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Abstract 
Continuously increasing complexity and interconnectedness of modern critical infrastructures, together with 

increasingly complex risk environments, pose unique challenges for their secure, reliable, and efficient operation. 

The focus of the present dissertation is on the modelling, simulation and optimization of critical infrastructures 

(CIs) (e.g., power transmission networks) with respect to their vulnerability and resilience to cascading failures. 

This study approaches the problem by firstly modelling CIs at a fundamental level, by focusing on network 

topology and physical flow patterns within the CIs. A hierarchical network modelling technique is introduced 

for the management of system complexity. Within these modelling frameworks, advanced optimization tech-

niques (e.g., non-dominated sorting binary differential evolution (NSBDE) algorithm) are utilized to maximize 

both the robustness and resilience (recovery capacity) of CIs against cascading failures. Specifically, the first 

problem is taken from a holistic system design perspective, i.e. some system properties, such as its topology and 

link capacities, are redesigned in an optimal way in order to enhance system’s capacity of resisting to systemic 

failures. Both topological and physical cascading failure models are applied and their corresponding results are 

compared. With respect to the second problem, a novel framework is proposed for optimally selecting proper 

recovery actions in order to maximize the capacity of the CI network of recovery from a disruptive event. A 

heuristic, computationally cheap optimization algorithm is proposed for the solution of the problem, by inte-

grating foundemental concepts from network flows and project scheduling. Examples of analysis are carried out 

by referring to several realistic CI systems. 

Key words: critical infrastructure protection, complex network, cascading failure, system modelling, simula-

tion, optimization 
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Résumé 
Sans cesse croissante complexité et l'interdépendance des infrastructures critiques modernes, avec des environs 

de risque plus en plus complexes, posent des défis uniques pour leur exploitation sûre, fiable et efficace. L'objec-

tif de la présente thèse est sur la modélisation, la simulation et l'optimisation des infrastructures critiques (par 

exemple, les réseaux de transmission de puissance) à l'égard de leur vulnérabilité et la résilience aux défaillances 

en cascade. Cette étude aborde le problème en modélisant infrastructures critiques à un niveau fondamental, en 

se concentrant sur la topologie du réseau et des modèles de flux physiques dans les infrastructures critiques. Un 

cadre de modélisation hiérarchique est introduit pour la gestion de la complexité du système. Au sein de ces 

cadres de modélisation, les techniques d'optimisation avancées (par exemple, non-dominée de tri binaire évolu-

tion différentielle (NSBDE) algorithme) sont utilisés pour maximiser à la fois la robustesse et la résilience (ca-

pacité de récupération) des infrastructures critiques contre les défaillances en cascade. Plus précisément, le 

premier problème est pris à partir d'un point de vue de la conception du système holistique, c'est-à-dire cer-

taines propriétés du système, tels que ses capacités de topologie et de liaison, sont redessiné de manière opti-

male afin d'améliorer la capacité de résister à des défaillances systémiques de système. Les deux modèles de 

défaillance en cascade topologiques et physiques sont appliquées et leurs résultats correspondants sont compa-

rés. En ce qui concerne le deuxième problème, un nouveau cadre est proposé pour la sélection optimale des 

mesures appropriées de récupération afin de maximiser la capacité du réseau d’infrastructure critique de récupé-

ration à partir d'un événement perturbateur. Un algorithme d'optimisation de calcul pas cher heuristique est 

proposé pour la solution du problème, en intégrant des concepts fondamentaux de flux de réseau et le calendrier 

du projet. Exemples d'analyse sont effectués en se référant à plusieurs systèmes de CI réalistes. 

Mots clés: protection des infrastructures critiques, réseau complexe, l'échec en cascade, la modélisation du 

système, simulation, optimisation  
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 Introduction Chapter 1
World-wide social and economic stability is becoming increasingly dependent on reliable supply of essential 

goods and services, that are transported and distributed across large technological networked infrastructure 

systems, also called critical infrastructures (CIs). These goods and services (e.g. electrical power, gas and water, 

transportation, telecommunication, etc.) are largely taken for granted, their production and delivery being as-

sumed to never cease. On the other hand, the infrastructure systems that allow their supply are challenged 

by potential disruptive factors coming from the risky environments they are operated in: global warm-

ing, disease outbreaks, food (distribution) shortages, financial crashes, heavy solar storms, organized 

(cyber-) crime, or cyber warfare. Also, the infrastructure networks have been growing independently 

and very fast, in a somewhat uncontrollable manner, creating underlying pathways along which danger-

ous hazards and damaging events can spread rapidly and globally throughout the system: this has in-

creased the exposure to systemic risk, characterized by cascades of failures which can have significant 

impacts at the global system scale (Helbing, 2013).  

Indeed, large-scale disruptions have been experienced, confirming the existence of inherent vulnerabilities. 

On 28 September 2003, there was a serious power outage that affected much of Italy for 12 hours and part of 

Switzerland for 3 hours, affecting a total of 56 million people and resulting in tens of millions of dollars in eco-

nomic losses (U.C.T.E, 2004). In the same year, another power blackout happened in North America, affecting 

50 million people and causing estimated losses for $10 billion U.S. dollars (U.S.-CA, 2004). Other incidents like 

these, where technical infrastructures failed and led to major disruptions, include the ice-storm in Canada in 

1998 (Chang et al., 2007), the power outage that affected half of Europe in 2006 due to the crash of the luxury 

line Norwegian Pearl ship onto a power line (U.C.T.E, 2006) and the hurricane Katrina in 2007, which wiped 

out most of the CIs in the New Orleans area for a considerable amount of time, severely crippling recovery 

operations (Boin and McConnell, 2007). 

Many questions stem from the occurrence of these extreme incidents involving CIs: What is the inherent vul-

nerability of a CI system and which are its critical components that if they fail cause large consequences? What 

is the mechanism of the propagation of failures in the CI system? How will the CI system react to unexpected 

events and how large can the consequences become? Are there particular properties that allow the CI to resist 

to systemic failures? How to define the resilience of the CI system? How to find an ‘optimal’ strategy for the 

system to recover from disruption? The motivation behind this thesis is to address the type of quesitons stated 

above; the objective of the thesis is to study and develop advanced modelling, simulation, analysis and optimi-

zation methods for the protection of CIs against systemic failures. 

This chapter aims to provide a general overview of the problems addressed in this dissertation, and is organized 

as follows. CIs are defined and their characteristics are introduced in Section 1.1; in Section 1.2, the key con-

cepts of risk, vulnerability and resilience of CIs are discussed; Section 1.3 specifies the objectives of the research 

conducted; finally, in Section 1.4, the structure of the dissertation is given. 
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1.1 CI systems as complex engineering networks 

The phrase, “critical infrastructure protection (CIP),” did not appear in print until in 1997, when the “Marsh 

report” (Ellis, 1997) provided the first definition of infrastructure as 

“a network of independent, mostly privately-owned, man-made system that function collaboratively 

and synergistically to produce and distribute a continuous flow of essential goods and services”. 

Critical infrastructures (CIs) are defined as network systems that provide life-essential services (McCarthy et 

al., 2005)  and their incapacity or destruction would have a debilitating impact on the health, safety, security, 

economics, and social well-being, including the effective functioning of governments (Kröger and Zio, 2011). CIs 

are various by nature, e.g., physical-engineered, cybernetic or organizational systems, and by environment (ge-

ographical, natural) and operational context (political, economic, etc.).  

The focus of this thesis is on engineered physically networked CIs, often called lifeline systems; examples of 

these networks are those providing (Kröger and Zio, 2011): 

• Energy (electricity, oil, and gas supply) 

• Transportation (by rail, road, air, and sea) 

• Information and telecommunication (such as the Internet) 

• Computer networks such as the Internet 

• State and local services (water supply and emergency services). 

From a European Union perspective, a programme on Prevention, Preparedness and Consequence Management 

of Terrorism and Other Security Related Risks (EPCIP) was adopted on 12 February 2007. In the act (COM, 

2006, p. 15) CIs are defined as “…those assets or parts thereof which are essential for the maintenance of critical 

societal functions, including the supply chain, health, safety, security, economic or social well-being of people”. 

In particular, electrical power supply stands out as an especially critical infrastructure since many other infra-

structures depend heavily on a reliable power supply. 

Engineered CI systems, usually distributed on large geographical extensions, are complex collections of a large 

number of interacting elements (or subsystems) having an internal dynamic structure and comprising a unified 

whole. They present several common characteristics that make them difficult to control or to operate reliably 

and efficiently (Amin, 2001): 

• They have a large-scale, multi-component, heterogeneous and distributed nature; 

• They are vulnerable to attacks and local disturbances which can lead to widespread cascading failure 

almost instantaneously; 

• They are characterized by many points of interaction among a variety of participants – owners, opera-

tors, sellers, buyers, customers, data and information providers, data and information users;  

• The number of possible interactions increases dramatically as participants are added; thus, no single 

centralized entity can evaluate, monitor, and manage all the interactions in real time; 

• The conventional mathematical methodologies that underpin today's modeling, simulation, and control 

paradigms are unable to handle their complexity and interconnectedness. 
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As Zio (2007) and Kröger (2008) point out, in order to address the complexities of CI systems new methods for 

their analysis are needed, since “…the current quantitative methods of risk analysis seem not to be fully 

equipped to deal with the level of complexity inherent in such systems” (Zio, 2007, p. 505). 

1.2 Risk, vulnerability and resilience of CIs 

1.2.1 Risk and systemic risk 

While the concept of risk is fairly mature and consensually agreed, the concepts of vulnerability and resilience 

are still evolving and not yet established. One definition of risk often used in system engineering is that it is ‘‘a 

function of the probability of an unwanted event and the severity of consequences of that event” (Kaplan and 

Garrick, 1981): 

�*+) = {〈.", 0", 1"〉}                                                                      (1.1) 

where ." denotes the *th risk scenario, 0" denotes the likelihood of that scenario, and 1" denotes the resulting 

consequences. 

These quantities and their associated uncertainties are considered as being numerically quantifiable: e.g., for 

CIs, risk can be computed as the loss of service with its resulting consequences for the people concerned. To-

day’s infrastructure networks are challenged by the disruptive influences of a complex mix of manmade and 

naturally occurring threats and hazards, including terrorist attacks, accidents, natural disasters, and other 

emergencies.  

Systemic risk is the risk of having not just statistically independent failures, but interdependent, cascading 

failures in a network of 4  interconnected system components (Helbing, 2013). In other words, systemic risk 

results from connections between risks (‘networked risks’), whereby a localized initial failure (‘perturbation’) 

could spread to other parts of the system and have system-scale disastrous effects. Then, the examples of sys-

tem-scale damages mentioned before on real-world CI systems confirm the existence of systemic risks: blackouts 

in power grids (U.S.-CA, 2004; U.C.T.E, 2004; 2007; Pidd, 2012), telecommunication outages (Newman et al., 

2002), financial bankruptcy (Battiston et al., 2007), and catastrophic failures in socio-economic systems (Zhao 

et al., 2011; Kempe et al., 2003). Figure 1:1 shows the historical frequency of large electrical blackouts hap-

pened in the North American Power Grid: an increasing trend of occurrence of large blackouts can be observed. 

 

Figure 1:1 Number of large blackouts per year happened in North America after removing small events, adjusting for de-
mand growth, and removing extreme natural events (Hines et al., 2009). 
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Although large-scale disruptions are rare if compared with small ones, how much rarer are they? If the frequen-

cy of incidents, both natural and manmade, is plotted against the consequences, the trend is a power law (ra-

ther than exponential) distribution (e.g. Amin, 2004; Nedic et al., 2006; Weron and Simonsen, 2006, as shown 

in Figure 1:2). Then, if we were to evaluate the risk of a disruption as the product of frequency times conse-

quence, the total risk associated with large-scale disruptions is – due to the power-law type distribution of 

blackout sizes – much larger than that associated to small failures. This is strong motivation for investigating 

the global dynamics of systemic risks that can lead to power-law tails. 

 

Figure 1:2 The complimentary cumulative distribution (1 − ���(�)) of power lost (� ) due to blackouts in the North-
American electric power transmission systems (Weron and Simonsen, 2006). 

1.2.2 Vulnerability 

Vulnerability is a concept that is used in many areas, but its definition is often ambiguous and sometimes mis-

leading (Buckle et al., 2000; Dilley and Boudreau, 2001; Weichselgartner, 2001; Haimes, 2006). Many defini-

tions look at vulnerability as the system’s overall susceptibility to loss due to a given negative event. In order 

for the vulnerability definition to be meaningful, it must be related to specific hazard exposures (e.g. Dilley and 

Boudreau, 2001). A system might, thus, be vulnerable to certain hazard exposures but robust and resilient to 

others (Hansson and Helgesson, 2003). 

The vulnerability of a system can be analyzed mainly from two perspectives. The first one relates to a global 

system property, whereby one looks at the extent of adverse effects caused by the occurrence of a specific haz-

ardous event (e.g., Aven, 2007; Johansson and Hassel, 2010; Kröger and Zio, 2011). The second perspective 

looks at the critical parts or components of the system, which make it vulnerable (e.g., Apostolakis and Lemon, 

2005; Latora and Marchiori, 2005). 

In this dissertation, we espouse the concept of vulnerability as a measure of “the consequences that arise when 

a system is exposed to a hazardous event of a given type and magnitude” and we adopt both perspectives of 

vulnerability analysis mentioned above: specifically, in appended Paper [1], the term “vulnerability analysis” 

refers to the identification of critical components of CIs, whereas in appended Papers [3] and [4], “vulnerability” 

is related to the global property of the CI system, which is quantified by the extent of adverse effects caused by 

the occurrence of a specific disruptive event. 
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1.2.3 Resilience 

Resilience comes from the Latin word “resilio” that literary means “to leap back” and denotes a system attrib-

ute that characterizes the ability to recover from challenges or disruptive events. The Merriam-Webster dic-

tionary defines resilience as “the ability to recover from or adjust easily to misfortune or change”. Various defi-

nitions of “resilience” have been proposed for infrastructure and economic system analysis in the past decades 

(e.g., Holling, 1973; Bruneau et al., 2003; Reed et al., 2009; Cimellaro et al., 2010; Aven, 2011; Henry and Em-

manuel Ramirez-Marquez, 2012). In general, it can be said to be the ability of a system or an organization to 

react and recover from unanticipated disturbances and events (e.g., Hollnagel et al., 2006). Zio (2009, p. 131) 

advances the view of resilience as complementing reliability by stating “… systems should not only be made 

reliable, i.e. with acceptably low failure probability, but also resilient, i.e. with the ability to recover from dis-

ruptions of the nominal operating conditions”.  

An integrated definition of resilience is given by McDaniels et al. (2007). This definition points out two key 

properties of resilience, namely robustness and recovery rapidity. Robustness refers to a system’s ability to 

withstand a certain amount of stress with respect to the loss of function of the system, or as Hansson and 

Helgesson (2003) defines it: “the tendency of a system to remain unchanged, or nearly unchanged, when ex-

posed to perturbations”. In this view, robustness can be seen as the antonym of the term vulnerability. Recovery 

rapidity, on the other hand, refers to a system’s ability to recover fast from an undesired event. 

Currently, there is the feeling of a lack of standardization and rigor when quantitatively defining resilience 

(Henry and Emmanuel Ramirez-Marquez, 2012). Too many different and subjective definitions make resilience 

appear to be just another buzzword and not an attribute of engineering systems. To address this issue, this 

dissertation (Chapter 4.1) reviews some resilience metrics and measurement methodologies in the context of 

system engineering, especially for CI systems; then, it proposes a novel definition and quantification of system 

resilience, rigorously focusing on the post-disruption recovery process, which embraces both the spatial (func-

tionality recovery) and temporal (recovery time) dimensions of resilience. The details of this definition and 

relevant discussion will be given in Chapter 4.1. 

From a synthetic disaster management perspective, Figure 1:3 conceptually illustrates all the concepts men-

tioned, i.e., risk, vulnerability, robustness and resilience, and their characteristics with reference to the func-

tionality curve �(	) of a CI system, which represents the evolution of the functional state of a system 

(Cimellaro et al., 2010; Henry and Emmanuel Ramirez-Marquez, 2012). In the Figure, ." denotes a risk scenar-

io, 0" denotes the likelihood of that scenario, 1̃" is a random variable denoting the resulting consequence (func-

tionality loss) and is expressed as function of the uncertainty 6" associated with it.  

Then, the quantification of risk in Equation 1.1 can be rewritten as  

�*+) = {⟨.", 0", 1̃"(6")⟩}                                                      (1.2) 

Vulnerability referring to the CI system is “the consequences that arise when the system is exposed to a haz-

ardous event of a given type and magnitude” and can be represented by the random variable 1̃"(6"). 
;<=>?�@A*=*	B = {⟨1̃"(6")⟩}                                                    (1.3) 
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Anther random variable �̃" denotes the robustness (defined as “the tendency of a system to remain unchanged, 

or nearly unchanged, when exposed to perturbations”) of the system under risk .". It is the residual functionali-

ty right after the disruptive event and can be represented by the following relation: 

�DA<+	>?++ = {⟨�̃"⟩} = {⟨�(	0) − 1̃"(6")⟩}                                    (1.4) 

On the post-disruption recovery process, !IJ(	K) denotes the time duration required for the system to achieve 

a target functionality level �(	K), and the restored system functionality is �IJ(	K). The two quantities repre-

sent the spatial and temporal dimensions of resilience, respectively. Therefore,  

�?+*=*?>L?(	K) = {〈!IJ(	K), � (	K)〉}                                            (1.5) 

One can refer to Chapter 4.1 and the appended Paper [5] for the analytic expression of Equation (1.5). 

 

Figure 1:3 Conceptual illustration of the concept of risk, vulnerability, robustness and resilience, with reference to the func-
tionality curve �(	) of a CI system.  

1.3 Research objectives 

CIs can operate in three distinct functional states: 1) stable state, 2) disrupted state, and, 3) recovered state, 

and two transitions: 1) system disruption (from the stable state to the disrupted state), and 2) system recovery 

(from the disrupted state the recovered state). There are two events that trigger and enable these two transi-

tions: a disruptive event and the resilience action. In Figure 1:4, the different states and transitions are illus-

trated. For the point of view of disaster management, before the occurrence of a disruptive event, actions and 

activities (e.g., upgrading vulnerable parts of the system, allocating preventive resources and so on) are usually 

taken in order to mitigate the likelihood and/or consequences of an undesired event. On the other hand, after 

the disruption, there is a recovery process in which resilience actions (e.g., an overall recovery planning) are 

taken for the system to return to a normal or desired state. 

The present dissertation takes into account the entire state transition process of CIs under disruptive event, 

and focuses on the modelling, simulation and optimization of CI systems (e.g., power transmission networks), 

with respect to their vulnerability and resilience to cascading failures. The research objectives, which represent 

also the main contributions of this dissertation, are divided into three groups: 

• Static representation and analysis of CI networks:  
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‒ To develop network models suitable for the representation of CI networks; 

‒ To develop performance metrics for quantifying generic network functionality; 

‒ To identify the role that various network components have in maintaining the performance of 

the entire network (e.g., connectivity or reliability). 

• Optimal CI design for cascading failure mitigation: 

‒ To establish optimization frameworks for designing CI systems robust against cascading fail-

ures, with limited cost; 

‒ To conduct a thorough comparative study among different methodologies for the modelling of 

cascading failures; 

‒ To propose effective and efficient solution algorithms for the proposed optimization problems. 

• Recovery optimization for system resilience: 

‒ To propose a formal, rigorous definition of the concept of system resilience; 

‒ To develop dynamic recovery models for post-disaster system restoration; 

‒ To construct a comprehensive framework for properly selecting recovery actions in order to op-

timize system resilience when resources are limited; 

‒ To design effective and efficient algorithms for solving the proposed resilience optimization 

problem; 

‒ To identify the role that various network components have in contributing to the resilience of 

a CI system. 

In Figure 1:4, we have summarized the main research objectives of this thesis in a flow chart that shows the 

basic dependencies between the objectives and their organization in this dissertation. 

 

Figure 1:4 Pictorial view of the research presented in this dissertation. 
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1.4 Structure of the thesis 

The thesis is composed of two parts. Part I, subdivided in six Chapters, introduces and addresses in details the 

problems treated and illustrates the methodological approaches developed and employed in this Ph. D. work. 

Part II is a collection of six selected papers published, submitted for publication or under submission as a result 

of the work, and which the reader is referred to for further details. 

Chapter 2 starts with a brief critical discussion of the approaches based on complex network theory that have 

been employed for the analysis of CIs. Then, a general hierarchical modelling framework for representing CI 

networks is proposed, which can be leveraged efficiently to facilitate the management of complexity in the 

analysis of large-scale CI systems. Moreover, several metrics are introduced for identifying those components 

within the system that most significantly influence the system reliability.  

In Chapter 3, two different cascading failure modelling approaches of increasing complexity, i.e. a complex 

network-based model and a physical flow-based model (for electrical power grids), are embraced to address the 

problem of redesigning network properties (e.g., topology and link capacity). This problem is formulated within 

a multi-objective optimization framework and solved by evolutionary algorithms.  

Chapter 4 focuses on the study of system resilience. A quantitative definition of the concept of resilience for CI 

systems is given: based on this definition, an optimization framework is proposed for properly selecting recovery 

actions in order to maximize the resilience of a CI network. A heuristic dispatching rule is presented to timely 

solve the associated resilience optimization problem. Furthermore, two metrics are originally introduced to 

measure the criticality of network components from the perspective of their contribution to system resilience.  

Chapter 5 contains the applications of the proposed models and methodologies to realistic CI networks (in par-

ticular, the 380kV Italian Power Transmission Network, the 400kV French Power Transmission Network and 

the IEEE 30 Bus test system). Chapter 6 draws the conclusions of this PhD study and presents relevant open 

issues and perspectives for future research. 

Part II of this thesis includes the collection of papers published and submitted, which constitute the pillars of 

the present doctoral thesis. Papers [1] and [2] present the hierarchical representation framework and its applica-

tion to network reliability and vulnerability analysis (see Chapter 2 and Chapter 5.1 of Part I). Papers [3] and 

[4] concern CI optimization against cascading failures (see Chapter 3 and Chapter 5.2). Specifically, Paper [3] 

addresses the problem of network topology optimization by rewiring links under the objectives of maximizing 

network robustness to cascading failure and minimizing investment costs. The realistic character of the optimi-

zation results based on a computationally-cheap, topological cascading failure model is verified by a more real-

istic power flow-based model of cascading failure. In Paper [4], for the sake of comparison, both types of models 

(i.e., topological and power flow-based) are embraced to address the optimization of link capacity allocation 

against cascading failures. Papers [5] and [6] form the basis for the study of system resilience in Chapters 4, 5.3 

and 5.4. The quantitative definition of system resilience, the formulation of a resilience optimization problem 

and the development of a heuristic dispatching rule for its solution are the main contributions of Paper [5]. 

Finally, Paper [6] mainly contributes two resilience-based component importance measures. 



 

 

 Network modelling of CI sys-Chapter 2

tems 
The modelling of any real-life system requires well-defined system boundaries and usually simplifications of the 

system representation: Such boundaries and simplifications are determined by the context in which the model is 

used. The aim of the chapter is to critically review previous inspiring research regarding the modelling of CI 

systems as well as to describe the author’s proposed modelling approach. In particular, the first Section briefly 

introduces the field of complex network theory and how CIs can be represented in the framework of network 

theory. The second Section develops a general hierarchical modelling framework, based on statistical clustering 

techniques, for representing CI networks. In the last Section, we propose several metrics for identifying those 

components within the system that most significantly influence system reliability. 

2.1 Complex network theory and network representation of CI systems 

2.1.1 Complex network theory  

The ideas behind the research described in the present dissertation stem partly from the field of complex net-

work theory. The “predecessor” of complex network theory is the mathematical field of graph theory, initiated 

by Leonhard Euler and the “seven Bridges of Königsberg problem” in 1736. Further advances in the field were 

not made until 1959, when two Hungarian mathematicians, namely, Paul Erdös and Alfred Rényi, developed 

the theory of random networks. They introduced the use of probabilistic methods to demonstrate the existence 

of graphs with particular properties, such as network connectivity (Erdös and Rényi, 1959).   

Researchers and scientists did not realize that modelling real complex networks required a shift in paradigm, 

despite the convenience and mathematical insights provided by random graphs models, the insights from empir-

ical studies on social networks, and the ideas for optimal design of resilient networks. This only happened in 

the late 1990’s, when databases from several disciplines became readily available, and general features of com-

plex networks started to be uncovered. Sociologists, mathematicians, physicists and engineers joined forces to 

formally develop the new science of a connected age (Watts, 2004). Two pioneering works in this field concern 

the findings of small-world (Watts and Strogatz, 1998) and scale-free (Barabási and Albert, 1999) networks.  

The basic concept of complex network theory is to build a model of real-world networks and describe the form 

and, in various degrees, the functionality of the network by different measures. Complex network theory has 

been used to study a wide range of systems, such as: social networks (e.g. celebrity networks), technical net-

works (e.g. the Internet and electrical power systems), cellular networks, and the studies of the written human 

language (Albert and Barabási, 2002). The reader can refer to numerous works for a comprehensive review of 

the study in this field (e.g., Newman, 2003; Watts, 2004; Boccaletti et al., 2006; Grubesic et al. 2008).  

For network theoretical studies of CIs, only the most fundamental parts of the infrastructure are usually mod-

elled, i.e. the structural properties of the system that facilitates the physical transportation of the services they 

provide; in general, no or limited functional aspects of the network are modelled. Complex network theory 

methods can be applied to the analysis of CIs for i) helping to identify preliminary vulnerabilities by topology-
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driven and dynamical analyses and ii) guiding and focusing further detailed analyses of critical areas (Kröger 

and Zio, 2011). 

Topological analysis based on complex network theory can unveil relevant properties of the structure of a net-

work system (Albert et al., 2000; Strogatz, 2001) by i) highlighting the role played by its components (Crucitti 

et al., 2006; Zio et al., 2008) and ii) making preliminary vulnerability assessments based on the simulation of 

failures (mainly represented by the removal of nodes and arcs) and subsequent re-evaluation of the network 

topological properties (Rosato et al., 2007; Zio et al., 2008). Notable studies concerned with the structural anal-

ysis and assessment of the vulnerability among the CIs sector include structural vulnerability of urban 

transport networks (Jenelius, 2009, Masucci et al., 2009), vulnerability of power grids (Bompard et. al 2009, 

Crucitti et al. 2005, Holmgren 2006, Hines and Blumsack, 2008, Eusgeld et al., 2009), and the Internet links 

(Latora and Marchoiri, 2005). Although simple graph models are common ways to represent and analyze CI 

networks, parts of physical properties can also be incorporated into the structure representation of realistic CI 

systems (e.g., electrical power infrastructure) (Hines and Blumsack, 2008; Cotilla-Sanchez et al., 2012). 

Further, in real CI networks, another importance dimension to add to the vulnerability characterization is the 

dynamics (i.e., processes going on within networks) of flow of the physical quantities in the network. This en-

tails considering the interplay between structural characteristics and dynamical aspects, which makes the mod-

eling and analysis very complicated, since the load and capacity of each component, and the flow through the 

network are often highly variable quantities both in space and time (Kröger and Zio, 2011). Percolation theory, 

borrowed from physics, provides a useful tool for the rigorous treatment of network dynamics. It describes the 

process in which vertices or links on a network are randomly designated “occupied” or “unoccupied”. Site per-

colation and bond percolation indicates the state of network nodes and links, respectively (Grimmett, 1999). 

This idea has been extended to address fundamental dynamic processes such as cascading failures in CI net-

works - where failure is the “occupied” state (Buldyrev et al., 2010; Xiao et al., 2011).  

Functional models have been developed to capture the basic dynamic features of CI networks within a weighted 

topological analysis framework (e.g., Motter and Lai, 2002; Motter, 2004; Dobson et al., 2005c). These abstract 

modelling paradigms allow analyzing the system response to cascading failures and can be used to guide a suc-

cessive detailed simulation focused on the most relevant physical processes and network components. The need 

for such an analysis tool is even stronger for systems in which the cascade dynamics is rapid and modifications 

are actuated on to the network in order to mitigate the evolution of the cascade. For example, cascading events 

leading to a blackout in power grids usually occur on a time scale of minutes to hours and is completed in less 

than one day (Dobson et al., 2007).  Despite their apparent simplicity, these models provide indications on the 

elements criticality for the propagation process (Zio and Sansavini, 2011a) and on the actions that can be per-

formed in order to prevent or mitigate the undesired effects (Motter, 2004). 

2.1.2 Network representation of CI systems 

Network theory provides a natural framework for the mathematical representation of network CI systems. A 

graph consists of vertices (sometimes referred to as nodes), ; , and edges (sometimes referred to as arcs or 

links), M, which together construct a graph, N(; , M) (see Figure 2:1). The number of vertices and edges are 

normally denoted as 4  and O , respectively. The network structure is usually represented by a 4 × 4  adja-

cency matrix Q, where Q"# = 1 if there is an edge between vertices * and R, i.e. (*, R) ∈ M, and Q"# = 0 if there 



Network modelling of CI systems 

11 

is no edge between the two vertices, i.e. (*, R) ∉ M. Normally, a vertex cannot have an edge to itself, i.e. Q"" =
0, and only one edge can exists between any two vertices. If these constraints are not fulfilled the graph is 

termed a multigraph. A graph can be directed or undirected. A directed edge is normally termed arc. It is pos-

sible to assign values to the edges (or the vertices) representing properties of the edges (or the vertices) like 

costs, lengths, capacities, etc. Such graphs are referred to as a weighted or a valued graph.  It is also possible to 

differentiate between types of vertices or types of edges (as done in the appended Papers [3], [4], [5] and [6] in 

Part II of this thesis). Throughout the dissertation, vertices/nodes and arcs/edges will be also referred to as 

components. 

 

Figure 2:1 Example of (a) an undirected graph, (b) a directed graph, and (c) a weighted (valued) graph. 

The idea behind network theory is the notion that it is possible to draw relevant conclusion about the modelled 

CI systems (e.g., electrical power grids, transportation networks, the Internet, etc.), by knowledge of its topolo-

gy, as represented by a graph. By analyzing the structure of the network or by quantifying properties of the 

network when it is changed or, by some means, degraded, interesting properties of the system can be found. 

There are a number of concepts and metrics with the aim to describe and measure the static structure of a 

network: a few of the most commonly used and relevant ones are summerized in Table 2:1. 

Table 2:1 Brief overview over concepts and metrics used in complex network theory. 

Concept Description 

Path Defined as a sequence of vertices {U1, U2, … , UX} such that Q(U", U"+1) = 1, i.e. there is 

an edge (U", U"+1) for every *. A path where no vertex appears twice is called an elemen-

tary path. 

Length Describes the number of edges in a path, which is equal to the number of vertices in 

the path minus one. 

Shortest path 

(geodesic) 

A path starting in vertex, *, and ending in vertex, R, with the smallest possible length is 

called geodesic between * and R. 

Degree of vertex * The number of edges connected to the node *. If the graph is directed, one differentiates 

between in-degree, number of arcs coming into the vertex, and out-degree, number of 

arc coming out from the vertex. The average degree of * is simply the arithmetic mean 

of the degree for all vertices, *, belonging to N. 
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Metric Description Quantification 

Distance Distance is simply the length of a geodesic between * 
and R.  Z"# 

Degree centrality, 

�[(U) 
The degree of a vertex, U, normalized over the maxi-

mum number of neighbors this vertex could have. 
�[(U) = )(U)

4 − 1 

Betweenness cen-

trality, �\(U), 
�\(?) 

A measure that tries to capture the importance of a 

vertex, U, or edge, ?, in a network (Freeman, 1979). It 

describes how many shortest paths, geodesics (6), that 

goes through a specific vertex or edge. 

�\(U) = ∑ 6"#(U)
6"#"≠#≠_∈`

 

�\(?) = ∑ 6"#(?)
6"#"≠#∈`

 

Closeness centrali-

ty, �a(U) 
A measure the idea of speed of communication be-

tween vertices in a way that the vertex that is “clos-

est” to all others received the highest score (Zio and 

Sansavini, 2011a). The closeness of a vertex U is de-

fined as the reciprocal of the average shortest path 

length. 

�a(U) = 1
@Ub(Z"#) 

= 4 − 1
∑ Z"##∈`

 

Clustering coeffi-

cient, � 

Describes how clustered the network is in form of the 

density of triangles in the network (Watts and 

Strogatz, 1998). 4  is the number of vertices, �" is the 

local clustering coefficient, O" is the number of edges 

that exist between the neighbors of vertex *, and )" is 
the number of neighbors for vertex * 

� = 1
4 ∑ �"

"∈`
= 1

4 ∑ O"
)"()" − 1)/2"∈`

 

Efficiency A measure of efficiency in the communication between 

* and R, defined as inversely proportional to the short-

est distance. 

h"# = 1
Z"#

 

Characteristic 

path length 

The average distance of a graph, i.e. the average of the 

shortest distance Z"# between all pairs of vertices. 
0 = 1

4(4 − 1)∑ Z"#
"≠#

 

Network (average) 

efficiency, M(N) 
A measure of how efficiently the whole network ex-

changes information (Latora and Marchiori, 2001). 
M(N) = 1

4(4 − 1)∑ h"#
"≠#

 

Information cen-

trality, �i(U) 
The information centrality of a vertex, U, is defined as 

the relative drop in the network efficiency caused by 

the removal from N the edges incident in U (Latora 

and Marchiori, 2007). 

�i(U) = ∆M(U)
M  

=  M[N] − M[N′(U)]
 M[N]  

In the network theory framework, CI system failures are normally represented topologically as the removal of 

vertices and edges. There are different failure initiating strategies that usually based on a random process or by 
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using some measurement of the importance of components and then removing these in a certain order. The 

importance is usually based on a centrality measure, which aim to qualify the role played by a component in 

the complex interaction and communication occurring in the network. Classical topological centrality measures 

are the degree centrality, the closeness centrality, the betweenness centrality and the information centrality 

(see Table 2:1) (Freeman, 1979; Latora and Marchiori, 2007). 

2.2 Hierarchical network representation framework 

2.2.1 Clustering techniques 

Recent studies suggest that many real complex networks exhibit a modularized organization (Porter et al., 

2009). In many cases, these modularized structures are found to correspond to functional units within networks 

(ecological niches in food webs, modules in biochemical networks) (Karrer et al., 2008). Broadly speaking, clus-

ters (also called communities or modules) are found in the network, forming groups of elements that are dense-

ly interconnected with each other but only sparsely connected with the rest of the network. The study of the 

clustered structure of the network of a CI is of particular interest because such structure can provide itself a 

protection for the system against attacks from an intruder (Eum et al., 2008), reduce the effects of cascading 

failures (Wu et al., 2006) and point at important heterogeneities within the network that may not be registered 

via network level measures (Karrer et al., 2008). 

Clustering aims at identifying patterns around which communities of elements in the network can be grouped, 

emerging implicit information in the network structure (Filippone et al., 2008). Framed as an unsupervised 

multiple classification problem (Schölkopf et al., 1998), clustering has been an essential undertaking in the con-

text of explorative data mining and also a common technique for statistical data analysis used in many fields 

such as machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics (Jain et 

al., 1999). Theoretically, based on a similarity (affinity) measure +"# between pairs of data points (*, R), which is 

usually a measure of distance between * and R, most clustering approaches seek to achieve a minimum or max-

imum similarity value through an iterative process of vertex grouping (Filippone et al., 2008; Gómez et al., 

2011). Different similarity definitions can lead to different cluster partitioning of the network.  

For the detailed description of the different clustering methods, the reader is encouraged to refer to Filippone et 

al. (2008) and Jain et al. (1999). For the purpose of the clustering analysis in this research, the unsupervised 

spectral clustering algorithm (USCA) (Von Luxburg, 2007) is adopted, which is invariant to cluster shapes and 

densities and simple to implement. The USCA makes use of the spectrum (eigenvalues) of the similarity matrix 

of the data to perform dimensionality reduction before Fuzzy )-Means (FKM)-clustering in fewer dimensions. 

Schematically, it is performed by the steps presented in Table 2:2 (Von Luxburg, 2007). 

In the first step, the Laplacian matrix 0mno is calculated from the similarity (affinity) matrix as follows. The 

input similarity matrix . is of size > × > and its generic element +"# represents the similarity between nodes * 
and R in the network. The diagonal components +"" are set to 1 and the matrix is symmetric(+"# = +#"). The 

degree matrix � is the diagonal matrix with diagonal entries Z1, Z2, … , ZX  defined by 
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Z" = ∑ +"#
p

#=1
, * = 1,2,… , > (2.1) 

Then, the normalized graph Laplacian matrix can be obtained: 

0mno 	= �−1/20�−1/2 = q − �−1/2.�−1/2 (2.2) 

where 0 = � − . and q is the identity matrix of size > × >.  

Table 2:2 The unsupervised spectral clustering algorithm. 

Input: Similarity matrix . ∈ ℝX×X 

1. Compute the normalized graph Laplacian matrix 0mno. 

2. Compute the first ) eigenvalues s1, s2, … , st and corresponding eigenvectors <1, <2, … , <tof matrix 

0mno. The first ) eigenvalues are such that they are very small whereas st+1 is relatively large. All 

eigenvalues are ordered increasingly. 

3. The number of clusters is set equal to ), according to the eigengap heuristic theory 

4. Let u ∈ ℝX×t  be the matrix containing the vectors <1, <2, … , <t  as columns. Form the matrix 

! ∈ ℝX×t from u  by normalizing the rows to norm 1, that is set 	"# = <"# (∑ <"t2t )1/2⁄ . 

5. For * = 1, … , >, let B" ∈ ℝt be the vector corresponding to the *-th row of !  

6. Resort to the FKM algorithm to partition the data points (B")"=1,…,X into ) clusters Q1, … , Qt 

Output: Clusters �1, … , �t with �" = {R|B# ∈ Q} 

It should be noted that the eigengap heuristic theory at the basis of the third step of the algorithm works well 

when the modularized structure of the data are pronounced whereas the more noisy or overlapping the clusters 

are, the less effective it is (Von Luxburg, 2007). In those cases, other methods such as the Markov clustering 

algorithm (Van Dongen, 2000) can be used to find the optimal number of clusters. 

2.2.2 Hierarchical network representation 

Hierarchically modularized organization, which is a central idea about the life process in biology, is found to be 

also an internal structure of many technique networks (Sales-Pardo et al., 2007), and can be utilized to model 

these complex systems for the management of system complexity (Gómez et al., 2011).  

For illustration of the potential of the hierarchical modelling framework for complex system analysis, by analo-

gy one may think of the electronic maps such as those provided by Google Maps; the tools are powerful because 

they present information in a scalable manner – despite the decrease in the amount of information as we “zoom 

in”, the representation shows the information that is relevant at the new scale.  
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In the same spirit, a hierarchical model representing the whole system at the top and individual elements at the 

bottom could be obtained via a process of successive clustering of the network and network subsystems (e.g., 

via successively performing the USCA on the network). Then, based on the hierarchical network representation, 

fictitious networks can be defined in each level, from which the analyst can extract relevant information at the 

suitable level of the hierarchy. Fictitious networks are cluster-simplified representations of the real network and 

can facilitate the understanding and analysis of the network properties by focusing on the relevant information 

that emerges at the different levels.  

 

Figure 2:2 Illustrative example of the construction of fictitious networks. 

Specifically, the artificial network at level = of the network hierarchy is described as a graph N(z)(Λ(z), M(z)) with 

1 ≤ = ≤ 0, where 0 is the number of levels of the hierarchy. We use ;"
(z) to represent the artificial node * (for 

* = 1,2,… , ∣Λ(z)∣) at level =, which corresponds to a cluster of real network nodes. Artificial nodes are connected 

by artificial links M"#
(z) (for *, R = 1,2,… , ∣Λ(z)∣ and * ≠ R), composed by those actual network links connecting (in 

parallel) the actual nodes in the clusters forming the artificial nodes, M"#
(z) = {?m&∣Um ∈ ;"

(z), U& ∈ ;#
(z)}. The con-

nection pattern between artificial nodes at level = is illustrated by an adjacency matrix ���� whose element 

Q(z)(;"
(z), ;#

(z)) = 1 ∣M"#
(z)∣⁄  if M"#

(z) ≠ ∅, i.e. if in the artificial nodes ;"
(z)

 
and ;#

(z)
 
are connected by fictitious edge 

M"#
(z) and 0 otherwise. This definition accounts for the fact that a fictitious edge embracing several real links has 

that number of paths available between the two communities it connects, thus holding more interaction effi-

ciency and smaller weight viewed as the physical distance between the two communities connected by the vir-

tual edge. Figure 2:2 gives an example of the construction of a fictitious network. 

The hierarchical modelling framework offers different levels of resolution at the different levels of the hierarchy. 

The artificial networks at the top of the hierarchy contain limited detail information of the local connectivity 

patterns (in the limit, only one node represents the whole network at the first level of the hierarchy); as we 

move down the hierarchy, more local information enters the model, at the expense of an increase in the dimen-

sion of the network. These characteristics can be leveraged efficiently to facilitate the management of complexi-

ty in the analysis of large-scale CI systems. In Chapter 5 and appended Papers [1] and [2], we will illustrate 

this by referring to the vulnerability and reliability analysis of a realistic CI network, i.e. the 380kV Italian 

Power Transmission Network (IPTN380). 
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2.3 Extended reliability-based component importance measures 

Component importance measures (CIMs) are widely used in system engineering to identify components within 

the system that most significantly influence the system behavior with respect to reliability, risk and/or safety. 

The indications drawn are valuable for establishing direction and prioritization of actions, related to reliability 

improvement during system design and optimization of operation and maintenance.  

A well-known CIM is the so called Birnbaum IM defined as (with reference to system reliability �m, as the 

system performance indicator) (Birnbaum, 1968): 

q"\ = ��m
��"

= �m(�" = 1) − �m(�" = 0) (2.3) 

where q"\  is the Birnbaum Importance (BI) of component *; �m represents the reliability of the system; �" is 
the reliability of component *; �m(�" = 1) is the system reliability calculated assuming that component * is 
perfectly operating and �m(�" = 0) the system reliability in the opposite case of component * failed. The BI 

measures the significance of component * to system reliability by the rate at which system reliability improves 

with the reliability of component *. As shown in Equation (2.3), the BI of component * does not depend on �" 
itself, so that two components * and R may have a similar value q\ although they have different reliability 

values �" and �#, respectively; this could be seen as a limitation of BI. 

The Criticality Importance (CImp) measure overcomes the above limitation by considering component unrelia-

bility (Espiritu et al., 2007). It is defined as: 

q"a = q"\i �"
�m

= [�m(�" = 1) − �m(�" = 0)] 1 − �"
�m

 (2.4) 

where �" is the unreliability of component * and �m is the system unreliability. Now, a less reliable component 

is more critical than another one with same value of BI. 

Fuessell & Vesely (Fussell, 1975) proposed an alternative importance measure according to which the im-

portance of a component in the system depends on the number and on the order of the cut sets in which it 

appears. Most commonly used as a risk reduction indicator, Fuessell & Vesely Importance (FVI) quantifies the 

maximum decrement in system reliability caused by a particular component being failed (�" = 0): 

q"�` = �m − �m(�" = 0)
�m

 (2.5) 

The previously proposed CIMs (BI, CImp and FVI) are functionally different. They evaluate subtly different 

properties of the system behavior, and therefore, are often used in a complementary fashion to infer different 

information. However, in order to apply the CIMs for analyzing a CI network system such as the IPTN380, it 

is necessary to extend the definition of the CIMs to account for the multiple terminal or node pairs (e.g. gener-

ator-distributor pairs) where connectivity defines the network functionality. 

Specializing such extension for the analysis of the importance of components of a CI network system, we intro-

duce the Extended Birnbaum Importance (EBI) measure as the average of all BI values obtained considering 

all possible Generator-Distributor pairs reliabilities in the network system: 
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q"J−\ = 1
4�4[

∑ ��m�
��"m∈`�,�∈`�

= 1
4�4[

∑ [�m�(�" = 1) − �m�(�" = 0)]
m∈`�,�∈`�

 (2.6) 

where 4� and 4[ are the number of generators and distributors in the network respectively; ;�  and ;[ are 

sets of node generators and distributors respectively; �m� is the terminal pair reliability (TPR) between node + 
and node Z; �m�(�" = 1) and �m�(�" = 0) represent the terminal pair reliabilities between node + and node Z, 

in the condition that component * is perfectly operating and completely failed, respectively. 

Similarly, we can define Extended Criticality Importance (ECI) and Extended Fussell &Vesely Importance 

(EFVI) measures: 

q"J−a = 1
4�4[

∑ [�m�(�" = 1) − �m�(�" = 0)]
m∈`�,�∈`�

1 − �"
1 − �m�

 (2.7) 

q"J−�` = 1
4�4[

∑ �m� − �m�(�" = 0)
�m�m∈`�,�∈`�

 (2.8) 

where q"J−a
 is the Extended Criticality Importance (ECI) measure of component * and q"J−�`

 is the Extended 

Fussell &Vesely Importance measure. 

The definitions in formulas (2.6)-(2.8) render CIMs compatible and applicable to a complex distributed network 

system, providing risk managers with information on the risk/safety significance of system structures and com-

ponents. However, their computation in large or even moderate network systems is non-trivial. In Chapter 5 

and appended Paper [2], we will illustrate how the hierarchical modeling introduced in the previous Section can 

be used to set up a framework within which the extended CIMs of the components of large-scale complex net-

work systems can be computed efficiently, due to the multi-scaled information representation scheme.  





 

 

 CI optimization against cas-Chapter 3

cading failures 
As introduced in Chapter 1, systemic risk leads to catastrophic impact in a way of cascading failure, and its 

occurrence is much more likely than might be expected: for example, the probability distribution of blackout 

size happened in power grids approximately follows a power law, rather than an exponential type distribution 

predicted by traditional risk analysis (Chen et al., 2005; Dobson et al., 2007; Hines et al., 2009). This chapter 

addresses the problem of cascading (systemic) failures mitigation for CI networks by network optimization. 

Specifically, the problem is taken from a holistic system design perspective: some system properties, such as its 

topology and link capacities, are redesigned in an optimal way in order to enhance system’s ability of resisting 

to cascading failures. 

This Chapter starts with an overview of the existing studies about cascading failures in CI networks (Section 

3.1). Then, the two different approaches of increasing complexity have been used to model cascading failures, 

i.e. a topological complex network-based model and a physical flow-based model (for electrical power grids), are 

summarized (Section 3.2). Finally, this problem of redesigning network properties (e.g., topology and link ca-

pacities) to increase network resistence to cascading failures is formulated within a multi-objective optimization 

framework, and is solved by evolutionary algorithms (Section 3.3). 

