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Abstract

Continuously increasing complexity and interconnectedness of modern critical infrastructures, together with
increasingly complex risk environments, pose unique challenges for their secure, reliable, and efficient operation.
The focus of the present dissertation is on the modelling, simulation and optimization of critical infrastructures
(CIs) (e.g., power transmission networks) with respect to their vulnerability and resilience to cascading failures.
This study approaches the problem by firstly modelling CIs at a fundamental level, by focusing on network
topology and physical flow patterns within the CIs. A hierarchical network modelling technique is introduced
for the management of system complexity. Within these modelling frameworks, advanced optimization tech-
niques (e.g., non-dominated sorting binary differential evolution (NSBDE) algorithm) are utilized to maximize
both the robustness and resilience (recovery capacity) of Cls against cascading failures. Specifically, the first
problem is taken from a holistic system design perspective, i.e. some system properties, such as its topology and
link capacities, are redesigned in an optimal way in order to enhance system’s capacity of resisting to systemic
failures. Both topological and physical cascading failure models are applied and their corresponding results are
compared. With respect to the second problem, a novel framework is proposed for optimally selecting proper
recovery actions in order to maximize the capacity of the CI network of recovery from a disruptive event. A
heuristic, computationally cheap optimization algorithm is proposed for the solution of the problem, by inte-
grating foundemental concepts from network flows and project scheduling. Examples of analysis are carried out

by referring to several realistic CI systems.

Key words: critical infrastructure protection, complex network, cascading failure, system modelling, simula-

tion, optimization
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Résumé

Sans cesse croissante complexité et l'interdépendance des infrastructures critiques modernes, avec des environs
de risque plus en plus complexes, posent des défis uniques pour leur exploitation stire, fiable et efficace. L'objec-
tif de la présente thése est sur la modélisation, la simulation et 1'optimisation des infrastructures critiques (par
exemple, les réseaux de transmission de puissance) a 1'égard de leur vulnérabilité et la résilience aux défaillances
en cascade. Cette étude aborde le probléeme en modélisant infrastructures critiques & un niveau fondamental, en
se concentrant sur la topologie du réseau et des modeles de flux physiques dans les infrastructures critiques. Un
cadre de modélisation hiérarchique est introduit pour la gestion de la complexité du systéme. Au sein de ces
cadres de modélisation, les techniques d'optimisation avancées (par exemple, non-dominée de tri binaire évolu-
tion différentielle (NSBDE) algorithme) sont utilisés pour maximiser & la fois la robustesse et la résilience (ca-
pacité de récupération) des infrastructures critiques contre les défaillances en cascade. Plus précisément, le
premier probléme est pris a partir d'un point de vue de la conception du systéeme holistique, c'est-a-dire cer-
taines propriétés du systeme, tels que ses capacités de topologie et de liaison, sont redessiné de maniere opti-
male afin d'améliorer la capacité de résister a des défaillances systémiques de systéme. Les deux modeles de
défaillance en cascade topologiques et physiques sont appliquées et leurs résultats correspondants sont compa-
rés. En ce qui concerne le deuxiéme probleme, un nouveau cadre est proposé pour la sélection optimale des
mesures appropriées de récupération afin de maximiser la capacité du réseau d’infrastructure critique de récupé-
ration a partir d'un événement perturbateur. Un algorithme d'optimisation de calcul pas cher heuristique est
proposé pour la solution du probléme, en intégrant des concepts fondamentaux de flux de réseau et le calendrier

du projet. Exemples d'analyse sont effectués en se référant a plusieurs systemes de CI réalistes.

Mots clés: protection des infrastructures critiques, réseau complexe, 1'échec en cascade, la modélisation du

systeme, simulation, optimisation
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Chapter 1  Introduction

World-wide social and economic stability is becoming increasingly dependent on reliable supply of essential
goods and services, that are transported and distributed across large technological networked infrastructure
systems, also called critical infrastructures (CIs). These goods and services (e.g. electrical power, gas and water,
transportation, telecommunication, etc.) are largely taken for granted, their production and delivery being as-
sumed to never cease. On the other hand, the infrastructure systems that allow their supply are challenged
by potential disruptive factors coming from the risky environments they are operated in: global warm-
ing, disease outbreaks, food (distribution) shortages, financial crashes, heavy solar storms, organized
(cyber-) crime, or cyber warfare. Also, the infrastructure networks have been growing independently
and very fast, in a somewhat uncontrollable manner, creating underlying pathways along which danger-
ous hazards and damaging events can spread rapidly and globally throughout the system: this has in-
creased the exposure to systemic risk, characterized by cascades of failures which can have significant

impacts at the global system scale (Helbing, 2013).

Indeed, large-scale disruptions have been experienced, confirming the existence of inherent vulnerabilities.
On 28 September 2003, there was a serious power outage that affected much of Italy for 12 hours and part of
Switzerland for 3 hours, affecting a total of 56 million people and resulting in tens of millions of dollars in eco-
nomic losses (U.C.T.E, 2004). In the same year, another power blackout happened in North America, affecting
50 million people and causing estimated losses for $10 billion U.S. dollars (U.S.-CA, 2004). Other incidents like
these, where technical infrastructures failed and led to major disruptions, include the ice-storm in Canada in
1998 (Chang et al., 2007), the power outage that affected half of Europe in 2006 due to the crash of the luxury
line Norwegian Pearl ship onto a power line (U.C.T.E, 2006) and the hurricane Katrina in 2007, which wiped
out most of the CIs in the New Orleans area for a considerable amount of time, severely crippling recovery

operations (Boin and McConnell, 2007).

Many questions stem from the occurrence of these extreme incidents involving Cls: What is the inherent vul-
nerability of a CI system and which are its critical components that if they fail cause large consequences? What
is the mechanism of the propagation of failures in the CI system? How will the CI system react to unexpected
events and how large can the consequences become? Are there particular properties that allow the CI to resist
to systemic failures? How to define the resilience of the CI system? How to find an ‘optimal’ strategy for the
system to recover from disruption? The motivation behind this thesis is to address the type of quesitons stated
above; the objective of the thesis is to study and develop advanced modelling, simulation, analysis and optimi-

zation methods for the protection of Cls against systemic failures.

This chapter aims to provide a general overview of the problems addressed in this dissertation, and is organized
as follows. ClIs are defined and their characteristics are introduced in Section 1.1; in Section 1.2, the key con-
cepts of risk, vulnerability and resilience of Cls are discussed; Section 1.3 specifies the objectives of the research

conducted; finally, in Section 1.4, the structure of the dissertation is given.



Introduction

1.1 CI systems as complex engineering networks

The phrase, “critical infrastructure protection (CIP),” did not appear in print until in 1997, when the “Marsh
report” (Ellis, 1997) provided the first definition of infrastructure as

“a network of independent, mostly privately-owned, man-made system that function collaboratively

and synergistically to produce and distribute a continuous flow of essential goods and services”.

Critical infrastructures (CIs) are defined as network systems that provide life-essential services (McCarthy et
al., 2005) and their incapacity or destruction would have a debilitating impact on the health, safety, security,
economics, and social well-being, including the effective functioning of governments (Kroger and Zio, 2011). Cls
are various by nature, e.g., physical-engineered, cybernetic or organizational systems, and by environment (ge-

ographical, natural) and operational context (political, economic, etc.).

The focus of this thesis is on engineered physically networked Cls, often called lifeline systems; examples of

these networks are those providing (Kroger and Zio, 2011):

*  Energy (electricity, oil, and gas supply)

e Transportation (by rail, road, air, and sea)

* Information and telecommunication (such as the Internet)
¢ Computer networks such as the Internet

*  State and local services (water supply and emergency services).

From a European Union perspective, a programme on Prevention, Preparedness and Consequence Management
of Terrorism and Other Security Related Risks (EPCIP) was adopted on 12 February 2007. In the act (COM,
2006, p. 15) CIs are defined as “..those assets or parts thereof which are essential for the maintenance of critical
societal functions, including the supply chain, health, safety, security, economic or social well-being of people”.
In particular, electrical power supply stands out as an especially critical infrastructure since many other infra-

structures depend heavily on a reliable power supply.

Engineered CI systems, usually distributed on large geographical extensions, are complex collections of a large
number of interacting elements (or subsystems) having an internal dynamic structure and comprising a unified
whole. They present several common characteristics that make them difficult to control or to operate reliably

and efficiently (Amin, 2001):

¢ They have a large-scale, multi-component, heterogeneous and distributed nature;

¢ They are vulnerable to attacks and local disturbances which can lead to widespread cascading failure
almost instantaneously;

¢ They are characterized by many points of interaction among a variety of participants — owners, opera-
tors, sellers, buyers, customers, data and information providers, data and information users;

¢ The number of possible interactions increases dramatically as participants are added; thus, no single
centralized entity can evaluate, monitor, and manage all the interactions in real time;

¢ The conventional mathematical methodologies that underpin today's modeling, simulation, and control

paradigms are unable to handle their complexity and interconnectedness.
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As Zio (2007) and Kroger (2008) point out, in order to address the complexities of CI systems new methods for
their analysis are needed, since “..the current quantitative methods of risk analysis seem not to be fully

equipped to deal with the level of complexity inherent in such systems” (Zio, 2007, p. 505).
1.2 Risk, vulnerability and resilience of Cls

1.2.1 Risk and systemic risk

While the concept of risk is fairly mature and consensually agreed, the concepts of vulnerability and resilience
are still evolving and not yet established. One definition of risk often used in system engineering is that it is “‘a
function of the probability of an unwanted event and the severity of consequences of that event” (Kaplan and

Garrick, 1981):

Risk = {(S,, L., X;)} (1.1)

where S; denotes the ith risk scenario, L, denotes the likelihood of that scenario, and X, denotes the resulting

consequences.

These quantities and their associated uncertainties are considered as being numerically quantifiable: e.g., for
CIs, risk can be computed as the loss of service with its resulting consequences for the people concerned. To-
day’s infrastructure networks are challenged by the disruptive influences of a complex mix of manmade and
naturally occurring threats and hazards, including terrorist attacks, accidents, natural disasters, and other

emergencies.

Systemic risk is the risk of having not just statistically independent failures, but interdependent, cascading
failures in a network of N interconnected system components (Helbing, 2013). In other words, systemic risk
results from connections between risks (‘networked risks’), whereby a localized initial failure (‘perturbation’)
could spread to other parts of the system and have system-scale disastrous effects. Then, the examples of sys-
tem-scale damages mentioned before on real-world CI systems confirm the existence of systemic risks: blackouts
in power grids (U.S.-CA, 2004; U.C.T.E, 2004; 2007; Pidd, 2012), telecommunication outages (Newman et al.,
2002), financial bankruptcy (Battiston et al., 2007), and catastrophic failures in socio-economic systems (Zhao
et al., 2011; Kempe et al., 2003). Figure 1:1 shows the historical frequency of large electrical blackouts hap-

pened in the North American Power Grid: an increasing trend of occurrence of large blackouts can be observed.
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Figure 1:1 Number of large blackouts per year happened in North America after removing small events, adjusting for de-
mand growth, and removing extreme natural events (Hines et al., 2009).
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Although large-scale disruptions are rare if compared with small ones, how much rarer are they? If the frequen-
cy of incidents, both natural and manmade, is plotted against the consequences, the trend is a power law (ra-
ther than exponential) distribution (e.g. Amin, 2004; Nedic et al., 2006; Weron and Simonsen, 2006, as shown
in Figure 1:2). Then, if we were to evaluate the risk of a disruption as the product of frequency times conse-
quence, the total risk associated with large-scale disruptions is — due to the power-law type distribution of
blackout sizes — much larger than that associated to small failures. This is strong motivation for investigating

the global dynamics of systemic risks that can lead to power-law tails.
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Figure 1:2 The complimentary cumulative distribution (1 — CDF(P)) of power lost (P) due to blackouts in the North-
American electric power transmission systems (Weron and Simonsen, 2006).

1.2.2  Vulnerability

Vulnerability is a concept that is used in many areas, but its definition is often ambiguous and sometimes mis-
leading (Buckle et al., 2000; Dilley and Boudreau, 2001; Weichselgartner, 2001; Haimes, 2006). Many defini-
tions look at vulnerability as the system’s overall susceptibility to loss due to a given negative event. In order
for the vulnerability definition to be meaningful, it must be related to specific hazard exposures (e.g. Dilley and
Boudreau, 2001). A system might, thus, be vulnerable to certain hazard exposures but robust and resilient to

others (Hansson and Helgesson, 2003).

The vulnerability of a system can be analyzed mainly from two perspectives. The first one relates to a global
system property, whereby one looks at the extent of adverse effects caused by the occurrence of a specific haz-
ardous event (e.g., Aven, 2007; Johansson and Hassel, 2010; Kroger and Zio, 2011). The second perspective
looks at the critical parts or components of the system, which make it vulnerable (e.g., Apostolakis and Lemon,

2005; Latora and Marchiori, 2005).

In this dissertation, we espouse the concept of vulnerability as a measure of “the consequences that arise when
a system is exposed to a hazardous event of a given type and magnitude” and we adopt both perspectives of
vulnerability analysis mentioned above: specifically, in appended Paper [1], the term “vulnerability analysis”
refers to the identification of critical components of CIs, whereas in appended Papers [3] and [4], “vulnerability”
is related to the global property of the CI system, which is quantified by the extent of adverse effects caused by

the occurrence of a specific disruptive event.
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1.2.3 Resilience

Resilience comes from the Latin word “resilio” that literary means “to leap back” and denotes a system attrib-
ute that characterizes the ability to recover from challenges or disruptive events. The Merriam-Webster dic-
tionary defines resilience as “the ability to recover from or adjust easily to misfortune or change”. Various defi-
nitions of “resilience” have been proposed for infrastructure and economic system analysis in the past decades
(e.g., Holling, 1973; Bruneau et al., 2003; Reed et al., 2009; Cimellaro et al., 2010; Aven, 2011; Henry and Em-
manuel Ramirez-Marquez, 2012). In general, it can be said to be the ability of a system or an organization to
react and recover from unanticipated disturbances and events (e.g., Hollnagel et al., 2006). Zio (2009, p. 131)
advances the view of resilience as complementing reliability by stating “.. systems should not only be made
reliable, i.e. with acceptably low failure probability, but also resilient, i.e. with the ability to recover from dis-

ruptions of the nominal operating conditions”.

An integrated definition of resilience is given by McDaniels et al. (2007). This definition points out two key
properties of resilience, namely robustness and recovery rapidity. Robustness refers to a system’s ability to
withstand a certain amount of stress with respect to the loss of function of the system, or as Hansson and
Helgesson (2003) defines it: “the tendency of a system to remain unchanged, or nearly unchanged, when ez-
posed to perturbations”. In this view, robustness can be seen as the antonym of the term wvulnerability. Recovery

rapidity, on the other hand, refers to a system’s ability to recover fast from an undesired event.

Currently, there is the feeling of a lack of standardization and rigor when quantitatively defining resilience
(Henry and Emmanuel Ramirez-Marquez, 2012). Too many different and subjective definitions make resilience
appear to be just another buzzword and not an attribute of engineering systems. To address this issue, this
dissertation (Chapter 4.1) reviews some resilience metrics and measurement methodologies in the context of
system engineering, especially for CI systems; then, it proposes a novel definition and quantification of system
resilience, rigorously focusing on the post-disruption recovery process, which embraces both the spatial (func-
tionality recovery) and temporal (recovery time) dimensions of resilience. The details of this definition and

relevant discussion will be given in Chapter 4.1.

From a synthetic disaster management perspective, Figure 1:3 conceptually illustrates all the concepts men-
tioned, i.e., risk, vulnerability, robustness and resilience, and their characteristics with reference to the func-
tionality curve F(t) of a CI system, which represents the evolution of the functional state of a system
(Cimellaro et al., 2010; Henry and Emmanuel Ramirez-Marquez, 2012). In the Figure, S; denotes a risk scenar-
io, L; denotes the likelihood of that scenario, )NQ is a random variable denoting the resulting consequence (func-

tionality loss) and is expressed as function of the uncertainty o; associated with it.
Then, the quantification of risk in Equation 1.1 can be rewritten as

Risk = {<S Li,XZ-(JZ-)>} (1.2)

K2

Vulnerability referring to the CI system is “the consequences that arise when the system is exposed to a haz-

ardous event of a given type and magnitude” and can be represented by the random variable )Nfl(al)

Vulnerability = {<)N(i(ai)>} (1.3)

ot
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Anther random variable ﬁl denotes the robustness (defined as “the tendency of a system to remain unchanged,
or nearly unchanged, when exposed to perturbations”) of the system under risk S;. It is the residual functionali-

ty right after the disruptive event and can be represented by the following relation:
Robustness = {<§Z>} = {(F(ty) — )Nfl(oz)>} (1.4)

On the post-disruption recovery process, Trp(t,) denotes the time duration required for the system to achieve
a target functionality level F'(¢,.), and the restored system functionality is Fry(t,). The two quantities repre-

sent the spatial and temporal dimensions of resilience, respectively. Therefore,
Resilience(t,) = {{Tgrp(t,), F(t,))} (1.5)
One can refer to Chapter 4.1 and the appended Paper [5] for the analytic expression of Equation (1.5).
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Figure 1:3 Conceptual illustration of the concept of risk, vulnerability, robustness and resilience, with reference to the func-

tionality curve F(t) of a CI system.

1.3 Research objectives

CIs can operate in three distinct functional states: 1) stable state, 2) disrupted state, and, 3) recovered state,
and two transitions: 1) system disruption (from the stable state to the disrupted state), and 2) system recovery
(from the disrupted state the recovered state). There are two events that trigger and enable these two transi-
tions: a disruptive event and the resilience action. In Figure 1:4, the different states and transitions are illus-
trated. For the point of view of disaster management, before the occurrence of a disruptive event, actions and
activities (e.g., upgrading vulnerable parts of the system, allocating preventive resources and so on) are usually
taken in order to mitigate the likelihood and/or consequences of an undesired event. On the other hand, after
the disruption, there is a recovery process in which resilience actions (e.g., an overall recovery planning) are

taken for the system to return to a normal or desired state.

The present dissertation takes into account the entire state transition process of Cls under disruptive event,
and focuses on the modelling, simulation and optimization of CI systems (e.g., power transmission networks),
with respect to their vulnerability and resilience to cascading failures. The research objectives, which represent

also the main contributions of this dissertation, are divided into three groups:

e Static representation and analysis of CI networks:



Introduction

To develop network models suitable for the representation of CI networks;
To develop performance metrics for quantifying generic network functionality;
To identify the role that various network components have in maintaining the performance of

the entire network (e.g., connectivity or reliability).

e  Optimal CI design for cascading failure mitigation:

To establish optimization frameworks for designing CI systems robust against cascading fail-
ures, with limited cost;

To conduct a thorough comparative study among different methodologies for the modelling of
cascading failures;

To propose effective and efficient solution algorithms for the proposed optimization problems.

*  Recovery optimization for system resilience:

To propose a formal, rigorous definition of the concept of system resilience;

To develop dynamic recovery models for post-disaster system restoration;

To construct a comprehensive framework for properly selecting recovery actions in order to op-
timize system resilience when resources are limited;

To design effective and efficient algorithms for solving the proposed resilience optimization
problem;

To identify the role that various network components have in contributing to the resilience of

a CI system.

In Figure 1:4, we have summarized the main research objectives of this thesis in a flow chart that shows the

basic dependencies between the objectives and their organization in this dissertation.
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Figure 1:4 Pictorial view of the research presented in this dissertation.
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1.4 Structure of the thesis

The thesis is composed of two parts. Part I, subdivided in six Chapters, introduces and addresses in details the
problems treated and illustrates the methodological approaches developed and employed in this Ph. D. work.
Part II is a collection of six selected papers published, submitted for publication or under submission as a result

of the work, and which the reader is referred to for further details.

Chapter 2 starts with a brief critical discussion of the approaches based on complex network theory that have
been employed for the analysis of CIs. Then, a general hierarchical modelling framework for representing CI
networks is proposed, which can be leveraged efficiently to facilitate the management of complexity in the
analysis of large-scale CI systems. Moreover, several metrics are introduced for identifying those components

within the system that most significantly influence the system reliability.

In Chapter 3, two different cascading failure modelling approaches of increasing complexity, i.e. a complex
network-based model and a physical flow-based model (for electrical power grids), are embraced to address the
problem of redesigning network properties (e.g., topology and link capacity). This problem is formulated within

a multi-objective optimization framework and solved by evolutionary algorithms.

Chapter 4 focuses on the study of system resilience. A quantitative definition of the concept of resilience for CI
systems is given: based on this definition, an optimization framework is proposed for properly selecting recovery
actions in order to maximize the resilience of a CI network. A heuristic dispatching rule is presented to timely
solve the associated resilience optimization problem. Furthermore, two metrics are originally introduced to

measure the criticality of network components from the perspective of their contribution to system resilience.

Chapter 5 contains the applications of the proposed models and methodologies to realistic CI networks (in par-
ticular, the 380kV Italian Power Transmission Network, the 400kV French Power Transmission Network and
the IEEE 30 Bus test system). Chapter 6 draws the conclusions of this PhD study and presents relevant open

issues and perspectives for future research.

Part II of this thesis includes the collection of papers published and submitted, which constitute the pillars of
the present doctoral thesis. Papers [1] and [2] present the hierarchical representation framework and its applica-
tion to network reliability and vulnerability analysis (see Chapter 2 and Chapter 5.1 of Part I). Papers [3] and
[4] concern CI optimization against cascading failures (see Chapter 3 and Chapter 5.2). Specifically, Paper [3]
addresses the problem of network topology optimization by rewiring links under the objectives of maximizing
network robustness to cascading failure and minimizing investment costs. The realistic character of the optimi-
zation results based on a computationally-cheap, topological cascading failure model is verified by a more real-
istic power flow-based model of cascading failure. In Paper [4], for the sake of comparison, both types of models
(i.e., topological and power flow-based) are embraced to address the optimization of link capacity allocation
against cascading failures. Papers [5] and [6] form the basis for the study of system resilience in Chapters 4, 5.3
and 5.4. The quantitative definition of system resilience, the formulation of a resilience optimization problem
and the development of a heuristic dispatching rule for its solution are the main contributions of Paper [5].

Finally, Paper [6] mainly contributes two resilience-based component importance measures.



Chapter 2  Network modelling of CI sys-

tems

The modelling of any real-life system requires well-defined system boundaries and usually simplifications of the
system representation: Such boundaries and simplifications are determined by the context in which the model is
used. The aim of the chapter is to critically review previous inspiring research regarding the modelling of CI
systems as well as to describe the author’s proposed modelling approach. In particular, the first Section briefly
introduces the field of complex network theory and how Cls can be represented in the framework of network
theory. The second Section develops a general hierarchical modelling framework, based on statistical clustering
techniques, for representing CI networks. In the last Section, we propose several metrics for identifying those

components within the system that most significantly influence system reliability.
2.1 Complex network theory and network representation of CI systems

2.1.1 Complex network theory

The ideas behind the research described in the present dissertation stem partly from the field of complex net-
work theory. The “predecessor” of complex network theory is the mathematical field of graph theory, initiated
by Leonhard Euler and the “seven Bridges of Konigsberg problem” in 1736. Further advances in the field were
not made until 1959, when two Hungarian mathematicians, namely, Paul Erdés and Alfred Rényi, developed
the theory of random networks. They introduced the use of probabilistic methods to demonstrate the existence

of graphs with particular properties, such as network connectivity (Erdés and Rényi, 1959).

Researchers and scientists did not realize that modelling real complex networks required a shift in paradigm,
despite the convenience and mathematical insights provided by random graphs models, the insights from empir-
ical studies on social networks, and the ideas for optimal design of resilient networks. This only happened in
the late 1990’s, when databases from several disciplines became readily available, and general features of com-
plex networks started to be uncovered. Sociologists, mathematicians, physicists and engineers joined forces to
formally develop the new science of a connected age (Watts, 2004). Two pioneering works in this field concern

the findings of small-world (Watts and Strogatz, 1998) and scale-free (Barabasi and Albert, 1999) networks.

The basic concept of complex network theory is to build a model of real-world networks and describe the form
and, in various degrees, the functionality of the network by different measures. Complex network theory has
been used to study a wide range of systems, such as: social networks (e.g. celebrity networks), technical net-
works (e.g. the Internet and electrical power systems), cellular networks, and the studies of the written human
language (Albert and Barabési, 2002). The reader can refer to numerous works for a comprehensive review of

the study in this field (e.g., Newman, 2003; Watts, 2004; Boccaletti et al., 2006; Grubesic et al. 2008).

For network theoretical studies of Cls, only the most fundamental parts of the infrastructure are usually mod-
elled, i.e. the structural properties of the system that facilitates the physical transportation of the services they
provide; in general, no or limited functional aspects of the network are modelled. Complex network theory

methods can be applied to the analysis of CIs for i) helping to identify preliminary vulnerabilities by topology-
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driven and dynamical analyses and ii) guiding and focusing further detailed analyses of critical areas (Kroger
and Zio, 2011).

Topological analysis based on complex network theory can unveil relevant properties of the structure of a net-
work system (Albert et al., 2000; Strogatz, 2001) by i) highlighting the role played by its components (Crucitti
et al., 2006; Zio et al., 2008) and ii) making preliminary vulnerability assessments based on the simulation of
failures (mainly represented by the removal of nodes and arcs) and subsequent re-evaluation of the network
topological properties (Rosato et al., 2007; Zio et al., 2008). Notable studies concerned with the structural anal-
ysis and assessment of the vulnerability among the CIs sector include structural vulnerability of urban
transport networks (Jenelius, 2009, Masucci et al., 2009), vulnerability of power grids (Bompard et. al 2009,
Crucitti et al. 2005, Holmgren 2006, Hines and Blumsack, 2008, Eusgeld et al., 2009), and the Internet links
(Latora and Marchoiri, 2005). Although simple graph models are common ways to represent and analyze CI
networks, parts of physical properties can also be incorporated into the structure representation of realistic CI

systems (e.g., electrical power infrastructure) (Hines and Blumsack, 2008; Cotilla-Sanchez et al., 2012).

Further, in real CI networks, another importance dimension to add to the vulnerability characterization is the
dynamics (i.e., processes going on within networks) of flow of the physical quantities in the network. This en-
tails considering the interplay between structural characteristics and dynamical aspects, which makes the mod-
eling and analysis very complicated, since the load and capacity of each component, and the flow through the
network are often highly variable quantities both in space and time (Kréger and Zio, 2011). Percolation theory,
borrowed from physics, provides a useful tool for the rigorous treatment of network dynamics. It describes the
process in which vertices or links on a network are randomly designated “occupied” or “unoccupied”. Site per-
colation and bond percolation indicates the state of network nodes and links, respectively (Grimmett, 1999).
This idea has been extended to address fundamental dynamic processes such as cascading failures in CI net-

works - where failure is the “occupied” state (Buldyrev et al., 2010; Xiao et al., 2011).

Functional models have been developed to capture the basic dynamic features of CI networks within a weighted
topological analysis framework (e.g., Motter and Lai, 2002; Motter, 2004; Dobson et al., 2005¢c). These abstract
modelling paradigms allow analyzing the system response to cascading failures and can be used to guide a suc-
cessive detailed simulation focused on the most relevant physical processes and network components. The need
for such an analysis tool is even stronger for systems in which the cascade dynamics is rapid and modifications
are actuated on to the network in order to mitigate the evolution of the cascade. For example, cascading events
leading to a blackout in power grids usually occur on a time scale of minutes to hours and is completed in less
than one day (Dobson et al., 2007). Despite their apparent simplicity, these models provide indications on the
elements criticality for the propagation process (Zio and Sansavini, 2011a) and on the actions that can be per-

formed in order to prevent or mitigate the undesired effects (Motter, 2004).

2.1.2 Network representation of CI systems

Network theory provides a natural framework for the mathematical representation of network CI systems. A
graph consists of vertices (sometimes referred to as nodes), V, and edges (sometimes referred to as arcs or
links), F, which together construct a graph, G(V, E) (see Figure 2:1). The number of vertices and edges are
normally denoted as N and M, respectively. The network structure is usually represented by a N x N adja-

cency matriz A, where A;; = 1 if there is an edge between vertices i and j, i.e. (4,5) € E, and A;; = 0 if there

10



Network modelling of CI systems

is no edge between the two vertices, i.e. (,5) ¢ E. Normally, a vertex cannot have an edge to itself, i.e. A;;, =
0, and only one edge can exists between any two vertices. If these constraints are not fulfilled the graph is
termed a multigraph. A graph can be directed or undirected. A directed edge is normally termed arc. It is pos-
sible to assign values to the edges (or the vertices) representing properties of the edges (or the vertices) like
costs, lengths, capacities, etc. Such graphs are referred to as a weighted or a wvalued graph. It is also possible to
differentiate between types of vertices or types of edges (as done in the appended Papers [3], [4], [5] and [6] in
Part II of this thesis). Throughout the dissertation, vertices/nodes and arcs/edges will be also referred to as

components.

Vertex
Vertex Vertex

Edge \ Arc \ Valued edge \
\ \

(2) (®) (©

Figure 2:1 Example of (a) an undirected graph, (b) a directed graph, and (c¢) a weighted (valued) graph.

The idea behind network theory is the notion that it is possible to draw relevant conclusion about the modelled
CI systems (e.g., electrical power grids, transportation networks, the Internet, etc.), by knowledge of its topolo-
gy, as represented by a graph. By analyzing the structure of the network or by quantifying properties of the

network when it is changed or, by some means, degraded, interesting properties of the system can be found.

There are a number of concepts and metrics with the aim to describe and measure the static structure of a

network: a few of the most commonly used and relevant ones are summerized in Table 2:1.

Table 2:1 Brief overview over concepts and metrics used in complex network theory.

Concept Description

Path Defined as a sequence of vertices {v;, vy, ..., v, } such that A(v;,v,, ;) =1, i.e. there is
an edge (v;,v,;,,) for every i. A path where no vertex appears twice is called an elemen-

tary path.

Length Describes the number of edges in a path, which is equal to the number of vertices in

the path minus one.

Shortest path A path starting in vertex, i, and ending in vertex, j, with the smallest possible length is

(geodesic) called geodesic between ¢ and j.

Degree of vertex ¢  The number of edges connected to the node i. If the graph is directed, one differentiates
between in-degree, number of arcs coming into the vertex, and out-degree, number of
arc coming out from the vertex. The average degree of ¢ is simply the arithmetic mean

of the degree for all vertices, 4, belonging to G.

11
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Metric Description Quantification
Distance Distance is simply the length of a geodesic between ¢ d
and j. “
Degree centrality, = The degree of a vertex, v, normalized over the maxi- P () k(v)
v) =
CP(v) mum number of neighbors this vertex could have. N -1

Betweenness cen-
trality, CB(v),
CP(e)

A measure that tries to capture the importance of a
vertex, v, or edge, e, in a network (Freeman, 1979). It
describes how many shortest paths, geodesics (o), that

goes through a specific vertex or edge.

Closeness centrali-

A measure the idea of speed of communication be-

ty, C%(v) tween vertices in a way that the vertex that is “clos- CC(v) = 1
d.
est” to all others received the highest score (Zio and avg(dy;)
Sansavini, 2011a). The closeness of a vertex v is de- N-—1

fined as the reciprocal of the average shortest path

length.

Clustering coeffi-

Describes how clustered the network is in form of the

cient, C density of triangles in the network (Watts and o 1 Z o
Strogatz, 1998). N is the number of vertices, C; is the B N&e
local clustering coefficient, M, is the number of edges _ iz M;
that exist between the neighbors of vertex 4, and k; is N kilk, —1)/2
the number of neighbors for vertex 4

Efficiency A measure of efficiency in the communication between )
¢ and j, defined as inversely proportional to the short- €ij = 1.

ij

est distance.

Characteristic The average distance of a graph, i.e. the average of the

path length

shortest distance d;; between all pairs of vertices.

Network (average)

A measure of how efficiently the whole network ex-

efficiency, E(Q) changes information (Latora and Marchiori, 2001). i#j
Information cen- The information centrality of a vertex, v, is defined as Cl(v) = AE(v)
trality, CT(v) the relative drop in the network efficiency caused by E
the removal from G the edges incident in v (Latora E[G] — E[G’ (v)]
and Marchiori, 2007). N E|G]

In the network theory framework, CI system failures are normally represented topologically as the removal of

vertices and edges. There are different failure initiating strategies that usually based on a random process or by

12
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using some measurement of the importance of components and then removing these in a certain order. The
tmportance is usually based on a centrality measure, which aim to qualify the role played by a component in
the complex interaction and communication occurring in the network. Classical topological centrality measures
are the degree centrality, the closeness centrality, the betweenness centrality and the information centrality

(see Table 2:1) (Freeman, 1979; Latora and Marchiori, 2007).
2.2 Hierarchical network representation framework

2.2.1 Clustering techniques

Recent studies suggest that many real complex networks exhibit a modularized organization (Porter et al.,
2009). In many cases, these modularized structures are found to correspond to functional units within networks
(ecological niches in food webs, modules in biochemical networks) (Karrer et al., 2008). Broadly speaking, clus-
ters (also called communities or modules) are found in the network, forming groups of elements that are dense-
ly interconnected with each other but only sparsely connected with the rest of the network. The study of the
clustered structure of the network of a CI is of particular interest because such structure can provide itself a
protection for the system against attacks from an intruder (Eum et al., 2008), reduce the effects of cascading
failures (Wu et al., 2006) and point at important heterogeneities within the network that may not be registered

via network level measures (Karrer et al., 2008).

Clustering aims at identifying patterns around which communities of elements in the network can be grouped,
emerging implicit information in the network structure (Filippone et al., 2008). Framed as an unsupervised
multiple classification problem (Scholkopf et al., 1998), clustering has been an essential undertaking in the con-
text of explorative data mining and also a common technique for statistical data analysis used in many fields
such as machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics (Jain et
al., 1999). Theoretically, based on a similarity (affinity) measure s;; between pairs of data points (i, j), which is
usually a measure of distance between ¢ and j, most clustering approaches seek to achieve a minimum or max-
imum similarity value through an iterative process of vertex grouping (Filippone et al., 2008; Gdémez et al.,

2011). Different similarity definitions can lead to different cluster partitioning of the network.

For the detailed description of the different clustering methods, the reader is encouraged to refer to Filippone et
al. (2008) and Jain et al. (1999). For the purpose of the clustering analysis in this research, the unsupervised
spectral clustering algorithm (USCA) (Von Luxburg, 2007) is adopted, which is invariant to cluster shapes and
densities and simple to implement. The USCA makes use of the spectrum (eigenvalues) of the similarity matrix
of the data to perform dimensionality reduction before Fuzzy k-Means (FKM)-clustering in fewer dimensions.

Schematically, it is performed by the steps presented in Table 2:2 (Von Luxburg, 2007).

In the first step, the Laplacian matrix L, is calculated from the similarity (affinity) matrix as follows. The

m
input similarity matrix S is of size n X n and its generic element s;; represents the similarity between nodes ¢
and j in the network. The diagonal components s;; are set to 1 and the matrix is symmetric(s;; = s;;). The

degree matrix D is the diagonal matrix with diagonal entries d,d,, ..., d,, defined by

13
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N
di:ZSijvi:1=2a'-~an (2.1)

j=1
Then, the normalized graph Laplacian matrix can be obtained:

Ly, =D 'Y2LD'?2=1—-D128D"1/? (2.2)

sy
where L = D — S and [ is the identity matrix of size n x n.

Table 2:2 The unsupervised spectral clustering algorithm.

|Rn><n

Input: Similarity matrix S €
1. Compute the normalized graph Laplacian matrix L,,,,.

2. Compute the first k eigenvalues A\j, Ay, ..., A, and corresponding eigenvectors u,, U, ... , u,of matrix

Ly, The first k eigenvalues are such that they are very small whereas A, is relatively large. All

eigenvalues are ordered increasingly.

3. The number of clusters is set equal to k, according to the eigengap heuristic theory

4. Let U € R™* be the matrix containing the vectors %y, s, ..., Uy as columns. Form the matrix
T € R™* from U by normalizing the rows to norm 1, that is set tij = u,; (Zkufk)l/Q.

D. Fori=1,...,n, let y; € R¥ be the vector corresponding to the i-th row of T

6. Resort to the FKM algorithm to partition the data points (y;);_; _, into k clusters Ay, ..., Ay

Output:  Clusters C, ..., C,, with C; = {j|yj € A}

It should be noted that the eigengap heuristic theory at the basis of the third step of the algorithm works well
when the modularized structure of the data are pronounced whereas the more noisy or overlapping the clusters
are, the less effective it is (Von Luxburg, 2007). In those cases, other methods such as the Markov clustering

algorithm (Van Dongen, 2000) can be used to find the optimal number of clusters.

2.2.2 Hierarchical network representation

Hierarchically modularized organization, which is a central idea about the life process in biology, is found to be
also an internal structure of many technique networks (Sales-Pardo et al., 2007), and can be utilized to model

these complex systems for the management of system complexity (Gémez et al., 2011).

For illustration of the potential of the hierarchical modelling framework for complex system analysis, by analo-
gy one may think of the electronic maps such as those provided by Google Maps; the tools are powerful because
they present information in a scalable manner — despite the decrease in the amount of information as we “zoom

in”, the representation shows the information that is relevant at the new scale.
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In the same spirit, a hierarchical model representing the whole system at the top and individual elements at the
bottom could be obtained via a process of successive clustering of the network and network subsystems (e.g.,
via successively performing the USCA on the network). Then, based on the hierarchical network representation,
fictitious networks can be defined in each level, from which the analyst can extract relevant information at the
suitable level of the hierarchy. Fictitious networks are cluster-simplified representations of the real network and
can facilitate the understanding and analysis of the network properties by focusing on the relevant information

that emerges at the different levels.

Y =4{1,2,3,4} VP ={5,6,7,8}
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Figure 2:2 Illustrative example of the construction of fictitious networks.

Specifically, the artificial network at level I of the network hierarchy is described as a graph G (A<l), E(”) with

1 <1< L, where L is the number of levels of the hierarchy. We use V;(l) to represent the artificial node ¢ (for

i=1.2,..., ‘A(l) |) at level [, which corresponds to a cluster of real network nodes. Artificial nodes are connected

by artificial links Ef;) (for 4,57 =1,2,..., |A(l>| and i # 7), composed by those actual network links connecting (in
(1) (1)

v, €V v €V } The con-

parallel) the actual nodes in the clusters forming the artificial nodes, Efl) = {est

nection pattern between artificial nodes at level [ is illustrated by an adjacency matriz A®) whose element

AV 0) = 1

i

if El(j) =+ (), i.e. if in the artificial nodes Vi(l) and ij are connected by fictitious edge

Ef;) and 0 otherwise. This definition accounts for the fact that a fictitious edge embracing several real links has
that number of paths available between the two communities it connects, thus holding more interaction effi-
ciency and smaller weight viewed as the physical distance between the two communities connected by the vir-

tual edge. Figure 2:2 gives an example of the construction of a fictitious network.

The hierarchical modelling framework offers different levels of resolution at the different levels of the hierarchy.
The artificial networks at the top of the hierarchy contain limited detail information of the local connectivity
patterns (in the limit, only one node represents the whole network at the first level of the hierarchy); as we
move down the hierarchy, more local information enters the model, at the expense of an increase in the dimen-
sion of the network. These characteristics can be leveraged efficiently to facilitate the management of complexi-
ty in the analysis of large-scale CI systems. In Chapter 5 and appended Papers [1] and [2], we will illustrate
this by referring to the vulnerability and reliability analysis of a realistic CI network, i.e. the 380kV Italian
Power Transmission Network (IPTN380).
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2.3 Extended reliability-based component importance measures

Component importance measures (CIMs) are widely used in system engineering to identify components within
the system that most significantly influence the system behavior with respect to reliability, risk and/or safety.
The indications drawn are valuable for establishing direction and prioritization of actions, related to reliability

improvement during system design and optimization of operation and maintenance.

A well-known CIM is the so called Birnbaum IM defined as (with reference to system reliability R, as the
system performance indicator) (Birnbaum, 1968):
oR
IP="*=R(R;,=1)—R,/(R, =0
i =35 = B(Ri=1)—-R.(R;=0) (2.3)

(2

where TP is the Birnbaum Importance (BI) of component i; R, represents the reliability of the system; R, is
the reliability of component i; R (R, = 1) is the system reliability calculated assuming that component i is
perfectly operating and R (R, = 0) the system reliability in the opposite case of component i failed. The BI
measures the significance of component ¢ to system reliability by the rate at which system reliability improves
with the reliability of component i. As shown in Equation (2.3), the BI of component ¢ does not depend on R,
itself, so that two components i and j may have a similar value I? although they have different reliability

values R; and R, respectively; this could be seen as a limitation of BL

The Criticality Importance (CImp) measure overcomes the above limitation by considering component unrelia-

bility (Espiritu et al., 2007). It is defined as:

YRR =1) - Ry(R, =0)] "

(2

JC¢ = Bl ¢
K3 K3 FS

(2.4)

where F; is the unreliability of component ¢ and Fy is the system unreliability. Now, a less reliable component

is more critical than another one with same value of BI.

Fuessell & Vesely (Fussell, 1975) proposed an alternative importance measure according to which the im-
portance of a component in the system depends on the number and on the order of the cut sets in which it
appears. Most commonly used as a risk reduction indicator, Fuessell & Vesely Importance (FVI) quantifies the

maximum decrement in system reliability caused by a particular component being failed (R, = 0):

- (2.5)

s
The previously proposed CIMs (BI, Clmp and FVI) are functionally different. They evaluate subtly different
properties of the system behavior, and therefore, are often used in a complementary fashion to infer different
information. However, in order to apply the CIMs for analyzing a CI network system such as the IPTN380, it
is necessary to extend the definition of the CIMs to account for the multiple terminal or node pairs (e.g. gener-

ator-distributor pairs) where connectivity defines the network functionality.

Specializing such extension for the analysis of the importance of components of a CI network system, we intro-
duce the Extended Birnbaum Importance (EBI) measure as the average of all BI values obtained considering

all possible Generator-Distributor pairs reliabilities in the network system:
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L ORy _ 1
‘ NN, OR, NgNp

s5€Vg,deVp ?

[Roq(R; = 1) — Ryy(R; = 0)] (2.6)
s€Vg,deVp
where N, and N, are the number of generators and distributors in the network respectively; Vi, and V}, are
sets of node generators and distributors respectively; R, is the terminal pair reliability (TPR) between node s
and node d; R, (R; = 1) and R,;(R; = 0) represent the terminal pair reliabilities between node s and node d,

in the condition that component i is perfectly operating and completely failed, respectively.

Similarly, we can define Extended Criticality Importance (ECI) and Extended Fussell &Vesely Importance
(EFVI) measures:

1 1—R.

1F¢ = [Req(R; =1) — Ryy(R; = 0)] ——+ 2.7

NeNp seVGZd:eVD 1-Ry (2.7)

JE-FV 1 Ry — Ry(R; =0) (2.8)
NeNp s€Vg,deVp Ry ‘

where IiE’C is the Extended Criticality Importance (ECI) measure of component i and I~V is the Extended

Fussell &Vesely Importance measure.

The definitions in formulas (2.6)-(2.8) render CIMs compatible and applicable to a complex distributed network
system, providing risk managers with information on the risk/safety significance of system structures and com-
ponents. However, their computation in large or even moderate network systems is non-trivial. In Chapter 5
and appended Paper [2], we will illustrate how the hierarchical modeling introduced in the previous Section can
be used to set up a framework within which the extended CIMs of the components of large-scale complex net-

work systems can be computed efficiently, due to the multi-scaled information representation scheme.
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Chapter 3  CI optimization against cas-

cading failures

As introduced in Chapter 1, systemic risk leads to catastrophic impact in a way of cascading failure, and its
occurrence is much more likely than might be expected: for example, the probability distribution of blackout
size happened in power grids approximately follows a power law, rather than an exponential type distribution
predicted by traditional risk analysis (Chen et al., 2005; Dobson et al., 2007; Hines et al., 2009). This chapter
addresses the problem of cascading (systemic) failures mitigation for CI networks by network optimization.
Specifically, the problem is taken from a holistic system design perspective: some system properties, such as its
topology and link capacities, are redesigned in an optimal way in order to enhance system’s ability of resisting

to cascading failures.

