not develop any topological
notion. This section will close with a brief (and, again, very partial) look
at the first responses to Riemann’s works. Indeed, Dedekind and Weber’s
paper is greatly motivated by their dissatisfaction with the reception of Rie-
mann’s works, between Riemann’s paper and the late 1870s.

Before considering Riemann’s works, let me say a few words about alge-
braic functions and the beginning of complex analysis.79

Algebraic functions80 are functions which are solutions of a polynomial
equation: f is an algebraic function of x1, x2, x3, . . . (xi are real or complex
variables) if it satisfies a polynomial equation with polynomial coefficients
F (f, x1, x2, x3, . . .) = 0 with

F (f, x1, x2, x3, . . .) = a0f
n + a1f

n−1 + . . .+ an−1f + an

in which the coefficients a0, a1, . . . , an are polynomials in x1, x2, x3, . . . with
rational coefficients and without common divisors. We will only consider
algebraic functions of one variable, that is, a function f of z satisfying the
polynomial equation F (f, z) = 0, with

F (f, z) = a0f
n + a1f

n−1 + . . .+ an−1f + an

(a0, a1, . . . , an are polynomials in z with rational coefficients and no com-
mon divisors).

Algebraic functions are mainly of interest to mathematicians in the 19th
century because of their integrals, namely for the study of integrals of the
form

F (w) =
∫ w

z0
f(s, z)dz

78For Dedekind’s number theoretical works, the next chapters will give all the necessary
details.

79On the concept of function, whose extension is an essential point for Riemannian
fucntion theory, one can refer to [Chorlay, Forthcoming], [Lützen, 2003b], [Lützen, 2003a],
[Youschkevitch, 1976]. For more detailed accounts on the episodes in the history of analysis
mentioned here, one can refer to [Bottazzini, 1986], and [Bottazzini and Gray, 2013].

80The reader can refer to [Houzel, 2002] and [Bottazzini and Gray, 2013] for more details.
I rely on their works in this section.
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where s satisfies a polynomial equation P (s, z) = 0. While these integrals
are not too difficult to handle for polynomials of degree 1 or 2 because the
integration by elementary functions (rational functions, logarithms, arcsin,
arctan) is possible, this strategy stops working for polynomials of degree 3
and higher. This leads to the introduction of new functions, whose study
constitutes one of the central themes of 19th century Analysis.

The interest for integral of algebraic functions originated in the study of
elliptic functions. The root of these researches was Wallis’s attempt to find
the length of an arc of the ellipse. The arc-element of an ellipse of half axes
a and b is given by

ds =
√

(dx2 + dy2) =

√
a2 − ex2

a2 − x2 dx

with e = 1− b2

a2 . But this is not the differential of an “elementary function”,
and the “rectification” raises problems. Mathematicians such as Newton,
Euler, MacLaurin or Lambert attempted to solve the problem only to have
to be satisfied with power or trigonometric series.

Leibniz and the Bernoulli brothers encountered the same kind of prob-
lems studying the “paracentric isochrone”, for which Jakob and Johann
Bernoulli used the lemniscate whose arc-element is

ds = dx√
1− x4

The general theory of elliptic integrals is a particular case of integration of
algebraic functions, and deals with integrals of the form

E(z) =
∫ z

z0

ds√
s2

with s2 polynomial of degree 3 or 4 (for example, in the case of the lem-
niscate, s2 = 1 − x4). Fagnano, Euler, Lagrange, Legendre, among others,
worked on these questions. Notably Legendre established that elliptic inte-
grals (for a real variable) can all be reduced to three canonical forms:

Integrals of the first kind:
∫

dx

(1− x2)(1− k2x2)

Integrals of the second kind:
∫ √1− k2x2

1− x2 dx

Integrals of the third kind:
∫

dx

(1− nx2)
√

(1− x2)(1− k2x2)
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Riemann will continue on the same line of idea and reformulate Legendre’s
classification in his own terms – and so will Dedekind and Weber in 1882.

Cauchy’s works were decisive for complex analysis (see [Bottazzini and
Gray, 2013], Chapter 2). In his Cours d’Analyse, Cauchy insisted, and he
was the first to do so, on the fact that real and complex variables (“imaginary
quantities”) are to be treated differently and that a function of a complex
variable is a completely different function:

When the constants or variables contained in a given function,
having been considered real are later supposed to be imaginary,
the notation that was used to express the function cannot be
retained in the calculation except by virtue of new conventions
able to determine the sense of this notation under the new hy-
pothesis.81 ([Cauchy, 1821], 159)

In several memoirs on the integral calculus, Cauchy studied integrals on
complex paths, which he defined analogously to real ones. Cauchy’s the-
ory of complex paths will be crucial, notably through Puiseux’s works (see
[Bottazzini and Gray, 2013], 192-198). Before Riemann, Puiseux developed
some of Cauchy’s ideas in complex analysis. He stressed the fact that the
elliptic integral does not depend solely on the boundaries but on the whole
path of integration. Puiseux’s goal was to study the behavior of algebraic
functions, and for this, he proposed a geometrical setting to investigate al-
gebraic functions and their integrals (see [Bottazzini and Gray, 2013], 192).
Puiseux used Cauchy’s results in complex analysis to provide what Bottazz-
ini and Gray consider to be “a coherent theory of algebraic functions and
their integrals that provided a geometric setting which prefigured Riemann’s
work” (ibid., 198).82

Riemann knew well Cauchy’s works on about integrals on complex paths83

and he did know Puiseux’s works. It has been argued (notably by Neuen-
schwander) that Riemann’s 1851 dissertation was “an excellent geometric
commentary and at the same time what appears to be a profound summary
of Puiseux’s work” ([Bottazzini and Gray, 2013], 267). Bottazzini and Gray,
however, disagree on that point. For them, as for many commentators, Rie-
mann’s theory goes well beyond Puiseux’s memoir. Besides, while Puiseux’s
geometrical constructions were merely tools, the Riemann surface is more

81“Lorsque les constantes ou variables comprises dans une fonction donnée, après avoir
été considérées comme réelles, sont ensuite supposées imaginaires, la notation à l’aide de
laquelle on exprimait la fonction dont il s’agit ne peut être conservée dans le calcul qu’en
vertu de conventions nouvelles propres à fixer le sens de cette notation dans la dernière
hypothèse.”

82[Bottazzini and Gray, 2013] Chapter 3 provides a thorough account of Cauchy’s works
on complex analysis which I will not develop here.

83See [Neuenschwander, 1981].
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than a tool or an image. Riemann surfaces, as it has been underlined by
Weyl,

are not merely a device for visualizing the many-valuedness of
analytic functions, but rather an indispensable essential compo-
nent of the theory; not a supplement, more or less artificially
distilled from the functions, but their native land, the only oil in
which the functions grow and thrive. ([Weyl, 2013], vii)

Finally, and more importantly, in the following section we will see that
Riemann’s work does not aim at a study of the behavior of complex algebraic
functions, it has a wider, more general goal, as Bottazzini and Gray suggest:

he was searching for a general method for embracing and treat-
ing large classes of functions in a unified manner and precisely
this search led him to his concept of a “Riemann” surface. ([Bot-
tazzini and Gray, 2013], 267)

1.3.1 Outlines of Riemann’s function theory

Riemann exposed his function theory in two main works. First, he presented
the core ideas in his doctoral dissertation, “Grundlagen für eine allgemeine
Theorie der Functionen einer veränderlichen complexen Grösse”, defended
in 1851, in Göttingen. Six years after his doctoral dissertation and three
years after his Habilitation, Riemann published his function theory in a
somewhat reworked form, with an application to Abelian functions.84 In
the following, I will expose the essential ideas of Riemann’s theory using
both works.

Riemann’s theory of functions draws an intimate link between analytical
and geometrical conceptions of functions. The concept of surface allows to
understand the multi-valuedness of algebraic functions by giving it a geo-
metrical meaning. Rather than defining a function in the complex (Argand-
Cauchy) plane, Riemann proposes to consider a surface with ‘piled’ sheets,
each corresponding to a branch of the multi-valued function. Surfaces and
functions are indissociable, for Riemann’s theory. Indeed, it is the surface
which allows to determine the values of the functions living on the surface
without resorting to explicit representations “by operations on quantities”,
such as power series. Let me now give some elements of Riemann surfaces
as presented in [Riemann, 1851] and [Riemann, 1857], so as to have a bet-
ter idea of the works Dedekind and Weber were developing. In addition,

84Some of the further developments about Riemann surfaces given in this paper are
important for Dedekind and Weber’s rewriting of Riemann’s works, in particular what
we now call Riemann’s inequality. I do not claim to have anything new to write about
Riemann and will not go into much details.
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Dedekind and Weber claim to me more faithful to the principles of Riemann
than their predecessors. We will see that while they do follow closely the de-
mand to avoid computations and to provide a uniform approach for classes
of functions, they do erase the geometrical component of Riemann’s concept
of a Riemann surface.85

1.3.1.1 Riemann surfaces

There was a significant widening of the function concept in the 19th cen-
tury, with the adoption of the concept in which the analytical expression
does not play a definitional role anymore. This move is usually attributed
to Dirichlet in 1829 and 1837, as we saw earlier. The viewpoint adopted by
Dirichlet, thus, is that of an “arbitrary function”, a concept of function com-
pletely detached from any consideration of explicit, individual, expression
(Darstellungsformen) of the functions. Functions (which, here, are always
continuous) appear as a process of attributing finite values to an indetermi-
nate variable quantity according to certain (undefined) rules.86

Riemann’s doctoral dissertation begins with the distinction between “func-
tion” and “expression” which arose from the desire to consider “arbitrary”
functions. Riemann’s definition of function is of a great generality and close
to Dirichlet’s:

If one designates by z a variable magnitude which can take grad-
ually all the possible real values, then when to each value cor-
responds a unique value of the indeterminate magnitude w, one
calls w a function of z. And if, while z continuously runs through
all the values between two fixed values, w changes continuously
as well, then this function is called continuous [stetig oder con-
tinuirlich] in this interval.87 ([Riemann, 1851], 3)

85My presentation will, here again, rely on [Bottazzini and Gray, 2013], as well as on
the first Chapter of [Chorlay, 2007].

86“We mean by a and b two constant values and by x a variable quantity which must
gradually take all the values between a and b. Now, for every x corresponds a single, finite
y, and such that while x continuously runs through the interval between a and b, y = f(x)
likewise gradually changes. Then, y is called a continuous function of x for this interval.
It is at the same time not necessary that y in this entire interval be dependent of x with
always the same law, so one does not need once to think of a dependency expressible by
the mathematical operations. ([Lejeune-Dirichlet, 1837], in [Lejeune-Dirichlet, 1889-1897]
I, 135)

87“Denkt man sich unter z eine veränderliche Grosse, welche nach und nach alle
möglichen reellen Werthe annehmen kann; so wird, wenn jedem ihrer Werthe ein einziger
Werth der unbestimmten Grosse w entspricht, w eine Function von z genannt; und wenn,
während z alle zwischen zwei festen Werthen gelegenen Werthe stetig durchläuft, w eben-
falls stetig sich ändert, so heisst diese Function innerhalb dieses Intervalls stetig oder
continuirlich.”
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Riemann explicitly states that it is “indifferent” to consider the dependence
between z and w to be arbitrary or given by a certain determinate calcula-
tion. He also clearly states that he considers the appropriate definition of
function to not be “an expression that yields its value for each value of the
argument”.

A complex function, for Riemann, is defined as a mapping of the complex
variable z = x+ iy into the complex variable w = u+ iv.

Our study shows that, because of the general nature of a func-
tion of a complex variable, a part of the determination through
a definition of this kind yields the rest. Indeed, we reduce this
part of the determination to that which is necessary for com-
plete determination of the function.88 (ibid., 38, translated in
[Bottazzini and Gray, 2013], 273-274)

Riemann uses a definition of continuity which is rather imprecise, but re-
maining notes studied by Neuenschwander tell us that he drew it from the
notion of continuity given by Cauchy and used by Dirichlet. A complex
function satisfies what we now call the Cauchy-Riemann equations:

∂u

∂x
= ∂v

∂y
and ∂v

∂x
= −∂u

∂y
.

From the Cauchy-Riemann equations follows that the functions are har-
monic.89 The Cauchy-Riemann equations are necessary for the functions
to be holomorphic (i.e., differentiable) but not, as Riemann seemed to have
assumed, sufficient. Note that Riemann does not use the word “holomor-
phic” or even “differentiable”. He only talks about a “function of z” with
z = x + iy, as opposed to the complex function conceived as a function of
two real variables (see [Chorlay, 2007], Chapter 1). Riemann later takes the
Cauchy-Riemann equations as a definitional property of complex functions.

Riemann brings to the fore the idea of a function as a correlation between
two variables. To study complex algebraic functions (which are often many-
valued), Riemann introduces a new notion, that of a surface spread over the
complex plane. The idea is to think of the complex plane, the “(x, y)-plane”,
as being covered by a surface spread over it “(or lying at an infinitesimal
distance above it) for as far as the function is defined”. As he explains in his
doctoral dissertation, this choice is motivated by the possibility to consider
a multi-sheeted surface:

88“durch unsere Untersuchung ist gezeigt, dass, in Folge des allgemeinen Charakters
einer Function einer veränderlichen complexen Grosse, in einer Definition dieser Art ein
Theil der Bestimmungsstücke eine Folge der übrigen ist, und zwar ist der Umfang der
Bestimmungsstücke auf die zur Bestimmung nothwendigen zurückgeführt worden.”

89I.e., they satisfy ∂2u
∂x2 + ∂2u

∂y2 = 0 and ∂2v
∂x2 + ∂2v

∂y2 = 0
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We leave open the possibility that the locus of the point O can
stretch out over the same part of the plane several times; in such
case though, we suppose that the parts of the surface lying on
each other are not linked up alongside a line, so that it does
not happen that the surface is folded or that it is split in the
superposed parts.90 ([Riemann, 1851], 7)

This, for Riemann, enables to understand and grasp correctly the said cor-
relation and give a geometrical representation of multi-valued functions.

The core idea of the surface is an intrinsic relation between the function
and the surface itself, which embodies the functional correspondence. The
key element is what Riemann calls the branch points (or ramification points
or winding points, “Windungspunkte”), which are multiple points on the
surface, where two or more sheets are joined. In 1857, Riemann explains
that

For a more comfortable designation of these relations, the differ-
ent continuations of a function for the same part of the z-plane
will be named the branches (Zweige) of this function, and a point,
on which a branch of a function is continued into another one
will be called a branch-point (Verzweigungsstelle) of this func-
tion. Where no ramification occurs, the function is said to be
single-valued or monodrom.91 ([Riemann, 1857], 83)

To explain how the branches are joined in the neighborhood of a branch
point σ, Riemann proposes to consider a mobile point which goes along the
boundary of the surface (multi-sheeted) T , then

[t]he mobile point around σ comes back after m circuits in the
same patch of surface, and is limited to m of the superposed
patches of surface which assemble in one unique point via σ. We
call this point a branch point of m − 1-th order of the surface
T .92 (ibid., 8)

90“Wir lassen die Möglichkeit offen, dass der Ort des Punktes O über denselben Theile
der Ebene sich mehrfach erstrecke, setzen jedoch für einen solchen Fall voraus, dass die auf
einander liegenden Flächentheile nicht längs einer Linie zusammenhängen, so dass eine
Umfaltung der Fläche, oder eine Spaltung in auf einander liegende Theile nicht vorkommt.”

91“Zur bequemeren Bezeichnung dieser Verhätnisse sollen die verschiedenen Fortset-
zungen einer Function für denselben Theil der z-Ebene Zweige dieser Function genannt
werden und ein Punkt, um welchen sich ein Zweig einer Function in einen andern fort-
setzt eine Verzweigungsstelle dieser Function; wo keine Verzweigung stattfindet, heisst die
Function einändrig oder monodrom.”

92“Der um σ sich bewegende Punkt kommt alsdann nach je m Umläufen in denselben
Flächentheil zurück und ist auf m der auf einander liegenden Flächentheile eingeschränkt,
welche sich über σ zu einem einzigen Punkte vereinigen. Wir nennen diesen Punkt einen
Windungspunkt m− 1ster Ordnung der Fläche T .”
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The mobile point describes a path (Umlauf ) around the ramification point
σ and permutes the sheets of the surfaces. After a certain numbers of such
“circuits”, the function goes back to its initial value. When this happens, the
sheets are ‘permuted’, the “topmost sheet passes back through the others
to join the lowest” ([Riemann, 1857], quoted and translated in [Koch, 1991],
123). If the permutation in question is a cycle of order m, then the branch
point is said to be of order m− 1.

For example, for the square root function, the Riemann surface allows to
figure and understand clearly the multiplicity of the function and the branch
point is 0, and is of order 1:93

The Riemann surface for the square root function.

Thus, for a complete characterization of the surface, or even a class of
surfaces, Riemann considers the “boundary” and the ramification of T :

When the position and the sense of the boundary of T and the
position of its ramification points are given, then T is either
completely determined, or limited to a finite number of different
forms. This last point comes from the fact that these charac-
teristic elements can correspond to different superposed parts of
surface.94 ([Riemann, 1851], 8)

The essential point, here, is that the surface T determines completely
a function (or a class of functions). The surface is not merely a tool to
represent the multi-valued functions, the functional correspondence of the
complex variables determines the inner nature of the surface and conversely:

93I borrow this image to [Stillwell, 2010], 303.
94“Wenn die Lage und der Sinn der Begrenzung von T und die Lage ihrer Win-

dungspunkte gegeben ist, so ist T entweder vollkommen bestimmt oder doch auf eine
endliche Anzahl verschiedener Gestalten beschränkt; Letzteres, in so fern sich diese Bes-
timmungsstücke auf verschiedene der auf einander liegenden Flächentheile beziehen kön-
nen.”

94
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A variable magnitude which for each point of the surface T gen-
erally, that is without excluding the exception of some singular
lines or points, takes a determinate value varying continuously
with the position of this point, can obviously be considered as a
function of x, y wherever, in the following, we will speak about a
function of x, y, we will define the concept in this way.95 (ibid.,
9)

The surface allows to represent the ramification of a multi-valued function
and the intimate links between one and the other are made obvious. In
fact, the multi-sheeted surfaces allow to represent and understand the multi-
valued functions in a way that reconquer a certain form of uniformity: the
multiplicity of the values is replaced by the multiplicity of the sheets (for
each branch).

Hence, the surface allows to provide the determination of the values of
functions (for each value of the argument) independently of a representa-
tion or determination by operations on quantities. Once this determination
obtained, the explicit (analytic) expression of the function can be looked for:

A theory of these functions based on the principles introduced
here would fix the form of the function (that is, its value for
every value of the argument) independently of a means of deter-
mining the function via operations on quantities. We determine
the function by appending to the general idea of a function of
a complex variable just those features that are necessary for the
determination. Only at this stage do we pass to the various rep-
resentations that the function permits.96 (ibid., 38-39, translated
in [Bottazzini and Gray, 2013], 273-274)

Riemann is thus clearly putting into action the precept according to which
one should ground the definition of and researches about a concept on es-
sential characteristics, rather than Darstellungsformen. And in particular,
an algebraic function will be characterized by its surface (rather than by an
explicit expression such as a power series).

95“Eine veränderliche Grösse, die fur jeden Punkt der Fläche T , allgemein zu reden;
d. h. ohne eine Ausnahme in einzelnen Linien und Punkten auszuschliessen, Einen be-
stimmten mit der Lage desselben stetig sich ändernden Werth annimmt, kann offenbar als
eine Function von x, y angesehen werden, und überall, wo in der Folge von Functionen
von x, y die Rede sein wird; werden wir den Begriff derselben auf diese Art festlegen.”

96“Eine Theorie dieser Functionen auf den hier gelieferten Grundlagen würde die
Gestaltung der Function (d. h. ihren Werth für jeden Werth ihres Arguments) unab-
hängig von einer Bestimmungsweise der selben durch Grossenoperationen festlegen, indem
zu dem allgemeinen Begriffe einer Function einer veränderlichen complexen Grosse nur
die zur Bestimmung der Function nothwendigen Merkmale hinzugefügt würden, und dann
erst zu den verschiedenen Ausdrücken deren die Function fähig ist übergehen.”
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Moreover, rather than providing a characterization for one function, Rie-
mann wants (and succeeds) to characterize classes of functions possessing
the same essential properties. Indeed, as underlined by Bottazzini and Gray,
Riemann’s aim was not just to study multi-valued functions but “he was
searching for a general method for embracing and treating large classes of
functions in a unified manner and precisely this search led him to his concept
of a ‘Riemann’ surface.” ([Bottazzini and Gray, 2013], 267). For algebraic
functions, then, as Bottazzini and Gray explain:

If the domain of the variable z covers the entire infinite plane
simply or multiply and the function is allowed to be discontinu-
ous only at a finite number of isolated points (where it becomes
infinite to finite degree, i.e., it has poles, as we would say today),
then the function is algebraic, and reciprocally every algebraic
function satisfies these conditions. (ibid., 271)

Riemann observes that these results are valid on any surface and that
the variable needs not to run through the whole complex plane. That is, a
complex function could be defined on any two-dimensional domain, which
is a crucial move for Riemann’s function theory.

For Riemann, the gains allowed by the concept of surface is considerable,
compared to an analytic and formal definition and study of functions, for
example:

to show the equality of two expressions for the same function,
one formerly needed to transform one into the other: that is,
show that the expressions coincide for every value of the vari-
able. Now it suffices to prove the expressions coincide in a much
more restricted domain.97 (ibid., 38, quoted and transl. in [Bot-
tazzini and Gray, 2013], 273-275)

Finally, one should note that Riemann’s theory relies essentially on a
principle used by Gauss and Dirichlet in potential theory, which Riemann
called the “Dirichlet principle”. Basically, the idea is that of the existence
of a function minimizing a surface integral (see [Bottazzini and Gray, 2013],
271-275). Riemann uses it in the proofs of existence and unicity that form
the foundation of his function theory. But the “Dirichlet principle” was not
commonly accepted by the mathematical community and “widely regarded
as of heuristic value only and (. . . ) this part of the paper was to occupy
mathematicians for the next 70 years.” ([Bottazzini and Gray, 2013], 271).

97“Um z. B. die Gleichheit zweier Ausdrücke derselben Function zu beweisen, musste
man sonst den einen in den andern transformiren, d. h. zeigen, dass beide für jeden
Werth der veränderlichen Grösse übereinstimmten; jetzt genügt der Nachweis ihrer Ue-
bereinstimmung in einem weit geringern Umfange.”
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While essential for Riemann’s theory, the “Dirichlet principle” is not consid-
ered at all by Dedekind and Weber, I will thus not develop it further, here.
One can refer to [Bottazzini and Gray, 2013], 271-275.

1.3.1.2 A note on Riemann’s inequality

An important notion introduced by Riemann is that of boundary cuts (or
cross-cuts, Querschnitte) and the connectivity of the surface related to it.
Boundary cuts correspond to the idea of cutting or breaking a surface into
simpler patches. The boundary cuts themselves are simple curves, not inter-
secting themselves, which connect two points on the boundary of the surface.
A surface is said to be connected if any two points can be connected by a
continuous curve, and if consequently any boundary cut would split the
surface in two. A simply connected surface is a connected surface which,
roughly speaking, does not have any ‘hole’98. Such a surface is equivalent
(one-to-one) to the plane disc.

Riemann, using boundary cuts, transforms a surface into a simply con-
nected surface on which the functions admit a unique integral. This al-
lows him to define the “order of connectivity” (Zusammenhangszahl): if
by the system of n1 boundary cuts, the surface is split into m1 patches,
and if by the system of n2 boundary cuts, it is split into m2 patches, then
n1 −m1 = n2 −m2. In general, n−m is a constant, the “order of connec-
tivity”. This number is independent of the way in which the boundary cuts
have been made, and is consequently a characteristic property of the surface
([Bottazzini and Gray, 2013], 263).

Riemann claimed that for the surface of an algebraic function of equa-
tion F (x, y) = 0, the order of connectivity is of the form 2p− 1 (this integer
p will be called the genus by Clebsch).99

This integer p is notably involved in the first important result of the
1857 paper on Abelian function, which we now call the Riemann inequality,
Riemann’s part of the Riemann-Roch theorem.

To prove Riemann’s inequality, Riemann starts with an irreducible equa-
tion in s of degree n, whose coefficient are polynomials in z of degree m.
This equation is associated to a n-sheeted surface T spread over the com-
plex plane. This surface is “without boundary”, which means that it can be
considered as a surface whose boundary is “rejected to infinity” (infinitely
far away) or as a closed surface. Moreover

98That is, a connected surface of genus 0.
99The genus of the surface in topology corresponds to the (maximum) number of non-

intersecting closed curves that can be drawn on the surface without rendering it discon-
nected. In other words, it is the number of holes in the surface.
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any rational function of s and z is obviously also a single-valued
function of the locus the surface T and therefore possesses the
same mode of ramification as the function s, ans we will see later
that the converse is also true.100 ([Riemann, 1857], 95-96)

The integration of such a rational function gives multi-valued functions
which differ only by constants. Riemann proposes, then, to study the classes
of “equivalently branching algebraic functions and their integrals” by study-
ing their discontinuities using the Dirichlet principle, rather than using “ex-
pressions of these functions” (see [Bottazzini and Gray, 2013], 288).

Riemann gives indications on the singularities and how to use coordinates
to define the order of vanishing of a function. At the points corresponding to
the zeros of the function, it is said to be “infinitely small”. It is the case, for
example of (z−a)1/µ when z = a or of 1

z

1/µ for z =∞. At the points corre-
sponding to poles, the function is said to become infinitely great. Riemann,
here, only considers simple zeros (“infinitely small of the first order”) and
proposes, when the function is infinitely small (or infinitely great) of order
ν, to consider it as being infinitely small (or infinitely great) of first order
at ν coinciding points. Dedekind and Weber will use a similar terminology.

Considering a surface T , Riemann turns it into a simply connected sur-
face T ′ by 2p boundary cuts. Then, following Legendre’s classification of
integrals (see p. 88), Riemann establishes three kinds of integrals:

- The integrals of first kind are the (multi-valued) functions w which
are everywhere finite and continuous. There are at most p linearly
independent such functions. They are the result of the integration of
functions which are everywhere holomorphic.

- The integrals of second kind are the (multi-valued) functions w which
become infinite on only one single point ε of T . They are the result of
the integration of rational functions without simple infinities.

- The integrals of third kind are the (multi-valued) functions w which
have two (opposite) logarithmic infinities on two points ε1, ε2 of T .
They are the result of the integration of functions with simple in-
finities which have opposite residues. ([Bottazzini and Gray, 2013],
288-289)

Following this, Riemann goes on to prove what is called nowadays the
Riemann inequality, which G. Roch was able to complete into an equality

100“Jede rationale Function von s und z ist offenbar ebenfalls eine einwerthige Function
des Orts in der Flache T und besitzt also dieselbe Verzweigungsart wie die Function s, und
es wird sich unten ergeben, dass auch das Umgekehrte gilt.”
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in 1864 (but for which he only gave a partial proof). First, Riemann gives
the “general expression of a function which becomes infinitely great of first
order at m points ε1, ε2, . . . εm of the surface T ,” which is

s = β1t1 + β2t2 + . . .+ βmtm + α1ω1 + α2ω2 + . . .+ αpωp + k

where the ti are arbitrary functions, and k, αi and βi are constants. This
function s has 2p moduli of periodicity dependent on the m+ p constant αi
and βi.

For m ≥ p+ 1, 2p of the αi and βi can be determined as linear functions
of the other ones in such a way that the moduli of periodicity vanish. Thus,
one obtains a function s depending linearly on m− p + 1 constants (which
amounts to it being the sum of m−p functions which have each p+ 1 infini-
ties). This result is called nowadays Riemann’s inequality. Riemann – and
Roch as well – referred to it as the number of arbitrary constants contained
in the function s (that is, the number of parameters of which the function
is dependent).101

Before moving on to a few considerations about the reception of Rie-
mann’s works, let me mention one last (for us) important result of Riemann’s
1857 paper, namely the fact that the functions with a determinate number
of singularities can be written as the quotient of two polynomial functions
in s and z (which will later lead to birational geometry). Consider s′ the
functions “ramified like” the surface T and m′ the number of their simply
infinite branch point, then

if it is possible, as we will show later, to form rational expressions
in s and z which become infinite of first order for m′ randomly
given pairs s and z, satisfying the equation F = 0 and which
are linear functions of m′ − p + 1 arbitrary constant, then any
function s′ can be represented by these expressions.102 (ibid.,
107)

The functions s′ can be expressed, then, as rational functions on the surface.
This result is one the bases for later readings of Riemann’s theory which will
propose to transfer the concepts in an algebraico-geometric framework.

The second half of Riemann’s 1857 paper is dedicated to the study of
Abelian integrals, which Riemann calls Abelian functions. The study of

101This result is a lower bound for what we would call the dimension of linear spaces of
functions having m singular points on T ([Bottazzini and Gray, 2013], 289).

102“Lassen sich also, wie jetzt gezeigt werden soll, rationale Ausdrücke von s und z
bilden, die für m′ beliebig gegebene, der Gleichung F = 0 genügende Werthenpaare von s
und z unendlich von der ersten Ordnung werden und lineare Functionen von m′ − p + 1
willkürlichen Constanten sind, so kann durch diese Ausdrücke jede Function s′ dargestellt
werden.”
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Abelian functions is linked to what we would call topological considerations,
which Dedekind and Weber refer to as “investigation of continuity and the
related questions”. This is out of the scope of my inquiry, since Dedekind
and Weber did not include these questions in their paper – in fact, they
didn’t have the tools for it.103

1.3.2 Receptions and developments of Riemann’s works

Riemann’s inaugural dissertation was only printed as a separate thesis and
never as a research paper (e.g. in Crelle’s Journal), which didn’t help an
early adoption of Riemann’s ideas. More significantly, the ideas proposed
here are mathematically relatively vague “at certain crucial points and its
often murky language”, which opposed an immediate acceptance of the many
novelties of the work, according to Bottazzini and Gray ([Bottazzini and
Gray, 2013], 277). If the response to Riemann’s works took a few years,
and has often been presented as sparse, Bottazzini and Gray draw up a list
of works following Riemann which, from the 1860s to the beginning of the
1880s, counts as much as 24 items, from Clebsch and Roch to Christoffel,
Kraus and Dedekind and Weber.104 This suggest, for Bottazzini and Gray,
in the light of the young age at which Riemann died and the few students he
had, that the reception of Riemann’s works was rather important. In fact,
if some of his ideas were difficult to develop due to their novelty and to a
certain “mathematical vagueness”, his works were recognized immediately
as valuable by the mathematical community – suffice it to mention that
Weierstrass himself proposed his nomination at the Berlin Akademie der
Wissenschaften in 1859.

The density and richness of Riemann’s works in complex function theory
leads to a multifaceted reception of his works. Indeed, many aspects were to
be considered problematic and/or fruitful, and several different readings and
adaptations of his ideas emerged during the following decades. Not only were
Riemann’s works vast and fruitful, each point considered will raise problems.
The amount of problems to investigate and of possible directions that could
be taken after Riemann’s “visionary presentation” of his function theory is
very wide, as was already alluded to above and is well illustrated by the
variety of authors studied in works such as [Chorlay, 2007], [Houzel, 2002]
or [Bottazzini and Gray, 2013].

My intention in outlining the reception of Riemann’s ideas is to give an
103For more details, one can see [Chorlay, 2007] Part I, [Bottazzini and Gray, 2013] which

provides a large amount of historical informations about complex analysis, [Houzel, 2002]
for the point of view of the history of algebraic geometry, and [Scholz, 1999] for the history
of topology.

104Their list concerns the responses to all but three of Riemann’s works (the 1855 paper
on Bessel’s equation, the 1859 paper on the prime number theorem and the 1860 paper
about shock waves).
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idea of what dissatisfied Dedekind and Weber in the treatment of the theory
of algebraic functions on a Riemann surface. Indeed, it is clear from the in-
troduction of Dedekind and Weber’s paper, that from their view, Riemann’s
precepts – to base the investigation on characteristic properties rather than
computations, to consider classes of functions rather than individual func-
tions, etc. – were not followed by the mathematicians who continued his
works. Dedekind and Weber do not give any name, of course, and it is dif-
ficult to point exactly with which works they are most dissatisfied. I will
present two different possibilities. It should be borne in mind that Dedekind
and Weber are also opposed to any use of geometrical intuition. I will con-
centrate on aspects related to the uniformity of the approach and the desire
to avoid external representations, in relation with a more precise character-
ization of the “conceptual approach”.

A first example is Weierstrass’s reception of and response to Riemann’s
works. Strongly opposed to Riemann’s “conceptual” approach, Weierstrass
did recognize the value of Riemann’s works despite disapproving their patent
lack of rigor. Not only did Weierstrass propose Riemann to the Berlin
Akademie der Wissenschaften in 1859, but as I mentioned, after the pub-
lication of Riemann’s paper on Abelian functions, he withdrew one of his
own papers on the same subject, to be sure that he had fully understood
everything Riemann wrote. In addition, Weierstrass strongly encouraged his
students to work on certain aspects of Riemann’s works “and re-derive Rie-
mann’s results by better (i.e., Weierstrassian) methods” ([Bottazzini and
Gray, 2013], 11). Weierstrass (and to a certain extent, his students) im-
ported some of Riemann’s ideas into the Berlin algorithmic tradition, insert-
ing them in his own mathematical and methodological framework, adapting
them to his own viewpoint and methods to the point that “the large au-
diences drawn to Berlin would not necessarily know when he was entering
Riemannian territory” (ibid., 322). The ‘conceptual’ Riemannian function
theory entered the Berlin community through the rework of his ideas by
Weierstrass. In fact, according to Bottazzini and Gray, “within Germany
the response was increasingly along lines inimical to the deepest tendencies
in Riemann’s thought.” The increasing tendency of Weierstrass’s function
theory to stress the resort to power series led to a “fully developed algebraic
approach to complex analysis [which] obliterates Riemann’s – at the price,
a later generation came to feel, of making it impossible to think for oneself”
(ibid., 322).

Another reception of Riemann’s theory is the algebraic approach adopted
by Rudolf Clebsch, who gave the concept of “genus” (the number designated
as p by Riemann) its name. Clebsch was a student of Jacobi’s in Königsberg
and succeeded Riemann in Göttingen, in 1866. Upon arriving in Göttingen,
Clebsch started to study Riemann’s works and developed an approach that
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can be designated as algebraic geometry.
Clebsch’s taking up of Riemann’s ideas led to great developments in alge-

braic geometry, after the works of mathematicians such as Plücker, Steiner,
Hesse, or Salmon. Clebsch and his students, notably Max Noether, aimed
at a translation and use of Riemann’s ideas into projective algebraic geom-
etry. This did not please Prym, the only one left of Riemann’s students
after Roch’s death, who wrote that “the attempt to base function theory on
algebra is completely useless” (quoted in [Bottazzini and Gray, 2013], 317).

Clebsch, along with Noether, Brill and Gordan, considered the generality
inherent to Riemann’s “conceptual” approach to be misleading to say the
least:

At such a level of generality the idea of a function, incomprehen-
sible and evaporating, no longer delivers reliable conclusions. In
order to delineate precisely the domain of validity of the theorems
under consideration, people have recently abandoned Riemann’s
path completely.105 ([Brill and Noether, 1892], 265, transl. in
[Bottazzini and Gray, 2013], 322)

They preferred to approach the problems through the equations themselves,
and they rewrote every result and every proof in Riemann’s paper in what
they thought was an appropriate form. Less than a question of appropriation
(they gave credit to Riemann for all his results) as it seems to have been the
case with Weierstrass, their reformulation of Riemann’s ideas was motivated
by the idea that algebra held the key to an innovative and rigorous approach
to the study of (plane) curves. But the focus on algebraic equations leads
to formulate a theory of plane curves attached to definite equations. In this
way, it is in the equations that the characteristic properties, such as genus,
singularities, etc., are to be determined. This point is one that Riemannian
mathematics would try to avoid.106

Clebsch wrote, with Paul Gordan, a book on Abelian functions ([Clebsch
and Gordan, 1866]) whose aim was to be so thorough that it could be seen
as definitive. They presented Riemann’s approach to function theory as con-
taining difficulties which for them “are mostly responsible for bewildering
the researcher”. The generality looked for by Riemann was, for them, far
from being a benefit of the approach – precisely the point on which Dedekind

105“In solcher Allgemeinheit lässt der Functionsbegriff, unfassbar und sich verflüchti-
gend, controlirbare Schlüsse nicht mehr zu. Um den Gültigkeitsbereich der aufgestellten
Sätze genau zu umgrenzen, hat man neuerdings den von Riemann betretenen Weg ganz
verlassen.”

106Of course, the algebraic approach did yield interesting results and technical improve-
ments, such as the definition of the genus by Clebsch. However, Clebsch, who first accepted
Riemann’s definition of the genus, later completely moved away from considerations about
boundary cuts. The definition of genus was thus given exclusively in terms of the degree
of the defining equation of the curve and the number of its double points and cusps. See
[Bottazzini and Gray, 2013], 336.
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and Weber will strongly disagree.

1.3.2.1 A note about the Riemann-Roch theorem

The Riemann inequality, which was given earlier, exhibits a lower bound
for the “number of arbitrary constants contained in a function s which only
becomes infinite of the first order for m points of the surface T and stays
continuous otherwise”. This result was refined by Riemann’s student, Gustav
Roch,107 who proved the equality

µ = m− p+ q + 1

where q is the number of linearly independent Abelian differentials of the
first kind, with zeroes at the m given points.

Roch stated that

If a function s′ is infinitely great of the first order at m points,
and there can be, on these m points, q vanishing functions

ϕ(s, z)
∂F
∂s

between which there exist no linear equations with constant co-
efficients, then the function s′ contains m − p + q + 1 arbitrary
constants.108 ([Roch, 1865], 375)

in which F (s, z) defines the algebraic function s associated to the surface T
studied; s′ is an algebraic function of s rational in z and s, which has the
same mode of ramification as s and can be written as the quotient of two
functions ϕ.

Roch, who died in 1866 at age 26, was Riemann’s student in Göttin-
gen, got his doctorate degree in Leipzig and his Habilitation in Halle, and
he was one of the few people to accept and use the Dirichlet principle (see
[Bottazzini and Gray, 2013], 315-317). The use of the Dirichlet principle in
his proof of the Riemann-Roch theorem made his demonstration incomplete
and his paper difficult for his contemporaries. Several attempts to prove the
Riemann-Roch theorem were made during the following years, but Dedekind

107For more details on the Riemann-Roch theorem, one can refer to the historical studies
mentioned above, and to [Bottazzini and Gray, 2013], 337-339, [Gray, 1987], [Gray, 1997],
[Gray, 1998].

108“Wird eine Function s′ in m Punkten unendlich gross erster Ordnung und können
in diesen m Punkten q Functionen ϕ(s,z)

∂F
∂s

verschwinden, zwischen denen keine lineare
Gleichung mit constantent Coefficienten besteht, so enthählt s′ die Zahl m − p + q + 1
willkürlicher Constanten.”
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and Weber were the first to be able to provide an actually complete and rig-
orous proof (see Sec. 2.5.6).

Clebsch, in his book with Gordan, attempted an algebraic reformulation
of the result but only for a very restricted class of functions. After Cleb-
sch’s premature death, Brill and Noether continued the algebraization of
Riemann’s function theory. From their viewpoint, Clebsch and Gordan did
not go far enough in the algebraization, since

For them algebra was the source of rigour, and moreover, in
Brill’s opinion Riemann’s work on the Riemann-Roch Theorem
was in a form foreign to geometry. This was a sound, critical
response, but the price was high: the very definition of genus
became entangled with the nature of the singular points a plane
curve might have, and the invariance of genus under birational
transformations now had to be proved. Clebsch and Gordan had
given such a geometric proof by means of a subtle elimination
process, which Brill and others wanted to simplify.109 ([Gray,
1998], 814)

Brill and Noether, who gave the theorem its name in [Brill and Noether,
1874], gave a reformulation of the theorem in terms of families of plane
curves. They completely moved away from complex function theory to em-
brace an algebraico-geometric viewpoint.

An important follower of Riemann, who has not yet been mentioned,
is Heinrich Weber. Particularly well-know for his Lehrbuch der Algebra,
Weber worked in many areas of mathematics and was one of the very few
mathematicians of his time to understand and acknowledge the value of
Riemann’s Inauguraldissertation. He was also, a few years later, the co-
editor with Dedekind, of Riemann’s Gesammelte Werke. Following their
collaboration on the edition of Riemann’s Gesammelte Werke, Dedekind and
Weber wrote together a paper which reformulates the bases of Riemannian
function theory (for algebraic functions of one complex variables), which
will be the focus of my second chapter and will play an important role
in investigating the role of arithmetic in Dedekind’s practice. Considering
Weber’s role in the writing of this paper, but also as one of Dedekind’s
closest friends,110 I will propose, in the next section, to consider closer some
aspects of Weber’s works.

109For the details of the difficulties encountered by Brill and Noether, see [Gray, 1998].
110Most of their long and rich correspondence is still unpublished. A forthcoming book

by Katrin Scheel (Braunschweig TU) will consider their relationships through the edition
of their letters (at least, those which are still available) .
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1.4 Heinrich Weber (1842-1913)
Heinrich Weber was a very versatile mathematician. He is well-known for
his works in algebra (Galois theory and group theory, as well as the first
elements of what is now called class field theory111). His textbook Lehrbuch
der Algebra (first published in 1895-96) was one of the most influencial of
the late 19th and early 20th centuries (E. Noether, van der Waerden, etc.
learned algebra with the Lehrbuch112). But he was also a recognized special-
ist of Riemannian function theory, mathematical physics, number theory and
wrote elementary mathematics textbooks. Able to understand thoroughly
and deeply new ideas in many areas of mathematics, Weber was very active
and respected throughout his career, but with a tendency to stay in the
shadow of other mathematicians or institutions.113

Associated with many mathematicians, from Kronecker to Frobenius to
Dedekind or again Hilbert, Weber studied and taught in many different
places. From 1860 to 1863, he studied at Heidelberg, where he obtained his
doctorate under Otto Hesse. Hesse had been Jacobi’s student and according
to Cremona was a very “elegant” algebraist which probably had an impor-
tant influence on Weber.114 While he was a student, Weber went to Leipzig
in 1861-62, where he followed classes by Möbius and Scheibner. After his
doctorate, he went to Königsberg and fully took advantage of the rich scien-
tific activities around the mathematics and physics seminars (mathematisch-
physikalisches Seminar) founded by Jacobi and Neumann, and studied with
Franz Neumann and Richelot (a student of Jacobi as well). In 1866, We-
ber went back to Heidelberg and obtained his Habilitation.115 From 1869
to 1870, Weber was Privatdozent and ausserordentlicher Professor in Hei-
delberg. In 1870, Weber took Prym’s position at the ETH Zürich (where
Dedekind taught for a few years a decade earlier). During these years, he
worked with Dedekind on the publication of Riemann’s works.

111For example, see [Kiernan, 1971], [Frei, 1989], [Hawkins, 1978], [Hawkins, 2013], and
[Avigad and Morris, 2014].

112See [Corry, 2004b] and [Corry, 2005]
113Little has been published about Weber. [Schappacher and Volkert, 2000] gives a

general survey of Weber’s works, with a focus on his time in Strasbourg. Voss’s obituary
of Weber ([Voss, 1914]) also provides many informations on Weber (although it states
the wrong date of birth, 5 May 1842, while Weber was in fact born the 5th of March).
Weber does appear as a secondary character in many studies, most notably in the history
of algebra in the works mentioned above, and more general studies, such as [Waerden,
1985], [Corry, 2004b]. Weber also plays an important role in the history of the Kronecker-
Weber theorem ([Schappacher, 1998]). Finally, he also appears in studies about history
of universities in Germany, such as [Scharlau, 1990]. In [Bourbaki, 1984], however, Weber
is mentioned exclusively in reference to Algebraische Funktionen.

114[Voss, 1914]. Most of the informations below provide from Voss’s obituary, which
I have completed with some details. For the Göttingen part of Weber’s career and his
relationship with Hilbert, [Rowe, 1989] and [Rowe, 2003] provide useful information.

115His Habilitationsschrift was entitled “Zur Theorie der regulären Lösungen partieller
Differentialgleichungen erster Ordnung”. The subject was proposed to him by Richelot.
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In 1875, Weber left Zürich for Königsberg, where he succeeded to Rich-
elot. In Königsberg, Weber was Hilbert’s and Minkowski’s teacher, who fol-
lowed his lectures on number theory and function theory. Weber also seems
to have been the first mathematician to have a tangible influence on Hilbert.
His lectures on number theory were more sympathetic to Dedekind’s works
in number theory than any other course on this topic, by this time. Ac-
cording to C. Reid, Hilbert “made his first acquaintance with the theory of
invariants, the most fashionable mathematical theory of the day” in Weber’s
lectures and the only set of notes to which Hilbert came back and worked
over are those from Weber’s lectures on number theory.

In 1883, Weber went to Berlin to teach at the newly founded Technische
Hochschule Charlottenburg. Although he stayed barely a year in Berlin and
despite his strong affinities with the “conceptual” approach of Dedekind, he
wrote Kronecker’s obituary in 1893. In fact, Weber was a natural interme-
diary between the Berlin tradition and Dedekind’s ideas. He was able to
size up the benefits and drawbacks of each approach and to take the best of
both. Weber was instrumental in spreading Dedekind’s ideas and methods,
and his ability to balance conceptual and non-conceptual approaches might
have played an important role in the possibility to communicate efficiently
these new ideas.

In 1884, Weber went to Marburg, where he stayed until 1892. In 1892,
he was given Schwarz’s chair in Göttingen, which was already under Klein’s
reign. Although Klein had expressed the wish to have Hurwitz or Hilbert
come to Göttingen, in order to establish a young dynamic school, the pro-
fessorship was given to Weber. David Rowe explains that despite Weber’s
brilliance,

at age fifty he was well past his prime, and, more crucial still,
his personality and research style reflected the neohumanistic
values of the older generation. He lacked the dynamism Klein
was looking for in a new colleague, and although they got along
well, Klein was hardly disappointed when Weber accepted a call
to Strasbourg in 1895. ([Rowe, 1989], 197)

The chair went to Hilbert, and Weber stayed in Strasbourg until his death
in 1913.116

1.4.1 Weber as a Riemannian mathematician

In 1870, Weber was one of the very few mathematicians to take interest in
(and the defense of) Riemann’s Inauguraldissertation. He tried to prove the
Dirichlet principle in an article which he starts by explaining:

116About Weber’s time in Strasbourg, see [Schappacher and Volkert, 2000].
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The Dirichlet principle, whose application by Riemann in the
theory of Abelian functions has such great results, and from
whose further developments one can promise oneself still some
success, has lately been contested repeatedly in terms of its gen-
erality and rigor. The doubts are directed primarily against the
liability of the application of the calculus of variations to a func-
tion whose properties are a priori completely unknown.117 ([We-
ber, 1870], 29)

It is interesting to notice that Weber was able to point out, before Weier-
strass’s publication of his own criticisms, that the core of the problem with
the Dirichlet principle was the assumption of arbitrary functions. But such
a criticism is powerful and very wide, and as Bottazzini and Gray underline,
it would “render invalid any use of the calculus of variations, which is aimed
at finding which unknown function maximises or minimises a given integral”
([Bottazzini and Gray, 2013], 278). It appears, then, that the crux of the
matter is that the Dirichlet principle only ‘shows’ that the function exists,
but does not provide concrete information on the function (and certainly
not an explicit construction of it).

Weber explains that he does not want to try to prove the Dirichlet princi-
ple on the basis of “essentially new foundations” but rather wishes to “com-
plete, at some vulnerable points, the proof that was more suggested than
carried out by Riemann”118 ([Weber, 1870], 29). For this, Weber starts by
making two restrictive hypotheses for his proof: that the boundary has a
well-defined and finite curvature everywhere, and that the function consid-
ered is continuous and could be extended into a continuous function u which
is “nowhere discontinuous or infinite” within S and satisfies that the integral

Ω(u) =
∫∫ (

∂u

∂x

)2
+
(
∂u

∂y

)2
dxdy

is finite. Weber then proceeds to give an iteration process which can lead to
a suitable (harmonic) extension of the function considered. By doing this,
he achieves the proof of the validity of the Dirichlet principle under the very
restrictive initial hypotheses. However, while the process given by Weber
is valid in principle, it is not useful in practice. Even if it were seen to be
sufficient to secure the Dirichlet principle, Bottazzini and Gray underline

117“Das Dirichletsche Princip, dessen Anwendung durch Riemann in der Theorie der
Abelschen Functionen zu so grossen Resultaten geführt hat, und von dessen weiterer En-
twicklung man sich noch manche Erfolge versprechen darf, ist hinsichtlich seiner Allge-
meinheit und Strenge neuerdings mehrfach angefochten worden. Die Zweifel richten sich
hauptsächlich gegen die Befugniss der Anwendung der Variationsrechnung auf eine Func-
tion von a priori völlig unbekannten Eigenschaften.”

118“Es ist indessen nicht meine Meinung, den Beweis des Dirichletschen Princips auf
wesentlich neue Grundlagen zu bauen, sondern nur den von Riemann mehr angedeuteten
als durchgeführten Beweis in einigen angreifbaren Punkten zu ergänzen.”
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that the proof is made under “vague and unduly restrictive” hypotheses
([Bottazzini and Gray, 2013] 278), which makes the proof unsatisfying.119

Weber’s paper went unnoticed by his contemporaries.
Weber, in his 1870 paper, is tackling a prevailing problem, and does so

with the desire to provide a rigorous ground to Riemann’s theory without
departing from Riemann’s initial proposal.

It is not the place, here, to give a detailed account of Weber’s works (nei-
ther on function theory nor in the many other areas he investigated). How-
ever, it seems important to underline that in many of his papers, he adopted
an approach which did not present the kind of strong methodological and/or
mathematical statements against Riemann of some his contemporaries, such
as Clebsch or Weierstrass.

One can see in his 1873 paper “Zur Theorie der Transformation algebrais-
cher Functionen”, that he wants to adopt an approach following Riemann’s
desire not to base the investigations on particular representations of the
functions and to adopt a general viewpoint – i.e., a viewpoint valid for any
algebraic function. Briefly, the idea of this short paper is to investigate the
properties of the Riemann surface of an algebraic function when subjected
to rational transformations. Let s be an algebraic function of z satisfying
the equation F (s, z) = 0 of degree n in s and m in z and associated with a
surface T . Let z1 be such that

z1 = ϕ(s, z) (1)

in which ϕ is a rational function and z1 becomes infinitely great of the first
order in n1 points of the surface T – a new surface T1 is thus defined spread
over the z1 plane. And let

s1 = ψ(s, z) (2)

in which ψ is a rational function and s1 becomes infinitely great of the first
order in m1 points of the surface T , and is uniquely determined on T1. So,
one obtains the equation F1(s1, z1) = 0 of degree n1 in s1 and m1 in z1, in
which F1 is a power of a function Ψ(s1, z1) of degree ν in s1 and µ in z1
which cannot be decomposed into rational functions:

F1(s1, z1) = Ψ(s1, z1)λ

with n1 = λν, m1 = λµ. Here, one can see that the substitutions (1) and
(2) allow to transform F (s, z) (of degree n in s and m in z) into Ψ(s, z) (of
degree ν in s and µ in z). From there, Weber investigates properties such as
the genus of the new surface. Weber does not consider a particular trans-
formation at any point of his paper, nor does he give explicit expressions of

119For more on the Dirichlet principle, see [Bottazzini and Gray, 2013], whose presenta-
tion of Weber’s works I followed here.
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the functions.

By 1874, when the edition of Riemann’s collected works needed the help
of a mathematician well versed into Riemann’s works, Weber was warmly
recommended to Dedekind.120

1.4.2 Weber and algebra
Upon meeting Dedekind, Weber took interest in algebra and number theory
and, in his research papers, adopted Dedekind’s methods. By 1876, he
was, according to Dedekind, the only one who had read his 1871 theory of
algebraic integers (in the letter to Lipschitz from 29 April 1876, transl. in
[Stillwell, 1996], 45).

Weber was particularly interested in group theory and worked closely
with Frobenius as well as Dedekind.121 The proximity with Dedekind’s
ideas is particularly significant in the way in which he introduces his 1893
“Die allgemeinen Grundlagen der Galois’schen Gleichungstheorie”:

In the following, an attempt is made to found Galois’ theory of
algebraic equations in a way which will include as far as possible
all cases in which this theory has been used. Thus, we present it
here as an immediate consequence of the group concept extended
to the field concept, as a formal law completely without reference
to any numerical meaning of the elements used. This foundation,
as a consequence, is thus also completely independent of the
fundamental theorem of algebra on the existence of roots. The
theory under this interpretation appears, it is true, as a pure
formalism, which only gains meaning and life by the substitution
of the individual elements with numeric values. In contrast, this
method of procedure is applicable to every conceivable case in
which the assumed hypotheses hold, reaching over to function
theory on the one hand, to number theory on the other hand.122

([Weber, 1893], 521)
120Weber also did a great amount of work on Bessel functions, Abelian functions, ellip-

tic functions, and the theta function. Still on the Riemannian side of his works, Weber
also did important contributions to mathematical physics and published, in 1900, a two-
volumes textbook Die partiellen Differentialgleichungen der mathematischen Physik nach
Riemann’s Vorlesungen which would become, for decades the unique reference for Rie-
mann’s works in mathematical physics.

121Note that Weber only started to publishing about groups and curves, or elliptic func-
tions and number theory after the writing of the 1882 paper with Dedekind.

122“Im Folgenden ist der Versuch gemacht, die Galois’sche Theorie der algebraischen
Gleichungen in einer Weise zu begründen, die soweit möglich alle Fälle umfasst, in dene
diese Theorie angewandt worden ist. Sie ergiebt sich hier als eine unmittelbare Consequenz
des zum Körpergriff erweiterten Gruppenbegriffs, als ein formales Gesetz ganz ohne Rück-
sicht auf die Zahlenbedeutung der verwendeten Elemente. Diese Begründung ist hiernach
also auch ganz unabhängig von dem Fundamentalsatz der Algebra über die Wurzelexistenz.
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Weber, here and in several of his algebraic and number-theoretic works,
adopts a Dedekindian approach, with many references to the supplements
of Dirichlet’s Vorlesungen über Zahlentheorie written by Dedekind. Weber
also uses a very Dedekindian terminology such as “systems of things” to
define groups in the most general way possible:123

A system G of things (elements) of any type, in finite or infi-
nite number, becomes a group when the following conditions are
fulfilled.

1) A rule is given according to which from a first and a second
element of the system is deduced a completely determined third
element of the same system. (. . . )

2) The associative law is assumed. (. . . )

3) It is supposed that when there is AB = AB′ or AB = A′B,
then necessary there is B = B′ or A = A′. (. . . )

4) When from three elements A,B,C, two arbitrary are given in
G, then one can always determine the third one in such a way
that one has

AB = C.124

(ibid., 522)

When he considers the concept of field, Weber presents it as an extension
of the concept of group, and goes back to the arithmetical roots found in
Dedekind, since the composition laws, which were completely indefinite in
the definition of a group, are called “addition” and “multiplication” for fields.
Weber, in the 1893 paper, is interested in divisibility properties and intro-
duces the notion of “form field” (Formenkörper): the field formed by the
rational functions in several variables with coefficients in a given field Ω (see
[Kiernan, 1971], 136-137).

Die Theorie erscheint bei dieser Fassung freilich als ein reiner Formalismus, der durch
Belegung der einzelnen Elemente mit Zahlwerten erst Inhalt und Leben gewinnt. Dagegen
ist diese Form auf alle denkbaren Fälle, in denen die gemachten Voraussetzungen zutref-
fen, anwendbar, die einerseits in die Functionentheorie andererseits in die Zahlentheorie
hinübergreifen.”

123Weber is, in fact, more formal than Dedekind is.
124“Ein System G von Dingen (Elementen) irgend welcher Art in endlicher oder un-

endlicher Anzahl wird zur Gruppe, wenn folgende Voraussetzungen erfüllt sind.
1) Es ist eine Vorschrift gegeben, nach der aus einem ersten und einem zweiten Element
des Systems ein ganz bestimmtes drittes Element desselben Systems abgeleitet wird, (. . . )
2) das associative Gesetz vorausgesetzt wird, (. . . ) 3) Es wird vorausgesetzt dass, wenn
AB = AB′ oder AB = A′B ist, nothwendig B = B′ oder A = A′ sein muss. (. . . ) 4)
Wenn von den drei Elementen A,B,C zwei beliebig aus G genommen werden, so kann
man das dritte immer auf eine Weise so bestimmen dass AB = C ist.”
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In fact, here, Weber shows how he is able to combine both Dedekind’s
and Kronecker’s approaches. Indeed, his investigations are heavily depen-
dent on Kronecker’s own researches on the divisibility of such fields (al-
though, of course, Kronecker did not use this terminology), while elabo-
rating a framework with a strong Dedekindian flavor. In addition, Weber
explained that this paper was greatly inspired by Dedekind’s manuscripts
on Galois theory from his lectures in Göttingen in 1856-58 (see Sec. 4.2.2).

Weber’s work in group theory is also known for his contributions to the
development of the notion of “character”, in [Weber, 1882] (see [Hawkins,
2013] and [Avigad and Morris, 2014]), in the framework of arbitrary (in the
sense of his definition of group quoted above) finite Abelian groups. In his
works on number fields and cyclic fields, Weber considers questions linked
to the famous Kronecker-Weber theorem and its many failed proofs (see
[Schappacher, 1998]). Weber also shows a clear interest for arithmetic on
elliptic functions and problems pertaining to the complex multiplication,
with several articles and chapters in the Lehrbuch dedicated to it. The
influence of Kronecker is often tangibly obvious, yet supplemented by the use
of Dedekindian algebraic concepts, as is particularly noticeable in Weber’s
Lehrbuch der Algebra.

1.4.3 Lehrbuch der Algebra

Weber explains, in the introduction to the Lehrbuch125 that

It was [his] intention to write a textbook which, without assum-
ing too much previous knowledge, would introduce the reader to
the modern algebra as well as to lead him into the higher and
more difficult parts in which the interest in the subject first be-
come really lively. Thus, the required tools, the elementary ones
as well as the higher ones, should result from the development
itself, so that the presentation is made as independent from other
textbooks as possible.126 ([Weber, 1895-96], v)

For this reason, the book starts with an introduction in which the differ-
ent systems of numbers are discussed in detail, from the natural numbers

125On Weber’s Lehrbuch der Algebra, see [Corry, 2004b] and [Corry, 2005]. While it is
widely acknowledged as one of the most important textbook in algebra in the early 20th
century, very little has been written on Weber’s Lehrbuch.

126“Es war meine Absicht, ein Lehrbuch zu geben, das, ohne viel Vorkenntnisse vo-
rauszusetzen, den Leser in die moderne Algebra einführen und auch zu den höheren und
schwierigeren Partien hinführen sollte, in denen das Interesse an dem Gegenstande erst
recht lebendig wird. Dabei sollten die erforderlichen Hülfsmittel, die elementaren sowohl
als die höheren, aus dem Gange der Entwickelung selbst abgeleitet werden, um die Darstel-
lung von anderen Lehrbüchern möglichst unabhängig zumachen.”
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(which are considered as given) and elementary arithmetic (from basic prop-
erties like associativity to the unique factorization theorem) to the complex
numbers. The presentation of natural numbers is followed by the concept
of set, “Mannigfaltigkeit oder Menge”, a “system of objects or elements of
any type” (a “naïve” set-theoretic viewpoint). Weber defines properties of
order, the notion of discrete and dense (dicht) sets. Following Dedekind’s
remarks in his 1872 Stetigkeit und irrationale Zahlen, Weber distinguishes
between density and continuity, which gives him the ground to introduce
rational numbers (a dense but discontinuous set) and real numbers (a dense
and continuous set). Real numbers are introduced using Dedekind cuts, and
following Dedekind’s 1872 definition almost word for word.

As regards the idea of “set”, Weber’s vocabulary and the order in which
he introduces the ideas seem to relate him more closely to Riemann than
to Dedekind, who placed the idea of “System” at the very foundation of
mathematics, before even natural numbers.127 Weber also introduces the
notion of measurable sets (messbare Menge). The introductory parts end
by explaining that literal calculus is the “most important” tool in algebra.
In this literal calculus, one should distinguish between variables (letters
that can be replaced by a continuous succession of numerical values) and
unknowns which “impose conditions to the numbers” which one can put in
place of the letters: it is the forming of equations, whose resolution is the
essential task of algebra.

For Corry, the Lehrbuch starting with this long preliminary suggests
that, despite the great level of abstraction that can be encountered, for ex-
ample, in the treatment of groups, and the acknowledgement that abstract
/ arbitrary groups are an interesting and promising object of study, the
systems of numbers hold nevertheless a deeply fundamental place in alge-
bra ([Corry, 2004b], 38).128 In fact, according to Corry in [Corry, 2005],
there is little difference between a textbook such as Serret’s or Jordan’s and
the “picture of algebra” in the Lehrbuch – despite the additional results
provided in Weber’s Lehrbuch. Indeed, “in spite of including a great deal
of material that would eventually be incorporated as the basis of van der
Waerden’s presentation, it does not envisage the kind of fundamental change
in conception that Moderne Algebra intended to imply” ([Corry, 2005], 691).

The new concepts (of group, ideal, field) were introduced because they
appeared to be efficient in proving new results, shortening proofs and high-
lighting the possibility of new developments in certain theories (e.g., of
quadratic forms or complex functions). In addition, they allowed to do
so avoiding tedious computations. A good example of this is the resolution
of polynomial equations and the role of the theory of groups in solving these

127see Sec. 8.2.
128And in fact, it was also the case for Dedekind.
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questions, as Weber himself underlines:

One of the oldest questions which the new algebra has preferen-
tially developed is that of the so-called algebraic roots of equa-
tions, by which one means the representation of the solutions
of an equation through a series of radicals, or their calculation
through a series of root-extractions. The clearest light is shed on
this question using the theory of groups.129 (ibid., 644, transl.
slightly altererd in [Corry, 2004b], 40)

In the introduction of the Lehrbuch, group theory is said to “spread light
everywhere”. Fields and groups are only introduced in Chapter XIII of the
third book in the first volume of the Lehrbuch, after about 450 pages on the
resolution of equations by more traditional methods (symmetric functions,
for example). Weber’s approach in Galois theory relies on the concepts of
field (of numbers)130 and adjunction, in a fashion very similar to Dedekind’s
1856-58 lectures and 1894 algebraic number theory. The abstract notion of
group is only introduced in the second volume of the Lehrbuch.

The words “Gruppe” and “Körper” appear respectively approximately
660, 2180 and 370 times, and 370, 850 and 410 times in each volume of the
second edition of the Lehrbuch. The concept of ideal, on the other hand,
is completely absent from the first volume and appears only about 260 and
370 times in the two other volumes. Weber, thus, if he adopted Dedekind’s
field and in great part his understanding of the concept of group, does not
appear to have endorsed Dedekind’s view about ideals being a new ground-
ing concept. In particular, in Weber’s treatment of the theory of algebraic
functions (Lehrbuch III) follows the overall idea of the paper co-written with
Dedekind, and indeed some parts are almost exactly similar, but it does not
make any use of the concept of ideal, which as we will see was essential for
Algebraische Funktionen.

It seems important to underline that Weber made a clear difference be-
tween the mathematics of research and that of teaching, being careful of
not taking the abstract turn in algebra in his textbooks that can be seen in
his papers, for example, on Galois theory. This is reflected, in his Lehrbuch
der Algebra, first published in 1895-96. The said dissimilarities seem to be
related to Weber’s sensitivity to the difference between the audiences of a
textbook and a research paper. Kronecker and Dedekind are referred to the

129“Eine der ältesten Fragen, an der sich vorzugsweise die neuere Algebra entwickelt hat,
ist die nach der sogenannten algebraischen Auflösung der Gleichungen, worunter man
eine Darstellung der Wurzeln einer Gleichung durch eine Reihe von Radicalen, oder die
Berechnung durch eine endliche Kette von Wurzelziehungen versteht. Auf diese Frage fällt
von der Gruppentheorie das hellste Licht.”

130Like Dedekind, Weber only considers fields of numbers and introduces, here again,
the divisibility notion between algebraic concepts to describe the inclusion relationships.
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same amount of times in total in the three volumes of Lehrbuch der Algebra,
but Kronecker appears twice as often as Dedekind in the first volume.131

Weber’s Lehrbuch, was one of the most popular textbooks in Algebra
in Germany in late 19th and early 20th century and was only replaced by
van der Waerden’s Modern Algebra in 1930. The Lehrbuch dominated the
teaching of Algebra in Germany and the first volume was translated into
French in 1898. A lot of the terminology and ideas introduced by Weber
were used by later algebraists – and in fact, many can still be found in
today’s textbooks (see [Corry, 2004b], 33-43). According to Schappacher
and Volkert ([Schappacher and Volkert, 2000]), it is precisely because Weber
found a certain balance between the traditional (formal and algorithmic)
methods in algebra and the new more abstract and “conceptual” methods,
“bearing the mark of the transitory period”, that the Lehrbuch was so rich
and so successful for such a long time.

Leo Corry (ibid.) sees the ‘balance’ in question in the consideration of
algebra as the science of (polynomial) equations together with the intro-
duction of the new “abstract” concepts such as field or groups to play what
Corry called “secondary” roles. That is, they are new concepts that can shed
light and allow new developments on the main subject matter of algebra:
the theory of equations. This conception of algebra and the concepts of field,
ideal, and group is similar to Dedekind’s.132 Weber’s originality, in finding
a ‘balance’ between Dedekind’s and Kronecker’s approaches rather consists
in introducing Kronecker’s methods into the new framework established by
Dedekind, and, for example, replace Dedekind’s ideals by the “Functionale”,
for the investigation of (arbitrary) fields of algebraic functions.

Corry showed clearly, in [Corry, 2004b], that Dedekind had not adopted
the “modern” conception of algebra as being a theory of structures, and
neither did Weber. For Dedekind, as for Weber, the concept of group and
the concepts introduced in Dedekind’s theory of algebraic numbers were new
concepts to investigate questions pertaining to number theory and the “al-
gebraic kinship of numbers”. The concepts proved, later, to be transferable
(or translatable) in other theories, such as algebraic function theory – an
approach which is fully taken advantage of in Algebraische Funktionen.

131Many thanks to Cédric Vergnerie who communicated me this information collected
for his own PhD dissertation.

132Indeed, for him properties of fields express properties of equations to which they
are related: “The properties of an equation will (. . . ) correspond to properties of the
corresponding field. The relations between two equations are replaced by kinship between
the fields.” (see p. 284)
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1.5 A note about Dedekind’s theory of algebraic numbers
Dedekind, who was very close to Dirichlet as a student and as a friend, was
put in charge, after Dirichlet’s death, in 1859, of publishing Dirichlet’s lec-
tures on number theory, the Vorlesungen über Zahlentheorie, based on the
notes he took during Dirichlet’s lectures, and on manuscripts left by Dirich-
let. Dedekind followed Dirichlet’s lectures from 1855 to 1858 and had long
discussions with him that allowed him to “get to know and understand the
grounds of his method of exposition.” He tried, as he explains, in the preface
to the 1863 edition of the Vorlesungen, to give a retranscription “as faithful
as possible” of Dirichlet’s lectures which “contributed so extraordinarily to
the circulation of the newest and the subtlest parts of mathematics.”

Dirichlet’s Vorlesungen had four editions: in 1863, 1871, 1879 and 1894.
From the first edition, the publishers asked Dedekind to add original sup-
plements, which completed the main text, presenting additional proofs or
results omitted by Dirichlet, such as his theorem on prime numbers in arith-
metic progressions and his “pigeonhole” solution to Pell’s equation. Dirich-
let’s Vorlesungen is an exceptionally thorough and clear general survey of
19th century number theory, from the most basic results on divisibility of
rational integers, to results at the frontier of research. It presents funda-
mental and classic results from Fermat, Euler, Legendre, Jacobi, and Gauss.
It also provides a complete and clear treatment of Dirichlet’s class number
formula for quadratic forms, and exposes, in some Supplements, more re-
cent developments on the subject matter. Most notably, Dedekind used this
opportunity, in 1871 and the subsequent versions, to expose his main work
in number theory: the theory of algebraic integers.

The second edition, published in 1871, is essentially the same as the
first one, except for the Xth Supplement, Über die Komposition der binären
quadratischen Formen, which was initially excluded to avoid moving too far
away from Dirichlet’s own works. Dirichlet did investigate binary quadratic
forms, albeit “only the first fundamental theorem”, but did not work on
the factorization of complex or algebraic numbers. What encouraged the
publication, in addition of the publishers’s pressure, was that

because, despite the immense interest and the increasing impor-
tance of this theory, still no attempt to clear away the biggest
difficulties, which rise for the beginner at his entry [in the the-
ory], and because the remaining parts of this work are all per-
fectly suited to ease such an effort.133 (Preface to the second
edition of Dirichlet’s Vorlesungen, repr. in [Dedekind, 1932], III,
399, my translation)

133“weil trotz des ungemeinen Interesses und der steigenden Wichtigkeit dieser Theorie
noch immer kein Versuch gemacht ist, die großen Schwierigkeiten hinwegzuräumen, welche
beim Eindringen in dieselbe sich dem Anfänger entgegenstellen, und weil die übrigen Ab-
schnitte des Werkes ganz vorzüglich geeignet sind, einen solchen Versuch zu erleichtern.”
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Dedekind’s famous Xth Supplement is the birthplace of field and ideal
theories. In this work, among other things, he succeeds in proving the ex-
istence of a unique factorization in primes for algebraic integers. As I have
mentioned in the introduction, this Supplement, and to a certain extent its
later rewritings, are considered as one of the most important number theo-
retical writings of the second half of 19th century. However, as it is rightly
as often underlined, Dedekind’s presentation differs significantly from the
usual style of 1870s mathematics. The “modernity” of his approach, that
is, his use of actual infinities – or, to put it in more modern terms, his
adoption of infinitary set-theoretic methods and the abstraction attached
to it – appear to have made it very difficult for his contemporaries to read
and understand, or at least appreciate, his theory. In fact, it seems that
it was Dedekind’s endeavors to develop methods following the principles of
the so-called “conceptual” approach, which made the reception of his works
difficult.

Aware of, and annoyed by, the lack of reception of his works, Dedekind
considered that the lack of immediate reception of his theory of algebraic
integers was due to the presentation of his work, which therefore needed
a complete rewriting. He thus decided to write his theory a second time,
so as to make it clearer. He wanted his work to be easier to read, easier
to apprehend for the readers. He wrote to Lipschitz, who had relayed an
invitation to publish his theory in the Bulletin des Sciences Mathématiques
et Astronomiques:

[F]or a few years I had more or less given up hope that my pre-
sentation and conception of a general theory of ideals would at
the present day interest anybody but me. With the exception of
Professor H. Weber (. . . ) you are the first (. . . ) to express inter-
est in the subject (. . . ) [L]ittle by little I have become convinced
that the presentation itself is to blame for the failure (. . . ) I
can only suppose that the presentation deterred readers through
excessive brevity and terseness, and since autumn I have been
spending my free time, obtained by resigning my three year di-
rectorship of the local polytechnic, working out a more detailed
presentation of the theory of ideals, and I have come so far as
to obtain a somewhat improved form of the essential foundation
(the content of §163).134 (Translation modifed of Dedekind’s let-
ter to Lipschitz, in [Stillwell, 1996], 45, original in [Lipschitz and

134“[I]ch [hatte] seit einigen Jahren so ziemlich die Hoffnung aufgegeben (. . . ), dass meine
Darstellung und Auffassung einer allgemeinen Theorie der Ideale in jetziger Zeit noch
irgend Jemand ausser mir interessiren würde. Mit Ausnahme des Prof. H. Weber (. . . )
sind Sie der erste, der (. . . ) ein Interesse an dem Gegenstande äussert (. . . ) allein ich
habe mich nach und nach davon überzeugt, dass die Darstellung selbst wohl die Schuld an
dem Misslingen (. . . ) trägt. Ich muss vermuthen, dass die Darstellung durch übertriebene
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al. 1986], 48-49.)

The new version of the theory is, according to Dedekind, essentially the
same in a reworked form and with an improved foundation, i.e., an improved
theory of ideals. A closer look at the new version shows that the theory is
developed with considerably more attention to the possibility to develop
ideal theory in a way that would be perfectly analogous to rational number
theory.

The strategy introduced in the 1871 version, and pushed much further in
the 1877 one, consists in transferring the study of divisibility from algebraic
integers to ideals. For this, Dedekind defines a relation of divisibility between
ideals: an ideal a is said to be divisible by an ideal b if a ⊂ b. One can
show that the divisibility between ideals is equivalent to the divisibility of
numbers and then study the laws of divisibility of ideals. To show that the
ideals obey the same divisibility laws as rational numbers is, then, easier
than for algebraic integers. The central concepts of divisibility of rational
numbers, such as GCD and LCM, are redefined for ideals. The theory is
re-modeled in 1877 so that it follows the exact lines of rational number
theory, giving for ideals theorems such as Euclid’s lemma or the existence
of a unique decomposition in primes.

Dedekind’s algebraic number theory will be published two more times as
a Supplement of Dirichlet’s Vorlesungen, once in 1879 in the same form as
in 1877, and once in 1894 in another completed reworked version, taking a
more ‘abstract’ turn and involving a great amount of Galois theory (almost
absent of the previous versions).135

In 1882, field and ideal theories are transferred to a different framework
and used in the theory of algebraic functions of one complex variable, in a
common work with Heinrich Weber, “Theorie der algebraischen Funktionen
einer Veränderlichen”, which was published in 1882 in the Journal für die
reine und angewandte Mathematik. As I have mentioned earlier, this paper
was written by the two mathematicians after their collaboration in the edi-
tion of Riemann’s Gesammelte Werke. In this paper, they propose a new
treatment of the Riemannian theory of algebraic functions, on the ground
of ideas and methods imported from Dedekind’s algebraic number theory.
This article, birthplace of modern algebraic geometry in many aspects, was
elaborated through letters during the years 1877 to 1879, written properly
by Weber, submitted in 1880 and published in 1882.

Kürze und Gedrängtheit die Leser abgeschreckt hat, und ich habe daher seit dem Herbst
meine freie Zeit, die ich durch Niederlegung meines dreijährigen Directorats des hiesigen
Polytechnikums gewonnen habe, dazu benutzt, eine ausführlichere Darstellung der Theorie
der Ideale auszuarbeiten, mit welcher ich auch so weit gekommen bin, dass die eigentliche
Grundlage (der Inhalt des §163) in einer etwas verbesserten Form gewonnen ist..”

135While Dedekind entirely reworked his theory of algebraic numbers for each re-edition
of Dirichlet’s Vorlesungen, the other supplements were not modified in the same way.
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Chapter 2

Dedekind and Weber’s Theorie der
algebraischen Funktionen einer

Veränderlichen

Dedekind and Weber’s 1882 Theorie der algebraischen Funktionen einer
Veränderlichen proposes an arithmetico-algebraic treatment of Riemann’s
function theory, with a new definition of the concept of Riemann surface.
Unsatisfied with previous treatments of Riemann’s theory, their aim is to
be able to provide a more general treatment of the theory. Here “general”
means “uniform”, that is, a presentation of the theory which would not need
to make restrictive initial hypotheses, nor to distinguish between cases.

In previous investigations on this topic, as a rule certain restric-
tive assumptions about the singularities of the functions under
consideration have been made and the so-called exceptional cases
have either been mentioned casually as limit cases, or even left
aside entirely.1 ([Dedekind and Weber, 1882], transl. modified,
41)

Via the set up of the algebraico-arithmetic concepts of field, module and
ideal, Dedekind and Weber propose a presentation of the theory valid for
any algebraic function of one complex variable.

In addition, they wish to avoid any use of geometric intuition, especially
if it is taken as a reason to admit the truth of certain theorems about func-
tions, such as their developability. Ultimately, the idea is to be able to
provide a treatment of the bases of Riemannian function theory on which
the mathematicians would be able to rely and which would allow a more

1“Bei den bisherigen Untersuchungen über diesen Gegenstand werden in der Regel
gewisse beschränkende Voraussetzungen über die Singularitäten der betrachteten Funktio-
nen gemacht, und die sogenannten Ausnahmefälle entweder als Grenzfälle beiläufig er-
wähnt oder auch ganz beiseite gesetzt.”
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rigorous, simpler and more general development of the theory.

Few extensive commentaries have been made on this paper ([Geyer,
1981], [Strobl, 1982], and to a lesser extent, the introductory notes in [Still-
well, 2012]). Most of them are integrated into larger inquiries about history
of mathematics ([Dieudonné, 1974], [Laugwitz, 2009], [Houzel, 2002], [Schap-
pacher, 2010], one can also refer to [Couche, 2006]). I will avoid, as much
as possible, to restate Dedekind and Weber’s ideas in modern mathemat-
ics. As a consequence, in my own commentary very little reference will be
made to the mentioned commentaries, which unfold the mathematical con-
tent of the paper in modern terms. However, it should be emphasized that
I have greatly benefited from their explanations in my reading. The study
of Dedekind and Weber’s article will be the center of this chapter.2

My aim in this chapter is twofold. Firstly, I would like to offer an ac-
count of the 1882 paper with a fair amount of details, so as to enable a better
understanding of the approach adopted by Dedekind and Weber. Dedekind
and Weber wrote their paper as a two stores building, and in order to under-
stand their rewriting of the Riemann surface, it is necessary to go through
the study of function fields. As I have stated earlier, my aim is to exhibit the
importance of arithmetic for Dedekind’s approach. However, I do not wish
to give a partial account of the paper that would present only what can be
seen as arithmetical. Rather, I hope to convince my reader that arithmetic
is, indeed, important.3

Secondly, I will analyse how Algebraische Funktionen is embedded in the
Dedekindian corpus and which benefits can be derived from exploring its
connections with Dedekind’s contributions in other domains. This question
will play an essential role in my dissertation. Indeed, the strategy used
by Dedekind and Weber, in 1882, involves the set up of an arsenal relying
deeply on the definition of concepts rooted in arithmetic. This strategy was
already used by Dedekind in several of his other mathematical works, and
the transfer of his works to another framework allows to shed a different
light on his ideas, providing additional tools understand certain aspects of
Dedekind’s mathematics.

2.1 Returning to Riemann’s epistemological ideals?

As I have mentioned, the introduction of Dedekind and Weber’s paper devel-
ops the same kind of arguments against post-Riemann Riemannian function
theory that Dedekind brought to the fore in earlier writings: function theo-

2I will rely on Stillwell’s translation of the 1882 paper, [Stillwell, 2012]. All refer-
ences will be to [Stillwell, 2012]. Occasionally, modifications have been made to Stillwell’s
translation to stay closer to the original text. I will mention them explicitly.

3Lesser details on the texts will be given in the next chapters.
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rists did not respect Riemann’s methodological precepts. Indeed, Dedekind’s
praise of Riemann’s approach in function theory was often accompanied by
criticisms towards the treatments subsequently given to Riemann’s theory
– which Roger Godement calls “le ‘verbiage’ considérablement moins génial
de certains de ses successeurs,” in [Godement, 2001].

In the letter to Lipschitz quoted earlier, in which Dedekind explains
that what he attempted in his number theoretical works is, in some way,
analogous to what Riemann accomplished in function theory, he adds a
“passing remark” that he “cannot suppress”, namely that:

the Riemann’s principles are not being put into application in a
consistent way by most writers – for example, even in the newest
work on elliptic functions. Almost always they disfigure the sim-
ple theory by unnecessarily bringing in forms of representation
which should in fact be results, not tools, of the theory.4 (Let-
ter to Lipschitz, 6 June 1876, in [Dedekind, 1932] III, 467-468,
transl. slightly altered in in [Edwards, 1983], 11)

Dedekind and Weber present their work as returning to Riemann’s true
intentions by avoiding to rely on explicit expressions or computations. By
proposing approaches to the theory attached to definite equations or to
explicit representations in series, the previous authors had to impose initial
restrictions on the functions treated (e.g., on their singularities). This is the
second point to which Dedekind and Weber are opposed. They wish to offer
a theory of functions which treats, in one move, entire classes of functions.
That is, to meet the level of generality established by Riemann’s treatment
of entire classes of functions in previous treatments of the theory, be they
algebraic or geometric or purely analytical.

The theory, for Dedekind and Weber, must be grounded on concepts
that do not use computations or Darstellungsformen in any essential way,
that is, as grounds for definitions and deductions. It does not need to
be contradictory with the fact that Riemann could have come to a deep
knowledge of the nature of algebraic functions through computations and
Darstellungsformen, as Edwards suggested. The fact that Riemann’s ideas
were developed relying on a great mastery of Darstellungsformen does not
change the fact that Riemann formulated the theory itself in such a way
that Darstellungsformen do not form its ground, nor play any significant
role in its development. Dedekind and Weber’s aim, here, is to supplement
the work accomplished by Riemann with a “precise” definition of the Rie-
mann surface, so that further works on the subject can adopt the “general”

4“(. . . ) die Riemannschen Principien von den meisten Schriftstellern, z.B. auch in den
neuesten Werken über elliptische Functionen, nach meiner Ansicht nicht in consequenter
Weise zur Anwendung gebracht werden; fast immer wird die einfache Theorie verunziert
durch unnöthige Einmischung der Darstellungsformen, welche doch eigentlich nur Resul-
tat, nicht Hülfsmittel der Theorie sein sollten.”
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approach without it being “confusing”, as it was according to Clebsch.

2.1.1 Criticisms and the need of a sound basis for Riemann’s theory
Dedekind and Weber explain that the treatments of function theory before
their work had a tendency to unduly accept the validity of certain unproven
theorems at the basis of their researches.

Likewise, certain fundamental theorems on continuity or devel-
opability have been admitted, the evidence of which based on
some geometric intuition of one sort of another.5 (ibid., transl.
modified 41)

This statement is strongly reminiscent of Dedekind’s reflections on the def-
inition of real numbers, in 1872 (see Sec. 7.2). That point was noted by
Schappacher in [Schappacher, 2010]. Schappacher links the definition of a
point of a Riemann surface to the definition of real numbers using cuts as
points of the linear continuum and explains that “both [definitions] try to
conceptualize the intuition of what a concrete point does for you.” As he
underlines, Dedekind is adopting the same approach, proposing the same
conceptual move, in these two works. I will come back on this, in relation
to the methods used for both definitions.

Facing what they perceived as conspicuous lack of rigor and recurring
restrictive assumptions that can be found in treatments of Riemannian func-
tion theory, Dedekind and Weber wish to reformulate the fundamental con-
cepts of the theory, so as to solve these problems. The authors explicitly
state so, in the introduction of the paper:

The purpose of the investigations communicated in what follows
is to found the theory of algebraic functions of one variable,
one of the most important results of Riemann’s creation, from a
standpoint which would be simple, and at the same time rigorous
and completely general.6 (ibid., transl. modified, 41)

The three epistemological values mentioned here, simplicity, rigor and gen-
erality (as uniformity), are regularly invoked by Dedekind, so much so that
they appear to play an essential role in his works. One can observe, that
these requirements, often combined with each other, play important roles
in Dedekind’s shaping of new concepts and new methods. Dedekind seems
to explicitly design his methods to fulfill simultaneously these requirements,

5“Ebenso werden gewisse Grundsätze über die Stetigkeit und Entwickelbarkeit zuge-
lassen, deren Evidenz sich auf geometrische Anschauung verschiedener Art stützt.”

6“Die im nachstehenden mitgeteilten Untersuchungen verfolgen den Zweck, die Theo-
rie der algebraischen Funktionen einer Veränderlichen, welche eines der Hauptergebnisse
der Riemannschen Schöpfung ist, von einem einfachen und zugleich strengen und völlig
allgemeinen Gesichtspunkt aus zu begründen. ”
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to provide a uniform and rigorous theory that does not “disfigure the sim-
plicity” of the theory. Conversely, simplicity (which contains the demand
that no external tools be introduced in the theory) and uniformity appear as
essential components of a rigorous approach. I will come back on the ques-
tion of “rigor” later in this dissertation, once we will have more elements to
support the analysis.

Dedekind and Weber propose to fulfill their aim to provide a “more
reliable basis for the fundamental notions, as well as for a general and ex-
ceptionless treatment of the theory” by

[taking as a basis] a generalization of the theory of rational func-
tions of one variable, in particular of the theorem according to
which every polynomial7 of one variable admits a decomposition
into linear factors.8 (ibid., transl. modified, 41)

In the case of surfaces of genus 0, such as the sphere, the approach has
already been considered and is “simple and well known”. Dedekind and We-
ber’s aim is to treat the general case, transl. to provide a treatment valid for
any genus p. This general case is related to the surfaces of genus 0 “in the
same way that general algebraic numbers are related to rational numbers”
(ibid.). To treat the general case, they will thus transfer and adapt to the
functions of one complex variable, the number theoretical methods “derived
from Kummer’s creation of ideal numbers”, which proved to be “most suc-
cessful” in Dedekind’s own works in number theory.

To fulfill Dedekind andWever’s goal of rewriting the bases of Riemannian
function theory, one important task presents itself as essential: to supply
the mathematicians with

a completely precise and rigorous definition of the “point of a
Riemann surface” that can also serve as a basis for the investi-
gation of continuity and related questions.9 (ibid., 42-43)

For this, they deploy a vast amount of technical preliminaries, but do not
provide any new results. Rather, they introduce in function theory new con-
cepts so as to give new definitions of Riemannian notions such as the genus,

7Dedekind and Weber, as it was common at the time, use “integral rational function”
(ganze rationale Funktion) to designate polynomials. To avoid confusion with the integral
functions defined later in the text as the integers of the field, I will use the “polynomial”.

8“Eine sichere Basis für die Grundvorstellungen sowie für eine allgemeine und aus-
nahmslose Behandlung der Theorie läßt sich gewinnen, wenn man von einer Verallge-
meinerung der Theorie der rationalen Funktionen einer Veränderlichen, insbesondere des
Satzes, daß jede ganze rationale Funktion einer Veränderlichen sich in lineare Faktoren
zerlegen läßt, ausgeht.”

9“(. . . ) eine vollkommen präzise und strenge Definition des ‘Punktes der Rie-
mannschen Fläche’ (. . . ), welche auch als Basis für die Untersuchung der Stetigkeit und
der damit zusammenhängenden Fragen dienen kann.”
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and, on this basis, to provide new proofs of results such as the Riemann-
Roch theorem, all of which is done with the expected level of rigor and
generality. Both of those things are acknowledged by Dedekind and Weber.
In their work, the Riemann surface remains the core of Riemann function
theory, despite the long and winding road they had to take to arrive at a
definition for it. They explain, in fact, that for the time being, providing a
rigorous foundation to the theory is too difficult to avoid preliminaries and
detours:

Admittedly, all these results can be obtained from Riemann’s
theory with a much more limited investment of means, and as
special cases of a much more extensive general presentation.
However, it is known that a rigorous foundation of this theory
still presents certain difficulties, and until one has managed to
completely overcome these difficulties, it may very well be that
the path we have taken, or at least one related to it, is in fact
the only one leading to this goal for algebraic function theory
with satisfactory rigor and generality.10 (ibid., transl. modified,
42)

To be able to provide uniform and rigorous definitions of the basic,
grounding notions of the (already existing) theory seems essential to en-
sure its (again, rigorous) development. For this, their strategy is to take
full advantage of the well-known similarities between the arithmetical be-
haviors of numbers and of functions. That is, they define a notion of field
of algebraic functions:

In an analogy with number theory, a field of algebraic functions
is understood to be a system of such functions with the property
that application of the four fundamental operations of arithmetic
(Spezies) to the functions of this system always leads to functions
of the same system.11 (ibid., transl. slightly altered, 42)

In such a field, any function can be chosen as “independent variable and the
rest as dependent on it”. This is a specific “mode of representation”, but
insofar as any function of the field can be taken as “independent variable”

10“Freilich ergeben sich alle diese Resultate durch einen weit geringeren Aufwand von
Mitteln und als Spezialfälle einer vielumfassenden Allgemeinheit aus Riemanns Theorie;
allein es ist bekannt, daß diese Theorie bezüglich einer strengen Begründung noch gewisse
Schwierigkeiten bietet, und bis es gelungen ist, diese Schwierigkeiten vollständig zu über-
winden, dürfte der von uns betretene Weg oder wenigstens ein verwandter, wohl der einzige
sein, der für die Theorie der algebraischen Funktionen mit befriedigender Strenge und All-
gemeinheit zum Ziele führt.”

11“Versteht man, analog der Zahlentheorie, unter einem Körper algebraischer Funktio-
nen ein System solcher Funktionen von der Beschaffenheit, daß die Anwendung der vier
Spezies auf Funktionen des Systems immer zu Funktionen desselben Systems führt.”
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and the totality of the functions remain unaltered by the choice, this does
not constitute a problem for the generality of their approach. A notion of
integral algebraic function can thus be defined in very similar way as the
algebraic integers were defined:

A number θ is an algebraic integer
if it satisfies an equation

θn + a1θ
n−1 + . . .+ an−1θ + an = 0

of finite degree n and whose coeffi-
cients a1, a2, . . . , an are rational in-
tegers.

A function ω of the field Ω is called
an integral algebraic function of z if in
the equation of lowest degree satisfied
by ω

ϕ(ω) = ωe+b1ω
e−1+. . .+be−1ω+be = 0

the coefficients b1, b2, . . . , bn are all
polynomials of z.

From there, a reasoning similar to the one used for the introduction of
ideals leads to the understanding that Dedekind’s ideal theory can be carried
over to functions. Since the arithmetic operations can easily be defined for
functions, it is easy to see that

among these integral algebraic functions, groups of functions
may now be distinguished again, to which are attached the char-
acteristic properties of polynomials sharing a common divisor.12

(ibid., transl. slightly altered, 42)

Such a system of functions corresponds to the concept of ideal, as initially
thought of by Dedekind: the system of numbers divisible by an (existing or
ideal) factor. Hence, in the same way that Dedekind transferred the study
of the divisibility of algebraic integers to systems of numbers (i.e., ideals),
they will study the divisibility of functions by means of systems of functions,
i.e., ideals of functions.

This divisor does not “exist in the general case”. However it is possible to
consider the “system of functions divisible by the said divisor” rather than
the divisor itself, just as Dedekind did with ideal factors and the definition
of ideals. Then, if the theorems about the rational functions

are linked not to the divisor itself but to the system of functions
divisible by the said divisor, then they can be completely trans-
ferred to the general algebraic functions.13 (ibid., transl. slightly
altered, 42)

12“Unter diesen ganzen Funktionen lassen sich nun wieder Gruppen von Funktionen aus-
sondern, welchen die charakteristischen Merkmale solcher ganzen rationalen Funktionen
zukommen, die einen gemeinschaftlichen Teiler haben.”

13“Ein solcher Teiler existiert zwar im allgemeinen Falle nicht, wenn man aber die
bezüglichen Sätze über rationale Funktionen nicht an den Teiler selbst, sondern an das
System der durch denselben teilbaren Funktionen knüpft, so gestatten sie eine vollkommene
Übertragung auf die allgemeinen algebraischen Funktionen.”
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The transfer of the methods elaborated by Dedekind for algebraic numbers
constitutes the first step of Dedekind and Weber’s strategy. They can, from
there, set up the algebraic arsenal which they will need in the paper. Indeed,
with an appropriate definition of arithmetical operations between ideals, it
becomes possible to “calculate with ideals using the same rules as for rational
functions”, to define notions such as “prime ideal” and to prove the validity
of divisibility theorems such as the existence of a unique factorization in
primes for ideals of algebraic functions. On this basis, they can proceed
to the second step: the definition by purely arithmetico-algebraic means of
the Riemann surface associated with the field, and of the basic notions of a
Riemann surface (e.g., the genus).

It is the possibility to provide the first elements of a theory of Riemann
surfaces on the sole basis of the arithmetical ‘structure’ of a field of func-
tions, that allows for a more general and more rigorous treatment of the
theory. Indeed, the algebraic concepts are defined and used in such a way
that the nature of their elements is completely indifferent,14 and all “restric-
tive assumptions about the singularities of the functions” are avoided. The
theory can thus be truly “exceptionless”.

The purely algebraico-arithmetic investigations elaborated by Dedekind
and Weber allow to develop a theory of functions completely freed from any
assumption about continuity, a notion which is itself neither evident nor
intuitive. Continuity ought to be mathematically defined. In addition, it is
not an intrinsic property of the functions, or the Riemann surface or even the
geometric space. Indeed, Dedekind argues that there is no reason to consider
continuity as an intrinsic property of space, as early as 1872 when he defines
the real numbers and, by that, the linear continuum. Dedekind’s insistent
statement about the fact that continuity is not a necessary character of
space is based on his proof that the propositions of Euclidean geometry
hold when one takes algebraic integers as coordinates. In 1872, it is one
of Dedekind’s main reasons to give an arithmetical definition of continuity,
for continuity is in no way a self-evident or immediate idea. Dedekind’s
explanation about why continuity is neither a necessary condition, nor a
consequence of Euclidean geometry appears in Stetigkeit, and is developed
in some details in the letters to Lipschitz. The considerations on Euclidean
geometry made with algebraic numbers as coordinates can be found first
in a commentary to Paul du Bois-Reymond’s book on algebraic function
theory, and in the first introduction to Zahlen (see Sec. 7.2). Considerations
about “continuity and related questions” for Riemann surfaces, essential in
particular for integration theory, ought to be developed from a precise and
solid definition of the notion of point. Dedekind andWeber were aware of the

14As we will see, not only is the definition of fields and ideals relying solely on properties
of closure, but the development of ideal theory is made by considering ideals as wholes,
which erases completely the individual nature of the functions as elements of the ideal
from all considerations.
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fact that since all considerations about “continuity and related questions”
are excluded from their article, the piece of Riemann’s theory of functions
that they are able to rewrite is relatively limited. In particular, it does
not comprise anything regarding integration and Abelian functions. On the
other hand, their treatment implies that they have shown that a great part
of the theory was independent of such considerations about continuity.

2.1.2 Dedekind and epistemological requirements
What is now seen as “red-letter clichés” of the “conceptual approach” appear
generously in Dedekind’s mathematics and have been at least as generously
commented upon. For example, H. Edwards, who opens his 1980 article
on the genesis of ideal theory by explaining that Dedekind’s “strong philo-
sophical principles” were shaped simultaneously with his reflections on ideal
theory and were responsible for the rewritings of his algebraic integer theory
([Edwards, 1980], 321). Edwards, later in his paper, states that Dedekind’s
“insistence on philosophical principles was responsible for many of his im-
portant innovations” (ibid., 349). Indeed, many of Dedekind’s works are
motivated by a desire to provide a better foundation to theories: it is obvi-
ously the case of his foundational works but also appears in number theory
and, in what occupies us here, in function theory.15

His attention to the foundation of theories led Dedekind to formulate cer-
tain rules that a definition should meet to be acceptable. When explaining
the requirements that a definition of real numbers should meet, he explains
that there must be no intrusion of “foreign” elements, imprecise notions, or
intuition16:

As first demand, I reckon that arithmetic must be kept free from
intermixture with foreign elements, and for this reason I reject
the definition of number as the ratio of two quantities of the same
kind. On the contrary, the definition or creation of irrational
number ought to be based on phenomena one can already observe
clearly in the domain R of rational numbers.17 ([Dedekind, 1876-

15In number theory, the concepts of field and ideal are presented as new grounding
concepts, see Chapters 5 and 6. Their role in Dedekind’s attempts to prove the general
validity of the theorems of rational arithmetic is essential. Note that there is, in Dedekind’s
works, no claim that his approach is the only one susceptible to lead to the right results,
on the contrary.

16“I regard such invocation of geometric intuition (Anschauung) in a first presentation
of the differential calculus as exceedingly useful from a pedagogic standpoint (. . . ) but
no one will deny that this form of introduction into the differential calculus can make no
claim to being scientific.” ([Dedekind, 1872], 768)

17“Comme première exigence, je reconnais que l’Arithmétique doit être maintenue ex-
empte de tout mélange d’éléments étrangers, et pour cette raison je rejette la définition
d’après laquelle le nombre serait le rapport de deux grandeurs de même espèce; au con-
traire, la définition ou la création du nombre irrationnel doit être fondée uniquement sur
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1877], transl. slightly altered, 57, footnote)

The definition must satisfy a criterion of uniformity related to a definite
framework, that is, one must give one definition for all the elements falling
under the concept, and no distinction of several cases, no exception or special
treatment. For example, for irrational numbers:

Secondly, one should demand that all real irrational numbers
be possibly engendered simultaneously by a common definition,
and not successively as roots of equations, as logarithms, etc.18

(ibid., 57-58, footnote, transl. slightly altered)

When defining new numbers, the definition ought to provide the possi-
bility to define operations:

Thirdly, the definition should be of a kind which also permits
a perfectly clear definition of the calculations (addition, etc.)
one will have to carry out with the new numbers.19 (ibid., 58,
footnote, transl. slightly altered)

More generally, the definition should allow to develop methods of proof for
the new concepts and the theorems to be proved.

Dedekind also adds, in several works, that the definition must be done
using “earlier notions”, i.e., concepts and methods already well-defined (e.g.,
the definition of real numbers should be done with only means pertaining
to the rational numbers). It is in particular the case of the extensions of the
domains of number:

[T]he step-by-step extension of the number-concept is subse-
quently to be carried out (. . . ) always by a reduction to earlier
concepts.20 ([Dedekind, 1888], 792)

Finally, if the definition is an extension, it must be valid for the restricted
concept as well (e.g., all all rational integers are algebraic integers).

In addition, one should not develop a theory on the basis of notions which
rely on computation, notation or explicit representation. The conjunction
of such demands are guiding Dedekind’s efforts to find the most appropriate
definition for the concept(s) grounding a theory. For example, in the case
of the theory of ideals:

des phénomènes que l’on puisse déjà constater clairement dans le domaine R.”
18“En second lieu, on devra exiger que tous les nombres réels irrationnels puissent être

engendrés à la fois par une commune définition, et non successivement comme racines des
équations, comme logarithmes, etc.”

19“La définition devra, en troisième lieu, être de nature à permettre aussi une définition
parfaitement claire des calculs (addition, etc.) que l’on aura à faire sur les nouveaux
nombres.”

20“In welcher Art später die schrittweise Erweiterung des Zahlbegriffes (. . . ) stets durch
Zurückführung auf die früheren Begriffe herzustellen ist”
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One notices, in fact, that the proofs of the most important propo-
sitions depend upon the representation of ideals by the expres-
sion [ma,m(b+ θ)] and on the effective realisation of multiplica-
tion, that is, on a calculus which coincides with the composition
of binary quadratic forms given by Gauss. If we want to treat
fields Ω of arbitrary degree in the same way, then we shall run
into great difficulties, perhaps insurmountable ones. Even if it
were not the case, such a theory, based on calculation would
still not be of the highest degree of perfection, in my opinion.21

([Dedekind, 1876-1877], transl. slightly altered, 102)

These ideas are particularly important, from Dedekind’s viewpoint, insofar
as a theory based on notions lacking the previously described characteristics
would fail to provide the appropriate treatment of the subject investigated.
It could also lead to “insurmontable difficulties” and/or exhibit lack of rigor.

In fact, Dedekind affirms that if the concepts grounding a theory are
appropriately defined, one should be able to give more appropriate demon-
strations – e.g., the definition of real numbers and the proof of a proposition
such as

√
3.
√

2 =
√

6. Moreover, this should ease the way toward further
developments hitherto out-of-reach.

The latter point was particularly important for algebraic number theory,
in which the concept of ideal is said to be a new ground for the “theory of
(. . . ) all the integers of the field” investigated (see Sec. 5.4):

We ground the theory of the numbers of o, i.e., all the integers of
the field Ω, on the following new concept. A system a of infinitely
many numbers contained in o will be called an ideal if it satisfies
the following pair of conditions:

I. The sum and difference of any two numbers in a are again
numbers in a.

II. Each product of a number in a and a number in o is again a
number in a.22 ([Dedekind, 1871], 38)

21“On peut remarquer, en effet, que les démonstrations des propositions les plus impor-
tantes se sont appuyées sur la représentation des idéaux par l’expression [ma,m(b + θ)]
et sur la réalisation effective de la multiplication, c’est-à-dire sur un calcul qui coïncide
avec la composition des formes quadratiques binaires, enseignée par Gauss. Si l’on voulait
traiter de la même manière tous les corps Ω de degré quelconque, on se heurterait à de
grandes difficultés, peut-être insurmontables. Mais, lors même qu’il n’en serait pas ainsi,
une telle théorie, fondée sur le calcul, n’offrirait pas encore, ce me semble, le plus haut
degré de perfection.”

22“Wir gründen die Theorie der in o enthaltenen Zahlen, d. h. aller ganzen Zahlen des
Körpers Ω, auf den folgenden neuen Begriff.
Ein System a von unendlich vielen in o enthaltenen Zahlen soll ein Ideal heissen, wenn es
den beiden Bedingungen genügt:
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2.1 Returning to Riemann’s epistemological ideals?

Ideals are grounding concepts because all propositions and theorems are de-
duced from the concept of ideal and the rules of computation designed for
it.23 Ideals are defined in such a way that they are a simple yet powerful
concept. Moreover, as Dedekind always takes the time to underline and
illustrate, their efficiency extends to other parts of number theory, such as
the theory of binary quadratic forms.

The problems faced in Riemannian function theory are the same kind
of problems as the ones Dedekind saw in Kummer’s ideal numbers and the
ones which made him give up higher congruences for his developments of
Kummer’s works: lack of uniformity in the treatments of the theory, inves-
tigations too attached to a determinate representation, lack of rigor, etc. As
I have mentioned above, Dedekind and Weber wish to be able to give defi-
nitions and proofs for algebraic functions without restrictions made a priori
on the singularities of functions and to provide a sound, rigorous ground to
the theory, that mathematicians will be able to exploit. This is a desire that
comes back several times in Dedekind’s writings, before and after Algebrais-
che Funktionen, and notably in 1888 when he defines the natural numbers
(see Sec. 8.2).

In the case of Riemann’s function theory, it is particularly crucial to be
able to provide such a definition of the Riemann surface and other basic
notions of the theory, inasmuch as Riemann did not give a precise, rigorous
treatment of his ideas, and his successors were not able to adequately correct
this flaw.

While they were working on the edition of Riemann’s works, in 1874,
Dedekind wrote to Weber that

I am not the profound expert on Riemann’s work that you take
me to be. I certainly know those works, and I believe in them,
but I do not master them, and I will not master them until
having overcome in my way, with the rigor that is customary in
number theory, a whole series of obscurities.24 (Letter to Weber,
November 1874. Quoted and translated in [Ferreirós, 2008], 78)

As I have mentioned earlier, Riemann was described by Dedekind has having
a “brilliant power of thought and [an] anticipatory imagination [which] led

I. Die Summe und die Differenz je zweier Zahlen in a sind wieder Zahlen in a. II. Jedes
Product aus einer Zahl in a und einer Zahl in o ist wieder eine Zahl in a.”

23The definition of ideals will be considered in more details in Sec. 5.4 and 6.1, once we
will have more elements from Dedekind’s writings on the subject.

24“Namentlich bin ich nicht der gründliche Kenner der Riemann’schen Werke, für den
Sie mich halten. Ich kenne zwar diese Werke und glaube an sie, aber ich beherrsche
sie nicht, und ich werde sie nicht eher beherrschen, als bis ich eine ganze Reihe von
Dunkelheiten mir auf meine Weise und mit der in der Zahlentheorie üblichen Strenge
überwunden haben werde.”

129



Chapter 2 - Theorie der algebraischen Funktionen einer Veränderlichen

him frequently to take very great steps that others could not follow so eas-
ily” (quoted and translated in [Ferreirós, 2008], 78). When asked for details,
examples or clarifications, Dedekind tells us that Riemann was “puzzled”
and actually seemed to have a strong dislike for detailed explanations, leav-
ing his readers with ambiguous and relatively vague statements. On the
other hand, I mentioned that Dedekind described himself as slow to un-
derstand, needing to master each and every step of a theory. He spoke of
his “Treppen-Verstand” in a letter to Cantor in 1899. For Dedekind, who
learned the importance of rigor with Dirichlet, it was paramount to be in
possession of a clear knowledge and understanding of the basic concepts of
a theory and of the different stages of demonstrations, which he took to be
typified by number theory.

2.1.3 Weber’s role?
The demand that a more general and more rigorous version of Riemann’s
theory be given is shared by Weber, whose works on elliptic functions were
directed towards providing an algebraic treatment of Riemann’s ideas. The
1882 paper shows obvious signs of Dedekind’s approach, adopting some of
his methods and ideas with a literal translation from number to function
theory, but Weber’s role should probably not be underestimated. Indeed,
it is well known that Weber was the one who wrote up the paper properly
after the exchange of letters with Dedekind in 1878-79, and sent it to Crelle’s
Journal. In small details, such as the use of the word “Spezies”, common
in Weber’s writings and never used by Dedekind, one can discern Weber’s
touch. The few letters available also suggest that he played an important
role in the elaboration of the theory.

As of yet, the letters in which Weber and Dedekind elaborated together
their rewriting of Riemann’s theory have only been very partially published,
but they show that Weber played a more than active role in setting up the
new version of the theory.25 In March 1879, while they were working on
their paper, Weber wrote to Dedekind:

We must wait and see if the whole thing is going to lead to
something new. What we have so far is not fundamentally new.
Anyway, it is a very elegant and neat presentation for known
propositions, and in this respect, it satisfies an esthetic require-
ment. What I expect from this in the first place is in fact a more
rigorous, or at least general foundation for Riemann’s theory.26

(Quoted in [Strobl, 1982], 232)
25The forthcoming book by K. Scheel mentioned earlier shall provide us with more

information on that matter. Unfortunately I have not been able to access the letters and
was not be able to consider this aspect in any systematic way.

26“Ob die ganze Sache zu Etwas Neuem führen wird, müssen wir abwarten. Was wir bis
jetzt haben ist im Grunde nicht neu. Immerhin ist es eine sehr elegante und hübsche Aus-

130



2.1 Returning to Riemann’s epistemological ideals?

The demands expressed by Dedekind are thus shared by Weber, whose ex-
perience in Riemannian mathematics was marked, as we saw (p. 106), by an
attempt to prove the infamous Dirichlet principle.

A few months after this letter, Weber wrote to Dedekind, on December
18th 1879, that he considered the concept of point as “the main difficulty”,
which could be overcome by relating it to prime ideals:

The main difficulty is, in my view, to be found still only in the
definition of the “point of the R[iemann] surface”, and lately,
I have made various attempts on it, which have led me to the
conviction that the best could be to return to your original foun-
dation of the theory of ideals, where then as long as possible, we
are not talking about points, but only about prime ideals. From
there, it should not be then too difficult to introduce the concept
of “point” in a completely satisfactory way. Then, the theory of
ideals would enter in its own right, and the path I have taken
presents itself as a Petitio Principii.27 (Quoted in [Strobl, 1982],
242)

But the observations made on p. 113 show that the presentation of algebraic
function theory given by Weber himself in his Lehrbuch, gave up the use of
ideals. It is not that Weber was against the use of Dedekind’s algebraic
concepts, though, since the notion of field is plainly exploited and ideals are
used in number theory and for the study of forms. In fact, Weber’s presen-
tation of algebraic function theory is partly similar (even exactly similar at
some points) to that of 1882, but rather than resorting to ideal theory, he
reformulates all these paragraphs using Functionale. The main ideas under-
lying the 1882 paper are, however, kept (e.g., the definition of the point),
and the theory proposed by Weber intertwines the approach adopted in 1882
with a focus on functions, proposing a study of the divisibility of the field by
means of Functionale and relating points to “Primfunctionale” rather than
prime ideals.

druckweise für bekannte Sätze und genügt insofern einem ästhetischen Bedürfnis. Was ich
zunächst davon hoffe ist übrigens eine strenge oder wenigstens allgemeinere Begründung
der Riemannschen Theorie.”

27“Die hauptsächlichste Schwierigkeit erblicke ich nur noch in der Definition des ‘Punk-
tes der R. Fläche’ und ich habe in der letzten Zeit mancherlei darauf bezügliche Versuche
gemacht, die mich zu der Überzeugung geführt haben, dass es das Beste sein dürfte, zu
Deiner ursprünglichen Begründung der Idealtheorie zurückzukehren, wo dann möglichst
lange von den Punkten gar nicht die Rede ist, sondern nur Primidealen. Von da aus
würde es dann wohl nicht schwer sein den Begriff ‘Punkt’ in ganz befriedigender Weise
einzuführen. Dann würde die Idealtheorie in ihr volles Recht eintreten und der von mir
eingeschlagene Weg stellt sich dar als eine Petitio Principii.”
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2.2 Fields of algebraic functions of one complex variable

The first and essential move to set up the “rigorous, or at least general
foundation for Riemann’s theory” will be to introduce the notion of a field of
functions. While Riemann, as well as many mathematicians, was well aware
that rational and polynomial functions reproduce themselves by the four
fundamental operations of arithmetic (+,−,×,÷), the choice to consider
this very property as the ground of the theory is an important departure
from the usual approaches to the theory.

2.2.1 Algebraic functions, integral algebraic functions

For the definition of algebraic functions, Dedekind and Weber define an
algebraic function of an independent variable z in the following way:28

A variable (Variable) θ is called an algebraic function of an in-
dependent variable (abhängigen Veränderlichen) z if it satisfies
an irreducible equation

(1) F (θ, z) = 0.

Here F denotes an expression of the form

F (θ, z) = a0θ
n + a1θ

n−1 + . . .+ an−1θ + an

where the coefficients a0, a1, . . . , an are polynomials in z with-
out common divisor.29 ([Dedekind and Weber, 1882], transl.
slightly altered 45)

They further establish that θ does not satisfy any equation of lower degree
in θ as well as in z, and that

28According to Bourbarki, in [Bourbaki, 1984], “pas plus que leurs prédécesseurs, Kro-
necker ni Dedekind et Weber ne définissent en réalité la notion de “fonction algébrique”
d’une ou plusieurs variables complexes. On ne peut en effet définir correctement une
“fonction algébrique” d’une variable complexe (au sens de l’Analyse) qu’une fois définie
la surface de Riemann correspondante, et c’est précisément la définition de la surface de
Riemann (par des moyens purement algébriques) qui est le but poursuivi par Dedekind
et Weber, Ce cercle vicieux apparent disparaît bien entendu quand on définit un corps de
“fonctions algébriques” comme une extension algébrique abstraite d’un corps de fractions
rationnelles : en fait, c’est uniquement de cette définition que se servent Dedekind et
Weber, ce qui légitime pleinement leurs résultats.”

29“Eine Variable θ heißt eine algebraische Funktion einer unabhängigen Veränderlichen
z, wenn dieselbe einer irreduktibeln algebraischen Gleichung F (θ, z) = 0 genügt. F be-
deutet hierin einen Ausdruck von der Form F (θ, z) = a0θ

n + a1θ
n−1 + . . . + an−1θ + an

worin die Koeffizienten a0, a1, . . . , an, ganze rationale Funktionen von z ohne gemein-
schaftlichen Teiler sind.”
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The system Φ(θ, z) of all rational functions of θ and z has the
property that its members reproduce themselves through the el-
ementary arithmetic operations of addition, subtraction, multi-
plication, division, and this system is therefore called a field Ω
of algebraic functions of degree n.30 (ibid., 46)

In modern terms, Dedekind and Weber further establish that C(z)[θ] is
a field, which is a finite algebraic extension of C(z), the field of rational
functions of one variable z with coefficients in C. An algebraic function in Ω
must satisfy an irreducible equation (1) with coefficients (without common
divisors) in C[θ]. The field generated by the algebraic function θ is thus
C(z)[X]/(F (z, θ)).

The striking similarities of behavior between numbers and functions
(which we would call structural similarities) are shed light on by taking
the field Ω as the starting point of the theory. The concept of field, here,
acts as a framework in which the theory is going to be developed.

Dedekind and Weber consider the function f obtained by the division of
all the coefficients of F by a0 the coefficient of θn:

f(θ, z) = θn + b1θ
n−1 + . . .+ bn−1θ + an.

From there, they define what they call an “algebraic division” of a function
ϕ by the function f , using the Euclidean division between polynomials θ
whose coefficients are rational functions of z. This allows to show that

Each function ζ in the field Ω is uniquely expressible in the form

ζ = x0 + x1θ + . . .+ xn−1θ
n−1

where the coefficients x0, x1, ..., xn−1 are rational functions of z.
Conversely, each function of this form obviously belongs to the
field Ω.31 (ibid., 46)

With a good understanding of the functions of Ω, one has to identify the
integers of the field (i.e., define the ring of integers). Indeed, the idea of the
transfer of methods from number theory is to define for functions counter-
parts of the notions used in number theory, in order to be able to unfold

30“Das System aller rationalen Funktionen von θ und z, Φ(θ, z), hat die Eigenschaft,
daß seine Individuen sich durch die elementaren Rechenoperationen, Addition, Subtrak-
tion, Multiplikation und Division reproduzieren, und dies System wird daher als ein Körper
algebraischer Funktionen Ω vom Grade n bezeichnet.”

31“Jede Funktion ζ des Körpers Ω läßt sich auf eine einzige Weise in die Form setzen:
ζ = x0 +x1θ+ . . .+xn−1θ

n−1 worin die Koeffizienten x0, x1, ..., xn−1 rationale Funktionen
von z sind. Umgekehrt gehört jede Funktion dieser Form selbstverständlich dem Körper
Ω an.”
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the ideal theory in function fields. In number theory, Dedekind defines al-
gebraic numbers as numbers which are solution of a polynomial equation
whose coefficients are rational numbers, and algebraic integers as algebraic
numbers which are solution of monic polynomial equation whose coefficients
are rational integers. In this context, he can introduce the notion of ideal
and use it to investigate the divisibility laws of the integers of the field.

While Dedekind and Weber did mention Dedekind’s algebraic integer
theory and its relation to the 1882 paper, they also emphasized that they did
not expect from their reader to be acquainted with them and consequently
did not want to presuppose that any of the definitions and theorems they
were about to give were already known. As a consequence, they give all
definitions and proofs in extenso: every result, although already proved in
1877, is proved again. The theories will appear to be extremely similar
but not fully identical, and some points are simpler to prove for functions
– although, as Dieudonné mentions, Dedekind and Weber do not seem to
clearly know why and, in any case, do not attempt to explain it. The
fact that module and ideal theories are entirely developed for the theory
of functions without relying on their development and validity in number
theory emphasizes the idea that Dedekind and Weber are proceeding to a
“translation” of the methods, implying no presupposition of the validity of
the methods in a different (albeit somewhat analogous) framework.

For the transfer to fields of algebraic functions, there is the following
correspondence in given fields:

rational integers → polynomials
rational numbers → rational functions
algebraic numbers → algebraic functions
algebraic integers → integral algebraic functions

Integral algebraic functions are defined by:

A function ω of the field Ω is called an integral function of z if
in the equation of lowest degree satisfied by ω

ϕ(ω) = ωe + b1ω
e−1 + . . .+ be−1ω + be = 0

the coefficients b1, b2, . . . , bn are all polynomial functions of z.32

(ibid., transl. slightly altered, 52)

The collection of all integral algebraic functions in Ω is designated by o.
Interesting properties about the integral algebraic functions are proper-

ties related to the system of such functions, such as:
32“Eine Funktion ω des Körpers Ω soll eine ganze Funktion von z heißen, wenn in der

Gleichung niedrigsten Grades, welcher dieselbe genügt: ϕ(ω) = ωe+b1ω
e−1 + . . .+be−1ω+

be = 0 die Koeffizienten s b1, b2, . . . , bn ganze rationale Funktionen von z sind.”
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A rational function of z belongs to the system o if and only if it
is a polynomial function of z.
Any function η in Ω can be transformed into a function of the
system o by multiplication by a non zero polynomial of z. (. . . )
A function ω in the field Ω that satisfies any equation of the form

ψ(ω) = ωm + c1ω
m−1 + . . .+ cm−1ω + cm = 0

where the coefficients c1, . . . , cm are polynomial functions of z,
is an integral algebraic function.33 (ibid., 52)

An important point is the arithmetical behavior of integral algebraic func-
tions as elements of the system o. The system o is proved to be closed
under addition, subtraction and multiplication (§3, 5.).34 The definition of
the arithmetical operations follows the known rules of manipulation of ratio-
nal functions. Divisibility in o requires a specific (albeit familiar) definition:

An integral algebraic function ω is said to be divisible by another
integral algebraic function ω′ if there exists a third integral al-
gebraic function ω′′ satisfying the condition

ω = ω′ω′′.

The first properties of the divisibility of integral algebraic functions are sim-
ilar to divisibility of numbers, e.g., transitivity of divisibility or if ω1, ω2, . . .
are divisible by ω and ω′1, ω′2, . . . are any functions in o, then ω′1ω1+ω′2ω2+. . .
is divisible by ω.

The complete study of the divisibility laws governing fields of algebraic
functions will be done by resorting to ideal theory. Before the introduction
of modules and ideals, Dedekind and Weber consider the notions of norm of
functions, trace and discriminant in the field Ω.

2.2.1.1 Norms, discriminant, trace

In Algebraische Funktionen, Dedekind and Weber develop notions pertaining
to what we would call “linear algebra” for the field Ω: norm of a function,
determinant, trace and discriminant.

33“Eine rationale Funktion von z gehört dann und nur dann zu dem System o, wenn sie
eine ganze rationale Funktion von z ist.
Jede Funktion in Ω kann durch Multiplikation mit einer von Null verschiedenen ganzen
rationalen Funktion von z in eine Funktion des Systems o verwandelt werden. (. . . )
Eine Funktion ω des Körpers Ω, welche irgend einer Gleichung von der Form genügt
ψ(ω) = ωm + c1ω

m−1 + . . . + cm−1ω + cm = 0 in welcher die Koeffizienten c1, . . . , cm
ganze rationale Funktionen von z sind, ist eine ganze Funktion.”

34Dedekind and Weber do not introduce anything similar to a ring, in this paper.
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The “analogy” with number theory likely played an important role in
the set up of these notions, which are most useful in the proofs. Indeed,
for algebraic numbers, norms play an essential role in the study of divis-
ibility: insofar as the norm of an algebraic number is a rational number,
using norms allows to reduce the problems to the study of rational num-
bers. This strategy was used by Gauss and Kummer (see Sec. 5.1.2) and
was well-known. In the case of algebraic functions, the norm will be a ra-
tional function, which continues further the correspondence stated earlier.
Determinants and discriminants were usual tools for the theory of forms, and
can be found in works from Gauss, Sylvester, Gordan, Kronecker. . . The no-
tion of discriminant is also particularly important because of its relations
with the ramification of the field, which we will see later. Dedekind’s and
Weber’s innovations thus stem from prevalent methods.

Note that “trace” was not a very widespread word and seems to have
been introduced by Dedekind in algebraic number theory. It was usually
solely referred to as a “coefficient of the characteristic equation” ([Hawkins,
2008], 500). As such, it was well-known, and in 1895, Dedekind referred
to “norms, discriminants and traces” as “common” ([Dedekind, 1895a], in
[Dedekind, 1932] II, 59). According to Hawkins, it was not such a common
expression, and Frobenius, “following the lead of Dedekind”, was the one to
begin to popularize it in his works on matrices. Weber also uses it in his
Lehrbuch. The notions and proofs given here, about the basis of the field
and the notions of trace, discriminant, etc., played an important role in the
development of linear algebra as a discipline.

A “basis” of the field is defined, a strategy used generously in all of
Dedekind’s and Weber’s works. Here, in modern terms, the field Ω studied
by Dedekind and Weber is considered as a vector space over C(z).35 We saw
in the above paragraph that any function ζ in Ω can be uniquely written as

ζ = x0 + x1θ + . . .+ xn−1θ
n−1

(where xi are rational functions of z) and conversely any function of this
form belongs to Ω.

Dedekind and Weber chose n functions in all the functions of Ω such
that:

η1 = x
(1)
0 + x

(1)
1 θ + . . .+ x

(1)
n−1θ

n−1

η2 = x
(2)
0 + x

(2)
1 θ + . . .+ x

(2)
n−1θ

n−1

. . .

ηn = x
(n)
0 + x

(n)
1 θ + . . .+ x

(n)
n−1θ

n−1

and such that the determinant
∑
±x(1)

0 x
(2)
1 . . . x

(n)
n−1 6= 0. They show that

every function of Ω can be written as a linear combination of ηi with rational
35[Stillwell, 2012]
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functions yi as coefficients:

ζ = y1η1 + y2η2 + . . .+ ynηn

This system η1, η2, . . . , ηn is called a basis of the field Ω ([Dedekind and
Weber, 1882], 47). In particular, the remark above is equivalent to saying
the functions 1, θ, θ2, . . . , θn−1 are a basis of Ω.

To define the norm of a ζ function of Ω, Dedekind and Weber consider
η1, η2, . . . ., ηn a basis of Ω. Any function ζ of Ω gives rise to the following
decompositions:

ζη1 = y1,1η1 + y1,2η2 + . . .+ y1,nηn
ζη2 = y2,1η1 + y2,2η2 + . . .+ y2,nηn
. . .
ζηn = yn,1η1 + yn,2η2 + . . .+ yn,nηn

Dedekind and Weber derive from the fact that the ηi form a basis that the
determinant of the system must vanish:∣∣∣∣∣∣∣∣∣

y1,1 − ζ y1,2 . . . y1,n
y2,1 y2,2 − ζ . . . y2,n
. . .
yn,1 yn,2 . . . yn,n − ζ

∣∣∣∣∣∣∣∣∣ = 0.

This determinant has the “form” (Gestalt) of a polynomial φ in ζ of degree
n in ζ whose coefficients are rational functions of z (completely determined
by ζ). It is independent of the choice of the basis. If one arranges the func-
tions according to the powers of ζ, some of its coefficients are particularly
important “for what follows” and will, thus, be “given special names”. The
norm of ζ, N(ζ), is the coefficient bn up to the sign:

(−1)nbn =

∣∣∣∣∣∣∣∣∣
y1,1 y1,2 . . . y1,n
y2,1 y2,2 . . . y2,n
. . .
yn,1 yn,2 . . . yn,n

∣∣∣∣∣∣∣∣∣
The norm of ζ satisfies common properties of the notion of norm, in partic-
ular, N(ζ) = 0 if and only if ζ = 0.

The trace S(ζ)36 is

S(ζ) = −b1 = y1,1 + y2,2 + . . .+ yn,n.

The trace of ζ satisfies the properties:
36Stillwell replaced Dedekind and Weber’s notation S for the trace (Spur) by the nowa-

days common Tr. I will keep the original notation.
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- S(0) = 0, S(1) = n

- For a rational function x, S(xζ) = xS(ζ)
- S(ζ + ζ ′) = S(ζ) + S(ζ ′)

These previous considerations allow to prove that

Every function ζ in Ω satisfies an nth degree equation ϕ(ζ) = 0
whose coefficients are rationally dependent from z. When this
equation is irreducible, the functions 1, ζ, ζ2, . . . , ζn−1 form a
basis of Ω.37 (ibid., transl. slightly altered, 49)

Lastly, for the definition of the discriminant, Dedekind and Weber con-
sider an arbitrary system η1, η2, . . . , ηn of functions of Ω. The discriminant
of this system is a special kind of determinant:

(12) ∆(η1, . . . , ηn) =

∣∣∣∣∣∣∣∣∣
S(η1, η1) S(η1, η2) . . . S(η1, ηn)
S(η2, η1) S(η2, η2) . . . S(η2, ηn)
. . .
S(ηn, η1) S(ηn, η2) . . . S(ηn, ηn)

∣∣∣∣∣∣∣∣∣
The discriminant is different from zero if and only if the system η1, η2, . . . , ηn
is a basis of Ω, so it can be used to “test” whether a certain system is a basis
of the field or not. The “fundamental theorem on discriminants” gives the
following relation: Consider a system of n functions

η′k = x1,kη1 + x2,kη2 + . . .+ xn,kηn

and let X be the determinant of the functions xi,k, i.e.,

X =
∑
±x1,1x2,2 . . . xn,n

then
∆(η′1, . . . , η′n) = X2∆(η1, . . . , ηn)

I will not develop further the considerations on these notions, for they
are mostly formal and, besides the essential properties stated above, they
will not be essential to understand the rest of the theory.

2.3 Ideal theory and the laws of divisibility in the field Ω
The word “analogy” was used earlier to designate the “transfer” (Übertra-
gung) of methods from number theory to function theory.38 This word

37“Es hat sich aus dieser Betrchtung ergeben, daß jede Funktion ζ in Ω einer Gleichung
nten Grades, ϕ(ζ) = 0 genügt, deren Koeffizienten rational von z abhängen. Wenn diese
Gleichg irreduktibel ist, so bilden die Funktionen 1, ζ, ζ2, . . . , ζn−1 eine Basis von Ω.”

38On analogies in terms of “axiomatic characterization” and how they can be used to
transfer results or methods from one domain to another, see also [Schlimm, 2008].
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should be taken as meaning a middle ground between “seeing a resemblance”
and “exploiting a correspondence” between algebraic numbers and algebraic
functions. In particular, it does not mean the weaker version of the word
“analogy” in which the correspondence works in only one way.39

On the other hand, it should be clear that the correspondence between
numbers and functions is essential for the sole reason that it allows to trans-
fer and set up, in the context of function theory, the conceptual arsenal used
by Dedekind in number theory, using the fact that the concepts were defined
solely by conditions of closure by operations. So, it must be stressed that in
the previous considerations, as well as in what follows, Dedekind and Weber
do not identify algebraic functions with algebraic numbers, they do not take
functions ‘as if’ they were numbers. Ideals play the central role in both the
theory of numbers and the theory of functions. The role attributed to the
ideals is crucial as a way to investigate properties of the integers of the field,
and this appears to be very clear to the authors.40

Finally, the “analogy” should not be taken as suggesting that Dedekind
and Weber are investigating ‘structural similarities’ between fields of func-
tions and fields of numbers. It is not their aim at all – and in addition, fields,
ideals or modules are not thought of as abstract concepts, in the sense of
(our) modern algebra. If these concepts have an ‘abstract’ definition (which
Weber calls “arbitrary” ([Weber, 1893]) and Dedekind calls “invariant” ([Ed-
wards, Neumann, and Purkert, 1982]), that is, a definition did not refer to
the individual nature of their elements, never is a general theory of these
concepts developed by Dedekind himself.41

The basis, the foundation of Dedekind’s algebra is the concept of field
(whose relation to equations has been evoked earlier), and only the opera-
tions defined and the closure by the operations are necessary to apply his
methods. Ideals, like fields, are defined as being systems of elements united
by the fact that they satisfy certain properties of closure of arithmetic oper-
ations, and without reference to the individual nature of the elements. With
the appropriate notion of integer of the field and the definition of divisibility,
it is possible to transfer the algebraic tools.

39Note that Dedekind is fully aware of such a distinction between “analogy” and “cor-
respondence”, as he mentions something similar in Stetigkeit:

This analogy between rational numbers and the points of a straight line,
as is well known, becomes a real correspondence when we select upon the
straight line a definite origin or zero-point O and a definite unit of length
for the measurement of segments.

In particular, Dedekind will transfer back to number theory some of the notions developed
here in a paper published in 1882, Über die Diskriminanten endlicher Körper. See p. 374.

40Later, Weber’s use of a middle ground between Kronecker’s approach (published in
1881), in the Lehrbuch, highlights that what he considered as essential is to be able to link
the definition of the Riemann surface to the divisibility of the field.

41It will be developed in the works of Steinitz, E. Noether, etc. On these matters, see
[Corry, 2004b].
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The main idea behind the translation of algebraic number methods to the
theory of algebraic functions is to study divisibility in a field of algebraic
functions relying on the introduction of the concept of integral functions,
just as Dedekind did with algebraic numbers. The development of ideal
theory is very much similar to what is done in 1877 – it is sometimes the
same word for word, with “function” in place of “number” – but it is not
strictly identical. Dedekind and Weber underline the differences when they
appear. It is not my aim, here, to compare the two theories, and I will not
mention every difference.42 In fact, if Dedekind and Weber do mention the
differences in footnotes, their aim is not to try to expose what the theory
of algebraic numbers and the theory of algebraic functions have in common.
They do not explain the differences and do not try to extract a common
core for the two theories.

In addition, the two theories are fundamentally different in their aims,
which, I believe, makes a comparison slightly out of phase with the initial
goals of the theories. In algebraic number theory, ideal theory is essential,
and if ideal theory can indeed have many applications, the understand-
ing of how the divisibility laws hold uniformly and generally is the goal of
Dedekind’s research. In 1882, the investigation of divisibility laws, i.e., the
part of the paper similar to algebraic number theory, holds a significantly
smaller place, and the goal of the research, ultimately, is to improve on Rie-
mann’s function theory. Insofar as Dedekind and Weber are not proposing
an algebraic (in the modern abstract sense) investigation of fields, it seems
that this difference is important enough to not dwell on the comparison of
ideals of numbers and ideals of functions. Rather, it would be interesting
to understand how Dedekind developed an approach for algebraic numbers
that can be transferred to algebraic functions of one variable.

Since the notion of field of functions, as Dedekind and Weber write in the
introduction, “coincides completely with that of Riemann class of algebraic
functions”, they first study in depth the properties of the field, and then
build the concept of Riemann surface on this basis. Dedekind and Weber
will, in the second part of the paper, exhibit the said “coincidence” by
establishing a one-to-one correspondence between the field and the surface.

2.3.1 Modules

Before presenting the theory of ideals of the field Ω,43 Dedekind and We-
ber consider the “auxiliary” theory of modules. In earlier works, modules

42For such a comparison, see [Strobl, 1982].
43In fact, of course, it is the theory of ideals of the ring of integers of Ω. Dedekind,

however, does not talk about rings, and tends to use indifferently “ideals of o”, the system
of integers of the field, or “ideals of the field”. Following him, I will often make the misuse
of language of talking about “ideals in the field Ω”.
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were presented by Dedekind as an “independent theory”, general and only
interesting for its applications.

it seems appropriate to begin with a small number of very simple
theorems [about modules theory], even though their interest lies
mainly in their applications. (. . . ) The researches in this first
chapter have been expounded in a special form suited to our
goal, but it is clear that they do not cease to be true when the
Greek letters denote not only numbers, but any objects of study.
([Dedekind, 1876-1877], 62 and 92)

Module theory is, as soon as it is introduced, given as a theory potentially
independent from the theory in which it is used. Modules will be particularly
interesting because they allow for the definition of a congruence relation for
functions.44

A module is defined by the following closure conditions:

A system of functions (in Ω) is called a module if its functions re-
produce themselves by addition, subtraction and multiplication
by a polynomial function of z.45 (ibid., transl. modified, 55)

A particular kind of module will be used copiously: modules with a finite
basis, which are called “finite modules” by Dedekind and Weber:46

One designates by α1, α2, . . . , αm any m given functions and by
x1, x2, . . . , xm arbitrary polynomials in z. Then, the collection
of all functions of the form

α = x1α1 + x2α2 + . . .+ xmαm

is a module. Such a module is called a finite module and is
denoted by

a = [α1, α2, . . . , αm]
The system of functions α1, α2, . . . , αm is called the basis of this
module.47 (ibid., transl. modified, 55)

44Weber, in his own version of algebraic function theory, in the Lehrbuch, did not use
module theory at all. In fact, the concept of module doesn’t appear as such in Weber’s
Lehrbuch.

45“Ein Funktionensystem (in Ω) heißt ein Modul, wenn sich die Funktionen desselben
durch Addition, Subtraktion und durch Multiplikation mit ganzen rationalen Funktionen
von z reproduzieren.”

46Although they do not correspond to what we would call a “finite module” but rather
to “finitely generated modules”, I will adopt a literal translation, unlike Stillwell.

47“Bezeichnet man mit α1, α2, . . . , αm irgend m gegebene Funktionen, mit
x1, x2, . . . , xm willkürliche ganze rationale Funktionen von z, so bildet der Inbegriff aller
Funktionen von der Form α = x1α1 + x2α2 + . . . + xmαm einen Modul. Ein solcher soll
ein endlicher Modul gent und mit a = [α1, α2, . . . , αm] bezeichnet werden. Das Funktio-
nensystem α1, α2, . . . , αmheißt die Basis dieses Moduls.”
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Note that the concept of basis used here corresponds only to a spanning
property. The linear independence, which Dedekind and Weber call “ratio-
nal independence” is an additional property of the basis of finite modules
but not a necessary one.

A very important part of the paper is the definition of arithmetical oper-
ations, here for modules, but also for ideals – and later, again, on the surface.
The idea used here is the one that constitutes the core of Dedekind’s alge-
braic number theory and allowed him to prove the general validity of the
propositions and theorems of arithmetic. A new notion of divisibility is
defined for modules:

A module a is said to be divisible by a module b, or b is said to
be a divisor (Teiler (Divisor)) of a, or a a multiple (Vielfaches
(Multiplum)) of b (b taken up in a [b geht in a auf ]), if all function
in a also belongs to b. We call b a proper divisor of a if a is
divisible by b but not identical to b.48 (ibid., 57)

The definition of divisibility for modules here is a different way of expressing
the relation of inclusion: to divide is to contain. Thus, the divisor “contains
a greater number of functions” than the module it divides. The definition
inverts the ‘size’ of the divisor and the multiple, which can seem “intuitively
opposite” to divisibility of numbers, as Dedekind and Weber note. However,
once accepted this definition of divisibility, which as underlined by Stillwell
corresponds to the idea that the multiples of a are included in the multiples
of b, the study of divisibility properties will be developed following the lines
similar to rational number divisibility. Insofar as, as we will see, it can easily
be seen that “every ideal is itself a module”, Dedekind and Weber will only
refer to the definitions and propositions given for modules, for the basis of
the divisibility of ideals, which is why I will take the time to give a fair
amount of details, here.

Divisibility for modules satisfies the transitivity property. Just like func-
tions are not taken to be numbers for the transfer of methods, the defini-
tion of arithmetic operations between objects that are not numbers (ideals,
modules, . . . ) does not imply that they should be considered as being ‘like
numbers’. In particular there is no proposition or theorem considered to be
evident because of its validity for numbers.

Dedekind and Weber rely on the reformulation of inclusion of modules as
a divisibility relation to put into play arithmetical notions and ideas in their
study of the properties of the field. Dedekind and Weber develop this new

48“Ein Modul a heißt durch einen Modul Ib teilbar, oder b ein Teiler (Divisor) von a, a
ein Vielfaches (Multiplum) von b (b geht in a auf), wenn jede Funktion in a zugleich in
b enthalten ist. b soll ein echter Teiler von a heißen, wenn a durch b teilbar, aber nicht
mit b identisch ist.”
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terminology, in such a way that a new level of arithmetic is established, in
which they can transfer the study of the divisibility laws of the field Ω from
integral algebraic functions to modules and ideals.49 For this, they develop
the module counterparts of familiar arithmetical notions:

The collection m of all the functions belonging to both modules a
and b, unless it consists only of the “zero” function, is a module
(according to the general definition) called the least common
multiple of a and b.50 (ibid., 57)

This choice of terminology, the least common multiple, to designate the
intersection of two modules, is justified by the fact that any module which
is a multiple of both a and b (i.e., included in both a and b) is also a multiple
of m (i.e., contained in their intersection). The LCM of an arbitrary number
of modules a, b, c, . . . , is thus the collection of all the functions belonging
to all these modules. It is possible to form this latter LCM since one can
always take any two modules a and b, find their LCM and use it in the place
of the two modules a and b, to find the LCM of a and b and a third module,
and so on.