3.1 Cascading failures in CI networks 

Cascading failure is the usual mechanism by which failure propagates to cause large outages of CI networks, 

such as power the electrical power transmission networks (U.S.-CA, 2004; U.C.T.E, 2004; 2007; Pidd, 2012), 

the Internet (Newman et al., 2002) and financial networks (Battiston et al., 2007). It is defined as “a sequence 

of dependent failures of individual components that successively weakens the system, usually initiated by a dis-

turbance or trigger events” (Baldick et al., 2008).  

While cascading phenomena have a diversity of failures and many different mechanisms by which failures can 

propagate, load redistribution plays a key role in the process of failure propagation (Motter, 2004; Simonsen et 

al., 2008). In the cascading failures taking place on the Internet, traffic is rerouted to bypass malfunctioning 

routes, eventually leading to an avalanche of overloads on other routers that are not equipped to handle extra 

traffic. The redistribution of the traffic can result in a congestion regime with a large drop of the performance 

(Guimera et al., 2002; Crucitti et al., 2004). When cascading failures happen in electrical power grids, the pow-

er of a (for any reason) failed line is automatically shifted to the neighboring lines, which in most of the cases 

are able to handle the extra load. Few times, however, also these lines are overloaded and must redistribute 

their increased load to their neighbors. This eventually leads to a cascade of failures: a large number of trans-

mission lines are overloaded and malfunction in a very short time period. 

In the past two decades, a large volume of work has been devoted to understanding and analyzing cascading 

failures, differing for both the logic of failure propagation and the extent to which they abstract the underlying 

physical CI systems. A review of different available methods for analyzing cascading failures specifically in 

power grids is provided by Baldick et al. (2008). These efforts can be categorized into three classes: (i) (high-



CI optimization against cascading failures 

20 

level) probabilistic analytical models, (ii) simulation and models selecting and approximating a modest subset 

of the many physical and engineering mechanisms of cascading failure, and (iii) an extensive complex literature 

on cascading in abstract networks. 

(High-level) Probabilistic approaches for cascading failures tend to capture the stochastic dynamics of 

cascading failures without detailed models of the interactions and dependencies. They provide insight into the 

general qualitative features of cascading failures such as the risk of cascading failure, probability distribution of 

the outage size and the asymptotic behavior of cascading failures in certain cases. The CASCADE model by 

Dobson et al. (2005a) models cascading failures triggered by initial load increments on certain components of 

the system. In this model, failures occur due to overloaded components and cascading failures develop as a 

result of redistribution of loads among the remaining components. However, the redistribution of loads is based 

upon simple assumptions; for example, loads are added equally to the components of the system as a result of 

failures.  

Probabilistic models based on branching processes (Dobson et al., 2005b; Ren and Dobson, 2008; Dobson, 2012) 

have also emerged, providing a framework for studying the statistical properties of cascading failures, such as 

the probability distribution of the failure size. These approaches model cascading failures by considering gener-

ations of failures, whereby each failure in each generation independently produces a random number of subse-

quent failures in the network generation, and so on. Branching process-based approaches have the limitation 

that they do not have sufficient degree of freedom to capture the effect of physical factors contributing to cas-

cading failures, as the failure generation parameter is the only parameter used in these models.  

Simulation and models with a modest subset of physical attributes: There are many simulations and 

models of cascading failure using Monte Carlo and other methods, selecting and approximating a modest subset 

of the many physical and engineering mechanisms of the system under study. Taking the study of cascading 

failures in electrical power grids as an example, the so-called Manchester model (Nedic et al., 2006) is a fairly 

detailed blackout model based on AC power flow simulation. The Hidden failure model (Bae and Thorp, 1999; 

Chen et al., 2005; Wang and Thorp, 2001) is based on the hidden failure theory and tends to simulates hidden 

relay failures probabilistically, taking into account the DC power flow constraint of the network.  

In addition, some researchers (Iyer et al., 2009; Wang et al. 2012) provide Markov-transition models for cascad-

ing failure in power grids, where the transition probabilities among states are derived from a stochastic model 

of line overloading based on a stochastic flow redistribution model based upon DC power-flow equations. How-

ever, the state space of Markov-based model is large, as it requires tracking the functionality status of trans-

mission lines and power flow information; in addition, due to the analytical complexity of the time-varying 

transition probabilities, the analytical and asymptotic characterization of probabilistic metrics, such as the 

blackout probability and distribution of the blackout size, is not possible. 

Researchers at Oak Ridge National Laboratory (ORNL), Power System Engineering Research Center of Wis-

consin University (PSerc), and Alaska University (Alaska) have proposed a landmark study for blackout model-

ling in power grids, called the ORNL-PSerc-Alaska (OPA) model (Dobson et al., 2001). The OPA model is 

built upon the Self-Organized Criticality (SOC) theory and DC power flow attributes, contains two different 

time scale dynamics (i.e., power flow dynamics and power grid growth dynamics), and reveals the complexity 

and criticality of power systems. Based on the OPA model, it is found that operation near critical points can 
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produce power law tails in the blackout size probability distribution, similar to those observed in the analysis of 

15 years of North American blackout data (Sachtjen et al., 2000; Dobson et al., 2007; Hines et al., 2009). Only 

ideal cases, such as tree networks, and real networks with a small number of nodes (∼ 100) have been consid-

ered by Carreras et al. (2002). Large networks and the influence of the topology on the dynamics of the model 

have not been studied yet. 

Network theory approaches: There is an extensive literature on cascading failures in abstract networks that 

has been originally motivated in part by the propagation of failures and congestion in the Internet (Watts, 

2002; Motter and Lai, 2002; Holme et al., 2002; Motter, 2004; Crucitti et al., 2004; Kenney et al., 2005; Li et 

al., 2013). The dynamics of the cascade is related to statistical topological properties of the networks. Some 

researchers (e.g., Albert et al., 2000; Holme et al., 2002) have studied the response of complex networks under 

different attack strategies; however, the dynamics of failure propagation has not been considered.  

Motter and Lai (2002) have introduced a simple but sophisticated model (referred to as the ML model hereaf-

ter) for cascades of overload failures in networked systems (e.g., the Internet and power grids), based on the 

concept of betweenness centrality. The model shows how an even small fraction of highly loaded nodes can 

trigger global cascades in networks with heterogeneous distribution of loads. Based on this model, it has been 

shown that a strategy of defense relying on the selective removal of components right after the initial attack or 

failure and before the propagation of the cascade can constitute an efficient strategy of defense (Motter, 2004; 

Li et al., 2013).  

Crucitti et al. (2004) have proposed a variation to the ML model in which, instead of permanently removing 

the overloaded nodes, the communication through these nodes is degraded, so that eventually the flow of the 

relevant quantities (information or energy) will avoid them. In this sense, the model can be considered as well 

as a model for congestion in communication networks. Kinney et al. (2005) have applied the model by Crucitti 

et al. (2004) to the study of cascading failures in the North American power grid and found that the loss of 

vertices with high load causes a higher damage in the system than the loss of random vertices. Simonsen et al. 

(2008) studied cascading failure in networks using a dynamical flow model which take into account the network 

topology, flow conservation, and the distribution of loads over the ne neighboring links of a node.  

Some other studies have addressed the overload breakdown problem in time evolving networks. In fact, as the 

network changes, the load is redistributed: if this is not accounted for, it may trigger a node breaking ava-

lanche. Holme et al. have proposed a model for breakdowns triggered by changing nodes (Holme and Kim, 

2002) or edges (Holme, 2002) load in an evolving network. The results show the presence of cascading failures, 

and those are more violent when the network growth is ruled by preferential rather than random attachment. 

Wang and Xu (2004) have studied cascading failures in coupled map lattices (CML) and proposed a model 

based on coupled logistic maps in the chaotic regime and a failure threshold mechanism. The breakdown of a 

single node is sufficient to trigger an entire network to collapse if the amplitude of the external perturbation on 

the single node is larger than a given threshold. Furthermore, it has been found that the threshold for a global-

ly CML is much larger than that for a small-world or scale-free CML. This implies that cascading failures occur 

much easier in small-world and scale-free networks than in global coupling networks. 
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3.2 Cascading failure modelling approaches in this study 

As discussed in Section 3.1, cascading failure models based on Complex Network Theory abstract the represen-

tation of physical infrastructures as graphs and study the connectivity characteristics, the propagation mecha-

nisms through the graph connections and their relationships. These types of models have proved to provide a 

good understanding of the specific dynamics of cascading failures (Holmgren, 2006). They have the advantage 

of modelling cascading dynamics with few parameters, so that its application to realistic, large-scale networks is 

feasible and certainly easier (Kenney et al., 2005).  

However, negative accounts on these abstract models do exist, especially when applying to electrical power 

infrastructures (which are among the most important infrastructure networks, and will be the focus of this 

study). For example, Fitzmaurice et al. (2012) find that the topological nearest neighbor cascading failure mod-

el (namely, the TC model) shows characteristics that are different from two other Kirchhoff models, namely the 

linear dynamic (LD) model and the quasi-steady state (QSS) model. Hines et al. (2010) conclude that evaluat-

ing vulnerability in power networks using purely topological metrics may be misleading under some circum-

stances.  

For these reasons, in this study, both a representative Complex Network Theory-based model (i.e. the ML 

model, Section 3.2.1) and a representative physical power flow-based model (the OPA model, Section 3.2.2) are 

embraced for cascading failure simulation in electrical power grids and systematically compared. 

3.2.1 The ML model 

The ML model assumes that at each time step, one unit of the relevant quantity (e.g., electrical flow for power 

grids) is exchanged between every pair of generation and demand nodes, and transmitted along the shortest 

path connecting them. Then, the flow at one link is computed as the number of shortest paths passing through 

it. More precisely, the flow �z�� of link = is quantified by the link betweenness, calculated as the fraction of the 

generator-distributor shortest paths passing through that link: 

�z�� = 1
4�4[

∑ >"#(=)
>"#"∈`�,#∈`�

, = ∈ M (3.1) 

where M is the set of all the links in the network; ;� (‖;�‖ = 4�) and ;[ (‖;[‖ = 4[) are the sets of genera-

tion and demand nodes, respectively; >"# is the number of shortest paths between generation nodes and demand 

nodes, and >"#(=) is the number of generation-demand shortest paths passing though link =. 

In the original ML model (Motter and Lai, 2002), a homogeneous capacity-load relationship is assumed: the 

capacity of link = is assumed to be proportional to its initial flow �z��(0) with a network tolerance parameter �: 

�z�� = (1 + �)�z��(0), = ∈ M (3.2) 

The concept of tolerance parameter  � (� ≥ 0) can be understood as an operating margin allowing safe opera-

tion of the component under potential load increment. The occurrence of a cascading failure is initiated by 

removal of a link, which in general changes the distribution of shortest paths. Then, the flow at a particular 

link can change and if it increases and exceeds its capacity, the corresponding link fails. Any failure leads to a 

new redistribution of loads and, as a result, subsequent failures can occur. 
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The detailed simulation of the ML cascading failure model proceeds as follows: 

1) A random link is chosen as failed and, thus, is removed from the network. 

2) Recur to Equation (3.1) and Floyd's shortest paths algorithm to calculate the flow of each working link 

in the network. 

3) Test each link for failure: for each link = ∈ M of the network, if �z�� > �z�� then link = is regarded as 

failed and, thus, is removed from the network. 

4) If any working link fails, return back to step 2. Otherwise, terminate the simulation and evaluate the 

network damage. 

More details of the ML model can be found in Motter and Lai (2002) and appended Papers [3], [4]. 

3.2.2 The OPA model 

The cascading failure model is based on the standard DC power flow equation, 

���� = Q ∙ � (3.3) 

where ���� is a vector whose O  components are the power flows through the lines, �z���(= ∈ M), �  is a vec-

tor whose 4 − 1 components are the power injection of each node, �" (4  is the total number of nodes in the 

network), with the exception of the reference generator, �0, and Q is a constant matrix that depends on the 

network structure and impedances (see Ref. [10] for details about the computation of Q). The reference genera-

tor power is not included in the vector �  to avoid singularity of Q as a consequence of the overall power bal-

ance. 

The generator power dispatch is solved using standard linear programming methods. Using the input power 

demand, the power flow Equation (3.3) is solved with the condition of minimizing the following cost function: 

� = ∑ �"(	)
"∈`�

+ � ∑ �#(	)
#∈`�

 (3.4) 

This definition gives preference to generation shift whilst assigning a high cost (set � =100) to load shedding, 

and it is assumed that all generators operate at the same cost and that all loads are served with equal priority. 

The minimization is done with the following constraints: 

(1) Generator power injections are generally positive and limited by installed capacity limits: 0 ≤ �" ≤
�"o��, * ∈ ;�. 

(2) Loads always have negative power injections: �#��o ≤ �# ≤ 0, R ∈ ;[. 

(3) The flow through links is limited by link capacities: ∣�z���∣ ≤ �z���. 

(4) Total power generation and consumption remain balanced: ∑ �""∈`�∪`�
= 0. 

After solving the linear optimization, we examine which lines are overloaded. A line is considered to be over-

loaded if the power flow through it is within 1% of the limit capacity �z��� . Each overloaded line may outage 

with probability �1 (�1 is set as 1 in the case study in Chapter 5 to ensure its comparability with ML). If an 

overloaded line experiences an outage, its power flow limit �z��� is divided by a very large number )1 to en-

sure that practically no power may flow through the line. Besides, to avoid a matrix singularity from the line 

outage, the impedances of failed lines are multiplied by a large number )2, resulting in changes of the network 
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matrix Q. Similary, for more details of the OPA model, one can refer to Dobson (2001) and to appended Pa-

pers [3], [4]. 

3.3 Network optimization against cascading failures 

Cascading failures are manifestation of the potential vulnerability of otherwise highly robust networks (such as 

the power grids) due to the interdependency between the successive events. Reliability improvement efforts 

(such as critical parts upgrading) are unlikely to eliminate all failures, and future cascading failures in CIs are 

inevitable (Talukdar et al., 2003). Therefore, an essential question is, then, how to enhance CI survivability 

even if cascading failures happen. This question is here addressed from a holistic system design perspective, i.e. 

some system parameters (such as its topology and link capacities) are redesigned in an optimal way to enhance 

system’s robustness against cascading failures.  

3.3.1 Topology optimization 

Albert et al. (2004) demonstrated that the vulnerability of modern infrastructure networks (e.g., power trans-

mission networks) is inherent to their structure. Thadakamalla et al. (2004) revealed that the topology of a 

supply infrastructure has great impact on its resilience. Then, much attention has been paid in recent years in 

the direction of network topology optimization, with the purpose of achieving desired targets of reliability 

and/or robustness (Shao et al., 2005; Gutfraind, 2010; Ash and Newth, 2007).  

In practical cases, the cost of knocking down an existing network and reconstructing it from scratch is prohibi-

tive, especially for CIs like the power transmission network. A more practicable alternative is to reconfigure 

parts of the network topology, e.g. by reallocation of the links which connect production facilities to consumers. 

Consider a weighted undirected graph N with a set of 4  nodes representing 4� power generators and 4� loads 

representing distribution substations, interconnected by a set of edges representing transmission lines. The 

structure of the network is identified by its adjacency matrix ' . The weight of the edge between * and R is 
given by their physical distances Z(*, R), which we assume directly related to the transmitting cost of the link. 

We define the variables to be optimized as the links of generation nodes to the different distribution nodes: 

1"# = {1, *� * *+ LD>>?L	?Z �*	ℎ R Z*�?L	=B
0,                              D	ℎ?��*+? (3.5) 

for all * ∈ ;� and R ∈ ;�. Two constraints have to be met when rewiring generators and distributors: (1) each 

distributor node is required to connect with at least one generator node or other distributor node, to make it 

accessible to the power supplying generators; (2) each generator node has to connect at least with one distribu-

tor node. 

We assume that the cost associated with each connection cutting and rewiring is linearly proportional to the 

physical length of the linkage, with coefficient �. The total investment cost of a reconstructed pattern 1 in the 

power transmission network can be defined as 

�D+	(1"#) = ∑ �1"#
"∈`�#∈`�

Z(*, R) (3.6) 

where Z(*, R) is the physical distance between * and R. 
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For each reconstructed pattern 1, the computationally-cheap ML model is here used to simulate and quantify 

the network vulnerability to cascading failures, which is characterized by the fraction of network (average) effi-

ciency lost in the cascading failure 

;<=(N) = M(N) − M(N)
M(N)  (3.7) 

where ;<=(N) ∈ (0, 1), N represents the residual network structure after the simulation of cascading failure 

(introduced in Section 3.2.1) achieving and maintaining a stable state, and M(N) is the network (average) effi-

ciency defined in Table 2:1. 

It should be noted that the effect of the type of initial event could significantly influence the cascading failure 

result: the efficiency loss of a cascade triggered by the failure of a critical component could be much more se-

vere than that originated by the failure of a normal component. Therefore, in this study we consider a worst-

case scenario by choosing the failure of one of the top five most loaded nodes as initial failure in each cascade 

process simulation and, then, we average the results are averaged on the number of simulations. 

Through the quantification of the connection pattern cost and cascading failure vulnerability, the facility allo-

cation problem is formulated as a multi-objective optimization problem: 

⎩{
⎨
{⎧min �D+	(1"#)

min ;<=(�� ¡) 
 

(3.8a) 

(3.8b) 

+. 	.
⎩{
⎨
{⎧∑ 1"#"∈`¢∪`£

> 0 ∀R ∈ ;� 
∑ 1"##∈`£

> 0 ∀* ∈ ;� 
 

(3.8c) 

(3.8d) 

The objective function (3.8a) is the sum of the fixed rewiring costs (to be minimized); (3.8b) expresses the ob-

jective of maximizing network robustness against cascading failures (i.e., minimizing its vulnerabiltiy). Formu-

las (3.8c) and (3.8d) represent the two contstaints mentioned above (i.e., each distributor node is required to 

connect with at least one generator node or other distributor node, to make it accessible to the power supplying 

generators, and each generator node has to connect at least with one distributor node, respectively). Observe 

that the least costly generator allocation is simply that with no links among facilities and consumers. Finally, 

notice that in this analysis, only the computationally-cheap ML is directly used in the optimization process; the 

optimal topology hereby obtained is then validated only a posteriori by means of the OPA model. The reader is 

referred to appended Paper [3] for further details. 

3.3.2 Capacity allocation optimization 

Various problems concerning the robustness and functionality of CI systems (ranging from power outages and 

Internet congestion to affordability of public transportation) are ultimately determined by the extent to which 

the CI capability matches supply and demand under realistic conditions (Kim and Motter, 2008a). Actually, 

overloading is the most direct cause of failure propagation in a cascading failure. Then, the question is how to 

augment the capacities of components in a CI network in an effective manner in order to enhance its robustness 

against cascading failure, i.e., which type of capacity allocation pattern is the most robust against cascading 

failure.  
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In the study of cascading failure in CIs, a homogeneous capacity-load relationship has been widely used (Motter 

and Lai, 2002; Crucitti et al., 2004; Motter, 2004; Zio and Sansavini, 2011a; Li et al., 2013), whereby the capac-

ity of a component is assumed to be proportional to the initial flow of the component. However, it has been 

argued by Kim and Motter (2008a) that this is unrealistic and empirical data suggests that the relationship 

between capacity and load of transmission lines is non-linear (Kim and Motter, 2008a; 2008b): heavily loaded 

lines usually have a lower tolerance parameter than lightly loaded lines. Wang and Kim (2007) proposed a 

(non-linear) two-step function for the relationship between the capacity and load of network vertices. Although 

based on an over-simplified model, it has been shown efficient to prevent cascades by protecting highest-load 

vertices. Li et al. (2008) introduced a more complex heuristic capacity model whereby vertices with both higher 

loads and larger degrees are paid more extra capacities. It is shown that this model can achieve better network 

robustness than previous models under the same amount of available resources. 

In the present study, we tackle the issue from a systematic perspective by searching for the strategy of capacity 

allocation in a CI (power transmission) network that is most favorable for resisting to cascading failures, while 

keeping the total capacity limited (i.e., while minimizing the network cost). This is framed into a multi-

objective optimization problem. In addition, notice that in this context, both the ML and OPA models are di-

rectly used in the optimization process and the corresponding optimal capacity patterns are found: then the 

results obtained are compared. 

Specifically, we define the variables to be optimized as the capacities of the links in a network N(; , M), 
�z, = ∈ M (namely, �z�� for the ML model and �z��� for the OPA model). Thus, the homogeneous capacity 

allocation strategy originally used in the ML and OPA model, i.e. Equation (3.2), is no longer adopted in the 

optimization. Instead, any non-negative vector � ∈ ℝ+�  could represent a potential solution. It is noted that 

the searching space ℝ+�  is intractably large in reality, where a power transmission network usually has hun-

dreds or thousands of links. 

Similarly, the cost associated with each link capacity is assumed to be linearly proportional to the value of the 

capacity, with coefficient �. The total investment cost related to a capacity allocation pattern � ∈ �+�  in the 

power transmission network can, then, be defined as: 

�D+	(�) = ∑ ��z
z∈J

 (3.9) 

The network damage resulting from a cascading failure in the presence of a given capacity pattern can be ob-

tained by running the cascading simulation (the ML or the OPA model) in correspondence of the capacity 

pattern and, then, using 

;<=��(Na) = M(Na) − M(Na)
M(Na)  (3.10) 

(same as Equation (3.7)) when the ML model is adopted, or using 

;<=���(Na) = 0.
� = ∑ 0.##∈`£

∑ �#��o
#∈`£

 (3.11) 
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when the OPA model is adopted. Notice that �#��o and 0.# are the demand load and load shedding, respec-

tively, at vertex R; � and 0. represent the total load demand and load shedding, respectively, for the system. 

One can refer to the appended Papers [3] and [4] for the details of their calculations. The cascade simulations 

(ML and OPA) run over several iterations until they either converge or exceed the maximum number of steps. 

Finally, the network vulnerability for a given capacity allocation pattern � is obtained as the average network 

damage ;<=�� (or ;<=��� for OPA), over various random triggers. 

Through the quantification of the capacity allocation cost and cascading failure vulnerability, the capacity 

allocation problem is formulated as a multi-objective optimization: 

⎩{⎨
{⎧ ¥*>

a∈I+¦
�D+	(�)

¥*>
a∈I+¦

;<=(Na)  
(3.12a) 

(3.12b) 

The objective function (3.12a) is the sum of the link capacity costs (to be minimized); function (3.12b) express-

es the objective of minimizing cascade vulnerability, where ;<=(�) is ;<=��(Na) when the ML model is used, 

or ;<=���(Na) when the OPA is used, respectively. Observe that under this definition the most cascade-

resilient network might be the network with infinite capacity, which obviously would conflict with the objective 

of minimizing cost.  

3.4 Evolutionary algorithms for network optimization 

Multi-objective evolutionary algorithms (MOEAs) have proven to be general, robust and powerful search tools 

that are desirable for tackling problems involving i) multiple conflicting objectives, and ii) intractably large and 

highly complex search spaces (Zitzler et al., 2004). In extreme synthesis, the main properties of Evolutionary 

Algorithms (EAs) are that the search for the optima is conducted (i) using a (possibly) large population of 

multiple solution points or candidates, (ii) using operations inspired by the evolution of species, such as breed-

ing and genetic mutation, (iii) using probabilistic operations and (iv) using information on the objective or 

search functions and not on its derivatives. The main advantages are: (i) fast convergence to near global opti-

ma, (ii) superior global searching capability in complicated search spaces and (iii) applicability even when gra-

dient information is not readily achievable. MOEAs rely on the following concepts (Deb, 2001): 

• Pareto front: The locus that is formed by a set of solutions that are equally good when compared to 

other solutions of that set is called Pareto front. 

• Non-Domination: Non-dominated or Pareto-optimal solutions are those solutions in the set which do 

not dominate each other, i.e., neither of them is better than the other in all the objective function 

evaluations. The solutions on each Pareto front are Pareto-optimal with respect to each other. 

The topology and capacity allocation optimization problems introduced before are both multi-objective in na-

ture and present two conflicting objectives and complex search spaces: thus, they are suitable to be solved in 

the framework of MOEAs. The search space of the topology optimization problem is non-continuous, due to the 

binary nature of link connections: hence, the Non-dominated Sorting Binary Differential Evolution (NSBDE) 

algorithm (Li et al., 2013) is adopted for its solution. On the contrary, for the solution of the capacity alloca-

tion optimization problem, whose search space is continuous, a fast and elitist genetic algorithm, namely, 

NSGA-II (Deb et al., 2002), is applied. 
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Figure 3:1 Flowchart of the common procedure of NSBDE and NSGA-II.  

Figure 3:1 illustrates the common procedure of the two algorithms. It is only the way of generating new off-

spring (step 3) that differentiates the NSBDE from NSGA-II: in particular, the NSBDE algorithm replaces the 

crossover and mutation operators (typical of NSGA-II) using a variant of the modified binary differential evolu-

tion (MODE) (Wang et al., 2010). For details about the two algorithms, one can refer to appended Paper [3] 

and to Deb et al. (2002). 



 

 

 Optimal restoration for en-Chapter 4

hanced CI resilience 
While CIP has traditionally focused on physical protection and asset hardening (Bush, 2003; Lewis, 2006), 

lessons learned from recent catastrophic accidents have pushed part of the focus on the concept of “resilience”– 

i.e., the ability of an infrastructure network to rapidly recover from the effects of a disruptive event (Pur-

siainen, 2009; Obama, 2013). This chapter firstly addresses the issue of resilience definition and quantification 

for CI system. Section 4.2 proposes a framework for properly selecting recovery actions in order to optimize the 

resilience of infrastructure networks. Then, a heuristic dispatching rule is proposed to timely solve the resilience 

optimization problem in Section 4.3. Finally, two novel resilience-based component importance metrics (CIMs) 

are proposed in Section 4.4. 

4.1 Definition of CI system resilience 

4.1.1 Critical review of literature 

Holling (1973) introduced the notion of resilience to the scientific world and provided the first system-level 

definition. Subsequently, the concept developed independently in disciplines ranging from environmental re-

search to materials science and engineering, sociology, psychology and economics, giving rise to a number of 

different definitions and classifications of resilience within these fields (Henry and Emmanuel Ramirez-Marquez, 

2012). Yet, it is believed that the current strong interest in resilience for infrastructure systems has been trig-

gered in the aftermath of 9/11 attacks (Haimes et al., 2008).  

One of the pioneering works in the field of infrastructure systems resilience is from the Multidisciplinary and 

National Center for Earthquake Engineering Research (MCEER) (Bruneau et al., 2003), where a general 

framework is provided to define and assess the seismic resilience of communities or any type of physical and 

organizational systems. This framework consists of “4Rs”: robustness, redundancy, resourcefulness, and rapidi-

ty, while resilience itself encompasses four interrelated dimensions: technical, organizational, social and econom-

ic.  

Based on the general framework provided by Bruneau et al. (2003), various studies have been carried out with 

the purpose of providing a practical interpretation of the concept of resilience and identifying possible ways of 

measuring it for giving support to resilience-based decisions. Most of these approaches to resilience interpreta-

tion and definition include aspects of a system withstanding disturbances, adapting to the disruption, and re-

covering from the state of reduced performance, and can rely upon a common concept which is illustrated 

schematically in Figure 4:1. 

A quantifiable and time-dependent system performance function (also referred to system-level delivery function 

or figure-of-merit) �(	) is the basis for the assessment of system resilience. It has a nominal value �(	0) under 

nominal operating conditions. The system operates at this level until suffering a disruptive event at time 	�. 
The disruption generally deteriorates system performance to some level �(	�) at time 	�. Then, recovery is 

started for increasing back system performance until a targeted level �(	K) is achieved once recovery is com-
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pleted (�(	K) could be the same (as in Figure 4:1), lower or higher than the original system performance level 

�(	0)). The dotted curve in Figure 4:1 denotes the targeted system performance !�(	) if not affected by dis-

ruption. It is noted that various strategies exist for recovery activities, and system performance is ultimately a 

function of recovery decisions and actions. The period 	� ≤ 	 ≤ 	K is generally considered as the recovery time 

(Cimellaro et al., 2010). 

 

Figure 4:1 Generic system performance transition curve under the occurrence of a disruptive event. 

Many studies in the literature define and measure resilience based only on initial system losses caused by disas-

ter. Najjar and Gaudiot (1990) regard network resilience as a measure of network fault tolerance in a multi-

computer system: in this framework, network resilience 4�(�) represents the upper bound on the number of 

node failures allowed, and is defined as the maximum number of node failures that can be sustained while the 

network remains connected with a probability (1 − �). Omer et al. (2009) suggest a model to measure resilience 

of a telecommunication cable system as a network infrastructure. The ratio of the “value delivery” of the net-

work after a disruption to that before a disruption is defined as a reference for resilience, where “value delivery” 

is the amount of information that has to be carried through the network. Rosenkrantz et al. (2009) identify 

resilience metrics for service-oriented networks, where edge resilience of a network is defined as the largest val-

ue ) such that, no matter which subset of ) or fewer edges fail, the residual sub-network is self-sufficient. Node 

resilience is also defined in the same manner.  

These definitions focus on the static “survival” property of a system, measuring the degree of system perfor-

mance after a disruption. They largely overlap with the existing concepts of fault tolerance and robustness, 

while the temporal dimension of post-disaster loss recovery (i.e. the time 	 > 	� in Figure 4:1) is not considered: 

on the other hand, this time period is significant for evaluating the system ability to leap back from disruption. 

For this reason, other works have considered the system ability to recover from disruption. For example, 

MCEER (Bruneau et al., 2003) proposes that the seismic resilience of a community to an earthquake can be 

measured by the area between �(	) and �(	0). Cimellaro et al. (2010) attempt to formulate a framework to 

quantify system resilience under seismic risk, taking into account both the losses due to the disaster and the 

recovery phase. They view system resilience as the area underneath the performance function �(	) of a system, 

normalized by a control time 	�a . Ouyang and Dueñas-Osorio (2012) introduce a time-dependent resilience 

metric for infrastructure systems, where system resilience is quantified as the ratio of the area included between 

�(	) and the time axis to the area included between !� (	) and the time axis. The time span considered here is 
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from 	0 to a sufficiently large 	(	 > 	K) that allows future system evolution: this metric explicitly embraces the 

system failure process.  

Vulgrin et al. (2010) develop a composite resilience measure § that simultaneously considers recovery of system 

performance and the resource expenditures required to achieve it. Two key quantities are computed: (i) the so-

called systemic impact (.q) (defined as the cumulative impact of decreased system performance following a 

disruption and graphically represented by the area between the targeted system performance !�(	) and the 

actual system performance �(	)) and (ii) the total recovery effort (!�M) (defined as the cumulative resources 

expended in recovery activities). However, the disadvantage of this approach is that an increase in .q and !�M 

implies an increase in its composite resilience measure § (§ = .q + � !�M), rather than a decrease.  

Henry and Ramirez-Marquez (2012) attempt to review different definitions and metrics for system resilience, 

and introduce a resilience metric referring to the basic meaning of the word “resilience”. They view resilience 

�(	) as the ratio of recovery to loss at a given time 	, measured by �(	) = �(&)−�(&£)
�(&0)−�(&£). This formulation is iden-

tical to Rose’s (2007) static resilience metric when �(	�) is taken to be Rose’s worst-case quantity. Henry and 

Ramirez-Marquez (2012), then, apply this measure to various scenarios that disable links in a transportation 

network in order to find restoration sequences that maximize recovery at a given time. However, this metric 

itself does not embrace the integral temporal dimension of the recovery process, thus neglecting the speed with 

which the performance of the system is recovered. 

4.1.2 System resilience definition and assessment in this work 

In light of the issues highlighted above, we propose a new metric for analytical quantification of the resilience 

of infrastructure systems. It is still relying on the basic meaning of the word “resilience” and can be applied to 

evaluate and compare the effectiveness of different strategies that are proposed to reduce adverse consequences 

of disruptive events.  

 

Figure 4:2 Conceptual illustration of the proposed resilience metric �(	). 
Let �(	) be the resilience of a system at time 	 (	 ≥ 	�). In its basic form, �(	) is here given the meaning of the 

cumulative system functionality that has been restored at time 	, normalized by the expected cumulative sys-

tem functionality during this same time period. Graphically, �(	) is represented by the ratio of the area with 

diagonal stripes .1 to the area of the shaded part .2, as illustrated in Figure 4:2. Mathematically, it is given 

as: 
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�(	) = ∫ [�(ª) − �(	�)]Zª&
&£

∫ [!� (ª) − �(	�)]Zª&
&£

, 	 ≥ 	� (4.1) 

The following considerations about the given resilience definition are important: 

1) The system resilience �(	) defined in Equation (4.1) measures the cumulative system performance that 

has been restored from the system disrupted state to the recovered state at current time 	, normalized 

by the target cumulative performance as if the system were not affected by disruption. This formula-

tion is aligned with the original meaning of the concept of resilience, while capturing at the same time 

both the magnitude and rapidity of the system recovery action. 

2) The system performance function �(	) could be represented by different metrics (e.g., the amount of 

flow or services delivered, the availability of critical facilities, the number of customers served, or the 

enabling potential of economic activities for infrastructure systems), depending on which dimension 

(i.e., technical, organizational, social and economic) of resilience the analysis focuses on (Bruneau et al., 

2003). This study concentrates on the technical dimension of resilience and utilizes the amount of flow 

delivered to the demand nodes of a network as the performance level metric. 

3) Note that �(	) is undefined when �(	�) = !�(	), which means that a system does not suffer any loss. 

This condition is avoided since only systems exposed to disruptive events are here considered. Practi-

cally, if a system does not suffer any loss, there is no scope for it to be recovered or to bounce back and 

thus there is no need to evaluate resilience.  

4) �(	) is undefined when 	 < 	�, because of the same reason explained in item 3. Besides, this could 

avoid any overlap with existing concepts like robustness, vulnerability and survivability. 

5) �(	) ∈ [0, 1] and �(	) = 0 when �(	) = �(	�), which means that a system has not recovered from its 

disrupted state (i.e. there has been no “resilience” action); �(	) = 1 when �(	) =  !�(	), which corre-

sponds to the ideal case where a system recovers to its target state immediately after disruption. 

6) The target system performance !� (	) is generally evolving due to the dynamic nature of service de-

mand in infrastructure systems. For simplicity, in this study we assume that !� (	) equals �(	0) and 

remains invariant. 

4.2 Optimization model of CI system restoration 

After the definition of system resilience, we focus on the role of various recovery decisions and actions in the 

task of optimizing the resilience of infrastructure networks subject to disruptive events. A general resilience 

optimization model for infrastructure networks is first formulated and, then, the DC power flow is incorporated 

as extra constraints when applying to power grids.  

4.2.1 General flow-based modelling 

The mathematical model for the resilience optimization problem here considered involves an infrastructure 

network N(; , M) comprising a set of nodes ;  connected by a set of links M. The network nodes are classified 

into supply nodes	;., transshipment nodes ;¬ , and demand nodes ;[ (;­ ∪ ;¬ ∪ ;[ = ; ). Each arc *R ∈ M 

has an associated capacity �"# ∈ ℝ0+ , while each supply node * ∈ ;­  has a supply capacity per time unit 

�"m ∈ ℝ0+ and each demand node R ∈ ;[ has a demand �#[ ∈ ℝ0+ per time unit. Network flow is sent from sup-

ply nodes to demand nodes respecting the flow capacities of the links and supply/demand capacities of the 
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nodes. Each unit of flow that arrives at demand node R ∈ ;[ is given a weight �# ∈ ℤ+ in order to differentiate 

priorities of demand nodes (e.g., a hospital usually has a higher weight than a residential household in a power 

network). The performance of the network is evaluated by determining the maximum amount of weighed flow 

that can be received by the demand nodes. Formally, the system performance function is defined as: 

�(	) = ∑ �#�#(	)
#∈`�

 (4.2) 

where �#(	) represents the amount of flow received by demand node R at time 	. 

Disruptions happen and create damages to nodes and/or links in the network, as modeled by the removal of a 

subset of arcs, M′ ⊂ M.1 The arcs in set M′ are viewed as non-operational immediately after the disruption. 

System performance �(	) achieve its minimum value at this time (	 = 0, i.e. �o"X = �(0)).  
In a recovery optimization framework, we are not only interested in identifying a subset of the links in M′ to be 

installed to the disrupted network, but also in selecting an optimal order of installation and repair of these 

links. The goal is to achieve maximum system resilience over the whole restoration horizon ! ∈ §+. Link re-

pairs are here assumed to be discrete tasks, and a repair cost �"# ∈ §0+ is associated to each arc *R ∈ M′. The 

processing time of a single arc restoration is not considered in this study (i.e., the repair action is assumed to 

be instantaneous); instead, the main focus is when the disrupted arcs should come back online. In addition, the 

number of arcs that can be restored in each time period is constrained by their total cost. By combining Equa-

tions (4.1) and (4.2), system resilience to be maximized at time !  is given by 

�(! ) = ∑ [∑ �#�#(	)#∈`�
− �o"X]&=¬

&=1
! (∑ �#�#[#∈`�

− �o"X)  (4.3) 

The optimization variables of the resilience optimization problem include: (i) continuous variables �"#(	) ∈ ℝ0+, 

*R ∈ M and 	 = 1, … , ! , that denote the flows moving from node * to node R through link *R at time unit 	; (ii) 
continuous variables �#(	) ∈ �0+, R ∈ ;[, that represent the amounts of flow received by demand node R at time 

unit 	, and (iii) binary state variables +"#(	), *R ∈ M and 	 = 1, … , ! , such that +"#(	) = 1 if arc *R is operational 

and +"#(	) = 0 if arc *R is not operational at time unit 	.  

We are interested in optimizing the resilience over the whole restoration process: thus, the timespan !  is cho-

sen as the total recovery time, defined as the period necessary to restore the system functionality to the same 

level as the original system. Consequently, the formulation of the resilience optimization problem is as follows: 

max ∑ [∑ �#�#(	)#∈`�
− �o"X]&=¬

&=1
! (∑ �#�#[#∈`�

− �o"X)  (4.4) 

Subject to 

                                                                        

1 If nodes are important in a specific application problem, they can be converted to equivalent arcs by introducing addition-
al arcs and nodes into the network, i.e. by ‘splitting’ a node into two nodes and an arc. 
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∑ �"#(	)
"#∈J

− ∑ �#"(	)
#"∈J

≤ �"m, ∀* ∈ ;­ , 	 = {1, … , !} (4.5) 

∑ �"#(	)
"#∈J

− ∑ �#"(	)
#"∈J

= 0, ∀* ∈ ;¬ , 	 = {1, … , !} (4.6) 

∑ �"#(	)
"#∈J

− ∑ �#"(	)
#"∈J

= −�#(	), ∀* ∈ ;[, 	 = {1, … , !} (4.7) 

0 ≤ �#(	) ≤ �#[, ∀* ∈ ;[, 	 = {1, … , !} (4.8) 

0 ≤ �"#(	) ≤ +"#(	)�"#, ∀*R ∈ M, 	 = {1, … , !} (4.9) 

+"#(	) ≤ +"#(	 + 1), ∀*R ∈ M, 	 = {1, … , !} (4.10) 

∑ �"#[+"#(	) − +"#(	 − 1)]
"#∈J′

≤ �(	), ∀	 = {1, … , !} (4.11) 

+"#(0) = 0,∀*R ∈ M′ @>Z +"#(0) = 1, ∀*R ∈ M\M′ (4.12) 

+"#(	) ∈ {0,1},∀*R ∈ M′, 	 = {1,… , !} (4.13) 

The objective (4.4) is to maximize the system resilience over the time horizon of the problem. Constraints 

(4.5)-(4.9) are typical network flow constraints over the links and supply/demand nodes in the network in peri-

od 	. They ensure that: (i) the flow generated at a supply node does not exceeds its supply capacity (4.5); (ii) 

the amount of net injected flow at a transshipment node is zero (4.6); (iii) the amount of net injected flow at a 

demand node is equal to the received flow at the node (4.7) while not exceeding its requested demand (4.8); 

(iv) the flow on an operational link does not exceed its capacity and there is no flow passing through an arc if 

the arc has not been repaired (4.9); constraint (4.10) ensures that once an arc has been restored at time 
, it 

will keep operational thereafter; finally, constraint (4.11) ensures that the total cost paid for repairing links in a 

time period does not exceeds the available resources that can be allocated in this period.  

4.2.2 Incorporating the DC power flow model for electrical networks 

The general flow-based model introduced above assumes that we can directly control the flow in the network 

which is not the case for power infrastructure networks (see Bienstock and Mattia, 2007). The DC model is a 

commonly used linear approximation of the power grids to model its operations, especially the power transmis-

sion network (Purchala et al., 2005). The OPA cascading failure model (Dobson et al., 2001) is a typical exam-

ple which based on the DC power flow model.  

The DC model includes decision variables at each node of the network that represent the phase angle of the 

node. The flow on arc *R is then a function of the phase angles of nodes * and R along with the reactance of the 

arc *R. The reactance, A"#, of the arc is dependent on the length of it and the voltage levels. By defining ·" for 

* ∈ 4  as the phase angle of node *, the flow on arc *R is determined by 

A"#�"# = ·" − ·# (4.14) 
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It is noted that both the phase angle variables and the arc flow variables are unrestricted in the DC model. A 

negative flow on arc *R corresponds to power flowing from node R to node *. Therefore, it is necessary to incor-

porate constraints that model Equation (4.14) into the optimization problem (4.4)-(4.13).  To this end, we 

define variables ·"(	) for * ∈ 4  and 	 = 1,… , !  that represent the phase angle of node * in time period 	. Then, 

the DC flow calculations (4.14) are enforced only when arc *R is operational at time 	 by using “Big-M” trans-

formation (Coffrin et al., 2011), the constraints (4.9) will be replaced by: 

A"#�"#(	) ≤ ·"(	) − ·#(	) + O[1 − +"#(	)], ∀*R ∈ M, 	 = {1,… , !} (4.15) 

A"#�"#(	) ≥ ·"(	) − ·#(	) − O[1 − +"#(	)], ∀*R ∈ M, 	 = {1,… , !} (4.16) 

−+"#(	)�"# ≤ �"#(	) ≤ +"#(	)�"#, ∀*R ∈ M, 	 = {1,… , !} (4.17) 

If +"#(	) = 0, then the constraint (4.17) force �"#(	) = 0, while constraints (4.15) and (4.16) will not impose any 

restrictions on the relationship between the phase angles of nodes * and R due to the big O . If +"#(	) = 1, then 

constraints (4.15) and (4.16) make sure that the DC flow Equation (4.14) is satisfied for arc �� in time period 	 
while constraint (4.17) ensures that the capacity of the arc is not violated. The optimization problem (4.4)-

(4.13) where constraints (4.9) has been replaced by constraints (4.15)–(4.17) will be applied to the restoration 

of power transmission networks. 

4.3 A heuristic scheduling algorithm for optimization solution 

The resilience optimization problem (ROP) introduced before is a mixed (binary) integer programming (MIP) 

problem, which has ¸(|M| ∙ ! + |;[| ∙ ! ) continuous variables, ¸(|M| ∙ ! ) binary variables and ¸(|; | ∙ ! + |M| ∙
! + 2|M′| ∙ ! ) constraints. It has been proven to be strongly 4� -complete (Pinedo, 2012) and, thus, it is com-

putationally intense especially for large-scale infrastructure networks composed of thousands of nodes and links. 

It is noted that the evaluation of a potential solution to the ROP (i.e. of a scheduled set of recovery actions on 

the disrupted links) requires evaluating the state of the system at a given time, i.e. calculating the network 

flows, which is the result of a lower-level network flow optimization. This bi-level optimization structure differ-

entiates the ROP from other resource-constrained project scheduling problems (RCPSP) extensively described 

in the literature (Brucker et al., 1999; Pinedo, 2012): these are generally based on the criterion of minimizing 

the makespan (the time to project completion) whose calculation is trivial. Consequently, many existing meta-

heuristic algorithms for RCPSP such as genetic algorithms (Hartmann, 1998), simulated annealing (Bouleimen 

and Lecocq, 2003), particle swarm (Jarboui et al., 2008) and ant colony optimization (Merkle et al., 2002) are 

most likely unable to solve the ROP without incurring in a large penalty in computational expense.  

On the other hand, there has been a significant amount of studies in RCPSP proposing some so-called dis-

patching rules, which usually characterize the profitability of scheduling a certain task by evaluating its contri-

bution to the objective function and then greedily schedule the unscheduled tasks with the best profitability 

(Pinedo, 2012).  

The key point in designing a heuristic dispatching rule for our ROP is to understand how restoring an arc im-

pacts the objective function Equation (4.3) of the problem. In this view, a straightforward idea is to modify the 

classical weighed shortest processing time (WSPT) first rule (Smith, 1956) by selecting the arc to be restored as 



Optimal restoration for enhanced CI resilience 

36 

the one that maximizes the ratio of the improvement of system resilience and the cost of restoring the arc. 

However, this approach is short-sighted in the sense that some links will not enhance the system resilience (i.e. 

will not increase the amount of flow received by demand nodes) if they are not restored in a given predefined 

sequence with other transmission links. Thus, the profitability of restoring a set of arcs instead of a single arc is 

taken into account in designing our dispatching rule. 

It is well known that the residual network associated with a maximum network flow does not contain an aug-

menting path from the supply node to the demand node (Ahuja et al., 1993). In this view, in order to increase 

the amount of flow received by the demand nodes in the current operational network after a disruptive event, a 

set of links forming some residual paths that have the potential to augment the flow received by the demand 

nodes must be restored. The main idea of our dispatching rule for the ROP is, then, to select a set of unre-

paired links that belong to some residual path and that maximize the ratio of the potential augmented flow 

received by the demand nodes to the cumulative cost of repairing all the uninstalled links in this path. The 

potential augmented flow received by demand nodes is further limited by the following three elements: the 

residual capacity of the path, the residual capacity of the supply node and the unmet flow of the demand node.  

