
HAL Id: tel-01141844
https://hal.science/tel-01141844

Submitted on 13 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Detection and identication methodology for multiple
faults in complex systems using discrete-events and

neural networks: applied to the wind turbines diagnosis
Samuel Toma

To cite this version:
Samuel Toma. Detection and identication methodology for multiple faults in complex systems using
discrete-events and neural networks: applied to the wind turbines diagnosis. Modeling and Simulation.
University of Corsica, 2014. English. �NNT : �. �tel-01141844�

https://hal.science/tel-01141844
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE CORSE � PASQUALE PAOLI

U.F.R. SCIENCES ET TECHNIQUES

Ph.D Thesis

Submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Presented by

Samuel TOMA

Detection and identi�cation methodology for
multiple faults in complex systems using discrete
events and neural networks: applied to the wind

turbines diagnosis

Supervisor: Dominique FEDERICI

Co-supervisor: Laurent CAPOCCHI

Presented on the 8th of September 2014

Committee :

Mr. Humberto HENAO, PRU, Université de Picardie � Jules Verne �
Mr. Mamadou Kaba TRAORÉ, PRU, Université Blaise Pascal Clermont-Ferrand 2
Mr. Gérard-André CAPOLINO, PRU, Université de Picardie � Jules Verne �
Mr. Bernard ZEIGLER, PRU émérite, Université de l'Arizona
Mr. Jean-François SANTUCCI, PRU, Université de Corse � Pasquale Paoli �
Mr. Dominique FEDERICI, PRU, Université de Corse � Pasquale Paoli �
Mr. Laurent CAPOCCHI, MCF, Université de Corse � Pasquale Paoli �





UNIVERSITÉ DE CORSE � PASQUALE PAOLI

U.F.R. SCIENCES ET TECHNIQUES

THÈSE
pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ DE CORSE

ÉCOLE DOCTORALE ENVIRONNEMENT ET SOCIÉTÉ

Spécialité : Informatique

présentée par

Samuel TOMA

Méthodologie de détection et d'identi�cation des
défauts multiples dans les systèmes complexes à
partir d'évènements discrets et de réseaux de
neurones : Applications aux aérogénérateurs

Directeur de thèse : Dominique Federici

Co-directeur de thèse : Laurent Capocchi

soutenue publiquement le 8 Septembre 2014 devant le jury composé de:

Rapporteurs :

Mr. Humberto HENAO, PRU, Université de Picardie � Jules Verne �
Mr. Mamadou Kaba TRAORÉ, PRU, Université Blaise Pascal Clermont-Ferrand 2

Examinateurs :

Mr. Gérard-André CAPOLINO, PRU, Université de Picardie � Jules Verne �
Mr. Bernard ZEIGLER, PRU émérite, Université de l'Arizona
Mr. Jean-François SANTUCCI, PRU, Université de Corse � Pasquale Paoli �
Mr. Dominique FEDERICI, PRU, Université de Corse � Pasquale Paoli �
Mr. Laurent CAPOCCHI, MCF, Université de Corse � Pasquale Paoli �





Abstract

This thesis deals with the time-domain analysis of the electrical machines fault diag-

nosis due to early short-circuits detection in both stator and rotor windings. It also

introduces to the Discrete EVent system Speci�cation (DEVS) a generic solution to

enable concurrent and comparative simulations (CCS). The DEVS-based CCS is an

extension introduced using an aspect-oriented programming (AOP) to interact with

the classic DEVS simulator. A new DEVS-based arti�cial neural network (ANN)

is also introduced with a separation between learning and calculation models. The

DEVS-based CCS is validated on the proposed ANN DEVS library inside the DE-

VSimPy environment. The concurrent ANN contributes in the time-domains analysis

for the electrical machine fault diagnosis. This new method is based on data coming

directly from the sensors without any computation but with a new dedicated pre-

processing technique. Later, some enhancements are brought to the arti�cial neural

network based on a new multistage architecture reducing the training time and errors

compared to the single ANN. The new architecture and techniques has been validated

on real data sixteen non-destructive windings faults analysis and localization.
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Résumé

L'étude présentée dans ce mémoire concerne le diagnostic des machines électriques

à l'aide d'une association innovante entre la modélisation à évènements discrets, la

Simulation Comparative et Concurrente (SCC) et les Réseaux de Neurones Arti�ciels

(RNAs). Le diagnostic des machines électriques est e�ectué à partir d'une analyse

temporelle des signaux statoriques et rotoriques à l'aide de réseaux de neurones de

type Feed-Forward. A�n de faciliter la con�guration de ces réseaux de neurones, l'ap-

proche proposée dans ce document utilise la simulation comparative et concurrente

implémentée grâce au formalisme à évènements discrets DEVS (Discrete EVent sys-

tem Speci�cation). L'intégration des algorithmes de la SCC et des RNAs au sein du

formalisme DEVS a été e�ectuée de manière générique en développent des plug-ins

et une librairie de modèles dans l'environnement de modélisation et de simulation

à évènements discrets DEVSimPy. L'application de cette nouvelle solution pour le

diagnostic des machines électriques permet de détecter les défauts à partir d'une ar-

chitecture logiciel facilement portable sur des systèmes embarqués de type FPGA.

Introduction

Les techniques de surveillance et de diagnostics des machines électriques sont en

constante évolution depuis les années 80. Elles ont commencé par une simple analyse

humaine pour arriver jusqu'aux processus de décision modernes impliquant des tech-

niques de traitement de signaux. Ce n'est que très récemment que ces techniques sont

intégrées dans les systèmes électromécaniques dans lesquels les machines électriques

sont utilisées comme des moteurs ou des générateurs. Depuis ces vingt dernières an-

nées, les machines asynchrones à courant triphasé à cage d'écureuil, particulièrement

intéressantes pour leur �abilité et leur prix, ont été le sujet de plusieurs études et

travaux de recherche concernant leur diagnostic. Il existe un nombre important de

revues scienti�ques établissant un état de l'art des techniques de diagnostiques des

machines électriques avec une attention particulière pour les défauts électriques [1�4].

Ces travaux expliquent de manière exhaustive comment, à partir d'une modélisation

de la machine électrique, des processus de décision permettent d'établir un diagnostic

à partir d'instruments de mesure et de traitements des signaux. Dans le domaine des

techniques de surveillance et de diagnostic des machines électriques, les aérogénéra-
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Résumé

teurs sont un élément-clé fondamental pour la détection des défauts. Actuellement,

beaucoup de projets sont aux prises des techniques de surveillances des parcs éoliens

et quelques-uns sont même à l'origine de standard. Cependant, ces technologies néces-

sitent encore d'évoluer a�n d'obtenir des solutions techniques génériques et e�caces

qui répondent aux objectifs indispensables de �abilité [5]. En e�et, la plupart des

parcs éoliens modernes sont fondés sur la technologie des générateur à induction à

rotor bobiné (WRIG) avec un nombre faible de pôles et un réducteur planétaire pour

adapter la vitesse de l'arbre du rotor avec la vitesse des lames de l'éolienne. Même

si il y a un grand nombre de travaux scienti�ques qui s'intéressent au contrôle des

machines à induction, le nombre de travaux qui s'intéressent à la détection et à la

localisation des défauts reste faible [3,4,6]. Parmi ces travaux, les techniques de trai-

tement de signaux sont serte capables d'identi�er des défauts électriques de nature

di�érente mais elles sont souvent quali�ées de complexes. En e�et, il est très di�cile

de donner une conclusion précise sur des défauts mis en évidence à partir d'une ana-

lyse temporelle, fréquentielles ou temps-fréquence du fait de la complexité des signaux

(périodicité, bruit) issues du phénomène observé. Les chercheurs se sont alors tour-

nés vers des techniques à base de réseaux de neurones qui sont réputées pour donner

des résultats remarquables au détriment d'une con�guration du réseaux de neurones

souvent obtenue par des approches non déterministes [7�9]. Les réseaux de neurones

ont fait leur apparition au sein des techniques de diagnostic il y a maintenant à peu

près une vingtaine d'années [10]. Ils ont été appliqués avec succès sur les machines à

induction triphasé pour détecter des fautes du coté du rotor [11�13]. Dans le pratique,

les réseaux de neurones ont toujours été utilisés pour améliorer la classi�cation des

défauts et pour éviter des fausses alertes ou des dysfonctionnements évidents.

Le formalisme DEVS (Discrete EVent system Speci�cation) a été introduit par le

professeur B.P. Zeigler en 1976 [14]. Ce formalisme permet une modélisation modu-

laire et hiérarchique des systèmes complexes à évènements discrets. DEVS propose

deux types de modèles pour modéliser un système : les modèles atomiques et les mo-

dèles couplés. Un modèle atomique DEVS est vu comme une boite noire qui reçoit

et émet des évènements (messages). Il permet de spéci�er le comportement d'un sys-

tème. Le modèle couplé permet de représenter la structure d'un système. Il peut être

composé de modèles atomiques et/ou couplés. Le simulateur d'un modèle DEVS est
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généré automatiquement par le formalisme sur la base d'un arbre de simulation abs-

trait construit à partir des modèles atomiques et des modèles couplés qui compose le

modèle. Un des points fort du formalisme DEVS réside dans sa capacité à accepter

des évolutions à la fois du coté de la modélisation et de la simulation. En e�et, DEVS

repose sur une séparation explicite entre la modélisation la simulation d'un système.

Toutes extensions de modélisation/simulation qui respecte le formalisme assure la

compatibilité avec le simulateur/modèle. Le projet libre sous licence GPL v3 DEV-

SimPy [15] est un environnement de modélisation et de simulation DEVS implémenté

en langage Python. Tous les travaux présentés dans ce mémoire sont implémentés

dans DEVSimPy. C'est un environnement modulaire qui propose un système de plug-

ins qui, couplé avec une programmation orientée objets (POO) et orientée aspects

(POA), permet d'étendre ses fonctionnalités. Il propose également une gestion des

modèles sous forme de librairies dynamiques. Le simulateur DEVS est séquentiel et il

exécute donc les modèles, suivant un ordre précis, les un après les autres. Cependant, il

est possible d'exécuter des simulations DEVS de manière concurrente et comparative

à condition d'intégrer les algorithmes de la Simulation Comparative et Concurrente

(SCC) au sein du formalisme DEVS. La puissance essentielle de la SCC réside dans le

fait que plusieurs expériences sont simulées d'une manière implicite au travers d'une

seule simulation. L'intégration de la SCC dans le formalisme DEVS a déjà été pré-

sentée dans le cas de la simulation des défauts comportementaux dans les systèmes

digitaux et a été proposée sous le nom de BFS-DEVS (Behavioral Fault Simulator for

DEVS) [16]. Du fait de la séparation explicite entre la modélisation et la simulation

dans le formalisme DEVS et du système de plug-ins proposé dans DEVSimPy, l'inté-

gration de la SCC avec DEVS est rendu possible par l'implémentation d'un plug-in

sans modi�er le noyau de simulation DEVS. Grâce à ce plug-in, l'utilisateur peut

con�gurer et exécuter plusieurs simulations concurrentes dans l'environnement DEV-

SimPy à partir du moment ou il dé�nit un comportement concurrent au sein de ces

modèles atomiques.

Les réseaux de neurones arti�ciels (RNAs) sont très utilisés pour modéliser des

systèmes indescriptibles de manière déterministe par les mathématiques. Les réseaux

de neurones déduisent par apprentissage le comportement d'un système en cherchant

une correspondance entre les entrées et les sorties du système. Cette représentation
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de type boite noir est proche de DEVS et il serait intéressant de posséder la technique

des RNAs dans DEVS a�n de modéliser des phénomènes dont on ne connait pas la

description mathématique mais dont on possède les évènements d'entrée et de sortie.

L'approche de modélisation des RNAs dans DEVS pose un certain nombre de question

comme le niveau de description choisi dans DEVS pour modéliser un neurone ou le

niveau de modularité entre l'apprentissage et le test du réseau de neurones. Une

librairie nommée NN a été implémentée dans l'environnement DEVSimPy a�n de

proposer la modélisation des RNAs dans le formalisme DEVS. La principale di�culté

émanent de l'utilisation des RNAs réside dans leur con�guration. Cette dernière repose

principalement sur un processus itératif consistant à essayer plusieurs paramètres de

con�guration (momentum, fonction d'activation, nombre de neurones cachées, etc.)

a�n d'obtenir une convergence à la fois dans l'apprentissage et dans le test des RNAs.

Les travaux présentés dans ce manuscrit montre qu'il est possible d'avoir recours à la

SCC pour accélérer la con�guration des RNAs en simulant plusieurs con�gurations

concurrentes en une seule simulation DEVS.

En conclusion, l'idée principale des travaux présentés regroupe les trois concepts

DEVS, RNA et SCC autour d'une problématique dé�nit par le diagnostic des machines

électriques à partir d'une modélisation à base de RNAs con�gurés en utilisant la SCC

le tout dans un cadre formel assuré par le formalisme DEVS.

Ce document est organisé de la manière suivante : après une introduction qui

positionne le problème générale de notre étude, le premier chapitre présente un état

de l'art des précédents domaines étudiés (DEVS, RNA, SCC, WRIG). Le deuxième-

ment chapitre présente la librairie NN DEVS permettant de modéliser un réseau de

neurones arti�ciels de type Feed-Forward. Le troisième chapitre présente l'intégra-

tion de la simulation comparative et concurrente dans le formalisme DEVS à partir

d'une extension de la modélisation en préservant le noyau de simulation. Le quatrième

chapitre présente l'implémentation et la con�guration des RNAs DEVS à partir des

algorithmes de la SCC. Le cinquième et dernier chapitre propose d'appliquer les pré-

cédentes techniques et concepts à la problématique de détection des défauts dans les

machines électriques de type WRIG. En�n, une conclusion résume le travail réalisé

dans cette thèse ainsi que les perspectives des travaux.
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Les réseaux de neurones modélisés avec DEVS

Les réseaux de neurones sont souvent représentés par des boites noires dont le com-

portement est construit à partir de la connaissance des entrées et des sorties. Une

fois l'apprentissage e�ectué, ces systèmes peuvent être utilisés pour faire de la pré-

diction ou bien de la classi�cation de données. Dans cette thèse, nous étudierons les

RNAs pour classi�er des défauts pouvant apparaitre au sein des machines électriques.

L'architecture d'un RNA est constituée d'une couche d'entrée, d'une ou de plusieurs

couches cachées et d'une couche de sortie. Chaque couche possède un certain nombre

de neurones (cf. Figure 1) qui lorsqu'ils sont associés permettent d'apprendre le com-

portement du système modélisé. La couche d'entrée des réseaux de neurones reçoit une

liste de messages qui contiennent toutes les entrées du réseau. Ensuite ces messages

d'entrées sont transmis à la couche cachée. La couche cachée calcule pour chacun des

neurones, une fonction de combinaison suivie d'une fonction d'activation (cf. Figure 1)

et envoie à son tour le résultat à la couche suivante.

Figure 1 � L'architecture d'un neurone arti�ciel j.

Parmi les types de RNA, le perceptron multicouche est un RNA organisé de plu-

sieurs couches au sein desquelles les informations circulent de la couche d'entrée vers

la couche de sortie uniquement dans un mouvement unidirectionnel. Les premiers

réseaux de neurones n'étaient pas capables de résoudre des problèmes non linéaires.

C'est seulement avec l'apparition de la rétro-propagation du gradient de l'erreur que

cette limitation a été supprimée [17].

Les RNAs ont une architecture intrinsèquement liée à celle des modèles à évè-

nements discrets. Il existe de manière évidente une similitude entre les couches, les

neurones et la notion de boite noire transformant des données d'entrées en données

de sorties. Nous avons proposés une librairie de modèles DEVS dans le logiciel DEV-
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SimPy a�n de modéliser les RNAs. Cette librairie, nommé NN pour Neural Network, a

fait l'objet d'une étude au préalable a�n de déterminer une architecture modulaire et

performante. Cette étude a pris en compte les facteurs suivants : l'accès à la liste des

données d'entrées et de sorties, le choix de l'architecture d'un neurone arti�ciel, les

di�érents liens entre les neurones des couches et la possibilité de modi�er l'algorithme

d'apprentissage.

Figure 2 � Modélisation DEVS d'un RNA.

L'étude de ces quatre points ont conduit à une combinaison des modèles atomiques

qui sont présentés sur la �gure 2. Dans cette approche, un modèle atomique DEVS

permet de modéliser une couche d'un RNA. Le modèle atomique A1 permet de re-

présenter la couche d'entrée, le modèle atomique A2 la couche cachée et la couche de

sortie. Plusieurs avantages sont à souligner avec cette approche de modélisation : le

nombre de neurones dans chaque couche est visible à tout moment de la simulation

par le nombre de sortie de chaque couche, le regroupement de tout les neurones d'une

couche dans un seul modèle atomique facilite la con�guration de ces neurones en con�-

gurant qu'un seul modèle, les connections entre les couches peuvent être facilement

modi�ées (suppression ou redirection).

Ce choix d'architecture nous conduit à une conception complète d'un réseau de

neurones avec sa phase d'apprentissage comme présenté sur la �gure 3. L'algorithme

d'apprentissage présenté est connu sous le nom de rétro-propagation [18�20].

La �gure 3 présente la modélisation d'un RNA basée sur l'utilisation de modèles

atomiques DEVS. Dans cette �gure ce trouve quatre bloque qui groupent quatre ca-

tégories di�érentes de modèles atomiques. Le premier bloque se compose d'un seul

modèle atomique (Input) qui modélise le comportement de la couche d'entrée du ré-
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Figure 3 � Modélisation DEVS d'un RNA avec la phases d'apprentissage.

seau. C'est la couche d'entrée qui contrôle le �ux des données qui circulent dans le

réseau (cf. étape 1 sur la �gure 3). Le deuxième bloque présente un modèle atomique

(Hidden) par couche cachée (cf. étapes 2 et 3 sur la �gure 3). Si le RNA possède

plusieurs couche cachées, celles-ci seront représentées par une interconnexion de mo-

dèles atomiques du type Hidden. Le quatrième bloque représente la couche de sortie

avec le modèle atomique Output (cf. étape 4 sur le �gure 3) qui génère la sortie du

RNA. Dans notre approche, la sortie de cette couche est envoyée à un modèle ato-

mique appelé générateur d'erreurs qui représente la phase d'apprentissage du réseau.

La sortie du générateur d'erreurs (cf. étape 5 sur la �gure 3) est calculée en faisant la

di�érence entre la sortie réelle du réseau et la sortie réelle du système. Les dernières

étapes (cf. étapes 6, 7 et 8 sur la �gure 3) représentent la rétro-propagation de l'erreur

et la modi�cation des coe�cients de calcul de chacune des couches de calcul (couche

cachée ou de sortie).

Figure 4 � Un réseau de neurones implémenté dans DEVSimPy.
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La �gure 4 présente la modélisation d'un RNA dans le logiciel DEVSimPy. La

librairie NN sur le panel de gauche contient l'ensemble des modèles nécessaires pour la

modélisation d'un RNA du type Feed-Forward. Nous retrouvons les modèles présentés

auparavant comme Hidden pour la couche cachée, Ouptut pour la couche de sortie

et Input pour la couche d'entrée. Pour instancier l'un de ces modèles, l'utilisateur

doit procéder à un glisser/déposer à partir de la librairie NN vers le panel de droit. Le

panel de droit présente la modélisation d'un RNA avec : des générateurs d'évènements

(FileGenerator), une couche d'entrée (Input), une couche cachée (Hidden), une couche

de sortie (Output) et un ensemble de modèles pour l'apprentissage (Error_Generator,

Delta_Weight). Après la simulation, si l'erreur d'apprenstissage diverge, l'utilisateur

peut modi�er les paramètres des modèles atomiques et relancer la simulation jusqu'à

obtenir la convergence du RNA.

La simulation comparative et concurrente avec le for-

malisme DEVS

L'idée d'avoir une Simulation Comparative et Concurrente (SCC) avec le simulateur

DEVS a déjà été introduite avec l'extension BFS-DEVS (Behavioral Fault Simula-

tion for DEVS). Cette extension a été réalisée pour la simulation des fautes dans les

systèmes digitaux grâce à une modi�cation du noyau de simulation DEVS. Cette mo-

di�cation a permit de prendre en compte des comportements fautifs dé�nis dans les

modèles atomiques par l'intermédiaire d'une nouvelle fonction de transition (δfault).