Likewise, a notion of greatest common divisor of modules is given:

If α is an arbitrary function in a, β an arbitrary function in b,
then the collection of all the functions of the form α+β forms a
module d called the greatest common divisor of a and b.51 (ibid.,
57)

The justification for the arithmetical terminology goes along the same lines:
the GCD is defined in such a way that it is “a divisor of both a and b”
(i.e., a ⊂ d and b ⊂ d). And if a module d′ divides “both a and b, then
the functions α [of a] and β [of b]” belong to d′, hence “the functions α+ β
belong to d′”, which means that d ⊂ d′ i.e., d′ divides d.

Once the notion of divisibility of modules is established, Dedekind and
Weber give the definition of the product and the quotient of two modules.
They appear to be setting up an arithmetical framework for the study of
modules, so that they can handle the theory (of modules and of ideals) with
methods of proof that are similar to those in elementary number theory.

49As we will see, the arithmetic of ideals is relatively simple, inasmuch as it is similar
to that of rational integers.

50“Der Inbegriff m aller derjenigen Funktionen, welche zugleich in zwei Moduln a, b,
enthalten sind, bildet, falls er nicht aus der einzigen Funktion ‘Null’ besteht, einen Modul
(nach der allgemeinen Definition), welcher das kleinste gemeinschaftliche Vielfache von a
und b heißt.”

51“Ist α eine beliebige Funktion in a, β eine beliebige Funktion in b, so bildet der Inbegriff
aller Funktionen von der Form α+ β einen Modul , welcher der größte gemeinschaftliche
Teiler der beiden Moduln a und b.”
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The reformulation of inclusion as a divisibility relation is not an ad hoc
introduction of some familiar denomination, the inquiry takes an overall
arithmetical form, and the theorems and their proofs are given under an
arithmetical form.

The multiplication of two modules is defined in the following way:

If a, b are two modules, and if α, β are any two functions in a
and b respectively, then by the product

ab = ba = c

we understand the collection of all products of a function α by
a function β, and all the sums of such products, and thus of all
the functions that can be represented by the expression

γ =
∑

αβ.52

(ibid., transl. modified, 58)

It is easy to prove that this system is always a module. Dedekind and
Weber stress that fact that it is a finite module if a and b are finite modules.
The definition can be extended to any number of modules, and satisfies the
“fundamental theorem of the multiplication”, that of the permutability of
factors (Vertauschbarkeit der Faktoren). And they further define a notion
of mth power of a module a, by taking m times all the factors equal to a.

[W]e denote it by am and we have

am+m′ = amam
′
.53

(ibid., 58, transl. slightly altered)

Note that, in general, as Dedekind and Weber emphasize, the “product ab
is not divisible by a”, but we have the property that “if a1 divides a and b1
divides b, then a1b1 divides ab.”

The quotient of two modules a and b, denoted by b
a , is defined as:

the collection of all those functions γ with the property that γa
is divisible by b. This quotient, unless it consists of the single
function “zero” is itself a module c, as is immediately clear from
the definition. The product b

aa is always divisible by b though
52“Sind a, b zwei Moduln, α, β sämtliche Funktionen in a, resp. in b, so verstehen wir

unter dem Produkt ab = ba = c den Inbegriff aller Produkte einer Funktion α und einer
Funktion β und aller Summen solcher Produkte, also sämtlicher Funktionen, welche durch
das Zeichen γ =

∑
αβ bezeichnet werden können.”

53“So wird dasselbe mit am bezeichnet, und es ist am+m′
= amam

′
”
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not always equal to b.54 (ibid., 58)

Modules, as their name suggests, allow to define a notion of congruence
for functions, which makes them very important for developing an ‘arith-
metical’ theory. Two functions α, β are said to be congruent modulo a (or
“according to a”) when the difference α−β is contained in a. This notion of
congruence satisfies the usual properties of congruence as defined by Gauss,
such as the transitivity of the relation, multiplication by a third function,
addition of congruences, etc.

Pursuing the transfer of number-theoretical notions to the higher level
of modules, Dedekind and Weber next define a notion of norm for modules
(and later for ideals). For this, they first consider what they call a “family”
(Schaar) of functions.55 A family of functions noted (λ1, λ2, . . . , λm) is the
collection formed by the functions of the form

c1λ1 + c2λ2 + . . .+ cmλm

where the λi are given functions in Ω and the ci are arbitrary constants. The
functions λ1, λ2, . . . , λm form a “basis” (in Dedekind and Weber’s sense) of
the family. Here again, the functions are said to be linearly irreducible or
linearly independent “if an equation (identity) of the form

c1λ1 + c2λ2 + . . .+ cmλm = 0

holds only when the constant coefficients c1, c2, . . . , cm all vanish.” Such a
basis is called an irreducible basis by Dedekind and Weber. They state that
since any family has an irreducible basis, they will use the word “basis” in
reference to “irreducible basis” from this point on. The number of func-
tions in the irreducible basis is always the same, here m, and is called the
dimension of the family. A family with dimension m is called an m-tuple by
Dedekind and Weber.

The notion of linear independence can be extended into a congruence
version of it:

The functions λ1, λ2, . . . , λm are called linearly independent ac-
cording to the module a if a congruence of the form

c1λ1 + c2λ2 + . . .+ cmλm ≡ 0 (mod a)
54“Unter dem Quotienten b

a
zweier Moduln a, b soll der Inbegriff aller derjenigen Funk-

tionen γ, verstanden werden, welche die Eigenschaft haben, daß γa durch b teilbar ist.
Dieser Quotient ist, falls er nicht aus der einzigen Funktion ‘Null’ besteht, ein Modul c,
was sofort aus der Definition erhellt. Das Produkt ist jederzeit durch b teilbar, wenn auch
nicht immer gleich b.”

55In modern terms, this corresponds to a vector space, which is the translation adopted
by Stillwell. I will, however, not follow him on that point and rather use the word “family”.
Note that “Schaar” is translated in French by “faisceau” in [Müller, 1900].
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holds only when the constants c1, c2, . . . , cm vanish.56 (ibid.,
transl. slightly altered, 60)

This allows to define the notion of “complete system of remainders” of a
module a according to another module b. For this, Dedekind and Weber
suppose, first, that there exists in b only a finite number of functions lin-
early independent modulo a. Then, they take such a system with the great-
est number of functions possible λ1, λ2, . . . , λm in b linearly independent
according to a, then any function β in b can be uniquely written as

β ≡ c1λ1 + c2λ2 + . . .+ cmλm (mod a)

where the coefficients c1, c2, . . . , cm are constants. The family (λ1, λ2, . . . , λm)
is called “a complete system of remainders of b modulo a,” whose basis is
by definition λ1, λ2, . . . , λm. It can be written as

b ≡ (λ1, λ2, . . . , λm) (mod a)

So, the family (λ1, λ2, . . . , λm) consists of the congruence classes of b modulo
a.

The norm of a module according to another module is a function depen-
dent on only these two modules. To define it, Dedekind and Weber consider
(λ1, λ2, . . . , λm) a complete system of remainders of b modulo a. Since the
module the module zb is contained in the module b, there exists m2 complex
numbers ch,k such that:

zλ1 ≡ c1,1λ1 + c2,1λ2 + . . .+ cm,1λm
zλ2 ≡ c1,2λ1 + c2,2λ2 + . . .+ cm,2λm
. . .
zλm ≡ c1,mλ1 + c2,mλ2 + . . .+ cm,mλm

 (mod a)

The resolution of the system allows to see that the multiplication by the
determinant of the system will transform any function λi in b into a function
in a via the multiplication by

(b, a) = (−1)n

∣∣∣∣∣∣∣∣∣
c1,1 − z c2,1 . . . cm,1
c1,2 c2,2 − z . . . cm,2
. . .
c1,m c2,m . . . cm,m − z

∣∣∣∣∣∣∣∣∣
The function (b, a) “is independent of the choice of the basis λ1, λ2, . . . , λm
and hence dependent only on the two modules a, b” (ibid., 61) and is called

56“Die Funktionen λ1, λ2, . . . , λm heißen linear unabhängig in bezug auf den Modul a,
wenn eine Kongruenz von der Form

c1λ1 + c2λ2 + . . .+ cmλm ≡ 0 (mod a)

für keine anderen als verschwindende konstante Koeffizienten c1, c2, . . . , cm besteht.”
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“the norm of a relative to b”. In particular, if b is divisible by a, then by
convention (b, a) = 1. If b contains “more than a finite number of functions
(. . . ) linearly independent modulo a”, then Dedekind and Weber set (b, a) =
0 (ibid., 61).

This norm satisfies:

- If m is the LCM and d the GCD of a and b, then (b, a) =
(b,m) = (d, a).
- If a is divisible by b which is itself divisible by c, then (c, a) =
(c, b)(b, a) – the multiplicative property of the relative norm.

2.3.2 Ideals

In the field Ω, an ideal is a system of integral algebraic functions (i.e.,
contained in o) defined by the following necessary and sufficient conditions:

A system a of integral functions of z in the field Ω is called an
ideal if it satisfies the two following conditions:
I. The sum and difference of every pair of functions of a are again
functions of a.
II. The product of any function in a by any function in o is again
a function of a.57 (ibid., transl. slightly altered, 66)

Note that Dedekind and Weber do not define a notion of ring. o is only
defined as containing all the integers of the field Ω (and proved to satisfy
certain closure properties).

Dedekind and Weber explain that since “every ideal is at the same time
a module, all the terms and notations defined for modules can be applied
to ideals”.58 In particular, the notions of divisibility and product can be
carried over to ideals. Since every ideal is contained in o (which is of course
itself an ideal), each ideal is divisible by o which plays the role of the unit
for the arithmetic of ideals.

A particular kind of ideal will be particularly useful, the principal ideals,
defined by:

If µ is any non-zero function in o, the module oµ (the system
of all the integral functions divisible by µ) is an ideal. Such an

57“Ein System a von ganzen Funktionen von z im Körper Ω heißt ein Ideal, wenn es die
beiden folgenden Bedingungen erfüllt: I. Summe und Differenz je zweier Funktionen in a
ergeben wieder eine Funktion in a. II. Das Produkt einer jeden Funktion in a mit einer
jeden Funktion o ist wieder eine Funktion in a.”

58“Jedes Ideal ist also zugleich ein Modul und alle für die Moduln erklärten Begriffe und
Bezeichnungen können auf die Ideale angewandt werden.”

147



Chapter 2 - Theorie der algebraischen Funktionen einer Veränderlichen

ideal is called a principal ideal.59 (ibid., transl. slightly altered,
66)

A principal ideal oµ can be written as a finite module, using the basis of o:
if ω1, ω2, . . . , ωn is a basis of o then oµ = [ω1µ, ω2µ, . . . , ωnµ].

The notion of relative norm given for modules can be used for ideals as
well. The norm of a relative to o, (o, a), is a polynomial in z. It is called the
norm of the ideal a and denoted by N(a). The degree of this polynomial is
called the degree of the ideal a. It is easy to see that for any function α ∈ a,
N(α) = const.N(a)(o, oα) “ i.e., the norm of any function in a is divisible
by the norm of a” (ibid., 67).

A closer look is given to the properties of multiplication and division of
ideals, which will form the ground of the theory. The notion of divisibility for
ideals is similar to that given for modules: An ideal a is said to be divisible
by an ideal b if every function of a is also contained in b. In addition,
Dedekind and Weber detail the particular cases of principal ideals and of
the divisibility between functions and ideals:

A principal ideal oµ is divisible by a principal ideal oν if and only
if the integral function µ is divisible by the integral function ν.

A function α in o is said to be divisible by the ideal a if the
principal ideal oα is divisible by a or, which means the same
thing, if α is a function of a.60 (ibid., transl. slightly altered, 68)

It can easily be seen that the divisibility for principal ideals is equivalent
to the divisibility for the integral functions generating them. The idea for
the study of the divisibility of the functions of the field, then, is to study
the laws of divisibility governing the ideals and show that they are the same
as the laws governing the polynomials. Having shown that, Dedekind and
Weber will have thus shown that the laws of divisibility governing the (inte-
gral) algebraic functions are the same as the laws governing the polynomials
(which are the same as those governing the rational integers).61

59“[W]enn µ eine beliebige von Null verschiedene Funktion von o bedeutet, der Modul oµ
(das System aller durch µ teilbaren ganzen Funktionen) [ist] ein Ideal. Ein solches Ideal
soll ein Hauptideal genannt werden.”

60“Ein Hauptideal oµ ist dann und nur dann teilbar durch ein Hauptideal oν, wenn die
ganze Funktion µ teilbar ist durch die ganze Funktion ν. (. . . ) Eine Funktion α in o
soll durch das Ideal l a teilbar heißen, wenn das Hauptideal oα durch a teilbar, oder, was
dasselbe sagt, wenn α eine Funktion in a ist.”

61Note that Dedekind’s (and Weber’s) method works so well because it is developed in
a Dedekindian ring, in which every non-zero prime ideal is a maximal ideal. In higher
dimensions, it ceases to be valid.
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Additional definitions and properties for the divisibility of ideals are
given, presenting a striking similarity with rational arithmetic. Dedekind
and Weber carry over the notion of LCM and GCD from modules (see
p. 143) to ideals, and define a notion of relative primality: two ideals are
said to be relatively prime when their GCD is o. Dedekind and Weber state
that for two modules a and b to be relatively prime, it is necessary and
sufficient that “there exist a function α in a and a function β in b such that
α+ β = 1” (ibid., 68).

They also introduce the notion of prime ideal:

An ideal p different from o is called a prime ideal if no other
ideal than p et o divides p.62 (ibid., transl. slightly altered, 68)

The first elements about the divisibility of ideals are given using norms of
ideals. Recall that, in this context, norms are useful because they allow to
reduce the problems to questions about rational objects. They obtain, for
example:

- If b divides a, then N(b) divides N(a).

- If b divides a, and N(b) = N(a), then b = a.

While norms do play a role in the proofs, Dedekind and Weber focus on
properties pertaining to relations of divisibility for ideals themselves. The
theorems and proofs about the laws of divisibility of ideals are only expressed
in terms of ideals, the properties of norms such as the last two given above
play decisive roles in the proofs. The propositions and theorems given about
the divisibility of ideals appear as familiar theorems about the divisibility
properties of rational numbers, such as the one already given for modules:
if a1 divides a and b1 divides b, then a1b1 divides ab. One also has:

Each ideal a different from o is divisible by a prime ideal p.
If a is an arbitrary ideal and p a prime ideal, then either a is
divisible by p or a is relatively prime to p.
If a is relatively prime to b and to c, then a is also relatively
prime to bc.
If a is relatively prime to c and ab is divisible by c, then b is
divisible by c.63 (ibid., 69-70)

62“Ein von o verschiedenes Ideal p heißt ein Primideal, wenn kein anderes Ideal außer
p und o in p aufgeht.”

63“Jedes von o verschiedene Ideal a is durch ein Primideal p teilbar.
Ist a ein beliebiges ideal, p ein Primideal, then entweder a durch p teilbar oder a relativ
prim zu p.
Ist a a relativ prim zu b und zu c, so ist a auch relativ prim zu bc.
Ist a relativ prim zu c und ab durch c teilbar, so ist b durch c teilbar.”
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However, this propositions are not sufficient for Dedekind and Weber’s
purpose. Indeed, as they explain

All these theorems, which mostly follow immediately from the
definition of ideal, do not suffice to prove the complete analogy
between the laws of divisibility of ideals and those of polynomial
functions.64 (ibid., transl. slightly altered, 70)

The following propositions are going to completely unfold and explain the
divisibility laws governing ideals, and bring to the fore the fact that these
laws are the same as the ones governing polynomials.

The key for the following properties, which are labelled “Laws of di-
visibility of ideals” is to show that the notion of divisibility defined as an
inclusion relationship is equivalent to the arithmetical notion of divisibility,
that is:

If c is an ideal divisible by [i.e., contained in] an ideal a, then
there exists one and only one ideal b that satisfies the condition

ab = c.

It is called the quotient of c by a.65 (ibid., 73)

Note that there is clear distinction made between the quotient and the notion
of divisibility, here. With the proof of this theorem, it becomes clear that
the notion of divisibility given for ideals can indeed be considered as an
extension of the arithmetical notion.

This equivalence between the ‘set-theoretic’ notion of divisibility and
the arithmetical one was, in algebraic number theory, a difficult property to
prove. For algebraic functions, it is much easier, a point which Dedekind and
Weber do notice in a footnote without explaining it. It is, in fact, related to
peculiar properties of polynomials, in particular the possibility to factorize
them into linear factors ([Stillwell, 2012], 70).

As it should be clear, the theory of ideals so far has been developed
focused on divisibility properties and using essentially (1) the notions of
norm, basis, etc. and (2) the new arithmetical operations defined for ideals.
Norms are quickly reduced to properties (such as the ones p. 147) that do not
necessitate manipulation of determinants once proven. Ideal theory is thus
developed with no other means than these arithmetical notions and following
a path very similar to rational number theory. Dedekind and Weber are able
not only to give analogous theorems, but also demonstrations mirroring the

64“’ Alle diese Sätze, die sich meist unmittelbar aus der Definition der Ideale ergaben,
reichen nicht aus, um die vollständige Analogie zu beweisen, die zwischen den Gesetzen
der Teilbrkeit der Ideale und denen der ganzen rationlen Funktionen herrscht.”

65“Ist ein Ideal c teilbar durch ein Ideal a, so gibt es ein and nur ein Ideal b, welches
der Bedingung ab = c genügt, welches der Quotient von c durch a heißt.”
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proofs given in rational number theory. They can prove non-trivial results
by means of only methods extending rational arithmetic. Indeed, everything
is done by means of divisibility of ideals, the statements of propositions and
theorems and their proofs.

If the perfect correspondence between divisibility laws of ideals and of
polynomials is the first goal of ideal theory, it seems to be in great part
because it will assure the foundation of the theory for further developments.
In addition, since it is proven that divisibility of ideals behaves in the same
way as rational divisibility, it gives the possibility to use these concepts fol-
lowing the lines of rational arithmetic.66

A central result for the divisibility of ideals, here as in number theory,
is the proof that every ideal has a unique factorization in primes:

Each ideal different from o is either a prime ideal or else uniquely
expressible as a the product of prime (and only prime) ideals.67

(ibid., 73)

The proofs of the theorems, such as the unique factorization theorem,
are modeled on the same tactics as in algebraic number theory in which
Dedekind, very carefully, proves the theorems by using only operations of
elementary arithmetic between ideals, giving demonstrations strikingly re-
sembling the usual ones in rational number theory. The fact that the meth-
ods of proofs themselves can be of arithmetical form seems to play an im-
portant role in the simplicity attributed to the concept of ideal and in the
possibility to get rid of complicated computations. By moving the study
of the properties of algebraic functions up to the level of systems of such
functions and setting up a new arithmetical framework for these systems
considered as objects, Dedekind and Weber are replacing the long tedious
computations by very simple ones.

This last point is particularly clear in the proof of the unique factoriza-
tion theorem in primes for ideals, which goes as follows. Let a be a non-prime
ideal different from o. Then there exists certain prime ideal p1 dividing a.
Hence, one has a = p1a1 with a1 different from a. Hence, the degree of N(a1)
is lower than the degree of N(a). If a1 is not prime and is different from o
(a property that can be verified with its norm), the procedure is repeated
on a1 and one obtains

a1 = p2a2

and thus
a = p1p2a2.

66Already, in 1877, Dedekind explained that for number theory the “certainty that these
general laws [of divisibility] exist eases to the highest degree the discovery and proof of
special phenomena in a given field Ω”.

67“Jedes von o verschiedene Ideal ist entweder ein Primideal, oder es läßt sich, and nur
auf eine Weise, als Produkt von lauter Primidealen darstellen.”
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The successive repetition of this procedure leads, after a finite number of
such decompositions, to an ideal ar−1 = prar, with N(ar) = 1 i.e., ar = o.
Consequently, one has

a = p1p2 . . . pr.

To prove the uniqueness of this decomposition, suppose that their exists
another one, for example that

p1p2 . . . pr = q1q2 . . . qs

(with qi primes). Hence, there exists at least one ideal in these prime ideals

p1, p2, . . . , pr

which can be divided by q1 and consequently is equal to q1. Let’s suppose
it is p1, then there is

p1p2p3 . . . pr = p1q2q3 . . . qs.

It is possible to eliminate p1 on both sides and to have:

p2p3 . . . pr = q2q3 . . . qs.

In the same way, one obtains p2 = q2 and so on. Finally, all identical ideals
can be assembled to form powers so as to have

a = pe1
1 pe2

2 . . . perr .

The greatest common divisor and the least common multiple of two ideals
can be given using their prime decompositions, in the exact same way it is
usually done in rational number theory.

The proof of the existence of a unique factorization in primes allows to
prove the multiplicative property of the norm of ideals:

N(ab) = N(a)N(b).

It also allows to give a further characterization of a prime ideal: an ideal
is prime if and only if it is an ideal of first degree (i.e., its norm is a linear
polynomial). This last point “distinguishes in an essential way” the theory
of algebraic functions from the theory of algebraic numbers, in which a prime
ideal is not necessarily of the first degree.68

68The difference lies in the notion of norm of an ideal. In algebraic number theory, the
degree of an ideal is defined in the following way: the norm of an ideal a is a rational
integer, the (always finite) number of incongruence classes in o modulo a (i.e., the number
of integers in o which are not congruent modulo a). In the case of a prime ideal p, its norm
is a rational integer divisible by p and which put together with all the rational numbers
divisible by p forms a module [p] in which p is the smallest rational number greater than 0
divisible by p. This p is necessarily indecomposable (or it wouldn’t be the smallest number
divisible by p) and it cannot be 1, because in that case p = o. Since op is divisible by p,
N(op) = pn is divisible by the norm of p which is thus of the form pf and not necessarily
of the first degree.
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As mentioned earlier, there is a complete equivalence between the laws
of divisibility of ideals and the laws of divisibility of functions. So, with
all the theorems proved about the divisibility of ideals it is tantamount to
having proven the validity of these divisibility properties for algebraic func-
tions. This entails that Dedekind and Weber have proven that the laws of
divisibility of integral algebraic function agree completely with the laws of
divisibility of rational numbers.

Overall, it is only in the beginning of the second part of the paper that
the reasons for all these investigation of the properties of the field Ω appear
more clearly. Indeed, the study of the divisibility laws is not an aim in and
of itself, but the basis on which to construct a more rigorous and uniform
treatment of Riemannian function theory. The set up of the theory of ideals
and their divisibility leads to more algebraic investigations: the first part
of the 1882 paper continues for four more sections, in which Dedekind and
Weber pursue their analysis of the properties of the field.

An essential new concept for the definition of the Riemann surface is
the ramification ideal (Verzweigungsideal). This notion will, as its name
indicates, allow Dedekind and Weber to describe the ramification of the
field, so as to define the notion of ramification of a Riemann surface.

The ramification ideal is introduced as a purely algebraic notion without
mention of its relation with the ramification of the (to be defined) Riemann
surface. The aim of Dedekind and Weber’s investigation is really unclear,
at that point.69 The ramification ideal is defined as an ideal z such that

z =
∏

pe−1

in which the product is “taken over all the prime ideals p for which a power
higher than the first, namely the eth, divides their norm” (ibid., 83). One
of the first and most remarkable properties of the ramification ideal is that
its norm is the discriminant of the field: N(z) = D.70

Dedekind and Weber, even if they are not telling their readers so, are
setting up the framework and the toolbox which will serve to establish what
they hope to be a more general and more rigorous treatment of Riemann’s
function theory. We will see that most of the considerations about the

69See [Stillwell, 1996], 75-85, for more details on the technical preliminaries for the
definition of the ramification ideal.

70For more details, see Stillwell, 1996, 75-85. Dedekind will, in a paper published in
1882, transfer the ramification ideal (with a different name) back to number theory. The
back transfer is allowed by the generality and the “formal” character of the investigations
conducted here, as it was the case for the transfer from number theory to function theory.
I will consider it briefly on p. 374, but the link between Dedekind and Weber’s first
introduction of the ramification ideal, the notion to number theory by Dedekind and
today’s notion of ramification in algebraic number theory should be investigated further
than what I am proposing in this dissertation – a work I hope to accomplish in the future.
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arithmetical structure of the field Ω and the definition of special ideals will
have a counterpart in the definition of the surface.

2.4 Further investigations on function fields
There are two points left, for Dedekind and Weber, before moving on to
the definition of the Riemann surface. The first one is the consideration of
“fractional functions of z”, i.e., functions of Ω written as quotient of integral
algebraic functions. Such an expression is always possible, just as it is always
possible to write a rational number as a quotient of two integers. The second
point is the proof of the birational invariance of their results.

2.4.1 Fractional functions

The study of “fractional functions” is a way to enlarge the investigation
of the properties of the field outside of the system of integral algebraic
functions. One can consider any arbitrary function in the field and study
them using ideal theory.

It was proved in the beginning of the paper that it is always possible to
write a function of Ω as a quotient of two integral algebraic functions, and
this in infinitely many different ways. Dedekind and Weber thus explain
that with µ and ν in o two integral algebraic functions of z such that for a
function η in Ω

η = ν

µ

(µ can be a polynomial), then it is possible to consider the two principal
ideals oν and oµ and their GCD m. Thus, there exists two relatively prime
ideals a and b such that

oµ = am, oν = bm

Hence, laws about the multiplication and division of ideals give

bµ = a or aν = b

(ibid., 86). If now α is an integral function of z such that αη = β is again
an integral function, then

αν = βµ ⇒ αoν = βoµ ⇒ αb = βa

Since a and b are relatively prime, it is necessary that α be divisible by
a and β divisible by b. Weber and Dedekind thus prove that b is the LCM
of oη and o, and a is the LCM of o

η and o.

154



2.4 Further investigations on function fields

Dedekind and Weber then consider two ideals a and b (not necessar-
ily relatively prime), such that aη = b. Then, it is easy to see, by simple
manipulation of products of ideals, that

oη = b

a

Then, in the case of a and b relatively prime, Dedekind and Weber call b the
upper ideal (Oberideal) and a is the lower ideal (Unterideal) of the function
η.

Without using anything else than the arithmetic of ideals, Dedekind and
Weber deduce easily that the norm of η is the quotient of the norms of a
and b up to a constant. One can also exhibit laws about the product and
addition of such functions:

If η and η′ are two functions in Ω and if

aη = b, a′η′ = b′

(. . . ) but regardless of whether a, b or a′, b′ are relatively prime,
then

aa′ηη′ = bb′

The equations

oη = b

a
and oη′ = b′

a′

therefore yield the equations

oηη′ = bb′

aa′
; o

1
η

= a

b
; o

η

η′
= ba′

ab′

(ibid., 88)71

Likewise, for the addition, one obtains that a(η ± η′) = b′′ and thus

o(η ± η′) = b′′

a
.

The notions of upper ideal and lower ideal will be essential for a complete
definition of the Riemann surface. Indeed, they will be used to define the
zeros and the poles, and for the definition of differentials.

71“Sind η and η′ zwei Funktionen in Ω und ist (. . . ) aη = b, a′η′ = b′, gleichviel
ob a, b; a′, b′ relativ prim sind oder nicht, so folgt aa′ηη′ = bb′. Es folgen also aus
oη = b

a
und oη′ = b′

a′ die Gleichungen oηη′ = bb′

aa′ , o 1
η

= a
b
, o η

η′ = ba′

ab′ .”
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2.4.2 Invariance by rational transformations
The last paragraph of the first part of Dedekind and Weber’s paper is im-
portant for their generality requirement and state that the results obtained
for the study of the field Ω are invariant by “rational transformations of
functions in the field Ω”. The idea, here, is to chose another independent
variable z1 in place of z and an algebraic function θ1 in place of θ. It has
been proved that there exist an “irreducible algebraic equation” between z
and z1 of degree e in z and e1 in z1 with n = ef and n1 = e1f . Then

not only can z1, θ1 be expressed rationally in terms of z, θ, but
conversely, z, θ can be expressed rationally in terms of z, θ.72

(ibid., 91)

The path leading to this conclusion implies several pages of manipulation of
systems of equations, the details of which I will not give here.

The birational invariance result entails that the “arbitrary nonconstant
function z” chosen as “independent variable” can be “any (nonconstant)
function” in Ω. A result similar was obtained by Dedekind, in algebraic
number theory, where he chooses to associate the field to a certain equation.

Note that while this assures that the choice of the variable does not mar
the generality of the approach, especially since the “totality of the functions
in the field Ω remains completely unaltered”, the concepts developed (ba-
sis, norm, discriminant, integral algebraic function, module and ideal) are
dependent on the choice of the variable (ibid., 92). Some of these concepts,
namely the basis, norm, trace and discriminant, stay identical if and only if z
and z1 are linearly dependent of one another, that is z1 = az+b

cz+d (ad−bd 6= 0)
([Stillwell, 1996], 89).

The study of the arithmetical and algebraic behavior of the functions
in Ω was preliminary work, in order for Dedekind and Weber to be able to
define the Riemann surface. The said preliminary work was done with only
concepts built on arithmetical notions, and even, as we saw with ideals,
designed so that their development can follow lines very close to rational
number theory.

As Dedekind and Weber mentioned in the introduction of their paper,
the notion of a field of algebraic functions “coincides completely” with that
of a “class of algebraic functions” used by Riemann. The aim of the second
part of the paper is thus to exhibit the equivalence between the field and the
Riemann surface. This would make it possible to use, for developments of
the theory of Riemann surfaces, results obtained in algebraic investigations
on functions. Indeed, the correspondence between surface and field implies
that the singularities of the surface can be expressed in terms of (divisibility

72“Es lassen sich also sowohl z1, θ1 rational durch z, θ, als auch umgekehrt z, θ rational
durch z, θ darstellen.”

156



2.5 The point and the Riemann surface

of) ideals. For example, to describe the ramification of the surface, Dedekind
and Weber will propose a definition that relates it to the ramification ideals.

2.5 The point and the Riemann surface
Dedekind and Weber qualify the first part of their paper as “formal”:

The previous considerations on the functions in the field Ω were
of purely formal nature. (. . . ) The numerical values of these
functions did not come under consideration at any moment. (. . . )
But now that we have carried the formal part of the investigation
this far, the pressing question is to what extent is it possible to
assign particular numerical values to the functions in Ω so that
all rational relations (identities) existing between these functions
become correct numerical equalities?73 (ibid., transl. slightly al-
tered, 94)

It will be “useful”, for the definition of Riemann surfaces, to consider “∞” as
“one definite (constant) number”. The rules of computation with arithmetic
operations can be extended to the domain of numbers to which ∞ has been
added, as long as no “indeterminacy” of the form ∞ ± ∞, 0.∞, 0

0 ,
∞
∞ is

encountered. If such indeterminacy were to appear, Dedekind and Weber
state that the equation just does not have a truth value anymore.

The formal aspect of the study of the field Ω is a requirement for the
assurance of a general ground of Riemann’s theory. The next step is, thus,
to attribute numerical values (in C ∪ {∞}) to the functions, so as to sat-
isfy if the “rational relations” investigated in the first part are preserved
in the numerical domain. This statement appears to be a conservativity
requirement for the relations between functions on the so-called Riemann
sphere. “Formal” refers the fact that all results are inferred from the equa-
tion and the manipulation of the four fundamental operations of arithmetic
(+,−,×,÷).74 Weber, who had the same use of the term “formal”, wrote,
in his 1893 paper on Galois theory, that the only way for the “pure formal-
ism” to “[gain] meaning and life” is by “the substitution of the individual

73“Die bisherigen Betrachtungen über die Funktionen des Körpers Ω, waren rein for-
maler Natur. (. . . ) Die numerischen Werte dieser Funktionen kamen nirgends in Be-
tracht. (. . . ) Nachdem nun aber der formale Teil der Untersuchung soweit geführt ist,
drängt sich die Frage auf, in welchem Umfange es möglich ist, den Funktionen in Ω solche
bestimmten Zahlenwerte beizulegen, daß alle zwischen diesen Funktionen bestehenden
rationalen Relationen (Identitäten) in richtige Zahlengleichungen übergehen.”

74Stillwell translate “Spezies” by “algebraic operations”. While it is understandable if
one is to look at the 1882 paper as a part of algebraic geometry, I believe it is misleading.
Uses of the term “Spezies” were essentially made to refer to the four fundamental oper-
ations of arithmetic, as a synonym for “Grundoperationen der Arithmetik” (see [Müller,
1900]). It is, for example, the term used by Gauss in [Gauss, 1929] to designate the
operations of arithmetic.
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elements with number values”, in reference to the passage from a formal
treatment to the attribution of numerical values.

2.5.1 Points of the Riemann surface
The attribution of numerical values is the core idea for the definition of
the point of a Riemann surface. Dedekind and Weber define the point of
the surface as a correspondence from the field of functions into the field of
numerical constants:

If all the individual elements α, β, γ, . . . of the field Ω are re-
placed by definite numerical values α0, β0, γ0, . . . in such a way
that:

(I) α0 = α if α is constant, and in general,
(II) (α+ β)0 = α0 + β0

(III) (α− β)0 = α0 − β0

(IV) (αβ)0 = α0β0

(V) (αβ )0 = α0
β0
.

Then, to such a conjunction of definite values must be assigned
a point P (. . . ) and we say that α = α0 at P or that α has
the value α0 at P. Two points are called different if and only if
there is a function α in Ω which has a different values for each
of these two points.75 (ibid., transl. modified, 94)

The evaluation of the functions,76 as defined here by Dedekind and Weber is,
thus, a field morphism. The mapping from Ω to the “numerical constants”
is defined exactly (albeit without alluding to it) as field morphisms were

75“Wenn alle Individuen α, β, γ, . . . des Körpers Ω durch bestimmte Zahlwerte
α0, β0, γ0, . . . so ersetzt werden, daß

(I) α0 = α falls α konstant is, und allgemein:
(II) (α+ β)0 = α0 + β0

(III) (α− β)0 = α0 − β0

(IV) (αβ)0 = α0β0

(V) (α
β

)0 = α0
β0

wird, so soll einem solchen Zusammentreffen bestimmter Werte ein Punkt P zugeordnet
werden (. . . ) und wir sagen, in P sei α = α0, oder α habe in P den Wert α0. Zwei
Punkte heißen stets und nur dann verschieden, wenn eine Funktion α in Ω existiert, die
in beiden Punkten verschiedene Werte hat.”

76Dedekind and Weber are considering an application for a function ω of Ω taken as
variable, such that ω 7→ ω(x), with ω(x) a constant in C ∪ {∞}. This move, Bourbaki
tells us, has become such a common thing to do in mathematics, that we do not notice
anymore how original it is ([Bourbaki, 1984], 134).
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defined by Dedekind in his algebraic number theory. Dedekind called field
morphisms “permutations”. When a mapping is defined from a certain field
Ω onto another system of numbers Ω′, it is said to be a permutation if:

a determined number of Ω

α, β, α+ β, α− β, αβ, α
β

is changed into a corresponding number

α′, β′, (α+ β)′, (α− β)′, (αβ)′,
(
α

β

)′
in such a way that the conditions

(1) (α+ β)′ = α′ + β′

(2) (αβ)′ = α′β′

are satisfied and the substitute numbers α′, β′, . . . are not all
zero. (. . . ) [T]he set Ω′ of the latter numbers forms a new field,
and (. . . ) the permutation also satisfies the following conditions:

(3) (α− β)′ = α′ − β′

(4) (α/β)′ = α′/β′.77

([Dedekind, 1876-1877], transl. modified, 108-109)

These two fields are called “conjugate fields”. In [Dedekind, 1879], Dedekind
explains that these conditions are providing an answer to whether it is pos-
sible “to represent the numbers ω of the field Ω by the numbers ω′, in such
a way that all the rational relations existing between the numbers ω are
completely transferred to the image ω′”78 ([Dedekind, 1879], 470, my trans-
lation). In 1882, the definition of the point allows to show the conservation of
the rational relations between functions when a numerical value is attributed
to it. That is, that all rational relations between functions correspond to
numerical equalities. It seems to yield the assurance of the consistency of
their “formal” results. Indeed, the morphism appears to be giving content

77[N]ous entendons par une permutation de Ω une substitution par laquelle un nombre
déterminé contenu dans Ω, α, β, α+ β, α− β, αβ, α

β
se change en un nombre déterminé

correspondant α′, β′, (α+β)′, (α−β)′, (αβ)′ , (α
β

)′. Et cela de telle manière que les deux
conditions (1) (α+ β)′ = α′ + β′ (2) (αβ)′ = α′β′ soient remplies, et que les nombres
substitués α′, β′, . . . ne s’annulent pas tous. Nous allons faire voir que l’ensemble Ω′ de
ces derniers nombres forme un nouveau corps, et que la permutation satisfait aussi aux
deux conditions suivantes : (3) (α− β)′ = α′ − β′ (4) (α/β)′ = α′/β′”

78“ob es möglich ist, die Zahlen ω des Körpers Ω in der Weise durch Zahlen ω′ abzu-
bilden, dass alle zwischen den Zahlen ω bestehenden rationalen Beziehungen sich voll-
ständig auf die Bilder ω′ übertragen”

159



Chapter 2 - Theorie der algebraischen Funktionen einer Veränderlichen

to the formal investigations, the equalities translated in numbers granting a
guarantee of the coherence of the relationships between functions.

Dedekind and Weber suggest the possibility to attribute to the point
a geometrical meaning, to represent it “sensibly” as “somehow located in
space”. However, they immediately add that it is not necessary and in fact
“does not make comprehension easier”. Any implicit geometrical meaning of
the word point should, thus, be taken out of Dedekind and Weber’s concept
of point, which designates only “the coexistence of values” ([Dedekind and
Weber, 1882], 94).

The definition of a “point” is an “invariant concept” of the field, it does
not depend on the choice of a variable z, but only on the functions of Ω. The
definition has to be completed by further elaborations, so as to “deduce the
existence as well as the scope” of the concept of point. For this, Dedekind
and Weber establish the existence of a one-to-one correspondence between
points and prime ideals.

This is made in several steps. Firstly, they note that there is always a
variable z with a finite value in P. Indeed, if z0 were infinite, then (1

z )0
would be finite; and any integral function ω of such variable z as a finite
value in P as well. Secondly, for any variable z with a finite value in P,
they consider the collection of all the integral functions π of z which have
the value 0 in P. This collection is a prime ideal p. The point P is said to
“generate” the prime ideal p. Moreover, if ω has the value ω0 at the point
P, this translates into a congruence between the functions modulo the ideal
p: ω ≡ ω0 (mod p). In a third time, they show that the correspondence is
injective:

The same prime ideal p cannot be generated by two different
points.79 (ibid., 95)

Finally, they show that this correspondence is biunivoque, that is, for a
variable z and a prime ideal p in z, there always exists one, and according
to the previous point, only one, point P which generates this prime ideal.
This point is called the “null point” (Nullpunkt) of the ideal p (ibid., 95).
Thus, for any finite variable z, there is a one-to-one correspondence between
the points and the prime ideals of z in Ω.

To prove the last result, Dedekind and Weber use the fact, proven earlier,
that any function η of the field can be written as cρm + η1ρ

m+1, in which ρ
is a function whose upper ideal is divisible by a prime ideal p but not by p2,
m an integer, c a function and η1 a function. They design a way to attribute
values to η on this ground. With the point P obtained in this way, they
explain that a function whose upper ideal is divisible by p (in particular, all
the functions contained in p) is always attributed the value 0 at P by this

79“Dasselbe Primideal p kann nicht durch zwei verschiedene Punkte erzeugt werden.”
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peculiar attribution of values (i.e., the point P generates the ideal p). The
functions whose lower ideal is divisible by p are always attributed the value
∞ at the point P. They are the only functions which take the value ∞ at
P.

One can start to see how the upper and lower ideals will allow to express
the zeros and poles of the functions. These considerations allow to see more
clearly that there is a relationship between the values taken by the functions
and the fact that they are or are not integral algebraic functions of a variable
z:

an integral algebraic function of z is infinite at no point where z
has a finite value and, since a fractional function of z certainly
has one prime ideal in its lower ideal, hence it must be infinite at
at least one point where z is finite, thus also conversely each func-
tion, which is infinite at no point for which z has a finite value,
is an integral algebraic function of z.80 (ibid., transl. modified,
96)

Finally, the characterization of the concept of point is completed by
an indication on how to obtain “all the existing points P exactly once”.
Dedekind and Weber explain that it should be done in the following way.
First, one has to choose (ergreifen) a variable z in Ω. To obtain the points
at which z is finite, one forms all the prime ideals in z and constructs the
null point of each ideal: these are all the points at which z “remains finite”.
To obtain the points at which z becomes infinite, one starts by considering
a point P′ different from all the points just studied (i.e., not a point where
z remains finite), and takes the variable z′ = 1

z which has the value 0 in
P′. Conversely, all the points at which z′ is finite are not one of the points
P first described. Thus, if one considers the ideal p′ prime in z′ generated
by P′, that is, the prime ideal constituted by all the integral functions of
z′ which vanish at P′, then z′ is contained in p′ (“p′ (. . . ) divides z′”).
Conversely, if the null point of a prime ideal in z′ divides z′, then it is
a point at which z′ takes the value 0 and z = ∞. These “complementary
points” (Ergänzungspunkte) P′ are in finite number. If one collects (once) all
the points P first described and the complementary points P′, the totality
of the points is obtained, which form the “Riemann surface”. Formulated
with ideals, one has:

With this finite number of complementary points corresponding
to the different p′, and those previously derived from the prime

80“(. . . ) eine ganze Funktion von z in keinem Punke, in welchem z einen endlichen
Werte hat, unendlich ist, und, da eine gebrochene Funktion von z im Unterideal gewiß ein
Primideal enthält, also mindestens in einem Punkt, in welchem z endlich ist, unendlich
sein muß, so ist auch umgekehrt jede Funkion, die in keinem Punkte, in welchem z einen
endlichen Wert hat, unendlich ist, eine ganze Funkion von z.”
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ideals p in z, the totality of all points P is exhausted, whose
collection constitutes the Riemann surface T .81 (ibid., transl.
modified, 96)

While Dedekind and Weber do call the collection of all points the “Riemann
surface”, what is defined here is a “simple totality” (as they will state a few
pages later) in which each point appears only once. It does not describe the
multiplicity and ramification of the surface, and the surface as such is not
fully described.

2.5.2 Order numbers of the points

So as to characterize the singularities of the functions, Dedekind and Weber
introduce the notion of “order number” (Ordnungszahl). The order number
is attributed to the functions π of Ω which vanish in P in the following way.
First consider % which is one of the functions π “vanishing at P”:

Such a function % has order number 1 or is said to be infinitely
small of first order or again 01 at P when all quotients π

% remain
finite at P.82 (ibid., 97)

This corresponds to the zeros of the function %. The order of the other
functions can be given according to % by considering quotients like the ones
used to defined the order number of %. Thus, a function %′ has the same
order number as %, if and only if %

′

% is neither 0 nor ∞ at P.
The order of a function π is thus defined as the positive integer r such

that π
%r is neither 0 nor ∞ at P. Such a number r always exists for any

function π. The same is valid for the quotient π
%′r

and thus

π receives the order r or is said to be infinitely small of order r
at P. We also shall say that π is 0r at P or that π is 0 at Pr.83

(ibid., 97)

One notices that Dedekind and Weber are using Riemann’s vocabulary to
designate the zeros of the function. They also adopt the convention that if a
zeros is of order r, then it is the same as having the function vanishing at r
superposed points. But their adopting Riemann’s “infinitely small of order
r” does not mean that their approach involves uses of infinitesimals such

81“Mit diesen in endlicher Anzahl vorhandenen, den verschiedenen p′, entsprechen-
den Ergänzungspunkten und den vorher aus den Primidealen p in z abgeleiteten ist die
Gesamtheit aller Punkte erschöpft, deren Inbegriff die Riemannsche Fläche T bildet.”

82“Eine solche Funktion % hat die Ordnungszahl 1, oder heißt unendlich klein in der
ersten Ordnung oder 01 in P, wenn alle Quotienten π

%
in P endlich bleiben.”

83“π erhält die Ordnungszahl r oder heißt unendlich klein in der Ordnung r im Punkte
P. Wir werden auch sagen, π ist 0r in P oder π is 0 in Pr.”
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as one can find in Riemann’s works. The use of a Riemannian terminol-
ogy simply appears to bring to the fore the fact, already mentioned several
times, that they are rewriting the concepts of Riemann’s theory, rather than
proposing something completely new or merely applying number theory to
function theory.

The existence of % and r is proved by Dedekind and Weber using the
representation of π as a quotient of two relatively prime ideals: the functions
whose upper ideal is divisible by p (the prime ideal in z generated by P)
but not by p2 are of order 1. The order of the other functions π will be “the
highest power of p dividing the upper ideal”.

For a value η0 different from 0, Dedekind and Weber say that a function
η takes the value η0 at P r-tuply (or at r coinciding points or at Pr) when
η − η0 is infinitely small of order r at P.

It is possible that η0 = ∞, which then describes what we would call a
pole. Then, Dedekind and Weber say that “η takes the value ∞ r-tuply”
(or at r coinciding points or at Pr) or is ∞r at P, if 1

η vanishes at Pr. In
this last case, the order number of η is −r.

At any point where the function’s value is neither 0 nor ∞, its order
number is 0.

This way, Dedekind and Weber attribute an order number to each func-
tion of Ω at a certain point P,84 and only the constants 0 and ∞ do not
have an order.

2.5.3 Polygons
So as to described the singularities appropriately, one has to consider com-
plexes of points, called “polygons”, and their products. Indeed, polygons
provide a tool for the definition and study of the singularities of the Rie-
mann surface85 and will be of great use in the rest of the paper.

We give the name polygons to complexes of points, which may
contain the same point more than once and denote them by
A, B, C, . . ..
We also let AB denote the polygon obtained from the points of
the polygons A and B put together, in such a way that a point P
that appears r-tuply in A and s-tuply in B, appears r+ s-tuply
in AB.86 (ibid., transl. modified, 98)

84This corresponds to what is nowadays called a discrete valuation.
85A polygon corresponds to what is today called a positive divisor, see [Dieudonné,

1974] or [Stillwell, 2012] note 39, page 98.
86“Komplexe von Punkten, welche denselben Punkt auch mehrmals enthalten können,

nennen wir Polygone and bezeichnen dieselben mit A, B, C, . . .. Es bedeute ferner AB
das aus den Punkten von A und von B zusammengesetzte Polygon in der Weise, daß,
wenn ein Punkt P r-mal in A, s-mal in B auftritt, er (r + s)-mal in AB vorkommt.”
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The product of two polygons is thus, roughly speaking, the ‘putting together’
of two polygons, the multiplicity of the points of each polygons being added
– indeed, it was shown that the order number of a product of functions is
the addition of the order number of each function.

Hence, from the definition of the product of polygons, one can deduce
the “meaning” (Bedeutung) of the power of a point Pr, which was used in
the definition of the order number: it is a point that appears n times in the
polygon, and thus is repeated n times on itself. One can also deduce the
meaning of

A = PrPr1
1 Pr2

2 . . .

It is possible, therefore, to decompose a polygon into the product of all
its points, each with its own power – the number of times it appears in the
polygon – which is basically a decomposition into prime elements. Dedekind
and Weber call the number of points in a polygon its order, and a polygon
of order n is called an n-gon.

This allows Dedekind and Weber to study the laws of divisibility of poly-
gons, established by the one-to-one correspondence between (composite) ide-
als and polygons:

the laws of divisibility of polygons agree completely with the laws
of divisibility of integers and of ideals. Points play the role of
prime factors.87 (ibid., transl. slightly altered, 98)

If one wants to have a unit, for this new notion of divisibility, one has to
admit the polygon containing 0 points, denoted by O (called “Nulleck”).

These developments lead Dedekind and Weber to define the GCD and
the LCM of two or more polygons:

The greatest common divisor of two polygons A and B is the
polygon that contains each point the least number of times it
occurs in A and in B. If it is [the empty polygon] then A, B are
called relatively prime.

The least common multiple of two polygons A and B is the poly-
gon that contains each point the greatest number of times it
occurs A and in B. If A, B are relatively prime, then AB is
their least common multiple.88 (ibid., 99)

87“[D]ie Gesetze der Teilbarkeit der Polygone in vollkommener Übereinstimmung mit
denen der Teilbarkeit der ganzen Zahlen und der Ideale. Die Rolle der Primfaktoren
übernehmen dabei die Punkte.”

88“Der größte gemeinsehaftliche Teiler zweier Polygone A, B ist dasjenige Polygon,
welches jeden Punkt so oft enthält, als er in A und B mindestens vorkommt. Ist dies
O, so heißen A, B relativ prim. Das kleinste gemeinschaftliche Vielfache von A und B
ist dasjenige Polygon, welches jeden Punkt so oft enthhält, als er in A und B höchstens
vorkommt. Sind A, B relativ prim, so ist AB ihr kleinstes gemeinschaftliches Vielfache.”
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Note that this corresponds exactly to the definition of the GCD and the
LCM by powers of prime numbers, in number theory – or for ideals.

The correspondence between functions (vanishing at some fixed points)
and ideals is not yet complete, for one needs to prove that polygons corre-
spond to non-prime ideals. Dedekind and Weber explain that it can easily
be proved that there is always a function z in Ω that never becomes infinite
at any points of an arbitrary polygon A = PrPr1

1 Pr2
2 . . . Indeed, if z were

to become infinite, one only needs to take a constant c such that z − c 6= 0
and consider 1

z−c which is finite at every points of the polygon. Conse-
quently, taking z as a variable, one can form the collection of the integral
algebraic functions that vanish at the points of the polygon A (without for-
getting to count their multiplicities). This collection of points forms the ideal
a = prpr1

1 pr2
2 . . ., which is said to be generated by the polygon A. Dedekind

and Weber call this polygon A the “Nullpolygon” of a.
So, from the decomposition of a polygon into the product of its points,

one deduces that polygons are in correspondence with the composite (non
prime) ideals.

A = PrPr1
1 Pr2

2 . . .

corresponds to the ideal
a = prpr1

1 pr2
2 . . .

whose prime factors correspond to the points of the polygon.
As a prime ideal is said to be generated by a point, a composite ideal

is generated by a polygon. The GCD (resp. the LCM) of two ideals is
generated by the GCD (resp. the LCM) of the polygons which generate the
said two ideals. The null-gon O generates the ideal o.

This way, Dedekind and Weber write, is established “the complete coin-
cidence between ideals and the collection of integral functions equal to zero
at the same fixed points” (ibid., 99).

There is a connection between the order of the field Ω relative to a
variable z chosen, and the values of this function. Indeed, Dedekind and
Weber prove that for any variable z in Ω, if Ω of degree n relative to
z, then z takes each particular value c at exactly n points. This can be
seen by considering the principal ideal o(z− c) and its prime decomposition
o(z − c) = p1

e1p2
e2 . . . with e1 +e2 +. . . = n. From what has been previously

shown, if P1,P2, . . . are the null-points of the prime ideals p1, p2, . . ., then
z takes the value c at Pi as many times as the prime ideal generated by Pi

appears in the prime decomposition of the ideal o(z − c). This is valid for
each of the points, which means that z takes the value c at each n points of
the polygon. It is also true for c = ∞. Thus, the number n is the number
of points at which the variable z takes the same value c, and it is called the
order (Ordnung) of z. The Ordnung of z is always a positive integer and
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always equals to the order of the field relative to z. Constants, and only
constants, have order 0.

2.5.4 The Riemann surface
With the multiplicity of the points adequately characterized, and with the
polygons describing the singularities of the functions, Dedekind and We-
ber can define the Riemann surface with its structure and not as a mere
collection of points. They call the Riemann surface with ramification the
“absolute Riemann surface”.

The Riemann surface is defined as the product of all polygons “moving
through” (sich bewegen), i.e., taking successively all the values in C ∪ {∞}.
As they proved just before, for any numerical value c, there is a polygon A
with n points (not necessarily distincts) for which the variable z takes the
value c. These n points are said to be “conjugate” for z. This entails that z
can take continuously all the values in C∪{∞}. This is what Dedekind and
Weber designate as the polygon A “moving through” all the possible values
“and indeed in such a way that all its points change simultaneously.” This
allows for the discrete characterization used so far to adequately describe
the surface associated to the field Ω.

In this way, one obtains all the existing points, including several times
the points for which z − z0 or 1

z vanishes for an order higher than 1 (which
always happens only a finite number of times).

Hence, if one takes the product of all these polygons, one obtains:∏
A = TZz

where T is the “simple totality” formed by collecting all the points once, and
Zz is “a particular finite polygon called the ramification or winding polygon
of T in z” (ibid., 100). The Riemann surface is an invariant concept of the
field.

The ramification polygon Zz is a finite polygon whose points describe
the ramification of the Riemann surface. These points are called winding
points or ramification points (Verzweigungs- oder Windungspunkt) of T in
z, and each point is said to be “of order s if it appears s-tuply in Zz.” (ibid.,
100). If z− z0 or 1

z is infinitely small of degree e, then s = e− 1. The order
of the ramification polygon is called “the ramification or winding number
wz.” Moreover, as its name suggests:

The points of the ramification polygon at which z has finite value
together generate the ramification ideal in z.89 (ibid., 100)

89“Diejenigen Punkte des Verzweigungspolygons, in welchen z einen endlichen Wert hat,
erzeugen zusammen das Verzweigungsideal in z.”
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The correspondence between surface and field implies that the singularities
of the surface can be expressed in terms of (divisibility of) ideals: the ram-
ification of the surface is thus translated into what we would now call the
ramification in the field Ω, and which is characterized for Dedekind and
Weber by the “ramification ideal” z.

It can be shown that the ramification polygon and the ramification num-
ber are left unchanged by a linear transformation of z into z′ = c+dz

a+bz (a, b, c, d
constants and ad − bc 6= 0), which is linked to the fact that norms, traces
and discriminants are not affected by such transformations.

Moreover, the ramification number is equal to the difference between the
degree of the discriminant of Ω relative to z, ∆z(Ω), and the degree of the
discriminant of Ω relative to z′ = 1

z , ∆′z(Ω).
Finally, further down the paper, Dedekind and Weber can also show that

the ramification number is necessarily an even number (ibid., 113).
Hence, as one can see, the correspondence between surface and field

implies that the singularities of the surface can be expressed in terms of
(divisibility of) ideals. The polygons allow to describe the singularities, and
in particular the ramification of the surface is translated into the ramification
in the field Ω, characterized by the “ramification ideal” z.

The definition of the “‘absolute’ Riemann surface” given by Dedekind
and Weber has no geometrical component and its link with the Riemannian
idea of a Riemann surface seems difficult to grasp. Dedekind and Weber
mention that to “pass from this definition of the ‘absolute’ Riemann surface
to the well-known Riemannian conception”, it suffices to “think the surface
spread over a z-plane which is then covered n-tuply everywhere except at
the ramification points” (ibid., 100). But they don’t explore further this
possibility, which appeals at least to a geometrical representation – if not
to spatial intuition. The Riemann surface defined by Dedekind and Weber
is rather detached from any spatial consideration. By relying exclusively
on rational relations between functions, Dedekind and Weber develop their
theory in such a way that topological notions are not needed in the definition
but should eventually follow from the notions introduced.

2.5.5 More investigations about polygons
So far, only polygons with a positive power have been considered. This im-
plies that only positive order numbers have been taken into account, since
the poles have a negative order number. Following their arithmetical ap-
proach and the correspondence between polygons and ideals, Dedekind and
Weber propose a representation of the functions of Ω as quotients of poly-
gons. The denominator of the quotient will serve for the description of
negative order numbers.

Why is this important? We saw that functions in Ω are completely char-
acterized by their order numbers: if η in Ω takes the value 0 with multiplicity
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r at P, its order number is r; if η takes the value ∞ with multiplicity r at
P′, its order number is −r; if η takes any other (constant) value, its order
number is 0. There is only a finite number of points at which η has an order
number different from 0. In addition, “the sum of all these order numbers is
0, and hence the sum of positive order numbers equals the sum of negative
order numbers, and indeed it equals the order of the function η” (ibid., 103).
In addition

If the order numbers of a function η are known for each point
P, then the function η is determined up to a constant factor.
Because if η′ has everywhere the same order number as η then
η
η′ has order number zero everywhere and hence is a constant.90

(ibid., 103)

So, if one were to construct a polygon A with each point at which η has
a positive order number, and a polygon B with each point at which η has
a negative order number, then these two polygons are of order the order
of η and characterize the function completely up to a constant. But the
definition adopted so far does not include polygons whose points have a
negative power. Rather than to propose the definition of an ‘arbitrary’
polygon with arbitrary (positive or negative) powers, Dedekind and Weber
“symbolically set” the function η as quotient of two polygons A and B

η = A

B
.

In accordance with the names used for quotients of ideals, A is called the
upper polygon and B the lower polygon. This allows Dedekind and Weber
to introduce negative powers – those of the lower polygon – without adopting
an approach which would not agree with the arithmetic of ideals as developed
in the first part. In fact, by adopting the presentation of negative powers as
the powers of the denominator of a quotient, they lean even more towards
an arithmetical treatment of the theory.

The multiplication and division of two functions η and η′ show that
quotients of polygons obey the following (familiar looking) rules:

if η = A

B
and η′ = A′

B′
then ηη′ = AA′

BB′
and η

η′
= AB′

BA′
.

Thus, one can see that the function η′ is an integral algebraic function of η
(taken as variable) if and only if “each point in the lower polygon of η′ also
appears in the lower polygon of η” (ibid., 104). Indeed, the characteriza-
tion by means of order numbers given by Dedekind and Weber show that a

90“Sind die Ordnungszahlen einer Funktion η für jeden Punkt P bekannt, so ist damit
die Funktion η bis auf einen konstanten Faktor bestimmt; denn hat η′ überall dieselbe
Ordnungszahl wie η so hat überall die Ordnungszahl Null und ist also eine Konstante.”
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function of a certain variable z is an integral algebraic function of z if and
only if it does not have infinite values at the points at which z takes a finite
value. If B′ ⊂ B, then η′ is infinite only at points where η is also infinite
(the points of B).

From the representation of functions as quotients of polygons, Dedekind
and Weber define an equivalence relation between two polygons A,A′ with
the same number of points:

Two polygons A and A′ with the same number of points are
called equivalents if there is a function η in Ω with the notation

η = A

A′
.91

(ibid., 105)

This relation (not introduced as an ‘equivalence relation’ by modern stan-
dards) is transitive and allows to define a notion of equivalence class for
polygons:

All the polygons A′,A′′, . . . equivalent to a given polygon A con-
stitute a polygon class A. (. . . ) Each polygon belongs to one
and only one class.92 (ibid., 105)

All the polygons in a polygon class have the same order, which is thus called
the order of the class. It is possible to have polygon classes constituted by
only one polygon, this polygon is called “isolated” polygon. The equiva-
lence is preserved by the multiplication by an arbitrary polygon, i.e., if A
equivalent to A′, then MA equivalent to MA′ for any M.

Dedekind and Weber then introduce the notions of product and of di-
visibility for the polygon classes. Since A equivalent to A′ and B equivalent
to B′ implies AB equivalent to A′B′, they can consider the class of the
polygons AB. The class C which contains AB contains all the products of
a polygon of A by a polygon of B. It is thus called the product of A and B
and C = AB = BA.

In the same order of ideas, if a polygon A in A divides a polygon C in
C, one has AB = C and for any A′ in A and C′ in C, then A′B = C′. Thus,
one can say that C is divisible by A.

The notion of “Schaar” can be extended to polygons as well, by con-
sidering s equivalent polygons A1,A2, . . .As and an arbitrary polygon A in

91“Zwei Polygone A und A′ von gleichviel Punkten heißen äquivalent, wenn eine Funk-
tion in Ω existiert welche die Bezeichnung hat η = A

A′ ”.
92“Alle mit einem gegebenen Polygon A äquivalenten Polygone A′,A′′, . . . bilden eine

Polygonklasse A. (. . . ) kommt jedes beliebige Polygon in einer und nur in einer Klasse
vor.”
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the same polygon class A. Thus, s functions can be formed by taking the
quotients of each A1,A2, . . .As by A:

η1 = A1
A
, η2 = A2

A
, . . . , ηs = As

A

If one considers these functions as forming a family, then at a certain point
P, any function of the form

η = c1η1 + . . .+ csηs

where the ci are constants, can be shown to be such that

η = A′

A

with A′ in A. All the polygons A′ corresponding to the different constants
ci depend only on the polygons A1,A2, . . .As, which can thus legitimately
be called a “family of polygons” with basis A1,A2, . . .As and denoted by
(A1,A2, . . .As). The linear dependency / independency of A1,A2, . . .As is
likewise defined.

A notion of divisor of the family is then defined, which corresponds to
the (possible) greatest common divisor M of all the A1,A2, . . .As. Moreover,
if one takes in a family S (of dimension s) all the polygons that are divisible
by an arbitrary r-polygon R, these polygons form a family of dimension at
least s − r (ibid., 108). One can thus lower the dimension of a family of
polygons by choosing the appropriate divisor R.

The dimension of the family formed by all the polygons in a same class,
which is always finite, is called the dimension of the class. Conditions of di-
visibility are again given: if the class C contains exactly s linearly indepen-
dent polygons divisible by a polygon A in a class A, then C is divisible by A
and the number s depends only of A and C and is denoted by (A,C). The di-
mension of A will consequently be denoted by (O,A), where O is the class of
O, the polygon null.93 In particular, if C = AB, (A,C) = (A,AB) = (O,B)
and in general (O,B) ≥ (O,AB)− a, where a is the order of A.

One defines a “proper (eigentlich) class” as a family whose polygons are
all relatively primes. In the opposite case, the class is said to be “improper”
of divisor M. This notion will be important for the proof of the Riemann-
Roch theorem.

2.5.6 On the Riemann-Roch theorem
The Riemann-Roch theorem has been described as the most striking ex-
ample of the intimacy of the relationships between topological notions and

93One can note that the notation is analogous to that used for the relative norm of
modules and ideals.
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properties of functions,94 which seems to be lost in Dedekind and Weber’s
version of it. We saw that in Riemann’s and Roch’s version of it, it gives
the number of arbitrary constant contained in a function (i.e., the number
of parameters of which the function depends) which becomes infinite at a
certain number m of given points, in relation with its genus p.

In Dedekind and Weber’s rewriting of Riemann’s theory, the Riemann-
Roch theorem becomes a relation between the order and the dimension of a
polygon class, or between a class and its “supplementary” class. The proof
of the Riemann-Roch theorem, given by Dedekind and Weber only involves
manipulations of (quotients of) polygons and classes of polygons.95

The genus p is, following Riemann, given by

p = 1
2w − n+ 1

in which w is the sum of the ramification numbers and n is the degree as
earlier. The genus is independent of the choice of variables.

If two functions α, β, of order n,m respectively, generate all the func-
tions of the field Ω, then Dedekind and Weber show, with manipulations of
quotients of polygons, that for r the number of double points:

p = (n− 1)(m− 1)− r

For the proof of the Riemann-Roch theorem, Dedekind and Weber in-
troduce purely algebraic notions of differential quotients and differentials.
Dedekind andWeber’s surface, defined by purely arithmetico-algebraic means,
lacks the possibility to set up the appropriate structure for an integration
theory. From their viewpoint, continuity should not be taken as a given
property of surfaces (or, in fact, of space in general) nor as a necessary con-
dition for the definition of the surface. Dedekind and Weber thus introduce
notions related to integration theory by purely algebraic means, without any
recourse to “continuity”.

Dedekind and Weber define differentials of different “kinds” according
to the classification given by Riemann (following Legendre, see p. 88). The
proof of the Riemann-Roch theorem will be done in several times, according
to the different “kinds” of differentials.

Differentials of the first kind are “the simplest differentials in Ω”, that

94See the Introduction of [Stillwell, 2012], as well as [Bourbaki, 1984] and the articles
by Jeremy Gray mentioned on p. 103.
Dedekind and Weber also prove Abel’s theorem, in a form stated by Stillwell to be “hardly
recognizable”, since the genus does not even appear in the theorem. I will not develop the
proof of Abel’s theorem, and will concentrate on the Riemann-Roch theorem.

95For more details, see Stillwell, 1996, 110-133.
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is, differentials of first kind are those without poles.96 Differentials can be
written as quotients of polygons, and the upper polygon W of differentials
of first kind dw is of order 2p − 2. It is called “fundamental polygon of w”
(ibid., 123). Dedekind and Weber call this polygon a “complete polygon of
first kind”, and its divisors “polygons of first kind.”

Two polygons A and B are said to be “supplementary polygons of each
other” if AB = W. Any polygon that is not a divisor of a complete polygon
of first kind, and in particular a polygon whose order is greater than 2p− 2,
is said to be a “polygon of the second kind”.

All complete polygons of the first kind form a polygon classW .97

(ibid., 124)

Dedekind and Weber show that (O,W ) = p.
A supplementary class is defined following the same approach that Dede-

kind and Weber adopted for most of the paper. They extend the notions
given above to classes of polygons: the equivalence between polygons pre-
serves the property of a polygon to be of first kind, hence a class of polygons
which contains polygons of first kind is called “polygon class of the first kind”.
The other classes are called “polygon classes of second kind.”

If A and B are supplementary, then their respective polygon classes are
such that AB = W and consequently called “supplementary classes”. The
notion can also be related to functions, which will be called of the first or
second kind according to the kind of their lower polygon.

Dedekind and Weber prove that for an arbitrary class of the first kind
A, and q the number of independent polygons W divisible by a polygon A
in A, then

q = (A,W ) = (O,B)

that is, the number of independent polygons that can be divided by a poly-
gon in A is equal to the dimension of the supplementary class of A. Since
(O,W ) = p, and since (A,W ) = 0 for any class A of the second kind, then
“each class of order ≤ p− 1 is of the first kind” (ibid., 127).

The Riemann-Roch theorem is then stated as follows.

If A, B are supplementary classes of first kind, at least one of
which is proper, and if a, b are their orders, so that

a+ b = 2p− 2

96Riemann’s restatement of Legendre’s classification, given on p. 98 gives the conditions
on the singularities of functions for them to correspond to the first, second or third kind
of integrals established by Legendre. Dedekind and Weber follow this idea.

97“bilden alle vollständigen Polygone erster Gattung eine Polygonklasse W .”
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then
(O,A)− 1

2a = (O,B)− 1
2b.

98

(ibid., 129)

If the case (A,W ) = 0 is not excluded, then the Riemann-Roch theorem
reads:

If A is a proper class fo order n, then its dimension is

(O,A) = n− p+ 1 + (A,W ).99

(ibid., 129)

in which one can recognize the Riemann-Roch theorem in its original form.
Indeed, for a variable z, (O,A) is the number of linearly independent poly-
gons in A of order n,100 p is the genus and (A,W ) = q is the number of
linearly complete polygons of first kind, i.e., upper polygons of differentials
of the first kind.

As we can see, Dedekind and Weber do not only reformulate the theory
so as to have a definition of the Riemann surface answering certain epis-
temological requisites. Indeed, their theory gives them the means to offer
what is considered by historians as the first rigorous proof of the Riemann-
Roch theorem. This proof illustrates well how Dedekind and Weber are able
to obtain and prove important results using solely the arithmetico-algebraic
arsenal developed in their paper.

After this proof, Dedekind and Weber’s paper goes on for several para-
graphs, in which they shed further light on differentials of second and third
kind, using the Riemann-Roch theorem and relating them to the singulari-
ties of the surface. They also define the residues of an algebraic differential.
They are able to prove, with the conceptual apparatus developed in the
previous paragraphs, the theorem stating that the sum of the residues of an
algebraic function is zero.

Dedekind and Weber are able, as they wished, to treat entire classes of
functions at once, without having to distinguish between special cases or
make restrictive assumptions about their singularities, and without having
to rely on Darstellungsformen. Moreover, Dedekind and Weber’s treatment

98“Sind A,B Ergänzungsklassen erster Gattung, von denen wenigstens die eine eine
eigentliche ist, und a, b ihre Ordnungen, also a+ b = 2p−2, so ist (O,A)− 1

2a = (O,B)−
1
2 b.”99“Ist A eine eigenliche Klasse von der Ordnung n, so ihre Dimension (O,A) = n−p+
1 + (A,W ).”

100The order of A is the order of the polygons contained in A, which is itself the number
of points of the polygons.
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does keep the idea that the surface defined and the functions of Ω are inti-
mately related and indispensable to each other (with, notably, the intricate
relation between the definition of the points and the values of the functions,
in particular the study of their singularities).

However, overall, any geometrical consideration, any recourse to “Analy-
sis situs”, disappear from Dedekind and Weber’s treatment. Indeed, notions
which were considered by Riemann as intrinsically related to the surface
and pertaining to Analysis situs were all defined by Dedekind and Weber by
arithmetico-algebraic means involving polygons (and through them, ideals).
The properties of the surface and their intrinsic relationships with functions
are emptied of any geometrical meaning, essential for Riemann but deemed
unnecessary (if not useless) by Dedekind and Weber.

While Riemann’s Riemann surfaces allowed to acquire a deep under-
standing of multi-valued functions via a thoroughly geometrical concept,
Dedekind and Weber’s rewriting erases the geometrical core of Riemann’s
works. It seems that the fact that they completely give up any geometrical
meaning in Riemann’s theory makes their approach not exactly as faithful
to Riemann’s initial ideas as Dedekind and Weber claimed it to be.

2.5.6.1 Reception of the 1882 paper

Dedekind and Weber’s paper arose very little interest, for some time. While
Hilbert did use some of their ideas for his Nullstellensatz, the adoption of
the ideal theory as a basis for a treatment of Riemann function theory did
not stir up much enthusiasm. As I have mentioned, Weber himself did not
use ideals in algebraic function theory, in the third volume of his Lehrbuch.

Brill and Noether, in 1894 ([Brill and Noether, 1892]), openly exclude
Dedekind and Weber’s “theory relying on number theory” (as well as Kro-
necker’s) from their report on algebraic geometry.101

A first significant response can be found in Hensel and Landsberg’s 1902
book ([Hensel and Landsberg, 1902], dedicated to Dedekind), which changes
the basis of the theory from ideal theory to function theory, so as to be
able to penetrate deeper into Riemann’s theory, in particular as regards
Abelian functions.102 They do, however, introduce ideal theory later in the
book, in the part about the Riemann-Roch theorem. But Hensel, as Geyer
explains, replaces many of the “conceptual conclusions” of Dedekind and
Weber by computations using expansions in series and products, losing what
for Geyer constitutes the “conceptual elegance, the formal beauty and the
flavorful brevity” of the paper ([Geyer, 1981], 115). According to Laugwitz,

101An additional reason for them do so, they explain, is the fact that Klein’s lectures on
Riemann surfaces in 1892 did give a detailed account of their work ([Brill and Noether,
1892], v) – which does not mean, that Klein adopted their approach.

102See [Laugwitz, 2009], 160, and [Geyer, 1981].
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Hensel and Landsberg’s book was “found (. . . ) easier to read than the
work of Dedekind and Weber,” however, the standpoint adopted as regards
the foundation of the theory “represents a watering down of Dedekind’s
idea in that it largely replaces the ideal-theoretic by the function-theoretic.”
Hence, even in the works of mathematicians who felt they owed so much to
Dedekind’s works that they dedicated their book to him, one can find what
Laugwitz considers to be

one more instance of a common phenomenon, which is that many
people are likely to reject an ever-so-beautiful algebraic theory
in favor of a (possibly more complicated) analytic treatment.
([Laugwitz, 2009], 160)

2.6 On the “arithmetical” rewriting
In the following section, I will argue that Dedekind and Weber’s rewriting
of Riemannian function theory is an arithmetical rewriting. For this, I will
try a first clarification of how “arithmetical” should be understood from
a Dedekindian viewpoint. These paragraphs set up a series of statements
and questions about Dedekind’s mathematics and will highlight a thread to
follow. Hence, these paragraphs constitute a first analysis and the comments
and statements made will be tested and investigated more deeply in the next
chapters of the dissertation.

2.6.1 An arithmetical definition of the Riemann surface?
Let me sum up quickly what we just saw. In their 1882 paper, Dedekind and
Weber start “analogously to number theory” by defining fields, modules and
ideals of functions. The first essential step of the theory is to thoroughly
study the laws of divisibility of ideals, which correspond to the laws of di-
visibility of polynomial functions. This is done by defining arithmetical
operations for ideals in such a way that it becomes possible to “calculate”
with ideals:

With a proper definition of multiplication, it is possible to calcu-
late with these ideals using exactely the same rules as for ratio-
nal functions.103 ([Dedekind and Weber, 1882], transl. slightly
altered, 42)

Once this is done, additional notions in ideal theory are defined such as the
ramification ideal, which are developed on the same ground, namely using
products, decomposition in primes, and divisibility of ideals.

103“Mit diesen Idealen läßt sich nach gehöriger Erklärung der Multiplikation ganz nach
denselben Regeln rechnen, wie mit rationalen Funktionen.”
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Following the unfolding of the theory of ideals, the surface is defined
by its points: points are defined by a mapping from the elements of the
field Ω into the field of numerical values in such a way that the image of
the arithmetical operations (of functions) is consistent with the arithmetical
operations for the numerical values. There is a one-to-one correspondence
between points and prime ideals. Then, because points do not allow to
have more than a “simple totality” which does not provide an appropriate
description of the singularities of the functions, complexes of points, called
polygons, are defined, for which it can be shown that they correspond to
a unique non-prime ideal. The one-to-one correspondence between ideals
and polygons allows to carry divisibility properties considerations over to
polygons.104 Hence, in general, the laws of arithmetic of ideals can be carried
over to polygons. This yields a decomposition into primes for polygons, and
notions such as the GCD and the LCM of polygons, which will be used in
the rest of the theory. For any numerical value c, there exists a n-gon A for
which the variable z takes the value c. To obtain all the points, including
multiple points, one makes c “run through” C∪{∞}, which yields a product
of polygons composed of the simple totality of all points and the ramification
polygon describing the ramification of the surface.

The ramification number, the genus, the differentials are defined in terms
of polygons, divisibility relations between polygons, quotients of polygons
and equivalence classes relation between polygons. Notions of divisor, mul-
tiplication, and the like are likewise carried over to classes of polygons,
differential quotients, families of differentials, etc.

Emmy Noether, in her editor’s note, presents Algebraische Funktionen as
the creation of the arithmetical theory of functions. And in fact, Dedekind
and Weber’s theory was received by their contemporaries as an application
of number theory to function theory, seeing in it a certain “arithmetical”
aspect.

However, the treatment of the theory of functions, given by Dedekind
and Weber, is not presented by them as a mere “application” of number
theoretical methods. Rather, they are proposing a thorough rewriting of
Riemann’s ideas so as to instigate, in Riemannian function theory, the rigor
and “generality” they consider essential for its development. In fact, the
inherently arithmetical nature of Dedekind and Weber’s rewriting of Rie-
mann’s theory, I will argue, is brought about by the fundamental use of
the rational operations to develop the core ideas and to propose a brand
new ground of Riemann’s theory. Indeed, as we saw, if we interpret arith-
metical in this way, the approach used not only for ideals (where it could
be seen as natural, given the number theoretical roots of ideals), but for

104This argument was already used by Dedekind for the fact that studying the divisibility
of ideals is tantamount to studying the divisibility of algebraic numbers.
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polygons and notions related to the surface, is indeed arithmetical. Thus,
in this sense, the attempt to provide a definition of a Riemann surface that
would be considered more reliable and more rigorous, consists essentially in
an “arithmetical” rewriting of Riemann’s theory of functions.

To be clear, by “arithmetic”, I do not mean the properties of (the se-
quence of) natural numbers themselves, but rather what Dedekind and many
19th century referred to as the “science of numbers”: the properties, theo-
rems and laws following from the definition of the four elementary opera-
tions. In particular, the reference to the development of an “arithmetical”
theory should not be understood as suggesting that Dedekind is involved
in a reduction of the objects of mathematics to integral numbers. The pre-
eminence of arithmetical methods in Dedekind’s works is not the kind of
arithmetical reductionism that one can found in Kronecker’s mathematics,
a point that I will try to make clear in the rest of this dissertation.105 The
key reason for it not being reductionism is that for Dedekind, the inven-
tion of new concepts is an essential part of the development of mathematics
and, in particular, the extension of the concept of number appears as crucial
for the development of arithmetic. Dedekind’s efforts are directed towards
arithmetical relationships in the domain he is studying.

Furthermore, as we saw in Algebraische Funktionen and will see in more
details in the following chapters, Dedekind defines arithmetical relationships
for various objects, from groups to polygons. While this could suggest that
the operations should be understood as algebraic operations, rather than
arithmetic106, it is important to note that Dedekind systematically proceeds
to study the laws of divisibility. And, from Dedekind’s viewpoint, divisibility
is the first and fundamental concern of arithmetic:

The theory of divisibility of numbers, which serves as a foun-
dation of arithmetic, was already established in its essentials by
Euclid. ([Dedekind, 1876-1877], transl. slightly altered, 53)

The idea that the study of divisibility plays a central role in the development
of number theory was rather common in the 19th century as we saw in
Sec. 1.2.

If arithmetic is mostly concerned with divisibility, then Dedekind and
Weber’s theory is, indeed, deeply arithmetical, since the operations used in

105Kronecker, as is well known, demanded to develop methods and algorithms based
on the sole use of natural numbers which were considered to be the only actual existing
numbers, defining negative and rational numbers as magnitudes stemming from congru-
ences but without giving them the status of numbers. I will come back to the difference(s)
between Dedekind’s and Kronecker’s ideas about arithmetic on several occasions in this
dissertation.

106In the sense of algebra as being the science of calculation with ‘symbols’ and arithmetic
being the science of numbers.
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their paper are still intrinsically related to divisibility. However, they do
seem to be completely devoid of any relation to numbers, with which arith-
metic is usually related – in Dedekind’s statements as well. I will propose
in the following paragraphs to consider the first, most immediate elements
at our disposal to clarify Dedekind’s conception of arithmetic, so as to set
the outlines for my investigations.

2.6.2 Arithmetic as the science of numbers, from Dedekind’s view-
point?

Dedekind characterizes several times arithmetic as “the science of numbers”
(Stetigkeit 1872, 771; Zahlen 1888, 791-792, 795, 809; the 1894 version of
algebraic number theory in [Dedekind, 1932] III, 24; . . . ). Or again, in this
rather radical quote from his Nachlass, which can be dated from after 1888:

Of all the auxiliary means (Hilfsmitteln), that the human mind
has until now created to ease its life, i.e., the work in which
the thinking consists, none is as far-reaching and as inextricably
connected to its innermost Nature, as the concept of number.
Arithmetic, whose sole subject matter is this concept, is already
by now a science of immeasurable extension, and there is no
doubt that no limits are set to its further developments. Equally
limitless is the area of its applications, since every thinking man,
even when he is not distinctly aware of it, is a number-man, an
arithmetician.107 (Zum Zahlbegriff, in [Dugac, 1976b], 315, my
translation)

In Stetigkeit, arithmetic is characterized as the science of numbers to un-
derline that one should not introduce “foreign notions into arithmetic itself,
the science of numbers” (ibid., my emphasis). In Zahlen, Dedekind makes
that point again, and explains that the process of extending the domains of
numbers, the “step-by-step extension of the number-concept”, can only be
made perfectly clear “through the science of numbers” (ibid., 792), that is
by “arithmetical” means – a good example of this is, of course, the definition
of irrational numbers.108

107“Von allen Hilfsmitteln, welche der menschliche Geist zur Erleichterung seines Lebens,
d.h. der Arbeit, in welcher das Denken besteht, bis jetzt erschaffen hat, ist keines so
folgenreich und so untrennbar mit seiner innersten Natur verbunden, wie der Begriff der
Zahl. Die Arithmetik, deren einziger Gegenstand dieser Begriff ist, ist schon jetzt eine
Wissenschaft von unermesslicher Ausdehnung und es ist keinem Zweifel unterworfen, dass
ihrer ferneren Entwicklung gar keine Schranken gesetzt sind; ebenso unermesslich ist das
Feld ihrer Anwendung, weil jeder denkende Mensch, auch wenn er dies nicht deutlich fühlt,
ein Zahlenmensch, ein Arithmetiker ist.”

108see Sec. 7.2.
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In Zahlen, in which natural numbers and arithmetical operations are
defined, Dedekind qualifies arithmetic as the “Science of numbers” at several
points in the essay. For example in the Preface of the book:

Upon this unique and moreover absolutely indispensable foun-
dation (. . . ) the whole science of numbers must, in my opinion,
be established (. . . ) I hope that the following pages, as an at-
tempt to establish the science of numbers upon a more uniform
foundation, will find a generous welcome (. . . )109 ([Dedekind,
1888], transl. slightly altered, 791-792, my emphasis)

The “foundation” of the “science of numbers” is explicitly the aim of Dede-
kind’s 1888 book. I will give a more detailed analysis of the way in which
Dedekind defines the system of natural numbers and gives a rigorous foun-
dation to the “science of numbers” in Sec. 8.2. For now, I only want to make
clear that his concern is the science of numbers, as he explains, for example,
in clarifications about some of the keystones of the book:

[N]either [Bolzano nor Cantor] made the attempt to use this
property for the definition of the infinite110 and upon this foun-
dation to establish with rigorous logic the science of numbers.
(ibid., 792, my emphasis)
Already in the third edition of [Dirichlet’s Vorlesungen (1879,
remark p. 470) it is stated that no thought of any kind is possible
without the capacity of the mind to compare a thing a with a
thing a′, or to relate a to a′ or to allow an a′ to correspond to a –
and that the entire science of numbers also rests on this capacity.
(ibid., 834)

Once the natural numbers defined (by a series of conditions equivalent
to Peano axioms), Dedekind gives a clear statement of what arithmetic is
firstly composed of:

[t]he relations or laws which are derived entirely from the sole
conditions [defining the system of natural numbers] (. . . ) form
the first object of the science of numbers or arithmetic.111 (ibid.,
transl. slightly altered, 809)

109“Auf dieser einzigen, auch sonst ganz unentbehrlichen Grundlage muß nach meiner
Ansicht, (. . . ) die gesamte Wissenschaft der Zahlen errichtet werden. (. . . ) mögen die
folgenden Blätter als ein Versuch, die Wissenschaft der Zahlen auf einheitlicher Grundlage
zu errichten, wohlwollende Aufnahme finden. . . ”

110Dedekind is referring to: “64. Definition. A system S is said to be infinite when it is
similar to a proper part of itself.” ([Dedekind, 1888], 806)

111“Die Beziehungen oder Gesetze, welche ganz allein aus den Bedingungen α, β, γ, δ
in 71 (. . . ) bilden den nächsten Gegenstand der Wissenschaft von den Zahlen oder der
Arithmetik.”
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Following the idea that arithmetic is the science of numbers, it is important
to clarify what is meant by “science” and to which extent it may be different
from “theory”. In the Chapter 3, we will see that Dedekind considers “sci-
ence” as an activity of the human mind. This shall help to understand why
it is an important part of the characterization of arithmetic. In particular,
it shall clarify how it allows for an idea of arithmetic as something different
than a rigid theory, and such for example the relation between arithmetic
for the natural numbers and arithmetic for the real or complex numbers.

Let me underline now that the fact that arithmetic is an “activity” whose
objects are numbers implies a tension in what is indeed essential for arith-
metic: the numbers or the arithmetical operations? In fact, one cannot be
thought of without the other. Indeed, the properties and laws of natural
numbers, which are, as we saw, the first object that the science of numbers
studies, are given by the operations. In the same time, in the 1870s and
later, the operations of arithmetic are defined for Dedekind by the objects
on which they act. The initial definition of operations is made for the system
of natural numbers, which gives a fundamental place to natural numbers.
And through the extensions of the number concept, operations will likewise
be extended – and so is arithmetic.

2.6.3 What is not arithmetical for Dedekind
For a finer idea of what is characteristic of an theory based on arithmetic,
for Dedekind, it should be useful to have a look at what he considers as
not arithmetical. Such statements can be found in the comments Dedekind
wrote about Kronecker’s Grundzüge einer arithmetischen Theorie der alge-
braischen Grössen (1881), the so-called “Bunte Bemerkungen”.112 Dedekind
criticized Kronecker’s use of “arithmetical” to qualify his own work:

Neither from this introduction nor from the essay itself is it clear
why exactly this theory should be called an arithmetical one. Un-
der this name, one should suspect that the consideration of the
realm of numbers (the absolute constants) would form the main
foundation, it is by no means the case. I would very much like to
rather call this theory formal, because it predominantly is based
on the “auxiliary methods of indefinite coefficients” (p. 47, 48,
69) and the “association of forms (formed by these coefficients
or auxiliary variables u, u′, u′′) (§15 and §22, p. 93-96).113 ([Ed-
wards, Neumann, and Purkert, 1982], 54)

112Dedekind’s “Bunte Bemerkungen” were never published by Dedekind, although ac-
cording to H. Edwards, he seemed to intend to do so. Edwards, Neumann and Purkert
edited and published the “Bunte Bemerkungen” in 1982 ([Edwards, Neumann, and Purk-
ert, 1982]). References will be to their paper.

113“Weder aus dieser Einleitung noch aus der Abhandlung selbst wird es deutlich, weshalb
diese Theorie gerade eine arithmetische genannt wird. Nach diesem Namen sollte man
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In Dedekind’s view, then, for Kronecker’s work to be an arithmetical theory,
it should be built upon investigations of the natural numbers (“der abso-
luten Constanten”). Instead, Kronecker’s paper makes an extensive use of
indeterminate variables and polynomials. This statement by Dedekind of-
fers a rather narrow view about what should be taken to be arithmetic(al).
It seems to suggest that Dedekind considered that only what concerns or
uses the natural numbers is truly arithmetical. This is not the case, for it
would imply that the extensions of the domain of natural numbers are not
actually within the scope of arithmetic, or that the only true numbers are
the positive integers. This is clearly not what Dedekind argued for – on
the contrary, he even was the first, and for some time the only one, to talk
about irrational numbers and not irrational magnitudes:

[N]ot all cuts are produced by rational numbers. (. . . ) Now,
whenever we have a cut (A1, A2) produced by no rational num-
ber, we create a new number, an irrational number α.114 ([Dedekind,
1872], transl. slightly altered, 773, original emphasis)

The elements obtained from the extension of the system of natural numbers
to negative numbers, and from there the successive extensions to rational,
real, algebraic and complex numbers, are unambiguously still numbers:

And this requirement [that the indirect operations be uncondi-
tionally executable] leads to the necessity to create new classes
of numbers, since with the original sequence of positive integers
the requirement cannot be satisfied. Thus one obtains the nega-
tive, rational, irrational, and finally also the so-called imaginary
numbers.115 ([Dedekind, 1854a], 757)

Kronecker, on the other hand, distinguished between natural numbers, the
only true numbers, and magnitudes.116 This distinction, however, is not
proper to Kronecker. What can be called a number varies from one author

vermuthen, daß die Betrachtung des Reiches der Zahlen (der absoluten Constanten) die
hauptsächliche Grundlage bilden würde, was keineswegs der Fall ist. Viel eher möchte ich
diese Theorie eine formale nennen, weil sie vorwiegend auf dem ‘methodischen Hülfsmittel
der unbestimmten Coefficienten’ (S. 47, 48, 69) und der ‘Association der (aus diesen
Coefficienten oder Hülfsvariabelen u, u′, u′′ . . . gebildeten) Formen’ (§15 und §22, S. 93-
96) beruht.

114“[N]icht alle Schnitte durch rationale Zahlen hervorgebracht werden (. . . ). Jedesmal
nun, wenn ein Schnitt (A1, A2) vorliegt, welcher durch keine rationale Zahl hervorgebracht
wird, so erschaffen wir eine neue, eine irrationale Zahl α.”

115“Die Forderung der unbedingten Ausführbarkeit der indirekten, umgekehrten Opera-
tionen (. . . ) führt auf die notwendigkeit, neue Klassen von Zahlen zu schaffen, da mit der
ursprünglichen Reihe der absoluten ganzen Zahlen dieser Forderung kein Genüge geleistet
werden kann. So erhält man die negativen, gebrochenen, irrationalen und endlich auch
die sog. imaginären Zahlen.”

116On Kronecker’s conception of arithmetic, see see [Boniface, 2005] and in this disser-
tation 7.1.3.
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to another – some consider only natural integers as numbers, other include
rationals – but, except for Dedekind, all the major actors of the so-called
arithmetization of analysis from Méray to Weierstrass to Cantor and Kro-
necker, talk about irrational magnitudes (see 7.1.2).

In Dedekind’s case, the objects defined (created) after the extensions are
still numbers. Hence, their study is still arithmetic, the science of numbers.
A characterization of arithmetic in Dedekind’s works should, then, take this
point into account: arithmetic is the science of numbers, a concept whose
scope and meaning is not fixed, and the focus of arithmetic widens accord-
ing to the modifications inflected to the number concept. By contrast, Kro-
necker’s arithmetic only admits natural integers as being effectively numbers.
To define the other magnitudes (i.e., negative, rational, algebraic numbers),
Kronecker uses congruences and polynomials with positive integers as co-
efficients. Polynomials, for Kronecker, as a series of operations on positive
integers, become constitutive of an arithmetical inquiry.

2.6.4 From the science of numbers to arithmetic of polygons?
In the 1882 paper, the existence of a one-to-one correspondence (between
ideals and polygons, notably) allowed for the transfer of arithmetical proper-
ties. For the divisibility properties of ideals themselves, the correspondence
between divisibility of ideals corresponds to divisibility of algebraic numbers
(or functions) is invoked as a justification for transferring the study of divis-
ibility laws to the level of ideals. Yet, the properties of divisibility are to be
proved, they cannot be assumed because of the said correspondence, since
the laws of divisibility of algebraic numbers (or functions) are not known.

How did arithmetic go from being the “science of numbers” to being
usable in algebraic function theory? Is there a characterization of arithmetic
for Dedekind that would allow for it to be both the “science of numbers”
and a set of operations apparently general or abstract enough that it can be
carried over to concepts like ideals and polygons?

A first hypothesis on Dedekind’s conception of arithmetic, which also
sheds light on Dedekind’s statement about the non-arithmeticity of Kro-
necker’s approach, could be that natural numbers are the first object of
arithmetic. For a theory or a method to be arithmetical, it should use no-
tions grounded in the natural numbers. A conceptual analysis should allow
to trace the origins of the concept back to natural numbers – it doesn’t
seem to be the case of Kronecker’s indeterminate coefficients and variables,
for Dedekind. In particular, a constant of Dedekind’s thought is the demand
“that arithmetic shall develop out of itself” ([Dedekind, 1872], 771), that is,
without the introduction of “foreign elements” such as geometrical methods
or indeterminate variables, or vague notions such as magnitudes, so as to
preserve the “identity of nature” of numbers.
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On the other hand, if the “first object” of arithmetic is the integral
numbers, Dedekind also underlines that one should not forget that “the
concept of integral number, in this century, has known an enlargement,
through which number theory discovered new paths”117 ([Dedekind, 1879],
434, my translation). Arithmetic, as the science of numbers, is enlarged
consequently. Yet, there can be at least two directions for the extension of
the number concept and arithmetic: the extensions of the number domains
and the extension of the concept of integer. Although not always cleanly
separated, these two sorts of extension are nevertheless treated in different
ways. In this dissertation, I will be interested in the practices involved in
Dedekind’s explorations of the extensions of numbers and of arithmetic.

Dedekind showed particular interest in identifying what can provide ef-
fective and fruitful notions for mathematics. For example, in 1854 already,
new classes of numbers are created because “the definitions we thereby ob-
tain [in the natural numbers] for these fundamental operations [of addi-
tion and multiplication] no longer suffice for the further development of
arithmetic” ([Dedekind, 1854a], 757). In later number theoretical works,
Dedekind seems to identify divisibility as the source of potentially fruitful
concepts and even, more generally, the study of divisibility is a powerful
driving force in the development of number theory. In particular, the de-
mand that the laws of divisibility be unconditionally valid is the strongest
motive behind the invention of ideal theory.

In the words of Dedekind, the theory of divisibility of numbers is at the
basis of arithmetic, as I have alluded to earlier in the paragraph – a point
which highlights the importance of operations and their particular status
in the development of the “science of numbers”. We will see that the im-
portance attached to divisibility is not as prominent in Dedekind’s earliest
works, and in particular in his account of the development of arithmetic
in his 1854 Habilitationsvortrag. The weight given to divisibility seems to
increase with the experience acquired by Dedekind in working in number
theory. Indeed, number theory appears to be stimulated by the study of
(problems induced by) divisibility.118 It is possible that a significant part
of the explanation as to why divisibility takes over other properties of num-
bers as being the most important ones, or at least interesting ones, is of a
merely practical or pragmatic aspect: as the history of mathematics tends
to show, divisibility leads to the kind of “circumstances”, as Dedekind puts
it, in which important difficulties appear. Overcoming these difficulties,
Dedekind tells us, is a “singular stimulus for mathematicians” ([Dedekind,
1852], 1) and leads to important innovations.

117“Der Begriff der ganzen Zahl hat in diesem Jahrhundert eine Erweiterung erfahren,
durch welche der Zahlentheorie wesentlich neue Bahnen eröffnet sind.”

118see Sec. 5.1.3.
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2.6.5 Arithmetical methodology in Dedekind’s mathematics, a first
view

In 1882, Dedekind and Weber go from arithmetic of functions to arithmetic
of ideals to arithmetic of (complexes of) points. This is done very explicitly,
and can be detected in the notations chosen. In particular, the multiplicative
notation adopted for the polygons (which has been replaced, in the modern
expositions, by an additive notation) enables the development of a theory
reproducing the ideas from the arithmetic of ideals – and through that, ra-
tional arithmetic. At each “level” defined, Dedekind and Weber carry over
their arithmetical considerations and the notions defined, from the divis-
ibility to norms, order and equivalence classes which are handled just like
congruence classes. Ultimately, this allows to provide the first rigorous proof
of the Riemann-Roch theorem.

As a way to close this chapter and make the transition to the next parts
of the dissertation, I will propose to consider the main clues for the in-
vestigation of arithmetic and methods built on arithmetic, in Dedekind’s
mathematics. I will point out the main points at which our attention should
be directed, to underline the overall importance of the question of arith-
metic for Dedekind’s works, as well as to clarify the motivation for further
developments of the dissertation.

2.6.5.1 Higher levels of arithmetic?

The idea of different “levels” of study is expressed by Dedekind himself, in
the presentation of the Xth Supplement of the 1871 edition of Dirichlet’s
Vorlesungen. In the announcement of the second edition of Dirichlet’s Vor-
lesungen über Zahlentheorie, Dedekind presents his new algebraic concepts
as setting up a “higher level” which allows to shed a “new light” on number
theory, the subject of the book:

In the following paragraphs, I tried to introduce the reader to
a higher level at which algebra and number theory join each
other in the most intimate manner.119 (Anzeige of Dirichlet’s
Vorlesungen 2nd edition 1871, repr. in [Dedekind, 1932] III,
399, my translation)

He went further, in the Xth Supplement itself, in which he explains that he
was pursuing Kummer’s researches on ideal numbers which had provided a

119“In den nun noch folgenden Paragraphen habe ich versucht, den Leser in ein höheres
Gebiet einzuführen, in welchem Algebra und Zahlentheorie sich auf das Innigste miteinan-
der verbinden.”
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“deeper understanding of the true nature of algebraic numbers”, and that
in trying to “introduce the reader to these new ideas”, he was

setting up for ourselves a somewhat higher standpoint and, from
there, begin to introduce a new concept that seems to be well-
suited to serve as a foundation for higher algebra and the related
parts of number theory.120 ([Dedekind, 1871], transl. slightly
altered, 12)

In both quotes, the concept alluded to is the concept of field of algebraic
numbers. In practice, working at this “higher level” consists essentially in
working at the level of (infinite) collections of objects. Numbers and later
functions, as individuals, do not have any role to play in the theory.

The fields on which Dedekind is working are field extensions, in which
one can identify a ring (the polynomials in z in Algebraische Funktionen) and
integers (the system o). In these domains, one can form modules and ideals,
for which new arithmetical operations can be defined. Dedekind indeed
defines arithmetic operations at the higher level, e.g., between ideals: for
two ideals a and b, a divides b means that a contains b, or again that b ⊆ a
(we will see that such a notion of divisibility is also defined for groups,
modules and even fields).

In 1871, the divisibility is first introduced between a number and an
ideal:

If α is contained in [the ideal] a, we will say that α is divisible by
a, and that a divides α, since by this manner of expression we
gain in facility.121 (ibid., transl. slightly altered, 38)

It is this notion that leads to the divisibility between ideals, in 1871. The
arithmetical terminology used to refer to a characterization of inclusions is,
here, explicitly introduced because the investigations will be eased by it.
Why should a new arithmetical operation make the development of a theory
easier? Let me outline some elements of answer.

To be able to reduce everything to considerations relating to rational
operations has a clear advantage, that of familiarity. But to take familiarity
as the reason for the new arithmetic to make things easier seems a weak
argument in the face of the systematicity with which Dedekind uses this
strategy – and to some extent, the 1882 paper would contradict such state-
ment. In the case of ideals in algebraic number theory, the familiarity and
the easiness could be seen as related, for all considerations about arithmetic

120“Indem wir versuchen, den Leser in diese neuen Ideen einzuführen, stellen wir uns auf
einen etwas höheren Standpunct und beginnen damit, einen Begriff einzuführen, welcher
wohl geeignet scheint, als Grundlage für die höhere Algebra und die mit ihr zusammen-
hängenden Theile der Zahlentheorie zu dienen.”

121“Ist α in a enthalten, so sagen wir, α sei theilbar durch a, a gehe in α auf, weil die
Ausdrucksweise hierdurch an Leichtigkeit gewinnt.”
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of algebraic integers, which is notoriously difficult, are reduced to arithmetic
of ideals, which is revealed to behave just like arithmetic of rational integers.
And, in fact, the set up of an arithmetical framework for ideals is not, in
itself, surprising, insofar as Dedekind is engaged in a purely number theo-
retical work whose aim is the proof of the validity of divisibility properties
for algebraic integers.

A second clear benefit for the use of rational operations, in ideal theory,
is that long computations tied to representations are reduced to simpler ones
(see Sec. 6.1).122 Could this be the only reason for the arithmetical rewriting
of Riemannian function theory? Or could there be something special about
arithmetic, for Dedekind, that stimulates the desire to rewrite completely
Riemann’s ideas by arithmetical means? Could there be a shift in the con-
ception of arithmetic brought about by the discovery of the efficiency of the
same concepts and operations in the context of algebraic functions? Indeed,
the argument of familiarity and/or easiness is already less obvious in the
case of algebraic functions, and becomes even less so for the arithmetic of
complexes of points of a Riemann surface. On what ground does the use
of arithmetical operations rely, in this case? Is it just about following the
one-to-one correspondence between points and ideals? Does this actually
make things easier? In particular, how is it suppose to ease the understand-
ing and treatment of Riemann surfaces, if all considerations about algebraic
functions are replaced by arithmetical operations on ideals, polygons, classes
of polygons, and so on?

2.6.5.2 Why an arithmetical treatment for Riemann’s theory?

One could consider the arithmetical development observable in Dedekind
and Weber’s work as a mere side-effect of the transfer of ideal theory, which
is itself developed in such a way that it can be fully similar to rational
number theory. And these endeavors to develop ideal theory in algebraic
number theory might as well be related to the demand that, in the extended
domain of algebraic numbers, the methods of proof be an extension of the
methods of the restricted domain. Jeremy Avigad suggests that it is related
to

Dedekind’s insistence that definitions and methods of proof used
in an extended domain should parallel the definitions and meth-
ods of proof that have been effective in more restricted domains.
([Avigad, 2006], 171)

122In elementary arithmetic, the introduction of new operations, described at length
by Dedekind, is motivated by two main desires: to shorten the computations (e.g., the
addition of a with itself b times is replaced by one multiplication a.b).
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However, Dedekind does not explicitly express this demand. Rather he
stresses the importance, when extending systems of numbers and number
theoretical notions, to develop arithmetical methods of proof. Dedekind
does not give a more general statement, and the demand appears to be more
specific than Avigad is suggesting: when investigating the number concept,
be it for extending the systems of numbers or investigating the divisibility
laws of algebraic integers, one should develop arithmetical methods – a point
linked to the demand that no “foreign elements” be introduced in the theory.

What would then be the argument for the use of arithmetical methods in
algebraic function theory? Is it because algebraic functions are themselves
part of arithmetic? Aren’t algebraic functions of one complex variable more
susceptible to be considered as some kind of extension of algebraic numbers
rather than as arithmetical elements per se? Yes, indeed, and I do not intend
to argue that algebraic functions themselves were considered as arithmeti-
cal. However, the idea pointed out by Dedekind and Weber is that of an
analogy rather than an extension – a point that they would not have omit-
ted, if they were considering their work as being, in some way, an extension
of algebraic number theory. The idea that polynomial, rational and alge-
braic functions “reproduce themselves” through the arithmetical operations
and could be studied with methods analogous to (or inspired by) number
theory was well-known. The use of a thoroughly arithmetical approach, in
algebraic function theory, can neither be justified by a kind of requirement
of purity of methods, nor by the demand for parallel definitions and meth-
ods of proof in extended domains. In fact, it should be underlined that the
arithmetical investigations are essentially developed for ideals (and related
notions). Indeed, we will see that ideals are presented by Dedekind as an-
swering demands inherent to the definition of arithmetical elements, such
as the possibility to provide a definition of the arithmetical operations (see
Sec. 6.1.3 for more details about this point). The theory of ideals developed
in 1876-77 exhibits clearly how ideals can be developed arithmetically, that
is, following the exact lines of rational number theory. Insofar as the defini-
tion and the development of ideal theory are made without reference to the
individual nature of the elements, their arithmetical nature does not depend
on the fact that they are or are not used in number theory.

Arithmetic, in Algebraische Funktionen, seems to hold a central place in
the attempts to provide a reliable, more rigorous basis of function theory.
The role of arithmetic in such attempts is already alluded to by Dedekind,
when he explains to Weber that he would only be sure to fully understand
Riemann’s works if he could approach them in arithmetical way.123 For

123“I am not the profound expert on Riemann’s work that you take me to be. I certainly
know those works, and I believe in them, but I do not master them, and I will not master
them until having overcome in my way, with the rigor that is customary in number theory,
a whole series of obscurities.” See p. 129.
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Dedekind, the “rigor customary in number theory” is essential to throw
light on Riemann’s theory. The presentation of the 1882 paper suggests
that arithmetical operations were involved in the design or building of new
concepts (from ideals to polygon classes) and to develop what Dedekind
(and Weber) considers to be a more rigorous and more general theory of
Riemann surface.

Riemann surfaces are not the first concept involving continuity that
Dedekind chooses to treat “arithmetically”. Indeed, already in 1872, he
defined the linear continuum formed by the real numbers by arithmetical
means with the concept of cuts (see Sec. 7.2). The reasons for an arith-
metical treatment of the linear continuum are related to the considerations
about extensions of numbers evoked above, and to a demand that intuition
be eliminated from mathematical definitions and proofs. The arithmetical
treatment of Riemann’s theory of functions contains the demand not to rely
on a intuitive geometrical representation of Riemann’s surfaces, as Schap-
pacher explains:

So, if you ban intuition but still want to define a point (. . . ) on a
algebraic Riemann surface, a point will be something where you
can evaluate (sometimes getting the value ∞. . . ) rational func-
tions living on the Riemann surface; and you know or postulate
that rational functions ought to be sufficiently plentiful to sep-
arate points. So, if you can’t see the Riemann surface, but still
have its field of rational functions, define a point arithmetically
as an evaluation homomorphism (including possible values ∞)
on rational functions which leaves constant functions invariant.
([Schappacher, 2010], 3262)

Schappacher links the definition of a point of a Riemann surface to the
definition of real numbers using cuts as points of the linear continuum and
explains that “both [definitions] try to conceptualize the intuition of what
a concrete point does for you.” As he underlines, Dedekind is adopting the
same approach, proposing the same conceptual move, in these two works.

I would like to suggest that the strategy of resorting to arithmetic is,
in fact, present throughout all of Dedekind’s works, and gives us important
informations about his practice of mathematics, his conception of arith-
metic, and about his ideal of rigor. By resorting to arithmetic as he does,
Dedekind seems to be adopting what could be called a strategy of arithmeti-
zation consisting in the elaboration of arithmetical notions (of notions built
by arithmetical means) so as to define given concepts, such as points of the
Riemann surface (or of the linear continuum). I will try to exhibit how the
role of arithmetic in Dedekind’s mathematics, which has been (more or less)
acknowledged but never dug into very deeply, tells us more about how he
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developed his very innovative mathematics.

2.6.5.3 The “simplest principles of arithmetic”

Another possibility to consider, so as to obtain a better understanding of
Dedekind’s conception of arithmetic are his works on the theory of algebraic
integers. These works are motivated by the demand for the laws of divis-
ibility to be unconditionally valid, which led to tremendous developments.
Dedekind reworked, remodeled and developed several times his theory. Nev-
ertheless, the purpose of the paper was each time the proof of the general
validity of the divisibility laws. Moreover, even though the refinements make
for significant changes in presentation and content,124 the basis of the theory
remains the same (i.e., field and ideal theories).

And indeed, a more comprehensive investigation of Dedekind’s works
will allow to see that Dedekind’s approach is often underpinned by the wish
to define concepts only using what he refers to as the “simplest principles
of arithmetic”:

The conviction imposed itself to me that the study of the alge-
braic kinship of numbers is founded the most adequately on a
concept immediately related to the simplest arithmetical princi-
ples.125 ([Lejeune-Dirichlet, 1871], Anzeige, repr. in [Dedekind,
1932] III, 399, my translation)

The concept to which Dedekind is referring, here, is the concept of field,
which he defines by (and only by) conditions of closure by the four arith-
metic operations. It appears more and more clearly, from 1871 to 1879, in
Dedekind’s algebraic number theory that the “simplest arithmetical prin-
ciples” are a reference to the four fundamental operations and elementary
arithmetic – which covers broadly operations, laws of divisibility and con-
gruences.

The “simplest arithmetical principles” are effectively used in Dedekind’s
algebraic works at two levels: firstly, the new algebraic concepts of field,
module and ideals are defined using uniquely the property of closure by
arithmetic operations; secondly arithmetical relationships are defined and
divisibility laws are studied as a basis for the theory of the said algebraic
concepts, in particular ideals and modules.126 The “conviction which im-
poses itself” in 1871 transforms into a precept in the following works, as I
will suggest.

124See Chapter 5, 6.2.
125“[D]rängte sich mir die Überzeugung auf, dass das Studium der algebraischen Ver-

wandtschaft der Zahlen am zweckmässigsten auf einen Begriff gegründet wird, welcher
unmittelbar an die einfachsten arithmetischen Prinzipien anknüpft.”

126see Sec. 5, 6.2.
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In fact, one can find, in Dedekind’s writings, different considerations
about simplicity linked with arithmetic. In particular, arithmetic is pre-
sented as being “the simplest science” in Zahlen. The superlative, here,
seems to relate to the elementariness of arithmetic and the place held by
the science of numbers in a conceptual hierarchy of science(s), according to
Dedekind. Some mathematicians, such as Lipschitz, considered that geom-
etry is first, that it is in geometry that mathematicians found their basic
concepts and the intuitions leading to more developments of the rest of
mathematics (e.g., geometry provides the foundation for irrational num-
bers). Dedekind, like Kronecker, Gauss or Weierstrass, on the contrary,
considers that arithmetic is first. As we will see, arithmetic, for Dedekind,
is the science whose first objects “flow directly from the laws of thought”
and on this account is the ‘first science’, and it is also the simplest:

(. . . ) the most recent methods of laying the foundations of the
simplest science; viz., that part of logic which deals with the
theory of numbers. ([Dedekind, 1888], 790)

In this case, “simplest” implies that arithmetic is considered as the first
theory in the order of logical construction of mathematics. But arithmetic
being the “simplest science” does not mean that it is simple in an absolute
sense: it is not immediate nor given, and its truths are not unprovable. In
fact, while arithmetic is the simplest activity of the mathematician, and its
objects and operations are the first layer of mathematics, it is constructed
upon more fundamental concepts, systems and mappings, “without which
no thinking at all is possible” (see Sec. 8.2).

Where should the gain in simplicity allowed by the use of a divisibility re-
lationship in ideals be coming from? As I mentioned, it is not, for Dedekind,
a systematic reduction of concepts to natural numbers. Yet, Dedekind con-
siders numbers (and consequently arithmetic) to be one of the most powerful
and “ inextricably connected to [the human mind’s] innermost Nature” of
the auxiliary means created by the human mind to facilitate its work (in
Zum Zahlbegriff, in [Dugac, 1976b]).

In Algebraische Funktionen, the study of divisibility laws for algebraic
functions with the definition of arithmetical operations for modules and
ideals and its extension to concepts building the Riemann surface (points,
polygones) constitute the core elements of the strategy adopted to give a
treatment of Riemann’s theory of functions that is both rigorous and uni-
form. In addition, Algebraische Funktionen extends the scope of the methods
and tools transferred from algebraic number theory, giving them a greater
generality. Arithmetic, here, seemed to guide the set up of the tools suscepti-
ble to provide a satisfactory answer to the demand to reformulate the theory.
Following the model of Dedekind’s ideal theory, Dedekind and Weber de-
veloped their theory using only elementary arithmetic operations, and while
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the theorems proved are far from elementary ones, they were able to prove
them using methods of proofs built on the “simplest principles of arithmetic”.

A particularly important point is, thus, that arithmetic exhibits certain
specificities which allow for its application in different frameworks. The 1882
paper suggests that arithmetic plays a role in the way Dedekind chooses to
develop his works, and in the introduction of the new concepts that have
become so important in today’s mathematics. Resorting to arithmetical
methods appears to provide, in many of Dedekind’s works, a mean to de-
velop the theory in a more rigorous and more uniform way. While arithmetic
as a tool for rigor is, at least since the 19th century, a common statement,
the links tied between arithmetic, rigor and uniformity in Dedekind’s works
do raise questions about the possibilities of uses of arithmetic for Dedekind.
Indeed, if the “arithmetization” in the case of real numbers can be justified
by rigor and ‘purity’ requirements, the “arithmetization”, i.e., the arith-
metical construction of Riemann surfaces, at first sight, does not answer
the same requirement of ‘purity’. And insofar as the theory is developed by
resorting, almost exclusively, to notions relating to arithmetical operations,
rendering the 1882 paper thoroughly arithmetic despite its non-arithmetical
subject, the nature of arithmetic itself comes into question.

What kinds of epistemological requirements is arithmetic fulfilling for
Dedekind? In which way(s) arithmetic can and is indeed used for this pur-
pose by Dedekind? Following these questions, it becomes important to un-
derstand why Dedekind attributes this possibility to arithmetic. In partic-
ular, this brings up a question raised earlier in the paragraph: how does
one go from the “science of numbers” to arithmetic of polygons, in which
operations are used as epistemic tools to build up new definitions?127

2.6.5.4 More questions by way of conclusion

To unfold and understand more deeply the specificities and whether Dede-
kind’s ideas changed throughout his works, the assumption that the practice
influenced Dedekind’s conception of mathematics is important. I will try to
answer the questions about the specificities of arithmetic and its changes
by arguing in this direction, in the rest of this dissertation, through an
investigation of the role played by arithmetic in several of the most important
of Dedekind’s mathematical works and the reflections he developed in his
foundational works. I will inquire into the possibility to answer questions
about the specificities of arithmetic in their mathematical context, via the
study of his mathematical texts.

It seems, indeed, that to be able to explain the role of arithmetic in the
set up of more rigorous and uniform definitions and proofs, it is important

127I will consider these points in more detail in Chapters 7 and 8.

191



Chapter 2 - Theorie der algebraischen Funktionen einer Veränderlichen

to go through the details of the mathematical texts. In investigating this,
arises an important concern: if the rational operations are initially defined
as operations on numbers, and extended up to arithmetic of ideals and arith-
metic of polygons, are the fundamental ideas about arithmetic modulated
by this extension? If so, how? But then again, pushing the questioning fur-
ther, how do the uses of arithmetical operations to build up new concepts
relate to natural numbers, the first object of arithmetic? If the conception of
arithmetic is indeed subjected to changes through practice, if it is extended
slowly through its uses in the mathematical works, does this have an impact
on the concept of number itself?
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Introduction to Part II
Dedekind’s career spans over more than fifty years, and if his ideas were
refined over the years, many of them were born in his earlier works. I
suggested, in the previous pages, that not only did arithmetic play crucial
role in Dedekind’s mathematics, it also was subjected to a certain evolution
by this very role and through the uses made of arithmetical operations in
mathematical works.

In order to argue for this idea, I will follow a broadly chronological path,
and go back from 1882 to 1854, starting from Dedekind’s doctoral work and
Habilitationsvortrag. This shall enable us to get an idea of the conception of
arithmetic with which Dedekind started. The 1854 Habilitationsvortrag is
an interesting and important work for two main reasons. First, it allows us
to see what Dedekind was thinking about arithmetic and mathematics more
generally before starting to work in number theory. Indeed, his first works
were on Eulerian integrals, and his interest in number theory was stimulated
by Dirichlet’s arrival in Göttingen, in 1855. Secondly, the Habilitationsvor-
trag provides certain general epistemological ideas about Dedekind’s con-
ception of science and the development of mathematics which are valuable
because they are rarely expressed so explicitly. In particular, Dedekind’s
conception of science is interesting in relation to the assumption that the
ideas about arithmetic evolved with Dedekind’s experience in mathematics,
since he considers that science is an activity of the human understanding,
subjected to more or less drastic changes according to the needs of the de-
velopment of knowledge.

Dedekind’s interest in number theory arises with Dirichlet’s arrival in
Göttingen, after Gauss’s death in 1855. Arithmetic, in his Habilitationsvor-
trag played the role of a model to explain the processes of developments of
mathematics more generally. It did not hold a special place, apart from be-
ing the first, simplest part of mathematics. In his subsequent works, starting
with a course on Galois theory in 1856-58, Dedekind’s approach to algebra
and number theory seems to have a noticeable impact on his conception of
arithmetic, as I will try to show. Indeed, to study certain algebraic con-
cepts such as groups, Dedekind proposes to define arithmetical relationships
for these concepts, in such a way that the theories are modeled on rational
arithmetic. I will propose to consider how Dedekind first approaches these
questions.
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Chapter 3

Dedekind’s Habilitationsvortrag, in
1854

Dedekind’s Inauguraldissertation, Über die Elemente der Theorie der Euler-
schen Integrale1, which he presented, under Gauss’s supervision, in 1852 to
obtain his doctorate at the university of Göttingen, has been described as
a good work but which did not show the great innovative mathematician
Dedekind was.2 Nevertheless, in the first paragraph, one can detect some of
the leading threads of Dedekind’s conception of mathematics and directing
principles of his mathematics. Indeed, this very early work opens with con-
siderations on the introduction of new concepts in mathematics as means to
bypass difficulties or even impossibilities, and enable more developments.

It is known, that the execution of the indirect operations in Anal-
ysis most often come across many more important difficulties
than that of the direct ones; but exactly these seemingly un-
fortunate circumstances have always exerted the most beneficial
influence on the development of mathematics. Not only the over-
coming of these difficulties, when it is possible, always presents
a singular stimulus for the mathematician, but also precisely the
cases in which this was not possible in the previously introduced
concepts and auxiliary means were not possible have always in-
augurated completely new fields in further development of math-
ematics. Thus, for example, the operations of subtraction, di-
vision and root extraction have led to the concepts of negative,
fractional and imaginary numbers each of has so amazingly ex-
tended the domain of mathematics.3 ([Dedekind, 1852], 1-2, my

1Reproduced in [Dedekind, 1932] I, 1-26. Translations of this text are mine.
2Notably, Landau called it a “useful and independent contribution, but which doesn’t

reveal the future great scholar.” ([Landau, 1917])
3“Es ist bekannt, daß die Ausführung der indirekten Operationen in der Analysis meist

auf viel bedeutendere Schwierigkeiten stößt als die der direkten; aber gerade dieser schein-
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translation.)

For the first time, and in a still relatively imprecise, if not naive manner,
Dedekind refers to ideas and concerns about the nature of the development
of mathematics which will appear recurrently in his researches, sometimes
even being their driving force. This way of introducing his very first work
reveals that were already present, in a very young Dedekind, questions and
concerns that stayed at the core of his reflections and even revealed to be
essential throughout his works. A more careful and thorough treatment of
these questions can be found in his 1854 Habilitationsvortrag, an epistemo-
logical inquiry in the development of arithmetic and mathematics. Moreover,
the issue of how mathematics develops and the ideas sketched in 1852 ap-
pear to be important since this concern might account for two cornerstones
of Dedekind’s conception of mathematics: his advocacy for the introduction
and creation of new concepts in mathematics, and the idea that mathemat-
ics develops through a repeated process of generalization, which becomes
significant in his later works.

Dedekind’s approach to mathematics is often underlaid by attempts of
developing notions in such a way that they allow to treat wider classes of
objects. In 1852, the concern for inverse operations and the possibility to
perform them, rooted in his work on integral calculus, leads him to reflect
on the possibility to extend operations. Then, the “difficulties” and “un-
fortunate circumstances” which appear using the indirect operations result
from the demand to apply the said operations without restrictions, that is,
to make their applicability as wide as possible.

This view is expressed often and clearly by Dedekind, from the 1854
Habilitationsvortrag to Zahlen.4 Moreover, Dedekind identifies similar forms
of extension, mutatis mutandis, in other areas of mathematics. As Dedekind
suggests, in the opening remarks of his Inauguraldissertation, the same kind
of phenomenon occurs for integral calculus:

By contrast, the kind of inverse computation that the integral
calculus constitutes in its entirety succeeds, only in relatively few
cases, in achieving the same [as differential calculus]. In most
cases, one has hitherto not succeeded, or it may also be com-
pletely impossible, to represent the integral of given functions
with the help of precisely similar functions. But precisely this

bar unglückliche Umstand hat auf die Entwicklung der Mathematik stets den günstigsten
Einfluß ausgeübt. Nicht nur, daß die Besiegung dieser Schwierigkeiten, wenn sie möglich,
immer einen eigentümlichen Reiz für den Mathematiker darbietet, sondern auch gerade die
Fälle, in welchen dies mit den früher eingeführten Begriffen und Hilfsmitteln nicht möglich
war, haben immer der weiteren Ausbildung der Mathematik ganz neue Felder eröffnet; so
führen z. B. die Operationen der Subtraktion, Division und Wurzelausziehung auf die Be-
griffe der negativen, gebrochenen und imaginären Zahlen, von denen jeder das Gebiet der
Mathematik so außerordentlich erweitert hat.”

4Zahlen, 792; Stetigkeit, §3. A more detailed analysis will be given in Sec. 7.2.
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circumstance led to a considerable extension of the concept of
function, in that one has attached new names and descriptions
to such non-representable integrals and in this has introduced
them in the sphere of the previous functions.5 (ibid., 1-2, my
translation.)

These remarks are again taken up and clarified in his 1854 Habilitationsvor-
trag, in which he explains that even though demanding the “general appli-
cability of integration” cannot be done with the “same justification” (since
it is not a question of arithmetical results), one can notice “a similar course
of development” when looking at the birth and developments of Eulerian
integrals or elliptic functions6 ([Dedekind, 1854a], 761).

Dedekind, in his Habilitationsvortrag, states that developments of math-
ematics are greatly led by “concepts [developing] from those which relate
only to a restricted domain into more general ones”7 (ibid., 760). So as
to overcome the difficulties, the mathematician has to define new concepts.
Already in his Inauguraldissertation, Dedekind explained that certain new
functions introduced to develop integral calculus, such as Eulerian integrals,
became of the greatest importance and are studied by reduction to previ-
ously known functions. For him, this allows to understand better what is
at stake and what could be expected. It also provides means to ease the
calculations of the said new functions by reduction to already known ideas.8
This idea is used again in the Habilitationsvortrag (see Sec. 3.2.3): if one
considers the Γ-function, i.e., a definite integral for positive values of x such
that

Γ(x) =
∫ ∞

0
t(x−1)e(−t)dt

5“Dagegen ist es der umgekehrten Rechnungsart, welche in ihrer Gesamtheit die Inte-
gralrechnung bildet, nur in verhältnismäßig wenigen Fällen gelungen, dasselbe zu leisten; in
den meisten ist es bisher nicht geglückt, oder vielleicht auch ganz unmöglich, die Integrale
gegebener Funktionen mit Hilfe eben solcher darzustellen. Aber gerade dieser Umstand hat
zu einer beträchtlichen Erweiterung des Begriffs der Funktion geführt, indem man solchen
nicht darstellbaren Integralen neue Namen und Bezeichnungen beigelegt, und sie dadurch
in den Kreis der früheren Funktionen eingeführt hat.”

6see Sec. 3.2.3
7“Diese Beispiele werden genügen, um die Eigentümlichkeit des Fortschritts von Begrif-

fen, die sich nur auf ein beschränktes Gebiet beziehen, zu allgemeinem in der Matlhematik
nachzuweisen.”

8“Bei der Entwicklung der Theorie solcher Integralfunktionen sind nun namentlich die
Fälle von der größten Wichtigkeit, in denen sie sich auf die bisher allein gebräuchlichen
Funktionen zurückführen lassen, indem dadurch ihr Verlauf deutlicher hervortritt, und
auch oft Mittel an die Hand gegeben werden, ihre Berechnung zu erleichtern. Die Zusam-
menstellung dieser Fälle für die Eulerschen Integrale, mit besonderer Rücksicht auf die
dabei anzuwendende Methode, ist der Hauptzweck der folgenden Abhandlung.” ([Dedekind,
1852], 2)
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and the B-function defined by

B(x+ 1, y + 1) =
∫ 1

0
tx(1− t)ydt,

then on can show that
B(x, y) = Γ(x)Γ(y)

Γ(x+ y) .

Computations with the B-function are, then, reduced to computations with
the already well-known Γ-function. In addition, although the idea that such
a reduction allows to shorten computations is not clearly stated, here, it
seems to underlie the desire to replace the integrals in the B-function by
elementary computations on the Γ-function itself, which somewhat hide the
integrals.

Such a reduction to earlier and already well-known notions, subtly com-
bined with a defense of innovation in mathematics, is a pillar of Dedekind’s
mathematics.9

In 1854, Dedekind presented his Habilitation in Göttingen under the su-
pervision of C. F. Gauss, so as to qualify as a university lecturer and obtain a
position as a Privat-dozent at Göttingen university. His Habilitationsschrift
is entitled “Über die Transformationsformeln für rechtwinklige Coordinaten-
systeme” ([Dedekind, 1854b])10 and, according to Pierre Dugac, “does not
present any special mathematical interest” ([Dugac, 1976b], 19). In order to
complete his examination, Dedekind delivered a lecture before C.F. Gauss,
Karl Hoeck, Georg Waitz and Wilhelm Weber, on 30 June 1854, “Über die
Einfuhrung neuer Funktionen in der Mathematik”,11 in which he proposes
a (tentatively systematic) description of the development of mathematics as
a process of generalization of definitions and laws.

This short epistemological text attempts to give a uniform presentation
of the principle guiding how new concepts are shaped and how operations
are extended (notably leading to changes of the number concept). It tries to
explain the way in which mathematics is driven by innovations introduced

9In the introduction to the first edition of Zahlen, Dedekind famously advocated for
the introduction of new concepts as being particularly fruitful: “(. . . ) the greatest and
most fruitful advances in mathematics and other sciences have invariably been made by
the creation and introduction of new concepts” ([Dedekind, 1888], 792), in which he also
refers to his Habilitationsvortrag. I will develop this point further in the dissertation, in
particular in Sec. 7.3 and in Sec. 8.4.

10A short paper published in Crelle’s journal is extracted from it: “Ein Satz aus der
Theorie der dreiachsigen Koordinatensysteme”, in [Dedekind, 1932] I, 32-35.

11Reproduced in [Dedekind, 1932] III, 428-438; English translation “On the introduction
of new functions in mathematics” by W. Ewald, in [Ewald, 2005], 754-762; French transla-
tion “Sur l’introduction de nouvelles fonctions en mathématiques” by H. Benis Sinaceur,
in [Sinaceur and Dedekind, 2008], 220-233. All page numbers will refer to Ewald’s trans-
lation.
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so as to bypass problems and impossibilities in a certain framework. While
Dedekind’s ideas evolved and were refined, one can discern the outlines
of what is often seen as a program which Dedekind pursued throughout
his works. Ewald and Sinaceur, each presenting their own translation of
Dedekind’s Habilitationsvortrag, both underlined that the observations he
developed constituted a research program that Dedekind carefully followed:

This early paper can be read as the announcement of a math-
ematical research programme that embraced his work both in
foundations and in algebra. His foundational writings of 1872
and 1888 deepen the analysis he gives here. ([Ewald, 2005], 755)

This epistemological text (. . . ) is indispensable to understand
the work program (research program) Dedekind set himself the
task of developing and which he patiently realized in a work
essentially dedicated to numbers.12 ([Sinaceur and Dedekind,
2008], 219, my translation)

Dedekind never stated explicitly that his Habilitationsvortrag was indeed a
program, however he did develop some of the ideas presented in it. One
can detect, in this text, directing principles of his overall approach. As was
underlined by [Sieg and Schlimm, 2005], in the Habilitationsvortrag,

Dedekind’s observations reveal general aspects of his intellectual
approach as well as special features of his understanding of the
classical number systems. ([Sieg and Schlimm, 2005], 125)

It should be underlined that “On the introduction of new functions in
mathematics” is an early work. This, on one hand, should prompt us to
not put too much significance in the conceptions drawn in it. The Habilita-
tionsvortrag was written before any of Dedekind’s major works, and while
a certain continuity or at least a certain permanence is clearly noticeable,
changes did appear later – especially insofar as practice of mathematics may
have affected Dedekind’s conceptions.

In the light of the notion of science presented in the Habilitationsvortrag,
it seems that the evolution of some of the basic conceptions of numbers and
operations can be regarded as an integral part of this conception of math-
ematics. Dedekind considers that the mathematician invents and develops
himself the concepts of his science: to make progresses in mathematics and
prove theorems, it can be necessary to introduce new concepts, abandon
old ones, impose changes in conceptions and practices. The ideas on the

12“Ce texte à caractère épistémologique (. . . ) est indispensable pour comprendre le pro-
gramme de travail que Dedekind s’est proposé et qu’il a patiemment réalisé dans une œuvre
essentiellement consacrée aux nombres.”
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nature of mathematics presented in Dedekind’s Habilitationsvortrag, then,
seem to be conveying the idea that evolutions and changes are inherent to
the mathematician’s practice.

In any case, Dedekind himself referred to his Habilitationsvortrag, more
than thirty years later, when arguing for the usefulness (if not necessity)
of the introduction of new concepts in mathematics in Zahlen, a point he
maintained consistently all along his mathematical career.

3.1 Science, an activity of the human thought
3.1.1 Dedekind’s idea of science
The Habilitationsvortrag provides us with the lineaments of some of Dede-
kind’s philosophical ideas and allows for a clearer view on some of the epis-
temological principles that guided and supported Dedekind’s works. These
principles can usually only be drawn from scattered remarks and based on
the analysis of a practice openly and deeply attentive to methodological
and epistemological issues. In the case of Dedekind, epistemological and
methodological considerations, which I have outlined in Sec. 2.1.2, play a
significant role in shaping his practice of mathematics, so much so that it
seems that an understanding of Dedekind’s ideas can’t dispense with taking
them into account.

Dedekind’s understanding of the process of development of mathemat-
ics relies on a conception of science as representing “the course of human
knowledge up to” the truth ([Dedekind, 1854a], 756). The “chief goal” of
science can be regarded as being “the endeavour to fathom the truth” (ibid.,
755, emphasis in the original). If the pursuit of the truth is an activity
of the human understanding, truth itself does not however depend on us,
it is objective and “wholly external to us”: it is never “our arbitrary cre-
ation” but rather “a necessity independent of our activity” (ibid.). Science,
in consequence, is not the truth itself according to Dedekind, but the human
scaffolding of reasonings which attempts to understand, grasp or deepen our
understanding of the objective truth. Inasmuch as the goals of any science
are objective truths, the results are declared “to be invariable, to be un-
changeable” (ibid.), but science is bound to human understanding. This
entails two important aspects of it.

Firstly, there may be multiple, if not innumerably many different ways
of trying to fathom or ground the truth. As Dedekind puts it, science,
whose object is fixed (“immutable”), is itself “infinitely manifold” (ibid.).
Thus, the “object of a science” can be investigated in many different ways,
as well as conceived in diverse manners. This “finds its expression in the
different forms, the different systems, in which one seeks to embed those
conceptions” (ibid., 756). This is also the case for mathematics: despite
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its peculiar status of science providing universal truths, mathematics is still
produced by the human mind. The multiplicity of possible practices and
conceptions in mathematics can be given numerous illustrations, from the
well-known many different ways to discover and define, for example, the
negative numbers or the real numbers, to the possibility to give several
different proofs for the same theorem.

Secondly, the possibility to reach these goals is subjected to the limits of
human understanding. As a human activity, science is of course subjected
to the “arbitrariness” of the “work of man” and “to all the imperfections of
his mental powers” (ibid.). The discovery or knowledge of truth is subjected
to the limited and finite character of human understanding. The human
mind only grasps the truth progressively, thus making the development of
knowledge dependent on “long chain[s] of inferences” (ibid., 756), which for
Dedekind constitute the essence of science.

In fact, for a man gifted with an unbounded understanding, for
whom the final conclusions, which we attain through a long chain
of inferences, would be immediately evident truths, there would
exist no more science; and this would be so even if he stood in
exactly the same relation to the objects of science as we do.13

(ibid., transl. slightly altered, 755-756)

If there were a man with unlimited understanding and immediate knowledge
of truth, then, science as an activity would cease to exist for him, although
the independence of truth would leave him in the “same relation to the
objects of science as we do”. Science, for humans with finite understanding,
appears to be indispensable if one is to explore the realm of rationality.
Reciprocally, there isn’t any science without the human “endeavour[s] to
fathom the truth” – and again mathematics is not an exception to the rule.
There is no mathematics without mathematicians doing it, for there is no
chain of inferences without the mathematician’s endeavours to “fathom the
truth” and extend scientific knowledge.

As regards mathematical concepts, Dedekind explicitly states that the
mathematician creates the concepts he studies, he is creator and actor of
his science. Mathematical objects, such as numbers, are not pre-existing
entities. The idea that numbers are creations of the mind is not a new
idea.14 Berkeley stated that number is “entirely the creature of the mind”
([Berkeley, 1710], Part I, §12). Closer to Dedekind, Gauss wrote to Bessel
in 1830:

13“Für einen mit unbegrenztem Verstande begabten Menschen, dem die letzten von
uns durch eine lange Kette von Schlüssen erhaltenen Konsequenzen unmittelbar evidente
Wahrheiten wären, würde eigentlich keine Wissenschaft mehr existieren, wenn er auch den
Objekten derselben genau ebenso gegenüberstände, wie wir es tun.”

14Note that Dedekind holds a particularly radical view on the matter, insofar as he
considered any mathematical concept to be a creation of the mind, geometrical as well as
arithmetical or analytical notions.
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We must admit with humility that, while number is merely a
product of our minds, space has a reality outside of our minds,
and that we cannot completely prescribe its laws a priori. (in
[Ewald, 2005], 949)

Many mathematicians disagreed, of course, with such a statement, either
holding a Platonist view on the existence of mathematical objects, as did
for example Cantor or Frege; or a more empiricist one, such as Charles
Hermite, who, in a letter to Mittag-Leffler from 13 April 1883, stated:

The successive generalizations of operations which are born in
the arithmetical mechanism, which from addition lead us to func-
tions, are not, I believe, creations of our mind but a product of
the intellectual activity applied to realities which exist outside
and independently of ourselves and of our understanding, as the
world of physical and natural sciences exists outside of physicists
and naturalists.15 (Letter from 13 April 1883, quoted in [Gold-
stein, 2011])

In his Habilitationsvortrag, Dedekind’s first illustration of the develop-
ment of science is in mineralogy, rather than mathematics. This simple ex-
ample, borrowed from a descriptive classificatory science, allows for a good
grasp of the ideas argued for. When setting up a classification of some ob-
jects, such as minerals, the “investigator of nature” chooses which concept he
considers as “suited to distinguishing and classification” ([Dedekind, 1854a],
756). In certain cases, as in mineralogy16 when Dedekind writes, there can
be different or even contradictory systems which can’t be brought “into
complete harmony with each other”, nevertheless,

[e]ach of these systems has a good reason for itself, for science
itself shows that similar bodies group themselves together most
naturally in these ways.17 (ibid., 756)

15“Les généralisations successives d’opérations qui ont leur naissance dans le mécanisme
arithmétique, qui de l’addition nous conduisent aux fonctions, ne sont pas à mon avis, des
créations de notre esprit, mais un fruit de l’activité intellectuelle, appliqué à des réalités qui
existent en dehors et indépendamment de nous et de notre intelligence, comme le monde
des sciences physiques et naturelles existe en dehors des physiciens et des naturalistes.”

16Auguste Bravais’s works on the symmetry of crystals are a particularly good illus-
tration of the second classification. Benoît Timmermans, in [Timmermans, 2012], gives a
remarkably clear presentation of Bravais’s works (pp. 171-196). Timmermans’s overall aim
in this book is to explore the possible links between the development of group theory from
Galois to Weyl, and that of philosophy, crystallography or chemistry from Eschenmayer’s
Naturphilosophie to quantas.

17“Jedes dieser Systeme hat ein großes Recht für sich, weil die Wissenschaft weiterhin
selbst lehrt, daß die ähnlichen Körper sich so am natürlichsten zusammengruppieren.”
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Eventually, says Dedekind, one of the criteria will prove more fruitful, more
efficient, and scientists will be able to settle the conflict. Moreover, even if
the state of knowledge made for conflicting classifications, it is certain that
“it will occur to no mineralogist to advance, say, differences of colour as
the characteristic features and to prefer a classification resting on them”18

(ibid., 756, emphasis original). Indeed, experience taught mineralogists that
color “is not of such great significance for the true nature of bodies” (ibid.,
756, emphasis original) or again that it doesn’t provide us with any cer-
tainty regarding the nature of bodies – unlike the criteria mentioned earlier.
The choice of a criterion to organize a certain system, that is, “[t]he intro-
duction of such a concept as a motive for the arrangement of the system”,
constitutes, according to Dedekind, “an hypothesis one puts to the inner
nature of a science”19 (ibid., 756, transl. slightly modified). There is a part
of randomness involved in the postulate that a certain property is a char-
acteristic one, and only “the further development” of the science can verify
the actual efficiency of the said hypothesis. Indeed, once these concepts
are introduced, they “appear as definitions in the science” and are tools for
the scientist to “express the recognizable general truths that emerge from
the infinite manifold of the particular”20 (ibid., 756, transl. slightly altered).
Changes in concepts appear when, in turn, these general truths influence
the formation of new definitions, and the said efficiency of the concepts is
to be determined:

So, it may well happen that the concepts, introduced for what-
ever motive, because they were initially conceived either too nar-
rowly or too broadly, will require modification so their effective-
ness, their implications, can be extended to a larger domain. The
greatest art of the systematizer lies in this turning and manipu-
lation of definitions for the sake of the discovered laws or truths
in which they play a role.21 (ibid., 756)

These ideas will reveal important in Dedekind’s later texts, for the role of
definitions, of grounding concepts and the deductive structure of theories

18“es wird keinem Mineralogen einfallen, etwa die Farbenverschiedenheiten als die
charakteristischsten Merkmale hervorzuheben und eine hierauf beruhende Einteilung allen
andern vorzusetzen.”