Mathematically, suppose that N&(; , M&) is a partially restored network at time 	, 1∗ is the optimal flow (the 

result of the lower-level network flow optimization) associated with N&(; , M&). The links in N&(; , M&) will, 

then, have a residual capacity ��"# = �"# − �"#(	), ∀*R ∈ M& and repair cost �"# = 0,∀*R ∈ M&, since they are 

already operational. The supply and demand nodes in N&(; , M&) will have a residual capacity ��"m = �"m −
�"(	), ∀* ∈ ;­ and unmet demand ��#[ = �#[ − �#(	), ∀R ∈ ;[, respectively. The unrestored links in the dis-

rupted link set M′ have a residual capacity equivalent with their original capacity ��"# = �"#, and a repair cost 

�"#. Then, the residual capacity of path �m→� from supply node + to demand node Z is defined as �(�m→�) =
¥*>"#∈�»→£ ��"#. The cumulative cost of repairing all the uninstalled links in path �m→� is ∑ �"#"#∈�»→£

. Then, 

we are interested in selecting the uninstalled links in the path to be repaired, that is an optimal solution to the 

following problem: 

¥@¼�»→£∈ℵ
¥*>{��m­ , ���[, �(�m→�)} ∙ ��

∑ �"#"#∈�»→£
 (4.18) 

where ℵ is the set of all paths from all supply nodes to all demand nodes in the original network N(; , M). The 

numerator of formula (4.18) provides a measure of the potential augmented (weighted) flow received at demand 

node Z by restoring path �m→� while the denominator measures the cost required to restore all disrupted links 

in path �m→�. 

In order to determine an optimal path to (4.18), we suppose that ¿(�o→X) ∙ �X is the numerator in an optimal 

solution to (4.18), i.e. ¿(�o→X) = ¥*> {��o­ , ��X[, �(�o→X)}; then, �o→X is the path with the lowest cost 

in the network where we only include links whose residual capacities are greater than or equal to ¿(�o→X). 
This leads to an algorithm to solve (4.18): for each potential value of the numerator (including each potential 

value of the residual capacity of a path, each residual capacity of supply nodes and each unmet flow of demand 

nodes), we determine the minimum cost path in the network comprising only these links whose residual capaci-

ties are larger than the numerator. The minimum cost path can be obtained by first constructing a weighed 

network, where the link weights are set as their repair costs and, then, searching the shortest path on the 
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weighed network constructed. We can, then, obtain an optimal solution in this procedure by marking the path 

that has the maximum value of ratio (4.18). It is noted that the residual capacity of a path is the minimum 

residual capacity of the links in the path, so there are at most (|;­ | + |;[| + |M|) different values to be consid-

ered, which means the next sets of links to be restored can be determined by solving ¸(|;­ | + |;[| + |M|) 
shortest path problems. 

Table 4:1 Algorithm for path selection in the dispatching rule. 

INPUT: Residual capacity ��"# for each of the links *R ∈ M, residual capacity ��"m for each supply node 

* ∈ ;­ , unmet demand ��#[ and flow weight �� for each demand node R ∈ ;[ in the current 

network N&(; , M&) associated with an optimal flow 1∗ 

1: Set N=DA@=�@	*D = 0, �  = null. 

2: Sort the set {��"# ��"m ��#[} in non-increasing order to obtain an ordered composite set � 

3: for each � ∈ Â  

4: 

Construct a weighted network N∗ including only the links, where ��"# ≥ �. The 

weight of a link is set as �"# if it is a non-restored link; set the weight as 0 if it is an 

operational link 

5: for each Ã ∈ ÄÅ and Æ ∈ ÄÇ 

6: 
Find the shortest weighed path �"→#∗  from * to R in the network N∗, calculate the path 

length È(ÉÊ→Ë∗  ) = ∑ Ì(Ã, Æ)(Ê,Ë)∈ÍÎ→Ï∗  

7: if 
min {I� Ó,I�¡�,I(� →¡∗ )}∙Ô£

�(� →¡∗  ) > N=DA@=�@	*D 

8: N=DA@=�@	*D = min {I� Ó,I�¡�,I(� →¡∗ )}∙Ô£
�(� →¡∗  )   

9: É = ÉÊ→Ë∗  
10: end if 

11: end for 

12: end for 

13: Return É  

Formally, we provide the pseudo code of the algorithm for path selection in our dispatching rule in Table 4:1. 

We assume that the residual network N&(; , M&) associated with an optimal flow 1∗ at a given time 	 has been 

calculated as part of the inputs of the algorithm. Other inputs include the residual capacity ��"# for each link 

*R ∈ M, the residual capacity ��"m for each supply node * ∈ ;­ , and the residual capacity ��#[ and flow weight 

�� for each demand node R ∈ ;[. The variable N=DA@=�@	*D flags the current optimal ratio in formula (4.18). 

The output of the algorithm is a path composed of the next set of arcs that should be restored to the network. 

After obtaining the next set of links to be restored by applying the algorithm introduced above, we can easily 

allocate these link repair tasks into each timeslot subject to constraint (4.11), until all links from this set are 

restored. The link repair order within this set is not significant since we assume that a link repair task can be 
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split into two timeslots. Therefore, we can view this set of links as a queue and we will restore the next link in 

the queue once the previous task is finished. If no links are in the queue, we will determine the next set of links 

to be restored by considering the residual network associated with an optimal solution to the lower-level maxi-

mum flow problem, where all links that have been restored are regarded as operational in the network. This 

process continues until either all links are restored or the end of the time horizon is reached.  

 

Figure 4:3 A simple disrupted network, where the dashed lines indicate failed arcs 

We will illustrate the detailed steps of the above proposed algorithm by applying it to a very simple network. 

Consider the post-disaster network shown in Figure 4:3 with supply node A, demand node J and transship 

nodes B to I. The dashed lines in the figure indicate the failed arcs immediately after a disruptive event (	 =
0), where the links A-F, F-G, G-J, H-I, I-J, E-J are disrupted. The numbers ��"#/�"# associated with each arc 

in the Figure represent the residual capacity ��"# of the arc at time 0 and the original capacity �"#. Note that 

the residual capacity of a failed arc is regarded as its original capacity, rather than zero. Similarly, the numbers 

8/8 associated with the supply node A represent its residual capacity ���­ = 8 and its original capacity 

��­ = 8; the numbers 7/7 associated with the demand node J represent its unmet demand ��i[ = 7 and flow 

demand �i[ = 7, respectively. Besides, the repair costs of all the arcs are assumed to be constant and set as 1. 

The performance of the network is evaluated by the flow received by demand node J. 

 

Figure 4:4 Illustration of the execution process of the path selection algorithm in Table 1 on a simple network. 
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The path selection algorithm in Table 4:1, first sorts the residual capacity array {��"# ��"m ��#[} at current 

time (	 = 0), resulting in a non-increasing set � = {8, 7, 4, 2, 1}; then, for each value in the set, the algorithm 

executes step 4 to step 11, illustrated graphically in Figure 4:4. Note that � = 8 and � = 7 are skipped since 

there is no weighed network associated to those two cases. The output of the execution � = Q → Ö → q → ×  

is the path that should be selected to be restored. 

The network restoration is preceded by applying this path selection algorithm and then allocating these link 

repair tasks of the selected path into each timeslot subject to constraint (4.11). Assuming that only a single arc 

can be repaired at any given timeslot, we can obtain the optimal restoration curve of the network performance, 

as shown in Figure 4:5. 

 

Figure 4:5 Optimal restoration curve of the network performance. 

4.4 Resilience-based component importance measures (CIMs) 

Based on the definition of system resilience and the resilience optimization framework, this Section addresses 

the issue of quantifying the importance of components in contributing to the resilience of a CI. 

4.4.1 A brief overview 

Various analytical and empirical CIMs have been proposed in the literature, e.g. Birnbaum (Birnbaum, 1968), 

Fussell-Vesely (Fussell, 1975), Reliability Achievement/Reduction Worth (Gandini, 1990; Levitin et al., 2003), 

and their extensions (Andrews and Beeson, 2003; Wang et al., 2014; Ramirez-Marquez and Coit, 2005, 2007), 

including those introduced in Chapter 2.3. CIMs have been shown valuable in establishing direction and priori-

tization of actions related to an upgrading effort (e.g., reliability improvement) in system design, or in suggest-

ing the most efficient way to operate and maintain system status. However, none of the existing classical CIMs 

based on the reliability concept are directly applicable to the post-disaster phase, since there is no scope to 

exhibit reliability after the occurrence of system failure. 

The role that a component plays in a network system has been measured by various so-called centrality 

measures, looking from the point of view of the complex interaction and communication flow in the network 

(Borgatti, 2005; Kröger and Zio, 2011). As already introduced in Chapter 2, classical topological centrality 

measures are the degree centrality (Nieminen, 1974; Freeman, 1979), the closeness centrality (Freeman, 1979), 

the betweenness centrality (Freeman, 1979), and the information centrality (Latora and Marchiori, 2007). They 

specifically rely on topological information to qualify the importance of a network component. Additionally, 

Freeman et al. (1991) proposed a flow betweenness centrality measure based on the idea of maximum network 

flow; Newman (2005) suggested a random walk betweenness measure that counts essentially all paths between 
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vertices and which makes no assumptions of optimality; Jenelius et al. (2006) proposed several vulnerability-

based importance measures for transportation networks; Hines and Blumsack (2008) introduced an “electrical 

centrality” measure for electrical networks by taking into account the electrical topology of the network; Zio 

and Piccinelli (2010) provided a randomized flow model-based centrality measure specifically for electrical net-

works; Zio and Sansavini (2011a) introduced component criticality measures from the cascade failure process 

point of view, for general network systems. Nevertheless, none of these analyses takes into account the dynam-

ics of system recovery from the effects of a disruptive event. 

Resilience-based metrics of component criticality with respect to their influence on the overall resilience of the 

system (i.e., on the system’s ability to quickly recover from a disruptive event) can be helpful for preparing an 

efficient component repair checklist in the event of system failure (Natvig et al., 2011). Recently, Baker et al. 

(2013) introduced two resilience-based network component importance metrics. However, the resilience defini-

tion, which the importance metrics rely on, does not embrace the temporal dimension of system recovery and it 

is, thus, unable to measure how fast the performance of a system comes back to an acceptable level. Besides, 

the two metrics do not quantify the influence that the recovery of particular components has on the overall 

resilience of the system and they are, thus, limited in providing valuable information for system restoration 

strategy making. 

4.4.2 Resilience-based CIMs definition 

The analysis concerns a network N(; , M) comprising a set of nodes ;  and a set of links M. The binary state 

variable of arc *R at time 	 is denoted by +"#(	), ∀*R ∈ M. The initial impact experienced by the network after a 

disruptive event ? at time 	 = 0 is represented by the removal of a subset of arcs, M′ ⊂ M, from the network, 

setting +"#(0) = 0, ∀*R ∈ M′. We introduce the failure probability of arc *R under event ?, ��(*R) 

�[+"#(0) = 0|?] = ��(*R), ∀*R ∈ M (4.19) 

Equation (4.19) describes how individual components (links) are initially affected by a disruptive event ?. 
When considering component criticality in a resilience setting, we are interested in understanding: (i) the opti-

mal time to repair the failed components in order to maximize system resilience, and (ii) the effect that the 

timely recovery of the components have on the overall resilience of the system. These concepts are at the basis 

of the definition of the two resilience-based importance measures here proposed.  

Given a particular initial failure state, the optimal repair time (ORT) !"#
$%& of a failed arc *R can be computed 

by solving the MIP problem (4.4) - (4.13): 

!"#
$%& = @�b ¥@¼¬ ¡∈[0,¬ ] �(! ) (4.20) 

The timespan for restoration, ! , is chosen as the time period necessary to restore the system functionality to 

the same level as the original system. It is noted that the optimal repair time !"#
$%& offers an explicit quantifica-

tion of the priority that should be given to the reparation and installation of arc *R into the network. Low val-

ues of !"#
$%& indicate higher priority of being repaired and re-installed into the network, i.e. higher ranking of the 

component in the repair checklist.  
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To account for the delay in the restoration of a particular link *R, a resilience reduction worth (RRW) metric is 

introduced as 

��'"#(∆	0) = �$%&(! ) − �$%&(! |!"# ≥ !"#
$%& + ∆	0)

�$%&(! )  (4.21) 

where �$%&(! ) represents the optimal system resilience at restoration time ! ; �$%&(! |!"# ≥ !"#
$%& + ∆	0) corre-

sponds to the optimal system resilience at time !  if link *R cannot be repaired until time (!"#
$%& + ∆	0), where 

∆	0 is the delay with respect to its optimal repair time !"#
$%&, Equation (4.21) quantifies the potential (normal-

ized) loss in optimal system resilience due to a delay ∆	0 in the repair of link *R. This metric is comparable to 

the so-called reliability reduction worth (Espiritu et al., 2007), which measures the potential damage caused to 

the system reliability by the failure of a particular component. It can provide valuable information to guide the 

recovery process of a particular component. Components with high values of ��'"#(∆	) should be given high 

priority in the restoration process, e.g. be assigned adequate restoration resources to avoid delays that would 

have a more significant impact on system restoration. 

4.4.3 Methodology for component importance ordering 

Ordering network links recovery on the basis of the values of the criticality measures described above, i.e., the 

optimal repair time !"#
$%& and resilience reduction worth ��'"# (fixed ∆	0), requires quantifying the effect of 

timely repairing these links on the overall resilience of the system. Given the stochastic nature of disruptive 

events in terms of components failures after the event, the resilience-based criticality measures introduced are 

not represented by deterministic values, but rather by probability distributions. Therefore, given a network 

N(; , M) under a disruptive event ?, we first apply a Monte Carlo-based method to generate distributions of 

optimal repair time !"#
$%& and resilience reduction worth ��'"#(∆	0) for all the links in the network; then, we 

rank links importance using a stochastic approach based on the Copeland's pairwise aggregation method (Mer-

lin and Saari, 1997). The detailed steps of the algorithm are as follows: 

Step 1ˊ A network N(; , M) is initially operating with a given parameters setting: flow demand �#[ of all 

the demand nodes in ;[, supply capacity �"­ of all the supply nodes in ;­  and link capacity 

�(*R) for all the network arcs in M. 

Step 2ˊ A failure configuration of the network is randomly sampled on the basis of the failure probabilities 

of each arc in the system given by Equation (4.19), under a disruptive event ? at initial time 	 = 0. 

The operation state variables of failed links are set to 0, i.e., +"#(0) = 0, ∀*R ∈ M′. 
Step 3ˊ The resilience optimization model of Equations (4.4) - (4.13) is applied and solved by Cplex to ob-

tain the optimal strategy of network recovery, i.e., the optimal repair time !"#
$%& for each failed arc 

*R ∈ M′. 
Step 4ˊ In order to evaluate the second importance measure ��'"#(∆	0), for each failed arc *R ∈ M′, the 

additional constraint that the restoration of arc *R  should not be accomplished earlier than 

!"#
$%& + ∆	0 (i.e., !"# ≥ !"#

$%& + ∆	0) is added to the optimization model of Equations (4.4) - (4.13). 

Then, �$%&(! |!"# ≥ !"#
$%& + ∆	0) is obtained by solving this “modified” optimization model by 

Cplex. Finally, the resilience reduction worth ��'"#(∆	0) for each arc *R is recorded. 
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Step 5ˊ To account for the stochasticity of the disruptive event in terms of arcs failures, repeat Step 2 to 

Step 4 for a chosen number ℵ of iterations, generating probability distributions for !"#
$%&  and 

��'"#(∆	0), for all the links in the network. 

Step 6ˊ Given the distributions of !"#
$%& (resp., ��'"#(∆	0)) for each arc *R, perform a stochastic ranking 

of links according to ascending (resp., descending) !"#
$%& values (see Section 4.4.4). 

4.4.4 Stochastic ranking  

In order to rank network links according to the distribution of their optimal repair time !"#
$%& (or resilience re-

duction worth ��'"#(∆	0)) obtained at step 6 of the algorithm above, an approach based on the Copeland's 

pairwise aggregation method (Merlin and Saari, 1997) is proposed. The Copeland’s method (CM) is a simple 

non-parametric Condorcet method used in the political field (voting) that does not require any information 

about decision maker preference and operates on a multi-indicator matrix formed by ¥ objects characterized 

by Ø attributes (Pomerol and Barba-Romero, 2000). CM relies on pair-wise comparisons between objects in the 

candidate pool, and the so-called Copeland score is defined for each object as the difference between the num-

ber of times that this object beats the other objects and the number of times that it is beat by other objects. 

The CM-based ranking approach applied here corresponds to a modification proposed by Al-Sharrah (2010). It 

first examines the CDF of a given variable for all the candidates, e.g., the CDF of !"#
$%&, ∀(*, R) ∈ M; then, it 

compares the CDF of two candidates under analysis, i.e., links *R and *R, with respect to specific attributes Ùt 

of the CDF: for example, attribute Ùt may represent the )th percentile. Subsequently, a quantity .t(*R, *R) is 
calculated based on a pairwise comparison between links *R and *R with respect to (percentile) Ùt of the corre-

sponding distributions, ) = 1, … , Ø: 

.t(*R, *R) =
⎩{
⎨
{⎧�t−1(*R, *R) + 1,            if Ùt(*R) beats Ùt(*R)

�t−1(*R, *R) + 0.5, if Ùt(*R) and Ùt(*R) are tied
�t−1(*R, *R),                 if Ùt(*R) beats Ùt(*R)

 (4.22) 

where the sentence “Ùt(*R) beats Ùt(*R)” means that Ùt(*R) dominates Ùt(*R) with respect to the ranking rule of 

the variable considered, i.e., Ùt(*R) < Ùt(*R)  for !"#
$%& , while Ùt(*R) > Ùt(*R)  if ��'"#(∆	0)  is considered. 

.0(*R, *R) is initialized at zero for the first (percentile) Ù1 and Equation (4.22) is iterated through all Ø attrib-

utes (percentiles). Then, the Copeland score for each link *R is defined as 

�(*R) = ∑ .â(*R, *R)
"#≠"#

 (4.23) 

This Copeland score is finally used to rank all the links: the higher �(*R), the higher the contribution of link *R 
to the overall resilience of the network. 



 

 

 Applications Chapter 5
This Chapter reports the results of the application of the models and methodologies described in the previous 

Chapters to realistic CI networks. Only main results and insights are provided, while for further details the 

interested reader is referred to the corresponding Papers [1-6] of Part II. 

5.1 Applications of the hierarchical network representation framework 

It is known that most network reliability problems are NP-hard and therefore there is a significant gap between 

theoretical analysis and the ability to compute different reliability parameters for large or even moderately 

large network systems (Gertsbakh and Shpungin, 2008). In this respect, the hierarchical network representation 

proposed in Chapter 2 sets up a framework in which the reliability and vulnerability characteristics of complex 

network systems can be computed efficiently, due to the multi-scaled information representation scheme. 

In this Section, we refer to a realistic CI network, i.e. the 380kV Italian Power Transmission Network 

(IPTN380) (see Figure 5:1), to illustrate how the hierarchical representation framework can be applied to the 

analyses of network (node-pair) reliability and to the computations of the extended CIMs. 

 

Figure 5:1 The 380kV Italian Power Transmission Network (IPTN380) (Zio and Sansavini, 2011a). 

The IPTN380 (Figure 5:1) is a branch of the high-voltage-level transmission, which can be modeled as a graph 

of 4 =  127 nodes connected by O =  171 links. It is important to underline that only the topology of the 

physical system is taken as reference and used in the analyses, so that the hierarchical model and clustering 

relate only on the network structure with no specific relation to the electrical properties of the system. 

The network has been modeled as a five levels hierarchy (to which correspond five fictitious networks) by suc-

cessively applying the USCA introduced in Chapter 2.2.1. Figure 5:2 presents the hierarchy structure of the 

IPTN380 and the artificial networks associated with the first 3 levels of the hierarchy. At the top of the hierar-

chy (i.e. = = 1), the network is a single unit, i.e. one artificial vertex ;1
(1), which consist of all actual nodes. At 

the second level, we have Λ(2) = {;1
(2), ;2

(2), ;3
(2), ;4

(2)}  and M(2) = {M13
(2), M14

(2), M34
(2), M24

(2)}  with 
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;1
(2), ;2

(2), ;3
(2), ;4

(2) ⊂ ;1
(1). The integer number indicated in Figure 5:2 in proximity of the generic *-th artifi-

cial node ;"
(2) indicates the number of actual nodes which compose it: e.g. ;1

(2) is representative of a group of 

38 actual network nodes. Note that at the bottom of the hierarchy, we find the original network, i.e. each arti-

ficial node is an actual node and each artificial edge corresponds to an actual link. 

 

Figure 5:2 The hierarchy structure of the IPTN380 and associated artificial networks of the first three levels. 

5.1.1 Terminal pair reliability analysis 

The terminal-pair or node-pair reliability (TPR) problem amounts to determining the probability of successful 

communication between a specified source node and a terminal node in a network, given the probability of 

success of each link and node in the network. When the computational cost of the network is high (it grows 

exponentially with the number of network components), then the artificial network at a suitable level of the 

hierarchy can be leveraged to carry out the analysis of TPR. For a detailed interpretation of TPR based on the 

hierarchical framework, one can refer to appended Paper [2]. 

In Figure 5:3 right-panel, the connection reliability between nodes 1 and 127 in the IPTN380 (left panel in 

Figure 5:3) is shown as resulting from evaluations at each of the five levels of the hierarchical model described 

in the previous Section. The right panel of Figure 5:3 gives the probabilities of connectivity failure between 

nodes 1 and 127 from level 2 to level 5 (top) and the computational time needed for the analysis (bottom); the 

values have been normalized with respect to the maximum values of connectivity failure probability and com-

putational time, which occur at the bottom of the hierarchy (level 5) corresponding to the whole network. The 
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result at the first level has not been shown since its value is simply 0, i.e., node 1 and 127 are in a single unit 

and will not disconnect. One can see that the difference between the actual and estimated failure probabilities 

decreases as the assessment moves downs to the bottom of the hierarchy, balanced by the computation time 

which instead increases significantly. The decision maker can obtain satisfying estimations of the failure proba-

bility at a hierarchical level of lower complexity, e.g. level 3, thus saving significant computation time. 

  

Figure 5:3 Illustrative example of terminal pair reliability assessment of IPTN380. 

5.1.2 Computation of the extended CIMs 

In Chapter 2.3, three extended CIMs, i.e. EBI, ECI and EFVI, have been introduced to account for the multi-

ple terminal or node pairs (e.g. generator-distributor pairs) of a network system where connectivity defines the 

network functionality. 

The extended CIMs introduced have been calculated for the IPTN380 at different levels of the hierarchical 

model of the system developed. For the evaluation, an artificial node functions as a generator as long as there is 

at least one actual generator node within it; otherwise, it is simply a distributor. 

Table 5:1 EBI and EFVI at level 2 of the hierarchical model. 

Artificial Edge 
EBI EFVI 

Associated Actual Edges 
Rank Value Rank Value 

{2-4} 1 0.3750 1 0.3750 {107-109,112-114,110-111} 

{1-4} 2 1.9606E-03 2 1.9605E-03 {64-78,71-83} 

{1-3} 3 1.4817E-03 3 1.4817E-03 {59-60,61-62,30-34,30-31} 

{3-4} 4 1.5100E-05 4 1.4900E-05 {76-79} 

 

Table 5:2 ECI at level 2 of the hierarchical model. 

Artificial Edges Rank ECI Associated Actual Edges 

{2-4} 4 0.37 {107-109,112-114,110-111} 

{1-4} 2 7699812.62 {64-78,71-83} 

{1-3} 3 16.55 {59-60,61-62,30-34,30-31} 

{3-4} 1 7699828.67 {76-79} 
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Table 5:1 and Table 5:2 report the results of the importance assessment (EBI, EFVI are given in Table 5:1 and 

ECI in Table 5:2) for the artificial edges of the network at level 2 of the hierarchy. For EBI and EFVI, all 

components in the artificial network have the same importance rank, but with slight differences between EBI 

and EFVI values; also the artificial edge {2-4} is the most important in the artificial network (see the bottom 

panel of Figure 5:2). This is due to the fact that this artificial edge is the only possible link between a generator 

in artificial node ;2
(2) and the distributors in other artificial nodes, and thus its disconnection would cause a 

large-scale generator-distributor connectivity failure. The rank based on the ECI is different from that of EBI 

and EFVI, and the most important artificial edge is {3-4}; the difference lies in the definition, as discussed 

before: EBI depends only on the structure of the system and not on the reliability of the considered component, 

whereas ECI takes the unreliability of the component into consideration; in fact, the artificial edge {3-4} is 

made of only one actual edge with relatively high probability of failure, which leads to the highest ECI value. 

By combining the indications of EBI and ECI, it is advisable to offer indicators to the decision maker for the 

purpose of system maintenance and operation optimization (Van der Borst and Schoonakker, 2001). When EBI 

& EFVI is high and ECI is low, like in the case of artificial edge {2-4}, system safety can be improved by pro-

tecting against failure of each component, e.g., by adding alternative edges between artificial node ;2
(2) and 

node ;1
(2) (or ;3

(2)). For the case of low EBI & EFVI and high ECI (artificial edge {3-4}), the decision maker 

should invest in improvements of the component itself, to decrease the failure probability. 

 

Figure 5:4 Most critical edges at level 3 of the hierarchical model. 

Table 5:3 EIMs evaluation time at each level of the hierarchical model. 

EIMs 
Computation time (seconds on a computer with 2 CPU 3.06G 3.07G) 

Level 2 Level 3 Level 4 

EBI 0.3856 108.5 31763.58 

EFVI 0.2086 112.2 32179.50 

ECI 0.5152 175.0 47621.58 

For details about the results of the EIMs at levels 3 and 4 of the IPTN hierarchical model, one can refer to the 

appended Paper [2]. Interestingly, the bold edges in Figure 5:4 represent the edges of the actual network system 

which have resulted most critical based on the extended importance measure evaluation carried out at level 3 of 
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the hierarchy model. These edges should be paid special attention. For links {110-111, 112-114, 107-109}, im-

proving the defense in depth against their failures is advisable for improving the reliability of the system, 

whereas for links {64-78, 71-83, 76-79, 80-95, 75-88}, the edge unreliability should also be mitigated. 

More importantly, Table 5:3 reports the computation times required for the calculations of the EIMs at differ-

ent levels in the hierarchy: as expected, the more we go down in the hierarchy, the higher the computation 

time. 

5.1.3 Brief summary 

The introduced framework for hierarchical modelling of large-scale CI network systems, which leads to the 

definition of different varied-size grained artificial networks, provides a multi-scaled representation of the sys-

tem, with more detailed information but high complexity at the lower levels of the hierarchy, and simplified 

structure, but relatively low complexity at the higher levels. The availability of different scales of modeling 

resolution allows a flexible management of the analysis, at the level of details desired for its purposes. The 

computations of network node-pair reliability and the extended CIMs involving the IPTN380 have demonstrat-

ed the effectiveness of the proposed method. 

5.2 Network optimization against cascading failures – comparative study 

 

Figure 5:5 The 400kV French power transmission network (FPTN400) (RTE, 2011). 

This Section applies the frameworks of network optimization against cascading failures proposed in Chapter 3 

to the 400kV French Power Transmission Network (FPTN400) (see Figure 5:5). This network has 171 nodes 

(substations) and 220 edges (transmission lines). We distinguish the generators, which are the source of power, 

from the other distribution substations, that receive power and transmit it to other substations or distribute it 

in local distribution grids. By obtaining the power plants list from EDF website (EDF, 2013) and relating them 

with the ID of the buses in the transmission network, we have 26 generators and 145 distributors. Only the 

nuclear power plants, hydroelectric plants and thermal power plants whose installed capacities are larger than 

1000 MW, are considered. 
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5.2.1 Topology optimization based on the ML model and its validation by the OPA model 

For the optimal reallocation of the power generating nodes to the other nodes of the FPTN400 (i.e., the topolo-

gy optimization proposed in Chapter 3.3.1), we utilize the NSBDE algorithm detailed in appended Paper [3]. 

The Pareto front obtained by the NSBDE algorithm at convergence is illustrated in Figure 5:6, where the dia-

mond point represents the current network with the present pattern of connecting links, which is also the least 

costly network; the square point is the most resilient network, whose cascading vulnerability is 0.184. It is not 

unexpected that the original network is the least costly one, since the electrical transmission lines and substa-

tions are placed with geographical constraints and connections between two distant substations are avoided. 

Actually, cost-effectiveness is a major consideration in constructing real power transmission networks. 

 

Figure 5:6 Pareto front reached by a population of 25 chromosomes evolving for 300 generations. 

 

Figure 5:7 Comparison of the cascading vulnerability between the original and the most resilient networks under different 
network tolerance values. 

It is also noted from Figure 5:6 that the cascading failure resilience of the FPTN400 can be improved signifi-

cantly by properly rewiring the generator-distributor connections, though at a cost; the network vulnerability is 

decreased from 0.728 to 0.184 (when the tolerance parameter �=1.3) with an increased cost of 7.3 × 103 (i.e., 
53.16 times increase). Figure 5:7 reports the cascading vulnerability comparison between the original network 
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and the most resilient one (Pareto solution #17) with different values of the tolerance parameters �. It shows 

that when the network tolerance is very low, i.e. 0 < � < 0.1, the optimized network loses most of its efficien-

cy, i.e., it is quite vulnerable to intentional attacks, possibly due to its intensive loading condition. However, 

when � ≥ 0.3 (which is generally the normal operating condition (Baldick et al., 2008)), the optimized network 

loses less than 20% of its efficiency during a cascading failure initiated by intentional attack.  

Albeit a substantial improvement of the cascading failure resilience of the FPTN400 is possible by adding re-

dundant links, a tradeoff between the cost and resilience improvement is necessary for rational decision-making. 

Along the Pareto frontier of the potential solutions, there are some points at which a small sacrifice of cost 

gives a large gain of cascading resilience. More generally, by taking a network solution and its neighbor on the 

frontier (the less costly one), one can define a rate of change of cascading resilience with respect to cost: 

|∆;<=/∆LD+	|. This rate can be utilized as a reference to choose the optimized network: the larger the ratio, the 

more preferred the network is.  

The optimization results presented above are based on the ML model which abstracts basic power flow con-

straints and electrical characteristics of the power transmission network. Thus, the more realistic OPA model 

is, then, utilized to validate a posteriori the optimal results found. The verification is not straightforward due 

to the differences of the two models in the way of representing and initializing system capacity, in the iterative 

algorithms they rely on, and in the way of measuring the damage produced by the cascading failure. According-

ly, some assumptions and adjustments to the OPA model (see appended Paper [3] for the details) have been 

taken to ensure its applicability to assess the optimization solutions obtained based on the ML model.  

 

Figure 5:8 Cascading vulnerability (normalized load shedding) evaluated by the OPA model for the five chosen networks 
over a range of network tolerance values � under targeted initial failure. 

Five representative solutions (i.e., the least cost network FPTN400, Pareto solution #17 (7300, 0.184) which is 

the most resilient, together with solutions #3 (310.6, 0.59), #5 (3344.3, 0.28) and #13 (1003.8, 0.48) whose 

|∆;<=/∆LD+	| values are comparatively large) along the Pareto front in Figure 5.6 are chosen as the basic net-

work topologies to be verified by the OPA model. 

In Figure 5:8, we plot the curves of normalized load shedding 0./� (Equation 3.11) versus network tolerance 

� obtained by applying the OPA model to the five representative networks selected from the Pareto front (ob-

tained using the ML model). The OPA simulation is triggered by removing one of the top five most loaded 
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nodes (i.e., by a targeted initial failure). Analogous to the ML model (Figure 5:7), the network damages de-

creases when network tolerance increases for all the networks. When network tolerance value is high enough 

(� > 1.2), any small intentional disturbance on the network would tend to cause quite low damage to the func-

tioning of the network (< 1%). Most importantly, it is observed that in the OPA simulation, the network cor-

responding to Pareto solution #3 (310.6, 0.59) (green triangle curve) is more resilient, i.e., it presents less load 

shedding than the original network (red circle curve) over a wide range of network tolerance � (i.e., 0 < � <
1.2); in addition, solution #13 (1003.8, 0.48) (magenta diamond curve) generally outperforms solution #3, 

while solution #5 (3344.3, 0.28) (grey star curve) outperforms #13 in terms of cascade resilience. Finally, Pare-

to solution #17 (7300, 0.184) (which is the most resilient network according to the ML model) presents the 

lowest load shedding among the five networks over the entire range of α values considered. This ranking of 

cascading failure resilience in the OPA model is consistent with the simulation results based on ML model.  

 

Figure 5:9 Cascading vulnerability (normalized load shedding) evaluated by the OPA model for the five chosen networks 
over a range of network tolerance values α under random initial failure. The results have been averaged over 30 different 

samples. 

Figure 5:9 shows the results of OPA simulation on the five networks, where the failures are triggered by remov-

ing a randomly chosen node (i.e., random initial failure) and the results are averaged over 30 different samples. 

The ranking of cascade resilience of the five networks here is also parallel with the optimization results based 

on ML. This demonstrates that a resilience-improved network from the optimization based on the ML model is 

also more resilient than another one if evaluated by the more realistic OPA cascade simulation, therefore, veri-

fying that the insights gained by the topological optimization approach are valid. 

It is also important to remember that the results produced by the simple ML topological model are obtained at 

a much lower computational cost than those of the OPA model: actually, the average time needed to carry out 

a single cascading failure simulation is 3.9s and 20.8s for the ML and OPA models, respectively, on a double 

2.4 GHz Intel CPU and 4 GB RAM computer. 

5.2.2 Capacity allocation optimization based on the ML and OPA models  

For optimal allocation of link capacity in the FPTN400 network, the NSGA-II algorithm is applied with re-

gards to the objectives of minimizing investment cost and cascade vulnerability, expressed by functions (3.12a) 

and (3.12b), respectively, in Chapter 3. Differently from the previous Section 5.2.1, both the ML and OPA 
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models are used directly in the optimization process to evaluate the cascade vulnerability of the proposed net-

work. It is evident that the ML and OPA models provide different results at the local scale (Cupac et al., 

2013); however, in this study we evaluate to what extent the two approaches are consistent at the global sys-

tem level. In particular, we compare the two approaches by performing the following analyses: 

• We verify whether the Pareto fronts based on the ML and OPA models exhibit similar characteristics 

in terms of phase transitions of cascade vulnerability with respect to normalized investment cost; 

• We investigate whether the Pareto optimal solutions showing the same level of investment cost also 

present similar capacity allocation patterns; 

• We examine whether the link capacities patterns along the two optimal frontiers exhibit similar char-

acteristics for decreasing network vulnerability (i.e. for increasing network resilience). 

Figure 5:10 shows that ML and OPA Pareto fronts exhibit similar phase transitions (although their absolute 

values are different, which is not unexpected considering the fact that they apply different modelling parame-

ters and cascade vulnerability measures): both curves present a sharp decrease in network vulnerability in the 

same �D+	 region (i.e. 1.0 ≤ �D+	 ≤ 1.5), where a small increase in the cost gives a large gain in terms of cas-

cade resilience. Besides, regions of plateau exist for certain cost values in both models (i.e. for 1.5 ≤ �D+	 ≤
1.75 and 2.0 ≤ �D+	 ≤ 2.2 in ML, and for 1.5 ≤ �D+	 ≤ 1.8 and 2.15 ≤ �D+	 ≤ 2.45  in OPA), in which increas-

ing investment cost does not improve network resilience. Finally, both curves show a relatively stable regime 

for large �D+	 values (i.e., �D+	 ≥ 2.2), where network resilience is already high and its relative improvement is 

negligible even for a significant increase in the network cost (for example, referring to the ML model, increasing 

�D+	 from 1.97 to 2.61, i.e., of 32.5%, we reduce the network vulnerability of only 1.5%).  

 

Figure 5:10 Phase transitions in the Pareto optimal fronts showing cascade vulnerability (i.e., average efficiency loss for ML 
and average load shedding for OPA) with respect to normalized investment cost. 

Then, we compare the link capacities patterns of those solutions along the two Pareto fronts that present ap-

proximately the same values of �D+	 . In particular, three representative values of normalized cost (i.e., 

�D+	=1.07, 1.27 and 1.81) along the Pareto fronts are chosen, and the relationship between the link capacities 

of the corresponding optimal solutions obtained by the ML and OPA models are visualized using the scatter-

plots of Figure 5:11(a), (b) and (c), respectively. It is evident that the link capacities of the optimal solutions 

based on the ML and OPA models are highly correlated (with correlation coefficient ���,���=0.73, 0.69 and 

0.76, respectively). That is, links with low capacity in the ML model are likely to have low capacity also in the 

OPA model, and links with high capacity in ML also have high capacity in OPA. 
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Figure 5:11 Scatter plot of the (normalized) link capacities of three representative ML and OPA Pareto solutions showing 
the same normalized cost. The link capacities of the Pareto solutions with the same level of cost show highly correlated 

allocation patterns: (a) ML solution (1.07, 0.63) versus OPA solution (1.07, 0.30): ���,��� = 0.73; (b) ML solution (1.27, 

0.24) versus OPA solution (1.27, 0.21): ���,��� = 0.69; (c) ML solution (1.81, 0.074) versus OPA solution (1.81, 0.057): 

���,��� = 0.76. The line of best fit is also plotted, for visual guidance. 

Finally, it is interesting to analyse how the pattern of link capacities changes when lower network cascade vul-

nerability (higher network resilience) is demanded, i.e., which type of capacity allocation pattern is the most 

favourable in resisting to cascading failures. We tackle this problem by investigating the "expected" network 

link capacity pattern as a function of cascade vulnerability, i.e., the configuration of capacity pattern "aver-

aged" over all possible solutions of the Pareto front lying within a given "regime" (i.e., interval) of cascade vul-

nerability of interest. Parameter �m (namely, ���m  for ML and ����m  for OPA) is used to represent the "regime" 

of vulnerability, where + indicates the size of the corresponding interval. It is noted that smaller �m represents 

higher network resilience. 

Figure 5:12 reports the results of averaged link capacities patterns for three different levels of cascade vulnera-

bility, i.e., 0.6 ≤ �0.1 ≤ 0.7, 0.3 ≤ �0.1 ≤ 0.4 and 0 ≤ �0.1 ≤ 0.1 in the case of a classical homogeneous alloca-

tion strategy (circles) and of the optimization-based approach of our study (squares). The left panel (a-c) is 

referred to ML, whereas the right panel (d-f) relates to OPA. It is found that the optimal link capacity patterns 

exhibit consistent characteristics between ML and OPA models. For example, in both cases, the optimal link 

capacities patterns are similar to their corresponding homogeneous allocations only in less resilient networks, 

i.e., when 0.6 ≤ �0.1 ≤ 0.7, where the objective of minimizing investment cost is much more biased (Figure 

5:12(a) and (d)). When we increase the importance of minimizing the network vulnerability (e.g., for 



Applications 

53 

0.3 ≤ �0.1 ≤ 0.4 and 0 ≤ �0.1 ≤ 0.1), the optimal link capacities show a non-linear relationship with respect to 

their initial flows, as shown in Figure 5:12(b), (c) and Figure 5:12(e), (f). Specifically, the heavily loaded links 

tend to decrease their capacities and the lightly loaded links tend to increase their capacities. That is to say, 

the unoccupied portion of capacity tends to decrease in links with larger loads and the unoccupied portion of 

capacity tends to increase in the less loaded links. Furthermore, the more importance is given to the minimiza-

tion of network cascade vulnerability, the more pronounced the non-linear behaviour is, as shown in Figure 

5:12(c) and (f). Our findings are consistent with the empirical observations and results from the traffic fluctua-

tion model (Kim and Motter, 2008a; 2008b). 

 
 

Figure 5:12 “Averaged” optimal link capacity patterns for three different levels of cascade vulnerability (0.6 ≤ �0.1 ≤ 0.7, 
0.3 ≤ �0.1 ≤ 0.4 and 0 ≤ �0.1 ≤ 0.1) in ML (left panel a-c) and OPA (right panel d-f). The scatter plot shows the relation-
ship between the link capacities and the initial link flows in a homogeneous allocation strategy, where the capacity of a link 

is assumed to be proportional to its initial flow (circles) and after in the optimization-based approach of Section III 
(squares). 

5.2.3 Brief summary 

The results from the topology optimization based on the ML model and the comparative link capacity optimi-

zation provide an important contribution regarding the usefulness of a topological model (ML) in the optimiza-

tion of a cascade resilient electrical network. Although ML is a relatively simple and abstract model (that does 

not account for the power flow laws and constraints of the electrical system), it is able to provide results that 

are consistent with a detailed and more realistic power flow model (OPA), when applied to the problem of 

network optimization against cascading failure. Most importantly, with respect to OPA it has the advantages 
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of simplicity and scalability. This provides impetus for the use of network-centric models to the study of en-

semble characteristics of cascading failure in large power network systems. 

5.3 Restoration optimization for enhanced system resilience – case study 

The illustration of the Resilience Optimization Problem (ROP) and the heuristic scheduling algorithm proposed 

to solve it (Chapter 4) takes again the FPTN400 system (Figure 5:5) as a case study: however, in this case 

realistic power capacities of generators and transmission lines are used and the demands of all load buses are 

approximated by real data (see appended Paper [5]).  

In the case study, we randomly select parts of the arcs of the network to be damaged. In addition, the repair 

costs of all the transmission lines are assumed to be constant and identical, and the cost limits �(	) are as-

sumed to be equal to the repair cost of a single arc: this means that only a single arc can be repaired at any 

given timeslot. It is noted that these assumptions can be relaxed to adapt to more realistic application cases. 

We firstly consider repair optimization for a specific disruption scenario on the FPTN400, where 10% of net-

work arcs (i.e. 22) are initially damaged. All the demand nodes are assumed to have identical weights in the 

optimization process. For the solution of the repair optimization problem, both the proposed heuristic dispatch-

ing rule (Chapter 4.3) and a classical MIP solver (i.e., Cplex MIP solver) are applied. Figure 5:13 reports the 

optimal restoration curves (i.e., network performance �(	) as a function of time 	) obtained by the dispatching 

rule (squares) and MIP (circles), respectively. It is found that the dispatching rule is able to obtain near opti-

mal solutions: the recovery duration !  is 5 (in arbitrary units) for both methods, and the system resilience 

�(! ) (Equation 4.3) is ��"m% = 0.731 for the dispatching rule, and �$%& = 0.753 for MIP: the optimality gap 

between the two approaches is only 2.92%. Figure 5:14 provides a visualization of the optimal recovery plans 

obtained by the two methods. It is shown that the dispatching rule achieves very similar restoration plans to 

that of MIP. Both cases give high repair priority to those transmission lines which are unique connections to 

the demand nodes. More importantly, the dispatching rule is computationally much cheaper (6.9s) than MIP 

(20.5s). 

 

Figure 5:13 Optimal restoration curves obtained by the dispatching rule and MIP solver for the specific disruption scenario 
(10% links damaged) on the FPTN400. 
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Figure 5:14 Visualization of the optimal recovery plans obtained by the dispatching rule (a) and MIP solver (b) for the 
specific disruption scenario (10% links damaged) on the FPTN400. The numbers indicate the optimal recovery timeslots of 

the five arcs marked by bold solid lines; black lines correspond to other failed arcs. 

In order to further demonstrate the performance of the heuristic dispatching rule, we considered different levels 

of damage on the network (5% to 20% of arcs are randomly selected to be failed) and two different types of 

weights (i.e. of importance) for the demand nodes (i.e. �# for R ∈ ;[): in the first class of demand nodes 

weights (namely, “Constant”) each unit of flow received by demand nodes is weighed evenly across all the de-

mand nodes; in the second class (‘Priority’), some randomly chosen demand nodes are assigned higher value of 

�# to represent higher priority. Table 5:4 provides the solutions and corresponding computational performances 

of the heuristic dispatching rule and the Cplex MIP solver for the ROP on the FPTN400. It is shown that the 

recovery time !  provided by the heuristic dispatching rule is the same (for 5% and 10% cases) or slightly larger 

(for 15% and 20% cases) than the optimal solutions, and the relative optimality gaps between the two methods 

are less than 10% in most cases. Furthermore, the dispatching rule needs only, on average, the 10% of the 

computation time needed by the MIP solver for all the cases. These results indicate that the proposed heuristic 

dispatching rule is able to obtain high-quality sub-optimal (and optimal in some cases) solutions to the ROP, 

with much less computational cost compared with the Cplex MIP solver. 

Table 5:4 Performances of the heuristic dispatching rule and the Cplex MIP solver on the FPTN400.  

% of failed 
arcs ( num-

ber) 

�# 
Heuristic dispatching rule Cplex MIP solver 

Recovery 
time !  

Opt. 
resilience 

Solver 
time (s) 

Opt. gap 
(%) 

Recovery 
time !  

Opt. resili-
ence 

Solver 
time (s) 

5% (11) Constant 2 0.917 4.69 4.28 2 0.958 20.30 

5% (11) Priority 2 0.921 4.75 6.40 2 0.984 20.94 

10% (22) Constant 5 0.731 6.90 2.92 5 0.753 40.50 

10% (22) Priority 5 0.852 8.60 0.00 5 0.852 46.32 

15% (33) Constant 14 0.646 20.45 5.42 12 0.683 110.16 

15% (33) Priority 14 0.685 26.40 13.07 12 0.788 224.45 

20% (44) Constant 15 0.569 70.31 9.97 13 0.632 632.42 

20% (44) Priority 15 0.626 75.46 8.08 13 0.681 1102.80 
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In particular, it is noted that the MIP solver may need much more time (e.g., days) to achieve optimal solu-

tions for larger infrastructure systems (e.g., composed of thousands of nodes and links) or heavier disruption 

events (e.g., over 20% components damaged). Thus, it is unreasonable to expect the managers of the infrastruc-

ture systems to have access to unlimited computing resources or be willing to wait for several hours (or even 

several days) to determine their restoration plan. Consequently, the proposed heuristic dispatching rule repre-

sents an appealing tool for real-time restoration activities on larger scale CI systems. 

5.4 Illustration of resilience-based component importance measures 

The IEEE 30 Bus test system (Power system test case archive, 2014) is taken as reference case study for the 

proposed resilience-based CIMs of Chapter 4.4. This system (Figure 5:15) represents a portion of the American 

Electric Power System and is composed of 30 buses connected by 41 transmission lines. To carry out the analy-

sis, each system component is transposed into a node or edge of the representative topological network. Three 

different physical types of nodes are considered: generator nodes (where the electricity flow is fed into the net-

work), demand nodes (where customers are connected) and transfer or transmission nodes (without customers 

or sources). 

 

Figure 5:15 Single line diagram of the IEEE 30 Bus test system. 