BFS-DEVS utilise des messages fautifs pour communiquer entre les modèles atomiques

et traiter leur changement d'état fautif. Dans nos travaux nous proposons de géné-

raliser BFS-DEVS en intégrant les algorithmes de la SCC dans le formalisme avec

une implémentation orientée aspect. Contrairement à BFS-DEVS, le noyau de simu-

lation DEVS reste inchangé et le comportement concurrent d'un modèle atomique

est géré uniquement coté modélisation par l'introduction d'une fonction concurrente

(fconc) dé�nit par l'utilisateur. Une extension utilisant le concept de la programma-

tion orientée par aspect va ensuite générer le comportement d'un modèle atomique

compatible avec le noyau de simulation DEVS d'origine. Nous proposons une autre

extension pour manipuler les SCC pendant la simualtion DEVS. Grâce à l'utilisa-
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tion des patrons de conception UML (Uni�ed Modeling Language) (comme le patron

Singleton), les SCC sont gérées de manière générique et l'utilisateur peut insérer, mo-

di�er ou supprimer des SCC pendant la simulation. Toutes ces propositions ont été

implémentées en langage Python dans l'environnement DEVSimPy.

Figure 5 � Coresspendance de la simulation comparative et concurrente avec DEVS.

Dé�nition

La �gure 5 représente les di�érentes couches entre le simulateur DEVS et un domaine

d'application pour une simulation comparative et concurrente. Pour la simulation

concurrente d'un système donné, il faut réaliser la modélisation classique des modèles

DEVS avec la modélisation des comportements concurrents. La modélisation d'un

modèle atomique avec un comportement concurrent est réalisée grâce à la structure

décrite ci-dessous :

AM ′ =< X, Y, S, {Hn}, δint, δext, fconc, λ, ta >

avec :

� X = {(p, v) | p ε in_ports, v ε Xp} la liste des ports et des valeurs d'entrée ;

� Y = {(p, v) | p ε out_ports, v ε Yp} la liste des ports et des valeurs de sortie ;

� S l'ensemble des variables d'états ;

� Hn l'ensemble des sous-signatures où :
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� Hn = {(Xn, Yn, vn)};

� Where:

* Xn est l'ensemble des ports et de valeurs d'entrée pour une experiencen,

* Yn est l'ensemble des ports et de valeurs de sortie pour une experience

n,

* vn est l'ensemble des variables privées pour une expérience n,

* n εN ou 0 ≤ n ≤ N avec N le nombre d'expériences par simulation.

� δint : S → S la fonction de transition interne ;

� δext : Q×X → S la fonction de transition externe avec :

� Q = {(s, e) | s ε S, 0 ≤ e ≤ ta(s) l'ensemble des états ;

� e le temps écoulé depuis la dernière transition.

� fconc : Hn → Hn la fonction du comportement concurrent ;

� λ : S → Y la fonction de sortie ;

� ta : S → R+
0,+∞ le temps de vie de l'état S , taε [0,∞[.

La nouvelle structure du modèle atomique, aura une simulation basée sur le déclen-

chement des fonctions comme montré sur la �gure 6. Selon le système modélisé, la

fonction du comportement concurrent sera liée à une des fonctions de transition in-

terne ou externe. Pour un modèle de type générateur la fonction principale est de

générer des données (fonction de transition interne) puis de les envoyer pendant l'exé-

cution de la fonction de sortie. Dans ce cas, la fonction du comportement concurrent

sera déhanchée après la fonction de transition interne.

Dans un autre cas, le récepteur de donnée (par exemple un collecteur d'évène-

ments) ne réagit que pour recevoir les données, ce qui implique que la liaison concur-

rente est appliquée entre la fonction de transition externe et la fonction du compor-

tement concurrent (cf. �gure 6).
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Figure 6 � La simulation du comportement concurrent d'un modèle atomique DEVS.

Implémentation

Pour réaliser ces simulations comparatives et concurrentes avec le noyau de simulation

classique DEVS nous avons réalisé les étapes suivantes :

1. Création d'une signature pour chaque modèle atomique qui se compose de plu-

sieurs sous-signatures présentant les données des expériences simulées ;

2. Implémentation de la fonction du comportement concurrent ;

3. Réalisation du lien entre la fonction de comportement concurrent et la fonction

de transition choisie ;

4. Gestion de la simulation concurrente (ajout, suppression ou modi�cation des

expériences).

Pour réaliser ces étapes, plusieurs classes ont été implémentées dans le langage de

programmation Python. Python est un langage dynamique et orienté objet qui fa-

vorise également la programmation orientée aspect. Un diagramme UML des classes

implémentées est présentées sur la �gure 7.

Trois catégories de classes sont considérées dans le diagramme UML : le groupe des

modèles atomiques, le groupe des signatures, le groupe des gestionnaires. Le groupe

des modèles atomiques se compose d'un modèle atomique classique, d'interface et d'un

décorateur du modèle atomique. C'est avec le décorateur que le lien entre la fonction

du comportement concurrent et les fonctions de transition est réalisé. Le groupe des
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Figure 7 � Diagramme de classes UML pour l'implémentation de la SCC dans DEV-
SimPy.

signatures introduit la base de données à l'intérieur de la quelle les signatures et les

sous-signatures des modèles concurrents sont stockées. Le troisième groupe de classes

se compose seulement de la classe SignatureManager qui est une classe responsable de

la gestion des expériences en concurrence : ajouter, supprimer, modi�er ou comparer

des expériences pendant une simulation. La �gure 8 représente l'interface graphique

du plug-in global réalisé dans le logiciel DEVSimPy pour con�gurer la simulation

comparative et concurrente du réseaux de neurones ainsi que pour la con�guration

des modèles concurrents.

Toutes ces classes sont implémentées dans DEVSimPy en utilisant la notion d'ex-

tension globale disponible dans l'environnement. L'a�ectation de la fonction concur-

rente se fait par décoration des fonctions de transition. La classe du DecoratorA-

tomicModel (cf. �gure 7) sera implémentée dans une extension globale du logiciel

DEVSimPy (cf. �gure 8). L'utilisateur qui veut utiliser la SCC n'aura qu'à activer

l'extension dans DEVSimPy. Sur la �gure 8(a), l'interface de dialogue permet de

sélectionner les fonctions de transition DEVS (la fonction de transition externe sur

l'exemple de la �gure 8a) associées à la fonction concurrente des modèles atomiques
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(a) Con�guration des modèles concurrents.

(b) Con�guration des simulations concurrentes.

Figure 8 � Interfaces de l'extension global pour la con�guration du comportement
concurrent.

(Input_1 sur l'exemple de la �gure 8(a)). La �gure 8(b) présente l'interface de dia-

logue permettant d'interagir avec le gestionnaire de simulations concurrentes. Dans

l'exemple, la simulation 0 est en concurrence avec les simulations 1, 2, 3 et 4 (par-

tie gauche de la �gure 8(b)). Pour cette simulation 0, les modèles A88 et A87 sont

con�gurés (N, M Activation Function) comme il est montrée sur la partie droite de la

�gure 8(b).

La �gure 9 représente un diagramme de séquence qui explique les huit étapes

qui composent le déroulement des actions pendant une simulation concurrente avec

DEVSimPy. La �gure 9 présente trois numérotations sur la ligne du Gestion de modéli-

sation qui représente l'interaction de l'utilisateur avec DEVSimPy. L'utilisateur lance

la simulation (la simulation concurrente est transparente pour lui), il peut mettre la si-

mulation en pause pour changer quelques con�gurations de simulation et la reprendre

sans s'occuper de la gestion des simulations concurrentes.
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Figure 9 � Diagramme de séquences de la simualtion comparative et concurrente
dans DEVS.

Les réseaux de neurones avec le formalisme DEVS et

la SCC

Comme il est montré sur la �gure 10, les deux approches introduites dans les sec-

tions précédentes (les réseaux de neurones avec le formalisme DEVS, la simulation

comparative et concurrente avec le formalisme DEVS) ont été utilisées pour proposer

une solution générique basée sur le formalisme DEVS permettant de modéliser des

systèmes à l'aide de réseaux de neurones con�gurables par la SCC. Cette solution sera

mise ne ÷uvre dans le cadre d'une application concrète consistant à modéliser et à

simuler des machines électriques pour établir leur diagnostic.

L'idée est de compléter le comportement des modèles atomiques de la librairie NN

en ajoutant une fonction concurrente permettant de modéliser di�érentes con�gura-

tions (paramètres) d'une couche d'un RNA. Ensuite, la SCC permettra pendant la

simulation de tester plusieurs con�gurations possibles du réseau de neurones simulé.

L'algorithme 0.1 présente le code Python de la fonction concurrente correspondant

au modèle Input de la librairie NN.

La ligne 2 de l'algorithme 0.1 véri�e si le modèle est dans l'état actif. Dans ce
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Figure 10 � Stratégie du travail réalisé.

Algorithme 0.1 La fonction du comportement concurrent de la couche d'entrée d'un
RNA.

1 def concBehavFunc(self):

2 if self.state['status'] == 'ACTIVE':

3 Singleton = self.simData.getInstance()

4 for exp in self.expDico:

5 subSignature = Singleton[exp][self.myID]:

6 subSignature['outputs'] = subSignature['inputs']

7 + subSignature['Sum']

cas, le modèle fait appel au gestionnaire de la simulation concurrente Singleton puis

ajoute sa signature dans la base de données.

L'utilisation de la SCC pour la con�guration d'un RNA dans le formalisme DEVS

n'apporte aucune nouveauté au niveau conceptuel. Cependant, d'un point de vue de

l'implémentation, deux points sont à souligner. La solution proposée a été possible

grâce à la hiérarchie et la modularité du formalisme DEVS et à la possibilité d'exten-

sion du logiciel DEVSimPy.

Détection des défauts dans les génératrices à induction

à rotor bobiné

Cette section montre une application concrète mettant en ÷uvre le regroupement des

di�érents domaines abordés dans cette thèse. Le but est de modéliser et de simuler

le diagnostic d'une génératrice à induction à rotor bobiné à l'aide des RNA et du

xxv



Résumé

formalisme DEVS. Pour cela nous diviserons le travail en trois parties : la prépa-

ration des données à l'aide d'un algorithme de compression travaillant à partir des

données numériques, l'utilisation des réseaux de neurones concurrents pour trouver

la con�guration qui conduit à la convergence de l'erreur d'apprentissage et de test,

la proposition d'une méthode générique d'optimisation de classi�cation de données

basée sur des calculs statistiques et sur une architecture multi-étages de réseaux de

neurones.

Figure 11 � Banc de test.

Figure 12 � Échantillons des trois courants statoriques en régime permanent.

L'installation présentée sur la �gure 11, a été mise en place pour réaliser des

mesures sur une génératrice à induction à rotor bobiné triphasée de 5,5kW, 50Hz,
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220/380V, 8-pôles. La génératrice est alimentée par une motrice autour d'une ma-

chine à induction à cage d'écureuil triphasé de 7kW et d'une tension programmable

(onduleur statique de 11kW). Pour simuler la vitesse du vent et faire tourner le sys-

tème sous di�érents mode de fonctionnement, la motrice est contrôlée. Deux états de

fonctionnement sont disponibles : un état stationnaire et un état transitoire qui simule

les di�érents états du vent. Le codage des données se fait avec une précision de 16

bits. L'installation est réalisée dans le but de pouvoir collecter les courants statoriques

et rotoriques de la génératrice. La �gure 12, représente un échantillon des courants

statoriques normalisés. Les défauts életriques étudiées sont nommées de F1 à F16 :

Côté rotor :

� F1 : court-circuit sur les deux premières spires des deux premières phases, et
sur la permière spire de la troisième phase.

� F2 : court-circuit sur les deux premières spires des trois phases.

� F3 : court-circuit sur les deux premières spires de la premier phase, et la première
spire de la deuxième phase.

� F4 : court-circuit sur les deux premières spires des deux premières phases.

� F5 : court-circuit sur la deuxième spire de la première phase.

� F6 : court-circuit sur les deux premières spires de la première phase.

Côté stator :

� F7 : court-circuit sur la premier spire des deux premières phases.

� F8 : court-circuit sur la deuxième spire des deux premières phases.

� F9 : court-circuit sur la deuxième spire de la première phase.

� F10 : court-circuit sur la deuxième spire de la deuxième phase.

� F11 : court-circuit sur les deux premières spires de la deuxième phase.

� F12 : court-circuit sur les deux premières spires de la deuxième phase.

� F13 : court-circuit sur la première spire de la deuxième phase.

� F14 : court-circuit sur la première spire de la première phase, et le deuxième
spire de la deuxième phase.

� F15 : court-circuit sur la deuxième spire de la première phase, et la permière
spire de la deuxième phase.
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� F16 : court-circuit sur la première spire des deux premières phases.

La préparation des données est une phase indispensable pour une utilisation des ré-

seaux de neurones. Deux facteurs peuvent in�uencer le choix de la technique emplyée

pour la préparation des données : le type de données, la dimension des données. Le

type de données collectées du moteur électrique qui nous intéresse est périodique. Les

courants rotoriques et statoriques sont composés de plusieurs fréquences. La di�é-

rence des fréquences est un critère très important lorsqu'on parle de compression des

données. Les données d'entrée sont représentées par des vecteurs qui alimente ensuite

les réseaux de neurones. Dans notre cas, un vecteur d'entrée est composé des trois

courants rotoriques et des trois courants statoriques observés pendant 0,2s avec une

période d'échantillonnage de 0.1ms. Ce qui implique un vecteur d'entrée de 12,000

valeurs. Avec une telle dimension, une compression est indispensable sous peine de ne

jamais atteindre le critère de convergence du RNA.

Figure 13 � Préparation des données avant et après le réseau de neurones.

La �gure 13, présente l'utilisation d'un RNA avec les deux étapes de préparation

des données en entrée et en sortie. La première étape est la normalisation des données

pour éviter une saturation de la fonction de transfert des RNAs. Dans cette thèse une

nouvelle méthode de compression dans le cas de données périodiques est présentée.

Une vecteur d'entrée est composé de 6 courants électriques de 2000 valeurs chacun.

Comme il est montré sur la �gure 14, un convertisseur numérique de 16 bits transforme

les 2000 valeurs d'un courant en une matrice de 16x2000 valeurs. Ensuite, cette matrice

est réduite en un vecteur ligne de 16 valeurs grâce à une moyenne sur les colonnes

de la matrice. Cette méthode de compression est appliquée sur les 6 courants pour

donner un vecteur d'entrée de 96 valeurs (au lieu de 12,000 valeurs).
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Figure 14 � Compression des vecteurs d'entrée du RNA.

Après la réalisation de cette compression numérique, nous proposons de commen-

cer les tests pour di�érencier et localiser 16 défauts di�érents. Ces défauts représentent

des courts-circuits sur le bobinage coté stator ou rotor. La détection de ces défauts

le plus tôt possible évite la destruction totale de la génératrice. Pour cela nous allons

utiliser et con�gurer un réseau de neurones concurrent.

La principale di�culté lorsque l'on veut utiliser un RNA est sa con�guration. Il

existe un certain nombre de règles pour con�gurer les paramètres des couches (N, M,

fonction d'activation, nombre de neurones dans une couche) mais elles ne reposent

sur aucunes démonstrations solides garantissant le fonctionnement de la règle dans

tous les cas. A�n de con�gurer notre RNA de type Feed-Forward, nous allons tester

les con�gurations à partir des paramètres de la Table 1.
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Identi�ant N M Fonction d'activation Neurones (couche cachée)

1 0.1 0.1 tanh 20
2 0.9 0.1 tanh 20
3 0.9 0.1 sigmoid 20
4 0.9 0.1 sigmoid 50
5 0.9 0.1 sigmoid 70
6 0.9 0.1 sigmoid 60
7 0.9 0.5 sigmoid 55
8 0.9 0.2 sigmoid 54
9 0.7 0.1 sigmoid 56
10 0.9 0.1 sigmoid 56
11 0.9 0.5 sigmoid 56

Table 1 � Paramètres testés pour la con�guration du RNA.

Figure 15 � Erreur quadratique moyenne des simulations concurrentes pour la con�-
guration du RNA.

La Table 1 présente les paramètres de con�guration présentés sont utilisés pour

di�érencier 12 fautes di�érentes, 6 du coté rotor (F1-F6) et 6 du coté stator (F7-

F12). La �gure 15 montre les erreurs quadratique moyenne issues de l'apprentissage

du RNA par l'exécution des simulations concurrentes. Les résultats indiquent qu'il y a

une convergence de certaines con�gurations, la courbe en bleue est celle qui converge

le mieux en la comparant avec les autres con�gurations..

A�n de nous assurer des e�ets de la compression sur l'erreur d'apprentissage du

RNA avec les paramètres de l'expérience 9 (courbe en bleue, �gure 15), la �gure 16

trace les deux erreurs obtenues avec et sans compression. Cette �gure montre que la

compression est indispensable à la convergence du RNA.
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Figure 16 � Erreur quadratique avec et sans compression des données en ajoutant .

Optimisation avec un RNA multi-étages

Lorsqu'on désire utiliser le RNA précédent avec un nombre de fautes supérieures à

12, la convergence n'est plus respectée du fait de l'augmentation de la complexité du

système principalement due à la ressemblance des défauts diagnostiqués. A�n de pou-

voir identi�er 5 fautes électriques supplémentaires (F13 - F16), nous avons fait évoluer

notre approche en utilisant un RNA multi-étages. Cette architecture multi-étages est

construite à partir d'une analyse statistique des données et conduit à décomposer

le problème en sous problème facilement modélisable par des étages de réseaux de

neurones communiquant. Cette étude statistique est basée sur le calcul de la distance

Figure 17 � Dendrogram des vecteurs d'entrée.
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Euclidien des vecteurs d'entrée qui permet d'identi�er les défauts qui se ressemblent.

Un Dendrogram est un graphique arborescent qui présente les ressemblances entre

les vecteurs d'entrée. La �gure 17, représente un Dendrogram de 32 vecteurs d'entrée

di�érent qui représente les 16 fautes électriques causées par des courts-circuits du bo-

binage des deux côtés rotorique et statorique. L'étude de ce Dendrogram nous amène

à diviser les taches réalisées par les réseaux de neurones sur di�érents niveaux comme

présentée sur la �gure 18.

Figure 18 � RNA avec une architecture à multi-étages.

Le premier étage est capable de détecter si l'état de la machine est sein, fautif

du coté statorique ou fautif du coté rotorique. Le deuxième étage est responsable de

l'identi�cation des défauts sur le niveau des phases. Le troisième étage est responsable

de la localisation des défauts au niveau des spires sur une phase précise. D'après la

�gure 18, le tracé en rouge est le résultat de l'identi�cation d'une faute coté stator,

sur la première spire de la première phase et sur la deuxième spire de la deuxième

phase.
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Figure 19 � Erreurs quadratiques d'apprentissage entre l'architecture multi-étages
et classique.

La �gure 19 présente une comparaison de l'erreur quadratique moyenne d'appren-

tissage entre le premier RNA simple et le second RNA multi-étages. Dans les deux cas,

la compression des données en entrée est réalisée et les courbes montrent bien que la

capacité de localisation a augmentée avec la solution basée sur le RNA multi-étages.

D'un point de vue de l'implantation matériel de la solution proposée, nous pou-

vons pensez que du fait d'une part de la simplicité de l'algorithme de compression

(opération de conversion analogique/numérique, opérations mathématique classiques

comme l'addition) et d'autre part de la simplicité d'un réseaux de neurones (opéra-

tions mathématiques sur des valeurs réelles représentant les poids des neurones), il

sera facile d'implanter notre approche sur un système embarqué comme un FPGA

pour valider notre solution sur un banc de test.