This Chapter starts with an overview of the existing studies about cascading failures in CI networks (Section
3.1). Then, the two different approaches of increasing complexity have been used to model cascading failures,
i.e. a topological complex network-based model and a physical flow-based model (for electrical power grids), are
summarized (Section 3.2). Finally, this problem of redesigning network properties (e.g., topology and link ca-
pacities) to increase network resistence to cascading failures is formulated within a multi-objective optimization

framework, and is solved by evolutionary algorithms (Section 3.3).

3.1 Cascading failures in CI networks

Cascading failure is the usual mechanism by which failure propagates to cause large outages of CI networks,
such as power the electrical power transmission networks (U.S.-CA, 2004; U.C.T.E, 2004; 2007; Pidd, 2012),
the Internet (Newman et al., 2002) and financial networks (Battiston et al., 2007). It is defined as “a sequence
of dependent failures of individual components that successively weakens the system, usually initiated by a dis-

turbance or trigger events” (Baldick et al., 2008).

While cascading phenomena have a diversity of failures and many different mechanisms by which failures can
propagate, load redistribution plays a key role in the process of failure propagation (Motter, 2004; Simonsen et
al., 2008). In the cascading failures taking place on the Internet, traffic is rerouted to bypass malfunctioning
routes, eventually leading to an avalanche of overloads on other routers that are not equipped to handle extra
traffic. The redistribution of the traffic can result in a congestion regime with a large drop of the performance
(Guimera et al., 2002; Crucitti et al., 2004). When cascading failures happen in electrical power grids, the pow-
er of a (for any reason) failed line is automatically shifted to the neighboring lines, which in most of the cases
are able to handle the extra load. Few times, however, also these lines are overloaded and must redistribute
their increased load to their neighbors. This eventually leads to a cascade of failures: a large number of trans-

mission lines are overloaded and malfunction in a very short time period.

In the past two decades, a large volume of work has been devoted to understanding and analyzing cascading
failures, differing for both the logic of failure propagation and the extent to which they abstract the underlying
physical CI systems. A review of different available methods for analyzing cascading failures specifically in

power grids is provided by Baldick et al. (2008). These efforts can be categorized into three classes: (i) (high-
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level) probabilistic analytical models, (ii) simulation and models selecting and approximating a modest subset
of the many physical and engineering mechanisms of cascading failure, and (iii) an extensive complex literature

on cascading in abstract networks.

(High-level) Probabilistic approaches for cascading failures tend to capture the stochastic dynamics of
cascading failures without detailed models of the interactions and dependencies. They provide insight into the
general qualitative features of cascading failures such as the risk of cascading failure, probability distribution of
the outage size and the asymptotic behavior of cascading failures in certain cases. The CASCADE model by
Dobson et al. (2005a) models cascading failures triggered by initial load increments on certain components of
the system. In this model, failures occur due to overloaded components and cascading failures develop as a
result of redistribution of loads among the remaining components. However, the redistribution of loads is based
upon simple assumptions; for example, loads are added equally to the components of the system as a result of

failures.

Probabilistic models based on branching processes (Dobson et al., 2005b; Ren and Dobson, 2008; Dobson, 2012)
have also emerged, providing a framework for studying the statistical properties of cascading failures, such as
the probability distribution of the failure size. These approaches model cascading failures by considering gener-
ations of failures, whereby each failure in each generation independently produces a random number of subse-
quent failures in the network generation, and so on. Branching process-based approaches have the limitation
that they do not have sufficient degree of freedom to capture the effect of physical factors contributing to cas-

cading failures, as the failure generation parameter is the only parameter used in these models.

Simulation and models with a modest subset of physical attributes: There are many simulations and
models of cascading failure using Monte Carlo and other methods, selecting and approximating a modest subset
of the many physical and engineering mechanisms of the system under study. Taking the study of cascading
failures in electrical power grids as an example, the so-called Manchester model (Nedic et al., 2006) is a fairly
detailed blackout model based on AC power flow simulation. The Hidden failure model (Bae and Thorp, 1999;
Chen et al., 2005; Wang and Thorp, 2001) is based on the hidden failure theory and tends to simulates hidden

relay failures probabilistically, taking into account the DC power flow constraint of the network.

In addition, some researchers (Iyer et al., 2009; Wang et al. 2012) provide Markov-transition models for cascad-
ing failure in power grids, where the transition probabilities among states are derived from a stochastic model
of line overloading based on a stochastic flow redistribution model based upon DC power-flow equations. How-
ever, the state space of Markov-based model is large, as it requires tracking the functionality status of trans-
mission lines and power flow information; in addition, due to the analytical complexity of the time-varying
transition probabilities, the analytical and asymptotic characterization of probabilistic metrics, such as the

blackout probability and distribution of the blackout size, is not possible.

Researchers at Oak Ridge National Laboratory (ORNL), Power System Engineering Research Center of Wis-
consin University (PSerc), and Alaska University (Alaska) have proposed a landmark study for blackout model-
ling in power grids, called the ORNL-PSerc-Alaska (OPA) model (Dobson et al., 2001). The OPA model is
built upon the Self-Organized Criticality (SOC) theory and DC power flow attributes, contains two different
time scale dynamics (i.e., power flow dynamics and power grid growth dynamics), and reveals the complexity

and criticality of power systems. Based on the OPA model, it is found that operation near critical points can
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produce power law tails in the blackout size probability distribution, similar to those observed in the analysis of
15 years of North American blackout data (Sachtjen et al., 2000; Dobson et al., 2007; Hines et al., 2009). Only
ideal cases, such as tree networks, and real networks with a small number of nodes (~ 100) have been consid-
ered by Carreras et al. (2002). Large networks and the influence of the topology on the dynamics of the model

have not been studied yet.

Network theory approaches: There is an extensive literature on cascading failures in abstract networks that
has been originally motivated in part by the propagation of failures and congestion in the Internet (Watts,
2002; Motter and Lai, 2002; Holme et al., 2002; Motter, 2004; Crucitti et al., 2004; Kenney et al., 2005; Li et
al., 2013). The dynamics of the cascade is related to statistical topological properties of the networks. Some
researchers (e.g., Albert et al., 2000; Holme et al., 2002) have studied the response of complex networks under

different attack strategies; however, the dynamics of failure propagation has not been considered.

Motter and Lai (2002) have introduced a simple but sophisticated model (referred to as the ML model hereaf-
ter) for cascades of overload failures in networked systems (e.g., the Internet and power grids), based on the
concept of betweenness centrality. The model shows how an even small fraction of highly loaded nodes can
trigger global cascades in networks with heterogeneous distribution of loads. Based on this model, it has been
shown that a strategy of defense relying on the selective removal of components right after the initial attack or
failure and before the propagation of the cascade can constitute an efficient strategy of defense (Motter, 2004;

Li et al., 2013).

Crucitti et al. (2004) have proposed a variation to the ML model in which, instead of permanently removing
the overloaded nodes, the communication through these nodes is degraded, so that eventually the flow of the
relevant quantities (information or energy) will avoid them. In this sense, the model can be considered as well
as a model for congestion in communication networks. Kinney et al. (2005) have applied the model by Crucitti
et al. (2004) to the study of cascading failures in the North American power grid and found that the loss of
vertices with high load causes a higher damage in the system than the loss of random vertices. Simonsen et al.
(2008) studied cascading failure in networks using a dynamical flow model which take into account the network

topology, flow conservation, and the distribution of loads over the ne neighboring links of a node.

Some other studies have addressed the overload breakdown problem in time evolving networks. In fact, as the
network changes, the load is redistributed: if this is not accounted for, it may trigger a node breaking ava-
lanche. Holme et al. have proposed a model for breakdowns triggered by changing nodes (Holme and Kim,
2002) or edges (Holme, 2002) load in an evolving network. The results show the presence of cascading failures,
and those are more violent when the network growth is ruled by preferential rather than random attachment.
Wang and Xu (2004) have studied cascading failures in coupled map lattices (CML) and proposed a model
based on coupled logistic maps in the chaotic regime and a failure threshold mechanism. The breakdown of a
single node is sufficient to trigger an entire network to collapse if the amplitude of the external perturbation on
the single node is larger than a given threshold. Furthermore, it has been found that the threshold for a global-
ly CML is much larger than that for a small-world or scale-free CML. This implies that cascading failures occur

much easier in small-world and scale-free networks than in global coupling networks.
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3.2 Cascading failure modelling approaches in this study

As discussed in Section 3.1, cascading failure models based on Complex Network Theory abstract the represen-
tation of physical infrastructures as graphs and study the connectivity characteristics, the propagation mecha-
nisms through the graph connections and their relationships. These types of models have proved to provide a
good understanding of the specific dynamics of cascading failures (Holmgren, 2006). They have the advantage
of modelling cascading dynamics with few parameters, so that its application to realistic, large-scale networks is

feasible and certainly easier (Kenney et al., 2005).

However, negative accounts on these abstract models do exist, especially when applying to electrical power
infrastructures (which are among the most important infrastructure networks, and will be the focus of this
study). For example, Fitzmaurice et al. (2012) find that the topological nearest neighbor cascading failure mod-
el (namely, the TC model) shows characteristics that are different from two other Kirchhoff models, namely the
linear dynamic (LD) model and the quasi-steady state (QSS) model. Hines et al. (2010) conclude that evaluat-
ing vulnerability in power networks using purely topological metrics may be misleading under some circum-

stances.

For these reasons, in this study, both a representative Complex Network Theory-based model (i.e. the ML
model, Section 3.2.1) and a representative physical power flow-based model (the OPA model, Section 3.2.2) are

embraced for cascading failure simulation in electrical power grids and systematically compared.

3.2.1 The ML model

The ML model assumes that at each time step, one unit of the relevant quantity (e.g., electrical flow for power
grids) is exchanged between every pair of generation and demand nodes, and transmitted along the shortest
path connecting them. Then, the flow at one link is computed as the number of shortest paths passing through
it. More precisely, the flow FML of link [ is quantified by the link betweenness, calculated as the fraction of the

generator-distributor shortest paths passing through that link:

1 n,;(1
FME — iU ep

i€Vg,j€Vp )

(3.1)

where E is the set of all the links in the network; Viz (|Vz| = Ng) and Vi, (|Vp| = Np) are the sets of genera-

tion and demand nodes, respectively; n,. is the number of shortest paths between generation nodes and demand

ij

nodes, and n,; (1) is the number of generation-demand shortest paths passing though link .

In the original ML model (Motter and Lai, 2002), a homogeneous capacity-load relationship is assumed: the

capacity of link [ is assumed to be proportional to its initial flow FlML (0) with a network tolerance parameter a:
CML = (1+ a)FML(0),l € E (3.2)

The concept of tolerance parameter « (o > 0) can be understood as an operating margin allowing safe opera-
tion of the component under potential load increment. The occurrence of a cascading failure is initiated by
removal of a link, which in general changes the distribution of shortest paths. Then, the flow at a particular
link can change and if it increases and exceeds its capacity, the corresponding link fails. Any failure leads to a

new redistribution of loads and, as a result, subsequent failures can occur.
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The detailed simulation of the ML cascading failure model proceeds as follows:

1) A random link is chosen as failed and, thus, is removed from the network.

2) Recur to Equation (3.1) and Floyd's shortest paths algorithm to calculate the flow of each working link
in the network.

3) Test each link for failure: for each link [ € E of the network, if FM* > CME then link [ is regarded as
failed and, thus, is removed from the network.

4) If any working link fails, return back to step 2. Otherwise, terminate the simulation and evaluate the

network damage.

More details of the ML model can be found in Motter and Lai (2002) and appended Papers [3], [4].

3.2.2 The OPA model

The cascading failure model is based on the standard DC power flow equation,
FOPA = A. P (3.3)

where FOP4 is a vector whose M components are the power flows through the lines, FZOP A (le E), Pis a vec-
tor whose N — 1 components are the power injection of each node, P, (N is the total number of nodes in the
network), with the exception of the reference generator, P,, and A is a constant matrix that depends on the
network structure and impedances (see Ref. [10] for details about the computation of A). The reference genera-
tor power is not included in the vector P to avoid singularity of A as a consequence of the overall power bal-

ance.

The generator power dispatch is solved using standard linear programming methods. Using the input power

demand, the power flow Equation (3.3) is solved with the condition of minimizing the following cost function:

P2 Y RO+K Y B »
ieVy §€Vp '

This definition gives preference to generation shift whilst assigning a high cost (set K =100) to load shedding,

and it is assumed that all generators operate at the same cost and that all loads are served with equal priority.

The minimization is done with the following constraints:

1) Generator power injections are generally positive and limited by installed capacity limits: 0 < P, <
g i
Pt i e V.
(2) Loads always have negative power injections: deem <P;<0,j€Vp.
(3) The flow through links is limited by link capacities: |[F2P4| < CPP4.

(4) Total power generation and consumption remain balanced: ZieVGUVD P, =0.

After solving the linear optimization, we examine which lines are overloaded. A line is considered to be over-
loaded if the power flow through it is within 1% of the limit capacity Clo PA Bach overloaded line may outage
with probability p; (p; is set as 1 in the case study in Chapter 5 to ensure its comparability with ML). If an
overloaded line experiences an outage, its power flow limit ClO PA is divided by a very large number k; to en-
sure that practically no power may flow through the line. Besides, to avoid a matrix singularity from the line

outage, the impedances of failed lines are multiplied by a large number k,, resulting in changes of the network
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matrix A. Similary, for more details of the OPA model, one can refer to Dobson (2001) and to appended Pa-
pers [3], [4].

3.3 Network optimization against cascading failures

Cascading failures are manifestation of the potential vulnerability of otherwise highly robust networks (such as
the power grids) due to the interdependency between the successive events. Reliability improvement efforts
(such as critical parts upgrading) are unlikely to eliminate all failures, and future cascading failures in Cls are
inevitable (Talukdar et al., 2003). Therefore, an essential question is, then, how to enhance CI survivability
even if cascading failures happen. This question is here addressed from a holistic system design perspective, i.e.
some system parameters (such as its topology and link capacities) are redesigned in an optimal way to enhance

system’s robustness against cascading failures.

3.3.1 Topology optimization

Albert et al. (2004) demonstrated that the vulnerability of modern infrastructure networks (e.g., power trans-
mission networks) is inherent to their structure. Thadakamalla et al. (2004) revealed that the topology of a
supply infrastructure has great impact on its resilience. Then, much attention has been paid in recent years in
the direction of network topology optimization, with the purpose of achieving desired targets of reliability
and/or robustness (Shao et al., 2005; Gutfraind, 2010; Ash and Newth, 2007).

In practical cases, the cost of knocking down an existing network and reconstructing it from scratch is prohibi-
tive, especially for Cls like the power transmission network. A more practicable alternative is to reconfigure

parts of the network topology, e.g. by reallocation of the links which connect production facilities to consumers.

Consider a weighted undirected graph GG with a set of N nodes representing N, power generators and N, loads
representing distribution substations, interconnected by a set of edges representing transmission lines. The
structure of the network is identified by its adjacency matrix W. The weight of the edge between i and j is
given by their physical distances d(i, j), which we assume directly related to the transmitting cost of the link.
We define the variables to be optimized as the links of generation nodes to the different distribution nodes:

Y _ 1,if © is connected with j directly

w0, otherwise (3.5)

for all i € V and j € V,;. Two constraints have to be met when rewiring generators and distributors: (1) each
distributor node is required to connect with at least one generator node or other distributor node, to make it
accessible to the power supplying generators; (2) each generator node has to connect at least with one distribu-

tor node.

We assume that the cost associated with each connection cutting and rewiring is linearly proportional to the
physical length of the linkage, with coefficient ¢. The total investment cost of a reconstructed pattern X in the

power transmission network can be defined as

Cost(X;;) = Z X, d(i, ) (3.6)

ieVaieVp

where d(i, j) is the physical distance between 4 and j.
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For each reconstructed pattern X, the computationally-cheap ML model is here used to simulate and quantify
the network wvulnerability to cascading failures, which is characterized by the fraction of network (average) effi-

ciency lost in the cascading failure

E(G) - E(G)

Vul(G) = EG)

(3.7)

where Vul(G) € (0,1), G represents the residual network structure after the simulation of cascading failure
(introduced in Section 3.2.1) achieving and maintaining a stable state, and F(G) is the network (average) effi-

ciency defined in Table 2:1.

It should be noted that the effect of the type of initial event could significantly influence the cascading failure
result: the efficiency loss of a cascade triggered by the failure of a critical component could be much more se-
vere than that originated by the failure of a normal component. Therefore, in this study we consider a worst-
case scenario by choosing the failure of one of the top five most loaded nodes as initial failure in each cascade

process simulation and, then, we average the results are averaged on the number of simulations.

Through the quantification of the connection pattern cost and cascading failure vulnerability, the facility allo-

cation problem is formulated as a multi-objective optimization problem:
( min Cost(X;;) (3.8a
1min Vul(QXi) (3.8b
X, Vi .
Zievgqu > 0VvjeV, (3.8¢

s.t. Z

The objective function (3.8a) is the sum of the fixed rewiring costs (to be minimized); (3.8b) expresses the ob-

X, >0vieV, (3.8d

JEVy

jective of maximizing network robustness against cascading failures (i.e., minimizing its vulnerabiltiy). Formu-
las (3.8¢) and (3.8d) represent the two contstaints mentioned above (i.e., each distributor node is required to
connect with at least one generator node or other distributor node, to make it accessible to the power supplying
generators, and each generator node has to connect at least with one distributor node, respectively). Observe
that the least costly generator allocation is simply that with no links among facilities and consumers. Finally,
notice that in this analysis, only the computationally-cheap ML is directly used in the optimization process; the
optimal topology hereby obtained is then walidated only a posteriori by means of the OPA model. The reader is
referred to appended Paper [3] for further details.

3.3.2 Capacity allocation optimization

Various problems concerning the robustness and functionality of CI systems (ranging from power outages and
Internet congestion to affordability of public transportation) are ultimately determined by the extent to which
the CI capability matches supply and demand under realistic conditions (Kim and Motter, 2008a). Actually,
overloading is the most direct cause of failure propagation in a cascading failure. Then, the question is how to
augment the capacities of components in a CI network in an effective manner in order to enhance its robustness
against cascading failure, i.e., which type of capacity allocation pattern is the most robust against cascading

failure.
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In the study of cascading failure in Cls, a homogeneous capacity-load relationship has been widely used (Motter
and Lai, 2002; Crucitti et al., 2004; Motter, 2004; Zio and Sansavini, 2011a; Li et al., 2013), whereby the capac-
ity of a component is assumed to be proportional to the initial flow of the component. However, it has been
argued by Kim and Motter (2008a) that this is unrealistic and empirical data suggests that the relationship
between capacity and load of transmission lines is non-linear (Kim and Motter, 2008a; 2008b): heavily loaded
lines usually have a lower tolerance parameter than lightly loaded lines. Wang and Kim (2007) proposed a
(non-linear) two-step function for the relationship between the capacity and load of network vertices. Although
based on an over-simplified model, it has been shown efficient to prevent cascades by protecting highest-load
vertices. Li et al. (2008) introduced a more complex heuristic capacity model whereby vertices with both higher
loads and larger degrees are paid more extra capacities. It is shown that this model can achieve better network

robustness than previous models under the same amount of available resources.

In the present study, we tackle the issue from a systematic perspective by searching for the strategy of capacity
allocation in a CI (power transmission) network that is most favorable for resisting to cascading failures, while
keeping the total capacity limited (i.e., while minimizing the network cost). This is framed into a multi-
objective optimization problem. In addition, notice that in this context, both the ML and OPA models are di-
rectly used in the optimization process and the corresponding optimal capacity patterns are found: then the

results obtained are compared.

Specifically, we define the variables to be optimized as the capacities of the links in a network G(V, E),
C,,1 € E (namely, CME for the ML model and CZOPA for the OPA model). Thus, the homogeneous capacity
allocation strategy originally used in the ML and OPA model, i.e. Equation (3.2), is no longer adopted in the
optimization. Instead, any non-negative vector C' € ]Rff could represent a potential solution. It is noted that
the searching space ]Rf‘f is intractably large in reality, where a power transmission network usually has hun-

dreds or thousands of links.

Similarly, the cost associated with each link capacity is assumed to be linearly proportional to the value of the
capacity, with coefficient ¢. The total investment cost related to a capacity allocation pattern C € Ry in the
power transmission network can, then, be defined as:

leE
The network damage resulting from a cascading failure in the presence of a given capacity pattern can be ob-

tained by running the cascading simulation (the ML or the OPA model) in correspondence of the capacity

pattern and, then, using

E(Gg) — B(Go)

Vul i (Ge) = 1
(same as Equation (3.7)) when the ML model is adopted, or using
LS Z 2% LS]
Vulopa(Go) = = = =F—Saom Jom (3.11)
D Zjevd Pj
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when the OPA model is adopted. Notice that PJdem and LS, are the demand load and load shedding, respec-
tively, at vertex j; D and LS represent the total load demand and load shedding, respectively, for the system.
One can refer to the appended Papers [3] and [4] for the details of their calculations. The cascade simulations
(ML and OPA) run over several iterations until they either converge or exceed the maximum number of steps.
Finally, the network vulnerability for a given capacity allocation pattern C' is obtained as the average network

damage Vul ;. (or Vulgp, for OPA), over various random triggers.

Through the quantification of the capacity allocation cost and cascading failure vulnerability, the capacity

allocation problem is formulated as a multi-objective optimization:

min Cost(C)

CeRM (3.12a)
min Vul(G
CeRM (Ge) (3.12b)

The objective function (3.12a) is the sum of the link capacity costs (to be minimized); function (3.12b) express-
es the objective of minimizing cascade vulnerability, where Vul(C) is Vul ;. (G) when the ML model is used,
or Vul 5ps (G) when the OPA is used, respectively. Observe that under this definition the most cascade-
resilient network might be the network with infinite capacity, which obviously would conflict with the objective

of minimizing cost.

3.4 Evolutionary algorithms for network optimization

Multi-objective evolutionary algorithms (MOEAs) have proven to be general, robust and powerful search tools
that are desirable for tackling problems involving i) multiple conflicting objectives, and ii) intractably large and
highly complex search spaces (Zitzler et al., 2004). In extreme synthesis, the main properties of Evolutionary
Algorithms (EAs) are that the search for the optima is conducted (i) using a (possibly) large population of
multiple solution points or candidates, (ii) using operations inspired by the evolution of species, such as breed-
ing and genetic mutation, (iii) using probabilistic operations and (iv) using information on the objective or
search functions and not on its derivatives. The main advantages are: (i) fast convergence to near global opti-
ma, (ii) superior global searching capability in complicated search spaces and (iii) applicability even when gra-

dient information is not readily achievable. MOEASs rely on the following concepts (Deb, 2001):

¢ Pareto front: The locus that is formed by a set of solutions that are equally good when compared to
other solutions of that set is called Pareto front.

¢ Non-Domination: Non-dominated or Pareto-optimal solutions are those solutions in the set which do
not dominate each other, i.e., neither of them is better than the other in all the objective function

evaluations. The solutions on each Pareto front are Pareto-optimal with respect to each other.

The topology and capacity allocation optimization problems introduced before are both multi-objective in na-
ture and present two conflicting objectives and complex search spaces: thus, they are suitable to be solved in
the framework of MOEAs. The search space of the topology optimization problem is non-continuous, due to the
binary nature of link connections: hence, the Non-dominated Sorting Binary Differential Evolution (NSBDE)
algorithm (Li et al., 2013) is adopted for its solution. On the contrary, for the solution of the capacity alloca-
tion optimization problem, whose search space is continuous, a fast and elitist genetic algorithm, namely,

NSGA-II (Deb et al., 2002), is applied.
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[ Step 1. Initialize parameters ]
l D
Step 2. Generate an initial population P and fitness
evaluation
! .

Step 3. Generate an offspring population P’ based on P,
fitness evaluation of the new population

'

Step 4. Union of P and P’, sorting the combined
population by a fast non-dominated sorting algorithm
(Deb et al., 2002)

]

[ Step 5. Select nPop individuals based by elitism ]

L Step 6. Stop the algorithm ]

Figure 3:1 Flowchart of the common procedure of NSBDE and NSGA-II.

Figure 3:1 illustrates the common procedure of the two algorithms. It is only the way of generating new off-
spring (step 3) that differentiates the NSBDE from NSGA-II: in particular, the NSBDE algorithm replaces the
crossover and mutation operators (typical of NSGA-II) using a variant of the modified binary differential evolu-
tion (MODE) (Wang et al., 2010). For details about the two algorithms, one can refer to appended Paper [3]
and to Deb et al. (2002).
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Chapter 4 Optimal restoration for en-

hanced CI resilience

While CIP has traditionally focused on physical protection and asset hardening (Bush, 2003; Lewis, 2006),
lessons learned from recent catastrophic accidents have pushed part of the focus on the concept of “resilience’—
i.e., the ability of an infrastructure network to rapidly recover from the effects of a disruptive event (Pur-
siainen, 2009; Obama, 2013). This chapter firstly addresses the issue of resilience definition and quantification
for CI system. Section 4.2 proposes a framework for properly selecting recovery actions in order to optimize the
resilience of infrastructure networks. Then, a heuristic dispatching rule is proposed to timely solve the resilience
optimization problem in Section 4.3. Finally, two novel resilience-based component importance metrics (CIMs)

are proposed in Section 4.4.
4.1 Definition of CI system resilience

4.1.1 Critical review of literature

Holling (1973) introduced the notion of resilience to the scientific world and provided the first system-level
definition. Subsequently, the concept developed independently in disciplines ranging from environmental re-
search to materials science and engineering, sociology, psychology and economics, giving rise to a number of
different definitions and classifications of resilience within these fields (Henry and Emmanuel Ramirez-Marquez,
2012). Yet, it is believed that the current strong interest in resilience for infrastructure systems has been trig-

gered in the aftermath of 9/11 attacks (Haimes et al., 2008).

One of the pioneering works in the field of infrastructure systems resilience is from the Multidisciplinary and
National Center for Earthquake Engineering Research (MCEER) (Bruneau et al., 2003), where a general
framework is provided to define and assess the seismic resilience of communities or any type of physical and
organizational systems. This framework consists of “4Rs”: robustness, redundancy, resourcefulness, and rapidi-
ty, while resilience itself encompasses four interrelated dimensions: technical, organizational, social and econom-

ic.

Based on the general framework provided by Bruneau et al. (2003), various studies have been carried out with
the purpose of providing a practical interpretation of the concept of resilience and identifying possible ways of
measuring it for giving support to resilience-based decisions. Most of these approaches to resilience interpreta-
tion and definition include aspects of a system withstanding disturbances, adapting to the disruption, and re-
covering from the state of reduced performance, and can rely upon a common concept which is illustrated

schematically in Figure 4:1.

A quantifiable and time-dependent system performance function (also referred to system-level delivery function
or figure-of-merit) F'(t) is the basis for the assessment of system resilience. It has a nominal value F(¢,) under
nominal operating conditions. The system operates at this level until suffering a disruptive event at time ¢,.
The disruption generally deteriorates system performance to some level F'(t;) at time ¢;. Then, recovery is

started for increasing back system performance until a targeted level F(t,) is achieved once recovery is com-
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pleted (F'(t,) could be the same (as in Figure 4:1), lower or higher than the original system performance level
F(ty)). The dotted curve in Figure 4:1 denotes the targeted system performance TF(t) if not affected by dis-
ruption. It is noted that various strategies exist for recovery activities, and system performance is ultimately a
function of recovery decisions and actions. The period t; <t < ¢, is generally considered as the recovery time
(Cimellaro et al., 2010).

F(t)

F(to)  Ft)
Flt) ooy
DEisruptidin Recovery
t t, ty t, time

Figure 4:1 Generic system performance transition curve under the occurrence of a disruptive event.

Many studies in the literature define and measure resilience based only on initial system losses caused by disas-
ter. Najjar and Gaudiot (1990) regard network resilience as a measure of network fault tolerance in a multi-
computer system: in this framework, network resilience NR(p) represents the upper bound on the number of
node failures allowed, and is defined as the maximum number of node failures that can be sustained while the
network remains connected with a probability (1 — p). Omer et al. (2009) suggest a model to measure resilience
of a telecommunication cable system as a network infrastructure. The ratio of the “value delivery” of the net-
work after a disruption to that before a disruption is defined as a reference for resilience, where “value delivery”
is the amount of information that has to be carried through the network. Rosenkrantz et al. (2009) identify
resilience metrics for service-oriented networks, where edge resilience of a network is defined as the largest val-
ue k such that, no matter which subset of k or fewer edges fail, the residual sub-network is self-sufficient. Node

resilience is also defined in the same manner.

These definitions focus on the static “survival” property of a system, measuring the degree of system perfor-
mance after a disruption. They largely overlap with the existing concepts of fault tolerance and robustness,
while the temporal dimension of post-disaster loss recovery (i.e. the time ¢ > ¢, in Figure 4:1) is not considered:

on the other hand, this time period is significant for evaluating the system ability to leap back from disruption.

For this reason, other works have considered the system ability to recover from disruption. For example,
MCEER (Bruneau et al., 2003) proposes that the seismic resilience of a community to an earthquake can be
measured by the area between F'(t) and F(t;). Cimellaro et al. (2010) attempt to formulate a framework to
quantify system resilience under seismic risk, taking into account both the losses due to the disaster and the
recovery phase. They view system resilience as the area underneath the performance function F(t) of a system,
normalized by a control time t;,. Ouyang and Duenas-Osorio (2012) introduce a time-dependent resilience
metric for infrastructure systems, where system resilience is quantified as the ratio of the area included between

F(t) and the time axis to the area included between TF(t) and the time axis. The time span considered here is
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from ¢, to a sufficiently large t(¢ > ¢,.) that allows future system evolution: this metric explicitly embraces the

system failure process.

Vulgrin et al. (2010) develop a composite resilience measure Z that simultaneously considers recovery of system
performance and the resource expenditures required to achieve it. Two key quantities are computed: (i) the so-
called systemic impact (ST) (defined as the cumulative impact of decreased system performance following a
disruption and graphically represented by the area between the targeted system performance TF(t) and the
actual system performance F'(t)) and (ii) the total recovery effort (TRE) (defined as the cumulative resources
expended in recovery activities). However, the disadvantage of this approach is that an increase in ST and TRE

implies an increase in its composite resilience measure Z (Z = SI + a TRE), rather than a decrease.

Henry and Ramirez-Marquez (2012) attempt to review different definitions and metrics for system resilience,
and introduce a resilience metric referring to the basic meaning of the word “resilience”. They view resilience

%. This formulation is iden-

R(t) as the ratio of recovery to loss at a given time ¢, measured by R(t) =
tical to Rose’s (2007) static resilience metric when F(t;) is taken to be Rose’s worst-case quantity. Henry and
Ramirez-Marquez (2012), then, apply this measure to various scenarios that disable links in a transportation
network in order to find restoration sequences that maximize recovery at a given time. However, this metric
itself does not embrace the integral temporal dimension of the recovery process, thus neglecting the speed with

which the performance of the system is recovered.

4.1.2 System resilience definition and assessment in this work

In light of the issues highlighted above, we propose a new metric for analytical quantification of the resilience
of infrastructure systems. It is still relying on the basic meaning of the word “resilience” and can be applied to
evaluate and compare the effectiveness of different strategies that are proposed to reduce adverse consequences

of disruptive events.

F(t)

F(to)

F(ts)

t ty t t, time
Figure 4:2 Conceptual illustration of the proposed resilience metric R(t).

Let R(t) be the resilience of a system at time ¢ (¢ > t;). In its basic form, R(¢) is here given the meaning of the
cumulative system functionality that has been restored at time ¢, normalized by the expected cumulative sys-
tem functionality during this same time period. Graphically, R(t) is represented by the ratio of the area with
diagonal stripes S; to the area of the shaded part S,, as illustrated in Figure 4:2. Mathematically, it is given

as:
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R - [IF() = Ftg)dr . "
_j;:[TF(r)—F(td)]dT’ - 1)

The following considerations about the given resilience definition are important:

1) The system resilience R(t) defined in Equation (4.1) measures the cumulative system performance that
has been restored from the system disrupted state to the recovered state at current time ¢, normalized
by the target cumulative performance as if the system were not affected by disruption. This formula-
tion is aligned with the original meaning of the concept of resilience, while capturing at the same time
both the magnitude and rapidity of the system recovery action.

2) The system performance function F(¢) could be represented by different metrics (e.g., the amount of
flow or services delivered, the availability of critical facilities, the number of customers served, or the
enabling potential of economic activities for infrastructure systems), depending on which dimension
(i.e., technical, organizational, social and economic) of resilience the analysis focuses on (Bruneau et al.,
2003). This study concentrates on the technical dimension of resilience and utilizes the amount of flow
delivered to the demand nodes of a network as the performance level metric.

3) Note that R(t) is undefined when F'(¢;) = TF(t), which means that a system does not suffer any loss.
This condition is avoided since only systems exposed to disruptive events are here considered. Practi-
cally, if a system does not suffer any loss, there is no scope for it to be recovered or to bounce back and
thus there is no need to evaluate resilience.

4) R(t) is undefined when t < t;, because of the same reason explained in item 3. Besides, this could
avoid any overlap with existing concepts like robustness, vulnerability and survivability.

5) R(t) € [0,1] and R(t) = 0 when F(t) = F(t;), which means that a system has not recovered from its
disrupted state (i.e. there has been no “resilience” action); R(t) = 1 when F(¢t) = TF(t), which corre-
sponds to the ideal case where a system recovers to its target state immediately after disruption.

6) The target system performance TF(t) is generally evolving due to the dynamic nature of service de-
mand in infrastructure systems. For simplicity, in this study we assume that TF(t) equals F'(¢,) and

remains invariant.

4.2 Optimization model of CI system restoration

After the definition of system resilience, we focus on the role of various recovery decisions and actions in the
task of optimizing the resilience of infrastructure networks subject to disruptive events. A general resilience
optimization model for infrastructure networks is first formulated and, then, the DC power flow is incorporated

as extra constraints when applying to power grids.

4.2.1 General flow-based modelling

The mathematical model for the resilience optimization problem here considered involves an infrastructure
network G(V, E') comprising a set of nodes V' connected by a set of links E. The network nodes are classified
into supply nodes Vg, transshipment nodes V., and demand nodes V, (Vo UV, UV, =V). Each arcij € E
has an associated capacity P;; € R , while each supply node i € Vg has a supply capacity per time unit
P} € Ry and each demand node j € Vj, has a demand PP € Ry per time unit. Network flow is sent from sup-

ply nodes to demand nodes respecting the flow capacities of the links and supply/demand capacities of the
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nodes. Each unit of flow that arrives at demand node j € V, is given a weight w; € Z" in order to differentiate
priorities of demand nodes (e.g., a hospital usually has a higher weight than a residential household in a power
network). The performance of the network is evaluated by determining the maximum amount of weighed flow

that can be received by the demand nodes. Formally, the system performance function is defined as:

F(t)= Z w_jf_j(t) (4.2)

J€Vp
where f;(t) represents the amount of flow received by demand node j at time ¢.

Disruptions happen and create damages to nodes and/or links in the network, as modeled by the removal of a
subset of arcs, E* C E.! The arcs in set E’ are viewed as non-operational immediately after the disruption.

System performance F(t) achieve its minimum value at this time (¢t = 0, i.e. F, ., = F(0)).

In a recovery optimization framework, we are not only interested in identifying a subset of the links in £’ to be
installed to the disrupted network, but also in selecting an optimal order of installation and repair of these
links. The goal is to achieve maximum system resilience over the whole restoration horizon T' € Z*. Link re-
pairs are here assumed to be discrete tasks, and a repair cost 3;; € ZO+ is associated to each arc ij € E’. The
processing time of a single arc restoration is not considered in this study (i.e., the repair action is assumed to
be instantaneous); instead, the main focus is when the disrupted arcs should come back online. In addition, the
number of arcs that can be restored in each time period is constrained by their total cost. By combining Equa-

tions (4.1) and (4.2), system resilience to be maximized at time T is given by

Sy [y, widi(®) = Fin]
T <Zjevp w; PP — Fmin)

R(T) = (4.3)
The optimization variables of the resilience optimization problem include: (i) continuous variables f;;(t) € R},
ij€ Fand t=1,..,T, that denote the flows moving from node i to node j through link ij at time unit ¢; (ii)
continuous variables fj(t) € Rg , j € Vp, that represent the amounts of flow received by demand node j at time
unit ¢, and (iii) binary state variables s,;(t), ij € F'and t = 1,..., T, such that s,;(¢) = 1 if arc ij is operational

and s;;(t) = 0 if arc 47 is not operational at time unit ¢.

We are interested in optimizing the resilience over the whole restoration process: thus, the timespan T is cho-
sen as the total recovery time, defined as the period necessary to restore the system functionality to the same

level as the original system. Consequently, the formulation of the resilience optimization problem is as follows:

Zzi? [ZjEVD wjfj (t) - len]
T (ZjeVD ijjD a Fmin)

max (4.4)

Subject to

U If nodes are important in a specific application problem, they can be converted to equivalent arcs by introducing addition-
al arcs and nodes into the network, i.e. by ‘splitting’ a node into two nodes and an arc.
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S F0 = falt) <P Vie Vg, t={1,...,T} (4.5)
ijeE JieE

S0 =D fat)=0,Vie Vp,t ={1,..,T} (4.6)
ijeE JieE

Z fij () — Z fi) =—f;(t),VieVp,t={1,...T} (4.7)
ij€E jJicE

0< f;(t) < PP VieVp,t={1,..,T} (4.8)
0< fi;(t) < s,;(t)Py,Vije E,;t ={1,...,T} (4.9)
si;(t) < st +1),Vije E,;t ={1,...,T} (4.10)
]EZE Bilsi;(t) — si;(t—1)] < C(t), vt ={1,..,T} (4.11)
5;;(0) =0,Vij € E" and s;;(0) = 1,Vij € E\E’ (4.12)
s5;;(t) €{0,1},Vije E',t ={1,...,T} (4.13)

The objective (4.4) is to maximize the system resilience over the time horizon of the problem. Constraints
(4.5)-(4.9) are typical network flow constraints over the links and supply/demand nodes in the network in peri-
od t. They ensure that: (i) the flow generated at a supply node does not exceeds its supply capacity (4.5); (ii)
the amount of net injected flow at a transshipment node is zero (4.6); (iii) the amount of net injected flow at a
demand node is equal to the received flow at the node (4.7) while not exceeding its requested demand (4.8);
(iv) the flow on an operational link does not exceed its capacity and there is no flow passing through an arc if
the arc has not been repaired (4.9); constraint (4.10) ensures that once an arc has been restored at time t, it
will keep operational thereafter; finally, constraint (4.11) ensures that the total cost paid for repairing links in a

time period does not exceeds the available resources that can be allocated in this period.

4.2.2 Incorporating the DC power flow model for electrical networks

The general flow-based model introduced above assumes that we can directly control the flow in the network
which is not the case for power infrastructure networks (see Bienstock and Mattia, 2007). The DC model is a
commonly used linear approximation of the power grids to model its operations, especially the power transmis-
sion network (Purchala et al., 2005). The OPA cascading failure model (Dobson et al., 2001) is a typical exam-
ple which based on the DC power flow model.

The DC model includes decision variables at each node of the network that represent the phase angle of the
node. The flow on arc ij is then a function of the phase angles of nodes 7 and j along with the reactance of the

arc ¢j. The reactance, b,;, of the arc is dependent on the length of it and the voltage levels. By defining 6, for

13

i € N as the phase angle of node 4, the flow on arc ij is determined by

bijfi‘ = 91 - 9]‘ (414)
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It is noted that both the phase angle variables and the arc flow variables are unrestricted in the DC model. A
negative flow on arc ij corresponds to power flowing from node j to node i. Therefore, it is necessary to incor-
porate constraints that model Equation (4.14) into the optimization problem (4.4)-(4.13). To this end, we
define variables 6, (t) for i € N and t = 1,...,T that represent the phase angle of node i in time period ¢. Then,
the DC flow calculations (4.14) are enforced only when arc ij is operational at time ¢ by using “Big-M” trans-

formation (Coffrin et al., 2011), the constraints (4.9) will be replaced by:

bijfij(t) < 0,(t) = 0;(t) + M[1 —s;;()],Vij € E;t = {1,..., T} (4.15)
bijfig(t) = 0,(8) = 0,(6) = M[1 = s;,(t)],Vij € Bt = {1,.., T} (4.16)
=5, ()P < fi;(t) < s;(t) Py, Vig € Bt ={1,...,T} (4.17)

If 5,;(t) = 0, then the constraint (4.17) force f;;(t) = 0, while constraints (4.15) and (4.16) will not impose any
restrictions on the relationship between the phase angles of nodes ¢ and j due to the big M. If s (t) =1, then
constraints (4.15) and (4.16) make sure that the DC flow Equation (4.14) is satisfied for arc ij in time period ¢
while constraint (4.17) ensures that the capacity of the arc is not violated. The optimization problem (4.4)-
(4.13) where constraints (4.9) has been replaced by constraints (4.15)—(4.17) will be applied to the restoration

of power transmission networks.

4.3 A heuristic scheduling algorithm for optimization solution

The resilience optimization problem (ROP) introduced before is a mixed (binary) integer programming (MIP)
problem, which has O(|E|-T + |Vp| - T) continuous variables, O(|E| - T) binary variables and O(|V|-T + |E| -
T + 2|E’| - T) constraints. It has been proven to be strongly NP-complete (Pinedo, 2012) and, thus, it is com-

putationally intense especially for large-scale infrastructure networks composed of thousands of nodes and links.

It is noted that the evaluation of a potential solution to the ROP (i.e. of a scheduled set of recovery actions on
the disrupted links) requires evaluating the state of the system at a given time, i.e. calculating the network
flows, which is the result of a lower-level network flow optimization. This bi-level optimization structure differ-
entiates the ROP from other resource-constrained project scheduling problems (RCPSP) extensively described
in the literature (Brucker et al., 1999; Pinedo, 2012): these are generally based on the criterion of minimizing
the makespan (the time to project completion) whose calculation is trivial. Consequently, many existing meta-
heuristic algorithms for RCPSP such as genetic algorithms (Hartmann, 1998), simulated annealing (Bouleimen
and Lecocq, 2003), particle swarm (Jarboui et al., 2008) and ant colony optimization (Merkle et al., 2002) are

most likely unable to solve the ROP without incurring in a large penalty in computational expense.

On the other hand, there has been a significant amount of studies in RCPSP proposing some so-called dis-
patching rules, which usually characterize the profitability of scheduling a certain task by evaluating its contri-
bution to the objective function and then greedily schedule the unscheduled tasks with the best profitability
(Pinedo, 2012).

The key point in designing a heuristic dispatching rule for our ROP is to understand how restoring an arc im-
pacts the objective function Equation (4.3) of the problem. In this view, a straightforward idea is to modify the
classical weighed shortest processing time (WSPT) first rule (Smith, 1956) by selecting the arc to be restored as
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the one that maximizes the ratio of the improvement of system resilience and the cost of restoring the arc.
However, this approach is short-sighted in the sense that some links will not enhance the system resilience (i.e.
will not increase the amount of flow received by demand nodes) if they are not restored in a given predefined
sequence with other transmission links. Thus, the profitability of restoring a set of arcs instead of a single arc is

taken into account in designing our dispatching rule.

It is well known that the residual network associated with a maximum network flow does not contain an aug-
menting path from the supply node to the demand node (Ahuja et al., 1993). In this view, in order to increase
the amount of flow received by the demand nodes in the current operational network after a disruptive event, a
set of links forming some residual paths that have the potential to augment the flow received by the demand
nodes must be restored. The main idea of our dispatching rule for the ROP is, then, to select a set of unre-
paired links that belong to some residual path and that maximize the ratio of the potential augmented flow
received by the demand nodes to the cumulative cost of repairing all the uninstalled links in this path. The
potential augmented flow received by demand nodes is further limited by the following three elements: the

residual capacity of the path, the residual capacity of the supply node and the unmet flow of the demand node.

Mathematically, suppose that G,(V, E,) is a partially restored network at time ¢, X* is the optimal flow (the
result of the lower-level network flow optimization) associated with G,(V, E,). The links in G,(V, E,) will,
then, have a residual capacity RP,;; = P;; — f;;(t), Vij € E, and repair cost 3;; = 0,Vij € E,, since they are
already operational. The supply and demand nodes in G,(V, E,) will have a residual capacity RP = P —
f;(t), Vi € Vg and unmet demand RPjD = PjD — [;(t), Vj € Vp, respectively. The unrestored links in the dis-

rupted link set E’ have a residual capacity equivalent with their original capacity RP;; = P,;, and a repair cost

B

B;j- Then, the residual capacity of path P, ,; from supply node s to demand node d is defined as R(P,_,;) =

S

mznijepﬁd

RP;;. The cumulative cost of repairing all the uninstalled links in path P,_,; is Zije P, Bi;- Then,
we are interested in selecting the uninstalled links in the path to be repaired, that is an optimal solution to the
following problem:

min{RPsSv RPde R(P_4)}-wy

max (4.18)
Fanact Lijer, ., i

where R is the set of all paths from all supply nodes to all demand nodes in the original network G(V, E). The
numerator of formula (4.18) provides a measure of the potential augmented (weighted) flow received at demand
node d by restoring path P,_,; while the denominator measures the cost required to restore all disrupted links

in path P,_ ;.