The simulation procedure introduced in Chapter 4.4.3 is, then, used to rank each component of the IEEE 30 

Bus network according to the resilience-based criticality metrics introduced. Figure 5:16 illustrates the Cumula-

tive Distribution Functions (CDFs) of !"#
$%& for five representative links (<1, 3>, <5, 7>, <27, 30>, <8, 28> 

and <10, 21>), obtained at step 5 of the procedure by applying the simulation algorithm proposed in Chapter 

4.4.3 (for ℵ = 1000 samples). This Figure illustrates the probability that !"#
$%& is less than or equal to a given 

value ¼ of interest. It can be seen that the optimal repair time associated with link <1, 3>, i.e. !13
$%&, will never 

be larger than 5 (square-line curve in Figure 5:16). Moreover, the curve for link <1, 3> always “dominates” the 

other curves. Therefore, this link should have the highest priority to be repaired in order to maximize system 

resilience. 
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Figure 5:16 Cumulative probability distributions of the optimal repair time !"#
$%& for five representative links. 

However, considering, e.g., links <5, 7> (circle line) and <27, 30> (triangle line) in Figure 5:16, it is not evi-

dent which one “dominates” the other, due to the intersection of their CDF curves. Thus, the CM-based rank-

ing approach introduced in Chapter 4.4.4 is applied to rank the importance of the links. Figure 5:17 reports the 

Copeland scores of all the 41 links in the IEEE 30 Bus network, ordered in descending order, with link <1, 3> 

having the highest score, followed by links <2, 6>, <2, 4>, <10, 22> and so forth. Furthermore, it is found 

that two types of network links are more important in terms of !"#
$%&: i) the links which connect the generator 

nodes with the other two types of nodes (transmission nodes and demand nodes), e.g. links <2, 6>, <1, 3>, 

<12, 13> etc., and ii) the links which are the only ones connected to demand nodes, e.g. link <25, 26>. The 

restoration of these types of links is most likely able to augment the total amount of flow received by the de-

mand nodes of the network: thus, high priority should be given to these links when considering the repair order 

of the failed links. 

 

Figure 5:17 Copeland score ranking of the optimal repair time !"#
$%& for all IEEE 30 Bus network links. 

Finally, Figure 5:18 reports the results based on the resilience reduction worth ��'"#(∆	0) for all the links 

and for a delay time ∆	0 = 3 units. It is shown that <24, 25> is the most critical link in terms of ��'"#, i.e. a 

delay in its restoration would cause the largest reduction in system resilience among all the network links; thus, 
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adequate resources should be given to make sure of its timely restoration. Besides, it is noted that the links 

with high Copeland scores in terms of the optimal repair time !"#
$%& also have high Copeland score ranking in 

terms of the resilience reduction worth ��'"#: the correlation coefficient between the two Copeland scores is 

� (�¬ ¡
çèé , �IIê ¡) = 0.82 for ∆	0 = 3. 

 

Figure 5:18 Copeland score ranking of the resilience reduction worth ��'"#(∆	0 = 3) for all IEEE 30 Bus network links. 
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 Conclusions and future re-Chapter 6

search 

6.1 Conclusions 

This dissertation focuses on the modelling, simulation, analysis and optimization of engineered critical infra-

structure (CI) networks, with respect to their vulnerability and resilience to cascading failures. The entire state 

transition process of the CI system under disruptive events (i.e., stable, dynamic failure and system recovery 

state) has been considered. A comprehensive methodology has been developed, which combines: (i) the analysis 

of the structure and topology of the CI network represented by the interconnections among its components; (ii) 

the simulation of the CI network behavior in the presence of random failures and intentional attacks; (iii) the 

assessment of the CI vulnerability and resilience, with respect to cascading failures; (iv) the optimization of 

some characteristics of the CI network (e.g., its topology, link capacities, etc.) in order to maximize its robust-

ness to cascading failures and its capability of recovering from disruptive events. The ultimate goal is to pro-

vide valuable insights for the safe planning and operation of large-scale complex CI systems against systemic 

failures. 

A critical challenge related to the study of any real-life CI system lies in its inherent complexity; thus, well-

defined system boundaries and simplifications of the system representation and analysis are usually required. 

Based on recent developments in the field of complex network theory and statistical clustering techniques, this 

dissertation has introduced a method for hierarchical representation and analysis of large-scale CI systems, 

which leads to the definition of different varied-size grained artificial networks. The availability of different 

scales of modeling resolution can be leveraged efficiently to facilitate the management of complexity in the 

analysis of large-scale CI systems. The computations of network node-pair reliability and the extended CIMs 

involving the IPTN380 have demonstrated the effectiveness of the proposed method. 

The problem of CI protection against cascading failures has been addressed from a holistic system design per-

spective. Specifically, we have identified optimal relevant network properties, i.e., interconnectivity and link 

capacity allocation, by which the robustness of a CI network against cascading failures is maximized. For the 

simulation and analysis of the failure propagation in the optimization process, two different cascading failure 

modelling approaches of increasing complexity have been applied, for the sake of comparison: an abstract com-

plex network-based model and a physical flow-based model (for electrical power grids), have been applied in the 

comparative study. This choice is partly motivated by the criticism often presented against the abstract model-

ling of cascading failures relying only on the resemblance of network topology, according to which the topologi-

cal structure cannot be the only factor driving the functional state and the propagation of failures in a physical 

network. In our work, we have instead found that a relatively simple and abstract model (in particular, the 

Motter-Lai (ML) model) is indeed able to provide results that are consistent with a detailed and more realistic 

power flow model (in particular, the ORNL-PSerc-Alaska (OPA) model), when applied to the problem of net-

work optimization against cascading failures. This has been demonstrated by extensive application of the com-

pared approaches to the FPTN400 network. Such results provide impetus for the use of network theory-based 

models to the study of ensemble characteristics of cascading failures in large power network systems, due to 
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their advantages of simplicity and scalability. In all the cases, the optimization has been carried out by artifi-

cial intelligence based algorithms, in particular, the NSGA-II and NSBDE. 

Resilience is another critical concept in the study of CI systems. Various definitions of “resilience” have been 

proposed for engineering and/or economic system analysis from different disciplines in the past decades. How-

ever, there is currently a lack of standardization and rigor when quantitatively defining this concept. In this 

study, we have rigorously introduced a new quantitative metric for system resilience, which embraces both the 

temporal and functional dimensions of system recovery. Based on this metric, a bi-level resilience optimization 

problem has been formulated for selecting proper recovery actions in order to enhance the resilience of infra-

structure networks. This problem has been proven to be strongly NP-complete and, thus, it is computationally 

intensive, especially for large-scale infrastructure networks composed of thousands of nodes and links. We have 

solved this problem by proposing a heuristic dispatching rule, which has integrated fundamental concepts from 

network flows and project scheduling. The results of the case study involving the FPTN400 system have 

demonstrated that the proposed algorithm is able to produce high-quality sub-optimal solutions to the resili-

ence optimization problem, with much less computational cost than the classical Cplex (MIP) solver based on a 

branch and cut algorithm.  

Finally, two novel resilience-based component importance measures (CIMs) have been introduced in order to 

assess the criticality of network components from the perspective of their contribution to system resilience. The 

first resilience-based component importance measure, i.e. the optimal repair time (ORT), offers an explicit 

quantification of the priority that should be given to a failed component to be repaired and re-installed into the 

network. The second resilience-based component importance measure, i.e. the resilience reduction worth 

(RRW), quantifies the potential loss in optimal system resilience due to a delay in the repair time of a compo-

nent. This measure can provide valuable information to guide the recovery process of a particular component: 

components with high values of RRW should be given high priority to their timely restoration, e.g. be assigned 

adequate restoration resources. The proposed CIMs have been tested and compared to classical centrality 

measures (e.g., shortest path betweenness, flow betweenness and random walk betweenness) on the IEEE 30 

Bus test network: the results have shown that the classical betweenness centrality indices do not capture resili-

ence criticality as do the resilience-based measures ORT and RRW. 

6.2 Future research 

Some limitations and open problems arising from this dissertation necessitate discussion for possible further 

study. Firstly, the hierarchical network representation model proposed in Chapter 2 is based on a recursive 

clustering where only the topological information is embraced in the affinity matrix. Other properties such as 

the geographical and functional relations of components could also be used to quantify the affinity between 

different components of a network system, depending on the context in which the model will be used. Besides, 

spectral clustering is adopted in Chapter 2 as one possible way to extract some inherent cluster-level structural 

properties and derive the hierarchical model, which sets the basis for a multi-scale criticality analysis. Yet, as 

many real adjacency matrices are sparse in nature, efficient existing methods to compute the eigenvectors of 

sparse matrices could be adopted (Golub and Van Loan, 2012). 

In addition, some adjustments of the OPA model have been made in the comparison between the abstract ML 

model and the physical flow-based OPA model in Chapter 3. These adjustments ensure that we can use the 
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network tolerance parameter � as a common measure of transmission capacity for both models. However, the 

actual data concerning power generation and demands could be used (if available) both in the OPA validation 

and the optimization. Besides, performing optimizations using directly detailed and computationally intensive 

power flow models (e.g., embrace the so-called Manchester model (Nedic et al., 2006) and/or realistic trigger 

events such as natural hazard and malevolent targeted disruption (Dueñas-Osorio and Vemuru, 2009), into the 

cascade modelling framework) would enable a more thorough and comprehensive comparison of the two classes 

of approaches considered in this study. 

Further, the resilience optimization model introduced in Chapter 4 focuses only on the optimal completion time 

of each failed component, in order to obtain insights about the importance that recovering each single compo-

nent has in improving the resilience of the whole system; on the other hand, the duration of the repair of the 

failed components is not considered (i.e., the repair action is assumed to be instantaneous). This assumption 

could be relaxed to adapt to more realistic application cases by incorporating a repair model for a single failed 

component, in which the repair time of a component is stochastic (Xu et al., 2007) and/or related with the 

repair resources allocated to the component.  

Finally, the focus of this dissertation is concentrated on single CI network systems; however, the interdepend-

encies among civil infrastructure systems are ubiquitous and growing in number and strength. A paradigmatic 

example is represented by the power and communication networks (Little, 2002; Rosato et al., 2008): communi-

cation network nodes rely for power supply on the power stations and, reciprocally, the power stations function 

properly exchanging information through the communication network. This interdependency may lead to cas-

cading failures between the networks and a relatively small failure could lead to a catastrophic breakdown of 

the system (Buldyrev et al., 2010). Over the past decade, there have been substantial conceptual and theoreti-

cal advances in the field of interdependent networks (Buldyrev et al., 2010; Zio and Sansavini, 2011b; Reis et 

al., 2014); however, most frameworks use highly simplified models of real networks, or theoretical network 

models to formulate the interdependencies problem. Attempting to understand and quantify the effects of in-

terdependencies among various types of real-life engineered infrastructure systems in their response to systemic 

risks still constitute the fundamental challenge for CI protection. 
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1. Introduction

Engineered critical infrastructures are ‘a network of indepen-
dent, large-scale, man-made systems…that function collaboratively
and synergistically to produce a continuous flow of essential goods
(e.g. energy, data, water…) and services (e.g. banking, healthcare,
transportation)’ [1] vital to the economy, security and well-being of
any country. These systems are exposed to multiple hazards and
threats, some of which are even unexpected and emergent, so that a
complete analysis by exhaustive treatment cannot be guaranteed.
Furthermore, the infrastructure networks consist of a large number
of elements whose interactions are not easily modeled and quanti-
fied. In practice, then, the performance and reliability assessment of
such ‘complex’ systems has proved to be a non-trivial task.

The theory of complex networks has in recent years emerged as
a valid tool for describing, modelling and quantifying complex
systems in many branches of science [2–5]. Based on the network
topology and its treatment by tools of graph theory, various
statistical measures have been introduced to evaluate the global
structural properties of the network and quantify the importance
of the individual elements in the structure of the system [6–8].
While global performance indicators encompass the static char-
acteristics of the whole network, the importance of the different
ll rights reserved.
elements in the network can be seen from the point of view of
their individual connectivity efficiency and/or their contribution to
the propagation of failures through the system network of con-
nections [9–11]. Among these measures, classical and relevant
statistics are the network efficiency [12–14], which evaluates the
connectivity of the whole network, and the topological centrality
measures including degree centrality (CD) [16,17], closeness
centrality (CC) [15,17], betweenness centrality (CB) [17] and infor-
mation centrality (CI) [18,19], which rely on topological information
to qualify the importance of individual network elements.

On the other hand, recent studies suggest that many real
complex networks exhibit a modularized organization [20]. In
many cases, these modularized structures are found to correspond
to functional units within networks (ecological niches in food
webs, modules in biochemical networks) [21]. Broadly speaking,
clusters (also called communities or modules) are found in the
network, forming groups of elements that are densely intercon-
nected with each other but only sparsely connected with the rest
of the network. The study of the clustered structure of the network
of a critical infrastructure is of particular interest because such
structure can provide a protection for the system against attacks
from an intruder [22], reduce the effects of cascade failures [23]
and point at important heterogeneities within the network that
may not be registered via network level measures [21]. Finally,
hierarchically modularized organization, which is a central idea
about the life process in biology, is found to be also an internal
structure of many technological networks [24], and can be utilized
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Nomenclature

V set of network nodes
E set of network edges
G(V, E) a network with set of nodes V and edges E
A adjacency matrix of network
sij similarity measure between node i and j
S similarity matrix of network
Lsys normalized graph Laplacian matrix
Q network modularity index
SSE sum of square error
D network degree matrix
DB Davies–Bouldin index of clustering
Dunn Dunn index of clustering

Ck cluster k of network G(V, E)
Nk the central node of cluster k
n number of network nodes
m number of network edges
nk number of nodes in cluster k
ΛðkÞ set of fictitious nodes at level k
EðkÞ set of fictitious edges at level k
GðkÞðΛðkÞ,EðkÞÞ fictitious network at level k of the hierarchy
EðGÞ topology efficiency of network G
V ðkÞ
i node i of the fictitious network at level k of the

hierarchy
CI
V ðkÞ
i

information centrality of node V ðkÞ
i

dij shortest path between node i and j
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to model these complex systems for their understanding and
analysis [25].

The objective of the work presented in this paper is twofold.
First, to propose clustering analysis for extracting some inherent
structural properties of a network of a critical infrastructure and,
second to adopt a scheme of successive clustering to obtain a
hierarchical model made of different varied-size grained virtual
networks which can be exploited to perform zoom-in assess-
ments, focusing on the most relevant clusters in the virtual
networks at each level of the hierarchy.

The remainder of this paper is organized as follows: Section 2
presents the proposed spectral clustering analysis, taking the
structure of the Italian 380 kV power transmission network as
an example for illustration; in Section 3, hierarchical modelling of
a complex network is first introduced, and then multi-scaled
criticality analyses are performed on the hierarchical model;
conclusions are drawn in Section 4.
2. Clustering analysis

2.1. Network representation

Graph theory provides a natural framework for the mathema-
tical representation of complex networks. A graph is an ordered
pair GðV ,EÞcomprising a set of vertices (nodes)V ¼ v1,v2,…,vn
together with a set of edges (also called arcs or links)
E¼ e1,e2,…,em, which are two-element subsets of V. The network
structure is usually defined by the n�n adjacency matrix, which
defines which two nodes are connected by assigning a 1 to the
corresponding element of the matrix; otherwise, the value in the
matrix is 0 if there is no connection between the two nodes.
As described, this type of graph is unweighted and undirected.
A graph is weighted if a value (weight) is assigned to each edge
representing properties of the connection like costs, lengths,
capacities, etc. For example, the matrix of physical distances is
often used in conjunction with the adjacency matrix to describe a
network also with respect to its spatial dimension [12,26].

In this paper, we take an exemplification of the analyses
proposed on the 380 kV Italian power transmission network
(Fig. 1). This network is a branch of the high-voltage-level
transmission, which can be modeled as a graph of n¼127 nodes
connected by m¼171 links [7],[27], defined by its n�n adjacency
(connection) matrix A whose entries [aij] are 1 if there is an edge
joining node i to node j or 0 otherwise. It is important to underline
that only the topology of the physical system is taken as reference
and used in the analyses, so that the hierarchical model and
clustering relate only on the network structure with no specific
relation to the electrical properties of the system. The sub-network
for Sardinia is not considered to ensure that the network is
connected in the sense of a topological space.
2.2. Unsupervised spectral clustering algorithm

Cluster analysis aims at identifying patterns around which
communities of elements in the network can be grouped, emer-
ging implicit information in the network structure [28]. Framed as
an unsupervised multiple classification problem [29], clustering
has been an essential undertaking in the context of explorative
data mining and also a common technique for statistical data
analysis used in many fields such as machine learning, pattern
recognition, image analysis, information retrieval, and bioinfor-
matics [30]. Theoretically, based on a similarity (affinity) measure
sijbetween pairs of data points (i,j), which is usually a measure of
distance between i and j, most clustering approaches seek to
achieve a minimum or maximum similarity value through an
iterative process of vertex grouping [25,28]. Different similarity
definitions can lead to different cluster partitioning of the
network.

The detailed description of the different clustering methods is
beyond the scope of this article. For a systematic and synthetic
review, the reader is encouraged to look at [28,30,31]. For the
purpose of the analyses presented in this paper, we adopt the
unsupervised spectral clustering algorithm (USCA) [32], which is
invariant to cluster shapes and densities and simple to implement.
The USCA makes use of the spectrum (eigenvalues) of the
similarity matrix of the data to perform dimensionality reduction
before Fuzzy k-means (FKM)-clustering in fewer dimensions.
Schematically, it is performed by the following steps [32]:

Unsupervised spectral clustering algorithm
Input: Similarity matrix S∈ℝn�n

1. Compute the normalized graph Laplacian matrix Lsym
2. Compute the first k eigenvalues λ1,λ2,…,λk and corresponding

eigenvectors u1,u2,…,ukof matrix Lsym. The first k eigenvalues
are such that they are very small whereas λkþ1 is relatively
large. All eigenvalues are ordered increasingly.

3. The number of clusters is set equal to k, according to the
eigengap heuristic theory [32].

4. Let U∈ℝn�k be the matrix containing the vectors u1,u2,:::,uk as
columns. Form the matrix T∈ℝn�k from U by normalizing the
rows to norm 1, that is set tij ¼ uij=ð∑ku2

ikÞ1=2.
5. For i¼1, …, n, let yi∈ℝkbe the vector corresponding to the ith

row of T.



Fig. 1. The 380 kV Italian power transmission network.
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6. Resort to the FKM algorithm [33,34] to partition the data
points ðyiÞi ¼ 1,:::,ninto k clustersA1,…,Ak.
Output: Clusters C1,…,Ckwith Ci ¼ jjyj∈Ai

In the first step, the Laplacian matrix Lsym is calculated from the
similarity (affinity) matrix as follows. The input similarity matrix S
is of size n�n and its generic element sij represents the similarity
between nodes i and j in the network. The diagonal components sii
are set to 1 and the matrix is symmetricðsij ¼ sjiÞ. The degree
matrix D is the diagonal matrix with diagonal entries d1, d2,…, dn
defined by

di ¼ ∑
N

j ¼ 1
sij i¼ 1,2,…,n: ð1Þ

Then, the normalized graph Laplacian matrix can be obtained:

Lsym ¼D−1=2LD−1=2 ¼ I−D−1=2SD−1=2 ð2Þ

where L¼D−S and I is the identity matrix of size n�n.
It should be noted that the eigengap heuristic theory at the

basis of the third step of the algorithm works well when the
modularized structure of the data are pronounced whereas the
more noisy or overlapping the clusters are, the less effective it is
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[32]. In those cases, other methods such as the Markov Clustering
Algorithm [35] can be used to find the optimal number of clusters.

2.3. Clustering results and analysis

2.3.1. Affinity construction
As mentioned in the previous section, the result of clustering is

sensitive to the similarity function which defines the proximity of
the nodes in the network. Since network clustering is to group the
vertices of the network into clusters taking into consideration the
edge structure of the graph in such a way that there should be
many links within each cluster and relatively few between the
clusters, using topological information itself is intuitionally appro-
priate to estimate the structure affinity of node pairs. In this view,
two node affinity definitions representative of the local and global
topological properties of the network structure are introduced in
this paper to support the successive cluster-level criticality
analysis.

Possibly, the most straightforward manner to quantify the
affinity between a pair of nodes in a network is to use only the
local adjacency information: nodes i and j are seen as similar if
they are linked directly, otherwise they are not. The consequent
adjacency affinity matrix S1 is identical to the adjacency matrix
A of the network.

The adjacency affinity uses only local direct connection infor-
mation and possibly fails to detect any other structure when a
network is not locally dense [24]. Since in this study, we use
clustering to decompose the network into topologically dense
community structures, for nodes to belong to the same cluster,
they should be highly connected to each other, i.e. not necessarily
by a direct link but by a short path [36]. For this reason, we
introduce the topological distance affinity to drive the clustering.
The topological distance (shortest path) dijbetween nodes i and j is
the minimum number of edges traversed to get from vertex i to
vertex j. The matrix D of the topological distances can be extracted
from the adjacency matrix A. Thereafter, the topological distance
affinity can then be defined based on the elements dij of D and the
Gaussian similarity function:

S2ði,jÞ ¼ expð−dij2=ð2s2ÞÞ i,j¼ 1,2,…,n ð3Þ

where s is a tuning parameter. This parameter can be tuned to
scale the Gaussian similarity function, similarly to the parameter ε
in the ε-neighborhood graph [32]. Unfortunately, there are no
theoretical results to guide the choice of the parameter, and only
some rules of thumb have been suggested in the literature [32]. In
our study, we choose a value of 0.8 for s, which is of the order of
the mean distance of a node to its kth nearest neighbor, where k is
chosen as k∼log(n)þ1.
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Fig. 2. Adjacency affinity and topological distance affinity mat
Fig. 2 gives out the value landscape of both adjacency affinity
matrix S1 (left) and topological distance affinity matrix S2 (right)
for the 380 kV Italian power transmission network. One can notice
the difference in value scale: the adjacency affinity is a sparse
matrix with only values 0 and 1, whereas the topological distance
affinity measure shows that nodes in local neighborhoods have
relatively high similarity value while affinity values between far
away nodes are weak, although not necessarily negligible.

2.3.2. Cluster evaluation
The assessment of the quality of the clustering results is a non

trivial task because of the unsupervised nature of the analysis. The
clustering structure itself and the relational characteristics of the
dataset are often utilized as the measurement information for
clustering evaluation [25]. In our study, the evaluation of the
clustering is based on four representative indices capturing com-
plementary characteristics of the clusters found: the modularity
index (Q) as an indicator of the presence of a modularized
structure; the Sum of Squared Error (SSE) to quantify the cohesion
of clusters; the Davies–Bouldin index (DB) and Dunn index (Dunn)
to evaluate high intra-cluster similarity and low inter-cluster
similarity, with different metrics.

2.3.2.1. Modularity index. The modularity index Q, introduced by
Newman and Girvan [37], attempts to measure how well a given
partition of a network compartmentalizes its communities and is
defined as [38]:

Q ¼ ∑
k

i ¼ 1

ei
m

−
φi

2m

� �2
� �

ð4Þ

where k is the number of clusters, ei defines the number of links in
cluster i, φi is the sum of the degrees of the nodes in cluster i, and
m represents the total number of links in the whole network. Note
that when Q¼0, all the nodes are in one single community while
Q40 indicates the existence of some kind of inherent cluster
structure. Modularity measures the difference between the total
fraction of edges that fall within clusters versus the fraction one
would expect if edges were placed at random. Thus, high values of
Q represent network partitions in which more of the edges fall
within clusters than expected by chance [39]. Moreover, Newman
and Girvan [37] suggest that values of Q in the range of 0.2–0.7
designate the presence of cluster structures.

2.3.2.2. Sum of squared error (SSE). Sum of squared error (SSE)
measures the cohesion of clusters without respect to external
information, i.e. quantifies how closely related are the elements in
a cluster. SSE is suitable for comparing two clustering partitions or
two clusters [40]. Given two different sets of clusters resulting
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Fig. 3. Clustering results for the adjacency affinity and the topological distance affinity on the 380 kV Italian power transmission network.

Table 1
Comparison of the clustering results for adjacency affinity and topological distance
affinity.

Comparison items Adjacency affinity Topological distance affinity

Q 0.664 0.640
Number of cluster 4 4
Cluster central nodes
(N1, N2, N3, N4)

23, 40, 86, 119 23, 40, 99, 121

Cluster size (n1, n2, n3, n4) 36, 38, 36, 17 36, 41, 43, 7
DB 0.883 0.987
Dunn 0.455 0.455
SSE 1585 1867
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from two different clustering procedures, the one with smaller SSE
is preferable since this means that the prototypes (centroids) of
this clustering are superior representations of the points in the
clusters. SSE is formally defined as follows:

SSE¼ ∑
k

i ¼ 1
∑
j∈Ai

distðci,jÞ2 ð5Þ

where dist represents the topological distance (shortest path)
between node j and the central node ci of the cluster Ai which
node j belongs to.

2.3.2.3. Davies–Bouldin (DB) index [41]. The Davies–Bouldin (DB)
index introduced in [41] is formulated as follows:

DB¼ ð1=kÞ ∑
k

i ¼ 1
maxi≠j

SiþSj
dðci,cjÞ

� �� �
ð6Þ

where Si is the scatter within the ith cluster, i.e. the average
distance of all elements in cluster i to its centroid ci, and dðci,cjÞ is
the distance between clusters i and j. A clustering algorithm that
produces a collection of clusters with the smallest Davies–Bouldin
index is considered the best algorithm based on this criterion.

2.3.2.4. Dunn index [42]. The Dunn index is the ratio of the smallest
distance between observations not in the same cluster to the
largest intra-cluster distance:

Dunn¼min1≤i≤k min1≤j≤k,j≠i
δðCi,CjÞ

max1≤p≤kΔðCpÞ

� �� �
ð7Þ

where k is the number of clusters, the function δ gives the distance
between two clusters Ci and Cj (the shortest path between two
centroids) and Δ represents the diameter of a cluster Cp (the
maximum shortest path between any node pairs within the
cluster). Since internal criterions seek clusters with high intra-
cluster similarity and low inter-cluster similarity, algorithms that
produce clusters with high Dunn index are more desirable.

2.3.3. Clustering analysis of the 380 kV Italian power transmission
network

We applied the USCA for performing the clustering analysis of
the 380 kV Italian power transmission network. Both adjacency
affinity and topological distance affinity were considered. The
resulting partitions are showed in Fig. 3(a) and (b), respectively.
Different shapes represent different clusters. The filled nodes
locate the clusters centers, which are the physical node nearest
to the centroids of the clusters based on the Euclidean distance
measure. The two different affinity definitions produce somewhat
similar partitions in four clusters, though some differences exist.
The clusters in both cases exhibit not only physical proximity but
also intensity of the relationship in terms of the network con-
nectivity, which results from the fact that generally only nodes
with geographical closeness are connected in the power transmis-
sion network.

Table 1 represents the comparison results of the two partitions.
The Q values for adjacency affinity and topological distance affinity
are both within the range of [0.2, 0.7], which designates the
existence of a modularized structure within the 380 kV Italian
power transmission network. Partitioning into four clusters is
confirmed for both affinities. The size and central node for cluster
1 (whose elements are represented as squares in Fig. 3) are
identical and cluster 2 (circles) has same centroid but different
size, whereas cluster 3 (triangles) and 4 (diamonds) have neither
the same size nor identical central nodes. This discrepancy is
probably due to the fact that the nodes in the north part of the
Italian transmission network (composed by clusters 1 and 2) are
densely connected and their modularized structure is more
prominent compared with the south part (composed by clusters
3 and 4), thus both local and global topological affinities can
achieve the overall maximum of the modularity. Actually, the
Q values of the north part of the network (composed by cluster
1 and 2), i.e. 0.443 for adjacency affinity and 0.444 for topological
distance affinity, are both higher than those of the south part
(composed by clusters 3 and 4), i.e. 0.314 and 0.119 for adjacency
affinity and topological distance affinity, respectively.



Fig. 4. Inter-cluster links, cluster-border nodes, and central nodes for the 380 kV Italian power transmission network.

Table 2
Cluster membership value (MV), rank positions according to the information,
degree, closeness, and betweenness centrality measures for cluster-border and
central nodes (bold) of each cluster; only the 24 top-ranked are reported.

Cluster Critical node MV Rank CI Rank CD Rank CC Rank CB

1

23 0.9999
30 0.7296
59 0.7768 13 4 17 8
61 0.7606 20 9 11
76 0.5527 15 11 7

2

40 1.0000 24 18
31 0.7373
34 0.7948
60 0.8699 4 15 22
62 0.8114 8
64 0.8394 5 2 1 4
71 0.9054 22 14 15

3

86 0.9998 21
78 0.4772 10 6 21
79 0.9198 8 3 3 5
83 0.4775 22 16
107 0.7442 24
110 0.8203 10 10
112 0.5442

4

119 0.9993 4
109 0.9466
111 0.5724
114 0.7314
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In addition, the partitions obtained exhibit DB¼0.883, SSE¼1585
for adjacency affinity, and DB¼0.99, SSE¼1867 for topological
distance affinity. In both evaluation indexes DB and SSE, clustering
by adjacency affinity outperforms that by topological distance
affinity. Furthermore, the clusters from adjacency affinity are rela-
tively more balanced in size. For the above reasons, the adjacency
affinity is retained for the analyses of the following sections.

2.4. Component importance by clustering

A previous study [11] defined the community-level vulnerabil-
ity based on the reciprocal of the number of inter-cluster links,
thus showing that the modularized structure could be leveraged to
the criticality analysis of network elements. In this study, two
types of elements in the clustering are paid special attention to
(Fig. 4). First, the elements (links and vertices) which are in the
periphery and connect different clusters (hereafter called inter-
cluster links and cluster-border nodes, respectively) intuitively
play a critical role in the complex interaction and communication
occurring between different modules of the whole network. In this
sense, the so-called overlapping nodes [43,44] are similar to our
cluster-border nodes. Second, the central nodes within each
cluster, which own highest membership to the cluster, are
expected to have a dense pattern of local connections and their
failures could possibly propagate to a severe damage to the
network.

Fig. 4 represents the inter-cluster links (black lines), cluster-
border nodes (nodes with ‘þ ’ symbol inside) and the central
nodes (nodes filled with black color) obtained from the (adjacency
affinity) clustering of the 380 kV Italian power transmission
network. The inter-cluster links set E′is {(30–31), (30–34), (59–
60), (61–62), (64–78), (71–83), (76–79), (107–109), (110–111),
(112–114)}. Coincidently, the three lines identified as the most
critical triplet of lines in [45], because their removal would result
in a huge efficiency drop for the whole network, are among the
inter-cluster links set E′: {(64–78), (71–83), (76–79)}. This shows
the importance of these types of elements for the structured
robustness of a network, and the usefulness of clustering analysis
for their identification.

Table 2 reports the membership values of these cluster-border
nodes and cluster central nodes (bold), and their rank positions
according to the information, degree, closeness and betweenness



Fig. 5. Illustrative example of the construction of fictitious networks.
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centrality measures based on the results in [7]. Detailed definition
and explanation of these four centrality measures can be found in
the literature [7,15–19]. One can see that most of the nodes found
important by clustering, because cluster-border or central, are
ranked among the top 24 with highest centrality values, although
specific exceptions exist such as the nodes 23, 30, 31, 34, 112 in
clusters 1, 2, 3 and the nodes 109, 111 and 114 in cluster 4. This
difference is due to the fact that the “clustering-important” nodes
are identified based only on regional topological information and
not on any other consideration on the role in the whole network.
3. Hierarchical modelling and zoom-in assessment
of the network

3.1. Hierarchical model of the network

If one looks closely at the individual clusters in Fig. 3, it may
notice that some of them exhibit a modularized structure, and
hence can be decomposed further into sub-clusters. Indeed, many
real networks reveal a hierarchical organization, where vertices
divide into groups that further subdivide into groups of groups,
and so forth over multiple scales [4]. On this basis, a framework for
hierarchical system modelling has recently been proposed in [25]
aiming at reducing the computational burden of modelling the
entire system.

For illustration of the potential of the hierarchical modelling
framework for complex system analysis, by analogy one may think
of the electronic maps such as those provided by Google Maps; the
tools are powerful because they present information in a scalable
manner—despite the decrease in the amount of information as we
“zoom in”, the representation shows the information that is
relevant at the new scale.

In the same spirit, a hierarchical model representing the whole
system at the top and individual elements at the bottom could be
obtained via successively performing unsupervised spectral clus-
tering algorithm on the network. Then, based on the hierarchical
network representation, fictitious networks can be defined in each
level, from which the analyst can extract relevant information at
the suitable level of the hierarchy. Fictitious networks are cluster-
simplified representations of the real network and can facilitate
the understanding and analysis of the network properties by
focusing on the relevant information that emerges at the different
levels.

Following a similar formulation as in [46], the fictitious net-
work at level k is denoted by a graphGðkÞðΛðkÞ,EðkÞÞ. Let us denote as
V ðkÞ
i ði¼ 1,…,nðkÞÞ the node i of the fictitious network at level k of

the hierarchy and associate a weight to it which is equal to the
number of actual nodes which compose V ðkÞ

i . These fictitious nodes
are connected by mðkÞ fictitious edgesEðkÞ ¼ EðkÞ1 ,EðkÞ2 ,…,EðkÞmðkÞ . Con-
sidering parallel connections, EðkÞi is weighted by the reciprocal of
the number of actual edges it contains. Then, the fictitious net-
work is represented by a weighted adjacency matrix AðkÞwhose
element AðkÞ V ðkÞ

p ,V ðkÞ
q

� �
¼ 1=jEðkÞpq jif the fictitious nodes V ðkÞ

p and
V ðkÞ
q are connected by fictitious edge EðkÞpq and 0 otherwise. This

definition accounts for the fact that a fictitious edge embracing
several real links has that number of paths available between the
two communities it connects, thus holding more interaction
efficiency and smaller weight viewed as the physical distance
between the two communities connected by the virtual edge.
Fig. 5 gives an example of the construction of a fictitious network.

The 380 kV Italian power transmission network has been
modeled as a five levels hierarchy (to which correspond five
fictitious networks) by successively applying USCA. In Fig. 6, the
weighted fictitious networks and their corresponding weighted
adjacency matrices at the levels 2 and 3 of the hierarchy are
presented for illustration. The number beside the fictitious node
V ðkÞ
i represents its weight (number of actual nodes included in the

virtual node): for example, the weight of V ð2Þ
3 is 36. The fictitious

network at level 1 is a single fictitious node whose size is 127, the
total number of nodes in the network, whereas at the last level
5 the fictitious network corresponds to the actual physical
network.
3.2. Centrality analysis on fictitious networks

Based on the hierarchical representation of the network,
problems such as reliability assessment and damage propagation
[25] can be swiftly unraveled with low complexity at the expense
of low specificity. In this section, we carry out centrality analysis
on the fictitious networks, focusing step-wise on the most critical
clusters (fictitious nodes) at each scale of the hierarchy. This is
valuable for decision makers when they want to allot limited
investments to a regional part of the network, which is usually
operated by local organizations, to improve the vulnerability of the
overall network system.

3.2.1. Efficiency modelling
Network topological efficiency introduced in [46] allows a

quantitative analysis of the information flow, and works both in
the unweighted abstraction and in the more realistic assumption
of weighted networks. This measure is based on the assumption
that the information (communication) in a network travels along
the shortest routes, and that the efficiency in the communication
between two nodes i and j, εij, is inversely proportional to their
shortest path length dij which is defined as the smallest sum of the
physical distances throughout all the possible paths in the
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weighted network. Then, the efficiency of the whole network is
given by:

EðGÞ ¼ ∑i≠j∈Gεij
nðn−1Þ ¼ 1

nðn−1Þ ∑
i≠j∈G

1
dij

: ð8Þ

This formula produces a value of E that can vary in the range of
½0,∞Þ.EðGÞ is defined as 1 in the case of n¼1, i.e., there is only one
single node in the network. It is more practical to have E normal-
ized to be in [0, 1]. For this reason, we consider the ideal case
Gidealin which the network has all the nðn−1Þ possible links among
its nodes. In such a case, the information is propagated in the most
efficient way since dij equals the physical distance between nodes
i and j and E assumes its maximum value. The efficiency EðGÞ
considered in the following of the paper is always divided by
EðGidealÞ and therefore0≤EðGÞ≤1.

Notice that, for our analysis of fictitious networks modelling of
the Italian power transmission network, the physical distance
exists even if there is no fictitious edge between two nodes
V ðkÞ
p andV ðkÞ

q : for generality, their physical distance is defined as
the reciprocal of the minimum size of the two fictitious nodes if
there is not fictitious edge connecting them. By this definition, the
physical distance of nodes in the bottom level fictitious network,
i.e. the actual network, coincides with that obtained by consider-
ing it as an unweighted network.

Fig. 7 plots the efficiency values of the fictitious networks at
each level of the hierarchy. It can be observed that as the
evaluation moves down in the hierarchy, the efficiency difference
between the fictitious network and the actual network decreases
as expected. Note that the minimum efficiency at level 3 stems
from the fact that the ideal fictitious networks Gideal have different
topologies and link weights at different levels of the hierarchy.
Thus, it is not necessary that the curve of network efficiency
decreases monotonically. Fig. 7 is used to qualitatively show that
as the evaluation moves down in the hierarchy, the efficiency
approximation gets closer to the efficiency of the actual network.
3.2.2. Zoom-in criticality analysis
The hierarchical model makes a multi-scale criticality analysis

possible, beyond the widely studied component-level criticality
analysis. This zoom-in criticality analysis is analogous to the
procedure of locating a specific site in a scalable electronic map
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manually: a large area is first fixed at the coarse granular scale of
the map based on the limited information at that level, and then
the user can zoom in on that area to get a relatively fine-grained
view which offers more local information, based on which a
narrower region can be identified, repeating this operation until
the desired scale of the map.

Information centrality is used as an illustration to quantify the
importance criticality of a cluster on the network. Parallel with the
component information centrality definition [18,19,47], we define
the information centrality for cluster V ðkÞ

i at level k of the hierarchy
as the information centrality of its corresponding fictitious node in
the fictitious networks, i.e. the relative drop in the fictitious
network topological efficiency caused by the removal of all the
fictitious edges incident in V ðkÞ

i :

CI
V ðkÞ
i
¼ ΔEðV ðkÞ

i Þ
E

¼ E½GðkÞ�−E½GðkÞ
r �

E½GðkÞ�
ð9Þ

where GðkÞ
r is the network obtained by removing from the original

fictitious network the fictitious edges incident in node V ðkÞ
i .

An illustration of the process of zoom-in criticality analysis on the
5-levels hierarchical model of the 380 kV Italian power transmission
network built by clustering in Section 3.1 is presented in Fig. 8. By
first ‘opening’ the single unit at level 1, a weighted fictitious network
with 4 nodes at level 2 is achieved, in which the information
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Fig. 8. The process of zooming-in analysis of
centrality of each fictitious node is calculated according to Eq. (9)
and is presented in the corresponding Table. It shows that node V ð2Þ

4
owns the highest CI value; then, the internal topology of V ð2Þ

4 at level
3 of the hierarchy is unraveled by zooming into V ð2Þ

4 . Similarly, the
most critical clusters at levels 3 and 4 can be determined as V ð3Þ

4 and
V ð4Þ
1 , which include 11 and 4 actual nodes, respectively. In level 5,

which represents the real network, however, the four nodes have the
same values of information centrality since they are completely
connected and the removal of all the edges incident in any one of
the four nodes would result in the equal relative drop in the network
topological efficiency.

Note that the difference of cluster-level information centrality
is quite pronounced for the 380 kV Italian power transmission
network, compared to the node-level information centrality
reported in [7] where the difference between the biggest and
smallest CI values is only 0.0194; then, the analyst may have more
confidence to make clear-cut, relevant decisions based on the
cluster-level criticality results of the 380 kV Italian power trans-
mission network.
4. Conclusions

In this article, the feasibility of extracting cluster-level struc-
tural properties for a realistic-size network by clustering analysis
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Y.-P. Fang, E. Zio / Reliability Engineering and System Safety 116 (2013) 64–74 73
has been first investigated, taking as reference example the 380 kV
Italian power transmission network structure. Then, the hierarch-
ical modelling framework has been utilized to represent the
networked system, forming a scalable hierarchical structure of
corresponding fictitious networks. In the context of the hierarch-
ical representation of the network, zoom-in criticality analysis has
been proposed to identify the most relevant clusters at the desired
level of the hierarchy.

For clustering analysis, both adjacency affinity and topological
affinity have been considered when applying USCA on the 380 kV
Italian power transmission network structure, and their results have
been compared to those of four classic centrality measures. For the
considered network, the adjacency affinity has turned out to give
superior partition. Also, the inter-cluster links, cluster-border nodes
and central nodes of each cluster, have been identified as critical:
most of the nodes found important by clustering, because cluster-
border or central, have turned out to be ranked among the top 24
with highest centrality values (CI, CD, CC and CB) and the most
critical triplet of lines identified in [45] is contained within the
inter-cluster links set. This confirms the importance of these types
of elements for the structural robustness of a network and the
usefulness of clustering analysis for their identification.

Then, the systemic hierarchical representation has been intro-
duced for modelling and analysis of complex network systems,
with the objective of rendering more manageable the treatment of
real-world critical infrastructures. A five-level hierarchical model
of the 380 kV Italian power transmission network structure has
been obtained by successively applying USCA. The cluster-level
information centrality has been proposed and used as an illustra-
tion to quantify the importance criticality of a cluster in the
network. The most critical clusters at each level of the hierarchy
have been identified with high confidence for decision making.

Finally, a comment is in order with respect to the computa-
tional complexity of the approach proposed. The complexity
depends primarily on the computational cost of spectral cluster-
ing, where a large number of eigenvectors have to be computed for
large graph Laplace matrices (step 2 of the algorithm), whose time
complexity of computing eigenvectors is Oðn3Þ[48]. Thus, the
computation cost of constructing the hierarchical model isOðn3lÞ,
where l is the number of hierarchical levels. In general, the high-
quality clustering of the spectral method is at the expense of its
comparatively demanding computation cost. In this study, the
spectral clustering is adopted as one possible way to extract some
inherent cluster-level structural properties and derive the hier-
archical modelling which sets the base for a multi-scale criticality
analysis, which is our main objective. Furthermore, as many real
adjacency matrices are sparse in nature, efficient existing methods
to compute the eigenvectors of sparse matrices need to be adopted
[49]. Finally, some improvements of spectral clustering have been
proposed in Statistics and Data Mining such as parallel spectral
clustering [50], distributed method [51] and fast approximation
[52] to make it scalable to large network problems.
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ABSTRACT 

The complexity of large-scale network systems made of a large number of nonlinearly interconnected components is a 
restrictive facet for their modeling and analysis. In this paper, we propose a framework of hierarchical modeling of a 
complex network system, based on a recursive unsupervised spectral clustering method. The hierarchical model serves 
the purpose of facilitating the management of complexity in the analysis of real-world critical infrastructures. We ex- 
emplify this by referring to the reliability analysis of the 380 kV Italian Power Transmission Network (IPTN). In this 
work of analysis, the classical component Importance Measures (IMs) of reliability theory have been extended to render 
them compatible and applicable to a complex distributed network system. By utilizing these extended IMs, the reliabil- 
ity properties of the IPTN system can be evaluated in the framework of the hierarchical system model, with the aim of 
providing risk managers with information on the risk/safety significance of system structures and components. 
 
Keywords: Complex Network System; Hierarchical Modeling; Spectral Clustering; Extended Importance Measure 

1. Introduction 

Critical infrastructures are engineered distributed systems 
which provide the fundamental support to modern Indus- 
try and society. Examples are computer and communica- 
tion systems, power transmission and distribution sys- 
tems, rail and road transportation systems, oil/gas sys- 
tems and water distribution systems. Failures of such sys- 
tems can have multiple, transnational impacts of signifi- 
cant size [1-3]. Hence, identifying and quantifying the 
reliability and vulnerability of such systems is crucial for 
designing the adequate protections, mitigation and emer- 
gency actions against failures [2]. 

These systems are exposed to multiple hazards and 
threats, some of which are even unexpected and emer- 
gent, and consist of a large number of elements whose 
interactions are not easily modeled and quantified, so that 
a complete analysis by exhaustive treatment cannot be 
pursued. As a result, the performance and reliability as- 
sessment of such ‘complex’ systems has proved to be a 
non-trivial task in practice. 

Recent studies suggest that many real complex net- 
work systems exhibit a modularized organization [4,5]. 
In many cases, these modularized structures are found to 

correspond to functional units within networks (ecologi- 
cal niches in food webs, modules in biochemical net- 
works) [6]. Broadly speaking, clusters (also called com- 
munities or modules) are found in the network, forming 
groups of elements that are densely interconnected with 
each other but only sparsely connected with the rest of 
the network. Furthermore, hierarchically modularized or- 
ganization, which is a central idea for the life process in 
biology [5,7], is also found to characterize the internal 
structure of many technological networks [8]. This sparks 
the idea of utilizing the hierarchical, modularized struc- 
ture as a basis to model these complex systems, for their 
analysis and understanding [9]. 

In the analysis of systems with respect to their failure 
behavior, Importance Measures (IMs) are used to iden- 
tify the weak points and quantify the impact of compo- 
nent failures [10,11]. IMs provide numerical indicators to 
determine which components are most important for 
system reliability improvement or most critical for sys- 
tem failure. Many different IMs have been proposed in 
the literature [12,13], among which classical and relevant 
statistics are Birnbaum [14], Fussell-Vesely [15] and 
Criticality Importance [16,17]. However, none of these  
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Figure 1. The 380 kV Italian power transmission network. 
 
measures can be applied directly to complex network 
systems, because of the distributed character of function- 
ality and service that they provide.  

The purpose of this paper is twofold: firstly to propose 
a scheme of recursive clustering to obtain a hierarchical 
modeling framework associated with different varied- 

size grained virtual networks; then to introduce Extended 
Importance Measures (EIMs) which are compatible with 
the distributed characteristics of complex network sys- 
tems, to evaluate the components importance in the fra- 
mework of the hierarchical system representation. 

The remainder of this paper is organized as follows: 
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Section 2 presents the methodology of hierarchical mod- 
eling, taking the structure of the 380kV Italian Power 
Transmission Network (IPTN) as an example for illustra- 
tion; in Section 3, the basic terminal-pair connection re- 
liability problem is first introduced, based on which the 
traditional IMs are extended and then calculated for the 
IPTN system; conclusions are drawn in Section 4. 