19“Die Einführung eines solchen Begriffs, als eines Motivs für die Gestaltung des Sys-
tems, ist gewissermassen eine Hypothese, welche man an die innere Natur der Wis-
senschaft stellt.”

20“[Diese Begriffe] als Definitionen in die Wissenschaft eintreten, und mit deren Hilfe
er imstande ist, die aus der unendlichen Mannigfaltigkeit des Einzelnen erkennbaren all-
gemeinen Wahrheiten auszusprechen.”

21“So zeigt sich wohl, daß die aus irgendeinem Motive eingeführten Begriffe, weil sie
anfangs zu beschränkt oder zu wei gefaßt waren, einer Abänderung bedürfen, um ihre Wirk-
samkeit, ihre Tragweite auf ein größeres Gebiet erstrecken zu können. Dieses Drehen und
Wenden der Definitionen, den aufgefundenen Gesetzen oder Wahrheiten zuliebe, in denen
sie eine Rolle spielen, bildet die größte Kunst des Systematikers.”
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play a crucial role in his reflections.

As Dedekind himself mentioned, experience teaches us to choose and/or
abandon some concepts in favor of more effective, fruitful and often more
general (i.e., with a larger scope of validity or applicability) ones. The devel-
opment of science consists in pushing further the limits of our understanding
by extending knowledge (which can be observed in the historical progress of
all sciences) and one of its main aims is to obtain a deeper and wider knowl-
edge of the objective truths. From this viewpoint, then, while the truth is
immutable and independent from us, our conceptions, insofar as they are
intimately linked to the state of science, are (susceptible to be) constantly
changing and evolving.

The same principles as these general ones prevail for mathematics, how-
ever the generation of concepts is strictly regulated by the inner necessity
peculiar to mathematics. The extensions of definitions “no longer allow
scope for arbitrariness; on the contrary, they follow with compelling neces-
sity from earlier restricted definitions” (ibid., 757). Dedekind’s ideas are
sharper and more detailed when it comes to mathematics, as we will see
in the following, and in particular he describes how he considers that the
changes in concepts are made.

Before continuing and looking into Dedekind’s ideas about the devel-
opment of mathematics, I would like to mention the striking resemblance
between his ideas about science and Lotze’s. In Mikrokosmus, Lotze gives a
characterization of science which seems quite close to the statement made
by Dedekind at the beginning of his Habilitationsvortrag:

What is science ? Not truth itself, for this existed always, and
did not need to be produced by human effort. So that science
means simply knowledge of the truth; but this knowledge has
become so vast that it can no longer be comprehended in the
knowledge possessed by any individual. Such is the strange life
of science now-a-days; it exists, but for any individual it means
only the possibility of investigating and learning to know each of
its parts. ([Lotze, 1856], II, 152)

Lotze was a dominant philosopher in Germany at the time, even though he
fell from grace relatively fast, and we know that Dedekind followed Lotze’s
lectures on the history of philosophy.22 I will not develop this point, because
it would take me too far, but it has been suggested23 that Lotze’s influence
on Dedekind might have been much deeper than thought.

22Incidentally, the quote given above is in the chapter about the “meaning of history”.
23[Gandon, 2006] notably for published works alluding to this question. One can find

such considerations in [Sieg and Morris, 2014] (unpublished).
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3.2 Development of mathematics according to the Habil-
itationsvortrag

The core of Dedekind’s Habilitationsvortrag is an epistemological reflection
on mathematics, in which he explains how, from his viewpoint, the develop-
ment of mathematics answers a “principle of induction” ([Dedekind, 1854a],
757), a principle according to which mathematicians invent, generate a se-
ries of concepts starting from the narrow framework of the natural numbers
(“absolute ganze Zahlen”).

The main idea argued for by Dedekind, here, is that mathematics devel-
ops following a sort of generalization process. The main example developed
is arithmetic, which is “based upon the formation of ordinal and cardinal
numbers” (ibid., 757). Its development or enlargement is done through intro-
duction of new operations (or in the title, new functions24), by successively
generating new domains of numbers in order to assure the general applica-
bility of operations. The process has two steps: the demand that operations
be unconditionally applicable leads to the creation of new numbers, and the
requirement to preserve the validity of the laws formerly defined guides the
definition of the new numbers.

As Ferreirós underlines, Dedekind’s approach is very reminiscent of Ohm’s:

Ohm (. . . ) attempted to give a consistent (i.e., unitary, system-
atic) presentation of arithmetic, algebra and analysis on the only
basis of natural numbers. (. . . ) [He] introduced the inverse op-
erations (. . . ) and observed that they cannot always be carried
out in the limited domain of the natural numbers. The require-
ment that it ought to be possible to realize them motivates an
extension of the number system. In order to be rigorous, this ex-
tension must be accompanied by new definitions of equality and
of the basic operations that can be applied to the new numbers;
the process is guided by the requirement that the fundamental
equations that were valid for natural numbers should be pre-
served. ([Ferreirós, 2008], 121)

Ohm’s writings were highly influential among Gymnasium teachers until the
mid-19th century. Moritz Stern, who was a professor in Göttingen from 1848
to 1884 where he directed the teaching of mathematics with G. Ulrich, pub-
lished in 1860 a textbook ([Stern, 1860]) adopting an approach very close
to Ohm’s. It is likely, as suggested by Ferreirós, that Dedekind was familiar

24“This lecture is not about the introduction of a determinate class of new functions
into mathematics (although one could perhaps interpret the title in that way); rather,
it is about the general manner in which, in the progressive development of this science,
new functions, or, as one can equally well say, new operations, are added to the chain of
previous ones.” (ibid., 755)
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with Ohm’s approach, at least through Stern’s teaching. The family resem-
blance between Ohm’s and Dedekind’s works should not be emphasized too
strongly, for Ohm’s also considered the natural numbers to be given and
“the basic operations on them were established by taking into account their
intuitive meaning” (ibid., 121). Moreover, for Ohm, only the natural num-
bers were actual numbers, the extensions were mere symbols, as they were
for the previous authors mentioned above. In fact, for most authors, only
integers were considered numbers, fractional and irrational numbers were
magnitudes – even for Gauss, who advocated for a arithmetic generalized
to complex integers. As is often underlined, Dedekind was the first to talk
about irrational numbers rather than quantities or magnitudes (see Sec. 7.2).

Considerations similar to Ohm’s can be found in the works of Hermann
Grassmann or Hermann Hankel. In Lehrbuch der Arithmetik, Grassmann
proposes a systematic treatment of arithmetic based on mathematical in-
duction, leading to what we would call a recursive definition of the rational
operations and proofs of their properties ([Grassmann, 1861], 1-10, 17-28,
73-78). Hankel wrote, in 1867, Vorlesungen über der complexen Zahlen und
ihre Functionen, that

It is obvious that when b > c, there does not exist any number x
of the sequence 1, 2, 3, . . . which can be solution of our problem:
the subtraction is then impossible. Nothing prevents us, however,
from considering in this case the difference (c−b) as a sign which
would solve our problem and with which it would be correct to
operate as if it were a number of the sequence 1, 2, 3, . . . 25

([Hankel, 1867], 5, my translation)

Hankel’s ideas are explicitly guided by Peacock’s principle of permanence
of forms (published in 1830). As with Ohm’s works, the similarities be-
tween Dedekind’s and Hankel’s conceptions are only partial ones. In par-
ticular, the formalism adopted by Hankel, Grassmann and Ohm is opposed
by Dedekind. Nevertheless, the desire to give a systematic presentation of
arithmetic based on the statement that the general applicability of the op-
erations requires extensions of the number domains, proceeds from the same
basic (methodological) principles.

Note that while these ideas were relatively widespread, many mathemati-
cians did not adopt them. Kronecker, for example, strongly criticizes Han-
kel’s method and calls it an “evaporation of arithmetical concepts” ([Kro-
necker, 1887], 56).

25“Es liegt auf der Hand, dass wenn b > c ist, keine Zahl x in der Reihe 1, 2, 3, . . . gibt
welche die betreffende Aufgabe löst: die Substraction is dann unmöglich. Nichts hindert
uns jedoch, dass wir in diesen Falle die Differenz (c− b) als ein Zeichen ansehen, welches
die Aufgabe löst und mit welchem genau so zu operieren ist, als wenn es eine numerische
Zahl aus der Reihe 1, 2, 3, . . . , wäre.”

207



Chapter 3 - Dedekind’s Habilitationsvortrag, in 1854

3.2.1 The particular nature of mathematics
Dedekind proposes, in his Habilitationsvortrag, a systematic way of defining
the successive generalizations of the concept of number, instead of ad hoc
introductions. Dedekind’s approach, here, is a back and forth movement
between laws and definitions of numbers: once the (restricted) system is
defined, the laws themselves become a source for the definition of the new
numbers. It is important to underline that the fact that mathematics is “the
most certain of all the sciences” ([Dedekind, 1854a], 756) does not entail that
the said development is made any differently than other sciences:

In mathematics too, the definitions necessarily appear at the
outset in a restricted form, and their generalization emerges only
in the course of further development.26 (ibid., 757)

Mathematics is nevertheless different from other sciences in the sense that
its very nature does not allow any arbitrariness in the introduction of new
concepts or the extensions of definitions:

[T]hese extensions of definitions no longer allow scope for arbi-
trariness; on the contrary, they follow with compelling necessity
from the earlier restricted definitions.27 (ibid., 757)

Insofar as mathematics, as a science, is a human activity, the introduction
of new concepts becomes not only desirable but a need for mathematics
to actually progress – a point Dedekind consistently advocated. However,
the prohibition of any randomness imposes strong limitations on how the
generalization ought to be done.

The core idea is, as Sinaceur explains in her introductory note to the
Habilitationsvortrag, that “[t]he truth is not our arbitrary creation, but we
create the concepts with which we approach it” ([Sinaceur and Dedekind,
2008], 219). That is, concepts are the tools forged by the human mind
to attain the truth. More precisely, concepts are, for Dedekind, the tools
to unfold these series of inferences to fathom the truth. From Dedekind’s
viewpoint, then, the work of the mathematician appears to be to invent new
concepts – an invention controlled by the inner necessity of mathematics –
which would allow them to progress towards a better understanding or a
clearer view of the (objective) truth. Progress, in mathematics, if under-
stood as in Dedekind’s Habilitationsvortrag as a possibility to extend the
scope of validity of concepts and laws, proceeds from a deep and careful
analysis of the restricted concept – a domain of numbers, for example –
to identify the conditions for the laws (logically) derived from the concept

26“Auch [der Mathematik] Definitionen treten anfangs notwendig in beschränkter Form
auf, und erst durch weitere Entwicklung ergibt sich die Verallgemeinerung derselben.”

27“[D]iese Erweiterungen der Definitionen lassen der Willkür keinen Raum mehr, son-
dern sie folgen mit zwingender Notwendigkeit aus den frühern beschränkten.”
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to become perfectly general and unconditionally valid.28 Those conditions
are necessary conditions, for the laws to generalize become the source of
the extended definition. To quote Sinaceur again, “from a first concept to
its progressive extensions, the passage is strictly regulated by internal exi-
gences” and the passage from a “first” concept to its extension is not only
an historical progress, it is “a link of necessity: the conquest of a larger and
more complex rationality” (ibid., 219).

The development of mathematics, for Dedekind, appears to be a chain
of inventions of concepts. As noted in the opening remarks of Dedekind’s
Inauguraldissertation, the best recourse of the mathematician, when put in
an impossible situation, is to introduce new concepts, new tools, to over-
come the difficulty. Dedekind considers that very often, these new concepts
inaugurate entire new fields in mathematics proving the approach to be
doubly fruitful – in this, Dedekind’s mathematical works match remarkably
well his epistemological ideas, if one thinks of the context of introduction of
Dedekind’s concepts of fields and ideals and their tremendous posterity.

The demand to generalize concepts stated by Dedekind, here, appears
to be linked with fruitfulness concerns. It is not required for the laws to be
general for the sake of following a certain ideal of generality, but because it
conveys the hope that the mathematician will be able to know more about
the concept(s) he is investigating and to do more with them.29 Indeed,
working with more restricted or narrower concepts seems to confine the
moves allowed to the mathematician, or even to close doors:

[T]he definitions we thereby obtain for these fundamental oper-
ations [of addition, multiplication and exponentiation] no longer
suffice for the further development of arithmetic, and that is,
because it assumes that the numbers with which it teaches us to
operate are restricted to a very narrow domain.30 ([Dedekind,
1854a], 757)

The crux of the matter, in Dedekind’s Habilitationsvortrag, is to identify
which are the conditions allowing for the definition of more general domains
of numbers – a domain of numbers in which the subtraction or the division
are unrestrictedly applicable, for example. Dedekind, hence, is not consid-
ering the problem of the definition of more general domains of numbers,

28In later works, an in particular in Zahlen, Dedekind’s attention is turned towards
identifying the foundations, the concepts from which natural numbers are derived. In
that case, it is again a deep and careful analysis of the concept that indicates the answer.

29It seems that, for Dedekind, if the answer for a tentative of extension is that the
concept ought to be replaced by a new one, this still entails a gain of knowledge.

30“[D]ie so gegebenen Definitionen dieser Grundoperationen genügen der weitern Ent-
wicklung der Arithmetik nicht mehr, und zwar aus dem Grunde, weil sie die Zahlen, mit
denen sie operieren lehrt, auf ein sehr kleines Gebiet beschränkt annimmt.”
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but of finding a reliable and rigorous method to extend the validity of the
laws. This states the limits of the Habilitationsvortrag: Dedekind alludes to
creating new domains of numbers which assure the general validity of char-
acteristic laws so that the operations are correctly extended, but he does not
explain how the said new domains of numbers are to be created or defined.
Later works, in particular Stetigkeit and manuscripts that can be found in
his Nachlass (see Sec. 7.2), consider these questions.

3.2.2 Development of arithmetic

In 1854, arithmetic, in Dedekind’s attempt to give a systematic account of its
development, presents itself as a hierarchy of concepts, each invented on the
ground of the preceding one. The basis of elementary arithmetic, Dedekind
writes in 1854, is “the formation of ordinal and cardinal numbers” (ibid.,
757) and the “first and simplest operation of arithmetic” is the successor
operation – “the successive progress from one member of the sequence of
positive integers to the next” (ibid.). The act of counting is, thus, the
most elementary act of mathematics insofar as arithmetic is the “simplest
science”, the first step of the building of mathematics. Dedekind did not
discard this idea later on. Indeed, in Zahlen, the basis for the definition of
the natural numbers is, albeit in a much more abstract presentation, the
successor operation establishing the order for the structure of the simply
infinite system(s).

The act of counting is the basis upon which the arithmetic operations are
to be defined. The addition is the collection “into a single act the multiply-
repeated performance of this elementary operation”; the multiplication is
formed from addition “in a similar manner, and from multiplication that
of exponentiation” (ibid., 757). Still in the natural numbers, subtraction,
division and root-extraction are defined as inverse operations of addition,
multiplication and exponentiation respectively. However, as one knows well,
the definition of the inverse operations in the domain of positive integers
only enables to perform the said operations in a very restricted way: in-
verse operations are not unconditionally applicable in N and the possibilities
of performing and developing arithmetic are rather limited, for the initial
definitions of the fundamental operations defined “are restricted to a very
narrow domain.” Dedekind explains, then, that at that point of development
of arithmetic, the inverse operations require extended definitions so as to be
generally applicable, that is:

[t]he requirement of arithmetic to produce, by means of each of
these [inverse] operations, each time anew, the entire existing
domain of numbers, or in other words: the requirement for the
unconditional executability of the indirect, inverse operations,
subtraction, division, and the like, makes it necessary to cre-
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ate new classes of numbers, since with the original sequence of
positive integers, the requirement cannot be satisfied.31 (ibid.,
transl. modified, 757)

These extensions should be carried on following the principle stated by
Dedekind as directing the development of mathematics:

Laws which emerge from the initial definitions and which are
characteristic for the concepts that they designate are to be con-
sidered as of general validity. Then these laws conversely be-
come the source of the generalized definitions if one asks: How
must the general definition be conceived in order that the discov-
ered characteristic laws be constantly satisfied?32 (ibid., transl.
slightly altered, 757)

Dedekind’s aim, in this part of the Habilitationvortrag, is to provide a sys-
tematic description of the extension of arithmetic and to propose a general
principle for the definition or creation of new systems of numbers. Arith-
metic, as we will see later, seems to provide a good basic example for his
purpose. His presentation shows the part of his approach pertaining to the
so-called “genetic method”, which plays an important role his foundational
researches.33 To adopt the “genetic” approach34 consists essentially in ex-
tending a system of numbers into a new one, for example to define the real
numbers as an extension of the rational numbers.35 The extension is made
by adding the irrationals to the system of rational numbers, and by extend-
ing operations and laws as well. It is the basic idea found in Ohm’s works36

mentioned earlier. In Dedekind’s case, it should be underlined that the ge-
netic method is a consequence of more general ideas, in particular what he
called his “principle of induction”.37

31“Die Forderung der Arithmetik nämlich, durch jede dieser Operationen das gesamte
vorhandene Zahlgebiet jedesmal von neuem zu erzeugen, oder mit andern Worten: die
Forderung der unbedingten Ausführbarkeit der indirekten, umgekehrten Operationen, der
Subtraktion, Division usw., führt auf die notwendigkeit, neue Klassen von Zahlen zu schaf-
fen, da mit der ursprünglichen Reihe der absoluten ganzen Zahlen dieser Forderung kein
Genüge geleistet werden kann.”

32“Gesetze, welche aus den anfänglichen Definitionen hervorgehen und charakteristisch
für die durch sie bezeichneten Begriffe sind, als allgemeingültig anzusehen; dann werden
umgekehrt diese Gesetze die Quelle der verallgemeinerten Definitionen, wenn man fragt:
Wie muß die allgemeine Definition gefaßt werden, damit dem gefundenen charakteristi-
schen Gesetze stets Genüge geschieht?”

33I will come back to these questions later.
34[Hilbert, 1900] coined the term “genetic approach” and provided the description.
35In particular, it is opposed to axiomatic definitions made such that each domain of

numbers is defined by its own set of axioms, independently from the other domains.
36Versuch eines vollkommen consequenten Systems der Mathematik, the first volume of

[Ohm, 1822-1853] was published in 1822, and Ohm kept publishing additional volumes
until 1852.

37As underlined by [Sieg and Schlimm, 2005], in his later works, Dedekind’s approach
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At the first steps of the development of arithmetic, the necessity of in-
troducing new numbers seems clear, if one considers the limits set to the
applicability of subtraction: with the definition of subtraction in the posi-
tive integers, it is impossible to subtract b from a when a < b. Following the
principle enunciated earlier, one states the general validity of the character-
istic law, for example for all a and b, there exists a c such that a − b = c,
and creates new domains of numbers for the laws to be always satisfied:

[T]he requirement for the unconditional applicability of the in-
direct, inverse operations, subtraction, division, and the like,
makes it necessary to create new classes of numbers, since with
the original sequence of positive integers, the requirement cannot
be satisfied. Thus one obtains the negative, rational, irrational,
and finally also the so-called imaginary numbers.38 (Habilita-
tionsvortrag., transl. slightly altered, 757)

It is essential – necessary, even – that once the number-concept has been
extended, one defines again the arithmetic operations, “for until now their
effectiveness was only determined for the sequence of positive integers” and
they are now to be valid for the new more general domain of numbers as
well. The re-definition of the operations ought to be done at every extension.
In his Habilitationsvortrag, Dedekind develops a couple of examples, such as
the definition of multiplication for negative numbers (see below), so as to
highlight why and how the re-definition is to be done. In his later works,
whenever he introduces a new concept of number (e.g., irrational or algebraic
numbers), Dedekind systematically re-defines arithmetic operations.

The extension of the definition does not involve any arbitrariness what-
soever, provided one follows the principle:

[O]ne declares the laws which the operations obeyed in their
restricted conception (Auffassung) to be valid in general, and
from this conversely, one derives the meaning of the operations
for the new numbers domain.39 (ibid., 757)

The application of this general principle protects the mathematician from
finding definition by a “lucky guess, a happy coincidence” (ibid., 758). As
underlined by Sinaceur, “the analysis of a mathematical situation reveals

is both axiomatic and genetic, in the sense that the systems are defined as successive
extensions, yet each definition is expressed as a set of necessary and sufficient conditions.

38“[Diese] Forderung führt auf die notwendigkeit, neue Klassen von Zahlen zu schaf-
fen, da mit der ursprünglichen Reihe der absoluten ganzen Zahlen dieser Forderung kein
Genüge geleistet werden kann. So erhält man die negativen, gebrochenen, irrationalen und
endlich auch die sog. imaginären Zahlen.”

39“(. . . ) die Gesetze, welchen die Operationen in ihrer beschränkten Auffassung
gehorchten, für allgemeingültig erklärt, und daraus umgekehrt die Bedeutung der Oper-
ationen für die neuen Zahlengebiete ableitet.”
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the necessary conditions for the laws, valid in this situation, to become
(. . . ) generally and unconditionally valid” ([Sinaceur and Dedekind, 2008],
219). Once these conditions identified, the concept should be extended in
such a way that they are, indeed, verified. In 1854, the issue of actually
defining the extended concepts is not addressed.

Sieg and Schlimm note that there is a “subtle circularity” ([Sieg and
Schlimm, 2005], 127) in Dedekind’s principle:

the new numbers are generated by the unrestricted inverse of a
restricted operation, which is then extended to this generated
broader domain! (ibid., 127)

Dedekind’s use of only internal resources, namely operations whose nature
is inherently linked to numbers themselves, and the back and forth move-
ment between restricted and unrestricted operations does create a “subtle
circularity”. However, Sieg and Schlimm’s remark seems to suppose that the
unrestrictedly valid operation is responsible for the creation of new numbers.
Here, it is not clear whether Dedekind does consider that the unrestricted
inverse operations is defining the new numbers, or if the requirement for un-
conditional applicability highlights the need for new numbers, then created
by the human mind to meet the requirement. This last solution is explicitly
the position adopted by Dedekind in later works, especially in Stetigkeit.40

3.2.2.1 The examples of the extension of multiplication and exponentiation

The definition of multiplication for the negative numbers provides a good
example to understand the process advocated for by Dedekind.

In the domain of positive integers, the multiplication m.n is defined as
the collection in one single act of the m (the multiplicator) repetitions of
the addition of a number n (to itself) (the multiplicand). Once the domain
of numbers has been extended to the negative numbers, m.n should be,
according to the initial definition, the collection in one single act of the m
repetitions of the addition of a negative or positive number n. But then,
the multiplicator m is necessarily a positive integer, for it would not make
any sense to repeat something a negative number of times. Thus, “a special
definition is (. . . ) needed in order to admit negative multiplicators as well,
and thereby to liberate the operation from the initial constraint” ([Dedekind,
1854a], 758). Such a definition, affirms Dedekind, “involves an a priori
complete arbitrariness” (ibid., 758). Should one then rely on sheer luck for
identifying the appropriate new definition? This would certainly not be true

40An objection similar to Sieg and Schlimm’s was made by Russell ([Russell, 1903], 71),
and later Dugac ([Dugac, 1976b], 43) about cuts and the creation of irrational numbers.
In the case of Stetigkeit, cuts are presented as tools bringing out the necessity of irrational
numbers which are then created by the human mind. see Sec. 7.2.3.
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to the scientific method, and in fact, writes Dedekind, rather than counting
on a “happy coincidence”, one applies “a general principle”:

We must investigate to which laws the product is submitted if
the multiplicator undergoes in succession the same alterations
which led to the production of the sequence of negative integers
out of the sequence of positive integers. For this it suffices if
we determine the alteration which the product undergoes if one
makes the simplest numerical operation with the multiplicator,
namely, allowing it to go over into the next-following number.41

(ibid., transl. slightly altered, 758)

From (m+1)n = mn+m, one can derive the “addition theorem”, namely the
law for the multiplication of a number by a sum: (m+m′)n = mn+m′n. We
know that the extended domain of numbers has been obtained by considering
the operation (m−m′′) to be valid for any m, m′′. So, from the “addition
theorem”, one can derive a “subtraction theorem”: (m−m′′)n = mn−m′′n,
which is valid even if m −m′′ < 0 i.e., if mn < m′′n. Then, it suffices to
“declare this law to be valid in general” (ibid., 758), and

one obtains the definition of multiplication with negative multi-
plicators; and it is then of course no accident that the general law
which multiplication obeys is exactly the same for both cases.42

(ibid., transl. Ewlad slightly altered, 758)

Sieg and Schlimm underline that the “subtle circularity” detected is still
present in Dedekind’s definition of multiplication for negative numbers (or
of exponentiation for rational numbers, which is done in the same way),
for Dedekind “appeals to the very character of [the] generation [of the new
numbers]” ([Sieg and Schlimm, 2005], 127). The definition of multiplication
explained here gives a clear example of the “intricate dependency” (ibid.),
since to obtain “the definition of multiplication with negative multiplica-
tors”, one uses the law which served for the creation of new numbers.

In spite of Dedekind’s protestation — that the definition of the
extended operation “‘involves an a priori complete arbitrariness”
— he appeals to the very character of that generation. (ibid.,
127)

41“Man muß untersuchen, welchen Gesetzen das Produkt unterworfen ist, wenn der
Multiplikator sukzessive dieselben Veränderungen erleidet, durch welche überhaupt aus der
absoluten ganzen Zahlenreihe die der negativen erzeugt wurde. Dazu genügt allein schon
die Bestimmung der Veränderung, welche das Produkt erleidet, wenn man mit dem Multi-
plikator die einfachste Zahlenoperation vornimmt, nämlich ihn in die nächstfolgende Zahl
ïbergehen lãßt.”

42“erhält man hieraus die Definition der Multiplikation mit negativen Multiplikatoren;
und es ist dann natürlich kein Zufall mehr, daß das allgemeine Gesetz, dem die Multip-
likation gehorcht, für beide Fälle genau dasselbe ist.”
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There is, indeed, an “intricate dependency” in Dedekind’s method here, but
Sieg and Schlimm seem to take Dedekind’s mention of the possible “a priori
complete arbitrariness” as applying to his own definition of multiplication.
It doesn’t however seem to be the case. Dedekind appeals to his “general
principle” of considering the characteristic law to be unconditionally valid so
as to avoid all arbitrariness – this very principle is acknowledged to be the
source of the necessity of the extension of definition ([Dedekind, 1854a], 757).

After the definition of multiplication for negative integers, Dedekind con-
tinues with the definition of exponentiation in the domain of rational num-
bers, since powers have only been defined for exponents which are positive
integers. A new definition has to be given for exponents which are not pos-
itive integers, but again “instead of choosing the definition arbitrarily one
must rather investigate how one has to frame it so that the laws following
out of the original definition will turn out to be generally valid” (ibid., 758).
Following a sort of principle of permanence, the method employed is the
same:

[O]ne must ask about the alterations which the power undergoes
when one subjects the exponent to the operations of addition,
subtraction, multiplication, and division, while leaving the al-
tered exponent a positive integer. Once the laws prevailing here
are known, they yield in turn the generalized definition if one
requires that these laws set the standard for the character of
exponentiation in general.43 (ibid., 758)

The extension to null and negative exponents is fairly easy. The multipli-
cation of exponents defined as an exponentiation ((amn) = (am)n)) is more
complicated, because the division of powers requires to be able to perform
the inverse operation of exponentiation (n-th root extraction), which is not
always possible in the rational numbers. Thus, one is led to create new
classes of numbers, the irrational numbers and the imaginary numbers, in
order to satisfy the requirement of the unrestricted applicability of expo-
nentiation. Note that only algebraic irrational and complex numbers are
defined this way, which doesn’t seem to bother Dedekind – if he noticed,
since the definition of transcendental numbers is not addressed.

Dedekind mentions that with the creation of the irrational numbers “the
concept of limit appears at the same time”, which calls for two remarks. As
Pierre Dugac suggests ([Dugac, 1976b], 20), this mention of the concept of

43“Man muß daher (. . . ) nach der Veränderungen fragen, welche die Potenz erleidet,
wenn man den Exponenten den Operationen der Addition, Subtraktion, Multiplikation, Di-
vision unterwirft, solange der so veränderte Exponent immer noch eine absolute ganze Zahl
bleibt. Sind die hierin herrschenden Gesetze erkannt, so liefern sie umgekehrt die verall-
gemeinerten Definitionen, wenn man die Forderung stellt, daß diese Gesetze maßgebend
für den Charakter der Potenzierung überhaupt sein sollen.”
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limit made in passing gives us an insight of Dedekind’s conception of limit in
1854. However, and this is linked to the second point, Dedekind’s conception
of irrational numbers and limits will change in the next two decades. Indeed,
it is important to notice that, here, Dedekind considers the introduction of
the concepts of irrational numbers and of limit as being simultaneous. In
Stetigkeit, the concept of limit is defined after the definition of the irrational
numbers (which are, in fact, defined precisely to provide a rigorous ground to
Analysis). Limits are derived from the definition of the domain of irrational
numbers, which, as underlined by Sinaceur ([Sinaceur and Dedekind, 2008],
229), entails that irrational numbers are logically anterior to limits – from
Dedekind’s viewpoint at least.44 This remark is not for the sole purpose to
note that Dedekind’s ideas evolved – sometimes very significantly – com-
pared to his Habilitation, but to underline the role played by the (logical)
ordering of the concepts. The identification of the conceptual structure and
of the order of reasoning appears to be a crucial step in finding the ‘right’
definition of a concept: to give a definition of real numbers which will serve
as a basis for investigations of continuity or a definition of the Riemann sur-
face which will help the research on their topological properties, or again to
give a definition of the sequence of positive integers in terms of more general
and logically anterior notions so as to be able to deduce the arithmetical
properties.

In 1854, Dedekind states that the progress made by creating these last
new domains of numbers “are so immense that it is difficult to decide which
of the many different paths which open before us we should first pursue”
([Dedekind, 1854a], 759). To pursue arithmetic with these new domains of
numbers, the definitions of the operations ought to be extended once again.
However, it might happen that the extensions of operations cannot be car-
ried over with preservation of the familiar laws (e.g., for hypercomplex num-
bers). And indeed, Dedekind considers that “at least with the appearance
of imaginary numbers” (ibid., 759), a systematic development of arithmetic
becomes difficult to carry out. Dedekind seems openly dissatisfied with the
definitions of irrational and imaginary numbers proposed so far:

However, one might well hope that by persistently applying the
principle, by not permitting ourselves any arbitrariness but rather
always to be led on by the discovered laws, a truly solid edifice of
arithmetic will be attained. Everybody knows that until now, an
unobjectionable theory of the imaginary numbers, not to men-
tion those newly invented by Hamilton, does not exist, or at any
rate has not been published yet.45 (ibid., 759)

44It is notably not the case for Cantor, who defines the irrational numbers as limits of
Cauchy sequences.

45“Indessen ist wohl zu hoffen, daß man durch beharrliche Anwendung des Grundsatzes,
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As we know, Dedekind proposes what he considers to be a satisfying defini-
tion of irrational numbers in 1872. He never, however, wrote about complex
numbers and it seems likely that he adopted Hamilton’s approach defining
complex numbers as pairs of real numbers. Ferreirós mentions that, in 1857,
Dedekind read Hamilton’s Lectures on Quaternions, in the introduction of
which Hamilton presents his definition of complex numbers as ordered pairs
of real numbers ([Ferreirós, 2008], 220). Ferreirós concludes that this ex-
ample of the genetic method of definition of new numbers (which Dedekind
favored) certainly satisfied Dedekind. And indeed, he did use pairs of num-
bers to define new numbers, in one of his attempts to define the domain of
negative integers from the natural numbers.46

3.2.2.2 Some elements about Gauss’s idea of arithmetic

Dedekind strongly underlined that Gauss approved of the reflections devel-
oped in his Habilitationsvortrag. If one considers more closely Gauss’s writ-
ings, his positions seems, however, to be slightly different. To contrast his
ideas with Dedekind’s, I will consider mainly two texts, Zur Metaphysik der
Mathematik47 written around 1800, and “Theoria residuorum biquadratico-
rum. Comm. II ”48.

In Zur Metaphysik der Mathematik, quantities are presented, following
traditional ideas, as conglomerates or repetitions of “a known quantity (the
unit), or an aliquot part of the unit in order to obtain a quantity equal to
it” ([Gauss, 1929], 295). Numbers are, then, the expression of a quantity,
rather than elements of a sequence. Gauss’s presentation is for any kind of
magnitude, not for natural numbers to be later extended.

Relations between quantities are, writes Gauss, the “proper object of
mathematics” – indeed, the arithmetical operations are considered as ex-
pressing relations – and in particular, “one quantity in itself” do not consti-
tute an object of study. Quantities are given an “arithmetical representa-
tion”, which corresponds to the indication of “the way and manner in which,
from the idea of an immediately given quantity, one can achieve the idea of
the sought quantity.” Numbers are used to “show how many times one must

sich auch hier keine Willkürlichkeit zu erlauben, sondern immer durch die gefundenen
Gesetze selbst sich weiterleiten zu lassen, zu einem wirklich festen Gebäude der Arith-
metik gelangen wird. Bis jetzt ist bekanntlich eine vorwurfsfreie Theorie der imaginären,
geschweige denn der neuerdings von Hamilton erdachten Zahlen entweder nicht vorhanden,
oder doch wenigstens noch nicht publiziert.”

46See [Sieg and Schlimm, 2005] and [Schlimm, 2000].
47This short text was found in Gauss’s Nachlaß and published in 1929 in [Gauss, 1863-

1874, 1900-1917] XII, 57-61. It is translated in [Ewald, 2005] and references will be to the
translation.

48In Gauss’s Werke II, translated in [Ewald, 2005]. I will refer to this text as “Notice”
and references will be to Ewald’s translation.
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imagine the immediately given quantity reiterated to obtain an idea of the
sought quantity.” Fractions are obtained when one imagines the reiteration
of a part of the “given quantity”.

Elementary arithmetic is a first and essential way to study relations of
quantities, since

we have to make ourselves familiar with the most important of
these relations, and especially with those that, on account of
their simplicity, can be regarded as the elements of the others –
although in fact even here the first (addition and subtraction)
underlie the others (multiplication and division). (ibid., 295)

There are essentially two sorts of relations between quantities. The first
is that “between the wholes and the parts” (which is the “simplest” one),
which generates addition and subtraction:

addition, shows how to find the whole from the parts; the second
m[ode of] c[alculation], subtraction, shows how, given the whole
and a part, one finds the other. With respect to addition the
parts are called the quantities summed and the whole the sum
or the aggregate; with respect to subtraction the whole is called
the major or minuend, the known part the minor, and the sought
part the difference or the remainder. (ibid., 295)

The second relation is that between the simple and the multiple, and is the
origin of multiplication and division:

Multiplication shows how to find [the multiple] from [the simple]
and [the number which indicates what sort of a multiple it is,
i.e., the multiplier]; division, how to find [the multiplier] from
the first two: with respect to multiplication, the simple is called
the multiplicand, the number that determines the sort of mul-
tiplicity, the multiplier, both the factors, and the multiple the
product. With respect to division the simple is called the divisor,
the number that determines the sort of multiplicity the quotient,
and the multiple the dividend. (ibid., 295)

Operations are not themselves the relations to be studied: the relations be-
tween quantities lead to the definition of the elementary operations (Spezies).
Operations seem to be expressing the relations, and may be a tool to study
the said relations – tools for mathematics, then. Note that the definition
of operations in terms of relations is given for magnitudes in general. For
addition and subtraction, Gauss states that the most important principle,
taken as an axiom, is “that the parts, if they are united in any order, and
if none is omitted, are equal to the whole” (ibid., 295). Relations between
the whole and the parts determine the “mode[s] (species) of calculation”,
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i.e., the operations. Operations are, so to speak, reconstituted from the
relations.

Gauss goes on to give the usual properties of multiplication (commuta-
tivity, associativity, distributivity), and calls them “principal truths of mul-
tiplication” (ibid., 295-296) and he underlines the similarity (reciprocity)
between multiplication and division.

While it can be easily noted, in Gauss’s vocabulary, that subtraction and
division are the inverse operations of addition and multiplication, it is not
the property chosen to define them, and, in fact, it seems to be a property of
lesser importance. More importantly, the whole edifice of arithmetic is not
organized as it is in Dedekind’s Habilitationsvortrag – or any of the earlier
works mentioned, such as Ohm’s. Moreover, insofar as the operations are
given, here, for a general notion of magnitude, considerations about the
extension of domains of numbers does not seem relevant. It would, however,
be considered later by Gauss as a central driving force of the development
of mathematics.

Ferreirós suggests that Gauss proceeded in the following way:

One would begin with utmost generality, introducing quite gen-
erally relations, magnitudes and operations, and developing the
theory of the universal properties of all magnitudes. Such re-
sults would not belong to arithmetic, but to the pure theory of
magnitudes; they apply to the natural numbers because they
are a particular case, namely the theory of discrete magnitudes.
([Ferreirós, 2007], 261)

Indeed, it is important to underline that Gauss had a very general concept of
magnitude, in which he distinguished between “extensive” and “intensive”:

Mathematics has for its object all extensive quantities (those
of which parts can be thought); intensive quantities (all non-
extensive quantities) only to the extent that they depend on the
extensive. To the first sort of quantities belong: space or the
geometric quantities (which include lines, surfaces, bodies, and
angles), time, number; to the latter: speed, density, hardness,
height and depth of tones, strength of tones and of light, proba-
bility, etc. (op. cit., 294)

As is well known, Gauss further distinguished between geometry and arith-
metic, stating that geometry should be considered along with mechanics,
as an experimental science. As regards geometry, the empirical intuition
plays an important role to determine, for example, the validity of the par-
allel postulate, insofar as he considered logical principles to be insufficient
in themselves. Logical principles in geometry “only bloom sterile flowers,
if the fructifying, living intuition of the object does not act everywhere”49

49Dedekind does not follow Gauss on this matter.
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(Gauss 1900). Arithmetic, on the other hand, “stands purely a priori”. The
representations (Darstellung) of magnitudes shall, then, be obtained in dif-
ferent ways depending on their nature. The geometrical magnitudes are
obtained by “immediate intuition (an immediate representation) (. . . ), [by]
geometrical representation or construction” (op. cit., 294). The arithmetical
representation is obtained when “from an immediately given quantity, one
can achieve the idea of the sought quantity”, which is done “by means of
numbers”50.

Zur Metaphysik was written very early, and is, of course, not Gauss’s
only writing on this matter. Thirty years later, during which he produced
an extraordinary body of work (notably in number theory), Gauss advocated
for the introduction of the so-called Gaussian integers in “higher arithmetic”.
In these reflections, his arguments were closer to the ones developed by
Dedekind. The Gaussian integers, i.e., numbers of the form a + ib with a
and b rational integers and i2 = −1 and called “complex integers” by Gauss,
were conceived as a more general concept of number which allowed for better
developments of the theory of biquadratic residues:

For the true grounding of the theory of biquadratic residues, one
must extend the field of higher arithmetic51, which has hitherto
been confined to the real integers, into the imaginary integers,
and must concede to the latter the same legitimacy as the former.
As soon as one has seen this, that theory appears in an entirely
new light, and its results acquire a startling simplicity.

But before the theory of biquadratic residues can be developed
in this widened domain of numbers, the doctrines of higher arith-
metic, which hitherto have been explored only for real numbers,
must be extended as well. ([Gauss, 1831], 308-309)

Gauss underlines that “complex quantities are not opposed to the real, but
contain them as a special case where b = 0”. Moreover, “[j]ust as in the
arithmetic of real numbers” there are two units for real numbers (1, −1), one
should consider four units for the complex numbers (1,−1, i,−i). This is not
a new idea for Gauss, who seems to have drawn it from his practice of number
theory. Already, two decades earlier, in a letter to Bessel, Gauss wrote that
“in the realm of magnitudes, the imaginary numbers a+b

√
−1 = a+bi have

50Arithmetical and geometrical representations are not necessarily mutually exclusive:
“To represent geometrically quantities that have arithmetical relations – as was so common
among the ancients – is no longer so common today; otherwise one would have to regard
this as a part of geometry. On the contrary, one applies the arithmetical manner of
representation extremely frequently to quantities in geometric relation, for example in
trigonometry. . . ” (ibid., 294)

51As regards the distinction between arithmetic and higher arithmetic, see Sec. 1.2.1.
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to be considered as having the same rights as the real ones” (8 December
1811, quoted and translated in [Boniface, 2007], 325).

In the 1831 “Notice”, Gauss explains how arithmetic has extended its
scope to become the “general arithmetic” proper to “modern times”:

[Our general arithmetic] started from the concept of absolute
integers, and has gradually extended its territory; the fractions
have been added to the integers, the irrationals to the rationals,
the negatives to the positives, and the imaginaries to the reals.
(op. cit., 312)

But Gauss’s aim is not to describe the process of generation of new num-
bers, it is mainly to show that complex integers are as legitimate as objects
of arithmetic as any real number. Real numbers are all commonly accepted
now but provoked “a few scrupules”: for example, negative roots of equa-
tions were called “false roots” but the “reality of the negative numbers is
sufficiently justified because they have an adequate substrate in innumerable
other cases.” The idea of a “general arithmetic” does suggest that Gauss’s
views changed since Zur Metaphysik. It suggests that there is a generation
of different sorts of numbers, although it is not by extending domains so
as to satisfy the general applicability of operations. For Gauss, it is neces-
sary to have a relation, to which one can refer, to be able to express clearly
what a number, such as −3 actually is – a point crucially different from
Dedekind’s viewpoint. Indeed, Gauss still considered mathematics to study
relationships between (abstract) objects:

Positive and negative numbers can find an application only where
that which is counted has an opposite, so that the thought of
them as united is to be equated with annihilation. Precisely
regarded, this condition occurs only where what is counted is
not substances (objects thinkable in themselves) but relations
between any two objects. It is then supposed that these objects
are ordered into a sequence in a determinate way. . . (ibid., 312)

In the case of imaginary numbers, such an ordering cannot be given. Gauss
proposes, then, to consider the ordering of “sequences of sequences”, one
given by the unit 1, and the other by the unit i:

The mathematician abstracts totally from the nature of the ob-
jects and the content of their relations; he is concerned solely
with the counting and comparison of the relations among them-
selves: just as he regards the relations designated by +1 and
−1 in themselves, as similar, so is he entitled to regard all four
elements +1, −1, +i, −i as similar. (ibid., 312)

So as to bring “these relationships (. . . ) to intuition”, Gauss introduces the
famous geometrical representation of complex integers. Such a representa-
tion is argued for on the basis of an analogy with the “infinite straight line”
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used to “represent the whole domain of real quantities” (Letter to Bessel, 8
December 1811, op. cit., 326). More importantly, Gauss gives the first ele-
ments of the computations on complex numbers and underlines that he will
answer the question “why the relations between things that form a manifold
of more than two dimensions cannot supply yet another type of number that
is, admissible in higher arithmetic”52 showing that he is fully aware that the
geometrical representation does not justify the complex numbers – it eases
our understanding of them.

3.2.3 In the case of definitions in less elementary parts of mathematics

Dedekind’s considerations about the development of mathematics are not
restricted to elementary arithmetic. Indeed, he argues that it is possible to
find examples of such developments in more developed, less elementary parts
of mathematics. In his 1852 Inauguraldissertation, the observations on the
development of mathematics were introductory remarks on the formation of
Eulerian integrals, the topic of his dissertation. The extension of definition
for Eulerian integrals presents peculiar difficulties, because a modification of
the definition is required, which wasn’t the case in the examples considered
so far by Dedekind. In fact, it is easy to see that it is not always possible
to apply a systematic treatment such as the one proposed by Dedekind for
arithmetic, in ‘complicated’ theories like Eulerian integrals or even trigono-
metric functions, as acknowledged by Dedekind himself. Nevertheless, the
main idea, namely that “the definitions necessarily appear at the outset in a
restricted form, and their generalization (Verallgemeinerung) emerges only
in the course of further development” ([Dedekind, 1854a], 757), seems to be
widely valid from Dedekind’s viewpoint and can be articulated with the idea
of a progressive extension of arithmetic.

In hisHabilitationsvortrag, Dedekind proposes two examples: the trigono-
metric functions and the integral calculus. Those additional examples are
discussed to support Dedekind’s argument, by showing to what extent the
ideas presented may indeed be relevant not solely to elementary mathe-
matics. They display very clearly the outlines for what Dedekind seems
to consider as being the most efficient and most rigorous way to proceed
when shaping a theory. To be clear, Dedekind seems to propose a way of re-
ordering the theory following his “principle” so that one gets a more rigorous
and general presentation of the theory. We will see, in the following, that
Dedekind presents mathematics as proceeding from successive (attempts of)
generalization. While this is a rather widespread idea among 19th and 20th
century mathematicians, it should be acknowledged that it is not (always)
an historically accurate description of the development of mathematics. In-
deed, even Dedekind’s simplest example, the negative numbers, had a more

52Gauss never published such works.
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complicated and multifold birth – notably, until the 19th century, they were
more often considered as debts than as new quantities introduced to allow
the general applicability of subtraction. It is not completely clear, neither
here nor in later writings, whether Dedekind considered that the process he
is describing is objectively what happens in any mathematical enterprise,
or simply as a better method allowing to rearrange a theory following the
right logical order. It does, however, seem more likely that Dedekind is
prescribing an appropriate way of developing mathematics, and provides il-
lustrations to sustain his point.

Dedekind’s first example is, for him, a striking illustration of the gain of
simplicity and clarity made possible by using his principle. When defining
the sine and the cosine, one defines them for acute angles and while they
can be conceived more generally “the style and manner strikes [Dedekind]
as thoroughly arbitrary” ([Dedekind, 1854a], 759). Dedekind, drawing from
various textbooks, gives an example of an attempt to generalize the defini-
tion and prove fundamental theorems valid in all cases. But this example,
from Dedekind’s viewpoint, appears to suffer from several imperfections. He
explains that the generalization itself is led in such a way that it happens
that the geometrical construction carried out to prove a theorem, such as
the addition formula,53 is only carried out “for the case in which all three
angles are acute”, after which

one either considers it going without saying and not worth the
trouble to prove that this theorem is valid for all cases, no matter
what value one may give to the angle, or, if this gap is felt, such a
proof turns out to be extraordinarily complicated.54 (ibid., 760)

Besides, Dedekind detects the arbitrariness mentioned above again in later
developments of this theory.

To be sure, it always remains interesting to see that, even with
the definitions that were formerly assumed, the theorem coinci-
dentally fits all cases. I say coincidentally, because one cannot
call it anything else.55 (ibid., 760)

This situation should be regarded as problematic, at least from Dedekind’s
viewpoint. Even more so inasmuch as it is possible, Dedekind states, “with

53For a, b and a+b acute angles, cos(a+b) = cos(a)cos(b)−sin(a)sin(b) and sin(a+b) =
sin(a)cos(b) + sin(b)cos(a).

54“entweder hält man es für selbstverständlich und nicht für der Mühe wert, zu beweisen,
daß dieser Satz für alle Fälle gültig ist, welche Werte man auch den Winkeln beilegen
mag, oder wenn dieser Mangel gefühlt wird, so fällt ein solcher Nachweis außerordentlich
umständlich aus.”

55“Freilich bleibt es immer interessant zu sehen, daß bei den einmal angenommenen
Definitionen der Satz zufällig auf alle Fälle paßt. Ich sage zufällig, denn anders kann
man es nicht nennen.”
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little trouble [to] discover a consistent and natural path to the same results”
(ibid., 760). Indeed, it suffices to apply Dedekind’s “general principle”:

One really needs only the definitions of the sine and cosine
of acute angles; and if the aforementioned addition theorem is
proved for these, then it yields, in the simplest way, when it is el-
evated to a general law, the extended definitions with compelling
necessity.56 (ibid., transl. slightly altered, 760)

Then, one takes one of the two angles to be equal to a right angle “while the
other remains arbitrarily acute” and the definitions for the obtuse angles
are obtained. It is possible to obtain “the meaning of the sine and cosine of
angles up to the size of four right angles” by giving the value of two right
angles to one of the angles and allow “the other to run through the domain
of concave angles” (ibid., transl. slightly altered, 760).

[A]nd if one continues so, one attains easily to the general defi-
nition for positive angles, and also in a similar manner, via sub-
traction, to that for negative angles.57 (ibid., 760)

Here again, the principle proposed by Dedekind indicates how to obtain a
generalized definition from an initially restricted one, and exhibits “the pe-
culiarity of the way in which, in mathematics, concepts develop from those
which relate only to a restricted domain into more general ones” (ibid.,
760). More importantly, even, the “law teaches us also here, how the con-
cept should be conceived, for it to be the most efficient”,58 the law indicates
how to appropriately extend the concept. It is, then, the analysis of the
‘situation’ established by the consideration of the unrestricted validity of
the characteristic properties which teaches us how the concept is to be un-
derstood and its definition reshaped, so that it can acquire its widest scope
– in the same way as the identification of the conditions for the extensions
of the domains of numbers. The idea that mathematics is an activity of the
human thought is illustrated, here, very clearly.

All the examples given until then may seem somewhat ad hoc, insofar as
they all allow “the original definition for the restricted domain [to remain]

56“Man bedarf wirklich nur der Definitionen von Sinus und Kosinus spitzer Winkel; und
wenn für diese das genannte Additionstheorem nachgewiesen ist, so liefert dasselbe, wenn
es zu einem allgemeinen Gesetz erhoben wird, auf dem einfachsten Wege die erweiterten
Definitionen mit zwingender Notwendigkeit.”

57“[U]nd wenn man so fortfährt erhebt man sich leicht zur allgemeinen Definition für
die positiven und auch auf analoge Weise durch Subtraktion zu der für negative Winkel.”

58“Das Gesetz lehrt auch hier, wie man den Begriff fassen soll, auf daß er am wirk-
samsten werde.” (ibid., in [Dedekind, 1932] III, 436. This sentence is not in Ewald’s
translation.)
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unchanged”59 (ibid., transl. slightly modified, 760), which is not always pos-
sible. Dedekind is well aware of this and acknowledges that in some parts of
“higher mathematics”, such as integral calculus, it happens that the initial
definitions “must be utterly abandoned in order to make room for others”
(ibid., 760). For example, this is what happens with the definition of inte-
gration as the inverse operation of differentiation. Insofar as this is a formal
approach, and not an arithmetical or computational one, it is not possible
to “demand the general applicability of integration”, for it would mean to
find “a form (. . . ) which, when subjected to the mechanical operation of
differentiation, returns the given form” which seems to only lead to unman-
ageable complications (ibid., 761). However, if one “[properly explores] the
relationship between differential and integral”, there is a possibility to find a
connection “fully independent of their formal expression”60 (ibid., 761) and
which involves the concept of limit. Hence,

[w]hen one gives [the integrale] this meaning, namely, to be the
boundary-value of a sum of an ever-increasing number of ever-
smaller parts, as a general definition, the operation of integration
appears in complete self-sufficiency and independence of the dif-
ferential calculus, without however losing the earlier connection
with it.61 (ibid., 761)

Eulerian integrals and elliptic functions are an example of the fruitfulness of
such a conception of integration. While the extension of the definition, here,
is significantly different from what was done for arithmetic operations, “it is
interesting to see that, as in the examples from elementary arithmetic which
we mentioned earlier, so with these newly introduced functions a similar
course of development has made itself visible”62 (ibid., 761). Indeed, for the
Eulerian integrals, one defines the “so-called Γ-functions”, definite integrals
on the domain of positive real numbers x:

Γ(µ) =
∫ ∞

0
x(µ−1)e(−x)dx

“or at any rate, the effectiveness of this function ceases for every negative
value of the argument, since the function then becomes infinitely great”

59“(. . . ) blieb aber die ursprüngliche Definition für das beschränkte Gebiet unangetastet
stehen.”

60“(. . . ) bei der eigentlichen Erforschung der Beziehungen zwischen Differential und
Integral stellt sich ein von diesem formellen Ausdruck völlig befreiter Zusammenhang her-
aus.”

61“Dann aber, wenn man ihr diese Bedeutung, nämlich den Grenzwert einer Summe
einer immer größer werdenden Anzahl immer kleinerer Teile zu bilden, als allgemeine
Definition unterlegt, tritt die Operation des Integrierens in vollkommener Selbständigkeit
und Unabhängigkeit von der Differentialrechnung auf, ohne indessen den frühern Zusam-
menhang mit dieser zu verlieren.”

62“(. . . ) interessant ist es zu sehen, daß auch bei diesen neu eingeführten Funktionen
ein ähnlicher Entwicklungsgang sich bemerkbar gemacht hat wie in den oben angeführten
Beispielen aus der Elementararithmetik.”
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(ibid., 761). And we have Γ(n) = (n − 1)!, for any positive integer n.
Gauss introduced the Π-function which is identical to Γ for all positive
values and “which also remains a variable function for all other values (even
though at certain places it becomes infinite)” (ibid.). The Π-function was
first introduced by Gauss and is defined, for s > −1 by:

Π(s) =
∫ ∞

0
xse−x dx

which, for any positive integer n, is such that Π(n) = n!. Hence, Π(n−1) =
Γ(n) and one can show63 that

Π(s) =
∞∏
n=1

n1−s(n+ 1)s

s+ n
=

∞∏
n=1

(
1 + 1

n

)s
1 + s

n

.

Edwards explains that this infinite product, the definition chosen by Dedekind,
allows to show that Π(x) “is an analytic function of the complex variable s,
which has simple poles at s = −1, −2, −3, . . .. It has no zeros” ([Edwards,
2001], 8). Consequently,

[s]ince one found that this function Γ is identical for all positive
values of its argument with a function Π, which is defined as an
infinite product and which also remains a variable function for all
other values (even though at certain places it becomes infinite)
one naturally abandons the earlier definition and transforms it
into a theorem, and instead defines the function Π as the main
function.64 ([Dedekind, 1854a], 761)

Pierre Dugac, in his short presentation of Dedekind’s Habilitationsvor-
trag underlines how Dedekind, already in 1854, had a profound understand-
ing of the “principles of mathematics” and “their development” ([Dugac,
1976b], 19).65 The guidelines described by Dedekind suggest that mathe-
matics mainly develops following a process of extensions of the conditions of
validity and applicability of its methods, concepts and even theories. A great
part of the work of the mathematician, from Dedekind’s viewpoint, appears
to be to investigate if and how it is possible to enlarge the scope of validity of

63See [Edwards, 2001], 8.
64“Seitdem man aber gefunden hat, daß diese Funktion Γ für alle positiven Werte ihres

Arguments mit einer Funktion Π, welche als unendliches Produkt definiert wird und für alle
andern Werte gleichfalls eine veränderliche, wenn auch an bestimmten Stellen unendlich
werdende Funktion bleibt, identisch ist, wird man natürlich die frühere Definition verlassen
und in ein Theorem verwandeln, und statt dessen die Funktion Π als die Hauptfunktion
definieren.”

65This suggests a view of mathematics as progressing towards ‘our’ truth, in accordance
to Dugac’s conception of mathematics close to Bourbaki’s.
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a certain concept or theory: what are the properties and laws which should
be considered as characteristic, so as to obtain a concept which can be used
more widely? What can be preserved of the properties of the restricted
concept in the extension? With the complex numbers, and even more so
with the hypercomplex numbers, the principle of permanence brought to
the fore in the previous developments of the Habilitationsvortrag should be
questioned.66 Yet, although he did acknowledge that a systematic develop-
ment of the extensions of the number domains started to raise difficulties
with these extensions, Dedekind did not address these issues either here or
in later works.

The conception of the process of development of mathematics as suc-
cessive attempts of generalization has become relatively common, notably
after Hilbert’s famous “Mathematical problems”.67 However, Hilbert sug-
gests that generalization is not the sole move for developing mathematics, it
has to be joined to a process of “specialization”, that is, solving “problems
simpler and easier than the one in hand” may play an even bigger role than
generalization. In Dedekind’s works, the attempt to develop a theory from
a more general standpoint appears as driving force in his approach. It isn’t
completely clear whether Dedekind considered that mathematics develop
exclusively from a generalization process, overlooking “specialization”, or if
he considered generalization to be the most fruitful and most interesting
part.

In addition to stating that mathematics is a human activity, Dedekind
also insists on the “inner necessity” of science. For him, in particular in
mathematics, this “inner necessity” is guiding the scientific development:

It is not only an historical fact, but also a fact that rests on
an inner necessity, that the further development of each science
always reacts creatively on the system through which one tries
to conceive the organism of the science. ([Dedekind, 1854a], 756)

Sinaceur underlines that the image outlined by Dedekind can be found later
in Cantor’s, Hilbert’s and Cavaillès’s writings.68 The conceptual analysis

66Indeed, with the hypercomplex numbers, the extension of the operations do not allow
to preserve all their properties, and one has to work without certain of their properties,
such as the commutativity of multiplication for the quaternions. See [Detlefsen, 2005].

67“If we do not succeed in solving a mathematical problem, the reason frequently consists
in our failure to recognize the more general standpoint from which the problem before us
appears only as a single link in a chain of related problems. After finding this standpoint,
not only is this problem frequently more accessible to our investigation, but at the same
time we come into possession of a method which is applicable also to related problems.”
([Hilbert, 1900], transl. in [Ewald, 2005], 1101)

68According to Sinaceur, Dedekind’s Habilitationsvortrag shows the first elements of
a “school of modern philosophy” that developed in “parallel to the development of ax-
iomatics” and which developed “the conception of an objective and rational history of
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brought to the fore by Dedekind’s approach, here, has been described by
C. Ehrhardt as “the research of foundations, the rise of logic and the de-
velopment of the idea of structure” ([Ehrhardt, 2011a], 551), as part of
the “conceptual approach.” As we saw, according to some accounts, the
demand for a more uniform and general approach to problems and defini-
tions appears as a methodological guideline of many developments in the
19th century mathematics. These are the principles identified by Eisenstein
as constituting the core of a new approach to mathematics developed by
Gauss, Dirichlet and Jacobi. The demand that a problem, or a definition,
be treated in one move – for example, to have one definition for all real
numbers, rather than as roots, logarithms, infinite series, etc. – was not one
made by earlier authors. In fact, concerns about definition really started
to become central with Hankel’s works. Besides, as regards the extension
of arithmetic, our short detour by Gauss’s ideas tends to show that these
ideas were not exactly shared by all of Dedekind’s contemporaries. Another
example is Cauchy who, in his first Cours d’Analyse, presents the positive
and negative quantities as representing respectively “increase or decrease of
a fixed magnitude” and the signs + and − placed in front of numbers to
be mere adjectives. Moreover, complex numbers were, for Cauchy purely
symbolic.69

A strong opponent to the approach proposed in Dedekind’s Habilita-
tionsvortrag is, of course, Leopold Kronecker. From Kronecker’s viewpoint,
“definitions, in themselves, constitute an impossibility” ([Kronecker, 1887]),
insofar as every definition involves concepts, each of which is in need of a
definition. . . and so on. Kronecker considers mathematics as being a natural
science, hence supposed to “describe the phenomena simply and completely.”
Mathematics, then, should be based on phenomena observed, almost empir-
ically, rather than on definitions.70

To ask such questions as whether Dedekind was or wasn’t right is not
the point, here. However, I should point out that the ideas proposed by
Dedekind in his Habilitationsvortrag are very consistent with his own prac-

mathematics”, which is particularly well represented Cavaillès’s works. ([Sinaceur and
Dedekind, 2008], 220). Indeed, Cavaillès read and was strongly impressed by Dedekind’s
Habilitationsvortrag while he was working on his PhD dissertations and developed ideas
that were underlying Dedekind’s text. I will not, however, develop the relation between
Cavaillès’s and Dedekind’s ideas. For more on Cavaillès’s philosophy of mathematics, one
can refer to [Sinaceur, 1994].

69“En analyse, on appelle expression symbolique ou symbole toute combinaison de signes
algébriques qui ne signifie rien par elle-même., (. . . ) Parmi les expressions ou équations
symboliques dont la considération est de quelque importance en analyse, on doit surtout
distinguer celles que l’on a nommées imaginaires. (. . . ) [Les] expressions symboliques
[du type cosa +

√
−1sina] ne peuvent s’interpréter d’après les conventions généralement

établies, et ne représentent rien de réel. On les a nommées pour cette raison expressions
imaginaires.” ([Cauchy, 1821])

70For Kronecker’s conceptions of mathematics and numbers, see [Boniface, 2005] and in
this dissertation 7.1.3.
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3.2 Development of mathematics according to the Habilitationsvortrag

tice of mathematics. As mentioned earlier, the Habilitationsvortrag is better
considered as providing methodological and epistemological guidelines for
(his) mathematics.

Dedekind’s observations imply a strong methodological claim. Dedekind
seems to be proposing that one should try to follow conjointly two prin-
ciples. The first is the importance of introducing new concepts to develop
mathematics. The second is the quest for a greater generality as a motive for
mathematical research. The generality looked for by Dedekind seems to be,
so to speak, a localized generality, insofar as Dedekind is trying to give def-
initions which are valid for all cases possible in a specific framework. This,
for Dedekind, will appear to be an important component of a developing
concepts and methods in mathematics which allow to bypass difficulties or
impossibilities, resolve problems, and even ease certain aspects of the work
of the mathematicians.

In the course of their work, the mathematicians are confronted with two
possible situations. The generalization might be possible: one should, then,
introduce new concepts which generalize the old ones and allow to develop
more general methods of definition and proof – and preferably parallel to
the restricted theory. It is what happens, for example, when one extends the
systems of numbers up to the real numbers. However, such an approach can
rarely be systematically applied, for difficulties soon appear – e.g., with com-
plex numbers in the extension of the number concept. On the other hand,
the generalization might not be possible, in which case, the mathematician
should look for new concepts and methods to overcome the impasse. In this
situation, the mathematician could be led to develop a new theory, bringing
to the fore evolutions or changes in the questions or the objects to be studied
– as for example with Eulerian integrals mentioned above. The invention of
new concepts can thus serve the purpose of generalization, and the math-
ematician may face a situation in which proving that the extended notion
does satisfy a certain number of essential properties requires to introduce
new tools. It is the case with Dedekind’s works on algebraic numbers whose
main aim is to prove the general validity of the fundamental theorem of
arithmetic.71 For this purpose, Dedekind proposes a new, wider notion of
integer, the algebraic integers which are “the most general concept of in-
teger”, and develops a whole arsenal of new tools, notably constituted of
ideals, so as to establish that the unique factorization in primes holds for

71Note that as far as the extension of the number concept is concerned, there seems to be
two distinct possibilities: one can extend the domains of number from the natural numbers
up to complex and hypercomplex numbers, or one can extend the concept of integer.
In both cases, the properties investigated are distinct, and in particular, in the second
case, which leads to algebraic integers, the “most general concept of integer” according
to Dedekind, the core properties to investigate are properties such as the fundamental
theorem of arithmetic. In considering the divisibility of integral numbers as the essential
properties to investigate in arithmetic, Dedekind seems to be following Gauss’s lead. See
Sec. 1.2.
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any integer.

From theHabilitationsvortrag – and as I hope to make clear in Dedekind’s
subsequent works as well – one understands two important things. Firstly,
the introduction of new notions to extend definitions is an essential move
for the mathematician. In Dedekind’s case, this idea is closely linked to
that of science as a activity of the human understanding which seems to
run through his mathematics. And secondly, arithmetic holds a peculiar
place in mathematics, as it is more fundamental than any other parts of
mathematics. However, this does not mean that arithmetic is exempt from
being defined (contrary to what mathematicians such as Kronecker would
assess) or extended and subjected to innovations. Indeed, arithmetic is a
part the human activity that constitutes science in general, and mathemat-
ics in particular. The links between invention of new notions and arithmetic
is of particular interest to understand the role and status of arithmetic in
Dedekind’s approach, not only for the new concepts of numbers introduced,
but also – and maybe even more so – for the role arithmetic will play in the
invention of new notions.

As it is already alluded to in 1854 and will become pregnant in later
foundational works, numbers are very explicitly considered to be productions
of the mind (Stetigkeit, 771, Zahlen, 791, 809, Zum Zahlbegriff . . . ), following
a view advocated notably by Gauss. More significantly, they are the first
and the most powerful tool produced by the mind to work with. Once the
arithmetic operations are introduced, they offer “an inexhaustible wealth of
remarkable laws” ([Dedekind, 1872], 768).

Inasmuch as mathematics is an activity of the human understanding,
whose finiteness entails that our discovery of truth and conquest of rational-
ity only happen progressively and require to build up our own tools, then
significant changes are susceptible to appear in its development. The intro-
duction of new concepts as a driving force of the progress of mathematics
is a key element of Dedekind’s conception of mathematics. It is clear in his
practice of mathematics: Dedekind introduced the concepts of field, ideal,
cut, or chain as new concepts on which to base his and further works. He
also developed the general bases of certain theories referred to as auxiliary
theories, such as module theory, and the theories of systems and mappings.
And, as is well known, he openly defended innovation in mathematics, with
an explicit reference to his Habilitationsvortrag:

[T]he greatest and most fruitful advances in mathematics and
other sciences have primarily been made by the creation and
introduction of new concepts, rendered necessary by the frequent
recurrence of complex phenomena which could be mastered by
the old notions only with difficulty. On this subject, I had to
give a lecture before the philosophical faculty in the summer
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of 1854 on the occasion of my Habilitation as Privat-Dozent in
Göttingen. The purpose of this lecture met with the approval
of Gauss; but this is not the place to go into further detail.72

(Zahlen, transl. slightly altered, 792-793.)

In the course of my analysis of Dedekind’s works, in the next chapters,
I will highlight how his particular view of conceptual innovation is linked
to arithmetic. The introduction of new concepts concerns (the development
of) arithmetic as well as all mathematics. Besides, arithmetic, as the science
of numbers, can provide tools to enhance the development of mathematics.
Indeed, as mentioned in the quote from Zum Zahlbegriff : numbers are in-
vented to ease the work of the mind, thus playing this role in science, and
more particularly in mathematics. Arithmetic is thus susceptible to change
according to the the needs of mathematical practice. From there, it is still
essential to give mathematical characteristics which would allow to identify
uses of arithmetic in Dedekind’s works.

72“[D]ie größten und fruchtbarsten Fortschritte in der Mathematik und anderen Wis-
senschaften sind vorzugsweise durch die Schöpfung and Einführung neuer Begriffe
gemacht, nachdem die häufige Wiederkehr zusammengesetzter Erscheinungen, welche von
den alten Begriffen nur mühselig beherrscht werden, dazu gedrängt hat. Über diesen Gegen-
stand habe ich im Sommer 1854 bei Gelegenheit meiner Habilitation als Privatdozent zu
Göttingen einen Vortrag vor der philosophischen Fakultät zu halten gehabt, dessen Absicht
auch von Gauß gebilligt wurde; doch ist hier nicht der Ort, näher darauf einzugehen.”
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Chapter 4

Dedekind’s first works in number
theory

In the 1854 Habilitationsvortrag, the extension of the number concept and
arithmetic appear essentially as the successive widening of the domains
of numbers, without implying any particularity of divisibility, whereas in
1876/77, divisibility is presented as the foundation of arithmetic. In fact, I
will suggest in the next three chapters that divisibility, in Dedekind’s math-
ematical works, is subjected to a slow extension from a property of natural
integers to the possibility of studying divisibility properties of “polygons”
on a Riemann surface.

Following Dirichlet’s suggestion in 1856, Dedekind studied Galois’s works,
which he immediately considered in relation to number theory. In his lec-
tures on Galois theory, given in Göttingen in 1856-58, Dedekind first defines
arithmetical relationships between sets and highlights a certain analogy with
rational number theory. In 1857, Dedekind published his first paper on num-
ber theory, investigating the possibility to develop an approach to higher
congruences which would be “rigorously tied to an analogy with elementary
number theory.”

I will propose to consider first Galois’s works, and will stay very close to
Galois’s text, so as to have a clear idea of what Dedekind was working with.
For the same reason, I will briefly expose shortly Cayley’s 1854 article on
groups, which likely inspired some aspects of Dedekind’s interpretation of
the notion of groups. I will then expose the content of Dedekind’s two first
inquiries in number theory: a manuscript containing Dedekind’s lectures
on “higher algebra”; and his first published paper in number theory, Abriß
einer Theorie der höheren Kongruenzen in bezug auf einen reellen Primzahl-
Modulus in which he proposes to develop a completely arithmetical approach
for higher congruences. Dedekind’s reading of Galois’s works on groups, in
1856-58 has been presented, by Caroline Ehrhardt, as deeply influenced by
the “conceptual approach” in Göttingen. Without coming back to these
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questions, I would like to exhibit how, in Dedekind’s first works in algebra
and number theory, one can see the beginnings of an arithmetical approach
which will dominate Dedekind’s works.

4.1 Galois’s Galois theory

The methodological principles underlining the changes in mathematical prac-
tices in the 19th century, which can be detected in certain of Gauss’s works
and gradually take more importance in the 19th century mathematics in
Germany, are very close to Galois’s idea that one should “jump over” the
computations that were becoming too wearisome for mathematicians’s (and
mathematics’s) sake. However, as I have underlined, it seems rather unlikely
that Galois’s memoir would be the origin for all the statements about “con-
ceptual” methods in mathematics, since Eisenstein’s account dates from the
year Liouville rediscovered Galois’s works.

Let me first give the outlines of the roots of Galois’s works on the resol-
ubility of equations.1

Algebraic works, in the 19th century, were meant to exhibit general
methods to solve polynomial equations, which was considered as acceptably
done only with an explicit formula allowing to compute the said solutions.
The problem could be tackled in two ways: the algebraic resolution, in
which one would provide a general solution for any (literal) equation of
a certain degree (such as Cardano’s formulae for degree 3 polynomials),
or the numerical resolution, in which one would find the numerical (often
approximate) values of the roots of the equation. When adopting the second
possibility, mathematicians tried to provide methods which could work in as
many cases as possible and which usually implied the use of arguments and
methods from Analysis, such as the continuity of polynomial functions. Yet,
from the beginning of the 19th century, the theory of equations appeared
to be encountering its own limits. As I have mentioned in the first chapter
of this dissertation, the limits of the theory of equation was acknowledged
by actors such as Lagrange ([Lagrange, 1770-1771], [Lagrange, 1808]). The
difficulties to find effective methods to resolve equations of degree higher
than 3 led, in particular with Lagrange, to look for ways to identify the a
priori effectiveness of methods of resolution.

In the 1830s, the theory of equations, in which most of algebra consisted,
was in an impasse. Niels Henrik Abel proved in 1826 ([Abel, 1826]) that it
was impossible to solve by radicals the general quintic.2 The first ground

1For more on the roots of Galois’s works, see [Ehrhardt, 2011b], [Ehrhardt, 2012]. See
also [Sinaceur, 1991], Part I, in particular Chapter IV on Lagrange and Fourier on the
resolution of equations.

2Abel first published his proof in 1824, in French, at his own expense. The paper was
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of Abel’s work was to change the questions asked. He underlines an idea
which becomes essential to the development of modern mathematics: the
importance of determining conditions for the solvability of problems. With
the great difficulties faced in the resolution of general equations, Abel, in a
later work about algebraic resolution of equations ([Abel, 1839b]), observes
that it might be impossible to obtain a solution following the path taken
so far. Indeed, it can only works if the equations are actually solvable by
radicals, which has never been proved to be possible:

[I]f unfortunately the resolution was impossible, one could look
for it for an eternity without finding it. To infallibly obtain
something on that matter, one has to take another road. One
has to give to the problem a form such that it would always be
possible to solve it, which can always be done for any problem.
Instead of asking for a relation for which we don’t know it it exists
or not, it must be asked if such a relation if indeed possible.3
([Abel, 1839b], 217)

The question addressed by Abel, then, is: “Is it possible to solve equations of
higher than the fourth degree in general?” ([Abel, 1839a], 65). Abel seems
to be in the continuity of Lagrange. But Abel takes a more radical turn
than Lagrange did: he gives up the previous approach, which consisted in
trying different methods without any assurance of their success. Instead,
Abel develops more general and theoretical considerations, and proposes to
work with “the general form of algebraic functions” (ibid., 65).

Abel’s works on algebraic equations, for the first time, turn the question
around. Abel proposes that the possibility of resolution should be taken
as being the problem to investigate. Slowly, then, the question to answer
starts to change and becomes that of the solvability per se. It was also, albeit
independently from Abel’s works, the case of Galois’s 1831 memoir, in which
he announces a criterion to determine whether (any) algebraic equations
are or are not solvable by radicals. Turning his back to computations and
explicit formulae, he solely gives the answer to the yes or no question “Is it
possible to solve a given equation?” without providing an effective procedure
to actually produce the roots.

republished in longer, more developed form by Crelle, in 1826 ([Abel, 1826]) and translated
in French in Férussac’s journal. See [Sørensen, 2010].

3“[S]i par malheur la résolution était impossible, on aurait pu la chercher une éternité,
sans la trouver. Pour parvenir infailliblement à quelque chose dans cette matière, il faut
donc prendre une autre route. On doit donner au problème une forme telle qu’il soit
toujours possible de le résoudre, ce qu’on peut toujours faire d’un problème quelconque.
Au lieu de demander une relation dont on ne sait pas si elle existe ou non, il faut demander
si une telle relation est en effet possible.”
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4.1 Galois’s Galois theory

4.1.1 Galois’s 1831 “Mémoire sur les conditions de résolubilité des
équations par radicaux”

My presentation of Galois’s memoir will stay close to the text of his memoir.
I have greatly benefited from Caroline Ehrhardt’s works cited above and of
her very clear explanation of Galois’s memoir in [Ehrhardt, 2008].4

Admitted at the École Préparatoire (later to be renamed École Normale
Supérieure) in 1829, Galois proposes his memoir to the Académie des Sci-
ences in January 1831. Galois’s aim, in this memoir, is to give “a general
condition satisfied by every equation that is solvable by radicals, and which
conversely ensures their solubility”5 ([Galois, 1831], transl. in [Galois, 2011],
1076). Galois’s memoir is composed of three distinct parts: the “Princi-
ples” in which he gives definitions and “a sequence of lemmas all of which
are known” (ibid., 109), five “propositions” leading to the necessary and
sufficient condition for the resolubility of equations, and an “application to
irreducible equations of prime degree”. The two essential notions introduced
in the “Principles” are adjunct quantities and substitutions.

Adjunct quantities are defined in the following way:

When we agree to thus regard certain quantities as known, we
shall say that we adjoin them to the equation which it is to be
solved. We shall say that these quantities are adjoined to the
equation.7 (ibid., transl. slightly altered, 109)

The properties of equations can be altered depending on the quantities ad-
joined, as Galois underlines, “[f]or example, the adjunction of a quantity can
render an irreducible equation reducible,” making the notion of adjunction
central to the theory of equations.8 These properties of equations and ad-
joined quantities were, albeit not rigorously defined or given a systematic
treatment, well-known to algebraists.

For example, in Lacroix’s textbook Élemens d’algèbre, one of the most
used algebra textbook in France in the 19th century, negative quantities are
introduced as quantities revealed by algebra. The first move, when faced
with equations having negative solutions, was to consider them has debts or
to rectify the initial problem in order to get a positive solution – this was the

4One can also refer to the introduction of [Galois, 2011], and to [Ehrhardt, 2007],
[Verriest, 1934], and [Dahan-Dalmedico et al., 1982].

5“une condition générale à laquelle satisfait toute équation soluble par radicaux, et qui
réciproquement assure leur résolubilité”

6References will be to [Galois, 2011].
7“Lorsque nous conviendrons de regarder ainsi comme connues de certaines quantités,

nous dirons que nous les adjoignons à l’équation qu’il s’agit de résoudre. Nous dirons que
ces quantités sont adjointes à l’équation.”

8For example, the equation x2 = 2 is irreducible in the rational numbers and its
roots cannot be written using the coefficients of the equation. However, if one adjoins the
quantity

√
2 defined by (

√
2)2 = 2, then this equation can be written (x−

√
2)(x+

√
2) = 0

and its roots can be written as a combination of the coefficients and of the quantity
√

2.
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strategy adopted by many algebraists since the 16th century. Algebra allows
to understand where the negative quantities come from: they are solving
certain problems, they satisfy certain equations. Insofar as any problem
whose solutions are negative can be algebraically manipulated to give a
positive solution, negative quantities, Lacroix’s textbook, are characterized
in the following way:

[W]e commonly say that the values affected by the sign −, and
which are called negative solutions, solve, in a sense opposed to
the terms [of the problem], the questions they meet. It follows
that we can consider as forming, properly speaking, only one
question, that whose problem statements are linked together in
such a way that the solutions satisfying one statement can by
only a change of sign, satisfy another.9 ([Lacroix, 1799], 91, my
translation)

Negative quantities appear to be necessary in order to be able to solve all
equations of first degree, one should be able to manipulate them as easily
as positive quantities,

[s]ince the negative quantities solve, in a certain way, the prob-
lems which generate them, it is appropriate to examine closer the
use of this quantities and, first, to assure ourselves of the way in
which we should carry out the indicated operations.10 (ibid., 91)

Negative quantities are, then, joined to positive quantities: they are devel-
oped so as to satisfy the same arithmetical rules and are comprised in the
algebraic computations, even though they are still considered to be impos-
sible solutions. The same idea is used for complex or imaginary quantities
(which are not quantities, for Lacroix, but mere symbols). Galois, in his
memoir, uses a well-known idea, then. It appears, however, that adjunction
has a different role and status for Galois: to place it at the beginning of
the theory implies that it holds an essential importance in the further de-
velopments of the theory. The adjunction of quantities is not, for Galois,
a move made in the course of solving equations, but a basic notion of the
theory. As Galois mentions, adjunction is intrinsically linked to the nature
of equations, insofar as it modifies an essential characteristic of the equation:

9“[O]n dit communément que les valeurs affectées du signe − et qu’on appelle solutions
négatives, résolvent, dans un sens opposé à son énoncé, les questions où elles se rencon-
trent. Il suit de là qu’on peut regarder comme ne formant, à proprement parler, qu’une
seule question, celles dont les énoncés sont liés entre eux de manière que les solutions
qui satisfont à l’un des énoncés peuvent par un simple changement de signe, satisfaire à
l’autre.”

10“Puisque les quantités négatives résolvent, dans un certain sens, les problèmes qui
leur donnent naissance, il est à propos d’examiner de plus près l’usage de ces quantités,
et d’abord, de s’assurer de la manière dont il convient d’effectuer les opérations indiquées
à leur égard.”
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its reducibility.

The second basic notion of Galois’s memoir are substitutions. A per-
mutation of n letters is an ordered list of those letters, for example (a, b, c)
and (c, a, b) are permutations of 3 letters. Substitutions are defined as “the
passage from one permutation to another.” Permutations were introduced
by Lagrange and further studied by Cauchy, whose definition Galois is us-
ing.11 However, Galois does not use Cauchy’s notation. As underlined by
Ehrhardt ([Ehrhardt, 2008], 4), by the time Galois was writing, these no-
tions were only sketched by Lagrange and Cauchy, and Galois was the only
mathematician, with Abel, to use them. Only in 1844 would Cauchy give
a more thorough treatment of these ideas. Galois, who does not master
completely these new tools, often uses the words “permutation” and “sub-
stitution” one for another, which can confuse his reader. The notion of group
is first introduced here as “group of permutations”:

When we will want to group some substitutions, we will make
them originate in one and the same permutation. As the concern
is always with questions where the original disposition of the
letters has no influence, in the groups we will consider, one must
have the same substitutions, whichever permutation it is from
which one starts. Therefore, if in such a group, we have the
substitutions S and T , we are sure to have the substitution ST .12

([Galois, 1831], transl. slightly altered, 115)

The notion of “group”, then, is not introduced as a set closed by a binary
operation by Galois. It is better characterized, here, as a set organized in
such a way that it can be written in a table. Indeed, although the above
quote refers to the group of the equation as understood in the modern sense,

11Cauchy’s definition reads: “Si, au-dessous de la permutation relative à [une certaine
fonction] K, on écrit une autre permutation formée avec les indices 1, 2, 3, . . . , n, et que
l’on remplace successivement dans la fonction K chacun des indices qui composent la
permutation supérieure par l’indice correspondant de la permutation inférieure, on aura
une nouvelle valeur de K (. . . ). Pour déduire deux de ces valeurs l’une de l’autre, il
suffira de former les permutations relatives à ces deux valeurs et de substituer aux indices
de la première permutation les indices correspondants pris dans la seconde. Pour indiquer
cette substitution, j’écrirai les deux permutations entre parenthèses en plaçant la première
au-dessus de la seconde; ainsi, par exemple, la substitution(

1 2 4 3
2 4 3 1

)′′
([Cauchy, 1815], 67)

12“Quand nous voudrons grouper des substitutions nous les ferons toutes provenir d’une
même permutation. Comme il s’agit toujours de questions où la disposition primitive des
lettres n’influe en rien, dans les groupes que nous considérerons, on devra avoir les mèmes
substitutions quelle que soit la permutation d’où l’on sera parti. Donc si dans un pareil
groupe on a les substitutions S et T , on est sûr d’avoir la substitution ST .”
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what Galois calls the “group of permutations”, for the roots of xn−1
x−1 is the

following matrix describing the permutations of the roots and which is not
a group in the modern sense of the term:

abcd...k
bcd...ka
............
kabc...i

Galois explains, in the letter to Auguste Chevalier, that the aim of his
work, in the theory of equations, is to identify “the circumstances under
which equations [are] solvable by radicals”, and by this research, he was
led “to deepen this theory and to describe all possible transformations on
an equation even in case it is not solvable by radicals” (Letter to Auguste
Chevalier, 29 May 1832, transl. in [Galois, 2011], 85).

The first proposition of Galois’s memoir introduces the group of the
equation:

Let an equation be given of which the m roots are a, b, c, . . ..
There will always be a group of permutations of the letters
a, b, c, . . .. which will enjoy the following property:

1. That every function of the roots invariant under the substi-
tutions of this group will be rationally known;

2. Conversely, that every function of the roots that is ratio-
nally determinable will be invariant under the substitutions.13

(op. cit., 113-115)

Galois’s proof for this theorem is to exhibit the group in question and to
satisfy the two statements made in the theorem. Note that, once again,
Galois’s handling of the concept of group is very different from the modern
uses, and in particular his demonstration does not aim to prove that the
“group” in question satisfies the closure properties of the modern definition
of a group. The two next theorems explain the link between groups and
adjunct quantities: to adjoin a root to a given equation leads to the par-
tition of the initial group into several smaller groups,14 which “enjoy the
remarkable property that one will pass from one to another by operating
on all the permutations of the first with one and the same substitution of
letters” (ibid., 119).

13“Soit une équation donnée dont a, b, c, . . . sont les m racines. Il y aura toujours un
groupe de permutations des lettres a, b, c, . . . qui jouira de la propriété suivante: 1) Que
toute fonction des racines invariable par les substitutions de ce groupe soit rationnellement
connue; 2) réciproquement, que toute fonction des racines déterminable rationnellement
soit invariable par les substitutions.”

14These smaller groups are, of course, subgroups of the group of the equation.
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Galois develops further this point by showing more precisely the depen-
dence between the group and the adjunct quantities and explaining how the
number of elements of the group decreases with each adjunction.

If one adjoins to an equation the numerical value of a certain
function of its roots, the group of the equation will be reduced
in such a way as to not have any other permutations than those
under which this function is invariant.15 (ibid., 121)

Galois can finally give the necessary and sufficient condition for an equation
to be solvable by radicals. Galois adopts a very peculiar approach, since he
does not state the result as such, but presents it as an algorithm, so as a to
get to the result:

[T]o solve an equation, it is necessary to reduce its group succes-
sively to the point where it does not contain more than a single
permutation.16 (ibid., 121)

To be clear, Galois is not proving the result with an algorithm, but he
presents it under a what Ehrhardt calls a “narrative” form. By doing so,
he unfolds the links between adjunction and size of the group. One can
understand, by following each steps of the reasoning deployed by Galois,
why the result is the one obtained – and even, to some extent, why some
equations can be solved by radicals, and some cannot. But Galois does not
explain how one should proceed to answer the question of the resolubility of
a particular given equation. He does, however, give a reformulation of his
result in the language of the theory of equations, replacing it in the more
traditional practices of algebra by explaining that it is necessary and suffi-
cient with if any two roots of the equations are known to be able “deduce
rationally” the other roots from them.17

The importance of the notion of group in later developments of algebra
and algebraic number theory leads, as underlined by Ehrhardt, to “interpret”
Galois’s memoir as centered on the notion of group rather than equations
and to overemphasize its importance and its modernity (see for example
[Verriest, 1934]). Groups do not take the central stage in Galois’s works,
and his notion of group has, in fact, little in common with the modern no-
tion of group. It is even significantly different from the notion of group

15“Si l’on adjoint à une équation la valeur numérique d’une certaine fonction de ses
racines, le groupe de l’équation s’abaissera de manière à n’avoir plus d’autres permutations
que celles par les quelles cette fonction est invariable.”

16“[P]our résoudre une équation, il faut successivement abaisser son groupe jusqu’à ne
contenir plus qu’une seule permutation.”

17For example, for the equation of third degree x3 + px2 + qx+ r = 0, we know that for
x1, x2 and x3 its roots, we have x1 +x2 +x3 = −p ; x1x2 +x1x3 +x2x3 = q ; x1x2x3 = −r
hence, each root can be expressed rationally by means of the two other ones.
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which will be developed by the first mathematicians to pursue his works,
Cayley and Dedekind. To be clear, the idea of a group as a system closed by
multiplication does appear in Galois’s memoir. Nonetheless, this is not the
characterization that Galois retains as a definitional property for groups.
Galois explains what a group is, and proves certain results, using a tabular
presentation, so that it is possible to visualize the object and the internal
organization of its elements – a strategy already used, for example, by La-
grange. Besides, Galois does not consider a general notion of group. In his
works, only groups of substitutions appear, although it seems that Galois
had formed the idea of a group as a mathematical object in itself. This can
be found in the letter to Chevalier, in which Galois uses a single letter G to
designate the group, which leads to a very different way of using the notion
itself:

when a group G contains another H, the group G can be parti-
tioned into groups each of which is obtained by operating on the
permutations of H with one and the same substitution, so that
G = H +HS +HS′ + . . .18 ([Galois, 2011], 85)

This last point is important insofar as to consider the group as an object in
itself, rather than a mere collection of objects, dismisses the need to attach
a definite meaning to the elements of the group – which is the approach
Dedekind will adopt in 1856. In the proposition given by Galois, the notion
of group seems to be detached from the equation for which it was defined,
at least inasmuch as results can be given independently of the said equation.
However, it should be underlined that the decomposition here corresponds
to that given by the adjunction. Indeed, it is a reformulation of the theorems
proved in the memoir, and it is also immediately linked to the equation:

It is easy to see that when the group of an equation is not suscep-
tible of any proper decomposition one may transform the equa-
tion at will, and the groups of the transformed equations will
always have the same number of permutations.19 (ibid., 85)

In the successive readings of Galois’s memoir during the 19th century, the
notion of group is reinterpreted and reshaped. In particular, Dedekind de-
fines the notion of group as a set of elements satisfying a property of closure,
and as being part of an auxiliary theory susceptible to be applied to other
areas of mathematics (and indeed, he immediately uses Galois’s ideas in
number theory). Dedekind considers groups of permutations because they

18“quand un groupe G en contient un autre H le groupe G peut se partager en groupes
que l’on obtient chacun en opérant sur les permutations de H une mème substitution, en
sorte G = H +HS +HS′ + . . .”

19“Il est aisé de voir que quand le groupe d’une équation n’est susceptible d’aucune
décomposition propre, on aura beau transformer cette équation, les groupes des équations
transformées auront toujours le même nombre de permutations.”
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are the ones useful in the theory of equations, but underlines explicitly that
it is for the purpose of this particular work, and that groups (in a more
general way) can be used in many other theories – a statement and he will
repeatedly make in later works.

Galois’s memoir is concise to the point of having been considered incom-
plete and unintelligible by his contemporaries. Galois’s manuscripts show
that he shortened his memoir on purpose, masking computations that he did
not consider as essential for the overall consistency and understanding of his
work. In fact, he explains, in a preface which wasn’t published until 1962
(in [Galois, 1962]), that computations are evolving into details on which the
mind does not have time to stop and that it becomes necessary, with the
developments of mathematics, to be able to work without computations:

But then, I believe that the simplifications produced by elegance
of calculations (intellectual simplifications, of course; there are
no material ones) have their limits; I believe that the time will
come when the algebraic transformations foreseen by the spec-
ulations of analysts will find neither the time nor the place for
their realisation; at which point one will have to be content with
having foreseen them.20 (ibid., transl. slightly altered, 253)

These statements were far from unusual for Galois, as we saw in the begin-
ning of this dissertation. But in 1831, when Galois submitted his memoir
to the Académie des Sciences, it was considered unreadable and was rejected.

In 1831 when Galois submitted his memoir to the Académie des Sciences,
it was rejected because it was considered unclear, if not incomprehensible:

We have made every effort to understand Mr Galois’ proof. His
reasoning is neither clear enough nor well enough developed for
us to have been able to judge its exactness, and we are in no po-
sition to give an idea of it in this report. (. . . ) It is often the case
that the different parts of a theory, by mutually clarifying each
other, are easier to grasp together than in isolation. One may
therefore wait until the author will have published his work in
its entirely before forming a final opinion; but given the present
state of the part that he has submitted to the Academy, we can-
not propose to you that you give it your approval.21 (Lacroix and

20“Or je crois que les simplifications produites par l’élégance des calculs, (simplifications
intellectuelles, s’entend; de matérielles il n’y en a pas) ont leurs limites; je crois que
le moment arrivera où les transformations algébriques prévues par les spéculations des
Analystes ne trouveront plus ni le tems ni la place de se produire; à tel point qu’il faudra
se contenter de les avoir prévues.”

21“Nous avons fait tous nos efforts pour comprendre la démonstration de M. Galois. Ses
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Poisson’s report on Galois’s paper, in Procès verbaux des séances
de l’Académie, vol. IX, transl. in [Galois, 2011], 148-149)

As Ehrhardt highlighted in [Ehrhardt, 2012], the memoir’s unclarity is not
the sole reason for its refusal and the lack of reception of Galois’s works for
the next two decades. In fact, certain aspects Galois’s memoir do not meet
the norms and standards governing mathematical practice in 1830. Indeed,
the theory of equations, and more generally algebra was still considered as
a problem-solving part of mathematics: the theory of equations was not
seen as an independent theory, but a theory built for applications. Hence,
algebra was supposed to provide effective methods allowing to obtain explicit
results, priority was given to being able to provide numerical solutions of
equations. Even Lagrange, who was the most attached to an algebraiic
ideal, despite his methodological ideals, turned towards numerical solutions.
Mathematicians were expecting to find different results in the memoir, as
Lacroix and Poisson’s report states clearly:

It must be noted however that it does not contain, as the title
of the memoir promised, the condition for solvability of equa-
tions by radicals; for, even accepting Mr Galois’ proposition as
true, one is hardly further forward in knowing whether or not
an equation of prime degree is solvable by radicals, because it
would first be necessary to convince oneself whether the equa-
tion is irreducible, and then whether any one of its roots may be
expressed as a rational function of two others.22 (op. cit., 148)

The “condition for solvability” would be considered by Lacroix and Poisson
as being valid if and only if it were provided with an explicit formula. It
should have “an external character”, which can be verified “by inspection
of the coefficients of a given equation” or using the resolvent method. From
their viewpoint, Galois is not answering the question – in fact, he is not
asking the right question, insofar as a theoretical possibility to solve the
equation appears to be far less interesting than an actual, numerical resolu-
tion.

raisonnements ne sont ni assez clairs, ni assez développés pour que nous ayons pu juger de
leur exactitude et nous ne serions pas en état d’en donner une idée dans ce Rapport. (. . . )
Souvent il arrive que les différentes parties d’une théorie, en s’éclairant mutuellement sont
plus faciles à saisir dans leur ensemble qu’isolément. On peut donc attendre que l’auteur
ait publié en entier son travail pour se former une opinion définitive ; mais dans l’état où
est maintenant la partie qu’il a soumise à l’Académie, nous ne pouvons pas vous proposer
d’y donner votre approbation.”

22“Toutefois on doit remarquer qu’il ne renferme pas, comme le titre du Mémoire le
promettait, la condition de résolubilité des équations par radicaux ; car en admettant
comme vraie la proposition de M. Galois, on n’en serait guère plus avancé pour savoir
si une équation donnée dont le degré est un nombre premier est résolue ou non par rad-
icaux, puisqu’il faudrait d’abord s’assurer si cette équation est irréductible, et ensuite si
l’une de ces racines peut s’exprimer en fonction rationnelle des deux autres.”
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Joseph Liouville announces, on September 4th 1843 at the Académie
des Sciences, his intention to publish a commentary of Galois’s memoir.
Ehrhardt’s analysis of the social and mathematical context in which Ga-
lois’s memoir was published shows that the publication of Galois’s memoir
is embedded in the evolution of mathematical practices and how the in-
comprehension faced by Galois was linked to the context and conditions in
which his work was read.23 The evolutions of mathematics and the changes
in practices which start to appear around 1850 open the door to a better
understanding and possible uses, developments and re-writings of Galois’s
ideas.24 It was, in any case, a crucial element for the circulation of Galois’s
ideas that Liouville’s reception of Galois resulted in the publication of Ga-
lois’s memoir. Indeed, a publication gives the memoir an actual material
existence allowing for a wider circulation of his ideas, notably in England
and in Germany, where Galois’s memoir is integrated into different math-
ematical landscapes: Cayley is interested in a formal notion of group as a
fundamental algebraic concept, whereas Dedekind and Kronecker focus on
the notion of adjunction and import Galois’s ideas in number theory.

4.2 Dedekind’s Galois theory

The historical elements presented above are important for us because Dede-
kind did read French algebraic works. Not only did he read Galois’s memoir,
he also mentions Serret’s textbook in [Dedekind, 1857]. Moreover, Dirichlet
was in correspondence with Liouville, and stayed close to the French mathe-
matical community, after his stay in Paris between 1822 and 1826. Dirichlet,
who taught in Berlin between 1826 and 1855, suggested the study of Ga-
lois’s papers to Kronecker. A few years later, in 1856, Dirichlet suggested
the same thing to Dedekind.

For Ehrhardt, Dedekind’s reception and interpretation of Galois’s no-
tion of group25 is a typical example of the tendency to “substitute thinking

23“L’intelligibilité d’un texte n’est pas une donnée intrinsèque : quand Poisson et Lacroix
écrivent que le mémoire de Galois n’est ni utile ni compréhensible, ils le font selon des
critères fondés sur l’état de l’algèbre à leur époque, ou encore sur le type de méthodes qu’ils
privilégient et auxquels ils sont habitués. . . ” ([Ehrhardt, 2012], 28)

24See [Ehrhardt, 2011b], [Ehrhardt, 2012]. In addition, Jenny Boucard’s PhD thesis
([Boucard, 2011]) shows that readings of Galois, such as Jordan’s in the 1860s, are made
in the aftermath of a theory called “theory of order” by Louis Poinsot, a general theory
growing from Poinsot’s works on algebra and number theory, interested in “the situation
of things without any consideration of magnitude” ([Boucard, 2011], 237) and introduced
as being to algebra what Gauss’s higher arithmetic was to arithmetic.

25I will, here, only consider Dedekind’s lectures on Galois theory in 1856-58 and will not
consider Dedekind’s other works on groups. This is in particular because the aim of this
chapter is to highlight evolutions in Dedekind’s methods and Dedekind’s works on groups
(notably with the notion of group character) developed later and flourished in the 1890s
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for computations”, brought to the fore in Dirichlet’s obituary of Jacobi.
Ehrhardt pays close attention to the sociological context in which Galois’s
ideas were received and developed and how it influenced the understanding
of his works, and for her, it was Dedekind’s immersion in the so-called “con-
ceptual approach” that led to his peculiar treatment of Galois’s ideas. Even
if it was “not necessarily dominant in mathematics at that time”, Dedekind
might have been inspired by the “conceptual approach”.26 More than the
“conceptual” approach, it seems that Dedekind’s handling of Galois’s ideas
is grounded in his interest for number theory awoken by Dirichlet’s arrival.
Indeed, an important aspect of Dedekind’s treatment of Galois theory is
its insertion into number theory – a point Dedekind has in common with
Kronecker. Number theory was one of the most important areas of inter-
est for mathematicians in Germany, during the 19th century, since Gauss’s
Disquisitiones Arithmeticae.27

One of the most important specificities of Dedekind’s treatment of groups
is to consider groups as “wholes”, as objects in their own right, a method
he will use systematically for concepts such as groups, ideals, and modules.
In a famous letter from 10 June 1876, Dedekind clarifies a certain number
of difficulties encountered by Lipschitz which, for a large part, are related
to Dedekind’s (method of) definitions. He explains that the use of infinite
systems is to be related to Gauss’s approach (see the quotation p. 44).

Dedekind’s work on Galois theory is important because it is his first
known work in algebra and number theory, and because Dedekind proposes
here, for the first time, the use of arithmetical operations to designate set-
theoretic relationships, in particular inclusion.

There is, in Dedekind’s Nachlass, a copy of Galois’s works, attesting that
Dedekind read it. In addition, in his paper “Bemerkungen zu einer Aufgabe
der Wahrscheinlichkeitsrechnung” (published in Crelle’s journal in 1855, and
reproduced in [Dedekind, 1932] I, 36-39), Dedekind quotes a paper written
by Boole and published in the same issue of the Philosophical Magazine that
contains Cayley’s first paper on groups. It is, then, more than likely that

and of which Frobenius said that they “successfully brighten the African darkness of the
theory of groups” (see [Hawkins, 1978] and [Hawkins, 2013]).

26“Indeed, because he still considered himself a student when he started to work on
Galois’s memoir, Dedekind attended Dirichlet’s lecture about number theory as well as
Riemann’s seminar. (. . . ) In a way, then, the mathematical practice that Dedekind used
while teaching Galois’s ideas reproduced a specific way to make mathematics that must
have seemed familiar, natural and legitimate to him. This was owed to the specific social
and cultural environment in which he did his work, but also to the research training he had
received from his two mentors. Just like Cayley’s, Dedekind’s interpretation of Galois’s
work bore the mark of the place where and the time when it was made, as well as those
of their author’s own trajectory.” ([Ehrhardt, Forthcoming])

27See [Goldstein and Schappacher, 2007a].
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Dedekind read Cayley’s paper, having had the journal in his hands. In his
lecture, Dedekind will select elements of Galois’s and Cayley’s works which
are fully integrated in his own practice, and propose a treatment of Galois
theory as a part of higher algebra, using a notion of group closest to Cayley’s
and linking the theory to number theory.

4.2.1 Cayley’s Galois theory
In 1854, Arthur Cayley, student and later professor in Cambridge, published
a series of papers entitled “On the theory of groups as depending on the sym-
bolical equation θn = 1” ([Cayley, 1854]), in which he presents the notion of
group, which he attributes to Galois. Cayley’s papers are the first to develop
a theoretical viewpoint on the notion of group introduced by Galois. How-
ever, there are strong differences between Galois’s and Cayley’s notions of
group, related to the mathematical and cultural context in which they both
worked, which entail noticeable differences in their mathematical education
and their conception of mathematics.

In the 19th century, mathematics in Cambridge was dominated by a cer-
tain practice of algebra, the so-called Cambridge tradition, which started
around 1810. The core idea of the approach in algebra developed in Cam-
bridge is that concrete objects, such as numbers, should not be considered to
be the main objects in mathematics. This status should be given rather to
the symbolical operations that can be defined between the said concrete ob-
jects. Algebra, in Cambridge, is the study of the laws of symbolical calculus,
and not the theory of equations, as it was in France and in Germany.28

Cayley’s treatment of the notion of group follows the main ideas and
guidelines of the Cambridge tradition. From Galois, he only takes the no-
tion of group. But even there, they share neither the definition, nor the way
of writing or representing a group. Even the uses of the notion of group
differ. While Cayley explicitly refers to Galois’s memoir, he does not work
in the same framework, nor does he use the same symbolism.

Cayley considers a “symbol of operation” θ (more generally, the Greek
letters are used to designate operations), which acts on a system of quantities

28See [Ehrhardt, 2012] for more on the context in which Cayley received Galois’s works.
The “tradition” in Cambridge is, for example, explained by Augustus de Morgan (1806-
1871) as following this idea:

When we wish to give the idea of symbolical algebra, (. . . ) we ask, firstly,
what symbols shall be used (without any reference to meaning); next, what
shall be the laws under which such symbols are to be operated upon; the
deduction of all subsequent consequences is again an application of common
logic. Lastly, we explain the meanings which must be attached to the sym-
bols, in order that they may have prototypes of which the assigned laws of
operation are true. ([Morgan, 1840], 133-134)
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“(x, y, . . .) such that:
θ(x, y, . . .) = (x′, y′, . . .)

where (x′, y′, . . .) are any functions whatever of (x, y, . . .)” ([Cayley, 1854],
123). First, the basic rules of the symbolic calculus are given:

- It is not necessary for the systems (x, y, . . .) and (x′, y′, . . .) to
have the same number of elements.

- It is not necessary (but it can be done) to attach any mean-
ing to operations such as θ ± ψ, nor to the symbol 0, and nor,
consequently, to equations of the type θ = 0 or θ ± ψ = 0.

- The symbol 1 “denote[s] an operation which (either generally
or in regard to the particular operand) leaves the operand unal-
tered” (ibid.).

- The equation θ = ψ means that θ and ψ are equivalent opera-
tions.

- The composite operation, denoted θψ is, in general, not com-
mutative (“convertible”); it is however associative: “θψχ, θψχω,
etc., have a definite signification independent of the particular
mode of compounding the symbols” (ibid.). In consequence, the
“distributive law has no application to the symbols θψ” (ibid.).

Particular cases can be considered, for example if the transformation of
(x, y, . . .) into (x′, y′, . . .) is a permutation of the quantities, then θ denotes
a permutation.

The notion of group is defined in the following way:

A set of symbols
1, α, β, . . .

all of them different, and such that the product of any two of
them (no matter in what order), or the product of any one of
them into itself, belongs to the set, is said to be a group. (ibid.,
124)

In a footnote, Cayley mentions that the “idea of a group as applied to
permutations or substitutions” was introduced by Galois and that it “may
be considered as marking an epoch in the progress of the theory of algebraical
equations” (ibid.). It is the only mention of Galois by Cayley.

Having defined the notion of group, Cayley explains that if symbols are
multiplied by each other, “the effect is simply to reproduce the group”, and
proposes a representation in a table:
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1 α β . . .
1 1 α β . . .
α α α2 αβ
β β αβ β2

. . .

With this representation, each line and each column will contain all the
elements of the group. This allows to see that any product of any number
of elements of the group is still in the group. In particular, if one considers
the symbolic equation θn = 1, it can be shown that the elements of the
group 1, α, β, . . . of cardinality n satisfy the equation “so that the group may
be considered as representing a system of roots of this symbolic binomial
equation” (ibid., 125). Indeed, Gauss showed that if n is a prime number,
then the solutions of the equation will be of the form:

1, α, α2, . . . , αn−1, (αn = 1)

The roots then form a cyclic group. If n is not prime, the group can be
of that form, but not necessarily. Cayley proposes to consider the case for
n = 4 which allows to understand how the group for the symbolic equation
θn = 1 can be different from the group of the algebraic equation xn = 1. For
that, he examines the various possibilities of definitions for the 4 elements
of the group 1, α, β, γ. Cayley gives, for each possibility, the representation
of the group in a table, for example. The first group considered for the
equation θ4 = 1, which is equivalent to 1, α, α2, α3, (α4 = 1) is represented
in this square:

1 α β γ

1 1 α β γ
α α β γ 1
β β γ 1 α
γ γ 1 α β

This representation of groups in tables is specific to Cayley and reminis-
cent of Hamilton’s works on quaternions or de Morgan’s formal logic, and
it will not be used by Dedekind.

Cayley provides other examples of the possible uses of the notion of
groups, such as elliptic functions or the equation θ6 = 1 and seems to be
trying to draw links between very different areas of mathematics, by show-
ing that they function by obeying the same underlying laws – the laws for
groups. This approach is frequent in Cayley’s works, and he seems to see, in
the notion of group, a new objects susceptible to answer this kind of ques-
tions. However, Cayley did not develop very much his researches on that
topic, and, in fact, did not use groups in other works, not even in papers
on the theory of algebraic equations, even though, as we saw, he explicitly
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draw the link between groups and algebraic equations.29

Cayley seems to be considering the notion of group as a sort of generic
concept, a concept which could allow for a unification of a certain number of
problems under the same general principles. For Cayley, this is embedded
in attempts to find the “true reasons” hidden by the specificities of prob-
lem. Dedekind adopts an approach to algebraic concepts (groups, but also
modules and ideals) which considers them as “independent”, thus concepts
forming auxiliary theories which can be applied to specific situations: typi-
cally, groups, defined as systems of elements satisfying a property of closure,
and in which the individual nature of the elements does not enter in consid-
eration in any way. These auxiliary theories, to a certain extent, give the
possibility to develop a unified method for a certain class of problems. While
Dedekind does not adopt a symbolical viewpoint, one should not discard the
possibility that his reading of Cayley’s works on groups had an impact on
the conception of his algebraic concepts, insofar as Cayley worked with ar-
bitrary elements. However, Cayley’s investigations on groups are essentially
based on the determination of the elements of the group considered, which
are identified by the examination of the constraints following from the ini-
tial definition, as was done for the equation θ4 = 1. While this approach
allows, because of its perfectly symbolical nature, a general description of
certain finite groups, it seems difficult to generalize it, that is to develop it
for groups with any number of elements.

Dedekind adopts Cayley’s viewpoint as regards the indifference towards
the individual nature of the elements of the groups, however his intention
is to develop an approach as general as possible for the theory of algebraic
equations and number theory. In particular, the theory of groups should be
able to give propositions and develop methods using groups without relying
in any essential way on knowing specifically the number of elements of the
group. For this, the standpoint adopted by Dedekind will be to consider the
group as an object in itself, to push the indifference towards the nature of
the elements up to considering the system, as a whole, as the object of the
investigation in its own right.

4.2.2 Dedekind’s 1856-58 “Eine Vorlesung über Algebra”

In 1853, Leopold Kronecker published Über die algebraisch auflösbaren Glei-
chungen ([Kronecker, 1853]), in which he refers to Galois’s memoir on the
resolubility of polynomial equations, thus being the very first mathemati-
cian in Germany to show interest in Galois’s works. He was, however, very
critical of both Galois’s and Abel’s works on the resolubility of equations.

29From this viewpoint, his approach is strikingly different from Dedekind’s who used
his algebraic concepts as systematically as he could.
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From his viewpoint, Galois’s memoir was “hiding the true nature of solvable
equations”. Kronecker’s aim was to find a way to determine all the solvable
equations and give an explicit expression of their roots – an approach, then,
opposed to Galois’s. Kronecker makes almost no use of the notion of adjunc-
tion and does not use the notion of groups at all. Kronecker considered the
appropriate approach to be the one that would provide effective solutions
to the equations, and his reference to Galois is essentially to point out that
Galois chose the wrong approach to the problem.

A few years later, Dedekind, in 1856-58, became the first to teach Ga-
lois theory in Germany, during the winter semesters of 1856-57 and 1857-
58, when he was Privatdozent in Göttingen. Only two students followed
Dedekind’s course, Paul Bachmann and Hans Zincke. The only account of
this class is a manuscript written by Dedekind himself, and entitled “Eine
Vorlesung über Algebra”. The manuscript was reproduced by W. Scharlau
(in [Scharlau, 1981a], 59-100)30 and is not dated. As Scharlau explains, one
can see that it is an a posteriori elaboration on the content of the lectures
given during the winter semesters of 1856-57 and 1857-58. Dedekind’s use
of the word “rationale Gebiet” to designate the field of numbers indicates
that the manuscript was written before the 1871 Xth Supplement.31

The paper is divided in four sections: §I Elements of the theory of sub-
stitutions; §II On the interdependency of rational functions of indeterminate
variables; §III On the algebraic kinship between numbers; §IV About the
resolution of equations by radicals.32

In the first paragraph, Dedekind gives the bases of the theories of substi-
tutions and groups. Substitutions are defined as a “process through which
certain elements a, b, c, . . . are turned into other a′, b′, c′, . . . or a replaced by
them.” Dedekind indicates that, here, only substitutions for which the initial
and final sets of elements are the same are considered, which suggests that
he had in mind a more general notion closer to mappings.33 In this case,
only substitutions of one set into itself are of interest. Dedekind represents

30Scharlau added titles to each articles, in Dedekind’s paper, using modern terminology
(e.g., normal subgroup, splitting field, . . . ). I will not be using these titles. Translations
of this text are mine. References will be to Scharlau’s edition.

31This point is mentioned by Dedekind himself, in the 1894 reedition of Dirichlet’s
Vorlesungen, referring to the notion of field, he wrote; “At first, in my Gottingen lectures
(1857 to 1858), I had used the name “rational domain” (rationales Gebiet) for this same
concept.”

32This paper itself has been little studied. In addition to Ehrhardt’s works, one can find
comments in [Corry, 2004b] and in [Scharlau, 1981b]. See also [Sieg and Schlimm, 2014].

33Here, to put it in modern terms, a substitution is an isomorphism of a set into itself,
notion which Dedekind will often use in his works in number theory. However, it seems
doubtful that Dedekind’s permutations, here, are the general concept of mapping as he
developed it later, but with another name. See p. 366. See also [Sieg and Schlimm, 2014].
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them as Cauchy did: (
a b c . . .
a′ b′ c′ . . .

)
.

This substitution can also be denoted by the single letter θ. The product of
two substitutions is the composition of these two substitutions:

θθ′ =
(
a b c . . .
a′ b′ c′ . . .

)(
a′ b′ c′ . . .
a′′ b′′ c′′ . . .

)
=
(
a b c . . .
a′′ b′′ c′′ . . .

)
This allows to prove that the product for any substitution satisfies associa-
tivity and that if ϕ = θ and ϕ′ = θ′, then ϕϕ′ = θθ′. This has the important
consequence that the number of substitutions is finite. Dedekind exposes
his viewpoint on the considerations developed here:

The following investigations are based only on the two fundamen-
tal results proven above [associativity, right- and left-cancelabili-
ty] and on the assumption that the number of substitutions is
finite: The results are therefore valid for any finite domain of
elements, things, concepts θ, θ′, θ′′, . . . admitting an arbitrarily
defined composition θθ′, for any two given elements θ, θ′, such
that θθ′ is itself a member of the domain, and such that this
composition satisfies the laws expressed in the two main results.
In many parts of mathematics, and especially in the theory of
numbers and in algebra, one often finds examples of this theory;
the same methods of proof are valid here as there.34 (ibid., 63,
transl. in [Corry, 2004b], 78, transl. slightly altered)

The generality of Dedekind’s investigations, here, is manifest. Although
he always restricts his results to substitutions, the above statement seems
to express his awareness that the nature of the elements of the group is
indifferent, as it has been noticed by Ferreirós ([Ferreirós, 2008]). For the
development of the theory, only their satisfying certain formal properties is
essential. In fact, as it will appear clearly, only the properties as elements
of a collection are significant, the individual properties are neglected.

Having established this peculiarity of the substitutions leads to more
results on their product: θrθs = θsθr = θr+s and there exists a smaller
integer n such that θr+n = θnθr = θr ⇒ θn = 1, this n is called the order
(Ordnung) of θ. From there, one can deduce that

34“Die nun folgenden Untersuchungen beruhen lediglich auf den beiden so eben bewiese-
nen Fundamentalsatzen und darauf, dass die Anzahl der Substitutionen eine endliche ist:
Die Resultate derselben werden deshalb genau ebenso für ein Gebiet von einer endlichen
Anzahl von Elementen, Dingen, Begriffen θ, θ′, θ′′, . . . gelten, die eine irgendwie definierte
Composition θθ′ aus θ, θ′ zulassen, in der Weise, dass θθ′ wieder ein Glied dieses Gebietes
ist, und dass diese Art der Composition den Gesetzen gehorcht, welche in den beiden Fun-
damentalsatzen ausgesprochen sind. In vielen Theilen der Mathematik, namentlich aber
in der Zahlentheorie und Algebra finden sich fortwährend Beispiele zu dieser Theorie;
dieselben Methoden der Beweise gelten hier wie dort.”
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The n substitutions 1, θ, θ2, . . . , θn−1 are all different from one
another. If θr = θs, then r ≡ s (mod. n), and reciprocally.35

(ibid., 63)

This can be shown to be true for negative powers as well, and one remarks
that θ−1 = θn−1, the inverse (reciproke) substitution of θ.

Groups are, from Dedekind’s viewpoint, the “most important concept
of the theory of substitutions” (but not of Galois theory), and a group of
substitutions is defined in the following way:

A complex36 G of g different substitutions is called a group of
degree g, when every arbitrary product of substitutions all con-
tained in G, is again contained in G.37 (ibid., 64)

Dedekind’s notion of group, like Cayley’s, is a system (in this work, Dedekind
only uses the word “Complex”, and not “System”, “Inbegriff ” or “Mannig-
faltigkeit”) closed by a binary operation and which does not take into ac-
count the individual nature of its elements: the property of closure is the
definitional property.

If one considers a groupK of k distinct substitutions contained in a group
G of g substitutions, then it is clear that g is divisible by k. Consequently

The group K shall be called a divisor of the group G.38 (ibid.,
65)

Thus, to study relationships between groups, Dedekind introduces a notion
of divisibility for groups, an operation between groups considered as objects
of their own right rather than aggregates of things. This allows for an
arithmetical reinterpretation of set-theoretic relationships.

Because of the analogy with number theory that he is building, Dedekind
can employ methods of proof developed in number theory, such as the ex-
haustion method, which allows to show that if K is contained in G, then G
can be decomposed:39

G = K +Kθ1 +Kθ2 + . . .+Kθh−1

with g = kh. Dedekind can also carry on the analogy and give arithmetical
results which are, in fact, describing inclusions between groups of substitu-
tions:

35“Die n Substitutionen 1, θ, θ2, . . . , θn−1 sind sammtlich von einander verschieden; ist
θr = θs, so ist r ≡ s (mod. n), und umgekehrt.”

36To say that A is a complex of substitutions θ, θ′, θ′′, . . . means that A = θ+θ′+θ′′+. . .
37“Ein Complex G von g verschiedenen Substitutionen heisst eine Gruppe vom Grade

g, wenn jedes beliebige Product aus Substitutionen, die aIle in G enthalten sind, wieder in
G enthalten ist.”

38“Die Gruppe K soll ein Divisor der Gruppe G heissen.”
39If A is a complex of substitutions θ, θ′, θ′′, . . ., and ϕ another substitution, we have

Aϕ = θϕ+ θ′ϕ+ θ′′ϕ+ . . . = (θ + θ′ + θ′′ + . . .)ϕ
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The complex G of all the substitutions which are simultaneously
contained in a sequence of groups G1, G2, etc., forms a group;
it must be called the greatest common divisor of these groups
G1, G2, etc.40 (ibid., 65)

With the notion of group as introduced by Dedekind, which seems to draw
from both Cayley’s and Galois’s, it is possible to consider collections of
“things” without taking into account, neither at the ground nor in the de-
velopments of the theory, the individual nature or properties of each object.
Besides, the first elements of an arithmetical methodology introduced to
consider certain properties of groups in analogy with number theory, seem
to ease the investigation of group theory. With this approach, the collection
of things is taken as a consistent whole, treated as a concrete object.

To work directly with infinite sets as if they were objects in themselves,
and in particular numbers, is a very important and significant move in the
history of mathematics, which has been underlined many times. Dugac, for
example, wrote

A great step forward is made by this clear realization that, ba-
sically, one manipulates infinite sets as numbers.41 ([Dugac,
1976b], 23, my translation)

Dedekind’s use of set-theoretic and infinitary methods has been widely dis-
cussed, and I will not develop this point.42 From Dedekind’s viewpoint,
forming collections of things sharing a common property (such as the clo-
sure by a binary operation) is a basic capacity of the human mind, as we
will see later, and to consider the collection as a whole seems to be a natural
consequence of the unity attributed to it by the definitional property.43

The group, conceived as a united whole, appears to bear some similari-
ties to numbers, since divisibility can be defined and methods from number
theory can be imported, but which ones? Considering that only the inclusion
of groups is linked to divisibility, it seems here that the possibility of order-
ing groups by inclusion, added to the peculiar divisibility relation between
their cardinals, could be an essential factor for setting up the arithmetical
terminology. In the following articles of §I, more properties of groups are
studied and most of them make an essential use of the arithmetical method-
ology. Today’s notion of normal subgroup is defined as “proper divisor”

40“Der Complex G sämmtlicher Substitutionen, welche gleichzeitig in einer Reihe von
Gruppen G1, G2 etc. enthalten sind, bildet eine Gruppe; diese soll der grösste gemein-
schaftliche Divisor jener Gruppen G1, G2 etc. heissen.”

41“Un grand pas en avant est fait par cette nette prise de conscience que, au fond, on
manipule les ensembles infinis comme des nombres.”

42See [Dugac, 1976b], [Tait, 1997], [Ferreirós, 2008], [Sinaceur and Dedekind, 2008],
[Avigad, 2006], . . .

43On Dedekind and set theory, see [Ferreirós, 2008].
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(eigentlicher Divisor): if G is a group and K a divisor of G such that

K = θ−1
1 Kθ1 = θ−1

2 Kθ2 = . . . = θ−1
h−1Kθh−1

then K is called a proper divisor of G (in modern terms, K is a normal
subgroup of G). This section of the paper introduces all the properties of
groups that will be necessary for Dedekind’s remaining investigations. It
will appear clearly that groups are essentially a tool, and a very efficient
one, to study problems involving a polynomial equation.

§II is essentially concerned with substitutions of variables in rational
functions, properties of symmetric functions, and theorems already proved,
by Lagrange notably. The content of the paragraph does not differ from
standard works on these matters, except for the last paragraph entitled by
Scharlau “Program for a theory of fields of algebraic functions of one vari-
able” (Program für eine Theorie der algebraischen Funktionenkörper einer
Veränderlichen) and which hints at more general questions. Consider the
general equation

xm − λ1x
m−1 + λ2x

m−2 − . . .+ (−1)mλm = 0

where the (λi)i are “indeterminate magnitudes independent from each other.”
It is not necessary that the λi be numerical magnitudes, they could be ra-
tional functions, for example. If one wants to construct the “expression
depending on” the (λi)i, namely a linear combination of λi, which makes
the polynomial on the left-hand side of the equality vanish, then the previous
paragraph showed that finding this expression depends on the “decomposi-
tion of the entire group of all 1.2.3 . . . .m substitutions” and that the solution
of the equation is essentially linked to the group. If one wishes to consider
such a general equation in which the λi are not fully independent from each
other, for example if the λi are rational functions of a variable z, then the
solution depends on a divisor of the said group (i.e., a subgroup). The roots
of such an equation are themselves rational functions of z and

The way these functions change into each other, when the vari-
able z continuously runs through a closed path of values, and
whose position is given according to what was called ramifica-
tion point by Riemann, will be completely determined by this
group of substitutions.44 ([Dedekind, 1856-1858], 79)

Dedekind does not justify or give any details about this, but seems to already
have sufficiently general ideas about groups to consider that the methods

44“die Art, wie diese Functionen in einander übergehen, wenn die Variable z einen in
sich zurücklaufenden Zug von Werthen stetig durchläuft, der seiner Lage gegen die von
Riemann sogenannten Windungspuncte nach gegeben ist, wird durch diese Gruppe von
Substitutionen vollständig bestimmt.”
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alluded to can be applied to any polynomial equation, including that whose
coefficients are not numbers. In practice, an arithmetico-algebraic theory
of algebraic functions is, as we saw, more complicated than what is pro-
posed here. Nevertheless, it is striking that, in 1856-58, Dedekind is already
considering this possibility. The main topic investigated in the rest of the
paper is the case in which the coefficients λi in the general equation above
are numbers with a definite value, and the general resolubility of polynomial
equations is only considered in the short last paragraph.

The third and longest paragraph, is dedicated to “algebraic relationships
between numbers”, that is, numbers related by equations. It is worth notic-
ing that Dedekind immediately applies Galois theory to number theory. The
algebraic resolution of equations does not seem to be of much interest for
him, in and by itself, as a formal research. Equations as a tool to study re-
lationships between numbers, on the other hand, are a key element of 19th
century number theory, and consistently used in Dedekind’s works. Equa-
tions express relations between numbers, be they coefficients or roots of the
equations. This approach is a legacy of Gauss’s Disquisitiones Arithmeti-
cae. In this paragraph, Dedekind uses Galois’s ideas and results in “higher
algebra” to further apply them to number theory.

The starting point is to consider a polynomial equation f(x) of degree m
whose coefficients can be expressed as a rational combination of elements of a
certain domain of (complex) numbers S (gewisses Zahlengebiet S). Dedekind
studies the roots r1, r2, . . . , rm of the equation f by means of their group of
substitutions: if s is a rational function of the roots, and s′ the “form into
which s is changed by the substitution θ”, then s′ can be expressed as a
rational function of the roots. Since it is completely determined by θ, it is
denoted s′ = θ(s). This process can be repeated m! times, the number of
elements of the group of substitutions, and

If s, s′, s′′ are any three roots of this equation, then one can
set s′ = θ(s), s′′ = θ′(s), where the coefficients of the rational
functions θ and θ′ belong to the rational domain S.45 (ibid., 83)

A “rational domain” is a subdomain for the domain of complex numbers – it
is the equivalent of the notion of a field of numbers, which Dedekind explic-
itly defines in 1871. The term “rationale Gebiet”, closer to the terminology
later chosen by Kronecker, “domain of rationality” (Rationalitäts-Bereich),
underlines the fact that the elements of the system are linked (or put to-
gether) by the basic operations of rational arithmetic, rather than insisting
on the “unity” of the collection given by the closure by the four (arithmeti-
cal) operations, as intended with the choice of the word “Körper”. Unlike

45“Sind s, s′, s′′ irgend drei Wurzeln dieser Gleichung, so kann man s′ = θ(s), s′′ = θ′(s)
setzen, worin die Coefficienten der rationalen Functionen θ und θ′ in dem rationalen
Gebiet S enthalten sind.”
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in his work in number theory, which I will consider in the next chapters,
Dedekind does not insist on the “rational domain”. As Corry underlines

In later sections, he mentions this domain again several times,
and indeed its actual role within the theory becomes increasingly
clear. And yet, this, or any similar kind of domain, is never
systematically treated in itself. Results concerning rational do-
mains appear scattered, and they are proved whenever needed
for a specific, immediate concern. ([Corry, 2004b], 80)

Group theoretical results are used to study properties of the equation
and of its roots. For example, having shown that the substitutions of the
roots of an equation G(y) irreducible in the domain S form a group G,
Dedekind shows that

Every rational function of the roots r, which for all substitutions
of the group G just defined, keeps the same value, has a rational
value. And reciprocally: every function of the roots r which has
a rational value keeps the same value for all the substitutions in
the group G.46 (op. cit., 84)

This allows to prove that for a certain equation f , there is only one group of
substitutions, which can be called “the group of the equation f(x) according
to the domain S.”

Dedekind studies the relationships between G and a rational function of
the roots and he shows that

The group of an irreducible equation whose roots are adequate47

contains as much substitutions as the equation has roots. And
reciprocally, if the group of an irreducible equation contains as
much substitutions as the equation has roots, then the latter are
all adequate.48 (ibid., 89)

The dependence of the relation of “adequacy” to the domain S is important,
here, for it leads to the notion of adjunction. Quantities such as 2 and

√
8

cannot be expressed rationally as functions of each other in Q, but they
can be expressed rationally in Q(

√
2) since

√
8 = 2

√
2. Before introducing

46“Jede rationale Function der Wurzeln r, welche für alle Substitutionen der eben
definirten Gruppe G denselben Werth behält, hat einen rationalen Werth. Und umgekehrt:
jede rationale Function der Wurzeln r, welche einen rationalen Werth hat, behält für aIle
Substitutionen der Gruppe G denselben Werth.”

47Two magnitudes being adequate means that they can be rationally expressed in func-
tion of each other in the domain S.

48“Die Gruppe einer irreductibeln Gleichung, deren Wurzeln adäquat sind, enthalt
ebensoviel Substitutionen, als die Gleichung Wurzeln hat; und umgekehrt, hat die Gruppe
einer irreductibeln Gleichung ebensoviele Substitutionen, wie die Gleichung Wurzeln, so
sind diese letztere sammtlich adäquat.”
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the notion of adjunction, Dedekind proves that the group of an equation
is essentially linked to the domain S in which the equation is considered.
Consider an equation f(x) = 0, and t a rational combination of its roots
which belong to a certain group K included in G, the group of the equation.
One can show that K is the group of the equation f(x) = 0 for a certain
domain S′ which contains all the quantities that can be expressed as rational
combinations of t and elements of the initial domain S. Hence, S′ is obtained
by adjoining the quantity t to the initial rational domain of numbers S.

We can hence say that through the adjunction of the quantity
t, that is by the extension of the domain S to all the quantities
rationally representable by S and t, the earlier group G of the
equation is reduced to the group K; s(?) satisfies a rational and
irreducible equation of degree k related to the extended domain
S′.49 (ibid., 91)

The difference of the terminology between Dedekind and Galois is significant
in regard to Dedekind’s comprehension and use of Galois theory. Galois’s
notion of adjunction consists in considering certain quantities as known and
to adjoin them to the equation to be resolved. Dedekind’s interpretation of
the notion is in terms of extension of domains. It will appear, in the following
pages of his paper, that Dedekind considers the notion of adjunction to be
the most important one of the theory: the irreducibility of equations and the
size of the group are explicitly reduced to that of (extensions of) domains
of numbers. If Galois theory is to be studied as a method imported in
number theory, the questions underlining the notion of adjunction (what
is the nature of the adjunct quantity? how do we extend a domain of
numbers?) become central.

Having defined the notion of adjunction, Dedekind can express and prove
the theorem, essential in Galois’s memoir, stating the reduction of the size
of the group, when roots are adjoined to the rational domain:

If one adjoins all the h values of the function t, which belong to
the divisor K of the group G, then the group of the equation
is reduced to a proper divisor D of the group G, which is the
greatest common divisor of the h conjugate groups

K, θ−1
1 Kθ1, θ

−1
2 Kθ2, . . . , θ

−1
h−1Kθh−1.

50

49“Wir können daher sagen, dass durch Adjunction der Grösse t, d. h. durch Er-
weiterung des Gebiets S um alle durch S und t rational darstellbaren Grössen, die frühere
Gruppe G der Gleichung sich auf die Gruppe K reducirt; s genügt einer in Bezug auf das
erweiterte Gebiet S′ rationalen und irreductibeln Gleichung vom Grade k.”

50“Adjungirt man sämmtliche h Werthe der Function t, welche zu dem Divisor K der
Gruppe G gehört, so reducirt sich die Gruppe der Gleichung auf den eigentlichen Divisor
D der Gruppe G, welche der grösste gemeinschaftliche Divisor der h conjugirten Gruppen
K, θ−1

1 Kθ1, θ
−1
2 Kθ2, . . . , θ

−1
h−1Kθh−1 ist.”
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(ibid., 91)

Dedekind then gives a more general treatment of the previous consider-
ations and explains the reduction of G into a divisor K by the adjunction
of one root of the equation.51 These results are, for Dedekind, the core of
Galois theory:

The preceding propositions give the essential aspect from which
Galois theory is regarded.52 (ibid., 95)

From Dedekind’s viewpoint, the aim of Galois theory is to completely resolve
an equation with coefficients in a “given rational domain S”, i.e., “for each
of its roots, to find a precisely defined expression.” But Dedekind explains
that the goal is not reached when all roots can be expressed rationally as
elements of S and a series of auxiliary quantities (Hülfsgrössen) themselves
algebraically representable in S.53 Rather, a domain is said to be given
when it satisfies the following:

The system or domain S will be considered as given, when one
can always decide whether an arbitrary rational equation with
proper rational coefficients (see the part about the reciprocity
between irreducible equations) between arbitrarily many of the
quantities related to the domain S truly exists or not.54 (ibid.,
96)

It is always possible to determine whether an equation is irreducible in a
certain domain S, and the resolution of such equations lies in the process
of adjunction of “auxiliary quantities”, providing that it be done properly,
that is,

for the same extended system S also to be considered as given,
and then also that all the roots of the presented equation are
actually contained in it.55 (ibid., 96)

The problem of the algebraic resolution of equations is reduced to that of
the adjunction of an adequate number of auxiliary quantities. It can be

51However, the paragraph explaining the reduction of G into a proper divisor D by the
adjunction of all roots of the equation is missing in the manuscript. ([Scharlau, 1981a],
note 18, 92)

52“Die vorhergehenden Sätze geben den wesentlichen Gesichtspunkt, von welchem aus
die Galois’sche Theorie aufzufassen ist.”

53By algebraically representable in S, Dedekind means that the quantities are roots of
an equation with coefficients in S.

54“Das System oder Gebiet S wird als gegeben angesehen, wenn man stets entscheiden
kann, ob eine beliebig rationale Gleichung mit eigentlich rationalen Coefficienten (siehe
den Aufsatz über die Reciprocität zwischen irreductibeln Gleichungen) zwischen beliebig
vielen dem Gebiet S angehörigen Grössen in der That besteht oder nicht.”

55“dass das um dieselben erweiterte System S auch als gegeben anzusehen ist, und dann
auch wirklich aIle Wurzeln der vorgelegten Gleichung in sich enthält.”
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shown to be equivalent to that of reducing the group of substitutions of the
equation to the group composed of only the identity in the extended domain.
Dedekind’s explanations show that he considers the process of adjunction
and the link between the equation and the domain in which it is studied
to be central. These elements seem to constitute what Dedekind calls the
“algebraic affinities between numbers”, which will be of great importance
in his later works. Adjunction, and its action on the domain of numbers
considered, are a central part of the theory. Groups, on the other hand, do
not hold the same status, they appear to be a mere tool, a part of what
Dedekind calls later an auxiliary theory: an abstract (formal) theory inter-
esting mostly (if not only) for its applications.

Dedekind’s lecture had almost no immediate impact. However, the
manuscript I just commented was read by Heinrich Weber whose work on
Galois theory was, he claimed, deeply influenced by it. Dedekind stud-
ied thoroughly Galois’s works and proposes, here, a more systematic and
a broader treatment than any of the works done at the time. Dedekind’s
treatment builds on Galois’s and Cayley’s works and integrates them in his
own epistemological framework, developing the theory with new (modified)
definitions for the basic notions and with methods inspired by or analogous
to elementary arithmetic.

4.3 An approach to higher congruences “rigorously tied to
an analogy with elementary number theory”

Dedekind’s attempts to develop an approach built on an analogy with ele-
mentary (rational) arithmetic are rooted in his very first works in algebra
and number theory. In his work on Galois theory, Dedekind proposed for
the first time to use arithmetical operations to treat set-theoretical relation-
ships, inaugurating a method which will largely dominate his later works.
The development of theories modeled on rational arithmetic is a very dis-
tinctive and important part of his algebraic works. The definition of new
arithmetical relationships is such that they can be related to the old ones.
Before fully developing this approach, Dedekind tried to develop an “anal-
ogy” between higher congruences and elementary numbers theory, in his first
published paper in number theory, “Abriß einer Theorie der höheren Kon-
gruenzen in bezug auf einen reellen Primzahl-Modulus” (1857). This paper,
in the continuity of Gauss’s work on congruences, “later successfully revived
by Galois, Serret, Schönemann”56 explores the resolution of modular equa-

56Dedekind is referring to [Galois, 1830], [Serret, 1854], [Schönemann, 1846a], [Schöne-
mann, 1846b]. Note that Schöneman, a Gymnasium teacher and former student of Jacobi,
studied Galois’s works as well, but without making a very significant use them. After 1850,
Schöneman was more interested in physics than in mathematics and did not publish any
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tions with a prime module p, with for example considerations on equations
of the form

xp
v − x ≡ 0 (mod p)

This paper is less interesting for its results than for the approach devel-
oped in it, which aims to provide

a simple and coherent presentation, which is rigorously tied to an
analogy with elementary number theory. This analogy is, in fact,
so thorough that with the exception of a few researches specific
to our object, it only requires a change of words in the proofs
from number theory.57 ([Dedekind, 1857], 40, my translation)

Recall that Dedekind’s first attempt to generalize Kummer’s works on ideal
numbers was by using higher congruences. While it is not what this 1857
paper is concerned with, it seems that the possibility to develop, here, an
approach “rigorously linked” (my emphasis) to an analogy with rational
arithmetic might have been an inspiration for Dedekind’s later works.

4.3.1 Outlines of Dedekind’s 1857 paper on higher congruences
Dedekind considers congruences between polynomials of one variable x with
integral coefficients.58 What is at the core of the investigation, here, are
the “properties of such functions relating to a modulus which is a real prime
number p”, that is a congruence relation defined in the following way: if A
and B are two polynomials and p a prime number, A ≡ B (mod p) means
that the coefficients of A−B are divisible by p, or again that the coefficients
of a same power of x in each polynomial A and B are congruent (in the
usual sense defined by Gauss) modulo p. This means, Dedekind writes, that
this congruence is “just an expression for the identity A = B + pC (ibid.,
41).

Congruences between polynomials are what is called “higher congru-
ences”. The usual rules of addition and multiplication of congruences hold,
and it is also possible to define a notion of divisibility:

If A, B and C are three (polynomial) functions of x such that
A ≡ BC (mod p), then B, C (and all other functions congruent
to them) are called divisors or factors of A (or any function
congruent to A) according to the modulus p. The [following]

more papers in algebra.
57“eine einfache zusammenhängende Darstellung (. . . ), welche sich streng an die Analo-

gie mit den Elementen der Zahlentheorie binden soll. Diese ist in der Tat so durchgreifend,
daß es mit Ausnahme einiger unserem Gegenstand eigentümlicher Untersuchungen nur
einer Wortänderung in den Beweisen der Zahlentheorie bedarf.”

58In this paragraph, “polynomial” always means polynomial of one real variable x with
coefficients in Z.