Conclusion

Les travaux présentés dans cette thèse concernent l'association de la modélisation

et de la simulation à évènements discrets avec la technique des réseaux de neurones

pour modéliser des systèmes complexes comme les machines électriques. Le formalisme

DEVS reconnue pour sa modularité et sa hiérarchie de description, a été utilisé pour

proposer une modélisation des réseaux de neurones de type Feed-Forward. DEVS a
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permit un découpage proche de celui utilisé pour décrire les réseaux de neurones. Une

librairie de modèles atomiques à été proposée pour modéliser les di�érentes couches

d'un réseau de neurones et pour modéliser de manière séparé les modèles atomiques

responsables de l'apprentissage du réseaux de neurones. La librairie a été implémen-

tée dans l'environnement de modélisation DEVSimPy o�rant ainsi aux utilisateurs du

logiciel la possibilité de modéliser des systèmes basés réseaux de neurones. Tous les

utilisateurs de réseaux de neurones savent qu'il n'existe aucunes règles �ables pour

con�gurer un réseaux de neurones. La con�guration s'e�ectue en testant plusieurs pa-

ramètres relatifs aux réseaux de neurones (momentum, type de fonction d'activation,

nombre de neurones dans une couche, etc.). Il est donc nécessaire de proposer une

solution pour l'aide à la con�guration des réseaux de neurones dans DEVS. A par-

tir de BFS-DEVS (Behavioral Fault Simulator for DEVS), nous avons généralisé et

amélioré l'intégration des algorithmes de la simulation comparative et concurrente

dans le formalisme DEVS. En s'appuyant sur la dé�nition d'une fonction concur-

rente qui doit être associée aux fonctions de transition d'un modèle atomique et grâce

au concept de la programmation orienté aspect, nous avons proposé une solution

générique pour dé�nir et manipuler des simulations concurrentes dans le formalisme

DEVS. L'implémentation de ces travaux a été également réalisée dans l'environnement

DEVSimPy par le biais de la programmation orientée objet et aspect et des patrons

de conception UML comme le Singleton. Ces notions ont permis d'implémenter une

extension dans DEVSimPy destinée à la gestion des simulations concurrentes sans

a�ecter les algorithmes du formalisme DEVS. La mise en application de ces travaux

a été réalisée dans le cadre de la modélisation et la simulation des défauts dans les

machines électriques a�n de réaliser leur diagnostic. Nous avons proposé une ap-

proche innovante reposant sur la modélisation d'une génératrice à induction à rotor

bobiné par un réseau de neurones DEVS multi-étages con�guré grâce à des simula-

tions comparatives et concurrentes dont les entrées numériques on été compressées.

Les résultats montrent que le diagnostic à l'aide de ce type de réseaux de neurones

permet d'identi�er 17 fautes électriques (de type court-circuit) de nature di�érentes

et ceux avec des taux de convergence raisonnables. Les simulations ont été réalisées

à partir de signaux numérisés provenant d'un banc de test réel. L'approche présentée

dans cette thèse peut être rapidement implantée dans des systèmes embarqués comme
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des FPGA et nous pouvons penser qu'un prototype pourrait valider notre approche

sur un banc de test réel.
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General Introduction

The core work presented in this thesis deals with electrical machine fault diagnosis

by the direct usage of experimental digital data through an arti�cial neural network

modeling with a discrete event approach. The main focus of this work will be to

provide the possibility to re-design arti�cial neural networks (ANNs) to be able to

compare di�erent con�gurations and performances for the electrical faults diagno-

sis. Moreover, the work involves an investigation based on concurrent & comparative

simulation (CCS) concepts and its implementation in the discrete event system spec-

i�cation (DEVS) formalism. The research topics, objectives, methodological design

and the document outline are pointed in this general introduction.

Research Topics and Objectives

The technique for condition monitoring and fault detection of electric machines has

been developed over the last 80 years, starting from human analysis and leading up

to modern decision processes. For the last 20 years, the squirrel-cage three-phase in-

duction machine has been under focus, which is without a doubt, the most interesting

machine in terms of cost and reliability. Many research works are based on diagnostic

techniques around induction machines, mostly involving electrical faults. In mod-

ern wind farms, a large majority of generators are based on wound rotor induction

machines (WRIMs) with a low number of poles and a planetary gearbox to adapt

machine rotor shaft speeds to the blade speeds. Researchers have put more emphasis

on investigating control of wound rotor induction generators (WRIGs) and less on

fault detection and localization. The basic idea of this work is to make diagnostic

techniques more economical and more reliable for use at a large scale. This helps to

provide predictive maintenance to modern wind farms which is crucial to an e�cient
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operation. It is well known that any AC (alternative current) WRIM can still operate

with shorted turns even at its rated load [1]. It is clear that early stage detection

is based on the need for predictive maintenance to avoid full winding failure due to

thermal propagation in the machine windings. In this thesis, short-circuit tests are

almost at their early stage with one or two shorted turns in each phase and on each

side (stator or rotor).

The di�erent electrical faults characterized by signal processing techniques have

been quali�ed as complex and it is always di�cult to obtain a clear conclusion on

any fault associated to time, frequency, or time-frequency analysis [2]. It is clear that

frequency domain-based fault detection has been dominant for the last twenty years

but it has always faced two problems: (i) data collection length, (ii) computational

burden. In this way, decision techniques, mainly based on arti�cial intelligence (AI),

have been used to help the maintenance process on any type of electrical machine.

Arti�cial neural networks (ANNs) have been used with success to help with decision

processes in order to inform the predictive maintenance schedule [2,9]. More recently,

ANNs have substituted the data processing and computational techniques in order

to mix both classi�cation and decision processes. The data collection has to come

from a minimum number of sensors being placed around electrical machines to reduce

monitoring costs.

Nowadays, many sensors have digital outputs which can be connected to any sys-

tem such as a computer, a digital signal processor (DSP), or a �eld-programmable

gate array (FPGA) board to perform complex operations directly without any sig-

nal conversion, avoiding information loss. This will help the implementation of new

diagnostic tools/techniques and help to increase the use of computer-based arti�cial

intelligence. It is important to note that after avoiding the frequency domain diag-

nostics problems, ANNs will face other problems: (i) the need to prepare the input

data (pre-processing), (ii) it needs to be trained before anyone can use it for any

purpose, (iii) the choice of the neural architecture, the training algorithm, and the

con�guration parameters.

The arti�cial intelligence domain grows every day with new algorithms and new

architectures. ANNs have become a very interesting domain since the eighties when

the back-propagation learning algorithm and the feed-forward architecture were �rst

2



Introduction

introduced [17,21]. As time passed, ANNs were able to solve non-linear problems, and

were being used in classi�cation, prediction, and representation of complex systems.

Nowadays, ANNs are still in the research domain to enhance performance and facil-

itate the con�guration parameters needed for the learning process [18, 22�25]. Com-

paring multiple con�guration parameters and learning algorithms is very common for

ANN users and algorithm developers. The use of the Comparative and Concurrent

Simulation (CCS) can be a practical solution for ANN users and developers to use,

test and compare di�erent learning algorithms and con�gurations. [26] is a practical

solution.

The objective of this work is to de�ne fault detection and localization for wound

rotor induction generators by using new techniques to pre-process data and enhance

neural network simulation. This work has been integrated and implemented with the

discrete event speci�cation (DEVS) formalism introduced by Pr. B.P. Zeigler in the

'70s [14]. DEVS separates modeling and simulation in a hierarchical way that can be

described with a state transition table and continuous state systems. DEVS formalism

is a very interesting platform which can be adapted for multiple applications by adding

extensions to it.

The concurrent and comparative simulation is the concept of simulating multiple

experiences within a single simulation execution with a concurrent behavior compar-

ing the simulation progress for each step. The CCS is a general concept that enables

the comparison between experiments with di�erent paths and data values within a

single simulation [26,27]. One of the �rst applications of the CCS is concurrent fault

simulation (CFS) to simulate faults (mainly for digital systems) [16]. CCS can be

applied to many �elds and it matches the idea of comparing multiple ANN con�gu-

rations during the learning phase. This idea enables the simulation of multiple ANN

con�gurations and compares their performances. In order to ensure a good perfor-

mance, CCS will be incorporated into the formalism DEVS inside the DEVSimPy

environment to insure a better training of ANNs dedicated to WRIM short-circuit

diagnosis.
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Methodological Design

To achieve the objective based on the motivation described in the previous section,

the methodological design is detailed as follows:

1. Study of electrical induction machines and their faults diagnostic tech-

niques.

2. Study of discrete event system speci�cation (DEVS) and the DEVSimPy

environment.

3. Study of the comparative and concurrent simulation (CCS) concepts.

4. Study of arti�cial neural networks (ANNs) with di�erent architectures

and algorithms dedicated to classi�cation.

5. Modeling of ANNs with DEVS formalism using the DEVSimPy environ-

ment.

6. The design of the DEVS-based CCS, and the atomic model mathematical

description.

7. The implementation of the DEVS-based CCS inside DEVSimPy environ-

ment and the validation of the new concurrent DEVS-based ANN.

8. The concurrent DEVS-based ANN simulation for electrical machine faults

diagnosis and condition monitoring.
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Figure 20 � Methodological design.

As shown in Figure 20 there are three di�erent aspects of the work - modeling,

simulation and application. A redesign of the arti�cial neural network modeling

is proposed using the modularity of the DEVS formalism. DEVS has an object-

oriented programing orientation (OOP) which means that models are represented in

a hierarchical fashion. This OOP representation of the ANN is in the form of a library

inside the DEVSimPy environment.

The simulation is based on the proposed implementation technique of the CCS

in order to deliver a concurrent behavior to DEVS without any change in the sim-

ulator. The concurrent ANN con�gurations and comparisons take place under the

aspect-oriented programming (AOP) inside DEVSimPy. The implementation of

the CCS is in the form of a plug-in inside the DEVSimPy environment in order to

keep the core of the DEVS simulator unchanged. In Figure 20, DEVSimPy is at

the intersection between the simulation and modeling approaches. DEVSimPy also

provides: (i) modeling via a graphical user interface (GUI), (ii) o�ers the option to

create a dedicated library, (iii) it proposes the implementation of plug-ins which will

help the realization of the CCS.

After the validation of the concurrent ANN concept, it will be applied to the

winding rotor induction machine (WRIM) faults diagnosis. The application can be
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seen from two di�erent views. On one side there is the modeling and implementation

of a pre-processing technique and how to deal with the direct digital data output

from the WRIM sensors for machine diagnosis. On the other side the modeling and

simulation of the ANN using DEVS and the CCS implementation inside DEVSimPy

using the OOP and the AOP.

6



Introduction

Outline

This thesis is organized in �ve chapters. The �rst chapter is named State of the

Art. This chapter contains the terms and the concept used to achieve this thesis

objectives. The �rst part is dedicated to the induction machine diagnosis, where the

importance of the early diagnosis for electrical machines and some of the technique

used to date are presented. The second part explains in some details the arti�cial

neural network, one of the widely used arti�cial intelligence technique for machine

diagnosis. The third part is composed of a description of the DEVS formalism and

the main modeling and simulation concepts. The last part of this chapter describes the

comparative and concurrent simulations concept. The CCS signature is an important

part of the CCS description which is widely used for the integration with the DEVS

formalism.

The second chapter, namedDEVS-Based Arti�cial Neural Network, presents

the concept of fragmenting the ANN into several atomic models easier to use and

replace. This DEVS design also can bene�t from the DEVS extensions where more

functionalities can be added to the formalism. An implementation is proposed inside

the DEVSimPy environment where it can bring a user friendly interface.

The third chapter is named as DEVS-Based Comparative and Concurrent

Simulation (CCS). This chapter explains a new DEVS concurrent simulation with-

out any changes to the classic DEVS simulator. This concept comes transparent to

the simulator o�ering a better compatibility with other DEVS extensions.

The fourth chapter, named as Concurrent DEVS-Based ANN, is the place

where all of the DEVS-based CCS and the DEVS-based ANN regroup together to

produce a �nal product. Also an optimization for classi�cation is proposed based on

a statistical approach using the Euclidean distance between the input vectors of the

neural network.

The �fth chapter is the Case of Study of the WRIM diagnosis. The data used

in this chapter represents seventeen di�erent electrical faults (winding short-circuit)

on both rotor and stator sides. The �rst part of this chapter presents a customiza-

tion of the DEVS-based ANN for the machine diagnosis. The second part unveils a

new compression technique for large and periodic signals based on digital data. The

third part presents the simulation results and comparison between compressed and

7
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uncompressed data. Last is an optimization of the DEVS-based concurrent ANN and

consists of proposing a multistage architecture based on statistical data analysis.

The thesis ends with a general conclusion of the presented work as well as some

research perspectives on the future work.
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Chapter 1

State of the Art

In this chapter, a review of the three domains exposed in this thesis will be detailed.

As presented in the introduction the three domains are: (i) the induction machines

fault diagnosis, (ii) Arti�cial Intelligence (AI), and more speci�cally Arti�cial Neural

Networks (ANNs), (iii) modeling and simulation with the discrete event formalism

DEVS and the decoration with the comparative and concurrent simulation approach

that will bring a new perspective to DEVS simulation.

1.1 Electrical Machines Diagnosis

Wind energy has become one of the most important renewable energy sources and it

has a great share in total power generation all over the world. In fact, the attempt to

transform wind energy to electricity began in 1887-1888, when the �rst automatically

operating wind turbine generator was built by Charles F. Brush [28]. By that time,

low price fossil fuels made wind energy economically unattractive. It was only in the

'70s with the oil crisis that the research turned to making low-price turbines, which are

composed of a small turbine, a generator, a gearbox and a simple mechanical control

method. The induction generator is a proper choice for this system since it is one of the

most economical in term of implementation. The price became reasonable with these

low-cost and small-sized components, even for individuals to purchase. During the

1980s, the generators were rated at 10 to 65 kW, then up 200kW. Today, wind energy

developers are installing turbines rated at 200kW to 2MW [29]. According to the

American Wind Energy Association, today's large wind turbines produce about 120
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times more electricity than early turbine designs. In the last 25 years, �ve generations

of wind turbine systems have been developed [5]. These generations are di�erent based

on the usage of types of wind turbine rotors, generators, control methods and power

electronic converters.

In fact, electrical machines are extensively used in engineering systems. The induc-

tion generators are mostly used in wind turbines as they can be operated at variable

speeds, unlike synchronous generators. An induction machine is composed of mag-

netic circuits which are composed of two induction circuits, rotating in respect to

each other with the power transferred from one circuit to the other by electromag-

netic induction. Two circuits are called rotor (the rotating element) and stator (the

stationary component). In fact, the machine can be used as a motor or generator. It

is an electromechanical energy conversion device that converts energy from electrical

to mechanical form and vice-versa. A three-phase induction machine has one stator

and one rotor which are separated by a small air-gap.

(a) Winding stator for a
three-phase induction ma-
chine [30].

(b) Squirrel cage and wound rotor details [31].

Figure 1.1 � The two main electric components of an electrical three-phase induction
machine.
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Stator: This part of the machine is built with thin steel lamination stacked together

and held in the stator housing (Figure 1.1a). The conductors making up the coils in

the stator windings are looped through slots in the stator lamination. Coils in this

machine are insulated from the lamination using plastic sheets and held together with

string and paper to separate coil groups. The stator coils and lamination are then

dipped in insulation varnish and baked to provide mechanical integrity.

Rotor: It is the rotating element in the machine, and it can be one of two types: (i)

squirrel-cage or (ii) wound (Figure 1.1b). The cage rotor machines are very popular

motors since they are very interesting in term of cost and reliability [32]. In this case,

the rotor bars are permanently short-circuited by the end-rings, and it is not possible

to add any external resistance. Standard squirrel cage rotors have no insulation since

bars carry large currents at low voltages. The second type is the wound-rotor, which

gives the name of WRIM. In modern wind farms, a large majority of generators are

based on (WRIG) with a low number of poles and a group of gearboxes to adapt

the machine rotor shaft speed to the blades speed. The wound rotor consists of a

laminated cylindrical core and carries a 3-phase winding, similar to the one on the

stator. The terminals of the rotor winding are connected to three insulated slip rings

mounted on the rotor shaft. The rings are connected to the outside of the machine

by three brushes.

1.1.1 Need for Condition Monitoring and Fault Detection

Electrical machines are frequently exposed to non-ideal and disturbed environments.

That can include overload, insu�cient lubrication, inadequate cooling and more. Un-

der these conditions, electrical machines are under undesirable stresses, which put

them under risk of faults or failures. The literature on condition monitoring of elec-

trical machines is growing rapidly. Recently many review papers have been published

to give state of the art for diagnostics techniques around induction machines mostly

related to electrical faults [1�4].

Continuous evaluation of the health for equipments is important to detect early

faults. Figure 1.2 shows the four common steps for machine monitoring, fault diagno-

sis and decision making. The �rst step for fault diagnosis is data acquisition, which
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Figure 1.2 � Fault diagnosis process.

can be performed through invasive or non-invasive methods. Feature extraction is re-

sponsible for data transformation and preparation to be used for fault analysis. The

feature extraction is very important for ANN as it needs data for a learning process

before any use. The fault diagnosis and localization of a speci�c fault that has oc-

curred in a system. Condition monitoring and early fault detection can reduce the

cost of operation by: (i) reducing maintenance costs, (ii) improving failure predic-

tion accuracy, (iii) predicting equipment failure, (iv) improving the equipment and

component reliability [33].

It is important to know that a variety of faults occur within the three-phase

induction machines during normal operation. In fact, early fault detection can prevent

a catastrophic machine failure. Condition monitoring and fault diagnosis can be

performed by several methods: (i) thermal monitoring, (ii) noise monitoring, (iii)

vibration monitoring, (iv) electrical monitoring. Nowadays, among these di�erent

techniques, electrical monitoring is the most popular. In most electrical monitoring

systems, no additional sensors are necessary to collect the data - it is a non-invasive

system, which is cost e�ective.

1.1.2 Faults in Wound-Rotor Induction Machines

Electrical machine drives are subject to many di�erent types of faults. Short turn

winding faults, rotor faults, bearing faults, gear fault and misalignment are common

internal faults of induction machines. The common internal faults can be categorized

into two groups:
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� Electrical faults

� Mechanical faults

Electrical faults include failure caused by winding insulation problems [34], some other

faults not due to insulation but also stator and rotor core faults. Mechanical faults

include bearing faults, air gap eccentricity, misalignment of the shaft and more.

This work will be more dedicated to electrical faults, especially winding short-

circuits on both rotor and stator sides. Inter-turn short circuits in stator and rotor

windings constitute a category of faults which is common in induction machines.

Typically, short-circuits in stator/rotor windings occur between (i) turns of one phase,

(ii) turns of two phases, (iii) turns of all phases [32]. Moreover, short-circuits between

stator winding conductors and the stator core also occur and the same is valid for the

rotor side. A study by Thomson [35] shows that 38% of machines faults are electrical

stator faults, 10% are electrical rotor faults, 40% are due to bearings and 12% from

other causes. The machine failure caused by the electrical problems in stator windings

is considered the most common fault. In that case, machine aging means mainly that

the electrical insulation system (EIS) is aging. High temperature during machine

operation can cause short-term insulation degradation. On the other hand, insulation

can just be deteriorated by aging.

Figure 1.3 � Topology of the di�erent short-circuits in both stator and rotor windings:
each stator phase is (1:NS-2:1) turns and each rotor phase is (1:NR-2:1).

Whatever the reason is, when the insulation begins to be degraded, short-circuits

inside both stator and rotor may happen. The short-circuited winding is recognized
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as one of the most di�cult failure to detect [3]. The usual protection might not

work or the motor might keep running while heating in the shorted turns would cause

critical insulation breakdown. If the shorted-turn is left undetected, it will propagate,

leading to phase-ground or phase-phase faults. These types of faults can lead to

irreversible damage to the core, and the machine must be removed from service [36].

In this work, the only type of electrical faults used in all experiments is based on

turn-to-turn windings short-circuits on both stator and rotor sides (Figure 1.3). For

experimental reasons, short-circuits less than one turn will not be considered. The

following list represents the winding faults that will be studied:

For the rotor side:

� F1: short-circuit on the �rst two turns of the �rst two phases, and on the �rst
turn of the third phase.

� F2: short-circuit on the �rst two turns of the three phases.

� F3: short-circuit on the �rst two turns of the �rst phase, and on the �rst turn
of the second phase.

� F4: short-circuit on the �rst two turns of the �rst two phases.

� F5: short-circuit on the second turns of the �rst phase.

� F6: short-circuit on the �rst two turns of the �rst phase.

For the stator side:

� F7: short-circuit on the �rst turn of the �rst two phases.

� F8: short-circuit on the second turn of the �rst two phases.

� F9: short-circuit on the second turn of the �rst phase.

� F10: short-circuit on the second turn of the second phase.

� F11: short-circuit on the �rst two turns of the second phase.

� F12: short-circuit on the �rst two turns of the �rst phase.

� F13: short-circuit on the �rst turn of the second phase.

� F14: short-circuit on the �rst turn of the �rst phase, and the second turn of the
second phase.

� F15: short-circuit on the second turn of the �rst phase, and the �rst turn of the
second phase.