2. Hierarchical Modeling of Complex  
Network System 

2.1. Network Representation 

Graph Theory provides a framework for the mathemati- 
cal representation of complex networks. A graph is an 
ordered pair comprising a set of vertices (nodes) 

 together with a set of edges (also 
called arcs or links) , which are two- 
element subsets of V. The network structure is usually 
defined by the  adjacency matrix, which defines 
which two nodes are connected by assigning a 1 to the 
corresponding element of the matrix; otherwise, the va- 
lue in the matrix is 0 if there is no connection between 
the two nodes. As described, this type of graph is un- 
weighted and undirected. A graph is weighted if a value 
(weight) is assigned to each edge representing properties 
of the connection like cost, reliability, capacities, etc. For 
example, the matrix of physical distances is often used in 
conjunction with the adjacency matrix to describe a net- 
work also with respect to its spatial dimension [18,19]. 

 ,G V E
, Nv

N N





 1 2, ,V v v 

 1 2, , , ME e e e 

In this paper, we take for exemplification of the ana- 
lyses proposed the 380 kV Italian power transmission 
network (IPTN) (Figure 1). This network is a branch of 
the high-voltage-level transmission network, which can 
be modeled as a graph of  (127nodesN  30GN   
generators and  distributors) connected by M = 
171 links [20,21], defined by its  adjacency ma- 
trix A whose entries ij   are 1 if there is an edge join- 
ing node i to node j or 0 otherwise. In Figure 1, the gen- 
erators, i.e. hydro and thermal power plants, are repre- 
sented by squares whereas the distribution substations are 
represented by circles. 

97DN 

a

N N


2.2. Construct Network Hierarchy by Successive 
Clustering 

Modularity is ubiquitous in many networks of scientific 
and technological interest, ranging from the World Wide 
Web to biological networks [7,22]. As a result, it is often 
possible to identify groups of elements that are highly 
interconnected with each other, but have only a few links 
to components outside of the group to which they belong 
to. These communities usually combine into each other 
in a hierarchical manner [7], in which nodes form groups 
and then join the groups of groups, and so forth, starting 

from the lowest levels of organization (individual nodes) 
up to the level of the entire system. This suggests the 
development of a hierarchical structure to describe a 
complex network system at different levels of resolution, 
with the aim of managing the complexity of the system 
more effectively.  

A successive Unsupervised Spectral Clustering Algo- 
rithm (USCA) [23], which is invariant to cluster shapes 
and densities and simple to implement, has been adopted 
in this study to build the hierarchical structure of the 
IPTN system. Cluster analysis aims at recognizing natu- 
ral groups within classes of entities [24]. The problem is 
to assign categories to unlabelled data, encouraging the 
search of implicit information in the network structure 
encoded in its graph [25]. Consequently, modularity pat- 
terns within a complex network system can be revealed 
without a priori knowledge of their existence. The de- 
tailed description of different clustering methods is be- 
yond the scope of this article. For a systematic and syn- 
thetic review, the reader is encouraged to look at [24-26]. 

The USCA makes use of the spectrum (eigenvalues) of 
the similarity matrix of the data to perform dimensional-
ity reduction before Fuzzy c-Means (FCM)—clustering 
in fewer dimensions. Schematically, it is performed by 
the steps [23] in Table 1. 

In the first step, the Laplacian matrix sym  is calcu- 
lated from the similarity (affinity) matrix as follows. The 
input similarity matrix is of size  and its generic 
element ij

L

S n n
s  represents the similarity between nodes i 

and j in the network. The diagonal components iis  are 
set to 1 and the matrix is symmetric ij ji s s . The de- 
gree matrix  is the diagonal matrix with diagonal 
entries  defined by 

D
, ,1 2d d , nd

1

, 1, 2, ,
N

i ij
j

d s i


   n           (1) 

Then, the normalized graph Laplacian matrix can be 
obtained: 

1 2 1 2 1 2 1 2
symL D LD I D SD            (2) 

where L D S   and I  is the identity matrix of size 
n n . 

By recursively operating the USCA on the data of the 
IPTN presented in Section 2.1 above, a 5-levels hierar- 
chical structure of the system is constructed which con- 
tains the complete system at the top and individual ele- 
ments at the bottom (the top panel of Figure 2 gives out 
the structure of the hierarchy, detailed in the first 3 lev- 
els). 

2.3. Hierarchical Modeling of the Network 

Based on the hierarchy structure resulting from the suc- 
cessive application of USCA, artificial networks can be 
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Table 1. Unsupervised spectral clustering algorithm.  

Input: Similarity matrix . n nS 

Compute the normalized graph Laplacian matrix symL . 

Compute the first k eigenvalues 1 2, , , k    and corresponding 

eigenvectors 1 2, , , ku u u of matrix symL . The first k eigenvalues 

are such that they are very small whereas λk+1 is relatively large. 

The number of clusters c is set equal to k, according to the eigen-
gap heuristic theory [24]. 

Let  be the matrix containing the vectors n kU  1 2, , , ku u u  

as columns. Form the matrix  from U by normalizing 

the rows to norm 1, that is set

n kT 

 1 2
2

ij ij ikk
t u u  . 

For  let be the vector corresponding to the 

i-th row of T. 

1, ,i n  k
iy 

Resort to the FCM algorithm [27,28] to partition the data points 

 
1, ,i i n

y
 

into c = k clusters . 1, , kC C

Output: Clusters 1, , kA A with  i jA j y C  i  

 

 

V
1
(1)

V
1
(2) 38

V
2
(2) 17

V
3
(2) 36

V
4
(2) 36

E
13
(2)

E
14
(2)

E
24
(2)

E
34
(2)

V
1
(3) 13

V
2
(3) 13V

3
(3) 12

V
4
(3) 10

V
5
(3) 7

V
6
(3) 6

V
7
(3) 14

V
8
(3) 16

V
9
(3) 10

V
10
(3) 8

V
11
(3) 7

V
12
(3) 11

 

Figure 2. The hierarchy structure of the IPTN system and 
associated artificial networks of the first three levels. 
 
defined at each layer. The artificial network a
the hierarchy is described as a graph  
with , where is the number of levels of the 
hierarchy. We use  to represent the artificial node i  

  for 1, 2, , li    at level l, which corresponds to a 
cluster of real network nodes. Artificial nodes are con- 
nected by artificial links  

    for 1,2, , andl l
ijE i i j   , 

composed by those actual network links connecting (in 
parallel) the actual nodes in the clusters forming the arti- 
ficial nodes,  

      ,l l
ij st s i t jE e v V v V   l . 

The connection pattern between artificial nodes at level l 
is illustrated by an adjacency matrix  lA whose element  

      , 1l l l
i jA V V   if ,  l

ijE  

i.e. if in the artificial nodes  and  l
iV  l

jV  there is at 
least one actual link connecting two actual nodes, and 0 
otherwise. 

Figure 2 presents the hierarchy structure of the IPTN 
system and the artificial networks associated with the 
first 3 levels of the hierarchy. At the top of the hierarchy 
(i.e. l = 1), the network is a single unit, i.e. one artificial 
node , which consist of all actual nodes. At the sec- 
ond level 

 1
1V

 2l  , we have 

          2 2 2 2
1 2 3 4, , ,V V V V  2  

and           2 2 2 2 2
13 14 34 24, , ,E E E E E  

with .          2 2 2 2 1
1 2 3 4 1, , ,V V V V V

The integer that is indicated in the Figure in proximity 
of the generic i-th artificial node  indicates the 
number of actual nodes which compose it, e.g.  is 
representative of a group of 38 actual network nodes. 
Note that at the bottom of the hierarchy, we find the ori- 
ginal network, i.e. each artificial node is an actual node 
and each artificial edge corresponds to an actual link. 

 2
iV

 2
1V

The hierarchical model offers different levels of reso- 
lution at the different levels of the hierarchy. The artifi-
cial networks at the top of the hierarchy contain limited 
detail information of the local connectivity patterns (in 
the limit, only one node represents the whole network at 
the first level of the hierarchy); as we move down the 
hierarchy, more local information enters the model, at the 
expense of an increase in the dimension of the network. 
These characteristics can be leveraged efficiently to ma- 
nage the complexity of a complex network system. 

t level l of 

      ,l l lG E
1 l L  L

 l
iV

3. Reliability Analysis Based on the  
Hierarchical Model 

It is known that most network reliability problems are 
NP-hard and therefore there is a significant gap between 
theoretical analysis and the ability to compute different 
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reliability parameters for large or even moderate network 
systems [11]. In this respect, hierarchical modeling sets 
up a framework based on which reliability and vulner- 
ability characteristics of complex network systems can be 
computed efficiently, thanks to the multi-scaled informa- 
tion representation scheme. 

3.1. Terminal-Pairs Reliability Assessment 

The terminal-pair or node-pair reliability (TPR) problem 
amounts to determining the probability of successful 
communication between a specified source node and a 
terminal node in a network, given the probability of suc- 
cess of each link and node in the network. Let us intro- 
duce a binary vector  to rep- 
resent the state of the network, i.e. the state 

 1 1, , , , ,k MS x x y y   N

x of each of 
its M  edges and the state  of each of its  nodes, 
where  if edge i  is operating and 0 otherwise 
(  for node). For simplicity of illustration, we assume 
that nodes cannot fail, while edges can (thus  is no 
longer considered hereafter). The state of the network is 
defined as being non-failure if the specified terminal-pair 
is connected by at least one path of operating edges; oth- 
erwise it is failure. All possible failure states are in- 
cluded in the subset 

y N
e

y

1ix 
y

F  of the set  containing all 
possible scenarios (failure and non-failure). An inclusive 
TPR analysis requires considering all elements in F . 
We then define the TPR as: 

  Pr 1 ,sd sd k kR S S            (3) 

where sd  
 

is a binary function which indicates the 
connection availability between node-pair s and d (1 = 
connection; 0 = no-connection). Let us assume that each 
edge i  has associated a probability i  of being oper- 
ating and a probability i  of being failed; then, 
the TPR of the network can be calculated as: 

e p
1iq   p

 1 1
k F i f i f

sd
S x X x X

R p
  

 
    

 
  i ip         (4) 

where ix  represents the state of network edge  and ie

fX  is the set of failed edges for a given state k FS  . 
Note that the implicit assumption underpinning Equation 
(4) is that the network edges are independent. 

When the computational cost of the network is high (it 
grows exponentially with the number of network com- 
ponents), then, the artificial network at a suitable level of 
the hierarchy can be leveraged to carry out the TPR. At 
the generic level of the hierarchy, the artificial link 

 connecting nodes (clusters)  and 

 l
ijE

 l
iV  l

jV  is composed 
by actual network links in parallel,  

      ,l l
ij st s i t jE e v V v V   l

can be calculated by: 

; 

then, the reliability of the artificial edge  at level l 

 

 l
ijE

  1l
ijp E     

 

   ;  ,
l

st ij

st s i t j

e E

q e v V v V


 l l    (5) 

where  stq e  
k 

indicates the failure probability of the ac- 
tual lin ste that in the real network connects nodes sv  
and tv . 

Va u orithms to solve the classic TPR problem 
ha

rio s alg
ve been reported in literature, with various computa- 

tional efficiencies [29-31]. A so-called Modified Dotson 
algorithm [30], which has been claimed and tested to 
subdue others in computational time, is used here for the 
TPR assessment based on the hierarchical modeling. The 
failure probability of the transmission lines in the IPTN 
system is computed based on outage statistics provided 
in [32], by assuming that the edge failure probability is 
proportional to its length with an average failure rate 

1.380635   occ/100mile-year, and average outage du- 
ration ti  64.81 hours/occ. 

In Figure 3 right-panel, the connection reliability be- 
tw

me t =

een nodes 1 and 127 in the IPTN network system (left 
panel in Figure 3) is shown as resulting from evaluations 
at each of the five levels of the hierarchical model de- 
scribed in the previous Section. The right panel of Fig- 
ure 3 gives the probabilities of connectivity failure be- 
tween nodes 1 and 127 from level 2 to level 5 (top) and  
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Figure 3. Illustrative example of terminal pair reliability as
sessment of IPTN system. 

- 
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the computational time needed for the analysis (bottom); 
the values have been normalized with respect to the ma- 

ce Measures 

ximum values of connectivity failure probability and 
computational time, which occur at the bottom of the hie- 
rarchy (level 5) corresponding to the whole network. The 
result at the first level has not been shown since its value 
is simply 0, i.e., node 1 and 127 are in a single unit and 
will not disconnect. One can see that the difference be- 
tween the actual and estimated failure probabilities de- 
creases as the assessment moves downs to the bottom of 
the hierarchy, balanced by the computation time which 
instead increases significantly. The decision maker can 
obtain satisfying estimations of the failure probability at 
a hierarchical level of lower complexity, e.g. level 3, thus 
saving significantly in computation time. 

3.2. Component Extended Importan

Component importance measures are widely used in sys- 
tem engineering to identify components within the sys- 
tem that most significantly influence the system behavior 
with respect to reliability, risk and/or safety. The indica- 
tions drawn are valuable for establishing direction and 
prioritization of actions, related to reliability improve- 
ment during system design and optimization of operation 
and maintenance.  

A well known IM is the so called Birnbaum IM de- 
fined as (with reference to system reliability sR , as the 
system performance indicator) [14]: 

 1B s
i s i s

R
I R R R


     0i

i

R
R




       (6) 

where B
iI  is the Birnbaum Importance (BI) of compo- 

nent i; sR represents the reliability of the system; iR  is 
the reliability of component i ;  1s iR R   is the system 
reliability calculated assuming that component i i er- 
fectly operating and  0s iR R

s p
  the system reliability 

in the opposite case of component i failed. The BI meas- 
ures the significance of component i to system reliability 
by the rate at which system reliability improves with the 
reliability of component i. As shown in Equation (6), the 
BI of component i does not depend on iR

 
itself, so that 

two components i and j may have a similar value BI  
although they have different reliability values iR  and 

jR , respectively; this could be seen as a limitation of BI. 
The Criticality Importance (CI) measure overcomes 
 above limitation by considering component unreliabi- the

lity [17]. It is defined as: 

    1C BI i
i i s i 1 0 i

s i
s s

F R
I I R R R R

F F
       (7) 

where 


  

iF  is the unreliability of component i and sF  is 
the system unreliability. Now, a less reliable component 
is more critical than another one with same value of BI. 

Fuessell & Vesely [15] proposed an alternative impor- 

tance measure according to which the importance of a 
component in the system depends on the number and on 
the order of the cut sets in which it appears [17]. Most 
commonly used as a risk reduction indicator, Fuessell & 
Vesely Importance (FVI) quantifies the maximum dec- 
rement in system reliability caused by a particular com- 
ponent being failed  0iR  : 

 0iFV
i

R R
I s s

s

R

R

 
               (8) 

The previously proposed IMs (B
functionally different. They evaluate subtly different 
pr

m, we intro- 
du

I, CI and FVI) are 

operties of the system behavior, and therefore, are of- 
ten used in a complementary fashion to infer different 
information. To apply the IMs for analyzing a network 
system such as the IPTN, it is necessary to extend the 
definition of the IMs to account for the multiple terminal 
or node pairs (e.g. generator-distributor pairs) where con- 
nectivity defines the network functionality. 

Specializing such extension for the analysis of the im- 
portance of components of the IPTN syste

ce the Extended Birnbaum Importance (EBI) measure 
as the average of all BI values obtained considering all 
possible Generator-Distributor pairs reliabilities in the 
network system: 

   

,

,

   E B
iI 



1

1
1 0

G D

G D

sd

s V d VG D i

sd i sd i
s V d VG D

R

N N R

R R R R
N N

 

 






   





  (9) 

where  and GN DN
 the 

are the number of generators and 
distrib n network respectively;  and utors i  GV DV  
are sets rators and distributors respectively;  of node gene

sdR  is the TPR between node s and node d;  1sd iR R   
and  0sd iR R  represent the terminal pair reliabilities 

een node s and node d, in the condition  
nent ly operating and completely failed, re- 
spectively. 

Similarly, we can define Extended Criticality Impor- 
tance (ECI)

betw that compo-
i is perfect

 and Extended Fussell &Vesely Importance 
(EFVI) measures: 

   
,

11E C i
i

R
I

N N
 

  1 0
1

G D

sd i sd i
s V d VG D sd

R R R R
R 

     
(10) 

 
,

01

G D

sd sd iE FV
i

s V d VG D sd

R R R
I

N N R


 

 
     

where 

(11) 

E C
iI   is the Extended Criticality Im

(ECI) m  of component i and 
portance 

easure E FV
iI   is the Ex- 

tended ll & Vesely Importance measure. Fusse
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ted for the IPTN 

 the artificial edges of the network at level 2 
of

 EC

maintenance and operation optimiza- 
tio

3 
of

in Figure 4 represent the edges of the 
ac

el 2 of the hierarchical model. 

3.3. Numerical Example: Results and Discussions 

The EIMs introduced have been calcula
system at different levels of the hierarchical model of the 
system developed. For the evaluation, an artificial node 
functions as a generator as long as there is at least one 
actual generator node within it; otherwise it is simply a 
distributor. 

Tables 2 and 3 report the results of the importance as- 
sessment (EBI, EFVI are given in Table 2 and ECI in 
Table 3) for

 the hierarchy. For EBI and EFVI, all components in 
the artificial network have the same importance rank, but 
with slight differences between EBI and EFVI values, 
and the artificial edge {2-4} is the most important in the 
artificial network (see the bottom panel of Figure 2). 
This is due to the fact that this artificial edge is the only 
possible link between a generator in artificial node  2

2V  
and the distributors in other artificial nodes, and thus its 
disconnection would cause a large-scale generator-dis- 
tributor connectivity failure. The rank based on the I 
is different from that of EBI and EFVI, and the most im- 
portant artificial edge is {3-4}; the difference lies in the 
definition, as discussed before: EBI depends only on the 
structure of the system and not on the reliability of the 
considered component, whereas ECI takes the unreliabil- 
ity of the component into consideration, and in fact, the 
artificial edge {3-4} is made of only one actual edge with 
relatively high probability of failure, which leads to the 
highest ECI value. 

By combining the indications of EBI and ECI, it is ad- 
visable to offer advices to the decision maker for the 
purpose of system 

n [10]. When EBI & EFVI is high and ECI is low like 

in the case of artificial edge {2-4}, the system safety can 
be improved by protecting against failure of each com- 
ponent, e.g., adding alternative edges between artificial 
node  2

2V  and node  2
1V  (or  2

3V ). For the case of 
low E  EFVI and  ECI ificial edge {3-4}), 
the decision maker should invest in improvements of the 
component itself, to decrease the failure probability. 

Tables 4 and 5 report the evaluation results at level 

 
Table 2. EBI and EFVI at lev

BI & high (art

 the hierarchy. Fictitious edge {4-9}, composed by 
actual edges {110-111, 112-114, 107-109}, has highest 
EBI and EFVI values but relatively low ECI value 
(ranked 15th among all 17 artificial edges), indicating 
that the system reliability is highly sensitive to its failure, 
whereas the component itself is relatively reliable. On the 
contrary, the artificial edge {1-10} composed by only 
one actual edge {64-78} is highly unreliable itself, and 
its EBI and EFVI values are both ranked 8th among all 
17 edges. It is important to pay attention to these artifi- 
cial edges with both relatively high EBI & EFVI ranks 
and ECI ranks, which means not only that their failures 
cause a significant deterioration of the system reliability 
but also that they are vulnerable themselves. In this re- 
spect, by combining Tables 4 and 5, we find that artifi- 
cial edges {1-11} (whose actual network link is {71-83}), 
{6-10} (which is composed by actual link {76-79}), and 
{10-12} (which is composed by actual links {75-88, 
80-95}) are the three artificial edges most critical for the 
system reliability. 

The bold edges 
tual network system which have resulted most critical 

based on the extended importance measure evaluation 
carried out at level 3 of the hierarchy model. These edges 
should be paid special attention. For links {110-111, 
112-114, 107-109}, improving the defense in depth against 

EBI EFVI 

Artificial Edge 
Rank Value Rank Value 

Associated Actual Edges 

{2-4} 1 0.3750 1 0. {  3750 107-109,112-114,110-111}

{1-4} 2 1.9606E 1.9605E

{59-60, 31} 

 − 03 2  − 03 {64-78,71-83} 

{1-3} 3 1.4817E − 03 3 1.4817E − 03 61-62,30-34,30-

{3-4} 4 1.5100E − 05 4 1.4900E − 05 {76-79} 

 
CI at level 2 of the hierarchical model. 

Artificial Edges Associated Actual Edges 

Table 3. E

Rank ECI 

{2-4} 4 0.37 {107-109,112-114,110-111} 

{1-4} 2 7699 62 

{59-60, 31} 

{3-4} 1 7699828.67 {76-79} 

812. {64-78,71-83} 

{1-3} 3 16.55 61-62,30-34,30-
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Table 4. EBI and EFVI at level 3 of the hierarchical mod

EBI 

el. 

EFVI 
Artificial Edges 

Rank 
Associated Actual Edges 

Value Rank Value 

{4-9} 1 0.2867 1 0.2879 {110-111, 112-114, 107-109} 

{4-5} {119-122} 

{  {7 } 

1.  1.  

1.  1.  

{30-31 9-60} 

{

{  

{10-1 -21} 

2 0.1591 2 0.1591 

{9-12} 3 0.0030 3 0.0030 {98-99, 94-97, 97-98} 

10-12} 4 0.0028 4 0.0028 5-88, 80-95

{2-3} 5 0.0007 5 0.0007 {42-43, 40-43} 

{1-11} 6 0.0002 6 0.0002 {71-83} 

{6-10} 7 55E − 05 7 54E − 05 {76-79} 

{1-10} 8 17E − 05 8 15E − 05 {64-78} 

{3-8} 9 8.04E − 06 9 8.05E − 06 , 30-34, 5

{9-11} 10 7.52E − 06 10 7.38E − 06 102-110} 

11-12} 11 4.82E − 06 11 4.65E − 06 {86-88} 

{7-8} 12 4.11E − 06 12 4.11E − 06 6, 10-21, 20

{1-2} 13 3.00E − 06 13 2.98E − 06 {47-48} 

{1-3} 14 8.43E − 08 14 8.40E − 08 {40-41, 60-63} 

{1-6} 15 7.58E − 08 16 5.56E − 08 {61-62} 

{6-7} 16 5.58E − 08 15 4.96E − 08 {11-12, 12-13} 

{6-8} 17 1.43E − 08 17 3.92E − 08 {59-61} 

 

 

Figure 4. Most critical edges at level 3 of the hierarchical model. 
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Table 5. The results of ECI assessment at level 3 of the hierarchical model. 

Artificial Edges Rank ECI Associated Actual Edges 

{1-10} 1 3029896 {64-78} 

{6-10} 2 2975998 {76-79} 

{1-11} 3 2763614 {71-83} 

{10-12} 4 139883.50 {75-88, 80-95} 

{11-12} 5 45071.41 {86-88} 

{6-8} 6 24763.84 {59-61} 

{1-6} 7 20374.07 {61-62} 

{1-2} 8 13626.99 {47-48} 

{1-3} 9 212.10 {40-41, 60-63} 

{6-7} 10 196.24 {11-12, 12-13} 

{2-3} 11 57.85 {42-43, 40-43} 

{3-8} 12 10.65 {30-31, 30-34, 59-60} 

{7-8} 13 0.38 {10-16, 10-21, 20-21} 

{4-5} 14 0.16 {119-122} 

{4-9} 15 0.07 {110-111, 112-114, 107-109} 

{9-11}

{9-12} 17 0.02 {98-99, 94-97, 97-98} 

 16 0.05 {102-110} 

 
their failures is ad  to improve the reliability
system, while fo  {64-78, 71 3, 76-79, 
75-88}, the edge unreliability should also be mitigated. 

Tables 6 and 7  the results of the EIMs e
tion at level 4 o TN hierarch l model. I
out that artificia 7-11} (corr onding to 
link {119-122}) ha highest EB and EFVI 
and artificial edg 2} (correspo g to actu
{64-78}) has the st ECI rank and relativel
EBI and EFVI ranks, indicating its criticality to syste
reliability. 

Finally, Table orts the com utation time
quired for the calculations of the EIM t different 
in the hierarchy: as expected, the m  go down in 
the hierarchy the higher the computation time. 

4. Conclusions 

The modeling and analysis of comp network sys
is a non-trivial task. Related decisio aking regardi  
reliability and vu ility is limited by computati
resources.  

In this work, we ha ntroduced a ramework for  
erarchical modeli omplex netw  systems, w

ads to the definition of different varied-size grained 
 

model is obtained by rsive unsupervised spectral 
clustering method. T odel thereby ob- 
tained provides a multi-scaled representation of the ori- 
ginal network system ore detailed information but 
high complexity a els of the hierarchy, and 
simplified structure but relatively low complexity at the 
higher levels. The availability of different scales of mod- 
eling resolution allow anagement of the ana- 
lysis, at the level of d esired for its purposes. The 
380 kV Italian Power Tr n Network (IPTN) has 
been taken as an illus

Furthermore, Im ures (IMs) such as Birn- 
baum, Fuessell & Vesely and Criticality, have been ex- 
tended for application to t inal-pair reliability pro- 
blem in complex d ork systems.  

The calculati s at different levels 
of the hierarchical sy  has demonstrated the 
effectiveness of chical modeling, with 
the IM-ranking of th ents offering insights on 
how to impro lures of most criti- 
cal elements. 
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Table 6. EBI and EFVI at level 4 of the hierarchical model (Only the top 20 elements are reported). 

EFVI EBI 
Artificial Edges 

Rank Value Rank Value 
Associated Actual Edges 

{7-11} 1 0.1504 1 0.1511 {119-122} 

{3-4} 2 0.0787 2 

{10-11} 3 0.0782 3 

{22-23} 4 4.2717E − 4 4 

0.0788 {47-49,51-54} 

0.0788 {125-126} 

4.2606E − 4 {78-81} 

{21-27} 18 3.22E − 05 18 

{7-8} 19 3.07E − 05 19 

{24-25} 5 3.5490E − 4 5 

{12-13} 6 3.3570E − 4 6 

{1-22} 7 3.0044E − 4 7 

{21-28} 8 2.1515E − 4 

3.5551E − 4 {84-101,85-101} 

3.3605E − 4 {14-73,14-76} 

2.9915E − 4 {64-78} 

2.1436E − 4 {94-97} 8 

1.7038E − 4 9 

10 1.6962E − 4 10 

{75-88} 

5.09E − 05 {107-109} 

{110-111} 

3.23E − 05 {97-98,98-99} 

3.07E − 05 {113-120} 

{8-2

{26-28} 9 

{2-25} 

1.6954E − 4 {92-93} 

1.6906E − 4 {71-83} 

1.0206E − 4 {17-18} 

7.51E − 05 {10-16} 

6.43E − 05 

{17-19} 11 1.0216E − 4 11 

{14-19} 12 7.53E − 05 12 

{23-29} 13 6.50E − 05 13 

{7-21} 14 5.10E − 05 14 

{9-20} 15 4.24E − 05 16 

{23-27} 16 3.74E − 05 15 

{13-23} 17 3.36E − 05 17 

4.22E − 05 

3.66E − 05 {80-95} 

3.35E − 05 {76-79} 

0} 20 2.64E − 05 20 2.61E − 05 {112-114} 

 
able  at level e hierarch odel (Only t lements a

rtificial Edg R ECI Associated Actu

T 7. ECI 4 of th ical m he top 20 e re reported). 

A es ank al Edges 

{1-22} 1 094.790 {64-78} 868

{2-4} 2 781.848 {47-48} 

{1-12} 3 490.646 {61-62} 

{13-23} 4 088.015 {76-

{22-23} 5 356.820 {78-81} 

{12-14} 6 54.9988 {12-13} 

{14-18} 7 48.7434 {10-21} 

{14-15} 8 14.4150 {7-9} 

{14-19} 9 37.9590 {10-16} 

{17-19} 10 31.1229 {17-18} 

{12-13} 11 38.4808 {14-73,14-7

{12-18} 12 9.8833 {59-61} 

{1-5} 13 5.1115 {40-41,60-

{5-16} 14 3.8315 {30-31} 

{16-18} 15 5.8073 {27-59} 

{6-16} 16 1.5230 {30-34} 

{5-18} 17 6252 {59-60} 

{15-18} 18 7982 {20-21} 

{12-15} 19 1408 {11-12} 

{4-5} 20 325.9829 {40-43} 

750

737

645 79} 

602

445

437

409

231

170

141 6} 

882

628 63} 

601

523

505

4665.

2481.

1666.
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Table 8. EIMs evaluation time at each level of the hierar-
chical model. 

Co conds on  with 2 CPU 
3.06 G 3.07 G)

mputation time (se  a computer
 EIMs 

Lev Level Level 4 el 2 3 

EBI 0.3856 108.5 31763.58 

EFVI 0.2086 112.2 32179.50 

ECI 0.5152 175.0 47621.58 
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ABSTRACT 

Large scale outages on real-world critical infrastructures (CIs), although infrequent, are increasingly 

disastrous to our society. In this paper, we are primarily concerned with power transmission networks 

and we consider the problem of allocation of generation to distributors by rewiring links under the 

objectives of maximizing network resilience to cascading failure and minimizing investment costs. 

The combinatorial multi-objective optimization is carried out by a non-dominated sorting binary 

differential evolution (NSBDE) algorithm. For each generators-distributors connection pattern 

considered in the NSBDE search, a computationally-cheap, topological model of failure cascading in a 

complex network (named, the Motter-Lai (ML) model) is used to simulate and quantify network 

resilience to cascading failures initiated by targeted attacks. The results on the 400kV French power 

transmission network case study show that the proposed method allows to identify optimal patterns of 

generators-distributors connection which improve cascading resilience at an acceptable cost. 

To verify the realistic character of the results obtained by the NSBDE with embedded ML topological 

model, a more realistic but also more computationally-expensive model of cascading failures is 

adopted, based on optimal power flow (namely, the ORNL-Pserc-Alaska (OPA) model). The 

consistent results between the two models provide impetus for the use of topological, complex 

network theory models for analysis and optimization of large infrastructures against cascading failure 

with the advantages of simplicity, scalability and low computational cost. 

KEY WORDS: critical infrastructure, power transmission network, cascading failures, complex 

network theory model, power flow model, optimization 

1 INTRODUCTION 

Our modern society has come to depend on large-scale critical infrastructures (CIs) to deliver 

resources and services to consumers and businesses in an efficient manner. These CIs are complex 

networks of interconnected functional and structural elements. Large scale outages on these real-world 

complex networks, although infrequent, are increasingly disastrous to society, with estimates of direct 



costs up to billions of dollars and inestimable indirect costs. Typical examples include blackouts in 

power transmission networks (1-3), financial bankruptcy (4), telecommunication outages (5), and 

catastrophic failures in socio-economic systems (6-7). 

Cascading failures are initiated typically when a small part of the system fails for some reasons, and 

the load on that part (i.e. the flow passing through it) must be redistributed to other parts in the system. 

This redistribution may cause other components to exceed their capacity causing them also to fail. 

Hence, the number of failed or stressed components increases, propagating throughout the network. In 

particularly serious cases, the entire network is affected. Research regarding modeling, prediction and 

mitigation of cascading failures in CIs, whereby small initial disturbances may propagate through the 

whole infrastructure system, has addressed the problem in different ways (4-6, 8-13).  

Albert et al. (14) demonstrated that the vulnerability of modern infrastructure networks (e.g., power 

transmission networks) is inherent to their structure. Thadakamalla (15) revealed that the topology of a 

supply infrastructure has great impact on its resilience. Then, much attention has been paid in recent 

years in the direction of network topology optimization, with the purpose of achieving desired targets 

of reliability and/or resilience (16-19, 26).  Shao et al. (17) proposed a shrinking and searching algorithm to 

maximize the reliability of a distributed access network with constrained total cost; however, the 

intense computational cost for evaluating network reliability prohibits the application of the model to 

large size networks. Gutfraind (18) introduced a multi-objective optimization method for constructing 

cascade resilient networks based on the structure of terrorist networks. Besides, Newth et al. (19) used a 

modified Metropolis evolutionary algorithm to evolve failure resilient networks with the objective of 

maximizing the average network efficiency. Cadini et al. (20) investigated the problem of optimizing 

the transmission reliability efficiency of an existing power transmission network with least cost by 

adding new connection links. 

In practical cases, the cost of knocking down an existing network and reconstructing it from scratch is 

prohibitive, especially for CIs like the power transmission network. A more practicable alternative is 

to reconfigure parts of the network topology, e.g. by reallocation of the links which connect 

production facilities to consumers.  

The primary objective of this paper is to propose a methodology for optimal allocation of the links 

connecting generators and distributors in a power transmission network for obtaining high resilience to 

cascading failures while keeping the investment costs low. Formulated as a large-scale, nonlinear and 

combinatorial multi-objective optimization problem, the facility allocation problem is solved by an 

evolutionary method, i.e., the non-dominated sorting binary differential evolution (NSBDE) algorithm 
(21, 22).  



The search by the NSBDE requires also: (i) the construction of a model to describe the cascading 

failure process in the network of interest, and (ii) the repeated evaluation of the model for every 

possible generators-distributors configuration proposed by the algorithm during the search. With 

respect to the model, two approaches are typically considered in the analysis of power transmission 

systems: complex network theory models, such as the Motter-Lai (ML) model (8, 9) and artificial power 

flow models, such as the ORNL-Pserc-Alaska (OPA) model (10-12). These approaches provide different 

tradeoffs between the (relatively low) computational cost associated to the model evaluation (allowing 

real-time applications to large scale power grids) and the (high) level of detail in the system 

description (including physical characteristics and power flows constraints), respectively. 

The OPA model seeks to faithfully describe the dispatching dynamics of the power flows during the 

evolution of the failure propagation following the initial disturbances, by explicitly incorporating the 

standard DC power flow equations and minimizing generation cost and load shedding (11). Embracing 

this more physical description and solving the constrained linear optimization functions associated to 

the model, result in a significant increase in the computational burden, rendering its application 

extremely difficult for realistic networks with large number of elements (13).  

For these reasons, topological models based on complex network theory (e.g. the ML model) have 

emerged in recent years (8, 9, 23-25). In particular, the ML model is a relatively simple and abstract model 

relying on the resemblance of complex networks to electrical infrastructure systems (in terms of graph 

theory). It has the advantage of modelling cascading dynamics with few parameters, so that its 

application to realistic, large-scale networks is feasible and certainly more readily than OPA (23). 

However, ML abstracts the power flow laws and constraints of the electrical system. Inevitably, then, 

it cannot provide direct physical measures of blackout size, but rather abstract measures such as 

efficiency loss. This has posed questions on whether or not it is adequate in practice, due to its abstract 

nature, although it has been recognized to offer a new and interesting perspective on the study of 

cascading failures on power grids (24).  

It is worth mentioning that studies tackling the problem of validation of network-centric approaches 

are few in literature. Some studies (13, 24) have provided qualitative comparisons between complex 

network theory models and power flow models – identifying similarities and differences, and 

evaluating advantages and disadvantages. Most recently, Correa and Yusta (26) conclude on the 

appropriateness of graph theory techniques for the assessment of electric network vulnerability by 

means of comparisons between physical power flow models and scale-free graph statistic indexes. 

Cupac et al. (27) have presented a method to quantitatively compare a network-centric model (CLM) 

and the power flow model OPA, finding that the CLM model exhibits overall properties which are 

consistent with the more realistic OPA fast-scale model. On the other hand, Fitzmaurice et al. (40) find 

that the topological nearest neighbor cascading failure model (namely, the TC model) shows different 



characteristics from two other Kirchhoff models, namely LD and QSS. Hines et al. (41) conclude that 

evaluating vulnerability in power networks using purely topological metrics may be misleading under 

some circumstances. Furthermore, Cotilla-Sanchez et al. (42) propose a new method for representing 

electrical structures using electrical distances rather than geographic connections.  

In the present paper, we embrace the topological ML cascading failure model and embed it in the 

NSBDE for optimally solving the problem of generators-distributors link allocation. For 

exemplification, we apply the method to the 400 kV French power transmission network, under the 

objectives of maximizing network resilience to cascading failures and minimizing investment costs (28). 

We, then, tackle the problem of realistic significance of the results that can be obtained with the 

proposed methodology. For this reason, the OPA is performed on the optimal network topologies 

found. To the authors’ knowledge, this is the first study addressing the validation of optimization 

based on a topological cascade model (namely, the ML model), by applying a more realistic power 

flow model (namely, the OPA model).  

The optimization problem considered is addressing the network topology and in the specific case study 

we have considered for exemplification purpose the topology abstracted from the 400kV French 

power grid. In the abstraction, any station (generator, transmission/distribution substation) is regarded 

as one individual topological node in the network model, whereas the internal structure and functional 

logic of the specific station are ignored. Then, how the transmission lines interconnect with lower 

voltage networks has not been considered in this study, similar to what has been done in prior studies 

on these analyses (18-20). The purpose of performing these analyses in this way is to leverage the 

simplicity and low computational cost of the topological (cascading failure) model used within the 

(evolutionary) network optimization, which otherwise would be very costly. 

The remainder of this paper is organized as follows. In Section 2, we introduce the ML and OPA 

cascading failure models in detail. We, then, formulate the multi-objective optimization problem 

taking investment costs and failure resilience into account in Section 3. Section 4 unveils the detailed 

procedure of the proposed NSBDE algorithm. Section 5 illustrates the French 400kV power 

transmission network case study and the analysis and evaluation of the results. Discussion and 

conclusion are drawn in Section 6. 

2 CASCADING FAILURE MODELS CONSIDERED IN THIS WORK 

Modelling the dynamic evolution of system-wide cascading failure processes poses a number of 

challenges due to the diversity of mechanisms which can initiate the initial failure and influence the 

subsequent propagation of breakdowns in the power system (13). Various cascading failure models have 

been proposed; these can be divided into two main categories: those based on complex network theory 



analysis and those using power flow analysis, often including optimal economic power dispatch after 

each failure in the propagation, e.g., by linear optimal power flow (OPF) (27). 

Complex network theory models, including the ML model adopted in this work as described in 

Section 2.1 below, abstract the representation of a power grid as a graph and, then, study the 

connectivity characteristics, the propagation mechanisms through the graph connections and their 

relationships. They typically consider flows of discrete packets that are injected and removed from all 

nodes and follow least-distance paths, and the importance of links or nodes is measured by their 

“betweenness”, which is proportional to the number of least-distance paths through the link or node (13). 

Among these, the ML model is the most widely used and a relatively simple one. These types of 

models have proved to provide a good understanding of the specific grid dynamics of cascading 

failures (30). However, in these models the assumptions only abstract the real loading of the 

components and the flow distribution through the connections. For this reason, it is necessary to 

ascertain the meaningfulness of the results for real electrical infrastructures.  

Power flow models, on the contrary, are based on realistic power flow equations to describe the flow 

dispatching dynamics and failure evolution after the initial disturbances in the power grid. The OPA 

model, which is the most commonly used among these types of models, is introduced in Section 2.2 

below; it is based on the linearized or DC power flow approximation, which has been proved to be 

able to give a good approximation of active power flows in the network (29). Another power flow model 

is the CASCADE model (43), though it is considered ‘‘too simple’’ in that it ‘‘disregards the system 

structure, neglects the times between adjacent failures and generation adaptation during failure’’ (44). 

2.1. The ML model 

The ML model has been proposed by Motter and Lai (8), with extensions to differentiate generators and 

loads (23). The power transmission network is represented as an undirected graph Q with a set of N 

nodes representing NG generators and ND loads representing distribution substations, interconnected by 

a set of edges representing transmission lines. The structure of the network is identified by an � × � 

interaction matrix �, whose element ��� is 0 if node � and � are not connected directly; otherwise it is 

assigned 1 for an unweighted network or a numerical value between � and	� for a weighted network. 

The ML model assumes that at each time step, one unit of the relevant quantity (electrical flow for 

power grids) is exchanged between every pair of generator and distributor nodes, and transmitted 

along the shortest path connecting them. The flow at one node is, then, the number of shortest paths 

passing through it. More precisely, the flow 
�  passing through node k is quantified by the node 

betweenness calculated as the fraction of the generator-distributor shortest paths passing through that 

node: 




� = 
����∑ ���(�)����∈��,�∈��,�����                                             (1) 

where ��� is the number of shortest paths between generator nodes and distributor nodes, and ���(�) is 

the number of generator-distributor shortest paths passing though node k.  

The capacity of node k is assumed to be proportional to its initial node 
� with a network tolerance 

parameter α,  

�� = (1 +  )
�                                                              (2) 

The concept of the tolerance parameter α (α > 0) can be understood as an operating margin allowing 

safe operation of the component under potential load increment. The occurrence of a cascading failure 

is initiated by removal of a node, which in general changes the distribution of shortest paths. Then the 

load at a particular node can change and if it increases and exceeds its capacity, the corresponding 

node fails. Any failure leads to a new redistribution of loads and, as a result, subsequent failures can 

occur. It should be noted that the single failure mechanism applied here does not attempt to simulate a 

realistic trigger event of cascading failure; instead, it is only a manner of starting the cascading failure 

simulation for the ML model (and the OPA model introduced below). 

Using this cascading failure model, the vulnerability of network Q can be characterized by the fraction 

of network efficiency lost in the cascading failure: 

!"#($) = %(&)'%(&()%(&)                                                           (3) 

where Vul(Q)	∈ (0,1) and $(  represents the residual network structure after the initial failure. E(Q) 

measures the network efficiency based on the node pair shortest path distance between generators and 

distributors. For its computation all pairs of nodes i	∈ !*, and j	∈ !+ are weighted by the inverse of 

their distance: 

   ,($) = 
����∑ ∑ 
-(�,�)�∈���∈��                                                           (4) 

where .(�, �) is the number of edges for an unweighted network or the sum of edge weights for a 

weighted network in the shortest path from i to j.  

The geodesic vulnerability !"#($)  measures the functionality of a network when subjected to a 

contingency due to cascading link disruption with regard to its steady state (base case).  As !"#($) 
increases, the impact on the network due to cascading failure also increases, as some components 

become disrupted. !"#($) has been proved to be a well-defined index being capable of providing 

results consistent with those of physical model indices (26). 

The detailed simulation of the ML cascading failure model proceeds as follows: 



Step 1. Apply equation (1) to compute the initial load of each node for a proposed network by Floyd’s 

shortest paths algorithm (31) and calculate the capacity of each node based on equation (2).  

Step 2. Trigger the initial failure. In the optimization, one of the top five most loaded nodes is chosen 

and removed from the network.  

Step 3. Recur to equation (1) and Floyd’s shortest paths algorithm to recalculate the load of each 

working node in the network. 

Step 4. Test each node for failure: for each node k (k	∈ �) of the network, if 
� > �� then node k is 

regarded as failed and, thus, is removed from the network. 

Step 5. If any working node fails, return back to step 3. Otherwise, terminate the cascading simulation 

and evaluate the vulnerability of the network using equation (3). 

Complex network theory models, such as the ML that we use within our optimization framework in 

Section 3, have no direct physical relation to the mechanisms of realistic power grids, but they have 

the key advantage that by utilizing techniques from graph theory they can be applied to analyze large-

scale networks. For this reason, this modelling approach is seeing increasing applications for 

modelling cascading failure processes in power grids. 

2.2. The OPA model 

The OPA model has been proposed by researchers at Oak Ridge National Laboratory (ORNL), Power 

System Engineering Research Center of Wisconsin University (PSerc), and Alaska University (Alaska) 
(10-12). The OPA model, built upon the Self-Organized Criticality (SOC) theory, contains two 

interdependent time scale dynamics, i.e., fast power flow dispatching dynamics and slow power grid 

growth dynamics, to describe the complexity and criticality of power systems. The slow time scale 

dynamics describes how the system evolves as demand changes over longer timeframes (e.g., over 

days), and due to subsequent system upgrades in response to demand variations and blackouts. On the 

other hand, the fast time scale dynamics depicts cascading failures of transmission lines over very 

short times (e.g., over seconds) during the slow dynamics. It is a novel and powerful tool for analyzing 

power systems. Our analyses focus on the fast power flow dynamics, in order to ensure comparability 

with the ML model and its underlying shortest-path assumption. 

The cascading failure model is based on the standard DC power flow equation, 

F = AP                                                                           (5) 

where F is a vector whose NE components are the power flows through the lines, Fij (NE is the total 

number of links in the network), P is a vector whose N-1 components are the power injection of each 

node, Pi (N is the total number of nodes in the network), with the exception of the reference generator, 

P0, and A is a constant matrix that depends on the network structure and impedances (see Ref. (11) for 



details about the computation of A). The reference generator power is not included in the vector P to 

avoid singularity of A as a consequence of the overall power balance. 

The generator power dispatch is solved using standard linear programming methods. Using the input 

power demand, the power flow equation (5) is solved with the condition of minimizing the following 

cost function: 

  �012 = ∑ 3�(2)�∈�� + 4∑ 3�(2)�∈��                                              (6) 

where VG and VD are the sets of generators and distributors, respectively. This definition gives 

preference to generation shift whilst assigning a high cost (set K = 100) to load shedding, and it is 

assumed that all generators operate at the same cost and that all loads are served with equal priority. 

The minimization is done with the following constraints: 

(1) Generator power injections are generally positive and limited by installed capacity limits: 0 ≤ 3� ≤ 3�678, � ∈ !*. 

(2) Loads always have negative power injections:	3�-96 ≤ 3� ≤ 0, � ∈ !+. 

(3) The absolute flow through links is limited by link capacities: :;��: ≤ ;678. 

(4) Total power generation and consumption remain balanced: ∑ 3� = 0�∈��∪�� . 

After solving the linear optimization by using the simplex method as implemented in Ref. (32), we 

examine which lines are overloaded. A line is considered to be overloaded if the power flow through it 

is within 1% of the limit capacity ;678. Each overloaded line may outage with probability =
 (=
 is set 

as 1 in the case study to ensure its comparability with ML). If an overloaded line experiences an 

outage, its power flow limit ;678 is divided by a very large number �
 to ensure that practically no 

power may flow through the line. This action can avoid the infeasibility of the power flow 

optimization due to topological islands in the system by removing the component directly. Besides, to 

avoid a matrix singularity from the line outage, the impedances of failed lines are multiplied by a large 

number �>, resulting in changes of the network matrix A.  

Load shedding is utilized to quantify the damage of the cascading failure. For an individual node, load 

shedding is defined as the difference between its power injection and demand: 

?� = 3�-96 − 3�                                                           (7) 

Subsequently, total load shedding for the system is: 

? = ∑ ?��∈��                                                                (8) 

Finally, system load shedding is normalized by its total demand D and used as a measure of cascading 

vulnerability: 



? AB = ∑ C��∈D�∑ E�FGH�∈D�                                                            (9)                          

The fact that simulation results from OPA model are consistent with historical blackout data for real 

power systems has justified its effectiveness (12). However, the applications of OPA have generally 

been limited to networks with a relatively small number of nodes compared to real power grids (24), 

due to the computational efforts involved.  