In order to determine an optimal path to (4.18), we suppose that v(P,,_,, ) - w,, is the numerator in an optimal
solution to (4.18), i.e. v(P,, .,) = min {RP> RPP R(P, ..)}; then, P,

sm, 15 the path with the lowest cost
in the network where we only include links whose residual capacities are greater than or equal to y(P,,_,,,)-
This leads to an algorithm to solve (4.18): for each potential value of the numerator (including each potential
value of the residual capacity of a path, each residual capacity of supply nodes and each unmet flow of demand
nodes), we determine the minimum cost path in the network comprising only these links whose residual capaci-
ties are larger than the numerator. The minimum cost path can be obtained by first constructing a weighed

network, where the link weights are set as their repair costs and, then, searching the shortest path on the

36



Optimal restoration for enhanced CI resilience

weighed network constructed. We can, then, obtain an optimal solution in this procedure by marking the path
that has the maximum value of ratio (4.18). It is noted that the residual capacity of a path is the minimum
residual capacity of the links in the path, so there are at most (|Vg| + |Vp| + | E|) different values to be consid-
ered, which means the next sets of links to be restored can be determined by solving O(|Vg| + |Vp| + |E|)
shortest path problems.

Table 4:1 Algorithm for path selection in the dispatching rule.

INPUT: Residual capacity RP;; for each of the links ij € E, residual capacity RP; for each supply node
i € Vg, unmet demand RPJ-D and flow weight w, for each demand node j € V), in the current

network G,(V, E,) associated with an optimal flow X*

1: Set GlobalRatio = 0, P = null.
2: Sort the set {RP;; RP; RPjD } in non-increasing order to obtain an ordered composite set R
3: for ecach r € R

Construct a weighted network G* including only the links, where RP;; > r. The
4: weight of a link is set as 3;; if it is a non-restored link; set the weight as 0 if it is an

operational link

5: for each i € Vg and j € V
Find the shortest weighed path P}, from 7 to j in the network G*, calculate the path
6: * .7
length d(Py,; ) = 22; jcp,  BlE:d)
.. min {RPS,RPP R(P},,)}w ;
7. if P < > Global Ratio
. min {RPF,RPP R(P;,;)}w,
8 Global Ratio = aP,)
9: P =P
10: end if
11: end for

12: end for

13: Return P

Formally, we provide the pseudo code of the algorithm for path selection in our dispatching rule in Table 4:1.
We assume that the residual network G,(V, E,) associated with an optimal flow X* at a given time ¢ has been
calculated as part of the inputs of the algorithm. Other inputs include the residual capacity RP;; for each link
1j € E, the residual capacity RP? for each supply node i € Vg, and the residual capacity RPjD and flow weight
wy for each demand node j € Vj,. The variable GlobalRatio flags the current optimal ratio in formula (4.18).

The output of the algorithm is a path composed of the next set of arcs that should be restored to the network.

After obtaining the next set of links to be restored by applying the algorithm introduced above, we can easily
allocate these link repair tasks into each timeslot subject to constraint (4.11), until all links from this set are

restored. The link repair order within this set is not significant since we assume that a link repair task can be
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split into two timeslots. Therefore, we can view this set of links as a queue and we will restore the next link in
the queue once the previous task is finished. If no links are in the queue, we will determine the next set of links
to be restored by considering the residual network associated with an optimal solution to the lower-level maxi-
mum flow problem, where all links that have been restored are regarded as operational in the network. This

process continues until either all links are restored or the end of the time horizon is reached.

Figure 4:3 A simple disrupted network, where the dashed lines indicate failed arcs

We will illustrate the detailed steps of the above proposed algorithm by applying it to a very simple network.
Consider the post-disaster network shown in Figure 4:3 with supply node A, demand node J and transship
nodes B to I The dashed lines in the figure indicate the failed arcs immediately after a disruptive event (¢t =
0), where the links A-F, F-G, G-J, H-1, I-J, E-J are disrupted. The numbers RP,;/P,; associated with each arc
in the Figure represent the residual capacity RP;; of the arc at time 0 and the original capacity P;;. Note that
the residual capacity of a failed arc is regarded as its original capacity, rather than zero. Similarly, the numbers
8/8 associated with the supply node A represent its residual capacity RP;E = 8 and its original capacity
P% =8; the numbers 7/7 associated with the demand node J represent its unmet demand RPP =7 and flow
demand PID = 7, respectively. Besides, the repair costs of all the arcs are assumed to be constant and set as 1.

The performance of the network is evaluated by the flow received by demand node J.

Shortest weighted path:
@ ADHI2]
o Path length: 2
ThisRatio = 4/2=2

GlobalRatio = ThisRatio = 2
P=A>H>I12)

Shortest weighted path :
@ ADHI2]

Path length: 2
ThisRatio = 4/2=2

GlobalRatio (unchanged) = 2
P=A>H>I12)

Shortest weighted path:
A>B>C>D>E-]
Path length: 1
ThisRatio=1/1=1

GlobalRatio (unchanged) = 2
P=A>H>I1)

Figure 4:4 Illustration of the execution process of the path selection algorithm in Table 1 on a simple network.
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The path selection algorithm in Table 4:1, first sorts the residual capacity array {RPij RP? RPjD } at current
time (¢ = 0), resulting in a non-increasing set R = {8,7,4,2,1}; then, for each value in the set, the algorithm
executes step 4 to step 11, illustrated graphically in Figure 4:4. Note that » = 8 and r = 7 are skipped since
there is no weighed network associated to those two cases. The output of the execution P=A - H -1 — J

is the path that should be selected to be restored.

The network restoration is preceded by applying this path selection algorithm and then allocating these link
repair tasks of the selected path into each timeslot subject to constraint (4.11). Assuming that only a single arc
can be repaired at any given timeslot, we can obtain the optimal restoration curve of the network performance,

as shown in Figure 4:5.

Received flow
~

Figure 4:5 Optimal restoration curve of the network performance.

4.4 Resilience-based component importance measures (CIMs)

Based on the definition of system resilience and the resilience optimization framework, this Section addresses

the issue of quantifying the importance of components in contributing to the resilience of a CI.

4.4.1 A brief overview

Various analytical and empirical CIMs have been proposed in the literature, e.g. Birnbaum (Birnbaum, 1968),
Fussell-Vesely (Fussell, 1975), Reliability Achievement/Reduction Worth (Gandini, 1990; Levitin et al., 2003),
and their extensions (Andrews and Beeson, 2003; Wang et al., 2014; Ramirez-Marquez and Coit, 2005, 2007),
including those introduced in Chapter 2.3. CIMs have been shown valuable in establishing direction and priori-
tization of actions related to an upgrading effort (e.g., reliability improvement) in system design, or in suggest-
ing the most efficient way to operate and maintain system status. However, none of the existing classical CIMs
based on the reliability concept are directly applicable to the post-disaster phase, since there is no scope to

exhibit reliability after the occurrence of system failure.

The role that a component plays in a network system has been measured by various so-called centrality
measures, looking from the point of view of the complex interaction and communication flow in the network
(Borgatti, 2005; Kroger and Zio, 2011). As already introduced in Chapter 2, classical topological centrality
measures are the degree centrality (Nieminen, 1974; Freeman, 1979), the closeness centrality (Freeman, 1979),
the betweenness centrality (Freeman, 1979), and the information centrality (Latora and Marchiori, 2007). They
specifically rely on topological information to qualify the importance of a network component. Additionally,
Freeman et al. (1991) proposed a flow betweenness centrality measure based on the idea of maximum network

flow; Newman (2005) suggested a random walk betweenness measure that counts essentially all paths between

39



Optimal restoration for enhanced CI resilience

vertices and which makes no assumptions of optimality; Jenelius et al. (2006) proposed several vulnerability-
based importance measures for transportation networks; Hines and Blumsack (2008) introduced an “electrical
centrality” measure for electrical networks by taking into account the electrical topology of the network; Zio
and Piccinelli (2010) provided a randomized flow model-based centrality measure specifically for electrical net-
works; Zio and Sansavini (2011a) introduced component criticality measures from the cascade failure process
point of view, for general network systems. Nevertheless, none of these analyses takes into account the dynam-

ics of system recovery from the effects of a disruptive event.

Resilience-based metrics of component criticality with respect to their influence on the overall resilience of the
system (i.e., on the system’s ability to quickly recover from a disruptive event) can be helpful for preparing an
efficient component repair checklist in the event of system failure (Natvig et al., 2011). Recently, Baker et al.
(2013) introduced two resilience-based network component importance metrics. However, the resilience defini-
tion, which the importance metrics rely on, does not embrace the temporal dimension of system recovery and it
is, thus, unable to measure how fast the performance of a system comes back to an acceptable level. Besides,
the two metrics do not quantify the influence that the recovery of particular components has on the overall
resilience of the system and they are, thus, limited in providing valuable information for system restoration

strategy making.

4.4.2 Resilience-based CIMs definition

The analysis concerns a network G(V, E) comprising a set of nodes V and a set of links E. The binary state
variable of arc ij at time ¢ is denoted by sij(t), Vij € E. The initial impact experienced by the network after a
disruptive event e at time ¢ = 0 is represented by the removal of a subset of arcs, E’ C E, from the network,

setting s;;(0) = 0, Vij € E/. We introduce the failure probability of arc ij under event e, p,(ij)
P[sij(O) =0le] = p,(ij),Vij € E (4.19)
Equation (4.19) describes how individual components (links) are initially affected by a disruptive event e.

When considering component criticality in a resilience setting, we are interested in understanding: (i) the opti-
mal time to repair the failed components in order to maximize system resilience, and (ii) the effect that the
timely recovery of the components have on the overall resilience of the system. These concepts are at the basis

of the definition of the two resilience-based importance measures here proposed.

Given a particular initial failure state, the optimal repair time (ORT) ﬂ?p b of a failed arc ij can be computed

by solving the MIP problem (4.4) - (4.13):

opt __
T =arg maz R(T) (4.20)

The timespan for restoration, T', is chosen as the time period necessary to restore the system functionality to

the same level as the original system. It is noted that the optimal repair time T;}p * offers an explicit quantifica-

tion of the priority that should be given to the reparation and installation of arc ¢j into the network. Low val-

ues of ﬂ?p " indicate higher priority of being repaired and re-installed into the network, i.e. higher ranking of the

component in the repair checklist.
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To account for the delay in the restoration of a particular link 47, a resilience reduction worth (RRW) metric is

introduced as

RO (T) — ROV (T|T,; = T + Aty)

RRW,;(Aty) = R (T

(4.21)

where RP*(T') represents the optimal system resilience at restoration time T'; R (T'|T;; > ﬂ?p '+ At,) corre-

sponds to the optimal system resilience at time 7' if link ij cannot be repaired until time (T;}p s At,), where
At is the delay with respect to its optimal repair time ﬂip L Equation (4.21) quantifies the potential (normal-
ized) loss in optimal system resilience due to a delay At in the repair of link ij. This metric is comparable to
the so-called reliability reduction worth (Espiritu et al., 2007), which measures the potential damage caused to
the system reliability by the failure of a particular component. It can provide valuable information to guide the
recovery process of a particular component. Components with high values of RRW,; (At) should be given high
priority in the restoration process, e.g. be assigned adequate restoration resources to avoid delays that would

have a more significant impact on system restoration.

4.4.3 Methodology for component importance ordering

Ordering network links recovery on the basis of the values of the criticality measures described above, i.e., the

optimal repair time T;}p " and resilience reduction worth RRW,; (fixed Aty), requires quantifying the effect of

timely repairing these links on the overall resilience of the system. Given the stochastic nature of disruptive
events in terms of components failures after the event, the resilience-based criticality measures introduced are
not represented by deterministic values, but rather by probability distributions. Therefore, given a network
G(V,E) under a disruptive event e, we first apply a Monte Carlo-based method to generate distributions of

optimal repair time T;}p " and resilience reduction worth RRW,;(Aty) for all the links in the network; then, we

rank links importance using a stochastic approach based on the Copeland's pairwise aggregation method (Mer-

lin and Saari, 1997). The detailed steps of the algorithm are as follows:

Step 1. A network G(V, E) is initially operating with a given parameters setting: flow demand PjD of all
the demand nodes in Vp, supply capacity Pl-s of all the supply nodes in Vg and link capacity
P(ij) for all the network arcs in E.

Step 2. A failure configuration of the network is randomly sampled on the basis of the failure probabilities
of each arc in the system given by Equation (4.19), under a disruptive event e at initial time ¢ = 0.
The operation state variables of failed links are set to 0, i.e., s,;(0) =0, Vij € E’.

Step 3. The resilience optimization model of Equations (4.4) - (4.13) is applied and solved by Cplex to ob-
tain the optimal strategy of network recovery, i.e., the optimal repair time ﬂ?p * for each failed arc
ijeE.

Step 4. In order to evaluate the second importance measure RRW,;(Aty), for each failed arc ij € E’, the
additional constraint that the restoration of arc ij should not be accomplished earlier than
ﬂ?pt + Aty (ie., T > Ti‘;pt + At,) is added to the optimization model of Equations (4.4) - (4.13).

Then, RP!(T|T;; > ﬂ?p * + At,) is obtained by solving this “modified” optimization model by

Cplex. Finally, the resilience reduction worth RRW,;(At,) for each arc ij is recorded.
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Step 5. To account for the stochasticity of the disruptive event in terms of arcs failures, repeat Step 2 to
Step 4 for a chosen number R of iterations, generating probability distributions for ﬂ?p * and
RRW,;(Aty), for all the links in the network.

Step 6. Given the distributions of T;}p " (resp., RRW,;;(At)) for each arc ij, perform a stochastic ranking

of links according to ascending (resp., descending) T;;p * values (see Section 4.4.4).
4.4.4  Stochastic ranking

In order to rank network links according to the distribution of their optimal repair time T;}p t (or resilience re-
duction worth RRW,;(At,)) obtained at step 6 of the algorithm above, an approach based on the Copeland's
pairwise aggregation method (Merlin and Saari, 1997) is proposed. The Copeland’s method (CM) is a simple
non-parametric Condorcet method used in the political field (voting) that does not require any information
about decision maker preference and operates on a multi-indicator matrix formed by m objects characterized
by {2 attributes (Pomerol and Barba-Romero, 2000). CM relies on pair-wise comparisons between objects in the
candidate pool, and the so-called Copeland score is defined for each object as the difference between the num-

ber of times that this object beats the other objects and the number of times that it is beat by other objects.

The CM-based ranking approach applied here corresponds to a modification proposed by Al-Sharrah (2010). It
first examines the CDF of a given variable for all the candidates, e.g., the CDF of T;;pt,V(i,j) € E; then, it
compares the CDF of two candidates under analysis, i.e., links ij and ij, with respect to specific attributes g,
of the CDF: for example, attribute g, may represent the kth percentile. Subsequently, a quantity Sy (ij,7j) is
calculated based on a pairwise comparison between links ij and ij with respect to (percentile) g, of the corre-

sponding distributions, k =1,..., {2

C_1(ig,i5) + 1, if q,.(i7) beats g, (i7)
Se(ig.ij) = < Cy_1(i4,35) + 0.5,if g, (ij) and g, (i) are tied (4.22)
C._1 (i3, 17), if q,,(i7) beats g, (i7)

where the sentence “g,,(ij) beats g, (ij)” means that q,(ij) dominates g, (ij) with respect to the ranking rule of
the variable considered, i.e., q,(ij) < g (ij) for Ti‘;.pt7 while g, (i) > q,(ij) if RRW,;(Aty) is considered.
So(ij,1j) is initialized at zero for the first (percentile) ¢, and Equation (4.22) is iterated through all £2 attrib-

utes (percentiles). Then, the Copeland score for each link ij is defined as

C(ij) = > Sqlif, ij) (4.23)

1j#i]

This Copeland score is finally used to rank all the links: the higher C(ij), the higher the contribution of link ¢j

to the overall resilience of the network.
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Chapter 5  Applications

This Chapter reports the results of the application of the models and methodologies described in the previous
Chapters to realistic CI networks. Only main results and insights are provided, while for further details the

interested reader is referred to the corresponding Papers [1-6] of Part II.

5.1 Applications of the hierarchical network representation framework

It is known that most network reliability problems are NP-hard and therefore there is a significant gap between
theoretical analysis and the ability to compute different reliability parameters for large or even moderately
large network systems (Gertsbakh and Shpungin, 2008). In this respect, the hierarchical network representation
proposed in Chapter 2 sets up a framework in which the reliability and vulnerability characteristics of complex

network systems can be computed efficiently, due to the multi-scaled information representation scheme.

In this Section, we refer to a realistic CI network, i.e. the 380kV Italian Power Transmission Network
(IPTN380) (see Figure 5:1), to illustrate how the hierarchical representation framework can be applied to the

analyses of network (node-pair) reliability and to the computations of the extended CIMs.

Figure 5:1 The 380kV Italian Power Transmission Network (IPTN380) (Zio and Sansavini, 2011a).

The TPTN380 (Figure 5:1) is a branch of the high-voltage-level transmission, which can be modeled as a graph
of N = 127 nodes connected by M = 171 links. It is important to underline that only the topology of the
physical system is taken as reference and used in the analyses, so that the hierarchical model and clustering

relate only on the network structure with no specific relation to the electrical properties of the system.

The network has been modeled as a five levels hierarchy (to which correspond five fictitious networks) by suc-
cessively applying the USCA introduced in Chapter 2.2.1. Figure 5:2 presents the hierarchy structure of the
IPTN380 and the artificial networks associated with the first 3 levels of the hierarchy. At the top of the hierar-
chy (i.e. Il = 1), the network is a single unit, i.e. one artificial vertex V1<1), which consist of all actual nodes. At

the second level, we have A® ={V® v v¥ vl and B ={E3 EY ES ER} with
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V1<2)7 VQ(Q),V'?,@), V4(2) - Vl(l). The integer number indicated in Figure 5:2 in proximity of the generic i-th artifi-
cial node Vi(Q) indicates the number of actual nodes which compose it: e.g. V1<2) is representative of a group of
38 actual network nodes. Note that at the bottom of the hierarchy, we find the original network, i.e. each arti-

ficial node is an actual node and each artificial edge corresponds to an actual link.
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Figure 5:2 The hierarchy structure of the IPTN380 and associated artificial networks of the first three levels.

5.1.1 Terminal pair reliability analysis

The terminal-pair or node-pair reliability (TPR) problem amounts to determining the probability of successful
communication between a specified source node and a terminal node in a network, given the probability of
success of each link and node in the network. When the computational cost of the network is high (it grows
exponentially with the number of network components), then the artificial network at a suitable level of the
hierarchy can be leveraged to carry out the analysis of TPR. For a detailed interpretation of TPR based on the

hierarchical framework, one can refer to appended Paper [2].

In Figure 5:3 right-panel, the connection reliability between nodes 1 and 127 in the IPTN380 (left panel in
Figure 5:3) is shown as resulting from evaluations at each of the five levels of the hierarchical model described
in the previous Section. The right panel of Figure 5:3 gives the probabilities of connectivity failure between
nodes 1 and 127 from level 2 to level 5 (top) and the computational time needed for the analysis (bottom); the
values have been normalized with respect to the maximum values of connectivity failure probability and com-

putational time, which occur at the bottom of the hierarchy (level 5) corresponding to the whole network. The
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result at the first level has not been shown since its value is simply 0, i.e., node 1 and 127 are in a single unit
and will not disconnect. One can see that the difference between the actual and estimated failure probabilities
decreases as the assessment moves downs to the bottom of the hierarchy, balanced by the computation time
which instead increases significantly. The decision maker can obtain satisfying estimations of the failure proba-

bility at a hierarchical level of lower complexity, e.g. level 3, thus saving significant computation time.
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Figure 5:3 Illustrative example of terminal pair reliability assessment of IPTN380.

5.1.2 Computation of the extended CIMs

In Chapter 2.3, three extended CIMs, i.e. EBI, ECI and EFVI, have been introduced to account for the multi-
ple terminal or node pairs (e.g. generator-distributor pairs) of a network system where connectivity defines the

network functionality.

The extended CIMs introduced have been calculated for the IPTN380 at different levels of the hierarchical
model of the system developed. For the evaluation, an artificial node functions as a generator as long as there is

at least one actual generator node within it; otherwise, it is simply a distributor.

Table 5:1 EBI and EFVI at level 2 of the hierarchical model.

EBI EFVI
Artificial Edge Associated Actual Edges
Rank Value Rank Value
{2-4} 1 0.3750 1 0.3750 {107-109,112-114,110-111}
{1-4} 2 1.9606E-03 2 1.9605E-03 {64-78,71-83}
{1-3} 3 1.4817E-03 3 1.4817E-03 {59-60,61-62,30-34,30-31}
{3-4} 4 1.5100E-05 4 1.4900E-05 {76-79}
Table 5:2 ECI at level 2 of the hierarchical model.
Artificial Edges Rank ECI Associated Actual Edges
{24} 4 0.37 {107-109,112-114,110-111}
{1-4} 2 7699812.62 {64-78,71-83}
{1-3} 3 16.55 {59-60,61-62,30-34,30-31}
{3-4} 1 7699828.67 {76-79}
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Table 5:1 and Table 5:2 report the results of the importance assessment (EBI, EFVI are given in Table 5:1 and
ECI in Table 5:2) for the artificial edges of the network at level 2 of the hierarchy. For EBI and EFVI, all
components in the artificial network have the same importance rank, but with slight differences between EBI
and EFVI values; also the artificial edge {2-4} is the most important in the artificial network (see the bottom
panel of Figure 5:2). This is due to the fact that this artificial edge is the only possible link between a generator
in artificial node ‘/2(2) and the distributors in other artificial nodes, and thus its disconnection would cause a
large-scale generator-distributor connectivity failure. The rank based on the ECI is different from that of EBI
and EFVI, and the most important artificial edge is {3-4}; the difference lies in the definition, as discussed
before: EBI depends only on the structure of the system and not on the reliability of the considered component,
whereas ECI takes the unreliability of the component into consideration; in fact, the artificial edge {3-4} is

made of only one actual edge with relatively high probability of failure, which leads to the highest ECI value.

By combining the indications of EBI and ECI, it is advisable to offer indicators to the decision maker for the
purpose of system maintenance and operation optimization (Van der Borst and Schoonakker, 2001). When EBI
& EFVI is high and ECI is low, like in the case of artificial edge {2-4}, system safety can be improved by pro-
tecting against failure of each component, e.g., by adding alternative edges between artificial node \/2(2) and
node V1<2) (or V3<2)). For the case of low EBI & EFVI and high ECI (artificial edge {3-4}), the decision maker

should invest in improvements of the component itself, to decrease the failure probability.

' 0@8 %
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Figure 5:4 Most critical edges at level 3 of the hierarchical model.

Table 5:3 EIMs evaluation time at each level of the hierarchical model.

Computation time (seconds on a computer with 2 CPU 3.06G 3.07G)

EIMs

Level 2 Level 3 Level 4
EBI 0.3856 108.5 31763.58
EFVI 0.2086 112.2 32179.50
ECI 0.5152 175.0 47621.58

For details about the results of the EIMs at levels 3 and 4 of the IPTN hierarchical model, one can refer to the
appended Paper [2]. Interestingly, the bold edges in Figure 5:4 represent the edges of the actual network system

which have resulted most critical based on the extended importance measure evaluation carried out at level 3 of
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the hierarchy model. These edges should be paid special attention. For links {110-111, 112-114, 107-109}, im-
proving the defense in depth against their failures is advisable for improving the reliability of the system,
whereas for links {64-78, 71-83, 76-79, 80-95, 75-88}, the edge unreliability should also be mitigated.

More importantly, Table 5:3 reports the computation times required for the calculations of the EIMs at differ-
ent levels in the hierarchy: as expected, the more we go down in the hierarchy, the higher the computation

time.

5.1.3 Brief summary

The introduced framework for hierarchical modelling of large-scale CI network systems, which leads to the
definition of different varied-size grained artificial networks, provides a multi-scaled representation of the sys-
tem, with more detailed information but high complexity at the lower levels of the hierarchy, and simplified
structure, but relatively low complexity at the higher levels. The availability of different scales of modeling
resolution allows a flexible management of the analysis, at the level of details desired for its purposes. The
computations of network node-pair reliability and the extended CIMs involving the IPTN380 have demonstrat-
ed the effectiveness of the proposed method.

5.2 Network optimization against cascading failures — comparative study

Figure 5:5 The 400kV French power transmission network (FPTN400) (RTE, 2011).

This Section applies the frameworks of network optimization against cascading failures proposed in Chapter 3
to the 400kV French Power Transmission Network (FPTN400) (see Figure 5:5). This network has 171 nodes
(substations) and 220 edges (transmission lines). We distinguish the generators, which are the source of power,
from the other distribution substations, that receive power and transmit it to other substations or distribute it
in local distribution grids. By obtaining the power plants list from EDF website (EDF, 2013) and relating them
with the ID of the buses in the transmission network, we have 26 generators and 145 distributors. Only the
nuclear power plants, hydroelectric plants and thermal power plants whose installed capacities are larger than
1000 MW, are considered.
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5.2.1 Topology optimization based on the ML model and its validation by the OPA model

For the optimal reallocation of the power generating nodes to the other nodes of the FPTN400 (i.e., the topolo-
gy optimization proposed in Chapter 3.3.1), we utilize the NSBDE algorithm detailed in appended Paper [3].

The Pareto front obtained by the NSBDE algorithm at convergence is illustrated in Figure 5:6, where the dia-
mond point represents the current network with the present pattern of connecting links, which is also the least
costly network; the square point is the most resilient network, whose cascading vulnerability is 0.184. It is not
unexpected that the original network is the least costly one, since the electrical transmission lines and substa-
tions are placed with geographical constraints and connections between two distant substations are avoided.

Actually, cost-effectiveness is a major consideration in constructing real power transmission networks.
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Figure 5:6 Pareto front reached by a population of 25 chromosomes evolving for 300 generations.
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Figure 5:7 Comparison of the cascading vulnerability between the original and the most resilient networks under different
network tolerance values.

It is also noted from Figure 5:6 that the cascading failure resilience of the FPTN400 can be improved signifi-
cantly by properly rewiring the generator-distributor connections, though at a cost; the network vulnerability is
decreased from 0.728 to 0.184 (when the tolerance parameter a=1.3) with an increased cost of 7.3 x 10? (i.e.,

53.16 times increase). Figure 5:7 reports the cascading vulnerability comparison between the original network
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and the most resilient one (Pareto solution #17) with different values of the tolerance parameters a. It shows
that when the network tolerance is very low, i.e. 0 < a < 0.1, the optimized network loses most of its efficien-
cy, i.e., it is quite vulnerable to intentional attacks, possibly due to its intensive loading condition. However,
when « > 0.3 (which is generally the normal operating condition (Baldick et al., 2008)), the optimized network

loses less than 20% of its efficiency during a cascading failure initiated by intentional attack.

Albeit a substantial improvement of the cascading failure resilience of the FPTN400 is possible by adding re-
dundant links, a tradeoff between the cost and resilience improvement is necessary for rational decision-making.
Along the Pareto frontier of the potential solutions, there are some points at which a small sacrifice of cost
gives a large gain of cascading resilience. More generally, by taking a network solution and its neighbor on the
frontier (the less costly one), one can define a rate of change of cascading resilience with respect to cost:
|AVul/Acost|. This rate can be utilized as a reference to choose the optimized network: the larger the ratio, the

more preferred the network is.

The optimization results presented above are based on the ML model which abstracts basic power flow con-
straints and electrical characteristics of the power transmission network. Thus, the more realistic OPA model
is, then, utilized to validate a posteriori the optimal results found. The verification is not straightforward due
to the differences of the two models in the way of representing and initializing system capacity, in the iterative
algorithms they rely on, and in the way of measuring the damage produced by the cascading failure. According-
ly, some assumptions and adjustments to the OPA model (see appended Paper [3] for the details) have been

taken to ensure its applicability to assess the optimization solutions obtained based on the ML model.
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Figure 5:8 Cascading vulnerability (normalized load shedding) evaluated by the OPA model for the five chosen networks
over a range of network tolerance values o under targeted initial failure.

Five representative solutions (i.e., the least cost network FPTN400, Pareto solution #17 (7300, 0.184) which is
the most resilient, together with solutions #3 (310.6, 0.59), #5 (3344.3, 0.28) and #13 (1003.8, 0.48) whose
|AVul/Acost| values are comparatively large) along the Pareto front in Figure 5.6 are chosen as the basic net-

work topologies to be verified by the OPA model.

In Figure 5:8, we plot the curves of normalized load shedding LS/D (Equation 3.11) versus network tolerance
a obtained by applying the OPA model to the five representative networks selected from the Pareto front (ob-
tained using the ML model). The OPA simulation is triggered by removing one of the top five most loaded
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nodes (i.e., by a targeted initial failure). Analogous to the ML model (Figure 5:7), the network damages de-
creases when network tolerance increases for all the networks. When network tolerance value is high enough
(o > 1.2), any small intentional disturbance on the network would tend to cause quite low damage to the func-
tioning of the network (< 1%). Most importantly, it is observed that in the OPA simulation, the network cor-
responding to Pareto solution #3 (310.6, 0.59) (green triangle curve) is more resilient, i.e., it presents less load
shedding than the original network (red circle curve) over a wide range of network tolerance a (ie., 0 < a0 <
1.2); in addition, solution #13 (1003.8, 0.48) (magenta diamond curve) generally outperforms solution #3,
while solution #5 (3344.3, 0.28) (grey star curve) outperforms #13 in terms of cascade resilience. Finally, Pare-
to solution #17 (7300, 0.184) (which is the most resilient network according to the ML model) presents the
lowest load shedding among the five networks over the entire range of o values considered. This ranking of

cascading failure resilience in the OPA model is consistent with the simulation results based on ML model.
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Figure 5:9 Cascading vulnerability (normalized load shedding) evaluated by the OPA model for the five chosen networks
over a range of network tolerance values o under random initial failure. The results have been averaged over 30 different
samples.

Figure 5:9 shows the results of OPA simulation on the five networks, where the failures are triggered by remov-
ing a randomly chosen node (i.e., random initial failure) and the results are averaged over 30 different samples.
The ranking of cascade resilience of the five networks here is also parallel with the optimization results based
on ML. This demonstrates that a resilience-improved network from the optimization based on the ML model is
also more resilient than another one if evaluated by the more realistic OPA cascade simulation, therefore, veri-

fying that the insights gained by the topological optimization approach are valid.

It is also important to remember that the results produced by the simple ML topological model are obtained at
a much lower computational cost than those of the OPA model: actually, the average time needed to carry out
a single cascading failure simulation is 3.9s and 20.8s for the ML and OPA models, respectively, on a double

2.4 GHz Intel CPU and 4 GB RAM computer.

5.2.2 Capacity allocation optimization based on the ML and OPA models

For optimal allocation of link capacity in the FPTN400 network, the NSGA-II algorithm is applied with re-
gards to the objectives of minimizing investment cost and cascade vulnerability, expressed by functions (3.12a)

and (3.12b), respectively, in Chapter 3. Differently from the previous Section 5.2.1, both the ML and OPA
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models are used directly in the optimization process to evaluate the cascade vulnerability of the proposed net-
work. It is evident that the ML and OPA models provide different results at the local scale (Cupac et al.,
2013); however, in this study we evaluate to what extent the two approaches are consistent at the global sys-

tem level. In particular, we compare the two approaches by performing the following analyses:

*  We verify whether the Pareto fronts based on the ML and OPA models exhibit similar characteristics
in terms of phase transitions of cascade vulnerability with respect to normalized investment cost;

*  We investigate whether the Pareto optimal solutions showing the same level of investment cost also
present similar capacity allocation patterns;

*  We examine whether the link capacities patterns along the two optimal frontiers exhibit similar char-

acteristics for decreasing network vulnerability (i.e. for increasing network resilience).

Figure 5:10 shows that ML and OPA Pareto fronts exhibit similar phase transitions (although their absolute
values are different, which is not unexpected considering the fact that they apply different modelling parame-
ters and cascade vulnerability measures): both curves present a sharp decrease in network vulnerability in the
same Cost region (i.e. 1.0 < Cost < 1.5), where a small increase in the cost gives a large gain in terms of cas-
cade resilience. Besides, regions of plateau exist for certain cost values in both models (i.e. for 1.5 < Cost <
1.75 and 2.0 < Cost < 2.2 in ML, and for 1.5 < Cost < 1.8 and 2.15 < Cost < 2.45 in OPA), in which increas-
ing investment cost does not improve network resilience. Finally, both curves show a relatively stable regime
for large Cost values (i.e., Cost > 2.2), where network resilience is already high and its relative improvement is
negligible even for a significant increase in the network cost (for example, referring to the ML model, increasing

Cost from 1.97 to 2.61, i.e., of 32.5%, we reduce the network vulnerability of only 1.5%).

Cascade vulnerability

Figure 5:10 Phase transitions in the Pareto optimal fronts showing cascade vulnerability (i.e., average efficiency loss for ML
and average load shedding for OPA) with respect to normalized investment cost.

Then, we compare the link capacities patterns of those solutions along the two Pareto fronts that present ap-
proximately the same values of Cost. In particular, three representative values of normalized cost (i.e.,
Cost=1.07, 1.27 and 1.81) along the Pareto fronts are chosen, and the relationship between the link capacities
of the corresponding optimal solutions obtained by the ML and OPA models are visualized using the scatter-
plots of Figure 5:11(a), (b) and (c), respectively. It is evident that the link capacities of the optimal solutions
based on the ML, and OPA models are highly correlated (with correlation coefficient 7y, 5ps=0.73, 0.69 and
0.76, respectively). That is, links with low capacity in the ML model are likely to have low capacity also in the
OPA model, and links with high capacity in ML also have high capacity in OPA.
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Figure 5:11 Scatter plot of the (normalized) link capacities of three representative ML and OPA Pareto solutions showing
the same normalized cost. The link capacities of the Pareto solutions with the same level of cost show highly correlated
allocation patterns: (a) ML solution (1.07, 0.63) versus OPA solution (1.07, 0.30): 751 opa = 0.73; (b) ML solution (1.27,

0.24) versus OPA solution (1.27, 0.21): 7,1 opa = 0.69; (c) ML solution (1.81, 0.074) versus OPA solution (1.81, 0.057):

Tyr.opa = 0.76. The line of best fit is also plotted, for visual guidance.

Finally, it is interesting to analyse how the pattern of link capacities changes when lower network cascade vul-
nerability (higher network resilience) is demanded, i.e., which type of capacity allocation pattern is the most
favourable in resisting to cascading failures. We tackle this problem by investigating the "expected" network
link capacity pattern as a function of cascade vulnerability, i.e., the configuration of capacity pattern "aver-
aged' over all possible solutions of the Pareto front lying within a given 'regime" (i.e., interval) of cascade vul-
nerability of interest. Parameter 5° (namely, 53,, for ML and £¢,p, for OPA) is used to represent the 'regime"
of vulnerability, where s indicates the size of the corresponding interval. It is noted that smaller 5° represents

higher network resilience.

Figure 5:12 reports the results of averaged link capacities patterns for three different levels of cascade vulnera-
bility, i.e., 0.6 < %1 < 0.7, 0.3 < 8% < 0.4 and 0 < 8%! < 0.1 in the case of a classical homogeneous alloca-
tion strategy (circles) and of the optimization-based approach of our study (squares). The left panel (a-c) is
referred to ML, whereas the right panel (d-f) relates to OPA. It is found that the optimal link capacity patterns
exhibit consistent characteristics between ML and OPA models. For example, in both cases, the optimal link
capacities patterns are similar to their corresponding homogeneous allocations only in less resilient networks,
i.e., when 0.6 < %1 < 0.7, where the objective of minimizing investment cost is much more biased (Figure

5:12(a) and (d)). When we increase the importance of minimizing the network vulnerability (e.g., for
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0.3 <% <0.4 and 0 < %! <0.1), the optimal link capacities show a non-linear relationship with respect to
their initial flows, as shown in Figure 5:12(b), (c¢) and Figure 5:12(e), (f). Specifically, the heavily loaded links
tend to decrease their capacities and the lightly loaded links tend to increase their capacities. That is to say,
the unoccupied portion of capacity tends to decrease in links with larger loads and the unoccupied portion of
capacity tends to increase in the less loaded links. Furthermore, the more importance is given to the minimiza-
tion of network cascade vulnerability, the more pronounced the non-linear behaviour is, as shown in Figure
5:12(c) and (f). Our findings are consistent with the empirical observations and results from the traffic fluctua-

tion model (Kim and Motter, 2008a; 2008b).
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Figure 5:12 “Averaged” optimal link capacity patterns for three different levels of cascade vulnerability (0.6 < 8% < 0.7,
0.3 < 8% <04 and 0<% <0.1) in ML (left panel a-c) and OPA (right panel d-f). The scatter plot shows the relation-
ship between the link capacities and the initial link flows in a homogeneous allocation strategy, where the capacity of a link

is assumed to be proportional to its initial flow (circles) and after in the optimization-based approach of Section III

(squares).

5.2.3 Brief summary

The results from the topology optimization based on the ML model and the comparative link capacity optimi-
zation provide an important contribution regarding the usefulness of a topological model (ML) in the optimiza-
tion of a cascade resilient electrical network. Although ML is a relatively simple and abstract model (that does
not account for the power flow laws and constraints of the electrical system), it is able to provide results that
are consistent with a detailed and more realistic power flow model (OPA), when applied to the problem of

network optimization against cascading failure. Most importantly, with respect to OPA it has the advantages
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of simplicity and scalability. This provides impetus for the use of network-centric models to the study of en-

semble characteristics of cascading failure in large power network systems.

5.3 Restoration optimization for enhanced system resilience — case study

The illustration of the Resilience Optimization Problem (ROP) and the heuristic scheduling algorithm proposed
to solve it (Chapter 4) takes again the FPTN400 system (Figure 5:5) as a case study: however, in this case
realistic power capacities of generators and transmission lines are used and the demands of all load buses are

approximated by real data (see appended Paper [5]).

In the case study, we randomly select parts of the arcs of the network to be damaged. In addition, the repair
costs of all the transmission lines are assumed to be constant and identical, and the cost limits C(t) are as-
sumed to be equal to the repair cost of a single arc: this means that only a single arc can be repaired at any

given timeslot. It is noted that these assumptions can be relaxed to adapt to more realistic application cases.

We firstly consider repair optimization for a specific disruption scenario on the FPTN400, where 10% of net-
work arcs (i.e. 22) are initially damaged. All the demand nodes are assumed to have identical weights in the
optimization process. For the solution of the repair optimization problem, both the proposed heuristic dispatch-
ing rule (Chapter 4.3) and a classical MIP solver (i.e., Cplex MIP solver) are applied. Figure 5:13 reports the
optimal restoration curves (i.e., network performance F(t) as a function of time ¢) obtained by the dispatching
rule (squares) and MIP (circles), respectively. It is found that the dispatching rule is able to obtain near opti-
mal solutions: the recovery duration T is 5 (in arbitrary units) for both methods, and the system resilience
R(T) (Equation 4.3) is R, = 0.731 for the dispatching rule, and R,,, = 0.753 for MIP: the optimality gap
between the two approaches is only 2.92%. Figure 5:14 provides a visualization of the optimal recovery plans
obtained by the two methods. It is shown that the dispatching rule achieves very similar restoration plans to
that of MIP. Both cases give high repair priority to those transmission lines which are unique connections to
the demand nodes. More importantly, the dispatching rule is computationally much cheaper (6.9s) than MIP
(20.5s).
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Figure 5:13 Optimal restoration curves obtained by the dispatching rule and MIP solver for the specific disruption scenario
(10% links damaged) on the FPTN400.
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Figure 5:14 Visualization of the optimal recovery plans obtained by the dispatching rule (a) and MIP solver (b) for the
specific disruption scenario (10% links damaged) on the FPTN400. The numbers indicate the optimal recovery timeslots of
the five arcs marked by bold solid lines; black lines correspond to other failed arcs.

In order to further demonstrate the performance of the heuristic dispatching rule, we considered different levels
of damage on the network (5% to 20% of arcs are randomly selected to be failed) and two different types of
weights (i.e. of importance) for the demand nodes (i.e. w; for j € Vp): in the first class of demand nodes
weights (namely, “Constant”) each unit of flow received by demand nodes is weighed evenly across all the de-
mand nodes; in the second class (‘Priority’), some randomly chosen demand nodes are assigned higher value of
w; to represent higher priority. Table 5:4 provides the solutions and corresponding computational performances
of the heuristic dispatching rule and the Cplex MIP solver for the ROP on the FPTN400. It is shown that the
recovery time T provided by the heuristic dispatching rule is the same (for 5% and 10% cases) or slightly larger
(for 15% and 20% cases) than the optimal solutions, and the relative optimality gaps between the two methods
are less than 10% in most cases. Furthermore, the dispatching rule needs only, on average, the 10% of the
computation time needed by the MIP solver for all the cases. These results indicate that the proposed heuristic
dispatching rule is able to obtain high-quality sub-optimal (and optimal in some cases) solutions to the ROP,

with much less computational cost compared with the Cplex MIP solver.

Table 5:4 Performances of the heuristic dispatching rule and the Cplex MIP solver on the FPTN400.

% of failed Heuristic dispatching rule Cplex MIP solver

arcs ( num- Wy Recovery Opt. Solver Opt. gap  Recovery  Opt. resili- Solver
ber) time T' resilience  time (s) (%) time T ence time (s)
5% (11) Constant 2 0.917 4.69 4.28 2 0.958 20.30
5% (11) Priority 2 0.921 4.75 6.40 2 0.984 20.94
10% (22) Constant 5 0.731 6.90 2.92 5 0.753 40.50
10% (22) Priority 5 0.852 8.60 0.00 5 0.852 46.32
15% (33) Constant 14 0.646 20.45 5.42 12 0.683 110.16
15% (33) Priority 14 0.685 26.40 13.07 12 0.788 224.45
20% (44) Constant 15 0.569 70.31 9.97 13 0.632 632.42
20% (44) Priority 15 0.626 75.46 8.08 13 0.681 1102.80
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In particular, it is noted that the MIP solver may need much more time (e.g., days) to achieve optimal solu-
tions for larger infrastructure systems (e.g., composed of thousands of nodes and links) or heavier disruption
events (e.g., over 20% components damaged). Thus, it is unreasonable to expect the managers of the infrastruc-
ture systems to have access to unlimited computing resources or be willing to wait for several hours (or even
several days) to determine their restoration plan. Consequently, the proposed heuristic dispatching rule repre-

sents an appealing tool for real-time restoration activities on larger scale CI systems.

5.4 Illustration of resilience-based component importance measures

The IEEE 30 Bus test system (Power system test case archive, 2014) is taken as reference case study for the
proposed resilience-based CIMs of Chapter 4.4. This system (Figure 5:15) represents a portion of the American
Electric Power System and is composed of 30 buses connected by 41 transmission lines. To carry out the analy-
sis, each system component is transposed into a node or edge of the representative topological network. Three
different physical types of nodes are considered: generator nodes (where the electricity flow is fed into the net-
work), demand nodes (where customers are connected) and transfer or transmission nodes (without customers

or sources).
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Figure 5:15 Single line diagram of the IEEE 30 Bus test system.

The simulation procedure introduced in Chapter 4.4.3 is, then, used to rank each component of the IEEE 30
Bus network according to the resilience-based criticality metrics introduced. Figure 5:16 illustrates the Cumula-
tive Distribution Functions (CDFs) of T;}pt for five representative links (<1, 3>, <5, 7>, <27, 30>, <8, 28>
and <10, 21>), obtained at step 5 of the procedure by applying the simulation algorithm proposed in Chapter
4.4.3 (for X = 1000 samples). This Figure illustrates the probability that T;}p " is less than or equal to a given
value z of interest. It can be seen that the optimal repair time associated with link <1, 3>, i.e. Tlo?f’ " will never
be larger than 5 (square-line curve in Figure 5:16). Moreover, the curve for link <1, 3> always “dominates” the

other curves. Therefore, this link should have the highest priority to be repaired in order to maximize system

resilience.
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Figure 5:16 Cumulative probability distributions of the optimal repair time TZ.';p * for five representative links.