� F16: short-circuit on the �rst turn of the �rst phases.
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1.1.3 Diagnostics Techniques Overview

Since non-invasive sensors o�er a relatively simple and cost e�ective fault diagnosis,

more research is given to electric current analysis rather than vibration or acoustic

analysis in induction machines [6]. In fact, an ideal diagnostic technique should take

the minimum measurements necessary from a machine and by analysis extract a di-

agnosis in minimum time. Non-invasive monitoring is achieved by easily measuring

electrical quantities like current, voltage, �ux. In any case, a key item for any fault de-

tection is proper signal conditioning and processing. It is important to note that most

interesting technique is based on electrical measurements, mainly because they are

readily available in the power converter and for signal processing, but also attractive

because they are non-invasive [37].

Signal processing techniques for fault diagnosis can be classi�ed into three main

classes: (i) time domain, (ii) frequency domain, (iii) time-frequency domain [36].

Spectral estimation (frequency domain) is widely used in electrical machine diagnosis

and it is mainly divided into three subclasses: (i) nonparametric, (ii) parametric, (iii)

high-resolution methods. State-of-the-art in diagnostics techniques for three-phase

electrical machines relies on frequency analysis of stator currents [3, 4, 6]. Frequency

analysis is usually computed by sampling the signal and adopting the fast Fourier

transform (FFT) algorithm. Other types of frequency estimation are also based on

FFT but with resolution improvement are introduced with the idea to focus on some

special frequencies and not the full-length FFT. Example: the zoom-FFT (ZFFT)

and the chirp Z-transform [38].

The techniques based on time-domain analysis are used for an e�cient detection of

mechanical imbalances. In [39], the author presents a full-time domain-based method

for quantitative evaluation of electrical faults in induction machines. There are di�er-

ent techniques in the time-domain analysis that can be noted as amplitude and phase

demodulation [40], noise cancellation [41,42], speed and torque estimations [43]. Time-

domain analysis is a powerful tool for three-phase squirrel cage induction machines in

faulty conditions [44].

Time-frequency analysis consists of the 3-D time, frequency and magnitude rep-

resentation of a signal, which is inherently suited to indicate transient events. An

important use of the time-frequency analysis is the ability to �lter out a particular
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frequency component using a time varying �lter. The main advantage of the time-

frequency analysis is discovering the patterns of frequency changes, which usually

represent the nature of the signal. As this pattern is identi�ed, the machine fault

shown by this pattern can be identi�ed.

It is important to note that signal processing allow characterizing the di�erent elec-

trical faults, they have been quali�ed as complex and it is always di�cult to perform a

clear conclusion on any fault associated to time, frequency or time-frequency analysis.

In the supervision of electrical equipment, diagnosis systems based on conventional

computing techniques have been recently replaced by new decision techniques based

on arti�cial intelligence (AI) and especially arti�cial neural networks [7�9]. Tradi-

tional systems are developed as a model-based approach which is able to consider

di�erent fault conditions and to schedule a wide series of operating conditions. As a

matter of fact, their implementation in a single application leads to complex programs

di�cult to maintain and to manage. On the other hand, the term AI includes neu-

ral networks, fuzzy logic, fuzzy-neural network, genetic algorithms and more. These

techniques require an initial training which is critical for optimal performances. In

fact, the training mode of a neural network can be very tricky and this problem will

be studied more deeply in this work. By stating that the training phase is possible,

these techniques are e�cient, simple and can be adopted successfully for the diagno-

sis of electrical machine failures. For this purpose, it will be proposed to train the

dedicated ANN directly with digital signals coming from the sensors implemented

around the WRIM under condition monitoring. ANN is used for fault detection using

frequency, time, and time-frequency domains for multiple types of faults. In [10] a

supervised multi-layer perceptron (MLP) neural network is used for the detection of

broken bars based on the use of the frequency domain analysis [11�13]. Almost two

decades ago, ANN digitized tasks were imagined [45, 46] and recently the have been

used for multiple-fault detection in stream turbines [47]. However, this technique has

never been implemented for electrical machines fault detection nor for power systems

condition monitoring.
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1.1.4 Summary

The diagnosis of electrical machine has been an important research subject for more

than a century. There are many types of faults inside three-phase electrical machines,

but electrical faults are considered the most common ones. In this work, electrical

faults, especially inter-turn short-circuit in both stator and rotor sides, are explained

in depth. This is justi�ed by the fact that WRIG in low-voltage can keep working for

a while even with short-circuits, but early fault detection can prevent a focal machine

failure. In the last years, more research works were focused on AI in order to improve

performances of the traditional model-based methods. Arti�cial neural networks were

commonly used along side with the traditional diagnosis time, frequency and time-

frequency techniques. In this thesis the ANN will be used as a standalone technique

and will be fragmented in order to enhance their modeling and simulation approaches

to get easier training and learning.
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1.2 Arti�cial Neural Networks (ANNs)

This section addresses the birth of a new arti�cial neural network, its architecture,

learning algorithms and ideas about application domains. This section will also give

the reader the ANN technical terminology used in this thesis.

Arti�cial neural network are used in many application in di�erent domains. Gen-

erally, problems like patterns recognition/classi�cation or function approximation are

mostly used among these applications. The most famous ANN features is the ability

of mapping between the input data and the desired output.

There are many types of neural networks. Each type has its own advantages

and drawbacks, depending on the data type and the application nature. When used

for classi�cation, the choice can easily go to the feed-forward architecture, which is

characterized by the fact that information �ows only from input forwardly through

the network to the output.

1.2.1 History

The term neural network was traditionally used to refer to the network of biological

neurons. Today, it more commonly refers to arti�cial neural networks.

In 1943 an important article was published to talk about how neuron nets might

work [48]. The neuro-physiologist Warren McCulloch and the mathematician Walter

Pitts were the authors of this work. Fist they discussed the theory Nets without circles

and then Nets with circles. These theories are based on some assumptions that the

activity of the neuron is an all-or-non process. They also said: "for every net behaving

under one assumption, there exists another net which behaves under the other and

gives the same results, although perhaps no in the same time". In 1949, Donald Hebb

wrote a paper with the title of "The Organization of Behavior" [49], which pointed

out that each time the neural pathways are used they get stronger and the connection

between neurons is enhanced. This concept is fundamental for human learning. At the

end of the �fties, as computer became more advanced, Bernard Widrow and Marcian

Ho� developed models called Multiple ADAptive LINear Elements (MADALINE).

These were �rstly used as adaptive �lters which eliminated echoes on phone lines. This

was the �rst neural network to be applied to a real world problem. This perceptron
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Figure 1.4 � Neuron Perceptron Architecture.

was not able to solve problems like the XOR (exclusive or). Such drawback led to

slow down its use and development.

In the 1980s higher level programming and code generators became popular. Since

then, researchers worked on how to extend the Widrow-Ho� MADALINE model to

multiple layers. At this time, both back-propagation networks and Boltzmann ma-

chines were born. Since the eighties, ANNs keep improving, with di�erent architec-

tures and learning algorithms.

Nowadays there are many architectures and learning algorithms. This thesis will

be focused on supervised learning (back-propagation algorithm) and the feed-forward

(FF) architecture.

1.2.2 Feed-Forward Architecture

All neural networks are composed of interconnected computing units. These com-

puting units are also called neurons. As Donald Hebb pointed out, that each time

a neural pathway is used it gets stronger; in arti�cial neural networks this can be

represented by the multiplication of a coe�cient that can magnify or decrease the

strength of this pathway. This strategy leads to a mathematical representation of the

arti�cial neuron (Figure 1.4).

Perceptron Artificial Neuron: For every neuron j placed in layer L

there is n inputs represented by xi where i = 1, 2, . . . , n (Figure 1.4). For every

input signal there is a multiplication by a coe�cient (weight wi) that assure the

signal strength of each input. The transfer function (Equation 1.1, Figure 1.4) is

the operation of multiplication of inputs with their weights and then summing them
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Figure 1.5 � Most common activation functions in MLP neural networks.

making one net input for this neuron (Ij). This one input goes through an activation

function (Equation 1.2) whitch is also called output function. Some of the most

common function are shown in Figure 1.5. The activation function output is the

neuron output (Oj).

Ij =
n∑

i=0

xiwij (1.1)

oj = f (Ij) (1.2)

An arti�cial neuron alone cannot do much, but the calculation power comes when it

is interconnected with many other neurons. The connection between any two neurons

is associated with a weight (w).

Feed-forward Neural Nets (FF-ANN): The way where neurons are inter-

connected and the data �ow inside the network exerts a great in�uence on the network

properties. Inside a feed-forward network, neurons are arranged into layers, where the

�rst layer is called the input layer. The number of units (neurons) inside this layer

is always equal to the input of the network. The last layer is obviously called output

layer, where the network output limits the number of its neurons. When there are

no other layers between input and output layers the network can be called a simple

perceptron, otherwise it is called Multi-Layer Perceptron (MLP). Any layer between

those two fundamental layers is called hidden layer - there is no obligation on the

number of neurons used inside of it. The number of layers in a feed-forward neural

network is counted by the number of calculation layers which eliminates the input

layer. The input layer does not do any calculations - it just pushes forward the data

through the network.

The network architecture meant to specify the number of nodes used inside a

hidden layer, showing how many hidden layer are recuired but also the connection type
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Figure 1.6 � Example of multiple layer feed-forward neural network with data �ow
direction.

between those layers and nodes. For all feed-forward networks, there is no feedback or

interconnection allowed. Every neuron in layer l is only allowed to send information

to a neuron inside layer l + 1. Figure 1.6 shows the architecture conventions of a

feed-forward network. As shown in the �gure beside each layer l (where 1 ≤ l ≤ L

and L being the number of the output layer) there is a connection from a node outside

the layers called bias. In e�ect, a bias value allows shifting the activation function to

the left or right, which may be critical for successful learning.

Equations 1.1 describes the main implementation of feed-forward MLPs. It should

be noted that most learning algorithms use the additional class of weights (bias).

The biases are values that are added during the calculation of the net input to the

activation function. The bias is a constant value and usually equal to 1. As it is

a constant value, it increases the capacity of a neural network to solve classi�cation

problems allowing the shift/o�set of the separation line between classes [17, 50].

As a fact, neural networks cannot be prede�ned - they have to go through a

learning process so they can be used. Depending on the learning algorithm used to
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train them, they can learn either very fast or very slow. The performance of the

learning process for a given architecture can depend on multiple factors [51]:

� The learning algorithm.

� The data quality used to train the network. The learning data has to be chosen

very carefully, it has to include the most information possible with least number

of inputs.

� The con�guration parameters.

1.2.3 Learning Algorithms

ANN is a powerful calculation tool. This power does not come from programing but

from a learning process. Similar to the human brain, ANN needs to be trained and

adapted to a speci�c task. Through the learning phase, the ANN adapts its transfer

function to deliver the desired output. Depending on the application, usually one

of two major learning types is used to get the expected output from the network -

supervised and unsupervised learning [18].

� Unsupervised learning: Those algorithm are used when no speci�c output is

requested of the network, instead the system detects and categorizes persistent

features without any feedback from the environment. This type of learning is

used for data clustering, feature extraction and similarity detection.

� Supervised learning: Used when the user knows exactly what response has to be

associated to each pattern used during the learning phase. During the learning,

it is easy to de�ne the error metrics. This output prede�nition gives the oppor-

tunity to measure the network performance. The di�erence between the desired

output and the calculated one can be used to correct the network behavior in

order to decrease this di�erence (usually called error).

The learning process is usually a repetitive calculation that keeps trying to get a better

mapping between the input and the output of the neural network. As the supervised

learning usually has a good performance for pattern classi�cation [21], it will get the

attention in this subsection. When using the supervised learning, the error between
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Figure 1.7 � Feedback learning process.

the prede�ned and the calculated output can be used to modify the network transfer

function in order to minimize its value (Figure 1.7).

The back-propagation (BP) Algorithm:

All of the learning algorithms work in order to reduce the networks error. The BP

uses the method of gradient descent looking for the minimum error function in weight

space. The BP is considered a supervised learning with error correction methodology

(corrective learning). As this algorithm is based on the gradient of error function

at each iteration step, the activation function must be continuous and di�erentiable.

This is one of the conditions to use back-propagation algorithm. One of the drawbacks

of using the error gradient function to calculate the error is being trapped in a local

minima and never getting the global minima (Figure 1.8). As the BP algorithm

was introduced in the early Eighties, many researchers were engaged to enhance its

performance and minimize the disadvantages [18�20, 52]. Due to its wide range of

application, the BP is still the most common learning algorithm for feed-forward

neural networks [17].

23



CHAPTER 1

Figure 1.8 � Learning with back-propagation algorithm.

The BP algorithm is based on the Gradient Descent. The Gradient Descent

method guarantees that the error will decrease. A repetitive weight adaption takes

place in a manner that will decrease with a condition that 4w (the weight change)

is set equal to −η ∂E(w)
∂w

and η is small enough (η > 0). η is called the step-size or

learning rate. The value of this learning rate can be �x or chosen optimally for each

step. In this case it is called steepest descent method. The di�culty that faces the

Gradient Descent to be applied to multilayer networks is the calculation of the error

function (E(w)) for each layer other than the output layer. The back-propagation

algorithm applied to multiple layer feed-forward network (Algorithm 1.1).
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Algorithme 1.1 Back-propagation algorithm steps.
BP algorithm steps for network with only one hidden layer:

1. Random weight initialization for all layer wij = rand(a, b). Where a, b are two
random numbers.

2. Feed-Forward computations:

(a) Ij =
n∑

i=0

wijxi

(b) oj = f (Ij) where f is the activation function.

(c) nk =
m∑
j=0

wjkoj

(d) yk = f (nk)

3. ErrorCalculations:

(a) Partial derivative for output layer:

δk = f ′(nk)(yk − tk) where tkis the desired output for neuron k
∂E
∂w2

jk
= δkoj

(b) Partial derivative for hidden layer:

δj = f ′(oj)(
K∑

k=0

wjkδk)

∂E
∂w1

ij
= δjxi

4. Weight changes:

wt+1 = wt + η∇E(wt)

5. Repeat step number 2 until getting error get an accepted value.

25



CHAPTER 1

1.2.4 Data Pre-Processing

As it has been often evaluated, during both training and test, the ANN exhibits

poor performances when the input data are periodic with zero mean values [50]. The

same conclusion can be made for redundant data and very large input vectors as well.

Usually ANN weak performances are due to the complexity, redundancy, periodicity

or the dimension of input data. To eliminate these drawbacks the input data has to

be transformed into a new set of data capable of extracting the maximum amount

of information out of it. This data transformation is known as the pre-processing

phase. This includes cleaning, normalization, transformation, feature extraction and

selection, etc. The output of the data pre-processing is the �nal training set that

enters the neural network (Figure 1.9).

Figure 1.9 � Pre-processing for arti�cial neural network.

Noise elimination can be one of the most di�cult problems while preparing the

input data. Usually removing instances with excessive numbers of null feature values

can be the �rst thing to do. The dimension of the input data vector have a signi�cant

factor on the convergence time and the problem complexity, which make dimension

reduction for large input vector an important step during the preprocessing. Thus

some of the most fundamentals of preprocessing steps will be presented [53].

Normalization [24]: This step means to scale down the di�erence between the

maximum and minimum values. This helps to avoid being trapped into the saturation

area of an activation function. The most two common methods for this step are:

� min-max normalization:v = v′−min′

max′−min′ (max−min) +min

� z-score normalization: v = v′−mean
standev
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Where v is the new value, v′ old value, min′,max′ are the old minimum and maximum

value of data,min,max are the new ones, standev is the standard deviation andmean

is the mean value.

Missing feature values : This problem is not avoidable, incomplete date is part

of the real world data. This information can be missing because it is unknown or

lost. Many methods can be found for handling this problem [54]: Method of ignoring

instance with unknown feature, concept of the most common feature value, regression

or classi�cation methods, etc.

Dimension reduction [50]: When the input dimension vector is very large, it leads

to a large number of weight coe�cient lists inside the neural network. As a result,

a long learning time could occur. Therefore a variety of data compression methods

exists. In every compression technique we have to lose data. The user has to make

sure to pick up the type that can match his application and minimize data loss. In

practice, for classi�cation problems, we often �nd that beyond a certain point, adding

new features could decrease the overall performance of the learning process. One

of the important roles of pre-processing in many applications is to reduce the data

dimensionality before using it to train a neural network.

1.2.5 Application Domain Overview

The neural networks have a very vast application domain. Over the last few years

they have seen an explosion of interest and are being successfully applied in diverse

areas as medicine, engineering, geology, biology, etc. They are used in a wide variety

of applications where statical methods are traditionally employed. In this thesis, we

will focus on the capability of the neural network to classify data. Data classi�cation

and recognition is very common in the ANN application, especially when the data

relationship is unknown. Electrical machine fault detection, text classi�cation, sig-

nature recognition, stock market performance, rainfall prediction and many more are

common applications domain for the ANN. The neural network capabilities can be

resumed in several points: (i) capability of mapping - they can map input patterns to

their corresponding output pattern. (ii) identi�cation of unknown objects. Because

they learn by example, they have a capability to generalize. This capability is a�ected

by the training sets and the number of iterations. With more example sets the neural
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network knowledge and generalization increase. And (iii) ANNs are robust systems

and fault tolerant. They can work with very noisy patterns and even incomplete ones.

ANN for data classi�cation

It is known that most of the ANN architectures and learning algorithms can be used

to classify data. The data classi�cation is an operation which puts labels for each

input data that has common features. The ANN can perform this task by learning a

discriminant function which can separate the di�erent classes. Figure 1.10 shows the

example of a two dimensional space problem, where there are only �lled and un�lled

dots. Figure 1.10b shows one straight line that separates the two types of dots, this

can be called a linearly separable space, where the neural discriminant function is

linear. In this case, the neural network can learn the discriminant function with only

one neuron inside the hidden layer. On the other hand, Figure 1.10a is the non-linear

separable spaces, where the discriminant function is more complicated and thus needs

more neurons for the hidden layer.

In every �eld and domain, the input of the neural network must be adapted and

prepared in the manner that increases the performance and the ability of the network

to learn. An important procedure before using the machine learning in general is

the data preparation. This phase usually helps to simplify the discriminant function,

decreasing the neurons' number needed in the hidden layer and reducing the learning

time.

(a) Non linearly separable. (b) Linearly separable.

Figure 1.10 � Separability of the di�erent spaces.
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Multiple networks

The term multiple arti�cial neural networks is used for strongly separated architec-

tures [55, 56]. Each of the networks works independently on its own domain. The

multiple ANNs are used in a way that divides the input vector into several smaller

input vector depending on the type of data. Then each of the small input vectors

enters a dedicated ANN. After that, a decision network regroups all of the outputs

out of the small networks and make a decision based on a previous training. This

make the multiple ANNs works with a large number of neurons in the �rst place then

uses the output of these networks into one �nal network to generate the �nal decision.

1.2.6 Summary

This section can be concluded by saying that ANNs have a very large application do-

main. They can be applied for signature recognition, data mining, data classi�cation,

etc. ANNs have a lot of con�gurable parameters, especially with the feed-forward ar-

chitecture and the back-propagation learning algorithm. Also all data used as input

has to be pre-processed and prepared in order to be able to deliver the maximum

amount of information to the ANN. They have been used for electrical machine diag-

nosis as a supervisor. In this thesis, they will be the only tool for the faults diagnosis

and analysis. The feed-forward architecture as well as the back-propagation learning

algorithm are among the mostly used architectures and algorithms.
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1.3 Discrete Event System Speci�cation Formalism

The Discrete event system speci�cation (DEVS) is a formalism introduced by Zeigler

in 1976 [14] and cached the researchers attention since then [57�60]. It describes

discrete-event systems in a modular and hierarchical way. A system is considered

modular when it has input/output ports permitting interaction with the external en-

vironment. The DEVS models are seen as black boxes that send and receive messages

from their input/output ports. The formalism distinguishes between the simulation

and modeling approaches. The DEVS modeling approach puts in evidence the con-

cepts of modularity and hierarchy by o�ering two types of models: atomic models and

coupled models. On the other hand, the simulation tree is generated automatically

for the DEVS models [61]. The next subsections will describe with more detail the

modeling and simulation approaches.

1.3.1 DEVS Modeling

The DEVS formalism de�nes two groups of models: atomic models and coupled mod-

els. The dynamic behavior(s) of a system is represented with atomic models. The

structure of the system is speci�ed using a coupled model. The coupled models are

composed of a group of sub-models (atomic and/or coupled) that are interconnected

in a manner to deliver the global behavior of a system.