259



Chapter 4 - Dedekind’s first works in number theory

expressions are equivalent: A is a multiple of B, C; or A is
divisible by B, C.59 (ibid., 42)

Operations for classes of congruences are defined for a representative of the
class, here A,B and C. Working with representatives of classes to avoid
abstract considerations of the infinite classes was an approach initiated by
Gauss, in his Disquisitiones Arithmeticae. Note that while Dedekind worked
with groups as wholes, he is keeping, here, the Gaussian approach. Openly
aiming for a development analogous to number theory, Dedekind transfers
the operations and notions elaborated for numbers to the representatives
of congruence classes of polynomials. The peculiar nature of the objects
studied is only considered so as to assure that it is possible to define the new
operations in a consistent way. Indeed, the possibility to define arithmetical
operations is not taken for granted: before defining divisibility, Dedekind
considers the “condition for the authorization (Berechtigung) for the division
of a congruence by another one”, namely

If AB ≡ 0 (mod p), then at least one of the two functions A, B
is [such that] A,B ≡ 0 (mod p); and moreover: If AB ≡ A′B′,
and A ≡ A′ but not ≡ 0 (mod p), then B ≡ B′ (mod p); so there
is AB ≡ AB′ or A(B −B′) ≡ 0 (mod p).60 (ibid., 41-42)

It is clear, then, that only the consistent definition of operations is respon-
sible for the (possibility of the) analogy. Dedekind explains that any result
proved for the representatives hold for any function of the class, and hence
for the whole class:

The preceding propositions correspond completely with that on
the divisibility of number, insofar as whole system of infinitely
many functions of one variable congruent modulo p behave like
a single determinate number in number theory, as each individ-
ual function of one such system replaces completely any other
arbitrary [function] of that same system in any relation; such a
function if the representative of the class.61 (ibid., 46-47)

59“Sind A, B, C drei solche Funktionen von x, daß A ≡ BC (mod p), so heißen B, C
(oder alle diesen kongruente Funktionen) Divisoren oder Faktoren von A (oder jeder mit
A kongruenten Funktion) in bezug auf den Modul p. Gleichbedeutend sind die Ausdrücke:
A ist ein Multiplum von B, C; oder: A ist teilbar durch B, C.”

60“Ist AB ≡ 0 (mod p), so ist mindestens eine der beiden Funktionen A,B ≡ 0 (mod p);
und ferner: Ist AB ≡ A′B′, und A ≡ A′ nicht ≡ 0 (mod p), so ist B ≡ B′ (mod p); denn
es ist AB ≡ AB′’, oder A(B −B′) ≡ 0 (mod p).”

61“Die vorhergehenden Sätze entsprechen vollständig denen über die Teilbarkeit der
Zahlen in der Weise, daß das ganze System der unendlich vielen einander nach dem
Modulus p kongruenten Funktionen einer Variabeln sich hier verhält, wie eine einzige
bestimmte Zahl in der Zahlentheorie, indem jede einzelne Funktion eines solchen Systems
jede beliebige andere desselben Systems in jeder Beziehung vollständig ersetzt; eine solche
Funktion ist der Repräsentant der Klasse. . . ”
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Pursuing the analogy with arithmetic, in the 1857 paper, Dedekind ex-
plains that it is possible to prove, for polynomials, theorems analogous to
those in number theory.

From the definition of the multiple follows immediately the two
following propositions: “If a function is the multiple of a second
one, which is itself the multiple of a third one, which is itself
the multiple of a fourth one, and so on, then the each former
function in the sequence is a multiple of each further one. The
sum and the difference of two multiples of one function is itself
a multiple of this function.”62 (op. cit., 43)

An algorithm analogous to Euclid’s algorithm to find the greatest common
divisor of two numbers is given, from which the notion of greatest com-
mon divisor is derived. Dedekind considers two polynomials A and A′ and
whether they have a common divisor modulo p. It is possible to write

A ≡ A′Q+A′′(mod p)

with A′′ and Q two new polynomials, both of degree lower than A and A′.
If A′′ is not ≡ 0(mod p), the operation can be repeated and the following
system of congruences can be formed:

A ≡ QA′ +A′′

A′ ≡ QA′′ +A′′′

. . .

A(v−2) ≡ Q(v−2)A(v−1) +A(v)

A(v−1) ≡ Q(v−1)A(v)


mod p

The degree of the polynomials is decreasing at each line, and “after a finite
number of operations, it must happen that a function A(v−1) is divisible the
following A(v)” (ibid., 45). This last polynomial A(v) is called the greatest
common divisor of A and A′. Moreover, it is possible to determine two
polynomials G and G′ such that

GA+G′A′ ≡ A(v)(mod p).

From there, a notion of relative primality between polynomials is also de-
fined:

62“Aus der Definition der Multipla ergeben sich unmittelbar die beiden folgenden Sätze:
“Ist eine Funktion ein Multiplum von einer zweiten, diese ein Multiplum von einer drit-
ten, diese von einer vierten usw., so ist jede frühere in der Reihe dieser Funktionen ein
Multiplum von jeder späteren. - Die Summe und die Differenz zweier Multipla von einer
Funktion sind selbst wieder Multipla derselben Funktion.”
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If the greatest common divisor A(v) of the functions A and A′ is
of degree 0 (and ≡ 1(mod p) if it is primary63), then A and A′
are called relatively prime with each other.64

Theorems analogous to number theory can be proved, for example:

If A, A′ are two relatively prime functions andM is an arbitrary
function, then each common divisor of the two functions AM ,
A′ is also a common divisor of M , A′. (. . . ) If M is also prime
with A′, then the greatest common divisor of M and A′, and
consequently also of that of AM and A′, is a function of degree
0, that is AM and A′ are relatively prime to each other.65(ibid.,
44-45)

One can define the notion of a prime function modulo p:

A function whose only divisors modulo p are either itself or func-
tions of degree 0 (i.e., units) or products congruent to either of
them (then each function has all these divisors) is called (ir-
reducible or) a prime function modulo p; every other is called
(reducible or) composed.66 (ibid., 45)

And familiar theorems can be re-stated, such as: if a product AB is divisible
by a prime function P , then at least of one the factors A, B is divisible by P .
Dedekind also gives a proposition similar to the decomposition into prime
factors, whose truth he seems to consider evident:

It stands to reason that any arbitrary function M can be ex-
pressed as the product of powers of prime functions, which are
incongruent to each other, and whose number is finite (if the
degree of M is finite); and in fact, essentially only one of those
representations is possible (. . . ). One can suppose all the prime
function primary, and then

M ≡ zAaBbCc . . . (mod p)
63A “primary function” is a function in which the coefficient of the term of highest

degree xn is ≡ 1(mod p).
64“Ist der größte gemeinschaftliche Divisor A(v) der Funktionen A, A′ vom Grade lNull

(also ≡ 1(mod p), wenn er primär ist), so heißen A, A′ relativ prim gegeneinander.”
65“Sind A, A′ zwei relative Primfanktionen, und ist M eine beliebige Funktion, so ist

jeder gemeinschaftliche Divisor der beiden Funktionen AM , A′ zugleich gemeinschaftlicher
Divisor von M , A′. (. . . ) Ist auch M relativ prim gegen A′, so ist der größte gemein-
schaftliche Divisor von M und A′, und folglich auch der von AM und A′ eine Funktion
vom Grade Null, d. h. AM und A′ sind relativ prim gegeneinander.”

66“Eine Funktion, welche nach dem Modul p nur solche Divisoren hat, die entweder ihr
selbst oder Funktionen vom Grade Null (d. h. Einheiten) oder Produkten aus beiden kon-
gruent sind (denn jede Funktion hat alle diese Divisoren), heißt ( irreduktibel oder) eine
Primfunktion nach dem Modul p; jede andere heißt ( reduktibel oder) zusammengesetzt.”
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where z is a unit, A, B, C etc. are incongruent primary prime
functions, a, b, c are positive integral numbers.67 (ibid., 46)

Dedekind does not give proofs of this proposition, neither does he prove,
for example, that any divisor of M can be expressed as a product of lower
powers of the prime factors in the decomposition ofM . To make the analogy
with rational integers (more) operative, an additional notion of congruence
is defined, a congruence with a double modulus: A ≡ B (modd p,M), in
whichM is the representative of a class of functions, to designate the relation
A ≡ B − CM (mod p).

So, Dedekind here, defines a second level of congruences in order to be
able to conduct more elaborated reasonings – yet still analogous to elemen-
tary number theory – in the higher level in which he already defined basic
arithmetical properties. Here, the fact that he works directly on classes as if
they were numbers is particularly significant. From there, Dedekind develops
for classes of polynomials (but still working only with the representatives
of classes) an approach analogous to Gauss’s works in the Disquisitiones
Arithmeticae. For example, he studies quadratic residues for the new notion
of congruence: the congruence

y2 ≡ A (mod P ).

where P is a prime function of degree π holds only when A is one of the
roots of the congruence

y
1
2 (pπ−1) ≡ 1 (mod P )

and tries to identify, given a certain function A, the prime functions P of
which A is a quadratic resides and explains that

[this] question (. . . ) which is important for the theory of quadratic
forms (with functions of one variable x, will, in virtue of the
preceding article, be reduced to the case in which A is a prime
function R (of degree ρ). The analogous question in number the-
ory, as is well-known, is answered with the so-called reciprocity
law of Legendre (first proved by Gauss). This analogy, which up
to now was preserved in all principles and proofs, does not leave

67“Es leuchtet ein, daß jede beliebige Funktion M sich darstellen läßt als Produkt aus
Potenzen von Primfunktionen, welche untereinander inkongruent sind, und deren Anzahl
eine endliche ist (wenn der Grad von M endlich ist); und zwar ist wesentlich nur eine
einzige solche Darstellung möglich (. . . ). Man kann die Primfunktionen sämtlich primär
annehmen; ist dann

M ≡ zAaBbCc . . . (mod p)
wo z eine Einheit, A, B, C etc. inkongruente primäre Primfunktionen, a, b, c etc. positive
ganze Zahlen bedeuten.”
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doubt about the existence of a correspondant law in our theory.
This theorem ends with the result(

P

R

)(
R

P

)
=
(−1
p

)π.ρ
where P , R denote two primary prime functions of degree π, ρ
respectively, and

(
−1
p

)
= (−1)

1
2 (p−1) is the Legendre symbol.68

(ibid., 58-59)

Dedekind avowedly only “emphasized the key moments of the proofs” in
this article, the details being considered “wearisome for the connoisseur of
number theory”. This suggests that he considers the ‘good behavior’ of the
analogy as a given fact. It seems that Dedekind let himself be guided by
the analogy with rational number theory, which proved to be functioning
so smoothly that the validity of the theorems in the new framework ap-
peared as somewhat obvious. Of course, this only works inasmuch as the
bases have been assured: it is possible to provide a proof that the analogy
is well-founded (as it was the case in the notes about Galois theory). This
example allows to see clearly how having defined operations enables to estab-
lish a (new) kind of arithmetic, developed following the model of elementary
number theory. Arithmetic, here, is essentially attached to the operations
and the possibility to establish theorems central to number theory, such as
divisibility properties.

4.3.1.1 Conclusion

In the two works presented here, one can see the first steps of a certain arith-
metical methodology, which Dedekind will adopt in algebraic number theory.
As we saw in the first part of this dissertation, the arithmetical methodol-
ogy developed will reveal to be rather fruitful (albeit not without limits).
The “elementary number theory” taken as model, here, does not refer to
the properties of the sequence of natural numbers, but to number theory as
inaugurated by Gauss’s Disquisitiones Arithmeticae, with the study of di-
visibility laws, congruences properties. . . These first examples suggest that
arithmetic is intrinsically linked to the definition of the four rational oper-
ations and the possibility to prove a certain number of results, especially

68“[Diese] Frage (. . . ) welche für die Theorie der quadratischen Formen (mit Funk-
tionen einer Variablen x) von Wichtigkeit ist, wird vermöge des vorigen Artikels auf
den Fall reduziert, in welchem A eine Primfunktion R (vom Grade ρ) ist. Die analoge
Frage in der Zahlentheorie wird bekanntlich durch den (zuerst von Gauß bewiesenen)
sogenannten Reziprozitäts-Satz von Legendre beantwortet. Diese Analogie, welche sich
bisher in allen Prinzipien und Beweisen bewährt hat, läßt keinen Zweifel an der Exis-
tenz eines entsprechenden Satzes in unserer Theorie übrig. Dieses Theorem lautet in der
Tat

(
P
R

) (
R
P

)
=
(
−1
p

)π.ρ worin P , R primäre Primfunktionen resp. von den Graden π, ρ,
bedeuten, und

(
−1
p

)
= (−1) 1

2 (p−1) das Zeichen von Legendre ist.”
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pertaining to divisibility. The mathematical ground of the analogy is very
clearly explained, however Dedekind does not give any epistemological ex-
planation, any justification of his choice. In his subsequent works, many
statements about epistemological values, such as rigor and uniformity, ap-
pear along the use of the arithmetical methodology.

In the two next chapters, I will investigate the increasing use of arith-
metical methods and the possible benefits of using an arithmetical method-
ology, by analyzing the two first versions of algebraic number theory and
the changes made from 1871 to 1877.
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Part III

A strategical use of arithmetic?
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4.3 Introduction to Part III

Introduction to Part III
The theory of algebraic integers, first published by Dedekind in 1871 as
part of a Supplement of Dirichlet’s Vorlesungen contains the native soil of
Dedekind’s concepts of field, module and ideal. It is for the purpose of
proving the validity for algebraic integers of the laws of divisibility known
for rational integers, that Dedekind elaborates these concepts. Ideal are first
introduced tools for the generalization of Kummer’s works on ideal numbers.
The arithmetical methodology outlined in the previous chapter is little by
little taken advantage of in the successive rewritings of Dedekind’s algebraic
number theory. It appears that developed as an extension of Kummer’s
notion of ideal divisors, in 1871, Dedekind’s ideals become, in 1877, a way
of extending divisibility itself. To argue for this point, I will expose in detail
both versions of the theory – albeit the first with slightly more details, since
a contrast of the two versions by underlining the changes in the 1876-77
version is ultimately the goal of this Part.

Firstly, we will see how, in 1871, the set up of arithmetical operations
for ideals allows to prove important theorems for algebraic numbers. In ad-
dition, I will insist on elements such as the aim of Dedekind’s 1871 work, the
role and status held by ideal and module theories, and the reception of his
works, in order to put his work into its context. The many details given in
the Chapter 5 will be particularly interesting when contrasted, in the next
chapter, with the 1877 rewriting of ideal theory. In this new version, the
change toward a theory of ideals using only the “simplest principles of arith-
metic” is stronger. Indeed, in the second version of the theory (published
two times, in French in 1876-77 in the Bulletin des Sciences Astronomiques
et Mathématiques, and in German as a Supplement of Dirichlet’s Vorlesun-
gen in 1879), significant changes are made, and the theory appears to be
more oriented towards a development following a strict analogy with rational
number theory. Dedekind seems to take full advantage of the arithmetical re-
lationships defined between ideals. Dedekind thus develops the theory with
the same theorems and proofs, given at the level of ideals, as the well-known
ones for rational numbers.

I will underline how the arithmetical components of his approach become
more significant through the changes between the first and second version of
the theory. This will lead me to consider questions about the definition of
ideals and their arithmetical nature, so as to try to understand their pride
of place in Dedekind’s number theory. Finally, from the comparison of these
two versions, and a link with Algebraische Funktionen, I will propose new
elements to understand Dedekind’s ideas about arithmetic. Indeed, it should
be borne in mind that definition of divisibility between groups or ideals is
not presented as a mere borrowing from arithmetic. In Dedekind’s works, it
is rather justified, or even proved, that it was a legitimate extension of the
arithmetical (rational) notion of divisibility.
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Chapter 5

Theory of algebraic integers in 1871

In 1836-37, Jacobi gave a course in number theory and introduced his lec-
tures in the following way:

Number Theory in its present state consists of two big chap-
ters, one of which may be called the theory of the solution of
pure equations, the other the theory of quadratic forms.1 ([Ja-
cobi, 1836-1837], quoted and translated in [Goldstein and Schap-
pacher, 2007a], 28)

As noted by Goldstein and Schappacher, Jacobi, who gave a proof of the bi-
quadratic residue law using cyclotomy, seems to consider congruences as un-
derlying both “chapters” of number theory. As we saw in Sec. 1.2.2, in 1854
these ideas were shared by Dirichlet, whose works were greatly responsible
for making Gauss’s composition of forms more understandable. Dedekind’s
first major contribution to number theory, an inquiry about binary quadratic
forms, published as the Xth Supplement to Dirichlet’s lectures on number
theory, is profoundly inscribed in this tradition.

The Xth Supplement, while often reduced – maybe because it was the
only part published by Noether and Van der Waerden in Dedekind’s Gesam-
melte Werke – to the paragraphs concerned with fields and ideals of algebraic
integer, was dedicated, as its name indicates, to binary quadratic forms. In
this work, Dedekind introduces the notions of algebraic integer, field, mod-
ule and ideal, so as to prove results about the arithmetical laws of algebraic
numbers, and in particular to show that this extension of the concept of
number preserved the laws of arithmetic known for rational integers.

Kummer, in his researches about cyclotomic numbers, began to inves-
tigate these questions and showed that the unique factorization in primes,
the so-called fundamental theorem of arithmetic, failed for certain complex

1“Die Zahlentheorie auf ihrem jetzigen Standpunkte zerfällt in zwei große Kapitel, von
denen das eine als die Theorie der Auflösung der reinen Gleichungen, das andere als die
Theorie der quadratischen Formen bezeichnet werden kann.”
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numbers. In order to “save” the unique prime decomposition, he introduced
the notion of “ideal numbers”. Ideal numbers were indeed able to restore
this important property of numbers for the restricted domains investigated
by Kummer. A general proof of the validity of the divisibility laws was still
to be given – and this is the problem tackled by Dedekind in 1871, with the
introduction of ideal theory as a way to generalize Kummer’s ideas.

The first version of the so-called ideal theory stays close to Kummer’s
computational approach. It should be underlined that the paragraphs pre-
senting the divisibility laws of algebraic integers (based on the notions of
field, module, and ideal) are five paragraphs (§§159-163) in a work of twenty-
five paragraphs in total. Moreover, ideals, modules and fields are only used
starting in those five paragraphs, up to the end of the Supplement. From
§145 to §158, Dedekind works on binary quadratic forms in customary Gaus-
sian manner. In §§159-163, he presents the new concepts of field, module
and ideal and gives a demonstration of the theorem of unique factorization
for algebraic integers. From §164 to the end, Dedekind develops further
considerations on ideal theory (composition and classes of ideals) and shows
how it can be used in the study of composition of forms. Presented as em-
bedded in the well established and widely studied theory of forms in the
tradition of Gauss, Dirichlet, Lagrange and Kummer, ideal theory is essen-
tially a tool, an element of an algebraic arsenal elaborated to provide new
methods of proof, able to give new results as well as to enhance existing
proofs.

5.1 Ideal numbers

Before considering Dedekind’s theory of algebraic integers, let us consider
the works on which it relies: Gauss’s “general arithmetic”, and Kummer’s
ideal numbers. Dedekind was following these two authors and took part in
a certain process of extension, of generalization of arithmetic. Here, “gener-
alization” should be understood as an extension of the scope of arithmetic,
of the objects of arithmetic. This extension goes with endeavors to extend
essential properties of numbers as well, such as divisibility properties. With
the extension of the notion of integer, from natural integers to Gaussian
integers (to algebraic integers, in Dedekind’s and Kronecker’s works), one of
the important questions to answer is that of the arithmetical laws verified by
the enlarged concept of integer. Indeed, if one is to enlarge number theory
(as understood by Jacobi and Dirichlet) by using a more general notion of
integer, then it is necessary to understand their properties, so as to avoid,
for example, to assume without ground that laws valid for rational integers
sill hold for complex integers.
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5.1.1 Gauss’s generalized arithmetic
Kurt Hensel, who was Kronecker’s student, wrote in the introduction of
Kronecker’s lecture on number theory, the following account of Gauss’s ex-
tension of the notion of integer:

In the introduction of his Disquisitiones arithmeticae Gauss fixes
the domain of the natural integers as the field of arithmetic, but
he himself was forced to extend this domain, as he added in the
fifth section of this same work the realm of quadratic forms with
two variables, in the seventh the functions of x which, once set
equal to zero, produce the cyclotomic equation.2 ([Kronecker,
1901], quoted and translated in [Goldstein and Schappacher,
2007b], 86)

Investigations about biquadratic residues led Gauss to consider complex
numbers and to advocate their being considered as objects of arithmetic on
their own right. As we saw in Sec. 3.2.2.2, Gauss considered and argued for
complex integers as legitimate objects of number theory:

For the true grounding of the theory of biquadratic residues, one
must extend the field of higher arithmetic, which has hitherto
been confined to the real integers, into the imaginary integers,
and must concede to the latter the same legitimacy as the former.
As soon as one has seen this, that theory appears in an entirely
new light, and its results acquire a startling simplicity.
But before the theory of biquadratic residues can be developed
in this widened domain of numbers, the doctrines of higher arith-
metic, which hitherto have been explored only for real numbers,
must be extended as well. ([Gauss, 1831], 308-309)

Gauss’s argument is, in fact, deeply rooted in the possibility to provide
proofs of the reciprocity laws. Because complex integers allow to do so, they
are to be taken not only as legitimate in higher arithmetic, but as allowing
a “true foundation” of the theory of biquadratic residues:

As easily as all such special theorems are discovered by induction,
so difficult it is to find a general law for these forms in the same
way, even though several common features are obvious. And it
is even more difficult to find the proofs of these theorems. (. . . )
One soon recognizes that totally new approaches are necessary

2“Gauss bestimmt in der Einleitung zu seinen ‘Disquisitiones arithmeticae’ das Gebiet
der natürlichen ganzen Zahlen als das Feld der Arithmetik, aber er selbst war gezwungen,
dieses Gebiet dadurch zu erweitern, daß er in der fünften Sektion desselben Werkes das
Reich der quadratischen Formen von zwei Variablen, in der siebenten die Funktionen von
x hinzunahm, welche gleich null gesetzt die Kreisteilungsgleichungen ergeben.”
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to enter this rich domain of higher arithmetic, (. . . ) that for the
true foundation of the theory of biquadratic residues the field of
higher arithmetic, which before had only extended to the real
integers, has to be extended to also include the imaginary ones
and that exactly the same right of citizenship has to be given to
the latter as to the former. As soon as one has understood this,
that theory appears in a totally new light, and its results acquire
a most surprising simplicity.3 (ibid., quoted and translated in
[Goldstein and Schappacher, 2007a], 27)

Complex integers do not only provide means to develop proofs for biquadratic
residues: one can also extend the essential notions of arithmetic to them,
such as the arithmetic operations and the notions of primality, greatest com-
mon divisor, least common multiple, congruences, etc. One can prove as well
that important theorems of rational arithmetic, such as Fermat’s theorem
or the quadratic reciprocity law are still valid for “the extended arithmetic.”

5.1.2 Unique factorization in primes and ideal numbers
Kummer’s invention of ideal numbers was made in the context of researches
on reciprocity laws, but it was a (failed) attempt to solve Fermat’s conjecture
that brought it to light, in 1847. Fermat’s famous conjecture was made in
the margin of Diophantus’s Arithmetica in 1637, and stated that

it is impossible for a cube to be written as a sum of two cubes
or a fourth power to be written as a sum of two fourth powers
or, in general, for any number which is a power greater than the
second to be written as a sum of two like powers. I have a truly
marvelous demonstration of this proposition which this margin
is too narrow to contain. (Quoted and translated in [Edwards,
2000], 2)

That is, for any integer n greater than 2, there doesn’t exist any three
positive integers x, y, z such that

xn + yn = zn.

3“So leicht sich aber alle der gleichen specielleTheoreme durch die Induction entdecken
lassen, so schwer scheint es, auf diesem Wege ein allgemeines Gesetz für diese Formen
aufzufinden, wenn auch manches Gemeinschaftliche bald in die Augen fällt, und noch
viel schwerer ist es, für diese Lehrsätze die Beweise zu finden. . . .Man erkennt dem-
nach bald, dass man in dieses reiche Gebiet der höhern Arithmetik nur auf ganz neuen
Wegen eindringen kann, . . . dass für die wahre Begründung der Theorie der biquadratis-
chen Reste das Feld der höhern Arithmetik, welches man sonst nur auf die reellen ganzen
Zahlen ausdehnte, auch über die imaginären erstreckt werden, und diesen das völlig gle-
iche Bürgerrecht mit jenen eingeräumt werden muss. Sobald man diess einmal eingesehen
hat, erscheint jene Theorie in einem ganz neuen Lichte, und ihre Resultate gewinnen eine
höchst überraschende Einfachheit.”
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Since then, the problem held numerous mathematicians’s attention. As is
well-known, the attempts to prove Fermat’s conjecture stimulated, or even
impulsed, the development of large sections of number theory.

The part of the story which particularly interests us starts in 1847. More
than 200 years after Fermat’s conjecture, only a few special cases were proved
(up to n = 7), using factorizations such as

x3 + y3 = (x+ y)(x2 − xy + y2).

On March 1st 1847, Gabriel Lamé presented a ‘proof’ of Fermat’s conjecture
to the Académie des Sciences, in Paris, in which he proposes to decompose
“xn + yn completely into linear factors” (ibid., 76) so as to bypass the dif-
ficulty which he believed to result from the increasing degree of the factors
in a factorization such as the one mentioned above. For this, he introduces
roots of the unit, i.e., a complex number r such that rn = 1 and he uses the
algebraic identity

xn + yn = (x+ y)(x+ ry)(x+ r2y) . . . (x+ rn−1y)

with n odd. Edwards explains that

[Lamé] planned to show that if x and y are such that the factors
x+ y, x+ ry, . . . , x+ rn−1y, . . . are relatively prime, then xn +
yn = zn implies that each of the factors x + y, x + ry, . . . must
itself be an nth power and to derive from this an impossible
infinite descent. If x + y, x + ry, . . . are not relatively prime,
he planned to show that there is a factor m common to all of
them so that (x+ y)/m, (x+ ry)/m, . . . , (x+ rn−1y)/m, . . . are
relatively prime and to apply a similar argument. (ibid., 77)

However, as it was underlined immediately by Liouville, this attempt re-
quired the unique decomposition in prime factors to be valid for complex
numbers and it was “by no means obvious that the needed techniques [could]
be applied to the complex numbers that Lamé needed them for” (ibid., 77).
Lamé’s attempt was then a failed one, and a few weeks later, Kummer wrote
to Liouville to confirm that the unique factorization does not always hold
for complex numbers:

As regards the elementary proposition, for these complex num-
bers, that a complex composed number can be decomposed into
prime factors in but only one way, (. . . ) I can assure you that
it does not hold in general, as long as we deal with complex
numbers that are in the form :

a0 + a1r + a2r
2 + . . . + an−1r

n−1
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However, it can be saved by introducing a new kind of complex
numbers that I have called an ideal complex number.4 ([Kum-
mer, 1847], 298)

Kummer included, in his letter, a copy of a memoir published in 1844 ([Kum-
mer, 1844]), in which he proved the failure of the unique factorization pre-
cisely in cases which Lamé was considering. Liouville published Kummer’s
letter and a copy of his memoir, in his Journal de Mathématiques Pures et
Appliquées, allowing a wider distribution of his results.

5.1.2.1 Kummer’s ideal numbers

To preserve the unique factorization in primes, a fundamental property of
numbers, Kummer introduces “ideal factors” which allow him to give a
unique decomposition in primes for cyclotomic integers. Kummer’s ideal
factors appear as a generalization of the notion of divisor.5

It is important to underline that Kummer’s work is underlaid by philo-
sophical and mathematical conceptions very different from Gauss’s (or Dede-
kind’s). Indeed, Kummer, rather than presenting his approach as an exten-
sion, uses the metaphor of the tree:

The theory of complex numbers is fundamentally the same as
the theory of these forms [i.e. of the homogeneous forms, which
are decomposable in linear factors], and in this respect, it is
part of one of the most beautiful branches of higher arithmetic.6
([Kummer, 1851], 363, quoted and translated in [Boniface, Forth-
coming])

The fact that complex numbers are not presented as an extension of rational
integers implies their relative independence from them. Hence, Kummer’s
attempts to prove the validity of divisibility laws for complex integers is not
sustained by a sort of principle of permanence, which demands that the laws
from the restricted domain are still valid in the extended domain. Rather,
it is linked to Kummer’s deep convictions about the essential properties of

4“Quant à la proposition élémentaire pour ces nombres complexes, qu’un nombre com-
plexe composé ne peut être décomposé en facteurs premiers que d’une seule manière, [. . . ]
je puis vous assurer qu’elle n’a pas lieu généralement tant qu’il s’agit des nombres com-
plexes de la forme

a0 + a1r + a2r
2 + . . . + an−1r

n−1

mais qu’on peut la sauver en introduisant un nouveau genre de nombres complexes que j’ai
appelé nombre complexe idéal.” Kummer à M. Liouville.

5My presentation, here, will omit many details and subtleties of Kummer’s theory. One
can refer to [Edwards, 1980], [Edwards, 2000], [Boniface, 2004] and [Boniface, Forthcoming]
for more details. I will rely on their works in this paragraph.

6“La théorie des nombres complexes revient, au fond, à la théorie des formes, et, à cet
égard, elle fait partie d’une des plus belles branches de l’Arithmétique supérieure”

275



Chapter 5 - Theory of algebraic integers in 1871

numbers, and justified by the use of analogies.7 Kummer considered arith-
metic to be restricted to rational integers, which he called “real integers”,
and which were for him the only true, existing numbers. Investigations
about complex integers were, as stated in the quote above, another branch
of higher arithmetic.

For Kummer, a complex integer was “an integral function [i.e., a poly-
nomial function] with integral coefficients of irrational roots of one or many
algebraic equations, whose coefficients are also integral numbers” – those
numbers were thus more general than Gauss’s. Kummer works essentially
with roots of the unit, i.e., complex numbers α which satisfy the equation
αλ = 1. Using the well-known results about the cyclotomic equations, one
can see that a complex number f(α) can be written as

f(α) = a0 + a1α+ a2α
2 + . . .+ aλ−2α

λ−2

where the ai are integers. The complex numbers f(α), f(α2), . . . , f(αλ−1),
obtained by taking successively all the roots of the cyclotomic equations
are called “conjugate complex numbers” (nombres complexes conjugués).
The important remark, here, is that “the product of all complex numbers
obtained by replacing the roots in them by conjugated roots (. . . ) is a
rational integer” ([Boniface, Forthcoming]). The idea is to use the norm of
complex numbers, as proposed by Dirichlet: for a complex number denoted
by f(α), the norm is

N(f(α)) = f(α)f(α2)f(α3) . . . f(αλ−1).

The interesting property of norms is that they are rational integers – or,
as Kummer writes “delivered from all irrationality.” Consequently, Kum-
mer considers complex numbers as factors of rational integers, making the
decomposition into prime factors essential. Kummer then shows that for
λ = 5, 7, 11, 13, 17, 19, any prime number mλ + 1 < 1000 is the norm of a
complex number of the form f(α) and can thus be decomposed into λ − 1
factors. However, for λ = 23, this property fails for five of the thirteen
prime numbers mλ + 1 < 1000. Using Gauss’s results on cyclotomic equa-
tions, Kummer shows that the norm of a root of the cyclotomic equation
α23 = 1 is of the form

a2 + 23b2

4
where a and b are natural integers. But, for example, there exist no such a
and b for the prime number 47 = 2.23 + 1. From the impossibility to give

7Dedekind, while following closely Gauss’s ideas, does mention several times the “anal-
ogy” with rational number theory, displaying signs of the joined influences of Gauss and
Kummer. However, his use of analogy appears to be different from Kummer’s, and closer
to a kind of principle of permanence.
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a decomposition into λ − 1 linear complex factors for such prime numbers,
Kummer deduces the failure of the unique decomposition in primes.8

Kummer’s aim is then to develop the theory of complex numbers anal-
ogously to the theory of rational integers.9 The link between complex and
rational numbers stated above, and the fact that only rational integers were
considered as true numbers by Kummer, led him to consider that preserving
the analogy was more important than the complex numbers themselves.

It is largely to be deplored that this property of real numbers
[i.e., the rational integers] of being decomposable into prime fac-
tors, always in the same way for a given number, does not be-
long to complex numbers. If it were the case, all of the theory,
which can only be elaborated with great difficulty, could easily
be brought to its conclusion. For this reason, the complex num-
bers we consider seem imperfect, and this may generate doubt
whether one should prefer to these numbers other complex num-
bers that could be found, and should not these other numbers be
looked for, which would preserve the analogy with real integer
numbers for this fundamental property. ([Kummer, 1847], 182,
quoted and translated in [Boniface, Forthcoming])

This is related to the fact that, for Kummer, numbers as objects have per-
manent and accidental properties. Properties of the complex numbers which
were different from those of rational integers were considered as “acciden-
tal”. These properties are seen as hiding the permanent properties and
should be eliminated. Arithmetical properties are, on the other hand, per-
manent properties of numbers. On this point, again, Kummer’s position is
essentially different from Gauss’s. Indeed, for Gauss, it was relationships
between objects, rather than objects themselves, which were important.

In order to “save” the unique prime factorization for the prime numbers
mλ + 1 into λ − 1 irreducible complex linear factors, Kummer proposes to
feign the existence of such factors by introducing “ideal factors”

If p is a prime number of the form mλ+ 1, then it can, in many
cases, be represented as a product of λ− 1 complex factors p =
f(α)f(α2) . . . f(αλ−1). Where, however, a decomposition into
existing complex factors is not possible, one has to introduce
ideal prime factors in order to obtain it.10 (ibid., 320, quoted
and translated in [Boniface, Forthcoming])

8For more details, see [Boniface, Forthcoming] and [Edwards, 2000].
9Kummer drew analogies not only with arithmetic, but also with algebra, geometry

and chemistry, as a way to justify the introduction of ideal factors. See [Hancok, 1928]
and [Boniface, Forthcoming].

10“Ist p eine Primzahl von der Form mλ + 1, so lässt sie sich in vielen Fällen als
Product von folgenden λ − 1 complexen Factoren darstellen: p = f(α)f(α2) . . . f(αλ−1);
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For example, in certain domains of complex numbers (e.g., of the form x+
i
√

5y, with x and y real numbers and i2 = −1), it can be relatively easily
noticed that the unique factorization in primes fails. Kummer defines a
number p as being prime if when p divides a product ab, then p divides a or
p divides b. The equivalence between irreducibility (p can only be divided by
1 and itself) and primality ceases to be valid for cyclotomic integers, which
is a very important component of the failure of unique factorization. To
bypass this difficulty, Kummer introduces factors which are only defined by
conditions of divisibility but do not actually exist. By doing so, Kummer
introduces a more general notion of prime factor and proposes a solution
to the failure of unique factorization.11 However, Kummer’s theory of ideal
numbers is not general in the sense that it doesn’t work for any domain of
complex integers. In particular, his approach can not be generalized as such
to all algebraic numbers.

The ideal factors are determined using congruences and divisibility tests.
For Edwards, “Kummer described an ideal prime factor by defining precisely
what it means to say that a number is divisible by it” ([Edwards, 1980], 325).
For the example of 47, if p is the ideal factor of 47, and ψ(α) designates the
product of all the conjugate complex linear factors which are not divisible by
p, then ψ(α) is divisible by all the prime factors of 47 except p. Consequently,
a product of f(α)ψ(α) will be divisible by 47 if and only if p is contained in
f(α) or, in another words:

A cyclotomic integer f(α) is said to be divisible by p if f(α)ψ(α).
([Edwards, 1980], 325)

To test this condition of divisibility requires long complicated computations.
It is important, here, to underline that Kummer does not define the ideal
factors themselves, but only the divisibility of a cyclotomic integer by an
ideal factor p. This definition by a condition of divisibility is one of the
main points which Dedekind will try to avoid and to replace by another
approach.

5.1.3 An example, explained by Dedekind.

In order to understand better what is at stake, I will give a little more
details on a numerical example. This example will allow us to understand
Kummer’s approach, and Dedekind’s reformulation of it. For this, I will use
Dedekind’s own explanation of an example, which he gave as an introduction
to his ideal theory, in [Dedekind, 1876-1877]. Dedekind follows the method
proposed by Kummer, since his aim is to illustrate the passage from ideal

wo aber eine Zerlegung in wirkliche complexe Primfactoren nicht möglich ist: dann sollen
die idealen Primfactoren eintreten, um dieselbe zu leisten.”

11See the example I proposed p. 55 and the next paragraph.
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numbers to ideals ([Dedekind, 1876-1877], Chapter 2, §§7-12). I will follow
Dedekind’s text.

The example chosen by Dedekind is relatively simple. Let us consider
the domain of numbers ω = x+yθ,12 called o, where θ is a root of θ2 +5 = 0
and x, y are rational integers. The four elementary operations of arithmetic
can be defined as usual, in this domain. The norm of ω is, as defined by
Dirichlet, the product of two conjugate numbers:

N(ω) = (x+ yθ)(x− yθ) = x2 + 5y2

Dedekind considers, here, the notion of decomposability, i.e., “a number
(different from zero and ±1) is called decomposable when it is the product
of two factors, neither of which is a unit”, and it is called “indecompos-
able” otherwise. Each decomposable number can be, then, expressed as
the product of a finite number of indecomposable factors. Here, appears
the property which one does not encounter in rational numbers theory, and
which prompted the introduction of ideal factors by Kummer:

the same number is susceptible to several, essentially different,
representations of this kind.13 ([Dedekind, 1876-1877], 87)

It is easy to see, Dedekind explains that each of the following numbers is
indecomposable, by simple manipulations of their norm:

a = 2 b = 3 c = 7

b1 = −2 + θ b2 = −2− θ c1 = 2 + 3θ c2 = 2− 3θ

d1 = 1 + θ d2 = 1− θ e1 = 3 + θ e2 = 3− θ

f1 = −1 + 2θ f2 = −1− 2θ g1 = 4 + θ g2 = 4− θ

However, when taking products of these numbers, one can see that the same
number can be expressed in two or three different products of indecompos-
able numbers:

a.b = d1.d2 ; b.b = b1.b2 ; ab1 = d1.d1 ; a.c = e1.e2

c.c = c1.c2 ; a.c1 = e1.e1 ; b.c = f1.f2 = g1.g2 ; a.f1 ; a.g1 = d1.e2

Such an indecomposable number therefore does not possess the
property which, in the theory of rational numbers, is character-
istic of a prime number.14 (ibid., 88)

12In this paragraph “number”, unless stated otherwise, always designates a complex
number.

13“un seul et même nombre est susceptible de plusieurs représentations de cette sorte,
essentiellement différentes entre elles.”

14“[U]n tel nombre indécomposable ne possède donc pas la propriété qui, dans la théorie
des nombres rationnels, est tout à fait caractéristique pour un nombre premier.”
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Dedekind explains the idea of introducing ideal factors as “imagining” that
the numbers a, b, c, a1, etc. are rational integers, and deducing a decomposi-
tion into primes from the relationships of their product. Feigning such a de-
composition allows simple manipulations of the divisibility relationships and
to express the numbers a, b, c, a1, etc. as products of five numbers α, β1, β2;
γ1, γ2 :

a = α2 b = β1β2 c = γ1γ2

b = β2
1 b2 = β2

2 c2 = γ2
1 c2 = γ2

2

d1 = αβ1 d2 = αβ2 e1 = αγ1 e2 = αγ2

f1 = β1γ1 f2 = β2γ2 g1 = β1γ2 g2 = β2γ1

We have, here, a decomposition into prime factors, in which the numbers
“behave, in all questions of divisibility in the domain [considered], exactly
as if they were composed, (. . . ) of five different prime numbers.” The ideal
factors, then, do have the character of prime numbers, that is, they divide
a product only if they divide at least one of the factors.

How does one find these factors? For example, consider the following
case: Two conjugate numbers are always congruent modulo 2, so one has

ω2 ≡ N(ω) (mod.2) and ω2ω′2 ≡ N(ω)N(ω′) (mod.2)

Hence, 2 divides the product ω2ω′2 and the product of two rational numbers
N(ω)N(ω′), which implies that 2 divides at least one of the two norms, and
consequently at least one of the two ω2 and ω′2. In the mean time, if one
chooses x and y to be odd numbers, then ω = x + θy is not divisible by 2,
while its square is. Then, we “say that the number 2 behaves in our domain
as though it were the square of a prime number α.” Although α does not
exist, in the domain o, it can be introduced, as it was by Kummer, as an
“ideal factor”. It is important, now, to be able to describe α by means of
the existing numbers, in the domain, which is done by using congruences.

The same strategy can be applied to the other indecomposable num-
bers. After a close analysis of the domain o, Dedekind obtains a series of
conclusions about the “divisibility laws” of the numbers:

1 Each positive rational prime number which is≡ 11, 13, 17, 19 (mod 20)
behaves like (actual) prime numbers.

2 The number θ whose square is −5 has the character of a prime number,
and the number 2 behaves like the square of an ideal prime number α.

3 Each positive rational prime number which is ≡ 1, 9 (mod 20) can be
decomposed into two different actually existing factors, which have the
character of prime numbers.
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4 Each positive rational prime number which is ≡ 3, 7 (mod 20) behaves
like the product of two different ideal prime numbers.

5 Each actual number ω (different from zero and ±1) either is one of
the numbers mentioned above as having the character of a prime, or
behaves as a unique product of actual or ideal prime factors for all
questions of divisibility.

To obtain such results, it is necessary to develop a great amount of com-
putations, and to use quadratic residues and binary quadratic forms. For
Dedekind, those are unnecessary complications, which increase the risk of
errors and hasty conclusions. Besides, although it is possible to “reach the
proposed goal with all rigour,” Dedekind still advises for “the greatest cir-
cumspection”, since letting oneself being led by the analogy with rational
number theory might lead to “premature conclusions”. Indeed, in following
the analogy, one tends to trust that the same definitions hold and the re-
sults will be obtained, and to overlook certain definitions and proofs. Since
the 1857 paper, then, Dedekind’s ideas have evolved from considering results
arising from the analogy as evident, to the necessity of proving those results.

Here, the product of two arbitrary factors is a point of peculiar difficulty,
and “cannot be exactly defined without going into minute detail.” Again, the
risk of error is increased. Moreover, this approach demands to analyze in-
dependently each domain investigated, and in this domain to consider again
multiple particular cases. Not only does it lack a certain uniformity in the
methods of proof and definition, but there is also no guarantee that it can
work in any domain, or in more general domains – and indeed, it does not.

Dedekind proposes to bypass the difficulties mentioned above by the
following considerations. We saw that for a number ω = x + yθ to be
divisible by an ideal prime number α, it needs to satisfy the congruence
x ≡ y (mod 2). This congruence gives us x = y + 2z (with y and z rational
integers), hence the numbers divisible by α are all of the form 2z+ (1 + θ)y.
Rather than considering the ideal prime number α, one can thus consider
the system a of all the numbers of the form 2z + (1 + θ)y. These numbers
form what Dedekind calls a “finite module” denoted by m, a system of (real
or complex) numbers closed by addition and subtraction, and generated by
2 and 1 + θ. The same can be done for the other ideal prime numbers
identified earlier.

Those systems enjoy an additional property: each product of a number
in the system m by a number in the o studied is again a number in the
system. Dedekind calls these systems “ideals”, and explains how they can
be used to study the laws of divisibility of the domain o. In fact, as we will
see, ideals can be used more generally to study the laws of divisibility of any
domain of algebraic integers.
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Let me, now that the main ideas of Dedekind’s approach are clear, con-
sider his 1871 theory of algebraic integers in more details. [Edwards, 1980]
provides a thorough analysis of the texts of Kummer, Dedekind and Kro-
necker and the reformulation in modern mathematical terms which I will not
give, in the following sections. My reading has been informed by Edwards’s
works, as well as by [Boniface, 2004] and the introduction of Avigad’s trans-
lation of the Xth Supplement ([Avigad, 2004]). I will consider Dedekind’s
text in more details than these works, so as to highlight, in the next chapter,
the changes to which the theory is subjected in 1876/77.

5.2 A new framework: Fields
Kummer noticed that ideal numbers are of great use for the study of forms,
but he never published any work on the subject. The aim of Dedekind’s
Xth Supplement is to “introduce the reader to these new ideas.” He ex-
plains in the preface to the second edition of the Vorlesungen that, in the
Xth Supplement, he integrated the “general theory of ideals” to the the-
ory of binary quadratic forms in order to “shed a new light on the subject
matter of the book, from a higher viewpoint.” Dedekind restricted himself
to the basic principles but he expresses the hope that “the quest of char-
acteristic basic concepts, which meets so great successes in other parts of
mathematics, might not be completely unsuccessful with [him]”15 (Vorwort
[Lejeune-Dirichlet, 1871], repr. in [Dedekind, 1932] III, 399-400, my trans-
lation). By the search of “characteristic basic concepts”, Dedekind refers to
the concepts of field and ideal. Dedekind considers these concepts, intro-
duced in order to investigate the divisibility laws of algebraic integers, as
founding the theory of algebraic numbers, and he proposes to use them in
other areas of number theory, such as the theory of binary quadratic forms.
For him, as he illustrates in each version of the theory, fields and ideals allow
for a significant simplification of the theory and provide powerful methods
of proofs.

5.2.1 An algebraic concept for arithmetical investigations
With the introduction of ideal theory, Dedekind succeeds, as he recalls in
1876-77, in “overcoming great difficulties” so as to establish a “rigorous
and without exceptions” ideal theory ([Dedekind, 1876-1877], Introduction).
Dedekind’s work comes as a complement and a generalization of Kummer’s

15“Endlich habe ich in dieses Supplement eine allgemeine Theorie der Ideale aufgenom-
men, um auf den Hauptgegenstand des ganzen Buches von einem höheren Standpunkte aus
ein neues Licht zu werfen; hierbei habe ich mich freilich auf die Darstellung der Grundla-
gen beschränken müssen, doch hoffe ich, daß das Streben nach charakteristischen Grund-
begriffen, welches in anderen Teilen der Mathematik mit so schönen Erfolgen gekrönt ist,
mir nicht ganz mißglückt sein möge.”
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researches on ideal numbers exposed above. The approach he adopts in the
Xth Supplement comes from the

conviction (. . . ) that the study of the algebraic kinships between
numbers is the most adequately (advantageously) grounded on
a concept which is immediately tied in with the simplest prin-
ciples of arithmetic.16 (Anzeige [Lejeune-Dirichlet, 1871], in
[Dedekind, 1932] III, 399, my translation)

To do so, as I have mentioned earlier, he proposed to “introduce the reader
to a higher domain in which algebra and number theory are joined with
each other in the closest”17 (ibid., 399) – a statement he makes again in the
beginning of the paragraph on fields:

In our endeavors to introduce the reader to these new ideas,
we are setting up for ourselves a somewhat higher standpoint
and, from there, begin to introduce a new concept that seems
to be well-suited to serve as a foundation for higher algebra and
the related parts of number theory. ([Dedekind, 1871], transl.
slightly altered, 12)

“Algebra” and “algebraic kinships” are, for Dedekind, related to equations.
The algebraic relationships between numbers, studied already in the lec-
tures on Galois theory, are the relationships between numbers established
by polynomial equations. Here, Dedekind is working with “algebraic num-
bers”, that is, numbers which are defined as roots of a polynomial equation:
a number θ is an algebraic number if it satisfies an equation

θn + a1θ
n−1 + . . .+ an−1θ + an = 0 (1)

of finite degree n and whose coefficients a1, a2, . . . , an are rational numbers.
It will be called an algebraic integer if it satisfies such an equation (1), in
which the coefficients a1, a2, . . . , an are integers.

For Dedekind, algebra is the theory of equations – a position which
is not “modern” and which Dedekind still holds in 1894.18 In the notice
for p. Bachmann’s Die Lehre von der Kreisteilung und ihre Beziehungen zur
Zahlentheorie, ([Dedekind, 1873]), Dedekind explains the links between fields
and equations, making their intimate relationship clear: a field can express

16“[D]rängte sich mir die Überzeugung auf, dass das Studium der algebraischen Ver-
wandtschaft der Zahlen am zweckmässigsten auf einen Begriff gegründet wird, welcher
unmittelbar an die einfachsten arithmetischen Prinzipien anknüpft.”

17“In den nun noch folgenden Paragraphen habe ich versucht, den Leser in ein höheres
Gebiet einzuführen, in welchem Algebra und Zahlentheorie sich auf das Innigste miteinan-
der verbinden.”

18Even though Dedekind’s theory of algebraic numbers becomes more “abstract” and
“modern” through the rewritings, the ‘equation’ still holds a central and essential place
in his approach.
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the properties of an equation and relations between equations correspond to
relations between fields.

As a matter of fact, from the seeds planted by Gauss, a science
is born which one might designate as the science of the alge-
braic kinships of numbers or, if one wishes to use an expression
I chose, as the science of the kinships between fields. Indeed, it
is clear that the particular properties of an equation, the possi-
bility that its solution arises from other equations, can first only
be clearly known if one considers, beside its roots, also an in-
finity of other numbers, which are rationally derivable from one
or several of them and whose collection (Inbegriff ) forms pre-
cisely what I called a field, that is, a system of numbers which
reproduce themselves by the four simplest rational operations of
arithmetic. The properties of an equation will, by this concep-
tion, correspond to properties of the corresponding field. The
relations between two equations are replaced by kinship between
the fields.19 ([Dedekind, 1873], 409, my translation.)

The idea that algebraic relationships between numbers are best studied
using fields, or on the basis of fields arose while he was working on Galois
theory (as integrated in number theory), for his lectures in Göttingen. He
explains that it was then that the “conviction that the algebraic kinships of
numbers are the most appropriately grounded in a concept which is imme-
diately tied with the simplest principles of arithmetic”, that is the concept
of field20 (Anzeige [Lejeune-Dirichlet, 1871], in [Dedekind, 1932] III, 400).

As I already alluded to, and as it will become clear, the field, a domain
of numbers closed by the four operations of rational arithmetic, works as a

19“In der Tat ist aus dem von Gauss gelegten Keime eine Wissenschaft entstanden,
welche man, (. . . ) vielleicht als die Wissenschaft von der algebraischen Verwandtschaft
der Zahlen oder, wenn man sich eines von mir gewählten Ausdruckes bedienen will, als die
Wissenschaft von der Verwandtschaft der Körper bezeichnen könnte. Es zeigt sich näm-
lich, da die eigentümliche Beschaffenheit einer Gleichung, die Möglichkeit, ihre Auflösung
auf die von anderen Gleichungen zurückzuführen, erst dann deutlich erkannt werden kann,
wenn man außer ihren Wurzeln noch unendlich viele andere Zahlen betrachtet, welche aus
einer oder mehreren von ihnen rational ableitbar sind und deren Inbegriff eben das bildet,
was ich einen Körper nenne, nämlich ein System von Zahlen, die sich durch die vier
einfachsten, rationalen arithmetischen Operationen immer wieder reproduzieren. Eigen-
schaften einer Gleichung werden bei dieser Auffassung zu Eigenschaften des entsprechen-
den Körpers, Beziehungen zwischen Gleichungen stellen sich dar als Verwandtschaft zwis-
chen den Körpern.”

20“Im Laufe der Vorlesungen über Kreisteilung und höhere Algebra, welche ich zu Göt-
tingen im Winter 1856-1857 vor den Herrn Sommer und Bachmann, im Winter 1857-
1858 vor den Herrn Selling und Auwers gehalten habe, drängte sich mir die Überzeugung
auf, daß das Studium der algebraischen Verwandtschaft der Zahlen am zweckmäßigsten
auf einen Begriff gegründet wird, welcher unmittelbar an die einfachsten arithmetischen
Prinzipien anknüpft. Den damals von mir benutzten Namen ‘rationales Gebiet’ habe ich
später mit dem Worte ‘Körper’. . . ”
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framework for the study of number theory. Fields are essential insofar as
they encompass the arithmetical relationships of numbers (by the definition
of field itself), but also the algebraic relations of numbers. The “simplest
principles of arithmetic”, then, especially if the fundamental concept is in-
deed that of field (which Dedekind repeats several times until 1894), seem
to be the relationships established by the four operations of rational arith-
metic, addition, multiplication, subtraction and division. A closer look at
the theory of algebraic numbers will reveal that divisibility plays an impor-
tant role.21

5.2.2 The concept of field in 1871

The “higher standpoint” which Dedekind proposes to adopt so as to develop
Kummer’s ideas implies to introduce several new concepts, the first of which
is the field (Körper):

By a field, we mean an infinite system of real or complex num-
bers, which is closed and complete in itself, so that the addition,
subtraction, multiplication, and division of any two of these num-
bers always yields yet another number of the same system.22

(ibid., 12)

It was Dedekind’s intention, when choosing the term “Körper”, to de-
scribe the wholeness of a domain of numbers closed by the four rational op-
erations, as he retrospectively explains in a footnote of the 1894 re-edition
of Dirichlet’s Vorlesungen:

This name should, just as in the natural sciences, in geome-
try and in the life of human society, designate here too a sys-
tem which possesses a certain completeness, perfection, closure,
whereby it appears as an organic whole, als a natural unity.23

([Dedekind, 1894a], in [Dedekind, 1932] III, 20)
21As it was explained in the Habilitationsvortrag, and will be mentioned again in later

foundational works, the operations and their laws are, for Dedekind, guiding the develop-
ment of arithmetic up to complex integers. Complex (and algebraic) integers have been
defined in such a way that the laws established for addition, subtraction, and multiplica-
tion are (generally) valid. But it appears clearly with Kummer’s works that the divisibility
laws don’t generalize as easily, which leads to an emphasis on divisibility.

22“Unter einem Körper wollen wir jedes System von unendlich vielen reellen oder kom-
plexen Zahlen verstehen, welches in sich so abgeschlossen und vollständig ist, dass die Ad-
dition, Subtraction, Multiplication und Division von je zwei dieser Zahlen immer wieder
eine Zahl desselben Systems hervorbringt.”

23“Dieser Name soll, ähnlich wie in den Naturwissenschaften, in der Geometrie und im
Leben der menschlichen Gesellschaft, auch hier ein System bezeichnen, das eine gewisse
Vollständigkeit, Vollkommenheit, Abgeschlossenheit besitzt, wodurch es als ein organisches
Ganzes, als eine natürliche Einheit erscheint.”
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Despite its non-mathematical aspect, this is an important part of Dedekind’s
concept of field and it seems to be underlying the difference of treatment
between fields and ideals, modules or groups – the “conceptual difference”
noticed by Corry. Note that the definition of a field explicitly mentions
that the elements are numbers. While the definition as a domain closed by
the operations can (and will) allow the indifference towards the elements,
Dedekind doesn’t seem interested in developing a theory of “abstract fields”
– a point probably linked to the role of framework assumed by fields, also
noticeable in the difference underlined between the “simplest field”, that of
rational numbers, and the “largest field”, that of “all numbers.” ([Dedekind,
1871], 12)

One can define an inclusion relation between two or more fields, which is
done by using the reformulation of inclusion in terms of divisibility already
used for groups:

We call a field A a divisor of field M , and the latter a multiple
of the former, when all the numbers in A are also found in M .
One easily sees that the field of rational numbers is a divisor of
every other field.24 (ibid., 12)

The “collection of numbers which are in two fields,” i.e., the intersection
of two fields A and B is called their “greatest common divisor” D, since it
satisfies the property that any divisor of A and B is necessarily a divisor
of D (any field which is a subfield of A and a subfield of B is a subfield
of D). In the same way, “there is always a field M which should be called
the least common multiple of A and B, since it is a divisor of every other
common multiple of both fields.”25 These arithmetical properties appear as
integral parts of the definition. They are neither proved, nor justified26 –
for example, the fact that the “greatest common divisor” is indeed a field
isn’t proved. Dedekind doesn’t prove either the existence of the GCD or
the LCM, and does not explain how to exhibit them. In addition, these
arithmetical relationships will not be used in the theory, contrary to the
ones which will be defined for modules or ideals. Divisibility properties for
fields are immediately followed by the definition of a conjugate field:

If furthermore there corresponds to each number a in the field A
a number b = ϕ(a), in such a way that ϕ(a+ a′) = ϕ(a) + ϕ(a′)

24“Wir nennen einen Körper A einen Divisor des KörpersM , diesen ein Multiplum von
jenem, wenn alle in A enthaltenen Zahlen sich auch in M vorfinden; man findet leicht,
dass der Körper der rationalen Zahlen ein Divisor von jedem andern Körper ist.”

25“Der Inbegriff aller Zahlen, welche gleichzeitig in zwei Körpern A, B enthalten sind,
bildet wieder einen Körper D, welcher der größte gemeinschaftliche Divisor der beiden
Körper A, B genannt werden kann (. . . ); ebenso existiert immer ein Körper M , welcher
das kleinste gemeinschaftliche Multiplum von A und B heißen soll.”

26Note, also, that the inclusion is inverted, here. While for groups, modules, and ideals,
to divide is to contain, for fields, the divisor is contained is the multiple.
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and ϕ(aa′) = ϕ(a)ϕ(a′), then the numbers b (assuming they do
not all vanish) form a field B, which is conjugate to A, and
arises from A from the substitution ϕ; and conversely B = ϕ(A)
is conjugate to B.27 (ibid., 13)

The fields in which Dedekind will work are finitely generated fields, which
he calls finite fields. Finite fields can be defined in different ways: as corre-
sponding to an equation, as having a finite basis, as having a finite number
of divisors. This last definition is the one that Dedekind considers as the
“best” definition, i.e., the definition based on fundamental properties of the
field concept. However, this definition is not the most effective one and
appears to be difficult to use. To develop the theory in an efficient way –
and notably by relying on already known things, Dedekind made a conces-
sion to his own principles, as he explains to Lipschitz, when discussing the
publication of the second version of the theory:

The simplest theories are always rapidly disfigured by the un-
necessary immixtion of forms of representation, which should
actually by the result, nor the instrument (means) of the theory.
In the same way, I disfigure, in the introduction, the concept of
a finite field Ω, by giving it a presentation (Darstellungform),
in which all the numbers of the field are included, and which
could as well be replaced by an infinite number of other [equiv-
alent] presentations28 (. . . ) In principle, the definition given in
the §159 of the theory of numbers is by far preferable: “a finite
field is such that it only has a finite number of divisors”, or again
the following equivalent definition: “a finite field is a field such
that it only contains a finite numbers of mutually independent
numbers.” But I have mad this concession, in order to borrow as
little as possible from the general theory of fields, and in order
to make the link with generally known things.29 ([Lipschitz and

27“Entspricht ferner einer jeden Zahl a des Körpers A eine Zahl b = ϕ(a) in der Weise ,
dass ϕ(a+a′) = ϕ(a) +ϕ(a′), und ϕ(aa′) = ϕ(a)ϕ(a′) ist, so bilden die Zahlen b (falls sie
nicht sämmtlich verschwinden) ebenfalls einen Körper B = ϕ(A), welcher mit A conjugirt
ist und durch die Substitution ϕ aus A hervorgeht; dann ist rückwärts auch A = ψ(B)
mit B conjugirt.”

28This is a reference to the choice of a variable to describe the elements of the finite
field.

29“[F]ast immer wird die einfache Theorie verunziert durch unnöthige Einmischung
der Darstellungsformen, welche doch eigentlich nur Resultat, nicht Hülfsmittel der Theo-
rie sein sollten. In ähnlicher Weise verunziere ich in der Einleitung den Begriff eines
endlichen Körpers Ω dadurch, dass ich eine Darstellungsform angebe, in welcher alle
Zahlen des Körpers enthalten sind und welche ebenso gut durch unendlich viele Darstel-
lungsformen ersetzt werden könnte (. . . ). Principiell ist daher die in der Zahlentheorie
§159 (1871) gegebene Definition bei Weitem vorzuziehen ‘ein endlicher Körper ist ein
solcher, der nur eine endliche Anzahl von Divisoren besitzt’ oder auch die hiermit aber-
mals äquivalente Definition: ‘ein endlicher Körper ist ein solcher Körper, welcher nur eine
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al. 1986], 60, my translation)

Finite fields are, in other words, fields with a finite basis30:

[I]n a field Ω of the indicated type [i.e., finite], it is possible
to choose a finite number (Anzahl) n of independent numbers
ω1, ω2, . . . , ωn so that every number ω of the field can be repre-
sented in the form

ω = h1ω1 + h2ω2 + . . .+ hnωn =
∑

hiωi

in a unique way, where h1, h2, . . . , hn denote rational numbers.
We call the number n the degree, the system of n indepen-
dent numbers ωi a basis of the field Ω, and the n numbers hi
the coordinates of the number ω corresponding to this basis.31

([Dedekind, 1871], 13)

Dedekind proves that the numbers ω defined by their coordinates do satisfy
the properties of closure by the four operations: the addition and subtrac-
tion are obvious manipulations of sums. For multiplication and division,
Dedekind uses an analytical treatment of forms. In modern terms, the field
Ω is considered as a vector space over Q and Dedekind studies its multiplica-
tive ‘structure’ by looking at the product ωkωj of two elements of the basis
expressed in the basis ωi ([Avigad, 2004]). This is done in the framework
of quadratic forms, with crossed uses of methods from analysis and deter-
minants. The rest of the paragraph continues the analytic considerations
on forms, with an approach close to that of Jacobi’s and Dirichlet’s and
traditional for a work on quadratic forms in 1871.32

In the course of these considerations, Dedekind is able to show that any
number of the finite field Ω considered “is the root of an equation of degree
n with rational coefficients” which does not depend on the basis chosen.33

He has thus made explicit that the numbers contained in Ω are algebraic
numbers. The notion of algebraicity as being the root of a polynomial equa-
tion was sufficiently well-known for Dedekind to not feel the need to give

endliche Anzahl von einander unabhängiger Zahlen enthält’. Aber ich habe diese Conces-
sion gemacht, um aus der allgemeinen Theorie der Körper möglichst wenig zu entlehnen
und um an allgemein bekannte Dinge anzuknüpfen.”

30In other words, again, the degree of the equation which generates the field is finite.
31“aus einem Körper Ω von der angegebenen Art nur eine endliche Anzahl n von unab-

hängigen Zahlen ωi sich auswählen lässt, dass also jede Zahl ω des Körpers stets und nur
auf eine einzige Art durch die Form ω = h1ω1 + h2ω2 + . . .+ hnωn =

∑
hiωi darstellbar

ist , wo h1, h2, . . . , hn rationale Zählen bedeuten. Wir wollen die Zahl n den Grad, ferner
den Complex der n unabhängigen Zahlen ωi eine Basis des Körpers Ω, und die n Zahlen
hi die dieser Basis entsprechenden Coordinaten der Zahl ω nennen.”

32Jeremy Avigad’s introduction to his translation of §§159-163, [Avigad, 2004] provides
some really clear explanations of this passage.

33This allows for the definition to keep its desired generality, even though it is based on
the choice of a basis.
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explanations when he talked about “algebraic numbers”.34 The essential
notion, for the theory, is that of integer defined in the next paragraph.

5.3 Algebraic integers, a new and more general notion of
integer

5.3.1 Algebraic integers in 1871
To be able to find the right generalization of the notion of integer, i.e., the
notion of integer for algebraic numbers, is a crucial step: the generalization
of Kummer’s theory of ideal numbers has, at its core, the study of divisibility
properties and requires thus to identify the appropriate notion of integer,
but also of divisibility and of primality. Dedekind and Kronecker solved
the question of integers in the same way, but, as underlined by Edwards
([Edwards, 1980], 332), there is no trace of their respective elaboration of
the idea. Neither Dedekind nor Kronecker explained how they were able to
identify this particular definition as the right one.35

Algebraic integers are defined in the §160 (Ganze algebraische Zahlen)
as elements of a field Ω of algebraic numbers.36

We now want, to approach closer our actual subject, to call a
number α an algebraic integer when it is the root of an equa-
tion whose coefficients are rational integers.37 ([Dedekind, 1871],
transl. modified, 25)

Algebraic integers are a more general notion of integral numbers, since
any rational integer is also an algebraic integer.38 In the 1877 version,
Dedekind explicitly states that they are the “most general concept of inte-
ger”. Since the notion, here, is an extended concept of number, the study of
its properties must involve redefinition of arithmetical operations and proofs
of the validity of their laws. Addition, subtraction and multiplication involve

34Dedekind makes a direct reference to Liouville’s works on transcendental numbers, in
the next paragraph. Algebraic numbers as numbers solution of a polynomial equation are
already a familiar notion.

35Dedekind mentioned, in the 1894 version of his theory, that he doesn’t “know whether
this appellation was already used before [his 1871 Xth Supplement] in this sense.” And in
fact, while writers such as Dirichlet, Eisenstein or Hermite do work with monic polynomials
with integer coefficients and take advantage of the closure by multiplication, they do not
consider the question of identifying the criterion for defining the appropriate concept of
integer for algebraic numbers (see [Edwards, 1980]).

36Algebraic numbers, writes Dedekind “also clearly constitute a field.” The proof is left
to the reader.

37“Wir wollen nun, indem wir unserem eigentlichen Gegenstande näher treten, eine
Zahl a eine ganze algebraische Zahl nennen, wenn sie die Wurzel einer Gleichung ist,
deren Coefficienten rationale ganze Zahlen sind.”

38Dedekind chooses to call algebraic integers only “integers”. I will let this in quotations,
but won’t follow him in the commentary, for clarity reasons.
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simple manipulations of polynomials, and the kind of computations devel-
oped in the preceding paragraph. For divisibility, the definition is relatively
orthodox, but it will be necessary to do more work on certain associated
notions such as primality.

The integer α is said to be divisible by the integer β, or a multiple
of β, if the quotient α

β is also an integer.39 (ibid., 26)

There is a natural notion of congruence for algebraic integers: “α ≡ β( mod γ)
when α − γ is divisible by γ”40 (ibid., 26) for which all theorems proven in
rational integers “remain valid.”

Since it is “well-known that the concepts of divisibility and multiplicity of
the rational integers transfer directly to” polynomials, it is possible to give
an algorithm perfectly analogous to Euclid theorem for finding the GCD
of two algebraic integers, and establish the following result: α root of the
irreducible equation ϕ(α) = 0 in a field K if and only if all the coefficients
of ϕ are algebraic integers. This result allows to consider polynomials with
algebraic integers as coefficients. The well known rules of manipulations of
polynomial equations also allow to prove that any algebraic number can be
transformed into an algebraic integer by multiplication by a rational integer
h and its multiples.

5.3.2 The redefinition of primality
In rational number theory, a prime number p is defined as being a number,
different from 1, which is only divisible by 1 and by itself. Such a number
is said to be irreducible or indecomposable. However, in domains such as
those of cyclotomic integers or finitely generated fields of algebraic numbers,
prime numbers cannot be defined in this way, for

one realizes at once that no such number exists. For, if α is
an integer but not a unit, then α has infinitely many essentially
different divisors, e.g., the numbers

√
α; 3
√
α, 4
√
α and so forth,

which (. . . ) are integers.41 (ibid., 28)

The first step towards the redefinition of primality, proposed by Dedekind,
is the redefinition of relative primality. It is not possible “for the moment”
to define the relative primality of two numbers α and β by means of greatest
common divisor. However, our experience in rational number theory teaches
us that

39“Die ganze Zahl α heisst theilbar durch die ganze Zahl β, oder ein Multiplum von β,
wenn der Quotient α

β
ebenfalls eine ganze Zahl ist.”

40“Ebenso setzen wir α ≡ β( mod γ), wenn α− γ durch γ theilbar ist.”
41“erkennt man sofort, dass gar keine solche Zahl existirt; ist nämlich α eine ganze Zahl,

aber keine Einheit, so besitzt sie immer unendlich viele wesentlich verschiedene Divisoren,
z. B. die Zahlen

√
α; 3√α, 4√α., welche (. . . ) ganze Zahlen sind.”
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several theorems followed from this definition, each of which,
conversely, completely characterized the behavior of relatively
prime numbers, without assuming knowledge of their divisors.42

(ibid., 28)

The theorem chosen, which is at the basis of Kummer’s characterization of
primality as well, is the following: if any number divisible by both a and b is
divisible by ab, then a and b are relatively prime.

These considerations lead us to put forward the following more
general definition for the domain of algebraic integers:

Two nonzero integers α, β are said to be relatively prime if every
number that is divisible by α and β is also divisible by αβ.43

(ibid., 28, original emphasis)

To use this property as definition allows for a more general characterization,
because it is valid for algebraic integers as well as for rational integers, that
is, two rational integers “relatively prime (. . . ) in the old sense of the phrase
(. . . ) remain relatively prime in the new sense” (ibid.). To establish the new
definition of relative primality, one has identified where the old definition
failed – the assumption of the knowledge of the divisors – and identified
an equivalent (in the formal sense) property whose validity remains in the
extended domain of numbers. Since this property “characterizes completely
the behavior” of two relatively prime numbers, it can be considered as a
definitional property. What should decide of its appropriateness as a defi-
nition is its fruitfulness and the scope of its validity. It is easy to see that
while the two properties were equivalent in the restricted domain of rational
integers, the property giving the old definition is a consequence of the new
one, for algebraic integers. It highlights the fact that the new definition is a
necessary condition for relative primality. As Tappenden underlined, with
this new definition, “[t]he most significant facts about prime numbers turn
out to depend on [the property taken as the new definition]” ([Tappenden,
2008a], 268). Not only is this property more generally valid, which implies
that all the theorems deducible from the old definition are also provable from
the new definition, but a considerable amount of additional (more general)
theorems follow from the new definition as well. For these reasons, the new
definition appears to be the ‘right’ definition.

42“aber aus dieser Definition ergaben sich mehrere Sätze, deren jeder umgekehrt das
Verhalten zweier relativen Primzahlen vollständig charakterisirt, ohne die Kenntniss ihrer
sämmtlichen Divisoren vorauszusetzen.”

43“Diese Betrachtung veranlasst uns, folgende für das Gebiet aller ganzen algebraischen
Zahlen gültige Erklärung aufzustellen.
Zwei von Null verschiedene ganze Zahlen α, β heißen relative Primzahlen wenn jede durch
α und β theilbare Zahl auch durch αβ theilbar ist.”
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With this redefinition of relative primality, the usual criteria for deter-
mining whether two integers are relatively prime can not be applied any-
more, so Dedekind proposes a “test for relative primality” in a certain field
K. Primality tests hold an important role in the rest of Dedekind’s the-
ory. This shows that in 1871 Dedekind’s approach was still relatively close
to Kummer’s. To test whether two algebraic integers are relatively primes,
Dedekind proposes the following. In a field K, consider two algebraic num-
bers α−1 and β−1.44 It was proven earlier that it is always possible to change
any algebraic number into an algebraic integer by multiplication by a ratio-
nal number. Let a and b be the two smallest rational numbers such that
aα−1 and bβ−1 are algebraic integers.

If it turns out that a and b are relatively prime, then we know
that α and β are relatively prime numbers.45 ([Dedekind, 1871],
29)

However, the criterion is not fully satisfactory, for it is not a necessary
and sufficient condition: it is possible for α and β to be relatively prime
algebraic numbers, without “the smallest rational multiples a, b” to be rela-
tively primes themselves. For example, α = 2+ i and β = 2− i are relatively
primes, but the rational multiples46 are a = b = 5, and hence are not rela-
tively primes. To correct the insufficiency of this test, one has to consider
the following theorem:

If two integers α, β satisfy the test for relative primality with
respect to a field K to which they themselves belong, i.e., if each
number in K that is divisible by both α and β is also divisible
by αβ, then α, β are in fact relatively prime.47 (ibid., transl.
slightly altered, 29)

Dedekind’s proof of this theorem involves the irreducible equation of a num-
ber ω divisible by α and β in a field K, with manipulation of the coefficients,
in order to get to the conclusion that ω′ such that ω = αβω′ can also be
expressed as the root of an equation whose coefficients are integers of K.
Consequently,

in order to understand the behavior of two integers α, β with
respect to each other, it suffices to consider the smallest field K
to which they both belong. And it is easy to see that these fields

44i.e., such that αα−1 = ε, ββ−1 = ε, where ε is a unity of the field K.
45“zeigt sich nun, daß a und b relative Primzahlen sind, so sind auch α und β gewiss

relative Primzahlen.”
46α−1 = 1

5 (2− i), hence the smallest rational number a such that aα−1 is an integer, is
5.

47“Wenn zwei ganze Zahlen α, β sich in einem Korper K, dem sie selbst angehören, als
relative Primzahlen bewähren, d. h, wenn jede durch α und β theilbare Zahl des Körpers
K auch durch αβ theilbar ist; so sind α, β wirklich relative Primzahlen.”
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are always of the kind we considered in the preceding section
[i.e., finite fields].48 (ibid., 29)

In the following, one will restrict the considerations to the algebraic numbers
in a finite field Ω. An algebraic integer should be understood as an integer
of the field Ω. The system of all integers of Ω is denoted by o and it is easy
to show that it is closed by addition and subtraction.

A more effective criterion to test the relative primality of two algebraic
integers is given a little further in the Supplement. For this, the notion of
complete system of residues modulo a certain algebraic integer µ is necessary.
The notion of complete system of residue modulo a rational integer was given
in the §18 of the Vorlesungen: a complete system of residues modulo k is
defined by picking out k numbers a0, a1, . . . , ak−1 such that for each i, ai ≡ i
(mod k). For algebraic integers, ω and ω′ in algebraic integers in the finite
field K are called congruent with respect to a third algebraic integer µ if
and only if the quotient ω−ω′

µ is again in o.49 To determine whether two
algebraic integers θ and µ are relatively prime,

one evidently only has to run ω through a complete system of
residues (mod µ), and determine how often θω ≡ 0(mod µ). If
it turns out that this happens only when ω ≡ 0(mod µ), then
each integer θω that is divisible by θ and µ is also divisible by
θµ, whereby θ and µ are relatively prime. (. . . ) If θ is relatively
prime to µ (e.g., θ = 1), then θω runs through a complete residue
system (mod µ) simultaneously with ω.50 (ibid., transl. slightly
altered, 36)

Dedekind’s method, here, is very close to the one used in Kummer’s divisi-
bility tests.51

48“Hieraus geht hervor, dass man, um das gegenseitige Verhalten zweier ganzen Zahlen
α, β zu untersuchen, nur den kleinsten Körper K zu bilden braucht, welchem sie beide
angehören; und dieser Körper ist, wie man leicht erkennt, immer von der im vorigen
Paragraphen betrachteten Beschaffenheit.”

49The notion of congruence is first defined by means of modules. A module is “a system
a of real or complex numbers α, whose sums and differences themselves belong to a”
([Dedekind, 1871], 30). I will say more about modules in next paragraph. Two algebraic
numbers ω and ω′ are called “congruent with respect with respect to a” (congruent nach
a) when their difference is contained in a. In particular, the system o of all integers of a
finite field Ω is a module, which gives the definition of congruence of two integers with
respect to a third integer.

50“braucht man offenbar ω nur ein vollständiges Restsystem (mod. µ) durchlaufen zu
lassen und nachzusehen, wie oft θω ≡ 0(mod µ) wird; zeigt sich, dass dies nur dann
eintritt, wenn ω ≡ 0(mod µ) ist, so ist also jede durch θ und µ theilbare ganze Zahl θω
auch theilbar durch θµ, mithin sind θ, µ relative Primzahlen (. . . ). Ist θ relative Primzahl
zu µ (z. B. θ = 1), so durchläuft θω gleichzeitig mit ω ein vollständiges Restsystem (mod.
µ).”

51See also [Edwards, 1980].
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The analogy with rational numbers guides the questions and problems
considered by Dedekind.52 The natural question that appears “[i]f one pur-
sues the analogy with the theory of rational numbers further” is that of the
decomposition of numbers of o into factors themselves belonging to o. While
the possibility to decompose a certain number in infinitely many different
ways highlighted “in the infinite field of all algebraic numbers” disappears,
there is still another problem left. Indeed, it is not guaranteed that the rep-
resentation of a decomposable number (i.e., a number that can be written
as the product of at least two numbers in o) as a product of indecomposable
numbers53 is unique. This, according to Dedekind, “contradicts so many
notions governing the character of prime numbers that we therefore can no
longer recognize indecomposable numbers as prime” (ibid., 37). Indecompos-
ability cannot be considered as an essential, definitional property of prime
numbers, and the situation cannot be handled as the question of relative
primality was. The criterion for primality which “preserve[s] the charac-
ter of primes” needs to be “more robust” (kräftiger) and the “behavior as
modulus” of the numbers provides it:

An integer µ, which is not a unit, will be called a prime number
if every product ηρ that is divisible by µ, has at least one factor
η or ρ that is divisible by µ.54 (ibid., 37)

How does one find a decomposition in primes for algebraic integers? Follow-
ing Kummer’s approach, Dedekind explains how to identify “actual or ideal
i.e., fictional factors” for a certain algebraic number µ. For any non prime
algebraic number (which is not a unit), it is possible to find two algebraic
numbers η and ρ themselves not divisible by µ, but whose product is divisi-
ble by µ. Consider ν the greatest common divisor in o of η and µ = νµ′ such
that η

ν and µ
ν are relatively prime. Then, νµ′ is the decomposition of µ. The

key is then to determine µ′, which is done with a congruence condition: µ′
is such that all roots α′ of ηα′ ≡ 0 (mod µ) are divisible by µ′, and any α′
divisible by µ′ satisfies the congruence. Conversely, if there is in o a certain
number µ′ which divides all and only the roots of ηα′ ≡ 0 (mod µ), then
µ′ also divides µ and ν = µ

µ′ = gcd(η, µ). Those considerations, still very
faithful to the spirit of Kummer’s ideal numbers will disappear in the later
versions of Dedekind’s theory.

It is not always possible to find such a number µ′ in o, which is why
Kummer introduced the idea of ideal factors, explains Dedekind:

[Kummer] came upon the fortunate idea of nonetheless feigning
(fingieren) such numbers µ′ and introducing them as ideal num-

52See also [Schlimm, 2008] on analogies.
53Such a decomposition is always possible.
54“Eine ganze Zahl µ welche keine Einheit ist, soll eine Primzahl heißen, wenn jedes

durch µ theilbare Product ηρ wenigstens einen durch µ theilbaren Factor η oder ρ besitzt.”
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bers. The divisibility of a number α′ by these ideal numbers
µ′ depends entirely on whether α′ is a root of the congruence
ηα′ ≡ 0(mod µ), and consequently these ideal numbers are only
treated as divisors or as moduli.55 (ibid., transl. slightly altered,
38)

Although there is, in principle, “absolutely no problems with this manner
of introducing” ideal factors, Dedekind considers that transferring directly
“usual concepts of the actual numbers [to the fictional ones] can, initially,
easily evoke mistrust of the certainty of proofs”56 (ibid., 38). To avoid
this, Dedekind proposes a new formulation for Kummer’s idea: instead of
considering fictional numbers, he proposes to “always consider systems of
actual numbers.” Thus, rather than considering a (actual or ideal) factor µ′,
Dedekind will consider the system of all numbers (in o) which are divisible
by µ′, which he calls an ideal, in reference to Kummer’s ideal numbers.
Importantly, to each ideal corresponds an ideal factor and conversely.

5.4 The ideal numbers’s new clothes
The invention of ideals is, for Dedekind, a “means of clothing the theory
in a different grab.” In 1871, Dedekind’s theory of algebraic numbers is
developed following lines very close to Kummer’s theory, in particular with
an intensive use of effective divisibility tests, which we encountered in the
paragraph above and which hold an important place in the development
of ideal theory as well. Although Dedekind did mention, in the preface of
the Vorlesungen, that his work had been essentially guided by the research
of new grounding concepts, he does not present his approach as departing
essentially from Kummer’s.

Ideals will appear as being the central notion (and essential tool) of the
theory. They are themselves intimately linked to the (study of) algebraic
numbers, since they uncover their divisibility laws:

Kummer, through the creation (Schöpfung) of ideal numbers,
opened a new path which not only allows for a more convenient
manner of expression, but also leads to a deeper insight into
the true nature of algebraic numbers.57 (ibid., transl. slightly

55“so kam [Kummer] auf den glücklichen Gedanken, trotzdem eine solche Zahl µ zu
fingiren und dieselbe als ideale Zahl einzuführen; die Theilbarkeit einer Zahl α′ durch diese
ideale Zahl µ′ besteht lediglich darin, dass α′ eine Wurzel der Congruenz ηα′ ≡ 0(mod µ)
ist, und da diese idealen Zahlen in der Folge immer nur als Theiler oder Moduln auftreten.”

56In the subsequent version of ideal theory, Dedekind will be more critical towards
Kummer’s approach, mentioning the difficulties encountered when trying to generalize it
and the possibility of errors in the proofs.

57“Kummer, durch die Schöpfung der idealen Zahlen, einen neuen Weg betreten [hat],
welcher nicht nur zu einer sehr bequemen Ausdrucksweise, sondern auch zu einer tieferen
Einsicht in die wahre Natur der algebraischen Zahlen führt.”
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altered, 12)

So as to develop the theory as generally and rigorously as wanted, Dedekind
places himself in the “higher level” of ideals.

5.4.1 Module theory in 1871

In order to ease the development of the study of algebraic integers and the
divisibility of ideals, Dedekind introduces “some very general observations”
(sehr allgemeine Betrachtung) about modules, a “separate inquiry [which]
will be of great use to us in [his] subsequent topic of study, as well as for
many others”.58

Module theory is explicitly presented as an independent and general
theory (it is valid for any module, and it does not depend on the nature of
the elements or on a particular representation of either numbers or modules),
which is going to be used for the benefits of number theory. It will quickly
appear to be at the core of the algebraic arsenal that Dedekind is developing.
In 1871, the paragraph dedicated to modules is short (less than 3 pages),
and the theory is not clearly motivated. It seems to mostly shorten certain
proofs, but not to the point that it should justify a new concept, let alone an
auxiliary theory. The usefulness of module theory, its scope and its relation
to ideal theory are not very clear in 1871. Module theory will, in Dedekind’s
subsequent works gains in detail and clarity. While keeping its status of an
auxiliary theory, it will appear to be better integrated in the whole work,
notably because of the emphasis put on the (structural) links between ideals
and modules, which is absent here.

A module is a “system a of real or complex numbers α whose sums
and differences themselves belong to a”59 (ibid., 30). Modules are, as their
name indicates, intimately related to congruences.60 Previous works on
higher congruences have paved the way for considerations about congruences
of algebraic numbers.61 Congruences are central in the 1871 theory, and
systematically put forward, suggesting a strong link between Dedekind’s
works Kummer’s (and Gauss’s).

A notion of congruence with respect to a module is introduced as an
integral part of the definition, so that modules appear as extending the idea
of modulus:

58“welche für die nachfolgenden, sowie für viele andere, unserem Gegenstande fremde
Untersuchungen von grossem Nutzen ist.”

59“Ein System a von reellen oder complexen Zahlen α, deren Summen und Differenzen
demselben System a angehören, soll ein Modul heissen. . . ”

60The word “Modul” is used (along with “Modulus”) in German, since Gauss, to desig-
nate the modulus of the congruence.

61Note that there is a stronger relationship between ideal theory and higher congruence
theory, which is explained in detail in “Über den Zusammenhang zwischen der Theorie der
Ideale und der Theorie der höheren Kongruenzen” ([Dedekind, 1878]).
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[W]hen the difference of two numbers ω, ω′ is contained in a, we
will call them congruent with respect to a, and denote this with
the congruence

ω ≡ ω′ (mod.a)

Such congruences can be added and subtracted, and therefore
also multiplied by an arbitrary rational integer, like equations.62

(ibid., transl. slightly altered, 30)

At least, it should be clear that modules are extending the notion of modulus
once divisibility for modules is defined. In subsequent versions of the theory,
the order of presentation is reversed, and divisibility is introduced before
congruences. With such a reformulation, the theory might move away from
its Kummerian inspiration, but the transposition of arithmetic operations
to modules (and ideals) seems easier to understand.

The definition of a notion of divisibility for modules is similar to that
defined for groups in the lectures on Galois theory:

If all the numbers of a module a are also numbers of a module
d, then a is called a multiple of d, and d a divisor of a. Alter-
natively, we say d divides a (gehe in a auf ), or a is divisible by
d. From any congruence ω ≡ ω′ (mod a), it follows that also
ω ≡ ω′ (mod d).63 (ibid., 30)

The divisibility for modules is, then, an inclusion relation: d divides a means
that a is included in d. Dedekind will say, in later version of the theory, that
a module a divides a number α when α ∈ a, since it is equivalent to say that
the module [α] generated α is included in a. Then, one understands why
ω − ω′ contained in a is expressed as a congruence according to a:64

ω ≡ ω′ (mod.a) ⇐⇒ ω − ω′ ∈ a ⇐⇒ a divides ω − ω′.

Divisibility considerations for modules are pursued a little further with the
notions of GCD and LCM. For a and b two modules, Dedekind defines the
LCM of a and b as the collection of all the numbers contained both in a and
b (i.e., LCM(a, b) = a∩b). The GCD of a and b is the module composed by

62“[W]enn die Differenz zweier Zahlen ω, ω′ in a enthalten ist, so wollen wir sie con-
gruent nach a nennen und dies durch die Congruenz ω ≡ ω′ (mod.a) andeuten. Solche
Congruenzen können addirt, subtrahirt und folglich auch mit beliebigen ganzen rationalen
Zahlen multiplicirt werden, wie Gleichungen.

63“Wenn alle Zahlen eines Moduls a auch Zahlen eines Moduls d sind, so heisse a ein
Vielfaches von d, und d ein Theiler von a; oder wir sagen auch, d gehe in a auf, a sei
theilbar durch d. Aus jeder Congruenz ω ≡ ω′ (mod a) folgt auch ω ≡ ω′ (mod d).”

64Dedekind draws this from considerations on bases of modules, however he does not
make the link explicit himself. As mentioned earlier, the exposition of module theory is
rather short and motivated essentially by the possibility to shorten proofs and to hide
away certain computations.
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all the numbers of the form α + β where α and β respectively run through
all the numbers of a and b.

Dedekind defines a finite module, which is a module generated by n
numbers ω1, . . . , ωn, i.e., the numbers of the form

ω = h1ω1 + . . .+ hnωn

in which h1, . . . hn “run through the rational integers”. The finite system of
numbers ω1, . . . , ωn is called a basis of the module “whether they are de-
pendent or independent”. Finite modules hold the key to the central results
of this paragraph. Indeed, if a certain finite module o can be transformed
in another finite module m by multiplication by nonzero rational numbers,
“then o contains only a finite number of incongruent numbers (mod m).”
It is important to be able to determine the exact number of incongruent
numbers of o (mod m). Indeed, consider a the least common multiple of o
and m. For ω, ω′ in o, we have ω ≡ ω′ (mod m) ⇐⇒ ω ≡ ω′ (mod a).
The task is, then, to determine of how many classes modulo a consists o
and this number is “equal to the determinant of the system of coefficients
of the n particular numbers (. . . ) which form the basis of” the LCM a.
Determinants are important in a number of proofs, but more significantly
Dedekind is able to prove that

[i]f µ is a nonzero integer of the field Ω, then the number of
integers of the field that are incongruent with respect to µ is
equal to the absolute value of the norm of the modulus µ.65

(ibid., 35)

This result is used to define the norm of modules: the number of incongruent
numbers modulo a “is called the norm of a.”

5.4.2 Ideals in 1871
In order to properly generalize Kummer’s results and prove the general va-
lidity of the fundamental theorem of arithmetic, Dedekind introduces the
notion of ideal, which remodel and generalize Kummer’s ideal factors. In
order to demonstrate the validity of the (old) divisibility laws in the ex-
tended domains of (algebraic) numbers, Dedekind builds upon Kummer’s
works on ideal factors. But to be able to provide a suitable generalization of
Kummer’s works demands to make some changes. Besides, from Dedekind’s
viewpoint, in Kummer’s approach, insofar as it “feigns” the existence of di-
visors, “the immediate transfer of the usual concepts of the actual numbers
can, initially, easily evoke mistrust of the certainty of the proof” (ibid., 38).

65“Ist µ eine von Null verschiedene ganze Zahl des Körpers Ω, so ist die Anzahl der
nach dem Modul µ incongruenten ganzen Zahlen des Körpers gleich dem absoluten Werth
der Norm des Moduls µ.”
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Dedekind replaces Kummer’s ideal numbers by the notion of ideal, to by-
pass the difficulties and establish a surer basis for the theory. Ideals are
systems of (infinitely many) actually existing numbers, and do not require
the creation of new entities, such as Kummer’s ideal factors. Rather than an
ideal factor p, Dedekind considers the system of all existing numbers in the
domain of integers that are divisible by p and calls it an ideal (even though
it is a system of numbers which actually exist). The choice of terminology is
meant to display that Dedekind is following Kummer’s works, but as under-
lined by Klein, in [Klein, 1979], who “always found Dedekind’s terminology
unpleasant”:

it is altogether unintuitive. He calls these sets ideals, and, when
an “actual” common factor exists, principal ideals! (For example,
2µ+ 2ν

√
−5 is a principal ideal, since 2 is an actual factor.) He

should have spoken of “reals”. For it is a question of an aggregate
of numbers that are actually present in the given integral domain.
([Klein, 1979], 304)

The aim of Dedekind’s ideal theory, more precisely, is to prove the va-
lidity of the known theorems and laws of arithmetic for algebraic integers,
by transferring the usual concepts of rational arithmetic to ideals. Thus, he
introduces notions such as divisibility of ideals, prime ideal, greatest com-
mon divisor and least common multiple of ideals. Dedekind’s ideals can be
regarded as extending or generalizing the notion of divisibility. The gener-
alization (which implies to give up previous definitions) is carried so as to
assure the unconditional validity of fundamental laws of arithmetic. That
particular point is made particularly clear in Dedekind’s long and explicit
introduction to the second version of the theory:

(. . . ) these ideal numbers are introduced with no other goal
than restoring the laws of divisibility in the numerical domain
o [of algebraic integers] to complete conformity with the theory
of rational numbers, (. . . ) as we pursue the goal of restoring
the laws of divisibility in the domain o to complete conformity
with those ruling the domain of rational integers, by introducing
ideal numbers and a corresponding language. . . 66 ([Dedekind,
1876-1877], 59-60)

In 1871, the study of algebraic integers is mostly embedded in the larger
theory of binary quadratic forms. The question of the laws of divisibility,

66“(. . . ) l’introduction des nombres idéaux n’a pas d’autre but que de ramener les lois de
la divisibilité dans le domaine numérique o [des entiers algébriques] à une complète con-
formité avec la théorie des nombres rationnels (. . . ) nous poursuivons le but de ramener
généralement, par l’introduction des nombres idéaux et d’un mode de langage correspon-
dant, les lois de la divisibilité dans le domaine numérique o à une complète conformité
avec celles qui règnent dans le domaine des nombres entiers rationnels (. . . )”
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then, is only presented as the desire to have, for algebraic integers, the con-
servation of certain properties of the divisibility of rational integers, in order
to ease further developments of binary quadratic form theory.

The subject of Dedekind’s inquiry is thus “the theory of the numbers of
o”, the set of all algebraic integers of a finite field Ω. The core novelty of
his approach is that he grounds (gründen) it on the new concept of ideal.
This means that the main results of the theory will be deduced from the
concept of ideal. Ideal theory assures that the theory of the numbers of o be
developed with the sought degree of rigor and generality. Ideal are defined
by two necessary and sufficient conditions:

A system a of infinitely many numbers contained in o will be
called an ideal if it satisfies the following pair of conditions:
I. The sum and difference of any two numbers in a is again a
number in a.
II. Each product of a number in a and a number in o is again a
number in a.67 (ibid., 38)

The formal definition is immediately followed by that of the divisibility re-
lation between a number and an ideal. Arithmetic properties are presented,
as part of the definition, as immediately relevant and apparently essential
properties of ideals:

If α is contained in [the ideal] a, we will say that α is divisible by
a, and that a divides α, since by this manner of expression we
gain in facility.68 (ibid., 452, transl. slightly altered, 38)

Note that Dedekind explicitly introduces this arithmetical terminology
as a characterization of set-theoretic relationships because it makes things
easier. The movement of re-definition of arithmetical relationships is a two-
fold move: first, the divisibility of algebraic numbers is defined in terms of
set-theoretic relations between ideals and these relations between ideals are
then expressed in arithmetical terms. Dedekind’s ‘algebraic theory of num-
bers’ develops grounded on an arithmetic ‘of a higher level’, the arithmetic
between algebraic concepts.

Dedekind can now give a definition of the notion of congruence with re-
spect to an ideal a, similar to that of modules. For two numbers ω, ω′ in o,

67“Ein System a von unendlich vielen in o enthaltenen Zahlen soll ein Ideal heißen, wenn
es den beiden Bedingungen genügt: I. Die Summe und die Differenz je zweier Zahlen in
a sind wieder Zahlen in a. II. Jedes Product aus einer Zahl in a und einer Zahl in o ist
wieder eine Zahl in a.”

68“Ist α in a enthalten, so sagen wir, α sei theilbar durch a, a gehe in α auf, weil die
Ausdrucksweise hierdurch an Leichtigkeit gewinnt.”
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ω ≡ ω′ (mod a) means that ω−ω′ is contained in a. Since the properties for
this new notion of congruence are the same as for the one used in rational
arithmetic, one can define the notion of class “in such a way that two con-
gruent numbers are put in the same class and any incongruent numbers are
put in different classes” (ibid., 38-39). An ideal can then always be divided
into classes (mod a) of incongruent numbers: if µ is a nonzero number in a,
any two numbers congruent (resp. incongruent) modulo µ are by definition
also congruent (resp. incongruent) modulo a.

[i]t thereby follows immediately that a consists of one or more
classes (mod µ).69 (ibid., 39)

The number of incongruent numbers modulo a is said to be the norm of an
ideal a, N(a).70

The system of all the numbers in o divisible by a certain number η in o
forms an ideal called principal ideal and denoted i(η). This special instance
of the concept of ideal will prove essential in the rest of the theory

Dedekind develops what appears to be the first elements of an arithmetic
of ideals, with a notion of divisibility between ideals:

If every number of an ideal a is also in an ideal d, then clearly
d consists of one or more classes a, and we will say that a is a
multiple of d or is divisible by d; and that d is a divisor of a, or
d divides a.71 (ibid., 39)

Like for groups or higher congruences, the use of the arithmetical termi-
nology is justified by certain existing relations reinterpreted in arithmetical
terms. Here, d is composed of a number of (congruence) which is a multiple
of the number of classes of a, which justifies the reinterpretation of inclusion
as an arithmetical relation.

Each ideal has only a finite number of divisors, and the relation of divisi-
bility is transitive. One can easily observe that o divides any ideal and is, in
fact, the unit for divisibility. Since, in this version of ideal theory, Dedekind
does not mention the fact that every ideal is a module, he needs to unfold
the basic arithmetical notions once again (this time, with a justification):

The system of those numbers that are contained in each of two
ideals a, b is the least common multiple m of a, b, insofar as
every common multiple of a, b is divisible by the ideal m. If α

69“woraus zugleich folgt, dass a aus einer oder mehreren Classen (mod. µ) besteht.”
70Notably, if one considers a module (resp. ideal) generated by a number µ, then its

norm is ±N(µ).
71“Wenn alle Zahlen eines Ideals a auch in einem Ideal d enthalten sind, so besteht

offenbar d aus einer oder mehreren Classen (mod. a), und wir wollen sagen, a sei ein
Multiplum von d oder theilbar durch d, d sei ein Theiler von a oder gehe in a auf.”
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runs through all the numbers of a, and β runs through all the
numbers of b, then the system of all numbers α+β is the greatest
common divisor d of the ideals a, b, since each common divisor
of a, b divides the ideal d.72 (ibid., 40)

Dedekind pursues the development of arithmetical notions for ideals and
introduces the notion of primality for ideals, which is (contrary to that for
algebraic integers) similar to primality for rational integers: a prime ideal
p different from o is an ideal with no other divisors than o and p itself. It
seems that the similarity of the definition of prime ideal with that of prime
number in rational number theory is the first sign that studying arithmetical
laws for ideals should be “easier” than for algebraic numbers. Prime ideals
are fully defined with the following theorems:

If ηρ ≡ 0 (mod p), then at least one of the two numbers η, ρ,
is divisible by p. (. . . ) If every product which is divisible by an
ideal p (which is distinct from o) has at least one factor that is
divisible by p, then p is a prime ideal.73 (ibid., 40)

The proofs combine divisibility between a number and an ideal, divisibility
between ideals, and congruences. An ideal a which is not prime is called a
composite ideal, and one can always find two numbers η and ρ not divisible
by a but whose product ηρ is divisible by a. Overall, writes Dedekind, “the
general theorems [for rational number theory] on congruences with respect
to the modulus p carry over without difficulties” (ibid., 41).

5.4.3 The proofs of the arithmetical propositions
The core idea of Dedekind’s approach is to transfer the study of divisibility
laws of algebraic integers to that of ideals, thus bypassing the difficulty which
led to the use of ideal numbers by Kummer. For this, Dedekind introduces a
temporary notion, simple ideals (which will disappear in subsequent versions
of the theory) which are formed by certain roots of congruences. Let η be a
number not divisible by an ideal a, then there always exists a number ν such
that all the solutions π of the equation νπ ≡ 0 (mod a) form a prime ideal.
For µ in o, one can consider the roots π of the congruence νπ ≡ 0 (mod µ),
which also form a prime ideal. Prime ideals which “consist in” such system

72“Das System aller derjenigen Zahlen, welche gleichzeitig in zwei Idealen a, b enthal-
ten sind, ist das kleinste gemeinschaftliche Multiplum m von a, b, insofern jedes gemein-
schaftliche Multiplum von a, b durch das Ideal m theilbar ist. Durchläuft α alle Zahlen in
a, β alle Zahlen in b, so ist das System aller Zahlen α + β der größte gemeinschaftliche
Theiler d der Ideale a, b, weil jeder gemeinschaftliche Theiler von a, b in dem Ideale d
aufgeht.”

73“Ist ηρ ≡ 0 (mod p), so ist wenigstens eine der beiden Zahlen η, ρ durch p theilbar
(. . . ). Enthält jedes durch ein (von o verschiedenes) Ideal p theilbare Product mindestens
einen durch p theilbaren Factor, so ist p ein Primideal.”
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of roots are “temporarily” (vorläufig) called “simple ideals”. As underlined
by Edwards and Avigad, this provides an effective divisibility test similar to
what can be found in Kummer’s theory: π is divisible by the (ideal) factor
corresponding to µ and ν if and only if it satisfies the associated congruence.
This divisibility test can be extended to divisibility by powers of µ and ν:
for a positive rational integer r, the solutions ρ of the equation

ρνr ≡ 0 (mod µr)

form an ideal “called the r-th power of p” and denoted pr, thus defining
powers of ideals.

One can see, especially with “simple ideals”, that Dedekind is transfer-
ring Kummer’s ideas to the “higher level” of his notion of ideal. From there,
it is possible to give a series of theorems, analogous to some theorems for
prime numbers in rational number theory, and which will lead to a test of
divisibility by powers of such simple ideals:

If s ≥ r, then ps is divisible by pr. (. . . )
If ρ is a nonzero number in o, then there is always a highest
power of p that divides ρ. (. . . )
If pr, ps are the highest powers [of p] dividing ρ, σ respectively,
then pr+s is the highest power of p dividing ρσ. (. . . )
Each power pr of a simple ideal p is not divisible by any prime
ideal other than p.74 (ibid., 42-43)

The proofs are very short and only use divisibility and congruence properties.
Dedekind explicitly underlines the analogy with prime rational numbers,
before introducing a new and central theorem:

The importance of the simple ideals and their analogy with the
rational primes comes immediately to the fore in the following
main theorem: If all the powers of simple ideals that divide a
nonzero number µ also divide a number ν, then ν is divisible by
µ.75 (ibid., 43)

This theorem tells us that “every principal ideal i(µ) is the least common
multiple of all the powers of simple ideals that divide µ” and an important
corollary of this result is that

74“Ist s ≥ r, so ist ps theilbar durch pr. (. . . ) Ist ρ eine von Null verschiedene Zahl in
o, so giebt es immer eine höchste in ρ aufgehende Potenz von p. (. . . ) Sind pr, ps resp. die
höchsten in ρ, σ aufgehenden Potenzen, so ist pr+s die höchste in ρσ aufgehende Potenz
von p. (. . . ) Jede Potenz pr eines einfachen Ideals p ist durch kein von p verschiedenes
Primideal theilbar.”

75“Die Wichtigkeit der einfachen Ideale und ihre Analogie mit den rationalen Primzahlen
tritt unmittelbar hervor in dem folgenden Hauptsatz: Wenn alle in einer von Null ver-
schiedenen Zahl µ aufgehenden Potenzen einfacher Ideale auch in einer Zahl ν aufgehen,
so ist ν durch µ theilbar.”
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Every prime ideal p is a simple ideal.76 (ibid., 44)

Once this corollary is proved, the name “simple ideals” is completely aban-
doned, and Dedekind “speak[s] only of prime ideals” (ibid.).

Basically, simple ideals are only prime ideals represented in a certain
way.77 The important role they play, in 1871, contradicts the methodological
principles often stated by Dedekind: to avoid proofs based on a definite
representation, and to rather use their “fundamental characteristics.” Indeed,
while the name “simple ideal” is given up, the proofs given for the next
theorems – and notably the proof of the unique factorization theorem – are
essentially based on the congruence associated with the definition of simple
ideals.

The link then tied between prime ideals and the ideal factors appearing
in the definition of simple ideals implies that any non-prime ideal can be
represented (through prime ideals) with the appropriate µ and ν. Thus, the
link between ideals and Kummer’s ideal numbers is proved: an ideal m is
the system of numbers divisible by a certain (ideal or actual) number µ,
i.e., “each system enjoying [the new definition of an ideal] is also an ideal
[number]” in Kummer’s sense, which was, for Dedekind “a fact of highest
importance” ([Dedekind, 1876-1877], 59-60).

The core result, here, is:

If all the powers of prime ideals that divide an ideal m also divide
a number η, then η is divisible by m.78 (ibid., 44)

From there, the similarity of the laws of divisibility between ideals and ra-
tional numbers becomes clear, since corollaries of this theorem are theorems
analogous to those found in rational number theory with rational numbers:

Every ideal is the least common multiple of all the powers of
prime ideals that divide it. This corresponds to the fundamental
theorem of rational number theory on the composition of num-
bers from primes (§8). It follows that every ideal m is completely
determined once the highest powers pe, p′e

′
, p′′e

′′
, . . . of prime

ideals that divide it are given.79 (ibid., 44)

With the approach adopted by Dedekind, here, the factorization theorem is
merely a corollary of a theorem regarding divisibility of numbers by ideals,

76“Jedes Primideal p ist ein einfaches Ideal.”
77[Edwards, 1980]
78“Wenn alle in einem Ideal m aufgehenden Potenzen von Primidealen auch in einer

Zahl η aufgehen so ist η theilbar durch m.”
79“Jedes Ideal ist das kleinste gemeinschaftliche Multiplum aller in ihm aufgehenden

Potenzen von Primidealen. Er entspricht durchaus dem Fundamentalsatze der rationalen
Zahlentheorie über die Zusammensetzung der Zahlen aus Primzahlen (§8); denn ihm zu-
folge ist jedes Ideal m vollständig bestimmt sobald die höchsten in m aufgehenden Potenzen
pe, p′e

′
, p′′

e′′
, . . . von Primidealen gegeben sind.”
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and whose proof is made using the congruence relations for simple ideals.
Dedekind still works in a framework close to Kummer’s, and in fact, as
underlined by Edwards:

[Dedekind’s] method of proof of the fundamental theorem was
to introduce temporarily simple ideals that are essentially the
same as Kummer’s “ideal prime factors” and are represented in
a specific way, to prove the theorem, and only then to show that
every prime ideal is simple. ([Edwards, 1980], 346-347)

In the subsequent versions of the theory, simple ideals are not introduced.
The congruence defined by ν and π, while they still play a role in the theory,
are only presented as auxiliary propositions – and certainly don’t enjoy the
“privilege” of being given a definition, as Avigad remarks ([Avigad, 2006],
22). Finally, note that in this presentation of the theory, one can even ques-
tion whether the factorization theorem is still a fundamental theorem of
arithmetic.

It should be underlined that Dedekind only defined multiplication of
ideals in the very end of §163. In particular, the proof of the theorem
of decomposition of ideals in primes does not require the (definition of the)
product of ideals. Indeed, the proof is based only on powers of prime (simple)
ideals defined with congruences. The definition of the multiplication of ideals
is given “almost as an afterthought” as Edwards writes, and plays little, if
any, role in the theory.

If one multiplies all the numbers of an ideal a with all the num-
bers of an ideal b, these products and their sums form an ideal
that is divisible by a and b, which will be called the product of
a and b and denoted ab.80 ([Dedekind, 1871], 45)

The primitive notions, in 1871, are congruences and primality (“prime pow-
ers”). Arithmetical notions, such as the product or the relative primality of
ideals, are only stated at the end of the theory, and seem to be merely side-
effects of the preceding developments. In fact, an approach à la Kummer as
adopted here does not require the multiplication of ideals (or ideal numbers),
and the multiplication and arithmetical notions linked to it, such as relative
primality, appear as the aftermath of the prime factorization theorem. Once
the relative primality of ideals is defined,81 one can transfer, or translate in
the theory of ideals, all the “theorems of rational number theory on relative
primality” (ibid.). Despite stating that theorems can be transferred without

80“Multiplicirt man alle Zahlen eines Ideals a mit allen Zahlen eines Ideals b, so bilden
diese Producte und deren Summen ein durch a und b theilbares Ideal, welches das Produkt
aus den Factoren a und b heißen und mit ab bezeichnet werden soll.”

81Two ideals a and b are called relatively prime if their greatest common divisor is = o.
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difficulties, Dedekind does not state any of the theorems, except for this one,
which gives another congruence property:

If a and b are relatively prime ideals, and µ, ν are two given
numbers, then there is always exactly one class of numbers η
(mod ab) that satisfy the conditions η ≡ µ (mod a) and η ≡ ν
(mod b).82 (ibid., 46)

The ‘arithmetic of ideals’, here, is neither fully exploited nor fully devel-
oped, but the essential idea (namely the divisibility of ideals as the key to
developing the theory) is present. In the following paragraphs of the Xth
Supplement, Dedekind does use the definition of the operations between ide-
als to define notions such as classes of ideals, analogous to that of classes of
number for congruences. On the basis of this ‘arithmetic of ideals’, Dedekind
elaborates tools, in analogy to number theory, to study, properties of ideals
as objects in their own right.

5.5 A short comparison with Kronecker’s approach
I will propose to compare briefly Dedekind’s approach to Kronecker’s take
on the similar problem, the generalization of Kummer’s results. Kronecker’s
theory was announced as a forthcoming work by Kummer in 1857 but was
only published in 1881 and 1882. My presentation of Kronecker’s ideas will
be very fragmentary. I will rely on [Boniface, 2004] in great part, as well
as on [Edwards, 1980] and [Smadja, 2002], which all propose more complete
commentaries.83 I will also use Dedekind’s “Bunte Bemerkungen” to stress
the differences in their approach, from Dedekind’s own view.

I propose to consider Kronecker’s work on algebraic magnitudes in this
chapter, despite the twenty years between Dedekind’s and Kronecker’s pub-
lications because it seems more consistent to compare Kronecker’s approach,
with Dedekind’s first handling of the problem, which stays relatively close
to Kummer’s approach. In any case, divergences between Kronecker’s and
Dedekind’s approaches will only increase with each rewriting of Dedekind’s
theory of algebraic integers, since Dedekind will move away from the more
computational aspects of Kummer’s ideal numbers. This presentation will
allow me to highlight some specific features of Dedekind’s approach. In pre-
senting the next versions of Dedekind’s theory, I would like to concentrate
on the changes Dedekind inflected on his own works.

82“Sind a, b relative Primideale, und µ, ν zwei gegebene Zahlen, so giebt es immer
eine und nur eine Classe von Zahlen η(mod ab), welche den Bedingungen η ≡ µ(mod a),
η ≡ ν(mod b) genügen.”

83For more on Kronecker vs. Dedekind, one can refer to these works and to [Edwards,
1992], [Edwards, 1983] and [Edwards, Neumann, and Purkert, 1982]. A thorough com-
parison of Dedekind’s (and Weber’s) and Kronecker’s approaches, whose groundwork has
been done by Edwards, would require a level of details about Kronecker’s works which
falls out of the scope of my inquiry.
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5.5.1 Kronecker’s algebraic magnitude and the Rationalitäts-bereich

For Kronecker, magnitudes (Größe)84 have different genuses (Gattung)85,
depending on the way in which they are generated. For example, the ir-
rational

√
2 belongs to a particular genus and is “‘conceptually’ very far

from any rational number as close as possible of the square root of two”86

([Kronecker, 1881], 250). This clear-cut differentiation between conceptual
genuses of magnitudes comes from a desire to build up a classification of
magnitudes independent of their measure (size). Thus, Kronecker criticizes
the tendency to adopt an idea of neighborhood for magnitudes whose mea-
sures are close – such as

√
2 and a rational number q as close as possible of√

2 – but whose algebraic properties are fundamentally different. The con-
cept of Körper, which holds strong spatial connotations is explicitly rejected
by Kronecker:

I consider appropriate to avoid, in the terminology, the expres-
sions with a decidedly spatial connotation, and to only use the
hardly avoidable general expressions, such as this work “do-
main”, or another general idea, which has already nearly lost
its original spatial meaning by its many applications in common
language uses.87 (ibid., 250, my translation)

Kronecker, instead, uses the notion of domains of rationality:

The “domain or rationality (R′,R′′,R′′′, . . .)” contains, as one
can already see in the denotation, all these magnitudes which
are rational functions of the magnitudes R′,R′′,R′′′, . . . with in-
tegral numbers as coefficients. This stipulation that the coeffi-
cients be integral numbers, is only added at for the beginning,
in order to eliminate any misunderstanding. (. . . ) By “domain
or rationality (R′,R′′,R′′′, . . .)”, all the rational functions of the
element R must be conceptually united – but only for easing
the mode of expression in the presentation of the theory – ad in
the same way, one can furthermore also carry out the classifica-
tion of magnitudes in closed circles or categories, according to

84In [Edwards, Neumann, and Purkert, 1982], Dedekind puts “(?)” after uses of the
word “Größe”.

85Kronecker indicated genus as the Latin equivalent of “Gattung”. See [Goldstein and
Schappacher, 2007b], Note 68, p. 83.

86“die zu einer besonderen Gattung gehörige Grösse
√

2 ‘begrifflich’ weit ab von irgend
einer der Quadratwurzel aus zwei noch so nahe liegenden rationalen Zahl”

87“halte ich es für angemessen, in der Terminologie die Ausdrücke mit entschieden
räumlichem Gepräge zu vermeiden und nur solche, kaum zu umgehende allgemeine Aus-
drücke — wie eben jenes Wort ‘Bereich’ — oder allgemeine Bilder zu gebrauchen, welche
die ursprünglich räumliche Bedeutung bei ihrer vielfachen Verwendung im gewöhnlichen
Sprachgebrauche schon fast verloren haben.”
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determinate common properties to be exposed.88 (ibid., 250)

It is important to underline that “magnitudes” for Kronecker have only
an arithmetico-algebraic meaning (in particular, they do not refer to any
consideration of size or measure):

The expression “magnitude” is, here, to be taken in the broad-
est arithmetico-algebraic sense, and one must, generally, also un-
derstand “rational functions of indeterminate magnitudes”, the
so-called “forms of arbitrarily many variables”, and so forth, as
being magnitudes, to which the concept of mesure, to be “greater
or smaller”, are completely foreign.89 (ibid., 249-250)

This implies an enlargement of the notion of magnitude to any algebraic
expression, i.e., rational function with integral coefficients. The stand-
point taken by Kronecker in [Kronecker, 1881] is considerably wider than
Dedekind’s. It is more general in the sense that it considers a larger scope of
objects. In fact, Kronecker’s researches are valid for algebraic functions as
well, and many of the remarks here can be applied to Dedekind and Weber’s
paper on algebraic functions.

Kronecker’s ideas about magnitudes are directly linked to the impor-
tance of computations in Kronecker’s mathematics, often emphasized by
commentators. Kronecker, who walks in Kummer’s footprints, has a posi-
tion diametrically opposed to Dedekind’s, and considers that concepts are
(must be) the result of computations. David Reed underlines it clearly:

Since [Kronecker] is of the view that numbers are merely systems
of representations with which calculations are done, the essence
of number theory is calculation. The means by which such cal-
culation is performed may be (in modern terminology) strictly
algebraic or may involve analytic tools from calculus or function
theory. ([Reed, 2003], 98)

88“Der ‘Rationalitäts-Bereich (R′,R′′,R′′′, . . .)’ enthält, wie schon die Bezeichnung
deutlich erkennen lässt, alle diejenigen Grössen, welche rationale Functionen der Grössen
R′,R′′,R′′′, . . . mit ganzzahligen Coefficienten sind. Diese Bestimmung, dass die Co-
efficienten ganzzahlig sein sollen, ist nur hier im Anfange, um jedes Missverständniss
auszuschliessen, hinzugefügt. (. . . ) Durch den ‘Rationalitäts- Bereich (R′,R′′,R′′′, . . .)’
sollen die sämmtlichen rationalen Functionen der Elemente R – nur zur Erleichterung
der Ausdrucksweise bei der Darstellung der Theorie — begrifflich zusammengefasst wer-
den, und in derselben Weise soll auch noch weiterhin die Einordnung von ‘Grössen’ nach
bestimmten, besonders darzulegenden, gemeinsamen Eigenschaften in geschlossene Kreise
oder Kategorieen erfolgen.”

89“Der Ausdruck ‘Grösse’ ist hierbei in der weitesten arithmetisch-algebraischen Bedeu-
tung zu nehmen, und es sind im Allgemeinen auch Grössengebilde wie ‘rationale Func-
tionen unbestimmter Grössen’, sogenannte ‘Formen beliebig vieler Veränderlicher’ u. s.
w. mit darunter zu verstehen, denen der Begriff der Maassgrösse, der des ‘grösser oder
kleiner Seins’ gänzlich fremd is.”
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Boniface corrects slightly Reed’s statement about Kronecker’s view of num-
bers. She explains that for Kronecker, the only numbers are the natural
integers and if the entities formed by the algebraic or analytic expressions
are arithmetical, it does not mean that they are numbers. Kronecker’s strong
ontological commitment towards natural numbers should be understood in
relation to his idea that mathematics must be treated as a natural science.
The objects of mathematics should thus be objects consistent with experi-
ence. (see Sec. 7.1.3.) This is the essential reason behind the primacy of
natural integers: they are, for Kronecker, the only objects consistent with
mathematical experience. Kronecker’s philosophical position cannot be de-
tached from the mathematical methods that he develops to support it, as
Vlădut explains:

Kronecker’s views are quintessentially expressed in two ideas.
The first is the rejection of actual infinity as mathematical real-
ity. The second is also prohibitive in nature and can best be
expressed by his well-known dictum “God Himself made the
integers – everything else is the work of men”. This leads to
the prohibition agains using mathematical notions and methods
which cannot be reduced to the arithmetic of integers. Despite
their prohibitive form, these statements carry a powerful positive
charge. (. . . ) The desire to argue “arithmetically” influenced
Kronecker’s works, many of which were based on the method
of computation of some mathematical objects. ([Vlădut, 1991],
11-12)

The point made by Vlădut, here, is that methods express and develop the
philosophical position, and that one cannot be understood one without the
other – a point which is certainly valid for Dedekind, and probably many
other mathematicians as well. For Kronecker, to effectively put into action
his philosophy means to elaborate methods, algorithms, forms of presenta-
tions of the mathematical content which yield the arithmetical meaning.90

In order to obtain actually fruitful mathematics, “computations” here
does not refer to mere numerical computations, but to a larger understand-
ing including computations on and with algebraic expressions. While alge-
braic expressions are not, properly speaking, numbers, they are integrated
into what Kronecker calls “general arithmetic” which contains algebra and
analysis. This marks Kronecker’s peculiar approach of the “arithmetization
of mathematics” which, for him, consists in bringing all mathematical dis-

90An important example of this is Kronecker’s rejection of the irrationals. For him,
irrational numbers are just a step in the computation, and rather than numbers, they
are symbols to which no operational meaning can be attached. They cannot, thus, be
considered as numbers. Algebraic irrationals are attached to polynomials. Transcendental
numbers are not considered as a part of arithmetic, for they are generated by means and
processes belonging to geometry.
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ciplines (algebra, analysis) under the dominance of arithmetic.91 Kronecker
proposes to extend arithmetic to “integral algebraic functions of one inde-
terminate variable with integral coefficients”. These integral functions are
the integral magnitudes of rational domains.

Kronecker’s rationality domain is a concept of larger extent than Dede-
kind’s concept of field, since there are no restrictions on the choice of rational
magnitudes. Moreover, it leads immediately to the idea of adjunction of
magnitudes, a point less easy to see in Dedekind’s notion of field, especially
in the early exposition.

A rationality domain is, in general, a domain of magnitudes arbi-
trarily delimited but only as wide as the concept allows. Since a
rationality domain is only enlarged by the addition of arbitrarily
chosen elements R, any arbitrary expansion of its limits requires
in the same time, that all the magnitudes which are which are
rational expressions of the new element be captured. But there
is also naturally limited domains of rationality, as the domain of
the usual rational numbers, which is contained, as an absolute
domain, in all the rationality domains, and as we indicated with
the denotation R = 1, which represents to a certain extent the
absolute unite of the concept of rationality domain. The do-
main of the rational functions of R′,R′′,R′′′, .. is also naturally
limited, if the R′,R′′,R′′′, .. represent all independent variables;
the domain of rational numbers is contained in it as is, in gen-
eral, that of the rational functions of a part of R′,R′′,R′′′, ...92

([Kronecker, 1881], 255)

A domain of rationality is thus a domain formed by all rational functions of
any magnitude (with integral coefficients). The “magnitudes”R′,R′′,R′′′, . . .

91A more subtle explanation of Kronecker’s conception of arithmetization can be found
in [Smadja, 2010], in which it is explained that “Kronecker’s conception of arithmetization
as a process aiming at disclosing the ‘arithmetical essence’ which is enshrined in analytic
formulas” ([Smadja, 2010], 62). Kronecker’s arithmetization presents itself, according to
I. Smadja, “as an endeavour to grasp mathematical concepts in terms of invariants thus
reflecting non arithmetical properties in arithmetical ones” (ibid., 67).

92“Ein Rationalitäts-Bereich ist im Allgemeinen ein willkürlich abgegrenzter Grössen-
bereich, doch nur, so weit es der Begriff gestattet. Da nämlich ein Rationalitäts-Bereich
nur durch Hinzufügung beliebig gewählter Elemente R vergrössert werden kann, so er-
fordert jede willkürliche Ausdehnung seiner Begrenzung zugleich die Umschliessung aller
durch das neue Element rational ausdrückbaren Grössen. Es giebt aber auch natür-
lich abgegrenzte Rationalitäts-Bereiche, so das Reich der gewöhnlichen rationalen Zahlen,
welches als das absolute in allen Rationalitäts-Bereichen enthalten ist und, wie es durch
R = 1 bezeichnet worden, auch gewissermassen die absolute Einheit des Rationalitäts-
Begriffs repräsentiert. Auch das Reich der rationalen Functionen von R′,R′′,R′′′, .. wenn
diese sämmtlich unabhängige Variable bedeuten, ist ein ‘natürlich’- abgegrenztes; es ist
darin das Reich der rationalen Zahlen sowie überhaupt das der rationalen Functionen von
einem Theile der Variabeln R′,R′′,R′′′, .. mit enthalten.”
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can be considered as “variables” as well as “magnitudes” properly speaking.
In the first case, they are considered as mere symbols with no meaning at-
tached, and in the second case, they have the algebraic meaning given to
algebraic quantities. The domain of rationality is constituted by the suc-
cessive adjunction of these irrational (algebraic) magnitudes, which should
thus be considered in relation with an auxiliary equation of an indeterminate
variable y, a resolvent, which gives them their algebraic meaning.93 Each
root of an algebraic equation with coefficients in the domain of rationality
(R′,R′′,R′′′, . . .) is considered as an algebraic function of the magnitudes
R′,R′′,R′′′, . . .. The decomposition and the irreducibility of algebraic func-
tions are then dependent of the rationality domain, and each time one ad-
juncts a magnitude R to the domain, a new rationality domain is obtained.

As underlined by Reed, Kronecker does not look, in his rationality do-
mains, for the “completeness”, the property of being made a “whole” by
the closure by the four arithmetic operations, that Dedekind valued in the
concept of field.

Kronecker’s ‘domains’ are simply realms in which calculations of
certain types are possible. At no time does Kronecker try to view
his domains as ‘completed wholes’; his interest in introducing
them is not to provide new types of numbers but rather to permit
complex types of calculation to be undertaken in a systematic
manner. ([Reed, 2003], 99)

Kronecker’s rationality domain is not conceived as a framework, or an alge-
braic structure, but as an extension of the initial domain.

Finally, it should be clear, then, as Edwards likes to remind us, that
Kronecker’s Rationalitäts-bereich is a more general notion than Dedekind’s
field. This emphasizes the idea that the so-called “conceptual approach” is
not the only way for a significant gain of generality. Kronecker’s domains of
rationality are more general simply because of the generality of Kronecker’s
notion of magnitude. Dedekind made the following remark in relation to
the generality of Kronecker’s theory:

The common treatment of the theory of algebraic numbers with
the theory of algebraic functions of variables is somewhat at-
tractive, still it seems to be more advantageous, in the theory
of the latter, to give up completely the restriction of constant
coefficients to rational or algebraic numbers, because they are of
completely secondary importance for the actual principal point
of the theory.94 ([Edwards, Neumann, and Purkert, 1982], 55)

93For example, for the equation x2 − 2 = 0, whose roots are x1,2 = ±
√

2, the domain
will be extended from R to R(

√
2).

94“Die gemeinschaftliche Behandlung der Theorie der algebraischen Zahlen und der al-
gebraischen Functionen von Variabelen hat zwar etwas Anziehendes, doch scheint es mir
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5.5.2 An overview of Kronecker’s integral algebraic magnitudes and
divisors

Kronecker and Dedekind, despite the many mathematical and methodolog-
ical differences between their works, gave the same definition of algebraic
integers. Kronecker, however, approaches the question from a very different
angle. Following his considerations on algebraic magnitudes, he starts from
a wider viewpoint, and proceeds in two steps. First, he introduces the no-
tion of “integrity domain”: the domain [R′,R′′, . . .] composed of the integral
functions with integral coefficients in the magnitudes R′,R′′, . . .95 Then, he
gives a simple definition of integral algebraic magnitudes:

A magnitude x must be called an “integral algebraic function of
the variable R” or a “integral algebraic magnitude”, if it satisfies
an equation in which the coefficient of the higher power of x is
1, and the remaining coefficients are all integral functions with
integral numbers of the variable R as coefficients, and so are
magnitudes of the domain [R′,R′′, . . .].96 ([Kronecker, 1899] II,
260, my translation)

The addition and multiplication of any two integral algebraic magnitudes
are again algebraic magnitudes.97

In the caseR = 1, we have algebraic integers (ganze algebraische Zahlen),
which are thus a special case of the magnitudes considered by Kronecker.
There is, here again, a notable difference with Dedekind in the generality
of the concepts adopted as basic ones: while Dedekind focuses on algebraic
numbers alone, Kronecker works with a general concept of algebraic mag-
nitudes. This seems to be a side-effect of the profound differences between
Kronecker’s and Dedekind’s conceptions of arithmetic. The “general Arith-
metic” which Kronecker wants to develop is based on an “enlargement” of
Gauss’s notion of congruence and includes formal algebraic manipulations
and formulae for the study of polynomials and algebraic functions.

Kronecker considers the divisibility of algebraic integral magnitudes. For
this, he introduces the greatest common divisor of algebraic magnitudes
which, he states, “transfers this notion from the sphere of mere abstraction to

vortheilhafter, bei der Theorie der letzteren die Beschränkung der constanten Coefficienten
auf rationale oder algebraische Zahlen ganz aufzugeben, weil sie von ganz untergeordneter
Bedeutung für die eigentlichen Hauptpuncte der Theorie ist.”

95This domain is a ring, a property noticed by Kronecker, although without using the
term “ring”, of course.

96“Eine Grösse x soll eine ‘ganze algebraische Function der Variabeln R’ oder eine
‘ganze algebraische Grösse’ genannt werden, wenn sie einer Gleichung genügt, in welcher
der Coefficient der höchsten Potenz von x gleich Eins ist, und die übrigen Coefficienten
ganze ganzzahlige Functionen der Variabeln R, also Grössen des Bereichs [R′,R′′, . . .].”

97In modern terms, Kronecker’s integral algebraic magnitudes are integers in a ring
of polynomials Z[X] with integral coefficients, where X = {Xi} rational functions with
coefficients in Z.
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the reality of algebraic formations (Gebilde).” The idea is the following: if x
and x′ are two algebraic magnitudes, then x is said to divide x′ if the quotient
x′

x is an integral algebraic magnitude. Kronecker proposes to determine the
greatest common divisor without symbolism or abstraction, but by providing
effective computations to exhibit the corresponding algebraic form. To do
so, let x, x′, x′′, . . . be integral algebraic magnitudes (i.e., integers in a ring
Z[X]). Kronecker considers a linear function of these magnitudes

x+ ux′ + u′′x′′ + . . .

with u′, u′′, . . . magnitudes. The norm of this linear function is a polynomial
N with coefficients in the base domain (i.e., Z[X]), in which we know how
to find the GCD of two or more elements. In particular, one can give the
GCD of all the coefficients of N . The division of N by this GCD yields a
polynomial in u′, u′′, . . . whose coefficients are all relatively prime. Kronecker
designates it as Fm(x+u′x′+u′′x′′+. . .) and calls primitive form. Kronecker
defines the GCD of any integral algebraic magnitudes as

x+ u′x′ + u′′x′′ + . . .

Fm(x+ u′x′ + u′′x′′ + . . .)

Kronecker calls this the “divisor of [x + u′x′ + u′′x′′ + . . .]” or “module
[x+ u′x′ + u′′x′′ + . . .]”.

To be able to provide this explicit representation is essential, from Kro-
necker’s viewpoint. Moreover, this form will allow, when the divisor is an
ideal number, to avoid the “ideality” of those factors by providing a concrete
algebraic form to the ideal numbers (see [Boniface, 2004]).

Following the considerations about the divisibility of algebraic magni-
tudes, Kronecker generalizes the notion of divisor (Divisor) to any algebraic
form in the following way:

If an integral algebraic form is divided by the primitive form from
which its norm is derived, then the quotient represents a general
“algebraic module or divisor” whose “elements” are formed by
the coefficients of the algebraic form.98 ([Kronecker, 1881], 303)

The extension of the concept of Divisor goes with an extension of divisibility,
which allows for the concept of divisor to “take all its meaning (that of
Theiler)” according to Boniface. Kronecker gives the following definitions
for divisibility:

98“Wird eine ganze algebraische Form durch diejenige primitive Form dividirt, deren
abgeleitete die Norm der algebraischen Form ist, so repräsentirt der Quotient einen allge-
meinen ‘algebraischen Modul oder Divisor’, dessen ‘Elemente’ durch die Coefficienten der
algebraischen Form gebildet werden.”
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An integral algebraic form is divisible by an algebraic divisor
when the quotient is itself an integral algebraic form as well.99

(ibid., 304)

Kronecker says that an algebraic divisor is “divisible” by another algebraic
divisor when “the form which constitutes the numerator of the first is divis-
ible by the latter”100 (ibid., 304).

Kronecker defines a notion of equivalence between divisors, which allows
to show that any divisor is equivalent to a divisor constituted from a linear
form. Thus it is possible to only use those simpler kind of divisors.

Two algebraic divisors are “absolutely equivalent” when each of
the two is divisible by the other. An algebraic divisor is equiva-
lent to one, and thus not a divisor in the proper meaning of the
word, if and only if the integral algebraic form from which it is
formed is primitive.101 (ibid., 304)

Dedekind remarks, in his Bunte Bemerkungen that when Kronecker
“must talk about” two absolutely equivalent algebraic divisors, his theory in
fact only needs to refer to “ideal”, “whose invariant nature lies immediately
in the definition”.102

To obtain the proof of unique factorization, Kronecker introduces a no-
tion of irreducibility of divisors, which for him is the same as primality,
relatively to the domain to which this divisor belongs and can find again the
equivalence between irreducibility and primality. The unique factorization
in prime elements can only be proved, for Kronecker, by exhibiting explic-
itly all the prime factors of a certain algebraic magnitude. For this, it is
sufficient to exhibit the prime factors of its norm, which implies to try to
find the irreducible divisors of an integral and irreducible rational magnitude
of the initial domain (R′,R′′, . . .). For this, one has to effectively perform
the division, until the complete decomposition of an algebraic divisor of a
certain genus is obtained.

99“Eine ganze algebraische Form ist durch einen algebraischen Divisor theilbar, wenn
der Quotient ebenfalls eine ganze algebraische Form ist.”

100“Ein algebraischer Divisor soll als theilbar durch einen anderen Divisor bezeichnet
werden, wenn die Form, welche den Zähler des ersteren bildet, durch den letzteren theilbar
ist.”

101“Zwei algebraische Divisoren sind ‘absolut äquivalent’, wenn jeder von beiden durch
den anderen theilbar ist. Ein algebraischer Divisor ist dann und nur dann äquivalent
Eins, also überhaupt kein Divisor in der eigentlichen Bedeutung des Wortes, wenn die
ganze algebraische Form, aus welcher derselbe gebildet worden, primitiv ist.”

102“Wo Kronecker von zwei ‘absolut äquivalenten’ algebraischen Divisoren sprechen muß,
ist bei mir immer nur von dem einzigen ‘Ideal’ die Rede, dessen invariante Natur unmit-
telbar in der Definition liegt.”
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For Dedekind the effective construction of prime factorization is not an
issue. Rather, he wishes to provide an independent proof, based on “invari-
ant definitions,” to use Dedekind’s own words in the Bunte Bemerkungen.

5.5.3 Dedekind on Kronecker’s reading of ideal theory
Kronecker does comment on the differences between his approach and Dede-
kind’s. He explains that while he started from “the system of elements
themselves as divisor system” (i.e., modular system), Dedekind only consid-
ers the case R = 1, and that the linear forms are the ground of Dedekind’s
“conception”. This last remark did not please Dedekind, who irritatedly
remarked that this would mislead the readers and wrote:

Where does this come from? The origin of my theory is rather
formed solely by such concepts (field, module, ideal) which from
the first are defined in an invariant way, that is, independently of
any contingent form of representation.103 ([Edwards, Neumann,
and Purkert, 1982], 63)

Beyond Dedekind’s recurring insistence about his approach being indepen-
dent of any form of explicit representation (a characteristic that an approach
based on “linear forms” would lose), it seems that Dedekind and Kronecker
simply don’t agree on what forms the “origin” of a theory. Kronecker sees
in the “origin” of the theory the fact that Dedekind investigates a certain
restricted kind of “algebraic form”. Dedekind, however, sees as the “origin”
of his theory the fundamental concepts from which the results will be de-
duced – and which have been elaborated precisely so that the consideration
of “linear forms” does not enter into account.104

Kronecker continues his short commentary of Dedekind’s approach and
states that Dedekind considers “the collections of numbers actually divisible
by an ideal divisor” as the center of his researches.105 While it was the
initial idea for the introduction of ideals, it is not, Dedekind insists, the fun-
damental characteristic of ideals. Kronecker’s understanding of Dedekind’s
ideals106 implies that Dedekind defined ideals in relation to Kummer’s ideal

103“Wo geschieht denn das ? Den Ausgangspunkt meiner Theorie bilden vielmehr lediglich
solche Begriffe (Körper, Modul, Ideal), welche von vornherein auf invariante Weise definirt
werden, d.h. unabhängig von jeder zufälligen Darstellungsform.”

104This is the same kind of misunderstanding as regarding the “abstraction” of their
respective methods. Kronecker considers his approach as more concrete and Dedekind’s
way too abstract because of the use of actual infinities and the non-constructive methods.
Dedekind, on the other hand, considers his approach more concrete because ideals are
constituted of actually existing numbers, while Kronecker develops purely formal (and
thus abstract) methods. Both are defending their approach as being more “concrete”.

105“den Inbegriff der durch einen idealen Divisor theilbaren wirklichen Zahlen an die
Spitze der Entwickelung”

106More precisely, it is Dedekind’s reading of Kronecker’s understanding.
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factors, that each ideal is defined via the corresponding ideal factor. For
Dedekind, however, ideals are to be considered as having an “independent,
invariant definition” given by the properties of closure by arithmetical op-
erations. The actual definition of the concept ought to be clearly discerned
from the “historical presentation of the chain of thought”, as told in the
introduction of the 1877 version of ideal theory, in which Dedekind explains
how he arrived to the elaboration of the concept of ideal.107

5.6 Role and status of ideals

The elements of Dedekind’s Xth Supplement exposed above constitute the
very basis of ideal theory, but are a small part of the Supplement. In order to
adjust the focus and clarify the place and role of ideal theory in Dedekind’s
works, I will propose a quick overview of the following paragraphs.108 This
will allow to emphasize the fact that ideal theory is, for Dedekind, a new
way to lay the ground for number theory and, notably, the study of binary
quadratic forms. Ideal theory is not the object of study itself, and the
investigations about algebraic integers are developed essentially so that the
laws of divisibility of algebraic numbers are proved and well-known, so that
the further investigations are eased – a point stated very explicitly in the
second version of the theory. If Dedekind later restricted the focus and
published his algebraic integer theory as an independent paper, dealt with
separately from binary quadratic forms, he nevertheless always took the
time to highlight the possible applications. Thus, ideal and module theories
appear to be important because of the large potential of applications and of
new results provided.

5.6.1 The last paragraphs of Dedekind’s Xth Supplement

In Dedekind’s Gesammelte Werke are reproduced only the §159 to §163 of
the Xth Supplement (as well as in van der Waerden publication’s of the Xth
Supplement) which, in Dirichlet’s Vorlesungen consists in the §§145-170.
The paragraphs §§159-163 contain the essentials of the theory of algebraic
integers, and the basic elements of ideal theory. Maybe for this reason, com-
mentators have omitted to consider the content of the previous and following
paragraphs. By doing so, they appear to overlook the fact that Dedekind’s
ideal theory is, at first, only a small part of a very long supplement dedi-
cated to binary quadratic forms — a standard subject for number theory,
in 1870. Even if he adopts a singular position on actual infinities, Dedekind

107“Vielleicht ist diese Bemerkung Kroneckers hervorgerufen durch die historische
Darstellung des Gedankengangs, der mich auf meinen Idealbegriff geführt hat (Introduction
der franz. Schrift, S. 8-10)!”

108The references will be to the 1871 edition of Dirichlet’s Vorlesungen.

316



5.6 Role and status of ideals

does investigate orthodox number theoretical questions. Thus, the status
of ideal theory as a new grounding concept is clearly stated. But it also
shows that ideal theory has the important advantage to be a powerful tool
for further developments of number theory.

After the §163, Dedekind develops, for seven paragraphs (almost forty
pages), more considerations about ideal theory in relation with binary quadra-
tic forms. His theory does not stop, abruptly, after a few propositions stating
the similarity between arithmetic properties of ideals and arithmetic proper-
ties of rational integers, as the version reproduced by Noether in Dedekind’s
Gesammelte Werke suggests. Dedekind also shows how ideal theory is useful
and efficient for the study of decomposable forms, the theory of units, the
quadratic fields.