However, considering, e.g., links <5, 7> (circle line) and <27, 30> (triangle line) in Figure 5:16, it is not evi-
dent which one “dominates” the other, due to the intersection of their CDF curves. Thus, the CM-based rank-
ing approach introduced in Chapter 4.4.4 is applied to rank the importance of the links. Figure 5:17 reports the
Copeland scores of all the 41 links in the IEEE 30 Bus network, ordered in descending order, with link <1, 3>
having the highest score, followed by links <2, 6>, <2, 4>, <10, 22> and so forth. Furthermore, it is found
that two types of network links are more important in terms of ﬂ?p £, i) the links which connect the generator
nodes with the other two types of nodes (transmission nodes and demand nodes), e.g. links <2, 6>, <1, 3>,
<12, 13> etc., and ii) the links which are the only ones connected to demand nodes, e.g. link <25, 26>. The
restoration of these types of links is most likely able to augment the total amount of flow received by the de-
mand nodes of the network: thus, high priority should be given to these links when considering the repair order
of the failed links.
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Figure 5:17 Copeland score ranking of the optimal repair time T;p " for all IEEE 30 Bus network links.

Finally, Figure 5:18 reports the results based on the resilience reduction worth RRW;;(At) for all the links
and for a delay time Aty = 3 units. It is shown that <24, 25> is the most critical link in terms of RRW;

ij0 Le.a

delay in its restoration would cause the largest reduction in system resilience among all the network links; thus,
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adequate resources should be given to make sure of its timely restoration. Besides, it is noted that the links

with high Copeland scores in terms of the optimal repair time T;}p " also have high Copeland score ranking in
terms of the resilience reduction worth RRW,;: the correlation coefficient between the two Copeland scores is

r ((jlgfﬁa (jR]zmQj) = 0.82 for Z&to = 3.
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Figure 5:18 Copeland score ranking of the resilience reduction worth RRW,;(At, = 3) for all IEEE 30 Bus network links.



Chapter 6  Conclusions and future re-

search

6.1 Conclusions

This dissertation focuses on the modelling, simulation, analysis and optimization of engineered critical infra-
structure (CI) networks, with respect to their vulnerability and resilience to cascading failures. The entire state
transition process of the CI system under disruptive events (i.e., stable, dynamic failure and system recovery
state) has been considered. A comprehensive methodology has been developed, which combines: (i) the analysis
of the structure and topology of the CI network represented by the interconnections among its components; (ii)
the simulation of the CI network behavior in the presence of random failures and intentional attacks; (iii) the
assessment of the CI vulnerability and resilience, with respect to cascading failures; (iv) the optimization of
some characteristics of the CI network (e.g., its topology, link capacities, etc.) in order to maximize its robust-
ness to cascading failures and its capability of recovering from disruptive events. The ultimate goal is to pro-
vide valuable insights for the safe planning and operation of large-scale complex CI systems against systemic

failures.

A critical challenge related to the study of any real-life CI system lies in its inherent complexity; thus, well-
defined system boundaries and simplifications of the system representation and analysis are usually required.
Based on recent developments in the field of complex network theory and statistical clustering techniques, this
dissertation has introduced a method for hierarchical representation and analysis of large-scale CI systems,
which leads to the definition of different varied-size grained artificial networks. The availability of different
scales of modeling resolution can be leveraged efficiently to facilitate the management of complexity in the
analysis of large-scale CI systems. The computations of network node-pair reliability and the extended CIMs

involving the IPTN380 have demonstrated the effectiveness of the proposed method.

The problem of CI protection against cascading failures has been addressed from a holistic system design per-
spective. Specifically, we have identified optimal relevant network properties, i.e., interconnectivity and link
capacity allocation, by which the robustness of a CI network against cascading failures is maximized. For the
simulation and analysis of the failure propagation in the optimization process, two different cascading failure
modelling approaches of increasing complexity have been applied, for the sake of comparison: an abstract com-
plex network-based model and a physical flow-based model (for electrical power grids), have been applied in the
comparative study. This choice is partly motivated by the criticism often presented against the abstract model-
ling of cascading failures relying only on the resemblance of network topology, according to which the topologi-
cal structure cannot be the only factor driving the functional state and the propagation of failures in a physical
network. In our work, we have instead found that a relatively simple and abstract model (in particular, the
Motter-Lai (ML) model) is indeed able to provide results that are consistent with a detailed and more realistic
power flow model (in particular, the ORNL-PSerc-Alaska (OPA) model), when applied to the problem of net-
work optimization against cascading failures. This has been demonstrated by extensive application of the com-
pared approaches to the FPTN400 network. Such results provide impetus for the use of network theory-based

models to the study of ensemble characteristics of cascading failures in large power network systems, due to
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their advantages of simplicity and scalability. In all the cases, the optimization has been carried out by artifi-

cial intelligence based algorithms, in particular, the NSGA-II and NSBDE.

Resilience is another critical concept in the study of CI systems. Various definitions of “resilience” have been
proposed for engineering and/or economic system analysis from different disciplines in the past decades. How-
ever, there is currently a lack of standardization and rigor when quantitatively defining this concept. In this
study, we have rigorously introduced a new quantitative metric for system resilience, which embraces both the
temporal and functional dimensions of system recovery. Based on this metric, a bi-level resilience optimization
problem has been formulated for selecting proper recovery actions in order to enhance the resilience of infra-
structure networks. This problem has been proven to be strongly NP-complete and, thus, it is computationally
intensive, especially for large-scale infrastructure networks composed of thousands of nodes and links. We have
solved this problem by proposing a heuristic dispatching rule, which has integrated fundamental concepts from
network flows and project scheduling. The results of the case study involving the FPTN400 system have
demonstrated that the proposed algorithm is able to produce high-quality sub-optimal solutions to the resili-
ence optimization problem, with much less computational cost than the classical Cplex (MIP) solver based on a

branch and cut algorithm.

Finally, two novel resilience-based component importance measures (CIMs) have been introduced in order to
assess the criticality of network components from the perspective of their contribution to system resilience. The
first resilience-based component importance measure, i.e. the optimal repair time (ORT), offers an explicit
quantification of the priority that should be given to a failed component to be repaired and re-installed into the
network. The second resilience-based component importance measure, i.e. the resilience reduction worth
(RRW), quantifies the potential loss in optimal system resilience due to a delay in the repair time of a compo-
nent. This measure can provide valuable information to guide the recovery process of a particular component:
components with high values of RRW should be given high priority to their timely restoration, e.g. be assigned
adequate restoration resources. The proposed CIMs have been tested and compared to classical centrality
measures (e.g., shortest path betweenness, flow betweenness and random walk betweenness) on the IEEE 30
Bus test network: the results have shown that the classical betweenness centrality indices do not capture resili-

ence criticality as do the resilience-based measures ORT and RRW.

6.2 Future research

Some limitations and open problems arising from this dissertation necessitate discussion for possible further
study. Firstly, the hierarchical network representation model proposed in Chapter 2 is based on a recursive
clustering where only the topological information is embraced in the affinity matrix. Other properties such as
the geographical and functional relations of components could also be used to quantify the affinity between
different components of a network system, depending on the context in which the model will be used. Besides,
spectral clustering is adopted in Chapter 2 as one possible way to extract some inherent cluster-level structural
properties and derive the hierarchical model, which sets the basis for a multi-scale criticality analysis. Yet, as
many real adjacency matrices are sparse in nature, efficient existing methods to compute the eigenvectors of

sparse matrices could be adopted (Golub and Van Loan, 2012).

In addition, some adjustments of the OPA model have been made in the comparison between the abstract ML

model and the physical flow-based OPA model in Chapter 3. These adjustments ensure that we can use the
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network tolerance parameter o as a common measure of transmission capacity for both models. However, the
actual data concerning power generation and demands could be used (if available) both in the OPA validation
and the optimization. Besides, performing optimizations using directly detailed and computationally intensive
power flow models (e.g., embrace the so-called Manchester model (Nedic et al., 2006) and/or realistic trigger
events such as natural hazard and malevolent targeted disruption (Duetias-Osorio and Vemuru, 2009), into the
cascade modelling framework) would enable a more thorough and comprehensive comparison of the two classes

of approaches considered in this study.

Further, the resilience optimization model introduced in Chapter 4 focuses only on the optimal completion time
of each failed component, in order to obtain insights about the importance that recovering each single compo-
nent has in improving the resilience of the whole system; on the other hand, the duration of the repair of the
failed components is not considered (i.e., the repair action is assumed to be instantaneous). This assumption
could be relaxed to adapt to more realistic application cases by incorporating a repair model for a single failed
component, in which the repair time of a component is stochastic (Xu et al., 2007) and/or related with the

repair resources allocated to the component.

Finally, the focus of this dissertation is concentrated on single CI network systems; however, the interdepend-
encies among civil infrastructure systems are ubiquitous and growing in number and strength. A paradigmatic
example is represented by the power and communication networks (Little, 2002; Rosato et al., 2008): communi-
cation network nodes rely for power supply on the power stations and, reciprocally, the power stations function
properly exchanging information through the communication network. This interdependency may lead to cas-
cading failures between the networks and a relatively small failure could lead to a catastrophic breakdown of
the system (Buldyrev et al., 2010). Over the past decade, there have been substantial conceptual and theoreti-
cal advances in the field of interdependent networks (Buldyrev et al., 2010; Zio and Sansavini, 2011b; Reis et
al., 2014); however, most frameworks use highly simplified models of real networks, or theoretical network
models to formulate the interdependencies problem. Attempting to understand and quantify the effects of in-
terdependencies among various types of real-life engineered infrastructure systems in their response to systemic

risks still constitute the fundamental challenge for CI protection.
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1. Introduction

Engineered critical infrastructures are ‘a network of indepen-
dent, large-scale, man-made systems...that function collaboratively
and synergistically to produce a continuous flow of essential goods
(e.g. energy, data, water...) and services (e.g. banking, healthcare,
transportation)’ [1] vital to the economy, security and well-being of
any country. These systems are exposed to multiple hazards and
threats, some of which are even unexpected and emergent, so that a
complete analysis by exhaustive treatment cannot be guaranteed.
Furthermore, the infrastructure networks consist of a large number
of elements whose interactions are not easily modeled and quanti-
fied. In practice, then, the performance and reliability assessment of
such ‘complex’ systems has proved to be a non-trivial task.

The theory of complex networks has in recent years emerged as
a valid tool for describing, modelling and quantifying complex
systems in many branches of science [2-5]. Based on the network
topology and its treatment by tools of graph theory, various
statistical measures have been introduced to evaluate the global
structural properties of the network and quantify the importance
of the individual elements in the structure of the system [6-8].
While global performance indicators encompass the static char-
acteristics of the whole network, the importance of the different

* Corresponding author. Tel.: 433 65224 0019.
E-mail address: yiping.fang@ecp.fr (Y.-P. Fang).

0951-8320/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ress.2013.02.021

elements in the network can be seen from the point of view of
their individual connectivity efficiency and/or their contribution to
the propagation of failures through the system network of con-
nections [9-11]. Among these measures, classical and relevant
statistics are the network efficiency [12-14], which evaluates the
connectivity of the whole network, and the topological centrality
measures including degree centrality (CD) [16,17], closeness
centrality (CC) [15,17], betweenness centrality (CB) [17] and infor-
mation centrality (CI) [18,19], which rely on topological information
to qualify the importance of individual network elements.

On the other hand, recent studies suggest that many real
complex networks exhibit a modularized organization [20]. In
many cases, these modularized structures are found to correspond
to functional units within networks (ecological niches in food
webs, modules in biochemical networks) [21]. Broadly speaking,
clusters (also called communities or modules) are found in the
network, forming groups of elements that are densely intercon-
nected with each other but only sparsely connected with the rest
of the network. The study of the clustered structure of the network
of a critical infrastructure is of particular interest because such
structure can provide a protection for the system against attacks
from an intruder [22], reduce the effects of cascade failures [23]
and point at important heterogeneities within the network that
may not be registered via network level measures [21]. Finally,
hierarchically modularized organization, which is a central idea
about the life process in biology, is found to be also an internal
structure of many technological networks [24], and can be utilized
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Nomenclature

Vv set of network nodes

E set of network edges

G(V, E) a network with set of nodes V and edges E

A adjacency matrix of network

Sij similarity measure between node i and j
S similarity matrix of network

Leys normalized graph Laplacian matrix

Q network modularity index

SSE sum of square error

D network degree matrix

DB Davies-Bouldin index of clustering
Dunn Dunn index of clustering

Cy cluster k of network G(V, E)

Ny the central node of cluster k

n number of network nodes

m number of network edges

Ny number of nodes in cluster k
AW set of fictitious nodes at level k
E® set of fictitious edges at level k

G A® E®) fictitious network at level k of the hierarchy
EG) topology efficiency of network G

4% node i of the fictitious network at level k of the
hierarchy

Chw information centrality of node V%

d;' shortest path between node i and j

to model these complex systems for their understanding and
analysis [25].

The objective of the work presented in this paper is twofold.
First, to propose clustering analysis for extracting some inherent
structural properties of a network of a critical infrastructure and,
second to adopt a scheme of successive clustering to obtain a
hierarchical model made of different varied-size grained virtual
networks which can be exploited to perform zoom-in assess-
ments, focusing on the most relevant clusters in the virtual
networks at each level of the hierarchy.

The remainder of this paper is organized as follows: Section 2
presents the proposed spectral clustering analysis, taking the
structure of the Italian 380 kV power transmission network as
an example for illustration; in Section 3, hierarchical modelling of
a complex network is first introduced, and then multi-scaled
criticality analyses are performed on the hierarchical model;
conclusions are drawn in Section 4.

2. Clustering analysis
2.1. Network representation

Graph theory provides a natural framework for the mathema-
tical representation of complex networks. A graph is an ordered
pair G(V,E)comprising a set of vertices (nodes)V =vy,va,...,Vy
together with a set of edges (also called arcs or links)
E = eq,ey,...,.em, Which are two-element subsets of V. The network
structure is usually defined by the n x n adjacency matrix, which
defines which two nodes are connected by assigning a 1 to the
corresponding element of the matrix; otherwise, the value in the
matrix is O if there is no connection between the two nodes.
As described, this type of graph is unweighted and undirected.
A graph is weighted if a value (weight) is assigned to each edge
representing properties of the connection like costs, lengths,
capacities, etc. For example, the matrix of physical distances is
often used in conjunction with the adjacency matrix to describe a
network also with respect to its spatial dimension [12,26].

In this paper, we take an exemplification of the analyses
proposed on the 380KkV Italian power transmission network
(Fig. 1). This network is a branch of the high-voltage-level
transmission, which can be modeled as a graph of n=127 nodes
connected by m=171 links [7][27], defined by its n x n adjacency
(connection) matrix A whose entries [a;] are 1 if there is an edge
joining node i to node j or 0 otherwise. It is important to underline
that only the topology of the physical system is taken as reference
and used in the analyses, so that the hierarchical model and
clustering relate only on the network structure with no specific

relation to the electrical properties of the system. The sub-network
for Sardinia is not considered to ensure that the network is
connected in the sense of a topological space.

2.2. Unsupervised spectral clustering algorithm

Cluster analysis aims at identifying patterns around which
communities of elements in the network can be grouped, emer-
ging implicit information in the network structure [28]. Framed as
an unsupervised multiple classification problem [29], clustering
has been an essential undertaking in the context of explorative
data mining and also a common technique for statistical data
analysis used in many fields such as machine learning, pattern
recognition, image analysis, information retrieval, and bioinfor-
matics [30]. Theoretically, based on a similarity (affinity) measure
sjbetween pairs of data points (ij), which is usually a measure of
distance between i and j, most clustering approaches seek to
achieve a minimum or maximum similarity value through an
iterative process of vertex grouping [25,28]. Different similarity
definitions can lead to different cluster partitioning of the
network.

The detailed description of the different clustering methods is
beyond the scope of this article. For a systematic and synthetic
review, the reader is encouraged to look at [28,30,31]. For the
purpose of the analyses presented in this paper, we adopt the
unsupervised spectral clustering algorithm (USCA) [32], which is
invariant to cluster shapes and densities and simple to implement.
The USCA makes use of the spectrum (eigenvalues) of the
similarity matrix of the data to perform dimensionality reduction
before Fuzzy k-means (FKM)-clustering in fewer dimensions.
Schematically, it is performed by the following steps [32]:

Unsupervised spectral clustering algorithm

Input: Similarity matrix SeR™"

1. Compute the normalized graph Laplacian matrix Lsym

2. Compute the first k eigenvalues 11,45,...,4;, and corresponding
eigenvectors Uy, Uy,...,U,0f matrix Lgy,. The first k eigenvalues
are such that they are very small whereas 1, 1 is relatively
large. All eigenvalues are ordered increasingly.

3. The number of clusters is set equal to k, according to the
eigengap heuristic theory [32].

4. Let UeR™* be the matrix containing the vectors ;,s,..., 1) as
columns. Form the matrix TeR™* from U by normalizing the
rows to norm 1, that is set t; = u;/(Cpuz)"/2

5. For i=1, ..., n, let y;eR¥be the vector corresponding to the ith
row of T.
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Fig. 1. The 380 kV Italian power transmission network.

6. Resort to the FKM algorithm [33,34] to partition the data
points (¥;);_1__pinto k clustersAq,...,Ay.

Output: Clusters Cy,...,Cywith C; =jly;eA;

In the first step, the Laplacian matrix Lsyn, is calculated from the
similarity (affinity) matrix as follows. The input similarity matrix S
is of size n x n and its generic element s; represents the similarity
between nodes i and j in the network. The diagonal components s;;
are set to 1 and the matrix is symmetric(s; =s;;). The degree
matrix D is the diagonal matrix with diagonal entries d4, d,..., d,

defined by

N
d,‘= 2 Sij i=1,2,...,n @)
j=1

Then, the normalized graph Laplacian matrix can be obtained:
Lym = D™V2LD1/2 = [-D1/25p1/2 2)

where L =D-S and [ is the identity matrix of size n x n.

It should be noted that the eigengap heuristic theory at the
basis of the third step of the algorithm works well when the
modularized structure of the data are pronounced whereas the
more noisy or overlapping the clusters are, the less effective it is
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[32]. In those cases, other methods such as the Markov Clustering
Algorithm [35] can be used to find the optimal number of clusters.

2.3. Clustering results and analysis

2.3.1. Affinity construction

As mentioned in the previous section, the result of clustering is
sensitive to the similarity function which defines the proximity of
the nodes in the network. Since network clustering is to group the
vertices of the network into clusters taking into consideration the
edge structure of the graph in such a way that there should be
many links within each cluster and relatively few between the
clusters, using topological information itself is intuitionally appro-
priate to estimate the structure affinity of node pairs. In this view,
two node affinity definitions representative of the local and global
topological properties of the network structure are introduced in
this paper to support the successive cluster-level criticality
analysis.

Possibly, the most straightforward manner to quantify the
affinity between a pair of nodes in a network is to use only the
local adjacency information: nodes i and j are seen as similar if
they are linked directly, otherwise they are not. The consequent
adjacency affinity matrix S; is identical to the adjacency matrix
A of the network.

The adjacency affinity uses only local direct connection infor-
mation and possibly fails to detect any other structure when a
network is not locally dense [24]. Since in this study, we use
clustering to decompose the network into topologically dense
community structures, for nodes to belong to the same cluster,
they should be highly connected to each other, i.e. not necessarily
by a direct link but by a short path [36]. For this reason, we
introduce the topological distance affinity to drive the clustering.
The topological distance (shortest path) dbetween nodes i and j is
the minimum number of edges traversed to get from vertex i to
vertex j. The matrix D of the topological distances can be extracted
from the adjacency matrix A. Thereafter, the topological distance
affinity can then be defined based on the elements d;; of D and the
Gaussian similarity function:

Sy(i,j) = exp(=d;i* /(26%)) ij=1,2,...,n 3)

where ¢ is a tuning parameter. This parameter can be tuned to
scale the Gaussian similarity function, similarly to the parameter &
in the e-neighborhood graph [32]. Unfortunately, there are no
theoretical results to guide the choice of the parameter, and only
some rules of thumb have been suggested in the literature [32]. In
our study, we choose a value of 0.8 for ¢, which is of the order of
the mean distance of a node to its kth nearest neighbor, where k is
chosen as k~log(n)+ 1.

Adjacency affinity
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Fig. 2 gives out the value landscape of both adjacency affinity
matrix S; (left) and topological distance affinity matrix S, (right)
for the 380 kV Italian power transmission network. One can notice
the difference in value scale: the adjacency affinity is a sparse
matrix with only values 0 and 1, whereas the topological distance
affinity measure shows that nodes in local neighborhoods have
relatively high similarity value while affinity values between far
away nodes are weak, although not necessarily negligible.

2.3.2. Cluster evaluation

The assessment of the quality of the clustering results is a non
trivial task because of the unsupervised nature of the analysis. The
clustering structure itself and the relational characteristics of the
dataset are often utilized as the measurement information for
clustering evaluation [25]. In our study, the evaluation of the
clustering is based on four representative indices capturing com-
plementary characteristics of the clusters found: the modularity
index (Q) as an indicator of the presence of a modularized
structure; the Sum of Squared Error (SSE) to quantify the cohesion
of clusters; the Davies-Bouldin index (DB) and Dunn index (Dunn)
to evaluate high intra-cluster similarity and low inter-cluster
similarity, with different metrics.

2.3.2.1. Modularity index. The modularity index Q, introduced by
Newman and Girvan [37], attempts to measure how well a given
partition of a network compartmentalizes its communities and is
defined as [38]:

korei [ 9i\?

o= 2 (7-Gw)’) 2
where k is the number of clusters, e; defines the number of links in
cluster i, ¢; is the sum of the degrees of the nodes in cluster i, and
m represents the total number of links in the whole network. Note
that when Q=0, all the nodes are in one single community while
Q>0 indicates the existence of some kind of inherent cluster
structure. Modularity measures the difference between the total
fraction of edges that fall within clusters versus the fraction one
would expect if edges were placed at random. Thus, high values of
Q represent network partitions in which more of the edges fall
within clusters than expected by chance [39]. Moreover, Newman
and Girvan [37] suggest that values of Q in the range of 0.2-0.7
designate the presence of cluster structures.

2.3.2.2. Sum of squared error (SSE). Sum of squared error (SSE)
measures the cohesion of clusters without respect to external
information, i.e. quantifies how closely related are the elements in
a cluster. SSE is suitable for comparing two clustering partitions or
two clusters [40]. Given two different sets of clusters resulting

Topological Distance Affinity

Fig. 2. Adjacency affinity and topological distance affinity matrices for the 380 kV Italian power transmission network.
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Fig. 3. Clustering results for the adjacency affinity and the topological distance affinity on the 380 kV Italian power transmission network.

from two different clustering procedures, the one with smaller SSE
is preferable since this means that the prototypes (centroids) of
this clustering are superior representations of the points in the
clusters. SSE is formally defined as follows:

k

SSE= Y Y dist(ci,j)? (5)
i=1jeA;

where dist represents the topological distance (shortest path)

between node j and the central node c; of the cluster A; which

node j belongs to.

2.3.2.3. Davies-Bouldin (DB) index [41]. The Davies-Bouldin (DB)
index introduced in [41] is formulated as follows:

k Si+S;

where S; is the scatter within the ith cluster, i.e. the average
distance of all elements in cluster i to its centroid ¢;, and d(c;,¢;) is
the distance between clusters i and j. A clustering algorithm that
produces a collection of clusters with the smallest Davies-Bouldin
index is considered the best algorithm based on this criterion.

2.3.2.4. Dunn index [42]. The Dunn index is the ratio of the smallest
distance between observations not in the same cluster to the
largest intra-cluster distance:

8(C;,Cj

(Ci.C)) }} @

Dunn = min1<,-<k{min1<-<k ; ,-{7
sis I max; <p<k A(Cp)

where k is the number of clusters, the function § gives the distance
between two clusters C; and G (the shortest path between two
centroids) and A represents the diameter of a cluster C, (the
maximum shortest path between any node pairs within the
cluster). Since internal criterions seek clusters with high intra-
cluster similarity and low inter-cluster similarity, algorithms that
produce clusters with high Dunn index are more desirable.

2.3.3. Clustering analysis of the 380 kV Italian power transmission
network

We applied the USCA for performing the clustering analysis of
the 380 kV Italian power transmission network. Both adjacency
affinity and topological distance affinity were considered. The
resulting partitions are showed in Fig. 3(a) and (b), respectively.
Different shapes represent different clusters. The filled nodes
locate the clusters centers, which are the physical node nearest

Table 1
Comparison of the clustering results for adjacency affinity and topological distance
affinity.

Comparison items Adjacency affinity  Topological distance affinity

Q 0.664 0.640

Number of cluster 4 4

Cluster central nodes 23, 40, 86, 119 23, 40, 99, 121
(N1, N2, N3, Na)

Cluster size (nq, np, n3, ng) 36, 38, 36, 17 36, 41, 43, 7

DB 0.883 0.987

Dunn 0.455 0.455

SSE 1585 1867

to the centroids of the clusters based on the Euclidean distance
measure. The two different affinity definitions produce somewhat
similar partitions in four clusters, though some differences exist.
The clusters in both cases exhibit not only physical proximity but
also intensity of the relationship in terms of the network con-
nectivity, which results from the fact that generally only nodes
with geographical closeness are connected in the power transmis-
sion network.

Table 1 represents the comparison results of the two partitions.
The Q values for adjacency affinity and topological distance affinity
are both within the range of [0.2, 0.7], which designates the
existence of a modularized structure within the 380 kV Italian
power transmission network. Partitioning into four clusters is
confirmed for both affinities. The size and central node for cluster
1 (whose elements are represented as squares in Fig. 3) are
identical and cluster 2 (circles) has same centroid but different
size, whereas cluster 3 (triangles) and 4 (diamonds) have neither
the same size nor identical central nodes. This discrepancy is
probably due to the fact that the nodes in the north part of the
Italian transmission network (composed by clusters 1 and 2) are
densely connected and their modularized structure is more
prominent compared with the south part (composed by clusters
3 and 4), thus both local and global topological affinities can
achieve the overall maximum of the modularity. Actually, the
Q values of the north part of the network (composed by cluster
1 and 2), i.e. 0.443 for adjacency affinity and 0.444 for topological
distance affinity, are both higher than those of the south part
(composed by clusters 3 and 4), i.e. 0.314 and 0.119 for adjacency
affinity and topological distance affinity, respectively.



Y.-P. Fang, E. Zio / Reliability Engineering and System Safety 116 (2013) 64-74 69

34 438
3
Y31
Ads 60 40
L
.-1 \‘/.

°! 62
478
45‘;1 81
76 79

224

® A m ¢ cluster central nodes

@ & @ ¢ -cluster border nodes

mter-cluster links

83

<B\‘EFJEM

99

119
122

@121

Fig. 4. Inter-cluster links, cluster-border nodes, and central nodes for the 380 kV Italian power transmission network.

In addition, the partitions obtained exhibit DB=0.883, SSE=1585
for adjacency affinity, and DB=0.99, SSE=1867 for topological
distance affinity. In both evaluation indexes DB and SSE, clustering
by adjacency affinity outperforms that by topological distance
affinity. Furthermore, the clusters from adjacency affinity are rela-
tively more balanced in size. For the above reasons, the adjacency
affinity is retained for the analyses of the following sections.

2.4. Component importance by clustering

A previous study [11] defined the community-level vulnerabil-
ity based on the reciprocal of the number of inter-cluster links,
thus showing that the modularized structure could be leveraged to
the criticality analysis of network elements. In this study, two
types of elements in the clustering are paid special attention to
(Fig. 4). First, the elements (links and vertices) which are in the
periphery and connect different clusters (hereafter called inter-
cluster links and cluster-border nodes, respectively) intuitively
play a critical role in the complex interaction and communication
occurring between different modules of the whole network. In this
sense, the so-called overlapping nodes [43,44] are similar to our
cluster-border nodes. Second, the central nodes within each
cluster, which own highest membership to the cluster, are
expected to have a dense pattern of local connections and their
failures could possibly propagate to a severe damage to the
network.

Fig. 4 represents the inter-cluster links (black lines), cluster-
border nodes (nodes with ‘4’ symbol inside) and the central
nodes (nodes filled with black color) obtained from the (adjacency
affinity) clustering of the 380KkV Italian power transmission
network. The inter-cluster links set E’is {(30-31), (30-34), (59-
60), (61-62), (64-78), (71-83), (76-79), (107-109), (110-111),
(112-114)}. Coincidently, the three lines identified as the most
critical triplet of lines in [45], because their removal would result
in a huge efficiency drop for the whole network, are among the

Table 2

Cluster membership value (MV), rank positions according to the information,
degree, closeness, and betweenness centrality measures for cluster-border and
central nodes (bold) of each cluster; only the 24 top-ranked are reported.

Cluster  Critical node MV Rank ¢ Rank C° Rank C° Rank C®
23 0.9999
30 0.7296
1 59 0.7768 13 4 17 8
61 0.7606 20 9 11
76 0.5527 15 11 7
40 1.0000 24 18
31 0.7373
34 0.7948
2 60 0.8699 4 15 22
62 0.8114 8
64 0.8394 5 2 1 4
71 0.9054 22 14 15
86 0.9998 21
78 0.4772 10 6 21
79 0.9198 8 3 3 5
3 83 0.4775 22 16
107 0.7442 24
110 0.8203 10 10
112 0.5442
119 09993 4
4 109 0.9466
111 0.5724
114 0.7314

inter-cluster links set E’: {(64-78), (71-83), (76-79)}. This shows
the importance of these types of elements for the structured
robustness of a network, and the usefulness of clustering analysis
for their identification.

Table 2 reports the membership values of these cluster-border
nodes and cluster central nodes (bold), and their rank positions
according to the information, degree, closeness and betweenness
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Fig. 5. Illustrative example of the construction of fictitious networks.

centrality measures based on the results in [7]. Detailed definition
and explanation of these four centrality measures can be found in
the literature [7,15-19]. One can see that most of the nodes found
important by clustering, because cluster-border or central, are
ranked among the top 24 with highest centrality values, although
specific exceptions exist such as the nodes 23, 30, 31, 34, 112 in
clusters 1, 2, 3 and the nodes 109, 111 and 114 in cluster 4. This
difference is due to the fact that the “clustering-important” nodes
are identified based only on regional topological information and
not on any other consideration on the role in the whole network.

3. Hierarchical modelling and zoom-in assessment
of the network

3.1. Hierarchical model of the network

If one looks closely at the individual clusters in Fig. 3, it may
notice that some of them exhibit a modularized structure, and
hence can be decomposed further into sub-clusters. Indeed, many
real networks reveal a hierarchical organization, where vertices
divide into groups that further subdivide into groups of groups,
and so forth over multiple scales [4]. On this basis, a framework for
hierarchical system modelling has recently been proposed in [25]
aiming at reducing the computational burden of modelling the
entire system.

For illustration of the potential of the hierarchical modelling
framework for complex system analysis, by analogy one may think
of the electronic maps such as those provided by Google Maps; the
tools are powerful because they present information in a scalable
manner—despite the decrease in the amount of information as we
“zoom in”, the representation shows the information that is
relevant at the new scale.

In the same spirit, a hierarchical model representing the whole
system at the top and individual elements at the bottom could be
obtained via successively performing unsupervised spectral clus-
tering algorithm on the network. Then, based on the hierarchical
network representation, fictitious networks can be defined in each
level, from which the analyst can extract relevant information at
the suitable level of the hierarchy. Fictitious networks are cluster-
simplified representations of the real network and can facilitate
the understanding and analysis of the network properties by
focusing on the relevant information that emerges at the different
levels.

Following a similar formulation as in [46], the fictitious net-
work at level k is denoted by a graphG®A® E®). Let us denote as
V(@i =1,...,n%) the node i of the fictitious network at level k of
the hierarchy and associate a weight to it which is equal to the
number of actual nodes which compose V;"). These fictitious nodes

are connected by m® fictitious edgesE® =E{,EY, ... EY, . Con-

sidering parallel connections, E;") is weighted by the reciprocal of
the number of actual edges it contains. Then, the fictitious net-
work is represented by a weighted adjacency matrix A¥'whose
element A® V;,"),Vg‘) =1/|EY|if the fictitious nodes Vg"and
Vg"are connected by fictitious edge El(,’j; and 0 otherwise. This
definition accounts for the fact that a fictitious edge embracing
several real links has that number of paths available between the
two communities it connects, thus holding more interaction
efficiency and smaller weight viewed as the physical distance
between the two communities connected by the virtual edge.
Fig. 5 gives an example of the construction of a fictitious network.

The 380KkV Italian power transmission network has been
modeled as a five levels hierarchy (to which correspond five
fictitious networks) by successively applying USCA. In Fig. 6, the
weighted fictitious networks and their corresponding weighted
adjacency matrices at the levels 2 and 3 of the hierarchy are
presented for illustration. The number beside the fictitious node
Vﬁk)represents its weight (number of actual nodes included in the
virtual node): for example, the weight of V(32) is 36. The fictitious
network at level 1 is a single fictitious node whose size is 127, the
total number of nodes in the network, whereas at the last level
5 the fictitious network corresponds to the actual physical
network.

3.2. Centrality analysis on fictitious networks

Based on the hierarchical representation of the network,
problems such as reliability assessment and damage propagation
[25] can be swiftly unraveled with low complexity at the expense
of low specificity. In this section, we carry out centrality analysis
on the fictitious networks, focusing step-wise on the most critical
clusters (fictitious nodes) at each scale of the hierarchy. This is
valuable for decision makers when they want to allot limited
investments to a regional part of the network, which is usually
operated by local organizations, to improve the vulnerability of the
overall network system.

3.2.1. Efficiency modelling

Network topological efficiency introduced in [46] allows a
quantitative analysis of the information flow, and works both in
the unweighted abstraction and in the more realistic assumption
of weighted networks. This measure is based on the assumption
that the information (communication) in a network travels along
the shortest routes, and that the efficiency in the communication
between two nodes i and j, ¢, is inversely proportional to their
shortest path length d;; which is defined as the smallest sum of the
physical distances throughout all the possible paths in the
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Fig. 6. Fictitious networks and their corresponding weighted adjacency matrices at levels 2 and 3 of the hierarchical model for the 380 kV Italian power transmission

network.

weighted network. Then, the efficiency of the whole network is
given by:

_ igectij _ 1 1
EO= 50D ~ nn D), 2 dy ®

This formula produces a value of E that can vary in the range of
[0,00).E(G) is defined as 1 in the case of n=1, i.e., there is only one
single node in the network. It is more practical to have E normal-
ized to be in [0, 1]. For this reason, we consider the ideal case
G'%in which the network has all the n(n—1) possible links among
its nodes. In such a case, the information is propagated in the most
efficient way since d;; equals the physical distance between nodes
i and j and E assumes its maximum value. The efficiency E(G)
considered in the following of the paper is always divided by
E(G*d!y and therefore0<E(G)<1.

Notice that, for our analysis of fictitious networks modelling of
the Italian power transmission network, the physical distance
exists even if there is no fictitious edge between two nodes
VPandV{: for generality, their physical distance is defined as
the reciprocal of the minimum size of the two fictitious nodes if
there is not fictitious edge connecting them. By this definition, the
physical distance of nodes in the bottom level fictitious network,
i.e. the actual network, coincides with that obtained by consider-
ing it as an unweighted network.

Fig. 7 plots the efficiency values of the fictitious networks at
each level of the hierarchy. It can be observed that as the
evaluation moves down in the hierarchy, the efficiency difference
between the fictitious network and the actual network decreases
as expected. Note that the minimum efficiency at level 3 stems
from the fact that the ideal fictitious networks G have different
topologies and link weights at different levels of the hierarchy.

1.2
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0.2 \

Efficiency
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Fig. 7. Network efficiency of fictitious networks at each level of the hierarchy.

Thus, it is not necessary that the curve of network efficiency
decreases monotonically. Fig. 7 is used to qualitatively show that
as the evaluation moves down in the hierarchy, the efficiency
approximation gets closer to the efficiency of the actual network.

3.2.2. Zoom-in criticality analysis

The hierarchical model makes a multi-scale criticality analysis
possible, beyond the widely studied component-level criticality
analysis. This zoom-in criticality analysis is analogous to the
procedure of locating a specific site in a scalable electronic map
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manually: a large area is first fixed at the coarse granular scale of
the map based on the limited information at that level, and then
the user can zoom in on that area to get a relatively fine-grained
view which offers more local information, based on which a
narrower region can be identified, repeating this operation until
the desired scale of the map.

Information centrality is used as an illustration to quantify the
importance criticality of a cluster on the network. Parallel with the
component information centrality definition [18,19,47], we define
the information centrality for cluster VE")at level k of the hierarchy
as the information centrality of its corresponding fictitious node in
the fictitious networks, i.e. the relative drop in the fictitious
network topological efficiency caused by the removal of all the
fictitious edges incident in V®:

_AE(VY) _ EIGMI-EIGY)

- E E[G"] ®

1
Cyo
i

where G® is the network obtained by removing from the original
fictitious network the fictitious edges incident in node V?k).

An illustration of the process of zoom-in criticality analysis on the
5-levels hierarchical model of the 380 kV Italian power transmission
network built by clustering in Section 3.1 is presented in Fig. 8. By
first ‘opening’ the single unit at level 1, a weighted fictitious network
with 4 nodes at level 2 is achieved, in which the information
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centrality of each fictitious node is calculated according to Eq. (9)
and is presented in the corresponding Table. It shows that node Vf’
owns the highest C! value; then, the internal topology of Vf) at level
3 of the hierarchy is unraveled by zooming into Vf). Similarly, the
most critical clusters at levels 3 and 4 can be determined as V and
V¥, which include 11 and 4 actual nodes, respectively. In level 5,
which represents the real network, however, the four nodes have the
same values of information centrality since they are completely
connected and the removal of all the edges incident in any one of
the four nodes would result in the equal relative drop in the network
topological efficiency.

Note that the difference of cluster-level information centrality
is quite pronounced for the 380 kV Italian power transmission
network, compared to the node-level information centrality
reported in [7] where the difference between the biggest and
smallest C' values is only 0.0194; then, the analyst may have more
confidence to make clear-cut, relevant decisions based on the
cluster-level criticality results of the 380 kV Italian power trans-
mission network.

4. Conclusions

In this article, the feasibility of extracting cluster-level struc-
tural properties for a realistic-size network by clustering analysis
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Fig. 8. The process of zooming-in analysis of information centrality in the hierarchy.
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has been first investigated, taking as reference example the 380 kV
Italian power transmission network structure. Then, the hierarch-
ical modelling framework has been utilized to represent the
networked system, forming a scalable hierarchical structure of
corresponding fictitious networks. In the context of the hierarch-
ical representation of the network, zoom-in criticality analysis has
been proposed to identify the most relevant clusters at the desired
level of the hierarchy.

For clustering analysis, both adjacency affinity and topological
affinity have been considered when applying USCA on the 380 kV
Italian power transmission network structure, and their results have
been compared to those of four classic centrality measures. For the
considered network, the adjacency affinity has turned out to give
superior partition. Also, the inter-cluster links, cluster-border nodes
and central nodes of each cluster, have been identified as critical:
most of the nodes found important by clustering, because cluster-
border or central, have turned out to be ranked among the top 24
with highest centrality values (CI, CD, CC and CB) and the most
critical triplet of lines identified in [45] is contained within the
inter-cluster links set. This confirms the importance of these types
of elements for the structural robustness of a network and the
usefulness of clustering analysis for their identification.

Then, the systemic hierarchical representation has been intro-
duced for modelling and analysis of complex network systems,
with the objective of rendering more manageable the treatment of
real-world critical infrastructures. A five-level hierarchical model
of the 380 kV Italian power transmission network structure has
been obtained by successively applying USCA. The cluster-level
information centrality has been proposed and used as an illustra-
tion to quantify the importance criticality of a cluster in the
network. The most critical clusters at each level of the hierarchy
have been identified with high confidence for decision making.

Finally, a comment is in order with respect to the computa-
tional complexity of the approach proposed. The complexity
depends primarily on the computational cost of spectral cluster-
ing, where a large number of eigenvectors have to be computed for
large graph Laplace matrices (step 2 of the algorithm), whose time
complexity of computing eigenvectors is O(n?)[48]. Thus, the
computation cost of constructing the hierarchical model isO(n31),
where [ is the number of hierarchical levels. In general, the high-
quality clustering of the spectral method is at the expense of its
comparatively demanding computation cost. In this study, the
spectral clustering is adopted as one possible way to extract some
inherent cluster-level structural properties and derive the hier-
archical modelling which sets the base for a multi-scale criticality
analysis, which is our main objective. Furthermore, as many real
adjacency matrices are sparse in nature, efficient existing methods
to compute the eigenvectors of sparse matrices need to be adopted
[49]. Finally, some improvements of spectral clustering have been
proposed in Statistics and Data Mining such as parallel spectral
clustering [50], distributed method [51] and fast approximation
[52] to make it scalable to large network problems.
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ABSTRACT

The complexity of large-scale network systems made of a large number of nonlinearly interconnected components is a
restrictive facet for their modeling and analysis. In this paper, we propose a framework of hierarchical modeling of a
complex network system, based on a recursive unsupervised spectral clustering method. The hierarchical model serves
the purpose of facilitating the management of complexity in the analysis of real-world critical infrastructures. We ex-
emplify this by referring to the reliability analysis of the 380 kV Italian Power Transmission Network (IPTN). In this
work of analysis, the classical component Importance Measures (IMs) of reliability theory have been extended to render
them compatible and applicable to a complex distributed network system. By utilizing these extended IMs, the reliabil-
ity properties of the IPTN system can be evaluated in the framework of the hierarchical system model, with the aim of

providing risk managers with information on the risk/safety significance of system structures and components.

Keywords: Complex Network System; Hierarchical Modeling; Spectral Clustering; Extended Importance Measure

1. Introduction

Critical infrastructures are engineered distributed systems
which provide the fundamental support to modern Indus-
try and society. Examples are computer and communica-
tion systems, power transmission and distribution sys-
tems, rail and road transportation systems, oil/gas sys-
tems and water distribution systems. Failures of such sys-
tems can have multiple, transnational impacts of signifi-
cant size [1-3]. Hence, identifying and quantifying the
reliability and vulnerability of such systems is crucial for
designing the adequate protections, mitigation and emer-
gency actions against failures [2].

These systems are exposed to multiple hazards and
threats, some of which are even unexpected and emer-
gent, and consist of a large number of elements whose
interactions are not easily modeled and quantified, so that
a complete analysis by exhaustive treatment cannot be
pursued. As a result, the performance and reliability as-
sessment of such ‘complex’ systems has proved to be a
non-trivial task in practice.

Recent studies suggest that many real complex net-
work systems exhibit a modularized organization [4,5].
In many cases, these modularized structures are found to

Copyright © 2013 SciRes.

correspond to functional units within networks (ecologi-
cal niches in food webs, modules in biochemical net-
works) [6]. Broadly speaking, clusters (also called com-
munities or modules) are found in the network, forming
groups of elements that are densely interconnected with
each other but only sparsely connected with the rest of
the network. Furthermore, hierarchically modularized or-
ganization, which is a central idea for the life process in
biology [5,7], is also found to characterize the internal
structure of many technological networks [8]. This sparks
the idea of utilizing the hierarchical, modularized struc-
ture as a basis to model these complex systems, for their
analysis and understanding [9].

In the analysis of systems with respect to their failure
behavior, Importance Measures (IMs) are used to iden-
tify the weak points and quantify the impact of compo-
nent failures [10,11]. IMs provide numerical indicators to
determine which components are most important for
system reliability improvement or most critical for sys-
tem failure. Many different IMs have been proposed in
the literature [12,13], among which classical and relevant
statistics are Birnbaum [14], Fussell-Vesely [15] and
Criticality Importance [16,17]. However, none of these
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Figure 1. The 380 kV Italian power transmission network.

measures can be applied directly to complex network
systems, because of the distributed character of function-
ality and service that they provide.

The purpose of this paper is twofold: firstly to propose
a scheme of recursive clustering to obtain a hierarchical
modeling framework associated with different varied-

Copyright © 2013 SciRes.

size grained virtual networks; then to introduce Extended
Importance Measures (EIMs) which are compatible with
the distributed characteristics of complex network sys-
tems, to evaluate the components importance in the fra-
mework of the hierarchical system representation.