The atomic model

The DEVS formalism de�nes an atomic model in a mathematical way based on a

set of input/output values and ports, two functions de�ne the system behavior while

sending/receiving messages and a set of state variables. According to the DEVS

formalism "classic with ports", in the atomic models: every port has only one value

associated to it. The atomic model (AM) can be de�ned by the following structure:

AM =< X, Y, S, δext, δint, λ, ta >

Where:

� X = {(p, v)| p ε in_ports, v ε Xp} - the set of inputs ports and values.
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� Y = {(p, v)| p ε out_ports, v ε Yp} - the set of output ports and values.

� S is the set of state variables.

� δint : S → S - the internal transition function.

� δext : Q×X → S - the external transition function where,

� Q = {(s, e) | s ε S, 0 ≤ e ≤ ta(s)} - the set of states.

� e is the time elapsed since the last transition.

� λ : S → Y - the output function.

� ta : S → R+
0,+∞- the lifetime of the state S , taε [0,∞[.

There are two types of events for an atomic model: external events and internal

events. The external events coming from other models, trigger the external transition

function and update the system lifetime and state. The internal events correspond to

an activation of the internal transition function which updates the model state and

lifetime. Directly after that, the output function is executed to generate an output

through the output ports.

Figure 1.11 � The DEVS atomic model in action.

Figure 1.11 shows the atomic model in action. At any times, the atomic model

has a current state s. In the case of no external event occurs, the atomic model will

stay in the same state s until the end of the state lifetime. Once the lifetime time

elapses (e = ta(s)) the output function as well as the internal transition functions are

activated and a new lifetime is calculated for the updated state s. In another scenario,

when an external event occurs before the end of the model lifetime (when e < ta(s))
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Figure 1.12 � Atomic model state trajectory.

the external transition function is activated. This transition function updates the

system state from state s to s′ and recalculates a dedicated new lifetime (ta(s′)).

If the system lifetime is equal to in�nity, then the system stays in the same state

s forever without any changes until it receives an external event (in this case the

system is passive). On the other hand, if the lifetime is equal to zero, the model will

be activated immediately and will execute the internal transition function.

The previous behavior description of the DEVS formalism can be explained in

detail with Figure 1.12. In this �gure, the external events occur at times t1 and

t3 representing the input trajectory X as X1 and X2. On the other hand, internal

events take place at times t2 and t4. The system state is shown by the trajectory

s. It is clear that for every internal or external event the system state changes. The

variable e shown as a saw-tooth trajectory represents the time �ow by a counter reset

to zero each time an event occurs. The output trajectory Y is the result of the output

function execution just after the internal transition function.

The coupled model

The coupled model is the proof of the DEVS hierarchical concept. The coupled

model consists of a set of sub-models and their couplings. The sub-models can be

32



CHAPTER 1

either atomic or coupled models. The coupled model's behavior is de�ned by the

behavior of its atomic components and the relation between them. Coupling between

these sub-models can be one of three relations (Figure 1.13):

� External input coupling (EIC): for coupling between the input ports of the cou-

pled model and the input of its sub-models.

� External output coupling (EOC): for coupling between the output ports of the

sub-model and the output ports of the coupled model.

� Internal coupling (IC): for coupling between outputs and inputs of the sub-

models.

Figure 1.13 � Couplings in coupled models.

Figure 1.13 shows an example of a coupled model composed of two components. These

two components can be either coupled or atomic models. This model has one input

and one output port connected with the external input coupling and the external

output coupling respectively. Any connection between sub-models A and B (Figure

1.13), are considered as internal coupling. Any coupled model can be de�ned by this

structure:

CM =

< X, Y,D, {Mi}, {Ii}, {Zi,j}, select >
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Where:

� X the set of inputs,

� Y the set of outputs,

� D the set of sub-components references (names),

� {Mi} the set sub-models where for each i εD, Mi can be either an atomic or a

coupled model,

� {Ii} the set of component in�uences of i for all iεD ∪ {MCM},

� Zi,j the i-to-j output translation function, Where:

� Zself,j : Xself → Xj the external input coupling function (EIC),

� Zi,self : Yj → Yself the external output coupling function (EOC),

� Zi,j : Yi → Xj the internal coupling function (IC),

� select : 2D → D,

� select chooses a unique component from any non-empty subset E of D :

* select(E) ε E. The subset E corresponds to the set of all components

having a state of transition simultaneously.

With both detailed descriptions of the atomic and the coupled models, the simula-

tion algorithm bene�ts of the hierarchical DEVS structure to establish an automatic

simulation.

1.3.2 DEVS Simulation

One of the most important DEVS properties is that it can automatically generate

a dedicated simulator for each model. DEVS distinguishes between the modeling

and the simulation in the manner that any DEVS model can be simulated with one

generic simulator kernel. Each atomic model is associated with a simulator in charge

of managing the model's behavior. In the same manner, every coupled model is

associated with a coordinator in charge of the sub-model's time synchronization. The
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(a) Computer coupled model. (b) DEVS simulation tree for computer model.

Figure 1.14 � Example of modeling and simulation of DEVS models.

global system can be directed by a special coordinator called the Root. Figure 1.14a

shows a simple example of a personal computer modeling approach that will be used

to explain the DEVS hierarchy (Figure 1.14b).

The �computer� is the main coupled model that contains all other components.

As this is a coupled model, it will be associated with a coordinator. At the same time

as it is the main coupled model the root-coordinator will be in control of it as shown in

Figure 1.14b. It is clear that for each atomic model there is an associated simulator as

shown for �CPU� (computer processor), �RQ� (ready queue for instruction execution)

and the �Screen model�. The coupled model PC is associated to a coordinator too.

1.3.3 DEVSimPy Environment

DEVSimPy [15] is an Open Source project (under GPL V.3 license) supported by the

SPE (Science Pour l'Environement) team of the University of Corsica Pasquale Paoli.

This aim is to provide a GUI for the modeling and simulation of PyDEVS [62] models.

PyDEVS is an Application Programming Interface (API) allowing the implementation

of the DEVS formalism in Python language. Python is known as an interpreted, very

high-level, object-oriented programming language widely used to quickly implement

algorithms without focusing on code debugging [63]. The DEVSimPy environment

has been developed in Python with the wxPython [64] graphical library without strong

dependences other than the Scipy [65] and the Numpy [66] scienti�c python libraries.

The basic idea behind DEVSimPy is to wrap the PyDEVS API with a GUI allowing

for signi�cant simpli�cation of handling PyDEVS models (like the coupling between
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Figure 1.15 � DEVSimPy general interface.

models or their storage).

Figure 1.15 shows the interface of the DEVSimPy environment into three di�erent

zones. Zone 1 represents a tool-bar icons and menus that helps the users to create, edit,

save, handle and simulate the models diagram shown in zone 2. The models diagram

is a graphical representation of the DEVS models and the interconnection between

them. The models shown in the simulation diagram in �gure 1.15 are an example

of a sinusoidal signal generator (SinGen_0 ) and an oscilloscope (QuickScope_1) to

visualize the output of the SinGen_0. This diagram is considered as coupled DEVS

model that contains all the DEVS design created by the user. DEVSimPy is based

on the use of dynamic libraries composed of atomic (�les extension .amd) or coupled

DEVS models (�le extension .cmd). A list of the di�erent libraries is shown in zone 3

of the DEVSimPy general interface. The libraries can dragged and dropped from the

zone 3 to zone 2 when modeling a system. Every atomic model in DEVSimPy has

a dedicated properties panel (Figure 1.16) where some con�gurations can be made.

The properties appear when an atomic model is double clicked. Figure 1.16 shows

the SinGen_0 con�guration panel where we can changed the output frequency (f),

amplitude (a), phase (phi), etc. After con�guring all models, the user can validate and

simulate this modeling by clicking the validation and simulation button in zone 1 of

Figure 1.15. DEVSimPy as it is implemented in Python programming language o�ers
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Figure 1.16 � Atomic model properties panel.

Figure 1.17 � DEVSimPy plug-in manager.

a "simulation suspend" option where the user can modify at runtime some models

con�guration and resumes the simulation. Figure 1.15 shows the simulator panel

where the user can suspend or stop the simulation. There is also a more settings option

where the user can choose between di�erent simulator architecture and behavior.

In the computer language, a plug-in is an addition component to an existing soft-

ware application that adds new features or enables customizations. DEVSimPy has

adapted this feature to enable third-party developers to add abilities to the software.

The plug-ins use services provided by DEVSimPy to register themselves and exchange

data with the plug-in manager. In this way, DEVSimPy is an open ground for devel-

opers and researchers to implement new approaches for the DEVS formalism and its
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applications using two types of plug-ins: (i) general, (ii) local plug-ins.

The DEVSimPy local plug-in is an addition component to an atomic model that

is able to override the basic behavior of the model. The QuickScope is an essential

atomic models used to display data, where the double click event is overridden in order

to show a panel with the curves drawn (Plotting QuickScope_1 in Figure 1.15). In

fact the double click shows the properties panel by default, but the QuickScope model

just overrides that. By the same token a Dendrogram model is also implemented in

order to deliver a data analysis and show a statistical tree view which will be explained

in more details later in Chapter 4.

Also DEVSimPy o�ers the possibility to implement general plug-ins which are able

to change the behavior of all the atomic models present in the DEVSimPy diagram.

Any general plug-in can be managed, con�gured and activated/disactivated from

the plug-in manager shown in �gure 1.17. A very useful plug-in that can be found

by default in the DEVSimPy environment is Verbose, where it o�er a step by step

simulation showing every internal and external transition function for every single

DEVS model.

1.3.4 Summary

The DEVS formalism is capable of separating the modeling and simulation approaches

of a systems. In that way, each approach work separately. This separation helps the

developer to enhance separately each concept without taking care of the other side.

The arti�cial neural network can be implemented using DEVS, getting a modeling

�exibility and the ability to be extendable. On the simulation side, DEVS formalism

o�ers a hierarchical simulation tree that can be a good platform to �nd a new imple-

mentation of a comparative and concurrent simulation algorithm. DEVSimPy is an

environment that o�ers a graphical user interface for model creation and simulation.

It is a collaborative environment that helps users and developers to share libraries

and implemented components and plug-ins. The use of DEVS formalism inside DE-

VSimPy environment is the key that will help to redesign the neural network and the

integration of a comparative and concurrent simulation concept.
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1.4 Comparative and Concurrent Simulation (CCS)

1.4.1 CCS Concepts

The Comparative and Concurrent Simulation (CCS) is a concept that allows the

concurrent simulation between several experiences [26]. Typically, the concurrent

experiments are due to multiple executions of the same program (with di�erent pa-

rameters), or execution of di�erent instructions within the same program. This leads

us to classify the CCS into two modes: di�erent data paths and di�erent data val-

ues. Figure 1.18 shows four execution steps as the main experiment aligned with three

(a) Individual experiments. (b) Grouped commun instructions.

Figure 1.18 � General example of a comparative and concurrent simulations.

other competitive experiments, two with di�erent data values and one with a di�erent

execution path.

In �gure 1.18a, each experiment executes all the instructions individually. It is a

common way to simulate di�erent experiments with di�erent paths or data. The �rst

instruction is redundantly executed with the same values for each experiment. On the

other hand, in �gure 1.18b, all experiments start from the one and unique instruction

simulated only once and for all. One of the advantages of the DEVS-based CCS is

the common instruction execution for multiple experiments.

Experiments with the same simulation path are special as they execute the same

instructions only with di�erent values. The power of the CCS exists due to several

experiences simulated implicitly through one main simulation. The CCS begins with a
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reference simulation (R-simulation) that may be the origin of all branched simulations.

The branched simulations can be called concurrent simulations (C-simulations). In

all manners, any simulation handles data through a path of instructions.

The work presented in this thesis will be more interested in a single path concurrent

approach with di�erent data values. The interest is justi�ed by the fact that FF-

ANN simulation has only one execution path with di�erent con�gurations. During

the simulation, the data has to follow the same model execution in order to reach

the target. One of the bene�ts of the CCS appears when the user loses the interest

to continue simulating an experiment, he can terminate it at any time. To realize

this, each experiment has to have a unique key that makes it distinct from any other

one. This key is called the experiment-signature or the sub-signature. The signature

notation will be widely used in this work in order to accomplish and realize a new

DEVS-based CCS approach.

1.4.2 Example on Digitals Circuits

Figure 1.19 illustrates the concurrent faults simulation on a circuit with two OR logic

gates. Considering the following situation where: the input signal E has the activity

0→ 1 and the signal F has the activity 1→ 0. These activities ensure the evolution

of the reference gate A.

Figure 1.19 � Logic gate fault propagation e�ect.

The two faults E0(stuck in 0) and F 1(stuck in 1) are the reason for the two faulty

gates A' and A� respectively (Figure 1.19a). The reference simulation starts at the

gate A and propagates to gate B. The two faults E0 and F 1 propagates and involving
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the wrong gates B' and B�. Also activity 0→ 1 of the input G can be the cause of a

new fault called G0 where the input G is stuck in 0. This fault is the origin of a new

faulty gate called B�' (Figure 1.19b). When the simulation ends (Figure 1.19c), as

the output values of the gates B' and B� are di�erent from the reference simulation

B, the faults E0 and F 1 are detected. On the other hand, as the output values of

the gates B� ' and B are the same, the fault G0 is not detected. This example shows

the divergence of the three faulty experiments (A',B'), (A�,B�) and (A,B� ') form the

reference experiment (A,B).

1.4.3 Simulation Signature

The CCS is an algorithm to allow multiple simulations to be executed at the same

time. It is important to note that it is not made for distributed systems or parallel

computing. It is an algorithm to enable the ability to compare and execute multiple

simulations at a given time step. Figure 1.20 shows a general example of a CCS

Figure 1.20 � General example of comparative et concurrent simulation.

where the main experiment is represented as R (reference simulation) and concurrent

experiments are presented as Cn. An example of a C-simulation that follows the same

path as the reference simulation but with di�erent data values is C1, while C2, C3

and C4 follow di�erent paths than the original simulation R. At the 6th time step

that �ve di�erent simulations are executed (R,C1,C2,C3,C4). At this time step, all

simulations have to be executed and then compared if necessary. Each simulation is
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identi�ed by an ID that propagates with the simulation messages or steps. This ID

unique for every simulation, and is a part of a simulation signature. At each step of

the simulation, the signature can be changed. It is a very important element that

helps to trace simulation changes. A signature can contains elements such as:

� List of executed elements inside a simulation.

� List of changes the elements had during the last executions.

� The time of a new simulation branching (as for the R simulation at step 3).

� The simulations path.

These values are quali�ed as the signature of one experiment. The signature is the

data value or con�gurations that make an experiment unique. It can be accessed

with two di�erent permission levels. Classes and instructions that need to read the

signature con�guration parameters can gain a read-only permission. Read-write per-

missions are given to classes and instructions that modify data and/or the system

con�gurations. The signature of a simulation can be changed at any step, but it al-

ways remains unique and informative. The signature concept is an important key in

this thesis, as it will be used for the learning phase of neural networks and compares

their performances and their error convergence. Chapter 4 will explain the adoption

of this concept to be implemented inside the DEVS formalism and applied and tested

for ANNs for electrical machine fault detection.

1.4.4 CCS Properties and Advantages

The CCS is a concurrent algorithm based on the discrete event time domain. It is

important to note that the �nal results of the CCS are proportionally dependent on

the number of experiments simulated. The CCS �rst came to place to remove the

serial simulation headaches in the manual work needed by the user to simulate and

compare di�erent simulations of a system with di�erent con�gurations. The fact that

the user had to give a lot of attention to the simulations, initial simulations received

a lot of attention compared to later ones. At times, this led to neglecting some

simulations. The CCS came as a �exible and general software solution for multiple

concurrent simulations. Several points can be listed to show the bene�ts of the CCS:
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(i) reducing the simulation time by a signi�cant factor due to the compression of

multiple simulations into one general simulation and avoiding manual con�guration.

(ii) based on the concurrency nature, the removal or addition of simulation can be

done during the execution time. This is allowed due to the unique signature of each

simulation. At any time or any step of the execution, each simulation must be able to

be identi�ed by its unique ID. This allowed for the concurrency and the comparison

to take place.

The CCS can be confused with the Experimental Frame (EF). An EF can be

considered as a system that should interact with a model to produce the data of

interest under speci�c conditions [67,68]. The EF only speci�es multiple scenarios to

the model of interest to produce the desired output. Not to forget some research work

are done for distributed and parallel simulations and how can an EF be used [69]. On

the other hand the main goal of the CCS is to compare di�erent simulations at certain

time points and eliminate any unnecessary execution. One of the big advantages of

the CCS over the EF is that common simulation steps can be grouped together to

illuminate any redundant execution. There is also some common points between the

CCS and the EF: the simulation signature of the CCS can be relatively similar to the

EF system structure, where both in�uence the models behaviors depending on the

parameters.

Never to forget that the CCS is mainly oriented to compare di�erent system be-

havior and to eliminate or add di�erent simulations depending on the user needs. On

the other hand the EF is a system that generates di�erent conditions on a model and

see the interactions of the model with the system surrounding it.

1.4.5 DEVS/CCS Related Works

One of the �rst applications of the CCS is the Concurrent Fault Simulation (CFS).

The main obstacle to a wide use of this concept is the high complexity to integrate the

concurrent simulation algorithms in a simulation kernel. In [70] the author introduces

BFS-DEVS, a general DEVS-based formalism for Behavioral Fault Simulation (BFS).

The BFS-DEVS a DEVS extension that integrates the CFS algorithms in its kernel

and allowing the modeler to specify the faulty behavior of a system using a new

faulty transition function. Figure 1.21a extracted from [26] illustrates the relationship
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between the CCS simulation kernel and the applications. The kernel implies the use

Figure 1.21 � The BFS-DEVS simulation kernel positioning.

of a mandatory modeling interface for a given application. Figure 1.21b shows that

an application will be represented by a network of BFS-DEVS components (atomic

and/or coupled model) composing the library. The network is directly simulated by

the modi�ed DEVS simulation kernel (BFS-DEVS kernel).

BFS-DEVS speci�cations are very similar with the original DEVS ones. The

di�erence is that any time a faulty event occurs, a new faulty state is calculated by a

faulty external transition function (introduced by the BFS-DEVS modeling). If the

healthy event occurs, then the new healthy state is calculated by the healthy external

transition function. We note that BFS-DEVS models coupling is not changed. But if

the fault model contains a structural fault type, this coupling becomes di�erent from

the original DEVS coupling. Moreover, we can prove that the property of closure

under coupling allowing the hierarchical composition of model is preserved.

The general CFS approach has been applied to digital systems described in the

VHDL language using a BFS-DEVS simulator prototype and a library of BFS-DEVS

VHDL components. This implementation derives from a simulation kernel conform

to Zeigler's speci�cations. The whole prototype is composed by about 8000 lines of

Python code. In order to show the validity the approach, a sub-set of the VHDL

ITC'99 benchmarks [71] has been chosen.

1.4.6 Summary

The CCS is a concept that gives the user the option to simulate multiple simulations

at the same time with only one processor. It can handle di�erent simulation paths and
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values too. This concept, allows a better supervision and analysis for all experiments

within a single simulation execution. The CCS is applied in di�erent domains like

concurrent fault simulation and was also introduced to the DEVS formalism with a

creation of a new simulation kernel (BFS-DEVS simulation kernel). At the mean

time, modelers still need a generic concurrent behavior that can be applied without

the change of the simulation kernel.
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1.5 Conclusion

The diagnosis of electrical machines has been an important research subject for more

than a century. Electrical faults are considered the most common ones. In this

work, electrical faults, especially inter-turn short circuit in both stator and rotor

sides are investigated. In the last years, more research works were focused on AI in

order to improve performances of the traditional model-based methods. The arti�cial

neural networks have a very large application domain. The ANNs have a lot of

con�gurable parameters, especially with the feed-forward architecture and the back-

propagation learning algorithm. They have been used for electrical machine diagnosis

as a system supervisor, a further step would be to use the ANNs as the only tool

for the faults diagnosis and analysis. The DEVS formalism is capable of separating

the modeling and the simulation approaches. In this way both sides can be modi�ed

separately and transparently to each other. DEVSimPy is a DEVS environment that

o�ers a graphical user interface for the modeling and the simulation. It also o�ers

a plug-in manager capable of modifying the simulation or the modeling behavior.