A notable example of what could be missed by overlooking the subse-
quent paragraphs in the Supplement X, is the definition of the concept of
Ordnung, which, unlike what has been said, is already given in that ver-
sion.109 In order to be more thorough, although without claims of exhaus-
tiveness, I will pursue the reading of the Xth Supplement a little further
than the §163. Some of the elements that could seem to be additions to the
second version are already present in the 1871 version. Their appearing in
the paragraphs on algebraic integers is a result of the reorganization of the
theory in 1876.

5.6.1.1 Equivalence of ideals

The §164 defines an equivalence relation between ideals. More precisely,
Dedekind gives rules to divide the collection of all the ideals of a field Ω
into classes: let E be the system of all principal ideals, which satisfies three
properties:

(i) Closure by multiplication.
(ii) If e and ee′ are in E, then e′ is in E.
(iii) For any ideal a, there exists an ideal m such that am is in E.
Two ideals a and a′ are called equivalent (äquivalent) if there exists an

ideal m for which am and a′m are in E. A class is the collection (Inbegriff ) of
every ideals equivalent to a determinate ideal. One can define the class of a
product of ideals as the product of the classes of each ideal and study some
properties of the product of classes (E is the unit for this product). Two
important results are that the number of classes of ideals – i.e., the number
of non-equivalent ideals – is finite, and the fact that every ideal a can be
transformed into a principal ideal by exponentiation.110 Dedekind is thus

109An Ordnung, defined below, is formally similar to a ring. It is not, however, used by
Dedekind as modern algebra uses rings. The role and status of Ordnung seem to change
from one version to another.

110At the end of §163, Dedekind also proved that an ideal can be transformed into a
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defining, for ideals, relations comparable to congruences, in order to obtain
a notion of class for ideals comparable to that of class for numbers. He
then (once again) transfers, or translates, familiar ideas of number theory to
the level of ideals, with an approach reminiscent of the one used in his 1857
paper, in which he defined a new level of congruences with a double modulus.

Dedekind applies methods similar to those he used for numbers to sys-
tems of numbers conceived as objects in themselves. Apparently without
restrictions, he manipulates infinite systems of systems – in fact infinite sys-
tems of infinite systems – in the same way that he manipulated systems of
numbers. It seems that, for Dedekind, having well-defined notions of divi-
sion and multiplication for ideals allows to extend the idea that guided the
definition of these systems, i.e., to collect elements satisfying a condition of
closure by binary operations. Hence, providing that one (doesn’t have any
problem with completed infinity and) agrees to see ideals as an object per
se rather than an aggregate of things (which is Dedekind’s case), it becomes
possible to consider a collection of ideals, defined by a condition of closure
by multiplication and division.

The subsequent paragraphs illustrate the practical aspect of Dedekind’s
ideal theory. Ideals are not valuable only as a rigorous and general means
to prove the unique factorization theorem for algebraic integers, but also for
their fruitfulness and the fact that they can provide easier, more efficient
methods for higher number theory (e.g., for the decomposition of forms).
This was a point that Kummer had noticed himself, when he first introduced
ideal factors, but he never pursued this path. Edwards explains that

[a]lready in his first publication ([Kummer, 1846]) on the theory
of “ideal complex numbers”, Kummer spoke of generalizing the
theory to “complex numbers of the form x + y

√
D and of the

relation of this theory to Gauss’s very intriguing and important
theory of composition of binary quadratic forms. In his later
work he never returned to this subject, but he did generalize
the theory in other ways; he gave a complete theory of ideal
complex numbers for cyclotomic integers in the case where 2
is not a prime ([Kummer, 1856]), and in his chef d’oeuvre, the
proof of the higher reciprocity law for regular prime exponents
[Kummer, 1859], he developed the theory for extensions of the
cyclotomic integers obtained by the adjunction of a λth root of
a cyclotomic integer. ([Edwards, 1980], 328)

Dedekind explains in §165, that the theory of ideals of a field Ω is immedi-
ately related to the theory of decomposable forms corresponding to Ω.

principal ideal through the multiplication by the appropriate ideal.
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The theory of the ideals of a field Ω is immediately connected
together with the theory of the decomposable forms which cor-
respond to the same field. We restrict ourselves, thereupon, to
indicate the main features of this connection.111 ([Dedekind,
1871], 465, my translation)

Dedekind, for lack of space, only sketches the outlines of this relation, but
still gives a first grasp of how the study of forms can be eased by the use of
ideal theory.

For the general case of quadratic forms, Dedekind explains that it is
“convenient” (zweckmässig) to extend, to broaden (erweitern) the concept
of ideal. The “extension” of the concept of ideal consists in the following.
Let a be a system of integers α of Ω such that

(i) a is closed by addition, subtraction and multiplication;
(ii) there exists n (linearly) independent numbers in a, which is the

equivalent to: every number in Ω can be transformed in a number of a
through multiplication by a non-zero rational number.

Among the systems satisfying these conditions, the most important one is
the system of all the numbers which “through multiplication by all numbers
of the ideal a are transformed in numbers of the same ideal a.” This system
is an ideal which contains the number 1 and is called “order of a” (Ordnung
von a) or “unit ideal” (Einheitideal) for the numbers it contains satisfy
Dirichlet’s theory of units. Although formally equivalent to our modern
concept of ring, the notion of Ordnung has little in common with it: neither
its genesis, nor its use or its role or even its relation with ideals or fields
are the same. The Ordnung, in 1871, is essentially a refocus of the domain
in which Dedekind works for the study of binary quadratic forms. What is
fundamental in Dedekind’s reflection is the distinction of several different
Ordnungen and the immediate understanding that the one that matters is
the Ordnung of all the integers of the field. But Dedekind is very clear,
here, that what is interesting is not the “general theory of ideals” but the
composition of forms, in the lines of Dirichlet’s works.

My point, here, is not to enter the subtleties of the “equivalence” between
forms and ideals of Ω, but to underline the use of ideal theory to develop the
study of composition forms. In fact, ideal theory is clearly embodied in the
arithmetical investigations that presided at its birth. It is also used, notably,
to study Dirichlet’s theory of units. Recall that Dedekind did claim, in the
preface of the book, that his new theory was here to help shed light “from a
higher standpoint” on the subject matter of the Vorlesungen. Considering
how rich Dirichlet’s Vorlesungen are, it seems that having proved that the

111“Die Theorie der Ideale eines Körpers Ω hängt unmittelbar zusammen mit der Theorie
der zerlegbaren Formen welche demselben Körper entsprechen; wir beschränken uns hier
darauf, diesen Zusammenhang in seinen Grundzügen anzudeuten.”
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laws of divisibility of algebraic numbers would not suffice to provide, by
itself, the said light from a higher standpoint. In fact, Dedekind is putting a
lot of effort into showing the fruitfulness (or potential fruitfulness) of ideal
theory for number theoretical researches.

5.6.2 Auxiliary theories

Ideal theory, presented as a new way to ground the theory of algebraic
integers, is an independent, “invariant” theory (the individual nature of the
elements do not enter into account) and, as module theory, can be applied in
different areas of mathematics. In algebraic number theory, as in algebraic
function theory, ideals are not the subject of study for Dedekind, but a means
to study the arithmetic of algebraic integers or functions. Ideals should allow
to develop number theory or a sound basis for the Riemann surface. It is
an auxiliary theory which founds the theory of algebraic numbers.

As Corry brings out, it seems that Dedekind makes a sharp distinction
between groups (or later modules, ideals) and fields of numbers: groups
are part of a more general (formal) theory and susceptible to be applied in
diverse contexts. For Corry, this denotes “different conceptual levels of refer-
ence” and an important conceptual difference between the concepts studied
(e.g., domains of numbers) and the tools used for it (e.g., groups). Indeed,
on one hand, as we saw in the part on Algebraische Funktionen and as will
be clear in the paragraphs below, there is an important contrast between
domains (fields) of numbers and groups (or modules, ideals). Domains of
numbers or functions are a framework for the study of their elements, while
groups, modules or ideals are part of auxiliary theories, which can be, under
certain conditions, applied in a certain number of different mathematical
areas. On the other hand, as underlined by Corry,

the questions raised by Dedekind about the [domains of numbers]
concern properties of their elements, his questions about groups
concern the groups themselves, seen as autonomous mathemati-
cal entities, rather than their elements. ([Corry, 2004b], 81)

This distinction is a very consistent part of Dedekind’s writings.
Group theory and module theory are two additional examples of “auxil-

iary theories”, and are explicitly (and even more so in the following versions
of algebraic number theory) presented as independent theories susceptible
to be applied in many different areas of mathematics and which are, in fact,
essentially interesting for the new possibilities of proofs and of further de-
velopments provided. Remember that at the end of the paragraph about
groups, in the 1856-58 lectures on higher algebra, Dedekind concludes by
explaining how the fact that the researches don’t take the individual nature
of the elements allows for general results, which are embedded in a theory
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of larger scope (see the quote p. 250). Modules, in 1871, are presented in
the same way:

we now interpose some very general observations. This separate
inquiry will be of great use to us in our subsequent topic of study,
as well as for many others.112 ([Dedekind, 1871], 30)

In 1877, Dedekind explicitly states that module theory has been adapted to
the specific number theoretical research in which it is used:

The researches in this first chapter have been expounded in a
special form suited to our goal, but it is clear that they do not
cease to be true when the Greek letters denote not only num-
bers, but any objects of study, any two of which α, β produce a
determinate third element γ = α + β of the same type, under a
commutative and uniformly invertible operation (composition),
taking the place of addition.113 ([Dedekind, 1876-1877], 82)

As we saw in the first part of this dissertation, module and ideal theories
are still playing this role in 1882. More importantly, these auxiliary theories
are never developed for their own sake.

We also saw that ideals and modules can be transferred to algebraic func-
tion theory and used in a similar way, but that this possibility is not taken
as self-evident. All the results are proved again in the new framework, high-
lighting how these auxiliary theories are used embedded in a certain math-
ematical context. This stresses the localized aspect of Dedekind’s approach,
that is, the development of conceptual arsenals in determinate frameworks,
and whose result is an increase of the uniformity of treatment in the theory
that constitutes the said framework. In order to obtain a theory valid for
any relevant element, for example any algebraic number in a finite field Ω,
Dedekind develops the theory on the basis of tools defined for uninterpreted
elements114 and which are developed as injected in the theory, so as to serve
its development. The core idea, then, is the importance to identify the ap-
propriate basic tools and concepts to develop a theory.

112“schalten wir hier eine sehr allgemeine Betrachtung ein, welche für die nachfolgenden,
sowie für viele andere, unserem Gegenstande fremde Untersuchungen von grossem Nutzen
ist.”

113“Les recherches dans cette première Section ont été exposées sous la forme spéciale
qui répond à notre but, mais il est clair qu’elles ne cessent en rien d’être vraies, quand les
lettres grecques désignent, non plus des nombres, mais des éléments quelconques, objets
de l’étude que l’on poursuit, dont deux quelconques α, β par une opération commutative
et uniformément inversible (composition), tenant la place de l’addition, produiront un
élément déterminé γ = α+ β de la même espèce.”

114Note that it is not the case for fields, which are collections of numbers which are
“precisely (. . . ) a system of numbers which reproduce themselves by the four simplest
rational operations of arithmetic.”
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Ideals are grounding the theory of algebraic integers in the sense that
everything can be deduced from ideals. The idea that a (more) general (aux-
iliary) theory can be used to provide a basis and tools for the development
of a specific theory is widely used in Dedekind’s works. This is particularly
striking with the use of ideals to develop the theories of algebraic numbers
and algebraic functions, and can be seen in the use of sets and mappings for
the definition of natural numbers.

Interestingly, this approach appears, for Dedekind, to assure that the
investigated theory be developed following strict epistemological demands:
uniformity, rigor, no reference to Darstellungsformen, but also no introduc-
tion of external or “foreign” elements in the theory. A typical example of
“foreign elements” are geometrical considerations in non-geometrical con-
texts, such as function theory or the theory of real numbers. In particular,
the theory of algebraic functions is considered as developed “in its own
sphere” with the algebraic treatment based on ideal theory given.

To develop the investigated theory with such auxiliary theories should,
according to Dedekind, enable to elaborate the basic definitions as well as
the proofs of the theory with a greater rigor and a more uniform approach –
a point which we will consider in more details later. That particular aspect
becomes increasingly important in further works of Dedekind: subsequent
versions of algebraic integer theory are developed to follow the epistemolog-
ical values more closely, and the 1882 paper with Weber is entirely designed
to provide a satisfactory definition of the point of a Riemann surface and
the related basic notions.

5.7 Remarks on the reception and criticisms
If Dedekind’s theory of ideals has now been more than widely accepted, the
reception of his works was rather fresh, when there was any reception at
all.115 Dedekind did not publish any important work before 1870,116 and
an actual, more widely spread, reception of Dedekind’s work only starts
around 1880. Most of the criticisms, then and now, are focused on the
set-theoretical, infinitist (and non-constructivist) aspects of Dedekind’s ap-
proach.117

Edwards explains that

[t]he familiarity of the set-theoretic approach today should not
obscure the fact that Dedekind’s approach was a major departure

115Even Frobenius, with whom Dedekind had a long and very fruitful correspondence,
said, in 1893, that Dedekind was unnecessarily visiting “too abstract corners.”

116Recall what Clebsch said about Dedekind, in 1868: “[I]t will not be easy to find
somebody suitable who has, in the same time, accomplished something from a scientific
point of view (among which I can, unfortunately, not count Dedekind).”

117I will say more about Dedekind’s ‘methodological’ choices in the next chapter.
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from established practice at the time. At a time when the notion
of a completed infinity was far from uncontroversial, it must have
been jarring to many of his readers to have Dedekind define his
basic concept, his Grundbegriff, the ideal, to be an infinite set
(or system) without any indication at all as to how that set may
be generated or described. ([Edwards, 1980], 348)

Dedekind’s decision to publish his theory as a supplement of Dirichlet’s
Vorlesungen was motivated by the desire to give his work a wider audience.
However, as was suggested by Edwards, this might have been a strategic
mistake from Dedekind:

The location of this sophisticated, demanding, and highly orig-
inal material as the very last item in a book which is for the
most part an expository and rather elementary account of clas-
sical number theory might be expected to have a discouraging
effect. Inexpert readers would probably not get to the end of
the book, and experts would probably not expect to find impor-
tant new material in such a place and therefore would not look.
([Edwards, 1980], 349)

Dedekind’s Xth Supplement, and its subsequent versions, are indeed more
research works than “lessons”. Another point that Dedekind seems to have
overlooked are the difficulties inherent to the set-theoretical approach adop-
ted. The contrast with the usual mathematical practices in the 19th century,
especially the use of actual infinities, renders his work all the more difficult
for his potential readers.

For the lack of immediate reception of his algebraic number theory,
Dedekind blames the exposition of the theory. In 1876, in a letter to Rudolf
Lipschitz, who offered to publish his theory of algebraic numbers in the
Bulletin des Sciences Mathématiques et Astronomiques, he wrote that he
suspected the readers were “deterred” by the “excessive brevity and terse-
ness” of it and, before Lipschitz’s proposal, started to work on a completely
reshaped version. Dedekind considers the new version to be essentially a
change of presentation, offering more details and “a somewhat improved
form of the essential foundation” (i.e., the theory of ideals in the field Ω).
As we will see later, the second version of his work is focused on divisibility
laws of algebraic integers and differs in fact rather significantly from the
1871 one.

Kummer rejected completely Dedekind’s works, as did Kronecker, creat-
ing a difficult context for the reception of Dedekind’s works. To Lipschitz,
Dedekind expressed his happiness to be read:

Your letter brought me great and unexpected joy, since for years
I had more or less given up hope of interesting anybody in my
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general theory of ideals. With the exception of Professor H.
Weber in Königsberg, with whom I have worked closely as editor
of the forthcoming collected works of Riemann, and who has
expressed his intention to acquaint himself with this theory, you
are the first, not merely to show interest in the subject, but
also in such a practical way, that it revives hope that my work
may not have been in vain. I thought that the inclusion of this
investigation in Dirichlet’s Zahlentheorie would be the best way
to attract a wider circle of mathematicians to the field, but little
by little I have become convinced that the presentation itself is
to blame for the failure of this plan. (Translated in [Stillwell,
1996], 48-49.)

Dedekind related his adoption of infinite sets conceived as “wholes” to
Gauss’s notion of congruence class. However, unlike Gauss (and except for
[Dedekind, 1857]), he did not work with a representative of the class that
would avoid the assumption of complete infinities. Rather, Dedekind works
directly with the systems themselves. Dedekind’s infinitary set-theoretical
methods were considered too abstract if not altogether unacceptable by
many of his contemporaries. This is, of course, notably Kronecker’s posi-
tion, who considers Dedekind’s works too abstract and his terminology too
difficult to understand. In 1880, Kronecker wrote the report for Dedekind’s
nomination at the Berlin Akademie der Wissenschaften, underlining the
importance of Dedekind’s edition of Gauss’s and Riemann’s works and of
Dirichlet’s lectures on number theory. He also considered that Dedekind’s
works in algebraic number theory is what justified his entry at the Akademie,
despite the fact that the methods chosen made the work difficult to judge.118

As underlined by Dugac, Dedekind had been active for almost thirty years
and while he entered Göttingen Akademie in 1862, his nomination at the
Berlin Akademie der Wissenschaften came rather late in his career. It is
especially late compared to mathematicians of the same generation, who
entered the Akademie ten to twenty years before he did: Riemann in 1859,
Kronecker in 1861, Heine in 1863, Clebsch in 1868, Lipschitz in 1872.

5.7.1 Later criticisms

Some later mathematicians strongly criticized Dedekind’s approach as well.
André Weil was notably a strong advocate of Kronecker’s approach. Her-
mann Weyl, in his Algebraic theory of numbers, explicitly states his pref-

118Kronecker also claims that he obtained all these results long before Dedekind. For
more on the dispute of priority between Kronecker and Dedekind, see [Dugac, 1976b], 73-74
and [Hawkins, 2008]. Note that Kronecker did not mention Stetigkeit in the report, which
shouldn’t come as a surprise, since he rejected irrational numbers as well as infinitary
methods.
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erence for Kronecker’s approach. In a paragraph entitled “Our disbelief in
ideals”, he explains that

The notion [of ideal] was first introduced by Dedekind for the
arithmetics of algebraic number fields. Dedekind substituted for
a divisor A the ideal of the integers divisible by A e.g, in the
ring of ordinary integers, [he replaces] the divisor 3 by the ideal
of numbers

. . . ,−9,−6,−3, 0, 3, 6, 9, . . .
Instead of saying that α is divisible by the divisor A, he says
that α is an element of the set or ideal A. I prefer to stick to the
more suggestive divisor terminology. ([Weyl, 1940], 36)

He goes on, a couple of pages later, arguing that for his aim, namely “to
secure the law of unique decomposition” in primes for algebraic numbers, he
must “reject Dedekind’s notion of ideal as a universal solution” and adopt
“an axiomatic approach”:119

after setting down in the next section our axioms including the
law of unique decomposition, we shall endeavor to show that once
these axioms are granted in the ground field K, one can extend
the basic concepts of integers and divisors to any finite field
over K without invalidating the axioms. This is accomplished
by following Kroneker’s idea of adjoining indeterminates rather
than by Dedekind’s procedure. (ibid., 38)

For the sole purpose of studying divisibility of algebraic integers, Kronecker’s
and Dedekind’s theories are equivalent, and Weyl explains that bridges exist
between them. It is only a question of preference, then:

As both theories are actually equivalent one can dissent about
questions of convenience only. To my judgment the odds are here
definitely against Dedekind. (ibid., 75)

Two notable characteristics give the advantage to Kronecker’s approach.
The first, and most closely related to Dedekind’s infinitary set-theoretic
approach, is the finiteness of the methods:

Kronecker’s criterion of divisibility is one decidable by finite
means, while Dedekind’s criterion refers to the infinite set of all
possible integers. This has further awkward consequences. . . (ibid.,
67)

119Note that the “axiomatic method” is incidentally pointed out by Avigad as an es-
sential component of Dedekind’s methods. It is even pointed as one of the elements for
the efficiency and fruitfulness of Dedekind’s approach. Beyond a possible disagreement
between Weyl and Avigad about what the “axiomatic approach” is supposed to be, this
reveals a certain vagueness in the criterion itself. I will come back to Avigad’s analysis of
Dedekind’s “methodology” in the next chapter.
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And the second one is the greater generality of Kronecker’s divisor theory,
since for the criterion of divisibility “in Kronecker’s theory, the embedding
field (. . . ) is irrelevant for the definition.”

Outside of the scope of what can properly speaking said to be a “re-
ception” of Dedekind’s works, one of the harshest criticisms of Dedekind’s
approach comes from Harold Edwards, who claims, not far from Weyl’s
statements, that everything in Dedekind’s theory can be translated into
Kronecker’s divisor theory.120 And since everything done in Dedekind’s the-
ory of a algebraic numbers can be reformulated in finitistic ways, there is
no necessity for Dedekind’s methods. For Edwards, Dedekind’s choice to
use infinite sets is likely to be motivated by “something from analysis” ([Ed-
wards, 1983], 12), that is, by Dedekind’s definition of real numbers by means
of cuts. Edwards argues that because Dedekind was aware that his defini-
tion of irrational number could not be developed by finitistic, constructivist
methods, he probably chose to “fly in the face of the doctrine against com-
pleted infinities” rather than trying to develop a constructive approach for
his algebraic number theory.121

Edwards explains that replacing Kummer’s ideal factor p by the set of all
integers divisible by p amounts to replace “a very explicitly defined object
(in Dedekind’s view, too explicitly defined, because the definition involves a
particular representation) with a very vague one” ([Edwards, 1980], 348).

What kinds of “systems” of integers are to be allowed as ideals?
How are they to be described? Has one defined an ideal if the
determination of whether a particular integer belongs to it de-
pends on solving, say, the Goldbach conjecture? Dedekind does
not address these questions at all. (ibid., 348)

For Edwards, Dedekind’s methodological demands are not a sufficient ground
for the “revolutionary change” that ideals are, especially insofar as

[It] seems (. . . ) that Dedekind’s objection to ideal numbers was,
even at the outset, philosophical and aesthetic and did not stem
from any logical or practical difficulty with ideal complex num-
bers. (ibid., 348)

120As underlined by Avigad, in [Avigad, 2006], while this is true today, one can doubt
that Dedekind and Kronecker would indeed have had the tools to do so.

121Edwards’s rather uncharitable hypothesis seems, however, doubtful. Indeed, Dedekind
already used infinite sets in this lectures on Galois theory, in 1856-58. Moreover, Dedekind
did not take particular pride in his theory of irrational numbers. While he did consider it
as necessary to fill the lack of a rigorous definition for the linear continuum, he thought of
it as a simple, uncomplicated work, which many other mathematicians could have written
– and in fact, Cantor’s definition published the same year was, for him, as acceptable as
his own. See also [Ferreirós, 2008].
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For example, Edwards wonders122 why Dedekind prefers to use ideals, if
the fact that each ideal corresponds to an ideal factor is such a crucial
point. In fact, Dedekind’s concern about the correspondence between ideal
numbers and ideals shows that he is engaged in a generalization of Kummer’s
approach. For Dedekind, for the generalization to be acceptable, one has to
make sure that the restricted theory stays valid in the more general theory.

I will consider the reasons of Dedekind’s preference for ideals over an
approach closer to Kummer’s ideal factors in the next chapter. Avigad
([Avigad, 2006]) provided some hints on these matters, and I will propose
to deepen his reflection in the next chapter.

5.8 Conclusion. From ideal numbers to ideals to arith-
metic of ideals

I tried to show, in this chapter, that the idea on which ideal theory relies
is the transfer of ideal numbers’s properties to the “higher level” of ideals,
setting up the first elements of an arithmetic of ideals. But in 1871, unlike in
the 1877 and 1879 versions, Dedekind does not fully develop ideal theory as a
new level of arithmetic similar or analogous to rational arithmetic, he rather
transfers the properties characterizing ideal numbers to the level of ideals.
Dedekind, here, appears to be engaged in a generalization of Kummer’s
works, in which the core move is the objectification of ideals, in order to
work in the “higher level” of collections of numbers. The “analogy” with
rational number theory is however not clear.

According to Ferreirós, it was because of editorial imperatives, that
Dedekind’s theory was published under this form:

Due to the fact that the second edition of Dirichlet’s Vorlesun-
gen was scheduled for late 1870, and the notion of ideal was first
formulated in August of that year, he had to work under great
time pressure in developing his new ideas. It was impossible to
adapt the development of the theory to the set- theoretical char-
acteristics of its central notion, as his methodological preference
for a “pure” development of the theory demanded. ([Ferreirós,
2008], 111)

It is true that Dedekind complained a lot about editorial issues and lack
of time. However, we will see that his rewriting of his own theory implies
not a more set-theoretical approach but a more arithmetical treatment. In
addition, the justification for the new version of the theory is not about

122Edwards dissatisfaction with Dedekind’s theory increases with each subsequent ver-
sion, since the abstract set-theoretic methods only play a greater role in them. I will not
address the question of which version of the theory is “better”.
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“purity” but rather related to the desire to simplify it, notably by giving it
a more satisfying foundation.123

The epistemological requisites often expressed by Dedekind are, as it
should be clear, guiding the “Gedankengang” and the choices made for the
definition and treatment of ideals. A more accurate understanding of (what
Dedekind saw as) the epistemological advantages of ideal theory should be
gained by considering the uses of the theory, as well as the changes inflected
to it by Dedekind – especially insofar as they are considered as improve-
ments) I will suggest that this aspect of ideal theory, from 1871 to (1882
and) 1879 is linked to its relation with arithmetic.

123Note that “set theory” properly speaking did not exist by the 1870s. The closest to
it was Cantor’s works, which would certainly not have been of any use, here.
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Chapter 6

Towards a more arithmetical theory
of algebraic numbers?

We saw in the previous chapter how Dedekind introduced the notion of
ideal as a new ground for the theory of algebraic integers, and developed
ideal theory on the basis of the definition of notion of divisibility for ideals.
Dedekind’s 1871 algebraic integer theory proposes an extension of Kummer’s
ideal numbers in order to prove the general validity of divisibility laws for
algebraic integers, as part of investigations on the decomposition of binary
quadratic forms. In 1876-77 and 1879, he published a revised version of his
theory, in which while the essential ideas are similar, their articulation and
the treatment of certain parts of the theory change significantly. Dedekind’s
rewriting of his theory aimed at providing a clearer theory, in which the
basis would be laid more carefully, so that the reader could tame the new
theory with less difficulties. The most perspicuous change from the first
version of the theory to the second one is a profound restructuration. This
restructuration stresses the importance of ideals as objects of arithmetic.
From, Dedekind’s viewpoint, the subsequent versions of his ideal theory
are a reformulation: nothing fundamental as been changed in the theory
itself, it is a more detailed, more carefully unfolded version of the theory.
Incidentally, as we will see, it brings out, in 1877, the more elementary
arithmetical nature of the research.

In this chapter, I will proceed in three times. In the first section, I will
propose to investigate in more detail the reasons that, for Dedekind, justi-
fied the pride of place of ideal theory against Kummer’s ideal numbers and
argue that the possibility to define them as arithmetical elements for which
rational operations can be defined is a decisive property. In the second sec-
tion, I will give an analysis in more details of the 1877 version of the theory
of algebraic integers, in particular as regards the arithmetical relationships
defined between ideals and the endeavors to develop a theory of ideals fol-
lowing the same lines as elementary rational number theory. For this, the
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study of the 1877 and 1879 version of the theory will reveal to be more than
useful, insofar as it relies more deeply on elementary arithmetic and exhibits
a clear desire to develop ideal theory analogously or similarly to elementary
rational number theory. This will be the focus of my last section.

6.1 Ideals and arithmetic of ideals

So as to understand the ideals’ pride of place for Dedekind, I will start from
Avigad’s reflections in [Avigad, 2006] about the definition of ideals, and try
to clarify some specific points. In particular, I will consider the question of
the “objectification” of ideals, that is, the consideration of ideals as objects
in themselves, as wholes rather than as aggregates. Where Avigad bases his
analysis of introduction of ideals on the idea of “axiomatic and set-theoretic
methods”, my goal will be to understand the gains of such an objectification
without resorting to categories external to Dedekind’s writings. This will
lead me to consider how ideal theory is developed and how ideals are used
in algebraic number theory.

The definition using necessary and sufficient conditions is, as stated by
Dedekind, a central feature of ideals insofar as it allows to avoid considering
anything else than the system of elements themselves. In particular, this
method of definition avoids relating ideals to ideal factors or to arbitrary
Darstellungsformen. This point is essential for the possibility to consider
ideals “as wholes” and for the set up of arithmetical relationships between
ideals. Indeed, the operations should, just as the definition itself, allow
to develop the theory as an “independent” theory and in an “invariant”
way. Considering what can be done with ideals-as-objects, I will propose
that the definition of ideals as arithmetical objects and the possibility to
define arithmetical operations for ideals play an essential role. A complete
understanding of the concept of ideal can only be achieved by analyzing the
ideals’s role in the theory of algebraic integers and not by relying solely on
their definition.

6.1.1 A note about Avigad’s article

In his 2006 paper, “Methodology and metaphysics in the development of
Dedekind’s theory of ideals”, Avigad uses Dedekind as a historical case study
to investigate questions about mathematical understanding: How does one
increase our understanding of a theorem or a proof? How can one identify
the “right” definition? What is the informative value of a certain method of
definition or proof, and what makes it better than another one? Dedekind’s
works are of particular interest for Avigad, because Dedekind’s approach
appears intricately tied with “general philosophical views and methodolog-
ical concerns” ([Avigad, 2006], 160) and has had a noticeable impact on
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mathematics and mathematical practice:

His work has certainly had a tangible effect on mathematics,
inaugurating practices that were to proliferate in the decades
that followed. These include the use of infinitary, set-theoretic
language; the use of non-constructive reasoning; axiomatic and
algebraic characterization of structures, and a focus on properties
that can be expressed in terms of mappings between them; the
use of particular algebraic structures, like modules, fields, ideals,
and lattices; and uses of algebraic mainstays like equivalence
relations and quotient structures. (ibid., 160)

Avigad is interested in Dedekind’s “methodology”, that is in “more dis-
tinctly mathematical concerns (. . . ) and the mathematical ramifications
of the methods” versus more “metaphysical” preoccupations regarding the
mathematical ontology.

Avigad’s analysis of the development of ideal theory is focused on the
“set-theoretical” and “axiomatic” aspects of Dedekind’s approach. The idea
advanced by Avigad is that the “axiomatic” and “set-theoretic” approach
developed by Dedekind, which Avigad matches broadly with the “concep-
tual approach”, holds the key to the resolution of the difficulties or defects of
Kummer’s ideal numbers, in particular because it allows to consider ideals
as objects in themselves, to objectify ideals. Avigad lists four salient charac-
teristics of set-theoretic mathematics: (1) predicates and properties can be
treated as objects; (2) uniform definitions of mathematical domains can be
given with reference to “arbitrary” elements and mappings; (3) the results
obtained “hold more generally”, are independent of “manner of representing
elements” and can be applied to particular cases; (4) they suppress “tedious
calculational information” (ibid., 185-186). Avigad furthermore identifies the
benefits of an axiomatic analysis as being: (1′) results stated with a greater
generality; (2′) suggestions of “appropriate generalizations” and “appropri-
ate definitions”; (3′) possibility to transfer prior results and/or adapt prior
proofs in a new setting; (4′) the presentation is simplified “by removing
irrelevant distractions”.

A point that Avigad does not seem to notice is that if these elements
appear to fit Dedekind’s approach, it is because he proposed to set up what
he calls a “higher level” in order to provide general, uniform definitions
answering simplicity and rigor requirements and following his desire to get
rid of long tedious computations.

It seems that Avigad’s statements should be moderated. First, these
“new practices” were emerging before Dedekind’s works: non-constructive
reasonings can notably be found in Dirichlet’s and Riemann’s works, and
infinitary set-theoretic language is also used by Riemann. Secondly, the
“tangible effect” was far from an immediate one – in both meanings of the
term: it took a long time, and it took the mediation of Hilbert, Noether
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and others early 20th century algebraists. Thirdly, the ideas alluded to by
Avigad do not all appear as clearly and explicitly as he is suggesting, and
in particular not with the level of generality suggested – especially as far as
“algebraic structures” are concerned.

For Avigad, the after-effects of Dedekind’s innovations in algebraic num-
ber theory are so important, “so far-reaching”, that it is difficult to explain
them in any other way than coming from “a fundamentally different con-
ception of what it means to do mathematics.” But Avigad doesn’t seem to
acknowledge that contemporary mathematics does not use Dedekind’s con-
cepts as he introduced them. On one hand, Dedekind never introduced
abstract ideals, fields, modules, etc., but always ideals (or fields or mod-
ules) of numbers. He never developed field theory or ideal theory for their
own sake, they were tools for algebraic number or algebraic function the-
ories. On the other hand, the peculiar arithmetical development proposed
by Dedekind shows, as I hope to make clear, an additional difference with
abstract algebra.

In fact, Avigad’s analysis seems to be investigating the consequences of
Dedekind’s works in Dedekind’s works themselves: trying to explain the
efficiency of Dedekind’s “methodology”, he puts the consequences in place
of the causes.1

The reference to an “axiomatic method”, in Avigad’s paper, designates
essentially the analysis of a mathematical problem or notion so as to iden-
tify necessary and sufficient conditions to solve the problem or define the
notion. This approach is considered, following Hilbert, as axiomatic. It is
clear that Dedekind does put a lot of effort in identifying and isolating the
“essential characteristics” of concepts, properties or laws which are mutually
independent and form the minimal necessary conceptual basis for a concept.
This approach will be typical of the (Hilbertian) “axiomatic method” that
Avigad is considering2 and which is guided by the following principle:

One should take great care to identify the axiomatic features
of the domain in question that are in play at each stage of the
development of a theory. ([Avigad, 2006], p. 181)

1To be clear, Avigad’s analysis is certainly of great philosophical significance.
Dedekind’s works, at the turning-point of fundamental changes in mathematics, give the
possibility to see, and to a certain extent to understand, the profits and losses induced
by the changes in the practices and the conception in mathematics, as well as the rea-
sons for these changes. But if the focus is to be on understanding the introduction, by
Dedekind, of what Avigad considers to be axiomatic and set-theoretic methods in algebraic
number theory, then looking in the direction of future consequences presents the risk of
retrospectively projecting on Dedekind, conceptions which might not have been his own.

2And in fact, Sieg has argued in several places that Dedekind was to some extent a
precursor of Hilbert on these matters – but it is not the point, here.
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Dedekind almost never uses the word “axiom”. He does, however, make
a point in identifying the “characteristic properties” of concepts which he
explicitly states as a definition by necessary and sufficient conditions. The
emergence of the “axiomatic approach” is sensible in the ‘modernity’ of
Dedekind’s approach here. This being said, the analysis of a mathematical
situation is not inherent to the (modern) “conceptual approach”, and can
be spotted in Kronecker’s writings as well:

The extremely simple principles on which Gauss’s method [of
classification of binary quadratic forms] rests can not only be
applied in the place mentioned above, but also in many others
and, in particular, already in the most elementary parts of num-
ber theory. This fact suggests, and it is easy to convince oneself
of it, that these principles belong to a more general and more
abstract realm of ideas. It seems therefore to be appropriate
to free the further development of the latter from all inessential
restrictions, so that one is then spared from having to repeat
the same argument in the different cases of application. The ad-
vantage comes to the fore already in the development itself, and
the presentation (if it is given in the most general way possible)
thereby gains in simplicity and clarity, since it clearly exhibits
what alone is essential. (in [Kronecker, 1899] I, 274-275, transl.
in [Schlimm, 2005] and quoted in [Avigad, 2006], 168)

It is prompted by a desire of clarity and exhaustiveness that Dedekind devel-
ops his approach, which will later be extended in two directions: Hilbertian
axiomatics and modern algebra. The underlying ‘modernity’ of Dedekind’s
approach, palpable in his influence on Hilbert’s and Noether’s works, is not
to be discussed (or underestimated) here. Rather, I would like to under-
line that the said modernity should not be justified or explained by using
properties of methods and conceptions which constitute the core of the reap-
propriation of Dedekind’s ideas by later authors.

Avigad’s explanation is made in his own categories, as a case study for
philosophy of mathematics, while what I hope to achieve is an explanation
strictly relevant to the framework of Dedekind’s works. Thus, on the one
hand, I do not have the ambition of providing (more) general philosophical
considerations which might apply outside of a Dedekindian framework; and
on the other hand, it will be important for my purpose to resist the temp-
tation to see Dedekind’s “modernity” as meaning that he is one of our own,
thus using today epistemological categories to understand the articulations
and motivations of his mathematical and methodological choices.

Before considering the objectification of ideals, I would like to clarify
some terminology matters. Avigad makes a distinction between generality
and uniformity:
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Generality: the theory should apply to rings of integers beyond
the ordinary integers, Gaussian integers, cyclotomic integers, and
rings of quadratic integers that were useful to Euler.
Uniformity: one theory should cover all these cases, and, indeed,
one definition of the ideal divisors should account for all the
ideal divisors in a given ring of integers. Furthermore, as much
as possible, proofs should cover all situations uniformly, without
case distinctions. (ibid., 171)

I will rather use a distinction between generalization and uniformity (as a
certain form of generality). To differentiate in this way allows to highlight
that aiming for a general theory (in Avigad’s first sense) is part of a process,
an important point to understand more precisely Dedekind’s works. It shows
how Dedekind seems to place his own contribution to the developments of
mathematics. Generalization does not require uniformity: the approach us-
ing higher congruences, which Dedekind gave up, was an attempt to the
same generalization as ideal theory – that of Kummer’s results. Uniformity
is a different preoccupation, concerned with the choices made to elaborate
definitions and methods of proof, and is linked to epistemological values
guiding his conception of what (good) mathematics should be. The require-
ment for uniformity runs through all of Dedekind’s works: uniformity is a
requirement for the definition of natural numbers as well, for example.

6.1.2 The definition of ideals and ideals as objects
The definition of ideals plays a crucial role in the set up of the theory, since
they are presented as grounding concepts of the theory of algebraic numbers,
that is, all results are derived from the notion of ideals. As was mentioned
before, Dedekind was keenly aware of the role played by definitions in shap-
ing a theory, and carefully chose which basic concept(s) to use, and how to
present their definition(s). I will suggest that arithmetic being arithmetical
elements was a crucial point for Dedekind.

Dedekind’s endeavours to satisfy requisites of rigor, uniformity, or even
simplicity, are often expressed out loud by Dedekind, especially as regards
his attempts to generalize Kummer’s theory. As I have mentioned, Dedekind
explains in the introduction of the second version of the algebraic number
theory, his first attempts using higher congruences were unsuccessful (see
the quotation on p. 56). The invention of the concept of ideal, Dedekind
explains, is the key element of his ability to propose a “general exceptionless
theory” of algebraic integers. Indeed, for him, the greatest advantage of the
concept of ideal is “its extreme simplicity”: it does not require any creation
of new entities (such as ideal factors), but only the consideration of “a system
of actual numbers”.
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According to Edwards, Dedekind is mistaken in pointing out the intro-
duction of ideals as the essential unlocking moment for the developments
of the theory. For him, the key moment is, in fact, the identification of
algebraic integers as the new concept of integer, and all difficulties faced by
Dedekind were coming from this point. It is not clear whether Dedekind
had the concept of algebraic integer, when he tried to generalize Kummer’s
approach using higher congruences, but Dedekind never alluded to any dif-
ficulty coming from the definition of algebraic integers. Note that it also
seems unlikely that Dedekind, who attached such great importance to iden-
tifying the ground concepts of a theory and to proceeding step by step,
would have tried to generalize Kummer’s approach without a good idea of
the general concept of integer needed for it. He does however mention, at
several points, the importance of the concept of ideal for his approach, as
well as that of identifying the right domain of integers in which the laws of
divisibility should be proven (i.e., the ring of integers, which Dedekind calls
Ordnung). The quotation of Dedekind’s letter to Lipschitz (given on p. 341)
which Edwards uses to support his point seems to be, in fact, a reference to
the notion of Ordnung, which, as we will see, plays an important role in the
reformulation of the theory in 1877.

An essential part of Dedekind’s definition of ideals and development of
ideal theory is the consideration of infinite systems as united wholes. The use
of complete infinities was a contentious point for Dedekind’s contemporaries,
and often taken as a ground for a set-theoretic reading of his works. While it
is one of the most striking aspects of Dedekind’s approach, the use of infinite
sets is not something Dedekind comments upon very much. In fact, from his
standpoint, the use of infinite sets appears, in a way, like a rather natural
thing to do. We will see that one can understand, when reading Zahlen
and looking back at his previous algebraic works, that the consideration of
infinite sets is probably less a blind spot for Dedekind than it is related to
the operations of thought, as Ferreirós notices:

Dedekind’s acceptance of the infinite does not have the appear-
ance of a more or less ad hoc position (. . . ). It rather looks like
a deep-rooted conviction: infinite sets seemed to him perfectly
acceptable objects of thought, that involve no contradiction, and
that play a crucial role in mathematics. ([Ferreirós, 2008], 110-
111)

In the letter to Lipschitz quoted on p.44, Dedekind explains his use of
infinite sets in ideal theory. He explains the relation between his conception
of ideals and Gauss’s notion of class in the Disquisitiones Arithmeticae. As
Ferreirós underlines, Gauss did not use actual infinities, he even carefully
avoided them (by choosing a representative for classes)3 but that point does

3In a letter to Schumacher from 1831, referring to limits Gauss wrote that he “object[ed]
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not seem to bother Dedekind. In fact, the core point of Dedekind’s parallel
with Gauss’s method is not the actual infinity of collections, it is the act
of putting together all functions or numbers satisfying a property into a
collection that one subsequently considers “as one whole”, i.e., as a class or
a group or an ideal. The transfer to the “higher level” and the consideration
of systems as united wholes avoid the choice of one particular representative
– even if the choice is itself indifferent. As I have noted in the first chapter of
this dissertation, this remark about ideals is following Dedekind’s mention of
his own works as adopting an approach inspired by Riemann. We have seen
the influence of Riemann’s works on Dedekind’s ideas (see also [Ferreirós,
2008]). Using infinite systems seems to be an instance of Dedekind’s peculiar
way of joining Gauss’s and Riemann’s influences. Indeed, unlike Gauss,
Riemann accepted actual infinities – and in fact, the “class of algebraic
functions” is an infinite system.

In [Dedekind, 1894b], Dedekind explains that there are “impartial” rea-
sons to prefer his ideal theory, and mentions Gauss again by quoting Gauss’s
famous remark about Waring and Wilson’s difficulties to prove a theorem
about divisibility of numbers (see p. 1.1.1). While the authors, Gauss wrote,
thought that it was because “no notation can be devised to express a prime
number”, Gauss states that the difficulties were caused by their focusing on
the wrong problem. For him such “truths” must be “ be drawn out of no-
tions [notionibus] not out of notations.” Dedekind considered this statement
to be “a great scientific thought”:

the decision for the internal in contrast to the external. This
contrast also recurs in mathematics in almost all areas; it suffices
to think of function theory, and Riemann’s definition of functions
through internal characteristic qualities, from which the external
forms of representation flow with necessity. ([Dedekind, 1894b],
54–55, partially translated in [Tappenden, 2005a], 8-9)

Dedekind saw, in his approach, the best way to focus on “the internal in
contrast to the external”, because it did not involve indeterminate variables
nor any external use or explicit representations: it only used systems of
numbers.

We saw that in order to generalize Kummer’s ideal factors, Dedekind
chooses to consider the system of all integers divisible by these factors. Avi-
gad explains this point as being founded on the following remark:

[i]n a sense, replacing the predicates Pα [“is divisible by p”] by
the systems Sα of integers that satisfy them is mathematically

above all the use of an infinite magnitude as if it were complete, which is never permitted in
mathematics. The infinite is only a façon de parler, when we are properly speaking about
limits that certain relations approach as much as one wishes, while others are allowed to
increase without limit.” ([Gauss, 1863-1874, 1900-1917], VIII, 216)
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inert. All the effects that mathematical objects can have on
mathematical discourse are mediated by the roles they play in
assertions; so if all references to ideal divisors are expressed in
terms of the property of dividing an element of the ring, it makes
little difference as to whether one takes ‘x has property Pα’ or
‘x is an element of the set Sα’ to stand duty for ‘α divides x.’
([Avigad, 2006], 172-173)

While Dedekind did not express the “mathematical inertia” in these modern
set-theoretic terms, he did take the time to explain, in the introduction of
the 1877 version of ideal theory, why it was mathematically equivalent to
consider ideals rather than ideal numbers. The desire to provide a definition
“exact and covering all the ideal numbers that must be introduced in a par-
ticular numerical domain o” ([Dedekind, 1876-1877], transl. slightly altered,
57) is explicit and leads to the re-modeling of Kummer’s initial idea.

However, recall that Dedekind insisted, in his Bunte Bemerkungen, that
ideals as “the system of numbers divisible by a factor p” does not constitute
the essential, definitional property of ideals. Rather, it is the step of the
“Gedankengang” towards ideals defined as sets closed by certain operations.
To define ideals as the system of numbers divisible by a factor p, even
if it is done for any such p, would attach the definition to a particular
number. Dedekind was able to prove that the properties of closure (see
p. 300) are necessary and sufficient conditions for a system to be an ideal.
This definition is much preferable because it does not require “the admission
of ideal numbers.”

We know that in 1871, and in later versions of the theory of algebraic
integers, Dedekind wants a theory of ideals that can yield an independent,
more general (covering all cases) and more rigorous study of divisibility for
algebraic integers. For Dedekind, in order to assure a uniform and rig-
orous approach, one has to focus on the “characteristic properties” of the
notions investigated. This is a rather vague claim, which Avigad identifies
as “Dedekind’s emphasis on conceptual reasoning”. For Avigad, it consti-
tutes the core of what he calls the “methodology” developed by Dedekind:
choices in the elaboration of definitions of concepts and methods of proofs
which are guided by epistemological requisites. What exactly do these vague
methodological claims mean?

In [Dedekind, 1877] and [Dedekind, 1878], Dedekind gives details, in a
retrospective explanation and justification of his methods, about how and
why he came to introduce ideals. One can find the usual statements about
the importance to try, as much as possible, to avoid taking any explicit rep-
resentations (notations) or computations – especially insofar as they should
require to chose a certain variable – as the basis of the definitions. Nei-
ther notations nor algorithms are, for Dedekind, giving any insight on the
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essential, characteristic properties of the notions. They are rather hiding
them. This is an important reason for not pursuing the approach using
higher congruences, which Dedekind tried first, as I have mentioned earlier.
This approach was explicitly based on a definite equation, and thus hiding
the possibility to define independent concepts. As Dedekind showed, ideals
and their divisibility can be defined in a way that is uniformly valid for any
field of algebraic numbers: to transfer the divisibility properties to ideals,
for example to define primality as a property of ideals, allows to study divis-
ibility laws without reference to a specific number or equation (see p. 263),
and in fact without reference to the domain of numbers itself. This allows
to satisfy the other important requisite, from Dedekind’s viewpoint: by not
taking into consideration the particular properties of domains of numbers,
one can have a definition which encompasses all the cases possible, and in
particular which avoids the distinctions of several cases (a drawback that the
approach with higher congruences did not avoid). Such a definition allows
to see, or to better understand, what is, indeed, essential to the concept de-
fined, rather than some kind of second effect of a particular representation
or algorithm.4

In his reflection about the appropriate general definition of ideal num-
bers, Dedekind makes it clear that the possibility to define their multipli-
cation is a decisive point. Dedekind observes that the definition of ideal
numbers is assured (i.e., it is necessary and sufficient to do so) by establish-
ing “once and for all the common characteristic of the properties A,B,C, . . .
that always, and only them, serve to introduce determinate ideal numbers.”5

For the multiplication of two ideal numbers, it is necessary and sufficient

to indicate generally how one can deduce from two of these prop-
erties A, B to which correspond two particular ideal numbers,
the property C corresponding to their product.6 (ibid., transl.
modified, 57)

For Dedekind, this “leads naturally” to consider the system of all numbers
divisible by a certain ideal factor:

Since such a characteristic property A serves to define, not an
ideal number itself, but only the divisibility of the numbers in o

4Another good example of this point is the definition of irrational numbers by means of
cuts: the cuts allow to characterize real numbers as elements of the linear continuum, and
because it is valid for all real numbers, it is, for Dedekind, a more essential characteristic
than their being, for example, logarithms or roots of equations.

5“il sera nécessaire et suffisant d’établir une fois pour toutes le caractère commun de
toutes les propriétés A,B,C, . . ., qui toujours, et elles seules, servent à l’introduction de
nombres idéaux déterminés”

6“d’indiquer généralement comment de deux de ces propriétés A, B auxquelles cor-
respondent deux nombres idéaux déterminés, on pourra déduire la propriété C qui doit
correspondre au produit de ces deux nombres idéaux.”
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by the ideal number, one is naturally led to consider the system
a of all these numbers α of the domain o which are divisible by
a particular ideal number.7 (ibid., transl. slightly altered, 58)

For “each particular ideal number there corresponds a particular ideal a”
(ibid.). Since the ideal contains all the numbers divisible by the correspond-
ing ideal factor, we have that “conversely the property A, i.e., the divisibility
of a number α by an ideal number, consists uniquely in that α belongs to the
corresponding ideal a” (ibid., 58, transl. modified). This equivalence allows
to consider, then, the ideals a, b, c in place of the properties A,B,C. Avoid-
ing any essential reference to a definite equation, the definition of ideals and
their multiplication given here is a uniform definition in the framework of
the theory investigated and meets Dedekind’s requirements. Because of the
standpoint adopted by Dedekind, the proof of the validity of the divisibility
laws given with ideal theory is valid for the ordinary integers, as well as
for Gaussian integers, cyclotomic integers, etc. – in fact, for any algebraic
integer.

Ideals allow, according to Dedekind, to eliminate the problems inher-
ent to the absence of a general definition for Kummer’s ideal numbers and
their multiplication. The fact that ideals are consider as wholes, rather than
aggregates of things, that is, as objects in their own right gives Dedekind
the possibility to define operations for these new objets, which is the move
that allows to solve, or at least bypass, the difficulties in Kummer’s ap-
proach. The set-theoretic definition of ideals does not solve the problems by
itself. Rather, the set up of an arithmetical framework allowing to develop
arithmetical methods of proofs do.

How do ideals solve the problems of Kummer’s approach? After an
analysis of the problem investigated and the properties of numbers consid-
ered and used, the elaboration of the new definition is made in several steps.
Firstly, Dedekind identifies the characteristic property common to all objects
considered (here, the divisibility by a certain factor p). Secondly, on this
basis, he elaborates a concept, the concept of ideal, that allows to express or
state these properties in a general, rigorous and contextually relevant way.
That is, the new concept should be a legitimate object of the theory investi-
gated (a number-theoretical object, in the case of algebraic number theory)
based upon non-external notions. This implies that it is preferably defined
on the basis of “earlier concepts” (i.e., logically and conceptually anterior
notions, sets, and arithmetical operations, in the case of ideals) intern to
the theory of numbers. And finally, Dedekind provides a definition for this

7“Comme une telle propriété caractéristique A sert à définir, non un nombre idéal lui-
même, mais seulement la divisibilité des nombres contenus dans o par un nombre idéal,
on est conduit naturellement à considérer l’ensemble a de tous ces nombres α du domaine
o qui sont divisibles par un nombre idéal déterminé.
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new concept that allows to develop consistent and fruitful methods of proof,
which reduces the length of computations. For ideals, the last requirement
is met with the definition of operations between ideals which allow to trans-
fer the computations from the level of numbers to the higher level of ideals.
This allows to hide away computations by reducing them to simpler ones:
computations between ideals which are similar to elementary number theory
(as I will develop in the next section). Let me now consider this aspect more
precisely.

6.1.3 Arithmetic of ideals

A property of ideals that has not been considered in the previous paragraph
is the definition of operations and the desire to define arithmetical elements.
The use of infinite collections allows to avoid introducing foreign elements.
Note that Dedekind does not use this strategy only to replace ideal numbers:
it is also the method adopted in Stetigkeit, in 1872, to define real numbers
and in manuscripts to define other extensions of the natural numbers (see
[Sieg and Schlimm, 2005] and [Schlimm, 2000]).

Dedekind is explicitly drawing links between the definition of ideal num-
bers in algebraic number theory and that of irrationals, in a lengthy footnote
to the paragraph of [Dedekind, 1876-1877] commented just above. In this
footnote, he comments on his chosen method by explaining that the de-
mands for a general and exact definition of all ideals numbers in the domain
of integers and their multiplication are “legitimate or even necessary” when
one “introduces or creates new arithmetic elements.” The introduction of
ideal numbers should be done following the same guidelines as that given
for real numbers which are:

As first demand, I reckon that arithmetic must be kept free from
intermixture with foreign elements, and for this reason I reject
the definition of real number as the ratio of two quantities of
the same kind. On the contrary, the definition or creation of
irrational number ought to be based on phenomena one can
already observe clearly in the domain R of rational numbers.
Secondly, one should demand that all real irrational numbers
be engendered simultaneously by a common definition, and not
successively as roots of equations, as logarithms, etc. Thirdly,
the definition should be of a kind which also permits a perfectly
clear definition of the calculations (addition, etc.) one needs to
make on the new numbers. (ibid., 57-58, footnote, transl. slightly
altered)

The parallel to real numbers suggests that the core demand of the approach
adopted to define ideals, which are to replace ideal numbers, is related to
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epistemological requirements regarding the definition of arithmetical ele-
ments. Dedekind’s requirements involve requisites of uniformity of the def-
inition, a certain kind of purity, and the demand that the operations of
arithmetic be considered as a indispensable part of the definition of these
“arithmetical elements”.

Once the definition for the (new) fundamental concept, here ideals, is
identified, the appropriate methods of proofs should be developed. The
possibility to develop such methods and to give proofs which are, like the
new definition, clear, uniform, and rigorous, is a good way to test whether
the concept chosen is, indeed, the right one. In the case of ideals, the
generalization of Kummer’s result became doable with the new concept,
but developing rigorous, acceptable proofs was not without considerable
difficulties, as Dedekind explains in the letter to Lipschitz from 29 April
1876:

only after inexpressible efforts that I succeeded in moving for-
ward step by step and finally filling all the gaps; I continually
had the feeling that I was hanging from a ladder, that I might
not succeed in reaching the next rung, and if I did not have be-
fore me now in published or written form my presentation of the
theory from that time it would give me great difficulty all over
again to put every little step of the proof together in the right
order so that the goal would truly be reached.8 ([Lipschitz and
al. 1986], 466, translated in [Edwards, 1980] 347-348)

When considering ideals as “wholes”, one can define operations between
them, in particular, a divisibility relation which will be essential for the
proofs. As we saw in 1871 (and in 1882), Dedekind sets up arithmetic op-
erations for ideals, shifting the study to the “higher level” of ideals. This
allows him to transfer all considerations about divisibility of algebraic in-
tegers, to the study of divisibility between ideals. Ideals, thus, provide in
the same time the possibility to define arithmetical objects with rigorously
defined operations (a necessity for any introduction of new arithmetical ele-
ments), and to work with, so to speak, actual objects, rather than Darstel-
lungsformen, a point underlined by Avigad. This is what Dedekind, in the
Bunte Bemerkungen, refers to as his approach being more “concrete” than
Kronecker’s formal algebraic methods.

8“Obgleich damals das zu erreichende Ziel stets klar vor mir lag, so ist es mir doch
erst nach wirklich unsäglichen Anstrengungen gelungen, Schritt für Schritt vorwärts zu
kommen und endlich jede Lücke auszufüllen; ich hatte fortwährend das Gefühl, an einer
Leiter zu hängen mit der Furcht, dass es mir nicht mehr gelingen würde, die folgende
Sprosse zu erreichen, und wenn ich meine damalige Darstellung dieser Beweise nicht
gedruckt oder geschrieben vor mir hätte, so würde es mir jetzt abermals eine grosse Mühe
machen, alle Beweismittelchen, jedes am rechten Orte wieder so zusammenzufügen, dass
das Ziel wirklich erreicht würde.”
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Hence, the development of ideal theory is made by defining, so to speak,
a new layer of arithmetic in the “higher level” – the arithmetic of ideals, sets
of numbers. At this higher level, in the new layer of arithmetic, Dedekind
can prove the validity of the laws of arithmetic for ideals by using solely
the notion of divisibility analogously to what one is used to do in rational
numbers theory. This allows him to prove the general validity of the laws
of arithmetic at the level of algebraic numbers, insofar as there is a one-to-
one correspondence between numbers and ideals. The divisibility between
ideals is thus said to be equivalent to or to “coincide with” the divisibility
between algebraic integers. It suffices, then, to prove the validity of laws
of divisibility for ideals (in the “higher layer”), so as to have proven them
for algebraic integers. Thus, ideals hide away long arduous computations
by replacing them with simple(r) ones, insofar as the arithmetic of ideals is
analogous to that of rational integers. But the analogy is not presupposed,
as it was with Kummer’s ideal numbers, it is proved as an integral part of
the theory. Rather than developing laborious proofs based on complicated
computations, Dedekind can unfold a very complex and rich theory by us-
ing, essentially, the “simplest principles of arithmetic”. The possibility to
treat ideals as arithmetical objects, that is, to define operations and study
divisibility properties of ideals, appears to be an essential point for their
pride of place.

This possibility is, however, not fully exploited in the 1871 version of the
theory. One can distinguish a subtle change in Dedekind’s idea of what ideals
could and should do, how ideals can and should be used in the second version.
Indeed, we saw in the previous chapter that ideals are introduced, in 1871, as
an extension of Kummer’s ideal numbers. They are, thus, studied following
the spirit of Kummer’s theory with divisibility conditions and effective tests
of divisibility – in particular, simple ideals, which play a crucial role in the
1871 version, are ideals formed by certain roots of congruences which provide
an effective divisibility test similar to Kummer’s.

Dedekind took the opportunity of Lipschitz’s invitation, in 1876, to pub-
lish his theory of algebraic integer in the Bulletin des Sciences Mathéma-
tiques et Astronomiques to propose a new version of his theory which, he
hoped, would resolve the lack of readership encountered by his 1871 theory.
Dedekind then proposed a completely reshaped version, in which a consid-
erable amount of developments are added: the links with Kummer’s ideal
numbers and the ideas preceding the introduction of the concept of ideal are
explained in detail and a numerical example is given; the theory of modules
and the essential ideas about fields of algebraic integers are developed and
detailed, making it possible for the reader to see more easily the inner artic-
ulation of the theory. More importantly, Dedekind proposes “a somewhat
improved form of the essential foundation”, that is, of the theory of ide-
als (in finitely generated fields of algebraic numbers). The improvements in
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question appear to reside in the restructuration which yields a more arith-
metical form of his argument: ideal theory is developed following the lines
of rational number theory.

The 1877 paper consists essentially in a rewriting of the §§159-163 in the
first version, dedicated to the divisibility properties of algebraic integers.
Recall that Dedekind considered the proof that the laws of divisibility of
algebraic integers are the same as that of rational integers to be, for the
beginner, “the biggest difficulty” to enter binary quadratic form theory. For
him, the “certainty that [the] general laws [of arithmetic] actually exist” is
essential to ease the readers’s way into the theory of binary quadratic forms.
In order to make this essential part of his work more approachable for the
readers, Dedekind takes many precautions so as to follow a path rigorously
analogous to elementary number theory.

When writing the second version of his theory, Dedekind is already well-
aware of the similarity between the divisibility laws of algebraic and rational
integers. The possibility to develop a completely analogous approach seems,
thus, justified by the knowledge – rigorously proved knowledge – that the
laws are, indeed, similar. The idea of a “rigorous analogy” with rational
number theory is not foreign to Dedekind. Unlike in 1857, though, the said
analogy is not considered as being obvious at all: the analogy is mathemat-
ically proved and the methods of proofs themselves are developed in a way
that makes the analogy all the more clear and convincing.

The treatment of ideal theory as an extension of rational number divis-
ibility per se is proposed only in the second version. For example, in 1871,
Dedekind characterized prime ideals on the basis of simple ideals, and with
theorems such as:

If ηρ ≡ 0 (mod p), then at least one of the two numbers η, ρ, is
divisible by p. ([Dedekind, 1871], 40)

While, as we will see, in 1877, the definition of prime ideals relies solely
on the idea that a prime ideal p is an ideal divisible only by the unit and
by itself, and on properties such as Euclid’s lemma. It seems, then, that
the process of rewriting from 1871 to 1877 is a result of a re-reading of his
own theory with the assurance that the divisibility laws are indeed similar
between ideals (and therefore algebraic integers) and rational integers – then,
shouldn’t it be possible to develop the theory itself following the same lines?

6.2 In 1877, a “more arithmetical” version of algebraic
number theory?

The second version of Dedekind’s algebraic integer theory was published in
five parts between 1876 and 1877, in the Bulletin des Sciences Mathéma-
tiques et Astronomiques, which was edited by Darboux, Houël and Tannery.

343



Chapter 6 - Towards a more arithmetical theory of algebraic numbers?

Following the invitation sent by the editors via Lipschitz in the letters I
mentioned earlier, Dedekind proposes this rewritten version, which Houël
translated into French.

The version published in French is reproduced “mainly word for word”
([Lejeune-Dirichlet, 1879], viii) in the third edition of Dirichlet’s Vorlesun-
gen. The differences are essentially due to the different contexts of publica-
tion. I will mostly use the 1876-77 version and consider the 1879 version at
the end of the section.

6.2.1 Properties of algebraic numbers
As it should be clear, some parts of Dedekind’s theory are not subjected
to important changes. In particular, the sections concerned with properties
of algebraic numbers and fields are not significantly modified. They are,
however, expanded and I will expose quickly, here, the developments given.

The concept of field, a “new fundamental concept” for algebra, was given
in the first paragraph of the 1871 theory of algebraic numbers, as stating a
general framework for the theory, and the algebraic numbers were, later on,
proven to form a field. In 1877, Dedekind takes up the question differently.
Rather than to begin with the general definition of a field and then consider
the algebraic numbers, he starts with the algebraic numbers (and the wide
domain of all algebraic numbers), and subsequently narrows the focus by
defining the notion of finite field (Ω). Of course, the definitions themselves
do not change.

Dedekind presents, in the introduction of the 1877 article, the algebraic
integers as “the most general notion of integer”:

The broadest generalisation of the notion of integer is the fol-
lowing. A number θ is called an algebraic number if it satisfies
an equation

θn + a1θ
n−1 + a2θ

n−2 + . . .+ an−1θ + an

with finite degree n and rational coefficients a1, a2, . . . , an−1, an.
It is called an algebraic integer, or simply an integer, when it
satisfies an equation of the form above in which all the coef-
ficients a1, a2, . . . , an−1, an are rational integers.9 ([Dedekind,
1876-1877], 53-54)

9“La plus haute généralisation de la notion du nombre entier consiste dans ce qui suit.
Un nombre θ est dit un nombre algébrique, lorsqu’il satisfait à une équation θn+a1θ

n−1 +
a2θ

n−2 + . . .+an−1θ+an de degré fini n et à coefficients rationnels a1, a2, . . . , an−1, an, il
est dit un nombre entier algébrique, ou plus brièvement un nombre entier, lorsqu’il satisfait
à une équation de la forme ci-dessus, dans laquelle les coefficients a1, a2, . . . , an−1, an sont
tous des nombres entiers rationnels.”
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In order to introduce the concept of field as a concept allowing to frame
the theory in an appropriate way, Dedekind starts by considering algebraic
integers in general (i.e., all of them). They reproduce by addition, multi-
plication and subtraction; a number satisfying an equation with algebraic
integers as coefficients is itself an algebraic integer; and one can define a
notion of divisibility for integers:

We say that an integer α is divisible by an integer β when we
have α = βγ with γ being itself an integer.10 (ibid., transl.
slightly altered, 105)

The definition is very standard and Dedekind gives a series of usual prop-
erties, such as the transitivity of divisibility, the existence of units, the ex-
istence of a GCD and of a Bezout identity. Finally, in the domain of all
algebraic integers, every algebraic integer can be decomposed in infinitely
many different ways, which implies that no algebraic integer has “the char-
acter of prime numbers.” Dedekind showed, in the Section 2, in which he
exposed Kummer’s theory and how to replace it by ideals (see Sec. 5.1.3),
that for algebraic integers certain “indecomposable number(s) (. . . ) [do] not
possess the property which, in the theory of rational numbers, is characteris-
tic of a prime number(s)11” (ibid., 88) and explained that prime numbers can
still be characterized “by their behavior as divisors”. In particular, questions
about the relative primality of algebraic integers are not studied in depth,
here, and the divisibility tests disappear completely. It suffices to know that
the property of being indecomposable is not an essential property of prime
numbers. Everything else will be left to ideal theory.

The existence of infinitely many essentially different decompositions for
any algebraic integer, however, can be fixed by considering only the alge-
braic integers contained in a finite field.12 Finite fields, whose definition is
attached to a certain equation, are introduced as intimately linked to the
nature of the investigation, here. They are allow to reframe the domain of
numbers in a way that eliminates undesirable properties.

A field is defined as a system of numbers closed by the four rational
operations. A finite field Ω of degree n is a field obtained by an irreducible
polynomial equation f(θ) = 0 of degree n. The numbers ω of Ω are of the
form ω = ψ(θ), where

ψ(t) = b0 + b1t+ . . .+ bn−1t
n−1

10Nous dirons qu’un nombre entier α est divisible par un nombre entier β, lorsqu’on
aura α = βγ, γ étant également un nombre entier.

11That is, “a prime cannot divide a product of two or more factors without dividing at
least one of the factors” (ibid., 56)

12Stillwell translates “corps fini” (“endliche Körper”) as “field of finite degree”, to avoid
confusion with our modern notion finite field. I will however keep Dedekind’s terminology.
I will not have to consider (our modern notion of) finite fields, and I trust that the reader
will not be confused.
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is a polynomial of degree < n with rational coefficients. The system of num-
bers 1, θ, θ2, . . . , θn−1 is an irreducible system (i.e., its elements are linearly
independent) and form a basis of Ω. Dedekind, then, studies the “the extent
and nature” of the concept of field by first investigating the internal struc-
ture of his system Ω by algebraic considerations. The (general) concept of
field is thus studied through investigations of the properties of the numbers
(and the equations which define them). The fact that the field Ω is attached
to a certain equation is a “concession” made to develop field theory in re-
lation to “generally known things” which is authorized by the possibility to
prove that “the content in numbers of the field stays absolutely unchanged”
if one were to consider another “means of expression” (Ausdrucksmittel) of
the numbers (in letter to Lipschitz, [Lipschitz and al. 1986], 60).

Dedekind continues the presentation of the concept of field with more
general considerations, that is, working in any (not necessarily finite) field.
The important notion, here, is that of conjugate fields. While in 1871, the
notion of conjugate fields was mostly mentioned in passing, a substantial
paragraph is devoted to it here. Dedekind considers the well-known notion
of substitution to be “an act by which objects or elements being studied
are replaced by corresponding objects or elements,”13 and proposes to call a
“permutation”14 a substitution between the numbers of Ω and another set
of numbers Ω′ such that:

By a permutation of Ω, we mean a substitution for which a de-
termined number of Ω

α, β, α+ β, α− β, αβ, α
β

is changed into a corresponding number

α′, β′, (α+ β)′, (α− β)′, (αβ)′,
(
α

β

)′
in such a way that the conditions

(1) (α+ β)′ = α′ + β′

(2) (αβ)′ = α′β′

13Dedekind, then, calls substitution a notion extremely close to what he will later call
a “mapping” (Abbidlung). Note that he considers it to be an action made by the mathe-
matician.

14Stillwell translates this as “isomorphism”, here again I will keep Dedekind’s own ter-
minology. It is also important insofar as it suggests that Dedekind was generalizing well-
known concepts of algebra and drawing from his experience in Galois theory.
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are satisfied and the substitute numbers α′, β′, . . . are not all
zero.15 (ibid., 108-109, transl. modified)

While the permutation is defined only for numbers, the nature of the el-
ements do not enter into account, and the generality of the definition is
noteworthy. The first important result is that the numbers of the domain
Ω′ also form a field. The second is the bijectivity of the permutation, which
allows to show that the permutation can be “reversed univocally” into a
permutation from Ω′ into Ω. Such permutation are called inverse of one
another. Ω and Ω′ are called conjugate fields and two corresponding num-
bers are called conjugate numbers. Only to deal with the composition of
permutation and the inversion of the composition, does Dedekind introduce
a notation for the permutations: if P is a permutation of Ω into Ω′ and P ′
a permutation of Ω′ into a third field Ω′′, then PP ′ is a permutation of Ω
into Ω′′.

6.2.2 The ideals’s makeover

So as to be able to provide a theory that would be simpler, easier to read
and understand, and following more closely his own methodological require-
ments, Dedekind proposes a new version of the theory of ideals. In this
new version, he unfolds the laws of divisibility of ideals by highlighting the
“analogy” with rational number theory in what he considered, in 1876, as
the clearest, most general and rigorous way possible. Here, “analogy” should
not be taken as a heuristic metaphor, but as a way to underline that the
laws are similar : provided that one defines arithmetic operations for ideals,
then the laws are analogous for ideals and for rational integers. Dedekind
proves each and every result, and it is assured that he does not solely rely on
the analogy without ground to it. There is thus not doubt raised on neither
the validity nor the rigor of his results. Dedekind states very explicitly, here,
that the goal of the theory of algebraic integers is to exhibit the similarity
of the laws of divisibility. In fact, it seems that he carefully exposed his the-
ory so that the said similarity does not appear as coincidental. Rather, the
long preliminaries and the efforts deployed to set up the arithmetic of ideals
allows for the arithmetical laws to follow seemingly with little difficulties.

Dedekind affirms that in substance, the 1877 theory is the same as in
1871, and that the changes are made only to the “external form”. Indeed,
it is clear that the definition of the basic concepts did not change and the
results are essentially similar. However, some significant differences appear.

15[N]ous entendons par une permutation de Ω une substitution par laquelle un nombre
déterminé contenu dans Ω, α, β, α+ β, α− β, αβ, α

β
se change en un nombre déterminé

correspondant α′, β′, (α+β)′, (α−β)′, (αβ)′ , (α
β

)′. Et cela de telle manière que les deux
conditions (1)(α + β)′ = α′ + β′ (2)(αβ)′ = α′β′ soient remplies, et que les nombres
substitués α′, β′, . . . ne s’annulent pas tous.”
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The emphasis put on divisibility relations between ideals, as a generaliza-
tion of rational arithmetic divisibility comes with a significant shift in what
constitute the center of the theory and what the results are identified as
essential. Most notably, Dedekind states that the “main difficulty to over-
come” is to show the mutual dependency of divisibility and multiplication
of ideals, that is, to prove that the divisibility as inclusion corresponds to
the “arithmetical” notion of divisibility – a point to which little attention
was paid in 1871. Dedekind explores and unfolds the elementary arithmeti-
cal laws of ideals, in a way that allows him to demonstrate that ideals and
thus algebraic numbers satisfy the divisibility laws valid in rational number
theory by means of analogous notions and methods of proofs.

There are no change in the definition of ideals. Insofar as ideals are con-
ceived as grounding concepts for number theory, it seems that developing
ideal theory on the grounds of divisibility and multiplication presents the ad-
vantage of a certain conceptual elementarity (similar to that of division and
multiplication of numbers in rational number theory). From this viewpoint,
then, the changes can be considered as improvements of the initial theory.
The question of what is considered properly “arithmetical”, here, would be
a point of dissension between Dedekind and many other writers, among
which Kronecker. Nevertheless, we have identified, earlier, that arithmetic
appeared to be intimately linked to the four rational operations, in partic-
ular, the study of divisibility relationships. We also saw that the theory
should be set up in such a way that all “formal” considerations (as one can
found in Kronecker’s works) be avoided. Dedekind’s strategy, then, consists
in establishing a generalized notion of divisibility through the building of a
“higher level” in which collections of actually existing numbers are consid-
ered as “wholes”, as objects in themselves, subjected to the new arithmetic
operations.

In addition, one should not overlook the fact that the changes embedded
in the modifications seem, for Dedekind, to allow for a deeper, more solid
grasp of the theory: the recourse to arithmetic of ideals seems to have effec-
tively strengthened the understanding of both ideals and algebraic integers.
Of course, the use of arithmetical operations for objects that are not num-
bers is not new for Dedekind. The development of an arithmetic of ideals,
here, appears as a consolidation and considerable development of an already
established way of working, which Dedekind adopted as early as 1856 during
his lectures on Galois theory.

6.2.2.1 Modules

The theory of modules is given considerably more developments, in 1877,
than it was in 1871: the 3 pages long §161 of the Xth Supplement X becomes
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a preamble of 25 pages.16

Dedekind carefully underlines the independence of the theory. The the-
ory of “systems of numbers reproducing themselves by addition and subtrac-
tion” is, as we saw in the previous chapter, an auxiliary theory, a general
and wide theory likely to be used in several research fields, and mostly inter-
esting for its applicability. In 1877, Dedekind relies more on module theory,
and notably, he explicitly states that since “all ideals are modules”, every-
thing proven for modules is also valid for ideals.

Dedekind explicitly develops the bases of the theory, giving a “small
number of very simple theorems” – nothing unneeded for his purpose. The
section opens with a paragraph exposing the “modules and their divisibility”:

A system a of real or complex numbers will be called a module
when all the sums and differences of these numbers also belong
to a. (. . . ) A module a will be called divisible by the module b
or a multiple of b, and b a divisor of a, when all the numbers in
the module a are also in the module b.17 ([Dedekind, 1876-1877],
61-62)

The LCM and GCD of modules are defined in the same way than in 1871 –
albeit with more details, following Dedekind’s worry to provide the clearest
possible exposition of his theory. Dedekind also introduces the notation [α]
for the module formed by all the numbers of the form xα, with x a rational
integer and α an algebraic number, that is the module generated by α. 18

Note that congruences according to a module19 are not a part of the def-
inition of modules anymore. A full section is dedicated to them. Dedekind
gives a series of simple – and usual – properties on congruences and classes
of numbers, and considers in more details the “complete residue system ac-
cording to a module a” used to define the norm of modules (and ideals).

After the congruences, Dedekind gives his research a more linear orien-
tation with the study of “finite modules”, i.e., modules with a finite basis.

Let β1, β2, . . . , βn be particular numbers. All the numbers

β = γ1β1 + γ2β2 + . . .+ γnβn
16This tendency will strengthen in the 1894 version of the theory, in which preliminary

considerations in module theory (§§168-175) take 47 pages.
17“Un système a de nombres réels ou complexes sera dit un module quand toutes les

sommes et les différences de ces nombres appartiendront à ce même système a . (. . . ) Un
module a sera dit divisible par le module b ou un multiple de b et b un diviseur de a ,
quand tous les nombres du module a seront contenus aussi dans le module b.”

18A few lines are dedicated to the consideration of this particular type of modules at
the end of each proposition. For example, if α is a number of the module a, then [α] is
divisible by a. To this special case of module will correspond the notion of principal ideal.

19ω and ω′ are said to be congruent according to a module a if their difference ω − ω′
is in a.
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where γ1, γ2, . . . , γn are arbitrary rational integers, evidently
form a module, which we call a finite module20 [β1, β2, . . . , βn] .
The complex of constants β1, β2, . . . , βn will be called the basis
of the module.21 (ibid., transl. slightly altered, 67)

This notation is new in Dedekind’s exposition of the theory and abundantly
used in the subsequent section of the paper in which the “germs of ideal
theory” are exposed (which I used in Sec. 5.1.3).

6.2.2.2 First introduction of ideals

In the said section, Dedekind’s considers ideals as finite modules with a sup-
plementary property, namely that each product of a number in the module
a by a number in the system of integers o is a again a number in the module
a – that is, this module is an ideal. Dedekind works, for this short para-
graph, with explicit expressions of each module studied. Indeed, recall that
the idea is to replace an ideal factor α, defined by conditions of divisibility,
by an ideal defined as the system a of all numbers divisible by α. For the
example of the number 2, the system a will be the system of numbers of
the form (1 + θ)y + 2z, in which one recognizes a “finite module with basis
consisting of the two independent numbers 2 and 1+θ,” hence a = [2, 1+θ].

To explain how “the theory of the numbers of the domain o can be
founded on the notion of ideal”, Dedekind proposes a notion of divisibility
for ideals:

Just as in the theory of modules (§1, 2), we say that an ideal
m′′ is divisible by an ideal m when all numbers in m′′ also be-
long to m. It follows that a principal ideal oµ′′ is divisible
by a principal ideal oµ if and only if the number µ′′ is divisi-
ble by the number µ. Thus the theory of divisibility of num-
bers is contained in the theory of divisibility of ideals. One
sees immediately that the necessary and sufficient conditions for
the ideal m′′ = [m′′a′′,m′′(b′′ + θ)] to be divisible by the ideal
m = [ma,m(b+ θ)]

m′′a ≡ m′′a ≡ m′′(b′′ − b) ≡ 0 (mod ma).22

20I will not use Stillwell’s “finitely generated module”, here, for the same reasons than
for finite fields.

21“Soient β1, β2, . . . , βn des nombres déterminés; tous les nombres de la forme β =
γ1β1 + γ2β2 + . . . + γnβn, γ1, γ2, . . . , γn désignant des nombres rationnels entiers arbi-
traires, constituent évidemment un module, que nous appelleront module fini et que nous
désignerons par [β1, β2, . . . , βn] ; le complexe de constantes β1, β2, . . . , βn sera dit la base
du module.”

22“Nous dirons, absolument comme dans la théorie des modules (§ 1, 2), qu’un idéal m′′
est divisible parmi idéal m, quand tous les nombres du premier seront contenus aussi dans
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(ibid., 98)

If ideals are introduced in this way, then the multiplication of ideals is defined
by:

if µ runs through the numbers in the ideal m, and µ′ through
the numbers in the ideal m′, then all the products µµ′ and their
sums form an ideal m′′ called the product of the factors m,m′

and denoted by mm′.23 (ibid., 99)

However, in this context, the multiplication relies on the basis of the finite
modules, and will require many computations and considerations about the
determinant of systems of numbers.

Dedekind quickly sums up the principal results of the theory:

Combining the theorem just proved with the preceding theorems
on the connection between divisibility and multiplication of ide-
als, and bearing in mind that o is the only ideal with norm 1, we
arrive, by exactly the same reasoning as in the theory of rational
numbers, at the following theorem: “Each ideal different from o
is either a prime ideal or else uniquely expressible as a product
of finitely many prime ideals.” 24 (ibid., 102)

Dedekind took the opportunity of exposing the “germs of ideal theory” to
explain his own invention through a presentation that appears less ‘abstract’
and directly linked with congruences. It may, then, seem more familiar to
the readers and it allows Dedekind to clarify the concept of ideal, before
exposing his theory. In fact, Dedekind’s careful and extremely clear pre-
sentation does not only demonstrate the teaching skills he was famous for,
it is also carried to the point where he illustrates himself what should not
be done from a methodological viewpoint. By doing so, he enlightens how
he construed ideals on the basis of deep methodological and epistemological

le second. D’après cela, un idéal principal oµ′′ sera toujours divisible par un idéal principal
oµ dans le cas, et seulement dans ce cas, où le nombre µ′′ sera divisible par le nombre
µ, de là résulte que la théorie de la divisibilité des nombres est contenue dans celle des
idéaux. Les conditions nécessaires et suffisantes pour que l’idéal m′′ = [m′′a′′,m′′(b′′ + θ)]
soit divisible par l’idéal m = [ma,m(b+ θ)] consiste, comme on l’aperçoit immédiatement
dans les trois congruences m′′a ≡ m′′a′′ ≡ m′′(b′′ − b) ≡ 0 (mod ma).”

23“Si µ parcourt tous les nombres de l’idéal m, et de même µ′ tous les nombres de l’idéal
m′, tous les produits µµ′ et leurs sommes formeront un idéal m′′, qui sera dit le produit
des facteurs m,m′, et que l’on désignera par mm′.”

24“En combinant le théorème que nous venons de démontrer avec les théorèmes précé-
dents relatifs à la dépendance entre les notions de divisibilité et de multiplication des
idéaux, et ayant égard à ce que, en dehors de o, il n’existe aucun autre idéal dont la
norme soit = 1, on arrive, par les mêmes raisonnements que dans la théorie des nombres
rationnels, au théorème suivant : ‘Tout idéal différent de o ou est un idéal premier, ou
peut se mettre, et cela d’une seule manière, sous la forme d’un produit d’un nombre fini
d’idéaux premiers.’”
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considerations. Indeed, Dedekind closes the section by remarking that a lot
of the demonstrations given rely too much on the square-bracket notation
and the “effective realization of multiplication.” If the computations related
to the multiplication of ideals appear, here, in relatively moderate propor-
tions, it is mostly linked to the fact that the example used by Dedekind is
rather simple. However, Dedekind warns us, their length and difficulty will
increase considerably, insofar as the multiplication of ideals, here, “coincides
with the composition of binary quadratic forms as taught by Gauss,” and
if one were to try to extend it to a genuinely general treatment of all the
fields, it would lead to immense – even “insurmountable” – difficulties.

If we wanted to treat fields Ω of arbitrary degree in the same way,
then we would run into great difficulties, perhaps insurmountable
ones. Even if there were such a theory, based on calculation, it
still would not be of the highest degree of perfection, in my
opinion. It is preferable, as in the modern theory of functions,
to seek to infer the proofs immediately from the fundamental
characteristics of concepts, rather than from calculation, and
indeed to construct the theory in such a way that it is able to
predict the results of calculation (for example the composition
of decomposable forms of all degrees).25 (ibid., transl. slightly
altered, 102)

We find, here, the usual “red-letter clichés” describing the so-called “con-
ceptual approach”, based on “characteristic fundamental concepts” rather
than computations. I will present, in the next section, how the “conceptual”
theory is developed based on arithmetical relationships.

6.2.2.3 Ideals and their divisibility

Ideal theory opens with the definition of ideals and their divisibility and
starts by following lines similar to the paragraph on modules: the formal
definition of ideals, the principal ideal oµ, the definition of divisibility be-
tween ideals, divisibility between numbers and ideals, the notions of GCD
and LCM of ideals, congruences and prime ideals.

Dedekind notices that whenever, in a “finite field” Ω, every ideal is a
principal ideal, then every indecomposable number is also a prime number,

25“Si l’on voulait traiter de la même manière tous les corps Ω de degré quelconque, on
se heurterait à de grandes difficultés, peut-être insurmontables. Mais, lors même qu’il n’en
serait pas ainsi, une telle théorie, fondée sur le calcul, n’offrirait pas encore, ce me semble,
le plus haut degré de perfection ; il est préférable, comme dans la théorie moderne des
fonctions, de chercher à tirer les démonstrations, non plus du calcul, mais immédiatement
des concepts fondamentaux caractéristiques, et d’édifier la théorie de manière qu’elle soit,
au contraire, en état de prédire les résultats du calcul (par exemple, la composition des
formes décomposables de tous les degrés).”
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that is, the same “laws of divisibility of numbers” as in rational number
theory are valid. Coming to the point of divisibility, Dedekind explains
that since every ideal is a module, one can transfer everything that has
been defined and proved in the case of modules. This explains the inverted
weight of divisibility in module and ideal theories in 1877 and 1871. Hence,
all propositions about divisibility for ideals are equivalent to those given in
module theory and are not stated again.

The equivalence between the divisibility of numbers and the divisibility
of ideals, an important point for the development of the theory, is given very
explicitly by Dedekind. On one hand, we have that a number α is divisible
by an ideal a when α ∈ a, or again the principal ideal oα is divisible by a.
On the other hand, an ideal a is said to be divisible by a number η when
a is divisible by the principal ideal oη. It is easy to see that the divisibil-
ity between oµ and oη is “completely identical” to that of the numbers µ
and η. Consequently, the laws of the divisibility of the numbers of o are
completely contained in the laws of divisibility of ideals. Therefore, every
proposition of arithmetic for algebraic integers can be expressed in terms of
ideals. The focus of the theory is thus completely shifted to the arithmetic
of ideals, and divisibility conditions for numbers are reduced to that of ideals.

We saw that one problem for prime algebraic integers was the loss of the
equivalence between indecomposability and primality, leading to adopt the
so-called Euclid’s lemma26 as the definitional property of primes. For prime
ideals, the problem disappears and the definition of prime elements can be
completely analogous to that in rational number theory:

An ideal p is called prime when it is different from o and divisible
by no ideals except o and p.27 (ibid., 123)

Note that prime ideals are defined immediately, and the “simple ideals”,
which played an important role in the 1871, do not appear in the theory.

There is a first analog to Euclid’s lemma with the divisibility of numbers
by a prime ideal28:

If neither of the two numbers η, ρ is divisible by the prime ideal
p, then their product ηρ will not be divisible by p.29 (ibid., 123)

Dedekind also gives several propositions stating simple arithmetical proper-
ties of numbers and prime ideals which highlight the similarity with rational
number theory, such as:

26If a prime number p divides the product ab, then it must divide at least a or b.
27“Un idéal p est dit un idéal premier quand il est différent de o et qu’il n’admet comme

diviseur aucun autre idéal que o et p.”
28Euclid’s lemma for ideals is given a few pages later, once the multiplication of ideals

is defined.
29“Si aucun des deux nombres η, ρ n’est divisible par l’idéal premier p, leur produit ηρ

ne sera pas non plus divisible par p.”
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Each ideal a different from o is divisible by a prime ideal.30 (ibid.)

The norm of ideals is defined using “the number of different classes, mod-
ulo the ideal a”, which is equivalent to the number of incongruent numbers
with respect to a. The complete system of residues was defined for modules.
The number of incongruent numbers of b according to (modulo) a is denoted
(b, a). The norm of the ideal a is the number of incongruent numbers in o
with respect to a. It is designated by (o, a) = N(a).

6.2.2.4 Multiplication of ideals and “the difficulty of the theory”

The most significant modification appears with the multiplication of ide-
als. We saw that in 1871 the definition of the multiplication is given after
the demonstration of the existence of unique factorization. It did not play
any significant role. In the 1877 version, multiplication of ideals plays an
important part in developing the theory. Following the desire to develop
a theory analogous to elementary rational number theory based on what
appears as a generalization of elementary arithmetic, the multiplication of
ideals is placed at the core of the research. The distance with Kummer’s
approach is explicitly taken, here. The significant change in the structure
of the theory, bringing to the fore the change of focus of the theory from
divisibility conditions for (ideal) numbers to the laws of divisibility of ideals.

For Dedekind, by moving the definition of multiplication of ideals at the
heart of the theory, a certain a gain of clarity in the theory is enabled, and
it seems related to the fact that the construction of the theory of ideals
appears to be truly based on the simplest arithmetical principles. The gain
of clarity partly comes from the impression of familiarity offered by the ana-
logical development – and, again, the systematic proof of every proposition
allows to avoid doubts about the transfer of arithmetic properties from ra-
tional numbers to ideals. But more importantly, the gain of clarity seems to
be linked to the simplicity gained by using generalizations of (elementary)
arithmetical notions rooted in rational arithmetic.

Recall that the definition of the multiplication of ideals (which does not
change) is the following:

If α runs through all the numbers in an ideal a, and β runs
through those of an ideal b, then all the products of the form b,
together with their sums, form an ideal c.31 (ibid., 125)

30“Tout idéal a différent de o est divisible au moins par un idéal premier.”
31“Si α parcourt tous les nombres d’un idéal a, et de même β tous les nombres d’un

idéal b, tous les produits de la forme αβ et toutes les sommes de ces produits formeront
un idéal c.”
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The multiplication of ideals satisfies the usual properties of multiplication:
existence of a unit (o), commutativity, associativity, possibility to extend the
definition to as many factors as wanted. . . And it is also possible to define
powers of ideals in terms of multiplication, without the recourse to simple
ideals and/or divisibility tests:

If all the m factors = a, their product will be called the mth
power of a, and we denote it by am. By also putting a0 = o and
a1 = a, we thus have in general aras = ar+s.32 (ibid., 125)

A series of (simple) propositions about divisibility properties follows, which
exhibit the “resemblance” with rational number theory even more strikingly:

- a divides ab and b divides ab;
- if a divides a′ and b divides a′, then ab divides a′b′;
- Euclid’s lemmas for ideals: if neither a nor b are divisible by a
prime ideal p, then ab is not divisible by p.

The analogy with the divisibility laws of rational numbers is still not
“complete”, here, since there seems to be no connection between multipli-
cation and division of ideals. This point, crucial for Dedekind’s purpose,
is delicate to prove, and Dedekind considered it to be “the main difficulty
of the theory [of ideals]”. For the similarity of the arithmetical laws to be
complete, one ought to show that division and multiplication are inverse
operations of each other. But the divisibility relation defined between ide-
als is a relatively weak property (the inclusion of an ideal in another one).
Hence, Dedekind writes, it is “not in the least easy” to prove that if an ideal
a divides an ideal b, then there exists an ideal c such that ac = b.

This difficulty, which is the greatest and really the only one pre-
sented by the theory, cannot be surmounted by the methods we
have employed thus far, and it is necessary to examine more
closely the reason for this phenomenon, because it is connected
with a very important generalization of the theory.33 (ibid., 126)

In order to bypass the difficulty, Dedekind proposes to act directly on the do-
main o itself. He notices that “every definition keeps a determinate meaning”
and “all demonstrations of theorems keep their full strength” if one restricts
the hypotheses on o in the following way:

32“Si tous les m facteurs sont = a, leur produit sera dit la m-ième puissance de a,
et on le représentera par am ; en posant de plus a0 = o et a1 = a, on aura en général
aras = ar+s.”

33“Cette difficulté, la plus grande et, à proprement parler, la seule que présente la théorie,
ne peut en aucune manière être surmontée à l’aide des seuls moyens de démonstration que
nous avons employés jusqu’ici, et il faut que nous examinions ici d’un peu plus près la
raison de ce phénomène, parce que celui-ci se rattache à une généralisation très-importante
de la théorie.”
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[O]ne no longer supposes that the domain o consists of all inte-
gers in the field Ω. The only properties of o really needed are
the following:

(a) The system o is a finite module [ω1, . . . , ωn] whose basis is
also a basis for the field Ω.

(b) The number 1 is in o, hence so are all the rational integers,
(c) Each product of two numbers in o is also in o.34 (ibid.,

transl. slightly altered, 127)

This is the definition of an order (Ordnung). In this version of the theory,
the concept of Ordnung still does not hold the same place in Dedekind’s
theory than in the modern conception of a ring. The definition is basically
the same than in 1871, but the context in which the Ordnung is introduced
changes significantly, as well as the role attributed to it. In 1871, it was an
“extension of the concept of ideal”, which allows to apply ideal theory to
the study of decomposable forms. In 1877, the Ordnung is a restriction of
the hypotheses on the domain of integers of the field, enabling to prove the
reciprocity of the operations of divisibility and multiplication of ideals. An
order o only contains integers of Ω but it does not necessarily contains all
the integers of the field.

Having changed the domain in which he works, Dedekind consequently
redefines divisibility: a number α (in o) is divisible by a number µ (in o) only
when there exists a number ω such as α = µω with ω in o. The congruence is
slightly modified in the same way. It is “easy to recognize that” everything
that has been defined and proved still holds when considering the notion of
“number” to designate numbers of o. Consequently, all the definitions and
proofs given in the preceding sections, in particular the theory of ideals, are
still valid.

When working in an Ordnung, the theory of ideals developed is a par-
ticular theory of ideals, but up to the point of development reached in the
previous paragraphs, it is the same for every Ordnung. At that step, how-
ever, one should chose between two paths: either one can develop the theory
of the ideals of the Ordnung containing all the integers of Ω, or one can
develop a more general theory of ideals in any Ordnung. It is the first pos-
sibility which, here, interests Dedekind, for it “leads to general laws, which
don’t suffer exception and coincide completely with the laws of divisibility

34“[O]n ne suppose plus que le domaine désigné par o comprenne tous les nombres
entiers du corps Ω. Les propriétés du système o sur lesquelles on s’est appuyé se réduisent
en réalité aux suivantes : (a) Le système o est un module fini [ω1, . . . , ωn] dont la base
forme en même temps une base du corps Ω. (b) Le nombre 1, et par suite aussi tous les
nombres rationnels entiers sont contenus dans o. (c) Tout produit de deux nombres du
système o appartient au même système o.”
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for the rational numbers.” The second possibility, the theory of ideals of any
Ordnung, demands a “restriction of the notion of ideal” and is not the one
Dedekind is interested in, although it is “necessary for the development of
number theory.”35

Through the introduction of the notion of Ordnung, Dedekind modifies
the framework of the theory, which leads him to reshape slightly the notion
of number so as to fit in the new framework and to maintain the validity of
propositions and theorems. This suggests that arithmetical properties are
intrinsically related to the domain in which they are studied. Dedekind’s
explanation of which theory of Ordnungen he chooses to develop shows that
his focus, in this case, is on the divisibility laws of (the) algebraic integers
in a certain field. This supports the idea that Dedekind is looking for a
uniform (valid for all the cases concerned) treatment of a certain problem
– here, the validity of the divisibility laws for algebraic integers, the most
general concept of integer.

From there, the proof of the “great difficulty” will be greatly eased. In
fact, with all the preliminary developments, the proofs of the divisibility laws
are following rather easily (the proof of the “great difficulty” is no longer
than four lines) and the arithmetical setting of ideal theory allows to give
proofs strikingly similar to that of rational number theory.

6.2.2.5 Propositions of arithmetic

In the following paragraphs, Dedekind proposes proofs of several proposi-
tions and theorems stating divisibility properties of ideals. As I mentioned,
simple ideals are not introduced, here. They were undeniably unsatisfying
with respect to some of Dedekind’s methodological requisites: a substantial
part of the theory was based on a particular representation of ideals, and
the notion was simply given up in the course of the theory. Nevertheless,
the divisibility properties between algebraic numbers, that served to defined
simple ideals are still needed, such as :

Let µ, ν be two nonzero numbers in o, with ν not divisible by µ.
Then there are two nonzero numbers κ, λ in o such that

κ

λ
= ν

µ

and κ2 is not divisible by λ.36 ([Dedekind, 1876-1877], 129)
35For example, when Ω is a quadratic field, the theory is the “same as the theory of

orders of binary quadratic forms” as seen in 1871 and in “Über die Anzahl der Ideal-Klassen
in den verschiedenen Ordnungen eines endlichen Körpers” ([Dedekind, 1877]).

36“Soient µ, ν deux nombres de o, différents de zéro, ν n’étant pas divisible par µ, il
existe toujours dans o deux nombres κ, λ différents de zéro, et tels que l’on ait κ

λ
= ν

µ
et

que κ2 ne soit pas divisible par λ.”
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Dedekind condenses them in “auxiliary propositions” to be used in the
proofs.

The propositions and theorems stating divisibility properties of ideals, in
§25, are presented as the “complement” needed for the theory of ideals in o
to be completely analogous to rational number theory. The theorems given
are relatively simple ones, since the aim is to prove that the arithmetical
behavior of the ideals (and therefore the numbers) of o is similar to that of
rational numbers.

In 1871, the unique factorization theorem was a corollary of the main
results of ideal theory. Here, it appears, as one of many arithmetical prop-
erties and does not seem more important than the other propositions. The
initial focus of Kummer’s theory was changed by Dedekind, who is not pre-
occupied by properties of (ideal or existing) divisors, but has thoroughly
adopted the viewpoint of the study of (elementary) arithmetic at the level
of ideals. According to Edwards, the unique factorization theorem, in this
version, seems ad hoc and unmotivated. He considers that Dedekind’s the-
ory of algebraic numbers has become too abstract, too long, too technical
and has moved too far away from its initial purpose.

As Dedekind underlined in the introduction of the Vorlesungen that the
purpose of ideal theory is to shed light “from a higher viewpoint” to all
number theory. Dedekind’s theory aims at establishing the validity of fixed
general laws for the “phenomenon of divisibility” of numbers in every domain
o composed by integers of any finite number field Ω of degree n. Since there
exists an infinite variety of such fields Ω with all their “own special number
theory,” the laws (and definitions) need to be perfectly general if they are
to be valid for each and every one of these theories. This is the case of
Dedekind’s theory of algebraic numbers, as he underlines himself (at the
beginning of §27, for example).

For Dedekind, such a “certainty that these general laws actually exist”
allows and eases more and more further developments. Moreover, if the cer-
tainty that the unique factorization in primes and other good properties of
rational numbers are still valid for algebraic integers is an essential point for
the development of number theory, Dedekind also seems to believe that he
found, with ideals, a tool enabling considerable simplifications and new de-
velopments. Without trying to judge whether the distance from Kummer’s
works is or is not unnecessary, it should be underlined that the distance
taken from Kummer’s approach is not the mere consequence of Dedekind’s
philosophical dicta, but the result of a modulation in the purpose of the
theory.

In §25, Dedekind gives nine “laws” to describe the divisibility in o. With
respect to the notion of divisibility defined, the laws come across as familiar
ones, for they offer a strong parallelism with rational number theory – as
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wanted by Dedekind.
Two important properties, for the proof of the unique factorization the-

orem, are the following:

Each prime ideal p can, through multiplication by an ideal b, be
transformed into a principal ideal. (. . . )
If the ideal a is divisible by the prime ideal p then there is one and
only one ideal a′ such that pa′ = a, and at the same time we will
have N(a′) < N(a).37 (ibid., transl. slightly altered, 129-130)

Dedekind’s efforts to transfer the study of arithmetic to the level of ide-
als has further consequences than the possibility to highlight the similarity
between divisibility properties of ideals (and consequently, algebraic inte-
gers) and rational numbers: it enables to provide proofs that are analogous
to proofs in rational number theory. That point is especially noticeable in
the proof of the unique factorization theorem.

In 1871, the proof was based on the notion of simple ideal and on tests of
divisibility by powers of ideals. It was a consequence of the theorem stating
that every ideal is the LCM of all the powers of prime ideals that divide it.
If the analogy with rational number theory was mentioned, it was barely
followed in the definitions, and certainly not followed in the proofs.

In 1877, the theorem of unique factorization itself is expressed in a way
that parallels perfectly rational number theory:

Each ideal a different from o is either a prime ideal or else ex-
pressible as a product of prime ideals, and in only one way.38

(ibid., 130)

The demonstration itself follows the analogy with rational number theory.
The core idea and the main principles of the proofs are the same as the usual
proof given in the case of the rational integers:

Let a be an ideal different from o. There exists a prime ideal p1 which
divides a, and we have a = p1a1 with N(a1) < N(a).

If N(a1) = 1, then a1 = o, which means that a = p1 and a is a prime
ideal. If not, then one can put a1 = p2a2 with p2 prime and N(a2) < N(a1).

If N(a2) > 1, one can go on in the same way until among the ideals ai
(with decreasing norms), there is one such as am = o. Therefore,

a = p1p2 . . . pm

is a product of m prime ideals.
37“Tout idéal premier p peut, au moyen de la multiplication par un idéal b, être changé

en un idéal principal. (. . . ) Si l’idéal a est divisible par l’idéal premier p, il existera un
idéal a′, et un seul, tel que l’on aura pa′ = a, et en même temps on aura N(a′) < N(a).”

38Tout idéal a différent de o est lui-même un idéal premier, ou bien il peut se mettre
sous la forme d’idéaux tous premiers, et cela d’une seule manière.
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If, in the same time, one has a = q1q2 . . . qr, with qj prime ideals, then q1
divides p1p2 . . . pm. Consequently (§22, 3.), one of the factors, say p1, must
be divisible by q1. Since p1 is prime and q1 is different from o, p1 = q1.

One has then p1(p2 . . . pm) = p1(q2 . . . qm), i.e., (§23, 3.) p2 . . . pm =
q2 . . . qm, and the procedure can be repeated until the unicity is proven,
“absolutely like in rational number theory.”

The theorem of unique factorization can now be used in proofs. For
example, it allows to prove, with the first proposition given above, that any
ideal a can be transformed into a principal ideal through multiplication by
a certain (determined) ideal m. This property plays an essential role in the
proof of the “main difficulty” of the theory: if an ideal c is divisible by an
ideal b, then there exists one and only one ideal b satisfying the condition
that ab = c.39 The proof is extremely simple. One chooses m such that am
is a principal ideal oµ. If a divides c, then am divides cm. So, there is a
certain ideal b such that cm = µb. From the multiplication by a, it follows
µc = µab and therefore ab = c.

The reciprocity between multiplication and division was the crucial point
left is to demonstrate. It shows that the divisibility defined for ideals (as an
inclusion relation) corresponds to the arithmetical (number theoretical) no-
tion of divisibility, in which division and multiplication are inverse operations
of each other. Hence, the multiplication and division of ideals correspond to
the multiplication and division of rational numbers – one can, thus, actually
do arithmetic with ideals

In 1871, this property was given just after the definition of the multi-
plication of ideals, at the very end of the study of divisibility properties.
The link between multiplication and division did not appear as an impor-
tant matter, then, and its proof was not (presented as) a difficult conquest.40

As it should be clear, a crucial difference between the 1871 and the 1877
versions, is the nature of the proofs given. As we saw, the proofs, in 1871,
were tightly linked to tests of divisibility by powers of prime ideals, which
contravened the demand that the theory not be based on computations, and
also relied heavily on a particular representation of ideals (the simple ideals).

We known that Dedekind considers that a theory should be built on
“characteristic properties”, so that the computations follow from the defini-
tions – or better, the definitions can allow to predict results of computations.

39This theorem is given together with the following proposition: If the product ab is
divisible by the product ab′, then b will be divisible by b′ and from ab = ab′, it follows
that b = b′.

40In the same time, one should not exclude the fact that the multiplication of ideals
appeared at the very end of the study of arithmetical properties of ideals could be related
to the “difficulty” of providing the property looked for – although Dedekind did not allude
to any difficulty.
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In 1871, computations appeared to carry the theory to the definition of mul-
tiplication of ideals. In 1877, on the other hand, after the restructuring of
the theory, in which the multiplication of ideals is given not only a more
important role but also a role closer to that of multiplication in rational
number theory, the theory is not encumbered by long computations. When
the multiplication of ideals gains its place as an essential property, it of-
fers Dedekind the possibility to give several definitions and properties in
a considerably simpler way, such as power of ideals or relative primality
(which doesn’t need its own subparagraph anymore). Moreover, Dedekind
can reduce the uses of congruences in definitions and proofs.

The changed structure of the theory provides a theory based on arith-
metical notions which are familiar and whose rigor is assured. The arith-
metic of ideals, introduced as a way to make things easier, is a way to bypass
the difficulties such as the long tedious computations that Dedekind dislikes
so much. It allows to simplify the inferences by reducing the complicated
computations to very simple ones: manipulations of arithmetical operations
similar to elementary number theory. It allows to reduce the chains of infer-
ences and the length of computations by transposing the study of arithmetic
to systems of elements, that is, to the “higher level”.

6.2.3 Outlines of possible applications

In the 1871 version, we saw that congruences played an essential part in the
theory. Not only were they an integral part of the definition of ideals, they
also had a preponderant role to play in most of the theorems and proofs,
through simple ideals and the divisibility tests associated to them. In this,
Dedekind was following Kummer’s lead. In the 1877 version, congruences
are mostly used for the definition of the norm of ideals, and are not given
the kind of fundamental role they had in 1871. Once the divisibility laws
for ideals are proven, however, Dedekind develops considerations further on
congruences for ideal theory.

The study of congruences properties is shifted to the end of the pre-
sentation. In 1877, congruences are further developments of ideal theory
– Dedekind explains that congruences are “important for ideal theory” –
rather than its ground. They are also a good illustration of the efficiency
of the new concept. Indeed, Dedekind gives new versions of already well-
known theorems, such as the Chinese remainder theorem or Fermat’s theo-
rem, whose proofs, using ideal theory, are more general since they are valid
for any algebraic integer.

Congruences for ideals are a powerful tool for more developed parts of
number theory. Dedekind thus transfers the typically Gaussian notion of
congruence to the level of ideals. Congruences in ideal theory allow to refor-
mulate results about binary forms and some of Dirichlet’s theorems. This
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suggests that the scope of their potential applications is quite wide. For ex-
ample, one can define classes of ideals, and determinate the number of classes
of any field Ω. The equivalence relation between ideals is the same as the
one defined in 1871 (see p. 317). Dedekind explained that the theory of
quadratic fields “completely coincides” with the theory of binary quadratic
forms, and that the problem of the number of classes of ideals is equiva-
lent to Dirichlet’s results in Recherches de diverses applications de l’analyse
infinitésimale à la théorie des nombres ([Lejeune-Dirichlet, 1839-1840]). If
“everything [is] expressed in the terminology of ideals”, the solution lies in
studying the function ∑ 1

N(a)s =
∏ 1

1− 1
N(p)2

where s−1 is positive and infinitely small (one can recognize, here, Dedekind’s
ζ-function). The sum applies to every ideal a and the product to every prime
ideal p in a (quadratic) field Ω. The equality is an “immediate consequence
of the divisibility laws” proved in §25. Dedekind does not give more de-
tails, but mentions that ideal theory can “simplify considerably” the works
of Einsenstein and Kummer as well as Dirichlet’s “theorem on primes in
arithmetic progressions” whose proof takes pages of computations and an-
alytic considerations.41 Dedekind states his conviction that his researches
are able to bring “important progress”. In fact, in the §167 of the 1871
edition of Dirichlet’s Vorlesungen, Dedekind did succeed in accomplishing
“in a general manner, a piece of this study for any field Ω” already in 1871
(§167), but a complete solution is still unreachable and “one has, for now,
to limit oneself to study new particular cases.”

6.2.4 . . . and in 1879
In 1879 appeared a third edition of Dirichlet’s Vorlesungen über Zahlentheo-
rie, in which Dedekind reproduces the new version of the theory of algebraic
integers. Between 1876, when algebraic integer theory was rewritten, and
1879, Dedekind and Weber wrote Algebraische Funktionen, using Dedekind’s
ideal theory to give a new definition of the Riemann surface. The imminent
publication of this paper was, for Dedekind, a core motivation for updat-
ing the supplement of Dirichlet’s Vorlesungen and publish the new version
of ideal theory in German. It is published as the XIth Supplement enti-
tled “Über die Theorie der ganzen algebraischen Zahlen” (and “Allgemeine
Zahlentheorie” in the headers).

41Dirichlet’s theorem on primes in arithmetic progressions states that “any unbounded
(unbegrenzte arithmetic progression whose first member and difference are without com-
mon factor [i.e., a + nd such that a and d are relatively prime] contains infinitely many
prime numbers.” It is proven by introducing Euler’s analytical researches, notably Euler
product, into Gaussian number theory.
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In particular, one has to mention the enlarged presentation of
the theory of ideals contained in the last supplement, which I
first published in the second edition, but in such a compact form
that the wish for a more detailed treatment was expressed to
me from several parts. I have met this demands with even more
pleasure, for a research accomplished together with my friend H.
Weber in Königsberg, which will soon be published, yields that
these principles can successfully be transferred to the theory of
algebraic functions.42 ([Lejeune-Dirichlet, 1879], Vorwort, vii-
viii, my translation)

Hence, the 1879 version of the theory is not another rewriting of Dedekind’s
theory of ideals. Rather it is Dedekind’s renewed attempt at diffusing his
approach, which the publication of Algebraische Funktionen made all the
more important. The theory published in the Supplement XI is for the most
part similar to that published in 1876/77:

The new presentation, which is mainly borrowed word for word
from a paper published three years ago Sur la théorie des nom-
bres entiers algébriques demands admittedly a much bigger space.
But this will certainly be excused, when one is assured, as I hope,
that the homogeneous character of the whole work has in no way
be damaged.43 (ibid., viii, my translation)

The small changes made to the theory are essentially due to the context of
publication. In particular, the introductive section and the section about
the “seeds of ideal theory” are replaced by a detailed account of the theory
of Gaussian integers and of the decomposition of numbers into indecompos-
able factors (and its failure).

The most noticeable addition is, in fact, the first appearance in Dedekind’s
number theoretical works of the notion of Abbildung. Introduced for the
study of conjugate fields, it is already very close to the notion defined in

42Besonders zu erwähnen ist die in dem letzten Supplemente enthaltene breitere Darstel-
lung derselben Idealtheorie, welche ich zuerst in der zweiten Auflage, aber in so gedrängter
Form veröffentlicht habe, dass der Wunsch nach einer ausführlicheren Behandlung von
mehreren Seiten gegen mich ausgesprochen ist. Ich bin dieser Aufforderung um so lieber
nachgekommen, als eine von meinem Freunde H. Weber in Königsberg in Gemeinschaft mit
mir ausgeführte Untersuchung, welche demnächst erscheinen wird, das Resultat ergeben
hat, dass dieselben Principien sich mit Erfolg auf die Theorie der algebraischen Funktionen
übertragen lassen.”

43“Die neue Darstellung, in welcher Manches aus der vor drei Jahren erschienenen
Schrift Sur la théorie des nombres entiers algébriques wörtlich entlehnt ist, hat nun freilich
einen viel grösseren Raum erfordert; doch wird dies wohl Entschuldigung finden, wenn
man, wie ich hoffe, sich davon überzeugt, dass der einheitliche Charakter des ganzen
Werkes keineswegs Schaden gelitten hat.”
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Zahlen in 1888:44

It happens very frequently, in mathematics and other sciences,
that when we find a system Ω of things or elements ω, each
definite element ω is replaced by a definite element ω′ which is
made to correspond to it according to a certain law; we use to
call such an act a substitution, and we say that by means of this
substitution the element ω is transformed into the element ω′,
and also the system Ω is transformed into the system Ω′ of the
elements ω′. Terminology becomes somewhat more convenient if,
as we shall do, one conceives of that substitution as a mapping of
the system Ω, and accordingly one calls ω′ the image of ω, and
also Ω′ the image of Ω.45 (ibid., 469-470, transl. in [Ferreirós,
2008], 89)

Although, in this context, Abbildungen will only be applied to the study of
conjugate fields of numbers, the generality of the notion can be detected in
this presentation, which introduces the terminology used in Zahlen to define
the general notions of sets and mappings (see Chapter 8). Moreover, the
notion presented is for Dedekind, a frequent notion “in mathematics and
other sciences”, which is related to the idea expressed in a footnote that
Abbildungen are the expression of a “mental faculty of comparing a thing ω
with a thing ω′, or relating ω with ω′, or making ω′ correspond to ω, without
which no thinking at all is possible”46 (ibid., transl. slightly altered).47 This
echoes Dedekind’s idea of science as an activity of the human understand-
ing and built on “mental faculties” or actions of thought. The capacity to
map systems onto each others is the foundation upon which “rests also the
entire science of numbers,” continues Dedekind in the footnote, announcing
a publication explaining this point – which, as we know, only happened in
1888.

For the definition of conjugate fields, Dedekind gives the conditions which
define a morphism between fields and which correspond to that defining the

44The first draft of Zahlen, which Dedekind dates from 1872-1878, contains a notion of
Abbildung close to that one.

45“Es geschieht in der Mathematik und in anderen Wissenschaften sehr häufig, dass,
wenn ein System Ω von Dingen oder Elementen ω vorliegt, jedes bestimmte Element ω nach
einem gewissen Gesetze durch ein bestimmtes, ihm entsprechendes Element ω′ ersetzt wird;
einen solchen Act pflegt man eine Substitution zu nennen, und man sagt, dass durch diese
Substitution das Element ω in das Element ω′,und ebenso das System Ω in das System Ω′
der Elemente ω′ übergeht. Die Ausdrucksweise gestaltet sich noch etwas bequemer, wenn
man, was wir thun wollen, diese Substitution wie eine Abbildung des Systems Ω auffasst
und demgemäss ω′ das Bild von ω, ebenso Ω′ das Bild von Ω nennt.”

46“Fähigkeit des Geistes, ein Ding ω mit einem Ding ω′ zu vergleichen, oder ω auf ω′
zu beziehen, oder dem ω ein ω entsprechen zu lassen, ohne welche ein Denken überhaupt
nicht möglich ist”

47For Ferreirós, this shows that “Dedekind is already here suggesting his logicistic stand-
point”, in which mappings form the foundation of all mathematics.
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notion of point of a Riemann surface in 1882. These conditions are presented
as answering the question

whether it is possible to represent the numbers ω of the field Ω
by the numbers ω′, in such a way that all the rational relations
existing between the numbers ω are completely transferred to
the image ω′.48 (ibid., 470, my translation)

In other words, one wants to preserve the relations established by the “ra-
tional operations”, a necessary and sufficient condition expressed in the list
of equalities given on p. 346. It is explicit that permutations are a certain
kind of Abbildungen. This suggests that mappings were probably conceived
as an extrapolation of the concept of permutation.

Recall that the notion of point, in algebraic function theory (written in
1878-79) used this kind of morphism between a field of functions and a field
of “constants” (the Riemann sphere). It is possible that this use of map-
pings played an important role in the development of the idea of Abbildung.
From the mapping of one field of number onto another, in the previous ver-
sion of algebraic number theory, one goes to, in 1882, mappings (satisfying
the conditions for the definition of conjugate fields) between functions and
numbers, and one-to-one correspondences between ideals and points.

The notion of Abbildung also appears in Riemann’s works (as well as in
Clebsch’s, later), and plays a crucial role in Riemann’s 1851 dissertation on
the theory of functions:

One can picture the dependence of the magnitude w to z as a
mapping (Abbildung) of the plane A onto the plane B.49 ([Rie-
mann, 1851], 5)

Ferreirós, when studying the notion of mapping in Dedekind’s works,
underlines that it “emerged in his work of the 1850s” (i.e., in the lectures
on Galois theory) but that it “is obscured by the fact that Dedekind used
a rather strange name for maps, namely ‘substitutions,’ but there is sub-
stantial evidence that avails a set-theoretical interpretation of this notion”
([Ferreirós, 2008], 88). For Ferreirós, the “substantial evidence” consists es-
sentially in the fact that Dedekind defines the substitutions in his works
on groups independently from the individual nature of the elements. How-
ever, it should be neither “strange” nor “obscur” that Dedekind uses the
words “substitution” and “permutations” in Galois theory and in number
theory in general – even in the 1894 version of algebraic number theory, in

48“ob es möglich ist, die Zahlen ω des Körpers Ω in der Weise durch Zahlen ω′ abzu-
bilden, dass alle zwischen den Zahlen ω bestehenden rationalen Beziehungen sich voll-
ständig auf die Bilder ω′ übertragen”

49“Man wird sich also diese Abhängigkeit der Grosse w von z vorstellen können als eine
Abbildung der Ebene A auf der Ebene B”
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which Dedekind explicitly prefers to use “permutation” – for this was well-
established terminology in number theory. The general notion of Abbildung
is not a pre-existing idea underlining all his works and that he tried to make
clear battling with “obscur” terminology. Rather, it is a notion to which
Dedekind arrived through his works in algebraic number theory, and even
in the use of a correspondences in the definition of a point of a Riemann
surface.50

Mappings are eminently important in Dedekind’s mathematics because
they play an essential role in the definition of natural numbers, which were
an ongoing interest and subject of research for Dedekind in the 1870s. This
suggests an indirect influence of the work on algebraic number and function
theories on the definition of numbers.51

6.3 Arithmetical strategies?
In the following section, I will emphasize certain characteristics of Dedekind’s
approach, in particular in ideal theory. As a first step towards proposing an
interpretation of Dedekind’s resort to arithmetic, I would like to offer a reca-
pitulation of the preeminence of arithmetic in Dedekind’s practice between
1871 and 1882. I will propose, in this section, to assemble the most promi-
nent examples of Dedekind’s practice, to support my claim, and to highlight
the steps towards an “arithmetical” treatment of algebraic function theory.

Before underlining the textual elements in Dedekind’s works, I want to
underline that this arithmetical approach was very peculiar to Dedekind.
Indeed, even Weber, who was the mathematician working the closest to
Dedekind, adopts a different approach in his Lehrbuch der Algebra.

Weber used the notion of “Functionale” in the Lehrbuch, rather than
working directly with ideals.52 He does so when exposing the theory of
algebraic functions, but also when exposing the theory of algebraic integers.
For algebraic integers, the introduction of Dedekind’s concept of ideal is
followed immediately by the following properties:

One can refer functionals and ideals to each other in such a way
that the following rules prevail:
1. Any integral function corresponds to a determinate ideal, and
associate functionals correspond to the same ideal.
2. Any ideal corresponds to infinitely many but only to associate
integral functionals.
3. The product of two of more integral functionals corresponds

50See also [Sieg and Schlimm, 2014].
51I will consider this point when presenting the definition of the natural numbers, in

the last chapter.
52A functional is an algebraic function that can be written as the quotient of two alge-

braic integral functions.
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to the product of the corresponding ideals.
4. An integral number corresponds to a principal ideal.
5. The unit corresponds to the ideal o.53 ([Weber, 1895-96] II,
548)

In particular, the prime ideals correspond to prime functionals, and “the de-
composition of ideals into prime factors, and actually the laws of divisibility
of ideals, ensue in complete agreement from the corresponding theorems of
the theory of functionals”54 (ibid., 550).

All considerations of divisibility are thus completely taken care of with
the notion of Functionale and Dedekind’s arithmetic of ideals is not devel-
oped.

6.3.1 From 1871 to 1877
In 1871, in place of the ideal factors defined only by conditions of divisibil-
ity, Dedekind introduced ideals, first conceived as the collection of actually
existing numbers that can be divided by an existing or ideal factor p. By
this move, not only does Dedekind avoid the unnecessary introduction of
new entities, but he creates a new level in which the arithmetical investi-
gations can be conducted using only the “simplest principles of arithmetic”.
Ideals, defined by conditions of closure by arithmetic operations and thus
independent of any particular factor (contrary to the way in which Dedekind
first came to the idea), are considered as “wholes”, as objects in themselves,
which enables the definition of arithmetic operations between ideals. This
definition is made in a way that is consistent with the divisibility of numbers
themselves. Indeed, recall that one has:

- An ideal a is divisible by an ideal b when a ⊂ b;
- A number α is divisible by an ideal a when α ∈ a⇔ oα ∈ a;
- An ideal a is divisible by a number α when a is divisible by oα
i.e., a ∈ oα;
- A number α is divisible by a number β when oα is divisible by
oβ i.e., oα ⊂ oβ; in particular a is divisible by b, then for any
α ∈ a and β ∈ b, β divides α.

53“Man kann nun die Ideale und Functionale in der Weise auf einander beziehen, dass
dabei folgende Gesetze obwalten:
1. Jedem ganzen Functional entspricht ein bestimmtes Ideal, und associirten Functionalen
entspricht dasselbe Ideal.
2. Jedem Ideal entsprechen unendlich viele, aber nur associirte ganze Functionale.
3. Dem Producte zweier oder mehrerer ganzer Functionale entsprechen die Producte der
den Factoren entsprechenden Ideale.
4. Einer ganzen Zahl entspricht ein Hauptideal. 5. Den Einheiten entspricht das Ideal o.”

54“die Zerlegung der Ideale in Primfactoren und überhaupt die Gesetze der Theilbarkeit
der Ideale ergeben sich in völliger Uebereinstimmung mit den entsprechenden Sätzen aus
der Theorie der Functionale.”
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The set up of a new level of divisibility for ideals allows to prove that the-
orems and propositions about the divisibility of rational integers are still
valid for algebraic integers, by transferring the study of their divisibility to
that of ideals. As it will be stated in the introduction of Algebraische Funk-
tionen, it allows to “calculate” with ideals as with numbers. For this reason,
ideals form a new “ground” for the theory of algebraic numbers, insofar as
all questions about properties of algebraic numbers can be transferred, or
reduced to questions about ideals. With the development of appropriate
methods of proof, which is allowed by the new arithmetic operations defined
for ideals, all results about algebraic numbers are thus deduced from the
sole concept of ideal.

In 1871, this is done by the consideration of a certain type of ideal, sim-
ple ideals which are defined by a divisibility test55 and are used for most
of the proofs. Simple ideals allow to transfer to ideals the divisibility tests
used by Kummer for the definition of ideal factors. This way, Dedekind can
generalize Kummer’s ideas to the level of ideals and thus provide a proof of
the general validity of the laws of divisibility for ideals, and consequently for
algebraic integers in a finitely generated field. With this move, even though
congruences and divisibility tests still play an important role in the theory,
the length of computations is considerably reduced. More importantly, it
is not necessary to rely on a definite equation for the investigation of the
divisibility properties, which would restrain the research to definite repre-
sentations of numbers. This frees the investigation of divisibility properties
from the consideration of special cases. The “analogy” with rational num-
bers is proved with the help of the invariant, independent theory that is
ideal theory. For this reason, the theory, valid for any algebraic integer, is
more uniform, more general.

Thus, in 1871, Dedekind works with relations between numbers and
ideals using congruences conditions, and proves results about the divisibility
of numbers by ideals – the core result having, as a corollary, the fact that
“every ideal is completely determined once the highest powers (. . . ) of
prime ideals that divide it are given”, that is, an ideal has a unique prime
factorization. The 1871 Xth Supplement proved that as far as divisibility
is concerned, ideals have a behavior similar to that of rational numbers,
satisfying properties such as the equivalence between being indecomposable
(divisible by the unit and itself) and being prime (satisfying Euclid’s lemma).

With this certainty at hands, in the second version of the theory, which
was written in 1876 to provide a more readable, simpler theory and to im-
prove the development of ideal theory, Dedekind completely erases the role
played by numbers and works only with divisibility relations between ideals

55“For µ in o, the roots π of the congruence νπ ≡ 0(mod µ) form a prime ideal, this
system of roots is called a “simple ideal”.
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themselves. He proposes a development which completely gets rid of divisi-
bility tests and fully takes advantage of the now rigorously proved similarity
of the divisibility properties between ideals and rational numbers. This al-
lows to bring to the fore the inherently arithmetical nature of ideals, by
developing their theory with the same ideas, analogous methods of proofs
and similar results, as the ones which guided the development of elementary
arithmetic. From an extension of Kummer’s approach, Dedekind passes to
an extension of divisibility itself.

If the theory is supposed to be easier to approach for the readers, it is
firstly because the technical preliminaries are carefully developed and ex-
plained. The “improvement” of ideal theory, on the other hand, appears to
be essentially related to the new form given to ideal theory. In 1877, the
results as well as their proofs are given a form embracing completely the
“simplest principles of arithmetic”, which were affirmed to be at the basis
of Dedekind’s approach. The results, while being far from obvious ones,
have a form so closely related to elementary arithmetic that they seem,
themselves, easy to prove and understand: the ideals have a unique decom-
position in primes, just like rational numbers do, and this can be proven
with methods of proof developing a new arithmetic perfectly analogous to
elementary rational number theory. If the theory is improved, it seems to be
because the change towards a more arithmetical theory allows to highlight
the arithmetical nature of ideals by developing the theory on the basis of
notions and methods which are not only familiar, but whose rigor is assured.

At the expense of long, technical preliminaries, the transfer of arithmetic
investigations to the less complicated and more general arithmetic of ideals
allows to develop number theory by purely arithmetical means, to avoid
lengthy computations and replace them by simpler ones, and thus to keep the
treatment of divisibility relatively simple by its similarity with elementary
arithmetic. Dedekind can thus establish, at the level of ideals, results such
as:
Rational numbers Ideals
A prime number p is an integer different
from 1 and divisible only by 1 and p.

A prime ideal p is an ideal different from
o and divisible only by o and p.

Each rational integer greater than 1 is
divisible by a prime number.

Each ideal a different from o is divisible
by a prime ideal.

If a prime number p divides the product
ab, p divides a or b.

If a prime ideal p divides the product
ab, then p divides either a or b.
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Every integer greater than 1 is either a
prime number or can be written as the
product of prime numbers, and in only
one way.

Each ideal a different from o is either a
prime ideal or else expressible as a prod-
uct of prime ideals, and in only one way.

An integer a is divisible by an integer b
if there is a unique integer c such that
a = bc

If an ideal a is divisible by an ideal b,
then there exists one and only one ideal
c satisfying the condition that a = bc.

For a and b two relatively prime inte-
gers, then for any integers c1, c2 the
system of congruences

x ≡ c1 (mod a) x ≡ c2 (mod b)

has a solution and all solutions of this
system are such that

x ≡ c1 (mod a) ⇐⇒ x ≡ c (mod ab)

x ≡ c2 (mod b) ⇐⇒ x ≡ c (mod ab)

If a and b are two relatively primes ide-
als, then for any %, σ in o, the system of
congruences

ω ≡ % (mod a) ω ≡ σ (mod b)

“always has roots ω, and all these roots
come under the form

ω ≡ τ (mod ab)

where τ represents a class of num-
bers modulo ab which is determined
by % and σ, or by their corresponding
classes modulo a and b respectively.”
([Dedekind, 1876-1877], 134)

Note that Dedekind also gives theorems valid simultaneously for numbers
and for ideals:

An ideal a (or a number α) is divisible by an ideal d (or a number
δ) if and only if each power of a prime ideal which divides d (or
δ) also divides a (or α).56 ([Dedekind, 1876-1877], 133)

Dedekind fully develops in 1877 an approach that had been underlying
his works since 1856, in which the operations of rational arithmetic are
extended so that properties pertaining to “algebraic kinship of numbers”
can be reformulated into extended versions of the operations of rational
arithmetic.

The definition of a divisibility relation between groups was justified, in
1856, by the divisibility between their numbers of elements (see p. 251).
For ideals, the “historical” narration of Dedekind’s “Gedankengang” to the
development of the concept of ideal allows to understand how ideal the-
ory came to be developed, as well as why ideals are considered as truly

56“Un idéal a (ou un nombreα) est toujours, et seulement alors, divisible par un idéal
d (ou un nombre δ), quand toutes les puissances d’idéaux premiers qui divisent d (ou δ)
divisent aussi a (ou α).”
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arithmetical objects. It thus justifies the attempts to develop ideal theory
arithmetically.

In the development of algebraic number theory, however, it is for mod-
ules that the arithmetical operations and the arithmetical methodology are
first introduced. As a part of algebraic number theory, they allow for an
extension of the notion of modulus, and thus an extension of the notion of
congruence, however they are clearly presented as constituting an indepen-
dent auxiliary theory that can be applied for numbers or other elements.
The definition of arithmetic operations for modules is not given with the
same kind of justification as groups or ideals. It is however possible that the
‘structural’ similarities between ideals and modules suggested the develop-
ment of the same approach for the more general theory of modules. Thus,
module theory, while it does not present the same properties as number the-
ory, can be developed by arithmetical means. This points to the possibility
to use arithmetical operations not only for objects that are not numbers,
but also in non-arithmetical settings.

6.3.2 1877 and 1882
In the higher level of arithmetic defined by ideals, the theorems about divis-
ibility are proved independently of the nature of the elements forming the
ideals. If this point was seen as one of the essential benefits for the initial
introduction of ideals, it also presents the great advantage to enable the
transfer to algebraic function theory. The transfer of methods from fields of
algebraic numbers to fields of algebraic functions is, as we saw in Chapter
2, based on the following correspondence:

rational integers → polynomials
rational numbers → rational functions
algebraic numbers → algebraic functions
algebraic integers → integral algebraic functions

On this basis, the methods used by Dedekind for the theory of algebraic
numbers, in 1877, can be completely translated into methods for the study of
fields of algebraic functions, enabling Dedekind andWeber to study algebraic
functions using, again, only the “simplest principles of arithmetic”. The
transfer of methods itself sets a process in several steps:

1. The ground of ideal theory is developed in function fields;

2. Function fields are studied further with the introduction, notably, of
ramification ideals;

3. Points are defined in such a way that there exists a one-to-one corre-
spondence between prime ideals and points, and between composite
ideals and complexes of points, allowing the development of arithmetic
notions for points and polygons;
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4. An equivalence relation is defined for polygons, leading to the defi-
nition of classes of polygons which can be gathered into families, for
which arithmetical notions are introduced as well.

The last point is repeated several times, for the study of differentials, for
example.

This leads to a presentation of the theory of functions which, in a first
time, is identical almost word for word, with algebraic number theory (and,
transitively, with rational number theory):

Algebraic numbers Algebraic functions
A real or complex number θ is called
an algebraic number if it satisfies an
equation

(1) θn + a1θ
n−1 + . . .+ an−1θ+ an = 0

of finite degree n and with rational co-
efficients a1, . . . , an.

A variable θ is called an algebraic func-
tion of an independent variable z if it
satisfies an irreducible equation

(1′) a0θ
n+a1θ

n−1+. . .+an−1θ+an = 0

where the coefficients a0, a1, . . . , an
are polynomials in z without common
divisors.

If in the equation (1), the coefficients
are rational integers, θ is called a ra-
tional integer.

If in the equation (1′) (of lowest degree
possible), the coefficients are polyno-
mials in z, θ is called an integral alge-
braic function.

A field A is an infinite system of real or
complex numbers, which is closed and
complete in itself, so that the addition,
subtraction, multiplication, and divi-
sion of any two of these numbers al-
ways yields yet another number of the
same system A.

A field of algebraic functions is a
system of such functions with the
property that application of the four
fundamental operations of arithmetic
(Spezies) to the functions of this sys-
tem always leads to functions of the
same system.

A system a of infinitely many numbers
in o will be called an ideal if it satisfies:
I. The sum and difference of any two
numbers in a is again a number in a.
II. Each product of a number in a and
a number in o is again a number in a.

A system a of functions of z in o is
called an ideal if it satisfies:
I. The sum and difference of any two
functions of a are again functions of a.
II. The product of any function in a by
any function in o is again a function of
a.
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If µ is a non-zero number in o, the sys-
tem oµ of all integral numbers divisi-
ble by µ is an ideal, called a principal
ideal.

If µ is a non-zero function in o, the
system oµ of all the integral functions
divisible by µ is an ideal, called a prin-
cipal ideal.

An ideal m is said to be divisible by an
ideal a when all the numbers contained
in m are also contained in a.

An ideal a is said to be divisible by
an ideal b if every function of a is also
contained in b.

A principal ideal oµ′′ is divisible by a
principal ideal oµ if and only if the
number µ′′ is divisible by the number
µ.

A principal ideal oµ is divisible by a
principal ideal oν if and only if the in-
tegral function µ is divisible by the in-
tegral function ν.

A number α in o is divisible by an ideal
a when α ∈ a, or again the principal
ideal oα is divisible by a.

A function α in o is divisible by the
ideal a if the principal ideal oα is di-
visible by a or if α is a function of a.

Dedekind and Weber do not have the conceptual apparatus that consti-
tutes modern algebra. For Dieudonné, this implies that they do not truly
understand why their approach is efficient. If the “independence” and “in-
variance” of ideal (and module) theory is unambiguous, for Dedekind, the
methodic resort to arithmetic is particularly interesting insofar as the au-
thors are developing ideal theory as embedded in peculiar frameworks, such
as algebraic function theory, in the flesh of mathematics so to speak. The
(almost literal) transfer of methods modeled on the well-known methods of
rational number theory from algebraic number theory to algebraic functions
and the development of the theory of ideals of functions modeled on the 1877
theory entail that algebraic function theory is developed arithmetically, fol-
lowing the lines of rational number theory. Algebraic function theory can be
developed with an arithmetical approach independently of the non-numerical
context.

Then, the results of ideal theory analogous to rational number theory,
stated in the first table, can be found for algebraic functions as well (see
section 2.3.2), which comes from the fact that ideals are used as wholes:
their content is indifferent for the statement of the properties as well as for
their proofs.

Not only can statements such as the unique factorisation theorem be
proven for ideals of algebraic functions, but less elementary results can be
stated for algebraic functions as well, such as the Chinese remainder theo-
rem, which was already stated for ideals of numbers: for a, b, c, . . . two by
two relatively prime ideals, it is always possible to find ω in o such that

ω ≡ λ (mod a), ω ≡ µ (mod b), ω ≡ ν (mod c) . . .

with λ, µ, ν, . . . , in o. This result, as we saw, is an essential step on the
road to the definition of the ramification ideal. The way to the definition
of a concept which appears, at first, to be deeply related to the Riemann
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surface, is deeply arithmetical.

Dedekind transfers the concept of ramification ideal back to number the-
ory, under the name “fundamental ideal” (Grundideal), in a paper published
in 1882, “Über die Diskriminanten endlicher Körper” ([Dedekind, 1882]).
The “fundamental ideal” corresponds to what we now call the “relative dif-
ferent”57 and is defined as the ideal whose norm is the discriminant of the
algebraic number field Ω investigated. For Dedekind, this property gives
this peculiar ideal its name, since the discriminant is called the “fundamen-
tal number” (Grundzahl). By this sole detail, one can recognize that for
Dedekind, to transfer back into number theory certain results found while
working on algebraic function theory, does not amount to merely applying
them. Rather, he injects them and adapts them to the context of the investi-
gation. Dedekind, in fact, doesn’t seem to be transferring the (at that point,
Riemannian) idea of ramification to fields of algebraic numbers. The intro-
duction of the fundamental ideal is motivated by the possibility offered to
study more finely the composition of the discriminant of a finitely generated
field and the prime ideals.

The property allowing to correlate the fundamental ideal to the ramifi-
cation ideal is the following: Let d denote the fundamental ideal, then

If p is any prime ideal, p a rational prime number divisible by p
and pe the highest power of p which divides p, then the funda-
mental ideal d is always divisible by pe−1.58 ([Dedekind, 1882],
393)

Indeed, recall that the ramification ideal z is defined as being the product

z =
∏

pe−1

of all the prime ideals p for which a certain power e divides N(p). In Al-
gebraische Funktionen, the essential difference between ideal theory in alge-
braic function fields and in algebraic number fields was the norm of a prime
ideal: for algebraic functions, the norm of a prime ideal is always of first
degree (i.e., a linear factor), while in number theory, the norm of a prime
ideal p is a rational integer divisible by p and of the form pf with f ≥ 1.
Hence, the characterization of the ramification / fundamental ideal appears
in the property stated above: d is a product

∏
pe−1 of prime ideals p such

that e is the highest power dividing p with N(p) = pf .
The investigations, here, show that the “analogy” between numbers and

functions are not merely inspiring the development of algebraic function
57The name “different” was introduced by Hilbert in the Zahlbericht.
58“Ist p ein beliebiges Primideal, p die durch p teilbare rationale Primzahl, und pe die

höchste in p aufgehende Potenz von p, so ist das Grundideal d allemal teilbar durch pe−1

(. . . ).”
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theory, but the researches in one theory sustain researches in the other one.
The concept of ideal, albeit a grounding concept, is still an adaptable con-
cept developed in a context-dependent way. This is made possible by what
Dedekind calls the “independence” and the “invariance” of the concept, al-
lowed by its definition and by its development as an arithmetic of a “higher
level”.

It seems, thus, that the (extended) rational operations provide a highly
efficient tool. I will argue, in the next chapters, that this is so in relation
to their rigor and potential generality. Once given the first definition of
arithmetic operations for ideals, the fact that Dedekind thinks of sets as
“closed bags” entails that there is no reason not to extend this strategy to
other contexts, as long as one can prove the consistency of an ‘arithmetical’
approach. And not only is this strategy transferable to ideals of algebraic
functions, it will also be transferable to points and polygons on the Riemann
surface.