3 OPTIMIZATION MODEL 

For a given network, cascading failure resilience could be enhanced in many ways. In this paper, we 

focus on choosing the connecting patterns between generators and distributors of a realistic power 

transmission network, so as to optimize resilience to cascading failures. In this study, system 

vulnerability to cascading failures (i.e. system functionality loss in cascading failures) is regarded as a 

reverse measure of system resilience: the less the functionality loss, the higher the system resilience. 

Given the goal of analyzing a realistic-size network, the ML cascading failure model is used to 

evaluate the resilience of a pattern of connections. By associating a cost to each link posed in the 

network, the optimization also seeks to minimize the total cost. 

The network is modeled as a weighted graph, in which the edge weights are given by their physical 

distances which we assume directly related to the transmitting cost of the link. We define the variables 

to be optimized as the links of generation nodes to the different distribution nodes: 

                                                   I�� = J1, if	�	is	connected	with	�	directly0, otherwise                              (10) 

for all � ∈ !* and � ∈ !+. Two constraints have to be met when rewiring generators and distributors: (1) 

each distributor node is required to connect with at least one generator node or other distributor node, 

to make it accessible to the power supplying generators; (2) each generator node has to connect at least 

with one distributor node. 

We assume that the cost associated with each connection cutting and rewiring is linearly proportional 

to the physical length of the linkage, with coefficient φ. The total investment cost of a reconstructed 

pattern I	in the power transmission network can be defined as 

 � = ∑ YI���∈���∈�� .(�, �)                                                          (11) 

where .(�, �) is the physical distance between i and j. 

The cascading failure resilience of each reconstructed pattern I can be quantified by the vulnerability 

of the new network, given by equation (3). It should be noted that the effect of the type of initial event 

could significantly influence the cascading failure result: the efficiency loss of a cascade triggered by 



the failure of a critical component could be much more severe than that originated by the failure of a 

normal component. Therefore, we consider a worst-case scenario in this study by choosing the failure 

of one of the top five most loaded nodes as initial failure in each cascade process simulation and, then, 

the results are averaged on the number of simulations. 

Through the quantification of the connection pattern cost and cascading failure vulnerability, the 

facility allocation problem is formulated as a multi-objective optimization problem: 

Zmin�\I��]																																																													(12_)min!"# `$a��b																																																					(12c)	  

1. 2. e∑ I���∈��∪�� > 0	∀� ∈ !+																																			(12g)∑ I���∈�� > 0	∀� ∈ !* 																																										(12.)	   

The objective function (12a) is the sum of the fixed rewiring costs; (12b) expresses the resilience 

objective. The two constraints mentioned above are enforced by formulas (12c) and (12d), respectively. 

Observe that the least costly generator allocation is simply that with no links among facilities and 

consumers. 

In our work, the multi-objective optimization problem (12a) – (12d) is tackled by the Non-dominated 

Sorting Binary Differential Evolution (NSBDE) algorithm presented in the next Section 4. 

4 NON-DOMINATED SORTING BINARY DIFFERENTIAL 

EVOLUTION ALGORITHM FOR TOPOLOGY OPTIMIZATION 

In this section, the operative procedures of the Non-dominated Sorting Binary Differential Evolution 

(NSBDE) algorithm are proposed for solving the multi-objective optimization problem introduced in 

Section 3 above. The starting point is the standard Differential Evolution (DE) algorithm, initially 

proposed as a population-based global optimization method for real-valued optimization problems, 

which has been found to outperform other optimization algorithms in various applications (21, 33, 34). In 

order to solve the combinatorial multi-objective problem of interest, the fast non-dominated sorting, 

ranking and elitism techniques used in non-dominated sorting genetic algorithm-II (NSGA-II) (35) are 

introduced into a modified binary differential evolution (MBDE), which is a binary version of DE 

developed to tackle single-objective binary-coded optimization problems (36). The NSBDE proceeds as 

follows: (21) 

Step 1. Initialization of parameters 

Set the values of the population size NP, the crossover rate CR, the scaling factor F, and the maximum 

generations Nmax. 



Step 2. Generation of initial population and evaluation 

Initialize each individual in the population which is represented as a bit-string and denoted as =h�i ={=h��i , |=h��i ∈ {0,1l; � = 1,2, … ,�3, � = 1,2,… ,ol, where NP is the population size and M is the 

dimensionality of the solutions. Each individual is also called a chromosome and forms a candidate 

solution to the problem. Each bit of each initial chromosome takes a value from the set {0, 1} with 

probability equals to 0.5: the bit takes ‘1’ if the corresponding generator node and distributor node are 

connected, ‘0’ otherwise. 

Each of the NP chromosomes is evaluated by computing the two objective functions, i.e. formula (12a) 

and (12b). 

Step 3. Generation of trial population 

Apply the binary tournament selection operator (35) to the population 3Ii to generate a trial population 3!i, which undergoes the evolution operations of mutation and crossover. 

Step 3.1 Mutation 

The following probability estimation operator P(px) is utilized to generate the mutated individuals 

according to the information of the parent population: 

3\=h��i ] = 


p9qrs[uvwx,�y z{`uvwr,�y quvw|,�y bq}.~]xzr{

                               (13) 

where b is a positive real constant, usually set as 6; F is the scaling factor; =h�
,�i , =h�>,�i  and =h��,�i  

are the j-th bits of three randomly chosen individuals at generation t. According to the probability 

estimation vector 3\=h�i] = [=h�,
i , =h�,>i , …  =h�,�i ]  created by equation (13), the corresponding 

offspring ="�i of the current target individual =h�i is generated as equation (14). 

="��i = J1, if	�_�. ≤ 3(=h��i )0, otherwise                                                         

 

(14) 

where rand is a uniformly distributed random number within the interval [0,1]. 

Step 3.2 Crossover 

The crossover operator is used to mix the target individual and its mutated individual. The trial 

individual =���i = (=��,
i , =��,>i , … =��,�i ) can be obtained by the crossover operator as follows, 

=���i = �="��i , if	�_�.� ≤ ��	or	� = �_�.�=h��i , otherwise 	                                     (15) 

where randj	∈ (0,1] is a uniform random value, CR is the crossover rate, and randi is a uniform 

discrete random number in the set {1, 2, ..., NP}. 



Step 4. Evaluation 

Evaluate each of the NP chromosomes in the population 3!i by computing its rewiring cost (12a) and 

resilience to cascading failures (12b) by performing the ML cascade process simulation procedure 

presented in Section 2.2.  

Step 5. Union and Sorting 

Combine the parent and trial populations to obtain a union population 3�i = 	3Ii ∪ 3!i. Rank the 

individuals in the union population by the fast non-dominated sorting algorithm (33) with respect to the 

objective values, and identify the ranked non-dominated fronts F1, F2, …, Fk where F1 is the best front, 

F2 is the second best front and Fk the least good front. 

Step 6. Selection 

Select the first NP individuals from 3�i  to create a new parent population 3Iip
. The crowding 

distance is used in this step to choose the individuals with the same front, where crowing refers to the 

density of solution present in a neighborhood of an individual of specified radius (35): we prefer the 

individual which is located in a region with least number of individuals. The algorithm stops when it 

reaches the predefined maximum generations Nmax.   

5 CASE STUDY AND RESULTS ANALYSIS   

5.1. Case study and parameters setting 

In this paper, the 400kV French power transmission network (FPTN400) (Figure 1) is taken for 

exemplification of the proposed approach. The network is built from the data on the 400 kV 

transmission lines of the RTE website (37). It has 171 nodes (substations) and 220 edges (transmission 

lines). We distinguish the generators, which are the source of power, from the other distribution 

substations, that receive power and transmit it to other substations or distribute it in local distribution 

grids. By obtaining the power plants list from EDF website (38) and relating them with the ID of the 

buses in the transmission network, we have 26 generators and 145 distributors. Only the nuclear power 

plants, hydroelectric plants and thermal power plants whose installed capacities are larger than 1000 

MW, are considered. 

For reallocation of the power generating nodes to the other nodes, the NSBDE algorithm introduced in 

the previous section is applied. The parameters values used to run the NSBDE algorithm are reported 

in Table I. The tuning parameters are chosen based on trial-and-improvement for fast convergence of 

the algorithm (28). The network tolerance parameter α is set to 0.3 to simulate the normal operating 

condition; linkage cost parameter φ is set to 1. 



 

Fig. 1.  The 400kV French power transmission network (FPTN400) (37) 

At the beginning of the simulation, all 55 links among generators and distributors in the FPTN400 are 

cut off. The population is initialized by randomly assigning 0 or 1 to each bit of each chromosome in 

the population, forming a group of potential rewiring solutions. For evaluating the cascading 

vulnerability of a given generators-distributors allocation pattern, the ML cascading failure model is 

run starting from failing one of the top five most loaded (largest betweenness) nodes in repeated 

cascading simulations at the end of which the vulnerability values are averaged. 

Table I .  Parameters of the NSBDE algorithm 

Parameters Values 
Population size NP 25 
Dimensionality of solution M 3770 
Crossover rate CR 0.9 
Scaling factor F 0.2 
Maximum generation Nmax 300 

 
 
5.2. Topological optimization results 

Figure 2 reports the convergence plots of one run of the NSBDE algorithm. The top and bottom panels 

show the two optimal solutions with regard to the two objectives (12a) and (12b), respectively. It is 

observed that the algorithm is able to converge after around 150 generations. 



 

Fig. 2.  Convergence plots of objective functions (12a) (top) and (12b) (bottom) during the evolution of NSBDE 

 

Fig. 3.  Pareto front reached by a population of 25 chromosomes evolving for 300 generations 

The Pareto front obtained by the NSBDE algorithm at convergence is illustrated in Figure 3. The 

diamond point in Figure 3 represents the current network with the present pattern of connecting links, 

which is also the least costly network; the square point is the most resilient network, whose cascading 

vulnerability is 0.184. It is not unexpected that the original network is the least costly one, since the 

electrical transmission lines and substations are placed with geographical constraints and connections 

between two distant substations are avoided. Actually, cost-effectiveness is a major consideration in 

constructing real power transmission networks. 



 

Fig. 4.  Comparison of the cascading vulnerability between the original and the most resilient networks under 
different network tolerance values 

It is also noted from Figure 3 that the cascading failure resilience of the FPTN400 can be improved 

significantly by properly rewiring the generator-distributor connections, though at a cost; the network 

vulnerability is decreased from 0.728 to 0.184 (when α=1.3) with an increased cost of 7.3 × 10� (i.e., 

53.16 times increase). Figure 4 reports the cascading vulnerability comparison between the original 

network and the most resilient one (Pareto solution #17) with different tolerance parameters. It shows 

that when the network tolerance is very low, i.e. 0<  < 0.1, the optimized network loses most of its 

efficiency, i.e., it is quite vulnerable to intentional attacks possibly due to its intensive loading 

condition. However, when α≥0.3 (which is generally the normal operating condition (13)), the 

optimized network loses less than 20% of its efficiency during a cascading failure initiated by 

intentional attack.  

Albeit a substantial improvement of the cascading failure resilience of the FPTN400 is possible by 

adding redundant links, a tradeoff between the cost and resilience improvement is necessary for 

rational decision-making. Along the Pareto frontier of the potential solutions, there are some points at 

which a small sacrifice of cost gives a large gain of cascading resilience. More generally, by taking a 

network solution and its neighbor on the frontier (the less costly one), one can define a rate of change 

of cascading resilience with respect to cost: |∆!"#/∆g012|. This rate can be utilized as a reference to 

choose the optimized network: the larger the ratio, the more preferred the network is.  
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Fig. 5.  The topology of the Pareto solution #3 and its difference with the original network 

Figure 5 reports the topology of the network corresponding to the Pareto solution #3 (310.6, 0.59) 

whose |∆!"#/∆g012| value is comparatively large. The bold links represent the 10 added connections 

with respect to the original real network: notice that only 10 links are required to be rewired for the 

original network to gain a 19.2% cascading resilience improvement (the cascading vulnerability is 

decreased from 0.73 to 0.59). Besides, it is noted from Figure 5 that the newly added links tend to 

connect distant generator and distributor pairs, indicating that the installation of power lines between 

remote power substations can improve the resilience of the system, although at larger costs.  

5.3. Validation by the OPA model 

All the optimization results presented in the previous section are based on the ML model which 

abstracts basic power flow constraints and electrical characteristics of the power transmission network. 

In this section, the more realistic OPA model introduced in Section 2.2 is utilized to verify the optimal 

results found. 

The verification is not straightforward due to the differences of the two models in the way of 

representing system capacity, in the iterative algorithms they rely on, and in the way of measuring the 

damage produced by the cascading failure. Accordingly, some assumptions and adjustments to the 

OPA model (as described in Section 5.3.1) are necessary to ensure its applicability to assess the 

optimization solutions obtained based on the ML model (27). 

5.3.1 OPA Adjustments 

Five representative solutions (i.e., the least cost network FPTN400, the Pareto solution #17 (7300, 

0.184) which is the most resilient, together with the solutions #3 (310.6, 0.59), #5 (3344.3, 0.28) and 

#13 (1003.8, 0.48) whose |∆!"#/∆g012| values are comparatively large) along the Pareto front are 

chosen as the basic network topologies to be verified by the OPA model. To facilitate comparability 

with the ML model, all the generators are assumed to have equal capacity, and all the loads are 



assumed to have equal constant demand (we use 26, i.e. the number of generators in the simulation). 

Furthermore, all edge impedances are calculated using the typical reactance value 0.28 ohm/km at 50 

Hz (39). This heterogeneous impedance setting aligns with the weighted edge initialization in the ML 

model. 

The ML model uses the parameter α to represent network tolerance, while regarding the OPA model, 

prior studies set the initial limits (demand, generator capacity, line flow limits) by evolving the 

network using combined fast-slow dynamics until the network reaches a steady state (11). Considering 

that we limit the scope of the OPA evaluation to fast dynamics, we use a simpler initialization strategy 

(proposed by Cupac et al. (27)) which does not require the slow power grid growth dynamics, and apply 

the parallel capacity setting (the   model) to facilitate the comparison. In particular, the values of the 

initial flows ;��(0)  and of the link capacities ;��678  are determined as follows: demand for all 

distributor nodes is fixed to a constant amount, as mention above, and total generation capacity is set 

to be equal to total demand, and equally divided among the generators. Then, the power flows along 

the lines are estimated by assuming that every distributor node would obtain an equal amount of power 

from every generator. The initial flows are calculated by selecting a generator (one at a time), setting 

all other generator capacities to 0 and then computing power flows to each distributor node. The sum 

of the power flows over all the generators results in the estimated initial flow along each link, ;��(0). 
Analogous to the initialization process in the ML model, the maximum capacity for a link connecting 

nodes i and j is given by 

;��678 = (1 +  ):;��(0):                                                       (16) 

It is noted that the values of the initial flows ;��(0) are only used to set the link flow capacities ;��678 

in such a way that they are comparable to the capacities �� used by the ML model. The network 

tolerance parameter is set to	0 ≤  ≤ 2 in our approach, parallel to the ML model, representing excess 

transmission capacity. Then, the node transmission capacity is modelled as the sum of link flow 

capacities of adjacent links ∑ ;��678�∈��  where !� is the set of nodes directly connected to node i. 

In the OPA implementation, the probability of an overloaded link is set to =
 = 1 (identical with that 

in Cupac et al. (27)), to ensure comparability with ML, where an overloaded node fails and is removed 

from the network with certainty. This setting will not change the OPA validation results where only 

the relative ranking of cascade vulnerability for each network is considered, although it has probably 

changed all the absolute values of cascade vulnerability. Besides, we initiate the cascade in the same 

manner that we do in the ML model, as stated in Section 3. 

5.3.2 Validation Results 



Figure 6 reports the landscapes of the node transmission capacities ��  and ;��678  under both ML 

model and OPA model, respectively, for the five chosen networks (with  = 0). It shows that node 

capacities in ML are highly correlated with node capacities in OPA model for the FPTN400, Pareto 

solution #3, #5 and #13 (actually, the correlation coefficients are 0.904, 0.890, 0.862 and 0.914 

respectively); for Pareto solution #17, the linear correlation of node transmission capacities still exists 

(with correlation coefficient 0.619). This indicates that the initialization strategy is consistent for ML 

and OPA models: nodes with high capacity in ML tend to have high capacity in OPA, and nodes with 

low capacity in ML also tend to have low capacity in OPA (27).   
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(a)

R(ML, OPA) = 0.904
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R(ML, OPA) = 0.890

(b)
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(c)

R(ML, OPA) = 0.619
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(d)

R(ML, OPA) = 0.862
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(e)

R(ML, OPA) = 0.914



Fig. 6.  Scatterplot of normalized node transmission capacity in ML versus OPA model using, (a) the original 
FPTN400; (b) Pareto solution #3 network; (c) Pareto solution #17 network; (d) Pareto solution #5; (e) Pareto 
solution #13. Node transmission capacity in OPA is highly correlated with transmission capacity in ML, the 
correlation coefficient are 0.904, 0.890, 0.619, 0.862 and 0.914 for the five networks, respectively. The solid 

lines represent the best fits. 

 

In Figure 7, we plot the curves of normalized load shedding ?/A versus network tolerance α obtained 

by applying the OPA model to the five representative networks selected from the Pareto front. The 

OPA simulation is triggered by removing one of the top five most loaded nodes (i.e., targeted initial 

failure). Analogous to the ML model (Figure 4), the network damages decreases when network 

tolerance increases for all the networks. When network tolerance value is high enough ( > 1.2), any 

small intentional disturbance on the network would tend to cause quite low damage to the functioning 

of the network (< 1%). Most importantly, it is observed that in the OPA simulation, the network 

corresponding to Pareto solution #3 (310.6, 0.59) (green triangle curve) is more resilient, i.e., it 

presents less load shedding than the original network (red circle curve) over a wide range of network 

tolerance α (i.e., 0 <  < 1.2); in addition, solution #13 (1003.8, 0.48) (magenta diamond curve) 

generally outperforms the solution #3, while solution #5 (3344.3, 0.28) (grey star curve) outperforms 

#13 in terms of cascade resilience. Finally, Pareto solution #17 (7300, 0.184) (which is the most 

resilient network according to the ML model) presents the lowest load shedding among the five 

networks over the entire range of α values considered. This ranking of cascading failure resilience is 

consistent with the simulation results based on ML model.  

Figure 8 shows the results of OPA simulation on the five networks, where the failures are triggered by 

removing a randomly chosen node (i.e., random initial failure) and the results are averaged over 30 

different samples. The ranking of cascade resilience of the five networks here is also parallel with the 

optimization results based on ML. This demonstrates that a resilience-improved network from the 

optimization based on the ML model is also more resilient than another one if evaluated by 

the more realistic OPA cascade simulation, therefore, verifying that the insights gained by the 

topological optimization approach are valid. 



 

Fig. 7.  Cascading vulnerability (normalized load shedding) evaluated by the OPA model for the five chosen 
networks over a range of network tolerance values α under targeted initial failure. 

 

Fig. 8. Cascading vulnerability (normalized load shedding) evaluated by the OPA model for the five chosen 
networks over a range of network tolerance values α under random initial failure. The results have been averaged 

over 30 different samples. 

Also important is to remember that the results produced by the simple ML topological model are 

obtained at a much lower computational cost than those of the OPA model: actually, the average time 

needed to carry out a single cascading failure simulation is 3.9s and 20.8s for the ML and OPA models, 

respectively, on a double 2.4 GHz Intel CPU and 4 GB RAM computer. 

6 DISCUSSION AND CONCLUSIONS 

Generally, the structure of power grids emerges through an unplanned growth process to meet service 

demand and/or results from optimization of costs. However, the increasing threat of large scale 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.1

0.2

0.3

0.4

0.5

α

N
or

m
al

iz
ed

 lo
ad

 s
he

dd
in

g

 

 

original network
Pareto solution #3
Pareto solution #17
Pareto solution #13
Pareto solution #5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

α

N
or

m
al

iz
ed

 lo
ad

 s
he

dd
in

g

 

 

original network
Pareto solution #3
Pareto solution #17
Pareto solution #13
Pareto solution #5



failures, albeit infrequent, makes it vital to think of the design of resilient network systems capable to 

resist against and recover from cascading failures.  

In this paper, we have investigated the allocation of generators to distributor nodes by rewiring links 

under the objectives of maximizing the network cascading failure resilience and minimizing the 

investment costs.  

In realistic cases of networks of large number of nodes, the problem is a combinatorial multi-objective 

optimization problem. To effectively tackle the problem, we have proposed a NSBDE multi-objective 

algorithm, within a Pareto optimality scheme of search for non-dominated solutions. To simulate and 

quantify the cascading failure resilience of network connection solutions selected during the NSBDE 

search, a complex network model – namely, the Motter-Lai (ML) model ‒ has been used, to exploit is 

rapidity of calculation.  

Exemplification has been done by considering the 400kV French power transmission network 

(FPTN400). The results of the case study have shown that generator-distributor allocation can be 

optimized to improve the cascading resilience of a realistic power transmission network system at an 

acceptable cost. 

To validate the physical significance of the topological optimization results, a detailed and more 

realistic power flow model ‒ i.e., the ORNL-Pserc-Alaska (OPA) model ‒ has been considered. The 

OPA model has been applied to five network topologies selected from the Pareto front found by the 

topological optimization process. The ranking of the five selected networks with respect to their 

vulnerability to both intentional attacks and random failure is consistent with that of the ML model; in 

addition, the computational time required by the ML approach is shown to be 5.5 times lower than that 

of the OPA approach. This verifies (i) the physical meaningfulness of the topological optimization 

solutions and (ii) the practical usefulness of abstract cascading models in network optimization tasks.  

It is noted that this consistency is not insignificant since it demonstrates that one resilience-improved 

pattern of capacity allocation optimized by the ML model is also of higher resilience if measured by 

the more realistic OPA model, providing motivation for the use of topological, complex network 

theory models for ensemble analysis and optimization of large infrastructures against cascading failure 

with the advantages of simplicity, scalability and low computational cost (e.g., future studies may 

consider using complex network cascading models to optimize both the topology and 

electrical/reliability properties of realistic power networks, which may enable unraveling questions 

such as which type of resource distribution is the most favorable for a network to resist to cascading 

failures, when the total resource is limited). 

The initialization strategy of the OPA model in this paper ensures that we can use the network 

tolerance parameter α as a common measure of transmission capacity for both models. However, the 



actual data could be used in the OPA validation if they are initially applied in the optimization based 

on the ML model, and if they are available. This could be possible future work. Besides, performing 

optimizations using directly detailed and computationally intensive power flow models (e.g., embrace 

Newton-Raphson based power flow approaches (45) and/or realistic trigger events such as natural 

hazard and malevolent targeted disruption (46), into the cascade modelling framework) would enable a 

more thorough and comprehensive comparison of the two classes of approaches considered in this 

paper. Furthermore, it may be useful to model variations in generation capacity and to consider 

situations where generation capacity and demand are not equally distributed, which is aligned with 

more realistic cases of power grids. Finally, while being relatively small compared to real scenarios 

with thousand buses due to computational constraints and data availability, the proposed network is 

sufficient to illustrate the usefulness of the topological optimization methodology in this study. 

Nevertheless, we believe that application of the topological approach to large-scale networks is 

interesting and this falls perfectly within the scope of our future research in this direction. 
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Abstract—In this study, we tackle the problem of searching for 

the most favourable pattern of link capacities allocation that 
makes a power transmission network resilient to cascading 
failures with limited investment costs. This problem is formulated 
within a combinatorial multi-objective optimization  framework 
and tackled by evolutionary algorithms. Two different models of 
increasing complexity are used to simulate cascading failures in a 
network and to quantify its resilience: a complex network model 
(namely, the Motter-Lai (ML) model) and a more detailed and 
computationally demanding power flow model (namely, the 
ORNL-Pserc-Alaska (OPA) model). Both models are tested and 
compared on a case study involving the 400kV French power 
transmission network. The results show that cascade-resilient 
networks tend to have a non-linear capacity-load relation: in 
particular, heavily loaded components have smaller unoccupied 
portions of capacity, whereas lightly loaded links present larger 
unoccupied portions of capacity (which is in contrast with the 
linear capacity-load relation hypothesized in previous works of 
literature). Most importantly, the optimal solutions obtained 
using the ML and OPA models exhibit consistent characteristics 
in terms of phrase transitions in the Pareto fronts and link 
capacity allocation patterns. These results provide incentive for 
the use of computationally-cheap network-centric models for the 
optimization of cascade-resilient power network systems, given 
the advantages of their simplicity and scalability.  
 

Index Terms—power transmission network, cascading failures, 
complex network theory model, power flow model, capacity 
optimization, evolutionary algorithm 
 

I. INTRODUCTION 

UR modern society has come to depend on large-scale 
critical infrastructures (CIs) to deliver resources and 

services to consumers and businesses in an efficient manner. 
These CIs are complex networks of interconnected functional 
and structural elements. Large scale outages on these 
real-world complex networks, although infrequent, are 
increasingly disastrous to our society, with estimates of direct 
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costs up to billions of dollars and inestimable indirect costs. 
Typical examples include blackouts in power transmission 
networks [1]-[3], financial bankruptcy [4], telecommunication 
outages [5], and catastrophic failures in socio-economic 
systems [6], [7]. 

Research regarding modelling, prediction and mitigation of 
cascading failures in CIs, whereby small initial disturbances 
may propagate through the whole infrastructure system, has 
addressed the problem in different ways, including physical 
models for describing cascading failure phenomena [8]-[11], 
control and defense strategies against cascading failures 
[12]-[14], analytical calculation of capacity parameters [15], 
and modelling of the real-world data [16]. 

In particular, various problems concerning the robustness 
and functionality of CI systems (ranging from power outages 
and Internet congestion to affordability of public 
transportation) are ultimately determined by the extent to which 
the CI capability matches supply and demand under realistic 
conditions [17]. In this respect, the following two issues are 
closely related to each other and of significant interests: (i) how 
to improve the network resilience to cascading failures, and (ii) 
how to design CI systems with a reasonably limited cost. In 
most circumstances, high resilience and low cost are conflicting 
objectives and cannot be achieved simultaneously. For 
instance, a network whose components have high capacity can 
be highly resilient to failures; but, this type of components is 
often characterized by high costs. 

Continuous effort has been made to model the capacity-load 
relationship of CI systems and to enhance the CI performance 
with limited cost. A homogeneous capacity-load relationship 
model has been widely used in the study of CIs [8], [9], 
[12]-[14], [18], whereby the capacity of a link (node) is 
assumed to be proportional to the initial flow of the link (node) 
(note that some of the studies focus on link modelling, while 
others concentrate on modelling node behaviour). However, it 
has been argued by Kim and Motter that this is unrealistic and 
empirical data suggests that the relationship between capacity 
and load of transmission lines is non-linear [17], [19]: heavily 
loaded lines usually have a lower tolerance parameter than 
lightly loaded lines. Most recently, Wang and Kim [20] 
proposed a (non-linear) two-step function for the relationship 
between the capacity and load of network vertices. Although 
based on an over-simplified model, it has been shown efficient 
to prevent cascades by protecting highest-load vertices. Li et al. 
[21] introduced a more complex heuristic capacity model 
whereby vertices with both higher loads and larger degrees are 
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paid more extra capacities. It is shown that this model can 
achieve better network robustness than previous models under 
the same amount of available resources. 

In the present study, we tackle the issue from a systematic 
perspective by searching for the strategy of resource (capacity) 
allocation in a power transmission network that is most 
favourable for resisting to cascading failures, while keeping the 
total resource (capacity) limited (i.e., while minimizing the 
network cost). This serves as the primary objective of this 
paper. In more detail, the problem is formulated within a 
large-scale, nonlinear and combinatorial multi-objective 
optimization framework and is solved by a fast and elitist 
genetic algorithm, namely NSGA-II [22]. 

The search by the NSGA-II requires also: (i) the construction 
of a model to describe the cascading failure process in the 
network of interest, and (ii) the repeated evaluation of the 
model for every possible capacity allocation pattern proposed 
by the algorithm during the search. With respect to the model, 
two approaches are typically considered in the analysis of 
power transmission systems: complex network theory models, 
such as the Motter-Lai (ML) model [8], [9] and artificial power 
flow models, such as the ORNL-Pserc-Alaska (OPA) model 
[10], [11], [39]. These approaches provide different tradeoffs 
between the (relatively low) computational cost associated to 
the model evaluation (allowing applications to large scale 
power grids) and the (high) level of detail in the system 
description (including physical characteristics and power flows 
constraints), respectively. 

The OPA model seeks to faithfully describe the dispatching 
dynamics of the power flows during the evolution of the failure 
propagation following the initial disturbances, by explicitly 
incorporating the standard DC power flow equations and 
minimizing generation cost and load shedding [10]. Embracing 
this more physical description and solving the constrained 
linear optimization functions associated to the model, results in 
a significant increase in the computational burden, rendering 
practical application extremely difficult for realistic networks 
with large numbers of elements [23]. For these reasons, 
topological models based on complex network theory (e.g. the 
ML model) have emerged in recent years [8], [9], [13], [14], 
[18], [24]-[26]. In particular, the ML model is a relatively 
simple and abstract model relying on the resemblance of 
complex networks to electrical infrastructure systems (in terms 
of graph theory). It has the advantage of modelling cascading 
dynamics with few parameters, so that its application to 
realistic, large-scale networks is feasible and certainly more 
readily than OPA [16]. However, ML abstracts the power flow 
laws and constraints of the electrical system. Inevitably, then, it 
cannot provide direct physical measures of blackout size, but 
rather abstract measures such as efficiency loss. This has posed 
questions on whether or not it is adequate in practice, due to its 
abstract nature, although it has been recognized to offer a new 
and interesting perspective on the study of cascading failures on 
power grids [23]. 

It is worth mentioning that studies tackling the problem of 
comparison between network-centric approaches and power 
flow approaches are few in literature. Some studies [23], [25], 

[27] have provided qualitative comparisons between complex 
network theory models and power flow models - identifying 
similarities and differences, and evaluating advantages and 
disadvantages. Most recently, Correa and Yusta conclude on 
the appropriateness of graph theory techniques for the 
assessment of electric network vulnerability by comparison to 
physical power flow models [28]. By extensive comparative 
simulation, Cupac et al. have shown that a network-centric 
model (CLM) exhibits ensemble properties which are 
consistent with the more realistic OPA fast-scale model [29]. 
Along these lines, our study takes the comparison a step 
forward by analyzing the optimization results, enabling to find 
more interesting insights. 

In the present paper, we embrace both the ML and OPA 
cascading failure models and embed them within NSGA-II for 
optimally solving the problem of capacity resource allocation. 
With respect to that, the second objective of the paper is to 
study the possibility of using a simplified network-centric 
model (instead of a detailed power flow model) within an 
optimization framework, without affecting the quality of the 
optimal solutions found. For illustration, we apply the method 
to the 400 kV French power transmission network, under the 
objectives of maximizing network resilience to cascading 
failures and minimizing investment costs. Finally, we 
systematically compare the results obtained by using the two 
cascading failure models of different complexity. 

The reminder of this paper is organized as follows. In 
Section II, we introduce the ML and OPA cascading failure 
models in detail. We, then, formulate the multi-objective 
optimization problem taking investment costs and failure 
resilience into account in Section III. In Section IV, we briefly 
introduce the procedure of the NSGA-II algorithm. Section V 
illustrates the French 400kV power transmission network case 
study and the analysis and comparison of the results. 
Discussion and conclusion are given in Section VI.  

II. MODELS OF CASCADING FAILURE CONSIDERED IN THIS 

WORK 

Modelling the dynamic evolution of system-wide cascading 
failure processes poses a number of challenges due to the 
diversity of mechanisms which can trigger the initial failure and 
influence the subsequent propagation of breakdowns in the 
power system [27]. Various cascading failure models have been 
proposed; these can be divided into two main categories: those 
based on complex network theory analysis and those using 
power flow analysis, often including optimal economic power 
dispatch after each failure in the propagation, e.g., by linear 
optimal power flow (OPF) [29]. 

Complex network theory models, including the ML model 
adopted in this work and described in Section A below, abstract 
the representation of a power grid as a graph and then study the 
connectivity characteristics, the propagation mechanisms 
through the graph connections and their relationships. These 
types of models have proved to provide a good understanding 
of the specific grid dynamics of cascading failures [30]. 
However, in these models the assumptions only abstract the 
real loading of the components and the flow distribution 



ISJ-RE-14-02922.Final 3

through the connections. For this reason, it is necessary to 
ascertain the meaningfulness of the results for real electrical 
infrastructures. 

Power flow models, on the contrary, are based on realistic 
power flow equations to describe the flow dispatching 
dynamics and failure evolution after the initial disturbances in 
the power grid. The OPA model, which is the most commonly 
used of this type of models, is introduced in Section B below 
and is based on the DC power flow approximation [31].  

A. The ML Model 

The original ML model has been proposed by Motter and Lai 
[8], with extensions to differentiate generators and loads [16]. 
Here, the extended ML model in terms of transmission line 
failures is utilized. The power transmission network is 
represented as an undirected graph Q with a set of N vertices 
representing NG generators and ND loads representing 
distribution substations, interconnected by a set of M edges 
representing transmission lines. The structure of the network is 
identified by an � × �  interaction matrix �, whose element ��� is 0 if node � and � are not connected directly; otherwise it 
is assigned a value of 1, for an unweighted network, or another 
numerical value, for a weighted network (as in the case of the 
work in the present paper). 

The ML model assumes that at each time step, one unit of the 
relevant quantity (e.g., electrical flow for power grids) is 
exchanged between every pair of generator and distributor 
nodes, and transmitted along the shortest path connecting them. 
Then, the flow at one link is computed as the number of shortest 
paths passing through it. More precisely, the flow 	
�� of link 
 
is quantified by the link betweenness, calculated as the fraction 
of the generator-distributor shortest paths passing through that 
link: 

	
�� = �����∑ ���(
)����∈��,�∈�� , 
 ∈ �                  (1) 

where �	(‖�‖ = �) is the set of all the links in the network;  ! 
(‖ !‖ = �! ) and  "  (‖ "‖ = �" ) are the sets of generators 
and distributors, respectively; #��  is the number of shortest 
paths between generator nodes and distributor nodes, and #��(
)  is the number of generator-distributor shortest paths 
passing though link 
. 

In the original ML model [8], a homogeneous capacity-load 
relationship is assumed: the capacity of link 
 is assumed to be 
proportional to its initial flow 	
��(0) with a network tolerance 
parameter α: 

&
�� = (1 + α)	
��(0), 
 ∈ �                         (2) 

The concept of tolerance parameter 	α	 ( α ≥ 0 ) can be 
understood as an operating margin allowing safe operation of 
the component under potential load increment1. The occurrence 
of a cascading failure is initiated by removal of a link, which in 
general changes the distribution of shortest paths. Then, the 

 
1 In this paper, the link capacities are variables to be optimized (see Section 

III); thus, assumption (2) is obviously not introduced in the problem 
formulation of the present work. 

flow at a particular link can change and if it increases and 
exceeds its capacity, the corresponding link fails. Any failure 
leads to a new redistribution of loads and, as a result, 
subsequent failures can occur. 

Using this cascading failure model, the damage of the 
network *  can be characterized by the fraction of network 
efficiency lost in the cascading failure: 

 �� = +(,)-+(,)+(,)                                        (3) 

where  �� ∈ [0, 1] and �(*) represents the residual network 
structure after the cascading failure. �(*)  measures the 
network efficiency based on the node pair shortest path distance 
between generators and distributors. For its computation all 
pairs of nodes � ∈  !, and � ∈  " are weighted by the inverse of 
their distance: 

�(*) = ����� ∑ ∑ �0(�,�)�∈���∈��                         (4) 

where 1(�, �) is the number of edges for an unweighted network 
or the sum of edge weights for a weighted network in the 
shortest path from � to � (like in the present case). 

The geodesic network damage  ��  measures the 
functionality of a network when subjected to a contingency due 
to cascading link disruption with regard to its steady state (base 
case).  As  ��  increases, the impact on the network due to 
cascading failure also increases, as some components become 
disrupted.  ��  has proved to be a well-defined index being 
capable of providing results consistent with those of physical 
model indices [28]. 

The detailed simulation of the ML cascading failure model 
proceeds as follows: 

(1) A random link is chosen as failed and, thus, is 
removed from the network. 

(2) Recur to Eq. (1) and Floyd's shortest paths algorithm 
to calculate the flow of each working link in the 
network [32]. 

(3) Test each link for failure: for each link 
 ∈ � of the 
network, if 	
�� > &
�� then link 
 is regarded as 
failed and, thus, is removed from the network. 

(4) If any working link fails, return back to step 2. 
Otherwise, terminate the simulation and evaluate the 
network damage by Eq. (3). 

Complex network theory models, such as the ML that we use 
within our optimization framework of the following Section III, 
have no direct physical relation to the mechanisms of realistic 
power grids, but they have the key advantage that by utilizing 
techniques from graph theory they can be applied to analyze 
large-scale networks. For this reason, this modelling approach 
is seeing increasing applications for modelling cascading 
failure processes in power grids. 

B. The OPA Model 

The OPA model has been proposed by researchers at Oak 
Ridge National Laboratory (ORNL), Power System 
Engineering Research Center of Wisconsin University (PSerc), 
and Alaska University (Alaska) [10], [11]. The OPA model is 
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built upon the Self-Organized Criticality (SOC) theory, 
contains two different time scale dynamics, i.e., fast power flow 
dispatching dynamics and slow power grid growth dynamics, 
and describes the complexity and criticality of power systems. 
It is a novel and powerful tool for analysing power systems. 
Our analysis focuses on the fast power flow dynamics, in order 
to ensure comparability with the ML model shortest path 
assumption. 

The cascading failure model is based on the standard DC 
power flow equation, 

 	345 = 6 ∙ 8                                     (5) 

where 	345  is a vector whose � components are the power 
flows through the lines, 	
345(
 ∈ �) , 8  is a vector whose � − 1 components are the power injection of each node, 8�  (� 
is the total number of nodes in the network), with the exception 
of the reference generator, 8:, and 6 is a constant matrix that 
depends on the network structure and impedances (see Ref. [10] 
for details about the computation of 6). The reference generator 
power is not included in the vector 8 to avoid singularity of 6 
as a consequence of the overall power balance. 

The generator power dispatch is solved using standard linear 
programming methods. Using the input power demand, the 
power flow Eq. (5) is solved with the condition of minimizing 
the following cost function: 

; = ∑ 8�(<)�∈�� + =∑ 8�(<)�∈��                     (6) 

This definition gives preference to generation shift whilst 
assigning a high cost (set = =100) to load shedding, and it is 
assumed that all generators operate at the same cost and that all 
loads are served with equal priority. The minimization is done 
with the following constraints: 

(5) Generator power injections are generally positive and 
limited by installed capacity limits: 0 ≤ 8� ≤8�?@A , � ∈  ! . 

(6) Loads always have negative power injections: 8�0B? ≤ 8� ≤ 0, � ∈  ". 
(7) The flow through links is limited by link capacities: C	
345C ≤ &
345. 
(8) Total power generation and consumption remain 

balanced: ∑ 8��∈��∪�� = 0. 
Notice that in order to simplify the power flow problem, 

making it linear, a number of assumptions have been made in 
the standard formulation of DC power flow, one of which is 
that the transmission line resistance is assumed to be negligible 
i.e. R<<X, i.e. lines are assumed without loss [31]. This means 
that the loss of power transmission is neglected in the original 
OPA cascading failure model [10]. However, the objective of 
cost minimization (Eq. (6)) is only applied to guide the 
generator power redispatch after the occurrence of a 
transmission line failure, for which changes in generation or 
load shedding are usually considered, as the change in 
transmission loss among different redispatch strategies should 
probably not be large and considered by the network operator 
[10]. 

After solving the linear optimization by using the simplex 
method as implemented in Flannery et al. [33], we examine 
which lines are overloaded. A line is considered to be 
overloaded if the power flow through it is within 1% of the limit 
capacity&
345 . Each overloaded line may outage with 
probability E�  (E�	is set as 1 in the case study to ensure its 
comparability with ML). If an overloaded line experiences an 
outage, its power flow limit &
345 is divided by a very large 
number F�  to ensure that practically no power may flow 
through the line. Besides, to avoid a matrix singularity from the 
line outage, the impedances of failed lines are multiplied by a 
large number FG, resulting in changes of the network matrix 6. 

Load shedding is utilized to quantify the damage of the 
cascading failure. For an individual node, load shedding is 
defined as the absolute value of the difference between its 
power injection and demand: 

HI� = C8�0B? − 8�C, � ∈  "                              (7) 

Subsequently, total load shedding for the system is: 

HI = ∑ HI��∈��                                               (8) 

Finally, system load shedding is normalized by its total demand D and used as a measure of damage to the system resulting from 
a cascading failure: 

 345 = �K" = ∑ �K��∈L�∑ 4�MNO�∈L�                                  (9) 

The fact that simulation results from OPA model are 
consistent with historical blackout data for real power systems 
has justified its effectiveness [11]. However, the applications of 
OPA have generally been limited to networks with a relatively 
small number of nodes compared to real power grids [23], due 
to the computational efforts involved. 

III.  FORMULATION OF THE MULTI-OBJECTIVE OPTIMIZATION 

PROBLEM 

In this section, we generally frame the problem of searching 
the most favourable pattern of link capacities in a realistic 
power transmission network, so as to optimize its resilience 
against cascading failures. By associating a cost to (the capacity 
of) each link of the network, the optimization process also seeks 
to minimize the total cost. With the aim of comparing 
network-centric and power flow approaches, both the ML and 
OPA models introduced in Section II are used to evaluate the 
vulnerability of the pattern of link capacities proposed during 
the optimization search. 

Specifically, we define the variables to be optimized as the 
capacities of the links in the network, &
 , 
 ∈ � (i.e., &
��  for the 
ML model and &
345  for the OPA model). Thus, the 
homogeneous capacity allocation strategy as expressed in Eq. 
(2) is no longer adopted in the optimization. Instead, any 
non-negative vector & ∈ PQ�  could represent a potential 
solution. It is noted that the searching space PQ� is intractably 
large in reality, where a power transmission network usually 
has hundreds or thousands of links. 
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We, then, assume that the cost associated with each link 
capacity is linearly proportional to the value of the capacity, 
with coefficient φ (we simply set φ	as 1 in our case study). The 
total investment cost related to a capacity allocation pattern & ∈ PQ�  in the power transmission network can, then, be 
defined as: 

&ST<(&) = ∑ U&

∈+                                   (10) 

The network damage resulting from a cascading failure in the 
presence of a given capacity pattern can be obtained by running 
the ML (or the OPA) simulation in correspondence of the 
capacity pattern and, then, using Eq. (3) (or Eq. (9) for OPA). 
The cascade is initiated by the failure of a single link in each 
model. The single link is randomly selected from the set of 
links �  in the network with equal probability. Then, the 
algorithms for cascading simulation proposed in Section II are 
applied. The cascade simulations run over several iterations 
until they either converge or exceed the maximum number of 
steps (we use maximum 20 iterations for both ML and OPA). 
Finally, the network vulnerability for a given capacity 
allocation pattern & is obtained as the average network damage  �� (or  345 for OPA), over various random triggers (we use 
30 triggers for both ML and OPA). 

Through the quantification of the capacity allocation cost and 
cascading failure vulnerability, the capacity allocation problem 
is formulated as a multi-objective optimization: 

VminZ∈P[\ &ST<(&)																																										 (11)minZ∈P[\  (&)																																																(12) 
The objective function (11) is the sum of the link capacity 

costs; function (12) expresses the cascade vulnerability 

objective, where  (&) is  �� when the ML model is used, or  345  when OPA is used. Observe that under this definition the 
most cascade-resilient network might be the network with 
infinite capacity, which obviously would conflict with the 
objective of minimizing cost.  

IV.  MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS (MOEA) 
FOR OPTIMAL CAPACITY ALLOCATION 

Multi-objective evolutionary algorithms (MOEAs) have 
proven to be general, robust and powerful search tools that are 
desirable for tackling problems involving i) multiple 
conflicting objectives, and ii) intractably large and highly 
complex search spaces [34]. In extreme synthesis, the main 
properties of Evolutionary Algorithms (EAs) are that the search 
for the optima is conducted (i) using a (possibly) large 
population of multiple solution points or candidates, (ii) using 
operations inspired by the evolution of species, such as 
breeding and genetic mutation, (iii) using probabilistic 

operations and (iv) using information on the objective or search 
functions and not on its derivatives. The main advantages are: 
(i) fast convergence to near global optima, (ii) superior global 
searching capability in complicated search spaces and (iii) 
applicability even when gradient information is not readily 
achievable. MOEAs rely on the following concepts [35]: 

• Pareto front: The locus that is formed by a set of 
solutions that are equally good when compared to 
other solutions of that set is called Pareto front. 

• Non-Domination: Non-dominated or Pareto-optimal 
solutions are those solutions in the set which do not 
dominate each other, i.e., neither of them is better than 
the other in all the objective function evaluations. The 
solutions on each Pareto front are Pareto-optimal with 
respect to each other. 

In this study, we use a fast and elitist genetic algorithm, 
namely, NSGA-II [22], to solve the multi-objective 
optimization problem (11)-(12). NSGA-II has been proved to 
be an efficient algorithm to find Pareto optimal solutions [36]; 
for further details about this algorithm and relevant surveys on 
multi-objective evolutionary optimization, the reader is 
referred to Ref. [22], [34]-[36]. The complete procedure for our 
capacity allocation optimization problem is detailed as follows: 

(1) Read power transmission network data (line, bus, 
adjacency matrix, etc.) and fix the MOEA parameters 
(i.e., population size, maximum generation, etc.); 

(2) Randomly initialize a (parent) population of possible 
solutions (individuals) and evaluate the fitness of each 
individual with respect to the two objective functions 
(11) and (12); sort the parent population according to 
the non-domination criterion [35]; 

(3) Select the parents which are fitter for reproduction by 
using a binary tournament selection [22]; the 
procedure is such that fitter individuals are selected 
with a higher probability; 

(4) Generate an offspring population by crossover and 
mutation operators, and evaluate the fitness of each 
individual in the offspring population with respect to 
the two objective functions (11) and (12); 

(5) Combine the parent and offspring populations to 
generate a new "trial" aggregate population and 
perform non-dominated sorting on the "trial" 
population; 

(6) Generate a new parent population by selecting the best 
solutions in the sorted "trial" population, until a 
desired population size is reached; 

(7) If the stop condition is met, then terminate the 
iteration; otherwise, go to step 3. 