The comparative and concurrent simulation is a concept that o�ers the simulation of

multiple experiments implicitly within a single simulation. It has been used to in a

concurrent faults simulation of the digital circuits and also integrated with the DEVS

formalism creating a new simulation kernel called the BFS-DEVS.
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DEVS-Based ANN

2.1 Introduction

Arti�cial neural network has been thought to be a black box capable of resolving

problems that are hardly written in mathematical forms. Therefore, the con�gura-

tion of this revolutionary computing remains a hard task to be generalized since it

depends on the application complexity. On the other side, DEVS formalism gives the

opportunity to rede�ne a model in a way that allows interaction with the structure

and/or the behavior of the model with an automatic simulation. This can be done

due to the hierarchical and modular aspect of the DEVS formalism using di�erent

model types and an automatic simulation algorithm.

The nature of the feed-forward ANN architecture is based on discrete messaging

(events) between neural layers or individual neurons. In this way, modeling ANN in a

discrete event formalism is strongly considered. Many DEVS systems integrates the

usage of the ANN, but almost none of them redesigned the whole neural architecture

inside the formalism [72]. Most often neural network is presented into the DEVS

hybrid systems as one atomic model that can interact with di�erent models. The

di�erence in this work is that neural network design will be fragmented into several

atomic models inside the DEVS formalism to create an ANN library.

This chapter is organized as follows: (i) mapping between ANN and DEVS and a

comparison between three di�erent levels of description, (ii) the modeling of the chosen

level inside DEVS formalism, (iii) the simulation process and how the learning process

is controlled. Lastly, is the creation of ANN library inside DEVSimPy environment.
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2.2 ANN/DEVS Mapping Study

A feed-forward neural network is composed of several layers, inside each layer there are

neurons. Neural networks can be seen from three di�erent levels of description. The

�rst shows the ANN as one black box with inputs and outputs. The second as several

neural layers connected to each other but the layers are still black boxes. The third

view, goes deeper inside the smallest neural unit, as it shows all connections between

every neuron in the network. This study will show the advantages/disadvantages for

each level of description.

In the last chapter, �gure 1.6 is an example of multiple layered feed-forward ANN

that shows connections between all neurons and the data propagation from the input

to the output of the network. Identifying all the basic elements of the neural network

is the �rst step of the modeling. Another important step is the implementation of

the learning algorithms, which will be discussed later in this chapter. The DEVS

model design could play a very important role in the ANN �exibility and simulation

speed, which makes the modeling very important to get the best performance of the

simulation.

The mapping study begins with the identi�cation of the basic elements for a feed-

forward arti�cial neural network calculations:

� Input data list: The input of the neural network, is represented with a list of

non-calculations neurons. It is recommended to process the data and adapt it

to match the recommendations for ANN input (Section 1.2.4).

� Output data list: The output of the neural network. It is represented with

calculation neurons.

� Neurons: Can be considered as the smallest unit of a neural network. Cal-

culations neurons are composed of a transfer function and an activation

function. Non-calculation neurons are just data transporters from one side to

another.

� Neural connections: Can be considered as the message transporter between

two neurons. For each connection there is a coe�cient that insures the strength

of this connection between two speci�c neurons.
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These four elements are required for calculations, but as previously mentioned, neural

networks need to be trained in order to be used. The next subsection will propose

di�erent modeling levels approaches for the DEVS-based ANN models.

2.2.1 Neuron Architecture Level

At this level, the basic atomic model of the network will be one neuron. Figure

2.1 shows the modeling design that represent one neuron as an atomic model (AM).

There are two di�erent types of neurons. For the input layer (I) all neurons are non-

calculation neurons. This type of neurons do not make any calculations (no transfer

nor activation function) as it is only responsible for sending input data to the next

layer (hidden layer).

Figure 2.1 � Design of one neuron modeling level.

The second type of neurons is the calculation neurons, which can be found inside

the hidden (H) and output (O) layers. Each model has inputs equal to the number

of neurons inside the previous layer. After it receives all input messages, it multi-

plies every input with the corresponding weight and the sum is calculated (transfer

function). The activation function is then computed to produce one output, which is

the output of this particular neuron. In a lager view, the DEVS atomic model will

represent the neuron model presented in the previous chapter in Figure 1.4.

Advantages of neuron architecture level:

� The graphical representation is really the highlight of this approach. Visually

(inside a GUI) the user can �nd the most detailed vision of his constructed
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network. Just by looking at the network, the number of neurons inside the

hidden layer can be noticed.

� Neuron connections can be manually controlled as each neuron is de�ned indi-

vidually, making the connection architecture more �exible.

� In some advanced work, a dynamic DEVS structure [73] can be applied to

delete or add neuron models in order to change the ANN con�guration within

the simulation run-time.

Disadvantages of neuron architecture level:

Unfortunately, there are some disadvantages to this modeling approach:

� Messaging between the models could be an issue. As each neuron model sends

an individual message to all neurons in the next layer, this can produce a very

large number of messages which can easily slow down the simulation. Addition-

ally, this design produces a very large number of messages, it sends redundant

messages as each neuron sends the exact same message to all next layer neurons.

� Parameters con�guration is one of the important steps for using an arti�cial

neural network. Con�guring the network for the learning process for this design

requires accessing each individual neural atomic model and changing the con-

�gurations one by one for each layer. This might not be very practical for any

user as the con�guration needs to be as easy and as fast as possible.

2.2.2 Layer Architecture Level

Going up one level from the neuron architecture leads to the grouping of all neurons in-

side one DEVS atomic model. Because two types of layers exist - computational/non-

computational layers - two di�erent atomic models have to be implemented (Figure

2.2). The �rst model (A1) has the same role as the non-calculation neuron models in

the previous approach, as it is responsible for forwarding the data without exercising

any calculations. The second model (A2) will inherit the functionality of the neu-

ral calculation model (present in hidden and output layers) in order to calculate the

transfer and the activation functions. That leaves us with two types of DEVS atomic
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models representing two di�erent layer types (calculation and non-calculation layers).

The Input layer is considered as the non-calculation layer (A1) and both, the hidden

layer(s) and the output layer (A2) are considered as the calculation ones.

Figure 2.2 � One atomic model per layer modeling approach.

This modeling approach will introduce several changes compared to the previous

one. First visually, as shown in Figure 2.2 the connection between layers is equal

to the number of neurons inside the layer that sends outputs. In other words, if

the hidden layer contains �ve neurons, the connections between the hidden and the

output layers will be equal to �ve.

Advantages of layer architecture level:

� Graphical representation still exists even after encapsulating the neurons models

inside one model. The number of neurons inside any layer can be shown by the

number of outputs of the same layer.

� Con�guration is much easier compared to the previous approach. Basically,

each layer has a di�erent con�guration than the others, but neurons inside the

same layer are con�gured with the same parameters, which �ts perfectly with

this modeling approach.

� Simulation time and CPU usage are reduced over the previous neuron approach.

This is due to the decrease in number of atomic modes simulated.
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Figure 2.3 � Reduced messaging approach.

Disadvantages of layer architecture level:

� At this level, the ANN has to be a fully connected network. That means, any

message received by a calculation layer will be transmitted to all neurons in the

layer.

� The large network with a lot of neurons will still need a lot of CPU usage as

each neuron sends at least one message.

2.2.3 Layer Level with Reduced Number of Messages

Inspired by the improvement that the layer architecture approach made in front of

the neuron level, a new approach can be considered. This approach is the same as

the layer approach, but with a reduced number of messages. This might increase

the performance of the simulator and reduce the amount of messages sent between

models.

Figure 2.3 shows that between neural layers, only one message is sent. This mes-

sage contains the list of inputs necessary for neural calculations. By this message

reduction, each layer sends only one message that contains all outputs. In this case,

when a layer receives a message, all neurons inside this layer get all inputs as this

con�rms a fully connected feed-forward ANN.
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Advantages:

� Faster simulation from the two previous models because the number of message

is reduced to be one, with a list of the output values.

� Con�guration has the same advantages from the layer architecture level.

Disadvantages:

� In the case of implementing the approach with a graphical user interface, there

will be no indication of the number of neurons inside any layer.

� As any layer sends only one message with a list of values, it will be even harder

than the previous approach to change the neuron interconnection as it will

remain a fully connected network. If it is not the case, the user has to change

the internal code of the layer atomic model.

2.2.4 Comparison and Selection

To be able to choose between the presented modeling approaches, some important

point has to be clari�ed. First, the amount of calculation inside either the Hidden or

the Output layer is �xed by the number of neurons inside the layer despite the number

of messages received. The transfer function can't be executed until all messages are

received, which makes the simulation's calculations only can be changed when the

number of received messages changes. With the neuron architecture level, each neuron

sends individual messages to all neuron in the successive layer. On the other hand

each neuron receives individual message from each of the previous layer. The layer

architecture level, regroups all of the individual messages into only one list to avoid

redundant messages. As shown in Figure 2.4, the individual neuron sends the same

data through multiple message, on the contrary the layer architecture sends the value

once and for all. The third proposed architecture regroups again the multiple values

and sends them in a single message in a form of a list which eliminates completely

the visual advantage o�ered by the other architectures.

From the previously described advantages and disadvantages for each of the pro-

posed architectures, the architecture that �ts ours needs is the second architecture
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Figure 2.4 � Messaging comparison between the three proposed approaches.

(layer level). The choice compromises between the performance and the visual ad-

vantages. From the visual the user can detect the number of neurons inside the layer

and their is no redundant messages.

2.2.5 Summary

The choice of modeling can really a�ect the simulation performance, �exibility and

extendibility. One of the visions adopted in this thesis is the extendibility. By ex-

tendable we mean to be able to introduce design enhancement for the simulation, and

reduce the work redundancy to import a better algorithm or design. In this manner,

the choice of arti�cial neural network modeling with DEVS formalism will rely on

a design that ensures: a visible architecture of the neural network, modularity and

capability of integrating multiple learning and optimizations algorithms.

After comparing the three proposed modeling approaches, the layer architecture

is our choice due to its low CPU usage and the good graphical representation of

the network. The next section will describe in more detail how each model will be

implemented, as well as the timing of the learning phase.
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2.3 ANN/DEVS Modeling

The main idea of this section is to show the arti�cial feed-forward neural network

with an example of back-propagation learning algorithm (Subsection 1.2.2) in a new

DEVS-based model. The �rst step is the introduction of the �rst (Input) model as

the non-calculation neural layer. This layer is in charge of forwarding the input to

the network. The implementation of the calculation layers (hidden and output) is

the second step. The last step will be the implementation of the learning algorithm.

In the same manner as the feed-forward calculation, the learning algorithms should

have the same modularity and �exibility. For the purpose of modularity, the learning

algorithm will be implemented separately from the network calculation. As a result,

there will be models for feed-forward calculations and others for learning.

2.3.1 DEVS-Based ANN Design

The arti�cial neural network is composed of two types of layers - calculation layers and

non-calculation layers. The non-calculation layer represents the Input layer in a ANN

and the calculation layer represents hidden and output layers. The number of hidden

layers can vary from one to several layers. Generally, one hidden layer is enough to

solve most non-linear problems. In this thesis, the DEVS-based ANN will be mapped

into four di�erent atomic models that will assure calculations and learning.

Figure 2.5 shows the proposed DEVS-based neural network modeling design. Fo-

cusing on the design blocks, four blocks can be found representing the ANN lay-

ers and separate training (learning) models. The Input layer is considered as the

non-calculation layer. Hidden and Output layers are the calculation layers. Error-

Generator and Delta-Weight are the two models that represent the ANN learning

phase.

As shown in Figure 2.5, a training layer can be added or removed depending on

need. The advantage gained from of this design is that the training layer is pulled out

to be separated of the three known layers. This separation means that the learning

algorithm can be replaced by changing the layer models. On the other side, with

already learned networks, the training layer can be completely removed.

To notice that in �gure 2.5 all ports with a circle are ports used only during the
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Figure 2.5 � DEVS-based neural network modeling with the feed-forward architecture
and the additional training layer.

training phase. As shown in the Figure 2.5, the connections between the training layer

and the calculation models are for learning purposes only. In that manner, when the

training layer does not exist, the calculation of the ANN will continue to function

normally and provides output without any error feedback.

As already known, feed-forward network with back-propagation learning algorithm

has to feed-forward all calculations and then back-propagate the error for learning and

weight changes. In the presented modeling (see Figure 2.5), the Input atomic model

starts to push data to the hidden layer (shown as step 1 in the �gure), then each

Hidden layer (including the Output layer) calculates the activation and transfer func-

tions. Each hidden\output layer then sends data to the next layer and sends necessary

learning data to the training layer (steps 2,3,4). The Error-Generator model starts

the back-propagation calculations by sending the error (di�erence between desired

and real output) to the Delta-Weight models (step 5). The Delta-Weight models re-

calculate the weight-list from the error values with learning algorithm. After that, the

Delta-Weight model continue to back-propagate the error and update its associated

model (steps 6,7,8). The entire cycle explained above is considered as one learning

iteration that is repeated (steps from 1 to 8) as many times as the training process

needs.
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2.3.2 Feed-Forward Calculations Model Set

Feed-forward calculations are the result of the three known layers (Input, Hidden,

and Output). Those three types of layers will be implemented in two classes of DEVS

models - non-calculation model for the Input, and calculation models for hidden and

output layers.

Non-calculation layer atomic model

The DEVS-based neural network �rst layer model is responsible for receiving inputs

patterns and pushing them forwardly to the network. In this manner, it controls

the data �ow inside the network. Bearing this responsibility, the Input layer is the

simulation manager.

There are two main goals for this model. The �rst is to receive all patterns that

will enter the neural network for all purposes (learning, testing or usage). The second

is to push the patterns sequentially to the hidden layers (pattern generator).

(a) States diagram. (b) Model design.

Figure 2.6 � The non-calculation (Input) layer DEVS atomic model.

The non-calculation layer atomic model has two input ports (Figure 2.6b) to re-

ceive two sets of input. In a learning scenario, the �rst port receives the training

patterns list and the second port receives the validation patterns list. In a normal

scenario, only the �rst port is used to receive the patterns list. On the other side, this

atomic model can have as many outputs as can be found in the received patterns.

As a DEVS atomic model, the non-calculation (Input) layer model has di�erent

states that it can transit between during the internal or external transition functions.
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By default, this atomic model is in a passive state with an in�nity state life-time

(Figure 2.6a). When a message is received during the simulation (t>0) the external

transition function changes the model state to an active state and it remains active

with a state life time equal to 1/N, where N is the number of patterns used for learning.

Figure 2.7 describes the sequence that the Input layer will follow during the sim-

ulation. At the beginning, the Input layer is a passive model, (I) and will wait to

receive patterns necessary for the simulation. Once it receives the �rst event, (II)

the external transition function model transfers the model from a passive state to an

active state. The time advance function determines, (III) based on the number of

patterns, when the next internal transition will take place. The model remains active

(as a generator) and sends each dt an output until the simulation time decided by the

user ends (IV). For the learning process, the simulation time represents the number

of iterations decided by the user.

Figure 2.7 � Block diagram for Input layer DEVS atomic model (Non-calculation layer
model).

To conclude, the Input model will have two input ports (Figure2.6b). The �rst

is to receive patterns for a normal or a learning process. The second is to receive

validation patterns that are calculated during the learning process. The patterns are

composed of lists, and each list contains the input for the neural network. The number

of outputs ports is equal to the number of values inside each input pattern. Finally,

the Input model is the manager of the simulation.
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(a) States diagram. (b) Hidden/Output model design.

Figure 2.8 � Calculation layer DEVS atomic model.

Calculation layer atomic model

The calculation layer model represents any hidden or output layer, as both layers

have the same behavior. This model remains passive at all times due to the single

responsibility to calculate the activation and the transfer functions after receiving

input messages. A calculation layer contains two main functions: the activation and

the transfer functions.

Figure 2.8b shows the calculation layer with multiple input and output ports with

two additional special ports at the end of each sending and receiving sides. The

number of input/output ports depends on the number of incoming messages and the

number of neurons inside the layer respectively. The last two ports on both sides

(sending/receiving) will be reserved for learning purposes. During the learning phase,

the model receives an updated weight list from the last port on the receiving side (port

1). By the same token the last port (port 2) sends all necessary information needed

to perform the learning algorithm. The needed information is in steps 3 and 4 in the

back-propagation algorithm (1.1) and can be summarized with the inputs/outputs of

the layer and the weight list. All information needed for learning will be stored in the

learning model set.

As an atomic model, the calculation layer will oscillate between two di�erent

states: active and passive states as shown in Figure 2.8a. The initial state is passive

and the model always waits for new data to calculate the activation/transfer function.

The model's state is transferred from passive to active when the external transition

function receives a message from any port other than port one, and the feed-forward

calculation continues (Algorithm 1.1 step 2). If the model receives a message from
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Figure 2.9 � Block diagram for calculation layer DEVS atomic model.

port one, that means it receives a weight list update (learning phase) and it remains

in the passive state.

The block diagram of this atomic model is presented in Figure 2.9. The calculation

layer model is a passive (step I) and only becomes active when it receives a message.

When the atomic model receives a message from any port other than port number

one, it veri�es if all messages have been received. If yes, the activation function is

calculated (step II) followed by the transfer function for all neurons inside this layer.

After that, all generated output will be sent through the output ports (step III).

In another scenario, when a message is received on port one, the weight list will be

changed (step IV).

The four steps explained above represent the entire calculations layer, which are

all the hidden and output layers.

2.3.3 Back-Propagation Learning Model Set

The back-propagation algorithm is a learning algorithm commonly used for feed-

forward neural networks. A description of the algorithm is presented in section 1.1.

In this subsection, the algorithm will be split into two basic models. The �rst is

the Error-Generator model and the second is Delta-Weight model. The two atomic

models will be responsible for the learning phase of the feed-forward calculations. As

a result, the modeling approach presented in this thesis splits the learning models

to ensure the separation between learning algorithms and neural calculations. Any
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(a) State diagram. (b) Error-Generator model design.

Figure 2.10 � Error-Generator DEVS atomic model

changes in the learning algorithm will not a�ect the calculation models and vice versa.

Error-Generator atomic model

As noticed from above, all models other than the Input layer are passive - meaning

they are activated only when a message is received. The Error-Generator will make

no exception, as it is a passive model. This model is the �rst to be executed among the

learning model set. It receives the real output of the neural network from the output

layer atomic model, and then it compares the real output to the desired output that

the ANN should have. In an ideal situation, the error between the real and the desired

output is zero. Unfortunately, there is always a percentage of error for each of the

outputs. The error list is sent to Delta-Weight atomic models that re-calibrate the

network for a better performance.

Figure 2.10b shows the atomic model input/output ports in detail. In fact, ports

one and two are the equivalent of the input ports of the Input layer model (see

Figure 2.6b). The �rst port receives the desired output list for the learning patterns.

Similarly, the second port receives the messages containing the desired output for the

validation patterns. With the same token as the Input model, the Error-Generator

model is initialized with patterns received from ports one and two. However, it remains

passive even after receiving all necessary patterns needed for the learning process.

Furthermore, the Error-Generator becomes active only when it receives messages

from any other port then the �rst two ports (Figure 2.10a). Only when it receives all

necessary inputs, equation 2.1 is calculated to generate the error Ek for every output

of the network, where yk is the real output and tk is the desired output for each port
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k.

Ek = tk − yk, ∀kε[0, N ] (2.1)

ETotal =
1

2
(

N∑
k=0

(Ek)
2) (2.2)

Where N is the number of neuron in the output layer.

To visualize the performance of the learning process, the combined error of all

outputs has to be tending towards zero. The ANN might not be able to learn with the

given con�guration if the error diverges from zero. This combined error is calculated

with equation 2.2. It is important to note that the individual output error is squared,

otherwise positive and negative values may cancel each other out.

When the Error-Generator becomes active, it calculates the error between desired

and real outputs, sends a message with the error list through the output function

(lambda) and then through an internal transition function it goes back to the passive

state waiting for a new message (Figure 2.10a).

The second scenario is when the model receives messages on ports one or two.

In this case, it remains in the passive state, and the external transition function

accumulates the input from both ports and increments the patterns counter by one

(N=N+1) as shown in Figure 2.10a.

In addition, the individual output error produced by the Error-Generator in the

form of a list is sent directly to a Delta-Weight model to continue the learning process.

Delta-Weight atomic model

The Delta-Weight model represents the core of the algorithm. As already noticed, the

Error-Generator only calculates the di�erence between the desired and the calculated

output, called error. The full DEVS-based ANN modeling approach presented in

Figure 2.5 shows that every calculation layer model (hidden/output) is associated

with a two way connection with a Delta-Weight model. The message sent from the

calculation layer model to the Delta-Weight contains the data needed to recalculate

the weight in order to reduce the output error of the network. On the other hand, the
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(a) Block diagram. (b) Delta-weight model
design.