Indeed, as we saw, an arithmetic analysis of fields of functions is not
the ultimate aim of Dedekind and Weber’s approach. This stresses the
importance of choosing to found the theory on an arithmetical ground. But
additionally, it highlights the use of arithmetical notions for the development
of the theory outside of the scope of the mere “analogy” between fields of
numbers and fields of functions.

Recall that once the concept of point of a Riemann surface has been
defined with the proof that each point corresponds biunivocally to a prime
ideal, Dedekind and Weber explain that one can define the equivalent of a
prime decomposition for polygons, in which points play the role of prime
factors:

A = PrPr1
1 Pr2

2 . . .

The one-to-one correspondence between points and prime ideals entails a
one-to-one correspondence between polygons and composite ideals and, con-
sequently, the validity of the laws of divisibility of ideals for polygons. From
there, Dedekind and Weber define the GCD and LCM of two polygons A
and B in the following way: for A, B polygons such that

A =
∏

Pri
i ; B =

∏
P
sj
j

their GCD and LCM are given by

GCD(A,B) =
∏

P
min(rk,sk)
k ; LCM(A,B) =

∏
P
max(rk,sk)
k

This corresponds to the definition of the GCD and the LCM of two numbers
by powers of prime numbers in their prime decompositions: for a, b natural
numbers, such that

a =
∏

prii b =
∏

p
sj
j
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their GCD and LCM are given by

GCD(a, b) =
∏

p
min(rk,sk)
k ; LCM(a, b) =

∏
p
max(rk,sk)
k

This characterization was given for GCD and LCM of ideals as well:

If a, b are two ideals

a = pe1
1 pe2

2 . . . perr ; b = pf1
1 pf2

2 . . . pfrr

(where some of the e, f exponents can be zero), then one obtains
the greatest common divisor and the least common multiple of
a and b in the form

pg1
1 pg2

2 . . . pgrr

by taking g1, g2, . . . , gr to be the least members of the numbers
e1, f1; e2, f2; . . . ; er, fr in the former case, and the greatest in lat-
ter case.59 ([Dedekind and Weber, 1882], transl. slightly altered,
74)

Dedekind’s approach, then, is characterized by the transfer of arithmeti-
cal notions and tools as a way to express relations between the mathematical
objects studied. This strategy comes with the set up of a “higher level”, such
as the “level” of ideals, and allows to translate in the “higher level” of collec-
tions of numbers (or functions) certain relations of the numbers. Dedekind
can “calculate” with objects of the higher level just like in rational arith-
metic. In the cases where correspondences can be shown to exist between
two kinds of objects (algebraic numbers and functions and ideals, ideals and
polygons, . . . ), the validity of the laws in one domain entails the validity of
the same laws in the other domain.

The elaboration of “higher levels” can be reiterated if needed. Indeed,
Dedekind defines equivalence relations for ideals, or for polygons, for which
the same kind of arithmetical approach is developed. Two polygons (with
the same number of points) are said to be equivalent when their quotient is
a function in the field Ω. According to this equivalence relation, polygons
can be organized into classes:

All the polygons A′,A′′, . . . equivalent to a given polygon A con-
stitute a polygon class A. (. . . ) Each polygon belongs to one
and only one class. (ibid., 105)

59“Sind a, b zwei Ideale a = pe1
1 pe2

2 . . . per
r ; b = pf1

1 pf2
2 . . . pfr

r (worin die Exponenten
e, f auch zum Teil Null sein können), so erhält man den größten gemeinschaftlichen Teiler
und das kleinste gemeinschaftliche Vielfache von a und b in der Form pg1

1 pg2
2 . . . pgr

r wenn
man für g1, g2, . . . , gr für ersteren die kleinsten, für letzteres die größten unter den Zahlen
e1, f1; e2, f2; . . . ; er, fr nimmt.”
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For polygons classes, Dedekind and Weber introduce the notions of product
and divisor, in accordance with products and divisibility of polygons. These
notions can be extended to families of polygons and of classes (the divisor of
the family is the GCD of the elements in the family), and be used, for exam-
ple, to reduce the dimension of a family. These ideas and the relationships
established by the arithmetical treatment of polygons, classes and families
are used for the study of differentials of the field without any considerations
about limits and continuity.

It is not the first time that Dedekind defines equivalence relation for
elements of the “higher level”. Indeed, in 1871, he proposed to consider an
equivalence relation between ideals: two ideals a and a′ are called equivalent
if there exists an ideal m for which am and a′m are in a system of ideals
E satisfying (i) closure by multiplication, (ii) if e and ee′ are in E, then e′

is in E and (iii) for any ideal a, there exists an ideal m such that am is in
E. This led to the definition of classes of ideals (the collection of all ideals
equivalent to a certain ideal) and of the product of classes.

Classes of ideals are also present in 1877, in a slightly different form.
Dedekind proved earlier in the paper that each ideal in o can be transformed
into a principal ideal through the multiplication by a certain ideal. Then,
two ideals b and b′ can be said to be equivalent if they are changed into
principal ideals via the multiplication by a same ideal m, i.e., bm = oµ and
b′m = oµ′. And of course, this leads to the definition of classes of ideals,
and their product.

For further developments of the theory investigated, Dedekind seems to
reproduce (mutatis mutandis) Gauss’s introduction of the notion of congru-
ence by shifting the investigations to classes of ideals (or polygons). He thus
sets up another higher level, in which he extends the previous considera-
tions, or familiar notions such as that of divisor.60

The set up of an arithmetical framework for the study of polygons, which
are systems of the constitutive elements of the concept of Riemann surface is
(mathematically) justified by the biunivoque correspondence that has been
proved to exist between ideals and complexes of points. Does the existence of
a one-to-one correspondence implies that similar methodsmust be developed
or does it authorize to do so, thereby offering the possibility to develop an
arithmetical approach for Riemann surfaces? But then again, what would
be the benefits of developing an arithmetical approach for a theory that
seems to be so remote from arithmetic? And to what extent can such an
approach be developed without it being a reduction to natural numbers?
Such a reduction is a move which Dedekind does not encourage, as is well
known:

60Recall that already in 1857, Dedekind proposed to define a new notion of congruence,
which had two moduli, one of which was a class of polynomials. See p. 263.
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[I]t appears as something self-evident and not new at all that
every theorem of algebra and higher analysis, no matter how
remote, can be expressed as a theorem about natural numbers
– a declaration I have also heard repeatedly from the lips of
Dirichlet. But I see nothing meritorious – and this was just as far
from Dirichlet’s thought – in actually performing this wearisome
circumlocution and insisting on the use and recognition of no
other than natural numbers.61 ([Dedekind, 1888], transl. slightly
altered, 792)

It seems that to demand that similar methods be developed if one can ex-
hibit a one-to-one correspondence between domains would proceed from a
reductionist approach, which is not Dedekind’s aim. In fact, the set up
of arithmetical methods and the translation of relations between objects in
arithmetical terms appears as a clear instance of giving an arithmetical form
to arguments without a reductionist perspective.

6.3.3 Conclusion: What role and status for arithmetic?
Presented as a change of presentation whose aim was to make the theory
more readable, the second version of Dedekind’s theory of algebraic integers
is given a development following very closely that of rational number theory.
The desire to obtain a theory perfectly analogous to rational arithmetic is
explicitly stated by Dedekind, and he puts a lot of effort into developing
methods of proof allowing him to expose his theory in a way that reproduces
rational number theory. Rational arithmetic, then, appears to take a more
important role in the methods developed by Dedekind: the goal is not solely
to prove the similarity of certain theorems about divisibility anymore, but
to define a higher level of arithmetic, the arithmetic of ideals, which can
be identical to rational arithmetic. Dedekind seems, then, to propose an
extension of the operations of rational arithmetic and, by the importance
given to the possibility to provide a perfectly analogous development, points
out the primacy of arithmetic for his approach.

I have mentioned, on p. 186, Avigad’s remark about Dedekind’s “insis-
tence that definitions and methods of proof used in an extended domain
should parallel” the ones given in restricted domains, and how this does not
seem to completely apply to Dedekind’s approach and will not repeat them
here. Rather than, as Avigad suggests, a mere “enjoyment” of finding and

61“[E]rscheint es als etwas Selbstverständliches und durchaus nicht Neues, daß jeder
auch noch so fern liegende Satz der Algebra und höheren Analysis sich als ein Satz über
die natürlichen Zahlen aussprechen läßt, eine Behauptung, die ich auch wiederholt aus
dem Munde von Dirichlet gehört habe. Aber ich erblicke keineswegs etwas Verdienstliches
darin – und das lag auch Dirichlet gänzlich fern –, diese mühselige Umschreibung wirklich
vornehmen und keine anderen als die natürlichen Zahlen benutzen und anerkennen zu
wollen.”
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pointing out “parallel developments” between elementary number theory
and higher congruences or ideal theory, it seems that Dedekind is putting
a lot of effort in having ideal theory following similar developments as ele-
mentary number theory. For Avigad, the endeavors to develop arithmetical
theories are only based on the fact that “[t]he methodological benefits are
clear, since it is often easy and efficient to reuse, adapt, and extend familiar
modes of reasoning” ([Avigad, 2006], 171). Yet, Avigad’s explanation only
seems to suggest that one uses arithmetic because it is “easy and efficient”
but does not address the epistemic benefits of using arithmetic: why is an
arithmetical approach considered as the best solution for providing more
rigorous and/or uniform definitions and treatments of theories?

Besides, what are the properties of arithmetic making it Dedekind’s
weapon of choice for developing new concepts and/or rewriting theories?
Is the possibility to define new arithmetic operations at “higher levels” or in
different settings (such as polygons in algebraic function theory) an inherent
property of the operations of the “science of numbers”, or is it a specificity
acquired by experience, through its use in algebraic number theory?

Arithmetic, in what has been described up to now, seems to play both
the role of a foundation, e.g., with its role in the development of ideal theory
as a new grounding concept, and of a tool, as a means to develop the re-
searches on Riemann surfaces, for example. This underlines that arithmetic,
from Dedekind’s viewpoint is susceptible to be operative in many areas of
mathematics. Besides, insofar as algebraic function theory is not considered
as being itself (revealed as) an arithmetical theory, it also suggests that the
possibility to resort to arithmetical notions to fulfill the desire to provide a
“new grounding” and a more rigorous, more uniform theory is not related
to a desire to reduce mathematics to arithmetic.

Rather, operations of arithmetic appear to be part of a conceptual arse-
nal that Dedekind considers to be usable in different areas in mathematics
in such a way that it is presented as allowing a greater rigor, and to some
extent a greater simplicity or clarity in the concepts. In this conceptual
arsenal, one can find arithmetic operations, but also systems and mappings,
which are for Dedekind the most general and most fundamental notions in
mathematics – and in human thinking in general. Even if I have not un-
derlined their uses as much as I have underlined the use of arithmetic in
Dedekind’s works, the preeminence of systems in Dedekind’s mathematics
is relatively obvious (and mappings can be detected, notably in the defini-
tion of conjugated fields). I will, however, come back to this point later on,
when their importance and their status in mathematics will have been made
clearer. Indeed, systems and mappings, in addition to being used through-
out mathematics by Dedekind, serve as a foundation for the definition of
natural numbers, to which I will dedicate Chapter 8.
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The crucial and central role played by elementary arithmetic operations
in Dedekind’s most elaborated mathematical works suggests that arithmeti-
cal operations are given a very particular and active role in the development
of mathematics. I will suggest, in the next Part of this dissertation that
arithmetic, in Dedekind’s mathematics, is involved in the development of
mathematical knowledge. Algebraische Funktionen presents itself as a strong
illustration of how arithmetic acts at several levels, how concepts such as
ideals are devised on arithmetical grounds, and how the resort to arithmetic
allows to develop a certain theory on more rigorous grounds, leading for
example to the first actual complete proof of the Riemann-Roch theorem.

I would like to defend the view that arithmetic operations appear to be
used as an epistemic tool by Dedekind. That is, the four elementary opera-
tions of arithmetic are involved in the process of knowledge production, they
are a medium, a tool at the mathematician’s disposal for the development
of mathematical knowledge: they are used to design and/or study new con-
cepts that will be involved in the development of the theory studied. This
epistemic tool allows Dedekind to develop complex and elaborated theories
based on elementary notions of arithmetic (in particular divisibility).

But why would Dedekind take such winding roads to be able to develop
a theory using operations of arithmetic? If it is an issue of rigor, then why
should arithmetic be taken as a so much more appropriate means to reach
the goal, that it would require detours such as the ones taken in 1882? If
the desire to provide an arithmetical theory can be easily understood in
1871 and 1877, it is less obvious in 1882, once the transfer of ideal theory is
achieved. Moreover, note that Dedekind always justifies his use of arithmeti-
cal operations and carefully provides proofs that an arithmetical approach
can be seen as consistent. We are, thus, not in presence of an act of faith
about the supremacy of arithmetic, but a deeply reflected upon strategical
use of arithmetical notions.
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Numbers, arithmetic and
mathematical practice
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Introduction to Part IV
Having brought to the fore the preeminence of arithmetic and arithmetical
methods in Dedekind’s works, I would like to propose an account of his
approach which could take into account two sides of the story: the uses of
arithmetic to develop new concepts and the foundations of arithmetic.

First, it will be useful to place Dedekind into a part of the epistemo-
logical and mathematical contexts in which he wrote and which I have
not considered yet, namely the so-called “arithmetization of mathematics”.
The arithmetization movement illustrates clearly how the desire to identify
the appropriate methods in mathematics became an important issue in the
1870s. It is one of Dedekind’s central arguments for his own works against
rival approaches – the most notable opposition being obviously that with
Kronecker, which we have looked at before and will keep on considering as
the need arises. Arithmetization will provide the basis for an epistemologi-
cal account of Dedekind’s uses of arithmetic, which I will develop in the last
section of this chapter. Indeed, with all the evidences at hand, I will high-
light how Dedekind designed a strategy answering a certain desire for rigor,
which shall allow to make sense of Dedekind’s recurrent use of arithmetic.
The idea of “arithmetization”, here, should not be understood as a mere
rigorization of the foundation of analysis, which it has become synonymous
with, but rather as argued by Otte and Jahnke, as a desire to “reshape and
reformulate” mathematical theories:

An attempt for better comprehending the change in mathemat-
ics’ understanding of its object field, which began to take place
towards the turn to the 19th century, first of all requires tackling
the problem and the context of the “arithmetization of mathe-
matics”. It must be said at once that this arithmetization was
not only, as is often supposed, a matter of founding infinites-
imal calculus anew, but rather of reshaping and reformulating
mathematics as a whole. ([Jahnke and Otte, 1981], 28)

As an “arithmetization”, the approach adopted by Dedekind – the ques-
tions investigated and the desire to rewrite definitions within a different
conceptual framework, in particular – is far from isolated. The conception
of arithmetic appears as a crucial part of what distinguishes mathematicians
working in the same field and providing answer with such strikingly different
forms and methods as, for example, Dedekind and Kronecker.

If one is to shed light on Dedekind’s arithmetization strategy, a clear
understanding of what arithmetic is and can do is indispensable. As I have
mentioned several times, arithmetic is presented by Dedekind as the “science
of numbers”, whose first objects are the natural numbers and is in the mean
time said to present with an immense wealth of laws and limitless possibili-
ties of application. Hence, following the investigations on arithmetization, I
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will inquire into how these two parts relate. What relations, if any, are there
between the uses of arithmetic in Dedekind’s mathematical works and his
definition of natural numbers (and with them, the first definition of arith-
metic)?

To make sense of such questions, Dedekind’s concept of (natural) number
must be considered closely, for arithmetization as “putting into arithmeti-
cal form” is intrinsically related to a certain conception of arithmetic and
number. Jahnke and Otte related the development of arithmetization to the
rise of a purely symbolical concept of number. Gray in [Gray, 2008b] talks
about “the erosion of the concept of number.” But while true for the ‘big-
ger picture’, these statements do not apply to Dedekind, whose insistence
on the creation of numbers suggests that his concept is neither formal nor
eroded.1 This point, essential to understand his book, was made very clear
by Dedekind and was, in fact, a widespread conception about numbers and
arithmetic.

The foundation of arithmetic was a long lasting reflection for Dedekind.
Questions about the principles lying at the basis of natural numbers were
“not settled” during the 1870s for Dedekind, and according to Sieg and
Schlimm, “on the contrary, Dedekind struggled with it intermittently over
the next six years. The intense work is reflected in the manuscript from
1872/1878 (in [Dugac, 1976b], 293-309) which was the very first draft for
the 1888 essay on the nature and meaning of numbers” ([Sieg and Schlimm,
2005], 129). Chronologically speaking, the “struggles” through which Dedekind
went correspond broadly to the writings of the 1876-77 version of algebraic
number theory and the correspondence with Weber for the writing of Alge-
braische Funktionen. In the next and last chapter of this dissertation, I will
consider the possibility that what can be achieved with arithmetical meth-
ods, using arithmetical operations, might have had an effect on Dedekind’s
reflection on the number concept.

One of the motivations of the last chapter will be to replace Dedekind’s
definition of natural numbers into the Dedekindian mathematical corpus,
rather than to consider it as an isolated philosophical work. On one hand,
because Zahlen has only often been taken as a program comparable to that
of Frege or Peano, it seems important to underline the specificity of its
aim, of its focus. On the other hand, to consider the definition of natural
numbers in perspective of Dedekind’s other works will imply to consider not
only how Zahlen can shed light on Dedekind’s other works, but also how
Dedekind’s previous mathematical researches can shed light on Dedekind’s

1In fact, his insistence on creating new domains numbers at each definition, rather
than considering the cuts or the simply infinite systems as the numbers, is an argument
against an actually structuralist or logicist interpretation of Dedekind’s concept of number.
Numbers are, indeed, defined by logical means and as elements of a structure, but they
are, for Dedekind, mathematical entities created by the human mind.
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definition of natural numbers. Not only is Zahlen a very singular book in
the mathematical landscape of 1880, but it also took Dedekind years of
reflection. The strong inner unity of Dedekind’s works, which he underlined
himself, and the dominance of arithmetical methods suggest that Dedekind’s
ideas grew nurtured by the mathematical practice.

Dedekind’s definition of natural numbers is grounded on the concepts
of systems and mappings, and only makes use of these concepts. However,
a completely set-theoretical reading of Dedekind’s conception of arithmetic
and numbers would project on Dedekind, ideas that were developed decades
after his own works. I will propose that the ‘set-theoretical’ definition of
natural numbers is related to Dedekind’s conception of rigor and to the idea
of numbers as creation of the mind, inasmuch as the concept of system and
mappings are mathematical representations of the fundamental operations
of thought: to collect things with a common property and to relate things
to things. On the other hand, I would like to suggest that the grounding
of arithmetic, that is, the definition of natural numbers and the first intro-
duction of the operations for the natural numbers, plays a significant role in
accounting for Dedekind’s conception and use of arithmetic in other works.
Recall Dedekind’s statements about what properties an “arithmetic” the-
ory should possess, for example in his Bunte Bemerkungen to Kronecker’s
Grundzüge einer arithmetischen Theorie der algebraischen Grössen:

Neither from this introduction nor from the essay itself is it clear
why exactly this theory should be called an arithmetical one.
Under this name, one should suspect that the consideration of
the realm of numbers (the absolute constants) would form the
main foundation, it is by no means the case. I would very much
like to rather call this theory formal, because it predominantly
is based on the “auxiliary methods of indefinite coefficients” (pp.
47, 48, 69) and the “association of forms” (formed by these coef-
ficients or auxiliary variables u, u′, u′′) (§15 and §22, pp. 93-96).
([Edwards, Neumann, and Purkert, 1982], 54)
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Chapter 7

Arithmetic, arithmetization and
extension of the number concept

The arithmetization of analysis and Dedekind’s Stetigkeit und irrationale
Zahlen have been studied in detail by many authors. I do not pretend that I
will bring new lights on Dedekind’s definition of irrational numbers. Rather,
I want to propose to consider this work as a particularly clear and eloquent
example of Dedekind’s strategy to obtain a certain rigor in mathematics.
Stetigkeit aims very explicitly at providing an arithmetical and rigorous
definition of a certain mathematical notion (continuity) that will provide a
better understanding of the concept – even, to a certain extent, according to
Dedekind, a clearer view of its nature. Moreover, it is an important work,
in Dedekind’s corpus, and as such deserves attention for a comprehensive
understanding of Dedekind’s ideas.1

Arithmetization was described by Klein as a process of rigorization. I
will propose, in the following, that the rigor, which Klein associated with a
certain logical rigidity, was in Dedekind’s mathematics a structuring element
for his practice of mathematics. Moreover, rigor for Dedekind appears to be
an active part of the creative activity of mathematicians. Arithmetization
in Dedekind’s works is a strategy that allows him to set up a mathemati-
cal arsenal built upon well-defined concepts or even unprovable premisses,
tailored to reach more rigorous and uniform bases for certain theories, and

1Note that I will not consider questions such as the axiomatic character of Dedekind’s
definition. On these matters, one can refer to [Sieg and Schlimm, 2005]. Sieg and
Schlimm’s rich paper studies several of Dedekind’s published and unpublished founda-
tional writings and provides a fine analysis of Dedekind’s growingly axiomatical concep-
tion. It should be underlined, however, that the fact that the definition answers criteria of
being axiomatic does not, however, imply that Dedekind is engaged in an axiomatization
of the real numbers. Rather, he is providing a definition that creates a new concept. The
way in which he chooses to formulate this definition does exhibit signs a certain axiomatic
thinking. Sieg and Schlimm point out this particularity of Dedekind’s approach as the
co-existence of the axiomatic and ‘genetic’ approaches. One can also refer to [Sinaceur
and Dedekind, 2008], in particular pp. 107-110.
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which can be sufficiently powerful and general that they don’t only offer a
good foundation but also the possibility to stimulate and ease the devel-
opment of entire parts of mathematics. This last point can be seen, for
example, with ideal theory, rather than higher congruences, as a grounding
concept for the theory of algebraic numbers. Dedekind’s rigor, rather than
a purely logical ideal of, embraces the demands of mathematical practice.

In this, arithmetic plays a crucial role, for it is taken as a means to
reach the rigorous theory aimed for in many of Dedekind’s most important
works.2 To characterize Dedekind’s approach as an “arithmetization” offers
the possibility of a global understanding of his approach of which it can
also be made sense on a more local scale, with the possibility to under-
stand recurrent elements of practice and particular approaches adopted by
Dedekind.

In this chapter, I will propose to consider the question of “arithmeti-
zation” in its historical context, from the reading made by Klein to the
initial sense of “arithmetize” in Kronecker’s works via other instances of the
so-called “arithmetization of analysis”. This shall allow me to show how
Dedekind’s approach is both singular and embedded in a widespread line of
ideas. Then, I will propose to take seriously the idea of “arithmetization” as
“putting into an arithmetical form” and try to show how this can provide a
more precise and more thorough account of Dedekind’s approach than the
mere adjective of “conceptual”. The idea of a strategy of putting definitions
or proofs into an arithmetical form, in Dedekind’s works, should not be
taken as a reductive argument. As underlined by Jahnke and Otte, to con-
sider arithmetic “as a foundational science of mathematics does not mean
that arithmetic constitutes the actual subject matter of mathematics.” In
an “arithmetization”, arithmetic is taken as a tool, even to some extent, fol-
lowing Jahnke and Otte, as a “means of objectifying mathematical thought”
([Jahnke and Otte, 1981], 29).3

7.1 Arithmetization of Analysis in the 19th century

The notions of number and of magnitude, during the 18th and 19th centuries,
underwent many modifications of scope and meaning, for example with
Gauss’s generalized arithmetic and Kummer’s ideal factors, with Dirich-
let’s introduction of analytical methods in number theory, with Riemann’s

2Of course, it is not the case for the definition of natural numbers, since at that point of
conceptual development, arithmetic does not exist. I will not be considering the foundation
of natural numbers, in this chapter.

3My argument (and more broadly, in fact, my goal) will differ on several points from
the analysis given by Jahnke and Otte, in particular because one of their core arguments
concerns the idea that “numbers are no longer interpreted as objects, but as pure symbols,
as ‘marks’,” a point that is not valid in Dedekind’s case. In particular, rather than talking
about the status of numbers, here, I will talk about arithmetic.
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generalized concept of magnitude in 1854, or again, outside of Germany,
with the development of a purely symbolical algebra in Cambridge, where
the symbols manipulated in algebraic formulae became completely devoid
of any (need for an) interpretation in terms of numbers or magnitudes. All
these points were not susceptible to be seized by the classical notions of
number and magnitude.

In addition, the foundations of Analysis were themselves submitted to
many doubts, from Lagrange’s desire to get rid of infinitesimals to Cauchy’s
restructuration of Analysis in pursuit of a certain Euclidean ideal of rigor.
In particular, continuity was at the basis of analytical investigations and
still lacked a rigorous definition. To be able to provide a solid foundation to
continuity was in particular important, for an appropriate characterization
of the notion of limit, and led to the demand that continuous magnitudes
be rigorously and consistently defined. Many mathematicians during the
second half of the 19th century took interest in this problem. According to
their (sometimes very) different interests and viewpoints in mathematics,
the problem had different forms. For example, Weierstrass was mainly in-
terested in the long lasting project of rigorizing analysis, whereas Dedekind
was motivated by the desire to provide a purely arithmetical foundation to
(linear) continuity in order to be able to define analytical notions like limits.

7.1.1 Klein’s idea of arithmetization

In 1887, Leopold Kronecker, published his famous essay on the concept of
number, Zum Zahlbegriff ([Kronecker, 1887]), in which he introduces the
term “to arithmetize”:

And I also believe, that we will, one day, succeed in “arithme-
tizing” the entire content of these mathematical disciplines [i.e.
Algebra and Analysis], that is to found them exclusively and
purely on the concept of number in its narrowest sense, and
thus, to take off the modifications and extensions of this concept
which are in most cases caused by the applications to geometry
and mechanics.4 ([Kronecker, 1887], 338-339, my translation)

By this, he expresses his wish to found mathematics on the sole concept
of natural number. His aim, then, is a reduction of analysis, algebra and
arithmetic to the concept of number “in its narrowest sense.” In Kronecker’s

4“Und ich glaube auch, dass es dereinst gelingen wird, den gesammten Inhalt aller
dieser mathematischen Disciplinen zu ‘arithmetisiren’ d. h. einzig und allein auf den
im engsten Sinne genommenen Zahlbegriff zu gründen, also die Modificationen und Er-
weiterungen dieses Begriffs wieder abzustreifen welche zumeist durch die Anwendungen
auf die Geometrie und Mechanik veranlasst worden sind.”
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works, the commitment to (admitting only) the natural numbers is signifi-
cant and accompanied by strict constructivist demands.5

In 1895, Klein used the expression “the arithmetizing of mathematics”
(Arithmetisierung der Mathematik) in his famous 1895 address to the Kgl.
Gesellschaft der Wissenschaften in Göttingen ([Klein, 1895]). The phrase
borrowed from Kronecker gives up the initial idea to give an arithmetical
form to all pure mathematics. Klein’s standpoint on the movement of arith-
metization is that it is a rigorization process arising in analysis to put things
in order after the discoveries made during the 18th century. Klein explic-
itly dismisses the “mere putting of the argument into arithmetical form” as
unimportant, and considers that only the rigid logic behind the argument is
significant:

I consider that the essential point of the argument is not to be
found in the arithmetical form of this development of thought,
but in the more rigid logic obtained by means of this form.6
(transl. slightly altered, in [Ewald, 2005], 967)

For Klein, the movement of “arithmetization of analysis” is a reaction against
the “century of discoveries” that preceded. In his view, it is facing the
many evolutions mathematics was subjected to after the 18th century, that
a “more critical spirit asserted itself” and demanded that the innovations of
the previous century be given a “logical justification”. An increased sense of
rigor made its way into mathematics with the works of Gauss, Cauchy and
Dirichlet, but “this was not the end of the matter”, Klein explains. One can
still find, in Gauss’s works, the acceptance of space as given by intuition,
a point against which most of the “arithmetizers” will protest, especially
insofar as

space intuition had led to the too hasty assumption of the gener-
ality of certain theorems which are by no means general. Hence
arose the demand for exclusively arithmetical methods of proof ;
nothing shall be accepted as a part of the science unless its rigor-
ous truth can be clearly demonstrated by the ordinary operations
of analysis.7 (ibid., 966, original emphasis)

5As I have mentioned earlier, Kronecker’s arithmetization is linked to many deep philo-
sophical ideas, and I will come back to some points of his approach later.

6“Indem ich als das Wesen der Sache nicht die arithmetische Form der Gedankenent-
wicklung ansehe, sondern die durch diese Form erreichte logische Verschärfung, ergibt sich
die Forderung.”

7“die Raumanschauung dazu geführt hatte, in übereilter Weise Sätze als allgemeingültig
anzusehen, die es nicht sind. Daher die Forderung ausschließlich arithmetischer Beweis-
führung. Als Besitzstand der Wissenschaft soll nur angesehen werden, was durch Anwen-
dung der gewöhnlichen Rechnungsoperationen als identisch richtig klar erwiesen werden
kann.”
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Klein’s examples are Weierstrass and the famous Weierstrassian rigor
(“Weierstrass’sche Strenge”), Kronecker and Peano.8 Klein also mentions
Cantor, later on. Cantor wrote to Klein about arithmetization, stressing his
general agreement with Klein’s analysis, but disagreed with “the preponder-
ance given to Weierstrass in the arithmetization of mathematics”, for one
should “separate what Weierstrass actually did from the myth in which his
students enwrapped him, so to speak a thick fog for the stabilization and
elevation of their own reputations” (in [Dugac, 1976b], 165).

Klein does not consider that to completely reject intuition is a fruitful
approach, but it does not imply that he considers the “arithmetization of
mathematics” as unimportant or unnecessary. On the contrary, he clearly
states that the rigorization of the foundation of analysis has important bene-
fits: on the basis of a solid “logical” foundation given to analysis, it becomes
possible to “subject the remaining divisions of mathematics to a fresh in-
vestigation.” This must however be nuanced, since, according to Klein, “it
is not possible to treat mathematics exhaustively by the method of logical
deduction alone, but that, even at the present time, intuition has its special
province.”

Insofar as Klein sees arithmetization as only a question of logic, the un-
derlying logic of arithmetic that must always – according to (Klein’s vision
of) the arithmetizers – be used in mathematics, it doesn’t matter for him
that these mathematicians hold very different positions on mathematics.9
To disregard the arithmetical part of arithmetizing allows Klein to give a
rather uniform presentation (the arithmetization) of a movement embed-
ding several different practices (of Weierstrass, Peano, Kronecker, Cantor,
or Dedekind). By doing so, Klein reduces an approach heavy with episte-
mological requisites to a rather narrow demand of rigid logic to secure the
argument. But by doing so, he also seems to enlarge the arithmetization
approach to any mathematician who demands a more rigorous definition
of the fundamental notions of analysis – as is clear from the list of people
mentioned. With the very wide view adopted by Klein, Cantor recognized
himself as a member of a movement whose first representative would be...
Kronecker!

It is clear that if one takes a closer look at the justifications given by
the actors for their “arithmetization”, there is a myriad of reasons, from the
mere reject of intuition to strong ontological commitments. If the actors all
preach rigor, it is not obvious that they all have the same ideas about rigor
and the ways to get to it.

8Peano, who gave the first example of a space-filling curve, was strongly involved in
rigorizing analysis. He also proposed an axiomatization of arithmetic and the foundation
of analysis. see Sec. 8.3.

9In fact, the said differences are probably of no significance for Klein.
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For Petri and Schappacher, Klein’s speech “also marked the beginning
of the nostrification of arithmetization by the newly emerging mathematical
centre at Göttingen” ([Schappacher and Petri, 2007]). They explain that

[h]ardly used today, the term “arithmetization” (...) was in
use around 1900 as a generic description of various programmes
which provided non-geometrical foundations of analysis, or other
mathematical disciplines. ([Schappacher and Petri, 2007], 343)

Historians (and philosophers) of mathematics also followed Klein’s lead.
While it is acknowledged that arithmetization involves many different prac-
tices, it is essentially seen and studied as a large rigorization process in
which any non-geometrical characterizations of the foundations of analysis
can be included. Arithmetization has been largely commented by historians
of mathematics.10 These studies are usually a succession of presentations
of the works of several “arithmetizers”: Weierstrass, Cantor, Kronecker,
Dedekind, sometimes Méray, Peano, sometimes also Frege. But the phrase
“arithmetization” seems to have lost the ‘putting into arithmetic form’ part
of the approach, which did constitute the core of the idea when it was first
introduced by Kronecker in 1887. By sticking to a “rigorization” idea of
arithmetization and omitting to consider that part of arithmetization in
which an actually arithmetical form is given to the argument, some fairly
important components of “arithmetization” might have been overlooked. In
particular, one may miss a finely tuned understanding of the conception of
arithmetic sustaining arithmetization and its relations with the rigor pur-
sued by arithmetizers, which holds a key to the differences behind their
approaches.

7.1.2 Examples of “Arithmetization of Analysis”

The successive extensions of the domains of numbers were already recognized
by Gauss as a driving force in the development of mathematics, as Boniface
explains:

Indeed, for Gauss, the successive enlargements of the concept
of number to negative numbers first, then to fractional num-
bers and finally to irrational numbers and to complex numbers
are driving the development of pure mathematics. One can thus

10[Dugac, 1970], [Dugac, 1973], [Dugac, 1976a], [Jahnke and Otte, 1981], [Epple, 2003],
[Boniface, 2002], and [Schappacher and Petri, 2007], in particular. I will not comment
further these studies, for my aim is not to oppose any of them, but to consider the idea
of “arithmetization” under a slightly different light. What I will say doesn’t invalidate
anything in these works. Rather, I propose to first narrow the understanding of “arithme-
tization” from “rigorization” to “putting into an arithmetical form”, which will in return
allow to see how this strategy is applied in other areas than the sole “Science of quantity”.
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find, in Gauss[’s thinking] both the conception of arithmetic lim-
ited to the sole positive integers, and that of a number concept
enlarged to rational, irrational and complex numbers, and which
is concerned not only with arithmetic but also with algebra and
analysis.11 ([Boniface, 2010])

The desire to identify the most appropriate methods in mathematics which
developed in the 1870s affected the definition of the domains of numbers as
well as many other parts of mathematics – some of which we saw in earlier
chapters of this dissertation.

In the commentaries mentioned above, as well as in [Ferreirós, 2008] or
again [Belna, 1996], one can find a great amount of details and comparisons
between the approaches. Before presenting Dedekind’s definition of the real
numbers, I will propose a detour by an alternative definition of the irrational
magnitudes: the definition as limits of Cauchy sequences Cantor.12

It will not be my aim, here, to systematically compare the different
“arithmetizations”. I do, however, wish to underline the fact that the desire
of rigor, which prevails the definitions, entails answers which are episte-
mologically, methodologically and mathematically very different. This shall
allow me to highlight certain central features of Dedekind’s approach in
Stetigkeit and more broadly. On this ground, I will propose a characteri-
zation of Dedekind’s methods and ideas that would be coherent as regards
the unity of Dedekind’s corpus, able to consistently describe and explain his
works both globally and locally – and related to the historical context.

The “arithmetization of Analysis” is usually closely related to the name
of Weierstrass, who introduced rigorous definitions and methods of proof in
Analysis and cleared “many ambiguities in real and complex function the-
ory by counterexamples and rigorous exposition” ([Schappacher and Petri,
2007], 351). In the case of Weierstrass’s association to the arithmetization
of Analysis, the term “arithmetization” is quasi synonymous with “rigoriza-
tion”, as in the Kleinian understanding of “arithmetization”. Weierstrass,
during his lectures in Berlin, introduced the rigorous definitions of basic

11“Pour Gauss, en effet, les élargissements successifs du concept de nombre, aux nombres
entiers négatifs d’abord, puis aux nombres fractionnaires et enfin aux nombres irrationnels
et aux nombres complexes, sont le moteur du développement des mathématiques pures.
On trouve ainsi chez Gauss à la fois la conception d’une arithmétique limitée aux seuls
entiers positifs et celle d’un concept de nombre élargi aux nombres rationnels, irrationnels
et complexes, et qui concerne donc non seulement l’arithmétique, mais aussi l’algèbre et
l’analyse.”

12Charles Méray (1835-1911) independently gave a similar definition in 1869. Méray
wanted to give an appropriate characterization of sequences of numbers whose limit was
not a rational number. For works on Méray see [Dugac, 1970] and [Boniface, 2002].
Méray’s was the first mathematician to publish a consistent theory of irrational magnitudes
in 1869. His definition is broadly similar to the one independently given by Cantor in 1872.
Yet, Méray’s model for rigor is Algebra, and not Arithmetic (as it was for Lagrange).
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analytical notions with δ and ε, and gave one of the first rigorous defini-
tion of irrational numbers. He was also the first to exhibit a pathological
(everywhere continuous and nowhere differentiable) function.

For the definition of irrationals, Weierstrass considers “aggregates” of
numbers, in particular of positive fractions 1

n . Positive rational numbers are
finite aggregates and positive irrational numbers are arbitrary “numerical
magnitudes” thought of as infinite aggregates of fractions 1

n . For both fi-
nite and infinite aggregates, an order relation and an equality relation (as
equivalence classes for infinite aggregates) can be defined.

Having a rigorous foundation for irrational numbers allowed Weierstrass
to develop analytic functions on a rigorous basis since, with a rigorous def-
inition of irrational numbers, he was able to provide appropriate proofs of
propositions about limits of number and function sequences.

The approach adopted by Weierstrass is said to be “purely arithmetical”
because it starts from the rational numbers themselves, rather than being
grounded in the “science of quantity” or in geometry. Weierstrass’s rigoriza-
tion and arithmetization of the foundation of Analysis had a great influence
on many of his students, among which Cantor.

7.1.2.1 Definition of irrationals as limits by Cantor

Cantor, in 1872, defined irrational numbers as limits of what we call Cauchy
sequences. This definition of irrationals was known by Dedekind through
its first use by Heine in 1872, who was openly inspired by Cantor. Cantor’s
definition of the irrationals was published a few months later, and Dedekind
only read it when he was writing the introduction for Stetigkeit und irra-
tionale Zahlen, as he explains himself.

Cantor’s theory of irrational magnitudes is first published in his re-
searches on trigonometric series in 1872, “Über die Ausdehnung eines Satzes
aus der trigonometrischen Reihen” ([Cantor, 1872]).13

The 1872 paper presents the definition of irrational magnitudes as essen-
tially a way to highlight the researches on trigonometric series in the rest of
the paper.14 Cantor’s definition, in 1872, is necessary for the result he aims
to prove. Like Dedekind, Cantor underlines that his definition could be a
good basis for the development of infinitesimal analysis.

13Amore complete version with a comparison with Dedekind’s andWeierstrass’s theories
is published in 1883, in Grundlagen einer allgemeinen Mannigfaltigkeitslehre, which I will
not consider in detail here. Expositions of Cantor’s approach in 1872 and 1883 can be
found most of the studies cited at the beginning of the section. [Epple, 2003], [Jahnke and
Otte, 1981] and [Boniface, 2002] have particularly informed my reading of Cantor.

14In 1883, the definition holds a fundamental place in the theory. It is presented as
aiming at a generalization of the concept of integral number, so that it can pave the way
to a generalization to transfinite numbers.
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When one defines the irrational magnitudes as limits of a number se-
quence, there is always a risk, of which Cantor is perfectly aware, that one
would run into a vicious circle and presuppose the existence of the said irra-
tionals whose existence one wishes to prove. Cantor uses a formal approach
and designate the limit as a symbol, a certain “determinate limit b” which
will be defined subsequently.

Cantor considers the rational numbers as given and wants to develop a
“larger concept of numerical magnitude”. These numerical magnitudes are
defined by considering a sequence of rational numbers an such that for any
natural number m and for any positive (rational) number ε, when n tends
to infinity:

|an+m − an| < ε

(i.e. an is a Cauchy sequence). Cantor followed Weierstrass’s lectures in
Berlin, in which the latter gave a sound basis to the notion of limit, with
the definition of infinitely small variations of a variable by means of δ and
ε.

I express this property of the sequence [(an)] by the words: “The
sequence [(an)] has a determinate limit b.”

These words thus do not have, at first, any other sense than to
be expression of this property of the sequence, and from the fact
that we relate the sequence [(an)] to a particular sign b, it follows
that one can form, for distinct sequences of this kind, distinct
symbols (signs?) b, b′, b′′, ....15 ([Cantor, 1872], 93)

It is possible to compare sequences, for example for two sequences (an)
and (a′n) with limits b and b′, there are three mutually exclusive possibilities:

(1) ∀ε > 0, ∀n ∈ N, |an − a′n| < ε [i.e. the sequences are equivalent]
(2) ∀ε > 0,∀n ∈ N, |an − a′n| > ε [i.e. (an) > (a′n)]
(3) ∀ε > 0,∀n ∈ N, |an − a′n| < −ε [i.e. (an) < (a′n)]
These three possibilities thus allow to define an order for the limits them-

selves:
(1) means that b = b′

(2) means that b > b′

(3) means that b < b′

Hence, the order between the magnitudes b is defined by the order be-
tween the general terms of the sequences.

15“Diese Beschaffenheit der Reihe [(an)] drücke ich in den Worten aus: ‘Die Reihe
[(an)] hat eine bestimmte Grenze b.’
Es haben also diese Worte zunächst keinen anderen Sinn als den eines Ausdruckes für
jene Beschaffenheit der Reihe, und aus dem Umstande, daß wir mit der Reihe [(an)]
ein besonderes Zeichen b verbinden, folgt, daß bei verschiedenen derartigen Reihen auch
verschiedene Zeichen b, b′, b′′, ... zu bilden sind.”
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The same can be done for numerical magnitudes b and rational numbers
a by defining a relation between the general term of the sequence and the
rational number a.16 This allows to make clear that any rational number can
also be defined by a Cauchy sequence. This is an important point, because
it legitimates the use of the term “limit” for the magnitudes b: from (1′)
follows that if b is the limit of an, then b−an “becomes infinitely small when
n increases.”

In addition, it allows to extend the elementary arithmetical operations of
rational numbers to the “numerical magnitudes b”, which plays an essential
role in giving them the said legitimacy. Everything is given using the general
terms of the sequences of which the magnitudes b are limits:

(i) b± b′ = b′′ means that lim(an ± a′n − a′′n) = 0
(ii) bb′ = b′′ means that lim(ana′n − a′′n) = 0
(iii) b

b′ = b′′ means that lim(ana′n − a
′′
n) = 0

One can define the operations for a “numerical magnitude” and a ratio-
nal number using these relations and the relation (1′) giving the equality
between a rational numbers and a magnitude b.

Finally, it is possible to generalize these results to any finite number of
elementary operations, that is, to define a rational function of “numerical
magnitudes”, which is thus a relation between the sequences of which the b
are limits.

The collection of “numerical magnitudes” b forms a set B that can be
adjoined to the set A of rational numbers and which has been “generated by
A”. It is possible to reiterate the operation by considering the set constituted
of A and B and the sequences “of numerical magnitudes of the domains
A and B” which are not all in A and verify the Cauchy criteria. These
sequences have a limit c, and form a set C. In C, one can give the magnitudes
c the same treatment as the magnitudes b, and (re)define the equality, the
order and the elementary operations. The process can be repeated as much
as wanted and obtain sets of different “species” according to whether they
have been generated by a number sequence or by a sequence composed of
numbers and limits of sequences (which are considered as sequences of order
2 for C, and so on). The number in each set are all numerical magnitudes
of the same nature but are thought of by Cantor as conceptually different.17

Cantor explains that when going from the set A to the set B, one obtains
a larger set (A is included in B), but when going from the set B to the set

16That is, ∀ε > 0, ∀n ∈ N, |an − a| < ε means that b = a
∀ε > 0, ∀n ∈ N, |an − a| > ε means that b > a.
And ∀ε > 0,∀n ∈ N, |an − a| < −ε which means that b < a.

17For Cantor, this conceptual difference is essential, because it allows to “acquire an ex-
traordinarily flexible and at the same time intelligible idiom for describing in the simplest
and most significant way the richness of the protean and often complicated webs of anal-
ysis. One also gains clarity and lucidity, which, in my opinion, is not to be undervalued.”
([Cantor, 1883], 901) It is, for him, the main superiority of his theory over Dedekind’s.

395



Chapter 7 - Arithmetic, arithmetization, extension of the number concept

C, one obtains the same set. In a sense, Cantor writes, “the domains [B
and C] coincide”, whereas B contains real numbers that are not in A. In
short, then, and even if the notion is not very clear or explicit in Cantor’s
text, B is complete, contrary to A.

Cantor, like Dedekind, underlines the fruitfulness of his approach (with
an allusion to transfinite numbers):

All the results of Analysis (with the exception a few known cases)
can be reduced to the form of such equalities, even if (which can
here only be alluded to with regards to these exceptions) the
concept of number, as far as it is developed here, carries the
germs of a extension in itself necessary and absolutely infinite.18

(ibid., 95)

For example, if one considers the equality sin(π2 ) = 1, it is possible to
show that sin(π2 ) is determined by the fundamental sequence of second or-
der (since π

2 is itself written as a convergent series and so is sin) and the
equality sin(π2 ) = 1 is about the relation between a rational number and a
number defined as a sequence of second order.

Cantor briefly considers an analogy with the line, which for him allows to
give a certain “concreteness” (Gegenständlichkeit) to the “numerical magni-
tudes” which only have been defined formally. The idea is the following: one
establishes a correspondence between the points of the line and the numer-
ical magnitudes with a notion of distance, so that to any point corresponds
a numerical magnitude. The converse correspondence (i.e. to any numeri-
cal magnitude corresponds a point) is taken as an axiom. Thus, one gains
“a certain concreteness of the numerical magnitudes, from which they are
nevertheless completely independent.”

Note that Cantor does not define continuity itself in 1872. He does de-
fine it in 1883. Cantor explains that he wants to develop continuity “in
the briefest way possible” and only using set theory. Starting from the
notion of a dense set, Cantor proposes the notion of “connected” (zusam-
menhängenden) set, which amounts to a condition of (what we nowadays
call) connectedness and, thus is a metrical characterization of continuity.

For Dedekind, the characterization of continuity comes with the defini-
tion of irrational numbers and ought to be done by purely arithmetical ways.
In particular, one should avoid the use of notions foreign to arithmetic, i.e.
external to the systems of numbers and the elementary operations, espe-
cially insofar as they are, like limits or metrics, related to continuity itself

18“Auf die Form solcher Gleichsetzungen lassen sich die Resultate der Analysis (abge-
sehen von wenigen bekannten Fällen) zurückführen, obgleich (was hier nur mit Rücksicht
auf jene Ausnahmen berührt sein mag) der Zahlenbegriff, soweit er hier entwickelt ist, den
Keim zu einer in sich notwendigen und absolut unendlichen Erweiterung in sich trägt.”
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and will benefit from a rigorous, independent foundation as the one provided
by Dedekind.

7.1.3 Kronecker’s “arithmetization”

Kronecker’s conception of number (published in 1887) is notoriously very
different from Dedekind’s, even though they both consider arithmetic as
being at the basis of mathematics, displaying two very different sorts of
what could be called “arithmetism”.19 By exposing Kronecker’s ideas, I
hope that the contrast can highlight the peculiar role of natural numbers
and arithmetic in Dedekind’s mathematics. As the one who coined the term
“to arithmetize” and a typical representative of arithmetization construed
in a reductionist way, it will be useful to consider Kronecker’s approach so
as to contrast it with Dedekind.

Kronecker’s idea of “arithmetization”, introduced in 1887 in Über den
Zahlbegriff is rather different from the use made by later Klein since for Kro-
necker, the arithmetical form of the argument is its very core. In the 1887 pa-
per and in his 1891 lecture on the same subject, in Berlin, Kronecker develops
his ideas about the concept of number and its place and role in mathemat-
ics. The important dissimilarities with Dedekind’s approach should allow to
understand better, by contrast, Dedekind’s approach. Dedekind’s and Kro-
necker’s works were rooted in “Arithmetic Algebraic Analysis”, following the
works of the same mathematicians. This draws them to investigate similar
questions, but the strong (and strongly opposed) epistemological demands
which shape their respective methods lead them to very different solutions
despite their common inspirations.

For Kronecker, mathematics is a natural science, or an “experimental
science”, in the following sense:

Mathematics is to be handled as a natural science, because its
objects (Gegenstände) are as real as those of its sister sciences.20

([Kronecker, 1891], 232)

His position is inspired by Kirchhoff, as he explains:

It has often been said, that mathematics must begin with defini-
tions, and the propositions mathematics must be deduced from

19[Boniface, 2005], [Boniface, 2004] are the main sources for Kronecker’s concept of
number. The introductions of [Boniface, 1999] and [Kronecker, 1891] also provide useful
details. One can also refer to [Vlădut, 1991] and [Smadja, 2002].

20“Die Mathematik ist wie eine Naturwissenschaft zu behandeln, denn ihre Gegenstände
sind ebenso wirklich wie diejenigen ihrer Schwesterwissenschaft.” The references for Kro-
necker 1891 lecture are to Boniface and Schappacher’s edition of the manuscript, in [Kro-
necker, 1891].
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those definitions together with the postulated fundamental prin-
ciples. But the definitions are already, in themselves, an impos-
sibility, for, as Kirchhoff used to say, every definition needs its
own concepts, which needs again to be defined, and so forth.21

(ibid., 225)

Therefore, any attempt to give a logical or philosophical foundation (doomed
to be imprecise) to mathematics is, for Kronecker, a mistake. Kronecker
considers that phenomena should be the basis of mathematics, rather than
definitions. In the statements alluded to by Kronecker, Kirchhoff was con-
sidering mechanics and other natural sciences, which were supposed to de-
scribe “simply and completely” the phenomena observed. In the case of
mathematics, Kronecker explains that mathematicians should “describe the
phenomena simply and completely” in the same way. Hence, phenomena
yield the basic concepts, and the principles are given by experience (and
can be modified during the course of the scientific developments). The fa-
mous statement that “God created the integers, all the rest is the work of
man” should, thus, be understood in this light. Indeed, the natural num-
bers are, for Kronecker, the only mathematical objects consistent with the
mathematical experience, they are therefore the basis of mathematics and
do not need to be defined: natural numbers are given, and are the only given
objects of mathematics, everything else has to be defined on this basis.

The essential difference between mathematics and other natural sciences
is the nature of the reality of their respective objects. Indeed, to state that
mathematics should be treated as a natural science does not amount to the
adoption of an empirical viewpoint, for Kronecker, and it certainly does not
amount to consider mathematics as anything else than a pure science.

In fact, arithmetic is in the same correlation with the two other
mathematical disciplines, geometry and mechanics, as the en-
tirety of the mathematical sciences is to astronomy and the other
natural sciences; arithmetic also renders diverse services to ge-
ometry and mechanics, and receives in return from its sister dis-
ciplines an abundance of stimulations.22 (ibid., 252-253)

On this matter, Kronecker quotes a famous statement by Gauss:
21“Man hat häufig gesagt, die Mathematik müßte mit Definitionen beginnen, und

aus ihnen zusammen mit den postulierten Grundsätzen seien die mathematischen Sätze
abzuleiten. Nun sind aber Definitionen an sich schon eine Unmöglichkeit, wie Kirchhoff
zu sagen pflegte, denn jede Definition braucht ihre Begriffe, welche wieder zu definieren
sind u.s.f.”

22“In der That steht die Arithmetik in ähnlicher Beziehung zu den anderen beiden math-
ematischen Disciplinen, der Geometrie und Mechanik, wie die gesammte Mathematik zur
Astronomie und den anderen Naturwissenschaften; auch die Arithmetik erweist der Ge-
ometrie und Mechanik mannigfache Dienste und empfängt dagegen von ihren Schwester-
Disciplinen eine Fülle von Anregungen.”
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Mathematics is the queen of the sciences and arithmetic is the
queen of mathematics. From time to time it condescends to pay
service to astronomy and other natural sciences, but it ranks first
in all circumstances.23 (ibid., 252)

However, Kronecker does not adopt Gauss’s position: he does not consider
mathematical objects as abstract, but as resulting from mathematical ex-
perience. The objects of mathematics are “mathematical phenomena” (e.g.
computations, concrete algebraic expressions), which are thus neither in na-
ture nor in the human mind.

This position on mathematics implies a very strong realism, for the ob-
jects of mathematics are considered as real as the objects of any natural
science and, for Kronecker:

That [the objects of mathematics are real] is true can be felt by
any person who talks about mathematical ‘discoveries’, and not
about mathematical ‘inventions’ (Erfindungen), for only what al-
ready really exists can be discovered, and only what is produced
by the human mind is called ‘invention’. Therefore, mathemati-
cians ‘discover’ results via the methods they ‘invent’ for these
purposes.24 (ibid., 232-233)

If the mathematician is free to invent, then, it is only to invent new methods
of discovery – certainly not new concepts, as advocated for by Dedekind (or
Cantor). Kronecker’s realism is, as is well known, extremely restrictive and
only accepts positive integers in arithmetic. Because of this restriction, at
the core of his project of a General Arithmetic, Kronecker is led to develop an
arsenal of methods allowing him to only use natural numbers. The objects of
mathematics, then, as “mathematical phenomena”, take the form of concrete
algebraic expressions, which exist neither in nature nor in the human mind.
In particular, they are not abstract objects, unlike what Gauss or Dedekind
would state.

For all these reasons, Kronecker is not interested in finding basic prin-
ciples, fundamental concepts, ultimate premisses, as did Dedekind, Frege,
or Hilbert. A foundation of mathematics can only be built, for Kronecker,
in the mathematics themselves. A logical or philosophical foundation can-
not be accepted. This idea of a purely mathematical foundation is linked

23“Die Mathematik ist die Königin der Wissenschaften und die Arithmetik die Königin
der Mathematik. Diese lasse sich dann öfter herab, der Astronomie und anderen Natur-
wissenschaften einen Dienst zu erweisen, doch gebühre ihr unter allen Verhältnissen der
erste Rang.”

24“Daß dem so ist, fühlt ein jeder, der von mathematischen ‘Entdeckungen’, nicht aber
von mathematischen ‘Erfindungen’ spricht. Denn entdeckt kann doch nur dasjenige wer-
den, was bereits wirklich existiert; was aber der menschliche Geist aus sich hervorbringt,
das heißt ‘Erfindung’. Daher ‘entdeckt’ der Mathematiker die Resultate durch Methoden,
welche er zu diesem Behufe ‘erfunden’ hat.”
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to a demand of mutual airtightness of the disciplines.25 One important
consequence of this requirement is the status of irrational magnitudes for
Kronecker. Indeed, from his viewpoint, irrationals are part of geometry –
especially transcendental irrationals – and have no right to be considered as
part of arithmetic.

In [Kronecker, 1887], Kronecker proposes a project of arithmetization
which, unlike the works which were presented earlier, is a project which aims
ultimately at a reduction of all (pure) mathematics to arithmetic. Here, by
“arithmetic”, one should understand the “general arithmetic” mentioned
above:

The word “arithmetic” must not be understood in its conven-
tional limited sense, though, rather one must understand all the
mathematical disciplines, with the exception of geometry and
mechanics, hence specifically algebra and analysis.26 (ibid., 253)

Kronecker’s general arithmetic encompasses the whole of pure mathematics,
and his program of arithmetization relies on the desire to give back its true
meaning to the concept of number, to retrieve its true nature: the natural
integer. Pure mathematics should, then, be developed on this sole basis:

And I also believe, that one day we will be able to “arithmetize”
the entier content of the mathematical disciplines, that is, to
ground them on the concept of number taken in its narrowest
sense, and hence to peel off all the modifications and extensions
of this concept, which were most often prompted by applications
to geometry and mechanics.27 (ibid., 253)

Kronecker insists on the importance to avoid the gratuitous introduction
of new concepts, and to respect a principle of ontological economy: only
the positive integers are acceptable. However, negative integers and ratio-
nal numbers can be useful in mathematics – as long as they are defined on

25The demand that mathematics be founded in itself is linked to the idea that scientific
disciplines ought to be clearly separated. In particular, one should not try to find a
foundation for a discipline in another discipline. This does not mean that all applications
are bad, but that to apply, for example, mathematics to astronomy, one should adapt the
concepts considered. In particular, non-algebraic irrational numbers are, for Kronecker,
geometrical concepts and therefore do not have a place in arithmetic.

26“Dabei ist aber das Wort ‘Arithmetik’ nicht in dem üblichen beschränkten Sinne zu
verstehen, sondern es sind alle mathematischen Disciplinen mit Ausnahme der Geometrie
und Mechanik, also namentlich die Algebra und Analysis, mit darunter zu begreifen.”

27“Und ich glaube auch, dass es dereinst gelingen wird, den gesammten Inhalt aller
dieser mathematischen Disciplinen zu ‘arithmetisiren’ d. h. einzig und allein auf den
im engsten Sinne genommenen Zahlbegriff zu gründen, also die Modificationen und Er-
weiterungen dieses Begriffs wieder abzustreifen, welche zumeist durch die Anwendungen
auf die Geometrie und Mechanik veranlasst worden sind.”
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the basis of natural numbers only and in a purely arithmetical way. Hence,
rather than introducing new concepts, one replaces negative and fractional
numbers by congruences. The fact that it is possible to replace negative
and fractional numbers by congruences is, for Kronecker, evidence that it is
unnecessary to introduce new concepts. The negative and fractional quan-
tities will be called magnitudes rather than numbers. Kronecker, in 1887,
does consider algebraic irrational magnitudes, transcendentals are however
clearly excluded from arithmetic.

The introduction of new tools, new methods, providing the “mathemat-
ical phenomena” to investigate should respect Kronecker’s requirements of
constructivity and finitism:

The point of view on which I disagree with most mathemati-
cians resides in the basic assertion that mathematics and the
natural sciences — which have recently been separated by this
name from the remaining sciences, the so-called sciences of the
mind (Geisteswissenschaften) — must not only be free of contra-
diction, but must also result from experience and, what is even
more essential, must dispose of a criterium by which one can de-
cide, for each particular case, whether the presented concept is
to subsume, or not, under the definition. A definition which does
not achieve this, can be advocated by philosophers or logicians,
but for us mathematicians, it is a bad nominal definition. It is
worthless.28 (ibid., 240, transl. in [Boniface, 2005], 149)

In particular, a proof of existence is only rigorous and valid if it allows to
explicitly exhibit, to construct the object whose existence is proved. The de-
mands of constructivity and finitism are guiding the elaboration of methods
and algorithms for Kronecker’s mathematics. Algebraic expressions have, for
Kronecker, an arithmetical existence, although they are not numbers, and
are integrated in what he calls “General(ized) arithmetic”. For Kronecker’s
mathematics, the concrete algebraic expressions take a greater importance
than the result obtained.

28“Der Standpunkt, welcher mich von vielen andern Mathematikern trennt, gipfelt in
dem Grundsatz, dass die Definitionen der Erfahrungswissenschaften, — d.h. der Math-
ematik und der Naturwissenschaften, welche man neuerdings unter jenem Namen von
den übrigen Wissenschaften, den sondern Geisteswissenschaften trennt, — nicht bloss in
sich widerspruchsfrei sein müssen, sondern auch der Erfahrung entnommen sein müssen,
und was noch wesentlicher ist, das Kriterium mit sich führen müssen, durch welches man
für jeden speziellen Fall entscheiden kann, ob der vorliegende Begriff unter die Defini-
tion zu subsumieren ist, oder nicht. Eine Definition, welche dies nicht leistet, mag von
Philosophen oder Logikern gepriesen werden, für uns Mathematiker ist sie eine bloße Wort-
definition und ohne jeden Wert.”
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7.1.3.1 The number concept

According to Kronecker, the number concept is linked to counting (zählen)
and must stay as such. The starting point for a characterization of the
concept of number are the ordinal numbers:

I find the natural starting-point for the development of the num-
ber concept in the ordinal numbers. With them, we possess
certainly a supply of denotations ordered according to a fixed
succession, which we can attach to a collection (Schaar) of differ-
ent objects and for us distinguishable at the same time.29 (ibid.,
253-254)

The “supply of denotations”, Kronecker explains, is “always sufficient”
because it is an “ideal” (ideelle) supply, and the laws of formations of num-
bers allow us to have the “capacity” to answer the need of an inexhaustible
supply. These “Bezeichnungen” are called “quantities of objects”.

The “totality of the denotations used” (Gesammtheit der verwendeten
Bezeichnungen) is assembled into the concept of “quantity of objects” which
constitute the collection. The “expression of this concept” is linked to the
“denotation” of the last element – which is always possible since the elements
in the collection have been ordered.

Hence, for example, in the collection of letters (a, b, c, d, e), on
can attribute the denotation “first” to the letter a, the denotation
“second” to the letter b, etc., and finally the designation “fifth”
to the letter e. The totality of the ordinal numbers used here,
or the “number” of letters a, b, c, d, e be denoted accordingly in
relation to the last ordinal number used, by the number “five”.30

(ibid., 254)

Cardinal numbers are, for Kronecker, numbers properly speaking and are
defined by considering the “collection” (Schaar) formed by “a given ordinal
(the nth) and all the numbers preceding it”. The “quantity” of these numbers
will be expressed by the “cardinal number n” which “corresponds to the nth
ordinal number”. And these cardinal numbers are the ones which are simply
called “numbers”.

29“Die naturgemässen Ausgangspunkt für die Entwickelung des Zahlenbegriffs finde ich
in den Ordnungszahlen. In diesen besitzen wir einen Vorrath gewisser, nach einer festen
Reihenfolge geordneter Bezeichnungen, welche wir einer Schaar verschiedener und zugleich
für uns unterscheidbarer Objecte beilegen können.”

30“So kann z. B. in der Schaar der Buchstaben (a, b, c, d, e) dem Buchstaben a die
Bezeichnung als ‘erster’, dem Buchstaben b die Bezeichnung als ‘zweiter’ u. s. f. und
endlich dem Buchstaben e die Bezeichnung als ‘fünfter’ beigelegt werden. Die Gesammtheit
der dabei verwendeten Ordnungszahlen oder die ‘Anzahl’ der Buchstaben a, b, c, d, e kann
demgemäss in Anknüpfung an die letzte der verwendeten Ordnungszahlen durch die Zahl
‘Fünf’ bezeichnet werden.”
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One can define an order relation for the numbers: a number m is “less”
than a number n if the “ordinal number belonging to m precedes the ordinal
number belonging to n”. Then,

The so-called sequence of natural numbers is nothing else that
the sequence of the correspondent ordinal numbers.31 (ibid., 255)

The counting of objects is tantamount to giving them a certain order. And,
of course, the quantity of numbers is independent of the order in which
the objects are counted: if the elements are permuted and re-ordered dif-
ferently, the “quantity” of objects is unchanged – “the result of counting is
independent of the order followed in the counting.”

The “number” of objects of a collection is thus a property of
the collection as such, that is, of the totality of objects thought
independently from any determined order.32 (ibid., 256)

So as to characterize more precisely the notion of cardinal number, Kro-
necker uses the notion of equivalence (Aequivalenz) and invariant (Invari-
ante) introduced by Gauss (since arithmetic can only be founded on itself).
Kronecker calls two systems “equivalent” if (in modern terms) there is a
one-to-one correspondence between them:

But if now any two systems (a, b, c, d, ...), (a′, b′, c′, d′, ...) are said
to be “equivalent” as soon as it is possible to transform one
into the other by successively replacing each element of the first
system by an element of the second system, then the necessary
and sufficient condition of the equivalence of these two systems
is the equality of the number of their elements, and the number
of elements of a system (a, b, c, d, ...) is characterized hereafter as
the only “invariant” of all these mutually equivalent systems.33

(ibid., 256)

The notion of “invariant”, which comes from the theory of algebraic forms,
allows to avoid the use of the notion of equivalence classes. The cardinal
number, i.e. the quantity of elements, as an invariant is a representative of

31“Die sogenannte natürliche Reihenfolge der Zahlen ist nichts Anderes als die Reihen-
folge der entsprechenden Ordnungszahlen.”

32“Die ‘Anzahl’ der Objecte einer Schaar ist also eine Eigenschaft der Schaar als solcher,
d. h. der unabhängig von irgend einer bestimmten Anordnung gedachten Gesammtheit der
Objecte.”

33“Wenn nun aber irgend zwei Systeme (a, b, c, d, ...), (a′, b′, c′, d′, ...) ‘äquivalent’
genannt werden, sobald es möglich ist, das eine in das andere dadurch zu transformiren,
daß man der Reihe nach jedes Element des ersten Systems durch je eines des zweiten Sys-
tems ersetzt, so besteht die nothwendige und hinreichende Bedingung für die Aequivalenz
zweier Systeme in der Gleichheit der Anzahl ihrer Elemente, und die Anzahl der Elemente
eines Systems (a, b, c, d, ...) charakterisirt sich hiernach als die einzige ‘Invariante’ aller
untereinander äquivalenten Systeme.”
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the equivalence class, which provides a more concrete basis to the number
concept – and in particular does not require the consideration of infinite
collections, which Kronecker considers to be too abstract.

Operations between numbers are defined in a rather traditional way, and
show how Kronecker takes the mathematical experience to be at the ground
of arithmetic. To define addition, one “takes numbers themselves as the
object of counting”: one can “keep counting n2 from n1 + 1”:

We can, then, for example, keep counting n2 further from the
number n1 + 1, that is, to collect exactly as much numbers fol-
lowing immediately n1 that are needed to form a collection whose
number is n2. This “keep counting” is called “to add the num-
bers n2 to the numbers n1” and these numbers s to which one
arrives by this “keep counting” is called “the result of the addi-
tion” or “the sum of n1 and n2 and is represented by n1 + n2.34

(ibid., 257)

The commutativity of addition is immediate, with this definition. Kronecker
proves the commutativity of addition for any number of numbers, by consid-
ering the equality n1+n2+...+nr = nα+nβ+...+nρ and using permutations
of indexes.

The multiplication consists simply in considering “all the terms n1 +
n2 + ... + nr to be equal to a same number n”, and this peculiar addition
will be called “the multiplication of the numbers n by the number r” and
denoted by n1 +n2 + ...+nr = rn. For the commutativity of multiplication,
Kronecker also resorts to permutations.

Kronecker then immediately goes on to introduce the “literal computa-
tions” (Buchstabenrechnung) which he proposes to use in place of negative,
rational and algebraic numbers.

7.1.3.2 Negative and rational numbers

For Kronecker, if one were to enlarge the concept of number to negative and
rational numbers, relatively to subtraction and division, then the concept
would be devaluated, denatured. To assure the possibility of applying op-
erations without restriction, Kronecker turns towards literal calculus. With
the introduction of an indeterminate variable, one can consider the “general
arithmetic of indeterminate functions with integral coefficients” and through

34“Man kann also z. B. von der Zahl n1 +1 an um n2 weiter zählen, d. h. genau so viele
von den auf die Zahl n1 zunächst folgenden Zahlen zu einer Schaar zusammenfassen, dass
deren Anzahl n2, beträgt. Dieses ‘weiter Zählen’ heisst: ‘zur Zähl n1 die Zahl n2 addiren’,
und diejenige Zahl s, zu welcher man bei jenem weiter Zählen gelangt, heisst das ‘Resultat
der Addition’ oder die ‘Summe von n1 und n2 und wird durch n1 + n2, dargestellt.”
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this, “avoid all concepts foreign to the pure arithmetic: negative, fractional,
real numbers, and imaginary algebraic numbers”.35 As Boniface explains,
the use of indeterminate variables is, for Kronecker, “a very fruitful purely
arithmetical method, which exempts from resorting to the concepts” of neg-
ative and rational numbers ([Boniface, 2005], 147). Algebraic expressions,
though not numbers properly speaking, are integrated into what Kronecker
calls “general arithmetic”.

To understand the link between this and the previous statements about
Kronecker’s strong ontological position, it should be underlined that the
philosophical position, here, cannot be detached from the mathematical
methods that he develops to support it. As was explained earlier,36 Kro-
necker’s philosophy of mathematics is effectively developed by the elabo-
ration of methods, algorithms, concrete algebraic expressions, and explicit
modes of representation of the mathematical content, which yield the arith-
metical meaning. Kronecker’s rejection of the irrational numbers is related
to these ideas: because the computations play such a fundamental role, ir-
rational numbers are just a step in the computation, a symbol to which
no operational meaning can be attached, which forbids to consider them as
numbers.

This must also be linked to Kronecker’s demands of constructivity: a
proof of existence is only valid if it allows to exhibit, to construct the object
in question, for if mathematics is resulting from experience, any definition
(or proof) should allow the mathematician to decide, in each case, whether
or not a certain given concept satisfy the said definition. These demands
guide the elaborations of the algorithms. Thus, for Kronecker, concepts are
the results of computations and the concrete expression of the operations
made is more important than the result obtained.

The idea, then, is to replace the negative or fractional numbers by con-
gruences. The computation, the concrete algebraic expression completely
takes the place of an enlarged, faulty concept of number. For example,
for the introduction of negative numbers, Kronecker proposes the following
solution.

35“Diese allgemeine Theorie gestattet alle der eigentlichen Arithmetik fremden Begriffe,
den der negativen, der gebrochenen, der reellen und der imaginären algebraischen Zahlen,
auszuscheiden.”

36See p. 309 and the quotation by Vlădut: “Kronecker’s views are quintessentially
expressed in two ideas. The first is the rejection of actual infinity as mathematical reality.
The second is also prohibitive in nature and can best be expressed by his well-known
dictum “God Himself made the integers – everything else is the work of men”. This
leads to the prohibition agains using mathematical notions and methods which cannot be
reduced to the arithmetic of integers. Despite their prohibitive form, these statements
carry a powerful positive charge. (...) The desire to argue “arithmetically” influenced
Kronecker’s works, many of which were based on the method of computation of some
mathematical objects.” ([Vlădut, 1991], 11-12)
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Consider (a − b) + b = a. In this expression, there is no subtraction
actually carried out, the negative factor “−1” can be replaced by an inde-
terminate x. One can thus write: (a+xb)+b = a, in which one looks at x as
being a numerical magnitude given by the equation x + 1 = 0. Considered
in terms of congruences, x + 1 is everywhere equal to 0 can be written as
x+1 ≡ 0 (mod x+1). Thus, (a+xb)+b = a can be written as (a+xb)+b ≡ a
(mod x+1). Kronecker uses the example 7−9 = 3−5 which is changed into
7+9x ≡ 3+5x (mod x+1), in which 7−9 = 3−5 is a fictive equation, and
7 + 9x ≡ 3 + 5x (mod x + 1) is an actual equality. Moreover, according to
Kronecker, one “gains in content” by doing so, because, here, the algebraic
expression (congruence) is valid for any positive integer x: the division of
7+9x by x+1 gives the same remainder as the division of 3+5x by x+1.37

The idea for the definition of rational numbers is similar: rather than
using a factor 1

m , Kronecker uses an indeterminate xm verifying that

m.
x

m
= a ⇐⇒ (axm)m = a

in which xm is such that mxm − 1 ≡ 0 (mod mxm − 1), hence

(axm)m ≡ a (mod mxm − 1).

To properly define the fractional numbers, it is necessary to define the rules
of computations, which are given by replacing the three equalities

a

m
+ b

n
= an+ bm

mn

a

m

b

n
= ab

mn

a

m
: b
n

= an

bm

with the three congruences38

axm + bxn ≡ (an+ bm)xmxn (modd mxm − 1, nxn − 1,mnxmn− 1)

axmbxn ≡ abxmn (modd mxm − 1, nxn − 1,mnxmn− 1)

axmxbxn ≡ anxbm (modd mxm − 1, nxn − 1, bmxbmxbxn − 1).

For irrational numbers, the issue is more delicate. Indeed, from Kro-
necker’s viewpoint, irrationals not only do not have an arithmetical exis-
tence, they are not authorized in the realm of arithmetic at all. This is

37Note that this idea (and the following ones) are very peculiar to Kronecker. Gauss
did not exclude negative numbers, and the mathematician Hermann Schubert who wrote
a textbook (System der Arithmetik und Algebra) referenced by Kronecker as having served
as an inspiration for his own work (ibid., footnote, 262) did not use congruences.

38a ≡ b (modd m,n) ⇐⇒ a− n = km+ ln
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so especially because there is no constructive procedure involving a finite
number of arithmetical operations from natural numbers that would be able
to define irrational numbers.

In the case of algebraic irrational magnitudes, Kronecker proposes a
method to isolate the roots of polynomials, and it is the only case for which
the introduction of irrational magnitudes is considered as anything else than
superfluous. This can fully be handled without introducing, in the algebraic
expressions, anything else than natural numbers.

I have shown the fact that the introduction and application of
algebraic numbers is dispensable in all the cases where the isola-
tion of the reciprocal conjugates is not necessary, in a previous
work [Ein Fundamentalsatz der allgemeinen Arithmetik]. The
fact that this isolation can itself happen without the introduc-
tion of new concepts, and that it is only if it happens in this
way that it clearly puts to the fore the essence of the matter, it
is what we are going to explain here, in the same way as I have
been used to doing it for ten years in my university lectures,
and we will also give with this the “more precise analysis of the
concept of real roots of algebraic equations.”39 (ibid., 262-263)

Kronecker’s project of a “general arithmetic”, whose very first elements
were given above, are, for him, nothing else but “a gathering of results ob-
tained by giving integral values to the indeterminates”. Because of this, the
results of the general arithmetic are to be considered as part of the usual
number theory, and “all the results of the deepest mathematical research
must eventually be expressed in these simple forms using properties of the
integers”. The definitions of the negative and fractional magnitudes as al-
gebraic congruences are given as an “appropriate and clear way to express
and represent the numbers”.

7.2 Dedekind’s Stetigkeit und irrationale Zahlen
Dedekind states, in the introduction of Stetigkeit, that while he “fully agrees”
with the “content” (Inhalt) of Heine’s definition40 of the irrational numbers,

39“Dass die Einführung und Verwendung der algebraischen Zahlen überall da entbehrlich
ist, wo nicht die Isolirung der unter einander conjugirten erfordert wird, habe ich in einem
früheren Aufsatze gezeigt [‘Ein Fundameutalsatz der allgemeinen Arithmetik’]; dass diese
Isolirimg selbst aber auch ohne Einführung neuer Begriffe geschehen kann und nur dann,
wenn sie so geschieht, das Wesen der Sache klar hervortreten lässt, soll hier in dersel-
ben Weise, wie ich es seit zehn Jahren in meinen Universitätsvorlesungen zu thun pflege,
dargelegt und damit zugleich jene ‘genauere Analyse des Begriffs der reellen Wurzeln al-
gebraischer Gleichungen’ gegeben werden.”

40Dedekind only published Stetigkeit after receiving Heine’s paper in which Cantor’s
definition is used. Before that, Dedekind hesitated about publishing his definition because
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as it “could hardly be otherwise”, he considers his own “presentation (...) to
be simpler in form and to bring out the vital point more clearly.”41 In 1872,
Dedekind had not read Cantor’s or Weierstrass’s theories, but he wrote
in 1888, in the preface of Zahlen, that he considered both theories to be
“perfectly rigorous”, his own theory being essentially “simpler, smoother”
(ruhiger).42

7.2.1 A rigorous and arithmetical foundation for continuity

It is when teaching differential calculus in 1858 in Zürich, that Dedekind
came to the realization that an arithmetical and rigorous ground was needed
for real numbers.

I felt more keenly than ever before the lack of a truly scientific
foundation for arithmetic.43 ([Dedekind, 1872], 767)

At first, Dedekind was tempted to find “refuge” in “geometrical evidences”,
but while geometrical intuition can be useful in teaching and can indeed play
an important heuristic role, for “no one will deny that this form of introduc-
tion into the differential calculus can make no claim to being scientific”44

(ibid., 767).
Dedekind wrote in the introduction to Stetigkeit that the “feeling of dis-

satisfaction” was so “overpowering” in 1858, that he decided to find a way to
find “a purely arithmetical and perfectly rigorous foundation (Begründung)
for the principles of infinitesimal analysis.” The theorem that particularly
arose Dedekind’s dissatisfaction about the foundation of infinitesimal anal-
ysis is that of the existence of a limit for “every magnitude which grows
continually, but not beyond all limits.” Indeed, as it was the case for Can-
tor and Weierstrass, Dedekind wished to have a rigorous definition of the

“the presentation is not altogether easy, and (...) the theory itself is not very fruitful”
([Dedekind, 1872], 767).

41“Dem Wesen nach stimme ich zwar vollständig mit dem Inhalte dieser Schrift überein,
wie es ja nicht anders sein kann, aber ich will freimütig gestehen, daß meine Darstel-
lung mir der Form nach einfacher zu sein und den eigentlichen Kernpunkt präziser her-
vorzuheben scheint.”

42Like Cantor’s definition of irrational numbers, Dedekind’s cuts are explained in the
works on the arithmetization of mathematics cited at the beginning of the chapter. On
Dedekind more specifically, one can refer to [Dugac, 1976b], [Sinaceur and Dedekind, 2008],
and [Ferreirós, 2008]. I will, here, stay close to Dedekind’s text. In particular, I will not
consider more philosophical issues such as the axiomatic and / or structuralist character
of Dedekind’s approach, as one can find in [Sieg and Schlimm, 2005], [Reck, 2003], [Reck,
2009] and [Yap, 2009]. My aim, here, is rather to highlight the specific status of arithmetic
for Dedekind and its relations with Dedekind’s concept of number.

43“Ich fühlte dabei empfindlicher als jemals früher den Mangel einer wirklich wis-
senschaftlichen Begründung der Arithmetik”

44“daß diese Art der Einführung in die Differentialrechnung keinen Anspruch auf Wis-
senschaftlichkeit machen kann, wird wohl niemand leugnen.”
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quantities in question, in the cases in which it is not a rational number. By
providing a rigorous definition, Dedekind could, in the same move, give a
proof of the existence of such irrational limit. Indeed, as Dedekind wrote
to Lipschitz about his definition of irrational numbers, “nothing is more
dangerous in mathematics than to admit existence without proof.” His 1872
booklet provides a proof that the existence of irrational numbers is well
founded. It is particularly important because “a definition of this continuity
is nowhere given” even though differential calculus is developed using “con-
tinuous quantities”. The aforementioned theorem appears to Dedekind to
be suited to serve as a foundation for Analysis.

For Dedekind, it is by a proper and purely arithmetical definition of
irrational numbers and continuity, that one can obtain a satisfactory ground
for this important theorem and thereby for Analysis:

a more careful investigation convinced me that this theorem [of
the convergence of a bounded monotonic sequence], or any one
equivalent to it, can be regarded as a more or less sufficient foun-
dation for infinitesimal analysis. It only remained to discover its
true origin in the elements of arithmetic, and thereby to secure
a real definition of the essence of continuity.45 (ibid., 767)

The definition of real numbers should be “arithmetical” in the sense of
Weierstrass’s arithmetization: it should be developed solely on the basis of
rational numbers. But there is an additional criterion, for Dedekind: the
definition must neither use external tools such as geometrical notions, nor
unclear ideas such as that of “extensive magnitude”.

[T]he way in which the irrational numbers are usually introduced
is based directly upon the concept of extensive magnitudes –
which itself is nowhere carefully defined – and number is ex-
plained as the result of measuring such a magnitude by another
of the same kind. Instead of this I demand that arithmetic shall
develop out of itself.46 (ibid., 771)

Here, the “development of the arithmetic of rational numbers” is sup-
posed to be known and well founded. Dedekind explains shortly how he
considers that arithmetic was developed, so far:

45“eine genauere Untersuchung überzeugte mich, daß dieser oder auch jeder mit ihm
äquivalente Satz gewissermaßen als ein hinreichendes Fundament für die Infinitesimal-
analysis angesehen werden kann. Es kam nur noch darauf an, seinen eigentlichen Ur-
sprung in den Elementen der Arithmetik zu entdecken und hiermit zugleich eine wirkliche
Definition von dem Wesen der Stetigkeit zu gewinnen.”

46“Die bisher übliche Einführung der irrationalen Zahlen knüpft nämlich geradezu an
den Begriff der extensiven Größen an – welcher aber selbst nirgends streng definiert wird
– und erklärt die Zahl als das Resultat der Messung einer solchen Größe durch eine zweite
gleichartige. Statt dessen fordere ich, da die Arithmetik sich aus sich selbst heraus ent-
wickeln soll.”
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I regard the whole of arithmetic as a necessary, or at least natu-
ral, consequence of the simplest arithmetical act, that of count-
ing, and counting itself is nothing other than the successive cre-
ation of the infinite series of positive integers in which each in-
dividual is defined by the one immediately preceding. (...) Ad-
dition is the result of bringing together into a single act an ar-
bitrary number of repetitions of the simplest act; multiplication
arises from it in a similar way. While these two operations can
always be carried out, the inverse operations, subtraction and
division, are admissible only with restrictions. (...) [T]his lim-
itation in performing the indirect operations has in each case
been the real motive for a new creative act; thus negative and
fractional numbers have been created by the human mind, and
in the system of all rational numbers an instrument of infinitely
greater perfection has been gained.47 (ibid., 768)

The standpoint adopted, here, presents strong similarities with the ideas ex-
posed in the 1854 Habilitationsvortrag, although some aspects of the overall
conception have been refined. In particular, for Dedekind in 1872 and later,
the arithmetical operations are defined as the result of the operation applied
to the operands, i.e. one defines the addition of a and b as a+ b = c, rather
than just the operation itself, as a formal tool.48

It seems, even though Dedekind does not make this precise point explicit,
that such a definition of the operations provides a better justification for the
creation of new numbers to satisfy the demand that operations be applicable
without restrictions. Indeed, if one considers, for example, the subtraction
of a and b as defined by a − b = d, such a d does not exist if a < b and
one creates the negative numbers so that the subtraction can be universally

47“Ich sehe die ganze Arithmetik als eine notwendige oder wenigstens natürliche Folge
des einfachsten arithmetischen Aktes, des Zählens, an, und das zählen selbst ist nichts an-
deres als die sukzessive Schöpfung der unendlichen Reihe der positiven ganzen Zahlen, in
welcher jedes Individuum durch das unmittelbar vorhergehende definiert wird; der einfach-
ste Akt ist der Übergang von einem schon erschaffenen Individuum zu dem darauffolgenden
neu zu erschaffenden. (...) Die Addition ist die Zusammenfassung einer beliebigen Wieder-
holung des obigen einfachsten Aktes zu einem einzigen Akte, und aus ihr entspringt auf
dieselbe Weise die Multiplikation. Während diese beiden Operationen stets ausführbar sind,
zeigen die umgekehrten Operationen, die Subtraktion und Division, nur eine beschränkte
Zulässigkeit. (...) genug, gerade diese Beschränktheit in der Ausführbarkeit der indirek-
ten Operationen ist jedesmal die eigentliche Ursache eines neuen Schöpfungsaktes gewor-
den; so sind die negativen und gebrochenen Zahlen durch den menschlichen Geist erschaf-
fen, und es ist in dem System aller rationalen Zahlen ein Instrument von unendlich viel
größerer Vollkommenheit gewonnen.”

48It is a point explained in a letter to Weber, in 1878: “It does not please me that,
here, one defines the operation more that the result of the operation. I prefer when, for
example, the sum is defined as a number completely determined by the two summands,
rather than defining the addition, and this already with the rational numbers.” (Letter
from 19 November 1878, in [Dedekind, 1932] III, 486)
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valid. Note that the “limitation” of the applicability of inverse operations is
a motive for the creation of new numbers: the actual creation itself is done
with a proper rigorous definition.

7.2.2 The incomplete domain of rational numbers

To provide a purely arithmetical definition of the irrational numbers, Dedekind
starts by considering the field R of rational numbers and the fact that it is
totally ordered:

For our immediate purpose, however, another property [than
forming a field] of the system R is still more important; it may
be expressed by saying that the system R forms a well-ordered
(wohlgeordnetes) domain of one dimension extending to infinity
on two opposite sides.49 ([Dedekind, 1872], 768)

Dedekind thus bases his investigations on the fact that the rational numbers
form a linear (“one dimension”) infinite total order. The use of “expressions
borrowed from geometric ideas” allows to understand what is meant by these
properties but not to provide an appropriate definition. This is an additional
reason, for Dedekind, to provide a clear and precise arithmetical definition
of the linear continuum. Dedekind thus makes completely explicit the idea
of “well-ordered domain of one dimension”, introducing the idea that R is
dense (but Dedekind does not name this property, it will be done by Weber
in the Lehrbuch).

The order is defined by considering what it means for two numbers a
and b to be unequal:

Two rational numbers a, b are different just in case the difference
a−b has either a positive or negative value. In the former case a
is said to be greater than b, and b less than a; this is also indicated
by the symbols a > b, b < a. Because b− a has a positive value
in the latter case, it follows that b > a, and a < b.50 (ibid., 769)

The relation > is transitive and verifies “if a, c are two different numbers,
there are infinitely many different numbers b lying between a and c.” More-
over the rational numbers verify that every number generates what is called,
later in the essay, a “cut”:

49“Für unseren nächsten Zweck ist aber noch wichtiger eine andere Eigenschaft des
Systems R, welche man dahin aussprechen kann, daß das System R ein wohlgeordnetes,
nach zwei entgegengesetzten Seiten hin unendliches Gebiet von einer Dimension bildet.”

50“Die Verschiedenheit zweier rationaler Zahlen a, b zeigt sich darin, daß die Differenz
a − b entweder einen positiven oder einen negativen Wert hat. Im ersten Falle heist a
größer als b, b kleiner als a, was auch durch die Zeichen a > b, b < a angedeutet wird. Da
im zweiten Falle b− a einen positiven Wert hat, so ist b > a, a < b.”
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If a is any definite number, then all numbers of the system R
fall into two classes, A1 and A2, each of which contains infinitely
many individuals; the first class A1 comprises all numbers a1
that are < a, the second class A2 comprises all numbers a2 that
are > a; the number a itself may be assigned at pleasure to
the first or second class, and it is then respectively the greatest
number of the first class or the least of the second. In either case
the decomposition of the system R into the two classes A1, A2
is such that every number of the first class A1 is less than every
number of the second class A2.51 (ibid., 769)

So as to highlight the essential property of continuity, as opposed to the
density of the system of rational numbers, Dedekind uses an analogy with the
straight line. The straight line, here, only has a heuristic role: the properties
given, Dedekind says, “recall the corresponding relations of position between
the points of a straight line.”

Following this thread, Dedekind emphasizes what he considers to be the
“essence of continuity”, which he wants to be able to “follow up arithmeti-
cally”, putting to the fore the fact that rational numbers are insufficient to
characterize continuity. It is well-known, at least since the Greek mathemati-
cians, that there are “infinitely many lengths which are incommensurable
with the unit of length,” which allows to state that

[t]he straight line L is infinitely richer in point-individuals than
the domainR of rational numbers in number-individuals.52 (ibid.,
770)

This is the occasion for Dedekind to state clearly that while geometry can
inspire extensions of the number concept, as it is the case with incommen-
surable lengths, it is not acceptable to take it as foundation, as means of
definition, for the new numbers, which are new arithmetical elements and
ought to be defined as such, by purely arithmetical means.

The comparison between the domain R of rational numbers and the
straight line allows to find “in the former a gappiness, incompleteness, dis-
continuity”. Having highlighted that one of the common properties of R
and the straight line is that every point divides the domain / the line in
two distinct ordered parts, Dedekind finds “the essence of continuity” in the
“converse” property:

51“Ist a eine bestimmte Zahl, so zerfallen alle Zahlen des Systems R in zwei Klassen,
A1 und A2, deren jede unendlich viele Individuen enthält; die erste Klasse A1 umfaßt alle
Zahlen a1, welche < a sind, die zweite Klasse A2 umfaßt alle a2, welche > a sind; die Zahl
a selbst kann nach Belieben der ersten oder der zweiten Klasse zugeteilt werden, und sie
ist dann entsprechend die größte Zahl der ersten oder die kleinste Zahl der zweiten Klasse.
In jedem Falle ist die Zerlegung des Systems R in die beiden Klassen A1, A2 von der Art,
da jede Zahl der ersten Klasse A1 kleiner als jede Zahl der zweiten Klasse A2 ist.”

52“Die Gerade L ist unendlich viel reicher an Punktindividuen, als das Gebiet R der
rationalen Zahlen an Zahlindividuen.”
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If all points of the straight line fall into two classes such that
every point of the first class (Klasse) lies to the left of every
point of the second class, then there exists one and only one
point which produces this division of all points into two classes,
this severing of the straight line into two portions.53 (ibid., 771)

It is important to underline that continuity is not a necessary or intrinsic
property of the straight line, or even of space, for Dedekind. In fact, continu-
ity is a property that mathematicians attribute to the line: “to the straight
line we ascribe absence of gaps, completeness, continuity.” To assume that
the straight line is continuous is an axiom for Dedekind:

The assumption of this property of the line is nothing else than
an axiom by which we attribute to the line its continuity, by
which we think continuity into the line.54 (ibid., 772)

Note that Dedekind is not stating that ‘the continuity of the straight line’
is an axiom. Rather, the fact that one admits the continuity of the line is
an axiom which confers the continuity to the line: the mathematician, in
thought, makes the line complete, continuous. Continuity, for Dedekind, is
a property “conceived and not perceived” as Sinaceur explains:

This principle of continuity “corresponds” to the intuitive geo-
metric representation of the straight line that most analysts used
to have, but Dedekind gives it the form of an explicit statement,
precisely because he refuses this conception of an intuitive con-
tinuity. (...) The mathematical continuum is conceived and not
perceived; one does not see the continuity of the line, one thinks
the continuity, one defines it by a principle or a theorem, and
in mathematics, there is, in all rigor, nothing but principles and
theorems.55 ([Sinaceur and Dedekind, 2008], 37)

In fact, Dedekind explains that not only is space not necessarily continuous,
but even Euclidean geometry does not require the continuity of space in its

53“Zerfallen alle Punkte der Geraden in zwei Klassen von der Art, daß jeder Punkt der
ersten Klasse links von jedem Punkte der zweiten Klasse liegt, so existiert ein und nur
ein Punkt, welcher diese Einteilung aller Punkte in zwei Klassen, diese Zerschneidung der
Geraden in zwei Stücke hervorbringt.”

54“Die Annahme dieser Eigenschaft der Linie ist nichts als ein Axiom, durch welches
wir erst der Linie ihre Stetigkeit zuerkennen, durch welches wir die Stetigkeit in die Linie
hineindenken.”

55“Ce principe de continuité ‘correspond’ à la représentation géométrique intuitive de la
droite qu’avaient la plupart des analystes, mais Dedekind lui donne la forme d’un énoncé
explicite précisément parce qu’il récuse cette conception d’une continuité intuitive. (...) Le
continu mathématique est conçu, et non perçu ; on ne voit pas la continuité d’une ligne,
on la pense, on la définit par un principe ou un théorème, et en mathématiques il n’y a,
en toute rigueur, rien que des principes et des théorèmes.”
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premisses to be valid. Nor do the axioms of Euclidean geometry imply conti-
nuity.56 Dedekind discussed questions related to Euclid’s Elements in detail
in the correspondence with Lipschitz. It is always possible, if needed, to “fill
in” discontinuities in thought, that is to create, by a rigorous definition, the
elements that allow to make the discontinuous domain or space continuous
– in the case of R, it will be the irrational numbers. Here, the ‘principle of
continuity’ is taken as one of the laws that will allow to define the continu-
ity for real numbers, for it reveals the discontinuities in R and the need to
introduce new elements to obtain a complete, continuous domain.

7.2.3 Definition of irrational numbers

The rigorous arithmetical definition of irrational numbers is made in four
steps. First, Dedekind defines the notion of cut:

Every rational number a separates the system R into two classes
A1, A2 such that every number a1 of the first class A1 is less than
every number a2 of the second class A2, the number a is either
the greatest number of the class A1, or the least number of the
class A2. If now any separation of the system R into two classes
A1, A2 is given which possesses only this characteristic property
that every number a1 in A1 is less than every number a2 in A2,
then for brevity we shall call such a separation a cut (Schnitt)
and we shall designate it by (A1, A2).57 (op.cit., 772)

Dedekind says that “every rational number a produces” the cut (A1, A2).58

It is easy to prove that there is an infinity of cuts which are not produced
by rational numbers which amounts to proving the incompleteness of R. To
prove this, it suffices to consider a positive integer D such that it is not the
square of any other integer. Then, there exists a certain λ such that

λ2 < D < (λ+ 1)2.

One defines a cut (A1, A2) for which each number a2 in A2 has a square
which is greater than D and each number a1 in in A1 has a square ≤ D.

56In fact, continuity only became a subject of concern with the development of infinites-
imal calculus, in the 17th-18th centuries.

57“jede rationale Zahl a eine Zerlegung des Systems R in zwei Klassen A1, A2 von der Art
hervorbringt, daß jede Zahl a1 der ersten Klasse A1 kleiner ist als jede Zahl a2 der zweiten
Klasse A2; die Zahl a ist entweder die größte Zahl der Klasse A1, oder die kleinste Zahl der
Klasse A2. Ist nun irgendeine Einteilung des Systems R in zwei Klassen A1, A2 gegeben,
welche nur die charakteristische Eigenschaft besitzt, daß jede Zahl a1 in A1 kleiner ist als
jede Zahl a2 in A2, so wollen wir der Kürze halber eine solche Einteilung einen Schnitt
nennen und mit (A1, A2) bezeichnen.”

58The cut produced by the greatest number in A1 and that produced by the lowest
number in A2 are not, here, considered essentially different.
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Then, by showing that there is no rational number q such that q2 = D,
which is a elementary number theoretical proof, one can see that there is
neither a greatest number in A1 nor a lowest number in A2. Hence, there
doesn’t exist any rational number generating the cut (A1, A2).

Having proved that there are gaps in R, Dedekind proposes the following:

whenever we have a cut (A1, A2) produced by no rational num-
ber, we create a new number, an irrational number a, which
we regard as completely defined by this cut (A1, A2); we shall
say that the number a corresponds to this cut, or that it pro-
duces this cut. From now on, therefore, to every definite cut
there corresponds a definite rational or irrational number, and
we regard two numbers as different or unequal if and only if they
correspond to essentially different cuts.59 (ibid., 773)

First, note that Dedekind is not stating that he is inventing new numbers
which did not exist before, he does not “claim to invent (...) some number
which wouldn’t have been, already, grasped more or less clearly in the mind
of every mathematician” (Letter to Lipschitz, in [Dedekind, 1932] III, 475).
Rather, as he explains to Lipschitz:

The global tendency of my writing, which I believe has been
expressed clearly in the introduction and the §3, is rather simply
to use the generally known phenomena of the cut to prove (which
has never been done, to my knowledge) that on the sole ground
of the arithmetic of rational numbers, thus without the resort
of the rather obscure and complicated concept of magnitude,
the irrational number can be defined in one strike, and that,
which is the most important, in their completeness (continuity)
which is sufficient and in the same time indispensable for an
absolutely rigorous scientific construction of the arithmetic of
the real numbers.60 (ibid., 476)

59“Jedesmal nun, wenn ein Schnitt (A1, A2) vorliegt, welcher durch keine rationale Zahl
hervorgebracht wird, so erschaffen wir eine neue, eine irrationale Zahl a, welche wir als
durch diesen Schnitt (A1, A2) vollständig definiert ansehen; wir werden sagen, dab die
Zahl a diesem Schnitt entspricht, oder daß sie diesen Schnitt hervorbringt. Es entspricht
also von jetzt ab jedem bestimmten Schnitt eine and nur eine bestimmte rationale oder
irrationale Zahl und wir sehen zwei Zahlen stets und nur dann als verschieden oder ungleich
an, wenn sie wesentlich verschiedenen Schnitten entsprechen.”

60“Die ganze Tendenz meiner Schrift, die ich in der Einleitung und in §3 deutlich be-
zeichnet zu haben glaube, geht vielmehr lediglich darauf hinaus, mit Benutzung der all-
gemein bekannten Schnitt-Erscheinung nachzuweisen (was meines Wissens noch nirgends
geschehen war), daß auf der alleinigen Grundlage der Arithmetik der rationalen Zahlen,
also ohne jede Zuziehung des ziemlich dunkelen und complicirten Größen-Begriffes, die ir-
rationalen Zahlen mit einem Schlage definirt werden können, und zwar, was das Wichtig-
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The cuts, thus, identify the gaps in R that need to be filled to obtain a con-
tinuous domain. This incites the mathematician to create, in thought, new
numbers. What Dedekind invents is a new tool, the concept of cut, that
allows to define the system of real numbers, since the definition given by
Dedekind, here, yields all the irrational numbers in one move and provides
the concept of ordered (as we will see later) field of real numbers.

Irrational numbers should thus not be identified with cuts, but only
considered as corresponding to cuts, a mathematical concept which offers
the means for the definition/creation of irrational numbers.61 This point
has been often contentious for many commentators for whom Dedekind is,
in fact, assuming the existence of the irrational number he is creating. Most
notably Russell wrote, in Introduction to Mathematical Philosophy:

From the habit of being influenced by spatial imagination, peo-
ple have supposed that series must have limits in cases where it
seems odd if they do not. Thus, perceiving that there was no ra-
tional limit to the ratios whose square is less than 2, they allowed
themselves to “postulate” an irrational limit, which was to fill
the Dedekind gap. Dedekind, in the above-mentioned work, set
up the axiom that the gap must always be filled, i.e. that every
section must have a boundary. (...) But there are an infinite
number of series for which it is not verified.

The method of “postulating” what we want has many advan-
tages; they are the same as the advantages of theft over honest
toil. Let us leave them to others and proceed with our honest
toil. ([Russell, 1903], 71)

Several decades later, Dugac wrote that while Dedekind first “states
clearly that the irrational number a is defined by the cut (A1, A2)”, the
status of cuts corresponding to no rational numbers in the system R is less
clear.

Indeed, the rational number exists before generating the cut,
and the manner of forming the cuts from the elements in Q fully
justifies the use of the word “generate”. But we believe that when
the cut (A1, A2) does not correspond to any rational number,
the word “generate” seems to presuppose (against Dedekind’s
insisting conception that new numbers are “created”) a certain

ste ist, in derjenigen Vollständigkeit (Stetigkeit), welche für einen absolut strengen, wis-
senschaftlichen Aufbau der Arithmetik der reellen Zahlen ausreichend und zugleich unent-
behrlich ist.”

61For this reason, the definitions given by Cantor and Weierstrass are as valid as
Dedekind’s: the only difference is in the “simplicity” of the means of definition.
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a priori existence of a, while in fact, it is a which is “generated”
by the cut.62 ([Dugac, 1976b], 43)

The point that Dugac seems to be overlooking, here, is that the cuts provide
a method in two steps: first, one constructs the cut, which is a mathematical
tool that will be used for the creation, then one properly speaking creates
the irrational number determined by the cut. The cut is an instrument at
the mathematician’s disposal to create the new numbers. The cut is a math-
ematical object, designed by the mathematician, and is not itself creating
the numbers: cuts do not have a creative power, unlike the mathematician
who, according to Dedekind, has godlike powers of creation on these mat-
ters. And this creation is, for Dedekind, justified by the fact that there
exists, as it was rigorously proved, an infinity of cuts corresponding to no
rational number. According to Boniface:

Dedekind would probably say that the cut was built (as the
field of rational numbers was built), while the corresponding ir-
rational number was created (...). [T]he number created thus
come to “complete” the set of rational numbers and are “en-
tirely determined” by the cut which served for their creation.63

([Boniface, 2004], 25)

To these remarks, let us answer in two steps. First, with precisions about
the creation of new numbers per se, so as to clarify the idea of “creation” for
Dedekind, and in a second step by considering more specifically the creation
of irrational numbers.

The creation of an irrational number is and can only be made from the
already defined domain of rational numbers, and it is in this extent that
the cut is the instrument for the creation of the irrational numbers. Built
from the rational numbers, the cuts allows to put to the fore the necessity
to create new numbers to fill in the gaps, the discontinuities of R. If the
irrational number “corresponds” to the cut, it is because there is a one-
to-one correspondence between essentially different cuts and the domain of
rational numbers completed with the irrational numbers.

The creation is, thus, of the same nature as the creation of negative and
rational numbers: it is done only on the basis of already defined concepts.

62“En effet, le nombre rationnel existe avant d’engendrer la coupure et la façon de
former les coupures, à partir des éléments de Q, justifie pleinement l’emploi du mot ‘en-
gendrer’. Mais, nous croyons, que lorsque la coupure (A1; A2) ne correspond pas à un
nombre rationnel, alors le mot ‘engendrer’ semble présupposer (contrairement à la con-
ception insistante de Dedekind affirmant la ‘création’ de nouveaux nombres) une certaine
existence a priori de a, tandis qu’en réalité, c’est a qui est ‘engendré’ par la coupure.”

63“Dedekind dirait sans doute que la coupure a été construite (comme a été construit le
corps des nombres rationnels), alors que le nombre irrationnel qui lui correspond a été créé
(...). [L]es nombres créés viennent donc “compléter” l’ensemble des nombres rationnels et
sont “entièrement déterminés” par la coupure qui a servi à leur création.”
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It is not an ex nihilo creation, rather it is intrinsically related to already
defined domains of numbers, and it is done with tools that do not use “for-
eign elements”. The idea of a constrained creation was already present in
Dedekind’s Habilitationsvortrag, albeit without any explanation as to how
this creation was supposed to be done.64 Here (and as it will also be the
case for natural numbers), the creation is synonymous to the (rigorous) def-
inition of the new numbers by means of a new mathematical concept built
on “earlier” well-defined arithmetical concepts.

In 1888, when Weber raised the question of the identification between
numbers and cuts, Dedekind answered:

you say that the irrational number is nothing other than the
cut itself, while I prefer to create something new (different from
the cut) that corresponds to the cut and of which I say that
it brings forth, creates the cut. We have the right to ascribe
such a creative power to ourselves; and moreover, because of
the identity of nature (Gleichartigkeit) of all numbers, it is more
expedient to proceed in this way.65 (Letter to Weber, 24 January
1888, transl. slightly altered in [Ewald, 2005], 835)

Dedekind explains that if one were to say that the numbers are “identical
with the cut” they produce, then one would talk about numbers and ascribe
to them “such attributes that would sound in the highest degree peculiar
were they to be applied to the numbers themselves”. Thus, identifying the
numbers to the cut would imply to attribute to numbers properties that
are not arithmetical.66 This would imply differences of nature between the
different systems of numbers, whereas Dedekind carefully, since the initial
concept of natural number, defined each extension of the concept of number
on the basis of the previously established systems and this without introduc-
tion of “foreign elements” so as to preserve their “identity of nature”. For
Dedekind, such an extension allows to widen the number concept without
changing its nature – which explains why he calls the new objects created
irrational numbers and not irrational magnitudes as Cantor, Weierstrass and

64The essential difference between the Habilitationsvortrag and Stetigkeit is that in this
case, rather than the demand that an operation by uniformly applicable, one demands
that all cuts be generated by a number.

65Du sagst, die Irrationalzahl sei überhaupt Nichts anderes als der Schnitt selbst,
während ich es vorziehe, etwas neues (vom Schnitte Verschiedenes) zu erschaffen, was
dem Schnitte entspricht, und wovon ich sage, da es den Schnitt hervorbringe, erzeuge.
Wir haben das Recht, uns eine solche Schöpfungskraft zuzusprechen, und außerdem ist es
der Gleichartigkeit aller Zahlen wegen viel zweckmäßiger, so zu verfahren.”

66The argument is the same concerning the identification of natural numbers with cardi-
nal numbers construed as the “class”, i.e. ‘the system of all finite systems that [correspond
one-to-one] to each other, but “something new (corresponding to this class) which the mind
creates”.
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many other did.67

In defining the irrational numbers, Dedekind is introducing new arith-
metical elements, and his definition satisfies the requirements, which I have
already mentioned, that (1) arithmetic be “kept free from intermixture with
foreign elements” and “the definition or creation of irrational numbers ought
to be based on phenomena one can already observe clearly in the domain R
of rational numbers”; (2) the definition must allow to “engender simultane-
ously” all numbers (rather than several definitions as roots of equations, as
logarithms, ...); and (3) the definition must allow “a perfectly clear definition
of the calculations (addition, etc.) one needs to make on the new numbers”
([Dedekind, 1876-1877], 58, footnote, transl. slightly altered), which is done
for real numbers using only cuts, later in Stetigkeit.

7.2.4 Order and operations for real numbers
The second step for a complete definition of irrational numbers is to define
an order for the all the real numbers, i.e. for irrational and rational numbers
alike. This is done by studying relations between cuts. Let α and β be two
real numbers corresponding to the cuts (A1, A2) and (B1, B2). A cut being
a partition of the domain of real numbers in two disjoint sets, it suffices to
know, for example, A1 to fully know the cut itself. Hence, to be able to
state the equality of the two real numbers α and β, it suffices to know if A1
and B1 are identical, i.e. every number in A1 is a number in B1 and every
number in B1 is a number in A1, hence (A2 and B2 are identical as well
and) α = β.

If the classes A1 and B1 are not identical, then there are two possibilities:

- there exists at least one number a′1 which is in A1 but not in B1, and
is thus in B2, i.e. there exists a number in B2 such that a′1 = b′2;

- there exists at least one number b′1 which is in B1 but not in A1, and
is thus in A2, i.e. there exists a number in A2 such that b′1 = a′2.

If there is only one such number a′1 (resp. b′1), then it is easy to show that
α = a′1 = b′2 = β (resp. α = b′1 = a′2 = β). If there is more than one such
number, then the cuts (A1, A2) and (B1, B2) are “essentially different”. In
the first case, A1 and B1 are such that there are more elements in A1 than
in B1 and hence, α > β, while in the second case, A1 and B1 are such that
there are less elements in A1 than in B1 and hence, α < β. It is not possible
to have any other case than the one presented.

The careful re-definition of the order in the real numbers is important
for Dedekind, insofar as it is crucial to justify the choice of terminology and

67Note that Weber seems to have been convinced by Dedekind’s argument, since he
followed exactly Dedekind’s definition of irrational numbers, in his Lehrbuch, including
not identifying irrationals with cuts.
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symbols. Indeed, by doing so one makes sure to avoid “[allowing] oneself to
make inadmissible transfers from one domain to the other” motivated, even
with the “best intention to be honest”, by “a hasty choice of expressions
borrowed from other notions that have already been developed” (ibid., 775).
It was already the case, as we saw, with ideal numbers and the analogy with
rational number theory, which taken for granted led to “hasty conclusions
and incomplete proofs”. The transfer of expressions, notions, methods must,
thus, be motivated and justified, and it should not be taken as pretext to
assume the validity of the properties, as we saw for ideal theory.

The order established for the real numbers allows to show that the “sys-
tem of real numbers” denoted by R is a “completely ordered unidimensional
domain”, i.e. that its elements verify the properties on p. 411. More impor-
tantly, R also “possesses continuity”, that is:

If the systemR of all real numbers divides into two classes A1,A2
such that every number α1 of the class A1 is less than every
number α2 of the class A2 then there exists one and only one
number α by which this separation is produced.68 ([Dedekind,
1872], 776)

All these properties are theorems proved only using cuts. Thus R is a
completely order linear continuous domain and Dedekind thus provided a
perfectly rigorous and purely arithmetical characterization of continuity.

Since the transfer of expressions and properties should not be made
without proper definition (and proofs, when necessary), the definition of the
arithmetical operations is the fourth and last crucial point in the definition
of the real numbers. Again, everything is done by means of cuts. As men-
tioned at the beginning of the paragraph, operations should be defined by
the factors on which they act. Hence, to define the addition of two real
numbers α corresponding to the cut (A1, A2) and β corresponding to the
cut (B1, B2) in R (and not in R, for that would be assuming the validity
of the transfer of the operations) means to be able to characterize the cut
(C1, C2) corresponding to the “result γ of the computation”. The definition
of the cut (C1, C2) must be done on the sole basis of the cuts (A1, A2) and
(B1, B2). For this, Dedekind proposes that a rational number c be “put into
the class C1” if there exists a1 in A1 and b1 in B1 such that a1 +b1 ≥ c. This
generates a partition of the domain in two distinct classes, and “evidently
forms a cut”. This cut is produced by the result of α+ β: any number c1 in
C1 is such that c1 ≤ a1 + b1 ≤ α+ β and one can prove that any number c2

68“Zerfällt das System R aller reellen Zahlen in zwei Klassen A1,A2 von der Art, daß
jede Zahl α1 der Klasse A1 kleiner ist als jede Zahl α2 der Klasse A2, so existiert eine und
nur eine Zahl α, durch welche diese Zerlegung hervorgebracht wird.”

420



7.2 Dedekind’s Stetigkeit und irrationale Zahlen

in C2 is such that c2 ≥ α+ β. Indeed, suppose that there is a number c2 in
C2 such that c2 < α+ β. One could write c1 + p = α+ β with p a positive
rational number, i.e.

c2 = (α− 1
2p) + (β − 1

2p)

but then, since α − 1
2p is in A1 and β − 1

2p is in B1, that would contradict
c2 < α+β. Thus, any number c2 in C2 is such that c2 ≥ α+β, which means
that (C1, C2) is indeed produced by α+ β.

Thus we shall not violate the definition which holds in the arith-
metic of rational numbers if we always understand the sum α+β
of any two real numbers α, β to be that number γ by which the
cut (C1, C2) is produced. Further, if only one of the two num-
bers α, β is rational, e.g., α, it is easy to see that it makes no
difference to the sum γ = alpha + β whether the number α is
put into the class A1 or into the class A2.69 (ibid., 777)

It is perfectly possible, Dedekind tells us, to define all the other oper-
ations of elementary arithmetic: subtraction, multiplication, quotient, but
also powers, roots, logarithms, and “in this way we arrive at real proofs of
theorems (as, e.g.,

√
3.
√

2 =
√

6), which to the best of my knowledge have
never been established before.”70

This statement was a contentious point for Lipschitz, who affirmed that
Euclid’s Elements V, 5. already contained “the necessary principles for
the proof of these theorems”.71 The letters exchanged with Lipschitz gave
Dedekind the opportunity to explain many of his ideas, and I have used
his answers to Lipschitz several times. Regarding this particular point,
Dedekind carefully explained how his ideas were distinct from what can
be found in Euclid’s Elements.72 An important difference between what
is done in the Elements and Dedekind’s definition of the irrational is that
there is, in Euclid, no consideration of a “concept of a continuous domain

69“Man verstößt daher nicht gegen die in der Arithmetik der rationalen Zahlen geltende
Definition, wenn man in allen Fällen unter der Summe α+ β von zwei beliebigen reellen
Zahlen α, β diejenige Zahl γ, versteht, durch welche der Schnitt (C1, C2) hervorgebracht
wird. Ist ferner nur eine der beiden Zahlen α, β, z.B. α rational, so überzeugt man sich
leicht, daß es keinen Einfluß auf die Summe γ = α + β hat, ob man die Zahl in die
Klasse A1 oder in die Klasse A2 aufnimmt.”

70The letters exchanged with Lipschitz tell us that Dedekind did not know of Weier-
strass’s work on irrational numbers, in 1872.

71The consideration of Dedekind’s cuts as similar to Eudoxus’s method of exhaustion
can also be found in [Weyl, 1946], 4-5.

72As Sinaceur underlines, Dedekind “proposes a very subtle and absolutely original
analysis of the theory of proportions of the books V and X of Euclid’s Elements”. See
[Sinaceur and Dedekind, 2008], pp. 258-260.
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of magnitudes”. If one were to consider a domain of magnitudes with in-
commensurable magnitudes but without the principle of continuity given by
Dedekind, this domain would still be “incomplete” (i.e. discontinuous),

and the generally valid definitions of the arithmetical operations
is therefore downright impossible, because in such incomplete
domains of numbers, the sum, difference, etc., of two actually
existing numbers may not exist in the same domain of numbers.73

(Letter to Lipschitz, 10 June 1876, in [Lipschitz and al. 1986],
68)

The possibility to give a generally valid definition of the operations is a core
argument for Dedekind’s approach. If one is ready to give up the demand
that the operations defined are “general”, i.e. valid for all and any num-
bers of the domains, then it suffices to state that “as the product

√
2.
√

3,
I mean the number

√
6, hence

√
2.
√

2 =
√

6, qed!” (ibid., 68). If this is
a “conceivable” way of treating operations, it is not, however “advisable”.
In particular, it would imply that the operations would need to be defined
every time they are applied to new numbers.

In Stetigkeit, Dedekind does not give the definitions of the other opera-
tions of arithmetic for brevity’s sake. To shorten these definitions, Dedekind
proposes to consider the “concept of interval”, that is,

a system A of rational numbers possessing the following charac-
teristic property: if a and a′ are numbers of the system A, then
all rational numbers lying between a and a′ are contained in A.74

([Dedekind, 1872], 777)

The concept of interval allows to introduce a notion of supremum and in-
fimum and to give a theorem that “the arithmetical operations possess a
certain continuity”:

If the number λ is the result of an operation performed on the
numbers α, β, γ, ... and λ lies within the interval L, then intervals
A,B,C, ... can be found which contain the numbers α, β, γ, ...
and such that the result of the same operation in which the
numbers α, β, γ, ... are replaced by arbitrary numbers of the in-

73“und es sind schon deshalb allgemeingültige Definitionen der arithmetischen Opera-
tionen geradezu unmöglich, weil in solchen lückenhaften Zahlen-Gebieten die aus zwei
wirklich darin existirenden Zahlen abzuleitende Summe, Differenz u.s.w. in demselben
Zahlen-Gebiete vielleicht nicht existirt.”

74“eines Intervalls, d.h. eines Systems A von rationalen Zahlen, welches folgende
charakteristische Eigenschaft besitzt: sind a und a′ Zahlen des Systems A, so sind auch
alle zwischen a und a′ liegenden rationalen Zahlen in A enthalten.”
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tervals A,B,C, ... is always a number lying within the interval
L.75 (ibid., 777)

The theorem given by Dedekind, here, is according to Sinaceur “of an ex-
ceptional generality”. Dedekind, however, finds it too “clumsy” (Schwer-
fälligkeit). This “clumsiness” incites Dedekind to turn towards the “ideas
of variable magnitudes, functions, and limiting values,” which are “an aid
to expression” (um der Sprache zu Hilfe). This shows that Dedekind would
rather design new notions that are more practical, easier to use in mathemat-
ics, rather than systematically bring back all definitions to basic principles.
It was also the case with the definition adopted for finite fields, a “conces-
sion” made to allow a smoother development of algebraic number theory.

These developments make it possible for Dedekind to provide a purely
arithmetical proof of the theorem: “If a magnitude x grows continually but
not beyond all limits it approaches a limiting value”, which was considered
as a good ground for infinitesimal analysis.

Dedekind shows that this result is equivalent to the principle of conti-
nuity: it ceases to be valid “as soon as we assume a single real number not
to be contained” in the domain R of the real numbers, and if this theorem
is valid so is the theorem stating the continuity of R. This is shown by
Dedekind using the method of analysis and synthesis of the problem: the
analysis shows that the principle of continuity is necessary for the theorem
to be true, and the synthesis shows that it is also a sufficient condition for
a proof of the theorem. Other theorems can be proved as well, such as the
convergence of Cauchy sequences.

We see, thus, how with the definition of real numbers, their order, the
proof of the continuity of the system of real numbers and the elementary
arithmetical operations, Dedekind was able to give a purely arithmetical and
perfectly rigorous definition of the linear continuum of the real numbers. I
will come back to the issue of rigor later in this chapter.

The distinction between dense and continuous domains is an essential
point for Dedekind’s approach (and which was, of course, also noted by
Cantor). The terminology was coined by Weber in his Lehrbuch:

An ordered set which has the property that between any two
elements, one can alway find again another element is called
dense.76 ([Weber, 1895-96] I, 4)

75“Ist die Zahl λ das Resultat einer mit den Zahlen α, β, γ, ... angestellten Rechnung, und
liegt sie innerhalb des Intervalls L, so lassen sich Intervalle A,B,C... angeben, innerhalb
deren die Zahlen α, β, γ, ... liegen, und von der Art, daß das Resultat derselben Rechnung,
in welcher die Zahlen α, β, γ, ... durch beliebige Zahlen der Intervalle A,B,C... ersetzt
werden, jedesmal eine innerhalb des Intervalls L liegende Zahl wird.”

76“Eine geordnete Menge von der Eigenschaft, dass zwischen je zwei Elementen immer
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Weber explains that one can form a dense set of numbers by forming the
rational numbers as pairs of natural numbers. He, then, introduces the
notion of cut, and states that

When any cut in a dense set is produced by a determinate ele-
ment µ, the set is called continuous.77 (ibid., 6)

Rational numbers are characterized by Weber as a dense but not continuous
set of numbers, and the real numbers as a continuous set of numbers.

Dedekind’ viewpoint was completely adopted by Weber, despite the lat-
ter’s initial reservations about the “creation” of irrational numbers. The
definition of reals by means of cuts can also be found in Ulisse Dini’s 1878
treatise on functions (Fondamenti per la teorica della funzioni di variabili
reali), who initiated the interest in the foundation of analysis in Italy. This
interest is be taken up by Peano who developed a more Weierstrassian view-
point. Cuts were also used by Camille Jordan in the 1893 edition of his
textbook on Analysis. Despite its non-constructive aspect and the difficul-
ties of using cuts in effective computations, the methods of cuts was thus
widely adopted.

We saw that for Klein, arithmetization was essentially a process of rigo-
rization of the foundation of Analysis, in particular of the real numbers. The
approach earned its name of “arithmetization” from the clearly displayed de-
mand that the definition of irrational numbers be made on the basis of the
rational numbers, and in particular not in a geometrical context.

Although Klein’s description does point out some important specificities
of the changes happening during the 19th century, it seems to present two
drawbacks: the first is the negation of important differences in the ideas
and mathematics of the ‘arithmetizers’. The second is, as pointed out by
Jahnke and Otte, the distinction between foundation and development of
mathematics:78

Does this separation between development and foundation really
apply to the mathematics of the 19th century, which did show
the marks of a historically unprecedented productivity?
([Jahnke and Otte, 1981], 23)

From their viewpoint, the arithmetization of mathematics is not restricted
to the foundation of Analysis, but is a “matter of (...) reshaping and refor-
mulating mathematics as a whole.” For them, at the turn of 19th century,
arithmetic became “the language of algebra resp. of the entire mathematics,

noch andere Elemente gefunden werden, heisst dicht.”
77“Wenn jeder Schnitt in einer dichten Menge durch ein bestimmtes Element µ erzeugt

wird, so heisst die Menge stetig.”
78Jahnke and Otte also underline the question of the relation between foundation and

application of mathematics, a point that seems out of the scope of my inquiry.
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by means of which, and in which, all mathematical facts must ultimately be
expressible”, a process that culminated with Hilbert’s program.

In the following paragraph, I will inquire into the idea that “arithmeti-
zation” played a predominant role in the development of Dedekind’s mathe-
matics, as the strategy elaborated by Dedekind for his most important works
– both foundational and non-foundational. This will allow me to propose
an explanation for the importance of arithmetic observed in the previous
chapters.

Note that while following Jahnke and Otte’s initial proposition, I will not
be following the idea that the concept number had become a “symbol”, for
this would not fit Dedekind’s idea of numbers. An appropriate explanation
of Dedekind’s arithmetization will thus have to be made in two parts: first,
in the next paragraph, I will highlight the characteristics of his approach,
and in a second step, I will relate them to his concept of number. This
second point will take place in the last chapter of the dissertation.

7.3 A Dedekindian arithmetization?

If the arithmetization that can be identified in Dedekind’s works is not sup-
ported by a concept of number changed into a pure “symbol”, then the
process on which arithmetization relies still needs to be made explicit.79 In
which way is what Dedekind does an expression of mathematics in arithmeti-
cal forms? Why should arithmetic be used rather than other approaches?
What kind of demands does the arithmetization respond to?

One of the core motivations of the arithmetization of the “foundation of
Analysis” proposed by Dedekind in 1872 is the demand that “Arithmetic is
developed out of itself.” And indeed, we saw that, for Dedekind, a properly
done extension of a certain domain of numbers yields new numbers, and
not magnitudes. This implies that from the extension of the number con-
cept follows an extension of arithmetic, whose “first object” are the natural
numbers.

In the following, I will propose a characterization of Dedekind’s “arith-
metization” susceptible to encompass the definition of the irrational numbers
as well as Dedekind’s resort to arithmetical methods in algebraic function
and algebraic number theory. With the elements presented in previous chap-
ters, we know that the development of arithmetical methods is particularly
important for Dedekind’s algebraic number theory (and subsequently for his
algebraic function theory), and became particularly noticeable in the rewrit-
ing of algebraic number theory in 1876-77 in a form that appears to be more

79Once this is done, I will turn to the concept of natural number, so as to highlight the
foundation of arithmetic which supports Dedekind’s arithmetization.
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‘arithmetical’.

When using the phrase “arithmetization”, I refer to the attempts to
develop theories on the basis of elementary arithmetic so as to fulfill epis-
temological requirements. I investigate the strategy developed to designate
the set of concepts and methods used to provide a new rigorous and uniform
ground and/or expression to certain theories.

Contrary to Klein and to most of the later commentators, I will consider
that the “putting into arithmetical form” is an important, if not essential,
part of the process of arithmetization. Moreover, I will look at arithmetiza-
tion in a somewhat broader way, and will not reduce it to considerations on
the definition of real numbers. Hence, like Janke and Otte, I will speak of
“arithmetization of mathematics” rather than “arithmetization of analysis”.
In fact, when introduced by Kronecker and Klein, “to arithmetize” aimed at
all (pure) mathematics. Kronecker’s ‘program’ was a reduction of all pure
mathematics to arithmetic. Klein had a very broad view of arithmetization
as being a rigorization program running through mathematics in the 19th
century. In 1897, in his Theory of Algebraic Number Fields, Hilbert wrote
“the modern development of pure mathematics takes place chiefly under the
sign of number” (quoted in Petri and Schappacher 2007, 366), and mentions
the arithmetization of function theory by Dedekind and by Weierstrass, as
well as the arithmetization of geometry. Hilbert’s notion of arithmetiza-
tion “touches algebra, analysis, and geometry alike” according to Petri and
Schappacher (ibid., 367).

In what I will present, there is more to arithmetization than the mere
rigid logic argued for by Klein. Indeed, as shown by the variety of examples
given by Klein himself, “arithmetization” takes on several meanings, each
based on a different conception of arithmetic. In Dedekind’s works, the
use of arithmetic does, indeed, provide a more rigorous and more general
‘foundation’ or ‘definition’ to continuity and the real numbers and aims at
avoiding the use of intuition, but his approach seems more systematic and
more ambitious than solely the increase of rigid rigor – in fact, rigor appears
as a part of the creation process of mathematicians.

7.3.1 Extension of arithmetic?
We saw that it is clearly stated by Dedekind that arithmetic is the “Science
of Numbers”, whose first object are the natural numbers (see Sec. 2.6.1).
For him, an “arithmetical” theory should imply that “the consideration of
the realm of numbers (the absolute constants) would form the main founda-
tion” ([Edwards, Neumann, and Purkert, 1982], 54). Arithmetic, described
as an immediate consequence of the “act of counting”, is also, with the in-
troduction of the arithmetical operations, a science of immeasurable depth
and width, for Dedekind. As he explains, in Zum Zahlbegriff,
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Arithmetic, whose sole subject matter is [the number] concept,
is already by now a science of immeasurable extension, and there
is no doubt that no limits are set to its further developments.
(Zum Zahlbegriff, in [Dugac, 1976b], 315)

As we saw, that particular characterization of arithmetic does not keep
Dedekind from considering extensions of the systems of numbers as broad-
enings of the number concept itself. Indeed, the element of each new system
created are called numbers and treated as arithmetical elements, in particu-
lar with the redefinition of the elementary operations for each new system.
Dedekind’s contemporaries, on the other hand, be they engaged in a gen-
eralization of the number concept like Cantor or committed to recognizing
only natural integers as actual numbers like Kronecker, did not write about
irrational numbers, but about irrational magnitudes. Dedekind’s viewpoint
on the number concept and the enlargement of arithmetic is singular, on
this matter.

Irrationals are considered as numbers in relation to the fact that the pro-
cess of enlargement of the domains of numbers preserves the arithmetical
nature of their elements, as I mentioned earlier. Inasmuch as no “foreign
elements” are introduced, that the extension is made without using non-
arithmetical methods, and with a consistent definition of the elementary
operations for the new numbers, then the objects obtained are numbers. For
Dedekind, that Stetigkeit is as much about arithmetic being given a “truly
scientific” foundation and satisfying the demand “that arithmetic shall de-
velop out of itself” ([Dedekind, 1872], 767, 770), as it is about providing
“a purely arithmetical and perfectly rigorous foundation for the principles
of infinitesimal Analysis”. It is important to emphasize that the definition
of irrationals is not arithmetical in order for them to enter the realm or
arithmetic, but because they are part of arithmetic and, as such, require an
arithmetical definition.80

A possible additional reason for Dedekind to consider irrationals as num-
bers properly speaking, is their use in number theory by Dirichlet. Indeed,
Dedekind is explicitly erasing the long lasting distinction between “discrete”
and “continuous” magnitudes. Recall that Gauss excluded the irrationals
from the scope of his Disquisitiones. Dirichlet, in 1837, introduced the use
of infinite series and analytical methods in number theory, on the basis of
which he was able to prove his theorem on arithmetic progressions.

I was only able to establish [that any arithmetical progression
whose first term and common ration are integers without com-
mon divisors contains infinitely many prime numbers] by rely-
ing on properties of a class on infinite series, which have a lot

80Whereas Kronecker admits in arithmetic magnitudes that are not natural numbers
only insofar as he can provide an acceptable arithmetical definition for them.
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in common with the ones used by Euler in the chapter XV of
his Introduction to Infinitesimal Analysis.81 ([Lejeune-Dirichlet,
1838], 359)

Dirichlet, convinced that he had found a very fruitful new approach to num-
ber theoretical problems, pursued this road further and presented some of
the core ideas and results obtained in two articles in 1838 and 1839: “Sur
l’usage des séries infinies dans la théorie des nombres” and “Recherches sur
diverses applications de l’analyse infinitésimale à la théorie des nombres”
(repr. in [Lejeune-Dirichlet, 1889-1897]). In these articles, he explains that
through the researches on the arithmetical progression theorem, he came to
understand that “the consideration of this kind of series constitutes a very
fruitful method of indeterminate analysis, which can be applied to various
questions” (ibid., 360). He thus called the attention to the links between
infinitesimal analysis and higher arithmetic, which had been overlooked by
Gauss. This new perspective on the relations between analysis and arith-
metic allowed him to “consider a great number of questions related to num-
bers with a entirely new viewpoint”, and to “attach them to the principles
of infinitesimal analysis” and the properties of infinite series and products
(ibid., 413). Not only did the introduction of analytical methods open new
questions and perspectives in number theory, which Dirichlet details in his
two papers, it also gave him the possibility to simplify greatly some of the
proofs in the theory of binary quadratic forms:

The Analysis that led us to the complete solution of this inter-
esting question will give us, in the same time and, so to speak,
on the way, new and very simple proofs of several beautiful the-
orems due to M. Gauss, but that this illustrious mathematician
only established by very complicated considerations, in the sec-
ond part of the 5th section of his Disquisitiones arithmeticae.82

(ibid., 413-414)

The possibility to give this new shorter, simpler treatment of some of Gauss’s
results is, for Dirichlet, a great advantage of his method. His hope, he says,
is that his work can “contribute to the progress of science by establishing
new basis” and by making more elementary some “beautiful and important

81“Je suis parvenu à établir [que toute progression arithmétique dont le premier terme
et la raison sont des entiers sans diviseur commun, renferme une infinité de nombres
premiers], en m’appuyant sur les propriétés d’une classe de séries infinies, qui ont beaucoup
d’analogie avec celles qu’Euler considère dans le chap. XV. de son Introd. à l’Anal, de
l’inf. (...)”

82“L’analyse qui nous conduira à la solution complète de cette question intéressante,
nous fournira en même temps et pour ainsi dire, chemin faisant, des démonstrations
nouvelles et très simples de plusieurs beaux théorèmes dus à M. Gauss, mais que cet illustre
géomètre n’avait établis qu’au moyen de considérations très compliquées dans la seconde
partie de la 5e section de ses Disquisitiones arithmeticae.”
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theories” which had hitherto been accessible to a small number of mathe-
maticians able to follow “long sequences of computations” (ibid.).

Dirichlet’s inauguration of analytical methods in number theory is, thus,
presented as the possibility to establish a new ground for the investigations
of number theory, allowing to bypass difficulties. By this, an extension of
arithmetic is made in the consideration of methods of infinitesimal anal-
ysis, as legitimate tools for arithmetic. In particular, then, for Dirichlet,
continuity and “surd” magnitudes (both algebraic and transcendental) are
integrated into arithmetic.

The acceptance of irrationals as numbers and genuine objects of arith-
metic comes as an inheritance from Dirichlet and a continuation of his works.
Indeed, Dedekind did learn number theory with Dirichlet, and also shared
his views about the importance for a method to be able to shorten compli-
cated computations and tedious reasonings.83

It is with this conception of arithmetic as the science of numbers, a non-
rigid theory susceptible to be widened by the extension of its objects, that
Dedekind can introduce continuity in arithmetic – and with this conception
that he approaches number theory. His number theoretical works appear to
be based on the idea of arithmetic as being an activity of the human under-
standing subjected to changes, progresses, innovations. As such, arithmetic
can be remodeled so as to ease proofs and allow more developments. On
these grounds, Dedekind develops, for number theory, new methods in which
arithmetical concepts are applied to objects which are not, properly speak-
ing, numbers. As we saw in the previous chapters, Dedekind extends the
scope of arithmetic by introducing the consideration of ideals as arithmetical
elements which are yet not numbers but systems of numbers.

The introduction of arithmetical operations for objects which are not
numbers is first made as a way to reinterpret relationships between concepts,
such as groups. The efficiency of this approach, particularly striking in
algebraic number theory, seems to have incited Dedekind to pursue this
road further and develop an arithmetical approach to other theories, such as
algebraic function theory in which not only are number theoretical methods
transferred, but an arithmetical ground for the Riemann surface is also given.

With this move, Dedekind extends again the scope of arithmetic by
widening the possibility of applications of the arithmetical operations. In-
deed, as we saw, ideals are introduced as arithmetical elements. Moreover,
in the methods derived from ideal theory, such as module theory or the poly-
gons in Riemannian function theory, the central role played by divisibility

83Note that this specific inheritance is made possible by Dedekind’s general standpoint
about mathematics, as a science whose greatest developments are made by the introduc-
tion of new concepts. Kronecker, although another of Dirichlet’s followers, considered
irrationals as geometrical objects and certainly not admissible as objects of arithmetic –
especially not transcendental irrationals.

429



Chapter 7 - Arithmetic, arithmetization, extension of the number concept

gives the methods an arithmetical character.

As it has been mentioned several times and is particularly explicit in
Stetigkeit, one of the core motivations of Dedekind’s works is to reach a
greater rigor and uniformity in the definition of certain notions, or more
widely in the presentation of a theory. In the following, I will inquire into
the tight relations between the desire of rigor guiding Dedekind’s research
and the resort to arithmetical methodology, which should allow me to explain
the recurrence of arithmetical methods in Dedekind works, which was put
to the fore in the previous chapters.

7.3.2 Reduction to earlier concepts and rigor
The arithmetical methodology in use in Dedekind’s algebraic number and
algebraic function theories, as well as for the “arithmetization” of continuity
in 1872, are not merely the reformulation of already known theories into an
arithmetical form. They are the introduction of new concepts, new methods,
best-suited for Dedekind’s goal, and to which an arithmetical form is given.

According to Dedekind, mathematicians can and should introduce new
concepts to stimulate the development of mathematics:

I see nothing meritorious (...) in (...) insisting on the use and
recognition of no other than natural numbers. On the contrary,
the greatest and most fruitful advances in mathematics and other
sciences have preferably been made by the creation and introduc-
tion of new concepts, after the frequent recurrence of complex
phenomena, which could not be mastered by the old notions,
compelled to this.84 ([Dedekind, 1888]., transl. slightly altered,
792)

New domains of numbers are, for Dedekind, an example of such a “creation
and introduction of new concepts”. In the meantime, definitions such as the
definition of real numbers should always be done by reduction to “earlier
concepts”:

the step-by-step extension of the number-concept is (...) to be
carried out – the creation of zero, of the negative, rational, irra-
tional, and complex numbers – always by a reduction to earlier
concepts, and indeed without any introduction of foreign con-
ceptions (such as for example that of measurable magnitudes),

84“[I]ch erblicke keineswegs etwas Verdienstliches darin (...) keine anderen als die natür-
lichen Zahlen benutzen und anerkennen zu wollen. Im Gegenteil, die größten und frucht-
barsten Fortschritte in der Mathematik und anderen Wissenschaften sind vorzugsweise
durch die Schöpfung and Einführung neuer Begriffe gemacht, nachdem die häufige
Wiederkehr zusammengesetzter Erscheinungen, welche von den alten Begriffen nur müh-
selig beherrscht werden, dazu gedrängt hat.”
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which according to my view can attain perfect clearness only
through the science of numbers.85 (ibid., 792)

The key to satisfy these two requirements, then, seems to be to introduce
new concepts based on the previously rigorously defined (“earlier”) concepts,
and to use these “earlier” concepts as tools.

7.3.2.1 Rigor and “Dedekind’s principle”

To characterize rigor more precisely, one can follow a proposition by Michael
Detlefsen, in his paper “Dedekind Against Intuition. Rigor, Scope and the
Motives of His Logicism” ([Detlefsen, 2012]), in which Detlefsen proposes
to take the very first sentence of Dedekind’s Was sind und was sollen die
Zahlen? as a criterion of rigor:

In science nothing capable of proof ought to be believed without
proof.86 ([Dedekind, 1888], 790)

Detlefsen proposes to interpret this statement as guiding what it is accept-
able to believe, what justification can be considered as valid for a scientific
proposition. He calls it “Dedekind’s principle” and states that Dedekind’s
view is that

[t]he only proper, and the best possible scientific justification of
a provable proposition is a proof. More accurately, it is a proof in
which all the basic premises are unprovable. ([Detlefsen, 2012],
210)

From this viewpoint, then, Dedekind’s principle gives us a standard for
rigor in mathematics, according to which a proof is rigorous, and therefore
acceptable in science, only if it relies on premisses which are believed to be
unprovable.

“Dedekind’s principle”, Detlefsen suggests, should be understood as guid-
ing what is acceptable to believe in science, which justifications should be
considered as acceptable for a scientific proposition. The standard of rigor
given by “Dedekind’s principle” demands that any proof, in order to be con-
sidered as an acceptable (rigorous) one, ought to rely on premisses which

85“[D]ie schrittweise Erweiterung des Zahlbegriffes, die Schöpfung der Null, der nega-
tiven, gebrochenen, irrationalen und komplexen Zahlen stets durch Zurückführung auf die
früheren Begriffe herzustellen ist, und zwar ohne jede Einmischung fremdartiger Vorstel-
lungen (wie z. B. der der meßbaren Größen), die nach meiner Auffassung erst durch die
Zahlenwissenschaft zu vollständiger Klarheit erhoben werden können.”