The non-dominated solutions of the last population 
constitute the Pareto optimal front of the optimization problem 
at hand. 
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V. CASE STUDY AND RESULTS ANALYSIS 

A. Case Study and Parameters Setting 

In this paper, the 400kV French power transmission network 
(FPTN400) (Fig. 1) is taken for exemplification of the proposed 
approach. The network is built from the data on the 400 kV 
transmission lines of the RTE website [37]. It has 171 nodes 
(substations) and 220 edges (transmission lines). We 
distinguish the generators, which are the source of power, from 
the other distribution substations, that receive power and 
transmit it to other substations or distribute it in local 
distribution grids. By obtaining the power plants list from EDF 
website [38] and relating them with the ID of the buses in the 
transmission network, we have 26 generators and 145 
distributors. Only the nuclear power plants, hydroelectric plants 
and thermal power plants whose installed capacities are larger 
than 1000 MW, are considered. Although simplifications have 
been made, the network model still has sufficient details to 
illustrate the validity of the method on a realistic-size electrical 
infrastructure. 

For optimal allocation of link capacity in the network, the 
NSGA-II algorithm introduced in Section IV is applied with 
regards to the objectives of minimizing cascade vulnerability 
and investment cost, expressed by functions (11) and (12) 
respectively. Both the ML and OPA models are used to 
evaluate the cascade vulnerability of the proposed network. The 
parameters values used in the NSGA-II algorithm are reported 
in Table I. In this study, we do not attempt to find the best 
optimal setting for each of the NSGA-II parameters and they 
have been set by trial and error guided by the aim of reaching 
convergence. For the interested reader, extensive studies exist 
especially focusing on the task of tuning GA parameters [40], 
[41], [42]. 

B. Comparison between the ML and OPA Models 

1) Model Adjustments and Settings 
The comparison between the optimization results of the ML 

and OPA models is not straightforward due to the differences of 
the two models in the way of representing system flow, in the 
iterative algorithms they rely on, and in the way of measuring 
the damage produced by the cascading failure. Accordingly, 
some assumptions and adjustments to the models are necessary 
to ensure their comparability. 

Flow initialization:  In the ML model, initial link flow is 
calculated directly by Eq. (1). Regarding the OPA model, the 
calculation of initial link power flow by Eq. (5) necessitates 
data about power demand and generator capacity. Prior studies 
set this data by evolving the network using combined fast-slow 
dynamics until the network reaches a steady state [10], [11]. In 
order to ensure comparability with ML, and taking into account 
that we limit the scope of our comparison to fast dynamics, we 
use a simpler initialization strategy that does not require the 
consideration of network upgrades over time. 

Although the ML model does not represent demand and 
generation capacity quantitatively, it assumes that every 
distributor is connected to every generator, whereby there is 
only one shortest path from any distributor to every generator. 
This implies that every distributor attempts to extract an equal 
amount of power from every generator [29]. Thus, to facilitate 
comparability with the ML model, we use the following 
assumptions in OPA: (i) all the loads have equal constant power 
demand, and (ii) the total generation capacity is set to be equal 
to the total demand and equally divided among the generators. 

In Fig. 2, we plot the relationship between the initial flow of 
each link determined using the ML model and that determined 
using the OPA model in the FPTN400. Each green square in the 
Figure corresponds to one of the links in the network. The 
x-axis is the value of initial flow of the link in ML, and its 
y-axis is the value of its initial flow in the OPA approach. It can 
be seen that the initial link flow in ML is highly correlated with 
the initial link flow in OPA, computed by means of the 
proposed initialization method (the correlation coefficient 

�̂�,345 is equal to 0.77). That is to say, links with high initial 
flow in ML tend to have high initial flow in OPA, and vice 
versa. This shows that our initialization strategy is consistent 
for ML and OPA. 

Cost normalization: Since the ML and OPA models rely on 
different variables and algorithms (see Section II), the 
numerical values of each link flow and capacity determined 
within the two approaches are obviously not identical. 
Therefore, in order to facilitate the comparison of the 

TABLE I 
PARAMETERS OF THE NSGA-II ALGORITHM 

Parameters Values 

Population size 80 
Maximum generation 1500 
Crossover probability 0.9 

Mutation probability 0.1 
Crossover operator 20 
Mutation operator 20 

 

 
 

Fig. 1.  The 400kV French power transmission network (FPTN400) [37]. 
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optimization results from the two approaches, the cost of each 
capacity (allocation pattern) proposed by the optimization 
algorithm is normalized by the corresponding total initial 

network flow2, and indicated as &ST< in both the ML and OPA 
models.  

Comparison method: As already mentioned before, it is 
evident that the ML and OPA models provide different results 
at the local scale [29]; however, we evaluate to what extent the 
two approaches are consistent at the global system level. In 
particular, we compare the two approaches by performing the 
following analyses: 

• We verify whether the Pareto fronts based on the ML 
and OPA models exhibit similar characteristics in 
terms of phase transitions of cascade vulnerability 
with respect to normalized investment cost; 

• We investigate whether the Pareto optimal solutions 
showing the same level of investment cost also present 
similar capacity allocation patterns; 

• We examine whether the link capacities patterns along 
the two optimal frontiers exhibit similar characteristics 
for decreasing network vulnerability (i.e. for 
increasing network resilience). 

2) Comparison Results 
We first investigate the shape of the Pareto fronts obtained 

using the ML and OPA models in the capacity allocation 
optimization: in particular, we analyze the variation of cascade 
vulnerability as a function of normalized investment cost. 
Notice that a proper comparison of the Pareto fronts obtained 
with the ML and OPA models is only possible with the 
adjustments proposed in previous Section. Fig. 3 shows that 
ML and OPA Pareto fronts exhibit similar phase transitions 
(although their absolute values are different, which is not 
unexpected considering the fact that they apply different 
 

2 By this definition, the normalized cost has precisely the same physical 
meaning with the network tolerance parameter α. 

modelling parameters and cascade vulnerability measures): 
both curves present a sharp decrease in network vulnerability in 

the same &ST< region (i.e. 1.0 ≤ &ST< ≤ 1.5), where a small 
increase in the cost gives a large gain in terms of cascade 
resilience. Besides, regions of plateau exist for certain cost 

values in both models (i.e. for 1.5 ≤ &ST< ≤ 1.75  and 2.0 ≤ &ST< ≤ 2.2  in ML, and for 1.5 ≤ &ST< ≤ 1.8  and 2.15 ≤ &ST< ≤ 2.45  in OPA), in which increasing investment 
cost does not improve network resilience. Finally, both curves 

show a relatively stable regime for large &ST<  values (i.e., &ST< ≥ 2.2), where network resilience is already high and its 
relative improvement is negligible even for a significant 
increase in the network cost (for example, referring to the ML 

model, increasing &ST< from 1.97 to 2.61, i.e., of 32.5%, we 
reduce the network vulnerability of only 1.5%). One could refer 
to the Pareto fronts of ML (squares in left panel) and OPA 
(triangles in right panel) in Fig. 4, where this relative stable 
regime is shown more clearly on a linear y-axis scale. 

In Fig. 4 we compare the Pareto fronts obtained by the ML 
and OPA models within the multi-objective optimization 
framework of Section III with the results obtained by assuming 
a classical homogeneous capacity allocation strategy (see 
Section II.A). The capacity in the homogeneous capacity 
allocation is assumed to be linearly proportional to the initial 
flow by means of the network tolerance parameter α, as 
indicated in Eq. (2); thus, the normalized cost of a given 
capacity allocation pattern is precisely equal to parameter α by 
construction. It can be seen that in both cases the 
multi-objective optimization approach based on ML and OPA 
produces superior solutions as the corresponding Pareto fronts 
are closer to the coordinate axes. The linear (homogeneous) 
capacity-load relationship evidently appears not optimal for 
obtaining a cost-efficient and cascade-resilient network. 

We, then, compare the link capacities patterns of those 
solutions along the two Pareto fronts that present 

 
 

Fig. 2. Scatter-plot of the normalized initial link flows in the ML and 
OPA models, with reference to the 400kV French power transmission 

network. The initial link flow in ML is highly correlated to that in 
OPA (̂ ��,345=0.77). The best fit line is also shown. 

 

 
Fig. 3. Phase transitions in the Pareto optimal fronts showing cascade 
vulnerability (i.e., average efficiency loss for ML and average load 

shedding for OPA) with respect to normalized investment cost. 
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approximately the same values of  &ST<. In particular, three 

representative values of normalized cost (i.e., &ST<=1.07, 1.27 
and 1.81) along the Pareto fronts are chosen, and the 
relationship between the link capacities of the corresponding 
optimal solutions obtained by the ML and OPA models are 
visualized using the scatterplots of Fig. 5(a), (b) and (c), 
respectively. It is evident that the link capacities of the optimal 
solutions based on the ML and OPA models are highly 
correlated (with correlation coefficient �̂�,345=0.73, 0.69 and 
0.76, respectively). That is, links with low capacity in the ML 
model are likely to have low capacity also in the OPA model, 
and links with high capacity in ML also have high capacity in 
OPA. 

Finally, it is interesting to analyse how the pattern of link 
capacities changes when lower network cascade vulnerability 
(higher network resilience) is demanded, i.e., which type of 
capacity allocation pattern is the most favourable in resisting to 
cascading failure. We tackle this problem by investigating the 
"expected" network link capacity pattern as a function of 
cascade vulnerability, i.e., the configuration of capacity pattern 
"averaged" over all possible solutions of the Pareto front lying 
within a given "regime" (i.e., interval) of cascade vulnerability 
of interest. Parameter de (namely,  d��e  for ML and  d345e  for 
OPA) is used to represent the "regime" of vulnerability, where s indicates the size of the corresponding interval. It is noted that 
smaller de represents higher network resilience. 

Fig. 6 reports the results of averaged link capacities patterns 
for three different levels of cascade vulnerability, i.e., 0.6 ≤ d:.� ≤ 0.7, 0.3 ≤ d:.� ≤ 0.4 and 0 ≤ d:.� ≤ 0.1 in the 
case of a homogeneous allocation strategy (circles) and of the 
optimization-based approach in our study (squares). The left 
panel (a-c) is referred to ML, whereas the right panel (d-f) 
relates to OPA. It is found that the optimal link capacity 
patterns exhibit consistent characteristics between ML and 
OPA models. For example, in both cases, the optimal link 
capacities patterns are similar to their corresponding 
homogeneous allocations only in less resilient networks, i.e., 

when 0.6 ≤ d:.� ≤ 0.7 , where the objective of minimizing 
investment cost is much more biased (Fig. 6(a) and (d)). When 
we increase the importance of minimizing the network 
vulnerability (e.g., for 0.3 ≤ d:.� ≤ 0.4 and 0 ≤ d:.� ≤ 0.1), 
the optimal link capacities show a non-linear relationship with 
respect to their initial flows, as shown in Fig. 6(b), (c) and Fig. 
6(e), (f). Specifically, the heavily loaded links tend to decrease 
their capacities and the lightly loaded links tend to increase 
their capacities. That is to say, the unoccupied portion of 
capacity tends to decrease in links with larger loads and the 
unoccupied portion of capacity tends to increase in the less 
loaded links. Furthermore, the more importance is given to the 
minimization of network cascade vulnerability, the more 
pronounced the non-linear behaviour is, as shown in Fig. 6(c) 
and (f). Our findings are consistent with the empirical 
observations and results from the traffic fluctuation model [17], 
[19]. 

VI. DISCUSSION AND CONCLUSION 

In this paper, we have tackled the problem of searching for 
the most favourable pattern of link capacity allocation for a CI 
network with the objective of resisting to cascading failures 
with limited investment costs. The problem has been 
formulated within a multi-objective optimization framework 
and has been solved by an evolutionary algorithm, namely the 
NSGA-II. The optimization has been carried out using two 
different approaches to cascade failure modelling: a 
computationally-cheap complex network model -- namely, the 
Motter-Lai (ML) model -- and a more detailed power flow 
model -- namely, the ORNL-Pserc-Alaska (OPA) model. The 
approaches have been compared on a case study involving the 
400kV French power transmission network (FPTN400). 
Although simplifications have been applied, the network model 
still has sufficient detail to illustrate the validity of the method 
on a realistic electrical infrastructure. 

The objective of this paper is twofold: 1) to tackle the issue of 
capacity-load relationship from a systematic perspective, by 

 
 

Fig. 4. ML (left panel) and OPA (right panel) Pareto fronts obtained in the multi-objective optimization framework of Section III (squares and 
triangles), together with the results obtained by employing a homogeneous capacity allocation strategy (solid line). 
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introducing the optimization of link capacity allocation, and 2) 
to study the possibility of using a simplified network-centric 
model (instead of a detailed power flow model) within the 
optimization framework, without affecting the quality of the 
optimal solutions found, by embedding both the ML and OPA 
model into the optimization and comparing their results. 

Primarily, our multi-objective optimization results show that 
both the ML and OPA models produce improved Pareto 
solutions with respect to those obtained by assuming a classical 
homogeneous allocation strategy. In addition, the optimal link 
capacity allocations show a non-linear capacity-load relation: 
the unoccupied portion of capacity tends to decrease in links 
with larger loads, whereas the unoccupied portion of capacity 
tends to increase in the lightly loaded links. This is in sharp 
contrast with the linear capacity-load relation hypothesized in 
previous works of literature [8], [9], [12]-[14], [18]. This 
non-linear behaviour is probably a consequence of the 
following observation: since larger loads in heavily loaded 
components tend to result from a large number of flow events, 
the relative size of the fluctuations in these components tends to 
be small when other lightly loaded components fail during a 
cascading failure; considering that the unoccupied capacity is 
the operating margin that allow safe operation for the 

component under potential load increment (mainly determined 
by the perturbations caused by the failure of other components 
of the network), this explains why in the optimal solutions the 
unoccupied capacity tends to be smaller for links with larger 
loads. 

Additionally, the analysis of the behaviour of the link 
capacity patterns of the Pareto optimal solutions as a function 
of the vulnerability level has shown that the results provided by 
ML and OPA are consistent: the more importance is given to 
the objective of network cascade vulnerability, the more 
pronounced is the non-linear capacity-load relation for both 
models. Besides, the Pareto fronts produced by ML and OPA 
exhibit similar phase transitions. Both curves exhibit a sharp 

decrease in network vulnerability when 1.0 ≤ &ST< ≤ 1.5, a 

plateau for certain cost values (i.e., for 1.5 ≤ &ST< ≤ 1.75 and 2.0 ≤ &ST< ≤ 2.2  in ML, and for 1.5 ≤ &ST< ≤ 1.8  and 2.15 ≤ &ST< ≤ 2.45  in OPA) and a relatively stable regime 

when &ST< ≥ 2.2 . Furthermore, the link capacities of the 
Pareto optimal solutions produced by the ML and OPA models 
show highly correlated allocation pattern, which means that 
links with low capacity in ML tend to have low capacity in 
OPA, and links with high capacity in ML also tend to have high 

 
 

Fig. 5. Scatter plot of the (normalized) link capacities of three representative ML and OPA Pareto solutions showing the same normalized cost. 
The link capacities of the Pareto solutions with the same level of cost show highly correlated allocation patterns: (a) ML solution (1.07, 0.63) 

versus OPA solution (1.07, 0.30): �̂�,345 = 0.73; (b) ML solution (1.27, 0.24) versus OPA solution (1.27, 0.21): ̂��,345 = 0.69; (c) ML 
solution (1.81, 0.074) versus OPA solution (1.81, 0.057): ̂��,345 = 0.76. The line of best fit is also plotted, for visual guidance. 

 



ISJ-RE-14-02922.Final 10 

capacity in OPA. This consistency is not insignificant since it 
demonstrates that one resilience-improved pattern of capacity 
allocation optimized by the ML model is also of higher 
resilience if measured by the more realistic OPA model. 

The results from this comparative study provide an important 
contribution regarding the usefulness of a topological model 
(ML) in the optimization of a cascade resilient electrical 
network. Although ML is a relatively simple and abstract 
model (that does not account for the power flow laws and 
constraints of the electrical system), it is able to provide results 
that are consistent with a detailed and more realistic power flow 
model (OPA), when applied to the problem of network 
optimization against cascading failure. Most importantly, with 
respect to OPA it has the advantages of simplicity and 
scalability: the average time needed to carry out a single 
cascade failure simulation is 3.9s and 20.8s for ML and OPA, 
respectively, on a double 2.4 GHz Intel CPU and 4 GB RAM 
computer. This provides impetus for the use of network-centric 
models to the study of cascading failure in large power network 
systems. 

Future works may consider comparing our optimization 
results with real data, i.e. the empirical capacity-load 
characteristics, for extracting further insights about how 
realistic infrastructure systems evolve. Besides, it is noted that 

the optimization based on the OPA model leads to solutions of 
reduced vulnerability compared to its ML counterpart (see Fig. 
4) and the modelling reason behind it, is worthy of further study. 
Furthermore, Newton Raphson-based power flow approaches 
[43] could be applied for the comparison with the ML model, 
since they give a more detailed depiction of the cascading 
failure process, although the price to be paid is that they are 
computationally expensive. Finally, it would be interesting to 
apply our method to other networks, e.g. the standard IEEE 
Power Systems Test Cases and the like. 
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Abstract—This study firstly proposes a new quantitative metric 

of system resilience, which focuses on the post-disaster recovery 
process describing how the system “bounces back” from a distress 
to a normal functioning state. Based on this metric, we formulate 
a bi-level resilience optimization model for selecting proper 
recovery actions in order to enhance the resilience of 
infrastructure networks. The resilience optimization problem 
(ROP) is formulated within a mixed integer programming (MIP) 
framework, and a heuristic dispatching rule that integrates 
concepts from network flows and project scheduling is proposed 
for its solution. A case study involving the 400kV French Power 
Transmission Network (FPTN400) shows that the proposed 
method is able to produce high-quality sub-optimal solutions to 
the ROP with much less computational cost than the MIP 
approach based on a branch and cut algorithm. This looks 
promising for the use of the proposed heuristic dispatching rule in 
restoration activities on large-scale infrastructure networks.  
 

Index Terms— Infrastructure networks, system resilience, 
system recovery, dispatching rules, optimization 
 

I. INTRODUCTION 

ritical infrastructures (CIs) are network systems designed 
and operated to deliver resources and services to 

consumers and businesses in an efficient manner. Examples of 
such CIs are power grids, telecommunication networks, 
transportation networks, etc. Disruptive events, whether they 
are malevolent attacks, natural disasters, or human-caused 
accidents, can have significant direct and indirect impacts. 

Justifiably, then, critical infrastructure protection (CIP) has 
gained great importance in all nations, with particular focus 
being placed traditionally on physical protection and asset 
hardening [1]-[4]. In recent years, lessons learned from some 
catastrophic accidents have pushed part of the focus on the 
concept of “resilience” – i.e., the ability of an infrastructure 
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system to withstand, adapt to, and rapidly recover from the 
effects of a disruptive event [6], [7]. The outcomes of the 2005 
World Conference on Disaster Reduction (WCDR) confirmed 
the significance of the entrance of the term resilience into 
disaster discourse and gave birth to a new culture of disaster 
response [9]. As a result, systems should not only be reliable, 
i.e. having an acceptably low failure probability, but also 
resilient, i.e. having the ability to recover from disruptions [8]. 
Government policy has also evolved to encourage efforts that 
would allow assets to continue operating at some level, or 
quickly return to full operation after the occurrence of 
disruptive event [5].  

Resilience comes from the Latin word “resilio” that literary 
means “to leap back” and denotes a system attribute 
characterized by the ability to recover from challenges or 
disruptive events. The Merriam-Webster dictionary defines 
resilience as “the ability to recover from or adjust easily to 
misfortune or change.” Various definitions of “resilience” have 
been proposed for infrastructure and economic system analysis 
in the past decades, e.g., see [9]-[16], [29]. Unfortunately there 
is currently a lack of standardization and rigor when 
quantitatively defining resilience [15]. Too many different and 
subjective definitions (some of them overlap significantly with 
a number of already existing concepts like robustness, 
vulnerability and survivability) make resilience appear to be 
just another buzzword and not an attribute of engineering 
systems. To address this issue, this study firstly reviews 
different resilience metrics and measurement methodologies in 
the context of systems engineering especially for CI systems; 
then, it proposes a novel quantification of system resilience 
focusing on the post-disaster recovery process, which describes 
how the system “bounces back” from a distress to a normal 
state.  

While resilience can be characterized by many system 
features and attributes, recovery is a vital element of strategies 
to improve resilience. System recovery and its role in 
infrastructure network resilience have attracted much previous 
attention. Some studies have modelled the post-disaster 
restoration of various infrastructure systems in an effort to 
estimate the expected restoration time [17]-[19], and several 
others have compared the performance of different restoration 
strategies [20], [21]. More works have been done to tackle the 
problem of post-disaster restoration strategy planning and 
optimization for the purpose of restoring system service in a 
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timely and efficient manner. Considering multiple types of 
infrastructure networks simultaneously, Kozin and Zhou [22] 
developed a Markov process to describe the process of 
infrastructure network recovery; then, they used dynamic 
programming to estimate the repair resources required for each 
time step and for each network, so as to maximize the expected 
economic return from system functioning. Noda [23] used a 
neural network to minimize the likelihood of post-earthquake 
functional loss for a telephone system. Bryson et al. [24] 
applied a mixed integer programming approach for selecting a 
set of recovery subplans giving the greatest benefit to business 
operation. Casari and Wilkie [25] discussed restoration when 
multiple infrastructures, operated by different firms, are 
involved. Lee et al. [26] focused on a case of network 
restoration that involves selecting the location of temporary 
arcs (e.g., shunts) needed to completely reestablish network 
services over a set of interdependent networks. A mixed-integer 
optimization model was proposed to minimize the operating 
costs involved in temporary emergency restoration. Xu et al. 
[27] applied a genetic algorithm to a problem associated with 
restoring power after an earthquake. The objective of this 
problem was the minimization of the average time that each 
customer stays without power (therefore, no prioritization is 
given to demand to critical points within the infrastructure). 
Finally, Matisziw et al. [28] propose an integer programming 
model to restore networks where the connectivity between pairs 
of nodes is the driving performance metric associated with the 
network.  

The studies cited above involving the optimization of 
post-disaster CI restoration apply a variety of modelling 
approaches and focus on different aspects of the restoration 
strategy (e.g. the repair order of damaged components, where 
and how to allocate repair resources, and so on).  

This paper provides a framework for properly selecting 
recovery actions in order to optimize the resilience of 
infrastructure networks. We focus on the optimal completion 
time of each failed component, in order to obtain insights about 
the importance that recovering each single component has in 
improving the resilience of the whole system; on the other 
hand, the duration of the repair of the failed components is not 
considered in this article (i.e. the repair action is assumed to be 
instantaneous). The performance of the network is measured in 
terms of the flows delivered to demand nodes. 

A project-oriented perspective is taken to plan the process of 
recovery from a network disruption: that is, a set of repair tasks 
must be scheduled in an optimal way, so as to maximize the 
network resilience over a predefined recovery time horizon. 
The network resilience is quantified based on the computation 
of network flows, which are the outcome of another 
optimization (done by network operators).  

The bi-level resilience optimization problem (ROP) is 
formulated within a mixed integer programming (MIP) 
framework. Although several commercial software packages, 
such as Cplex [45], can be used to solve the proposed MIP 
problem, the time required to solve the MIP formulation may 
impair its application to real-time post-disaster restoration 
activities for large-scale infrastructure networks. Therefore, a 

heuristic dispatching rule is here proposed, which seeks to 
determine a set of repair tasks to be completed, differently from 
traditional methods that simply focus on selecting an individual 
repair task to be processed.  

The results of the application of the approach to a case study 
involving the 400kV French Power Transmission Network 
(FPTN400) demonstrate that the scheduling rule is able to 
provide near-optimal solutions with much less computational 
cost than a classical approach to MIP solution based on a 
branch and cut algorithm [52], with potential for real-time 
restoration activities management.  
The remainder of the paper is organized as follows. In Section 
II, we first discuss related literature works concerning the 
definition and measurement of resilience in the domain of 
systems engineering; then, we propose a novel quantitative 
definition of system resilience. Section III proposes a 
framework for selecting recovery actions for optimizing the 
resilience of infrastructure networks: in particular, the 
mathematical formulation of the resilience optimization 
problem is firstly provided in Section III.A; then, Section III.B 
focuses on the heuristic dispatching rule that we propose to 
timely solve the problem. Section IV applies the developed 
optimization approach to a realistic case study and compares its 
efficiency to the Cplex MIP solver. Conclusions and future 
perspectives are given in Section V.  

II. SYSTEM RESILIENCE DEFINITION AND ASSESSMENT 

A. Critical Review of Literature 

Holling [10] introduced the notion of resilience to the 
scientific world and provided the first system-level definition. 
Subsequently, the concept developed independently in 
disciplines ranging from environmental research to materials 
science and engineering, sociology, psychology and 
economics, giving rise to a number of different definitions and 
classifications of resilience within these fields [15]. Yet, it is 
believed that the current strong interest in resilience for 
infrastructure systems has been triggered in the aftermath of 
9/11 attacks [30].  

One of the pioneering works in the field of infrastructure 
systems resilience is from the Multidisciplinary and National 
Center for Earthquake Engineering Research (MCEER) [12], 
where a general framework is provided to define and assess the 
seismic resilience of communities or any type of physical and 
organizational systems. This framework consists of “4Rs”: 
robustness, redundancy, resourcefulness, and rapidity, while 
resilience itself encompasses four interrelated dimensions: 
technical, organizational, social and economic.  

Based on the general framework provided by Bruneau et al. 
[12], various studies have been carried out with the purpose of 
providing a practical interpretation of the concept of resilience 
and identifying possible ways of measuring it for giving 
support to resilience-based decisions. Most of these approaches 
to resilience interpretation and definition include aspects of a 
system withstanding disturbances, adapting to the disruption, 
and recovering from the state of reduced performance, and can 
rely upon a common concept which is illustrated schematically 
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in Fig. 1. 
A quantifiable and time-dependent system performance 

function (also referred to system-level delivery function or 
figure-of-merit) ���� is the basis for the assessment of system 
resilience. It has a nominal value �����  under nominal 
operating conditions. The system operates at this level until 
suffering a disruptive event at time ��. The disruption generally 
deteriorates system performance to some level ����� at time 
�� . Then, recovery is started for increasing back system 
performance until a targeted level �����  is achieved once 
recovery is completed (����� could be the same (as in Fig. 1), 
lower or higher than the original system performance level 
�����). The dotted curve in Fig. 1 denotes the targeted system 
performance 	���� if not affected by disruption. It is noted that 
various strategies exist for recovery activities, and system 
performance is ultimately a function of recovery decisions and 
actions. The period �� 
 � 
 �� is generally considered as the 
recovery time [9]. 

Many studies in the literature define and measure resilience 
based only on initial system losses caused by disaster. Najjar 
and Gaudiot [32] regard network resilience as a measure of 
network fault tolerance in a multicomputer system: in this 
framework, network resilience ���
�  represents the upper 
bound on the number of node failures allowed, and is defined as 
the maximum number of node failures that can be sustained 
while the network remains connected with a probability	�1 �

�. Omer et al. [33] suggest a model to measure resilience of a 
telecommunication cable system as a network infrastructure. 
The ratio of the “value delivery” of the network after a 
disruption to that before a disruption is defined as a reference 
for resilience, where “value delivery” is the amount of 
information that has to be carried through the network. 
Rosenkrantz et al. [34] identify resilience metrics for 
service-oriented networks, where edge resilience of a network 
is defined as the largest value � such that, no matter which 
subset of �  or fewer edges fail, the residual sub-network is 
self-sufficient. Node resilience is also defined in the same 
manner.  

These definitions focus on the static “survival” property of a 
system, measuring the degree of system performance after a 
disruption. They largely overlap with the existing concepts of 
fault tolerance and robustness, while the temporal dimension of 

post-disaster loss recovery (i.e. the time � � �� in Fig. 1) is not 
considered: on the other hand, this time period is significant for 
evaluating the system ability to leap back from disruption. 

For this reason, other works have considered the system 
ability to recover from disruption. For example, MCEER [12] 
proposes that the seismic resilience of a community to an 
earthquake can be measured by the area between ���� and 
�����. Cimellaro et al. [9] attempt to formulate a framework to 
quantify system resilience under seismic risk, taking into 
account both the losses due to the disaster and the recovery 
phase. They view system resilience as the area underneath the 
performance function ����  of a system, normalized by a 
control time ���. Ouyang and Dueñas-Osorio [35] introduce a 
time-dependent resilience metric for infrastructure systems, 
where system resilience is quantified as the ratio of the area 
included between ���� and the time axis to the area included 
between 	���� and the time axis. The time span considered 
here is from ��  to a sufficiently large ��� � ���  that allows 
future system evolution: this metric explicitly embraces the 
system failure process.  

Vulgrin et al. [31] develop a composite resilience measure � 
that simultaneously considers recovery of system performance 
and the resource expenditures required to achieve it. Two key 
quantities are computed: (i) the so-called systemic impact (��) 
(defined as the cumulative impact of decreased system 
performance following a disruption and graphically represented 
by the area between the targeted system performance 	���� 
and the actual system performance ���� ) and (ii) the total 
recovery effort (	�� ) (defined as the cumulative resources 
expended in recovery activities). However, the disadvantage of 
this approach is that an increase in ��  and 	��  implies an 
increase in its composite resilience measure �  ( � � �� �
�		��), rather than a decrease.  

Henry and Ramirez-Marquez [15] attempt to review different 
definitions and metrics for system resilience, and introduce a 
resilience metric referring to the basic meaning of the word 
“resilience”. They view resilience ���� as the ratio of recovery 

to loss at a given time �, measured by ���� � ����������
��� �������

. This 

formulation is identical to Rose’s [36] static resilience metric 
when ����� is taken to be Rose’s worst-case quantity. Henry 
and Ramirez-Marquez [15], then, apply this measure to various 
scenarios that disable links in a transportation network in order 
to find restoration sequences that maximize recovery at a given 
time. However, this metric itself does not embrace the integral 
temporal dimension of the recovery process, thus neglecting the 
speed with which the performance of the system is recovered. 

B. System Resilience Definition and Assessment in This Work 

In light of the issues highlighted above, we propose a new 
metric for analytical quantification of the resilience of 
infrastructure systems. It is still relying on the basic meaning of 
the word “resilience” and can be applied to evaluate and 
compare the effectiveness of different strategies that are 
proposed to reduce adverse consequences of disruptive events.  

Let ���� be the resilience of a system at time � (� ! ��). In its 
basic form, ���� is here given the meaning of the cumulative 

 
Fig. 1.  Generic system performance transition curve under the occurrence of a 

disruptive event. 
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system functionality that has been restored at time � , 
normalized by the expected cumulative system functionality 
during this same time period. Graphically, ���� is represented 
by the ratio of the area with diagonal stripes �" to the area of the 
shaded part �#, as illustrated in Fig. 2. Mathematically, it is 
given as: 

���� �
$ %��&�������'�&
(
(�

$ %)��&�������'�&
(
(�

, � ! ��               (1) 

The following considerations about the given resilience 
definition are important: 
1) The system resilience ���� defined in Eq. (1) measures the 
cumulative system performance that has been restored from the 
system disrupted state to the recovered state at current time �, 
normalized by the target cumulative performance as if the 
system were not affected by disruption. This formulation is 
aligned with the original meaning of the concept of resilience, 
while capturing at the same time both the magnitude and 
rapidity of the system recovery action. 
2) The system performance function ����  could be 
represented by different metrics (e.g., the amount of flow or 
services delivered, the availability of critical facilities, the 
number of customers served, or the enabling potential of 
economic activities for infrastructure systems), depending on 
which dimension (i.e., technical, organizational, social and 
economic) of resilience the analysis focuses on [12]. This study 
concentrates on the technical dimension of resilience and 
utilizes the amount of flow delivered to the demand nodes of a 
network as the performance level metric. 
3) Note that ���� is undefined when ����� � 	����, which 
means that a system does not suffer any loss. This condition is 
avoided since only systems exposed to disruptive events are 
here considered. Practically, if a system does not suffer any 
loss, there is no scope for it to be recovered or to bounce back 
and thus there is no need to evaluate resilience.  
4) ���� is undefined when � + ��, because of the same reason 
explained in item 3. Besides, this could avoid any overlap with 
existing concepts like robustness, vulnerability and 
survivability. 
5) ���� ∈ %0, 1'  and ���� � 0  when ���� � ����� , which 
means that a system has not recovered from its disrupted state 
(i.e. there has been no “resilience” action); ���� � 1  when 

���� � 		����, which corresponds to the ideal case where a 
system recovers to its target state immediately after disruption. 
6) The target system performance 	���� is generally evolving 
due to the dynamic nature of service demand in infrastructure 
systems. For simplicity, in this study we assume that 	���� 
equals ����� and remains invariant. 

III.  OPTIMAL RECOVERY OF POST-DISASTER INFRASTRUCTURE 

NETWORKS 

After the definition of system resilience, we focus on the role 
of various recovery decisions and actions in the task of 
optimizing the resilience of infrastructure networks subject to 
disruptive events. In this Section, we first formulate a general 
resilience optimization model for infrastructure networks; then, 
we propose a heuristic dispatching rule for its practical 
solution. 

A. Resilience Optimization Model 

The mathematical model for the resilience optimization 
problem here considered involves an infrastructure network 
.�/, �� comprising a set of nodes / connected by a set of links 
� . The network nodes are classified into supply nodes	/0 , 
transshipment nodes /) , and demand nodes /1  (/0 ∪ /) ∪
/1 � / ). Each arc �3, 4� ∈ /  has an associated capacity 
�3, 4� ∈ 5�

6  , while each supply node 3 ∈ /0  has a supply 
capacity per time unit 789 ∈ 5�

6 and each demand node 4 ∈ /1 
has a demand 7:1 ∈ 5�

6  per time unit. Network flow is sent 
from supply nodes to demand nodes respecting the flow 
capacities of the links and supply/demand capacities of the 
nodes. Each unit of flow that arrives at demand node 4 ∈ /1 is 
given a weight ;: ∈ <6 in order to differentiate priorities of 
demand nodes (e.g., a hospital usually has a higher weight than 
a residential household in a power network). The performance 
of the network is evaluated by determining the maximum 
amount of weighed flow that can be received by the demand 
nodes. Formally, the system performance function is defined 
as: 

���� � ∑ ;:>:���:∈?@                       (2) 

where >:��� represents the amount of flow received by demand 
node 4 at time �. 

Disruptions happen and create damages to nodes and/or links 
in the network, as modeled by the removal of a subset of arcs, 
�A ⊂ � .1  The arcs in set �A  are viewed as non-operational 
immediately after the disruption. System performance ���� 
achieve its minimum value at this time (� � 0 , i.e. �C8D �
��0�).  

In a recovery optimization framework, we are not only 
interested in identifying a subset of the links in �A  to be 
installed to the disrupted network, but also in selecting an 
optimal order of installation and repair of these links. The goal 
is to achieve maximum system resilience over the whole 
restoration horizon 	 ∈ <6. Link repairs are here assumed to be 

 
1If nodes are important in a specific application problem, they can be 

converted to equivalent arcs by introducing additional arcs and nodes into the 
network, i.e. by ‘splitting’ a node into two nodes and an arc. 

 
Fig. 2.  Conceptual illustration of the proposed resilience metric ���� 
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discrete tasks, and a repair cost E�3, 4� ∈ <�6 is associated to 
each arc �3, 4� ∈ �A . The processing time of a single arc 
restoration is not considered in this study (i.e., the repair action 
is assumed to be instantaneous); instead, the main focus is when 
the disrupted arcs should come back online. In addition, the 
number of arcs that can be restored in each time period is 
constrained by their total cost. By combining Eqs. (1) and (2), 
system resilience to be maximized at time 	 is given by 

��	� � ∑ F∑ GHIH���H∈J@ ��KLMN(OP(OQ
)∙S∑ GHTH@H∈J@ ��KLMU

.                    (3) 

The optimization variables of the resilience optimization 
problem include: (i) continuous variables >8:��� ∈ 5�

6 , 
�3, 4� ∈ � and � � 1,… , 	, that denote the flows moving from 
node 3  to node 4  through link �3, 4�  at time unit � ; (ii) 
continuous variables >:��� ∈ 5�

6 , 4 ∈ /1 , that represent the 
amounts of flow received by demand node 4 at time unit �, and 
(iii) binary state variables W8:��� , �3, 4� ∈ �  and � � 1, … , 	 , 
such that W8:��� � 1 if arc �3, 4� is operational and W8:��� � 0 if 
arc �3, 4� is not operational at time unit �.  

We are interested in optimizing the resilience over the whole 
restoration process: thus, the timespan 	 is chosen as the total 
recovery time, defined as the period necessary to restore the 
system functionality to the same level as the original system. 
Consequently, the formulation of the resilience optimization 
problem is as follows: 

max ∑ [∑ GHIH���H∈J@ ��KLM\(OP(OQ
)∙S∑ GHTH@H∈J@ ��KLMU

                        (4) 

Subject to: 

∑ >8:����8,:�∈] � ∑ >:8����:,8�∈] 
 789 , ∀3 ∈ /0 , � � 1,… , 	           (5)	
∑ >8:����8,:�∈] � ∑ >:8����:,8�∈] � 0, ∀3 ∈ /) , � � 1,… , 	             (6)	
∑ >8:����8,:�∈] � ∑ >:8����:,8�∈] � �>:���,			∀3 ∈ /1 , � � 1, … , 	  (7)	
0 
 >:��� 
 7:1, ∀3 ∈ /1 , � � 1, … , 	                                           (8)	
0 
 >8:��� 
 W8:���7�3, 4�, ∀�3, 4� ∈ �, � � 1,… , 	                      (9)	
W8:��� 
 W8:�� � 1�, ∀�3, 4� ∈ �, � � 1,… , 	                               (10)	
∑ E�3, 4�[W8:��� � W8:�� � 1�\�8,:�∈]_ 
 `���, ∀� � 1,… , 	        (11)	
W8:��� ∈ a0,1b, W8:�0� � 0, ∀�3, 4� ∈ �, � � 1, … , 	                    (12) 

The objective (4) is to maximize the system resilience over 
the time horizon of the problem. Constraints (5)-(9) are typical 
network flow constraints over the links and supply/demand 
nodes in the network in period �. They ensure that: (i) the flow 
generated at a supply node does not exceeds its supply capacity 
(5); (ii) the amount of net injected flow at a transshipment node 
is zero (6); (iii) the amount of net injected flow at a demand 
node is equal to the received flow at the node (7) while not 
exceeding its requested demand (8); (iv) the flow on an 
operational link does not exceed its capacity and there is no 
flow passing through an arc if the arc has not been repaired (9); 
constraint (10) ensures that once an arc has been restored at 
time �, it will keep operational thereafter; finally, constraint 
(11) ensures that the total cost paid for repairing links in a time 

period does not exceeds the available resources that can be 
allocated in this period. 

B. Dispatching Rule for ROP Solution 

The resilience optimization problem (ROP) introduced 
before is a mixed (binary) integer programming (MIP) 
problem, which has c�|�| ∙ 	 � |/1| ∙ 	� continuous variables, 
c�|�| ∙ 	�  binary variables and c�|/| ∙ 	 � |�| ∙ 	 � 2|�A| ∙
	� constraints. It has been proven to be strongly �7-complete 
[38] and, thus, it is computationally intense especially for 
large-scale infrastructure networks composed of thousands of 
nodes and links. 

It is noted that the evaluation of a potential solution to the 
ROP (i.e. of a scheduled set of recovery actions on the disrupted 
links) requires evaluating the state of the system at a given time, 
i.e. calculating the network flows, which is the result of a 
lower-level network flow optimization. This bi-level 
optimization structure differentiates the ROP from other 
resource-constrained project scheduling problems (RCPSP) 
extensively described in the literature [37], [38]: these are 
generally based on the criterion of minimizing the makespan 
(the time to project completion) whose calculation is trivial. 
Consequently, many existing meta-heuristic algorithms for 
RCPSP such as genetic algorithms [39], simulated annealing 
[40], particle swarm [42] and ant colony optimization [41] are 
most likely unable to solve the ROP without incurring in a large 
penalty in computational expense.  

On the other hand, there has been a significant amount of 
studies in RCPSP proposing some so-called dispatching rules, 
which usually characterize the profitability of scheduling a 
certain task by evaluating its contribution to the objective 
function and then greedily schedule the unscheduled tasks with 
the best profitability [38].  

The key point in designing a heuristic dispatching rule for 
our ROP is to understand how restoring an arc impacts the 
objective function Eq. (3) of the problem. In this view, a 
straightforward idea is to modify the classical weighed shortest 
processing time (WSPT) first rule [43] by selecting the arc to be 
restored as the one that maximizes the ratio of the improvement 
of system resilience and the cost of restoring the arc. However, 
this approach is short-sighted in the sense that some links will 
not enhance the system resilience (i.e. will not increase the 
amount of flow received by demand nodes) if they are not 
restored in a given predefined sequence with other transmission 
links. Thus, the profitability of restoring a set of arcs instead of 
a single arc is taken into account in designing our dispatching 
rule. 

It is well known that the residual network associated with a 
maximum network flow does not contain an augmenting path 
from the supply node to the demand node [44]. In this view, in 
order to increase the amount of flow received by the demand 
nodes in the current operational network after a disruptive 
event, a set of links forming some residual paths that have the 
potential to augment the flow received by the demand nodes 
must be restored. The main idea of our dispatching rule for the 
ROP is, then, to select a set of unrepaired links that belong to 
some residual path and that maximize the ratio of the potential 
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augmented flow received by the demand nodes to the 
cumulative cost of repairing all the uninstalled links in this 
path. The potential augmented flow received by demand nodes 
is further limited by the following three elements: the residual 
capacity of the path, the residual capacity of the supply node 
and the unmet flow of the demand node.  

Mathematically, suppose that .��/, ���  is a partially 
restored network at time �, f∗ is the optimal flow (the result of 
the lower-level network flow optimization) associated with 
.��/, ���. The links in .��/, ��� will, then, have a residual 
capacity h
�3, 4� � 7�3, 4� � >8:���, ∀�3, 4� ∈ ��  and repair 
cost E�3, 4� � 0, ∀�3, 4� ∈ �� , since they are already 
operational. The supply and demand nodes in .��/, ��� will 
have a residual capacity �789 � 789 � >8���, ∀3 ∈ /0 and unmet 
demand �7:1 � 7:1 � >:���, ∀4 ∈ /1 , respectively. The 
unrestored links in the disrupted link set �A  have a residual 
capacity equivalent with their original capacity 7�3, 4�, and a 
repair cost E�3, 4�. Then, the residual capacity of path 79→� 
from supply node W to demand node j is defined as ��79→�� �
min�8,:�∈Tm→� h
�3, 4�. The cumulative cost of repairing all the 
uninstalled links in path 79→�  is ∑ E�3, 4��8,:�∈Tm→� . Then, we 
are interested in selecting the uninstalled links in the path to be 
repaired, that is an optimal solution to the following problem: 

maxTm→�∈ℵ
opq rsTmt ,sT�@,s�Tm→��u∙G�

∑ v�8,:��L,H�∈wm→�
                  (13) 

where ℵ is the set of all paths from all supply nodes to all 
demand nodes in the original network .�/, ��. The numerator 
of formula (13) provides a measure of the potential augmented 
(weighted) flow received at demand node j by restoring path 
79→�  while the denominator measures the cost required to 
restore all disrupted links in path 79→�. 

In order to determine an optimal path to (13), we suppose 
that x�7C→D� ∙ ;D is the numerator in an optimal solution to 
(13), i.e. x�7C→D� � min a�7C0 , �7D1 , ��7C→D�b; then, 7C→D 
is the path with the lowest cost in the network where we only 
include links whose residual capacities are greater than or equal 
to x�7C→D�. This leads to an algorithm to solve (13): for each 
potential value of the numerator (including each potential value 
of the residual capacity of a path, each residual capacity of 
supply nodes and each unmet flow of demand nodes), we 
determine the minimum cost path in the network comprising 
only these links whose residual capacities are larger than the 
numerator. The minimum cost path can be obtained by first 
constructing a weighed network, where the link weights are set 
as their repair costs and, then, searching the shortest path on the 
weighed network constructed. We can, then, obtain an optimal 
solution in this procedure by marking the path that has the 
maximum value of ratio (13). It is noted that the residual 
capacity of a path is the minimum residual capacity of the links 
in the path, so there are at most �|/0| � |/1| � |�|� different 
values to be considered, which means the next sets of links to 
be restored can be determined by solving c�|/0| � |/1| � |�|� 
shortest path problems. 

 

Formally, we provide the pseudo code of the algorithm for 
path selection in our dispatching rule in Table I. We assume 
that the residual network .��/, ��� associated with an optimal 
flow f∗ at a given time � has been calculated as part of the 
inputs of the algorithm. Other inputs include the residual 
capacity ��3, 4� for each link �3, 4� ∈ �, the residual capacity 
�789 for each supply node 3 ∈ /0, and the residual capacity �7:1 
and flow weight ;� for each demand node 4 ∈ /1. The variable 
.yz{|y�|�3z flags the current optimal ratio in formula (13). 
The output of the algorithm is a path composed of the next set 
of arcs that should be restored to the network. 

After obtaining the next set of links to be restored by 
applying the algorithm introduced above, we can easily allocate 
these link repair tasks into each timeslot subject to constraint 
(11), until all links from this set are restored. The link repair 
order within this set is not significant since we assume that a 
link repair task can be split into two timeslots. Therefore, we 

TABLE I 
ALGORITHM FOR PATH SELECTION IN THE DISPATCHING RULE 

Input: Residual capacity ��3, 4� for each of the links 
�3, 4� ∈ �, residual capacity �789 for each supply 
node 3 ∈ /0, unmet demand �7:1 and flow weight 
;� for each demand node 4 ∈ /1 in the current 
network .��/, ��� associated with an optimal flow 
f∗ 

1: Set .yz{|y�|�3z � 0, } = null. 