The remainder of this paper is organized as follows:
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Section 2 presents the methodology of hierarchical mod-
eling, taking the structure of the 380kV Italian Power
Transmission Network (IPTN) as an example for illustra-
tion; in Section 3, the basic terminal-pair connection re-
liability problem is first introduced, based on which the
traditional IMs are extended and then calculated for the
IPTN system; conclusions are drawn in Section 4.

2. Hierarchical Modeling of Complex
Network System

2.1. Network Representation

Graph Theory provides a framework for the mathemati-
cal representation of complex networks. A graph is an
ordered pair G (V,E)comprising a set of vertices (nodes)
V ={v,v,,---,vy} together with a set of edges (also
called arcs or links) E ={e,e,, e, } , which are two-
element subsets of V. The network structure is usually
defined by the NxN adjacency matrix, which defines
which two nodes are connected by assigning a 1 to the
corresponding element of the matrix; otherwise, the va-
lue in the matrix is O if there is no connection between
the two nodes. As described, this type of graph is un-
weighted and undirected. A graph is weighted if a value
(weight) is assigned to each edge representing properties
of the connection like cost, reliability, capacities, etc. For
example, the matrix of physical distances is often used in
conjunction with the adjacency matrix to describe a net-
work also with respect to its spatial dimension [18,19].

In this paper, we take for exemplification of the ana-
lyses proposed the 380 kV Italian power transmission
network (IPTN) (Figure 1). This network is a branch of
the high-voltage-level transmission network, which can
be modeled as a graph of N =127nodes ( N, =30
generators and N, =97 distributors) connected by M =
171 links [20,21], defined by its NxN adjacency ma-
trix A whose entries [a[/} are 1 if there is an edge join-
ing node i to node j or 0 otherwise. In Figure 1, the gen-
erators, i.e. hydro and thermal power plants, are repre-
sented by squares whereas the distribution substations are
represented by circles.

2.2. Construct Network Hierarchy by Successive
Clustering

Modularity is ubiquitous in many networks of scientific
and technological interest, ranging from the World Wide
Web to biological networks [7,22]. As a result, it is often
possible to identify groups of elements that are highly
interconnected with each other, but have only a few links
to components outside of the group to which they belong
to. These communities usually combine into each other
in a hierarchical manner [7], in which nodes form groups
and then join the groups of groups, and so forth, starting

Copyright © 2013 SciRes.

from the lowest levels of organization (individual nodes)
up to the level of the entire system. This suggests the
development of a hierarchical structure to describe a
complex network system at different levels of resolution,
with the aim of managing the complexity of the system
more effectively.

A successive Unsupervised Spectral Clustering Algo-
rithm (USCA) [23], which is invariant to cluster shapes
and densities and simple to implement, has been adopted
in this study to build the hierarchical structure of the
IPTN system. Cluster analysis aims at recognizing natu-
ral groups within classes of entities [24]. The problem is
to assign categories to unlabelled data, encouraging the
search of implicit information in the network structure
encoded in its graph [25]. Consequently, modularity pat-
terns within a complex network system can be revealed
without a priori knowledge of their existence. The de-
tailed description of different clustering methods is be-
yond the scope of this article. For a systematic and syn-
thetic review, the reader is encouraged to look at [24-26].

The USCA makes use of the spectrum (eigenvalues) of
the similarity matrix of the data to perform dimensional-
ity reduction before Fuzzy c-Means (FCM)—clustering
in fewer dimensions. Schematically, it is performed by
the steps [23] in Table 1.

In the first step, the Laplacian matrix L, is calcu-
lated from the similarity (affinity) matrix as follows. The
input similarity matrix S is of size nxn and its generic
element s, represents the similarity between nodes i
and j in the network. The diagonal components s, are
set to 1 and the matrix is symmetric (S,-,- =s ﬁ) . The de-
gree matrix D is the diagonal matrix with diagonal
entries d,,d,,---,d, defined by

N
d,=3s5,,i=1,2n (1)
j=1

Then, the normalized graph Laplacian matrix can be
obtained:

L _=D"LDp"?=1-pVsp? )

'sym

where L=D-S and [ is the identity matrix of size
nxn.

By recursively operating the USCA on the data of the
IPTN presented in Section 2.1 above, a 5-levels hierar-
chical structure of the system is constructed which con-
tains the complete system at the top and individual ele-
ments at the bottom (the top panel of Figure 2 gives out
the structure of the hierarchy, detailed in the first 3 lev-
els).

2.3. Hierarchical Modeling of the Network

Based on the hierarchy structure resulting from the suc-
cessive application of USCA, artificial networks can be
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Table 1. Unsupervised spectral clustering algorithm.

Input: Similarity matrix S eR"™.

Compute the normalized graph Laplacian matrix L,,, .

Compute the first k eigenvalues 4,4,,---,4, and corresponding

eigenvectors i,,u,, --,u, of matrix L, . The first k eigenvalues

sym

are such that they are very small whereas A4+, is relatively large.

The number of clusters c is set equal to &, according to the eigen-
gap heuristic theory [24].

Let U eR"™ be the matrix containing the vectors ,,,, -1,

as columns. Form the matrix T e R™ from U by normalizing

the rows to norm 1, that is set #, =u, / (Z ui)

k

For i=1,---,n let y e R* be the vector corresponding to the
i-th row of T.

Resort to the FCM algorithm [27,28] to partition the data points
(%), into c =k clusters C,,---,C, .

Output: Clusters 4,,---, 4, with 4 :{j‘y/ eq}

Figure 2. The hierarchy structure of the IPTN system and
associated artificial networks of the first three levels.

defined at each layer. The artificial network at level / of
the hierarchy is described as a graph G(l)(A(l),E(])

with 1</< L, where L is the number of levels of the
hierarchy. We use V,.(l) to represent the artificial node i

Copyright © 2013 SciRes.

fori=1,2,---, AV]) at level [, which corresponds to a
cluster of real network nodes. Artificial nodes are con-
nected by artificial links

E[(/‘l) (fori:l’z’-n,‘A(O‘ and i # J))

composed by those actual network links connecting (in
parallel) the actual nodes in the clusters forming the arti-
ficial nodes,

s

AV eVi(l),v, er(’)}.

The connection pattern between artificial nodes at level /

is illustrated by an adjacency matrix A" whose element
AV Oy )=1 it B =@,

i.e. if in the artificial nodes Vi(’) and Vj.(l) there is at

least one actual link connecting two actual nodes, and 0

otherwise.

Figure 2 presents the hierarchy structure of the IPTN
system and the artificial networks associated with the
first 3 levels of the hierarchy. At the top of the hierarchy
(i.e. [ =1), the network is a single unit, i.e. one artificial
node Vl(l), which consist of all actual nodes. At the sec-
ond level (/=2), we have

AD _ {V,(Z),Vz(z),l/;(z),VAfz)}
and B = (50, 50 £, )

with V](z), Vz(Z)s V3(2), V4(2) c V](l) )

The integer that is indicated in the Fi%ure in proximity
of the generic i-th artificial node V, 2 indicates the
number of actual nodes which compose it, e.g. Vl(z) is
representative of a group of 38 actual network nodes.
Note that at the bottom of the hierarchy, we find the ori-
ginal network, i.e. each artificial node is an actual node
and each artificial edge corresponds to an actual link.

The hierarchical model offers different levels of reso-
lution at the different levels of the hierarchy. The artifi-
cial networks at the top of the hierarchy contain limited
detail information of the local connectivity patterns (in
the limit, only one node represents the whole network at
the first level of the hierarchy); as we move down the
hierarchy, more local information enters the model, at the
expense of an increase in the dimension of the network.
These characteristics can be leveraged efficiently to ma-
nage the complexity of a complex network system.

3. Reliability Analysis Based on the
Hierarchical Model

It is known that most network reliability problems are
NP-hard and therefore there is a significant gap between
theoretical analysis and the ability to compute different

AJOR



Y. P. FANG, E. ZIO 105

reliability parameters for large or even moderate network
systems [11]. In this respect, hierarchical modeling sets
up a framework based on which reliability and vulner-
ability characteristics of complex network systems can be
computed efficiently, thanks to the multi-scaled informa-
tion representation scheme.

3.1. Terminal-Pairs Reliability Assessment

The terminal-pair or node-pair reliability (TPR) problem
amounts to determining the probability of successful
communication between a specified source node and a
terminal node in a network, given the probability of suc-
cess of each link and node in the network. Let us intro-
duce a binary vector S, ={x,-*,x,, 3=, ¥y} to rep-
resent the state of the network, i.e. the state x of each of
its M edges and the state y of each of its N nodes,
where x, =1 if edge e, is operating and O otherwise
(y for node). For simplicity of illustration, we assume
that nodes cannot fail, while edges can (thusy is no
longer considered hereafter). The state of the network is
defined as being non-failure if the specified terminal-pair
is connected by at least one path of operating edges; oth-
erwise it is failure. All possible failure states are in-
cluded in the subset Q. of the set Q0 containing all
possible scenarios (failure and non-failure). An inclusive
TPR analysis requires considering all elements in€Q,.
We then define the TPR as:

R, =Pr(4,(S,)=1).5,€Q (3)

where ¢, is a binary function which indicates the
connection availability between node-pair s and d (1 =
connection; 0 = no-connection). Let us assume that each
edge e has associated a probability p, of being oper-
ating and a probability ¢, =1—p, of being failed; then,
the TPR of the network can be calculated as:

R,=1- 3, [H (1-p)T1 p,-] 4)

SpeQp \ xeX, xeXy

where x; represents the state of network edge e, and
X, is the set of failed edges for a given state S, € Q..
Note that the implicit assumption underpinning Equation
(4) is that the network edges are independent.

When the computational cost of the network is high (it
grows exponentially with the number of network com-
ponents), then, the artificial network at a suitable level of
the hierarchy can be leveraged to carry out the TPR. At
the generic level of the hierarchy, the artificial link El.s.l)
connecting nodes (clusters) V,.(l and Vj(l) is composed
by actual network links in parallel,

£ =le, 0

i

Y, eV.(')};

v, eV, ;

then, the reliability of the artificial edge Elg.’) at level /
can be calculated by:

Copyright © 2013 SciRes.

p(E)=1- TT a(e ) v eV v er! (9

)
eé,eE[/

where q(est) indicates the failure probability of the ac-
tual link e, that in the real network connects nodes v,
and v,.

Various algorithms to solve the classic TPR problem
have been reported in literature, with various computa-
tional efficiencies [29-31]. A so-called Modified Dotson
algorithm [30], which has been claimed and tested to
subdue others in computational time, is used here for the
TPR assessment based on the hierarchical modeling. The
failure probability of the transmission lines in the IPTN
system is computed based on outage statistics provided
in [32], by assuming that the edge failure probability is
proportional to its length with an average failure rate
A =1.380635 occ/100mile-year, and average outage du-
ration time ¢ = 64.81 hours/occ.

In Figure 3 right-panel, the connection reliability be-
tween nodes 1 and 127 in the IPTN network system (left
panel in Figure 3) is shown as resulting from evaluations
at each of the five levels of the hierarchical model de-
scribed in the previous Section. The right panel of Fig-
ure 3 gives the probabilities of connectivity failure be-
tween nodes 1 and 127 from level 2 to level 5 (top) and

° @o-©
0~ 0 @ o
QO% N
(0]
® 0
% 009
& °
6} OOO@O ® 0-9
o o&%
Q
Q
0
OO

failure probability

computation time

Hierarchical Level

Figure 3. lllustrative example of terminal pair reliability as-
sessment of IPTN system.
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the computational time needed for the analysis (bottom);
the values have been normalized with respect to the ma-
ximum values of connectivity failure probability and
computational time, which occur at the bottom of the hie-
rarchy (level 5) corresponding to the whole network. The
result at the first level has not been shown since its value
is simply 0, i.e., node 1 and 127 are in a single unit and
will not disconnect. One can see that the difference be-
tween the actual and estimated failure probabilities de-
creases as the assessment moves downs to the bottom of
the hierarchy, balanced by the computation time which
instead increases significantly. The decision maker can
obtain satisfying estimations of the failure probability at
a hierarchical level of lower complexity, e.g. level 3, thus
saving significantly in computation time.

3.2. Component Extended Importance Measures

Component importance measures are widely used in sys-
tem engineering to identify components within the sys-
tem that most significantly influence the system behavior
with respect to reliability, risk and/or safety. The indica-
tions drawn are valuable for establishing direction and
prioritization of actions, related to reliability improve-
ment during system design and optimization of operation
and maintenance.

A well known IM is the so called Birnbaum IM de-

fined as (with reference to system reliability R_, as the
system performance indicator) [14]:
OR,
17 = R =1)-R (R =0 6
e RREDR(R=0)©

where I is the Birnbaum Importance (BI) of compo-
nent i; R represents the reliability of the system; R, is
the reliability of component i ; R (R, =1) is the system
reliability calculated assuming that component i is per-
fectly operating and R, (R, =0) the system reliability
in the opposite case of component i failed. The BI meas-
ures the significance of component i to system reliability
by the rate at which system reliability improves with the
reliability of component i. As shown in Equation (6), the
BI of component i does not depend on R, itself, so that
two components i and j may have a similar value 1°
although they have different reliability values R, and
R, , respectively; this could be seen as a limitation of BI.

The Criticality Importance (CI) measure overcomes
the above limitation by considering component unreliabi-
lity [17]. It is defined as:

131 1 —[R I_Ri

R, (R =0)] ™
where F, is the unreliability of component i and F, is
the system unreliability. Now, a less reliable component
is more critical than another one with same value of BI.
Fuessell & Vesely [15] proposed an alternative impor-

s
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tance measure according to which the importance of a
component in the system depends on the number and on
the order of the cut sets in which it appears [17]. Most
commonly used as a risk reduction indicator, Fuessell &
Vesely Importance (FVI) quantifies the maximum dec-
rement in system reliability caused by a particular com-
ponent being failed (R, = 0) :

7~ R, - R, (Ri = 0)
! R

s

®)

The previously proposed IMs (BI, CI and FVI) are
functionally different. They evaluate subtly different
properties of the system behavior, and therefore, are of-
ten used in a complementary fashion to infer different
information. To apply the IMs for analyzing a network
system such as the IPTN, it is necessary to extend the
definition of the IMs to account for the multiple terminal
or node pairs (e.g. generator-distributor pairs) where con-
nectivity defines the network functionality.

Specializing such extension for the analysis of the im-
portance of components of the IPTN system, we intro-
duce the Extended Birnbaum Importance (EBI) measure
as the average of all BI values obtained considering all
possible Generator-Distributor pairs reliabilities in the
network system:

E-B
[i

1 Z 8de

- NGND seVg,deVp aR[

1 Z (de (Ri = 1)_de (Ri = O))

N(;ND seVg,deVp

(€]

where N, and N,are the number of generators and
distributors in the network respectively; V,; and V),
are sets of node generators and distributors respectively;
R, isthe TPR between node s and node d; R, (R, =1)
and R, (R, =0)represent the terminal pair reliabilities
between node s and node d, in the condition that compo-
nent i is perfectly operating and completely failed, re-
spectively.

Similarly, we can define Extended Criticality Impor-
tance (ECI) and Extended Fussell &Vesely Importance
(EFVI) measures:

1 1-R.
I = R,(R=1)-R,(R =0 ‘
NGND seVG%/:eVD ‘ ( ) ! ( )j| 1- R.vd

(10)

IIE Fro_ 1 Z R, -R, (Ri = 0) (11)

N ND selg.deVp de

where I'¢ is the Extended Criticality Importance

(ECI) measure of component i and 1" is the Ex-
tended Fussell & Vesely Importance measure.
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3.3. Numerical Example: Results and Discussions

The EIMs introduced have been calculated for the IPTN
system at different levels of the hierarchical model of the
system developed. For the evaluation, an artificial node
functions as a generator as long as there is at least one
actual generator node within it; otherwise it is simply a
distributor.

Tables 2 and 3 report the results of the importance as-
sessment (EBI, EFVI are given in Table 2 and ECI in
Table 3) for the artificial edges of the network at level 2
of the hierarchy. For EBI and EFVI, all components in
the artificial network have the same importance rank, but
with slight differences between EBI and EFVI values,
and the artificial edge {2-4} is the most important in the
artificial network (see the bottom panel of Figure 2).
This is due to the fact that this artificial edge is the onl
possible link between a generator in artificial node V2(2
and the distributors in other artificial nodes, and thus its
disconnection would cause a large-scale generator-dis-
tributor connectivity failure. The rank based on the ECI
is different from that of EBI and EFVI, and the most im-
portant artificial edge is {3-4}; the difference lies in the
definition, as discussed before: EBI depends only on the
structure of the system and not on the reliability of the
considered component, whereas ECI takes the unreliabil-
ity of the component into consideration, and in fact, the
artificial edge {3-4} is made of only one actual edge with
relatively high probability of failure, which leads to the
highest ECI value.

By combining the indications of EBI and ECI, it is ad-
visable to offer advices to the decision maker for the
purpose of system maintenance and operation optimiza-
tion [10]. When EBI & EFVI is high and ECI is low like

in the case of artificial edge {2-4}, the system safety can
be improved by protecting against failure of each com-
ponent, e.g., adding alternative edges between artificial
node Vz(z) and node V,(Z) (or V32) ). For the case of
low EBI & EFVI and high ECI (artificial edge {3-4}),
the decision maker should invest in improvements of the
component itself, to decrease the failure probability.

Tables 4 and 5 report the evaluation results at level 3
of the hierarchy. Fictitious edge {4-9}, composed by
actual edges {110-111, 112-114, 107-109}, has highest
EBI and EFVI values but relatively low ECI value
(ranked 15th among all 17 artificial edges), indicating
that the system reliability is highly sensitive to its failure,
whereas the component itself is relatively reliable. On the
contrary, the artificial edge {1-10} composed by only
one actual edge {64-78} is highly unreliable itself, and
its EBI and EFVI values are both ranked 8th among all
17 edges. It is important to pay attention to these artifi-
cial edges with both relatively high EBI & EFVI ranks
and ECI ranks, which means not only that their failures
cause a significant deterioration of the system reliability
but also that they are vulnerable themselves. In this re-
spect, by combining Tables 4 and 5, we find that artifi-
cial edges {1-11} (whose actual network link is {71-83}),
{6-10} (which is composed by actual link {76-79}), and
{10-12} (which is composed by actual links {75-88,
80-95}) are the three artificial edges most critical for the
system reliability.

The bold edges in Figure 4 represent the edges of the
actual network system which have resulted most critical
based on the extended importance measure evaluation
carried out at level 3 of the hierarchy model. These edges
should be paid special attention. For links {110-111,
112-114, 107-109}, improving the defense in depth against

Table 2. EBI and EFVI at level 2 of the hierarchical model.

EBI EFVI
Artificial Edge Associated Actual Edges
Rank Value Rank Value
{2-4} 1 0.3750 1 0.3750 {107-109,112-114,110-111}
{1-4} 2 1.9606E — 03 2 1.9605E — 03 {64-78,71-83}
{1-3} 3 1.4817E - 03 3 1.4817E - 03 {59-60,61-62,30-34,30-31}
(3-4} 4 1.5100E - 05 4 1.4900E - 05 {76-79}
Table 3. ECI at level 2 of the hierarchical model.
Artificial Edges Rank ECI Associated Actual Edges
{2-4} 4 0.37 {107-109,112-114,110-111}
{1-4} 2 7699812.62 {64-78,71-83}
{1-3} 3 16.55 {59-60,61-62,30-34,30-31}
{3-4} 1 7699828.67 {76-79}

Copyright © 2013 SciRes.
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Table 4. EBI and EFVI at level 3 of the hierarchical model.

Y. P. FANG, E. ZIO

EBI EFVI
Artificial Edges Associated Actual Edges
Rank Value Rank Value

{4-9} 1 0.2867 1 0.2879 {110-111, 112-114, 107-109}

{4-5} 2 0.1591 2 0.1591 {119-122}
{9-12} 3 0.0030 3 0.0030 {98-99, 94-97, 97-98}
{10-12} 4 0.0028 4 0.0028 {75-88, 80-95}

{2-3} 5 0.0007 5 0.0007 {42-43, 40-43}
{1-11} 6 0.0002 6 0.0002 {71-83}

{6-10} 7 1.55E-05 7 1.54E - 05 {76-79}
{1-10} 8 1.17E - 05 8 1.15E-05 {64-78}

{3-8} 9 8.04E — 06 9 8.05E — 06 {30-31, 30-34, 59-60}
{9-11} 10 7.52E - 06 10 7.38E - 06 {102-110}
{11-12} 11 4.82E — 06 11 4.65E — 06 {86-88}

{7-8} 12 4.11E - 06 12 4.11E - 06 {10-16, 10-21, 20-21}
{1-2} 13 3.00E — 06 13 2.98E — 06 {47-48}

{1-3} 14 8.43E — 08 14 8.40E — 08 {40-41, 60-63}
{1-6} 15 7.58E — 08 16 5.56E — 08 {61-62}

{6-7} 16 5.58E — 08 15 4.96E — 08 {11-12, 12-13}

{6-8} 17 1.43E - 08 17 3.92E - 08 {59-61}

0 S Q
0P 0
O 0
(@\@
0% O=0
© O
@
€)

O
o0

Figure 4. Most critical edges at level 3 of the hierarchical model.
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Table 5. The results of ECI assessment at level 3 of the hierarchical model.

Artificial Edges Rank ECI Associated Actual Edges
{1-10} 1 3029896 {64-78}
{6-10} 2 2975998 {76-79}
{1-11} 3 2763614 {71-83}
{10-12} 4 139883.50 {75-88, 80-95}
{11-12} 5 45071.41 {86-88}
{6-8} 6 24763.84 {59-61}
{1-6} 7 20374.07 {61-62}
{1-2} 8 13626.99 (47-48)
{1-3} 9 212.10 {40-41, 60-63}
{6-7} 10 196.24 {11-12, 12-13}
{2-3} 11 57.85 {42-43, 40-43}
{3-8} 12 10.65 {30-31, 30-34, 59-60}
{7-8} 13 0.38 {10-16, 10-21, 20-21}
{4-5} 14 0.16 {119-122}
{4-9} 15 0.07 {110-111, 112-114, 107-109}
{9-11} 16 0.05 {102-110}
{9-12} 17 0.02 {98-99, 94-97, 97-98}

their failures is advisable to improve the reliability of the
system, while for links {64-78, 71-83, 76-79, 80-95,
75-88}, the edge unreliability should also be mitigated.

Tables 6 and 7 report the results of the EIMs evalua-
tion at level 4 of the IPTN hierarchical model. It turns
out that artificial edge {7-11} (corresponding to actual
link {119-122}) has the highest EBI and EFVI values
and artificial edge {1-22} (corresponding to actual link
{64-78}) has the highest ECI rank and relatively high
EBI and EFVI ranks, indicating its criticality to system
reliability.

Finally, Table 8 reports the computation times re-
quired for the calculations of the EIMs at different levels
in the hierarchy: as expected, the more we go down in
the hierarchy the higher the computation time.

4. Conclusions

The modeling and analysis of complex network systems
is a non-trivial task. Related decision-making regarding
reliability and vulnerability is limited by computational
resources.

In this work, we have introduced a framework for hi-
erarchical modeling of complex network systems, which
leads to the definition of different varied-size grained
artificial networks. The construction of the hierarchical

Copyright © 2013 SciRes.

model is obtained by a recursive unsupervised spectral
clustering method. The hierarchical model thereby ob-
tained provides a multi-scaled representation of the ori-
ginal network system, with more detailed information but
high complexity at the lower levels of the hierarchy, and
simplified structure but relatively low complexity at the
higher levels. The availability of different scales of mod-
eling resolution allows a flexible management of the ana-
lysis, at the level of details desired for its purposes. The
380 kV Italian Power Transmission Network (IPTN) has
been taken as an illustration.

Furthermore, Importance Measures (IMs) such as Birn-
baum, Fuessell & Vesely and Criticality, have been ex-
tended for application to the terminal-pair reliability pro-
blem in complex distributed network systems.

The calculation of the extended IMs at different levels
of the hierarchical system modeling has demonstrated the
effectiveness of the proposed hierarchical modeling, with
the IM-ranking of the IPTN elements offering insights on
how to improve the system against failures of most criti-
cal elements.
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Table 6. EBI and EFVI at level 4 of the hierarchical model (Only the top 20 elements are reported).

Y. P. FANG, E. ZIO

EBI EFVI
Artificial Edges Associated Actual Edges
Rank Value Rank Value

{7-11} 1 0.1504 1 0.1511 {119-122}

{3-4} 2 0.0787 2 0.0788 {47-49,51-54}
{10-11} 3 0.0782 3 0.0788 {125-126}
{22-23} 4 42717E -4 4 4.2606E — 4 {78-81}
{24-25} 5 3.5490F — 4 5 3.5551F — 4 {84-101,85-101}
{12-13} 6 3.3570E -4 6 3.3605E — 4 {14-73,14-76}
{1-22} 7 3.0044E — 4 7 2.9915E -4 {64-78}
{21-28} 8 2.1515E—4 8 2.1436E — 4 {94-97}
{26-28} 9 1.7038E — 4 9 1.6954E — 4 {92-93}
{2-25} 10 1.6962F — 4 10 1.6906E — 4 {71-83}
{17-19} 11 1.0216E — 4 11 1.0206E — 4 {17-18}
{14-19} 12 7.53E - 05 12 7.51E - 05 {10-16}
{23-29} 13 6.50E — 05 13 6.43E — 05 {75-88}
{7-21} 14 5.10E — 05 14 5.09E — 05 {107-109}
{9-20} 15 4.24E - 05 16 4.22E - 05 {110-111}
{23-27} 16 3.74E - 05 15 3.66E — 05 {80-95}
{13-23} 17 3.36E - 05 17 3.35E-05 {76-79}
{21-27} 18 3.22E-05 18 3.23E-05 {97-98,98-99}
{7-8} 19 3.07E - 05 19 3.07E - 05 {113-120}
{8-20} 20 2.64E — 05 20 2.61E - 05 {112-114}

Table 7. ECI at level 4 of the hierarchical model (Only the top 20 elements are reported).

Artificial Edges Rank ECI Associated Actual Edges
{1-22} 1 868094.790 {64-78}
{2-4} 2 750781.848 {47-48}
{1-12} 3 737490.646 {61-62}
{13-23} 4 645088.015 {76-79}
{22-23} 5 602356.820 {78-81}
{12-14} 6 44554.9988 {12-13}
{14-18} 7 43748.7434 {10-21}
{14-15} 8 40914.4150 {7-9}
{14-19} 9 23137.9590 {10-16}
{17-19} 10 17031.1229 {17-18}
{12-13} 11 14138.4808 {14-73,14-76}
{12-18} 12 8829.8833 {59-61}
{1-5} 13 6285.1115 {40-41,60-63}
{5-16} 14 6013.8315 {30-31}
{16-18} 15 5235.8073 {27-59}
{6-16} 16 5051.5230 {30-34}
{5-18} 17 4665.6252 {59-60}
{15-18} 18 2481.7982 {20-21}
{12-15} 19 1666.1408 {11-12}
{4-5} 20 325.9829 {40-43}

Copyright © 2013 SciRes.
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Table 8. EIMs evaluation time at each level of the hierar-
chical model.

Computation time (seconds on a computer with 2 CPU

EIMs 3.06 G 3.07G)

Level 2 Level 3 Level 4
EBI 0.3856 108.5 31763.58
EFVI 0.2086 112.2 32179.50
ECI 0.5152 175.0 47621.58

vant information on the network structure used as refer-
ence system and to Dr. Yanfu Li of Supelec for fruitful
discussions.
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ABSTRACT

Large scale outages on real-world critical infrastures (Cls), although infrequent, are increagingl
disastrous to our society. In this paper, we amaanly concerned with power transmission networks
and we consider the problem of allocation of getm@nato distributors by rewiring links under the
objectives of maximizing network resilience to @diag failure and minimizing investment costs.
The combinatorial multi-objective optimization isrded out by a non-dominated sorting binary
differential evolution (NSBDE) algorithm. For eadenerators-distributors connection pattern
considered in the NSBDE search, a computation&lgap, topological model of failure cascading in a
complex network (named, the Motter-Lai (ML) mod&s) used to simulate and quantify network
resilience to cascading failures initiated by téedeattacks. The results on the 400kV French power
transmission network case study show that the megpmethod allows to identify optimal patterns of
generators-distributors connection which improvecealing resilience at an acceptable cost.

To verify the realistic character of the resultsantied by the NSBDE with embedded ML topological
model, a more realistic but also more computatigr@tpensive model of cascading failures is
adopted, based on optimal power flow (namely, thRNO-Pserc-Alaska (OPA) model). The
consistent results between the two models prowdeetus for the use of topological, complex
network theory models for analysis and optimizatémarge infrastructures against cascading failure
with the advantages of simplicity, scalability doa/ computational cost.

KEY WORDS: critical infrastructure, power transmission netkocascading failures, complex

network theory model, power flow model, optimizatio
1INTRODUCTION

Our modern society has come to depend on large-stdtical infrastructures (CIs) to deliver
resources and services to consumers and businiesaesefficient manner. These Cls are complex
networks of interconnected functional and strudtel@ments. Large scale outages on these real-world

complex networks, although infrequent, are increglgidisastrous to society, with estimates of direc



costs up to billions of dollars and inestimableiiect costs. Typical examples include blackouts in
power transmission network$®, financial bankruptcy®, telecommunication outage?, and

catastrophic failures in socio-economic systé&fs

Cascading failures are initiated typically whennzall part of the system fails for some reasons, and
the load on that part (i.e. the flow passing thioitgmust be redistributed to other parts in thetam.
This redistribution may cause other componentsxteed their capacity causing them also to fail.
Hence, the number of failed or stressed componeotsases, propagating throughout the network. In
particularly serious cases, the entire networkfescéed. Research regarding modeling, predicticth an
mitigation of cascading failures in Cls, wherebyadimmitial disturbances may propagate through the

whole infrastructure system, has addressed thdegumoin different way$*® %3

Albert et al.™ demonstrated that the vulnerability of modern isfiracture networks (e.g., power
transmission networks) is inherent to their streetThadakamall&® revealed that the topology of a
supply infrastructure has great impact on its iexsile. Then, much attention has been paid in recent
years in the direction of network topology optintiaa, with the purpose of achieving desired targets
of reliability and/or resilienc€®**?®) Shao et al*” proposed a shrinking and searching algorithm to
maximize the reliability of a distributed accesswwrk with constrained total cost; however, the
intense computational cost for evaluating netweillability prohibits the application of the model t
large size networks. Gutfraiftf introduced a multi-objective optimization metham tonstructing
cascade resilient networks based on the strucfussrorist networks. Besides, Newth et®.used a
modified Metropolis evolutionary algorithm to evelvailure resilient networks with the objective of
maximizing the average network efficiency. Cadinak ® investigated the problem of optimizing
the transmission reliability efficiency of an exngf power transmission network with least cost by

adding new connection links.

In practical cases, the cost of knocking down astiery network and reconstructing it from scratsh i
prohibitive, especially for Cls like the power tsamssion network. A more practicable alternative is
to reconfigure parts of the network topology, ehy. reallocation of the links which connect

production facilities to consumers.

The primary objective of this paper is to proposmethodology for optimal allocation of the links
connecting generators and distributors in a poregsimission network for obtaining high resilience t
cascading failures while keeping the investmentsclosv. Formulated as a large-scale, nonlinear and
combinatorial multi-objective optimization problertie facility allocation problem is solved by an

evolutionary method, i.e., the non-dominated sgrbmary differential evolution (NSBDE) algorithm
(21, 22)



The search by the NSBDE requires also: (i) the ttoason of a model to describe the cascading
failure process in the network of interest, andl ffie repeated evaluation of the model for every
possible generators-distributors configuration psmal by the algorithm during the search. With
respect to the model, two approaches are typicahsidered in the analysis of power transmission
systemscomplex network theory models, such as the Motter-Lai (ML) modfe? andartificial power
flow models, such as the ORNL-Pserc-Alaska (OPA) mdféf. These approaches provide different
tradeoffs between the (relatively low) computatiar@st associated to the model evaluation (allowing
real-time applications to large scale power gridag the (high) level of detail in the system

description (including physical characteristics @o#ver flows constraints), respectively.

The OPA model seeks to faithfully describe the @ishing dynamics of the power flows during the
evolution of the failure propagation following timétial disturbances, by explicitly incorporatinget
standard DC power flow equations and minimizingegation cost and load sheddifi. Embracing
this more physical description and solving the t@nsed linear optimization functions associated to
the model, result in a significant increase in tlwemputational burden, rendering its application

extremely difficult for realistic networks with ige number of element¥.

For these reasons, topological models based onlegmgtwork theory (e.g. the ML model) have
emerged in recent yedfs® %2 In particular, the ML model is a relatively siramnd abstract model
relying on the resemblance of complex networkdeotgcal infrastructure systems (in terms of graph
theory). It has the advantage of modelling casepdignamics with few parameters, so that its
application to realistic, large-scale networks éssible and certainly more readily than OBA
However, ML abstracts the power flow laws and ca@ists of the electrical system. Inevitably, then,

it cannot provide direct physical measures of Watksize, but rather abstract measures such as
efficiency loss. This has posed questions on whethgot it is adequate in practice, due to itsraics
nature, although it has been recognized to offaew and interesting perspective on the study of

cascading failures on power grig8.

It is worth mentioning that studies tackling thelgem of validation of network-centric approaches
are few in literature. Some studi€$ ?” have provided qualitative comparisons between éexnp
network theory models and power flow models — idging similarities and differences, and
evaluating advantages and disadvantages. Most thec&@orrea and Yust&® conclude on the
appropriateness of graph theory techniques foragmessment of electric network vulnerability by
means of comparisons between physical power flowlaisoand scale-free graph statistic indexes.
Cupac et al®” have presented a method to quantitatively companetwork-centric model (CLM)
and the power flow model OPA, finding that the Clivbdel exhibits overall properties which are
consistent with the more realistic OPA fast-scatlet. On the other hand, Fitzmaurice et‘d find

that the topological nearest neighbor cascadigréamodel (namely, the TC model) shows different



characteristics from two other Kirchhoff modelspray LD and QSS. Hines et &Y conclude that
evaluating vulnerability in power networks using@y topological metrics may be misleading under
some circumstances. Furthermore, Cotilla-Sanchest. &P propose a new method for representing

electrical structures using electrical distancéiserathan geographic connections.

In the present paper, we embrace the topologicaldsiécading failure model and embed it in the
NSBDE for optimally solving the problem of generatdistributors link allocation. For
exemplification, we apply the method to the 400 kkénch power transmission network, under the
objectives of maximizing network resilience to aing failures and minimizing investment cdéts
We, then, tackle the problem of realistic significa of the results that can be obtained with the
proposed methodology. For this reason, the OPAerfopmed on the optimal network topologies
found. To the authors’ knowledge, this is the fistidy addressing the validation of optimization
based on a topological cascade model (namely, theniddel), by applying a more realistic power

flow model (namely, the OPA model).

The optimization problem considered is addressiegietwork topology and in the specific case study
we have considered for exemplification purpose titygology abstracted from the 400kV French
power grid. In the abstraction, any station (getoeraransmission/distribution substation) is retgal

as one individual topological node in the networsdel, whereas the internal structure and functional
logic of the specific station are ignored. Thenwhibie transmission lines interconnect with lower
voltage networks has not been considered in thidystsimilar to what has been done in prior studies
on these analysé&?%. The purpose of performing these analyses in Wy is to leverage the
simplicity and low computational cost of the topgilal (cascading failure) model used within the

(evolutionary) network optimization, which othereigould be very costly.

The remainder of this paper is organized as followsSection 2, we introduce the ML and OPA
cascading failure models in detail. We, then, fdateuthe multi-objective optimization problem
taking investment costs and failure resilience stoount in Section 3. Section 4 unveils the datail
procedure of the proposed NSBDE algorithm. Sectonllustrates the French 400kV power
transmission network case study and the analysis emaluation of the results. Discussion and

conclusion are drawn in Section 6.
2 CASCADING FAILURE MODELSCONSIDERED IN THISWORK

Modelling the dynamic evolution of system-wide Gadiog failure processes poses a number of
challenges due to the diversity of mechanisms whanh initiate the initial failure and influence the
subsequent propagation of breakdowns in the poystesm™. Various cascading failure models have

been proposed; these can be divided into two matiegories: those based on complex network theory



analysis and those using power flow analysis, aftefuding optimal economic power dispatch after

each failure in the propagation, e.g., by lineairoal power flow (OPF¥".

Complex network theory models, including the ML rab@dopted in this work as described in
Section 2.1 below, abstract the representation g@ower grid as a graph and, then, study the
connectivity characteristics, the propagation magdms through the graph connections and their
relationships. They typically consider flows of diste packets that are injected and removed from al
nodes and follow least-distance paths, and the ritapce of links or nodes is measured by their
“betweenness”, which is proportional to the numtfdeast-distance paths through the link or ndde

Among these, the ML model is the most widely usad a relatively simple one. These types of
models have proved to provide a good understandinthe specific grid dynamics of cascading

failures ©9

. However, in these models the assumptions onlytratisthe real loading of the
components and the flow distribution through th@nmrtions. For this reason, it is necessary to

ascertain the meaningfulness of the results fdraleatrical infrastructures.

Power flow models, on the contrary, are based ahste power flow equations to describe the flow
dispatching dynamics and failure evolution aftes thitial disturbances in the power grid. The OPA
model, which is the most commonly used among thgses of models, is introduced in Section 2.2
below; it is based on the linearized or DC powewflapproximation, which has been proved to be
able to give a good approximation of active povi@ws$ in the network?. Another power flow model
is the CASCADE modef?, though it is considered “too simple” in that'itlisregards the system

structure, neglects the times between adjacenirésiland generation adaptation during failufé&

2.1. The ML moded

The ML model has been proposed by Motter and®,aiith extensions to differentiate generators and
loads®. The power transmission network is representednaandirected grapf with a set ofN
nodes representings generators andp loads representing distribution substations, autenected by

a set of edges representing transmission lines sfrbeture of the network is identified by Arnx N
interaction matriX¥/, whose element;; is O if nodei andj are not connected directly; otherwise it is

assigned 1 for an unweighted network or a numevilale between and;j for a weighted network.

The ML model assumes that at each time step, oiteofithe relevant quantity (electrical flow for
power grids) is exchanged between every pair oegear and distributor nodes, and transmitted
along the shortest path connecting them. The floana node is, then, the number of shortest paths
passing through it. More precisely, the fléw passing through nodk is quantified by the node
betweenness calculated as the fraction of the gtvedistributor shortest paths passing through tha

node:
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(1)

wheren;; is the number of shortest paths between genemattes and distributor nodes, angl(k) is

the number of generator-distributor shortest ppssing though node

The capacity of nodk is assumed to be proportional to its initial ndgenith a network tolerance

parameter,

Cr, =1+ a)ly (2
The concept of the tolerance parametén > 0) can be understood as an operating margiwiap
safe operation of the component under potential Inerement. The occurrence of a cascading failure
is initiated by removal of a node, which in genexfadnges the distribution of shortest paths. Then t
load at a particular node can change and if iteéases and exceeds its capacity, the corresponding
node fails. Any failure leads to a new redistribatof loads and, as a result, subsequent faillaps c
occur. It should be noted that the single failuechanism applied here does not attempt to simalate
realistic trigger event of cascading failure; imsteit is only a manner of starting the cascadailgife
simulation for the ML model (and the OPA model dntnced below).

Using this cascading failure model, the vulnerapibf networkQ can be characterized by the fraction
of network efficiency lost in the cascading failure
— EQ@-E@
vul(Q) == 3)
where Vul(Q) € (0,1) andQ represents the residual network structure afterititial failure. E(Q)
measures the network efficiency based on the naiteshortest path distance between generators and

distributors. For its computation all pairs of nede V,;, andj € V,, are weighted by the inverse of

their distance:

1 1
E@Q) = mZievc Zjeva (4)

whered(i, j) is the number of edges for an unweighted netwarkhe sum of edge weights for a

weighted network in the shortest path froto .

The geodesic vulnerabilityul(Q) measures the functionality of a network when sutbpk to a
contingency due to cascading link disruption wiggard to its steady state (base case).Vi4§Q)
increases, the impact on the network due to casgafdilure also increases, as some components
become disruptedul(Q) has been proved to be a well-defined index beiyggble of providing

results consistent with those of physical modeides>®.

The detailed simulation of the ML cascading failaredel proceeds as follows:



Sep 1. Apply equation (1) to compute the initial loadezch node for a proposed network by Floyd's

shortest paths algorithfP and calculate the capacity of each node baseduwatien (2).

Sep 2. Trigger the initial failure. In the optimizatioone of the top five most loaded nodes is chosen

and removed from the network.

Sep 3. Recur to equation (1) and Floyd’s shortest patgerihm to recalculate the load of each

working node in the network.

Sep 4. Test each node for failure: for each nddg € N) of the network, i, > C; then nodek is

regarded as failed and, thus, is removed from ¢teark.

Sep 5. If any working node fails, return back to stegX@herwise, terminate the cascading simulation

and evaluate the vulnerability of the network usggiation (3).

Complex network theory models, such as the ML thatuse within our optimization framework in
Section 3, have no direct physical relation to itechanisms of realistic power grids, but they have
the key advantage that by utilizing techniques fgraph theory they can be applied to analyze large-
scale networks. For this reason, this modellingreggh is seeing increasing applications for

modelling cascading failure processes in powersgrid

2.2. The OPA model

The OPA model has been proposed by researcherakaRidge National Laboratory (ORNL), Power
System Engineering Research Center of Wisconsinddsity (PSerc), and Alaska University (Alaska)
(1012 The OPA model, built upon the Self-Organized i€ality (SOC) theory, contains two
interdependent time scale dynamics, i.e., fast pdlwe dispatching dynamics and slow power grid
growth dynamics, to describe the complexity andicaiity of power systems. The slow time scale
dynamics describes how the system evolves as degfames over longer timeframes (e.g., over
days), and due to subsequent system upgradesponsesto demand variations and blackouts. On the
other hand, the fast time scale dynamics depicdsachng failures of transmission lines over very
short times (e.g., over seconds) during the slomadycs. It is a novel and powerful tool for anahgyi
power systems. Our analyses focus on the fast pfhewerdynamics, in order to ensure comparability

with the ML model and its underlying shortest-paisumption.
The cascading failure model is based on the stdrid@rpower flow equation,

F=AP (5)
whereF is a vector whos&e components are the power flows through the likggNe is the total
number of links in the networkp, is a vector whosBl-1 components are the power injection of each
node,P; (N is the total number of nodes in the network), wiite exception of the reference generator,

Po, andA is a constant matrix that depends on the netwodktsire and impedances (see Ref. (11) for



details about the computation Af. The reference generator power is not includethénvectorP to

avoid singularity ofA as a consequence of the overall power balance.

The generator power dispatch is solved using stdriigear programming methods. Using the input
power demand, the power flow equation (5) is sokwitth the condition of minimizing the following

cost function:

Cost = Yiey, Pi(0) + K Xjev, Pi(t) (6)
where Vg and Vp are the sets of generators and distributors, otispéy/. This definition gives
preference to generation shift whilst assigninggh ltost (seK = 100) to load shedding, and it is

assumed that all generators operate at the sarmharmbghat all loads are served with equal priority

The minimization is done with the following constts:

(1) Generator power injections are generally positiad dmited by installed capacity limits:
0<P <P"¥ i€V

(2) Loads always have negative power injectid?ﬁ?’” <P <0,j€Vp.

(3) The absolute flow through links is limited by lisRpacities|F;;| < Fyqx-

(4) Total power generation and consumption remain leald}.;cy v, P; = 0.