Figure 2.11 � Delta-Weight DEVS atomic model.

Figure 2.12 � The DEVS state diagram of the Delta-weight DEVS atomic model.

message sent on the other direction contains the new weight list that normally should

enhance the ANN performance and reduces the error.

This model always has only four di�erent ports (Figure 2.11b). The Delta-Weight

has two input ports - the �rst receives the error list from the Error-generator, and

the second receives the rest of the information needed for the learning algorithm

necessary to recalculate the weight list from the dedicated calculation layer. Delta-

Weight atomic model sends on port 1 the newly calculated weight list to the dedicated

calculation layer, on port 2 it sends the error to the next Delta-Weight model.

The Delta-Weight model switches between two states depending on which port

received the message (Figure 2.12). The model goes through several steps shown by

the block-diagram in Figure 2.11a: (I) The model is passive and waits to receive a

new message. (II) Once a message is received, there are two pathways the model

follows, depending on the port number. (III) If the message arrives on port one,
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then it is a message received from a calculation layer that contains the necessary

information needed to recalculate a new weight list, and therefore accomplishes the

learning process. After that, the Delta-Weight model is switched to a passive state.

(IV) If another message is received on port two, then it contains the error list that

will complete all information need for weight calculations. This message could be

sent from a previous Delta-Weight or an Error-Generator model. (V) Using the back-

propagation equations (derivative of the transfer function, error, input, output), a

new weight list is calculated for each neuron inside this layer. (VI) After that, the

output function sends an output values from both ports: one and two. The �rst port

message contains the new weight list which is sent to the associated calculation layer.

The second port message contains the partial derivative error for the previous layer

and it is sent to the previous Delta-Weight model (see Figure 2.5).

64



CHAPTER 2

2.4 ANN/DEVS Implementation with DEVSimPy

Nowadays, the Graphical User Interface (GUI) is very essential, as they facilitate the

simulation or modeling approaches of any system. DEVSimPy has been chosen for the

DEVS-based ANN implementation. After the individual modeling study presented in

the previous subsections, the chosen approach is completely implemented as shown in

Figure 2.13. In fact, DEVSimPy is the environment that provides the ability to build a

neural network model library with several architecture and learning algorithms. This

library is the core of any neural network built. This subsection will show the model's

implementation as well as a simulation example with one of the �rst and basic neural

network benchmarks, the exclusive OR.

Figure 2.13 � The DEVS-based ANN with DEVSimPy.

The simulation order is shown in Figure 2.13. At �rst, the FileGenerators are

active and push messages with necessary patterns to both models: Input and Error-

Generator. The Error-Generator collects the desired output data and the Input model

collects the training and the validation data. After receiving all data from the Fi-

leGenerators, the Input model starts to push messages with the patterns in order

to begin the learning process. Hidden/Output models continue the feed-forward cal-

culation followed by the learning back-propagation with the Error-Generator and

Delta-Weight models.

On the left hand side of Figure 2.13 the libraries are shown. To create the full

DEVS-ANN scheme, we created a full ANN library (Downloadable from: http://

goo.gl/GGpoVV). This proposed library gives the possibility to extend the neural
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(a) Hidden layer DEVS
atomic model.

(b) Output layer DEVS
atomic model.

Figure 2.14 � Con�guration panels for the DEVS atomic models inside DEVSimPy.

network capabilities with an additional speci�c model. The Hidden and the Output

models are con�gurable. The con�guration is consisted of the number of neurons

inside each layer, the learning factor, the momentum factor and the activation function

(Figure 2.14 shows the con�guration of the hidden and output models respectively).

Validation

A typical example of non-linealy separable function is the XOR. This function takes

two input arguments with values in {0,1} and returns one output in {0,1}, as speci�ed

in the following table :

X1 X2 O

0 0 1
1 0 0
0 1 0
1 1 1

(a) Set for training.

X1 X2 O

0.1 0.1 1
0.9 0.1 0
0.1 0.9 0
0.9 0.9 1

(b) Set for valida-
tion.

Table 2.1 � Set of teaching vectors of XOR function.

The input patterns shown by the Table 2.1 are located in �le where the FileGen-

erator_1 and FileGenerator_3 can read (Figure 2.13). The Table 2.1b are located

where the FileGenerator_2 and the FileGenerator_4 can read (Figure 2.13). Both
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Figure 2.15 � XOR quadratic error DEVSimPy simulation results.

the FileGenerator_1 and FileGenerator_3 send the input and the validation patterns

to the Input DEVS atomic model. The FileGenerator_2 and the FileGenerator_4

send the desired output to the ErrorGenerator DEVS atomic model where the learning

and the validation errors are calculated.

The exclusive OR function problem is simulated with a standard con�guration

where one hidden layer with only two neurons, and a sigmoid transfer function. Figure

2.15 shows the quadratic error during the training phase for the learning patterns and

the validation patterns too. As shown both the training and the validation curve

converge to zero, which means that the error between the desired output and the

real output is close to zero. In the case where the learning and the validation curves

converges to zero, it means that the ANN was able to map correctly between the input

and output of the training and the validation patterns. Also Figure 2.15 appears only

when the user double clicks the Error-Generator model to visualize the error curve.

This is an example of the local atomic model plug-in that overrides the double click

event that normally shows the properties panel.

The presented work show three di�erent model categories: the �rst is the �le

generators, the second is the feed-forward calculation models set, and the third is

the the learning model set. With these three categories, a feed-forward ANN can be

built. Inside the DEVSimPy environment, all models' abilities can be extended with

plug-ins implemented on top of the atomic models. This can be used on top of the

learning model set in order to observe the learning progress.
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2.5 Conclusion

This chapter resumes the brain storming of the arti�cial neural network modeling

approach using the DEVS formalism and the implementation inside the DEVSimPy

environment. Three main designs have been proposed and compared, including the

neuron atomic model level, a layer level, and a reduced message layer level model-

ing. The layer architecture level was chosen to be implemented. This design was

presented with two �gures: - the �rst depicting the DEVS atomic models, and the

second presents the implementation inside DEVSimPy environment. This modeling

came in order to separate the feed-forward calculations and the learning process. This

separation gives the �exibility and the modularity that is necessary to the ANN to

ensure the integration of multiple learning and optimizations algorithms. In addi-

tion, DEVSimPy gives the option to add individual atomic model plug-ins, and also

global plug-ins that add functionalities and can improve the models performance, and

in�uence their behavior. The DEVS-based ANN library is validated by the simple

XOR problem using a single hidden layer model and the Back-propagation algorithm.

This integration and the DEVS-modeling of the ANN is the �rst step towards an

optimization and a more �exible ANN con�guration.
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DEVS-Based CCS

3.1 Introduction

The concurrent and comparative simulation concept has been used over the last thirty

years in several domains. Mainly, it was adopted by the fault simulation of the logic

gate level of digital circuits. However, the CCS can be applied to di�erent domains

as [26]: the air tra�c control, nuclear power plants control, graphs analysis, symbolic

simulation, etc. The CCS allows the simulation of a multiple experiments explicitly

within one simulation execution.

The core of the CCS algorithms is large enough to allow a simulation process

generically for any environment where the system models are built. However, the

relationship between the simulation core and the application domain modeling used

to be done with a speci�c modeling interface dedicated to this speci�c domain.

The advantages of the CCS can be used within the DEVS formalism that explicitly

separates the modeling and the simulation approaches. The integration of the CCS

with DEVS was developed a few years ago with a simulation core called Behavioral

Fault Simulation for DEVS (Behavioral Fault Simulation for DEVS) [16, 74]. The

BFS-DEVS is a DEVS simulation core adapted for concurrent fault simulation for

discrete event systems. This simulation core was applied and validated on digital

circuits and described in the VHDL language. To use the BFS-DEVS simulation

core, the user creates a speci�c concurrent library dedicated to the application domain

without being occupied by simulation process, due to the new BFS-DEVS kernel.

The BFS-DEVS extension caught our attention as it integrates the behavioral

fault simulation deep inside the DEVS formalism using the CCS algorithms. This
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DEVS extension proves the importance, the need and the gain of integrating the CCS

algorithms with the DEVS formalism. As DEVS became an interesting formalism,

many researchers extended the formalism and added multiple enhancements under

the name of DEVS extensions [73,75,76]. Figure 3.1, shows the new vision of adding

a concurrent behavior to a classic DEVS atomic model. The concurrent behavior

will be implemented separately from the modeling approach but with a new linking

mechanism able to link the concurrent behavior with one/multiple transition/output

function.

Figure 3.1 � Concurrent behavior liking in the DEVS atomic model.

The approach presented in this thesis is surely inspired by the BFS-DEVS, but

there are some major di�erences. First of all, in our approach, the DEVS classic

simulator core is the only simulator used. This way, the presented approach can be

applied on top of any DEVS extension. Second, the modeling approach takes into

account the two di�erent type of models (concurrent and non-concurrent). Third, the

concurrent simulations do not send messages through special ports. All concurrent

messages are sent transparently to the user and they are all controlled with one

simulation governor. This governor is responsible for adding or deleting experiments

on the �y. These three di�erences can be considered as a generalization of the BFS-

DEVS extension.

Figure 3.2 depicts the conceptual framework underlying the DEVS formalism.

Four basic objects are the main concern of the modeling and simulation combination.

(i) The real system, (ii) model, (iii) simulator, (iv) experimental frame. The real

system is the source of data, in other words: the input/output values at a certain
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Figure 3.2 � Basic entities and relations in modeling and simulation.

time. The model is an informative way to present the structure and the behavior of

a system, which are the set of instruction and the set of all possible input/output

data that can be generated by the execution of the model instructions respectively.

The simulator is the execution of the model's instructions to actually simulate its

behavior. The experimental frame is the speci�cation and the conditions under which

the system is observed.

These basic elements are related by two relations: modeling relation and a simula-

tion relation (Figure 3.2). The modeling relation links the real system and the model.

A model can be validated when the data generated by the model agrees with the data

produced by the real system in a speci�c experimental frame. The simulation relation

links the model and the simulator representing the simulator's ability to execute the

model's instructions.

The DEVS-based CCS works mainly on the model entity and its relation with

both the system and the simulator. In another words, it changes the modeling in the

manner to give the simulator a concurrent behavior without changing the simulator.

At the modeling, the implementation of the concurrent behavior is transparent to the

simulator making a generalized concurrent behavioral implementation. DEVS-based

CCS complements the object oriented programming of DEVS by providing another

way of thinking about the simulation structure. It increases modularity by allowing

the separation of simulation concerns. The separation between the simulation and

the concurrent behavior management without changing the simulator algorithms is a

challenging objective. DEVS-based CCS is an aspect-oriented programming (AOP)
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solution to avoid multiple concurrent behavior simulators.

Figure 3.3 � The layers between an application domain and the classic DEVS simu-
lation core.

The relation between the DEVS simulator and the application domain takes place

with a modeling interface. Modeling in DEVS formalism has to follow certain rules

and constraints, which provides an automatic simulation process. Figure 3.3 shows

the relation between the classic DEVS simulator core, the application domain and the

introduction of the concurrent behavior modeling. The four circles shown in Figure

3.3 can be divided into two categories: modeling and simulation.

The modeling begins with the study of the application domain, then the creation

of a dedicated library of models inside the chosen environment. In our concurrent

approach the user might need to add a concurrent behavioral function to the atomic

models. Once the user has accomplished the modeling phase, the DEVS-based CCS

provides an automatic concurrent simulation by liking the concurrent behavior to the

DEVS model with the classic DEVS simulator.

The atomic DEVS model is composed of a set of a functions and variables that

represent di�erent behaviors. This modularity in the modeling approach is �exible

enough to accept new behavior de�nitions. The classic DEVS modeling consists of

two events: internal and external. The DEVS-based CCS introduces a new concurrent

behavior to any DEVS atomic model.
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3.2 DEVS-Based Concurrent Simulation

With DEVS formalism the structure of a system is speci�ed using a coupled DEVS

model. The coupled models put in evidence the description of hierarchy. On the other

hand, the atomic model represents the system behavioral implementation (transition

functions, time advance function, and an output function). An atomic model also

contains a modeling interface (input and output ports). A DEVS atomic model is

represented as a set of component AM =< X, Y, S, δext, δint, λ, ta >. This prede�ned

tuples will help the integration of the concurrent behavior without modifying the

DEVS simulation core. The concurrent simulation will be applied using only the

atomic model behavior.

The �rst step to realize a concurrent simulation with DEVS is the implementation

of a signature manager that handles the concurrent behavior of supported atomic

models. The second step is to introduce how an atomic model can adopt the concur-

rent behavior. Four steps are necessary to this implementation:

� The concurrent behavioral function description and de�nition inside the DEVS

formalism.

� The simulation signature and the concurrent simulation manager that handles

the experiments database.

� The CCS algorithm integration inside the DEVS simulator and the execution

order for the transition functions.

� The implementation of the DEVS-based CCS into the DEVSimPy environment

and test on the arti�cial neural network library.

The following subsections are going to detail the implementation step by step to get

a DEVS-based CCS.

3.2.1 The Concurrent Behavioral Function Modeling

The classic DEVS atomic model represents the behavior of a system. It consists

of internal/external (δint, δext) transition functions, a time advance function (ta) an

output function (λ) a set of input/output ports (X, Y,), and a set of states (S). The
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time advance function determines the lifespan of a state. The internal transition

function (δint) de�nes how a state of the system changes internally after the state life

time has elapsed. The external transition function (δext) de�nes the how an input

event changes the state of the system.

In order to get a CCS simulation, a new transition function will be introduced.

The concurrent behavioral function (fconc) is added to the atomic model in order to

represent its concurrent behavior. The concurrent behavioral function will be the only

function that handles the experiment signatures.

A DEVS experiment is a sequence of atomic models' execution. During a concur-

rent execution each atomic model can change a portion of the experiment's signature.

This portion of the signature is called a sub-signature. A sub-signature is the part

of the experiment signature private to an atomic model.

A concurrent atomic model has a new complimentary structure described as fol-

lows:

AM ′ =< X, Y, S, {Hn}, δint, δext, fconc, λ, ta >

Where:

� X = {(p, v)| p ε in_ports, v ε Xp} - the set of inputs ports and values,

� Y = {(p, v)| p ε out_ports, v ε Yp} - the set of output ports and values,

� S is the set of state variables,

� Hn : is the set of sub-signatures where:

� Hn = {(Xn, Yn, vn)},

� Where:

* Xn is the set of inputs ports and values for an experiment n,

* Yn is the set of output ports and values for an experiment n,

* vn is the set of private variables for an experiment n,

* n εN where 0 ≤ n ≤ N , N is the number of experiments per simulation.

� δint : S → S - the internal transition function,
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� δext : Q×X → S - the external transition function where,

� Q = {(s, e) | s ε S, 0 ≤ e ≤ ta(s)} - the set of states,

� e is the time elapsed since the last transition.

� fconc : Hn → Hn- the concurrent behavioral function,

� λ : S → Y - the output function,

� ta : S → R+
0,+∞- the lifetime of the state S , taε [0,∞[.

Unlike the BFS-DEVS and its faulty function that is executed after the external

transition function for fault simulation, the concurrent behavioral function is capable

of replicating di�erent behaviors depending on the model's type. For a generator

behavior atomic models (no input ports and a useless external function) the user links

the fconc to the internal transition function behavior. The fconc is the only function

capable of changing the concurrent simulation signature (or sub-signature) called Hn

but has no control over the attributes of the classic atomic model. This means that

the presence of the concurrent function does not a�ect the behavior of the classic

atomic model. This behavior comes to con�rm the optional presence of the transition

function for the classic atomic model simulation. However, the concurrent behavioral

function can only handle the experiments sub-signatures without any other access

to the classic DEVS variables. Figure 3.4 shows that an atomic model can access

the experiments' sub-signatures via a single point of access through the concurrent

behavioral function. Each atomic model has one private sub-signature per experiment.

For N experiments, an atomic model has to have N sub-signatures.
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Figure 3.4 � A single atomic concurrent DEVS model with a signature pointer.

Experiment signatures and sub-signatures are all stored in one place, the single-

ton signature database. The idea behind gathering all signatures in one place is

to make it easier for simulation managing.

3.2.2 Singleton Signature Database

The classic DEVS formalism with ports has a set of inputs X. This set of inputs,

as well as the set of outputs Y and some other variables are considered as part of

an experiment sub-signature for one atomic model. The experiment signature is

only considered for a DEVS-based concurrent simulation. The signature de�nition

takes part of the modeling process that the user has to accomplish. Each user, while

modeling the chosen system, has to de�ne the value that will compose the signature

of an experiment. In fact, any private variable that changes from one experiment to

another is considered as part of the model sub-signature and therefore the experiment

signature.

Figure 3.5 explains an important concept for the implementation of the concurrent

and comparative simulation using the DEVS formalism. The concept is based on

Figure 3.4 where each atomic model individually accesses his own sub-signatures. All

signatures have to be stored in one place for easy management and more control.

Regardless of the implementation of the signature manager, it will always be easier

to manage all experiments in one place. In other words, one instance with a single

point of access is more controllable than multiple distributed ones.
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Figure 3.5 � Singleton signature database.

Restricting the class to one instance guarantees the role of coordinator between

concurrent operations. Models can only access the simulation data (sub-signatures) by

entering the singleton design pattern. Figure 3.5 shows that atomic models access the

singleton class as if it is the signatures database. Atomic models can only reach their

own sub-signature(s) and do not have the permission to modify other sub-signatures.

This permission is provided through the signature manager by checking the sub-

signature ID. The concurrent behavioral function provides the atomic model ID to

the signature manager that responds with the experiments sub-signatures dedicated

to this model. As an example the atomic model (1) presented in Figure 3.5 has access

to its own sub-signatures inside each experiment object. Each atomic model m has

access to all sub-signatures with ID n for each signature m, as 0 < n ≤ N and

0 < m < M , where M is the number of the atomic model and N is the number of

experiments executed. The database handles all signatures in one place, making it

easier to manage experiments and compare between them.

Providing a global point of access to all atomic models can o�er a better multi-

experiment management. The signature manager is the only source to provide atomic

models with signatures. Each atomic model presents its own ID to the signature

manager in order to get access to data (signature and sub-signatures). At that point

the signature manager gives access to the atomic model to the data with the given

permission (read and/or write). In that manner, any experiment deleted/added with
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the signature manager will not/will be accessible for any atomic model. Regardless

the reason for deleting or adding an experiment, doing so in one central instance

accessed by all atomic models is much easier than doing it individually with every

atomic model.

The previous two concepts: one instance and global point of access lead to a well-

know concept in design patterns for software engineering [77]. Design patterns are

a general reusable solution to a commonly occurring problem within a given context

in software design. The proposed solution (the singleton database) is categorized

under the creational patterns. The singleton pattern is a design pattern that is

useful when exactly one object is needed to coordinate actions across the system. The

singleton pattern will be applied in the form of a signature manager class. In that

manner, it provides sub-signature access to all atomic models and manages only one

instance to compare/add/delete experiments within the same simulation.

The singleton class, or in other words the singleton manger has a list of the run-

ning experiments. Each experiment has a list of models sub-signatures (see Figure

3.5). This signature hierarchy facilitates the adding or deleting of new experiments.

When the signature manager deletes an experiment, all sub-signatures are deleted

consequently.

3.2.3 The Concurrent Behavioral Function Simulation

An atomic model allows specifying the behavior of a basic element of a given system.

An atomic DEVS model can be considered as an automaton with a set of states and

transition functions allowing the state change when an event occurs or not. When no

events occurs, the state of the atomic model can be changed by an internal transition

function called δint. When an external event occurs, the atomic model can intercept

it and change its state by applying an external transition function called δext. The

life time of a state is determined by a time advance function called ta. Each state

change can produce output message via an output function called λ. A simulator is

associated with the DEVS formalism in order to exercise instructions of coupled model

to actually generate its behavior. The architecture of a DEVS simulation system is

derived from the abstract simulator concepts associated with the hierarchical and

modular DEVS formalism.
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The DEVS formalism has a classic simulation core that attributes coupled models

to coordinators and atomic models to simulators (chapter 1.3.2). Coordinators are

responsible for the time management and control of the message exchange between

simulators. Coordinators works in accordance with the coupled model speci�cation.

Simulators execute the atomic models and generate their behavior. Classic DEVS

Figure 3.6 � The concurrent DEVS atomic model simulation.

simulators consider two transition functions: internal and external functions. The

DEVS-based CCS goal is to extend atomic model functionality dynamically (at run-

time) to be able to get a concurrent behavior. Our intent is to add additional re-

sponsibility to the atomic model object at run-time. At the same time, it has to

keep the same interface to be executed normally with the DEVS classic simulator.