2: 
Sort the set r��3, 4�	�789	�7:1u in non-increasing 
order to obtain an ordered composite set 5 

3: for each h ∈ 5  

4: 

Construct a weighted network .∗ 
including only the links, where 
��3, 4� ! h. The weight of a link is set as 
E�3, 4� if it is a non-restored link; set the 
weight as 0 if it is an operational link 

5: for  each 3 ∈ /0 and 4 ∈ /1 

6: 

Find the shortest weighed path 78→:∗  from 3 
to 4 in the network .∗, calculate the path 
length j~78→:∗ 	� � ∑ E�3, 4��8,:�∈TL→H∗  

7: if  
opq �sTLt ,sTH@,sSTL→H∗ U�∙G�

�STL→H∗ 	U
� .yz{|y�|�3z 

8: .yz{|y�|�3z � opq �sTLt,sTH@,sSTL→H∗ U�∙G�
�STL→H∗ 	U

  

9: } � 78→:∗  

10: end if 

11: end for 

12: end for 

13: Return } 
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can view this set of links as a queue and we will restore the next 
link in the queue once the previous task is finished. If no links 
are in the queue, we will determine the next set of links to be 
restored by considering the residual network associated with an 
optimal solution to the lower-level maximum flow problem, 
where all links that have been restored are regarded as 
operational in the network. This process continues until either 
all links are restored or the end of the time horizon is reached. 
In the Appendix we illustrate the detailed steps of the proposed 
algorithm by applying it to a very simple network.  

IV. CASE STUDY 

We will now discuss the results obtained by applying the 
ROP to a realistic infrastructure network system, i.e. the 400kV 
French Power Transmission Network (FPTN400) (See Fig. 3). 
We are particularly interested in examining the performance of 
the proposed heuristic dispatching rule in the network and to 
this aim we compare the results with those obtained with a 
widely used commercial optimizer – Cplex [45]. Testing 
calculations are performed on a double 2.4 GHz Intel CPU and 
4 GB RAM computer. 

The FPTN400 data on the 400 kV transmission lines is taken 
from the RTE website [46]. The network has 171 nodes 
(substations) and 220 edges (transmission lines). We 
distinguish the generators, which are the sources of power, 
from the other distribution substations, that receive power and 
transmit it to other substations or distribute it in local 
distribution grids. By obtaining the power plants list from EDF 
website [47] and relating them with the ID of the buses in the 
transmission network, we have 26 generators and 145 
distributors. Only the nuclear power plants, hydroelectric plants 
and thermal power plants whose installed capacities are larger 
than 1000 MW, are considered. 

The supply capacities of the generators in the FPTN400 are 
approximated to their installed capacities, taken from EDF 
website [47]. Capacity limits of transmission lines are obtained 
from European Commission [48]. Since there is no sufficient 
public information about loading of particular substations, in 
order to estimate the load level we have assumed that demand 
levels are directly related to the local population and industry 
[49]. Specifically, the total demand of the country is distributed 
into groups of demands by administration areas (i.e. provinces), 
whose population can be obtained at the website Consulting V. 
[51]; then, for simplicity the load buses in each region are 
assumed to share equally the regional load.  

In the case study, we randomly select parts of arcs in the 
network to be damaged. In addition, the repair costs of all the 
transmission lines are assumed to be constant and identical, and 
the cost limits ̀ ��� are assumed to be equal to the repair cost of 
a single arc: this means that only a single arc can be repaired at 
any given timeslot. It is noted that these assumptions can be 
relaxed to adapt to more realistic application cases. 

We firstly consider repair optimization for a specific 
disruption scenario on the FPTN400, where 10% of network 
arcs (i.e. 22) are initially damaged. All the demand nodes are 
assumed to have identical weights in the optimization process. 
For the solution of the repair optimization problem, both the 
heuristic dispatching rule and MIP solver are applied. Fig. 4 
reports the optimal restoration curves obtained by the 
dispatching rule (squares) and MIP (circles), respectively. It is 
found that the dispatching rule is able to obtain near optimal 
solutions: the recovery duration 	 is 5 (in arbitrary units) for 
both methods, and the system resilience � (Eq. 3) is ��89� �
0.731 for the dispatching rule, and ���� � 0.753 for MIP: the 
optimality gap between the two approaches is only 2.92%. Fig. 
5 provides a visualization of the optimal recovery plans 
obtained by the two methods. It is shown that the dispatching 
rule achieves very similar restoration plans to that of MIP. Both 
cases give high repair priority to those transmission lines which 
are unique connections to the demand nodes. More importantly, 
the dispatching rule is computationally much cheaper (6.9s) 

 

Fig. 3.  The 400kV French Power Transmission Network (FPTN400) [46] 
 

 

Fig. 4.  Optimal restoration curves obtained by the dispatching rule and MIP 
solver for the specific disruption scenario (10% links damaged) on the 

FPTN400. 
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than MIP (20.5s). 
In order to further demonstrate the performance of the 

heuristic dispatching rule, we considered different levels of 
damage on the network (5% to 20% of arcs are randomly 
selected to be failed) and two different types of weights for the 
demand nodes (i.e. ;: for 4 ∈ /1): in the first class of demand 
nodes weights (namely, “Constant”) each unit of flow received 
by demand nodes is weighed evenly across all the demand 
nodes; in the second class (‘Priority’), some randomly chosen 
demand nodes are assigned higher value of ;:  to represent 
higher priority. Table II provides the solutions and 
corresponding computational performances of the heuristic 
dispatching rule and the Cplex MIP solver for the ROP on the 
FPTN400. It is shown that the recovery time 	 provided by the 
heuristic dispatching rule is the same (for 5% and 10% cases) or 
slightly larger (for 15% and 20% cases) than the optimal 
solutions, and the relative optimality gaps between the two 
methods are less than 10% in most cases. Furthermore, the 
dispatching rule needs only, on average, the 10% of the 

computation time needed by the MIP solver for all the cases. 
These results indicate that the proposed heuristic dispatching 
rule is able to obtain high-quality sub-optimal (and optimal in 
some cases) solutions to the ROP, with much less 
computational cost compared with the Cplex MIP solver. 

It is noted that the MIP solver may need much more time 
(e.g., days) to achieve optimal solutions for larger infrastructure 
systems (e.g., composed of thousands of nodes and links) or 
heavier disruption events (e.g., over 20% components 
damaged). Thus, it is unreasonable to expect the managers of 
the infrastructure systems to have access to unlimited 
computing resources or be willing to wait for several hours (or 
even several days) to determine their restoration plan. 
Consequently, the proposed heuristic dispatching rule 
represents an appealing tool for real-time restoration activities 
on larger-scale CI systems. 

V. CONCLUSIONS AND FUTURE WORKS 

In this study, we have firstly reviewed different definitions of 

 

Fig. 5.  Visualization of the optimal recovery plans obtained by the dispatching rule (a) and MIP solver (b) for the specific disruption scenario (10% links damaged) 
on the FPTN400. The numbers indicate the optimal recovery timeslots of the five arcs marked by bold solid lines; black lines correspond to other failed arcs. 
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TABLE II 
PERFORMANCES OF THE HEURISTIC DISPATCHING RULE AND THE CPLEX MIP SOLVER ON THE FPTN400 

 

% of failed arcs 
( number) 

;: 
Heuristic dispatching rule Cplex MIP solver 

Recovery 
time 	 

Opt. 
resilience 

Solver time 
(s) 

Opt. gap 
(%) 

Recovery 
time 	 

Opt. 
resilience 

Solver 
time (s) 

5% (11) Constant 2 0.917 4.69 4.28 2 0.958 20.30 
5% (11) Priority 2 0.921 4.75 6.40 2 0.984 20.94 
10% (22) Constant 5 0.731 6.90 2.92 5 0.753 40.50 
10% (22) Priority 5 0.852 8.60 0.00 5 0.852 46.32 
15% (33) Constant 14 0.646 20.45 5.42 12 0.683 110.16 
15% (33) Priority 14 0.685 26.40 13.07 12 0.788 224.45 
20% (44) Constant 15 0.569 70.31 9.97 13 0.632 632.42 
20% (44) Priority 15 0.626 75.46 8.08 13 0.681 1102.80 
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system resilience and different metrics to evaluate it in the 
context of systems engineering, especially for infrastructure 
network systems. Then, we have proposed a novel 
time-dependent metric of system resilience focusing on the 
post-disaster recovery process. This metric is consistent with 
the basic meaning of resilience and it is able to quantify how a 
system “bounces back” from a disrupted state to an accepted 
performance. 

Based on this resilience definition, we have then provided a 
framework for considering the role of recovery decisions and 
actions in the resilience optimization of infrastructure 
networks. Specifically, a project-oriented perspective has been 
applied to plan the process of network recovery after a 
disruptive event: that is, a set of link repair actions must be 
scheduled in an optimal way so as to maximize the network 
resilience over the recovery time. This resilience optimization 
problem (ROP) has been formulated within a mixed integer 
programming (MIP) framework. Although several commercial 
optimizers such as CPLEX and Gurobi can be applied to obtain 
the MIP solution, the time required to solve the MIP 
formulation may impair their application for effective 
restoration activities after extreme events affecting large-scale 
infrastructure networks. Therefore, a heuristic dispatching rule 
that integrates fundamental concepts from network flows and 
project scheduling has been here proposed: differently from 
traditional approaches to recovery actions planning, it seeks to 
determine a set of repair tasks to be processed rather than an 
individual repair task. The application on a case study 
concerning the FPTN400 has shown that the proposed 
dispatching rule is able to obtain high-quality sub-optimal (and 
optimal in some cases) solutions to the ROP, with much less 
computational cost if compared with the widely adopted Cplex 
MIP solver: this provides impetus for the application of the 
heuristic dispatching rule to restoration activities on large-scale 

CI systems.  
Future works will examine different methods to evaluate the 

performance of an infrastructure network, e.g. the integration of 
the DC power flow model [50] in the calculation of network 
flows (which may be more appropriate to model the operation 
of electrical infrastructures). Also, application of the resilience 
optimization framework and the proposed heuristic dispatching 
rule to larger and more complex infrastructures subject to 
realistic disruptive events will be considered in order to better 
demonstrate the effectiveness of the proposed dispatching rule. 
Besides, it will be interesting to explore an extension to a 
probabilistic scenario considering component restoration times 
(and costs) as random variables. Another important direction 
for future research is to explore other applications for the 
resilience metric introduced, e.g. to propose resilience-based 
component importance measures and their use in prioritizing 
restoration activities. 

APPENDIX: A SIMPLE EXAMPLE FOR DISPATCHING RULE 

ILLUSTRATION 

Consider the post-disaster network shown in Fig. 6 with 
supply node A, demand node J and transship nodes B to I. The 
dashed lines in the figure indicate the failed arcs immediately 

 

Fig. 6.  A simple disrupted network; the dashed lines indicate failed arcs. 
 

 

Fig. 7.  Illustration of the execution process of the path selection algorithm in Table I on a simple network 
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after a disruptive event (� � 0), where the links A-F, F-G, G-J, 
H-I, I-J, E-J are disrupted. The numbers ��3, 4�/7�3, 4� 
associated with each arc in the Figure represent the residual 
capacity ��3, 4� of the arc at time 0 and the original capacity 
7�3, 4�. Note that the residual capacity of a failed arc is regarded 
as its original capacity, rather than zero. Similarly, the numbers 
8/8 associated with the supply node A represent its residual 
capacity �7�0 � 8  and its original capacity 7�0 � 8 ; the 
numbers 7/7 associated with the demand node J represent its 
unmet demand �7�1 � 7  and flow demand 7�1 � 7 , 
respectively. Besides, the repair costs of all the arcs are 
assumed to be constant and set as 1. The performance of the 
network is evaluated by the flow received by demand node J. 

The path selection algorithm in Table I, first sorts the 
residual capacity array r��3, 4�	�789	�7:1u  at current time 
(� � 0), resulting in a non-increasing set 5 � a8, 7, 4, 2, 1b; 
then, for each value in the set, the algorithm executes step 4 to 
step 11, illustrated graphically in Fig. 7. Note that h � 8 and 
h � 7 are skipped since there is no weighed network associated 
to those two cases. The output of the execution } � A � H →
I → J is the path that should be selected to be restored. 

The network restoration is preceded by applying this path 
selection algorithm and then allocating these link repair tasks of 
the selected path into each timeslot subject to constraint (11). 
Assuming that only a single arc can be repaired at any given 
timeslot, we can obtain the optimal restoration curve of the 
network performance, as shown in Figure 8. 
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Abstract – In this paper, we propose two metrics, i.e. the optimal repair time and the resilience 

reduction worth, to measure the criticality of the components of a network system from the perspective 

of their contribution to system resilience. Specifically, the two metrics quantify (i) the priority with 

which a failed component should be repaired and re-installed into the network, and (ii) the potential 

loss in the optimal system resilience due to a time delay in the recovery of a failed component, 

respectively. Given the stochastic nature of disruptive events on infrastructure networks, a Monte 

Carlo-based method is proposed to generate probability distributions of the two metrics for all the 

components of the network; then, a stochastic ranking approach based on the Copeland's pairwise 

aggregation is used to rank components importance. Numerical results are obtained for the IEEE 30 

Bus test network and a comparison is made with three classical centrality measures. 

Index Terms – Critical Infrastructure, system resilience, component importance measures, system 

recovery, stochastic ranking 

I. INTRODUCTION 

Complexity of critical infrastructures (CIs), such as power grids, the Internet, transportation networks, 

and so forth, is increasing. Disruptive events, whether they are malevolent attacks, natural disasters, or 

human-caused accidents, can have significant impacts on these real world complex networks composed of 

numerous interconnected functional and structural elements. 

Justifiably, then, critical infrastructure protection (CIP) has become a priority for all nations [1]. The focus 

has been traditionally placed on physical protection and asset hardening [2]-[5]. However, in recent years, 

lessons learned from some catastrophic accidents have pushed part of the focus on the concept of 



“resilience” [6], [7]. The outcomes of the 2005 World Conference on Disaster Reduction (WCDR) witness 

the significance of introducing the term “resilience” into the disaster discourse, giving birth to a new 

culture of disaster response [8]. Consequently, government policy has also evolved to encourage efforts 

that would allow assets to continue operating at some level, or quickly return to full operation after the 

occurrence of disruptive events [9]. 

“Resilience” comes from the Latin word “resilio” that literary means “to leap back” and denotes a system 

attribute characterized by the ability to recover from challenges or disruptive events. The Merriam-

Webster dictionary defines resilience as “the ability to recover from or adjust easily to misfortune or 

change.” In this view, systems should not only be reliable, i.e. having an acceptably low failure probability, 

but also resilient, i.e. having the ability to optimally recover from disruptions of the nominal operating 

conditions [10], [11].  

In this context, the present paper addresses the issue of quantifying the importance of components in 

contributing to the resilience of a critical infrastructure. Component importance measures (CIMs) have 

been thoroughly studied in the field of reliability theory and risk analysis. Various analytical and 

empirical CIMs have been proposed in the literature, e.g. Birnbaum [12], Fussell-Vesely [13], Reliability 

Achievement/Reduction Worth [14], [15], and their extensions [16]-[20]. CIMs have been shown valuable 

in establishing direction and prioritization of actions related to an upgrading effort (e.g., reliability 

improvement) in system design, or in suggesting the most efficient way to operate and maintain system 

status. However, none of the existing classical CIMs based on the reliability concept are directly applicable 

to the post-disaster phase, since there is no scope to exhibit reliability after the occurrence of system 

failure. 

The role that a component plays in a network system has been measured by various so-called centrality 

measures, looking from the point of view of the complex interaction and communication flow in the 

network [21], [22]. Classical topological centrality measures are the degree centrality [23], [24], the 

closeness centrality [24]-[26], the betweenness centrality [24], and the information centrality [27]. They 

specifically rely on topological information to qualify the importance of a network component. 

Additionally, Freeman et al. [28] proposed a flow betweenness centrality measure based on the idea of 

maximum network flow; Newmann [29] suggested a random walk betweenness measure that counts 

essentially all paths between vertices and which makes no assumptions of optimality; Jenelius et al. [30] 

proposed several vulnerability-based importance measures for transportation networks; Hines and 

Blumsack [31] introduced an “electrical centrality” measure for electrical networks by taking into account 

the electrical topology of the network; Zio and Piccinelli [32] provided a randomized flow model-based 

centrality measure specifically for electrical networks; Zio and Sansavini [33] introduced component 

criticality measures from the cascade failure process point of view, for general network systems. 



Nevertheless, none of these analyses takes into account the dynamics of system recovery from the effects 

of a disruptive event. 

Resilience-based metrics of component criticality with respect to their influence on the overall resilience of 

the system (i.e., on the system’s ability to quickly recover from a disruptive event) can be helpful for 

preparing an efficient component repair checklist in the event of system failure [34]. Recently, Baker et al. 

[35] introduced two resilience-based network component importance metrics. However, the resilience 

definition, which the importance metrics rely on, does not embrace the temporal dimension of system 

recovery and it is, thus, unable to measure how fast the performance of a system comes back to an 

acceptable level. Besides, the two metrics do not quantify the influence that the recovery of particular 

components has on the overall resilience of the system and they are, thus, limited in providing valuable 

information for system restoration strategy making. 

In this study, based on the definition of system resilience proposed in [36], we introduce two network 

components importance measures, namely, the optimal repair time and the resilience reduction worth, 

useful for prioritizing restoration activities. The two measures quantify (i) the priority with which a failed 

component should be repaired and re-installed into the network and (ii) the potential loss in the optimal 

system resilience due to a time delay in the recovery of a failed component, respectively. Both measures 

rely on the resilience optimization framework previously presented in [36]. A stochastic ranking 

technique, based on the Copeland’s pairwise aggregation [37], is introduced to rank the components 

criticalities.  

As a case study, the IEEE 30 Bus test network is considered: the criticalities of the components computed 

by the proposed indicators are compared to those produced by three classical measures of betweenness 

centrality [28], [29], [38]. 

The remainder of the paper is organized as follows. Section II provides the general framework of the 

study, recalling the definition of system resilience and the resilience optimization model originally 

proposed in [36]. In Section III, two measures of component criticality for system resilience, and a 

simulation methodology for their calculation and ordering are presented. Section IV illustrates the 

calculation of the proposed metrics on the IEEE 30 Bus test network: the obtained components rankings 

are compared to those produced by classical betweenness centrality measures. Concluding remarks are 

drawn in Section V. 

II. METHODOLOGICAL BACKGROUND: SYSTEM RESILIENCE DEFINITION AND OPTIMIZATION 

FOR INFRASTRUCTURE NETWORK SYSTEMS 



This section provides the definition of system resilience and the resilience optimization framework 

originally proposed in [36], which serve as methodological background for the resilience-based 

component importance measures that will be discussed in Section 3.  

A. System Resilience Definition 

As illustrated in Fig. 1, a quantifiable and time-dependent system performance function (also called 

system level delivery function or figure-of-merit) ���� is the basis for the assessment of system resilience. 

It has a nominal value ����� under nominal operating conditions. The system operates at this level until 

suffering a disruptive event at time ��. The disruption generally deteriorates system performance to some 

level ����� at time ��. Then, recovery action is started, affecting and improving system performance until 

it achieves, at a later time ��, a targeted level of performance ����� that could be the same, close to, or 

better than original system performance �����), for which recovery is considered completed. The dotted 

curve 	���� in Fig. 1 denotes the targeted system performance if not affected by disruption, which is 

generally evolving due to the dynamic nature of service demand in the infrastructure system (in this 

study, it is assumed to be equal to ����� and remain invariant for simplicity). Besides, it is noted that 

various strategies exist for recovery activities, and system performance is ultimately a function of recovery 

decisions. The period of �� 
 � 
 �� is generally considered as the recovery time [8]. 

 

Fig. 1. Generic system performance transition curve under the occurrence of disruption. 

Let ���� be the resilience of a system at time � (� � ��). In its basic form, ���� describes the cumulative 

system functionality that has been restored at time �, normalized by the expected cumulative system 

functionality supposing that the system has not been affected by disruption during this time period (Eq. (1) 

below): graphically, ���� is quantified by the ratio of the area with diagonal stripes 
� to the area of the 
shaded part 
�, as shown in Fig. 2. 



���� � � ������������������ ������������������ , � � ��                                                                  (1) 
Note that the formulation in Eq. (1) focuses mainly on the recoverability dimension of resilience and ���� 
is in the range of �0, 1�. ���� � 0 when ���� � �����, which means that a system has not recovered from its 

disrupted state (i.e., there has been no “resilience” action); ���� � 1  when ���� � 		���� , which 

corresponds to the ideal case where a system recovers to its target state immediately after disruption. This 

resilience quantification is consistent with the original meaning of the concept of resilience and is capable 

of measuring at the same time the magnitude and rapidity of system recovery action. 

 

Fig. 2. Conceptual illustration of the proposed resilience measurement. 

B. System Resilience Optimization 

A disruptive event could impact one or more components of an infrastructure network system. In the case 

of multiple component failures, a systemic recovery action should be undertaken with the order of failed 

components to repair such that system resilience is maximal, i.e., to achieve optimal (restored) cumulative 

system functionality over the recovery time considered. 

A variety of frameworks of optimization for post-disaster recovery of an infrastructure network system 

can be designed, focusing on different aspects of the restoration strategy, e.g., the order of repair of the 

damaged components, where and how to allocate repair resources and so forth. This study focuses on the 

significance of the recovery of a component with respect to the resilience of the system. Consequently, the 

optimization is designed to find the optimal order of repair of the set of failed components with the 

objective of achieving maximum system resilience over the restoration time horizon [36]. 

The mathematical model for the resilience optimization concerns a network �� , !� comprising a set of 

nodes   connected by a set of links or arcs !. The network nodes are distinguished in supply nodes	 ", 
transshipment nodes  �  and demand nodes  #  ( " ∪  � ∪  # �  ). Each arc %& ∈   has an associated 



capacity �%&� ∈ (�) , each supply node % ∈  " has a supply capacity per time unit *+, ∈ (�) and each demand 

node & ∈  #  has a demand *-# ∈ (�)  per time unit. Network flow is delivered from supply nodes to 

demand nodes respecting the flow capacities of the links and supply/demand capacities of the nodes. The 

performance of the network is evaluated by determining the maximum amount of flow that can be 

received by the demand nodes. Formally, the system performance function is defined as: 

���� � ∑ /-���-∈01                                                                           (2) 

where /-��� represents the amount of flow received by demand node & at time �. 
Disruptions happen and create damages to nodes and/or links in the network, which is modeled as 

removal of a subset of arcs, !2 ⊂ !, from the network.1 The arcs in set !2 are viewed as non-operational 

immediately after the disruption. System performance ���� achieves its minimum value at this time (� � 0, 
i.e. �4+5 � ��0�).  
The recovery optimization framework aims at identifying the subset of links in !2 to repair and the order, 
in which the links should be repaired so as to achieve maximum system resilience over the restoration 

horizon 	 ∈ 6). Link repairs are assumed to be discrete tasks, and only a single arc can be repaired at any 

given timeslot. The repair time of arc restoration is not considered in this study (i.e., the repair action is 

assumed to be instantaneous); rather, the focus is on when the disrupted arcs should be brought back 

online. By combining Eqs. (1) and (2), system resilience to be maximized at time 	 is given by 
��	� � ∑ 7∑ 89���9∈:1 ��;<=>�?@�?A�∙C∑ D919∈:1 ��;<=E                                                                (3) 

The variables of the resilience optimization problem include: (i) continuous variables /+-��� ∈ (�), %& ∈ ! 
and � � 1,… , 	, that denote the flow moving from node %  to node & through link %& at time unit � ; (ii) 
continuous variables /-��� ∈ (�), & ∈  #, that represent the amount of flow received by demand node & at 
time unit �  and (iii) binary state variables G+-��� , %& ∈ !  and � � 1,… , 	 , such that G+-��� � 1  if arc %&  is 
operational and G+-��� � 0 if arc %& is not operational at time unit �. We are interested in optimizing the 

resilience over the whole restoration process: thus, the timespan 	 is chosen as the total recovery time, 

defined as the period necessary to restore the system functionality to the same level as the original system. 

Consequently, the formulation of the resilience optimization problem is as follows: 

max ∑ 7∑ 89���9∈:1 ��;<=>�?@�?A�∙C∑ D919∈:1 ��;<=E                                                                   (4) 

Subject to 

                                                           
1
 For nodes, they can be converted to equivalent arcs by introducing additional arcs and nodes into the network, i.e. 
by ‘splitting’ a node into two nodes and an arc. 



∑ /+-����+,-�∈K − ∑ /-+����-,+�∈K 
 *+, 												∀% ∈  ", � � N1, … , 	O                           (5)	∑ /+-����+,-�∈K − ∑ /-+����-,+�∈K � 0														∀% ∈  � , � � N1, … , 	O                           (6)	∑ /+-����+,-�∈K − ∑ /-+����-,+�∈K � −/-���					∀% ∈  #, � � N1, … , 	O                          (7)	0 
 /-��� 
 *-#																										∀% ∈  # , � � N1, … , 	O                                              (8)	0 
 /+-��� 
 G+-���*�%&�																∀%& ∈ !, � � N1,… , 	O                                         (9)	G+-��� 
 G+-�� + 1�																												∀%& ∈ !, � � N1,… , 	O                                     (10)	∑ QG+-��� − G+-�� − 1�R�+,-�∈KS � 1				∀� � N1,… , 	O                                               (11)	G+-��� ∈ N0,1O, G+-�0� � 0														∀%& ∈ !, � � N1,… , 	O                                       (12) 
The objective (4) is to maximize the system resilience over the time horizon of recovery. Constraints (5)-(9) 

are typical network flow constraints over the links and supply/demand nodes in the network in period �. 
They ensure that: the flow generated at a supply node does not exceed its supply capacity (5); the amount 

of net injected flow at a transshipment node is zero (6); the amount of net injected flow at a demand node 

is equal to the received flow at the node (7) while not exceeding its requested demand (8); the flow on an 

operational link does not exceed its capacity and there is no flow passing through an arc if the arc is failed 

(9). Constraint (10) ensures that once an arc has been restored at time �, it will keep operational thereafter. 

Finally, constraint (11) ensures that only a single arc can be repaired at any given timeslot. 

This resilience optimization above defined is a typical mixed integer programming (MIP) problem. A 

commercial optimization solver Cplex [39] is used in this study for its solution. It is noted that this 

resilience optimization model is only applied for the purpose of illustration of resilience-based component 

importance metrics. More complex optimization models (e.g., taking into account the cost and duration of 

repairing a particular failed link) can be adopted in other application cases. 

III. RESILIENCE-BASED COMPONENT IMPORTANCE MEASURES FOR INFRASTRUCTURE 

NETWORK SYSTEMS 
A. Component Importance Measures Definition 

As described in Section 2.2, the analysis concerns a network �� , !� comprising a set of nodes   and a set 
of links !. The binary state variable of arc %& at time � is defined by G+-���, ∀%& ∈ ! . The initial impact 

experienced by the network after a disruptive event T at time � � 0 is represented by the removal of a 

subset of arcs, !2 ⊂ !, from the network, setting G+-�0� � 0, ∀%& ∈ !2. We introduce the failure probability 

of arc %& under event T, U��%&� 
*QG+-�0� � 0|TR � U��%&�, ∀%& ∈ !                                                       (13) 

Eq. (13) describes how individual components (links) are initially affected by a disruptive event T; Section 
2.2 explains how these failed components optimally recover from the disruption state following the event; 

finally, Eq. (1) incorporates these dimensions to quantify system resilience.  



When considering component criticality in a resilience setting, we are interested in understanding: (i) the 

optimal time to repair the failed components in order to maximize system resilience, and (ii) the effect that 

the timely recovery of the components have on the overall resilience of the system. These concepts are at 

the basis of the definition of the two resilience-based importance measures here proposed.  

Given a particular initial failure state, the optimal repair time 	+-WX�  of a failed arc %& can be computed by 

solving the MIP problem (4) - (12): 

	+-WX� � YZ[max�<9∈��,�� ��	�                                                      (14)  
The timespan for restoration, 	, is chosen as the time period necessary to restore the system functionality 

to the same level as the original system. It is noted that the optimal repair time 	+-WX� offers an explicit 
quantification of the priority that should be given to the reparation and installation of arc %& into the 
network. Low values of 	+-WX�  indicate higher priority of being repaired and re-installed into the network, 

i.e. higher ranking of the component in the repair checklist.  

To account for the delay in the restoration of a particular link %&, a resilience reduction worth (RRW) 

metric is introduced as 

��\+-�∆��� � ^_`�����^_`���|�<9a�<9_`�)∆�b�^_`����                                                  (15) 

where �WX��	�  represents the optimal system resilience at restoration time 	 ; �WX��	|	+- � 	+-WX� + ∆��� 
corresponds to the optimal system resilience at time 	 if link %& cannot be repaired until time �	+-WX� + ∆���, 
where ∆�� is the delay with respect to its optimal repair time 	+-WX� , Eq. (14). Eq. (15) quantifies the potential 
(normalized) loss in optimal system resilience due to a delay ∆�� in the repair of link %&. This metric is 

comparable to the so-called reliability reduction worth [40], which measures the potential damage caused 

to the system reliability by the failure of a particular component. It can provide valuable information to 

guide the recovery process of a particular component. Components with high values of ��\+-�∆�� should 
be given high priority in the restoration process, e.g. be assigned adequate restoration resources to avoid 

delays that would have a more significant impact on system restoration. 

B. Methodology for Component Importance Ordering 

Ordering network links recovery on the basis of the values of the criticality measures described above, i.e., 

the optimal repair time 	+-WX�  and resilience reduction worth ��\+-  (fixed ∆��), requires quantifying the 
effect of timely repairing these links on the overall resilience of the system. Given the stochastic nature of 

disruptive events in terms of components failures after the event, the resilience-based criticality measures 

introduced are not represented by deterministic values, but rather by probability distributions. Therefore, 

given a network �� , !� under a disruptive event T , we first apply a Monte Carlo-based method to 



generate distributions of optimal repair time 	+-WX�  and resilience reduction worth ��\+-�∆��� for all the 
links in the network; then, we rank links importance using a stochastic approach based on the Copeland's 

pairwise aggregation method [37]. The detailed steps of the algorithm are as follows: 

Step 1. A network �� , !� is initially operating with a given parameters setting: flow demand *-# of all 
the demand nodes in  #, supply capacity *+" of all the supply nodes in  " and link capacity *�%&� 
for all the network arcs in !. 

Step 2. A failure configuration of the network is randomly sampled on the basis of the failure 

probabilities of each arc in the system given by Eq. (13), under a disruptive event T at initial 
time � � 0. The operation state variables of failed links are set to 0, i.e., G+-�0� � 0, ∀%& ∈ !2. 

Step 3. The resilience optimization model of Eq. (4) - (12) is applied and solved by Cplex to obtain the 

optimal strategy of network recovery, i.e., the optimal repair time 	+-WX�  for each failed arc %& ∈ !2. 
Step 4. In order to evaluate the second importance measure ��\+-�∆���, for each failed arc %& ∈ !2, the 

additional constraint that the restoration of arc %&  should not be accomplished earlier than 	+-WX� + ∆�� (i.e., 	+- � 	+-WX� + ∆��) is added to the optimization model of Eq. (4) – (12). Then, �WX��	|	+- � 	+-WX� + ∆��� is obtained by solving this “modified” optimization model by Cplex. 

Finally, the resilience reduction worth ��\+-�∆��� for each arc %& is recorded. 
Step 5. To account for the stochasticity of the disruptive event in terms of arcs failures, repeat Step 2 to 

Step 4 for a chosen number ℵ of iterations, generating probability distributions for 	+-WX�  and ��\+-�∆���, for all the links in the network. 

Step 6. Given the distributions of 	+-WX�  (resp., ��\+-�∆���) for each arc %&, perform a stochastic ranking 

of links according to ascending (resp., descending) 	+-WX�  values (see Section III.B.1). 
1) Stochastic Ranking 

In order to rank network links according to the distribution of their optimal repair time 	+-WX�  (or resilience 
reduction worth ��\+-�∆���) obtained at step 6 of the algorithm above, an approach based on the 

Copeland's pairwise aggregation method [37] is proposed. The Copeland’s method (CM) is a simple non-

parametric Condorcet method used in the political field (voting) that does not require any information 

about decision maker preference and operates on a multi-indicator matrix formed by d  objects 

characterized by e attributes [41]. CM relies on pair-wise comparisons between objects in the candidate 

pool, and the so-called Copeland score is defined for each object as the difference between the number of 

times that this object beats the other objects and the number of times that it is beat by other objects. 

The CM-based ranking approach applied here corresponds to a modification proposed by Al-Sharrah [42]. 

It first examines the CDF of a given variable for all the candidates, e.g., the CDF of 	+-WX� , ∀�%, &� ∈ !; then, it 



compares the CDF of two candidates under analysis, i.e., links %& and %&, with respect to specific attributes fg  of the CDF: for example, attribute fg  may represent the h th percentile. Subsequently, a quantity 
gi%&, %&j is calculated based on a pairwise comparison between links %& and %& with respect to (percentile) fg of the corresponding distributions, h � 1, … , e: 

gi%&, %&j klg��i%&, %&j + 1,																						if	fg�%&�	beats	fg�%&�lg��i%&, %&j + 0.5,					if	fg�%&�	and	fgi%&j	are	tiedlg��i%&, %&j,																													if	fg�%&�	beats	fg�%&�                                          (16) 

where the sentence “fg�%&� beats fg�%&�” means that fg�%&� dominates fg�%&� with respect to the ranking 

rule of the variable considered, i.e., fg�%&� < fg�%&�  for 	+-WX� , while fg�%&� > fg�%&�  if ��\+-�∆���  is 
considered. 
�i%&, %&j is initialized at zero for the first (percentile) f� and Eq. (16) is iterated through all e 
attributes (percentiles). Then, the Copeland score for each link %& is defined as 

 l�%&� � ∑ 
zi%&, %&j+-{+-                                                                                     (17) 

This Copeland score is finally used to rank all the links: the higher l�%&�, the higher the contribution of 
link %& to the overall resilience of the network. 

IV. CASE STUDY 
A. Resilience-Based Criticality Measures on The IEEE 30 Bus Test System 

The IEEE 30 Bus test system [43] is taken as reference case study for the proposed resilience-based 

component importance measure approach. This system (Fig. 3) represents a portion of the American 

Electric Power System and is composed of 30 buses connected by 41 transmission lines. To carry out the 

analysis, each system component is transposed into a node or edge of the representative topological 

network, as it is shown in Fig. 4. Three different physical types of nodes are considered: generator nodes 

(where the electricity flow is fed into the network), demand nodes (where customers are connected) and 

transfer or transmission nodes (without customers or sources). 

The simulation procedure introduced in Section 3.2 is, then, used to rank each component of the IEEE 30 

Bus network according to the criticality metrics introduced. In normal conditions, the network is assumed 

to operate under the following parameters setting: the generation capacity is identical for all generation 

nodes and equal to 60, in arbitrary units (a.u.); the flow demands are 20 a.u. for all load nodes; the values 

of the transmission capacities are 20 a.u. for all the network links. The homogeneous assignments of 

generation capacity, demand and link capacity are here applied for the purpose of identifying the 

resilience criticalities of all the network arcs stemming from their different topological connections. For 

the same reason, a constant failure probability U��%&� is assumed for all the network links under disruptive 



event T. The roulette wheel selection method [44] is used in step 2 for sampling a failure configuration by 

selecting a failed link at each spin until a certain number ‖!‖ ∙ U��%&� � 12 of arcs are selected. 

 

Fig. 3. Single line diagram of the IEEE 30 Bus test system. 

 

Fig. 4. Graph representation of the IEEE 30 Bus test system. The dark grey circles labeled with G represent 
the generator nodes, the white circles labeled with T represent transmission nodes and the light grey 

circles labeled with D represent the demand nodes. 
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Fig. 5 illustrates the Cumulative Distribution Functions (CDFs) of 	+-WX�  for five representative links (<1, 3>, 
<5, 7>, <27, 30>, <8, 28> and <10, 21>), obtained at step 5 of the procedure by applying the simulation 

algorithm proposed in Section 3.2 (for ℵ � 1000 samples). The Figure illustrates the probability that 	+-WX�  
is less than or equal to a target value ~. It can be seen that the optimal repair time associated with link <1, 

3>, i.e. 	��WX�, will never be larger than 5 (square-line curve in Fig. 5). Moreover, the curve for link <1, 3> 

always “dominates” the other curves. Therefore, this link should have the highest priority to be repaired 

in order to maximize system resilience. 

However, considering e.g. links <5, 7> (circle line) and <27, 30> (triangle line) in Fig. 5, it is not evident 

which one “dominates” the other, due to the intersection of their CDF curves. Thus, the CM-based 

ranking approach introduced in Section 3.2.1 is applied to rank the importance of the links. Fig. 6 reports 

the Copeland scores of all the 41 links in the IEEE 30 Bus network, ordered in descending order, with link 

<1, 3> having the highest score, followed by links <2, 6>, <2, 4>, <10, 22> and so forth. Furthermore, Fig. 7 

graphically illustrates the Copeland score of the optimal repair time 	+-WX�  for all IEEE 30 Bus network links, 

where links with higher values of Copeland score are represented as thicker and darker edges. It is shown 

that two types of links are more important in terms of 	+-WX� : i) the links which connect the generator nodes 

with the other two types of nodes (transmission nodes and demand nodes), e.g. links <2, 6>, <1, 3>, <12, 

13> etc., and ii) the links which are the only ones connected to demand nodes, e.g. link <25, 26>. The 

restoration of these types of links is most likely able to augment the total amount of flow received by the 

demand nodes of the network: thus, high priority should be given to these links when considering the 

repair order of the failed links. 

 
Fig. 5. Cumulative probability distributions of the optimal repair time 	+-WX�  for five representative links. 
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Fig. 6. Copeland score ranking of the optimal repair time 	+-WX�  for all IEEE 30 Bus network links. 

 
Fig. 7. Graphical illustration of the Copeland scores of the optimal repair time 	+-WX�  for all IEEE 30 Bus 
network links. Links with higher value of Copeland score are represented as thicker and darker edges. 

Fig. 8 and Fig. 9 illustrate the results based on the resilience reduction worth ��\+-�∆��� for all the links 
and for a delay time ∆�� � 3 units (i.e., the Copeland score ranking and its graphical representation, 
respectively). It is shown that <24, 25> is the most critical link in terms of ��\+- , i.e. a delay in its 
restoration would cause the largest reduction in system resilience among all the network links; thus, 

adequate resources should be given to make sure of its timely restoration. Besides, it is noted that the links 

with high Copeland scores in terms of the optimal repair time 	+-WX�  also have high Copeland score ranking 
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in terms of the resilience reduction worth ��\+-: the correlation coefficient between the two Copeland 

scores is Z �l�<9_`� , l^^�<9� � 0.82 for ∆�� � 3. 

 

Fig. 8. Copeland score ranking of the resilience reduction worth ��\+-�∆�� � 3� for all IEEE 30 Bus 
network links. 

 

Fig. 9. Graphical illustration of the Copeland scores of the resilience reduction worth ��\+-�∆�� � 3� for 
all IEEE 30 Bus network links. Links with higher values of Copeland score are represented as thicker and 

darker edges. 
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B. Comparison with Betweenness Centrality Measures 

Betweenness centrality indices have been introduced as measures of component importance in a network, 

taking into account the different ways in which a component interacts and communicates with the rest of 

the network [24], [32]. A classical centrality measure is the topological betweenness centrality introduced 

in the social network field, which is based on the idea that a component is central if it is lies between 

many other components, in the sense that it is traversed by many of the shortest paths connecting pairs of 

nodes [24], usually called as shortest path betweenness. The topological betweenness centrality l+-� of a given 
link %& in a supply-demand-differentiated network �� " ∪  � ∪  #, !� is given by [38]:  

l+-� � �‖0�‖∙‖01‖∑ 5���+-�5��,∈0�,�∈01 , %& ∈ !                                                         (18) 
where �,� is the number of topological shortest paths between supply nodes and demand nodes, and �,��%&� is the number of supply-demand shortest paths passing though link %&. 
To account for the issue that in some cases flow may not follow the ideal geodesic paths from supply to 

demand nodes, a betweenness centrality measure based on the idea of maximum network flow has been 

proposed [28], usually known as flow betweenness. The measure counts all independent paths that carry 

information when a maximum flow is pumped between each pair of vertices. The flow betweenness of a 

component is defined as the amount of flow through it when the maximum flow is transmitted from 

source G to demand �, averaged over all G and �. It is quantitatively defined as [28] 
l+-� � ∑ 4���+-��∈:�,�∈:1∑ 4���∈:�,�∈:1 , %& ∈ !                                                                     (19) 

where d,� is the maximum flow from a source node G to a demand node � and d,��%&� is the maximum 

flow from G to � that passes through link %&. 
In practical terms, however, neither of the two betweenness measures introduced above is realistic. Both 

count only a small subset of possible paths between vertices, and both assume some kind of optimality in 

information transmission (shortest paths or maximum flow). Therefore, a new betweenness measure that 

counts essentially all paths between vertices and which makes no assumptions of optimality has been 

suggested, called random walk betweenness [29]. This measure is based on random walks between vertex 

pairs and asks, in essence, how often a given component will fall on a random walk between another pair 

of vertices. Roughly speaking, the random walk betweenness of a link %& is equal to the number of times 

that a random walk starting at G and ending at � passes through the link along the way, averaged over all G and �. Let �+-,� be the current flow from G to �, through link %&. Then, the random walk betweenness of a 

link %& is defined as 



l+-̂� � �‖0�‖∙‖01‖∑ �+-,�,∈0�,�∈01 , %& ∈ !                                                        (20) 
We are interested in comparing the ranking results of our resilience-based component importance 

measures to these betweenness centrality indices, i.e., shortest path betweenness, flow betweenness and random 

walk betweenness for the proposed IEEE 30 Bus network. Fig. 10 shows the values of the Copeland scores 

for the optimal repair time l�<9_`� (left panel) and for the resilience reduction worth l^^�<9  (right panel) 
plotted with respect to the shortest path betweenness l+-� for all the links of IEEE 30 Bus network. No obvious 

correlation can be identified from the figures. Actually, the correlation coefficients between l�<9_`�, l^^�<9  
and l+-� are Z �l�<9_`� , l+-�� � 0.08  and Z Cl^^�<9 , l+-�E � 0.14 , respectively. Similarly, Fig. 11 plots the 

relationship between the Copeland scores for the optimal repair time l�<9_`� (left panel) and the resilience 
reduction worth l^^�<9  (right panel) with the flow betweenness l+-� ; Fig. 12 shows the same scatterplots with 

respect to the random walk betweenness l+-̂� . The correlation coefficients are Z �l�<9_`� , l+-�� � 0.002 , 

Z Cl^^�<9 , l+-�E � −0.24, Z �l�<9_`� , l+-̂�� � 0.24 and Z Cl^^�<9 , l+-̂�E � 0.32, respectively.  

 

Fig. 10. Scatterplot of the Copeland scores of the optimal repair time l�<9_`� (left panel) and resilience 
reduction worth l^^�<9  (right panel) with the shortest path betweenness l+-� for the links of the IEEE 30 

Bus network. 
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Fig. 11. Scatterplot of the Copeland scores of the optimal repair time l�<9_`� (left panel) and resilience 
reduction worth l^^�<9  (right panel) with flow betweenness l+-�  for the links of the IEEE 30 Bus network. 

 

Fig. 12. Scatterplot of the Copeland scores of the optimal repair time l�<9_`� (left panel) and resilience 
reduction worth l^^�<9  (right panel) with the random walk betweenness l+-̂� for the links of the IEEE 30 

Bus network. 

These results show that the betweenness centrality indices (e.g., shortest path betweenness, flow betweenness 

and random walk betweenness) do not capture the component criticality with respect to resilience for the 

recovery of the IEEE 30 Bus network. This implies that these centrality measures (which are calculated 

under normal operation condition) are not applicable to guide the system restoration after a disruptive 

event, e.g., to prepare an efficient component repair priority checklist in the event of system failure. 
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This paper primarily contributes two metrics to measure the criticality of network components from the 

perspective of their contribution to system resilience, defined as the cumulative system functionality that 

has been restored at time �, normalized by the expected cumulative system functionality supposing that 

the system has not been affected by disruption during this time period.  

The first resilience-based component importance measure, i.e. the optimal repair time 	+-WX�  in Eq. (14), 
offers an explicit quantification of the priority that should be given to arc %& to be repaired and re-installed 
into the network. Lower values of 	+-WX�  indicate higher priority, i.e. higher rank in the component repair 

checklist for system restoration in the event of system failure. The second resilience-based component 

importance measure, i.e. the resilience reduction worth ��\+-�∆���, quantifies the potential loss in optimal 

system resilience due to a delay ∆�� in the repair time of link %&. This measure can provide valuable 

information to guide the recovery process of a particular component: components with high values of ��\+-�∆��� should be given high priority to their timely restoration, e.g. be assigned with adequate 

restoration resources. 

Given the stochastic nature of disruptive events on an infrastructure network, a Monte Carlo-based 

method has been proposed to generate distributions of optimal repair time 	+-WX�  and resilience reduction 
worth ��\+-�∆��� for all the components in the network; then, a stochastic ranking approach based on the 

Copeland's pairwise aggregation method has been applied to rank components importance. 

The results of the two measures applied to the IEEE 30 Bus test network demonstrate some non-obvious 

and meaningful conclusions about the contributions of certain links to the resilience of the network. It is 

shown that two types of links are most important in terms of 	+-WX� : i) the links which connect generator 

nodes with the other two types of nodes (transmission nodes and demand nodes), e.g. links <2, 6>, <1, 3>, 

<12, 13> etc., and ii) the link which is the only arc connecting to demand nodes, i.e., link <25, 26>. The 

restoration of these types of links is most likely able to augment the total amount of flow received by the 

demand nodes of the network so that high priority should be given to these links in the reparation list. 

Besides, those links with high Copeland scores in terms of 	+-WX�  also have high Copeland scores ranking in 
terms of the resilience reduction worth ��\+- : actually, the correlation coefficient between the two 

quantities is Z �l�<9_`� , l^^�<9���� � 0.82.  
Finally, it is shown that the classical betweenness centrality indices, such as the shortest path betweenness, 

flow betweenness and random walk betweenness, do not capture resilience criticality as do the resilience-based 

measures 	+-WX�  and ��\+-�∆���. In this view, the two measures newly proposed in this paper can provide 

precious insights to practical restoration activities for the components of infrastructure networks. 



Future studies will concentrate on the application of the resilience-based component importance measures 

to larger and different types of infrastructure networks subject to realistic disruptive events in order to 

further demonstrate the practical effectiveness of the measures.  
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