After solving the linear optimization by using teenplex method as implemented in Ref. (32), we
examine which lines are overloaded. A line is coeed to be overloaded if the power flow through it
is within 1% of the limit capacit¥;,,,. Each overloaded line may outage with probabgityp, is set

as 1 in the case study to ensure its comparabilith ML). If an overloaded line experiences an
outage, its power flow limi,,,, is divided by a very large numbkey to ensure that practically no
power may flow through the line. This action canoidvthe infeasibility of the power flow
optimization due to topological islands in the systby removing the component directly. Besides, to
avoid a matrix singularity from the line outageg fmpedances of failed lines are multiplied byrgda

numberk,, resulting in changes of the network mathix

Load shedding is utilized to quantify the damagéhefcascading failure. For an individual nodedloa
shedding is defined as the difference betweeroitgep injection and demand:
Si=Pm™ —P (7)

Subsequently, total load shedding for the system is

S =Yievy Si (8)

Finally, system load shedding is normalized byadtal demand and used as a measure of cascading
vulnerability:



Yievp Si
SIp =5 oo 9

Yievy, P
The fact that simulation results from OPA model emesistent with historical blackout data for real
power systems has justified its effectiven€8s However, the applications of OPA have generally
been limited to networks with a relatively smallnmer of nodes compared to real power gffdls

due to the computational efforts involved.
3OPTIMIZATION MODEL

For a given network, cascading failure resilienoceld be enhanced in many ways. In this paper, we
focus on choosing the connecting patterns betwesergtors and distributors of a realistic power
transmission network, so as to optimize resilieb@wecascading failures. In this study, system
vulnerability to cascading failures (i.e. systemdtionality loss in cascading failures) is regardsc
reverse measure of system resilience: the lestititionality loss, the higher the system resilenc
Given the goal of analyzing a realistic-size netydhe ML cascading failure model is used to
evaluate the resilience of a pattern of connecti@ysassociating a cost to each link posed in the

network, the optimization also seeks to minimize tibtal cost.

The network is modeled as a weighted graph, in lvthe edge weights are given by their physical
distances which we assume directly related tortesiitting cost of the link. We define the varesbl

to be optimized as the links of generation noddgkédifferent distribution nodes:

X, = {1, if i is cor(l)t’l(e):;tlz(i V\;\;lst: j directly (10)
for alli € V; andj € V. Two constraints have to be met when rewiring ggetioes and distributors: (1)
each distributor node is required to connect witleast one generator node or other distributoenod
to make it accessible to the power supplying ge¢oesa(2) each generator node has to connectstt lea

with one distributor node.

We assume that the cost associated with each dimmeatting and rewiring is linearly proportional
to the physical length of the linkage, with codffitt ¢. The total investment cost of a reconstructed

patternX in the power transmission network can be defined as

C = Yievgjevy Xij d(,)) (11)
whered(i, j) is the physical distance betweesnd;.
The cascading failure resilience of each reconsdupatterr¥ can be quantified by the vulnerability

of the new network, given by equation (3). It shiblbé noted that the effect of the type of initia¢et

could significantly influence the cascading failuesult: the efficiency loss of a cascade triggdrgd



the failure of a critical component could be mucbrensevere than that originated by the failure of a
normal component. Therefore, we consider a wors¢-saenario in this study by choosing the failure
of one of the top five most loaded nodes as iniéidlire in each cascade process simulation aed, th

the results are averaged on the number of simaktio

Through the quantification of the connection patteost and cascading failure vulnerability, the

facility allocation problem is formulated as a nyvalbjective optimization problem:

min C(X;;) (12a)
min Vul (QXL.].) (12b)
Yieveury Xij > 0Vj €V (12¢)
St jev, Xij > OVi € Vg (12d)

The objective function (12a) is the sum of the dixewiring costs; (12b) expresses the resilience
objective. The two constraints mentioned aboveeaferced by formulas (12c) and (12d), respectively.
Observe that the least costly generator allocagsosimply that with no links among facilities and

consumers.

In our work, the multi-objective optimization preiph (12a) — (12d) is tackled by the Non-dominated
Sorting Binary Differential Evolution (NSBDE) algtrm presented in the next Section 4.

4 NON-DOMINATED SORTING BINARY DIFFERENTIAL
EVOLUTION ALGORITHM FOR TOPOLOGY OPTIMIZATION

In this section, the operative procedures of the-Nominated Sorting Binary Differential Evolution
(NSBDE) algorithm are proposed for solving the riroltjective optimization problem introduced in
Section 3 above. The starting point is the standiiffitrential Evolution (DE) algorithm, initially
proposed as a population-based global optimizatiethod for real-valued optimization problems,
which has been found to outperform other optimaratilgorithms in various applicatioffs ** %% In
order to solve the combinatorial multi-objectiveolplem of interest, the fast non-dominated sorting,
ranking and elitism techniques used in non-domihatarting genetic algorithm-1l (NSGA-Iff® are
introduced into a modified binary differential ewtbn (MBDE), which is a binary version of DE
developed to tackle single-objective binary-codptinuization problem&®. The NSBDE proceeds as

follows: @V

Sep 1. Initialization of parameters
Set the values of the population sid#ié, the crossover rateR, the scaling factofF, and the maximum

generationNux.



Sep 2. Generation of initial population and evaluation

Initialize each individual in the population whichrepresented as a bit-string and denotegras=
{px{;, Ipx{; €{0,1};i = 1,2,..,NP,j = 1,2,...,M}, whereNP is the population size ankl is the
dimensionality of the solutions. Each individualailso called a chromosome and forms a candidate
solution to the problem. Each bit of each initiak@amosome takes a value from the set {0, 1} with
probability equals to 0.5: the bit takes ‘1’ if therresponding generator node and distributor ramde

connected, ‘0’ otherwise.

Each of the\NP chromosomes is evaluated by computing the twoctibgefunctions, i.e. formula (12a)
and (12b).

Sep 3. Generation of trial population

Apply the binary tournament selection operaidtto the populatio®®X* to generate a trial population

PV¢, which undergoes the evolution operations of niadnd crossover.

Sep 3.1 Mutation

The following probability estimation operatB(px) is utilized to generate the mutated individuals
according to the information of the parent popolaiti

1

t t t
Zb[pxrl,j+F(pxr2,j_pxr3,j)_0‘5]
1+e 1+2F

P(pxl-tj) = (13)

whereb is a positive real constant, usually set aE & the scaling factopx/, It pxt, j andpxf; j
are thej-th bits of three randomly chosen individuals ategationt. According to the probability
estimation vectoP(px}) = [px{,,px{,, .. px{y] created by equation (13), the corresponding

offspringpu! of the current target individuak! is generated as equation (14).

1, ifrand < P(pxitj)

. (14)
0, otherwise

Puitj = {
whererand is a uniformly distributed random number withir thhterval [0,1].

Sep 3.2 Crossover
The crossover operator is used to mix the targdivicual and its mutated individual. The trial

individual pv{; = (pv{,,pv{,, ... pv{y) can be obtained by the crossover operator asifsjlo

t . , .
pu;;, ifrandj < CR orj = randi
pvjj = { ! (15)

pxitj, otherwise

whererandj € (0,1] is a uniform random valu€R is the crossover rate, anahdi is a uniform

discrete random number in the set {1, 2NB}.



Sep 4. Evaluation

Evaluate each of thdP chromosomes in the populati®it by computing its rewiring cost (12a) and
resilience to cascading failures (12b) by perfognihe ML cascade process simulation procedure

presented in Section 2.2.

Sep 5. Union and Sorting

Combine the parent and trial populations to obgaumion populatio®Ut = PX' U PVt. Rank the
individuals in the union population by the fast ranminated sorting algorithf® with respect to the
objective values, and identify the ranked non-dated frontd, F», ..., Fx whereF, is the best front,

F, is the second best front aRdthe least good front.

Sep 6. Selection

Select the firstNP individuals fromPU® to create a new parent populati®ki‘*tl. The crowding
distance is used in this step to choose the indalglwith the same front, where crowing refershio t
density of solution present in a neighborhood ofirafividual of specified radiu§®: we prefer the
individual which is located in a region with leamtmber of individuals. The algorithm stops when it

reaches the predefined maximum generatidps
5CASE STUDY AND RESULTSANALYSIS

5.1. Case study and par ameter s setting

In this paper, the 400kV French power transmissietwork (FPTN400) (Figure 1) is taken for
exemplification of the proposed approach. The ndtwis built from the data on the 400 kV
transmission lines of the RTE websité It has 171 nodes (substations) and 220 edges rfirssisn
lines). We distinguish the generators, which am sburce of power, from the other distribution
substations, that receive power and transmit dith@r substations or distribute it in local distition
grids. By obtaining the power plants list from Emebsite®® and relating them with the ID of the
buses in the transmission network, we have 26 gérasrand 145 distributors. Only the nuclear power
plants, hydroelectric plants and thermal power fglavhose installed capacities are larger than 1000

MW, are considered.

For reallocation of the power generating node$i¢oather nodes, the NSBDE algorithm introduced in
the previous section is applied. The parametensegalised to run the NSBDE algorithm are reported
in Table I. The tuning parameters are chosen basddal-and-improvement for fast convergence of
the algorithm®. The network tolerance parameteis set to 0.3 to simulate the normal operating

condition; linkage cost parametgis set to 1.



Km

Fig. 1. The 400kV French power transmission network (FRay©”

At the beginning of the simulation, all 55 links @ng generators and distributors in the FPTN400 are
cut off. The population is initialized by randondgsigning O or 1 to each bit of each chromosome in
the population, forming a group of potential rewmyi solutions. For evaluating the cascading
vulnerability of a given generators-distributortoehtion pattern, the ML cascading failure model is
run starting from failing one of the top five mdstded (largest betweenness) nodes in repeated

cascading simulations at the end of which the \raloiéty values are averaged.

Tablel . Parameters of the NSBDE algorithm

Parameters Values
Population sizé&\P 25
Dimensionality of solutioM 3770
Crossover rat€R 0.9
Scaling factoF 0.2
Maximum generatiomN 300

5.2. Topological optimization results
Figure 2 reports the convergence plots of one fuheoNSBDE algorithm. The top and bottom panels
show the two optimal solutions with regard to tive tobjectives (12a) and (12b), respectively. It is

observed that the algorithm is able to converger @ftound 150 generations.
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The Pareto front obtained by the NSBDE algorithnc@ativergence is illustrated in Figure 3. The

diamond point in Figure 3 represents the curretwork with the present pattern of connecting links,

which is also the least costly network; the sqummat is the most resilient network, whose casagdin

vulnerability is 0.184. It is not unexpected thiag original network is the least costly one, sitiee

electrical transmission lines and substations &eed with geographical constraints and connections

between two distant substations are avoided. Agtuebst-effectiveness is a major consideration in

constructing real power transmission networks.
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different network tolerance values

It is also noted from Figure 3 that the cascadaityrfe resilience of the FPTN400 can be improved
significantly by properly rewiring the generatostlibutor connections, though at a cost; the nekwor
vulnerability is decreased from 0.728 to 0.184 (whel.3) with an increased cost b8 x 103 (i.e.,
53.16 times increase). Figure 4 reports the casgadilnerability comparison between the original
network and the most resilient one (Pareto solutibn) with different tolerance parameters. It shows
that when the network tolerance is very low, i€.®< 0.1, the optimized network loses most of its
efficiency, i.e., it is quite vulnerable to intesnial attacks possibly due to its intensive loading
condition. However, wher = 0.3 (which is generally the normal operating caodit"®), the
optimized network loses less than 20% of its efficy during a cascading failure initiated by

intentional attack.

Albeit a substantial improvement of the cascadmitufe resilience of the FPTN400 is possible by
adding redundant links, a tradeoff between the amst resilience improvement is necessary for
rational decision-making. Along the Pareto frontiéthe potential solutions, there are some paints
which a small sacrifice of cost gives a large g#icascading resilience. More generally, by taking
network solution and its neighbor on the frontide(less costly one), one can define a rate ofgdan
of cascading resilience with respect to ctsVul/Acost|. This rate can be utilized as a reference to

choose the optimized network: the larger the ratie,more preferred the network is.



Fig. 5. The topology of the Pareto solution #3 and itsedéhce with the original network

Figure 5 reports the topology of the network cquoggling to the Pareto solution #3 (310.6, 0.59)
whose|AVul/Acost| value is comparatively large. The bold links reygret the 10 added connections
with respect to the original real network: notibattonly 10 links are required to be rewired fa th

original network to gain a 19.2% cascading resilieimprovement (the cascading vulnerability is
decreased from 0.73 to 0.59). Besides, it is nfteoh Figure 5 that the newly added links tend to
connect distant generator and distributor pairdicating that the installation of power lines betwe

remote power substations can improve the resiliehtize system, although at larger costs.

5.3. Validation by the OPA modéd

All the optimization results presented in the poe section are based on the ML model which
abstracts basic power flow constraints and eledtdbaracteristics of the power transmission networ
In this section, the more realistic OPA model idtroed in Section 2.2 is utilized to verify the o

results found.

The verification is not straightforward due to tb#ferences of the two models in the way of
representing system capacity, in the iterative ritlyms they rely on, and in the way of measuring th
damage produced by the cascading failure. Accolgirmpme assumptions and adjustments to the
OPA model (as described in Section 5.3.1) are sacggo ensure its applicability to assess the

optimization solutions obtained based on the ML et&d.

5.3.10PA Adjustments

Five representative solutions (i.e., the least oe$ivork FPTN400, the Pareto solution #17 (7300,
0.184) which is the most resilient, together wthik solutions #3 (310.6, 0.59), #5 (3344.3, 0.28) an
#13 (1003.8, 0.48) whogaVul/Acost| values are comparatively large) along the Pangint fare

chosen as the basic network topologies to be edrifiy the OPA model. To facilitate comparability

with the ML model, all the generators are assunwedhdve equal capacity, and all the loads are



assumed to have equal constant demand (we usee2theé number of generators in the simulation).
Furthermore, all edge impedances are calculated) uke typical reactance value 0.28 ohm/km at 50
Hz 9, This heterogeneous impedance setting aligns withatbighted edge initialization in the ML

model.

The ML model uses the parameteto represent network tolerance, while regardirgg@PA model,
prior studies set the initial limits (demand, gexter capacity, line flow limits) by evolving the
network using combined fast-slow dynamics until tieéwork reaches a steady state Considering
that we limit the scope of the OPA evaluation t&t fdynamics, we use a simpler initialization siggte
(proposed by Cupac et &”) which does not require the slow power grid grodghamics, and apply
the parallel capacity setting (tlremodel) to facilitate the comparison. In particuldye values of the
initial flows E(O) and of the link capacitie L-’}“”‘ are determined as follows: demand for all
distributor nodes is fixed to a constant amountnastion above, and total generation capacitytis se
to be equal to total demand, and equally dividedragthe generators. Then, the power flows along
the lines are estimated by assuming that everyilalisbr node would obtain an equal amount of power
from every generator. The initial flows are caltethby selecting a generator (one at a time),nggtti

all other generator capacities to 0 and then coimgytower flows to each distributor node. The sum
of the power flows over all the generators resialtthe estimated initial flow along each Ii@(O).

Analogous to the initialization process in the Mloahel, the maximum capacity for a link connecting

nodes andj is given by
F'* = (14 a)|F;(0)] (16)

It is noted that the values of the initial f|O\N_§(O) are only used to set the link flow capacitigs™
in such a way that they are comparable to the =€, used by the ML model. The network

tolerance parameter is setltea< a < 2 in our approach, parallel to the ML model, reprdiseg excess
transmission capacity. Then, the node transmissapacity is modelled as the sum of link flow

capacities of adjacent Iinlﬁjevj F/*** whereV is the set of nodes directly connected to riode

In the OPA implementation, the probability of aredeaded link is set tp; = 1 (identical with that

in Cupac et al®”), to ensure comparability with ML, where an oveded node fails and is removed
from the network with certainty. This setting wilbt change the OPA validation results where only
the relative ranking of cascade vulnerability facke network is considered, although it has probably
changed all the absolute values of cascade vuliigraBesides, we initiate the cascade in the same

manner that we do in the ML model, as stated irii&@e8.

5.3.2Validation Results



Figure 6 reports the landscapes of the node trasgoni capacities), andF"** under both ML

model and OPA model, respectively, for the five sd#mo networks (witle = 0). It shows that node
capacities in ML are highly correlated with nodeaeities in OPA model for the FPTN400, Pareto
solution #3, #5 and #13 (actually, the correlatmefficients are 0.904, 0.890, 0.862 and 0.914
respectively); for Pareto solution #17, the linearrelation of node transmission capacities sxits
(with correlation coefficient 0.619). This indicatthat the initialization strategy is consistert ftL

and OPA models: nodes with high capacity in ML témdéhave high capacity in OPA, and nodes with
low capacity in ML also tend to have low capacitydPA®".
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Fig. 6. Scatterplot of normalized node transmission capaciML versus OPA model using, (a) the original

FPTNA400; (b) Pareto solution #3 network; (c) Passtiition #17 network; (d) Pareto solution #5;Rayeto

solution #13. Node transmission capacity in OPAighly correlated with transmission capacity in Mhe

correlation coefficient are 0.904, 0.890, 0.6186@.and 0.914 for the five networks, respectivélye solid
lines represent the best fits.

In Figure 7, we plot the curves of normalized Isheéddings/D versus network toleraneeobtained

by applying the OPA model to the five represenimetworks selected from the Pareto front. The
OPA simulation is triggered by removing one of tbp five most loaded nodes (i.e., targeted initial
failure). Analogous to the ML model (Figure 4), thetwork damages decreases when network
tolerance increases for all the networks. When adtuolerance value is high enough ¥ 1.2), any
small intentional disturbance on the network waldd to cause quite low damage to the functioning
of the network € 1%). Most importantly, it is observed that in the ORB#nulation, the network
corresponding to Pareto solution #3 (310.6, 0.59¢dn triangle curve) is more resilient, i.e., it
presents less load shedding than the original mk&t{ved circle curve) over a wide range of network
tolerancex (i.e.,0 < a < 1.2); in addition, solution #13 (1003.8, 0.48) (magewiiamond curve)
generally outperforms the solution #3, while sant#5 (3344.3, 0.28) (grey star curve) outperforms
#13 in terms of cascade resilience. Finally, Passtiution #17 (7300, 0.184) (which is the most
resilient network according to the ML model) prasethe lowest load shedding among the five
networks over the entire range wivalues considered. This ranking of cascading rfaihesilience is

consistent with the simulation results based onrviidel.

Figure 8 shows the results of OPA simulation onfive networks, where the failures are triggered by
removing a randomly chosen node (i.e., randomainftiilure) and the results are averaged over 30
different samples. The ranking of cascade resiievfche five networks here is also parallel wib t
optimization results based on ML. This demonstrétasa resilience-improved network from the
optimization based on the ML model is also mordliezd than another one if evaluated by
the more realistic OPA cascade simulation, theegfarifying that the insights gained by the

topological optimization approach are valid.
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Fig. 7. Cascading vulnerability (normalized load sheddienpluated by the OPA model for the five chosen
networks over a range of network tolerance vatueader targeted initial failure.
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Fig. 8. Cascading vulnerability (normalized load sheddiegluated by the OPA model for the five chosen
networks over a range of network tolerance vatueader random initial failure. The results haverbaeeraged
over 30 different samples.

Also important is to remember that the results poedl by the simple ML topological model are
obtained at a much lower computational cost thasdlof the OPA model: actually, the average time
needed to carry out a single cascading failure Isitiam is 3.9s and 20.8s for the ML and OPA models,

respectively, on a double 2.4 GHz Intel CPU andB4RAM computer.

6 DISCUSSION AND CONCLUSIONS

Generally, the structure of power grids emergesutin an unplanned growth process to meet service

demand and/or results from optimization of costewkver, the increasing threat of large scale



failures, albeit infrequent, makes it vital to tkiof the design of resilient network systems capabl

resist against and recover from cascading failures.

In this paper, we have investigated the allocatibgenerators to distributor nodes by rewiring $ink
under the objectives of maximizing the network eafing failure resilience and minimizing the

investment costs.

In realistic cases of networks of large numberaatas, the problem is a combinatorial multi-objegtiv
optimization problem. To effectively tackle the plem, we have proposed a NSBDE multi-objective
algorithm, within a Pareto optimality scheme ofrsbaor non-dominated solutions. To simulate and
guantify the cascading failure resilience of netwoonnection solutions selected during the NSBDE
search, a complex network model — namely, the Mt (ML) model- has been used, to exploit is

rapidity of calculation.

Exemplification has been done by considering th@k¥0 French power transmission network
(FPTN400). The results of the case study have shitvah generator-distributor allocation can be
optimized to improve the cascading resilience oéalistic power transmission network system at an

acceptable cost.

To validate the physical significance of the togidal optimization results, a detailed and more
realistic power flow modet i.e., the ORNL-Pserc-Alaska (OPA) modehas been considered. The
OPA model has been applied to five network top@sgelected from the Pareto front found by the
topological optimization process. The ranking oé tlive selected networks with respect to their
vulnerability to both intentional attacks and randfailure is consistent with that of the ML modiel;
addition, the computational time required by the diproach is shown to be 5.5 times lower than that
of the OPA approach. This verifies (i) the physigaaningfulness of the topological optimization

solutions and (ii) the practical usefulness of astcascading models in network optimization tasks

It is noted that this consistency is not insigrfit since it demonstrates that one resilience-ingato
pattern of capacity allocation optimized by the Mhodel is also of higher resilience if measured by
the more realistic OPA model, providing motivatior the use of topological, complex network
theory models for ensemble analysis and optimimatidarge infrastructures against cascading failur
with the advantages of simplicity, scalability alodv computational cost (e.g., future studies may
consider using complex network cascading models omimize both the topology and
electrical/reliability properties of realistic powaetworks, which may enable unraveling questions
such as which type of resource distribution is st favorable for a network to resist to cascading

failures, when the total resource is limited).

The initialization strategy of the OPA model inghpaper ensures that we can use the network

tolerance parameteras a common measure of transmission capacitydir imodels. However, the



actual data could be used in the OPA validatichefy are initially applied in the optimization bdse

on the ML model, and if they are available. Thisildobe possible future work. Besides, performing

optimizations using directly detailed and compuatadilly intensive power flow models (e.g., embrace

Newton-Raphson based power flow approacfi@sand/or realistic trigger events such as natural

hazard and malevolent targeted disruptf®hinto the cascade modelling framework) would eeabl

more thorough and comprehensive comparison ofu#leclasses of approaches considered in this

paper.

Furthermore, it may be useful to model tana in generation capacity and to consider

situations where generation capacity and demanadeatrequally distributed, which is aligned with

more realistic cases of power grids. Finally, whiking relatively small compared to real scenarios

with thousand buses due to computational conssrant data availability, the proposed network is

sufficient to illustrate the usefulness of the tiogical optimization methodology in this study.

Nevertheless, we believe that application of thpokogical approach to large-scale networks is

interesting and this falls perfectly within the pecof our future research in this direction.
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Comparing Network-Centric and Power Flow
Models for the Optimal Allocation of Link Capac#ie
in a Cascade-Resilient Power Transmission Network

Y.-P. Fang, N. Pedroni, E. ZiGenior Member, IEEE

Abstract—In this study, we tackle the problem of searchindor
the most favourable pattern of link capacities alloation that
makes a power transmission network resilient to casding
failures with limited investment costs. This problen is formulated
within a combinatorial multi-objective optimization framework
and tackled by evolutionary algorithms. Two different models of
increasing complexity are used to simulate cascadjrfailures in a
network and to quantify its resilience: a complex ptwork model
(namely, the Motter-Lai (ML) model) and a more detdled and
computationally demanding power flow model (namely,the
ORNL-Pserc-Alaska (OPA) model). Both models are tésd and
compared on a case study involving the 400kV Frencpower
transmission network. The results show that cascadesilient
networks tend to have a non-linear capacity-load fdation: in
particular, heavily loaded components have smalleunoccupied
portions of capacity, whereas lightly loaded linkspresent larger
unoccupied portions of capacity (which is in contrat with the
linear capacity-load relation hypothesized in prewvdus works of
literature). Most importantly, the optimal solutions obtained
using the ML and OPA models exhibit consistent chacteristics
in terms of phrase transitions in the Pareto frontsand link
capacity allocation patterns. These results providéncentive for
the use of computationally-cheap network-centric mdels for the
optimization of cascade-resilient power network syems, given
the advantages of their simplicity and scalability.

Index Terms—power transmission network, cascading failures,

complex network theory model, power flow model, cagcity
optimization, evolutionary algorithm

|I. INTRODUCTION

costs up to billions of dollars and inestimableitiect costs.
Typical examples include blackouts in power trarssion
networks [1]-[3], financial bankruptcy [4], telecomunication
outages [5], and catastrophic failures in sociosecuic
systems [6], [7].

Research regarding modelling, prediction and mitgaof
cascading failures in Cls, whereby small initiastdrbances
may propagate through the whole infrastructureesgsthas
addressed the problem in different ways, includomysical
models for describing cascading failure phenome}d1[1],
control and defense strategies against cascadiilgrefa
[12]-[14], analytical calculation of capacity paretars [15],
and modelling of the real-world data [16].

In particular, various problems concerning the sthass
and functionality of Cl systems (ranging from poveetages
and Internet congestion to affordability of public
transportation) are ultimately determined by thieeixto which
the CI capability matches supply and demand unealistic
conditions [17]. In this respect, the following tvissues are
closely related to each other and of significatériests: (i) how
to improve the network resilience to cascadingifas, and (ii)
how to design Cl systems with a reasonably limitedt. In
most circumstances, high resilience and low castanflicting
objectives and cannot be achieved simultaneouslyr F
instance, a network whose components have higrcitgman
be highly resilient to failures; but, this type eadmponents is
often characterized by high costs.

Continuous effort has been made to model the caplacd
relationship of ClI systems and to enhance the @bpaance

OUR modern society has come to depend on Iarge-scéﬂ'gh limited cost. A homogeneous capacity-load tieteship

critical infrastructures (Cls) to deliver resourcasd
services to consumers and businesses in an efficianner.
These Cls are complex networks of interconnectedtfonal

model has been widely used in the study of Cls [8],
[12]-[14], [18], whereby the capacity of a link @®) is
assumed to be proportional to the initial flow loé link (node)

and structural elements. Large scale outages omsethdnote that some of the studies focus on link mautgliwhile
real-world complex networks, although infrequentre a Others concentrate on modelling node behaviourjvéver, it

increasingly disastrous to our society, with estamaf direct
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has been argued by Kim and Motter that this is aligtic and
empirical data suggests that the relationship betwmapacity
and load of transmission lines is non-linear [1TB]: heavily
loaded lines usually have a lower tolerance paramgtan
lightly loaded lines. Most recently, Wang and Kir20]
proposed a (non-linear) two-step function for tetionship
between the capacity and load of network vertiéddthough
based on an over-simplified model, it has been shefficient
to prevent cascades by protecting highest-loadcesttLi et al.
[21] introduced a more complex heuristic capacitpdel
whereby vertices with both higher loads and ladggrees are
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paid more extra capacities. It is shown that thizdeh can
achieve better network robustness than previoustaadder
the same amount of available resources.

In the present study, we tackle the issue fromsaesyatic
perspective by searching for the strategy of res(zapacity)
allocation in a power transmission network that ni®st
favourable for resisting to cascading failures,lerkieeping the
total resource (capacity) limited (i.e., while nmmzing the
network cost). This serves as the primary objectifehis
paper. In more detail, the problem is formulatedhimi a
large-scale, nonlinear and combinatorial multi-chje
optimization framework and is solved by a fast aaitist
genetic algorithm, namely NSGA-II [22].

The search by the NSGA-II requires also: (i) thestouction
of a model to describe the cascading failure pdesthe
network of interest, and (ii) the repeated evabratof the
model for every possible capacity allocation patteroposed
by the algorithm during the search. With respedhtomodel,
two approaches are typically considered in the yaiglof
power transmission systems: complex network theaogels,
such as the Motter-Lai (ML) model [8], [9] and &diial power
flow models, such as the ORNL-Pserc-Alaska (OPAQeho
[10], [11], [39]. These approaches provide differeadeoffs
between the (relatively low) computational costoagsted to
the model evaluation (allowing applications to krgcale
power grids) and the (high) level of detail in tegstem
description (including physical characteristics gowver flows
constraints), respectively.

The OPA model seeks to faithfully describe the alishing
dynamics of the power flows during the evolutiortiad failure
propagation following the initial disturbances, byplicitly
incorporating the standard DC power flow equatiaml
minimizing generation cost and load shedding [Edpbracing
this more physical description and solving the t@msed
linear optimization functions associated to the elpbsults in
a significant increase in the computational burdendering
practical application extremely difficult for restic networks
with large numbers of elements [23]. For these aess
topological models based on complex network théery. the
ML model) have emerged in recent years [8], [9B][114],
[18], [24]-[26]. In particular, the ML model is elatively
simple and abstract model relying on the resemilaoic
complex networks to electrical infrastructure syst€in terms
of graph theory). It has the advantage of modeltiagcading
dynamics with few parameters, so that its applicatio
realistic, large-scale networks is feasible andagglly more
readily than OPA [16]. However, ML abstracts thevpo flow
laws and constraints of the electrical system.itably, then, it
cannot provide direct physical measures of blacleizg, but
rather abstract measures such as efficiency |¢ss.HRs posed
guestions on whether or not it is adequate in @ctiue to its
abstract nature, although it has been recognizedfeo a new
and interesting perspective on the study of casgddilures on
power grids [23].

It is worth mentioning that studies tackling theldem of
comparison between network-centric approaches awekeip
flow approaches are few in literature. Some stuffig} [25],

[27] have provided qualitative comparisons betweemplex
network theory models and power flow models - idfgimty
similarities and differences, and evaluating adages and
disadvantages. Most recently, Correa and Yustaledecn
the appropriateness of graph theory techniques ther
assessment of electric network vulnerability by panison to
physical power flow models [28]. By extensive comgave
simulation, Cupac et al. have shown that a netwerkric
model (CLM) exhibits ensemble properties which are
consistent with the more realistic OPA fast-scatedeat [29].
Along these lines, our study takes the comparisostep
forward by analyzing the optimization results, dimapto find
more interesting insights.

In the present paper, we embrace both the ML and OP
cascading failure models and embed them within NSIGér
optimally solving the problem of capacity resouatiecation.
With respect to that, the second objective of thpep is to
study the possibility of using a simplified netwearé&ntric
model (instead of a detailed power flow model) witlan
optimization framework, without affecting the guwliof the
optimal solutions found. For illustration, we apphe method
to the 400 kV French power transmission networldeunrthe
objectives of maximizing network resilience to Gmdiog
failures and minimizing investment costs. Finallywe
systematically compare the results obtained byguttie two
cascading failure models of different complexity.

The reminder of this paper is organized as follolws.
Section Il, we introduce the ML and OPA cascadiaiufe
models in detail. We, then, formulate the multieitjve
optimization problem taking investment costs andufa
resilience into account in Section lll. In Sectidh we briefly
introduce the procedure of the NSGA-II algorithnection V
illustrates the French 400kV power transmissionoet case
study and the analysis and comparison of the esult
Discussion and conclusion are given in Section VI.

Il. MODELSOF CASCADING FAILURE CONSIDEREDIN THIS
WORK

Modelling the dynamic evolution of system-wide Gadiag
failure processes poses a number of challengestalube
diversity of mechanisms which can trigger the aifailure and
influence the subsequent propagation of breakdownthe
power system [27]. Various cascading failure motialse been
proposed; these can be divided into two main caiegiahose
based on complex network theory analysis and thuséeg
power flow analysis, often including optimal ecoriorpower
dispatch after each failure in the propagation,, oy linear
optimal power flow (OPF) [29].

Complex network theory models, including the ML rabd
adopted in this work and described in Section AWwehlbstract
the representation of a power grid as a graphtzen $tudy the
connectivity characteristics, the propagation maisms
through the graph connections and their relatiggsshihese
types of models have proved to provide a good wtaeding
of the specific grid dynamics of cascading failur@®].
However, in these models the assumptions only attsthe
real loading of the components and the flow distitn
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through the connections. For this reason, it isesgary to
ascertain the meaningfulness of the results for ektrical
infrastructures.

Power flow models, on the contrary, are based alisti
power flow equations to describe the flow dispatghi
dynamics and failure evolution after the initiastirbances in
the power grid. The OPA model, which is the mostewnly
used of this type of models, is introduced in SecB below
and is based on the DC power flow approximatior).[31

A. The ML Model

The original ML model has been proposed by Mottet bai
[8], with extensions to differentiate generators &wads [16].
Here, the extended ML model in terms of transmisdine
failures is utilized. The power transmission netwas
represented as an undirected gréplvith a set ofN vertices
representing Ng generators andNp loads representing
distribution substations, interconnected by a $eMoedges
representing transmission lines. The structurdeftetwork is
identified by anV x N interaction matriX//, whose element

flow at a particular link can change and if it ieases and
exceeds its capacity, the corresponding link falsy failure
leads to a new redistribution of loads and, as sulte
subsequent failures can occur.

Using this cascading failure model, the damage h& t
networkQ can be characterized by the fraction of network
efficiency lost in the cascading failure:

_ EQ@-EQ@

E(Q 3)

ML

whereV,,; € [0,1] andE(Q) represents the residual network
structure after the cascading failurB(Q) measures the
network efficiency based on the node pair shogast distance
between generators and distributors. For its coatjut all
pairs of nodes € V;;, andj € V, are weighted by the inverse of
their distance:

1

1
EWQ) = mZiEVG ZjEVDﬁ 4)

whered (i, j) is the number of edges for an unweighted network

w;; is 0 if node andj are not connected directly; otherwise itor the sum of edge weights for a weighted netwarkhe

is assigned a value of 1, for an unweighted netwarkanother
numerical value, for a weighted network (as in ¢ase of the
work in the present paper).

The ML model assumes that at each time step, oihefthe
relevant quantity (e.g., electrical flow for powgrids) is
exchanged between every pair of generator andilulisir
nodes, and transmitted along the shortest patheobing them.
Then, the flow at one link is computed as the nunolbehortest
paths passing through it. More precisely, the R} of link [
is quantified by the link betweenness, calculatetha fraction
of the generator-distributor shortest paths passingugh that
link:

nL(l)leE
n”-'

1

ML _
Fy ~ NgN
GNp

1)

whereE (||E|| = M) is the set of all the links in the netwolk;

ZiEV(;,jEVD

(IVell = Ng) andVp, (||IVp]l = Np) are the sets of generators

and distributors, respectively;; is the number of shortest
paths between generator nodes and distributor noated
n;;(1) is the number of generator-distributor shortesthpa
passing though link

In theoriginal ML model [8], a homogeneous capacity-load

relationship is assumed: the capacity of link assumed to be
proportional to its initial flowF*(0) with a network tolerance
parameten:

CME = (14 )FM(0),l € E )

The concept of tolerance parameter(a>0) can be
understood as an operating margin allowing safeatipe of
the component under potential load increrheFite occurrence
of a cascading failure is initiated by removal dih&, which in
general changes the distribution of shortest pafthen, the

 In this paper, the link capacities asiables to be optimized (see Section
Ill); thus, assumption (2) is obviously not intradd in the problem
formulation of the present work.

shortest path fromtoj (like in the present case).

The geodesic network damag#),,; measures the
functionality of a network when subjected to a auggncy due
to cascading link disruption with regard to itsagte state (base
case). A9Y/,, increases, the impact on the network due to
cascading failure also increases, as some commhbenbme
disrupted.V,,, has proved to be a well-defined index being
capable of providing results consistent with thogg@hysical
model indices [28].

The detailed simulation of the ML cascading failunedel
proceeds as follows:

(1) Arandom link is chosen as failed and, thus, is
removed from the network.
Recur to Eq. (1) and Floyd's shortest paths algorit
to calculate the flow of each working link in the
network [32].
Test each link for failure: for each lidke E of the
network, if FML > cML then linkl is regarded as
failed and, thus, is removed from the network.
If any working link fails, return back to step 2.
Otherwise, terminate the simulation and evaluate th
network damage by Eq. (3).

Complex network theory models, such as the ML W&atise
within our optimization framework of the followir§ection I,
have no direct physical relation to the mechanisim®alistic
power grids, but they have the key advantage thaititizing
techniques from graph theory they can be appliedniayze
large-scale networks. For this reason, this maugiipproach
is seeing increasing applications for modelling cealing
failure processes in power grids.

B. The OPA Model

The OPA model has been proposed by researcherskat O
Ridge National Laboratory (ORNL), Power System
Engineering Research Center of Wisconsin Unive(gi§erc),
and Alaska University (Alaska) [10], [11]. The ORvodel is

@

(©)

4
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built upon the Self-Organized Criticality (SOC) ¢,
contains two different time scale dynamics, i.&stpower flow
dispatching dynamics and slow power grid growthaigics,
and describes the complexity and criticality of powystems.
It is a novel and powerful tool for analysing povestems.
Our analysis focuses on the fast power flow dynapiicorder
to ensure comparability with the ML model shortgstth
assumption.

The cascading failure model is based on the stdnD&
power flow equation,

FOPA=4.p (5)

After solving the linear optimization by using tkenplex
method as implemented in Flannery et al. [33], wangne
which lines are overloaded. A line is considered b®e
overloaded if the power flow through it is withifolof the limit
capacityC’? . Each overloaded line may outage with
probabilityp; (p; is set as 1 in the case study to ensure its
comparability with ML). If an overloaded line expemces an
outage, its power flow limi€2F4 is divided by a very large
numberk, to ensure that practically no power may flow
through the line. Besides, to avoid a matrix siagty from the
line outage, the impedances of failed lines aretiplied by a

large numbek,, resulting in changes of the network matix

whereF?" is a vector whos& components are the power |oad shedding is utilized to quantify the damagetu

flows through the lineskP?(l € E), P is a vector whose
N — 1 components are the power injection of each nBd@y

is the total number of nodes in the network), with exception

of the reference generaté, andA is a constant matrix that
depends on the network structure and impedancedR@k [10]

cascading failure. For an individual node, loaddslieg is
defined as the absolute value of the differencevéen its
power injection and demand:

LS, = [P = BLj € V) )

for details about the computation4). The reference generator sypsequently, total load shedding for the system is

power is not included in the vectBrto avoid singularity ofi
as a consequence of the overall power balance.

The generator power dispatch is solved using stdrdeear
programming methods. Using the input power demahd,
power flow Eq. (5) is solved with the conditionrafnimizing
the following cost function:

f = Yievg Pi(t) + K Xjev,, Pi(t) (6)

This definition gives preference to generation tshihilst

(8)

Finally, system load shedding is normalized bydtal demand
D and used as a measure of damage to the systeltmgfom
a cascading failure:

LS = ZjEVD LS]

LS Yjevp LSj

- dem
b XjevpP;

(9)

Vopa =

The fact that simulation results from OPA model are

assigning a high cost (s€t=100) to load shedding, and it is consistent with historical blackout data for realver systems

assumed that all generators operate at the sarharmbthat all
loads are served with equal priority. The minimiaatis done
with the following constraints:

(5) Generator power injections are generally positivé a
limited by installed capacity limitf) < P, <
P i € V.
Loads always have negative power injections:
PA™ < P < 0,j € V).
The flow through links is limited by link capacisie
| FIOPAl < CIOPA'
Total power generation and consumption remain
balanced}.;cy oy, Pi = 0.

Notice that in order to simplify the power flow fmem,
making it linear, a number of assumptions have beade in
the standard formulation of DC power flow, one diigh is
that the transmission line resistance is assumbd tegligible
i.e. R<<X, i.e. lines are assumed without loss [3hfs means
that the loss of power transmission is neglectetthénoriginal
OPA cascading failure model [10]. However, the otiye of
cost minimization (Eq. (6)) is only applied to geidhe
generator power redispatch after the occurrence aof
transmission line failure, for which changes in gation or

(6)
()
®)

has justified its effectiveness [11]. However, épplications of

OPA have generally been limited to networks witlelatively

small number of nodes compared to real power 28k due

to the computational efforts involved.

[ll. FORMULATION OF THE MULTI-OBJECTIVE OPTIMIZATION
PROBLEM

In this section, we generally frame the problensedirching
the most favourable pattern of link capacities imealistic
power transmission network, so as to optimize ésilience
against cascading failures. By associating a odghé capacity
of) each link of the network, the optimization pess also seeks
to minimize the total cost. With the aim of compari
network-centric and power flow approaches, bothNtieand
OPA models introduced in Section Il are used tduata the
vulnerability of the pattern of link capacities posed during
the optimization search.

Specifically, we define the variables to be optiedzas the
capacities of the links in the network, [ € E (i.e.,CM" for the
ML model andC’" for the OPA model). Thus, the
homogeneous capacity allocation strategy as exgulessEq.
(2) is no longer adopted in the optimization. laste any

load shedding are usually considered, as the change non-negative vectolC € RY could represent a potential

transmission loss among different redispatch graseshould
probably not be large and considered by the netwpscator
[10].

solution. It is noted that the searching spR{/eis intractably
large in reality, where a power transmission nekuasually
has hundreds or thousands of links.
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We, then, assume that the cost associated with kaich operations and (iv) using information on the ohjexbr search
capacity is linearly proportional to the value b&tcapacity, functions and not on its derivatives. The main atlxges are:
with coefficiente (we simply setp as 1 in our case study). The(i) fast convergence to near global optima, (iipestior global
total investment cost related to a capacity aliocapattern searching capability in complicated search spaces (i)
C € RY in the power transmission network can, then, bapplicability even when gradient information is netadily
defined as: achievable. MOEAs rely on the following conceptS][3
Pareto front: The locus that is formed by a set of

Cost(C) = Yier 0C, (10)

The network damage resulting from a cascadingriila the
presence of a given capacity pattern can be olaté&ipeunning
the ML (or the OPA) simulation in correspondencetlodé
capacity pattern and, then, using Eq. (3) (or Byjf¢gr OPA).
The cascade is initiated by the failure of a sidglk in each
model. The single link is randomly selected frore get of

solutions that are equally good when compared to
other solutions of that set is called Pareto front.

¢ Non-Domination: Non-dominated or Pareto-optimal
solutions are those solutions in the set whichato n
dominate each other, i.e., neither of them is bétizn
the other in all the objective function evaluatiohke
solutions on each Pareto front are Pareto-optinital w

links E in the network with equal probability. Then, the respect to each other.

algorithms for cascading simulation proposed inti8ed| are In this study, we use a fast and elitist genetgodihm,
applied. The cascade simulations run over sevésedtions namely, NSGA-II [22], to solve the multi-objective
until they either converge or exceed the maximumioer of optimization problem (11)-(12). NSGA-II has beemyed to
steps (we use maximum 20 iterations for both ML @&RA). be an efficient algorithm to find Pareto optimalusions [36];
Finally, the network vulnerability for a given cajty for further details about this algorithm and reletvaurveys on
allocation patterrt’ is obtained as the average network damagaulti-objective evolutionary optimization, the read is

Vi, (0rVop, for OPA), over various random triggers (we uséeferred to Ref. [22], [34]-[36]. The complete pedare for our

30 triggers for both ML and OPA).

Through the quantification of the capacity allocattost and
cascading failure vulnerability, the capacity aditton problem
is formulated as a multi-objective optimization:

min Cost(C) (11
cerl!
min V(C) (12)
ceri!

The objective function (11) is the sum of the licdpacity
costs; function (12) expresses the cascade vulifigrab
objective, wher& (C) is V,;, when the ML model is used, or
Vopa When OPA is used. Observe that under this difinthe
most cascade-resilient network might be the netwwith
infinite capacity, which obviously would conflict ith the
objective of minimizing cost.

IV. MULTI-OBJECTIVEEVOLUTIONARY ALGORITHMS (MOEA)
FOR OPTIMAL CAPACITY ALLOCATION

Multi-objective evolutionary algorithms (MOEAsS) hav
proven to be general, robust and powerful searals that are
desirable for tackling problems involving i) mulép
conflicting objectives, and ii) intractably largenda highly
complex search spaces [34]. In extreme synthdsés,main
properties of Evolutionary Algorithms (EAs) aretltze search
for the optima is conducted (i) using a (possiblgjge
population of multiple solution points or candidatéi) using

capacity allocation optimization problem is detdiées follows:

(1) Read power transmission network data (line, bus,
adjacency matrix, etc.) and fix the MOEA parameters
(i.e., population size, maximum generation, etc.);

(2) Randomly initialize a (parent) population of possib
solutions (individuals) and evaluate the fitheseadh
individual with respect to the two objective fureis
(11) and (12); sort the parent population according
the non-domination criterion [35];

(3) Select the parents which are fitter for reproductiy
using a binary tournament selection [22]; the
procedure is such that fitter individuals are Seléc
with a higher probability;

(4) Generate an offspring population by crossover and
mutation operators, and evaluate the fithess ofi eac
individual in the offspring population with respeot
the two objective functions (11) and (12);

(5) Combine the parent and offspring populations to
generate a new "trial* aggregate population and
perform non-dominated sorting on the “trial”
population;

(6) Generate a new parent population by selectingébe b
solutions in the sorted "trial" population, until a
desired population size is reached;

(7) If the stop condition is met, then terminate the
iteration; otherwise, go to step 3.