86“Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt werden.”
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have been believed to be unprovable. This principle, Detlefsen tells us, un-
derlies Zahlen and guides a certain Dedekindian logicism.87

The idea of the “Dedekind’s principle” appears very consistent with the
definition of the natural numbers, which I will study in the next chapter. In-
deed, this definition is presented by Dedekind as based on the “Laws of Pure
Thought” which were considered as being the only non-provable truths, in
the 19th century. Considering this, it is easy to understand how Dedekind’s
essay on natural numbers meets this criteria of rigor: the building of the se-
quence of natural integers, and the arithmetic following from it, are founded
on the laws of thought (via systems and applications). It is thus guaran-
teed that the bases of the reasoning are unprovable premisses (see Section
8.1.1). Hence, following this logical principle of rigor, one defines the nat-
ural numbers by means of general concepts representing the operations of
thought.

Note that there seems to be an ambiguity, here, between definition and
proof. The principle of rigor could be stated as a demand of definition, in
which it would mean to try to avoid “illicit hypotheses of existence”: one
verifies, or proves, the hypothesis of existence by effectively defining the
notion whose existence is supposed by a systematic reduction to earlier (al-
ready defined) concepts. To avoid gaps, circularities or even impossibilities
in demonstrations, one has to never admit something that can be defined,
without a definition.88 This tension between definition and proof seems to
run through Dedekind’s works. Indeed, he often states that a more rigorous
definition (of the irrational numbers, of ideals, of the Riemann surface) is
essential for more rigorous proofs, for a more rigorous development of the
theory investigated.

In Zahlen, on which Detlefsen’s reading of Dedekind’s ideal of rigor is
based, in order to provide the desired rigorous definition of natural numbers,
Dedekind decomposes the reasoning at the roots of the creation of natural
numbers. The essay presents itself as a “long series of simple inferences”
which, while it can seem tedious and useless, corresponds exactly, from
Dedekind’s viewpoint, to the way in which our mind is working, to our
“stepped understanding” (Treppen-Verstand). This idea, also mentioned
in a letter to Cantor, reflects the precept stated earlier: to systematically
reduce definitions and proofs to “earlier concepts”, so that each step of the
reasoning is known and controlled.

However, in practice, when working with more elaborated concepts, it is
not necessary, and not always fruitful, to systematically go back to the first

87For Detlefsen, the standard of rigor attached to “Dedekind’s principle” is a “commit-
ment to an objective standard for determining when proof has been pursued to this point
[of unprovable premisses]” (ibid., 211). Understood this way, logicism largely represents
a norm of properly scientific reasoning, in particular in mathematics, rather than a view
concerning the nature of mathematical objects and truths.

88I will come back to this question in Sec. 8.1.2.
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unprovable premisses. Dedekind stated very clearly, in the introduction of
Zahlen, that a systematic reduction to natural numbers is a too cumbersome
and tedious work to be fruitful. Likewise, in Stetigkeit, Dedekind states
that to express all the properties of arithmetic operations by means of cuts
would be lengthy considerations. Recall that it would rely on a theorem (see
p. 423) of such a “repulsive clumsiness” (abschreckende Schwerfälligkeit) that
it “convinces us” that one should introduce an “aid to expression” (etwas (...)
um der Sprache zu Hilfe, here, the notions of variable magnitudes, functions,
and limiting values). According to Dedekind, from then on, “it would be
best to base the definitions of even the simplest arithmetical operations upon
these ideas”89 ([Dedekind, 1872], 777).

One should, therefore, contextualize Dedekind’s principle: it is required
to define the natural numbers on the ground of unprovable premisses, be-
cause one is defining the first object of the simplest science. In further
developments of mathematics, one should take advantage of the definitions
already given and “reduce the long chains of inferences” by taking the pre-
vious, already well-defined, concepts as a basis.

This reduction to “earlier concepts”, which I mentioned above, can play
this role, and indeed appears to be an essential part of what Dedekind
considers a rigorous method in mathematics. This allows a reduction to
“simpler” truths, which are already known, already proven. This way, one
is assured to have a theory whose concepts are founded on well-defined
notions, in which each step, each inference is controlled, that is, in which
one is assured that proofs and definitions present no gaps, no unverified
hypothesis of existence, no circularities... Every step is suitably justified
and every step is fully and clearly understood. One is thus assured to have
a definition allowing complete proofs: nothing is admitted without a proof.

The practice of rigor appears to be closely related to Dedekind’s principle
and articulated with the idea that everything that can be reduced to simpler
truths should effectively be so. Be it for extending the number concept or to
define / prove in more elaborate mathematical works, the reduction to earlier
concepts should not be taken as a reductionism, but as proposing that what
is already well-defined in earlier conceptual fields can be used as tools for
future developments. This way, one can consider the rigorous definition (or
proof) obtained as given, and secure future developments in mathematics.
By doing so, one assures the consistency of the concept defined, secures the
inferences and controls perfectly each of them: each step is justified and
clearly understood. One assures a definition allowing gapless / complete
proofs: nothing susceptible of proof is admitted without proof.

This is a requirement that should be met even if it calls for long technical
preliminaries, even if the sequence of inferences to get to the right definition

89“... zwar wird es das Zweckmäßigste sein, schon die Definitionen der einfachsten
arithmetischen Operationen auf diese Begriffe zu gründen. “
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is long and, as Dedekind himself stated, “apparently artificial”. Indeed, once
this long sequence of inferences is over, one can fix the definition and allow a
surer development of the theory investigated. In Dedekind’s algebraic num-
ber and algebraic function theories, it seems that it is possible to do so with
rational arithmetic operations, with “the simplest principles of arithmetic”,
making arithmetic a tool for rigor.

7.3.3 A quest for rigor?
Dedekind’s insistence on rigor is highlighted in the requirement to actually
make explicit every step of definitions and proofs which seem, to the trained
mathematician, as immediately clear and evidently true as the possibility to
consistently extend the order of natural number to negative numbers.

In 1888, Dedekind gives a definition of the natural numbers in terms of
mappings and systems. His definition is thus based on earlier notions and
even directly related the Laws of pure thought, assuring that arithmetic is
ultimately well founded. I will suggest in the following that, in fact, such re-
quirements are guiding many of his most important mathematical researches.
It is in relation of such requirements that Dedekind elaborates methods and
definitions answering the demand to build new notions and methods of proof
on the basis of “earlier concepts” – in particular, using arithmetic. Dedekind
is thus able to provide definitions whose rigor is assured because they are
only elaborated using already rigorously and uniformly defined notions. By
doing so, a more rigorous ground for the theory is obtained. This new def-
inition can be taken as a solid soil on which further developments of the
theory can be based in such a way that one needs not to come back to the
grounding notions. Arithmetization plays the central role in this approach.

A definition is considered the best possible, by Dedekind, if it satisfies
not only the criterion of rigor and avoids relying on Darstellungsformen, but
also can be seen to be uniformly valid for all cases concerned. This possibil-
ity depends largely on the tools used to set up the definition and the theory
deriving from it. By using “earlier” and more general concepts, such as
the notion of “System”, one avoids the introduction of “foreign” elements,
risks of circularities, gaps in the proofs, or illicit hypotheses of existence.
By making sure that the definition is rigorous (in Dedekind’s sense) and
uniform (a unique valid for all the cases, which Dedekind will often refer to
as “general”), one assures that the rest of the theory will be developed as
rigorously and uniformly as the definition is.

In 1872, in the preface to Stetigkeit, Dedekind notices that “Arithmetic
lacks a truly scientific foundation”. To establish such a properly scientific
foundation, it is not authorized to rely on theorems which haven’t been
proved in all generality, on illicit hypotheses of existence or again to resort
to intuition – which is well-known to be the first motive of arithmetization.
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Dedekind’s endeavors are, thus, directed towards finding a “purely arith-
metical and perfectly rigorous foundation for the principles of infinitesimal
calculus”. He considers this to have been done in a satisfying way once the
definition by means of cuts is given. Cuts only necessitate the supposition
of the existence of rational numbers and make it possible to define all ir-
rationals in one move. In addition, it also makes it possible to prove that
rational numbers form a continuous domain – an indispensable part, if one
is to rigorously ground the arithmetic of irrational numbers.

Besides, for Dedekind, the demands stated about the definitions are, by
extension, a guarantee for the rigor and uniformity of the proofs. Indeed,
there is implicitly in Dedekind’s works, the idea that if one is able to provide
the right definition (a rigorous, uniform definition), then the proofs should
follow without too much pain. For Dedekind, theorems “result immediately”
([Dedekind, 1854a]), laws are “derived from the sole conditions” ([Dedekind,
1888]) of the definition, proofs “follow immediately from the definitions”
([Dedekind, 1872]).90 A rigorous definition allows, in particular, to give
rigorous proofs to statements which lacked such proofs. The well-known
example of the proof that

√
2.
√

3 =
√

6 on the basis of a general definition
of operations was indeed, for Dedekind, an argument for the efficiency of his
definition of the irrational numbers.

In fact, the positive consequences of securing the basic definitions have,
from Dedekind’s viewpoint, a wider scope than the sole possibility to have
rigorous proofs in the theory studied: it also allows to assure future de-
velopments in mathematics in a larger way. For example, an appropriate
definition of the irrational numbers is essential because

[t]he problem is to indicate a precise characteristic (Merkmal)
of continuity that can serve as the basis for valid deductions.91

([Dedekind, 1872], 771)

And a precise characteristic of continuity is essential for infinitesimal Anal-
ysis as well as for a fair number of other parts of mathematics. In Zahlen,
Dedekind explains that he wishes that his “attempt to establish the sci-
ence of numbers upon a uniform foundation” will incite mathematicians “to
reduce the long series of inferences to more moderate and attractive pro-
portions” ([Dedekind, 1888], 792) – a point put to the fore in Algebraischen
Funktionen as well.

Rigor requirements and insistence on finding the appropriate definition
appear in Dedekind’s works in algebraic number and algebraic function the-

90Dedekind’s attention to the deductive structure of a theory, notably expressed in this
idea, leads him to adopt a position in which one can distinguish the premisses of Hilbert’s
axiomatic approach.

91“es kommt darauf an, ein präzises Merkmal der Stetigkeit anzugeben, welches als Basis
für wirkliche Deduktionen gebraucht werden kann.”
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ories as well, and this conception of rigor is not restricted to foundational
areas. In addition, the particular kind of benefit for proofs that I just men-
tioned is often brought out by Dedekind. But how would a principle such
as “Dedekind’s principle” and the demand that definitions be done using
earlier notions be used in a non-foundational inquiry? Let us recapitulate
the approaches adopted by Dedekind in algebraic number and function the-
ory, so as to highlight the way in which these works appear to answer the
demand of rigor – this shall allow me to characterize it more in the next
paragraph.

In algebraic number theory, Dedekind wants to “establish the general
laws of divisibility” governing algebraic integers. The whole enterprise is
guided by the possibility to find the right generalization of Kummer’s con-
cept of ideal, and to generalize the results already obtained by him for
cyclotomic integers. Dedekind, thus, wants to be able to answer the ques-
tion that naturally arises from Kummer’s promising results: are the laws of
divisibility generally valid, that is, valid for “all the numerical domains of
the most general kind” (i.e. the domains of algebraic integers)? In order
to be able to obtain the “general and exceptionless theory”, Dedekind had
to give up Kummer’s “formal” approach and find a suitable concept for the
generalization. Indeed, as we saw, Kummer’s approach had many drawbacks
– from not meeting Dedekind’s standards to erroneous proofs.

For Dedekind, the aim could only be considered reached on the basis of
a definition of ideal numbers and their multiplication “exact and common
to all ideal numbers”. But because the definition of ideal numbers requires
so much reliance on Darstellungsformen and is so difficult to generalize,
Dedekind rather introduces the concept of ideal defined by two necessary
and sufficient conditions of closure by arithmetical operations. The concept
of ideal is freed from any consideration of particular factors and from taking
into account the individual nature of the numbers studied – or, as Dedekind
puts it, ideals are invariant and independent. This definition allows to define
arithmetical operations, which will be proved to verify the same properties
and laws as rational arithmetic does. It is only on the basis of systems of
algebraic integers and arithmetical operations that the general validity of
the divisibility laws is therefore proved – on purely arithmetical grounds,
without introducing foreign elements or indeterminate variables and in one
move for any algebraic number.

For algebraic function theory, Dedekind (and Weber) is following the
same path. The relative mathematical vagueness in which Riemann left his
readers did not escape Dedekind, who confessed to Weber that he would
only truly master Riemann’s works once he would be able to “overcome in
[his] way, with the rigor that is customary in number theory, a whole series of
obscurities.” It is, as we saw, what Dedekind and Weber propose to do in the
1882 paper, in which a clearer more general foundation is given to Riemann’s
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function theory. Unlike the unsatisfying previous treatments which were
using theorems whose truth was admitted on the basis of their geometrical
evidence, or were forced to distinguish between cases or even restricting
their inquiry to particular kinds of functions, Dedekind and Weber are able
to obtain a “more reliable basis for the fundamental notions, as well as for
a general and exceptionless treatment of the theory” by grounding their
investigation on ideal theory.

The long, technical paper that we have considered in detail at the be-
ginning of this dissertation is the path that led to the said surer basis, and
a definition that Dedekind and Weber feel entitled to present as a perfectly
precise, rigorous and general foundation for Riemann surfaces. To get there,
they use the methods introduced by Dedekind in algebraic number theory,
adapt them to function theory, and develop a deeply arithmetical approach
for Riemann surfaces, introducing notions such as the greatest common di-
visors of complexes of points.

The definition of a point given by Dedekind and Weber, as a correspon-
dence between the functions of the field studied and the numerical con-
stants, and the subsequent definition and study of the concept of Riemann
surface are thus only involving well defined notions, do not resort to intu-
ition, vague notions, do not make a priori hypotheses on the singularities of
functions. Moreover, the new definition of the Riemann surface and the new
conceptual apparatus developed allow to give the first rigorous proof of the
Riemann-Roch theorem and (for Dedekind) promises great developments in
Riemannian function theory. In particular, if integration theory and topo-
logical considerations had to be excluded from Dedekind and Weber’s works,
they should benefit from the foundations established in the paper. Indeed,
the “completely precise and rigorous definition of the point of a Riemann
surface” that they are able to obtain “can also serve as a basis for the inves-
tigation of continuity and related questions” ([Dedekind and Weber, 1882],
42-43).

The definition of irrational numbers was presented as providing a rigor-
ous basis for deductions related to the linear continuum, and the definition
of the Riemann surface guarantees a stable basis for the mathematicians
wishing to develop Riemann’s theory further and investigate “continuity
and related questions”.

A comparable statement is made for algebraic number theory, in 1877.
Indeed, for Dedekind, to have a (rigorous and uniform) proof of the gen-
eral validity of the laws of divisibility of algebraic numbers is of “extremely
practical value” for it gives a ground for larger developments (in modular
arithmetic, quadratic forms, etc) and “[t]he certainty that these general laws
[of divisibility] really exist greatly facilitates the discovery and proof of spe-
cial phenomena in a given field” ([Dedekind, 1876-1877], transl. slightly
altered, 138).
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From this summary and from the texts that we have studied in the
earlier chapters, one can see that an essential aim of Dedekind’s research
is to assure the basis of theories so as to support and even carry the de-
velopment of mathematics. With this emphasis on designing a perfectly
rigorous and uniform definition, Dedekind elaborates a strategy that can
answer a demand for rigor both ways: everything used in the definition has
to be proved,92 and everything following on from the definition ought to be
(made) provable. One can see that Dedekind does not spare his endeavors
to elaborate concepts such as ideals, which are part of an “independent” and
“invariant” theory and in such acquire a certain generality for the theory’s
validity is indifferent to the individual nature of the elements. For each
theory investigated, Dedekind adapts his approach and conceives appropri-
ate grounding concepts: cuts for irrational numbers, modules and ideals for
algebraic number theory, ideals and points for Riemann surfaces. These
grounding concepts are such that they can serve the same purpose of unifor-
mity for the theory developed, the same attempt to provide what Dedekind
calls a “general and exceptionless theory”. This is, I will argue, the core of
Dedekind’s strategy of arithmetization.93

7.3.4 A strategy of arithmetization in Dedekind’s works?

Note that in the following, one should understand as “arithmetical” what
Dedekind counts as arithmetical. In this, his approach is different from
Kronecker’s and, more generally, might not be seen as “putting into an
arithmetical form” such by other mathematicians. The point, here, is not a
systematic comparison with other approaches which would take us too far
from the point. The following reflection does not either have any preten-
sion to be anything beyond an interpretation of the methods developed by
Dedekind, which would avoid to use other categories than his own.

To describe and understand Dedekind’s approach as an “arithmetiza-
tion”, here, allows to provide a reading that is consistent from a global
perspective, to have a comprehensive explanation of the unity of Dedekind’s
works. But importantly, it also allows for local explanations of Dedekind’s
works, that is, to explain the particular methods developed for treating a
certain subject. Again, Dedekind’s arithmetization is not a reductionist
program, it is not answering the desire to unite all mathematics under one

92At least, insofar as the definition is such that going back to the first unprovable
premisses is more laborious than fruitful and / or is not necessary.

93The foundation of Dedekind’s strategy of arithmetization, on the other hand, are the
natural numbers, the definition of which I will consider in the next chapter. In this case,
Dedekind also elaborates the definition using “earlier” grounding concepts, mappings and
systems. Yet, those concepts trace back the notions and theorems to elements which are
not capable of being proved and suggest that the natural numbers hold a specific position
in Dedekind’s conception of mathematics.
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same arithmetical flag. Rather, it puts to the fore the idea that arithmetic
furnishes a powerful set of methods and concepts for the development of rig-
orous and fruitful theories – be it for the enlargement of domains of numbers
or for the definition of the Riemann surface. As such, “arithmetization” is
adapted to the context in which it is used, and provides an explanation of
the persisting use of arithmetic in Dedekind’s works.

As a method for rigorous definition of systems of numbers, arithmeti-
zation is at the heart of Dedekind’s approach. It is not, however, driven
exclusively by a desire to rigorize the foundation of Analysis. Rather, it is
a systematic approach in which the definition of new systems of numbers
is done by relying exclusively on the previous systems and involving only
arithmetical tools. For Dedekind, this approach alone can allow for a truly
clear understanding of the successive extensions of the numbers concepts,
by highlighting the roots and process of the generalization of the number
concept, and by providing appropriate definition of the new numbers (and
their operations). The resort to arithmetical methods allows to assure that
no “foreign element” is introduced in the reasoning, for the extension of the
systems of numbers is made “by reduction to earlier concepts, and indeed
without any introduction of foreign conceptions” ([Dedekind, 1888], 792).

Arguments of uniformity of the approach, reduction to earlier concepts,
conservation of the arithmetical nature of the concepts, are put forward in
algebraic number theory as well. To answer these requirements, the whole
theory is developed on the basis of a generalization of divisibility. And again,
the same kind of arguments appear in algebraic function theory which, de-
veloped on the ground of ideal theory and arithmetical operations, is said
to “stay in its own sphere”. The theory is, thus, developed by designing
new tools using conceptually earlier and well-known notions. According to
Dedekind, it is clearer, more precise, and each step of the definitions and
proofs, each inference are controlled. It is, in addition to proposing a uni-
form treatment of algebraic functions, a perfectly rigorous theory.

Another point relating algebraic function theory to arithmetization is
the arithmetical treatment given to the point of a Riemann surface, a con-
cept fundamentally related to continuity. As Schappacher pointed out, the
definition of the point of a Riemann surface and that of a point of the linear
continuum in Stetigkeit present “remarkable similarities”:

Both definitions are remarkably similar; both try to conceptual-
ize the intuition of what a concrete point does for you. On the
real line, fixing a point can tell you, can it not, where to cut the
line in two, and in Dedekind’s analysis, the idea of continuity is
precisely that every cut in the line is also afforded by a point.
([Schappacher, 2010], 3262)
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To demand a definition of the notion of point that completely bans intu-
ition, and restriction imposed to use already defined concepts, are directly
responsible for choosing to define irrational by means of cuts or points as
evaluation morphisms. The treatment given for the linear continuum in 1872
is an arithmetization, as we saw, and, as Schappacher insists

the definition of a point on an algebraic Riemann surface given in
[Algebraischen Funktionen] plainly relies on an arithmetization of
the theory of algebraic Riemann surfaces because Dedekind and
Weber prepare this definition by a good fifty pages “of a purely
formal nature” which carry over to rings of (entire) algebraic
functions most of the apparatus that Dedekind had developed
earlier for the theory of algebraic integers in number fields. It is
this theory which then allowed them, among many other things,
to quickly deduce that every point – in the sense of evaluation
mapping – corresponds to a prime ideal of the coordinate ring.
(ibid., 3263)

Recall that Dedekind considered that space is not necessarily continuous,
and that the space on which the mathematicians are working is not (nec-
essarily) a reflection of the real space. And while Dedekind had his own
justifications for this belief, it is good to remember that a lot of his ideas
were shaped in close relation to Riemann’s approach. Riemann detached the
study of space from the consideration of metrics with his concept of Mannig-
faltigkeit and was well aware of the possibility to develop spherical geometry.
Dedekind also saw the development of non-Euclidean geometries, with the
works of Bolyai, Lobatchevski and Beltrami. Moreover, unlike many of his
contemporaries and in particular Gauss or Kronecker, Dedekind does not
consider that geometry is to be excluded from pure mathematics and does
not take it to be an empirical science. Geometrical theories should, thus, be
treated with the same methods, and of course with the same rigor, as other
parts of mathematics.

As underlined by Schappacher ([Schappacher, 2010]), the 1885 Jahrbuch
über die Fortschritte der Mathematik classifies Dedekind and Weber’s paper
as generalities on function theory, while Dedekind’s 1882 work on the dis-
criminant of an algebraic number field is classed as algebra in the chapter
on the theory of forms – while Dedekind himself seemed to consider it as
pertaining to number theory.

Neither Weber nor Dedekind assessed, at any point, that Riemann’s
function theory should be seen as an “arithmetical” subject – wherea in
Stetigkeit, the “arithmetization” was prompted by the fact that irrationals
are numbers and their development is thus part of the “science of numbers”.
The development of an arithmetical methodology to present a more rigorous
and uniform theory of algebraic functions seems to adopt arithmetic as a
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tool, and put it at the service of the foundation and development of function
theory. Arithmetization, here, appears to be a rewriting of certain theories
so as to be more faithful to certain epistemological values. However it does
not inflect a modification of the nature of the objects in the investigated
theory, nor a change of disciplinary area of the theory. Arithmetization is
not developed in order to make a theory enter the realm of arithmetic, but
because it is the best way, according to Dedekind, to provide a rigorous,
uniform treatment of the theory investigated.

Dedekind’s rewritings to obtain rigorous theories are done using a com-
bination of set-theoretic notions and rational arithmetic. It was particularly
striking in Algebraischen Funktionen, in which this strategy is used all along
the paper. Arithmetization, construed in this way, seems to point at a pos-
sible way of satisfying the conception of rigor stated above, and is in fact
largely exploited by Dedekind. It seems that, for him, what could satisfy
this demand is to exhibit a construction based on the algebraic concepts of
field and ideals and on the operations of rational arithmetic, so as to build
a rigorous basis and set up an arsenal to put at the service of certain the-
ories. The arithmetical methodology developed by Dedekind appears to be
answering the demand to give a logically rigorous ground to theories. By
these choices of methods – the exclusive use of arithmetical operations – and
by its motives – to provide a logically rigorous foundation – Dedekind’s ap-
proach is typically an arithmetization but largely oversteps the scope usually
attributed to ‘arithmetization’.

Of this, again, ideal theory, as a means of arithmetization, is a particu-
larly good example: the new concept of ideal is a system of already existing
elements verifying simple conditions of closure by rational operations, and
whose theory is developed relying essentially on the definition of a divisibil-
ity relation between ideals and the set up of a “higher level” of arithmetic.
This theory offers the possibility to establish an algebraico-arithmetic arse-
nal involving relatively simple notions, like divisibility, and thanks to which
it is possible to give, for example, a new definition of the Riemann surface
(for algebraic functions of one complex variable) that is more rigorous, more
general and resting largely on the “simplest principles of arithmetic”. The
arithmetical definition possible through the use of ideals seems to grant,
for Dedekind, the possibility to satisfy the essential criterion for rigor: ev-
erything that can be defined or proved is effectively defined or proved by
reduction to earlier concepts by virtue of arithmetical tools.

It is clear here, and in algebraic function theory, the advantage that
Dedekind could have seen in using ideals and arithmetic: rather than engag-
ing himself in long developments requiring laborious computations, Dedekind
can deploy an extremely elaborated and fruitful theory whose core are the
“simplest principles of arithmetic” and whose generality and rigorous def-
inition is assured. And it will especially be so once Dedekind is able to
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provide a rigorous and uniform definition of natural numbers. Note that
while Dedekind’s book on natural numbers was only published in 1888, a
first sketch of the theory, essentially similar to the version published, was
written between 1872 and 1878 – a point mentioned by Dedekind in the
first preface to Zahlen and confirmed by manuscripts. This corresponds to
the period during which the second version of algebraic number theory was
written, as well as Algebraischen Funktionen.

Hence, it appears that Dedekind develops a strategy of putting into
arithmetical forms, of arithmetization, which promotes what could be called
an ‘abstract’ arithmetic and allows the introduction of new concepts: the
operations of rational arithmetic are used to invent new concepts considered
as suited to founding mathematical theories. Arithmetic operations appear,
here, to play an active role in the development of mathematical knowledge.

Born in the lectures on Galois theory given in Göttingen in 1856-58,
and fully exploited in algebraic number theory, the approach developed by
Dedekind articulates the use of infinite systems taken as wholes, following
the example of Gauss’s notion of class, and the set up of arithmetical op-
erations for these systems. This approach allows to conciliate the demands
stated by Dedekind.

First, arithmetic possesses an intrinsic rigor, especially since for Dedekind
it is completely independent from any intuition. This is a particularly palpa-
ble element in Dedekind’s foundational works and very explicit in Dedekind’s
writings. A role of intuition in arithmetic had been rejected explicitly by
mathematicians such as Gauss, who saw numbers as pure creations of the
understanding. Arithmetic, based on clearly defined concepts, proceeds by
simple inferences resorting exclusively to logic. I will come back to the def-
inition of numbers and arithmetic, and their ‘logical’ nature in the next
chapter.

Secondly, arithmetic also allows to successfully operate the reduction
to earlier concepts, without necessarily going all the way up to unprovable
premisses – which would be more tedious than efficient, the definition of
numbers and operations allowing to not systematically go back to the first
premisses. Moreover, it also provides efficient and rigorous methods of proof,
for as we saw, Dedekind does not simply state definitions in an arithmetical
form, he designs them so that methods of proof can be developed that also
follow the arithmetical approach – a point particularly clear in the second
part of Algebraischen Funktionen.

Finally, and it is not the least advantage of arithmetization, the use of
arithmetic combines the requirement of rigor with the freedom to introduce
new concepts claimed by Dedekind. The invention of new concept was, for
Dedekind, one of the most important sources of development of mathemat-
ics. Arithmetic, as we saw in Algebraischen Funktionen, can be developed as
an ‘abstract’ theory inasmuch as one can define arithmetical operations for
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objects that are not numbers and, in this, it offers the possibility to introduce
new concepts, such as fields or ideals. These new concepts open new areas
of research in mathematics and are also extremely fruitful as tools in other
parts of mathematics – for binary quadratic forms or algebraic functions.

7.3.5 Conclusion. What arithmetic for Dedekind’s arithmetization?

Dedekind, engaged in a quest for rigorous mathematics, finds a way to an-
swer his requisites by elaborating arithmetical frameworks and methods, us-
ing and adapting notions of arithmetic to design new concepts. Arithmetic,
from the science of numbers, the “simplest science”, becomes a powerful tool
at the service of the mathematicians.

Rigor, as a demand to never believe in what can be proven without a
proof or to never use any notion without having defined it in such a way
that it only relies on well-defined earlier concepts, guides the elaboration
of new concepts and new methods, for Dedekind. From his viewpoint, it
is essential for the development of mathematics, to secure the definitions of
the concepts, by assuring the rigor by reduction to earlier concepts, but also
by assuring the width of validity of the said definition.

As Dedekind’s works on extending the domains of numbers and his care-
ful explanation of the “Gedankengang” towards ideal theory show, the anal-
ysis of the old theory and the problem(s) to be solved is an important part
of Dedekind’s writings.94 The analysis enables to identify the key properties
and indicates suitable methods for the definition and the proofs. The theory
of algebraic integers is a good example of this, since having identified the
notion of algebraic integer was a necessary step for the possibility to develop
ideal theory in fields of algebraic numbers, and prove the general validity of
the laws of arithmetic. Not only is Dedekind able to prove this result, but he
does it using essentially the “simplest principles of arithmetic”, putting to
the fore the preeminence of the role played by arithmetic in the development
of more elaborated theories.

The use of arithmetic to build up definitions and methods of proof meet-
ing Dedekind’s demands, as we saw, can be observed in many of his works.
Arithmetization, understood widely as the recourse to arithmetical methods
and concepts to obtain better, more rigorous concepts and proofs, appears
as a description fitting Dedekind’s approach on a global scale. More impor-
tantly, because it implies that arithmetic provides epistemic tools for the
development of mathematics and comes as an answer to localized desires of
providing a more rigorous theory, the strategy of arithmetization can only
be clearly understood together with the idea that it has to be adapted to
each theory investigated.

94[Sieg and Morris, 2014] relate this to the influence of Lotze.

443



Chapter 7 - Arithmetic, arithmetization, extension of the number concept

In the above paragraphs, I have underlined how arithmetic is taken ad-
vantage of. Arithmetic is made into an epistemic tool so as to take advantage
of its benefits and constitute a conceptual arsenal for Dedekind to exploit
in his mathematical works. A question that still needs some consideration
is the following: while we can understand how arithmetical methods answer
Dedekind’s requirements, is arithmetic invested of a special rigor by default,
or is there some part of Dedekind’s ideas on numbers and their science that
allows for the development of this arithmetical methods? Conversely, could
the approach developed in Dedekind’s mathematical works have had an im-
pact on his researches on how to define natural numbers?
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The natural number concept in
perspective

In the previous chapters, we saw that throughout Dedekind’s works, arith-
metic is omnipresent and plays an active role in the development of mathe-
matics. Extended for the sake of giving more rigorous definitions, arithmetic
is used by Dedekind as a tool, as a means to elaborate rigorous and uniform
definitions and methods of proof, elaborating a strategy of arithmetization
which runs through his works. This suggests that arithmetic operations
came to be considered as offering the possibility to set up a conceptual
arsenal providing the best way to answer Dedekind’s epistemological and
mathematical concerns. In order to truly understand Dedekind’s arithmeti-
zation and his conception of arithmetic, the “science of numbers”, the link
with his conception of number, which begins to appear in Stetigkeit, should
be made more explicit.

By considering the definition of natural numbers and the foundation of
arithmetic, which were published relatively late in Dedekind’s career, I wish
to investigate further the possibility that Dedekind’s practice of mathematics
influenced his ideas on numbers and arithmetic. I am not, here, suggesting
that the mathematical works are integrally responsible for Dedekind’s ideas,
but that it affected, left a mark, on Dedekind’s ideas, that there is a web of
internal influences inside Dedekind’s corpus, responsible for a significant part
of the peculiar conceptions he developed. Indeed, the persistence with which
he uses the same approaches, the rewritings of his works and his tendency
to refer to his works as guided by the same methodological stances, suggest
a net of – more or less strong, and more or less explicit – influences inherent
to the Dedekindian corpus.

Note that I am not stating that Dedekind’s mathematics developed in
autarky, for as we saw the influence of other mathematicians can be felt
in his mathematical works as well. The influences of Gauss, Kummer and

445



Chapter 8 - The natural number concept in perspective

Dirichlet on his number theory are pregnant, and we saw that Dedekind
regularly works with typical methods of 19th century mathematics. His
relationship with Riemann, his works and correspondence with Weber and
with Frobenius all influenced his mathematics in ways I have mentioned
before. The “arithmetization” that I have underlined is openly embedded
in a tradition going back to Gauss and, in fact, in some ways typical of 19th
century mathematics in Germany. Yet, it is also a singular approach in some
of the standpoints adopted: to transfer the research to a “higher” viewpoint,
the consideration of actual infinities, the definition of ‘abstract’ arithmetical
relationships. . . In the same way, his ideas on natural numbers were part
of rather widely spread conceptions: numbers as creations of the mind, a
rather classical conception of logic, the status and role attributed to the laws
of thought. . . and highly singular, in taking mappings and sets at grounding
concepts, defining a general concept of simply infinite system conceptual
prior to the definition of natural numbers. . . Rather, I am suggesting that
Dedekind’s ideas on numbers, on arithmetic, on rigor even were shaped with
his writings, by his practice of mathematics, as much as they shaped them.

Indeed, the chronology and the time spent looking for an appropriate
definition for the concept of natural number suggest that his definition of
numbers bears the mark of his use of arithmetical operations for ideals, for
ideals of functions, for classes, for polygons, for classes of polygons, and so
on.

In this chapter, which will be organized in four sections, I will bring
to the fore the ways in which Dedekind’s mathematical practice and his
concept of numbers seem to have affected each other. The chapter has two
core aims: to highlight links between arithmetization and the definition of
natural numbers, and to argue against a reading of Zahlen isolated from the
other parts of Dedekind’s works.1

For this, I will give a presentation of Dedekind’s 1888 Was sind und was
sollen die Zahlen? displaying the conceptual apparatus involved in defining
the natural numbers and highlight some of the most important properties
of Dedekind’s definition, so that the definition of natural numbers given by
Dedekind is as clear as I have tried to make his other works. Starting with
the concepts of system and mapping, which Dedekind takes as grounding
concepts for the natural numbers, I will underline how the foundation chosen
answers in the same time the need for a definition of the natural numbers

1Zahlen has been largely commented, in historical works such [Dugac, 1976b] and in
recent works in philosophy of mathematics such as [Sieg and Schlimm, 2005], [Potter,
2002], [Reck, 2009], [Reck, 2003]. One can also refer to [Belna, 1996], [Ferreirós, 2008],
[Sinaceur and Dedekind, 2008]. For a comparison with Frege, one can refer to [Tait,
1997]. Like for Stetigkeit, my aim in this chapter will not be to consider the philosophical
questions raised by these authors, nor to propose a systematic comparison of Dedekind’s
concept of numbers with other concurrent conceptions.
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following Dedekind’s standard of rigor, and a desire to justify the idea that
arithmetic and numbers are created by the mind and even participate in
human thinking.

I would like to defend the idea that the core aim of his 1888 essay was
the definition of natural numbers. This implies that Zahlen was not the
start a program of reformulation of all (elementary) mathematics in terms
of sets and mappings. In particular, despite the similarities of their results,
Dedekind’s and Peano’s works on natural numbers are based on very differ-
ent conceptions and even have different aims. A short inquiry into Peano’s
ideas shall allow to make this clear – and at the same time, to emphasize
my previous point, by contrast.

I will use these ideas and the previous observations on a Dedekindian
arithmetization to consider the question of arithmetic as an epistemic tool,
as used in the works studied in the previous parts. I will suggest a deeper
link between the definition of natural numbers given in Zahlen and the use
of arithmetic as epistemic tools.

Whenever relevant, during this chapter, I will consider links between
Zahlen and Dedekind’s previous works. Some of these links have been pre-
viously hinted at in the literature, in particular as regards the use of sets and
mappings. I will consider these in particular in order to highlight the possi-
bility that certain aspects of Zahlen serve as a retrospective justification or
foundation of the methods employed in previous works.

8.1 Defining the natural numbers
Natural numbers were, in the 19th century, considered to be given (e.g. by
Peano, Ohm or Cantor), or as symbols arising from the act of counting (by
Schröder), or as given by experience (e.g. by Helmholtz). Weber, in his
Lehrbuch der Algebra, considers the natural numbers as “already known”,
despite the interest shown in letters for Zahlen. It seems that a definition
of the natural numbers, that is, a definition that produces a new concept,
did not appear as a requirement or as a fruitful mathematical work to many
mathematicians. In fact, as we saw, it was even seen by some, in particular
by Kronecker, as a mistake to try to define natural numbers.

As I pointed out before, the desire to provide more uniform and rigor-
ous grounds for theories is a driving force in Dedekind’s major works: in
the 1882 paper on Riemann function theory, in the reformulation of Kum-
mer’s ideal numbers, in Stetigkeit, and even in the rewritings of his own
works. . . The importance of providing the “right” definition has been pointed
out several times by Dedekind, not only to answer epistemological require-
ments, but also because of the crucial role played by definitions in setting
up the deductive structure of the theory.2 This is, in particular, implied in

2This is a point noted by Ferreirós as well: “The new definitions must offer a solid
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Dedekind’s requirement that a definition of new arithmetical elements pro-
vide the means to define the operations in a consistent way and to elaborate
methods of proof (for the relevant theorems) without having to import any
external notion. In the case of Zahlen, this point is particularly crucial since
the arithmetical operations are defined for the first time. Since operations
are taken to be responsible for the “inexhaustible wealth” of arithmetical
laws, as stated in Stetigkeit, it is essential for further developments of arith-
metic that operations be well-founded. Hence, a definition of numbers and
the arithmetical operations is, for Dedekind, a truly rigorous foundation to
the “simplest” and “first” science.

I will argue that Zahlen should be considered in this perspective. By do-
ing so, it is possible to put Zahlen in a more global perspective in Dedekind’s
works, and understand its significance in relation to Dedekind’s other (math-
ematical) works.

The earlier comparison with Kronecker’s concept of number and arith-
metization (which aims at reducing the whole of mathematics to natural
numbers) and a comparison with Peano’s work (which aims at deriving large
parts of mathematics from the symbolic rendition of the axioms of natural
numbers) which I will propose in Sec. 8.3, underline that Dedekind’s work
on natural numbers is directed essentially towards providing a definition of
the sequence of natural numbers – a point noticed by Peano himself (see
p. 509). Dedekind himself stressed both his non-reductionist views and the
focus of his book, in his introduction:

In accordance with the purpose of this memoir I restrict myself
to the consideration of the series of so-called natural numbers.
(. . . ) [I]t appears as something self-evident and not new that
every theorem of algebra and higher analysis, no matter how re-
mote, can be expressed as a theorem about natural numbers (. . . )

foundation for the deductive structure of the whole theory: they ought to enable a sound
definition of operations on the new ‘elements’, and the proof of all relevant theorems”
([Ferreirós, 2008], 103). Ferreirós comes back several times on Dedekind’s attention to
the deductive structure of Zahlen and of mathematical theories more generally. For ex-
ample, he states that “a set-theoretical definition of ideals implied a strict reliance on
sets and set-theoretical relations throughout the theory”, considering that it is the reason
for Dedekind’s rewritings of his algebraic number theory. However, providing a purely
set-theoretic presentation of the theory of algebraic numbers, was never explicitly stated
as the essential aim of Dedekind’s works: the increased uses of systems, here modules and
ideals, was motivated by the desire to give the “great difficulty” of the theory (the proof of
the reciprocity of multiplication and divisibility of ideals) a sounder basis. The goal was
a theory that would follow more closely arithmetical lines of development, and it resulted
in a greater importance for sets – but always conceived as wholes and studied through
arithmetical reformulations of their relations. In fact, a purely set-theoretical version of
algebraic number theory, one which would be cleaned up of the arithmetical treatment we
observed, would be one that attribute to numbers properties of sets, properties that are
not numerical and spoil the unity of nature of numbers.

448



8.1 Defining the natural numbers

[b]ut I see nothing meritorious (. . . ) in actually performing this
wearisome circumlocution and insisting on the use and recog-
nition of no other than natural numbers.3 ([Dedekind, 1888],
792)

It is important to understand the aim and consequently the limits of Zahlen:
by the end of the book, the definition of natural numbers is assured to be
rigorous and complete so that the numbers themselves can be used, which
was Dedekind’s goal. In particular, there is no reason, for Dedekind, to
try to reformulate all propositions of arithmetic in terms of systems and
mappings, nor to follow a road similar to Peano’s, for his aim was (simply)
to provide a definition of the natural numbers and the elementary operations.
A reduction of mathematics to systems and mappings would not be more
fruitful or less of a wearisome circumlocution than a reduction to natural
numbers. As Dedekind pointed out himself, the extension of the number
concept to negative, fractional, irrational numbers is out of the scope of the
inquiry of his book.

It is also important in relation to Dedekind’s conception of rigor and
for a better understanding of the relation between Zahlen and the other
parts of Dedekind’s corpus. This last point shall allow me to suggest that
Dedekind’s mathematical works, and in particular the use of arithmetic as
a tool to develop more rigorous theories, left a mark on his ideas about
how natural numbers and the operations of arithmetic should be defined.
Conversely, a better understanding of Dedekind’s definition of numbers and
arithmetic should give the last piece of explanation concerning Dedekind’s
strategy of arithmetization.

One of the essential characteristics of numbers, for Dedekind, is the fact
that they are creations of the mind, a relatively common idea in the 19th
century, and a point for which the definition of natural numbers should be
able to account. The definition given by Dedekind, in 1888, is based on the
laws of pure thought, and answers several demands. I will propose, in the
following, to start by considering the laws of thought in their context and in
Dedekind’s book, and in a second step to turn to the links between the defi-
nition of natural numbers and Dedekind’s notion of rigor, as well as between
arithmetic, human thinking and the uses of arithmetic as an epistemic tool.
With these ideas at hand, I will propose to consider Dedekind’s definition
in more details.

3“Dem Zwecke dieser Schrift gemäß beschränke ich mich auf die Betrachtung der Reihe
der sogenannten natürlichen Zahlen. (. . . ) [E]rscheint es als etwas Selbstverständliches
und durchaus nicht Neues, da jeder auch noch so fern liegende Satz der Algebra und
höheren Analysis sich als ein Satz über die natürlichen Zahlen aussprechen laßt, (. . . ) aber
ich erblicke keineswegs etwas Verdienstliches darin (. . . ) diese mühselige Umschreibung
wirklich vornehmen und keine anderen als die natürlichen Zahlen benutzen und anerkennen
zu wollen.”
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8.1.1 Laws and operations of pure thought

Dedekind’s famous Was Sind und Was Sollen die Zahlen? is the result of
many years of reflection on the number concept. Manuscripts from 1872 to
1878 and letters to Heinrich Weber attest that Dedekind worked on foun-
dations of the number concept for fifteen years. But Dedekind had doubts
about publishing this work, as he explains to Weber, and from 18794 to
1887, the project seems to have been on hold.

When, in 1890, Dedekind had to answer criticism about Zahlen from
Hans Keferstein, he went on, in a famous exchange of letters, to explain
“how [his] essay came to be written.” The first part of his researches for
finding the right foundation for N consisted in an analysis of the sequence
of natural numbers aiming at the identification of the essential properties of
the system of natural numbers:

How did my essay come to be written? Certainly not in one
move; rather, it is a synthesis constructed after protracted la-
bor, based upon a prior analysis of the sequence of natural num-
bers just as it presents itself, in experience, so to speak, for our
consideration. What are the mutually independent fundamental
properties of the sequence N , that is, those properties that are
not derivable from one another but from which all others fol-
low?5 (Letter to Keferstein, 27 February 1890, transl. slightly
altered in [Heijenoort, 1967], 99-100)

This was followed by the efforts to figure out how these essential properties
can be expressed in a perfectly general way, that is, independently from the
individual nature of numbers. In Dedekind’s words:

how should we divest these properties of their specifically arith-
metic content so that they are subsumed under general con-
cepts and under activities of the understanding without which
no thinking is possible at all but with which a foundation is pro-
vided for the reliability and completeness of proofs as well as
for the construction of definitions of concepts free of contradic-
tions?6 (ibid., translation slightly altered, 100)

4Dedekind mentions the essay in the 1879 edition of Dirichlet’s Vorlesungen, as we saw
earlier.

5“Wie ist meine Schrift entstanden ? Gewiss nicht in einem Zuge, sondern sie ist eine
nach langer Arbeit aufgebaute Synthese, die sich auf eine vorausgehende Analyse der Reihe
der natürlichen Zahlen stützt, so wie diese sich, gewissermassen erfahrungsmässig, unserer
Betrachtung darbietet. Welches sind die von einander unabhängigen Grundeigenschaften
dieser Reihe N , d.h. diejenigen Eigenschaften, welche sich nicht auseinander ableiten
lassen, aus denen aber alle anderen folgen.”

6“wie muss man diese Eigenschaften ihres spezifisch arithmetischen Characters entklei-
den, der Art, dass sie sich allgemeinen Begriffen und solchen Tätigkeiten des Verstandes

450



8.1 Defining the natural numbers

By “divest these properties [of the sequence of natural numbers] of their
specifically arithmetical content”, Dedekind seems to be suggesting that one
should be able to define the sequence of natural numbers independently of it
being the system of the objects we use for counting and for arithmetical ac-
tivities linked to the four rational operations. Then, the definition given for
natural numbers should provide, in the same move, a rigorous mathematical
definition of the “act of counting” and subsequently, of the arithmetical op-
erations. In fact, this demand leads to the attempt to define arithmetic by
means of “earlier concepts”, and to attain a conceptual stage that would be
‘earlier’ than arithmetic. The ‘set-theoretic’ construction he gives in Zahlen,
which I will consider below in detail, strongly suggests that Dedekind was
trying to separate what (from his point of view) constitutes a proper defi-
nition for the natural numbers – that is, what captures their characteristic
properties (what we would call the structure) and gives a proper rigorous
construction of them – from what is built from the numbers, what derives
from the definition and should be part of further studies of their properties,
and is thus specifically arithmetic (in particular, the four fundamental op-
erations of arithmetic and their properties and laws).

8.1.1.1 Laws and operations of pure thought as foundation

Since Dedekind’s aim is to establish the “science of numbers” indepen-
dently from any representation of time and space, or again on purely logical
grounds,7 it is important that he is able to provide a construction of the
“science of numbers” that will allow “to investigate precisely our notions
of space and time by bringing them into relation with this number-domain
created in our mind”8 ([Dedekind, 1888], transl. slightly altered, 791). Nat-
ural numbers originate in the mind, which requires that they be treated
independently from “the notions or intuitions of space and time”. Numbers,
Dedekind tells us, should rather be considered “as flowing immediately from
the pure laws of thought.”

Dedekind’s deep analysis of the sequence of natural numbers allowed him
to highlight that two basic notions are essential to it: systems and mappings
(Abbildung). Abbildungen, which require the idea of systems, are describing

unterordnen, ohne welche überhaupt kein Denken möglich ist, mit welchen aber auch die
Grundlage gegeben ist fur die Sicherheit und Vollständigkeit der Beweise, wie für die Bil-
dung widerspruchsfreier Begriffserklärungen?”

7For Dedekind, logic is the means for rigor. Rather than a logicist project, Dedekind’s
objective seems to be that of providing perfectly rigorous grounds for natural numbers,
that is, to give them a perfectly rigorous definition. I will come back to that point at the
end of this chapter.

8“sind wir erst in den Stand gesetzt, unsere Vorstellungen von Raum und Zeit genau zu
untersuchen, indem wir dieselben auf dieses in unserem Geiste geschaffene Zahlen-Reich
beziehen.”
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the capacity of the mind to relate things in a system to things in another
system (i.e., to map systems onto each other). Dedekind explains that

[i]f we scrutinize closely what is done in counting a set or number
(Anzahl) of things, we are led to consider the ability of the mind
to relate things to things, to let a thing correspond to a thing,
or to represent a thing by a thing, an ability without which no
thinking is possible. Upon this unique and otherwise absolutely
indispensable foundation, as I have already affirmed in an an-
nouncement of this paper, the whole science of numbers must,
in my opinion, be established.9 (ibid., transl. slightly altered,
791)

For Dedekind, the concept of number and the way in which it is used are
so deeply embodied in human thinking, that counting is an “activity of
thought” comparable to that of reading:

[R]eading [for an accomplished reader] always remains a more or
less complete repetition of the individual steps which the begin-
ner has to take in his wearisome spelling-out; but a very small
number of these steps, and therefore a very small effort or exer-
tion of the mind, is sufficient to enable the practised reader to
recognize the correct, true word.10 (ibid., 792)

It is because mathematicians are so used to these “simple inferences” which
constitute the basis of the “laws of numbers”, that they are sometimes mis-
taking them for intuitive or immediate. In fact, arithmetical reasoning is
so deeply embodied in the human thinking since “the time of birth” that a
large part of it has become an unconscious act:

So from the time of birth, we are constantly and in an ever in-
creasing measure led to relate things to things and thus to exer-
cise that faculty of the mind on which also depends the creation
of numbers; this exercise goes on continually, though without
definite purpose, in our earliest years and with the accompany-
ing formation of judgements and chains of reasoning, we acquire

9“Verfolgt man genau, was wir bei dem Zählen der Menge oder Anzahl von Dingen
tun, so wird man auf die Betrachtung der Fähigkeit des Geistes geführt, Dinge auf Dinge
zu beziehen, einem Dinge ein Ding entsprechen zu lassen, oder ein Ding durch ein Ding
abzubilden, ohne welche Fähigkeit überhaupt kein Denken möglich ist. Auf dieser einzi-
gen, auch sonst ganz unentbehrlichen Grundlage muß nach meiner Ansicht, wie ich auch
schon bei einer Ankündigung der vorliegenden Schrift ausgesprochen habe, die gesamte
Wissenschaft der Zahlen errichtet werden.”

10“dieses Lesen bleibt immer eine mehr oder weniger vollständige Wiederholung der
einzelnen Schritte, welche der Anfänger bei dem mühseligen Buchstabieren auszuführen
hat; ein sehr kleiner Teil derselben, und deshalb eine sehr kleine Arbeit oder Anstrengung
des Geistes reicht aber für den geübten Leser schon aus, um das richtige, wahre Wort zu
erkennen”
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a store of properly arithmetical truths to which our first teachers
later refer as to something simple, self-evident, and given in the
inner intuition.11 (ibid., transl. slightly altered, 791-792)

The foundation of the “science of numbers” on the laws and operations
of pure thought allows Dedekind to provide a rigorous justification of the
idea that numbers are creations of the human mind – controlled by the laws
of pure thought:

I consider [the number-concept] as flowing immediately from the
laws of pure thought. My answer to the problems propounded
in the title of this writing is, then, briefly this: numbers are free
creations of the human mind; they serve as a means of appre-
hending more easily and more sharply the difference of things.12

(ibid., 791-792)

8.1.1.2 Numbers as creations of the mind

The idea that numbers are creations of the mind was fairly common, among
German mathematicians, in the 19th century. Gauss notably had strong
views about arithmetic, the “queen of mathematics”. A well-known idea is
that of numbers as creations of the human mind:

It is my deepest conviction that the theory of space has a com-
pletely different position in our a priori knowledge than does the
pure theory of quantity. Our knowledge of the former utterly
lacks the complete conviction of necessity (and also of absolute
truth) that belongs to the latter; we must in humility grant that,
if number is merely the product of our mind, space also possesses
a reality outside our mind, and that we cannot entirely prescribe
its laws a priori.13 (Letter to Bessel, 9 April 1830, quoted and

11“So sind wir auch schon von unserer Geburt an beständig und in immer steigendem
Maße veranlaßt, Dinge auf Dinge zu beziehen und damit diejenige Fähigkeit des Geistes zu
üben, auf welcher auch die Schöpfung der Zahlen beruht; durch diese schon in unsere ersten
Lebensjahre fallende unablässige, wenn auch absichtslose Übung und die damit verbundene
Bildung von Urteilen und Schlußreihen erwerben wir uns auch einen Schatz von eigentlich
arithmetischen Wahrheiten, auf welche später unsere ersten Lehrer sich wie auf etwas
Einfaches, Selbstverständliches, in der inneren Anschauung Gegebenes berufen[.]”

12“ich [den Zahlbegriff] für einen unmittelbaren Ausfluß der reinen Denkgesetze halte.
Meine Hauptantwort auf die im Titel dieser Schrift gestellte Frage lautet: die Zahlen sind
freie Schöpfungen des menschlichen Geistes, sie dienen als ein Mittel, um die Verschieden-
heit der Dinge leichter und schärfer aufzufassen.”

13“Nach meiner innigsten Überzeugung hat die Raumlehre in unserm Wissen a priori
eine ganz andere Stellung wie die reine Grössenlehre; es geht unserer Kenntniss von jener
durchaus diejenige vollständige Überzeugung von ihrer Nothwendigkeit (also auch von ihrer
absoluten Wahrheit) ab, die der letztern eigen ist; wir müssen in Demuth zugeben, dass,
wenn die Zahl bloss unseres Geistes Product ist, der Raum auch ausser unserm Geiste
eine Realität hat, der wir a priori ihre Gesetze nicht vollständig vorschreiben können.”
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translated in [Ferreirós, 2007], 238)

Note that this statement comes in discussions about geometry which, for
Gauss, requires the use of empirical intuition. Indeed, in his view, logical
principles themselves in geometry “only bloom sterile flowers, if the fructi-
fying, living intuition of the object does not act everywhere”. Geometry is
not an a priori science and thus is not part of “pure mathematics.” Gauss
explicitly opposes geometry to arithmetic, which stands purely a priori.14

This distinction does not appear in Dedekind’s writings. For Dedekind, all
concepts of mathematics are created by the mind, and geometry is not an
exception to the rule.

Martin Ohm, who formed the project to reduce all mathematics to the
natural numbers, adopted a broadly formal approach related to that of late
18th century combinatorialism. He considered the natural numbers as given
and as the only objects with a real existence, the remaining parts of mathe-
matics being a sort of theory of numerical signs, reconstructed by manipu-
lation of formulae. Interestingly, Ohm combined a formalist approach with
the consideration of symbols has having primarily a mental existence, as
Ferreirós explains ([Ferreirós, 2008], 12). For example, a formal power series
is, for Ohm, a function of degree infinitely high and “therefore, an entire
function that is never really representable, but only lives in the idea within
ourselves” (quoted and translated in [Ferreirós, 2008], 12). Furthermore, op-
erations rather than numbers are considered by Ohm as essential in calculus,
and operations are “actions of the understanding”:

In the most diverse phenomena of the calculus (of arithmetic,
algebra, analysis, etc.) the author sees, not properties of quan-
tities, but properties of the operations, that is to say, actions of
the understanding (. . . ) It turns out that one only calculates
with “forms,” that is, with symbolized operations, actions of the
understanding that have been suggested (. . . ) by the consider-
ation of the abstract whole numbers.15 (Quoted and translated
in [Ferreirós, 2008], 13)

Ferreirós explains that the general symbolical rules, in Ohm’s writings, “rep-
resent mental actions performed on mentally existing forms or symbols”
(ibid., 12). For Ohm, the symbolical operations are suggested by the consid-
eration of the natural numbers, a statement he makes in reference to what
will later be called the “principle of permanence of formal laws.”

Dedekind’s notion of operation was that of an action of thought on the
operands and opposed to a formal or symbolical one. This allowed him

14See [Ferreirós, 2008], §I. 2.
15“In den verschiedensten Erscheinungen des Kalkuls (der Arithmetik, Algebra, Analy-

sis, u.u.) erblickt der Verf. nicht Eigenschaften der Grössen, sondern Eigenschaften der
Operationen, d.h. Akten des Verstandes . . . ”
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to develop arithmetical methods in non-arithmetical settings: by defining
operations as relations between given objects, Dedekind was able to ex-
tend the operations of arithmetic in a way that enabled the development of
non-formal arithmetical approaches. The idea that the individual nature of
objects or elements of a system should not enter into account in the inves-
tigation should not be taken as a move towards formal mathematics, since,
as we saw, Dedekind expresses no interest in developing the “formal” theory
of modules or ideals.

8.1.1.3 Some context about the laws of thought

The second point in need of background, here, are the laws of pure thought.
In the German speaking world, debates about the laws of thought and their
nature were numerous.16 It is not the place, here, to go over these questions,
but it is good to know that these ideas were relatively widespread, if only
to see that Dedekind’s mathematical innovations are integrated in a rather
traditional philosophical setting. It was then common,17 in England as well
as in Germany, to broadly equate “logic” and the “laws of thought” – each
author making its own refinements – following Kant:

Logic is a science of reason not only as to mere form but as to
matter; a science a priori of the necessary laws of thought, not in
regard to particular objects, however, but to all objects in general
— hence a science of the correct use of the understanding and of
reason in general, not subjectively, however, i.e., not according
to empirical (psychological) principles for how the understanding
does think, but objectively, i.e. according to a priori principles
for how it ought to think. ([Kant, 2012], 531)

Albeit not thoroughly Kantian, the epistemological framework in which
Dedekind is thinking does present strong Kantian characteristics, especially
on two points: the creativity of the mind and the kind of “objectivity”
possessed by mathematical concepts as created by the activity of the under-
standing.18 His understanding of logic as the laws of thought should, then,
be understood in this context. Sinaceur underlined that if mathematically,

16See [Kusch, 1995].
17But there are exceptions, notably Bolzano refuses to attribute any central role to the

laws of thought, because even if they are certainly true
one can by no means say that they contain “the ground of all truth in
thinking, and are sufficient to determine the truth and correctness of all our
thoughts.” For they contain, as far as I can see, neither the objective, nor
even some subjective, ground for the deduction of any truth worth talking
about, let alone of all truths (WL §45).

18For a transcendantal reading of Dedekind’s ideas on numbers, see [McCarty, 1995].
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Dedekind is strongly opposed to Kantian ideas or to strict constructivism,
he seems to adopt “from an epistemological viewpoint, a revised Kantian
constructivism” ([Sinaceur and Dedekind, 2008], 123).

Logic as strictly related to the laws of thought is an idea that is developed
and investigated in detail by William Hamilton in his Logic. The links
between logic and the laws of thought are explicitly stated: “Logic is the
Science of the Laws of Thought as Thought” ([Hamilton, 1863], 9). He
explains later that this statement means that “Logic is the science of the
necessary forms of thought” (ibid., 16). Hamilton, quoted and studied by
Detlefsen in [Detlefsen, 2012], states that “Thought as the knowledge of one
thing in relation to another, is a mediate and complex cognition” ([Hamilton,
1863], 36).

What are the laws of thought, for Hamilton, then? They are the object
of “Pure logic”19 and they are directing, even norming, our thinking20 The
laws of thought (“or logical necessity”) should not be mistaken for physical
laws, such as the law of gravitation, they are rather

general precepts which we are able certainly to violate, but which
if we do not obey, our whole process of thinking is suicidal, or
absolutely null. These laws are, consequently, the primary condi-
tions of the possibility of valid thought, and as the whole of Pure
Logic is only an articulate development of the various modes in
which they are applied, their consideration in general constitutes
the first chapter in an orderly system of the science. (ibid., 39)

Unlike Dedekind, Hamilton explicitly states four laws of thought:

The Fundamental Laws of Thought or the conditions of the
thinkable, as commonly received, are four: 1. The Law of Iden-
tity; 2. The Law of Contradiction; 3. The Law of Exclusion or of
Excluded Middle; and, 4. The Law of Reason and Consequent,
or of Sufficient Reason” (ibid., 39-40).

According to Detlefsen, these four laws were “commonly regarded as laws of
pure thought” ([Detlefsen, 2012]). Writers gave lists similar to Hamilton’s,
sometimes excluding the principle of sufficient reason, or including more

19“Pure Logic considers the laws of thought proper, as contained a priori in the nature
of pure intelligence itself.” (ibid., 29)

20“Pure Logic may, I think, best be distributed upon the following principles. We may
think; and we may think well. On the one hand, the conditions of thinking do not involve
the conditions of thinking well; but the conditions of thinking well involve the conditions
of thinking. Logic, therefore, as the science of thought, must necessarily consider the
conditions of the possibility of thought. On the other hand, the end of thought is not
merely to think, but to think well; therefore, as the end of a science must be conformed to
the end of its object-matter, Logic, as the science of thought, must display not only the
laws of possible, but the laws of perfect thinking.” (ibid., 31)
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laws. The “laws of pure thought” were a relatively widespread idea, in the
19th century, and can also be found in writers closer to Dedekind.

The laws of thought conceived as normative laws for the process of think-
ing are important in Lotze’s writings. Laws of thought are for him “the nec-
essary condition of any thought being true.” In Outlines of Logic, he explains
that

they are those subjective modes of the connection of our thoughts
which are necessary to us, if we are by thinking to know the
objective truth. ([Lotze, 1882], 6)

In Mikrokosmus, Lotze explains that the laws of thought “arise from the
organization of our mind as innate modes of its activity without having any
original relation to the nature of the objects with which they are destined to
deal” ([Lotze, 1856], Book VIII, 322). For Lotze, thought acts on ideas not
as a simple distinction of what is true or false, but in such a way that they
become subjected to laws, or capable of being true or false. One can, then,
come to apprehend truth with the operations of thought. Laws of thought
can serve to test the accuracy of a reasoning:

we have certain laws of thought by which, given certain valid
premises, logical conclusions derived from them are distinguished
from illogical. ([Lotze, 1843], 450)

Note that for Lotze, thinking, is “an activity of relating”, a point that we
find in Hamilton’s and Dedekind’s thinkings as well.21

8.1.1.4 Operations of pure thought and arithmetic, for Dedekind

The interesting point, here, is that Dedekind both adopts Gauss’s ‘intellec-
tualism’ and places logic, as the laws of thought, at the foundation of all
mathematics. This point makes a fundamental difference between him and

21One should also mention Frege’s particular position on the matter. Summed up by
Kusch, Frege’s main point is a differentiation between “prescriptive” and “descriptive”
laws. The prescriptive laws might be called “laws of thought” by some authors since
“they legislate how one ought to think”, but only the “set of psychological [descriptive
laws]” should properly be labelled “laws of thought” ([Kusch, 1995], 32). Frege’s anti-
psychologism leads him to reject the idea of laws of thought as the basis of logic. His take
on the Laws of thought is significantly different from Dedekind’s. Frege’s accusations of
psychologism to Dedekind are well-known, as is the fact that the Kantian standpoint of
Dedekind’s conception of logic bypasses these accusations. In any case, Dedekind did not
read Frege’s works until after the publication of Zahlen. Among significant authors who
Dedekind had not read by the time he wrote Zahlen, one should also mention Hermann
Grassmann, and his Lehrbuch der Arithmetik für höhere Lehranstalten (1861). We know
by a letter of Dedekind to Lipschitz, that, in 1876, Dedekind still hadn’t read Grassmann’s
Lehrbuch.
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the authors mentioned. Indeed, the conjunction of these two ideas gives rise
to a peculiar conception of mathematics in which all mathematics (geome-
try included and with no part of it being “given”) is produced by the mind,
on the basis of and under the control of the laws of thought (or logic), but
without being a formal science.

Another important, and most interesting difference with previous au-
thors, here, is that Dedekind does not merely state that arithmetic flows
from the laws of thought, that it is a product of the human understanding,
he provides a mathematical framework to support his claim. Indeed, the
concepts chosen by Dedekind as grounds for arithmetic are mathematical
conceptualisations of operations of the mind, giving ground to the idea that
arithmetic is the “science of numbers”, an activity of the understanding.22

Moreover, with this foundation, Dedekind gives a philosophical and mathe-
matical ground to the idea that arithmetic, and all of mathematics, are an
activity of the understanding – a point to which I will come back.

The first operation is collecting things with a common property – that
is forming sets of elements satisfying a same condition:

It very frequently happens that different things, a, b, c, . . ., ap-
prehended for some reason from a common point of view, can be
associated in the mind, and we then say that they form a system
S; we call the things a, b, c, . . . elements of the system S, they
are contained in S; conversely, S consists of these elements. Such
a system S (a collection, a manifold, a totality) as an object of
our thought is likewise a thing; S is completely determined if for
every thing, it is determined whether it is an element of S or
not.23 ([Dedekind, 1888], transl. slightly altered, 797)

A “thing” is defined as an “object of thought” – note that Dedekind defines
and studies the things and not the objects of thought. With the notion of
system, Dedekind wants to provide a rigorous mathematical theory of any
object (or so to speak, of generic objects) of thought.24

Besides, the notion of system, here, is not strictly similar to our modern
notion of set, insofar as modern set-theory considers sets from an exten-
sional viewpoint, as an aggregate of elements. For Ferreirós, “Dedekind’s
conception of set can be regarded as a typical example of the old ‘naïve’

22Sinaceur stresses this point in her introductory note to Zahlen, p. 106.
23“Es kommt sehr häufig vor, daß verschiedene Dinge a, b, c, . . . aus irgendeiner Veran-

lassung unter einem gemeinsamen Gesichtspunkte aufgefaßt, im Geiste zusammengestellt
werden, und man sagt dann, daß sie ein System S bilden; man nennt die Dinge a, b, c, . . .
die Elemente des Systems S, sie sind enthalten in S; umgekehrt besteht S aus diesen Ele-
menten. Ein solches System S (oder ein Inbegriff, eine Mannigfaltigkeit, eine Gesamtheit)
ist als Gegenstand unseres Denkens ebenfalls ein Ding; es ist vollständig bestimmt, wenn
von jedem Ding bestimmt ist, ob es Element von S ist oder nicht.”

24See Sinaceur’s introductory notes in [Sinaceur and Dedekind, 2008].
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approach, although he avoided associating too closely sets and concepts”
([Ferreirós, 2008], 226). If there is, at the end of his definition of system,
a statement resembling the principle of extensionality, Dedekind “preferred
to leave undetermined what kind of ‘common point of view’ may determine
the set” (ibid., 228). In fact, as Sinaceur explains, Dedekind’s systems are

first the correlate of a point of view defining, in thought, the
assembling, the unity of a multiplicity of elements, the goal of
[Zahlen] being precisely to give a mathematical content to this
thought, to this unificatory concept.25 ([Sinaceur and Dedekind,
2008], 153, footnote 1, my translation)

Hence, Dedekind’s systems are a mathematical conceptualisation of the ac-
tion, made in thought, of collecting things (possibly infinitely many of them)
sharing a common property. In one of the drafts of Zahlen, Dedekind wrote:

The things with a common property (. . . ) should be treated as
a new thing, called system.

Dedekind told Bernstein that he considered sets “as a closed bag, which
contains things entirely determined but that one would not see and about
which one wouldn’t know anything else than that they are existent and
determined.”26

The use of a single letter to designate a set of elements, used by Dedekind
since his lectures on Galois theory, emphasizes the idea that systems are
themselves objects of thought “and likewise a thing”. The possibility to de-
fine arithmetical relationships between ideals (or groups, fields, etc.) relies
essentially on this idea, as does the possibility to consider classes of ideals,
or to study systems of systems (see for example p. 318).

Dedekind, here, is laying the first stone of a general theory of systems, es-
sential premisses for his definition of natural numbers, but which also allows
a retrospective foundation of his previous uses of (infinite) systems, in alge-
braic number and function theories and for the definition of real numbers.
The importance of “systems” in Dedekind’s mathematics is well-known, and
we have seen in the previous chapters how it played an essential role in
bypassing and even sometimes erasing computations and avoiding to base

25“Le ‘système’ de Dedekind est d’abord le corrélat d’un point de vue définissant en
pensée l’assemblage, l’unité d’une multiplicité d’éléments, l’objet de l’ouvrage étant pré-
cisément de donner un contenu mathématique à cette pensée, à ce concept unificateur.”

26“[E]r stelle sich eine Menge vor wie einen geschlossenen Sack, der ganz bestimmte
Dinge enthalte, die man aber nicht sähe, und von denen man nichts wisse, außer daß sie
vorhanden und bestimmt seien.” (Quoted by E. Noether in [Dedekind, 1932] III, 449)
Bernstein also recalls that, some time later, Cantor “straightened his colossal stature,
made a grandiose gesture with upraised arms and said, staring into space, ‘I picture a set
as an abyss’.”
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researches on Darstellungsformen. The possibility to provide a general the-
ory of systems and to establish their essential properties for any element of
indeterminate (and thus indifferent) nature seems to show that the use of
set-theoretic methods is perfectly well founded. It suggests that the validity
of Dedekind’s ‘set-theoretic’ methods does not depend on the nature of the
elements.

In particular, the many details and proofs about union, intersection,
inclusion of systems seem to give a theoretic ground to their use for groups,
modules and ideals. Indeed, the arithmetical operations and notions defined
for these concepts (e.g., inclusion as a division relation) are reformulations of
the set-theoretic relationships, and it would be naïve to believe that the fact
that it is possible to set up an arithmetical framework for these investigations
is sufficient to assure a rigorous foundation for infinite systems. By giving a
rigorous theory of any system, Dedekind provides a solid theoretical ground
to the intensive use of systems made in his mathematical works. Notably,
he had defined the intersection of several systems as their least common
multiple without giving any algorithm or even any indication for exhibiting
explicitly the LCM of two or more systems. In Zahlen, he explains in a
footnote the validity and legitimacy of non-constructive definitions:

How this determination [of the system S] is brought about, and
whether we know a way of deciding upon it, is entirely indifferent
for all that follows; the general laws to be developed in no way
depend upon it; they hold under all circumstances. I mention
this expressly because Kronecker not long ago (Crelle’s Journal,
Vol. 99, pp. 334-336) has endeavoured to impose certain limita-
tions upon the free formation of concepts in mathematics which
I do not believe to be justified; but there seems to be no call to
enter upon this matter with more detail until the distinguished
mathematician shall have published his reasons for the neces-
sity or merely the expediency of these limitations.27 ([Dedekind,
1888], 797)

Once the notion of system defined, Dedekind gives a series of properties and
further definitions for the concept of system. He defines, for a system A, the
property of being a part of a system S:28

27“Auf welche Weise diese Bestimmtheit zustande kommt, und ob wir einen Weg kennen,
um hierüber zu entscheiden, ist für alles Folgende gänzlich gleichgültig; die zu entwickel-
nden allgemeinen Gesetze hängen davon gar nicht ab, sie gelten unter allen Umständen.
Ich erwähne dies ausdrücklich, weil Herr Kronecker vor kurzem (im Band 99 des Jour-
nals für Mathematik, S. 334 bis 336) der freien Begriffsbildung in der Mathematik gewisse
Beschränkungen hat auferlegen wollen, die ich nicht als berechtigt anerkenne; näher hier-
auf einzugehen, erscheint aber erst dann geboten, wenn der ausgezeichnete Mathematiker
seine Gründe für die Notwendigkeit oder auch nur die Zweckmägkeit dieser Beschränkun-
gen veröffentlicht haben wird.”

28In a manuscript entitled “Dangers of the theory of systems” (French transl. in [Sinaceur
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A system A is said to be part of a system S when every element
of A is also an element of S. Since this relation between a system
A and a system S will occur continually in what follows, we shall
express it briefly by the symbol A3S.29

Dedekind then gives properties of the inclusion, the definition of union
(denoted by M(A,B,C . . .)) and intersection (noted by G(A,B,C . . .)) of
several systems A,B,C . . ., and the essential related results.

The growing importance of systems in Dedekind’s writings was under-
lined by Ferreirós as resulting from “the influence of Riemann and Hamilton,
but above all in connection with his own experiences in the fields of algebra
and number theory”:

Having been accustomed to traditional logic since the Gymna-
sium, it seemed clear to him that a set or class can be regarded
as the extension of a concept, and that a theory of sets ought to
be a part of logic. Dedekind’s algebraic work, and his analysis
of arithmetic, led him to focus on a second notion, that of map-
ping, which presupposed the idea of set. But he could convince
himself that it is also a logical notion. ([Ferreirós, 2008], 243)

Mappings conceptualize the second operation of the mind. They are also
linked to Dedekind’s previous works (and explicitly so) and consist in relat-
ing things to things, namely to map a set onto another:

By a mapping (Abbildung) ϕ of a system S we understand a law
according to which, to every determinate element s of S, there
belongs a determinate thing which is called the image (Bild) of s
and which is denoted by ϕ(s); we say also that ϕ(s) corresponds
to the element s, that ϕ(s) results or is produced from s by the
mapping ϕ.30 ([Dedekind, 1888], 799)

and Dedekind, 2008], 317-320) written in the late 1890s but whose main idea was men-
tioned in a letter to Weber in 1888, Dedekind underlines the risks inherent to a confusion
between “being an element of” and “being a part of” a system. It is particularly dangerous
in the case of a system with only one element, and Dedekind stresses the necessity to make
a clear distinction between the two ideas.

29“Ein System A heißt Teil eines Systems S, wenn jedes Element von A auch Element
von S ist. Da diese Beziehung zwischen einem System A und einem System S im folgenden
immer wieder zur Sprache kommen wird, so wollen wir dieselbe zur Abkürzung durch das
Zeichen A3S ausdrücken.” (ibid., 797)
I will keep Dedekind’s notation rather than using the modern ⊂.

30“Unter einer Abbildung ϕ eines Systems S wird ein Gesetz verstanden, nach welchem
zu jedem bestimmten Element s von S ein bestimmtes Ding gehört, welches das Bild von
s heißt und mit ϕ(s) bezeichnet wird; wir sagen auch, daß ϕ(s) dem Element s entspricht,
daß ϕ(s) durch die Abbildung ϕ aus s entsteht oder erzeugt wird.”
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The notion of Abbildung was fairly often used in geometrical contexts, for ex-
ample for mapping a surface onto another, by Gauss and Riemann notably.
We saw (p. 364) that, in Dedekind’s case, the notion of Abbildung appears
in a published work for the first time in the 1879 version of algebraic num-
ber theory, in the context of the definition of conjugate fields.31 Dedekind
explicitly refers to this paragraph, in Zahlen. Recall that in 1879, Dedekind
acknowledged the importance of the concept of Abbildung, presented here
as a “general substitution”. From “substitutions” conceived more generally
as transforming a system of numbers into another, Dedekind elaborates and
defines a more general notion, that of Abbildung, which he considers as es-
sential for mathematics, and even for thinking. In 1879, he explains in a
programmatic footnote:

Upon this faculty of the mind of comparing a thing ω with a
thing ω′, or relating ω with ω′, or making ω′ correspond to ω,
without which no thinking at all is possible, is also based the
entire science of numbers, as I shall try to show in a different
place.32 ([Lejeune-Dirichlet, 1879], 470, transl. slightly altered
in [Ferreirós, 2008], 89)

As it was the case for systems, Dedekind’s notion of mapping comes from
his works in number theory (i.e., Galois theory and algebraic integer the-
ory33). Systems and mappings are central in Dedekind’s approach for they
are elementary, fundamental notions which can be fruitfully used in many
different theories. In particular, they provide a basis for the definition of
natural numbers. The fact that these notions are developed for any object
of thought shows the possibility to provide a rigorous theoretical ground for
systems and mappings, that allows them to be universally (in all areas of
mathematics) usable.34

Dedekind gives several properties of mappings, such as for example:

If A3B, then A′3B′.35 ([Dedekind, 1888], 800)

And the definition of the composition of mappings:
31See p. 364 and see [Sieg and Schlimm, 2014] for more details about Dedekind’s concept

of Abbildung.
32“Auf dieser Fähigkeit des Geistes, ein Ding ω mit einem Ding ω′ zu vergleichen,

oder ω auf ω′ zu beziehen, oder dem ω ein ω′ entsprechen zu lassen, ohne welche ein
Denken überhaupt nicht möglich ist, beruht, wie ich an einem anderen Orte nachzuweisen
versuchen werde, auch die gesammte Wissenschaft der Zahlen.”

33It is possible that the definition of the point of a Riemann surface strengthened
Dedekind’s ideas on mappings, but “Abbildungen” appear in the drafts for Zahlen be-
fore the writing of Algebraische Funktionen.

34For example, Dedekind’s proof that the propositions of Euclid’s Elements do not
require space to be continuous is made by exhibiting a one-to-one correspondence between
points and algebraic integers which form a discontinuous domain.

35“Ist A3B, so is A′3B′.”
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If φ is a mapping of a system S, and ψ a mapping of the image
S′ = φ(S), there always results a mapping θ of S, compounded
out of φ and ψ, which consists in this: to every element s of S
there corresponds the image

θ(s) = ψ(s′) = ψ(φ(s))

where again we have put φ(s) = s′. This mapping θ can be
denoted briefly by the symbol ψ.φ or ψφ, and the image θ(s) by
ψφ(s) where the order of the symbols ψ, φ is to be considered,
since in general the symbol φψ has no interpretation and actually
has a meaning only when ψ(S′)3S.36 (ibid., 800-801)

Dedekind also defines “similar mappings”, which are injective mappings (and
in fact, since Dedekind’s mappings are defined from S into their image,
similar mappings are bijective) and inverse mappings:

A mapping ϕ of a system S is said to be similar or distinct,
when to different elements a, b of the system S there always cor-
respond different images a′ = ϕ(a), b′ = ϕ(b). Since, in this case,
if s′ = t′ then s = t, every element of the S′ = ϕ(S) is the image
s′ of single, perfectly determinate element s of the system S, and
we can therefore set over against the mapping ϕ of S an inverse
mapping of the system S′, to be denoted by ϕ̄, which consists
in this: to every element s′ of S′ there corresponds the image
ϕ̄(s′) = s; obviously this mapping is also similar.37 (ibid., 801)

The discovery of the paradoxes of set theory published in Russell’s Prin-
ciples of Mathematics in 1903, which affect certain parts of Dedekind’s essay,
led Dedekind to refuse the third re-edition of Zahlen for eight years. In fact,
the paradox linked to the consideration of the totality of all systems, used for
the infamous Theorem 66 (see p. 484), was signaled to Dedekind by Cantor,

36“Ist φ eine Abbildung eines Systems S, und ψ eine Abbildung des Bildes S′ = φ(S), so
entspringt hieraus immer eine aus φ und ψ zusammengesetzte Abbildung θ von S, welche
darin besteht, dag jedem Elemente s von S das Bild θ(s) = ψ(s′) = ψ(φ(s)) entspricht,
wo wieder φ(s) = s′ gesetzt ist. Diese Abbildung θ kann kurz durch das Symbol ψ.φ oder
ψφ, das Bild θ(s) durch ψφ(s) bezeichnet werden, wobei auf die Stellung der Zeichen ψ, φ
wohl zu achten ist, well das Zeichen φψ im allgemeinen bedeutungslos ist und nur dann
einen Sinn hat, wenn ψ(S′)3S ist.”

37“Eine Abbildung ϕ eines Systems S heißt ähnlich (oder deutlich), wenn verschiedenen
Elementen a, b des Systems S stets verschiedene Bilder a′ = ϕ(a), b′ = ϕ(b) entsprechen.
Da in diesem Falle umgekehrt us s′ = t′ stets s = t folgt, so ist jedes Element des
Systems S′ = ϕ(S) das Bild s′ von einem einzigen, vollständig bestimmten Elemente s des
Systems S, und man kann daher der Abbildung ϕ von S eine umgekehrte, etwa mit ϕ̄ zu
bezeichnende Abbildung des Systems S′ gegenüber stellen, welche darin besteht, daß jedem
Elemente s′ von S′ das Bild ϕ̄(s′) = s entspricht, und offenbar ebenfalls ähnlich ist.”
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in 1896-1897. For Dedekind, this was the cause of doubts about “the com-
plete rationality of human thought”, according to Bernstein’s testimony.38

Dedekind, while acknowledging that this was “a fatal blow to his mistakes”,
agreed to the third re-edition of Zahlen in 1911 for he still believed that

a rigorous investigation of the creativity (Schöpferkraft) of the
mind to create from determinate elements a new determinate,
their system, that is necessarily different from each of these el-
ements, will certainly lead to an unobjectionable formulation of
the foundations of my work.39 (Preface to the third edition,
transl. slightly altered, 796)

And in fact, as Zermelo himself noticed, it is clear that the mathematical
core of Zahlen is not affected if one takes away Theorem 66 and replaces it
by Zermelo’s axiom of infinity.

It is Dedekind’s principle of rigor, that led him to attempt to prove the
existence of infinite systems. This proof is a bright example of Zahlen’s
motto: “nothing capable of proof ought to be believed without proof”, but
it is far from being its only illustration in Zahlen.

8.1.2 Defining numbers and rigor, one last time
Dedekind’s book, whose title is a question about the nature and the role of
numbers, is opened by a sentence whose link with a foundation of natural
numbers does not seem a priori crystal-clear:

In science nothing capable of proof ought to be believed without
proof. (ibid., 790)

We saw, in Sec. 7.3.2, that Detlefsen proposes an interpretation of this idea,
which he calls “Dedekind’s principle”, as being a logical principle guiding
what kind of statements can be accepted and believed as scientific propo-
sitions. It tells us that the “only proper, and the best possible scientific
justification of a provable proposition is a proof (. . . ) in which all the basic
premises are unprovable” ([Detlefsen, 2012], 210).

This standard of rigor demanding that any proof rely on premisses which
have been acknowledged as unprovable, according to Detlefsen, is at the core
of Zahlen and a certain Dedekindian logicism. Detlefsen’s argument is to be
related to the idea, commonly accepted in the 19th century, that the “laws
of pure thought”, on which Zahlen is built, would be the only unprovable

38See E. Noether’s note in [Dedekind, 1932] III, 449, in which she reproduces the letter
from Bernstein which we mentioned earlier.

39“ich glaube, daß eine strenge Untersuchung der Schöpferkraft des Geistes, aus bestim-
mten Elementen ein neues Bestimmtes, ihr System zu erschaffen, das notwendig von jedem
dieser Elemente verschieden ist, gewiß dazu führen wird, die Grundlagen meiner Schrift
einwandfrei zu gestalten.”
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(logical) truths (see [Detlefsen, 2012], 208-210). Following “Dedekind’s prin-
ciple”, then, being unprovable truths makes of the laws of thought perfect
candidates to be the ultimate premisses and answer the requirement of rigor:

This being so, [the laws of thought] provided a similarly objec-
tive terminus for the pursuit of rigor. According to Dedekind’s
Principle, a genuinely rigorous or scientific mathematics required
that proof be pursued to the fullest extent logically possible –
that is, to the point where every proposition susceptible of proof
had been proved. (ibid., 211)

It is then clear that (and how) Dedekind’s essay answers the requirement
of rigor demanding that nothing capable of being proved be accepted with-
out a proof: the construction of the sequence of natural numbers and the
arithmetic deduced from it are indeed based on the laws of thought, ensur-
ing that one relies on unprovable premisses. It is to answer the principle of
rigor that nothing should be left unproven (if it is provable), that Dedekind
defines the sequence of natural numbers with the general concepts of system
and mappings representing operations of thought. The laws of pure thought,
thus, provide a rigorous ground – the only acceptable logical ground – for
the definition of numbers, the objects of the “simplest science”, insofar as
they are the only unprovable logical truths.

“Dedekind’s principle” appears as a driving force, in Zahlen, to define
the sequence of natural number on the basis of the operations of thought.
I have underlined earlier a certain ambiguity between proof and definition,
if one considers Zahlen as being essentially an application of “Dedekind’s
principle”. Indeed, the content of Zahlen is an answer to the question asked
in its title, it tells us what the numbers are and what they are for. But then,
how is “Dedekind’s principle” inserted in the book, in this perspective? Is
Dedekind proving or defining?

Two possible readings can easily be dismissed. First, I believe one can
rule out a logicist interpretation solely based on the rejection of intuition in
arithmetic. If Dedekind does openly refuse intuition, he does not, as I have
mentioned, propose a foundationalist or reductionist project comparable to
(orthodox) logicism. The logic, as presented in the principle considered
by Detlefsen to be at the basis of a Dedekindian ‘logicism’ is essentially
a tool to guide the reasonings. Secondly, one can exclude the possibility
that “Dedekind’s principle” only refers to some of the demonstrations in the
book, such as the proof of the validity of complete induction, for it would
miss the core of the book: the definition of the sequence of natural numbers,
and the first elements of arithmetic (operations, cardinal numbers. . . ).

The ambiguity between “definition” and “proof”, here, seems to be solved
by the understanding that definitions work as a proof of existence. Indeed,
as in previous works, it is to avoid these “illicit hypotheses of existence”, that
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Dedekind’s principle comes into play: one verifies (or proves) the assumption
of existence by effectively defining the notion whose existence is supposed,
by a systematic reduction to earlier concepts. This is exactly what is done in
Zahlen, to get over the tendency to consider natural numbers as “something
simple, evident, given by inner intuition”.40 So as to avoid faulty proofs, one
should not accept any notion that can be defined without actually defining
it.

The writing of Zahlen was impulsed by the same kind of demand that
motivated his writing of Stetigkeit or Algebraische Funktionen: to provide a
rigorous, uniform definition to a certain concept. Dedekind explains, in the
introduction to Zahlen, that he wants to establish the science of numbers on
a “uniform basis”, to give it a general foundation. He adds that he wishes
that this could help the other mathematicians to reduce the length and com-
plexity of their own “sequences of inferences” – since the science of numbers
is (finally) well grounded. Indeed, Dedekind’s book unfolds and proves these
long chains of inferences from which results the concept of number; it shows
that numbers are indeed pure creations of the mind, and gives rigorous defi-
nitions and demonstrations to all the fundamental notions properties of the
natural numbers.

In 1888, the definition of the natural numbers on the basis of the oper-
ations of thought and the long and technical preliminary developments are
described as representing “the long series of simple inferences correspond-
ing to our step-by-step understanding” (ibid.). So as to give a definition of
natural numbers, Dedekind dissects and gives a rigorous logical expression
of the “chains of reasoning on which the laws of numbers depend” (ibid.).
The amount of technical developments needed for the definition of simply
infinite systems shows how important unfolding the “Gedankenprozeß” is to
assure not only the rigor of the definition. And it is also essential for a better
understanding of what constitutes the essential properties of the concept –
in particular, here, through this analysis, natural numbers are identified as
grounded on the concept of Abbildung. It is important to remember that
there can be, within definitions themselves, elements that need to be proven.
Thus, to unfold the “Gedankenprozeß” for the definition can allow to have
a deeper and more precise understanding of the concept investigated.

In Die Erweiterung des Zahlbegriffs auf Grund der Reihe der natürlichen
Zahlen, a manuscript dedicated to the “extension on the concept of number
on the basis of sequence of natural numbers” written after 1888, Dedekind
argues that

[a]lthough any mathematician knows in advance that the plan
will be completely successful, one must however not renounce to

40Sinaceur, in her introductory note to her translation of Zahlen points, as well, the
quasi-equivalence between to prove and to define, in Zahlen’s first sentence.
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expose in detail at least the essential of the process of thought
(Gedankenprozeß) [which leads to this success].

This was written about the possibility to extend the order of natural numbers
to negative numbers. It also applies perfectly to Zahlen, in which “the
matter-of-fact dissection of the chains of reasoning on which the laws of
numbers depend.” For Dedekind, the apparent obviousness of some of the
demonstrations are “a convincing proof that their possession (or belief in
them) is never given by inner intuition but is always gained only by a (more
or less complete) repetition of the individual inferences” ([Dedekind, 1888],
791). The “Gedankenprozeß” highlights the importance of an appropriate
definition of the numbers following the steps of the formation of numbers in
our understanding.

This conviction is expressed in relation to the necessity to assure our
clear understanding of the concept of numbers, which is all the more crucial
as it allows to recognize that some notions which seem simple are, in fact,
complex notions:

Thus it happens that many very complicated notions (such as, for
example, that of the number (Anzahl) of things) are erroneously
regarded as simple.41 (ibid., 792)

In Zahlen, Dedekind’s rigor is pushed further than before, bringing to the
fore that by false assumptions of simplicity, one takes the risk of overlooking
implicit hypotheses of existence, which may very well be illicit hypotheses
or lacking a rigorous definition. For Dedekind, a consistent definition is a
proof of existence, and for this reason, it should never be neglected. A clear
example of such illicit hypotheses of existence can be found in the treatment
of irrational numbers and continuity, for which if one were to try to “build
arithmetic on the concept of ratios of magnitudes”, then

in this way of founding Arithmetic, the completeness of the con-
cept of number depends uniquely on the completeness of the
concept of magnitude; but since the continuity (continuous com-
pleteness) of real numbers is necessary to build Arithmetic sci-
entifically, it is essential to know exactly at the beginning the
degree of completeness of magnitudes, because, in mathemat-
ics, nothing is more dangerous than to admit existence without
sufficient proof.42 ([Dedekind, 1932] III, 77-78, my translation,

41“und so kommt es, daß manche, eigentlich sehr zusammengesetzte Begriffe (wie z B.
der der Anzahl von Dingen) fälschlich für einfach gelten.”

42“da vielmehr die Vollständigkeit des Zahlbegriffs bei dieser Begründung der Arith-
metik lediglich von der Vollständigkeit des Grössen-Begriffs abhängt, und da die stetige
Vollständigkeit der reellen Zahlen für den wissenschaftlichen Aufbau der Arithmetik un-
entbehrlich ist, so ist unerlässlich von vorneherein genau zu wissen, wie vollständig das
Gebiet der Grössen ist, weil Nichts in der Mathematik gefährlicher ist, als ohne genügen-
den Beweis Existenzen anzunehmen.”
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original emphasis)

This kind of improper assumptions, for natural numbers as for other parts
of mathematics, may lead to incomplete, if not faulty, characterizations of
concepts and demonstrations. In the case of natural numbers, a possible
equivalent of such an assumption would be the definition of numbers as ag-
gregates of units.

Arithmetic itself is said to be the “simplest” science:

(. . . ) the most recent methods of laying the foundations of the
simplest science; viz., that part of logic which deals with the
theory of numbers. ([Dedekind, 1888], 790)

This is so because arithmetic is the science of objects which are defined
(and the propositions pertaining to them proved) with the most elementary,
most fundamental concepts of logic and mathematics. I have argued that
rigor, in Dedekind’s works, is articulated with the idea that anything, in
mathematics, that can be expressed by means of “simpler” truths should
effectively be so, even if it implies that one has to go through a long sequence
of logical and “apparently artificial” inferences. Indeed, it is then possible
to fix the definition so as to allow a more certain and easier development of
mathematics. Zahlen is entirely dedicated to this goal:

[M]ay other mathematicians be led with [the following pages, as
an attempt to establish the science of numbers upon a uniform
foundation] to reduce the long series of inferences to more mod-
erate and attractive proportions.43 (ibid., transl. altered, 792)

Because numbers are at the basis of mathematics – and even the most
efficient and fruitful of all the creations of the human mind – it is all the
more crucial to be assured of the rigor and consistency of their definition.
Moreover, insofar as numbers are the result of a process of thought repeated
since “the time of birth”, the definition should be able to make this thought
process explicit, to make explicit the more general and more fundamental
(simpler) concepts constituting the sequence of natural numbers. Natural
numbers, then, are in need of a rigorous definition by means of earlier con-
cepts.

How did Dedekind proceed to do so? As Dedekind explains, in the letter
to Keferstein, he sought to identify

43“mögen die andere Mathematiker dazu [die folgenden Blätter als ein Versuch, die
Wissenschaft der Zahlen auf einheitlicher Grundlage zu errichten] anregen, die langen
Reihen von Schlüssen auf ein bescheideneres, angenehmeres Maß zurückzuführen.”
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What are the mutually independent fundamental properties of
the sequence N , that is, those properties that are not derivable
from one another but from which all others follow? And how
should we divest these properties of their specifically arithmetic
character so that they are subsumed under more general no-
tions and under activities of the understanding without which
no thinking is possible at all but with which a foundation is pro-
vided for the reliability and completeness of proofs and for the
construction of consistent notions and definitions?44 (transl. van
Heijenoort, 99-100)

The properties “that are not derivable from one another but from which
all others follow,” which Dedekind seeks to subsume “under more general
notions and under activities of the understanding” are these properties iden-
tified by analyzing the “sequence of natural numbers just as it presents itself,
in experience, so to speak, for our consideration.” This results in a defini-
tion that we recognize as “axiomatic” according to standards inherited from
Hilbert – but “axiom” is a term that Dedekind does not use. The “com-
pleteness of proofs” alluded to in the letter is (again) the demand to avoid
all illicit (implicit) hypotheses, and reflects the very first sentence of Zahlen.
By this analysis, Dedekind is able to highlight which properties are relevant
to the number concept, and which are not.

A point that should also result clearly from the definition is that numbers
are products of human understanding, that they “flow” from the “laws of
thought”. Dedekind conceives the definition of natural numbers as a mathe-
matical conceptualization of the “Gedankenprozeß”. The sequence of natural
numbers is thus defined on the ground of systems and mappings, mathe-
matical expressions of the operations of thought, thereby linking arithmetic
directly to the laws of thought, the only unprovable premisses. By this re-
duction, one assures the coherence of the concept of number: the elements of
the theory of systems and the theory of mappings assure that the inferences
of the definition are secured and completely mastered, every step can be
suitably justified and clearly understood. The definition given produces all
the natural numbers in one move. It gives Dedekind the means to define the
operations and to prove the validity of the proof and definition by induc-
tion on an integer n. The definition, thus, allows complete proofs: nothing
provable is admitted without a proof.

44“Welches sind die von einander unabhängigen Grundeigenschaften dieser Reihe N ,
d.h. diejenigen Eigenschaften, welche sich nicht auseinander ableiten lassen, aus denen
aber alle anderen folgen. Und wie muss man diese Eigenschaften ihres spezifisch arith-
metischen Characters entkleiden, der Art, dass sie sich allgemeinen Begriffen und solchen
Tätigkeiten des Verstandes unterordnen, ohne welche überhaupt kein Denken möglich ist,
mit welchen aber auch die Grundlage gegeben ist fur die Sicherheit und Vollständigkeit der
Beweise, wie fur die Bildung widerspruchsfreier Begriffserklärungen?”
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The process of definition in Zahlen is a bright illustration of Dedekind’s
demand that the mathematicians be careful in assuming simplicity and in
making hypotheses of existence. Rigor, in the set up of Zahlen, is pushed
further than before – and probably as far as it can be (from Dedekind’s
viewpoint) – by defining natural numbers on the basis of the mathematical
definition of the fundamental operations of the mind, and thus by reaching
unprovable premisses.

8.1.3 Arithmetic and the act of thinking
We saw that in the introduction of Zahlen, Dedekind compared the “individ-
ual inferences” leading to the formation of the number concept to “the action
which an accomplished reader performs in reading”. Arithmetic appears to
be not only a creation of the human mind, but deeply embedded in our
thinking. This, for Dedekind, constitutes the explanation for the tendency
to mistakenly consider numbers as being “something simple, self-evident and
given in the inner consciousness”.

It is also the idea expressed in the quote inspired by Gauss(’s arithmeti-
zation of Plutarch) that Dedekind famously placed at the head of Zahlen:

>AeÈ å �njrwpos �rijmtÐzei

Man always arithmetizes.

By no less than replacing God by man, Dedekind asserts two key ele-
ments of his conception of mathematics: that mathematics, as a science,
is an activity of the human mind, and that arithmetic is intimately and
constitutively linked to the nature of human thought. These two points are
intrinsically linked. We saw, in Sec. 3.1.1, that Dedekind considered science
as an activity of the understanding, the “endeavors to fathom the truth”.
Hence, it belongs to the mathematician to invent, to design the appropriate
concepts to “fathom the truth” and develop mathematics.

The second point is explicitly stated at several places in Zahlen or in a
manuscript written after 1888 and which I have quoted before:

Of all the auxiliary means (Hilfsmitteln), that the human mind
has yet created to ease its life, i.e., the work in which the thought
consists, none is as effective and far-reaching and as inextricably
connected to its innermost Nature, as the concept of number.
Arithmetic, whose sole subject matter is this concept, is already
by now a science of immeasurable extension, and there is no
doubt that no limits are set to its further developments. Equally
limitless is the area of its applications, since every thinking man,
even when he is not distinctly aware of it, is a number-man,
an arithmetician. (Zum Zahlbegriff, in [Dugac, 1976b], 315, my
translation)
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Arithmetic is, thus, attributed a constitutive role in the act of thinking it-
self and placed at the core of all human thought – no matter how much the
thinking man is aware of the arithmetical nature of his thinking. It is a
creation of the human mind so as to “ease” its work, a means to develop in
all rigor the human reasonings. As such, numbers are said to be one of the
most powerful concepts created by the human mind.

In [Sinaceur, Forthcoming], Sinaceur suggests an intimate link between
arithmetic and the structure of thought, which would attribute a prominent
role to arithmetic in thinking. After a careful analysis of Dedekind’s con-
ception of logic, in order to differentiate it from Frege’s and argue against a
Dedekindian logicism, she states that

For Dedekind, what matters are not the numbers themselves
but their structure. Arithmetic is fundamental not only because
numbers are applied everywhere, but because we can, follow-
ing the arithmetical laws, calculate with things which are not
numbers. What matters is not what can be said of numbers in
themselves, but as satisfying the four conditions brought to the
light (Z, 71, 73). And it is why we can say that arithmetic is a
formal structure of our experience. The “logic of the mind” is
arithmetic taken generally. As Dedekind writes, “every thinking
man, even if he is not clearly aware of that, is an arithmetic-
man, an arithmetician” ([Dugac, 1976b], 315), for thinking is
representing a thing by a thing, relating a thing with a thing.
One may understand the famous phrase “arithmetic is a part of
logic” as meaning that arithmetic affords also a rational (logical)
norm of thinking. ([Sinaceur, Forthcoming])

In her view, arithmetic is for Dedekind deeply involved in the mathemati-
cian’s endeavors to extend mathematical knowledge. And indeed, for Dede-
kind arithmetic holds a very peculiar status not only in mathematics but in
human understanding more generally. For example, to have a precise, rig-
orous understanding of arithmetic appears also to be a necessary condition
for any accurate investigation “our notions of space and time”

It is only through the purely logical process of building up the sci-
ence of numbers and by thus conquering the continuous number-
domain, that we are enabled accurately to investigate our no-
tions of space and time by bringing them into relation with this
number-domain created in our mind.45 ([Dedekind, 1888], 791)

45“Durch den rein logischen Aufbau der Zahlen-Wissenschaft und durch das in ihr
gewonnene stetige Zahlen-Reich sind wir erst in den Stand gesetzt, unsere Vorstellun-
gen von Raum und Zeit genau zu untersuchen, indem wir dieselben auf dieses in unserem
Geiste geschaffene Zahlen-Reich beziehen.”
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Note that Dedekind builds up the science of numbers and “by thus” conquers
continuity. Dedekind, then, is stating that if one wants to investigate our
notions of space and time with any clarity, it has to be brought into relation
with the number concept. It is a point that Dedekind stated before giving
his definition of the natural numbers, he wrote in Stetigkeit, in 1872:

The chain of [the natural] numbers already forms in itself an
exceedingly useful instrument for the human mind; it presents
an inexhaustible wealth of remarkable laws which one obtains
by introducing the four fundamental operations of arithmetic.46

([Dedekind, 1872], 768)

However, it has to be brought into relation with the appropriate notion of
number: it is the continuous domain of the real numbers that will allow for
a better grasp of our notion of space.47

I would like to defend an idea slightly different from the one advanced by
Sinaceur, who relates arithmetic to the structure of thought. I will propose
that the fundamental position of arithmetic in the human thought gives
them the role of an epistemic tool, which we observed in Dedekind’s works.

Numbers and arithmetic can, as the quotes above suggest, be seen as
“auxiliary means” and used to help the mathematician. We saw with the
idea of a Dedekindian arithmetization that they can be used as tools to
build new concepts, to develop theories as we saw in the case of Rieman-
nian function theory. They can be epistemic tools used in the process of the
development of mathematical knowledge, due to their “inexhaustible wealth
of remarkable laws” but also, I will argue, to the place attributed to them
in the human mind by Dedekind.

The writing of Zahlen highlights and justifies this idea at the same way
that it claims and justifies numbers being creations of the mind, by defining
the sequence of natural numbers and the operations and basic methods of
proof and of definition48 on the basis of the operations of thought, and with

46“Die Kette dieser Zahlen bildet an sich schon ein überaus nützliches Hilfsmittel für
den menschlichen Geist, und sie bietet einen unerschöpflichen Reichtum an merkwürdigen
Gesetzen dar, zu welchen man durch die Einführung der vier arithmetischen Grundoper-
ationen gelangt.”

47Note also, in addition to being fruitful as a way to assure (a Dedekindian) rigor, the
unfolding of the “Gedankenprozeß” can help to reveal that some things which were hitherto
considered “inconceivable” can, in fact, be proved to be true, and enter the realm of the
conceivable. In particular, it was the case of the analysis of the concept of continuity,
mentioned by Dedekind in the introduction of Zahlen. Indeed, the analysis of the concept
of continuity allowed Dedekind to point out that continuity is not a necessary property
of our (Euclidean) space, for all propositions of Euclidean geometry can be proved in the
everywhere discontinuous space of the algebraic numbers. His research for a rigorous and
general definition of continuity allowed him not only to identify how to define irrational
numbers, but also to enlarge our conception of space.

48We will see that Dedekind proves the validity of the proof and definition by induction.

472



8.2 Was Sind und Was Sollen die Zahlen?

a conceptual arsenal involving sets and mappings alone.
To define the natural numbers, Dedekind, carefully unfolds each step of

the long process of defining the ordered structure of natural numbers, the
“long series of simple inferences corresponding to our step-by-step under-
standing, [and] the matter-of-fact dissection of the chains of reasoning on
which the laws of numbers depend” (ibid., 791). He dissects the “Gedanken-
prozeß” through which the human mind is going to produce numbers and
formulates it in rigorous logical terms with the concepts of system and map-
pings. It is by this unfolding of the intricate relationship of arithmetic to
thought, that Dedekind is justified in saying that the numbers “flow di-
rectly from the laws of pure thought”, that the human mind is continually
– albeit often unconsciously – doing arithmetic. He highlights that thought
and arithmetic are following the same step-by-step process rooted in the
two fundamental operations of the mind and builds up the whole edifice of
arithmetic on the “operations of thought”.

Before developing the idea of numbers as tools produced by the mind to
“ease its life”, I will expose the details of the definition of natural numbers.

8.2 Was Sind und Was Sollen die Zahlen?

In the following, in order to support the claims above and to have a sound
basis for inquiring into the relations between Dedekind’s definition of natural
numbers and the “arithmetization”, I will present Dedekind’s definition of
natural numbers. The presentation of Zahlen that I will propose will make
use of very little references to secondary literature. My reading does not aim
at challenging or even commenting upon previous interpretations of Zahlen.
My reading has been informed by the many commentaries available,49 but
it relies essentially on Dedekind’s texts themselves.

I will use the text of Zahlen to highlight how it is answering a demand for
a definition of natural numbers, and to clarify how the strategy deployed to
give this definition meets requirements of rigor, yields an idea of arithmetic
of a great generality, and allows to define the concept of number in such a
way that it gives rise to a conception of arithmetic that can account for its
uses in previous works.

The ‘logical’ approach advocated by Dedekind, if applied systematically,
helps to gain clarity, because it allows to understand the chains of inferences
lying behind notions we considered as evident. Logic is an instrument for
the thought, a means of rigor, related to the Laws of thought and close to a

49In particular [Dugac, 1976b], [Belna, 1996], [Tait, 1997], [Ferreirós, 2008], [Potter,
2002], [Reck, 2009], [Reck, 2003], [Sieg and Schlimm, 2005], [Schlimm, 2005], [Sinaceur
and Dedekind, 2008], [Sinaceur, Forthcoming], [Detlefsen, 2012].
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theory of inference. As Sinaceur underlines, Dedekind is not interested by
“logical issues in and for themselves,” but by the possibility to instigate more
“rigorous logic” into the foundation of mathematical theory, leading him to
unfold the “series of inferences” on which concepts such as natural numbers
relie. Logic is related to the “Treppen-Verstand” and, for Dedekind, to
provide a “logical” foundation or definition of a concept means to provide a
foundation which makes every step possible, from the ground to the actual
definition of the concept (see [Sinaceur, Forthcoming]). Dedekind’s logic
has to be put into relation with the fact that thought is an activity, a
creative activity: logic is guiding the thought. In that sense, as we will see,
arithmetic is a part of logic (whose scope of applicability is considerably
wider than arithmetic’s). And in that sense, Zahlen is a logical project: it
aims to show that numbers are creations of the mind which can be defined
by more general means, that they are not given (in any sense possible: an
inner intuition, a realm of ideas, God, . . . ), and that one can give a purely
logical and perfectly rigorous ground to arithmetic. Logic must be the only
means with which one constructs arithmetic. Once arithmetic is defined,
mathematicians can use arithmetic itself.

Dedekind was not motivated either, unlike Frege or Peano, by the pos-
sibility to provide a foundation from which one could deduce the whole
of mathematics. He himself mentions in the introduction of Zahlen the re-
stricted area covered by his essay.50 The possibility to extend “step-by-step”
the domains of numbers was already highlighted in Stetigkeit and Dedekind
does not consider that what he wrote before Zahlen should be reconsidered
in this light.

8.2.1 The “simply infinite systems”

The definition of the sequence of natural numbers requires a certain amount
of technical developments and is given approximately in the middle of Dede-
kind’s book. The first step is to introduce the notion of chain which will
give a rigorous mathematical definition of the “act of counting”. With chains
alone, Dedekind can prove, before having defined the sequence of natural
numbers, the theorem of complete induction. The next step is to define
finite and infinite sets. From there, it becomes possible for Dedekind to give
his definition of the system of natural numbers, as an instance of what he
calls “simply infinite systems”. The definitions of an order on the natural
numbers, of the arithmetical operations and of the notion of cardinal num-
bers come after this definition.

50“In accordance with the purpose of this memoir I restrict myself to the consideration
of the sequence of so-called natural numbers.” ([Dedekind, 1888], 792)
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8.2.1.1 Dedekind’s previous attempts to define the natural numbers

Dedekind’s first researches on the sequence of natural numbers, which he
himself qualified of “naïve”51, proposed a definition of natural numbers using
a Leibnizian flavored definition by induction:

[First version] Act of creation 1; 1+1 = 2; 2+1 = 3; 3+ 1 = 4 . . .
numbers (ordinal).52

[Second version] Creation of the numbers: 1; 1 + 1 = 2; 2 + 1 =
3; 3 + 1 = 4 . . . from each number a the following number a+1
is formed by the act +1. Therefore, everything by complete
induction.53

Dedekind also touches on the possibility to define the successor operation
+1 by a mapping ϕ: 1, ϕ(1) = 2, ϕ(2) = 3, ϕ(3) = 4, . . . This gives him the
possibility to distinguish between successor and addition:

a+ ϕ(b) = ϕ(a+ b) and a+ 1 = ϕ(a).

The idea is not further developed in this early manuscript. It is however an
important step, in which the “act of counting” is seen as a mapping pro-
ducing the sequence of natural numbers, initially independent of addition,
which will be defined as satisfying certain recurrence conditions. The dis-
tinction between the successor operation and the addition is important for
further developments of Dedekind’s conception of number – “the beginning
of a quite dramatic conceptual shift”, according to Sieg and Schlimm. By
distinguishing the generating act of numbers from the operations of arith-
metic, Dedekind also allows for the consideration of arithmetic operations
as determined by the operands and not as formal operations.

The first draft of Zahlen, reproduced in [Dugac, 1976b] (293-309), spreads
over a period of six years between 1872 and 1878 and presents a certain
number of similarities with the ideas published in 1888.54 It marks a signif-
icant break with the ideas about numbers in the Habilitationsvortrag and in

51The title of the first manuscript is “Versuch einer Analyse des Zahlbegriffs vom naiven
Standpuncte aus” (Cod. Ms. Dedekind III, 4). It is dated, in [Sieg and Schlimm, 2005],
from dated from 1872/1878. Some copies of the manuscripts were communicated to me
by Sean Walsh, who I would like to thank warmly. One can also find a retranscription of
some of these manuscripts in [Schlimm, 2000].

52“Schöpfungsakt 1; 1 + 1 = 2; 2 + 1 = 3; 3 + 1 = 4 . . .”
53“Erschaffung der Zahlen: 1; 1 + 1 = 2; 2 + 1 = 3; 3 + 1 = 4 . . . aus jeder Zahl a wird

durch den Act +1 die folgende Zahl a + 1 gebildet. – Deshalb Alles durch vollständige
Induction.”

54[Sieg and Schlimm, 2005] provides great explanations on its content and traces some
changes in Dedekind’s approach to the definition of systems of numbers. My commentary
in the following paragraph will rely on their work, yet I will not consider the “axiomatic”
aspect of Dedekind’s approach and will have some details on points which were out of the
scope of inquiry of the authors.
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Stetigkeit by identifying mappings as the core of what “counting” consists
in. The definition of an infinite system and the notion of chain (which we
will consider below) as a justification for induction and a means of producing
the sequence of natural numbers are first introduced in the 1872/78 draft.
The notion of chain is refined throughout the manuscript, which contains
three versions (or three “layers”, as put by Sieg and Schlimm, since several
versions are written next to each other on the same page) of Dedekind’s
researches, between 1872 and 1878. At each “layer”, one can notice subtle
changes in his ideas which gradually place the notion of Abbildung at the
center of the investigation, adopting the viewpoint announced in 1879.

In the first draft, Dedekind still considers the systems to play the cen-
tral role, since for the characterization of chains, he uses the ideas of “map-
pable” (abbildbar), “similarly mappable” (deutlich abbildbar), “image” (Bild)
related to systems. As Sieg and Schlimm explain, this “match[es] 1871 (Sec-
tion I of §159 in Supplement X) as well as 1872 in terminology and outlook”:
the definition of conjugate fields in 1871 is given in terms of numbers ϕ(a)
corresponding to numbers a in the field A, rather than in terms of mappings
from one field onto another.

The second attempt, which is the longest of the three, introduces the no-
tion of Abbildung and states that mappings are necessary for the foundation
of arithmetic:

If one accurately tracks what we are doing when we count a set
or a number of things, one is necessarily led to the concept of
correspondence or mapping.

The concepts of system, of mapping, which shall be introduced in
the following in order to ground the concept of number, cardinal
number, remain indispensable for arithmetic even if one wants
to assume the concept of cardinal number as being immediately
evident (“inner intuition”).55 (Quoted and translated in [Sieg
and Schlimm, 2005], 141)

Note that Dedekind considers that the concept of number is the cardinal
number (Anzahl), here, whereas he wrote to Weber after the publication of
Zahlen that he took the ordinal number to be the true concept of number. A
possible explanation for this change is the fact that the definition of numbers
by means of mappings and chains requires to define the ordered sequence

55“Verfolgt man genau, was wir beim Abzählen der Menge oder Anzahl von Dingen thun,
so wird man nothwendig auf den Begriff der Correspondenz oder Abbildung geführt.
Die Begriffe des Systems, der Abbildung, welche im Folgenden eingeführt werden, um
den Begriff der Zahl, der Anzahl zu begründen, bleiben auch dann für die Arithmetik
unentbehrlich, selbst wenn man den Begriff der Anzahl als unmittelbar evident (‘innere
Anschauung’) voraussetzen wollte.”
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formed by ordinal numbers. Only after that can the cardinal number be
introduced as “number of things” in a system.

The main properties of N , such as induction or the definition of the
operations, are, however, completely independent of the cardinal numbers.

Dedekind, in this second “layer” calls a chain a “group” (Gruppe):

G is called a group (relating to this mapping [ϕ]) when G′[=
ϕ(G)] is a part of G.56 (In [Dugac, 1976b], 296)

Dedekind develops his ideas all the way up to finite cardinals. He also
considers the proof of the “correctness of the method of proof” by induction
on natural numbers, which is one the core elements of Zahlen:

The proof of the correctness of the method of proof from n to n+1
is correct; in contrast, the proof (completeness) of the definition
of concepts by the method from n to n + 1 is not yet sufficient
at this point; the existence (consistent) of the concept remains
in doubt. This will become possible only by injectivity, by the
consideration of the system [n]!!!!!! Foundation.57 (Quoted and
translated in [Sieg and Schlimm, 2005], 143)

Note the distinction between the “proof” and the “definition” by induction,
which Dedekind will develop in Zahlen.

Dedekind also defines “the sum of two numbers” using both induction
and mappings, that is, as satisfying the two conditions a + 1 = ϕ(a) and
a + ϕ(n) = ϕ(a + n). In Zahlen, these are properties which characterize
addition, but not the definition properly speaking.58

The third layer of the manuscript is a “very polished version of [part of
the previous] considerations” as Sieg and Schlimm notice. Some of the points
are very close to the ideas presented in 1888. In particular, it completely
adopts the standpoint according to which the mappings are the core of the
investigation, rather than the systems themselves. The sequence of natural
numbers is characterized in the following way:

Characteristic of the system Z. There is a similar mapping of
Z – if T is a part of Z, then the image of T is denoted by T ′ –
which has the following property.

56“G heisst (mit bezug auf diese Abbildung [ϕ]) a Gruppe, wenn G′[= ϕ(G)] Theil von
G ist.”

57“Der Beweis der Richtigkeit der Beweismethode von n auf n + 1 ist richtig; dagegen
ist der Beweis (Vollständigkeit) der Begriffserklärung durch die Methode von n auf n+ 1
an dieser Stelle noch nicht genügend; die Existenz (widerspruchsfrei) des Begriffs bleibt
zweifelhaft. Dies wird erst möglich durch die Deutlichkeit, durch die Betrachtung des
Systems [n]!!!!!! Fundament.”

58The definition of addition is made using the “Theorem of the definition by induction”
which proved that one can define a “function” by induction. Addition is a special case of
such function. In modern terms, the definition given by Dedekind is recursive.
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I. Z ′ is a part of Z.
II. There is a number (i.e., a thing contained in Z), which is
not contained in Z ′. This number shall be called “one” and is
denoted by 1.
III. A number chain (i.e., each part T of Z, whose image T ′ is
a part of T ) that contains the number 1 is identical with Z.59

(ibid., transl. slightly altered, 144)
To give mappings the central role in the theory is a significant move to-
wards Dedekind’s final definition of the natural numbers. It suggests that
Dedekind went from the idea of the sequence of natural numbers as a domain
whose order could be represented by a certain mapping (a chain) to the idea
that the chain is the essential concept which generates the ordered sequence.
As we will see below, Dedekind in 1888 defines the system of numbers as
satisfying the condition that there exists a mapping which “makes of N the
chain of an element [1] not contained” in the said chain. The main differ-
ence between the 1888 definition and that given in the first draft is the fact
that the generality of the standpoint adopted in Zahlen. Indeed, Zahlen is
overall more general, in the sense that Dedekind defines a concept of simply
infinite system whose elements are of indeterminate nature, and considers
the natural numbers to be a particular instance of this concept.60

Dedekind left this work unfinished until 1887. The two last drafts of
Zahlen, written in 1887, are similar to the published version. There is one
notable difference in the 1887 draft, which is the absence of “proof” of the ex-
istence of an infinite system. It is likely that Dedekind’s reading of Bolzano’s
Paradoxien des Unendlichen, sent to him by Cantor, inspired the writing of
this proof.

8.2.1.2 Chains

The paragraph in which the notion of chain is defined aims at studying the
mappings of a system S into itself, i.e., such that ϕ(S) = S. Consider such
a function ϕ : S → S. A chain is a subset K such that ϕ(K) ⊂ K.61

59“Charakteristik des Systems Z. Es giebt eine deutliche Abbildung von Z - ist T ein
Theil von Z, so soll das Bild von T mit T ′ bezeichnet werden, welche folgende Eigenschaft
besitzt.
I. Z′ ist Theil von Z.
II. Es giebt eine Zahl (d.h. ein in Z enthaltenes Ding), welche nicht in Z′ enthalten ist.
Diese Zahl soll ‘Eins’ heissen und mit 1 bezeichnet werden.
III. Eine Zahlkette (d.h. jeder Theil T von Z, dessen Bild T ′ ein Theil von T ist), welche
die Zahl 1 enthält, ist identisch mit Z.”

60Note also that Zahlen contains considerably more developments.
61Dedekind often uses the notation K′ for ϕ(K). For clarity purposes, I will often keep

the notation ϕ(K).
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K is called a chain (Kette)62 when K ′3K. We remark expressly
that this name does not in itself belong to the part K of the sys-
tem S, but is given only with respect to the particular mapping
ϕ; with reference to another mapping of the system S into itself,
K can very well not be a chain.63 ([Dedekind, 1888], 803)

In contemporary terminology, one would say that a chain is the minimal
closure of a set K in a set S containing K under a function ϕ on S (where
“minimal” is related to the general notion of intersection)64. Dedekind’s
remark following the definition is important: being a chain depends on the
Abbildung considered, it is not a property of the set K itself. There are
several interesting properties of chains proved by Dedekind in the following
pages such as:

- S is a chain.
- If K is a chain, ϕ(K) is a chain.
- If A,B,C, . . . are chains, then (A,B,C, . . .) and G(A,B,C, . . .)
are chains.
- If K is a chain and A ⊂ K, then ϕ(A) ⊂ K.

For what will follow, an important notion is the intersection of all the chains
in S containing a certain subset A of S, and denoted by A0. It is itself a
chain and is called “the chain of the system A or briefly the chain of A”
(ibid., 804). Once again, the definition is dependent of the choice of ϕ:

This definition too is strictly related to the fundamental deter-
minate mapping ϕ of the system S into itself, and if later, for
the sake of clearness, it is necessary, we shall at pleasure use the
symbol ϕ0(A) instead of A0 and likewise designate the chain of
A corresponding to another mapping ω0 by ω0(A).65 (ibid., 804)

And it is possible to take for A a singleton {a} and form its chain. Three
results are said to “completely characterize” the chain A0:

62The term “Kette” was rather largely spread in number theory (e.g., Kettenbrüche
for continuous fractions) and can be found in various authors’s works, such as Gauss
or Dirichlet. Throughout Dirichlet’s Vorlesungen, “Kette” is used to designate (finite
or infinite) sequence of numbers defined recursively, and it was the case in the previous
editions. It was also used to designate the sequence of natural numbers in Stetigkeit (see
p. 472).

63“K heißt eine Kette, wenn K′3K ist. Wir bemerken ausdrücklich, da dieser Name
dem Teile K des Systems S nicht etwa an sich zukommt, sondern nur in Beziehung auf
die bestimmte Abbildung ϕ erteilt wird; in bezug auf eine andere Abbildung des Systems S
in sich selbst kann K sehr wohl keine Kette sein.”

64I borrow this remark to [Reck, 2012], but changed the notation according to the
previous note.

65“Auch diese Erklärung bezieht sich durchaus auf die zugrunde liegende bestimmte Ab-
bildung ϕ des Systems S in sich selbst, und wenn es später der Deutlichkeit wegen nötig
wird, so wollen wir start A0 lieber das Zeichen ϕ0(A) setzen, und ebenso werden wir die
einer anderen Abbildung ω0 entsprechende Kette von A mit ω0(A) bezeichnen.”
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- A is a subset of A0;
- The image of A0 by ϕ is included in A0;
- If K is a chain and A ⊂ K, then A0 ⊂ K.

Furthermore, if A is itself a chain, then A0 = A. We also have that ϕ(A0) =
(ϕ(A))0, that is,

the image of the chain of A is at the same time the chain of the
image of A. Hence we can designate this system in short by A′0
[i.e., ϕ(A)0] and at pleasure call it the chain-image or image-
chain [das Kettenbild oder die Bildkette] of A. With the clearer
notation given [above] the theorem might be expressed

ϕ(ϕ0(A) = ϕ0(ϕ(A)).66

Dedekind does not explain why the notion of chain is important, he does
not motivate the long technical preliminaries necessary to obtain a rigorous
definition of the natural numbers – just as the exposition of module theory
was not motivated in 1871. As underlined by Ferreirós, this omission proba-
bly made it more difficult for his contemporaries to “appreciate [the concept
of chain] adequately”.67 Explanations were only given in the correspondence
with Keferstein.

Again, Dedekind proceeds by analysis and synthesis. The need for a no-
tion of “similar mapping” was identified through the analysis of the sequence
of natural numbers. This mapping serves to define the notion of successor.
It has to be injective since distinct numbers always have distinct succes-
sors.68 In order to characterize correctly the sequence of natural numbers,
one has to make sure that the properties (closure by successor, unicity of
the successor, existence of a first element) do not, in fact, define a system S
which would contain the natural numbers n and another set T of additional
elements t which are not natural numbers. These “aliens intruders” (which
would be non-standard elements) must be avoided. Dedekind explains to

66“das Bild der Kette von A ist zugleich die Kette des Bildes von A. Man kann daher
dieses System kurz durch A′0 bezeichnen und nach Belieben das Kettenbild ode die Bild-
kette von A nennen. Nach der deutlicheren in 44 angegebenen Bezeichnung würde der
Satz durch ϕ(ϕ0(A) = ϕ0(ϕ(A)) zu sein.”

67Ferreirós writes: “It would have been very important to explain the role of chains
in connection with the definition of numbers, a topic that appears only in the letter to
Keferstein. And the reception of Dedekind’s work would probably have been better had he
explained that results such as the Cantor-Bernstein theorem were consequences of chain
theory. As he presented the matter, only a few mathematicians (especially Schröder and
Zermelo, but surprisingly not Cantor) were able to appreciate his contribution adequately.”
([Ferreirós, 2008], 230) The reference to the Cantor-Bernstein theorem could only have
been made in the Preface to the third edition in 1911, since the theorem was given by
Cantor in 1895 and proved by Dedekind in 1897 (Dedekind himself never published this
proof).

68These elements were already present in Dedekind’s first drafts.
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Keferstein that it is necessary to solve this problem by purely logical means
(that is, not by arithmetical means, but not by any external means either)
“without presupposing any arithmetic knowledge”, in order to avoid a vi-
cious circle in the definition. So as to “give an unambiguous conceptual
foundation to the distinction between the elements n and the elements t,”
one must therefore do it

[s]olely through consideration of the chains (articles 37 and 44 of
[Zahlen]), and yet, by means of these, completely!69 (Letter to
Keferstein, transl. van Heijenoort slightly altered, 101)

From there, Dedekind can prove what he calls the “theorem of complete
induction”, a general version of the well-known mathematical induction,
whose aim is to prove that a chain A0 belongs to a certain system:

Theorem of complete induction. To show that the chain A0 is
part of any system Σ – be this latter part of S or not – it is
sufficient to show,

ρ. that A3S, and
σ. that the image of every common element of A0 and Σ is

likewise an element of Σ.70 ([Dedekind, 1888], 805)

What this theorem tells us, as Dedekind explains, is that proving that
the chain A0 is included in a certain system Σ amounts to proving that all
the elements of A0 have a certain property P , such that all the elements of
Σ satisfy P . In order to demonstrate this, one has to prove that

(1) A, the “initial element”, is in T , i.e., that all the elements of A have
the property P ;

(2) for any n in A0 which satisfies the property P , its image ϕ(n) satisfies
the property as well.

Expressed in this manner, it is evident that “the form of demonstration
known by the name of complete induction (the inference from n to n+ 1)”
(op. cit., 805) is just a special case of the theorem mentioned above. Indeed,
the “theorem of complete induction” is given before the definition of the

69“Ganz allein durch die Betrachtung der Ketten (37, 44 meiner Schrift), durch diese
aber auch vollständig!”

70“Satz der vollständigen Induktion. Um zu beweisen, daß die Kette A0 Teil irgendeines
Systems Σ ist – mag letzteres Teil von S sein oder nicht – genügt es zu zeigen,
ρ. daß A3D, und
σ. daß das Bild jedes gemeinsamen Elementes von A0 und Σ ebenfalls Element von Σ

ist.”
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sequence of natural numbers, and is thus independent of the mode of infer-
ence well known for natural numbers. This theorem of complete induction
is, as Sinaceur explains, a “logical derivation from the abstract set-theoretic
concepts, of the arithmetic process of complete induction” ([Sinaceur and
Dedekind, 2008], 116) and presents itself as a general form of induction.

To have this theorem in perfectly general form allows for a “scientific
foundation” of induction. And if one wishes, as Dedekind does, to unfold
step by step each inference of the definition of numbers and to recognize
which properties are arithmetic i.e., dependent of having a system of num-
bers, it is essential to be able to point out a theorem of complete induction
which does not depend on natural numbers. With the proof based on the
concept of chain, as it is here, and not on numbers themselves, Dedekind
assures the independence of “complete induction” from the very nature of
numbers, and avoids a circular reasoning when giving the definition by in-
duction. Moreover, for Dedekind, this theorem is one of the central points
of the book, for it is essential to assure that one has a “sufficient method of
proof” for theorems valid for any natural numbers, as he wrote to Keferstein.
It shows that

the form of argument known as complete induction (or the in-
ference from n to n+ 1) is really conclusive (59), (60), (80), and
that therefore the definition by induction (or recursion) is deter-
minate and consistent (126).71 (ibid., 791)

8.2.1.3 Finite and infinite systems

The next crucial point for Dedekind’s book is the definition of infinite and
finite systems, one of the most striking passages of the book – and even
more so since Dedekind’s contemporaries still had reticences towards actual
infinities. It has been analyzed and commented in depth by previous authors,
and I will not spend much time on it.

Dedekind’s “logical proof of existence” (Letter to Keferstein, 101) of an
infinite system appears as an essential point in relation to his insistence that
“nothing in mathematics is more dangerous than to accept existence without
sufficient proof”. Importantly, Dedekind changes the order of deduction
usually adopted by authors who accepted the infinite. Cantor, for example,
considered natural numbers as given and with them, had a presupposed
notion of infinite set.72 For Dedekind, the infinite systems are primary and
serve as a basis for the definition of integral numbers. This implies that if

71“daß die unter dem Namen der vollständigen Induktion (oder des Schlusses von n auf
n+ 1) bekannte Beweisart wirklich beweiskräftig (59, 60, 80), and daß auch die Definition
durch Induktion (oder Rekursion) bestimmt und widerspruchsfrei ist (126).”

72In fact, Cantor only started to give definition of the finite and the infinite after the
publication of Zahlen.
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one is to prove that such a system exists, it must be done independently of
the system of natural numbers itself (hence the “purely logical proof”). Not
only is this point essential for the definition of natural numbers, which are a
particular kind of infinite system, but also seems to come as a retrospective
justification of his many uses of infinite systems in previous mathematical
works.

By giving the conceptual priority to infinite systems, Dedekind made an
important move which reverses the traditional order of explanation: infi-
nite systems, abstract notions subjected to heated debates, became the fun-
damental notion with which one should define the familiar (and concrete)
companions that are the natural integers. Following Dedekind’s insistence
about the importance to give rigorous definitions of the grounding concepts
and to never make illicit hypotheses of existence, it becomes indispensable
to provide a definition of the infinite and, if possible, to prove the existence
of such systems.

Dedekind thus gives a rigorous definition of finite and infinite systems
from which one should be able to (rigorously) develop the “science of num-
bers”:

A system S is said to be infinite when it is similar to a proper
part of itself; otherwise S is said to be a finite system.73 (ibid.,
806)

This definition is now called “Dedekind infinite”.
It is the first time that such a definition of infinite systems is given. Al-

though the property of infinite sets taken as definition by Dedekind had been
noticed by Cantor and Bolzano, it was not considered as the essential prop-
erty of infinite systems that should be taken as a definition, as mentioned
by Dedekind in the preface of the second edition of Zahlen (1893):

[b]ut neither of these authors made the attempt to use this prop-
erty for the definition of the infinite and upon this foundation
to establish with rigorous logic the science of numbers.74 (ibid.,
795)

This point is another instance of how Dedekind carefully identified the “char-
acteristic properties”75 to be taken as definition. Note that, mathematicians

73“Ein System S heißt unendlich, wenn es einem echten Teile seiner selbst ähnlich ist
(32); im entgegengesetzten Falle heißt S ein endliches System.”

74“Aber keiner der genannten Schriftsteller hat den Versuch gemacht, diese Eigenschaft
zur Definition des Unendlichen zu erheben and auf dieser Grundlage die Wissenschaft von
den Zahlen streng logisch aufzabauen.”

75The shift from previous approaches is significant: this property of infinite systems had
been considered as a “paradox” by many authors, the best known being Galileo who gave
it his name.
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who did accept actual infinite, such as Riemann, tend to think that it could
not be defined directly.76

The definition of infinite systems is followed by the infamous Theorem66,
in which Dedekind proves the existence on infinite systems using “[his] own
realm of thoughts, i.e., the totality S of all things”. Dedekind’s reasoning
is likely inspired by Bolzano’s in the Paradoxien des Unendlichen, which
was sent to Dedekind by Cantor shortly before the last draft of Zahlen.
Commented and criticized at length, this proof should be considered in its
context. Dugac considers that this proof is unsuited to Dedekind’s mathe-
matics, and that the proof, inspired by Bolzano, leaves its reader “perplexed”
and does not seem mathematical, but rather “of philosophy and even of psy-
chology!”. In fact, Dedekind’s proof does fit well in Dedekind’s approach,
and in particular his rigor requisites: “nothing susceptible of proof ought
to be accepted without a proof”.77 In the second letter to Keferstein (27
February 1880), Dedekind states clearly his intentions:

Does such a [simply infinite] system exist at all in the realm of
our ideas? Without a logical proof of existence it would always
remain doubtful whether the notion of such a system might not
perhaps contain internal contradictions. Hence the need for such
proofs (articles 66 and 72 of my essay).78 (transl. van Heijenoort
1967, 101)

Dedekind’s and Bolzano’s proofs, as noticed by Ferreirós, bring to the fore
“the need to establish the existence of infinite sets as an explicit proposi-
tion within set theory” ([Ferreirós, 2008], 234). Moreover, considering that,
for Dedekind, systems and mappings are objects of thought, operations of
the understanding, and that he wants to make sure that an infinite system
exists in our realm of ideas, the form of the proof of existence itself is not
surprising.79 For M. Potter as well, it is “not surprising that Dedekind’s
proof of the existence of an infinite system has the same apparently psychol-
ogistic slant” considering his “his understanding of systems as creations of
our minds” ([Potter, 2002], 100).

In addition, insofar as “there is nothing, in mathematics, more danger-
ous than to admit existences, without sufficient proof,” for infinite systems
as well, it is essential to provide a rigorous consistent definition of the notion

76See [Ferreirós, 2008], §II, 4.2.
77[Detlefsen, 2014] proposes to see it as a proof of consistency.
78“[E]xistiert überhaupt ein solches System in unserer Gedankenwelt? Ohne den logi-

schen Existenzbeweis würde es immer zweifelhaft bleiben, ob nicht der Begriff eines solchen
Systems vielleicht innere Widerspruche enthalt. Daher die Notwendigkeit solcher Beweise
(66, 72 meiner Schrift).”

79And, as mentioned before, the Kantian background of Dedekind’s theory dismisses
accusations of psychologism.
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whose existence is supposed, so as to prove that the hypothesis of existence
is valid.

8.2.1.4 Simply infinite systems and the system of natural numbers

With the notion of chain and the proof that an infinite system does exist,
Dedekind can now define the notion of simply infinite system:

A system N is said to be simply infinite when there exists a
similar mapping ϕ of N into itself such that N appears as the
chain of an element not contained in ϕ(N). We call this element,
which we shall denote in what follows by the symbol 1, the base-
element of N and say the simply infinite system N is ordered
(geordnet) by this mapping ϕ. If we retain the earlier convenient
symbols for images and chains (§4) then the essence of a simply
infinite system N consists in the existence of a mapping ϕ of N
and an element 1 which satisfy the following conditions α, β, γ, δ:

α. N ′3N [i.e., ϕ(N) ⊂ N ]
β. N = 10 [i.e., N is the chain of 1]
γ. The element 1 is not contained in N ′[=ϕ(N)]
δ. The mapping ϕ is similar.80 (Zahlen, 807)

The condition β. ensures that N is such that it satisfies the requirement
that there are no “alien intruders” (i.e., nonstandard elements).81

These four conditions define all simply infinite systems, since the concept
defined is that of systems composed of uninterpreted elements. To define
the sequence of natural numbers requires one more step. As is well known,
Dedekind defines the natural numbers as a creation resulting from a process

80“Ein System N heißt einfach unendlich, wenn es eine solche ähnliche Abbildung ϕ
von N in sich selbst gibt, daß N als Kette (44) eines Elementes erscheint, welches nicht
in ϕ(N) enthalten ist. Wir nennen dies Element, das wir im folgenden durch das Symbol
1 bezeichnen wollen, das Grundelement von N und sagen zugleich, das einfach unendliche
System N sei durch diese Abbildung ϕ geordnet. Behalten wir die früheren bequemen Be-
zeichnungen für die Bilder und Ketten bei (§ 4), so besteht mithin das Wesen eines einfach
unendlichen Systems N in der Existenz einer Abbildung ϕ von N und eines Elementes 1,
die den folgenden Bedingungen α, β, γ, δ, genügen:
α. N ′3N
β. N = 10

γ. Das Element 1 ist nicht in N ′ enthalten.
δ. Die Abbildung ϕ ist ähnlich.”

81A similar definition can be found in Peano’s works. It also inspired Hilbert in Über
die Grundlagen der Logik und der Arithmetik.
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of abstraction from the simply infinite systems. More exactly, the sequence
of natural numbers is the “abstract type” of the simply infinite systems, as
he wrote to Keferstein:

If in the consideration of a simply infinite system N ordered by
a mapping ϕ we entirely neglect the special character of the el-
ements, simply retaining their distinguishability and taking into
account only the relations to one another (. . . ), then these ele-
ments are called natural numbers or ordinal numbers or simply
numbers (. . . ). With reference to this liberation of the elements
from every other content (abstraction) we are justified in calling
the numbers a free creation of the human mind.82 (ibid., 809)

There is, here, an important difference with the 1878 draft. In 1878, Dedekind
only stated these properties as characterizing the sequence of natural num-
bers, whereas in 1888, he defines a general concept of simply infinite system
from which he creates the sequence of natural numbers.83

The creative act of abstraction giving the sequence of natural numbers is
described by Dedekind as a transformation of the elements n of the system
N into new elements n (the numbers), and N is itself transformed into an
abstract system N. Because this transformation is a similar mapping, we can
allow ourselves the convenience “to speak of the numbers as of the original
elements of the system N” (in the 1887 draft of Zahlen, quoted in [Sieg and
Schlimm, 2005]). As soon as the definition of the numbers is given, Dedekind
works with what we could call a ‘model’ of the simply infinite ordered system
– a point whose legitimacy he will prove a little further down in the book,
by proving (what we would call) the ‘categoricity’ of his version of second
order arithmetic. For Dedekind, this means that one can work with the
natural numbers, the familiar numbers, without loss of generality and of
course without risk of “illicit hypothesis of existence”. From there, one can
define the operations of arithmetic and eventually study the arithmetical
properties with the ‘model’, with the “familiar numbers” – which are the
basis from which the number concept will be extended.

The abstraction Dedekind is alluding to has been described by M. Pot-
ter as “gestur[ing] towards two competing metaphors, of forgetfulness and
of creation, which correspond to different ways of regarding abstraction”
([Potter, 2002], 103):

82“Wenn man bei der Betrachtung eines einfach unendlichen, durch eine Abbildung ϕ
geordneten Systems N von der besonderen Beschaffenheit der Elemente gäinzlich absieht,
lediglich ihre Unterscheidbarkeit festhält und nur die Beziehungen auffaßt (. . . ), so heißen
diese Elemente nätürliche Zahlen oder Ordinalzahlen oder auch schlechthin Zahlen (. . . ).
In Rücksicht auf diese Befreiung der Elemente von jedem anderen Inhalt (Abstraktion)
kann man die Zahlen mit Recht eine freie Schöpfung des menschlichen Geistes nennen.”

83The considerations about the proof and definition by induction are subjected to the
same change of scope, between 1878 and 1888.
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The metaphor of forgetfulness suggests that we can by inatten-
tion to its special features make one triangle (or simply infinite
system) go proxy for them all. The metaphor of creation sug-
gests that once we have at least one triangle (or simply infinite
system) we can create a new one with the special feature that
it has no special features: no more is true of it than is true of
every triangle (or simply infinite system). (ibid., 103)

W. Tait considers that Dedekind’s abstraction is a case of “logical abstrac-
tion”84 and raises the following question: “instead of abstracting the simply
infinite set of number from an already given simply infinite set M , why did
Dedekind not simply take the system of numbers to be this latter system?”
([Tait, 2005], 224) For Tait, the answer, which Dedekind did not give, is
the same as that given to Weber’s (and others) questions regarding the def-
inition of real numbers by means of cuts: the irrational numbers are not
identified to the cut, for it would give them properties (that of the cuts)
which have nothing to do with their nature of numbers. Indeed, Dedekind
explains that if one were to identify numbers with cuts or with infinite sets
(classes), then

one will say many things about the class (e.g., that it is a system
of infinitely many elements, namely, of all similar systems) that
one would apply to the number only with the greatest reluctance;
does anybody think, or won’t he gladly forget, that the number
four is a system of infinitely many elements? (But that the
number four is the child of the number three and the mother of
the number five is something that nobody will forget.)85 (Letter
to Weber, 24 January 1888, transl. in [Ewald, 2005], 835)

Rather, one says that they are defined by (or with) the cut, created by
the mind to fill the ‘voids’ highlighted by the cuts. In the same way that
Dedekind does not identify the natural numbers with the concept of simply
infinite system: he creates the natural numbers from it.

84Logical abstraction is characterized by Tait as follows: “In any case, what seems to
me to be essential to this kind of abstraction is this: the propositions about the abstract
objects translate into propositions about the things from which they are abstracted and,
in particular, the truth of the former is founded upon the truth of the latter. So the
abstraction in question has a strong claim to the title logical abstraction: the sense of a
proposition about the abstract domain is given in terms of the sense of the corresponding
proposition about the (relatively) concrete domain.” ([Tait, 2005], 223)

85“man wird vieles von der Classe sagen (z.B. daß sie ein System von unendlich vielen
Elementen, nämlich allen ähnlichen Systemen ist), was man der Zahl selbst doch gewiß
höchst ungern (als Schwergewicht) anhängen würde; denkt irgend Jemand daran, oder
wird er es nicht gern bald vergessen, daß die Zahl vier ein System von unendlich vielen
Elementen ist? (Daß aber die Zahl 4 das Kind der Zahl 3 und die Mutter der Zahl 5 ist,
wird Jedem stets gegenwärtig bleiben).”
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This shows that Dedekind is not trying to re-define numbers in a way
that changes their nature or their meaning – and indeed, he states that his
“answer to the problems propounded in the title (. . . ) [is that] numbers
are free creations of the human mind; they serve as a means of apprehend-
ing more easily and more sharply the difference of things.” To not identify
numbers with the means of the definition and creation (simply infinite sys-
tems, pairs, congruences, cuts) allows to preserve the “identity of nature” of
numbers.

However, it seems that there is a subtle difference between the two def-
initions: Dedekind’s cuts are a tool to bring to the fore the discontinuity
of the domain of rational numbers, a tool which allows to identify the need
of the creation of new numbers to complete the domain. It seems that if
Dedekind had wanted to adopt an approach strictly comparable to that in
Stetigkeit, he would have stopped at the definition of the sequence of natural
numbers as given in the 1872/78 draft: the concept of chain allows to create
the natural numbers. In Zahlen, Dedekind is looking for a definition based
on unprovable premisses, exhibiting the roots of natural numbers in unprov-
able logical laws. On this basis, Dedekind defines simply infinite systems, a
general concept of which one takes an instance, created by abstraction.

In addition, the act of abstraction is justified by the demand that num-
bers be produced by an act of creation of the mind, as Dedekind explains in
a 1877 draft of Zahlen:

By this abstraction, the originally given elements n of N are
turned into new elements n, namely into numbers (and N itself
is consequently also turned into a new abstract systemN ). Thus,
one is justified in saying that the numbers owe their existence
to an act of free creation of the mind. For our mode of expres-
sion, however, it is more convenient to speak of the numbers as
of the original elements of the system N and to disregard the
transition from N to N , which itself is a similar (deutlich) map-
ping. Thereby, as one can convince oneself using the theorems
regarding definition by recursion, nothing essential is changed,
nor is anything obtained subreptitiously in illegitimate ways.86

(Quoted and translated in [Sieg and Schlimm, 2005], 152)
86“Da durch diese Abstraction die ursprünglich vorliegenden Elemente n von N (und

folglich auch N selbst in ein neues abstraktes System N ) in neue Elemente n, nämlich in
Zahlen umgewandelt sind, so kann man mit Recht sagen, daß die Zahlen ihr Dasein einem
freien Schöpfungsacte des Geistes verdanken. Für die Ausdrucksweise ist es aber bequemer,
von den Zahlen wie von den ursprünglichen Elementen des Systems N zu sprechen, und
den Übergang von N zu N , welcher selbst eine deutliche Abbildung ist, außer Acht zu
lassen, wodurch, wie man sich mit Hilfe der Sätze über Definition durch Recursion (. . . )
überzeugt, nichts Wesentliches geändert, auch Nichts auf unerlaubte Weise erschlichen
wird.”
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Abstraction, here, is a mathematical process, “an active constituent of the
creative power of thought,” as Sinaceur underlines. It is an integral part
of the mathematician’s practice, and even, as it has been argued, a logical
procedure. By “abstracting” the system of natural numbers from the simply
infinite systems, Dedekind isolates one particular system, that he designates
as the natural numbers and on the basis of which he will develop his work.
The system of natural numbers, here, is an instance – the particular system
having this very special property to have absolutely no particular property
– of a more general (uninterpreted) system. It is in reference to this peculiar
system that Dedekind will talk about “numbers”, in the rest of the essay.
However, this will not imply any loss of generality, for not only is this ‘in-
stantiation’ an abstraction, but Dedekind will prove that all simply infinite
systems are isomorphic to each other. Thus, everything Dedekind defines
and/or proves about the “abstract type” N is still valid for any other simply
infinite system.

The last step is to state what arithmetic is. Arithmetic is said to be the
science treating of the general laws governing the structure defined above
and derived from the set of conditions defining a simply infinite system:

The relations or laws which are derived entirely from the condi-
tions [defining the notion of simply infinite system] and therefore
are always the same in all ordered simply infinite systems, what-
ever fortuitous names may happen to be given to the individual
elements form the first object of the science of numbers or arith-
metic.87 (op. cit., transl. slightly altered, 809)

Arithmetic and its laws, then, do not depend on the choice of a simply
infinite system. The arithmetic which Dedekind is defining, here, is thus
general, in the sense that it is the propositions, theorems, and laws for
any element of unspecified nature satisfying the four conditions α, β, γ, δ –
hence, in particular, for the natural numbers.

The notion of chain gives an order for the elements of the simply infinite
systems, that is, it defines the notion of succession in natural numbers, the
“act of counting”. The only thing left, in order to be able to state and prove
the propositions of arithmetic – inequalities of numbers, operations, etc. –
is to prove the validity of a “method of proof sufficient to establish, in full
generality, propositions that are supposed to hold for all numbers n” (Letter
to Keferstein, original emphasis). Based on the general complete induction

87“Die Beziehungen oder Gesetze, welche ganz allein aus den Bedingungen α, β, γ, δ
in 71 abgeleitet werden und deshalb in allen geordneten einfach unendlichen Systemen
immer dieselben sind, wie auch die den einzelnen Elementen zufällig gegebenen Namen
lauten mögen, bilden den nächsten Gegenstand der Wissenschaft von den Zahlen oder der
Arithmetik.”
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given earlier, Dedekind states the “complete induction” theorem for natural
numbers:

Theorem of complete induction (inference from n to n + 1). In
order to show that a theorem holds for all numbers n of a chain
m0, it is sufficient to show,

ρ. that it holds for n = m, and
σ. that from the validity of the theorem for a number n of

the chain m0 its validity for the following number n′ always
follows.88 (ibid., 809)

Note that the definition by induction has not been given, yet, and it won’t,
in fact, be given until three sections later.

8.2.2 Properties of natural numbers and operations
Once the system natural numbersN is defined, a fair amount of its properties
are still to be defined and proved. The numbers which Dedekind just defined
are solely the structure of the ordinal numbers. In order to be able to know
more and do more with this concept, one needs to define and prove in more
details certain of its properties:

(1) an order relationship (<) for the elements of N (§7)

(2) the distinction between finite and infinite subsets of N (§8)

(3) the definition by induction (§9)

(4) the similarity (in the technical sense defined by Dedekind) of all simply
infinite systems (§10)

(5) arithmetical operations (§§11-13)

(6) cardinal numbers (§14)

It is important to note that everything defined and proved by Dedekind
is defined and proved using solely mappings, chains and complete induction.
The definitions and proofs, then, do not use anything whose definition has
not been done (and rigorously so), or has not been done with tools intern
to the theory (hence, they are not foreign to the theory). Moreover, the

88“Satz der vollständigen Induktion (Schluß von n auf n′). Um zu beweisen, daiß ein
Satz für alle Zahlen neiner Kette mo gilt, genügt es zu zeigen,
ρ. daß er für n = m gilt, und
σ. da aus der Gültigkeit des Satzes für eine Zahl n der Kette m stets seine Gültigkeit

auch für die folgende Zahl n′ folgt.”
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exclusive use of notions elaborated within the theory allows to preserve the
generality of the investigations that was granted by taking systems and
mappings as grounding concepts. As we will see, to consider the system of
natural numbers N as an instance of simply infinite systems does not lead
to a loss of generality, insofar as it can be shown that all simply infinite
systems are isomorphic to N , and thus to each other.

I will consider, for brevity’s sake, only (4) the proof that all simply
infinite systems are isomorphic to each other and (5) the definition of arith-
metical operations.

8.2.2.1 The “categoricity theorem”

Dedekind defined, earlier in the book, the notion of similarity (i.e., one-to-
one correspondence) between systems and the notion of “class”:

[We can therefore separate all systems into classes by putting into
a determinate class all and only those systems Q,R, S, . . . that
are similar to a determinate system R, called the representative
of the class; according to [the theorem 3389] the class is not
changed by taking as representative any other system belonging
to it.90 (ibid., 802)

The idea of the §10 is to prove that the simply infinite systems form a class.
This is done in two steps: first, prove that all simply infinite systems are
similar to each other; then, prove that any system similar to a simply infinite
system is itself a simply infinite system.

The first step is expressed by Dedekind in the following way:

[Theorem 132] All simply infinite systems are similar to the
number-series N and consequently by [the theorem 33] to one
another.91 (ibid., 821)

This theorem, proved by complete induction, allows to show that the results
proven for N are valid for any simply infinite system. Indeed, since “being
similar to” is a transitive relation, the choice of a representative does not
change anything. This result shows that, as in the case of congruences,
to isolate a “representative” (here N) does not imply a loss of generality.
What Dedekind develops, from there, is thus a sort of general arithmetic,

89“33. Theorem. If R,S are similar systems, then every system Q similar to R is also
similar to S.”

90“Man kann daher alle Systeme in Klassen einteilen, indem man in eine bestimmte
Klasse alle und nur die Systeme Q,R, S . . . aufnimmt, welche einem bestimmten System R,
dem Repräsentanten der Klasse, ähnlich sind; nach dem vorhergehenden Satze 33 ändert
sich die Klasse nicht, wenn irgendein anderes ihr angehöriges System S als Repräsentant
gewählt wird.”

91“Alle einfach unendlichen Systeme sind der Zahlenreihe N und folglich (nach 33) auch
einander ähnlich.”
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an arithmetic of uninterpreted elements – “shadowy forms” in Dedekind’s
words.

The second step to show that the simply infinite systems form a class,
consists in showing that not only are all simply infinite systems similar
to each other, but any system similar to a simply infinite system is itself
simply infinite.92 With these two results, Dedekind is able to prove what is
now called the categoricity of (his version of) second order arithmetic. As
explained, for example, by Awodey and Reck:

Dedekind does not yet work with a completely general notion
of isomorphism, nor does he use the term “categorical”.93 Nev-
ertheless, these two theorems [132 and 133] (and their proofs)
show that he basically knows his characterization is categorical.
([Awodey and Reck, 2002], 7)

Dedekind considers that a direct consequence of the “categoricity theo-
rem” is what we would call the “semantic completeness of his axiomatiza-
tion,”94 that is, every result proved for a simply infinite system N can be
translated and be valid in any other simply infinite M :

[Remark 134] By the two preceding theorems (132), (133) all
simply infinite systems form a class (. . . ) At the same time,
with reference to [the definition of the simply infinite systems
and of the natural numbers] it is clear that every theorem re-
garding numbers, i.e., regarding the elements n of the simply
infinite system N ordered by the mapping ϕ (and indeed every
theorem in which we leave entirely out of consideration the spe-
cial character of the elements n and discuss only such notions as
arise from the arrangement ϕ) possesses perfectly general valid-
ity for every other simply infinite system Ω ordered by a mapping
θ and its elements v, and that the passage from N to Ω (e.g.,
the translation of an arithmetical theorem from one language
into another) is effected by the mapping ψ considered in (132),
(133).95 ([Dedekind, 1888], 823)

92[Theorem 133] Every system which is similar to a simply infinite system and therefore
by (132), (33) to the number-sequence N , is simply infinite.” (ibid., 823)

93The idea of a categorical theory (relatively to a certain semantic) is that there exists
an isomorphism between any two models of the theory. These notions were unknown to
Dedekind.

94See [Awodey and Reck, 2002]. Here, “semantic completeness” is to be understood as:
For all sentences ϕ of all models M , N of a theory, if M verifies ϕ, then N verifies ϕ.

95“Zufolge der beiden vorhergehenden Sätze 132, 133 bilden alle einfach unendlichen
Systeme eine Klasse im Sinne von 34. Zugleich leuchtet mit Rücksicht auf 71, 73 ein, daß
jeder Satz über die Zahlen, d.h. über die Elemente n des durch die Abbildung ϕ geordneten
einach unendlichen SystemsN , und zwar jeder solche Satz, in welchem von der besonderen
Beschaffenheit der Elemente n ganzlich abgesehen wird und nur von solchen Begriffen
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It should be underlined that the results stated in the theorems 132 and
133 are, for Dedekind the proof that all propositions of arithmetic are of
“perfectly general validity” (ibid., 823), that is, valid for all simply infinite
systems (counter to a model theoretic interpretation of the result).96 The
Remark 134, then, allows Dedekind to highlight the fact that it is rigorously
proven that elementary arithmetic is generally defined (i.e., valid for all
relevant cases) and that the “creation” of natural numbers did not entail
any loss of generality. Dedekind himself mentions (ibid.), the possibility of
transferring or translating (übertragen) the propositions and theorems from
one system to another – a point he seems to consider as self-evident. This
further allows to “justify” the definition of numbers, as Dedekind explains.
Consider a system Ω of elements v ordered by a mapping θ, and a mapping
ψ which makes the passage from the natural numbers N (ordered by ϕ) to
Ω, i.e., ψ changes every element n of N into an element v of Ω, i.e., into
v = ψ(n), then

[t]his element v can be called the nth element of Ω and ac-
cordingly the number n is itself the nth number of the number-
sequence N . The same significance which the mapping ϕ pos-
sesses for the laws in the domain N , insofar as every element n is
followed by a determinate element ϕ(n) = n′ is found, after the
change effected by ψ, to belong to the mapping θ for the same
laws in the domain Ω, insofar as the element v = ψ(n) arising
from the change of n is followed by the element θ(v) = ψ(n′) aris-
ing from the change of n′. We are therefore justified in saying
that ϕ is changed by ψ into θ, which is symbolically expressed
by θ = ψϕψ̄, ϕ = ψ̄θψ.97 (ibid., 823)

die Rede ist, die aus der Anordnung ϕ entspringen, ganz allgemeine Gültigkeit auch für
jedes andere durch eine Abbildung θ geordnete einfach unendliche System Ω und dessen
Elemente v besitzt, und da die Übertragung von N auf Ω (z. B. auch die Übersetzung eines
arithmetischen Satzes aus einer Sprache in eine andere) durch die in 132, 133 betrachtete
Abbildung ψ.”

96Tait, following his reflections about logical abstraction proposes the following inter-
pretation for the “categoricity theorem” : “[I]t would seem that logical abstraction, as it
is described here, does play a role, not in proofs, but in that it fixes grammar, the domain
of meaningful propositions, concerning the objects in question, and so determines the ap-
propriate subject matter of proofs. For example, proving the categoricity of the axioms
of simply ordered sets fixes the sense of all propositions in the pure theory of numbers,
but it would not do so if numbers were sets, since the sense of 0 ∈ 1 is not fixed.” ([Tait,
2005], 224)

97“Dieses Element v kann man das n-te Element von Ω nennen, und hiernach ist die
Zahl n selbst die n-te Zahl der Zahlenreihe N . Dieselbe Bedeutung, welche die Abbildung ϕ
für die Gesetze im Gebiete N besitzt, insofern jedem Elemente n ein bestimmtes Element
ϕ(n) = n′ folgt, kommt nach der durch ψ(n) bewirkten Verwandlung der Abbildung θ zu
für dieselben Gesetze im Gebiete Ω, insofern dem durch Verwandlung von n entstandenen
Elemente v = ψ(n) das durch Verwandlung von n′ entstandene Element θ(v) = ψ(n′)
folgt; man kann daher mit Recht sagen, da. durch ψ in θ verwandelt wird, was sich
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Hence, the “transfer” or “translation” (übertragen) of one system into an-
other preserves the order structure: if n is transformed in v, then the suc-
cessor of n is transformed into the successor of v. This, for Dedekind “fully
justifies” the “definition of the notion of numbers” given as an abstraction in
which one considers only the relations between numbers established by “the
ordering mapping ϕ”. And indeed, shortly after the publication of Zahlen,
Dedekind writes to Weber that he

still regard[s] the ordinal number [i.e., the abstract elements of
the ordered simply-infinite system] and not the cardinal number
(Anzahl) as the original number-concept.98

8.2.2.2 Operations of arithmetic

We saw when considering the definition of ideals and of irrational numbers
that, for Dedekind, one of the major requirements in defining arithmetical
elements (and in particular numbers) is the possibility to give “a perfectly
clear definition of the calculations (addition, etc.) one needs to make on the
new numbers” ([Dedekind, 1876-1877], Note, 58). He repeats this statement
in the letter to Keferstein, mentioning it as one the requirements for the cer-
titude that the definition of the sequence of natural numbers is “completely
characterized”:

Finally, is it possible also to set up the definitions of numerical
operations consistently for all numbers n? Yes!99 (Letter to
Keferstein, transl. van Heijenoort, 101)

It is the “Theorem of the definition by induction” (Theorem 126), which
allows, in Zahlen, to define the arithmetic operations by means of “earlier
concepts”. I will unfold Dedekind ‘set-theoretical’ definition, so as to high-
light this last point. It shall also allow me to point out how Dedekind’s
definition of the operation does indeed define a new number, the result of
the operation, and not a formal operation.

The definition by induction allows to give definitions valid for all numbers
n. The abstract statement is the following. Consider any system Ω, θ a
mapping (injective or not) in Ω, and ω a determinate element of Ω. Then,
there exists one and only one mapping ψ of N such that

Theorem 126
I. ψ(N) ⊂ Ω

symbolisch durch θ = ψϕψ̄, ϕ = ψ̄θψ ausdrückt.”
98“Außerdem muß ich Dir gestehen, daß ich bis jetzt immer noch die Ordinalzahl, nicht

die Cardinalzahl (Anzahl) als den ursprünglichen Zahlbegriff ansehe.”
99“Endlich: ist es auch moglich, die Definitionen fur Zahlen Operationen widerspruchs-

frei fur alle Zahlen n aufzustellen? Ja!”
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II. ψ(1) = ω
III. ψ(ϕ(n)) = θ(ψ(n)) where n designates any number.

ψ is a mapping which associates an element of Ω to any number n. The con-
dition II is the initialization of the induction. The third condition is what
we would call a recursion condition on ψ: the image by ψ of the successor
of n is the image by a certain mapping θ of Ω of ψ(n). The definition by
induction is different from the “Theorem of complete induction”, since it
was true of any system S and mapping ϕ, while the definition by induction
is restricted to the ordered system of the natural numbers.

To define addition, we consider a mapping ψ from N into N satisfying
the following conditions:

I. ψ(N) ⊂ N
II. ψ(1) = 1
III. ψ(ϕ(n)) = ϕ(ψ(n)) where n designates any number.

The mapping ψ exists and is unique, since it is the mapping defined in
the Theorem 126 stated above (with θ = ϕ). Here, ψ corresponds to the
“identity” mapping. In fact, ψ is completely determined by the choice of
ψ(1) = ω. Dedekind explains that since the choice of the initial element
completely determines the result of ψ, if one chooses ψ such that ψ(1) =
ϕ(m) with m in N , then ψ(n) corresponds to a certain number k which one
denotes by m + n and called “the addition, or the sum, of the numbers m
and n.”100 For ψ(1) = 1, ψ(n) = n the image of the successor is the successor
of the image, and for ψ(1) = m, ψ(n) = n + m.101 Addition is completely
determined by the three conditions:

I. ψ(N) ⊂ N
II. m+ 1 = ϕ(m)
III. m+ ϕ(n) = ϕ(m+ n)

One can recognize, here, the conditions stated by Dedekind in the manus-
cripts. However, it is important to underline that these are properties and
not the definition per se. The distinction was absent in the manuscripts
and illustrates well Dedekind’s wish that the operations be defined as the
production of a new number.

Dedekind gives the usual results on addition and the successor operation,
and on the addition of any two natural numbers (again, all proofs are made
by induction).

100Indeed, one has ψ(1) = m+1 and ψ(n+1) = ψ(n)+1. Then, ψ(2) = ψ(1+1) = ψ(1)+
1 = m+1+1 = m+2. Hence, ψ(n) = ψ((n−1)+1) = ψ(n−1)+1 = m+(n−1)+1 = m+n.

101The definition of addition as the iteration of the successor operation is “an easier way
to define addition”, but more difficult to define rigorously according to Dedekind.
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Since the determination of the mapping ψ depends entirely on the choice
of ω, the initial element of the recursion, Dedekind has defined, as he ex-
plains, “an infinite system of new mappings of the number-sequence N into
itself.” To define multiplication, he proposes to use these mappings to “pro-
duce new mappings ψ of N”. For this, one takes Ω = N and θ(n) = m+ n.
Thus, ψ(N) ⊂ N . To determine ψ, one has to chose ω (in N). Dedekind
takes ω = m, then ψ(n) is a number k which is denoted by m.n or m×n or
mn, and “[we] call this number the product arising from the number m by
multiplication by the number n, or, for short, the product of the numbers
m,n” (ibid., 826). The product is completely determined by the conditions:

I. ψ(N) ⊂ N
II. m.ϕ(n) = m.n+m
III. m.1 = m

Here, again, Dedekind gives the usual results on multiplication and the
successor operation, and on the multiplication of any two natural numbers,
with proofs by induction. For the exponentiation of numbers, the idea is
similar: one takes ω = a, θ(n) = an = na, and obtains ψ(n) = an and the
usual properties.

Note that the recursion condition on the definitions of these three opera-
tions seems to allow for a mathematical expression of Dedekind’s statement,
in the 1854 Habilitationsvortrag that addition is the collection “into a single
act of the multiply-repeated performance of” the successor operation (which
is the “act of counting” in mathematical clothes) and the multiplication is
formed from addition “in a similar manner, and from multiplication that of
exponentiation” ([Dedekind, 1854a], 757).

8.2.2.3 Definition of the negative numbers

The inverse operations of subtraction and division are not given, here.
The manuscript “Die Erweiterung des Zahlbegriff aus Grund den Reihe der
natürlischen Zahlen” ([Dedekind, ≈ 1890], transl. in French in [Sinaceur and
Dedekind, 2008], 333-330), gives the definition of subtraction, and extends
the system of natural numbers into the system of all integral numbers. In
this text, Dedekind proposes a definition of the subtraction and the neg-
ative numbers on the basis of the definition of addition given in Zahlen,
and using congruences to introduce negative numbers.102 Unlike Kronecker,
however, Dedekind does no introduce indeterminate variables and uses the
congruences to create new numbers.

For this, Dedekind explicitly relies on the definition of natural numbers
and the arithmetic operations given in Zahlen, and defines the subtraction

102Sieg and Schlimm consider that Dedekind provides “models” for the laws exhibited in
the manuscripts commented in the previous paragraph.
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as a difference: for α1, α2 natural numbers such that α1 < α2, there “always
exists one and only one (natural) number n” such that

n+ α1 = α2

n is called “the difference of the numbers α1 and α2 and denoted by α2−α1.”
However, if α1 ≥ α2, n does not “have any meaning” and to “give it the
meaning of a number demands an extension of the number concept.” This
extension is carried over by introducing the (usual) notion of congruence:
pairs of numbers are said to be congruent if their difference is a same number
n. If one designates, for short, a pair of numbers α1, α2 by α and a pair of
numbers β1, β2 by β, then α ≡ β means that α1 − α2 = β1 − β2. That is,
that there exists a certain number n such that

n+ α1 = α2 and n+ β1 = β2.

This, however, only has a meaning if α1 < α2 ans β1 < β2, and Dedekind
proposes to enlarge the notion of congruence so that it can be valid for any
number and satisfy

α1 + β2 = α2 + β1

for any α1, α2, β1, β2. This allows to see that one can distribute all “pairs
of numbers α” into classes denoted by (α) according to whether they are
congruent or non-congruent to α.

Dedekind designates by P the system of all classes and proposes to obtain
a “distinct (deutlich) view” of the system, “ i.e., a view of all the elements (α)
contained in it such that they are different”. For this, Dedekind distinguishes
positive classes, i.e., classes such that for a representative α, one has α1 < α2.
The class (α) is thus “completely characterized” by the number n = α2−α1,
which Dedekind calls the “character” (Charakter) of the class. There is,
thus, a one-to-one correspondence between the elements of the sequence N
of natural numbers and the positive classes. So as to be able to “extend this
mapping into a [one-to-one] mapping of the system P”, Dedekind proposes to
“extend the concept of number by creating new numbers, i.e., new individuals
which will serve as characters (images [Bilder ]) for the non-positive classes
of the system P”. Hence, each non-positive class defines a new number,
which are distinguished according to the classes to which they correspond.

The case in which a class (α) contains “a pair whose numbers α1, α2 are
identical” defines the “null class” and is denoted by 0.

If a class contains a pair of numbers such that α1 > α2, then any pair
contained in this class must satisfy this equality. In this case, then, “there
is one and only one (old) natural number n satisfying the condition”

n+ α2 = α1.

If β belongs to the same class, one has n+ β2 = β1. If m runs through the
natural numbers, the class is formed by all the pairs µ with µ1 = n+m and
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µ2 = m. One calls the class (α) “negative or opposite to the positive class
characterized above by the number n.” So as to fully characterize this class,
Dedekind states, one has to “create” a “new number”. This number “will be
called a negative number” and is “temporarily designated by n̄.” By doing
so, all classes of P are “exhausted” and the new numbers form a domain
M which contains the positive numbers n, the negative numbers n̄ and 0.
In order to characterize more precisely the domain M , Dedekind defines an
order for its elements, by extending the “natural order” given for the natural
number by a mapping ϕ (which we will consider in more details in the next
chapter), so as to adapt the concepts of successor and predecessor to all the
numbers in M . This will allow him to give the definition of the addition for
the numbers of the domain M .

This, Dedekind writes, ought to be methodically developed, with each
step appropriately defined and each property proved, even though “every
mathematician knows in advance that the plan will be completely success-
ful.”

The intricate relationships between operations, their laws and the num-
bers, which was noticeable in the 1854 Habilitationsvortrag, disappears in
later works. The definition of operations “as a number completely deter-
mined by the summands” highlights the idea that arithmetic operations are
an act of the understanding which, from two numbers, produces a third one,
which is clearly brought to the fore by the definition in terms of mappings.
Dedekind’s insistance on defining the numbers instead of the operations also
seems to be linked to his requirement to always work with objects which are
actually defined rather than answering formal conditions, as it was the case,
for example, with Kummer’s ideal numbers.

As I have mentioned, Dedekind is well aware of the importance of the
role played by definitions in shaping a theory and its development, which led
him, as we saw in the first part of this dissertation, to dedicate an entire pa-
per to providing a general and precise definition of the Riemann surface for
further developments. In this case, the definition of arithmetical operations
is crucially important, insofar as the whole of arithmetic relies on it. The
definition ought to satisfy two essential conditions: on one hand, it should
be given uniformly for all numbers in N and only by means of previously
defined notions (i.e., numbers and mappings) so as to not presuppose any
of their properties; on the other hand, the definition should allow to define
the inverse operations and develop arithmetic further.

Now that the content of Dedekind’s book is clear, and before proposing
an interpretation of Dedekind’s conception of arithmetic in relation to his
mathematical work, I will propose to contrast Dedekind’s approach with
Peano’s. This shall allow to make the specificities of Zahlen more visible.
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8.3 Peano vs.(?) Dedekind
In this paragraph, I will propose to compare Dedekind’s approach in Zahlen
to Giuseppe Peano’s works on natural numbers. There was a fair number of
works published, in the 19th century, about the foundation of arithmetic by
authors such as Ohm, Graßmann, Schröder, Helmholtz, Kronecker (whose
ideas we considered in Sec. 7.1.3), Frege and to a certain extent Cantor and
Weierstrass. Dedekind explains that the publication of Helmholtz’s and of
Kronecker’s works prompted him to publish his own work.103

Peano’s and Dedekind’s works on natural numbers both started from
a desire to instill rigor in arithmetic, based on a logical analysis of the
sequence of natural numbers, and Peano’s axioms (published in 1889) are, as
is well known, equivalent to the properties given in Dedekind’s definition of a
simply infinite system. However, their approaches present some fundamental
differences, that I will try to highlight, and which bring to the fore the
specificity of Dedekind’s approach.

8.3.1 Peano’s axioms
Peano’s famous axioms were published in 1889, in Arithmetices principia:
nova methodo exposita (“The principles of arithmetic, presented by a new
method”, translated by H. Kennedy in [Peano, 1973]104) and are presented
as the result of a logical analysis of the sequence of natural numbers. Before
considering Peano’s ideas in more details, let me state the axioms. I give
them partly in natural language and with modern symbols, for clarity’s
sake. Peano’s investigations are greatly led by the desire to identify the
right symbols and notations, and to explain each symbol used in his 1889
essay would take too long.

The sign N means number (positive integer); 1 means unity;
a+1 means the successor of a, or a plus 1; and = means is equal
to (this must be considered as a new sign, although it has the
appearance of a sign of logic).

1. 1 ∈ N
2. a ∈ N → a = a

3. a, b ∈ N , if a = b then b = a

103He also mentions Schröder’s Lehrbuch der Arithmetik und Algebra, published in 1878,
which he considers to be a “very valuable” work.

104The page references to this article are to Kennedy’s translation. In the literature, a
thorough historical comparison of Peano’s and Dedekind’s approaches (beyond the simi-
larity of the axioms) has not, as far as I am aware of, been proposed. One is more likely
to find comparisons of Dedekind’s definition with Frege’s works, than with Peano’s. For
my presentation Peano’s works, I rely on Kennedy’s works and [Segre, 1994] – especially
for the translations.
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4. a, b, c ∈ N , if a = b and b = c then a = c

5. If a = b and b ∈ N , then a ∈ N

6. a ∈ N → a+ 1 ∈ N

7. If a, b ∈ N and b ∈ N , then a = b→ a+ 1 = b+ 1

8. There exists no a ∈ N such that a+ 1 = 1

9. The induction principle: If k ∈ K is such that 1 ∈ k and
for any x ∈ k, x+ 1 ∈ k, then N ⊃ k. ([Peano, 1973], 113)

Recall that the induction is not included in Dedekind’s definition, it is proved
later in the book. Moreover, Dedekind’s notion of chain allows to reduce
considerably the number of properties to state.

Following Russell’s observations on his axioms, Peano does mention that
the propositions given “express the necessary and sufficient conditions that
the entities of a system can be put into one-to-one correspondence with the
series of natural numbers.” In the Formulario, in 1898, Peano explains that

These primitive propositions (. . . ) suffice to deduce all the prop-
erties of the numbers that we shall meet in the sequel. There is,
however, an infinity of systems which satisfy the five primitive
propositions (. . . ) All systems which satisfy the five primitive
propositions are in one-to-one correspondence with the natural
numbers. The natural numbers are what one obtains by abstrac-
tion from all these systems; in other words, the natural num-
bers are the system which has all the properties and only those
properties listed in the five primitive propositions. (Quoted and
translated in [Kennedy, 1963], 263)

This apparently strengthens the similarity with Dedekind’s definition in
1888, who, unlike Russell105 did not consider it to be problematic. How-
ever, Peano did not think of Dedekind’s work as actually similar to his,
despite their similar results. As we will see, Peano provides an axiomati-
zation of an existing concept, in his work “number is not defined, but the
fundamental properties of it are given”, while “Dedekind defines number,
and calls number precisely that which satisfies the conditions stated above”
(Sul concetto di numero, quoted and translated in [Kennedy, 1963], 263).

105Russell, in The Principles of Mathematics, compares Dedekind’s and Peano’s exposi-
tions of the axioms for the natural numbers and begins with the observation that

Dedekind proves mathematical induction, while Peano regards it as an ax-
iom. This gives Dedekind an apparent superiority, which must be examined.
([Russell, 1903], 25)

Russell, in fact, considers Peano’s approach to be more acceptable.
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8.3.2 Peano’s conception of logic
Peano was one of the actors of the wide movement of rigorization of analysis
in the second half of the 19th century, and exhibited the first space-filling
curve. After working on differential calculus (which he taught in Turin) and
geometry, he turned to foundations of arithmetic.

For the foundation of mathematics, the first question that should be
considered, he says, is “Can the idea of number be defined, using simpler
ideas?” and for example, is it possible to deduce properties such as the com-
mutativity of addition “from simpler properties”. To this, Peano answered:

To these questions may be given different answers by various
authors, since simplicity can be diversely understood. For my
part, the answer to the first is that number (positive integer)
cannot be defined (seeing that the ideas of order, succession,
aggregate, etc., are just as complex as that of number). The
answer to the second has been affirmative. (Quoted and transl.
in [Kennedy, 2006], 54)

For Peano, the attempts to give a definition on the basis of simpler terms do
not constitute a productive research program, because simplicity is a very
subjective notion, which changes from one person to another. Evidence is,
as well, much too subjective to be taken as a criterion for the exactness of a
reasoning.106 Peano, an error hunter in infinitesimal calculus and the inven-
tor of the first space-filling curve, is well aware of the difficulties embedded
in epistemological values such as evidence or simplicity. Moreover, Peano
continues, such criteria are particularly difficult to handle in a foundational
research, since the objects investigated in this kind of work “may appear to
many as almost self-evident”:

[Evidence as a criterion] is particularly unsatisfactory in our re-
search, which refers to propositions to which we are very accus-
tomed and which may appear to many as almost self-evident.
But this question can be given an entirely satisfactory solution.
In fact, reducing the propositions, as is done here, to formu-
las analogous to algebraic equations and then examining the
usual proofs, we discover that these consist in transformations
of propositions and groups of propositions, having a high de-
gree of analogy with the transformations of simultaneous equa-
tions. These transformations, or logical identities, of which we

106“For this reason, several mathematicians, Descartes among them, declared that evi-
dence is the only criterion to recognize the exactness of a reasoning. But this principle is
unsatisfactory. A demonstration may be more or less evident; it may be evident to one
person, but doubtful to another; and it may have happened to anyone to find unsatis-
factory proofs which were already regarded as exact.” (Quoted and translated in [Segre,
1994], 79-80.)
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make constant use in our arguments, can be stated and studied.
(Quoted and transl. in [Segre, 1994], 279-280)

If Dedekind and Peano share the idea that one should not consider certain
concepts and ideas as self-evident for the sole reason that they are familiar,
they adopt a very different approach of the problem. Peano does not in-
tend to define the natural numbers with his axioms, but to highlight their
fundamental properties by giving a logical, symbolical expression of them.
In this, his position is fundamentally different from Dedekind’s who did not
consider that there was such things as indefinable mathematical concepts.107

Moreover, and this is an obvious point of divergence, for Peano the logical
analysis consists in being able to put the basic properties into the right
symbolism.

To give his axioms, Peano, thus, analyzes the arithmetical reasonings
and ideas, since it is, for him, the role of logic in mathematics:

Mathematical logic itself studies the properties of operations
and logical relationships, which it indicates by symbols. (. . . )
Some of the principles of this science can be found in the gen-
eral Logic (see Aristotle). Its true founder is Leibniz, who stated
the principal properties of the ideas now denoted by the signs
∩, ∪, −, ⊃, ∧.108 ([Peano, 1901], iii)

First, logic should be used to identify the “fundamental ideas” which com-
pose the more complex ideas and reasonings, as well as the relations be-
tween ideas which are themselves “logical identities”, such as for example
the notion of successor in the sequence of natural numbers (and its role to
define the elementary operations). In a second step, logic should serve to
express these ideas in terms of “conventional signs”. The desirable outcome
of a logical analysis is the representation of the “simplest ideas” in terms
of “conventional signs” and the possibility to combine the signs to express
complex ideas and relations.

The same analysis can and should be conducted for logic itself. Peano
writes that he “was fortunate enough to arrive at a complete analysis of the
ideas of logic, reducing them to a quite limited number, which are expressed
by the symbols ε, ⊃, =, ∪, ∩, −, ∧.” Note that for Peano the reduction of

107The laws of thought are unprovable, but in order to use them as “ultimate premisses”,
one has to introduce the concepts of system and mappings which are, as we saw, perfectly
definable.

108“La Logique mathématique à son tour étudie les propriétés des opérations et des rela-
tions logiques, qu’elle indique par des symboles. (. . . ) Quelques principes de cette science
se rencontrent dans la Logique générale (voir Aristote). Son vrai fondateur est Leibniz,
qui a énoncé les principales propriétés des idées représentées maintenant par les signes
∩, ∪, −, ⊃, ∧.”
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the number of signs indicates, a deeper analysis.109

Logic appears, then, to be a formal and symbolic instrument which al-
lows a better understanding of mathematical reasonings, and gives tools to
establish objectively rigorous grounds. For example, if one wants to give an
appropriate characterization of addition, one should not – as it was usually
done in schools – give a definition using vague terms such as:

‘Addition is that operation by which two or more numbers are
summed (united),’ which expresses to add by means of the syn-
onym to sum or to unite. ([Peano, 1973], 222)

This does not allow for a logical construction of the science, a correct logi-
cal derivation of complex notions and theorems from primitive notions, for
which Peano advocates. The logical analysis, which Peano presents as the
first step towards a rigorous logical presentation of theories, should enable
the mathematician to solve this problem, and to give actually adequate defi-
nitions. Rather, addition should be defined on the basis of the axioms given
in 1889 using the successor function and basic properties such as:

[Definition] [I]f a and b are numbers, and (a+b)+1 has meaning
(that is, if a + b is a number), but a + (b + 1) has not yet been
defined, then a+ (b+ 1) indicates the number that follows a+ b.
(. . . )
19. a, b ∈ N → a+ b ∈ N.
20. def[inition]. a+ b+ c = (a+ b) + c.

21. a, b, c ∈ N → a+ b+ c ∈ N.
22. a, b, c ∈ N and a = b then a+ c = b+ c.

(in [Peano, 1973], 114-116)

For Peano, having expressed the primitive ideas (successor, induction, . . . )
by means of symbols, here, opens up the possibility of a completely precise
characterization of the complex notions such as addition, and the other
operations. . . and eventually, all analysis – a project in which Dedekind was
not interested. According to Peano, “symbols are all that may be imagined
to be most rigorous and, at the same time, simple, clear, and easy for the
pupils.” And it assures the rigor and objectivity of the development of the
theory (the definition of composite notions, the expression of theorems, the

109He states in his 1895 review of Frege’s Grundgesetze der Arithmetik that his own
ideography having fewer signs than Frege’s indicates that his analysis is deeper. In fact,
when reviewing Frege’s Grundgesetze, Peano does not address foundational issues, yet
crucial for Frege’s book, but concentrates on the ideography itself, considering it as the
most important element of the book, or even that it is what makes the book important.
Peano showed, throughout his works, a tendency to avoid addressing philosophical and
even foundational considerations.
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development of proofs),110 especially inasmuch as logic can be developed in
analogy with algebra.

I have indicated by signs all the ideas which occur in the funda-
mentals of arithmetic, so that every proposition is stated with
just these signs. The signs pertain either to logic or to arithmetic
(. . . ) With this notation every proposition assumes the form and
precision equations enjoy in algebra, and from the propositions
so written others may be deduced, by a process which resembles
the solution of algebraic equations. That is the chief reason for
writing this paper. ([Peano, 1889], [Peano, 1973], 101-102)

Symbols, thus, are used by Peano to express the “primitive ideas” identified
by the logical analysis. While the choice of symbols themselves, indicated
by considerations of simplicity, has a part of arbitrariness, the logical pro-
cess of derivation is completely objective and independent of the symbols
themselves. Hence, the arbitrariness is not a problem per se. Furthermore,
from Peano’s point of view, it should be possible to translate any definition
or proposition from one ideography to another.111

While Dedekind did not comment on Peano’s works, it is clear, from
many statements we already saw, that the importance given to notations and
symbols is a point on which he disagrees. Notations or formal approaches
in mathematics are not considered, by Dedekind, to provide any clarity, any
help, in fact they are hiding the essential characteristics of concepts and
could only allow for a partial or biased understanding. In addition, we saw
that Dedekind’s conception of logic is that of a guide for rigorous reasonings,
which also goes against Peano’s conception.

8.3.3 Peano on numbers

After the publication, in 1889, of “The principles of arithmetic, presented
by a new method”, Peano regularly came back to the question of defining
the numbers – or, at least, as we shall see, of identifying and expressing the
right “primitive notions” from which one can logically deduce the properties
of the set of natural numbers. In Sul concetto di numero, Nota I, he exposes
again his axioms, and gives more details about his approach.

110Peano considers himself a follower of Leibniz, and seems to think that, to a certain
extent, his Formulario is Leibniz’s dream of a “general Characteristic” come true.

111Peano repeatedly asked Frege to translate his Begriffsschrift into his own notations,
showing that he did not grasp entirely the important differences between their approaches.
Frege, on his part, “expresses doubts that [Peano’s] ideography can serve to do more
than express propositions” (Peano quoting Frege’s review of the Formulario). To which
Peano answers that “in the works cited above [the ideography’s] importance as a means
of reasoning is evident.”
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The first numbers presented, with which we form all the others,
are the positive integers. And the first question is: Can we define
one, number, sum of two numbers? ([Peano, 1891], 84, translated
in [Kennedy, 1974])

One can try to “clarify” the notion of number with “[t]he common, Eu-
clidean, definition of number, ‘number is the collection of several units’.”
However this characterization “is not satisfactory as a definition.” It is ac-
ceptable as a clarification, because history and pedagogy prove that it works
very well:

Indeed, very young children use the words one, two, three, etc.
They later adopt the word number, and only much later does
the word collection appear in their vocabulary. Indeed, philol-
ogy teaches that these words appear in this same order in the
development of the Indo-European languages. Hence, from the
practical side, the question appears to me to be settled. (ibid.,
84)

To this, he adds that, from this practical point of view, “there is no need
for the teacher to give any definition of number” (my emphasis). Indeed,
the idea is clear enough for pupils and “any definition would only have the
effect of confusing them.”112 However, the “theoretical side” offers a different
perspective:

From the theoretical side, to decide the question of the definition
of number, one should be told first what ideas he may use. Here
we suppose known only the ideas represented by the signs cap
(and), ∪ (or) , − (not), ε (is), etc., which have been treated in
the preceding note. Therefore, number cannot be defined, since it
is evident that however these words are combined among them-
selves, we can never have an expression equivalent to number.
(ibid., 84-85 my emphasis)

Peano, then, very explicitly states that his axioms do not define numbers.
This does not mean that natural numbers are out of the scope of a logical
analysis or exposition. Indeed, although number cannot be defined, it is still
possible to logically express the fundamental (primitive) properties “from
which the many other well known properties of the numbers are derived.”
The concepts that are not definable are the following:

112Dedekind’s position is, here, different again. While Dedekind would probably not
recommend to treat the definition of natural numbers as given in Zahlen in elementary
schools, we know that for the definition of real numbers, he considers that it is better for
the students to have the rigorous general definition in order to understand the notion they
are working with.
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[the concept] of number N , of one 1, and of successor of a number
a, which we indicate for the moment by a+. These concepts may
not be obtained by deduction; it is necessary to obtain them by
induction (abstraction). (ibid., 85)

Note that the successor is not designed by “a + 1”, Peano intended this to
make clear that the “single sign, +” designate “the fundamental operation
‘successor of’.” The successor operation is therefore at the foundation of
the natural numbers, as it is in Dedekind’s definition of the set of natural
numbers. For Peano, it will be essential for the definition of the operations
of arithmetic, but it is itself undefinable. However, the distinction between
the successor operation and the definition of addition is not made by Peano,
as it is by Dedekind.

8.3.4 Definitions according to Peano

Peano holds a particular view on definition, which he exposes relatively
clearly in several places, and notably in the last paragraphs of Notations de
logique mathématique in 1894. After a long exposition of the notations used
in the Formulario, he proceeds to explain the specific status of definitions.
The definition of a concept or an object is equivalent to the introduction
of a new sign to designate the concept. Peano begins by stating that it is
not necessary to define every new notion as long as it is expressible as a
reasonably simple combination of words:

The usefulness of definitions is well known. But it should be re-
marked that they may not be necessary to rigor. One can always,
in place of Np [prime number], write what the sign represents.
(. . . ) In the Formulario, one should introduce definitions, and
hence new signs, only when this definition yields a notable sim-
plification. If the idea expressed by a word from the ordinary
language can be expressed by a group of symbols simple enough,
then it is better to always write this group rather than to repre-
sent it by a [new] sign.113 ([Peano, 1894], §41)

The definition, for example, of a prime number must be done in terms of
symbols expressing the property that p is a number only divisible by 1 and
by itself.

113“L’utilité des définitions est bien connue. Mais il faut remarquer que, à la rigueur,
elles ne sont pas nécessaires. On peut toujours au lieu de Np [nombre premier] écrire ce
que représente ce signe. (. . . ) Dans le Formulaire, il convient d’introduire des définitions,
et en conséquence des signes nouveaux, seulement lorsque cette définition porte une notable
simplification. Si l’idée exprimée par un mot dans le langage ordinaire est exprimable par
un groupe de symboles assez simples, il est mieux d’écrire toujours ce groupe que de le
représenter par un signe.”
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The importance of symbolism, for Peano, leads him to adopt a rela-
tively restrictive notion of definition: to be acceptable, a definition must be
reducible to an equality. In its simplest form, Peano writes in Notations
mathématiques a definition is

x = a Def.

where x is a sign which does not yet have a definition, a is a
group of signs which have a known sense, and we agree to write
the single sign x in place of the group a. This convention is
expressed by writing the sign = between x and a and Def. at
the end of the line.114 (ibid., §36)

As it should be clear, not every definition can be as simple as the case
described above. One could want to define groups of signs in which new
signs appear or a group of signs which each have a signification but such
that they don’t if they are put together. Then

[t]he definition follows an hypothesis h and has the form:

h → x = a Def.115

(ibid., §37)

An important concern for Peano is the fact that several sentences can define
the same idea.116 Therefore, one should fix the meaning with symbols.

More significantly as we saw with the axioms for the natural numbers,
for Peano not every idea is definable:

One cannot define everything. This well known proposition fol-
lows from what we said. To define a sign x, one must be able to
compose by the known signs, a sign a such that one has x = a.
Hence, one must already know a few signs.117 (ibid.)

The primitive ideas (such as numbers) are not definable. Undefinable no-
tions are identified as those which wouldn’t be simplified if expressed as a

114 x = a Def. où x est un signe qui n’a pas encore de signification, a est un
groupe de signes ayant une signification connue ; et nous convenons d’écrire le signe simple
x au lieu du groupe a. Cette convention est exprimée en écrivant le signe = entre x et a
et Def. à la fin de la ”

115“[l]a définition suit une hypothèse h et a la forme : h → x = a Def.”
116For example: “Instead of saying ‘A sphere of center O and radius r cuts a straight line

whose distance to O is lesser than r in two points’, one can say ‘On a straight line, whose
distance to O is smaller than r, there are two points whose distance to O is r’.” (ibid.)

117“On ne peut pas tout définir. Cette proposition, bien connue, résulte aussi de ce que
vous avons dit. Pour définir un signe x, il faut pouvoir composer par les signes connus un
signe a tel que l’on ait x = a. Donc, il faut déjà connaître quelques signes.”
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combination of other – tentatively simpler – ideas (the successor operation,
for example). In fact, for Peano, the good question is not whether one can
define something, but whether one can define something by means of other
(simpler) objects:

The question that appears so often “can we define the object
x?” is not correctly put. One can ask it under the form “can we
define x by means of the objects a, b, c?”, “can we form, with
the signs a, b, c a group of signs equal to x?” In practice, the
answer to that question only means “can we define the object
x by means of simpler ideas?” and there is arbitrariness in the
evaluation of simplicity.118 (ibid., §42)

The logical process of analysis leads to express complex ideas as a composi-
tion of simple(r) ones. There exists, Peano writes, ideas that can’t be further
simplified and these are the “primitive ideas of the science” which can be
obtained only through “experience or induction”. Mathematics does not de-
part from this principle, and “the study of the primitive ideas” has been
done, for example, in arithmetic, enabling us to know that “one can define
everything by means of the primitive ideas represented by the signs N , 1,
+.” Peano notes that the sign + is a primitive idea only when it designates
the successor operation – it is, then, the primitive sign which expresses the
primitive idea of (mathematical) induction.119

8.3.5 What Peano thought Dedekind was doing
Peano recognized Dedekind’s priority in giving the “axioms”. He affirmed
the independence of his work and that his booklet was being printed when
he read Dedekind’s essay. He would have, then, only drawn “moral support
for his conviction of the independence of the axioms.” Dedekind and Peano
seem to meet at some points, in particular as regards the emphasis that one
is mistaken in believing that certain complex notions are simple, or the idea
that only a deep analysis enabling to identify the basic notions and followed
by a logical exposition can provide a clear and rigorous ground necessary
for a better development of mathematics. However, we saw important dif-
ferences in their works.

In addition to the divergences noted above, I would like to underline that
the aims of their work are significantly different. Dedekind does not consider

118“La question qui se présente tant de fois “peut-on définir l’objet x ?” à la rigueur n’est
pas bien posée. On la peut mettre sous la forme “peut-on définir x au moyen des objets
a, b, c ?”, “peut-on former avec les signes a, b, c un groupe de signes égal à x ?” Dans la
pratique, la question posée signifie seulement “peut-on définir l’objet x au moyen d’idées
plus simples ?” et il y a de l’arbitraire dans l’évaluation de la simplicité.”

119There is, however, in the choice of the “primitive ideas”, a certain arbitrariness “for,
if one define d by means of a, b, c and one defines c by means of a, b, d, then one can take
as primitive ideas either a, b, c or a, b, d.”

508



8.4 Mathematics, arithmetization and number concept

numbers or the successor operation as primitive undefinable notions which
only need to be rendered more explicit. On the contrary, his whole book is
devoted to the definition of these notions. This difference is pointed out by
Peano himself, in Sul concetto di numero:

Between the preceding and what Dedekind says, there is an ap-
parent contradiction that should immediately be pointed out.
Here, number is not defined, but its principal properties are
stated. Instead, Dedekind defines number as precisely that which
satisfies the preceding conditions. Evidently, the two coincide.120

([Peano, 1891], 88, transl. in [Kennedy, 1974])

In this very clear and moderate statement, Peano, who tended to stay away
from philosophy, seems to have perfectly grasped Dedekind’s intention.

Dedekind and Peano approach a different problem. While Dedekind
intends to define the natural numbers, Peano explicitly does not, on the
contrary, he assumes that they exist, develops a formal system and begins the
transition towards modern logic – whereas Dedekind begins the transition
towards set theory. Moreover, not only does Peano assume the existence of
numbers for his axiomatization, he even considers that numbers cannot be
defined, that they are a primitive concept to which his work is giving a mere
clarification. Peano wants to be able to logically derive all analysis from the
axioms, a problem that Dedekind’s does not consider, nor does he consider
the question of formal logic.

Hence, as mentioned earlier, Peano presents the principal properties of
the sequence of natural numbers, and shows how logic can help mathemat-
ics, by developing logic as a (formal) theory. Dedekind, however, did not
have any of these considerations, he did not present a system of formal rules
and did not seem interested in deducing Analysis, or even number theory
from the notions introduced in Zahlen. From Dedekind’s viewpoint, it seems
rather that once a concept is created, through a rigorous definition, for ex-
ample the natural numbers, one can use this concept without going through
the “long series of inferences” that preceded its definition.

8.4 Mathematics, arithmetization and number concept
Considering the recurrent use of arithmetical operations in Dedekind’s works,
and in particular their essential importance in ideal theory, it seems that
with his definition of numbers and arithmetic, Dedekind is also providing
(retrospectively) a rigorous ground for the arithmetical methods developed
in his works through a rigorous and general foundation to arithmetic.

The importance of definition in Dedekind’s mathematics is made par-
ticularly significant through his requirements of rigor. It becomes all the

120By “evidently the two coincide”, Peano refers to the independence of the axioms.
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more crucial to secure the definition of natural numbers that would provide
a rigorous foundation of arithmetic, considering the role played by arith-
metic in Dedekind’s mathematics. The ‘genetic’ component of Dedekind’s
approach in extending the concepts of numbers and his insistence on pre-
serving the “identity of nature” of numbers emphasizes the importance of
the foundation of natural numbers.

I will suggest that the definition provided by Dedekind allows for a jus-
tification of the use of arithmetic as a tool for producing new knowledge
in mathematics. And, conversely, these uses of arithmetic had an indica-
tive role (mutatis mutandis) in the definition of natural numbers and the
foundation of arithmetic.

8.4.1 A need for a definition of natural numbers?

The continued interest of Dedekind for the number concept and his extensive
use of arithmetic suggest that Dedekind’s mathematical works are highly
dependent of the foundation of arithmetic. To build the theory on “earlier
concepts” emphasizes the need to consolidate the basis. In this case, the
importance to be able to provide a definition of the natural numbers based
on primitive unprovable notions is particularly stressed.

It is not uncommon, in mathematics, that results are proved before an
adequate rigorous definition of the fundamental concepts can be given. From
differential calculus or the continuity of functions to complex numbers, many
examples can be given. The relative mathematical imprecision of the defi-
nition of Riemann’s function theory did not keep mathematicians from de-
veloping his works, and we saw that Dedekind and Weber’s 1882 paper was
written essentially to correct this insufficiency. To secure the basic defini-
tions of a theory, be it natural numbers or Riemann surfaces, constitutes,
for Dedekind, a very crucial part of the rigorization of a theory. In the light
of previous mathematical developments, from the extension of the domains
of numbers to the arithmetic of ideals, and as far as the natural numbers are
not considered as “given” of “evident” a definition of the sequence natural
numbers appears indispensable.

The extension of the number concept is one of the main driving forces of
mathematics – in fact for Dedekind, as we saw with the Habilitationsvortrag,
the extension of concepts and methods is one of the main driving forces
in mathematics, as it was already the case for Gauss. We saw that the
extensions of the domains of numbers are conducted by Dedekind by building
on previous content, adopting an approach close to the genetic approach
(yet underlaid by an axiomatic analysis of the concepts to be defined). This
implies that each extension of the domain(s) of numbers requires that the
restricted domain be rigorously defined. As a consequence, the foundation
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of natural numbers is crucial for Dedekind, in order to assure the consistency
of the extensions of the number concept.

Indeed, we saw on p. 496, that for Dedekind, the negative integers are
created by defining pairs or congruences of natural numbers in order to allow
the unconditional applicability of subtraction and thus form the domain of
all integers; the rational numbers are created by defining pairs of integers
to allow the unconditional applicability of division and thus allow to form
again a wider domain; the irrational numbers are created by means of cuts
on the basis of the domain of rational numbers alone; the complex numbers
are defined as pairs by Hamilton.

For algebraic numbers, the failure of the uniqueness of the prime decom-
position is a motive for defining a wider notion of integer, so as to regain
the “simple laws” of the old theory. The theory of algebraic numbers relies
entirely on an extension of the concept of integer, algebraic integers, which
is the “broadest generalization of the concept of integer” because it covers
all known notions of integers (positive, negative, Gaussian, cyclotomic, etc.).
In the definition of an algebraic integer, one can see that rational integers
play an essential use by their role as coefficients of the polynomial.

Since the whole edifice is built one floor after the other, and not with an
intrinsic axiomatic definition for each system of numbers, a problem in the
definition of natural numbers could put at risk all domains of numbers up
to complex numbers.

Articulated with Dedekind’s conception of rigor, then, if nothing that
can be proved (or defined) should be accepted without appropriate proof
(or definition), there is no reason for natural numbers to escape this rule.
At least, it requires a further examination. And indeed, as I mentioned
above, the analysis of the sequence of inferences highlights the fact that
natural numbers are all but indefinable or immediate notions.

The second reason is linked to the question of “arithmetization”, as I pre-
sented it in Sec. 7.3. Dedekind’s arithmetization is then expressed through
the demand of going back to the “simplest principles of arithmetic”, even if
the presentation ends up demanding long technical preliminaries. Arithme-
tization plays a role in satisfying Dedekind’s suggestion that new concepts
should be built on “earlier concepts” and simpler notions.

While he never used, unlike Kronecker, the phrase “arithmetization”,
Dedekind does mention such a development of the number concept and
stresses its advantages. As I have underlined, to bring certain notions into
relation with the number concept or with methods of number theory is said
to provide the same increase in clarity, rigor and even precision. Dedekind
expresses this fact several times, and notably to Weber in relation to gain-
ing a true and complete understanding of Riemann’s works. Arithmetization
thus allows for a rigorous and clear presentation and understanding of cer-
tain theories, as attested by the theory of algebraic functions and the 1877
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rewriting of algebraic number theory – in this last case, it even “highlights”
the “main difficulty” (which was not mentioned as a “difficulty” in 1871).

I observed, in the earlier parts of this dissertation, that by analyzing
where and how arithmetic is used in Dedekind’s mathematical texts, one can
notice that arithmetic presents itself with the very particular ability to be
applicable in various domains whose elements are not necessarily numbers.
It is then possible to extend the operations of arithmetic into several “levels”,
using arithmetic as a tool to develop mathematics. In several mathematical
papers, as we saw, Dedekind exploits the possibility to develop arithmetic
for elements that are not numbers, and laying the ground for more devel-
opments – for ideals of numbers, ideals of functions, polygons. . . Dedekind’s
mathematics relies heavily on arithmetic, and if Dedekind is to pursue his
own principle of rigor to its full extent, an appropriate foundation of arith-
metic is required. Arithmetic is said many times to be inherently related
to natural numbers, hence the roots of the many extensions of divisibil-
ity present in Dedekind’s works should be found in the natural numbers.
Recall that Kronecker’s theory of algebraic magnitudes is said to not be
arithmetical because, unlike what one “should suspect”, the “consideration
of the realm of numbers (the absolute constants)” does not “form the main
foundation” – at least, according to Dedekind.

8.4.2 Arithmetic operations as epistemic tools
The idea that numbers and arithmetic can be a guide for the thought, which
can be related to the possibility to define arithmetic as “flowing from the
laws of thought”, should also be related to Dedekind’s use of arithmetic
in his mathematical works. Indeed, if the foundation of arithmetic is to
be acceptable as a foundation for Dedekind’s many uses of arithmetic in
mathematics, it should lay bases general enough so that arithmetic can be
understood as transferable, or translatable into different settings. It seems
that the possibility to define arithmetic on the basis of the general laws of
and as an emanation of the mind can act as a justification of the preeminence
of arithmetical methods in Dedekind’s works.

The particular way in which Dedekind chose to define the natural num-
bers seems to contain a justification for his uses of arithmetic as an epistemic
tool. The use of arithmetic operations as epistemic tools, and the general-
ity it suggests for arithmetic, are significant in Dedekind’s most elaborate
(mathematical) works and sustained by many applications and results. The
use of arithmetic appears as a shining illustration of a more fundamental
claim about the natural numbers: that they are logical entities, defined by
the general concepts of sets and mappings and directly flowing from the laws
of pure thought.

This suggestion relates to my attempts to place Dedekind’s definition
of natural numbers in perspective of the other works in his mathematical
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corpus and to understand how his number concept is articulated with his
mathematical practice, how its definition bears the mark of previous math-
ematical researches, and what effect it can have had on later works.

Dedekind adopts a rather Kantian position regarding the limited, finite
and sequential character of our understanding. A consequence of this is that
he considers the development of mathematics, beginning with the extension
of the concept of number, to be made step-by-step. Moreover, it should
always be done with a systematic resort to “earlier concepts” if one is to
assure the rigor of the reasoning. I proposed that the use of arithmetical
operations, notions and methods of proof in his mathematical works, even
in non-numerical contexts, was related to the desire to meet this certain
standard of rigor.

But recall that for ideals, the definition of a new divisibility relationship
is introduced as a way to make the development of the theory easier : the
recourse to arithmetic, even if it requires to define new operations for new
objets and / or long preliminaries, is a way to bypass the difficulties such
as the long tedious computations that Dedekind dislikes so much. It is a
way to simplify the inferences by reducing the complicated computations
to very simple ones – manipulations of arithmetical operations similar to
elementary number theory. The changes inflected to the theory between 1871
and 1876, which led to a theory of ideals following, almost to the letter, the
same development as rational number theory, was also justified by a desire
to simplify and clarify the theory. As Dedekind tells us, “if the theory
has not been shortened it has at least been simplified a little” ([Dedekind,
1876-1877], 119). In the same way, in 1882, Dedekind and Weber’s use of
arithmetical notions openly aimed at a more rigorous and clearer theory,
which they obtained adopting a strongly arithmetical approach with several
layers of arithmetical notions – an approach which was not perpetuated by
Weber.

An additional example, not seen yet, is a paper on ideal classes, Über die
Anzahl der Ideal-Klassen in den verschiedenen Ordnungen eines endlichen
Körpers, which Dedekind published in 1877. The paper is dedicated to the
study of “all the ideals of the order o′”, which Dedekind promised to study
in [Dedekind, 1876-1877] (see p. 356). Dedekind introduces notations for
the divisibility, GCD and LCM of modules which are more than strongly
reminiscent of elementary arithmetic. For two modules a and b, the module
constituted by all the numbers of the form α + β with α in a and β in b
is denoted by a + b and called “the sum”. The “sum” can be seen to also
be the greatest common divisor of the modules a and b. The sum / GCD
satisfies common properties of addition, such as commutativity and asso-
ciativity. It also satisfies that a + a = a (idempotency) and if d divides m,
m + d = d. The least common multiple of an arbitrary number of modules,
i.e., the numbers which belong to every module, is denoted by “the symbol
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a− b” ([Dedekind, 1877], 121). It satisfies idempotency, commutativity and
associativity. The new notation introduced allows Dedekind to study prop-
erties of modules (and, later in the paper, of ideals) and to state general
equalities such as:

(a + b)− (a + c) = a + (b− (a + c))

(a− b) + (a− c) = a− (b + (a− c)).

These properties will play a crucial role in the 1894 version of algebraic
number theory.121

Hence, the key role played by elementary arithmetic operations in Dede-
kind’s mathematics strongly suggests that the operations of arithmetic,
tightly linked to thought itself, are given a very particular and active role
in the development of mathematics. With the possibility to be used or ap-
plied in other areas of mathematics, arithmetic appears to be a powerful
tool at the mathematician’s disposal. It allows to elaborate a strategy of
arithmetization which reduces the chains of inferences and the length of
computations by transposing the study of arithmetic to systems of elements
(what Dedekind calls a “higher level”). Arithmetization allows to develop
concepts and methods answering the criterion for rigor proposed in Chapter
7. By involving developing new methods based on an arithmetic of a “higher
level”, by rewriting certain theories with arithmetical tools, Dedekind elab-
orates what he considers to be a simpler, clearer approach to the various
theories involved – e.g. for algebraic functions. This shows the active role
played by arithmetic in the rational activity of producing new knowledge.

For Dedekind, as we saw, mathematics is an activity of the thinking
human. Arithmetic, in texts such as Zum Zahlbegriff and in the way in
which the natural numbers are defined, is presented as possessing an es-
sential role in the act of thinking itself: arithmetical thinking appears to
be a fundamental act in thinking generally, whether one is aware of it or
not. Dedekind highlighted how thought and arithmetic are following the
same step-by-step process rooted in the two fundamental operations of the
mind: collecting things with a common property, and relating things to
things “without which no thinking is possible”. By the unfolding of the
“Gedankenprozeß” from which Zahlen proceeds, Dedekind justifies his belief
that numbers are immediately created by the mind and their science is so
deeply embedded in our thinking that every thinking man is an arithmeti-
cian. Arithmetic is then said to be the most fundamental and simple science,
and at the same time a science with “limitless applications”. Numbers (and

121This notation and the properties proved for modules on this basis will be of great
importance in the 1894 version of ideal theory, as well as for later works in which
Dedekind develops the notion of “Dualgruppe”, which correspond to today’s notion of
lattice ([Dedekind, 1897], [Dedekind, 1900], see also Schlimm, 2011).
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therefore arithmetic) are one of the simplest and most fruitful, most efficient
of all the “auxiliary means” created by the mind: as a part of logic, arith-
metic is capable of providing a help for thought, a tool to assist the thought
– an “auxiliary means that the human mind has yet created to ease its life”
as put in Zum Zahlbegriff.122

With arithmetic, Dedekind has a theory with a double advantage. More
developed than the logical notions (systems and mappings), it has an “in-
exhaustible wealth” of laws and still is elementary and rigorously defined
for it to guide the thought. It can even allow to eliminate difficulties in the
development of theories. It appears to be a particularly appropriate tool for
extending mathematical knowledge.

In addition, arithmetic appears to present itself with a wide scope of pos-
sible applications – as has been known for a long time. Unlike the demand to
recognize only natural numbers, which, Dedekind states very clearly, would
not be fruitful, arithmetic used in this way can help to master the new
“complex phenomena”. Within Dedekind’s mathematical works, it appears
that arithmetic possesses a certain generality which allows for arithmetic
to be used ‘transversally’ in several different (not necessarily arithmetical)
theories, and to be used to develop new concepts. This allows to combine
two apparently exclusive claims: a mathematical and epistemic primacy of
arithmetic, and the benefits of inventing new concepts for the development
of mathematics.

Arithmetic, as a part of logic and as intimately linked to thought, ap-
pears to be a powerful tool at the mathematician’s disposal because it can
offer large possibilities of applications. Through arithmetization, it allows to
instill a greater rigor in the theory. The possibility to “transfer” arithmetic
to other frameworks (on which I will come back shortly) suggests that arith-
metic possesses a certain proper generality. Furthermore, the 1882 theory of
algebraic functions is said to “stay in its own sphere”, which in turn suggests
that setting up higher levels in which arithmetical notions are defined for
systems of objects (e.g., ideals or polygons) and studying their properties in
an arithmetical form do not “mar the purity” of the theory. Arithmetic as
part of logic, as an epistemic tool, then, seems to present itself with a cer-
tain generality in the sense of an ontological neutrality, just as the notions
of system and mapping do.

Recall that the four fundamental operations of arithmetic are themselves
defined in terms of mappings, a few paragraphs after the definition of the
sequence of natural numbers. The definition of the operations is thus as
general as the previous developments of the book. It appears, from this

122Sinaceur’s suggestion that arithmetic being a part of logic could be understood as
arithmetic providing a “rational (logical) norm of thinking” also follows the idea of logic
as a help to conduct reasoning rigorously.
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definition, that their properties (i.e., the laws of rational arithmetic) should
be given the same level of generality as the generality inherent to the system
of natural numbers: the highest one, that of the laws of pure thought. The
laws of thought, whose improvability was underlined, following Detlefsen,
as a requisite to serve as premisses for the definition of natural numbers,
are also of the utmost generality. As logical operations, the operations
of thought expressed as ‘set-theoretical’ concepts have the highest level of
generality because they are applicable, objectively, to any and all thoughts.
The operations of thought have a universal generality, thus, and it seems
to be an important point for them to be at the ground of arithmetic, for
when involving concepts or laws of a lesser generality in a definition, one
risks to unduly impose restrictions to the said definition. The operations
of arithmetic, through the definition given by Dedekind, thus acquire an
analogous degree of generality and are applicable to any object of thought.

The whole edifice of arithmetic being built up on the “operations of
thought” seems to not only be a proof of arithmetic’s fundamentality in
human thinking, but also to suggest that the laws and propositions of arith-
metic are, for Dedekind, of the same level of generality as the laws of pure
thought. The operations themselves being defined in terms of mappings,
the laws of elementary arithmetic shall be given the same level of generality:
the highest one, that of the laws of pure thought.

On the other hand, arithmetic possesses the generality exhibited by
the ‘categoricity’ theorem. Indeed, as I underlined, this theorem is seen
by Dedekind as the proof that all propositions of arithmetic are of “per-
fectly general validity” (ibid., 823) for all simply infinite systems. It is then
proven that elementary arithmetic is general. Dedekind himself mentioned,
in the Remark 134 (ibid., 823), the possibility of transferring (übertragen)
the propositions and theorems from one system to another.

Note that “übertragen” is the same word used by Dedekind for the trans-
fer of ideal theory from algebraic number theory to algebraic function theory:

the right approach is indicated by the methods applied with
great success in number theory which are derived from Kummer’s
creation of ideal numbers, and which can be transferred to the
theory of functions.123 ([Dedekind and Weber, 1882], transl.
modified, 41)

as well as for the transfer of divisibility properties from functions to ideals:

Such a divisor does not indeed exist in the general case, but
when the theorems about the rational functions are not related

123“wiesen die mit bestem Erfolge in der Zahlentheorie angewandten Methoden, die sich
an Kummers Schöpfung der idealen Zahlen anschließen, und der Übertragung auf die The-
orie der Funktionen fähig sind, auf den richtigen Weg.”
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to the divisor itself but rather to the system of functions divisible
by it, they can be completely transferred to general algebraic
functions.124 (ibid., transl. slightly altered, 42)

It is also used, for example, when studying quadratic forms and “trans-
ferring” the problems and methods to ideals. In Über die Anzahl der Ideal-
Klassen in den verschiedenen Ordnungen eines endlichen Körpers, Dedekind
explains that the problem can be solved by transferring the

With the help of these principles, which I must here consider as
already known, one can determine the relation of the number of
classes for different orders, from the decomposable forms of arbi-
trary degree or the corresponding problem transferred to classes
of ideals.125 ([Dedekind, 1877], 110)

Later in the paper, he also explains that the “transfer” to ideals of some
of the “principles” (Übertragung der Prinzipien, ibid., 118) which Dirichlet
introduced for the proof of the theorem on arithmetic progressions allows to
obtain the results that we saw on p. 362.

The remark following this “categoricity” result states that any theorem
of arithmetic – any theorem “regarding the elements n of the simply infinite
system N ordered by the mapping ϕ (and indeed every theorem in which
we leave entirely out of consideration the special character of the elements n
and discuss only such notions as arise from the arrangement ϕ)” ([Dedekind,
1888], 823) – is perfectly general. That is, it “possesses perfectly general va-
lidity for every other [than N ] simply infinite system” (ibid.) ordered by a
certain mapping θ. Dedekind explicitly mentions the possibility of transfer-
ring the theorems from one system to another, giving the outlines of how the
order (successor relation) is preserved. This, he writes, “fully justifies” the
definition of the numbers as the “abstract type” of the concept simply infi-
nite systems. And arithmetic is characterized as the science having for first
object “the relations or laws which are derived entirely from the conditions
[defining the simply infinite systems] and therefore are always the same in
ail ordered simply infinite systems, whatever names may happen to be given
to the individual elements (compare 134)” (ibid., 809, my emphasis). In this
claim already appears the idea that whats constitutes arithmetic are general
laws valid in any simply infinite system – independent of any instantiation.

124“Ein solcher Teiler existiert zwar im allgemeinen Falle nicht, wenn man aber die
bezüglichen Sätze über rationale Funktionen nicht an den Teiler selbst, sondern an das
System der durch denselben teilbaren Funktionen knüpft, so gestatten sie eine vollkommene
Übertragung auf die Allgemeinen algebraischen Funktionen.”

125“Mit Hilfe dieser Prinzipien, welche ich hier als bekannt voraussetzen muß, läßt
sich nun das auf die zerlegbaren Formen von beliebigem Grade oder auf die entsprechen-
den Ideal-Klassen übertragene Problem, das Verhältnis der Klassen- Ahnzahlen für ver-
schiedene Ordnungen zu bestimmen. . . ”
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Dedekind doesn’t seem to interpret his categoricity result as implying
that there exists exactly one model up to isomorphism for natural numbers,
as second order logic would. Admittedly, the categoricity allows that one
can work with the system of natural numbers since there is no loss of gen-
erality. Yet, Dedekind’s immediate jump to the possibility of transferring
theorems from one simply infinite system to another (the semantic com-
pleteness, noted by Reck and Awodey) is suggesting that he saw this result
as establishing arithmetic as “perfectly general”, in the sense that it can be
applied and the validity of arithmetic properties can be proven in any set in
a one-to-one correspondence with the natural numbers.

The “categoricity” theorem implies that one can consider the “class of
all simply infinite systems”, all equivalent to each other and for which one
can take a representative without loss of generality, as for congruence classes
and for the many other equivalence classes that Dedekind came upon in his
works.

For someone familiar with the notion of equinumerosity (“similarity” in
Zahlen) of sets, the “categoricity” result seems to hold certain possibilities
of applications. For example, Dedekind gave a proof of the one-to-one cor-
respondence between algebraic numbers and natural numbers to Cantor in
their correspondence. The letters from Dedekind to Cantor of this period do
not seem to be available, but according to what Cantor wrote, the proof of
the existence of a one-to-one correspondence between natural numbers and
algebraic numbers given by Dedekind was

approximately the same as the way in which I prove the state-
ment in my previous letter [i.e., the set of natural numbers can be
mapped one-to-one with the more general set (an1 , an2 , . . . , anv),
in which n1, n2, . . . , nv are positive integers in any (unlimited)
number]. I take n2

1 + n2
2 + . . . + n1

v = N and order accordingly
the elements.
Isn’t it good and convenient, in and for itself, as it was empha-
sized by your remark, that it is possible to talk about the nth
algebraic number, so that each appears once in the sequence?126

(Letter from 2 December 1873, in [Cantor and Dedekind, 1937],
13)

We saw that the existence of biunivoque correspondences does justify the
transfer of arithmetical properties from algebraic numbers or functions to
ideals or from ideals to polygons. Moroever, recall that Dedekind justified

126“ungefähr derselbe, wie ich meine Behauptung im vorigen Briefe erhärte. Ich nehme
n2

1 + n2
2 + . . .+ n1

v = N und ordne darnach die Elemente.
Ist es nicht an und für sich gut und bequem, dass man, wie von Ihnen bezeichnend her-
vorgehoben wird, von der nten algebraischen Zahl reden kann, so dass jede einmal an die
Reihe kommt?”
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the transfer of the study of divisibility from algebraic integers to ideals be-
cause of the “complete coincidence” of the relations of divisibility between
numbers and ideals. In algebraic function theory, the transfer of all arith-
metical laws and properties from ideals to polygons was justified by the
existence of a one-to-one correspondence between ideals and points, but
without much of a proof of the validity of the said laws.

As a ground, a justification of the methods used in his works, then,
Zahlen seems to show a certain impact of the previous mathematical works
on its writing. In addition, the slow development of Dedekind’s ideas on nat-
ural numbers and the uses made of arithmetic while Dedekind was reflecting
on defining natural numbers suggest that the practice of mathematics af-
fected the definition of natural numbers, in that it suggested the possibility
to define a more general concept.

8.4.3 Could the uses of arithmetic have influenced the definition of
natural numbers?

In the reflection on natural numbers, started around 1872, one can see that
while Dedekind identified the “act of counting” as establishing a correspon-
dence between elements, his ideas only gradually grew towards the general
idea of simply infinite system. One can distinguish, in the first draft from
1872-1878 quoted above, the evolutions of Dedekind’s ideas, as I have men-
tioned, from considering the system as central, together with ideas such as
“mappable” or “similarly mappable”, to putting the Abbildungen themselves
as the core of the study. The definition of the sequence of natural numbers,
thus, is slowly detached from the consideration of the system itself as hold-
ing the key to the definition of the ordered sequence, to embrace the idea of
mappings as the fundamental concept. On the other hand, the definitions
given in this draft are far from the level of generality proposed in Zahlen,
not only because the “categoricity” theorem is absent, but also because the
idea that one could define a general concept of ordered sequence of which
our familiar concept of natural numbers would be an instance does not ap-
pear. The definition given in the second “layer” of the drafts, between 1872
and 1878, defines numbers as elements of the chain of 1. The chain itself,
in 1872/78 is defined in the following way: if a system S is mapped onto a
system S′ different from S, then there exists an element in S which is not in
S′. This element is “designed by the symbol 1 and named ‘one’.” (in [Dugac,
1976b], 299)

Each thing contained in (1) [the chain of 1] is called a number.127

(ibid., 300)

127“Jedes in (1) enthaltene Ding heisse eine Zahl.”
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In the last (hence from 1878) “layer” of draft, Dedekind gives “characteriza-
tion of N” (Charakteristik des Systems Z) with the properties that will be
used to define the simply infinite system:

Characteristic of the system Z. There is a similar mapping of Z
(. . . ) which has the following properties.

I. Z ′ is a part of Z.

II. There is a number (i.e., a thing contained in Z), which is
not contained in Z ′. This number shall be called “one” and is
denoted by 1.

III. A number chain (i.e., each part T of Z, whose image T ′ is a
part of T ) that contains the number 1 is identical with Z. (ibid.,
transl. slightly altered, 144)

Here, we see that Dedekind introduces the notion of numbers before the
defining properties, they seem to not avoid being more symbols satisfying
properties than creations of the mind properly speaking. In addition, it is
clear that the concept defined by Dedekind, here, is not supposed to be
the “general” concept of “simply infinite system”. The 1872/78 manuscript
shows part of the “protracted labor” through which Dedekind went for the
“analysis of the sequence of natural numbers just as it presents itself”. De-
spite the great generality to which Dedekind arrived in the concepts of sys-
tem and mapping, and the increasing generality of the characterization of
the sequence of natural numbers, Dedekind defines numbers and not ele-
ments of indifferent nature satisfying certain properties, such that one of
the infinite possibilities of such systems is the sequence of natural numbers.

Note that prior to his researches on the sequence of natural numbers,
Dedekind wrote and published his first important works in number theory
(in particular [Dedekind, 1871]) and Stetigkeit, that during his struggles to
find a satisfying characterization of natural numbers, he wrote the second
version of ideal theory, and that 1878 marks the beginning of Dedekind and
Weber collaboration on algebraic function theory. While Dedekind did an-
nounce the imminent publication of (what was supposed to be) Zahlen in
1879, as we know, the book was only published almost ten years later.

To be clear, there are links drawn explicitly by Dedekind himself, un-
derlining the inner unity of his works, and that I have mentioned, but there
aren’t many explicit statements from Dedekind regarding the influence of
mathematical practice on his conception of arithmetic. Thus, it is difficult
to do more than pointing out textual coincidences such as the ones above.
However, our study of the texts does suggest that the possibility to develop
arithmetical methods of proofs in several different domains might have mod-
ulated Dedekind’s conception of arithmetic, and through this, of number.
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Neither in Dedekind’s statements about arithmetic nor in his uses of
arithmetical methods, can statements about the generality of arithmetic be
found in a way similar to what is in Zahlen. In fact, it seems that this
idea appears progressively through a process of enlargement of Dedekind’s
conception of arithmetic, suggested or even enabled by the uses made in
his mathematical works. We saw that from one step to another, Dedekind
went from considering only the extensions of domains of numbers in 1854
to Galois theory and higher congruences developed in a “rigorous analogy”
with rational arithmetic in 1857. Later, he introduced the concept of ideal as
an extension of Kummer’s ideal numbers and started to develop an extended
notion of divisibility, already outlined in his lectures on Galois theory, which
was expanded to a greater extent in a rewriting of algebraic number theory
and transferred to algebraic function theory to be used in investigations of
the Riemann surface itself. The crescendo, thus, is palpable.

This sort of “generality” of arithmetic, the possibility to transfer arith-
metic in different frameworks, is central in Dedekind’s mathematical works,
and is sustained by many applications and results in Dedekind’s writings
on algebraic numbers and algebraic functions. And we saw to which extent
Dedekind exploits the possibility to develop arithmetic for elements that are
not numbers, and to prove the validity of the laws of rational arithmetic for
those objects, as a consequence of the definition of arithmetical (rational)
operations and independently of the individual nature of the elements of the
domains under consideration. Dedekind seems to be putting forward an ‘ab-
stract’ arithmetic by developing divisibility theories in his most prominent
mathematical works, and exhibiting the validity of the laws of (rational)
arithmetic in more general settings (fields of algebraic numbers) or in theo-
ries that seem to be out of the scope of the “science of numbers” (algebraic
functions of one complex variable). The general (or abstract) character of
this arithmetic is obtained by the study of particular ‘models’ of arithmetic,
following Dedekind’s tendency to develop his most general ideas in specific
frameworks (such as the development of the notion of Abbildung from per-
mutations of numbers to general mappings via the definition of conjugated
fields and of the point of a Riemann surface), to build on content.

As I have mentioned at the beginning of this chapter, I am not arguing
that Dedekind’s practice bears all the responsibilities of Dedekind’s ideas
on numbers, for it would amount to denying a large portion of what was
explained above – which I do not, of course, wish to do. Rather, I am
suggesting that considering the recurrence of certain methods, the long and
repeated endeavors to develop theories in an ever more “satisfying” way, and
the net of auto-references shown by Dedekind,128 it seems that his works

128Dedekind, in fact, rarely considers that other mathematicians could have found a
better method of definition or proof. Even in the case of Weierstrass’s and Cantor’s
definitions of real numbers, if Dedekind does recognize that they are as rigorous and
correct as his own definition, the insists that his approach is easier, and less heavy.
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and ideas have nourished each other. This does not imply that all works
influence each other, nor that they all should answer to the same standards
(a rigorous theory of algebraic numbers does not require to unfold completely
the “Gedankenprozeß” as in Zahlen).

8.4.4 Some closing remarks
The guiding idea for this last chapter was to consider Dedekind’s definition
of the natural numbers and its relation to the strategy of arithmetization
highlighted in the previous chapters. Indeed, the strategy of arithmetiza-
tion brought to the fore in Chapter 7, in which to “arithmetize” is taken
in the sense of “putting into an arithmetical form”, requires a particular
understanding of what numbers and arithmetic are and can do.

It was argued by Otte and Jahnke that, more broadly, the development
of a purely symbolical or formal concept of number was a crucial premisses
for the development of the movement of arithmetization of mathematics in
the 19th century. The number concept was indeed slowly detached from
strong ontological commitments, eroded by the many interactions between
fields and disciplines in the first half of the 19th century. But it cannot be
said to be formal or symbolical in Dedekind’s works. If the hypothesis of
the existence of a link between the number concept and arithmetization, in
Dedekind’s works, is to be taken seriously, then it seems that it is located
elsewhere.

To consider this issue, I proposed an analysis of Zahlen as a project of
definition of the natural numbers. Arithmetization was related, in Chapter
7 to Dedekind’s standard of rigor – to never consider anything provable or
definable by means of “earlier concepts” without providing an acceptable
proof and/or a rigorous definition for it – and the application of Dedekind’s
ideal of rigor to arithmetic itself arises naturally.

I argued that Zahlen was essentially designed to provide a definition of
the sequence of natural numbers that would answer Dedekind’s requisites,
and especially his conception of rigor. The definition given in 1888 is uni-
form and for the definition of arithmetic operations as well as for the set
up of methods of proof (whose validity has been rigorously proved). It also
answers Dedekind’s principle of rigor: the definition and all the proofs in-
volved in the process are grounded on “earlier concepts”, each inference is
carefully verified, and in fact in this particular case, it even is grounded on
“unprovable premisses” for numbers are the simplest objects in mathematics.

Moreover, the definition provided by Dedekind allows to (rigorously)
justify the statement according to which numbers are creations of the mind
and Dedekind’s repeated assertions on numbers and arithmetic being some
of the most powerful tools created by the mind. Through this, it seems
that Dedekind also gives a justification for the primary importance of arith-
metical methods in his works. Indeed, the recurring resort to arithmetic as
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an epistemic tool in the set up of theories and the genetic approach to the
extension of the number systems stressed the need for a definition of natural
numbers and the operations of arithmetic to assure the overall consistency of
Dedekind’s works. But there seems to be another way in which Dedekind’s
mathematical works relate to Zahlen, namely the gradual extension of arith-
metic through its uses in ideal theory, function theory, etc. This last point is
particularly important in relation to the general definition provided in 1888
and the ‘categoricity’ theorem.

It is important to underline that the play of influences between arith-
metic in practice and the foundation of arithmetic is mutual, reciprocal.
On one hand, the possibility to do arithmetic and prove the validity of the
laws of arithmetic in several different domains highlighted and might have
provided a source for the generality of arithmetic. One the other hand, it
is supported by a more fundamental claim about the natural numbers: that
they are logical entities defined by the general concepts of sets and mappings
and directly flowing from the laws of pure thought. In fact, the retrospec-
tive justification that I have mentioned can be considered as two-folded: the
definition of numbers given in Zahlen gives a rigorous ground to Dedekind’s
methods, and the said methods provide a shining illustration – if not a proof
– that numbers are, indeed, creations of the mind providing one of the most
powerful “auxiliary means” created by the mind.

We have seen that Dedekind’s mathematics was carried in great part
by the uses of arithmetical methods in “higher levels”, leading to what is
often identified as “conceptual” mathematics. From the definition of ideals
to the study of “divisibility laws of polygons” as a ground for studying
Riemann surfaces, Dedekind used arithmetic as a tool, as a guide, to develop
new concepts, involving it actively in the production of new knowledge.
Rather than a superficial advantage of re-using familiar terminologies, it
seems that in using arithmetic to build new concepts and to develop rigorous
foundations for the theory, Dedekind is taking advantage of arithmetic being
an “auxiliary means”, of being embedded in thought and as such susceptible
to participate in the development of the “endeavors to fathom the truth”.

In Dedekind’s works, the idea of a general, abstract arithmetic arose
slowly, from building on the content of arithmetized theories, from the slow
continued extension of arithmetic through its applications in different math-
ematical frameworks. Between what it is possible to do with arithmetical
operations, and the definition of natural numbers and the arithmetical op-
erations, Dedekind builds several levels of arithmetic, taking advantage of
the many layers of systems and arithmetical methods possible. Through
this, mathematical practice and foundational researches seem to inspire and
nurture each other, bringing to the fore what Dedekind thought to be an
intricate relationship between the human understanding and the arithmeti-
cal operations. Arithmetic, for Dedekind, is an activity of the human mind,
presented as an integral part of the human thinking. It is part of logic which,
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from the laws of numbers, can become an aid, a guide for the thought.

8.5 Epilogue, the 1894 version of algebraic number theory

In order to be complete, at least to a certain extent, an argument according
to which mathematical works have influenced each other should have turned
towards the works Dedekind did after his book on natural numbers, which
I unfortunately had to leave out of my dissertation. To be clear, the defi-
nition of natural numbers was not some sort of ultimate goal for Dedekind
to reach, and it was certainly not my intention to suggest so. In the same
way that the gradual extension of arithmetic seems to have left marks on
Dedekind’s ideas about arithmetic and numbers, the development in Zahlen
of a powerful and very general conceptual apparatus which yielded a per-
fectly rigorous concept of number opened new possibilities – if only about
the uses of systems and mappings. However, the other side of the play of
influences, namely how the development of the set-theoretical concepts and
the acknowledgement of their potential fruitfulness in the works written after
1888, would demand a study taking into account a lot more than this disser-
tation (at this point) could allow. In particular, since after the third edition
of Dirichlet’s Vorlesungen in 1879, Dedekind and Weber’s paper on algebraic
function theory was published, and Kronecker published his own theory on
algebraic magnitudes which Dedekind studied closely. If Dedekind’s ideas
grew very confined and more opposed to Kronecker’s than anything else un-
til the late 1880s, it was less the case in the later years of his life. Before
the 1890s, there was barely any work published using ideal theory or fields
(and even less modules, which were even overlooked later by Hilbert in his
Zahlbericht) that was not written by Dedekind himself. The reception of
Dedekind started to be more substantial, and so were his exchanges with
the mathematical community. As a consequence, the changes noticeable in
Dedekind’s later works should be investigated in a broader light, involv-
ing more sociological considerations, and an analysis of his exchanges with
Frobenius, Weber and of the reception of his works by the young generation
of mathematicians. This work could very well fill up a second dissertation.

Let me, however, say a few words about Dedekind’s later works from a
purely intra-Dedekind viewpoint. Dedekind’s approach continued to change
and move towards more ‘abstract’ methods, yet it still exhibited arithmetical
features.

Dedekind published a new version of his algebraic number theory in
1894, in the fourth re-edition of Dirichlet’s Vorlesungen. One of the main
motivations of the new version of the theory of algebraic number is, again,
to untie in a more satisfactory manner the “main difficulty” of the theory,
namely the proof of the reciprocity of multiplication and divisibility of ideals,
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and to provide a satisfying ground for it. Ideal theory was thus still seen as
an arithmetical theory for which it was crucial that the notion of divisibility
as inclusion be proved equivalent to the arithmetical notion of divisibility.
The aspect which left Dedekind unsatisfied, in the 1877/79 version of the
theory is the fact that the means to prove this statement were only given
towards the very end of the theory, by successively removing hypotheses and
introducing the concept of Ordnung. It seems that, in the second version of
the theory, Dedekind had not yet uncovered a satisfying way to found the
theory, so that the “difficulty” be solved earlier by the introduction of the
“Ordnung”. There are no clear explanations about that point, in 1877/79.
However, in 1894 Ordnungen are introduced much earlier in the theory,
allowing to develop a large part of module theory in which to transfer the
difficulties. Module theory, then, offers a possibility to be used to develop
the preliminary basis allowing ideal theory to be developed more easily.

The new version of Dedekind’s XIth Supplement, in Dirichlet’s Vorlesun-
gen, is considerably longer than the previous ones (more than 200 pages). It
provides a large amount of developments on the theory of fields and Galois
theory (§§160-167, 41 pages) and concentrates a great part of preliminary
researches in module theory (§§168-175, 47 pages). Ideal theory and the
divisibility laws of algebraic numbers take about 30 pages, a third of which
is a presentation of the failure of unique factorization of algebraic integers,
and the passage from Kummer’s ideal numbers to ideals. The rest of the
Supplement gives further investigations of algebraic number theory and the
possible application of ideal and module theory for the composition of form,
the division of the circle, etc., as in the previous versions. It is, thus, a great
illustration of how Dedekind preferred to spend more time on preliminary
developments so that the core of the theory – here, the divisibility of ideals
– would be easier to develop, as well as of the idea that the proof of the laws
of divisibility is a just step, albeit an essential one, in the development of
number theory.

Despite the many additional developments that Dedekind provides in
this new version of the XIth Supplement, the aim of the work itself has
not changed: the theory is designed to prove the general validity of the di-
visibility laws in fields of algebraic numbers. The changes inflected to the
new version are yet another instance of Dedekind’s tendency to completely
reshape concepts, and even theories, to have them fit more closely his epis-
temological and methodological requisites.

Dedekind mentioned in the previous version of his theory that a more
advanced study of the theory of fields could lead to developments of Galois
theory. However, he never actually gave any of these developments because
he considered that it would take him too far. Here, Dedekind’s reservations
about developing field theory, and in particular the investigation of permu-
tations of fields, were raised. There seems to be several possible reasons, for
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this change. First, it should be underlined that Dedekind dedicated several
works to groups, group determinants and group character during the 1880s,
which he hadn’t done before. He did not published most of these works, but
discussed them in his correspondence with Frobenius. In fact, as noticed by
Hawkins, Dedekind’s investigations on groups were mostly related to ques-
tions raised by his researches on number theory, such as the conditions for
the subfields of the field (extension) considered for the theory of algebraic
numbers to all be normal ([Hawkins, 1978], 78). The second reason is the
increasing interest for group theory that one can notice in the late 19th
century, with works by Netto, Sylow, Lie, Frobenius, or again Weber.

Dedekind’s 1894 Xth Supplement makes many references to Zahlen, and
in particular to the concept of Abbildung, which is used as a basis for the
“permutations” of the field. Dedekind, however, is very explicit on the fact
that he is considering only a special kind of Abbildung and that for his
purpose, it is clearer to restrict the attention to permutations.

The 1894 theory of algebraic integers does not adopt the same approach
strictly analogous to rational number theory as the previous version did.
Nevertheless, it still exhibits signs of the essential importance of arithmetic
for Dedekind’s practice. In particular, Dedekind, despite giving a greater
importance to Abbildungen, does not give up his arithmetical terminology,
neither for the ‘set-theoretic’ relations between fields (and modules and ide-
als), nor for the investigation of the properties of permutations themselves.
And in fact, arithmetic is again used as a guide: arithmetical investigations
are transferred to mappings and indicate which questions to consider. For
example, Dedekind considers a notion of common divisor for permutations
and naturally turns to the notion of common multiple which is, in fact, not
transposable as such. Dedekind thus introduces a new notion: “compati-
ble (harmonious) or incompatible” permutations ([Dedekind, 1894a], 465)
according to whether the permutations have a common multiple or not.
These elements are interesting in relation with Zahlen, in which Dedekind
brought to the fore the constitutive role of mappings and systems in arith-
metic. Not only are mappings and systems concepts “without which no
thinking at all is possible”, but Dedekind showed how they are the core fun-
damental concepts to define the sequence of natural numbers as well as the
arithmetic operations. Here, in rewriting once again his theory of algebraic
numbers, having identified mappings as an essential concept for developing
mathematics, he changes the focus again and studies fields with mappings.
And yet, he repeats the same move of defining arithmetical notions for their
study.

In this version of Dedekind’s algebraic number theory, the researches on
modules are considerably expanded in comparison with previous versions.
He introduces a symbol for divisibility between modules: m > d for m di-
visible by d. He defines further arithmetical operations for modules using
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the ideas introduced in [Dedekind, 1877] (which I mentioned on p. 514).
Dedekind also defines a notion of quotient of module129 and introduces the
Ordnung of a module a as the quotient of a with itself. The concept of
Ordnung, here, is not defined as a system closed by certain properties of
closure – although these properties will be shown to be necessary and suf-
ficient conditions. It is not introduced as a way to reframe the theory, as
it was in 1877. Rather, it is a particular kind of module and will be used
to ease the development of ideal theory. Just as in 1877, the concept of
Ordnung will play a crucial role in proving the reciprocity of multiplication
and divisibility of ideals and it becomes clear in the Supplement that it eases
certain crucial aspects of ideal theory. While it is introduced earlier in the
theory and does play a significant role in its development, the Ordnung still
does not play the role usually attributed to rings in modern algebra. Never-
theless, throughout the rewritings of his algebraic number theory, Dedekind
gives more importance to the concept of Ordnung and seems to notice the
importance of Ordnung in structuring the theory of algebraic numbers.

In the paragraphs on ideal theory, the previous developments in module
theory are used to present and prove properties of ideals and their divisibil-
ity, as well as to give new properties of ideals. What was considered as the
“great difficulty” of the theory in 1877 is relatively easy to prove, thanks to
previous investigations on properties of modules. Dedekind stresses, once
again, how important it is to be able to prove the “correlation (Zusam-
menhang) between divisibility of ideals and their multiplication”. Here, the
“greatest difficulty” to overcome in the “first foundation of ideal theory” was
resolved at the very beginning with module theory. Dedekind, once again,
studies in depth the divisibility of ideals and uses the previous developments
to extend his investigation of the divisibility properties in ideal theory. The
theorems are still stated with the arithmetical terminology and there is no
doubt that Dedekind is investigating divisibility laws. Note that many of the
proofs keep a form close to the arithmetical form they had in the previous
version.130

Thus, reciprocity of divisibility and multiplication of ideals is still seen as
such an important theorem for the theory that to be able to prove it in a sat-
isfying way justifies complete rewritings of the theory. In 1895, in a response
to Hurwitz’s Zur Theorie der Ideale, Dedekind explains the epistemological
motivations of his approach in ideal theory, as well as how he was able to
formulate a new satisfying presentation of his theory of algebraic numbers.

129For two ideals a and b, a
b
is the collection of all numbers ν such that aν > b.

130The proof of the unique factorization theorem follows the same general idea as the
proof given in the 1877 version (or in rational number theory), but is shortened by the use
of the idea of a “chain” of divisors which corresponds only to a sequence of ideals ordered
by divisibility. It the idea that will lead to the “chain condition” for ideals.
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The role played by module theory is highlighted by Dedekind’s explanations
of his quest for a foundation of ideal theory that would avoid relegating the
proof of a crucial theorem towards the end of the theory. Dedekind exposes
his “Prague theorem”131 and how he was led to understand that it was not
a suitable foundation for his theory of ideals. This way to “shorten” ideal
theory, for Dedekind, was “disrupting the uniform character of the theory”
(den einheitlichen Charakter der Theorie zu stören, [Dedekind, 1894b], 54).
Dedekind considers that the “intrusion of functions of variable” is “marring
the purity”132 ([Dedekind, 1894b], 55) of the theory (as it was the case with
Kronecker’s Grundzüge, for Dedekind). In addition, involving in number
theory the consideration of such explicit algebraic expressions goes against
“the decision for the internal in contrast to the external”: it gives too much
weight to the algebraic expression, while the focus should be on numbers
and divisibility. The solution, for Dedekind, lied in considerations about
the divisibility of modules (with the equality given on p. 514). Dedekind,
then, hides away the computations once again, by finding a way to trans-
fer the investigations to the “higher level” of modules. The arithmetical
symbolism introduced to support the arithmetical methodology allows to
develop further the investigation of module theory and to obtain general
results such as the equality quoted above and the ones mentioned in the
previous paragraph.

These considerations on modules and the developments given to module
theory led Dedekind to develop the notions of Dualgruppe, equivalent of our
modern concept of lattice, on which Dedekind published two papers in 1897
and 1900 ([Dedekind, 1897], [Dedekind, 1900]) which have been studied by
Dirk Schlimm in [Schlimm, 2011]. These late works show how the reflec-
tions motivated by number theoretical manipulations became increasingly
general, abstract and even formal at some points.

131“When the coefficients of a product of two functions A, B are all [algebraic] integers,
then each product of a coefficient of A and a coefficient of B is an [algebraic] integer.”
([Dedekind, 1892], 32)

132“. . . durch die Einmischung der Funktionen von Variablen die Reinheit der Theorie
nach meiner Ansicht getrübt wird . . . ”

528



General conclusion

9.1 Between mathematical explorations and foundational
investigations

In this dissertation, I have suggested that Dedekind’s mathematical practice
relies in an essential way on arithmetic used and construed in a specific way,
to the point that his foundational works bear the mark of the mathematical
practice.

This conclusion does not stem from an attempt to thoroughly reconsider
all understandings and interpretations of Dedekind’s concept of number.
Rather, it is to be related with the desire to deepen our understanding of
Dedekind’s practice by stepping away from the sole idea of a “conceptual
approach”. Moreover, it is embedded in the wish to approach Dedekind’s
works from a global viewpoint, to consider his works as an articulated whole.
The foundational and the mathematical ‘sides’ of Dedekind’s writings have
usually been treated separately, and one of the aims of this dissertation was
to provide an account of Dedekind’s mathematics that would be able to
make sense of his mathematical practice as well as of the more philosophical
parts of his works. That is, to bring to the fore the idea that mathematical
practice and epistemological conceptions are not, in Dedekind’s mathemat-
ics, independent from each other, and that the latter do not (necessarily)
precede the first. I have thus proposed to combine a rigorous historical
approach with a close attention to the way in which epistemological values
shaped Dedekind’s works. I aimed at inquiring into the shaping of his meth-
ods and ideas by a close study of a selection of texts, to highlight significant
recurring elements of practice. This brings to the fore a key role played
by “arithmetic” in Dedekind’s works. The mark(s) left by the mathemati-
cal practice on Dedekind’s foundational researches are thus modulations in
the ideas about arithmetical methods, and the epistemological properties
attributed to arithmetic and numbers.

By suggesting that arithmetic operations used as epistemic tools in the
mathematical works, had an impact on the conception of arithmetic and,
through this, of natural numbers, I wished to underline (1) that Dedekind’s
conception of arithmetic is intrinsically related to his concept of number,
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and (2) that Zahlen, its aim and its scope, can only truly be understood
in relation to Dedekind’s practice of mathematics. Through a chronological
approach of Dedekind’s works, proposing in a sense a micro-historical ac-
count of Dedekind’s practice of mathematics and conception of arithmetic,
it can thus be seen that Dedekind’s particular methods should be considered
as linked to his foundational investigations and conversely. Indeed, if it is
always difficult to provide a proof in this kind of historical inquiries, the long
genesis of Zahlen which resulted in a concept of the sequence of numbers in
which generality is intertwined with the idea of numbers as creations of the
mind, suggest the foundational works could be better understood if read as
integral part of his works.

9.1.1 Mathematical works and arithmetic

A core aim of this dissertation was to propose a precise positive characteri-
zation of Dedekind’s practice, rather than to assess it in opposition to non-
conceptual approaches. The idea of a “conceptual approach”, widespread in
the historiography, seems to provide incomplete informations about Dedek-
ind’s mathematics. It is, thus, not inaccurate properly speaking, but it
seems elusive on many aspects of Dedekind’s practice. Indeed, to assess the
“conceptual” aspect of Dedekind’s approach focuses all the attention on the
elaboration of the fundamental concepts (e.g., ideals for algebraic number
theory) without investigating further the new practices developed in relation
with these new concepts. Yet, an attentive reading of Dedekind’s writings
brings out certain habits of demonstration, certain specific elements of prac-
tice, providing a more detailed understanding of Dedekind’s approach.

So as to provide this positive characterization, I proposed to start by
analyzing in more details the 1882 article co-written with Heinrich Weber,
Theorie der algebraischen Funktionen einer Veränderlichen, which was little
studied in the literature and in which these specific elements of practice are
particularly pregnant and striking. A singular paper in Dedekind’s corpus
by its subject, the 1882 paper transfers typically Dedekindian methods to
a different framework, thus shedding light on their specificities. This paper
proposes a rewriting of Riemann’s function theory based on the transfer to
algebraic functions of methods elaborated by Dedekind for the theory of
algebraic numbers. It answers a desire to provide a foundation to (a part
of) Riemannian function theory that would be uniform and as rigorous as
number theory can be.1 After the writing of their paper, Dedekind wrote to
Weber to thank him and underline the joy brought to him by their work:

1“I am not the profound expert on Riemann’s work that you take me to be. I certainly
know those works, and I believe in them, but I do not master them, and I will not master
them until having overcome in my way, with the rigor that is customary in number theory,
a whole series of obscurities.” (Letter to Weber, November 1874, Quoted and translated
in [Ferreirós, 2008], 78)
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I take this opportunity to thank you again sincerely for the en-
tire, almost two years long, work [on algebraic functions theory],
which gave you infinite trouble, and of which taking part brought
me the greatest joy and an important enrichment of knowledge.
It is a truly special feeling, to be joined by the exploration of
the truth, what Pascal in his first letter to Fermat so admirably
phrased: “Car je voudrais désormais vous ouvrir mon cœur, s’il
se pouvait, tant j’ai de joie de voir notre rencontre. Je vois bien
que la vérité est la même à Toulouse et à Paris.” Often, had I to
think at this place, through the progresses of our work, which
though after many oscillations still has assumed the character of
intrinsic necessity. It shall bring me also much joy, if the thing
finds some success. . . 2 (Letter to Weber, 30 October 1880, in
[Dedekind, 1932] III, 488, my translation)

The study of Dedekind and Weber’s rewriting of the basic concepts
of Riemann’s theory of functions highlighted that arithmetical notions are
deeply involved in the development of the new rigorous, simpler and uniform
basis of the theory.

The arithmetical aspect of their work is not only related to the fact
that Dedekind and Weber found their work on the concepts of field, module
and ideal which they transfer from Dedekind’s number theoretical works.
The core of the “arithmetical” approach proposed by Dedekind and Weber,
here, is the definition of new arithmetical operations, relationships between
objects reinterpreted into arithmetical terms. Such arithmetical terminol-
ogy and the design of arithmetical notions are introduced throughout all
of Dedekind and Weber’s paper. This implies, in particular, the consider-
ation of the laws of divisibility of complexes of points of the surface and
the demonstration of theorems of Riemannian function theory, such as the
Riemann-Roch theorem, using notions of greatest common divisor and least
common multiple of polygons, equivalence classes, etc., derived from their
divisibility laws. It thus appears, in this paper, that the demand of a more
rigorous, clearer, more precise, and more uniform treatment of Riemannian
function theory is fulfilled by taking an arithmetical path, by deploying

2“Ich benutze die Gelegenheit, um Dir nochmals meinen innigsten Dank für die ganze,
beinahe zweijährige Arbeit zu sagen, von der Du so unendlich viel Mühe gehabt hast, und
an der Theil zu nehmen mir die größte Freude und eine bedeutende Bereicherung an Wis-
sen gebracht hat; es ist ein ganz besonderes schönes Gefühl, sich so bei der Erforschung der
Wahrheit zu begegnen, was Pascal in seinem ersten Brief an Fermat so trefflich ausdrückt:
“Car je voudrais désormais vous ouvrir mon cœur, s’il se pouvait, tant j’ai de joie de voir
notre rencontre. Je vois bien que la vérité est la même à Toulouse et à Paris.” Oft habe
ich an diese Stelle denken müssen bei den Fortschritten unserer Arbeit, die nach mancher-
lei Oscillationen doch immer mehr den Charakter innerer Nothwendigkeit angenommen
haben. Es soll mich nun auch herzlich freuen, wenn die Sache einigen Beifall finden
wird, worauf ich aber vorläufig nicht allzu sehr baue, weil die langweiligen Moduln gewiß
manchen zurückschrecken werden. . . ”
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an arithmetical strategy. Although a definition of the point of a Riemann
surface without any resort to geometrical intuition was one of the aims of
Dedekind and Weber’s paper, the systematicity with which they use arith-
metical notions suggest that it plays a more significant role. Thus, the
approach to Dedekind’s corpus by a different text, “through the side door”,
allowed to show that one needed to pay more attention to arithmetic in
Dedekind’s practice. It suggests several questions about the properties and
characteristics of arithmetic, about its status and about the relation between
this use of arithmetic and the conception of number.

So as to inquire into the actual role and status of arithmetic and broaden
the understanding of the status held by arithmetic in Dedekind’s mathe-
matics, I proposed a more comprehensive inquiry into Dedekind’s writings
under the form of a chronological study of a selection of Dedekind’s most
important texts, with the risk of going over already well known works. It
seemed, however, essential to study Dedekind’s algebraic number theory,
not in the hope to add to the understanding of the mathematics involved
in it, but so as to mark the gradual changes in his approach between 1871
and 1879. The study of how Dedekind’s works were reshaped by the desire
to stick always closer to certain epistemological requisites and the compari-
son of the changes showed the gradual increase of importance of arithmetic
for Dedekind’s approach. It showed that the development of methods using
arithmetic operations for objects that are not numbers is a strategy to which
Dedekind resorts repeatedly and more and more often. Thus, a specific use
of arithmetic is brought to the fore, whose development can be traced from
writing to writing, suggesting that the practice of mathematics itself could
have affected the conception of arithmetic, a point considered in two times:
by the investigation of the practice and by an analysis in relation to the
foundational texts.

The investigation of Dedekind’s practice, from his very first works, to the
transfer of the methods of his algebraic number theory to algebraic functions,
allowed to suggest that his use of arithmetic evolved through his works. In-
deed, in Dedekind’s Inauguraldissertation and Habilitationsvortrag, consid-
erations about the development of mathematics and about “arithmetic” do
not show any particular interest for the kind of problems and methods, re-
lated to divisibility, that Dedekind’s develop in his later works. Dedekind’s
description of the development of arithmetic as the successive extensions of
the concept of number, from the “act of counting” to complex numbers (and
even Hamilton’s quaternions) is led by considerations about the validity of
basic laws of number analog to a principle of permanence.

Dedekind stated, in 1877, that divisibility is at the ground of arithmetic,
the science of numbers. The fact that arithmetic is a science, and thus for
Dedekind an activity of the human mind rather than a rigid theory, suggests
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that arithmetic can change, evolve with the changes and extensions of the
number concept, so as to preserve the validity of the laws governing num-
bers. And indeed, to each extension of the number domains corresponds
an extension of the arithmetical operations, and consequently of scope of
validity of the laws deriving from them. Divisibility concerns arise when
one studies in more details the properties of the extensions of the concept
of integer. For algebraic integers, the “most general concept of integer”, it
becomes necessary to broaden the notion of divisibility if one is to preserve
the validity of essential properties of numbers: the unique decomposition
in prime factors. For Dedekind, this is done by setting up a “higher level”
and considering the divisibility of systems of numbers, which is proved to
correspond to the divisibility of numbers themselves.

Dedekind’s first two works in number theory were a lecture on Galois
theory given during the winter semesters of 1856-57 and 1857-58 and an
article on higher congruences, in which he aimed at developing an approach
“rigorously tied to an analogy with elementary number theory”. In these
two works, Dedekind introduces for the first time strategies and uses of
arithmetic which will be developed in a greater extent and be dominant in
his mathematical works from 1871 to 1882. Dedekind transfers the study
of (algebraic) relationships between numbers to what he will call later a
“higher level” in which he is guided be a “rigorous analogy” with elementary
arithmetic.

Indeed, in Dedekind’s most renown work, the theory of algebraic inte-
gers, the definition of a “higher level” in which to transfer the study of the
properties of numbers is essential. Ideals, infinite systems of numbers de-
fined by conditions of closure by arithmetical operations. Insofar as they
are extensions of Kummer’s ideals numbers, ideals appear as fundamentally
linked to arithmetic. And, indeed, they are studied as arithmetical elements
for which arithmetical operations are defined. With the definition of ideals,
modules and even of fields, Dedekind introduces a new notion of divisibility
(“to divide is to contain”) which allows to study the properties of divisibility
of numbers through the considerably simpler divisibility of ideals.

The 1871 algebraic integer theory yields the assurance that the divisibil-
ity behavior of ideals is, indeed, the same as rational numbers. In 1876, it is
the desire to provide a clearer, simpler and better founded theory of algebraic
integers, which incites Dedekind to propose a rewriting of his own work. In
the second version of algebraic integers said to rely on an “improved form”
of ideal theory, Dedekind substitutes a generalization of rational divisibility
for the divisibility tests on which the 1871 Xth Supplement relied in great
part. By this move, the arithmetical operations defined between ideals be-
come the essential tool to study them, and ideal theory is developed in a
perfect analogy with rational number theory, emphasizing the arithmetical
nature of ideals. In this version, the study of the divisibility properties is
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transferred to the “higher level”, in which the laws of rational arithmetic can
be found again – and in a similar form. Ideals, thus, go from an extension
of ideal numbers to an extension of divisibility itself.

The 1877 version of Dedekind’s algebraic number theory was particu-
larly interesting for this dissertation because it is the version transferred to
algebraic function theory. In 1877, it seems that the possibility to develop
the theory by involving only notions and tools extending rational arithmetic
plays a crucial role in providing a simpler, clearer foundation to the theory.
It would be tempting to attribute this increase of simplicity and clarity to
the sole familiarity of the arithmetical methods. Tempting, but too easy (es-
pecially since we know that it was not Dedekind’s last version of algebraic
number theory). The 1877 version, by relying only on divisibility properties
of sets of numbers, does not rely on anything “extrinsic” to the theory, it
does not involve indeterminate variables nor long computations. Rather, it
replaces all complicated divisibility tests by very simple computations simi-
lar to rational arithmetic in the “higher level”. The same will be valid when
the transfer to algebraic functions is done in 1882: rational arithmetic, here,
appears to provide a model to follow. Through the set up of new operations,
it thus appears to give tools that can actually be used to develop powerful
mathematics.

By shifting the focus from the “conceptual” aspect of his practice to the
role and status of arithmetic in Dedekind’s works, important aspects of his
approach are highlighted. Dedekind seems to suggest, by his practice itself,
that to give oneself the possibility of using only the “simplest principles
of arithmetic” justifies abstract and technical detours, so as to be able to
obtain an expression of the theory in terms of these “simplest principles”.
For that purpose, arithmetic operations are performed at several levels, as
if there were several layers of arithmetic(s), as is particularly clear in the
1882 paper. The almost invariable recourse to arithmetic to build up a the-
ory, in Dedekind’s works, suggests that a very peculiar role is given to them
in the development of mathematics. It seems, and I believe Algebraische
Funktionen is a good example of that point, that for Dedekind the oper-
ations of arithmetic are used as tools to develop certain theories in more
suitable ways, with more rigorous and uniform definitions and methods of
proof. Yet, once this has been said, there is still a lot to clarify. In particular
why should arithmetic be more suited than other approaches? Is the sole
possibility to have an intrinsic approach sufficient to support the extent of
the arithmetization of Dedekind’s approach – especially for algebraic func-
tions? What is the ideal of rigor supporting Dedekind’s demands? And is
arithmetic better suited to satisfy it? After all, the emphasis on elementary
arithmetic was a rather common idea in the second half of the 19th century.
In particular, it was of the greatest importance for Kronecker. To qualify
Dedekind’s approach as being centered on arithmetic cannot, thus, be the
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end of the analysis.

9.1.2 On characterizing arithmetic

Let us come back to the essential question of “arithmetic”, which is a key
point. If Dedekind’s “conceptual approach” is more precisely characterized
as “arithmetical”, it is only insofar as this statement is supplemented by a
characterization of what it means to be “arithmetic”.

Indeed, “arithmetic” is also the core of Kronecker’s approach. However,
as is well known and as I have evoked in the dissertation, their approaches
are opposed in many aspects. If adopting an “arithmetical” approach is
essential for their practices, they both have very different conceptions of
what the ‘correct’ practice of arithmetic is. This point was emphasized by
Schappacher in [Schappacher, 2010]. Schappacher underlines the similarity
in Dedekind’s and Kronecker’s works of the appeal to arithmetic “as a model
approach to the theory of algebraic functions”, the statements about gener-
ality, simplicity, the “superiority of the arithmetic point of view” ([Schap-
pacher, 2010], 3266-3267) which are invoked by both authors.

Ferreirós has suggested that “arithmetic”, in the 19th century, broadly
meant “all pure mathematics” ([Ferreirós, 2007]). It is true that there was
an emphasis on arithmetic among (German speaking) mathematicians in the
19th century which yields this larger picture. Yet, by adopting this broad
view, it becomes difficult to distinguish between Kronecker’s and Dedekind’s
approaches. With a more detailed investigation, such as the one I conducted
in this dissertation, it becomes possible to better characterize what opposed
them, despite their looking for the same things. Indeed, what is arith-
metical for Kronecker is not arithmetical for Dedekind. In the same way,
Dedekind and Kronecker both considered their approach more concrete than
the other’s. Dedekind worked only with systems of actually existing num-
bers and thought that this was concrete in opposition to the abstraction of
introducing formal considerations (e.g., using indeterminate variables). Kro-
necker had the opposite position: he considered Dedekind’s approach as too
abstract, and his own methods more concrete since they were constructive,
finitist methods.

If one is to have a finely-shaded understanding of the mathematical prac-
tices of mathematicians such as Dedekind and Kronecker, it is thus essential
to acknowledge that there are several conceptions and practices of arithmetic
just as there are several conceptions and practices of concreteness / abstrac-
tion or several conceptions and practices of generality (as highlighted by the
works in [Chemla, Chorlay, and Rabouin, Forthcoming] mentioned in the in-
troduction of this dissertation). In Brechenmacher’s study ([Brechenmacher,
Forthcoming]), several conceptions of generality are highlighted and, in fact,
it is explicit among the actors that there is a conflict between them regarding
what is the “right way” to develop a general approach. The differences can
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be understood once it is clear that mathematicians are interested in different
aspects and characteristics of generality. In the same way, arithmetical ap-
proaches claimed by the actors rely on different features and epistemic ben-
efits attributed to arithmetic. By this parallel, I do not wish to suggest that
arithmetic is an epistemological value as generality is. However, arithmetic
does have such a crucial importance, for these actors, that it is considered a
“superior” approach. In the same time, arithmetical approaches are opposed
depending on the authors. This implies that the understanding of what is
characteristic of arithmetic, the conception of arithmetic multifolded among
the actors, played a key role in their practice.3

9.1.3 Arithmetic and foundational researches

To inquire into Dedekind’s conception of arithmetic in his foundational
works was the second moment of my analysis, which was done in two
steps. First, I proposed to identify the epistemic benefits which could,
for Dedekind, explain the recurring resort to arithmetic. Secondly, I tried
to provide an epistemologically sound reading of Dedekind’s conception of
arithmetic, justifying these epistemic benefits, on the basis of foundational
works. Here, again, it implied to investigate well-known works, to walk a
path walked by many historians and philosophers. Admittedly, the mathe-
matical content of Dedekind’s works did not need much clearing and I often
walked around philosophical issues. This was less because of a desire to
avoid them, than because they constitute localized inquiries which would
have made me lose the focus on arithmetic as embedded in a larger body
of practices. A deeper understanding of the ‘structuralist’ or axiomatic ap-
proach in his foundational works would certainly refine the perception of
these works and how they influenced further philosophical and foundational
thinkers. I don’t believe this aspect needs to be contradictory with what
was presented in this dissertation.

Putting aside, for one moment, the fact that the introduction of a di-
visibility notion for ideals makes things “easier”, simpler, the use of arith-
metic to provide more rigorous theories is of course strongly reminiscent
of the movement of “arithmetization of analysis” which Klein described in
a famous 1895 talk. My analysis of Dedekind’s works suggest that both
rigorization and the putting into an arithmetical form are of the greatest
importance – albeit with an idea of what “arithmetical form” means signif-
icantly different from Kronecker’s. On that matter, an important moment
of Dedekind’s mathematical works is, of course, his definition of the real
numbers by means of cuts, in 1872. A typical example of arithmetization,
the definition of real numbers was, for Dedekind, directly related to a desire

3For Kronecker, see [Boniface, 2005], [Kronecker, 1891], [Smadja, 2002], [Vlădut, 1991].
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to instigate more rigor at the foundation of analysis.
Following a suggestion by M. Detlefsen, who identified Dedekind’s ideal

of rigor in the first sentence of Zahlen, “nothing susceptible of proof ought
to be accepted without a proof”, I proposed that Dedekind’s conception of
rigor is linked to the demand that one should use “earlier concepts”, notions
which have effectively been defined. The typical example of notions which
should not be used is that of “magnitude” for the definition of irrational
numbers. This idea should, however, be understood in relation to advocat-
ing for the introduction of new concepts. Dedekind, in the works we have
studied, exhibited the possibility to design new concepts using the “simplest
principles of arithmetic”. He provided arithmetical rewriting of the theories.
To use arithmetical notions, to ground reasonings on rational arithmetic and
the sort of extensions of rational arithmetic embodied by ideal theory, and,
by this, to give an arithmetical form to arguments, appear for Dedekind as
a strategy enabling the satisfaction of these two requirements. This strategy
corresponds to an arithmetization by its motives and by the methods used.

Thus, arithmetization for Dedekind allowed to satisfy rigor requisites
without doubling them with a reduction to natural numbers and without
denying the mathematician’s creative abilities. However, to be effective, such
an arithmetization requires to be able to extend arithmetic to non-numerical
objects, to develop arithmetic as an ‘abstract’ theory.

Stetigkeit, which was written between the first two versions of Dedekind’s
theory of algebraic integers, is also important because it sheds light on his
ideas about the extensions of the number concept. Indeed, Dedekind’s 1872
essay brings to the fore the idea that extensions of the number domains
produce new numbers and not “magnitudes”, at least as long as the exten-
sion of the number domains are made with intrinsic means and in such a
way that the “identity of numbers” is preserved (i.e., without attributing
to non-numerical properties to numbers by identifying them with infinite
classes such as cuts, for example). This suggests strongly that the “sci-
ence of numbers” has a scope of application that can be widened, providing
that the extension is consistently done. The possibility to define ideals as
arithmetical elements, then, appears as a crucial argument for a strategy of
arithmetization deployed in Dedekind’s mathematics.

No matter how often it is used as a means for rigor, for Dedekind, arith-
metic is still fundamentally conceived as the “science of numbers” through-
out his career. Considering the preeminence of arithmetic, and the develop-
ment of a certain strategy of arithmetization in Dedekind’s works, the links
between arithmetization and his concept of number become all the more
important to clarify.

To be consistent with Dedekind’s rigor principles, it appears essential to
provide a rigorous foundation to arithmetic and to be able to provide it as
relying only on “earlier concepts”. It is what is done in Zahlen, a “synthesis”
written after a deep analysis of the number concept, a “protracted labor”
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that can be traced up to fifteen years before its final version and publication.
The definition of natural numbers and the elementary operations of arith-
metic given in Zahlen yields a foundation for arithmetic which is perfectly
rigorous. It is also perfectly general in the sense that elementary properties
and notions of arithmetic are defined by means of systems and mappings
and, thus, so that everyone of them is also valid for “all ordered simply
infinite systems”. The foundation of arithmetic, “flowing directly from the
laws of thought”, is given the same level of generality as the laws of thought,
and even more so since it is proven that everything valid for one instance of
the simply infinite systems is valid for and can be transferred to any simply
infinite system.

Dedekind presents natural numbers as a concept deeply embedded in the
human understanding and as creations of the human mind. By providing
the rigorous, logical, and general definition of natural numbers given in 1888,
arithmetic appears to be intrinsically linked with thought itself, to be a part
of logic guiding the reasoning. As such, it is perfectly justified as a tool to
guide the development of certain mathematical theories. In fact, Dedekind
expresses several times the idea that numbers are “an exceedingly useful
instrument for the human mind” ([Dedekind, 1872]). After 1888, Dedekind
writes that numbers are “auxiliary means” created by the mind – in fact,
the most “far-reaching and (. . . ) inextricably connected to [the understand-
ing’s] innermost Nature” of all auxiliary means (Zum Zahlbegriff ). Moreover,
he continues, arithmetic is “already by now a science of immeasurable ex-
tension”, which can still be further developed and possesses an “[e]qually
limitless (. . . ) area of applications, since every thinking man, even when he
is not distinctly aware of it, is a number-man, an arithmetician.” Thus,

For Dedekind, numbers and arithmetical operations defined for them can
be considered and used as “auxiliary means”, as helps for rigorous reason-
ings. They can, in fact, as is clearly illustrated in Algebraische Funktionen,
be used as epistemic tools involved in the production of new mathematical
knowledge, in the design of new concepts and new methods of proof, and/or
to strengthen the foundation of certain theories.

9.2 Further on up the road
9.2.1 Investigating the differences deeper
There seems to be an additional step left to make in the understanding of
the various conceptions of arithmetic. Indeed, it is somewhat intriguing
that Dedekind and Kronecker, who were both deeply influenced by Dirich-
let, Gauss, and Kummer, were working in the same field of research, and
whose works were often shaped by the same epistemological values (albeit
not necessarily conceived in the same way), developed approaches so op-
posed. There is one important difference which is the philosophy classes
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Dedekind followed with Lotze in Göttingen. Rather than locating the source
of their differences in the “conceptual” approach – which, recall, is seen as
led by Dirichlet, who had a great influence on Kronecker – it seems that
this specific philosophical component of Dedekind’s education. Where Kro-
necker wished to treat mathematics as a natural science, to “describe simply
and completely” phenomena, Dedekind’s approach seems to present certain
Lotzean aspects. A forthcoming paper by W. Sieg and R. Morris ([Sieg
and Morris, 2014]), which proposes a deepened investigation into Dedekind’s
structuralism and the “creation of concepts”, considers this question in more
detail.4 They link Dedekind’s insistence on the finiteness of understanding
in [Dedekind, 1854a] with some of Lotze’s remarks in his Logik. More sig-
nificantly, they exhibit elements of Lotze’s philosophy which shed light on
Dedekind’s ideas about “Begriffsbildung”, characteristic properties (Merk-
male) and creation “by abstraction”. According to them, Lotzean abstrac-
tion is “at work” in Dedekind’s creation of the natural numbers – which
incidentally also explains Dedekind’s insistence on the need of a proof of
the existence of an infinite system. For them, Dedekind’s “structuralism” is
“located (. . . ) within the logic of his time, in particular, that of Lotze and
Schröder.”

We know that Dedekind followed Lotze’s classes in Göttingen, and the
web of influences between Herbart, Lotze, Riemann and Dedekind does make
the influence of Lotze on Dedekind’s thinking likely. And indeed, there is a
lot reminiscent of Lotze’s philosophy, in Dedekind’s conception of logic and
of the role of the thought. This being said, although Dedekind seems to
adopt a Lotzean idea of abstraction, there seems to be reasons to be careful
in considering the Lotzean heritage of Dedekind. For example, we know
how thought, logic and mathematics are intrinsically related for Dedekind.
While they are as well for Lotze, he conceived mathematical logic as close
to Leibniz’s “lingua characteristica“ (or at least, what was known of it at
the time) and more generally of logic as intrinsically linked with language
([Sullivan, 2014]).

While this would have been out of the scope of my inquiry, an approach
from the history of philosophy which would inquire into Dedekind’s recep-
tion of Lotze and how it can be articulated with and integrated into his
conception of mathematics, would probably provide additional insights on
Dedekind’s ideas by giving elements of philosophical context.5 As suggested
by Sieg and Morris’s paper, these elements of philosophical context should
allow to understand better what is often called Dedekind’s structuralism.

Dedekind’s structuralism is related to his adoption of an axiomatic ap-
proach. As it was made clear in [Sieg and Schlimm, 2005], Dedekind’s ap-

4[Gandon, 2006] suggested this possible direction of research, but he did not pursue it.
5In addition, considering works such as [Heis, 2013], it seems that this could provide the

ground for a different approach of the relations (or absence thereof) between Dedekind’s
and Frege’s thinking.
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proach shows elements of both the axiomatic and the genetic approaches.
To be sure that the coexistence of these two views does not, as Sieg and
Schlimm affirm, entail any conflict, it seems important to clarify the pecu-
liar brand of axiomatic adopted by Dedekind, and in particular to which
extent it was only a matter of logical organization of the definition and
theory.6

9.2.2 About rewriting Riemann, again
An analysis of the rewriting of Riemann’s function theory by Dedekind and
Weber, which I have considered essentially from the viewpoint of Dedekind’s
mathematics, would only be complete when it will conciliate two aspects
that I had to omit, for lack of time. On one hand, the role played by Weber
in the elaboration of the theory is important to clarify. On this point, we
hopefully will know more when the correspondence between Dedekind and
Weber will be published. On the other hand, the letters between Dedekind
and Weber also contain a key element for the second aspect of the rewriting:
the editorial work made by Dedekind and Weber on Riemann’s works. In-
deed, a considerable part of Riemann’s Gesammelte Werke is constituted by
unpublished works and manuscripts. The letters exchanged for the edition
of Riemann’s Gesammelte Werke show us that Dedekind and Weber did a
great amount of reconstruction and edition of Riemann’s manuscripts. It
would be interesting to be able to combine a reading of their editorial work
described in the letters with a comparison of Riemann’s manuscripts and
Riemann’s Gesammelte Werke. Hopefully, this would allow a better insight
at how Dedekind and Weber assimilated Riemann’s works. And it could
help us understand how much the edited works of Riemann are marked by
the editorial work made by Dedekind and Weber.

Moreover, this would constitute a first step towards focusing on Weber’s
side of the story, which I unfortunately had to neglect, pursuing reluctantly
the tendency to look at Weber as a secondary character. If only for his
essential role in the circulation of the now so widely adopted Dedekindian
concepts, he would deserve more attention in future historiographical works.
In fact, as a mediator between different approaches in mathematics and
through his many articles, his teaching, correspondence and collaborations,
and of course his Lehrbuch der Algebra, Weber was certainly not, in his time,
a secondary character.

6The tension between axiomatic and genetic approach seems solvable if one considers
that Dedekind was only adopting axiomatic as a logical organization of the definition
and theory, which corresponds to what Detlefsen called “descriptive axiomatization” in
[Detlefsen, 2013]. Yet, Detlefsen underlined in [Detlefsen, 2014] that Dedekind’s insistence
on proving the existence of infinite systems in Zahlen can be interpreted as a desire to
give a proof of consistency of his theory. This suggests that Dedekind might have had
an understanding of his theory related to an "abstract science" which challenges the co-
existence of genetic and axiomatic approaches.
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Résumé

En 1882, Richard Dedekind et Heinrich Weber proposent une re-définition
algébraico-arithmétique de la notion de surface de Riemann utilisant les
concepts et méthodes introduits par Dedekind en théorie des nombres al-
gébriques. Dans un effort pour regarder au-delà de l’idée d’une “approche
conceptuelle”, ce travail se propose d’identifier les éléments de pratique pro-
pres à Dedekind, partant de l’article co-écrit avec Weber. Nous mettons en
avant l’idée selon laquelle, dans les travaux de Dedekind, l’arithmétique peut
jouer un rôle actif et essentiel pour l’élaboration de connaissances mathéma-
tiques. Pour cela, nous proposons l’étude, dans la pratique mathématique,
de la conception de l’arithmétique chez Dedekind, de la place donnée à et
du rôle joué par les notions arithmétiques, et des possibles évolutions de
ces idées dans les travaux de Dedekind. Cette étude est faite par l’examen
serré d’une sélection de textes. Dans un premier temps, sont étudiés les pre-
miers travaux de Dedekind, son Habilitationsvortrag en 1854 et ses premières
recherches en théorie des nombres. Suite à cela, nous proposons une com-
paraison des deux premières versions de la théorie des nombres algébriques
publiée par Dedekind en 1871 et 1877. Enfin, ayant mis en évidence le
rôle central de l’arithmétique, pour les mathématiques dedekindiennes, nous
nous tournons vers les travaux fondationnels de Dedekind, afin d’expliciter
la spécificité de sa conception en élucidant, à travers ses travaux sur la défi-
nition des nombres, ce qui donne à l’arithmétique cette place de choix et les
liens avec la définition des entiers naturels donnée dans le fameux Was sind
und was sollen die Zahlen? en 1888.

Mots clefs : Richard Dedekind, Arithmétique, Théorie des nombres,
Théorie des fonctions algébriques, Histoire des mathématiques au 19e siècle.
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Abstract

In 1882, Richard Dedekind and HeinrichWeber offer an arithmetico-algebraic
re-definition of the Riemann surface, using concepts and methods intro-
duced by Dedekind in algebraic number theory. In an attempt to investi-
gate Dedekind’s works beyond the mere idea of a “conceptual approach”,
this works proposes to identify the elements of practice specific to Dedekind,
starting from the paper co-written with Weber. I put forward the idea that
in Dedekind’s works, arithmetic can play an essential and active role in the
elaboration of mathematical knowledge. For this, I propose to study, in
Dedekind’s mathematical practice, the conception of arithmetic, the place
and role of arithmetical notions and the possible evolutions in Dedekind’s
ideas about arithmetic. This study is based on a careful analysis of a selec-
tion of Dedekind’s texts. For this, I study Dedekind’s early works, his 1854
Habilitationsvortrag and his first works in number theory. Then, I propose
a comparison between the first two versions of Dedekind’s theory of alge-
braic numbers published in 1871 and 1877. Finally, I turn to Dedekind’s
foundational works, to make explicit the specificities of his conception and
elucidate, through the study of his works on the definition of numbers, what
gives arithmetic its pride of place and the link with the definition of natural
numbers given in Was sind und was sollen die Zahlen? in 1888.

Keywords: Richard Dedekind, Arithmetic, Number theory, Algebraic
function theory, History of mathematics in the 19th century.
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Corrigenda∗

- Page 51, a quote from Riemann’s 1851 doctoral dissertation is called
“a transparent allusion to Weierstrass’s works.” This is incorrect since
Weierstrass had not published any work on the subject in 1851. Rie-
mann is more likely referring to Cauchy (see [Laugwitz, 2009], 104 and
[Neuenschwander, 1981]).

- Page 64, footnote 40, “je n’ai pas changer d’avis” should be “je n’ai
pas changé d’avis”.

- Page 81, a more adequate presentation of Gauss’s Disquisitiones Arith-
meticae is required. In particular, the beginning of the first paragraph
should be modified as follow:
Gauss’s Disquisitiones Arithmeticae has often been presented as mark-
ing the birth of number theory as a discipline in its own right in Ger-
many. However, as [Goldstein and Schappacher, 2007a] show, the
situation is more complicated and requires a more finely-shaded anal-
ysis, for the developments following Gauss’s works tend to challenge
the boundaries between disciplines. In this very succinct presentation
of Gauss’s Disquisitiones Arithmeticae, I attempt to point out the
various characteristics of “number theory”, “arithmetic” and “higher
arithmetic” for Gauss and his successors (e.g. Dirichlet, Jacobi, ...).
Here, I will not be looking at disciplines per se, but about what actors
would qualify as “arithmetical” – a delicate point, as the thorough
investigation in [Goldstein and Schappacher, 2007a] suggests.

- Page 104, last paragraph, “Particularly well-know” should be “Partic-
ularly well-known”.

- Pages 258-259, “modular equations” should be “congruences”.

- Page 278, the quote from [Edwards, 1980] is incomplete and should
be:

A cyclotomic integer f(α) is said to be divisible by p if
f(α)ψ(α) is divisible by 47. ([Edwards, 1980], 325)

∗I would like to thank Norbert Schappacher, Hourya Sinaceur and Jean-Jacques
Szczeciniarz for pointing out these mistakes.



- Page 293, footnote 49, “in next paragraph” should be “in the next
paragraph”. And “congruent with respect with respect to a” should
be “congruent with respect to a”.

- Page 370, footnote 56, “un nombreα” should be “un nombre α”.

- Page 373, missing reference: “for Dieudonné...” refers to [Dieudonné,
1974].

- Page 392, footnote 12, “Méray’s was” should be “Méray was”.

- Page 421, quote, “γ = alpha+ β” should be “γ = α+ β”.

- Page 422, Dedekind’s quotation in the third paragraph should be “as
the product

√
2.
√

3, I mean the number
√

6, hence
√

2.
√

3 =
√

6, qed!”.

- Page 539, the last sentence of the second paragraph should be refor-
mulated as follow:
Lotze, on the other hand, although he considered such relations be-
tween thought, mathematics and logic, conceived mathematical logic
as close to Leibniz’s “lingua characteristica” (or at least, what was
known of it at the time) and more generally of logic as intrinsically
linked with language ([Sullivan, 2014]).
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