The non-dominated solutions of the last population

constitute the Pareto optimal front of the optintiza problem

operations inspired by the evolution of specieschs@s i hand.

breeding and genetic mutation, (iii) using probiabd
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V. CASESTUDY AND RESULTSANALYSIS

A. Case Sudy and Parameters Setting

In this paper, the 400kV French power transmissiemvork
(FPTN400) (Fig. 1) is taken for exemplificationtb& proposed
approach. The network is built from the data on 488 kV
transmission lines of the RTE website [37]. It H&4 nodes
(substations) and 220 edges (transmission
distinguish the generators, which are the sourgmufer, from
the other distribution substations, that receivevgio and
transmit it to other substations or distribute it local
distribution grids. By obtaining the power plaritt from EDF
website [38] and relating them with the ID of thesbs in the

linese W

TABLE |
PARAMETERS OF THE NSGA-Il ALGORITHM
Parameters Values
Population size 80
Maximum generation 1500
Crossover probability 0.9
Mutation probability 0.1
Crossover operator 20
Mutation operator 20

B. Comparison between the ML and OPA Models

1) Model Adjustments and Settings
The comparison between the optimization resulthefML

transmission network, we have 26 generators and 14R4 OpA models is not straightforward due to tiiexéinces of

distributors. Only the nuclear power plants, hytzotic plants
and thermal power plants whose installed capaditiedarger
than 1000 MW, are considered. Although simplifioa have
been made, the network model still has sufficiestaidls to
illustrate the validity of the method on a reatissize electrical
infrastructure.

Fig. 1. The 400kV French power transmission nekwfBPTN400) [37].

For optimal allocation of link capacity in the netik, the
NSGA-II algorithm introduced in Section 1V is apgdi with
regards to the objectives of minimizing cascadaerdbility
and investment cost, expressed by functions (114) @)
respectively. Both the ML and OPA models are used
evaluate the cascade vulnerability of the propostdork. The
parameters values used in the NSGA-II algorithmreperted
in Table 1. In this study, we do not attempt todfithe best
optimal setting for each of the NSGA-II parametansl they
have been set by trial and error guided by the @imneaching
convergence. For the interested reader, extensinies exist
especially focusing on the task of tuning GA parserse[40],
[41], [42].

the two models in the way of representing systaw fin the
iterative algorithms they rely on, and in the wdyreasuring
the damage produced by the cascading failure. Aaugly,
some assumptions and adjustments to the modeteeaessary
to ensure their comparability.

Flow initialization: In the ML model, initial link flow is
calculated directly by Eqg. (1). Regarding the OPAdel, the
calculation of initial link power flow by Eq. (5)etessitates
data about power demand and generator capacity. Rudies
set this data by evolving the network using comthifaest-slow
dynamics until the network reaches a steady siétg [11]. In
order to ensure comparability with ML, and takingpi account
that we limit the scope of our comparison to fastaimics, we
use a simpler initialization strategy that does megjuire the
consideration of network upgrades over time.

Although the ML modeldoes not represent demand and
generation capacity quantitatively, it assumes thaery
distributor is connected to every generator, whertlere is
only one shortest path from any distributor to g\generator.
This implies that every distributor attempts toragt an equal
amount of power from every generator [29]. Thudatlitate
comparability with the ML model, we use the follogi
assumptions in OPA: (i) all the loads have equaktant power
demand, and (ii) the total generation capacityets¢® be equal
to the total demand and equally divided among #regators.

In Fig. 2, we plot the relationship between theidhiflow of
each link determined using the ML model and tha¢heined
using the OPA model in the FPTN400. Each greenregndhe
Figure corresponds to one of the links in the nétwdhe
x-axis is the value of initial flow of the link iML, and its
y-axis is the value of its initial flow in the OPafoproach. It can

e seen that the initial link flow in ML is hightorrelated with
he initial link flow in OPA, computed by means tfe
proposed initialization method (the correlation fticent
TmLopa IS €qual to 0.77). That is to say, links with higitial
flow in ML tend to have high initial flow in OPA,na vice
versa. This shows that our initialization stratégconsistent
for ML and OPA.

Cost normalization: Since the ML and OPA models rely on
different variables and algorithms (see Section the
numerical values of each link flow and capacityedeiined
within the two approaches are obviously not idextic
Therefore, in order to facilitate the comparison thie
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optimization results from the two approaches, thet of each
capacity (allocation pattern) proposed by the ojaition
algorithm is normalized by the corresponding toiatial
network flow?, and indicated aSost in both the ML and OPA
models.

Normalized mitial link flow in OPA

. L 1 1 L L L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized initial link flow in ML

1
0.2

Fig. 2. Scatteplot of the normalized initial link flows in the Manc

OPA models, with reference to the 400kV French pdveesmissio

network. The initial link flow in ML is highly coelated to that in
OPA (rm1,0pa=0.77). The best fit line is also shown.

Comparison method: As already mentioned before, it is
evident that the ML and OPA models provide diffénesults
at the local scale [29]; however, we evaluate tatvxtent the
two approaches are consistent at the global systeel. In
particular, we compare the two approaches by pmifay the
following analyses:
and OPA models exhibit similar characteristics in
terms of phase transitions of cascade vulnerability
with respect to normalized investment cost;

We investigate whether the Pareto optimal solutions
showing the same level of investment cost alsogntes
similar capacity allocation patterns;

We examine whether the link capacities patternsgalo
the two optimal frontiers exhibit similar charaéséics
for decreasing network vulnerability (i.e. for
increasing network resilience).

2) Comparison Results

We first investigate the shape of the Pareto frottisined
using the ML and OPA models in the capacity allwcat
optimization: in particular, we analyze the vaatof cascade
vulnerability as a function of normalized investrhesost.
Notice that a proper comparison of the Pareto §afitained
with the ML and OPA models is only possible witheth
adjustments proposed in previous Section. Fig. @vshthat
ML and OPA Pareto fronts exhibit similar phase $itons
(although their absolute values are different, Wwhis not
unexpected considering the fact that they applyediht

2By this definition, the normalized cost has prebishe same physical
meaning with the network tolerance parameter

We verify whether the Pareto fronts based on the ML

modelling parameters and cascade vulnerability oves$.
both curves present a sharp decrease in netwonkerability in
the sameost region (i.e.1.0 < Cost < 1.5), where a small
increase in the cost gives a large gain in termsasicade
resilience. Besides, regions of plateau exist femtagn cost
values in both models (i.e. fot.5 < Cost <1.75 and
2.0 < Cost <2.2 in ML, and for 1.5 < Cost < 1.8 and

2.15 < Cost < 2.45 in OPA), in which increasing investment
cost does not improve network resilience. Finddlyth curves
show a relatively stable regime for larfest values (i.e.,
Cost > 2.2), where network resilience is already high and its
relative improvement is negligible even for a sfigaint
increase in the network cost (for example, refertmthe ML
model, increasingost from 1.97 to 2.61, i.e., of 32.5%, we
reduce the network vulnerability of only 1.5%). Guoaild refer
to the Pareto fronts of ML (squares in left parstd OPA
(triangles in right panel) in Fig. 4, where thidateve stable
regime is shown more clearly on a linear y-axidesca

Cascade vulnerability

.
1.6 1.8
Cost

Fig. 3. Phase transitions in the Pareto optimaltffehowing casca
vulnerability (i.e., average efficiency loss for Mind average load
shedding for OPA) with respect to normalized inkestt cost.

In Fig. 4 we compare the Pareto fronts obtainethieyML
and OPA models within the multi-objective optimipat
framework of Section IIl with the results obtainegdassuming
a classical homogeneous capacity allocation styaisge
Section 1LA). The capacity in the homogeneous ciypa
allocation is assumed to be linearly proportiomathe initial
flow by means of the network tolerance parameteras
indicated in Eqg. (2); thus, the normalized costaofgiven
capacity allocation pattern is precisely equaldcameten by
construction. It can be seen that in both cases
multi-objective optimization approach based on Mid &OPA
produces superior solutions as the correspondingt®&onts
are closer to the coordinate axes. The linear (lysmeous)
capacity-load relationship evidently appears natinog for
obtaining a cost-efficient and cascade-resilietivoek.

We, then, compare the link capacities patterns hofse
solutions along the two Pareto fronts that present

the
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= Pareto-front in ML
— Homogeneous

0.9

0.8

0.7-

Cascade vulnerability

. ,
1.8 2
Cost

L
1.6
o or

1.4

Fig. 4. ML (left panel) and OPA (right panel) Parétnts obtained in

Cascade vulnerability

0.7

4 Pareto front in OPA

— Homogeneous

0.6

0.5

0.4

0.3F

0.2

0.1+

the multibjective optimization framework of Section Il (sares an

triangles), together with the results obtained impleying a homogeneous capacity allocation strafeghd line).

approximately the same values @bst. In particular, three

representative values of normalized cost (Cest=1.07, 1.27
and 1.81) along the Pareto fronts are chosen, dued
relationship between the link capacities of theregponding
optimal solutions obtained by the ML and OPA modais
visualized using the scatterplots of Fig. 5(a), &nd (c),
respectively. It is evident that the link capadita the optimal

solutions based on the ML and OPA models are high

correlated (with correlation coefficieny, op,=0.73, 0.69 and
0.76, respectively). That is, links with low caggdn the ML

model are likely to have low capacity also in theAOmodel,

and links with high capacity in ML also have highpecity in

OPA.

Finally, it is interesting to analyse how the pattef link
capacities changes when lower network cascade nalditigy
(higher network resilience) is demanded, i.e., Whigpe of
capacity allocation pattern is the most favourablesisting to
cascading failure. We tackle this problem by inigeding the
"expected" network link capacity pattern as a fiorctof
cascade vulnerability, i.e., the configuration apacity pattern
"averaged" over all possible solutions of the Rafeint lying
within a given "regime" (i.e., interval) of cascaddnerability
of interest. Paramet@® (namely, S5, for ML and B5p, for
OPA) is used to represent the "regime" of vulnditgbiwhere
s indicates the size of the corresponding inteté.noted that
smallerp® represents higher network resilience.

Fig. 6 reports the results of averaged link capecpatterns
for three different levels of cascade vulnerahilitiye.,
0.6 <% <0.7,03<p% <04 and0 < p% <0.1in the
case of a homogeneous allocation strategy (cireled)of the
optimization-based approach in our study (squarBsg. left
panel (a-c) is referred to ML, whereas the rightgda(d-f)
relates to OPA. It is found that the optimal linkpacity
patterns exhibit consistent characteristics betwktn and
OPA models. For example, in both cases, the optimél
capacities patterns are similar to their correspund
homogeneous allocations only in less resilient peteg; i.e.,

when 0.6 < %! < 0.7, where the objective of minimizing
investment cost is much more biased (Fig. 6(a)(ejd When

e increase the importance of minimizing the nekwor

vulnerability (e.g., for0.3 < %! < 0.4 and0 < %! < 0.1),
the optimal link capacities show a non-linear ielaghip with
respect to their initial flows, as shown in FigbB((c) and Fig.
6(e), (f). Specifically, the heavily loaded linlend to decrease
;geir capacities and the lightly loaded links tendincrease
their capacities. That is to say, the unoccupiedigo of
capacity tends to decrease in links with largedsoand the
unoccupied portion of capacity tends to increaseéhin less
loaded links. Furthermore, the more importancevsrgto the
minimization of network cascade vulnerability, thmore
pronounced the non-linear behaviour is, as showkign 6(c)
and (f). Our findings are consistent with the ercgir
observations and results from the traffic fluctoatmodel [17],
[19].

VI. DISCUSSIONAND CONCLUSION

In this paper, we have tackled the problem of deagcfor
the most favourable pattern of link capacity altawafor a Cl
network with the objective of resisting to cascadmailures
with limited investment costs. The problem has been
formulated within a multi-objective optimizationafmework
and has been solved by an evolutionary algorithemety the
NSGA-Il. The optimization has been carried out gstwo
different approaches to cascade failure modelliray:
computationally-cheap complex network model -- niggribe
Motter-Lai (ML) model -- and a more detailed powew
model -- namely, the ORNL-Pserc-Alaska (OPA) modéle
approaches have been compared on a case studyiimytte
400kV French power transmission network (FPTN400).
Although simplifications have been applied, thenwek model
still has sufficient detail to illustrate the vatyof the method
on a realistic electrical infrastructure.

The objective of this paper is twofold: 1) to tazkhe issue of
capacity-load relationship from a systematic pestpe, by
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Cost = 1.07

rauLopa =073

Normalized optimal capacities (OPA)

(a)

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 ll:‘)
Normalized optimal capacities (ML)

1 1
Cost = 1.27

09  TmrLopra = 0.69 0.9

Cost = 1.81
raLora =0.76

0.8~

(OPA)

Normalized optimal capacities (OPA)

Normalized optimal capacities

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Normalized optimal capacities (ML) Normalized optimal capacities (ML)

Fig. 5. Scatter plot of the (normalized) link caipias of three representative ML and OPA Paretattmis showing the same norlizad cost
The link capacities of the Pareto solutions with same level of cost show highly correlated aliocapatterns: (a) ML solution (1.07, 0.63)
versus OPA solution (1.07, 0.3@);,,0p4 = 0.73; (b) ML solution (1.27, 0.24) versus OPA solut{dn27, 0.21)ry;,0pa = 0.69; (c) ML
solution (1.81, 0.074) versus OPA solution (1.8050):7,;, 0p4 = 0.76. The line of best fit is also plotted, for visggiidance.

introducing the optimization of link capacity alkiton, and 2) component under potential load increment (mainhkgaeined
to study the possibility of using a simplified neik-centric by the perturbations caused by the failure of otmenponents
model (instead of a detailed power flow model) witthe of the network), this explains why in the optimalwions the
optimization framework, without affecting the quwliof the unoccupied capacity tends to be smaller for linkth warger
optimal solutions found, by embedding both the Mid PA loads.
model into the optimization and comparing theiutes Additionally, the analysis of the behaviour of thiek
Primarily, our multi-objective optimization resuksow that capacity patterns of the Pareto optimal soluticna dunction
both the ML and OPA models produce improved Parewf the vulnerability level has shown that the resplrovided by
solutions with respect to those obtained by assgmiclassical ML and OPA are consistent: the more importanceivsrgto
homogeneous allocation strategy. In addition, thiental link  the objective of network cascade vulnerability, theore
capacity allocations show a non-linear capacitgtioglation: pronounced is the non-linear capacity-load relafion both
the unoccupied portion of capacity tends to deeréadinks models. Besides, the Pareto fronts produced by ML@PA
with larger loads, whereas the unoccupied portiboapacity exhibit similar phase transitions. Both curves bikha sharp
tends to increase in the lightly loaded links. Tisisn sharp decrease in network vulnerability wher < Cost < 1.5, a
contrast with the Iingar capacity-load relation d)ly[esized.in plateau for certain cost values (i.e., I < Cost < 1.75 and
previous works O.f I|terature [8], [9], [12]{14],18]. This 2.0 <Cost <2.2 in ML, and for 1.5 < Cost < 1.8 and
non-linear behaviour is probably a consequence haf t — . ) i
following observation: since larger loads in heavibaded 215 Sﬂ“ <245 in OPA) and a relatively stable regime
Components tend to result from a |arge numberond ﬁventS, when Cost >2.2. Furthermore, the link CapaCitieS of the
the relative size of the fluctuations in these congnts tends to Pareto optimal solutions produced by the ML and GRdAlels
be small when other ||ght|y loaded Components cﬂalnng a show h|gh|y correlated allocation pattern, whichame that
cascading failure; considering that the unoccupimgiacity is links with low capacity in ML tend to have low capty in
the operating margin that allow safe operation fhe OPA, andlinks with high capacity in ML also tendhave high
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Fig. 6. “Averaged” optimal link capacity patterres three different levels of cascade vulnerab{ling < %! < 0.7,0.3 < %! < 0.4 and

0 < %! < 0.1) in ML (left panel a-c) and OPA (right panel d-The

scatter plot shows the relationship betweerlitk capacities and the

initial link flows in a homogeneous allocation $égy, where the capacity of a link is assumed to begntional to its initial flow (circles) ar
after in the optimization-based approach of Sedfiofsquares).

capacity in OPA. This consistency is not insigrfit since it
demonstrates that one resilience-improved pattégapacity
allocation optimized by the ML model is also of Inég
resilience if measured by the more realistic OPAlelo

The results from this comparative study provideénaportant
contribution regarding the usefulness of a topaalgimodel
(ML) in the optimization of a cascade resilient atleal
network. Although ML is a relatively simple and st
model (that does not account for the power flow daand
constraints of the electrical system), it is abl@tovide results
that are consistent with a detailed and more itgapswer flow

model (OPA), when applied to the problem of network

optimization against cascading failure. Most impaotty, with
respect to OPA it has the advantages of simplieibd
scalability: the average time needed to carry owirgle
cascade failure simulation is 3.9s and 20.8s foravid OPA,
respectively, on a double 2.4 GHz Intel CPU andBIRAM

computer. This provides impetus for the use of netvcentric
models to the study of cascading failure in largegr network
systems.

Future works may consider comparing our optimizatio

results with real data, i.e. the empirical capalvgd
characteristics, for extracting further insightsoat how
realistic infrastructure systems evolve. Besides, noted that

the optimization based on the OPA model leads latisos of

reduced vulnerability compared to its ML countetgsee Fig.
4) and the modelling reason behind it, is worthfuother study.
Furthermore, Newton Raphson-based power flow agbesa
[43] could be applied for the comparison with thé Model,

since they give a more detailed depiction of thecading
failure process, although the price to be paichat they are
computationally expensive. Finally, it would beergsting to
apply our method to other networks, e.g. the stahdBEE

Power Systems Test Cases and the like.
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Assessment and Optimization of the Resilience
of Infrastructure Network Systems Subject to
Disruptive Events

Y.-P. Fang, N. Pedror, andE. Zic, SeniorMember, IEEI

Abstract—This study firstly proposes a new quantitative meic
of system resilience, which focuses on the post-aiser recovery
process describing how the system “bounces back”dm a distress
to a normal functioning state. Based on this metricwe formulate
a bi-level resilience optimization model for seleotg proper
recovery actions in order to enhance the resilienceof
infrastructure networks. The resilience optimization problem
(ROP) is formulated within a mixed integer programming (MIP)
framework, and a heuristic dispatching rule that integrates
concepts from network flows and project schedulings proposed
for its solution. A case study involving the 400k\French Power
Transmission Network (FPTN400) shows that the propsed
method is able to produce high-quality sub-optimalksolutions to
the ROP with much less computational cost than theMIP
approach based on a branch and cut algorithm. Thidooks
promising for the use of the proposed heuristic digatching rule in
restoration activities on large-scale infrastructue networks.

Index Terms— Infrastructure networks, system resilience,
system recovery, dispatching rules, optimization

|I. INTRODUCTION

Critical infrastructures (CIs) are network systenesigned
and operated to deliver resources and services
consumers and businesses in an efficient mannampes of
such Cls are power grids, telecommunication netgjor
transportation networks, etc. Disruptive eventsetivar they
are malevolent attacks, natural disasters, or huraased
accidents, can have significant direct and indimeqtacts.
Justifiably, then, critical infrastructure protewti (CIP) has
gained great importance in all nations, with pattc focus
being placed traditionally on physical protectiondaasset
hardening [1]-[4]. In recent years, lessons learfiech some
catastrophic accidents have pushed part of thesfacuthe
concept of “resilience” — i.e., the ability of anfrastructure
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system to withstand, adapt to, and rapidly recdvem the
effects of a disruptive event [6], [7]. The outcaud the 2005
World Conference on Disaster Reduction (WCDR) coméid
the significance of the entrance of the term resde into
disaster discourse and gave birth to a new cubfirdisaster
response [9]. As a result, systems should not balyeliable,
i.e. having an acceptably low failure probabilityut also
resilient, i.e. having the ability to recover fratisruptions [8].
Government policy has also evolved to encouragertsfthat
would allow assets to continue operating at sonveleor
quickly return to full operation after the occurcen of
disruptive event [5].

Resilience comes from the Latin word “resilio” thiagrary
means “to
characterized by the ability to recover from chadjes or
disruptive events. The Merriam-Webster dictionagfires
resilience as “the ability to recover from or adjessily to
misfortune or change.” Various definitions of “lesice” have
been proposed for infrastructure and economic systealysis
in the past decades, e.g., see [9]-[16], [29]. Unfwately there
is currently a lack of standardization and rigor ewh
quantitatively defining resilience [15]. Too manijferent and
%8bjective definitions (some of them overlap siigaifitly with

number of already existing concepts like robustne
vulnerability and survivability) make resiliencepagar to be
just another buzzword and not an attribute of esgjiimg
systems. To address this issue, this study firstlyiews
different resilience metrics and measurement metlogies in
the context of systems engineering especially fosyGtems;
then, it proposes a novel quantification of systesilience
focusing on the post-disaster recovery process;wdéscribes
how the system “bounces back” from a distress twimal
state.

While resilience can be characterized by many syste
features and attributes, recovery is a vital eld¢roéstrategies
to improve resilience. System recovery and its rgle
infrastructure network resilience have attracteatimprevious
attention. Some studies have modelled the possidisa
restoration of various infrastructure systems inedfort to
estimate the expected restoration time [17]-[19l several
others have compared the performance of differestoration
strategies [20], [21]. More works have been donwtile the
problem of post-disaster restoration strategy pramrand
optimization for the purpose of restoring systenvise in a

leap back” and denotes a system attribute



timely and efficient manner. Considering multiplgpés of
infrastructure networks simultaneously, Kozin arttbd [22]

heuristic dispatching rule is here proposed, wtseleks to
determine a set of repair tasks to be completéf@rently from

developed a Markov process to describe the proodss traditional methods that simply focus on selecingndividual

infrastructure network recovery; then, they usechadhyic
programming to estimate the repair resources reddar each
time step and for each network, so as to maxinfieeskpected
economic return from system functioning. Noda [28kd a
neural network to minimize the likelihood of postrhquake
functional loss for a telephone system. Bryson let[24]
applied a mixed integer programming approach ftectieg a
set of recovery subplans giving the greatest betefiusiness
operation. Casari and Wilkie [25] discussed resimnawhen
multiple infrastructures, operated by differentnfs, are
involved. Lee et al. [26] focused on a case of wetw
restoration that involves selecting the locationterhporary
arcs (e.g., shunts) needed to completely reestabktwork
services over a set of interdependent networksix&drinteger
optimization model was proposed to minimize therafieg
costs involved in temporary emergency restoratiun.et al.
[27] applied a genetic algorithm to a problem agged with
restoring power after an earthquake. The objectifehis
problem was the minimization of the average timat thach
customer stays without power (therefore, no piatton is
given to demand to critical points within the irdtaicture).
Finally, Matisziw et al. [28] propose an integepgramming
model to restore networks where the connectivitwben pairs
of nodes is the driving performance metric assediatith the
network.

The studies cited above involving the optimizatioh
post-disaster Cl restoration apply a variety of gilag
approaches and focus on different aspects of ts@region
strategy (e.g. the repair order of damaged compgsnearmere
and how to allocate repair resources, and so on).

This paper provides a framework for properly sétect
recovery actions in order to optimize the resilenof
infrastructure networks. We focus on the optimahptetion
time of each failed component, in order to obtasights about
the importance that recovering each single compohas in
improving the resilience of the whole system; oe tither
hand, the duration of the repair of the failed comgnts is not
considered in this article (i.e. the repair aci®assumed to be
instantaneous). The performance of the networkdasured in
terms of the flows delivered to demand nodes.

A project-oriented perspective is taken to planptecess of
recovery from a network disruption: that is, acfatepair tasks
must be scheduled in an optimal way, so as to niagiitihe
network resilience over a predefined recovery tinogizon.
The network resilience is quantified based on thrmpmutation

of network flows, which are the outcome of another

optimization (done by network operators).
The bi-level resilience optimization problem (ROB)

formulated within a mixed integer programming (MIP)a”d

framework. Although several commercial software kages,
such as Cplex [45], can be used to solve the peapdslP
problem, the time required to solve the MIP forntiola may
impair its application to real-time post-disast@storation
activities for large-scale infrastructure networkgerefore, a

repair task to be processed.

The results of the application of the approach tase study
involving the 400kV French Power Transmission Netwo
(FPTN400) demonstrate that the scheduling rulebige &o
provide near-optimal solutions with much less cotapanal
cost than a classical approach to MIP solution dhase a
branch and cut algorithm [52], with potential fazat-time
restoration activities management.

The remainder of the paper is organized as folldw&ection
I, we first discuss related literature works camieg the
definition and measurement of resilience in the domof

systems engineering; then, we propose a novel tjatard

definition of system resilience. Section Il propes a
framework for selecting recovery actions for optimg the
resilience of infrastructure networks: in particulathe

mathematical formulation of the resilience optintiza

problem is firstly provided in Section IN; then, Section IIB

focuses on the heuristic dispatching rule that wepgse to
timely solve the problem. Section IV applies theseleped
optimization approach to a realistic case studyamdpares its
efficiency to the Cplex MIP solver. Conclusions diutlure

perspectives are given in Section V.

Il. SYSTEM RESILIENCE DEFINITION AND ASSESSMENT

A. Critical Review of Literature

Holling [10] introduced the notion of resilience the
scientific world and provided the first system-ledefinition.
Subsequently, the concept developed independently
disciplines ranging from environmental researchmtaterials
science and engineering, sociology,
economics, giving rise to a number of differentimiébns and
classifications of resilience within these field$]. Yet, it is
believed that the current strong interest in resde for
infrastructure systems has been triggered in tterrafth of
9/11 attacks [30].

One of the pioneering works in the field of infrasture
systems resilience is from the MultidisciplinarydaNational
Center for Earthquake Engineering Research (MCHER)])
where a general framework is provided to define asgkss the
seismic resilience of communities or any type ofgital and
organizational systems. This framework consists‘4iRs”:
robustness, redundancy, resourcefulness, and tygpidhile
resilience itself encompasses four interrelated edisions:
technical, organizational, social and economic.

Based on the general framework provided by Bruretaal.
[12], various studies have been carried out withghrpose of
providing a practical interpretation of the conceptesilience
identifying possible ways of measuring it fawimgg
support to resilience-based decisions. Most ofdlaggproaches
to resilience interpretation and definition incluggpects of a
system withstanding disturbances, adapting to theujgtion,
and recovering from the state of reduced performaacd can
rely upon a common concept which is illustratedeschtically

psychology and



in Fig. 1. post-disaster loss recovery (i.e. the titne t,; in Fig. 1) is not

A quantifiable and time-dependent system perforrmanconsidered: on the other hand, this time periailgsificant for
function (also referred to system-level deliveryndtion or evaluating the system ability to leap back frontujision.
figure-of-merit)F(t) is the basis for the assessment of systemFor this reason, other works have considered tlstesy
resilience. It has a nominal valué(t,) under nominal ability to recover from disruption. For example, HER [12]
operating conditions. The system operates at thislluntil proposes that the seismic resilience of a commutatyn
suffering a disruptive event at tinng The disruption generally earthquake can be measured by the area betfggrand
deteriorates system performance to some IEgg)) at time F(t,). Cimellaro et al. [9] attempt to formulate a framoek to
ts. Then, recovery is started for increasing backtesys quantify system resilience under seismic risk, rigkinto
performance until a targeted levE(t,) is achieved once account both the losses due to the disaster andetiwwery
recovery is completed?(t,.) could be the same (as in Fig. 1),phase. They view system resilience as the arearusakh the
lower or higher than the original system perforneamevel performance functiorF(t) of a system, normalized by a
F(t,)). The dotted curve in Fig. 1 denotes the targstetiem control timet,.. Ouyang and Duefias-Osorio [35] introduce a
performancd’F (t) if not affected by disruption. It is noted thattime-dependent resilience metric for infrastructsyestems,
various strategies exist for recovery activitiead asystem where system resilience is quantified as the ratithe area
performance is ultimately a function of recovergidmns and included betwee#f (t) and the time axis to the area included
actions. The periot); < t < t, is generally considered as thebetweerl'F(t) and the time axis. The time span considered

recovery time [9].

T F(t)

Recovery

Disruption

t t, t, t, time
Fig. 1. Generic system performance transition curve urfdeotcurrence o
disruptive event.

Many studies in the literature define and measasdience
based only on initial system losses caused by wisasajjar
and Gaudiot [32] regard network resilience as asuea of
network fault tolerance in a multicomputer systeim:this
framework, network resilienc&R(p) represents the upper
bound on the number of node failures allowed, artkfined as
the maximum number of node failures that can béamex
while the network remains connected with a prolighiil —
p). Omer et al. [33] suggest a model to measuraensi of a
telecommunication cable system as a network infrastre.
The ratio of the “value delivery” of the networktef a
disruption to that before a disruption is definsdaareference
for resilience, where “value delivery” is the ambuof
information that has to be carried through the oekw
Rosenkrantz et al. [34] identify resilience metridsr
service-oriented networks, where edge resilienca wétwork
is defined as the largest valkesuch that, no matter which
subset ofk or fewer edges fail, the residual sub-network
self-sufficient. Node resilience is also defined tire same
manner.

These definitions focus on the static “survivalbperty of a
system, measuring the degree of system performaftee a
disruption. They largely overlap with the existiogncepts of
fault tolerance and robustness, while the temptinaénsion of

here is fromt, to a sufficiently large(t > t,) that allows
future system evolution: this metric explicitly erabes the
system failure process.

Vulgrin et al. [31] develop a composite resiliemeasure’
that simultaneously considers recovery of systerfopmance
and the resource expenditures required to achtelflevd key
guantities are computed: (i) the so-called systemact 61)
(defined as the cumulative impact of decreasedesyst
performance following a disruption and graphicalipresented
by the area between the targeted system perfornTan@e
and the actual system performariog)) and (ii) the total
recovery effort TRE) (defined as the cumulative resources
expended in recovery activities). However, the diisatage of
this approach is that an increaseSinandTRE implies an
increase in its composite resilience measuréZ = SI +
a TRE), rather than a decrease.

Henry and Ramirez-Marquez [15] attempt to revieffedent
definitions and metrics for system resilience, amdoduce a
resilience metric referring to the basic meaningte word
“resilience”. They view resiliencB(t) as the ratio of recovery
F(t)—F(tq) ;
F(to)=F(ta)’ This
formulation is identical to Rose’s [36] static fasgice metric
whenF(t;) is taken to be Rose’s worst-case quantity. Henry
and Ramirez-Marquez [15], then, apply this measurarious
scenarios that disable links in a transportatidmaek in order
to find restoration sequences that maximize regoata given
time. However, this metric itself does not embridmintegral
temporal dimension of the recovery process, thgteeéng the
speed with which the performance of the systeradsvered.

to loss at a given timg measured bR(t) =

B. System Resilience Definition and Assessment inWWaik

In light of the issues highlighted above, we prapasnew
getric for analytical quantification of the resiliee of
infrastructure systems. It is still relying on thesic meaning of
the word “resilience” and can be applied to evauand
compare the effectiveness of different strategiest tare
proposed to reduce adverse consequences of disgugstents.

Let R(t) be the resilience of a system at titng > t,). In its
basic formR(t) is here given the meaning of the cumulative



system functionality that has been restored at time F(t) = TF(t), which corresponds to the ideal case where a
normalized by the expected cumulative system fonelity —system recovers to its target state immediatebyr alisruption.
during this same time period. Graphical(t) is represented 6) The target system performarEg(t) is generally evolving

by the ratio of the area with diagonal striggggo the area of the due to the dynamic nature of service demand iragtfucture
shaded paif,, as illustrated in Fig. 2. Mathematically, it issystems. For simplicity, in this study we assumat T (t)

given as:

[t [F-F(tldr

Je ITF@-F(ta)lar’

R(t) = >ty (1)

F(t)

F(to)

t, time
Fig. 2. Conceptual illustration of the proposesilience metrid (t)

The following considerations about the given resitie
definition are important:

equalsF (t,) and remains invariant.

lll.  OPTIMAL RECOVERY OF POSTDISASTER INFRASTRUCTURE
NETWORKS

After the definition of system resilience, we foausthe role
of various recovery decisions and actions in thek taf
optimizing the resilience of infrastructure netwarkubject to
disruptive events. In this Section, we first foratel a general
resilience optimization model for infrastructurdéwerks; then,
we propose a heuristic dispatching rule for its cpeal
solution.

A. Resilience Optimization Model

The mathematical model for the resilience optinirat
problem here considered involves an infrastructugéwvork
G(V,E) comprising a set of nod&sconnected by a set of links
E. The network nodes are classified into supply sdge
transshipment nodeg,, and demand nodd§, (Vs UV, U
Vp =V ). Each arc(i,j) €V has an associated capacity
(i,/)) € R , while each supply nodee Vs has a supply

1) The system resilience(t) defined in Eq. (1) measures thecapacity per time uni? € R¢ and each demand nogle V,

cumulative system performance that has been restare the
system disrupted state to the recovered statersgntutimet,

normalized by the target cumulative performanceifahe

system were not affected by disruption. This foratioh is
aligned with the original meaning of the conceptefilience,
while capturing at the same time both the magnitadd

rapidity of the system recovery action.

2) The system performance functiof(t) could be
represented by different metrics (e.g., the amaidirftow or

services delivered, the availability of criticalciiities, the
number of customers served, or the enabling petemt

economic activities for infrastructure systems)petaling on
which dimension (i.e., technical, organizationabcial and
economic) of resilience the analysis focuses oh [Mi&s study
concentrates on the technical dimension of resieand
utilizes the amount of flow delivered to the demawdes of a
network as the performance level metric.

3) Note thatR(t) is undefined wher (t;) = TF(t), which

means that a system does not suffer any loss.cohigition is
avoided since only systems exposed to disruptiventsvare
here considered. Practically, if a system doessnffer any
loss, there is no scope for it to be recovered draunce back
and thus there is no need to evaluate resilience.

has a demanHjD € R} per time unit. Network flow is sent
from supply nodes to demand nodes respecting thw fl
capacities of the links and supply/demand capacitit the
nodes. Each unit of flow that arrives at demanderjod V,, is
given a weighw; € Z* in order to differentiate priorities of
demand nodes (e.g., a hospital usually has a higeight than
a residential household in a power network). Théopmance
of the network is evaluated by determining the mmaxn
amount of weighed flow that can be received bydbmand
nodes. Formally, the system performance functiodeifined
as:

F(t) = Xjev, w;f;(©) ()

wheref;(t) represents the amount of flow received by demand
nodej at timet.

Disruptions happen and create damages to nodesrdinéts
in the network, as modeled by the removal of a subkarcs,
E' cE.' The arcs in seE’ are viewed as non-operational
immediately after the disruption. System perforneafi€t)
achieve its minimum value at this time £ 0, i.e.F,;, =
F(0)).

In a recovery optimization framework, we are notyon
interested in identifying a subset of the linksEhto be

4) R(t) is undefined when < ¢,, because of the same reasofnstalled to the disrupted network, but also inesthg an

explained in item 3. Besides, this could avoid awgrlap with
existing concepts like robustness,
survivability.

5) R(t) €[0,1] andR(t) = 0 when F(t) = F(t;), which
means that a system has not recovered from itaptext state
(i.e. there has been no ‘“resilience” actiaRjt) = 1 when

optimal order of installation and repair of theisé$. The goal

vulnerability d anjs to achieve maximum system resilience over thelavh

restoration horizoff € Z*. Link repairs are here assumed to be

YIf nodes are important in a specific applicatiookpem, they can be

converted to equivalent arcs by introducing adddicarcs and nodes into the

network, i.e. by ‘splitting’ a node into two nodasd an arc.



discrete tasks, and a repair cfét,j) € Z} is associated to

period does not exceeds the available resourcésctmabe

each arc(i,j) € E'. The processing time of a single arcallocated in this period.

restoration is not considered in this study (itlee, repair action
is assumed to be instantaneous); instead, thefomis is when
the disrupted arcs should come back online. Inteatdithe

number of arcs that can be restored in each timedgés

constrained by their total cost. By combining Ed3.and (2),
system resilience to be maximized at tifhis given by

Z%ﬂ[ZjevD ijj(t)_Fmin]

T(jevpWiP} ~Fmin)

R(T) =

: ®3)

The optimization variables of the resilience opsation
problem include: (i) continuous variableg;(t) € Ry ,

B. Dispatching Rule for ROP Solution

The resilience optimization problem (ROP) introdiice
before is a mixed (binary) integer programming (MIP
problem, which ha® (|E| - T + |Vp| - T) continuous variables,
O(|E|-T) binary variables and(|V|-T + |E|-T + 2|E’'| -

T) constraints. It has been proven to be stronglycomplete
[38] and, thus, it is computationally intense esaéc for
large-scale infrastructure networks composed ofishads of
nodes and links.

It is noted that the evaluation of a potential soluto the
ROP (i.e. of a scheduled set of recovery actiorthenlisrupted

(i.j) € Eandt =1,..,T, that denote the flows moving from links) requires evaluating the state of the systémgiven time,

nodei to nodej through link (i,j) at time unitt; (ii)
continuous variableg;(t) € Ry, j € V;,, that represent the
amounts of flow received by demand ngad# time unitt, and
(i) binary state variables;;(t), (i,j) € E andt =1,..,T,
such thak;;(t) = 1 if arc (i, ) is operational ans};(t) = 0 if
arc(i,j) is not operational at time urtit

We are interested in optimizing the resilience dtierwhole
restoration process: thus, the timespaa chosen as the total
recovery time, defined as the period necessargstore the
system functionality to the same level as the nebsystem.
Consequently, the formulation of the resilienceiraation
problem is as follows:

e[S jevp wif j (= Finin]

T'(E;‘evD WjPJD_Fmin)

(4)

max

Subject to:
Yapeefij®) = Xiinee fi(t) S PEViE Vs, t =1,..,T 6))
Yapeefij®) = Xpnee f;®) =0, Vi€Vt =1,..,T (6)

Yapes fij(®) = Xnee fii(6) = —=f;(t), VieVp,t=1,..,T (7)
0<fi(t) <P’ VieV,t=1,..,T

0<f,;(t) < s,;(OPG) VG ) EELt=1,..,T )

Yaper BAN[si;(®) — st —D] < C@O),ve=1,..,T (11)
Sl](t) € {0,1},511(0) = O,V(l,j) € E,t = 1, ,T (12)

The objective (4) is to maximize the system resdi over
the time horizon of the problem. Constraints (5)d€e typical
network flow constraints over the links and supgéyhand
nodes in the network in periad They ensure that: (i) the flow
generated at a supply node does not exceeds jitygpacity
(5); (ii) the amount of net injected flow at a tsghipment node
is zero (6); (iii) the amount of net injected flat a demand
node is equal to the received flow at the nodewf@je not
exceeding its requested demand (8); (iv) the flow an
operational link does not exceed its capacity drate is no
flow passing through an arc if the arc has not lrepaired (9);
constraint (10) ensures that once an arc has hestared at
timet, it will keep operational thereafter; finally, cxiraint
(11) ensures that the total cost paid for repailiimigs in a time

i.e. calculating the network flows, which is thesult of a
lower-level network flow optimization. This bi-leve
optimization structure differentiates the ROP froother
resource-constrained project scheduling problemSPE&P)
extensively described in the literature [37], [38hese are
generally based on the criterion of minimizing thekespan
(the time to project completion) whose calculatisrtrivial.
Consequently, many existing meta-heuristic algorghfor
RCPSP such as genetic algorithms [39], simulatetaing
[40], particle swarm [42] and ant colony optimipati[41] are
most likely unable to solve the ROP without incogrin a large
penalty in computational expense.

On the other hand, there has been a significantuataf
studies in RCPSP proposing some so-called dispegahies,
which usually characterize the profitability of scliling a
certain task by evaluating its contribution to tbkjective
function and then greedily schedule the unschedalsks with
the best profitability [38].

The key point in designing a heuristic dispatchintg for
our ROP is to understand how restoring an arc imspde
objective function Eq. (3) of the problem. In thitew, a

(8) straightforward idea is to modify the classical gfeid shortest

processing time (WSPT) first rule [43] by selectihg arc to be
restored as the one that maximizes the ratio ahtipeovement
of system resilience and the cost of restoringatise However,
this approach is short-sighted in the sense thaedmks will
not enhance the system resilience (i.e. will narease the
amount of flow received by demand nodes) if they aot
restored in a given predefined sequence with dthasmission
links. Thus, the profitability of restoringsetof arcs instead of
asinglearc is taken into account in designing our dispaty
rule.

It is well known that the residual network assasiatith a
maximum network flow does not contain an augmengath
from the supply node to the demand node [44]. isttew, in
order to increase the amount of flow received &y demand
nodes in the current operational network after srugitive
event, a set of links forming some residual paltiat have the
potential to augment the flow received by the desinaodes
must be restored. The main idea of our dispatchitegfor the
ROP is, then, to select a set of unrepaired lihks belong to
some residual path and that maximize the ratitefpotential



augmented flow received by the demand nodes to ti TABLE |
cumulative cost of repairing all the uninstalledk in this ALGORITHM FORPATH SELECTION IN THEDISPATCHING RULE
path. The potential augmented flow received by dehredes Input: Residual capacitg (i, j) for each of the links

is further limited by the following three elementise residual (i,j) € E, residual capacitR P for each supply
capacity of the path, the residual capacity of shpply node nodei € Vg, unmet demanBPjD and flow weight
and the unm.et flow of the demand node. - . w, for each demand nogles V,, in the current

Mathematically, suppose thai(V,E;) is a partially networkG, (V, E,) associated with an optimal flow
restored network at time X* is the optimal flow (the result of X*

the lower-level network flow optimization) assoeidtwith .

G.(V,E,). The links inG,(V,E,) will, then, have a residual 1 SetGlobalRatio = 0, P = null.
CapaCIty'r'p(i,j) = {D(.i'j) - fij(t)'_ v(i,j) € E. and repair 5. Sortthe sefR (i, j) RPf RPP} in non-increasing
cost B(i,j) =0,v(i,j) €E, , since they are already " order to obtain an ordered compositeRet
operational. The supply and demand node§, (¥, E,) will

have a residual capaci®P;’ = P — f;(t), Vi € V; and unmet 3: for eachr e R

demand RP® = PP — fj(t), Vj €V, , respectively. The Construct a weighted netwotk
unrestored links in the disrupted link $8thave a residual including only the links, where
capacity equivalent with their original capadgi,;), and a 4. R(i,j) = r. The weight of alink is set as
repair cost3(i,j). Then, the residual capacity of pdth,, B(i,j) ifitis a non-restored link; set the
from supply node to demand nodé is defined aR (P,_,) = weight as 0 if it is an operational link

ming jyep, , 7P(L,j). The cumulative cost of repairing all the 5:

. ) ; . for eachi € Vs andj € V,
uninstalled links in pat®s_, is Y jep, ., B(,J). Then, we

are interested in selecting the uninstalled limkthe path to be Find the shortest weighed path,; from i
repaired, that is an optimal solution to the foliogvproblem: 6: toj in the ?etworl(;*, calculate the path
min {RP§,RPE . R(Ps)}wa Iengthd(Pi_,j) B Z(i'j)epi*"jﬁ(w)
AP qex L(ijepg,qFE)) (13) min {RP{,RPP,R(PL,;)}w
) o 7 if L Vi)l Pe S GlobalRatio
whereR is the set of all paths from all supply nodes lio a a(piL;)
demand nodes in the original netwd@/, E). The numerator . D ofos
of formula (13) provides a measure of the potemtigmented 8: GlobalRatio = — (e ePR(PL )} wa
(weighted) flow received at demand natlby restoring path d(Pi:i)
P;_4 while the denominator measures the cost requiced 9 P=P;
restore all disrupted links in pafy_,,.
In order to determine an optimal path to (13), wppose 10: end if
thaty(B,,) : w, is the numerator in an optimal solution to  q1. end for
(13), i.e.y(Pyon) = min {RBS,RPP,R(P,.,)}; then,P,_,
is the path with the lowest cost in the network vehee only 12:  end for
include links whose residual capacities are greatar or equal 13: ReturnP

toy(B,-n)- This leads to an algorithm to solve (13): forteac
potential value of the numerator (including eacteptal value
of the residual capacity of a path, each residaglacity of
supply nodes and each unmet flow of demand nodes),
determine the minimum cost path in the network cosinm
only these links whose residual capacities areelatigan the
nur‘)rllerator. The minimum cost patrrl) can be obtatigzcﬂirby inputs_ of t'h'e algorithm._ Othgr inputs inclu_de tmsidua_l
constructing a weighed network, where the link wesgare set CaPaCcityR (i, j) for each link(i, /) € E, the residual cgpaglty
as their repair costs and, then, searching theestiqrath on the RFi’ for €ach supply nodee Vs, and the residual capaciy;
weighed network constructed. We can, then, obtaioptimal ~ and flow weightw, for each demand noglee V;,. The variable
solution in this procedure by marking the path thas the GlobalRatio flags the current optimal ratio in formula (13).
maximum value of ratio (13). It is noted that thesidual The output of the algorithm is a path composedefriext set
capacity of a path is the minimum residual capasitthe links ©Of arcs that should be restored to the network.

in the path, so there are at mosk| + |V, | + |E|) different After obtaining the next set of links to be restbrey
values to be considered, which means the nexto$ditsks to ~applying the algorithm introduced above, we cariyabocate

be restored can be determined by solartys| + |V, | + |E|)  these link repair tasks into each timeslot subjeatonstraint
shortest path problems. (11), until all links from this set are restorecheTlink repair

order within this set is not significant since wss@ame that a
link repair task can be split into two timeslothefefore, we

Formally, we provide the pseudo code of the alparifor
path selection in our dispatching rule in TabléVe assume
that the residual netwoik. (V, E,) associated with an optimal
flow X* at a given time has been calculated as part of the



can view this set of links as a queue and we esitare the next
link in the queue once the previous task is finisHeno links
are in the queue, we will determine the next sdingk to be
restored by considering the residual network assediwith an
optimal solution to the lower-level maximum flowagtem,
where all links that have been restored are regarae
operational in the network. This process continuetsd either
all links are restored or the end of the time hmmis reached.
In the Appendix we illustrate the detailed stepthefproposed
algorithm by applying it to a very simple network.

IV. CASE STUDY

We will now discuss the results obtained by applyihe
ROP to a realistic infrastructure network system,the 400kV
French Power Transmission Network (FPTN400) (See Hi
We are particularly interested in examining thefgranance of
the proposed heuristic dispatching rule in the oetwand to
this aim we compare the results with those obtaiwét a
widely used commercial optimizer — Cplex [45]. Tiegt
calculations are performed on a double 2.4 GHZ4 DR and
4 GB RAM computer.

ELUNDGE
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Fig. 3. The 400kV French Power Transmission NeitW(6PTN400) [46]

The FPTN400 data on the 400 kV transmission lingéaken

from the RTE website [46]. The network has 171 od

(substations) and 220 edges (transmission linesk
distinguish the generators, which are the sourdepouwer,
from the other distribution substations, that reegiower and
transmit it to other substations or distribute it ocal
distribution grids. By obtaining the power plaritt from EDF
website [47] and relating them with the ID of thesbs in the

The supply capacities of the generators in the FDNare
approximated to their installed capacities, takesmf EDF
website [47]. Capacity limits of transmission lirees obtained
from European Commission [48]. Since there is nificent
public information about loading of particular stdi®ns, in
order to estimate the load level we have assunmeddgmand
levels are directly related to the local populatéord industry
[49]. Specifically, the total demand of the courigylistributed
into groups of demands by administration areasgi@vinces),
whose population can be obtained at the websites@tng V.
[51]; then, for simplicity the load buses in eadyion are
assumed to share equally the regional load.

In the case study, we randomly select parts of mrdbe
network to be damaged. In addition, the repairscos$tall the
transmission lines are assumed to be constantianti¢al, and

the cost limitsC (t) are assumed to be equal to the repair cost of

a single arc: this means that only a single archearepaired at
any given timeslot. It is noted that these assumngtican be
relaxed to adapt to more realistic application sase

85+ - - ]
<€ 845 ——MIP
O_ —=—Dispatching rule
L g4t ]
83.5¢ 1
83 1

Fig. 4. Optimal restoration curves obtained bydpatching rule and MIP
solver for the specific disruption scenario (10fkd& damaged) on the
FPTN400.

We firstly consider repair optimization for a spaxi
disruption scenario on the FPTN400, where 10% tfvork
arcs (i.e. 22) are initially damaged. All the demharodes are
assumed to have identical weights in the optimizafirocess.
For the solution of the repair optimization probleboth the
heuristic dispatching rule and MIP solver are agpliFig. 4
reports the optimal restoration curves obtained thg
dispatching rule (squares) and MIP (circles), respely. It is

Sound that the dispatching rule is able to obta#amoptimal

olutions: the recovery duratidhis 5 (in arbitrary units) for
both methods, and the system resilieRq&q. 3) isRy;sp =
0.731 for the dispatching rule, arR},,,, = 0.753 for MIP: the
optimality gap between the two approaches is or12%. Fig.
5 provides a visualization of the optimal recoverans

transmission network, we have 26 generators and 12Btained by the two methods. Itis shown that tspatching

distributors. Only the nuclear power plants, hytzotic plants
and thermal power plants whose installed capaditiedarger
than 1000 MW, are considered.

rule achieves very similar restoration plans ta gdiaMIP. Both
cases give high repair priority to those transrois$ines which
are unigue connections to the demand nodes. Mgrertamtly,
the dispatching rule is computationally much chegte9s)
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Fig. 5. Visualization of the optimal recovery pdasbtaned by the dispatching rule (a) and MIP solverf@bthe specific disruption scenario (10% linksrdeyed
on the FPTN400. The numbers indicate the optin@ivery timeslots of the five arcs marked by bollidskines; black lines correspond to other failedsa

TABLE Il

PERFORMANCES OF THE HEURISTIC DISPATCHING RULE ANDHE CPLEX MIP SOLVER ON THEFPTN400

% of failed arcs

Heuristic dispatching rule

Cplex MIP solver

( number) Wj Recovery Opt. Solvertime  Opt. gap Recovery Opt. Solver
timeT resilience (s) (%) timeT resilience time (s)
5% (11) Constant 2 0.917 4.69 4.28 2 0.958 20.30
5% (11) Priority 2 0.921 4.75 6.40 2 0.984 20.94
10% (22) Constant 5 0.731 6.90 2.92 5 0.753 40.50
10% (22) Priority 5 0.852 8.60 0.00 5 0.852 46.32
15% (33) Constant 14 0.646 20.45 5.42 12 0.683 1610.
15% (33) Priority 14 0.685 26.40 13.07 12 0.788 234
20% (44) Constant 15 0.569 70.31 9.97 13 0.632 4832.
20% (44) Priority 15 0.626 75.46 8.08 13 0.681 1802

than MIP (20.5s).

computation time needed by the MIP solver for la# tases.

In order to further demonstrate the performanceth® These results indicate that the proposed heuniigatching

heuristic dispatching rule, we considered differavels of
damage on the network (5% to 20% of arcs are rahdonsome cases) solutions to

rule is able to obtain high-quality sub-optimal dasptimal in

the ROP, with much less

selected to be failed) and two different types efghts for the computational cost compared with the Cplex MIP snlv

demand nodes (i.e; for j € V): in the first class of demand
nodes weights (namely, “Constant”) each unit oifleceived
by demand nodes is weighed evenly across all timeadé
nodes; in the second class (‘Priority’), some ranljochosen
demand nodes are assigned higher valug;db represent
the solutions dan
corresponding computational performances of theristi
dispatching rule and the Cplex MIP solver for th@fRon the
FPTN400. It is shown that the recovery tiferovided by the
heuristic dispatching rule is the same (for 5% &0 cases) or
slightly larger (for 15% and 20% cases) than thénod

higher priority.

Table Il provides

It is noted that the MIP solver may need much nione
(e.g., days) to achieve optimal solutions for laig&astructure
systems (e.g., composed of thousands of nodesirkg) br
heavier disruption events (e.g., over 20% companent
damaged). Thus, it is unreasonable to expect theageas of
the infrastructure systems to have access to umelimi
computing resources or be willing to wait for seldrours (or
even several days) to determine their restoratidan.p
Consequently, the proposed heuristic dispatchinde ru
represents an appealing tool for real-time restomadctivities
on larger-scale CI systems.

solutions, and the relative optimality gaps betwéea two

methods are less than 10% in most cases. Furtheyrtoe
dispatching rule needs only, on average, the 10%hef

V. CONCLUSIONS AND FUTURE WORKS
In this study, we have firstly reviewed differemfishitions of



system resilience and different metrics to evaluate the
context of systems engineering, especially forastftucture
network systems. Then,
time-dependent metric of system resilience focusingthe
post-disaster recovery process. This metric is istarg with
the basic meaning of resilience and it is ableuantify how a
system “bounces back” from a disrupted state t@a@repted
performance.

Based on this resilience definition, we have thevided a
framework for considering the role of recovery dams and
actions in the resilience optimization of infrasture
networks. Specifically, a project-oriented perspechas been
applied to plan the process of network recoveryeraft
disruptive event: that is, a set of link repairi@a$ must be
scheduled in an optimal way so as to maximize thtevork
resilience over the recovery time. This resilienpéimization
problem (ROP) has been formulated within a mixeggar
programming (MIP) framework. Although several comaied
optimizers such as CPLEX and Gurobi can be apptiedbtain
the MIP solution, the time required to solve the PMI
formulation may impair their application for effes
restoration activities after extreme events affertarge-scale
infrastructure networks. Therefore, a heuristipdishing rule
that integrates fundamental concepts from netwlnkd and
project scheduling has been here proposed: diffigrémm
traditional approaches to recovery actions planninggeks to
determine asetof repair tasks to be processed rather than |

Cl systems.
Future works will examine different methods to exdé the

we have proposed a noveerformance of an infrastructure network, e.gitiegration of

the DC power flow model [50] in the calculation rétwork
flows (which may be more appropriate to model tperation
of electrical infrastructures). Also, applicatiofitibe resilience
optimization framework and the proposed heurisspatching
rule to larger and more complex infrastructuresjestbto
realistic disruptive events will be considered mdear to better
demonstrate the effectiveness of the proposed tdisipg rule.
Besides, it will be interesting to explore an esfen to a
probabilistic scenario considering component reston times
(and costs) as random variables. Another impordineiction
for future research is to explore other applicatidar the
resilience metric introduced, e.g. to propose iersile-based
component importance measures and their use imitjziiog
restoration activities.

Fig. 6. A simple disrupted network; the dasheddiindicate failed arcs.

individual repair task. The application on a case stuc,

concerning the FPTN400 has shown that the propos
dispatching rule is able to obtain high-quality sagiimal (and
optimal in some cases) solutions to the ROP, witlthmless
computational cost if compared with the widely a@apCplex
MIP solver: this provides impetus for the applioatiof the
heuristic dispatching rule to restoration actiwtan large-scale

ed
APPENDIX A SIMPLE EXAMPLE FOR DISPATCHING RULE

ILLUSTRATION

Consider the post-disaster network shown in Figvith
supply node A, demand node J and transship noded.Bhe
dashed lines in the figure indicate the failed anoediately

Shortest weighted path:
ADHI12)

Path length: 2
ThisRatio = 4/2=2

GlobalRatio = ThisRatio = 2
P=ADHDID)

Shortest weighted path :
ADHI2)

Path length: 2

ThisRatio = 4/2=2

GlobalRatio (unchanged) = 2
P=A>H2I12]

Shortest weighted path:
A>B>C>D2E-)
Path length: 1
ThisRatio=1/1=1

GlobalRatio (unchanged) = 2
P=ADH>I>)

Fig. 7. lllustration of the execution processha path selection algorithm in Table | on a sinqgevork
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Fig. 8. Optimal restoration curve of the netwoekfprmance

after a disruptive event & 0), where the links A-F, F-G, G-J,
H-I, 113, E-J are disrupted. The numbeRsi,j)/P(i,j))
associated with each arc in the Figure representekidual

9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

capacityR(i,j) of the arc at time 0 and the original capacity

P(i, ). Note that the residual capacity of a failed anepgarded
as its original capacity, rather than zero. Sirhjlahe numbers
8/8 associated with the supply node A representessdual
capacity RP{ =8 and its original capacity’; =8 ; the
numbers 7/7 associated with the demand node Jsespirés
unmet demandRPP =7 and flow demandPP? =7 ,
respectively. Besides, the repair costs of all #res are
assumed to be constant and set as 1. The perfoentdrtbe
network is evaluated by the flow received by demande J.
The path selection algorithm in Table I, first sothe
residual capacity arrayR(i,j) RP{ RPP} at current time
(t = 0), resulting in a non-increasing Rt={8,7,4,2,1};
then, for each value in the set, the algorithm etexstep 4 to
step 11, illustrated graphically in Fig. 7. Notetth = 8 and
r = 7 are skipped since there is no weighed networkcéetsal
to those two cases. The output of the execuienA — H —
I - J is the path that should be selected to be restored
The network restoration is preceded by applying tiath
selection algorithm and then allocating these tapair tasks of
the selected path into each timeslot subject tettaimt (11).
Assuming that only a single arc can be repairedngtgiven
timeslot, we can obtain the optimal restorationveuof the
network performance, as shown in Figure 8.
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Abstract - In this paper, we propose two metrics, i.e. the optimal repair time and the resilience
reduction worth, to measure the criticality of the components of a network system from the perspective
of their contribution to system resilience. Specifically, the two metrics quantify (i) the priority with
which a failed component should be repaired and re-installed into the network, and (ii) the potential
loss in the optimal system resilience due to a time delay in the recovery of a failed component,
respectively. Given the stochastic nature of disruptive events on infrastructure networks, a Monte
Carlo-based method is proposed to generate probability distributions of the two metrics for all the
components of the network; then, a stochastic ranking approach based on the Copeland's pairwise
aggregation is used to rank components importance. Numerical results are obtained for the IEEE 30

Bus test network and a comparison is made with three classical centrality measures.

Index Terms - Critical Infrastructure, system resilience, component importance measures, system

recovery, stochastic ranking

I.  INTRODUCTION

Complexity of critical infrastructures (Cls), such as power grids, the Internet, transportation networks,
and so forth, is increasing. Disruptive events, whether they are malevolent attacks, natural disasters, or
human-caused accidents, can have significant impacts on these real world complex networks composed of

numerous interconnected functional and structural elements.

Justifiably, then, critical infrastructure protection (CIP) has become a priority for all nations [1]. The focus
has been traditionally placed on physical protection and asset hardening [2]-[5]. However, in recent years,

lessons learned from some catastrophic accidents have pushed part of the focus on the concept of



“resilience” [6], [7]. The outcomes of the 2005 World Conference on Disaster Reduction (WCDR) witness
the significance of introducing the term “resilience” into the disaster discourse, giving birth to a new
culture of disaster response [8]. Consequently, government policy has also evolved to encourage efforts
that would allow assets to continue operating at some level, or quickly return to full operation after the

occurrence of disruptive events [9].

“Resilience” comes from the Latin word “resilio” that literary means “to leap back” and denotes a system
attribute characterized by the ability to recover from challenges or disruptive events. The Merriam-
Webster dictionary defines resilience as “the ability to recover from or adjust easily to misfortune or
change.” In this view, systems should not only be reliable, i.e. having an acceptably low failure probability,
but also resilient, i.e. having the ability to optimally recover from disruptions of the nominal operating

conditions [10], [11].

In this context, the present paper addresses the issue of quantifying the importance of components in
contributing to the resilience of a critical infrastructure. Component importance measures (CIMs) have
been thoroughly studied in the field of reliability theory and risk analysis. Various analytical and
empirical CIMs have been proposed in the literature, e.g. Birnbaum [12], Fussell-Vesely [13], Reliability
Achievement/Reduction Worth [14], [15], and their extensions [16]-[20]. CIMs have been shown valuable
in establishing direction and prioritization of actions related to an upgrading effort (e.g., reliability
improvement) in system design, or in suggesting the most efficient way to operate and maintain system
status. However, none of the existing classical CIMs based on the reliability concept are directly applicable
to the post-disaster phase, since there is no scope to exhibit reliability after the occurrence of system

failure.

The role that a component plays in a network system has been measured by various so-called centrality
measures, looking from the point of view of the complex interaction and communication flow in the
network [21], [22]. Classical topological centrality measures are the degree centrality [23], [24], the
closeness centrality [24]-[26], the betweenness centrality [24], and the information centrality [27]. They
specifically rely on topological information to qualify the importance of a network component.
Additionally, Freeman et al. [28] proposed a flow betweenness centrality measure based on the idea of
maximum network flow; Newmann [29] suggested a random walk betweenness measure that counts
essentially all paths between vertices and which makes no assumptions of optimality; Jenelius et al. [30]
proposed several vulnerability-based importance measures for transportation networks; Hines and
Blumsack [31] introduced an “electrical centrality” measure for electrical networks by taking into account
the electrical topology of the network; Zio and Piccinelli [32] provided a randomized flow model-based
centrality measure specifically for electrical networks; Zio and Sansavini [33] introduced component

criticality measures from the cascade failure process point of view, for general network systems.



Nevertheless, none of these analyses takes into account the dynamics of system recovery from the effects

of a disruptive event.

Resilience-based metrics of component criticality with respect to their influence on the overall resilience of
the system (i.e.,, on the system’s ability to quickly recover from a disruptive event) can be helpful for
preparing an efficient component repair checklist in the event of system failure [34]. Recently, Baker et al.
[35] introduced two resilience-based network component importance metrics. However, the resilience
definition, which the importance metrics rely on, does not embrace the temporal dimension of system
recovery and it is, thus, unable to measure how fast the performance of a system comes back to an
acceptable level. Besides, the two metrics do not quantify the influence that the recovery of particular
components has on the overall resilience of the system and they are, thus, limited in providing valuable

information for system restoration strategy making.

In this study, based on the definition of system resilience proposed in [36], we introduce two network
components importance measures, namely, the optimal repair time and the resilience reduction worth,
useful for prioritizing restoration activities. The two measures quantify (i) the priority with which a failed
component should be repaired and re-installed into the network and (ii) the potential loss in the optimal
system resilience due to a time delay in the recovery of a failed component, respectively. Both measures
rely on the resilience optimization framework previously presented in [36]. A stochastic ranking
technique, based on the Copeland’s pairwise aggregation [37], is introduced to rank the components

criticalities.

As a case study, the IEEE 30 Bus test network is considered: the criticalities of the components computed
by the proposed indicators are compared to those produced by three classical measures of betweenness

centrality [28], [29], [38].

The remainder of the paper is organized as follows. Section II provides the general framework of the
study, recalling the definition of system resilience and the resilience optimization model originally
proposed in [36]. In Section III, two measures of component criticality for system resilience, and a
simulation methodology for their calculation and ordering are presented. Section IV illustrates the
calculation of the proposed metrics on the IEEE 30 Bus test network: the obtained components rankings
are compared to those produced by classical betweenness centrality measures. Concluding remarks are

drawn in Section V.

II. METHODOLOGICAL BACKGROUND: SYSTEM RESILIENCE DEFINITION AND OPTIMIZATION
FOR INFRASTRUCTURE NETWORK SYSTEMS



This section provides the definition of system resilience and the resilience optimization framework
originally proposed in [36], which serve as methodological background for the resilience-based

component importance measures that will be discussed in Section 3.

A. System Resilience Definition

As illustrated in Fig. 1, a quantifiable and time-dependent system performance function (also called
system level delivery function or figure-of-merit) F(t) is the basis for the assessment of system resilience.
It has a nominal value F(t,) under nominal operating conditions. The system operates at this level until
suffering a disruptive event at time t,. The disruption generally deteriorates system performance to some
level F(t,) at time t,. Then, recovery action is started, affecting and improving system performance until
it achieves, at a later time t,, a targeted level of performance F(t,) that could be the same, close to, or
better than original system performance F(t,)), for which recovery is considered completed. The dotted
curve TF(t) in Fig. 1 denotes the targeted system performance if not affected by disruption, which is
generally evolving due to the dynamic nature of service demand in the infrastructure system (in this
study, it is assumed to be equal to F(ty) and remain invariant for simplicity). Besides, it is noted that
various strategies exist for recovery activities, and system performance is ultimately a function of recovery

decisions. The period of t; < t < t, is generally considered as the recovery time [8].

Nominal
state

Disruptian Recovery

t t, ty t, time
Fig. 1. Generic system performance transition curve under the occurrence of disruption.

Let R(t) be the resilience of a system at time t (t = t4). In its basic form, R(t) describes the cumulative
system functionality that has been restored at time t, normalized by the expected cumulative system
functionality supposing that the system has not been affected by disruption during this time period (Eq. (1)
below): graphically, R(t) is quantified by the ratio of the area with diagonal stripes S; to the area of the
shaded part S,, as shown in Fig. 2.
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Note that the formulation in Eq. (1) focuses mainly on the recoverability dimension of resilience and R(t)
is in the range of [0,1]. R(t) = 0 when F(t) = F(t;), which means that a system has not recovered from its
disrupted state (i.e,, there has been no “resilience” action); R(t) =1 when F(t) = TF(t), which
corresponds to the ideal case where a system recovers to its target state immediately after disruption. This
resilience quantification is consistent with the original meaning of the concept of resilience and is capable

of measuring at the same time the magnitude and rapidity of system recovery action.

F(t)

F(to)

F(ts)

t ty t t, time
Fig. 2. Conceptual illustration of the proposed resilience measurement.

B. System Resilience Optimization

A disruptive event could impact one or more components of an infrastructure network system. In the case
of multiple component failures, a systemic recovery action should be undertaken with the order of failed
components to repair such that system resilience is maximal, i.e., to achieve optimal (restored) cumulative

system functionality over the recovery time considered.

A variety of frameworks of optimization for post-disaster recovery of an infrastructure network system
can be designed, focusing on different aspects of the restoration strategy, e.g., the order of repair of the
damaged components, where and how to allocate repair resources and so forth. This study focuses on the
significance of the recovery of a component with respect to the resilience of the system. Consequently, the
optimization is designed to find the optimal order of repair of the set of failed components with the

objective of achieving maximum system resilience over the restoration time horizon [36].

The mathematical model for the resilience optimization concerns a network G(V, E) comprising a set of
nodes V connected by a set of links or arcs E. The network nodes are distinguished in supply nodes Vs,

transshipment nodes V; and demand nodes V,, (Vs UV; UV, =V). Each arc ij € V has an associated



capacity (if) € R¢ , each supply node i € Vg has a supply capacity per time unit P} € R{ and each demand
node j € V), has a demand P? € R§ per time unit. Network flow is delivered from supply nodes to
demand nodes respecting the flow capacities of the links and supply/demand capacities of the nodes. The
performance of the network is evaluated by determining the maximum amount of flow that can be

received by the demand nodes. Formally, the system performance function is defined as:

F(t) = Yjev, i (1) @
where f;(t) represents the amount of flow received by demand node j at time t.
Disruptions happen and create damages to nodes and/or links in the network, which is modeled as
removal of a subset of arcs, E' € E, from the network.! The arcs in set E' are viewed as non-operational
immediately after the disruption. System performance F(t) achieves its minimum value at this time (t = 0,

i.e. Fyiy = F(0)).

The recovery optimization framework aims at identifying the subset of links in E’ to repair and the order,
in which the links should be repaired so as to achieve maximum system resilience over the restoration
horizon T € Z*. Link repairs are assumed to be discrete tasks, and only a single arc can be repaired at any
given timeslot. The repair time of arc restoration is not considered in this study (i.e., the repair action is
assumed to be instantaneous); rather, the focus is on when the disrupted arcs should be brought back
online. By combining Egs. (1) and (2), system resilience to be maximized at time T is given by

ST evp £~ Fmin

R(T) =
S S .

®)
The variables of the resilience optimization problem include: (i) continuous variables f;;(t) € R, ij € E
and t = 1,..,T, that denote the flow moving from node i to node j through link ij at time unit ¢; (ii)
continuous variables f;(t) € Ry, j € Vp, that represent the amount of flow received by demand node j at
time unit ¢t and (iii) binary state variables s;;(t), ij € E and t = 1,...,T, such that s;;(t) = 1 if arc ij is
operational and s;;(t) = 0 if arc ij is not operational at time unit t. We are interested in optimizing the
resilience over the whole restoration process: thus, the timespan T is chosen as the total recovery time,
defined as the period necessary to restore the system functionality to the same level as the original system.
Consequently, the formulation of the resilience optimization problem is as follows:

SEE[Zjevy £5(©)~Fmin

T(Sjevp P ~Fmin)

max

)

Subject to

! For nodes, they can be converted to equivalent arcs by introducing additional arcs and nodes into the network, i.e.
by ‘splitting” a node into two nodes and an arc.



Ya e fij(©) = Xijer i) < PP VieV,t={1,..T} (5)

Yapek fij(t) — Xiier fji(£) = 0 VieVnt={1,..T} (6)
Yapek [ij(t) = Xoer fji(®) = —fi(t) VieVpt={1,..,T} @)
0<f;(t) <P VieV,t={1,..,T} 8)
0 < £,(t) < s;;(OP(E)) Vij €E t ={1,..,T} )
sy (D) < syt + 1) Vij€E,t={1,..,T} (10)
Yajpee|sii® —sit-D]=1 ve={1,..,T} (11)
s (£) € (0,1},5,;(0) = 0 Vij€E,t=(1,.,T) (12)

The objective (4) is to maximize the system resilience over the time horizon of recovery. Constraints (5)-(9)
are typical network flow constraints over the links and supply/demand nodes in the network in period t.
They ensure that: the flow generated at a supply node does not exceed its supply capacity (5); the amount
of net injected flow at a transshipment node is zero (6); the amount of net injected flow at a demand node
is equal to the received flow at the node (7) while not exceeding its requested demand (8); the flow on an
operational link does not exceed its capacity and there is no flow passing through an arc if the arc is failed
(9). Constraint (10) ensures that once an arc has been restored at time ¢, it will keep operational thereafter.

Finally, constraint (11) ensures that only a single arc can be repaired at any given timeslot.

This resilience optimization above defined is a typical mixed integer programming (MIP) problem. A
commercial optimization solver Cplex [39] is used in this study for its solution. It is noted that this
resilience optimization model is only applied for the purpose of illustration of resilience-based component
importance metrics. More complex optimization models (e.g., taking into account the cost and duration of

repairing a particular failed link) can be adopted in other application cases.

III.  RESILIENCE-BASED COMPONENT IMPORTANCE MEASURES FOR INFRASTRUCTURE

NETWORK SYSTEMS
A. Component Importance Measures Definition

As described in Section 2.2, the analysis concerns a network G (V, E) comprising a set of nodes V and a set
of links E. The binary state variable of arc ij at time t is defined by s;;(t), Vij € E. The initial impact
experienced by the network after a disruptive event e at time t = 0 is represented by the removal of a
subset of arcs, E' C E, from the network, setting s; j (0) =0, Vij € E'. We introduce the failure probability

of arc ij under event e, p,(ij)
P[s:;(0) = Ole] = p. (i), Vij € E (13)

Eq. (13) describes how individual components (links) are initially affected by a disruptive event e; Section
2.2 explains how these failed components optimally recover from the disruption state following the event;

finally, Eq. (1) incorporates these dimensions to quantify system resilience.



When considering component criticality in a resilience setting, we are interested in understanding: (i) the
optimal time to repair the failed components in order to maximize system resilience, and (ii) the effect that
the timely recovery of the components have on the overall resilience of the system. These concepts are at

the basis of the definition of the two resilience-based importance measures here proposed.

Given a particular initial failure state, the optimal repair time Ti‘;pt of a failed arc ij can be computed by
solving the MIP problem (4) - (12):

opt __
Ti]. = arg maxr o] R(T) (14)
The timespan for restoration, T, is chosen as the time period necessary to restore the system functionality

to the same level as the original system. It is noted that the optimal repair time T;;"" offers an explicit

opt
Lj

quantification of the priority that should be given to the reparation and installation of arc ij into the
network. Low values of Ti‘l’.pt indicate higher priority of being repaired and re-installed into the network,

i.e. higher ranking of the component in the repair checklist.

To account for the delay in the restoration of a particular link ij, a resilience reduction worth (RRW)

metric is introduced as

ROPf(T)—R”Pt(T|Tijoi‘}pt+At0)
Ropt(T)

RRW;;(Aty) = (15)

where R°P!(T) represents the optimal system resilience at restoration time T; R°P*(T|T; = Ti‘;pt + Aty)
corresponds to the optimal system resilience at time T if link ij cannot be repaired until time (Ti‘]’.pt + Aty),
where At is the delay with respect to its optimal repair time T; jpt, Eq. (14). Eq. (15) quantifies the potential
(normalized) loss in optimal system resilience due to a delay At in the repair of link ij. This metric is
comparable to the so-called reliability reduction worth [40], which measures the potential damage caused
to the system reliability by the failure of a particular component. It can provide valuable information to
guide the recovery process of a particular component. Components with high values of RRW;;(At) should
be given high priority in the restoration process, e.g. be assigned adequate restoration resources to avoid

delays that would have a more significant impact on system restoration.

B.  Methodology for Component Importance Ordering

Ordering network links recovery on the basis of the values of the criticality measures described above, i.e.,
the optimal repair time Ti‘]’.pt and resilience reduction worth RRW;; (fixed At,), requires quantifying the
effect of timely repairing these links on the overall resilience of the system. Given the stochastic nature of
disruptive events in terms of components failures after the event, the resilience-based criticality measures
introduced are not represented by deterministic values, but rather by probability distributions. Therefore,

given a network G(V,E) under a disruptive event e, we first apply a Monte Carlo-based method to



generate distributions of optimal repair time T;}pt and resilience reduction worth RRW;;(At,) for all the

links in the network; then, we rank links importance using a stochastic approach based on the Copeland's

pairwise aggregation method [37]. The detailed steps of the algorithm are as follows:

Step1. A network G(V,E) is initially operating with a given parameters setting: flow demand PP of all
the demand nodes in V},, supply capacity P{ of all the supply nodes in Vs and link capacity P(if)
for all the network arcs in E.

Step2. A failure configuration of the network is randomly sampled on the basis of the failure
probabilities of each arc in the system given by Eq. (13), under a disruptive event e at initial
time t = 0. The operation state variables of failed links are set to 0, i.e., s;;(0) = 0, Vij € E".

Step 3. The resilience optimization model of Eq. (4) - (12) is applied and solved by Cplex to obtain the
optimal strategy of network recovery, i.e., the optimal repair time Ti‘;pt for each failed arc ij € E'.

Step 4. In order to evaluate the second importance measure RRW;;(At,), for each failed arc ij € E’, the
additional constraint that the restoration of arc ij should not be accomplished earlier than
TP + At (ie., Ty = T + Atg) is added to the optimization model of Eq. (4) - (12). Then,
ROPY(T|T;; = Ti‘;pt + At,) is obtained by solving this “modified” optimization model by Cplex.
Finally, the resilience reduction worth RRW;;(At,) for each arc ij is recorded.

Step 5. To account for the stochasticity of the disruptive event in terms of arcs failures, repeat Step 2 to
Step 4 for a chosen number X of iterations, generating probability distributions for T; jpt and
RRW;(Aty), for all the links in the network.

Step 6.  Given the distributions of Ti‘;-pt (resp., RRW;j(At,)) for each arc ij, perform a stochastic ranking

of links according to ascending (resp., descending) Ti‘;z”t values (see Section II1.B.1).

1) Stochastic Ranking
In order to rank network links according to the distribution of their optimal repair time Ti‘;-pt (or resilience

reduction worth RRW;;(At,)) obtained at step 6 of the algorithm above, an approach based on the
Copeland's pairwise aggregation method [37] is proposed. The Copeland’s method (CM) is a simple non-
parametric Condorcet method used in the political field (voting) that does not require any information
about decision maker preference and operates on a multi-indicator matrix formed by m objects
characterized by (2 attributes [41]. CM relies on pair-wise comparisons between objects in the candidate
pool, and the so-called Copeland score is defined for each object as the difference between the number of

times that this object beats the other objects and the number of times that it is beat by other objects.

The CM-based ranking approach applied here corresponds to a modification proposed by Al-Sharrah [42].

It first examines the CDF of a given variable for all the candidates, e.g., the CDF of Ti‘]’.pt, v(i,j) € E; then, it



compares the CDF of two candidates under analysis, i.e., links ij and i_j, with respect to specific attributes
qy of the CDF: for example, attribute q, may represent the kth percentile. Subsequently, a quantity
S«(ij, ij) is calculated based on a pairwise comparison between links ij and ij with respect to (percentile)

qy of the corresponding distributions, k = 1, ..., (2:

Ce-1(i,7) + 1, if gx (i) beats g (i)
Se(U,1)1 Ceea(i,5) + 0.5, if g, (if) and q, (i) are tied (16)
Cr—1 (i, 1)), if g, (i) beats g, (i)

where the sentence “qy(ij) beats g, (ij)” means that q,(ij) dominates g, (ij) with respect to the ranking

rule of the variable considered, i.e., q,(ij) < qx(ij) for Ti‘;pt, while ¢, (i) > g, (ij) if RRW;;(Aty) is
considered. Sy(ij, ij) is initialized at zero for the first (percentile) g, and Eq. (16) is iterated through all 2

attributes (percentiles). Then, the Copeland score for each link ij is defined as
C(if) = Xi7ui; Sa (U, 1) (17)

This Copeland score is finally used to rank all the links: the higher C(ij), the higher the contribution of

link ij to the overall resilience of the network.

IV.  CASESTUDY
A. Resilience-Based Criticality Measures on The IEEE 30 Bus Test System

The IEEE 30 Bus test system [43] is taken as reference case study for the proposed resilience-based
component importance measure approach. This system (Fig. 3) represents a portion of the American
Electric Power System and is composed of 30 buses connected by 41 transmission lines. To carry out the
analysis, each system component is transposed into a node or edge of the representative topological
network, as it is shown in Fig. 4. Three different physical types of nodes are considered: generator nodes
(where the electricity flow is fed into the network), demand nodes (where customers are connected) and

transfer or transmission nodes (without customers or sources).

The simulation procedure introduced in Section 3.2 is, then, used to rank each component of the IEEE 30
Bus network according to the criticality metrics introduced. In normal conditions, the network is assumed
to operate under the following parameters setting: the generation capacity is identical for all generation
nodes and equal to 60, in arbitrary units (a.u.); the flow demands are 20 a.u. for all load nodes; the values
of the transmission capacities are 20 a.u. for all the network links. The homogeneous assignments of
generation capacity, demand and link capacity are here applied for the purpose of identifying the
resilience criticalities of all the network arcs stemming from their different topological connections. For

the same reason, a constant failure probability p, (ij) is assumed for all the network links under disruptive



event e. The roulette wheel selection method [44] is used in step 2 for sampling a failure configuration by

selecting a failed link at each spin until a certain number ||E|| - p.(ij) = 12 of arcs are selected.
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Fig. 3. Single line diagram of the IEEE 30 Bus test system.

..@

Fig. 4. Graph representation of the IEEE 30 Bus test system. The dark grey circles labeled with G represent
the generator nodes, the white circles labeled with T represent transmission nodes and the light grey
circles labeled with D represent the demand nodes.



Fig. 5 illustrates the Cumulative Distribution Functions (CDFs) of Ti‘;-pt for five representative links (<1, 3>,
<5, 7>, <27, 30>, <8, 28> and <10, 21>), obtained at step 5 of the procedure by applying the simulation
algorithm proposed in Section 3.2 (for & = 1000 samples). The Figure illustrates the probability that Ti‘}pt
is less than or equal to a target value x. It can be seen that the optimal repair time associated with link <1,
3>, ie. Tla3pt, will never be larger than 5 (square-line curve in Fig. 5). Moreover, the curve for link <1, 3>
always “dominates” the other curves. Therefore, this link should have the highest priority to be repaired

in order to maximize system resilience.

However, considering e.g. links <5, 7> (circle line) and <27, 30> (triangle line) in Fig. 5, it is not evident
which one “dominates” the other, due to the intersection of their CDF curves. Thus, the CM-based
ranking approach introduced in Section 3.2.1 is applied to rank the importance of the links. Fig. 6 reports
the Copeland scores of all the 41 links in the IEEE 30 Bus network, ordered in descending order, with link
<1, 3> having the highest score, followed by links <2, 6>, <2, 4>, <10, 22> and so forth. Furthermore, Fig. 7
graphically illustrates the Copeland score of the optimal repair time Ti‘]’.pt for all IEEE 30 Bus network links,

where links with higher values of Copeland score are represented as thicker and darker edges. It is shown

opt

that two types of links are more important in terms of T;;

: i) the links which connect the generator nodes
with the other two types of nodes (transmission nodes and demand nodes), e.g. links <2, 6>, <1, 3>, <12,
13> etc., and ii) the links which are the only ones connected to demand nodes, e.g. link <25, 26>. The
restoration of these types of links is most likely able to augment the total amount of flow received by the
demand nodes of the network: thus, high priority should be given to these links when considering the

repair order of the failed links.
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Fig. 5. Cumulative probability distributions of the optimal repair time Ti‘;pt for five representative links.
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Fig. 7. Graphical illustration of the Copeland scores of the optimal repair time Ti‘j’.pt for all IEEE 30 Bus
network links. Links with higher value of Copeland score are represented as thicker and darker edges.
Fig. 8 and Fig. 9 illustrate the results based on the resilience reduction worth RRW;;(At,) for all the links
and for a delay time Aty = 3 units (i.e., the Copeland score ranking and its graphical representation,
respectively). It is shown that <24, 25> is the most critical link in terms of RRW; joie a delay in its
restoration would cause the largest reduction in system resilience among all the network links; thus,
adequate resources should be given to make sure of its timely restoration. Besides, it is noted that the links

with high Copeland scores in terms of the optimal repair time Ti‘]’.pt also have high Copeland score ranking



in terms of the resilience reduction worth RRW;;: the correlation coefficient between the two Copeland

scores is r (CTp_pz, CRRWU.) = 0.82 for Aty = 3.
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Fig. 8. Copeland score ranking of the resilience reduction worth RRW;;(At, = 3) for all IEEE 30 Bus

network links.

Fig. 9. Graphical illustration of the Copeland scores of the resilience reduction worth RRW;;(At, = 3) for
all IEEE 30 Bus network links. Links with higher values of Copeland score are represented as thicker and
darker edges.



B.  Comparison with Betweenness Centrality Measures

Betweenness centrality indices have been introduced as measures of component importance in a network,
taking into account the different ways in which a component interacts and communicates with the rest of
the network [24], [32]. A classical centrality measure is the topological betweenness centrality introduced
in the social network field, which is based on the idea that a component is central if it is lies between
many other components, in the sense that it is traversed by many of the shortest paths connecting pairs of
nodes [24], usually called as shortest path betweenness. The topological betweenness centrality Cf; of a given

link ij in a supply-demand-differentiated network G (Vs U V- U Vp, E) is given by [38]:

B _ 1 nsa) .
€5 = sl Zsevsdevp g, U € (18)

where ng, is the number of topological shortest paths between supply nodes and demand nodes, and

ngq (if) is the number of supply-demand shortest paths passing though link ij.

To account for the issue that in some cases flow may not follow the ideal geodesic paths from supply to
demand nodes, a betweenness centrality measure based on the idea of maximum network flow has been
proposed [28], usually known as flow betweenness. The measure counts all independent paths that carry
information when a maximum flow is pumped between each pair of vertices. The flow betweenness of a
component is defined as the amount of flow through it when the maximum flow is transmitted from

source s to demand d, averaged over all s and d. It is quantitatively defined as [28]

Ysevgdevp Msd(i))

cli= JjEE (19)

Ysevgdevp Msd
where mg, is the maximum flow from a source node s to a demand node d and m;(ij) is the maximum

flow from s to d that passes through link ij.

In practical terms, however, neither of the two betweenness measures introduced above is realistic. Both
count only a small subset of possible paths between vertices, and both assume some kind of optimality in
information transmission (shortest paths or maximum flow). Therefore, a new betweenness measure that
counts essentially all paths between vertices and which makes no assumptions of optimality has been
suggested, called random walk betweenness [29]. This measure is based on random walks between vertex
pairs and asks, in essence, how often a given component will fall on a random walk between another pair
of vertices. Roughly speaking, the random walk betweenness of a link ij is equal to the number of times
that a random walk starting at s and ending at d passes through the link along the way, averaged over all
sand d. Let Iisjd be the current flow from s to d, through link ij. Then, the random walk betweenness of a

link ij is defined as



RW __ 1 d -
G} = el ZseVsdevp L7 ij€eE (20)

We are interested in comparing the ranking results of our resilience-based component importance
measures to these betweenness centrality indices, i.e., shortest path betweenness, flow betweenness and random
walk betweenness for the proposed IEEE 30 Bus network. Fig. 10 shows the values of the Copeland scores

for the optimal repair time C op: (left panel) and for the resilience reduction worth Cggy,; (right panel)
i

plotted with respect to the shortest path betweenness C{} for all the links of IEEE 30 Bus network. No obvious

correlation can be identified from the figures. Actually, the correlation coefficients between C 7oPts C RRW
ij

and Cf are r(C. opt,CE) =0.08 and 7 (Cgrpy.,CE) = 0.14, respectively. Similarly, Fig. 11 plots the
j T° J i “ij 1% y y g p
i

relationship between the Copeland scores for the optimal repair time C oyt (left panel) and the resilience
ij

F.

reduction worth Crey,; (right panel) with the flow betweenness Cjj; Fig. 12 shows the same scatterplots with

respect to the random walk betweenness Ci'}W. The correlation coefficients are r(CTgpt,CS) =0.002,
ij

r (CRRWU., CS) =—-0.24,r (CTit;pt, C}}W) =0.24andr (CRRWU., C{}W) = 0.32, respectively.
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Fig. 10. Scatterplot of the Copeland scores of the optimal repair time C_op¢ (left panel) and resilience
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reduction worth Crgy,; (right panel) with the shortest path betweenness C, /1 for the links of the IEEE 30

Bus network.
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These results show that the betweenness centrality indices (e.g., shortest path betweenness, flow betweenness

and random walk betweenness) do not capture the component criticality with respect to resilience for the

recovery of the IEEE 30 Bus network. This implies that these centrality measures (which are calculated

under normal operation condition) are not applicable to guide the system restoration after a disruptive

event, e.g., to prepare an efficient component repair priority checklist in the event of system failure.

\Y%

CONCLUSIONS



This paper primarily contributes two metrics to measure the criticality of network components from the
perspective of their contribution to system resilience, defined as the cumulative system functionality that
has been restored at time t, normalized by the expected cumulative system functionality supposing that

the system has not been affected by disruption during this time period.

The first resilience-based component importance measure, i.e. the optimal repair time Ti‘;pt in Eq. (14),
offers an explicit quantification of the priority that should be given to arc ij to be repaired and re-installed
into the network. Lower values of Ti‘;.pt indicate higher priority, i.e. higher rank in the component repair
checklist for system restoration in the event of system failure. The second resilience-based component
importance measure, i.e. the resilience reduction worth RRW;;(At,), quantifies the potential loss in optimal
system resilience due to a delay At, in the repair time of link ij. This measure can provide valuable
information to guide the recovery process of a particular component: components with high values of
RRW;;(At,) should be given high priority to their timely restoration, e.g. be assigned with adequate

restoration resources.

Given the stochastic nature of disruptive events on an infrastructure network, a Monte Carlo-based
method has been proposed to generate distributions of optimal repair time Ti‘]’.pt and resilience reduction
worth RRW;;(At,) for all the components in the network; then, a stochastic ranking approach based on the

Copeland's pairwise aggregation method has been applied to rank components importance.

The results of the two measures applied to the IEEE 30 Bus test network demonstrate some non-obvious

and meaningful conclusions about the contributions of certain links to the resilience of the network. It is

opt

;1) the links which connect generator

shown that two types of links are most important in terms of T;
nodes with the other two types of nodes (transmission nodes and demand nodes), e.g. links <2, 6>, <1, 3>,
<12, 13> etc., and ii) the link which is the only arc connecting to demand nodes, i.e., link <25, 26>. The
restoration of these types of links is most likely able to augment the total amount of flow received by the

demand nodes of the network so that high priority should be given to these links in the reparation list.
Besides, those links with high Copeland scores in terms of T;}pt also have high Copeland scores ranking in

terms of the resilience reduction worth RRW;;: actually, the correlation coefficient between the two

quantities is r (CTijpt, CRRWU.@)) = 0.82.

Finally, it is shown that the classical betweenness centrality indices, such as the shortest path betweenness,
flow betweenness and random walk betweenness, do not capture resilience criticality as do the resilience-based
measures Ti‘;pt and RRW;;(Aty). In this view, the two measures newly proposed in this paper can provide

precious insights to practical restoration activities for the components of infrastructure networks.



Future studies will concentrate on the application of the resilience-based component importance measures

to larger and different types of infrastructure networks subject to realistic disruptive events in order to

further demonstrate the practical effectiveness of the measures.
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