Decorating objects (models) functions might be more convenient than changing the

entire simulator algorithm each time the user needs to extend the model behavior.

Figure 3.6 shows the concurrent DEVS atomic model simulation interpretation.

At any time the system is in some state s. If no external event occurs the system will

stay in state s for time ta(s). The concurrent concept can be realized by triggering the

concurrent behavioral function after any of transition functions of an atomic model

(Figure 3.6). Subsequently, this means adding concurrent behavior to the atomic

model through a procedure known as the concurrent behavioral linking.

In the �rst case where the ta is so short that no external event can intervene, the
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internal transition function is executed changing the model state from s to a new

state s′ and trigger the concurrent behavioral function - if the concurrent behavioral

function is linked to the δint. This concurrent function just dialogue with the signature

manager in order to propagate the concurrent behavior through the system.

In the second case, the system will stay in s forever unless an external event

interrupts its passivity. If an external event occurs, the system changes to a new state

s”. If the concurrent behavioral function was associated with the δext then it was

triggered just after the δext was executed.

When the resting time expires, i.e, when the elapsed time, e = ta(s), the system

outputs the value, λ(s), and changes the state δint(s). Note output is only possible

just before internal transitions.

The concurrent behavioral linking is a procedure to adapt a concurrent model in

order to respect the DEVS classic simulator interface. The linking procedure has to

link the concurrent behavior to one of the two internal or external transition functions.

During the linking process, the atomic model gains access through the signature

manager to the signature database to be used in the concurrent behavioral function.

80



CHAPTER 3

3.3 DEVSimPy Implementation

The DEVSimPy environment has implemented the DEVS atomic/coupled models

based on an object-oriented programming paradigm. On the other hand, the DEVS-

based CCS is the aspect-oriented programming model that provides a new way of

thinking about concurrent and comparative simulation algorithm. This subsection

shows an implementation of the DEVS-based CCS inside the DEVSimPy environment.

All implementations are in python programming language. The dynamic Python

programming language - used as scripting language that helps the on the run code

modi�cation - is used for the implementation of the DEVSimPy environment. The

dynamic feature is helpful for the DEVS-based CCS concept during the linking process

as the concept needs to modify models on the �y to integrate the concurrent behavior

in order to match the classic DEVS simulator. The implementation takes several steps:

(i) the creation of the signature structure, (ii) the implementation of the concurrent

behavior function, (iii) linking the concurrent behavior to a transition function, (iv)

the simulation managing, (v) as well as the signature manager extensibility using a

DEVSimPy plug-in.

DEVS atomic models have a prede�ned structure to follow as well as a set of

private variables that can be considered as the model con�guration. Encapsulating

all the simulation-dependent variables inside one generic object is a practical solution

for a dynamic structure. This dynamic structure is called the model sub-signature.

An atomic model signature is an object that contains private variables that can be

changed during the simulation. Figure 3.7 shows the UML diagram for the imple-

mentation of the DEVS-based CCS using di�erent classes and interfaces.

3.3.1 Classes Description

The UML diagram (Figure 3.7) can be categories into three main groups: (i) the

atomic model set, (ii) the signature set, (iii) the manager set. The atomic model set is

composed of the ConcreteAtomicModel, <interface>AtomicModel, DecoratorAtomic-

Model and the ConcurrentAtomic. This set is the class diagram representation to

create a decorator for the classic DEVS atomic model in order to get a concurrent

runtime model. The signature set is composed of the Experiment and the Signa-
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Figure 3.7 � DEVS-based CCS UML class diagram.

ture classes where each experiment is composed of many signature (sometimes are

called sub-signatures) and a signature only belongs to one experiment. The manager

set is represented by the SignaureManager and the AbstractSingleton which are the

database and where the stack of experiments is handled, updated and compared to

each other.

In software engineering the decorator is a structural pattern. This pattern o�ers a

standard implementation to functionality extension at run-time. Figure 3.7 contains

the UML description of the decorator pattern. The UML notation contains an atomic

model interface, which is the basic function needed for the classic DEVS simulator.

The concrete atomic model de�nes an object to which additional responsibilities can

be added. The decorator class maintains a reference to a component object and

conserves the interface of the classic atomic model. The concurrent atomic model
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extends the functionality of the component by adding the signature state and the

concurrent behavior. The atomic model decorator attaches the concurrent behavior by

default to the external transition function. It is important to note that the concurrent

transition is always executed after the transition function.

The SignatureManager class (Figure 3.7) implements the abstract singleton

class that has one static instance of the class Singleton and one static function

called getInstance(). The signature manager returns the same instance each time

the getInstance() function is called. The signature manger class provides some im-

plemented functions to help managing di�erent experiments and update the database

with the signatures modi�cations during the simulation time. A setter and getter

are implemented to protect the access to the singleton instance. SetDefault() is an

optional function that can be used to set the default con�gurations for a speci�c ex-

periment. This function has to access all the concurrent atomic models signatures to

be able to set the default con�gurations.

AddExperiment(id,Experiment) and DeleteExperiment(id) are two methods that

are used by the DEVSimPy plug-in functions to add and delete experiments based

on user request or any implemented automatic algorithm. Also the plug-in functions

are responsible for generating new IDs for the new experiments. The AddExperi-

ment(id,Experiment) methods receives the new ID and an experiment object. If the

received ID already exists, the UpdateExperiment(id,Experiment) is called in order to

update the current experiment with the new data. If the received ID is new, a new

experiment will be stored in the experiments dictionary with the attached ID. The

Count() function returns the number of the simulated experiments at any time of the

simulation. The signature manager can handle multiple experiments at a time, but

also if the signature manager is deleted there will no longer be any experiment.

The Experiment class (Figure 3.7) has some similarities with the signature

manager, both have to manage a dictionary of objects and be able to update, delete

and add new objects to it. The experiment object is only instantiated in the signa-

ture manager class, as it represents a concurrent experiment. The Experiment class

contains the sub-signature of all the concurrent atomic model in the system. The ex-

periment class has as many sub-signatures as the number of concurrent atomic model

in the system. If the experiment is deleted then all of the sub-signatures inside it will

83



CHAPTER 3

disappear too. It can only have one signature manager.

The sub-signature class is a dynamic structure that o�ers an encapsulation

to the atomic model variables that can change during the simulation. With the

DEVS classic atomic models, variable declaration is a user decision, he can create

his own conventions. With a concurrent atomic model, it is recommended to use

the signature structure to optimize the performance of the concurrent behavior. In

that way comparison between experiments can be much easier and generic. The

constructor of this class receives a dictionary, where the keys represent the variables'

name and the values represent the variables' values. It creates an object containing all

necessary variables for the concurrent atomic model in a unique experiment. In the

case when simulating multiple experiments, the concurrent atomic model can have

multiple sub-signatures as previously explained with Figure 3.5. Each sub-signature

instance is attached to only

The last three classes (SignatureManager, Experiment, Sub-signature) all

are standalone classes. They are the implementers of the base structure to begin any

dynamic simulation changes. In other words, the Signature class is the small unit

that presents the �ngerprint of an atomic model at a time t during the simulation.

The Experiment class is the encapsulation of all concurrent atomic model signatures,

and can be used for comparing between multiple experiments at a chosen time t.

The SignatureManager class is the database where experiments, signatures and

sub-signatures are stored and is a single point of access for all models to modify

their �ngerprints (signatures). The next subsection describes the dynamic part of

the approach, where the linking between the DEVS atomic model and the previous

implemented classes using a DEVSimPy plug-in.

3.3.2 DEVSimPy Global Plug-in Integration Functions

The DEVSimPy environment o�ers the possibility of implementing global plug-ins

(Figure 3.8). Any user can implement a custum plug-in while respecting the registry

interface. The programmer has to import the plug-in manager package and then

register it by coding: @pluginmanager.register("function_name"). The DEVS-based

CCS requires a plug-in called CCS manager which is implemented and has a start

registered function called: start_concurrent_simulation(*args, **kwargs). After that,
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Figure 3.8 � DEVSimPy plug-in manger interface.

the plug-in shows up in the plug-in manager interface (Figure 3.8). The plug-in has

to be activated before the simulation starts to take e�ect. The DEVS-based CCS the

start_concurrent_simulation(*args, **kwargs) is executed by DEVSimPy just before

the DEVS simulation starts.

The CCS manager plug-in collects a list of all concurrent atomic models (models

that implement a concurrent behavioral function). After the experiments' con�gura-

tions and before the simulation run-time, the CCS manager actually converts atomic

models with an implemented concurrent behavioral function into a real concurrent

atomic model that runs under any classic DEVS simulator.

The decoration of the transition functions by the concurrent behavioral function

is presented by the following code (Algorithm3.1):

This code shows that the decoration process is by default applied to the DEVS

atomic model external transition function (Line number 1, Algorithm 3.1). After the

decoration process on either of external or internal transition function the function

returns a new concurrent DEVS model able to communicate with the CCS manager.

The concurrent con�guration panel appears when the user clicks on the properties
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Algorithme 3.1 Concurrent decoration function.
1 def concurrent_decorator(model,func='extTransition'):

2 �' Atomic model decorator for the concurrent behavior �'

3 if func == 'extTransition':

4 model.extTransition = decorator(model.extTransition)

5 elif func == 'intTransition':

6 model.intTransition = decorator(model.intTransition)

7 return model

button shown on the left hand side of DEVSimPy plug-in manager. This panel is

composed of two tabs: model and simulation.

Figure 3.9 � Model association panel.

The model tab (Figure 3.9) allows the user to choose for each atomic model

the transition function that will be linked to the concurrent behavioral function. By

default, the external transition function is checked. The CCS manager is capable of

associating the concurrent behavior to both internal and external transition functions

by checking both functions in the list.

Figure 3.10 � Simulation con�guration panel.

The simulation tab contains a customizable panel which can change depending

on the application. The user can develop his own con�guration panel (Figure 3.10,

Zone 1) depending on the atomic models' con�gurable signatures. This panel is

con�gurable, and the user can make his own interface using wxFormBuilder [78].

This panel is useful in order to change at runtime any con�guration needed to a
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Figure 3.11 � Sequence diagram for the concurrent simulation scenario inside DE-
VSimPy.

speci�c experiment chosen from the list on the right hand side of the CCS manager

interface (Figure 3.10).

3.3.3 Modeling and Simulation Sequence Diagram

The DEVSimPy environment o�ers a modeling and a simulation sequence that enables

the integration of the plug-ins in a transparent way to the modeling manager (the

user) and the simulation kernel. As shown in Figure 3.11 the user only interacts with

the system as the modeling manager in steps 1,2 and 3 of the �gure. The sequence

diagram shown in Figure 3.11 can be decomposed into several steps to explain the

relation between the user the simulation kernel in order to perform a concurrent

simulation:

1. The DEVSimPy modeling manager is where the user interacts with the envi-

ronment to create his system using DEVS atomic/coupled models. At user can

either use models from the libraries or create new models.

2. Adding the concurrent behavior and con�guration comes in the modeling phase

where the concurrent behavioral function is implemented.
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3. After the modeling and the concurrent con�guration, the user can click on the

simulation panel (see Chapter 1, Figure 1.15) to start the simulation process

(step 1 in Figure 3.11).

4. The DEVSimPy simulation manager takes the relay from the modeling manager

to start the simulation process. The �rst thing done by the simulation manager

is to check for the active global plug-ins and integrates their role.

5. The CCS manager is the necessary plug-in to activate the concurrent behavior

for the DEVS simulation. For that reason it decorates all of the concurrent mod-

els via the decoration function (Algorithm 3.1), making the concurrent behavior

transparent to the DEVS simulation kernel.

6. The simulation manager takes executes the DEVS simulation kernel after the

CCS manager plug-in has done his job.

7. At any moment of the simulation the user can suspend the simulation to change

any model con�guration. This is done by clicking on the suspend button on the

simulation panel in Figure 1.15.

8. After changing the con�guration using the DEVSimPy modeling manager, the

user is able to resume the simulation in order to get the desired result.

Two main points for the DEVS-based CCS are identi�ed with previous sequence

diagram: (i) the user only interacts with the simulation process only in step 1, 2 and

3 in Figure 3.11 making the concurrent simulation process completely transparent for

him, (ii) The concurrent simulation is completely transparent to the DEVS simulation

kernel too, making it easy to change the simulation architecture at any time without

a�ecting the concurrent behavior.

3.3.4 Validation: PC Model

To illustrate the concurrent concept with an example, the Computer example shown

in Chapter 1.3.2 will be presented with the concurrent behavior. Only the PC coupled

model will be presented as shown in Figure 3.12. The PC is a coupled model composed

of one queue (RQ atomic model) and one processor (Proc atomic model). The role
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Figure 3.12 � Concurrent PC DEVS coupled model for concurrent simulation.

of the processor is to calculate the sum of each value sent from the RQ model. All

implementations are done with DEVSimPy on a Linux, Kubuntu 12.04 distribution

with the KDE Layer. Kate is the main code editor used while developing the DEVS-

based CCS classes and plug-in. Some of the graphical interfaces are implemented with

wxFormBuilder [78] to build XRC extension �les, providing a very generic solution to

any user who wants to edit or modify the GUI.

Algorithme 3.2 Concurrent behavioral function for the CPU atomic model.
1 def concBehavFunc(self):

2 if self.state['status'] == 'ACTIVE':

3 Singleton = self.simData.getInstance()

4 for exp in self.expDico:

5 subSignature = Singelton[exp][self.myID]:

6 subSignature['outputs'] = subSignature['inputs']

7 + subSignature['Sum']

The Algorithm 3.2 shows the code of the concurrent behavioral function for the

CPU model where the basic function of calculating the sum value of all inputs. This

shows the concurrent function retrieving and saving the data from the simulation

manager in order to perform the concurrent behavior for each experiment.

Scenario: The RQ model reads a �le with a randomly generated numbers n where

n ε [0, 10]. When the Proc model receives a value it takes a time t = 1sec to perform

the calculation and generates an output. After calculation, the Proc model generate

the output and sends a signal to the RQ model to send the next values. This example

will use the concurrent simulation in order to calculate the sum of �ve di�erent �les.
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In a normal DEVS simulation, the user should perform �ve di�erent simulations with

exactly the same steps in order to get the results. With the DEVS-based CCS the user

has only to con�gure the concurrent behavioral function and enable the CCS manager

to perform the concurrent simulation. The input �les are shown in Table 3.1a, where

File1, File2, ..., File5 are the di�erent �les read by the ExternalGen model and sent to

the PC coupled model. The output of the PC coupled model is read by the To_Disk

model that is only a graphical representation for data. The To_Disk overrides the

double click function of the atomic model with a local plug-in and displays instead

the data in a form of a table as shown in Table 3.1b.

File1 File2 File3 File4 File5

1 2 3 6 9
3 3 2 4 7
5 4 1 2 6
2 5 3 2 4
4 3 2 1 3
6 6 4 3 2
7 3 2 4 5
9 2 1 5 6
1 1 1 6 6

(a) The input �les.

Time t O1 O2 O3 O4 O5

1 1 2 3 6 9
2 4 5 5 10 16
3 9 9 6 12 22
4 11 14 9 14 26
5 15 17 11 15 29
6 21 23 15 18 31
7 28 26 17 22 36
8 37 28 18 27 42
9 38 29 19 33 48

(b) The output data.

Table 3.1 � The input and output data of the concurrent PC system.

This is a very example of a system that can bene�t of the DEVS-Based CCS to

simulate and compare di�erent experiments within a single execution. Until now the

DEVS-based CCS works perfectly with a system that has a single simulation path

with di�erent values and con�guration.
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3.4 Conclusion

DEVS-based CCS is a concept that merges the concurrent and comparative simu-

lation algorithms with the classic DEVS simulator's e�ciency and modularity. The

DEVS-based CCS works on disguising the concurrent DEVS atomic model into a

classic atomic model able to be executed with any standard DEVS simulator. It is

a generalization of the concurrent DEVS extensions, where the DEVS functionality

is extended without changing the simulator core. This concept works on decorating

the transition functions with the concurrent behavior depending on the nature of

the atomic model. For a passive model, the external transition function is decorated

with a concurrent behavior. For active models, the internal function is the one to

be decorated. For some particular applications, both internal and external transition

functions might need to be decorated.

The implementation of this concept is presented inside the DEVSimPy environ-

ment. Any atomic model can have a concurrent behavior by the presence of a con-

current behavioral function and a signature object. CCS manager is a DEVSimPy

plug-in that decorates one or both transition functions with the concurrent behavioral

function and manages the experiment's sub-signatures. The plug-in has an interface

that controls the model's con�guration and the experiment's branching and merging.

The DEVS-based CCS is fully implemented and validated with an example of the

PC coupled model. The concurrent DEVS-based neural network is the core of

the new wound-rotor induction generator short-circuit diagnosis based on digital data.

The next chapter goes into details to add the concurrent behavior for the DEVS-based

ANN as well as a classi�cation optimization.
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Concurrent DEVS-based ANN

4.1 Introduction

This chapter regroups the two concepts introduced in Chapters 2 and 3 (DEVS-based

ANN and the DEVS-based CCS). First in Chapter 2, due to the modularity of DEVS,

the DEVS-based ANN introduces a fragmentation of the Feed-forward ANN archi-

tecture in order to decompose the learning phase from the feed-forward calculations

creating a new ANN DEVS library. Chapter 3 introduces a transparent atomic model

modi�cation to the DEVS simulation kernel in order to deliver the concurrent behav-

ior. This modi�cation can be applied to a system with a single simulation path but

with di�erent data and con�gurations. The ANN has various possible con�gurations

where all need to be simulated in order to pick and choose the best con�guration

possible for a speci�c application [25]. This multiple con�guration problem makes the

DEVS-based ANN very bene�cial from the concurrent behavior.

The main concepts of the DEVS-based CCS are validated with the DEVS-based

ANN, which is a single path simulation. By a single path we mean that the atomic

models are activated in a speci�c order regardless the experiment or the con�guration.

The concurrent behavior for the DEVS-based ANN is presented with details in this

chapter. It begins with the concurrent behavioral function design and implementation,

followed by the concurrent simulation con�guration and results visualization. After

the validation of the concurrent behavior with the ANN, a classi�cation optimization

based on some statistical calculation is proposed for the concurrent DEVS-based ANN.
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4.2 Adding the Concurrent Behavior to DEVS

The DEVS-based CCS was �rst implemented inside the DEVSimPy environment in a

general form, which was later adapted to a special application. This section represents

the adaption steps of the DEVS-based CCS on the DEVS-based ANN. Firstly, the

atomic model has to be adapted for the concurrent behavior takes place. Secondly, the

CCS manager has to be personalized and adapted to handle the ANN con�guration

needs. For example the ANN con�guration has to be changeable through the CCS

manager.

Figure 4.1 shows the interaction between the basic atomic model and the signature

manager. Each atomic model can gain di�erent access permissions to the experiment

signatures and model sub-signatures. The two permissions that can be given to a

concurrent atomic model are the read and write permissions.

Figure 4.1 � DEVS-based ANN with a concurrent learning behavior.

Figure 4.1 elucidates the models' permissions using directional arrows. Every

atomic model is given permissions based on di�erent purposes:

� The Input layer only has the writing permission to be able to add for every

experiment the needed input to continue the calculations. It doesn't need to

read any other information.

� The Hidden/Output layers have both; reading and writing permissions to be

able to read the inputs and write back the outputs.
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� The ErrorGenerator models have to read the output of the ANN, calculate the

error during the training phase and compare between the di�erent experiments.

Consequently, the model writes back the error compared to the ideal output

desired by the user.

� The Delta_Weight generators models read the errors calculated by the Er-

rorGenrator as well as the weights of the associated output/hidden layer model.

The write permission is given allow the modi�cation of the weight list for each

experiment.

The read/write permissions are given by the CCS manager during the decoration

process when the atomic model gets the signature reference. Each atomic model

needs the concurrent behavioral function to be implemented in order to take into

consideration the concurrent simulation explained in Chapter 3.

Figure 4.1 is the best way to explain the concurrent simulation alongside of the

classic simulation. At all times, the classic DEVS simulation with the conventional

messaging protocol is always there. On the other hand, the concurrent experiments

simulation exchanges the necessary messages only through the signature manager.

As shown, the input layer atomic model sends messages to the hidden layers models

followed by the output, error generator, etc. Both messaging techniques are used

simultaneously, one for the classic DEVS simulation and the other for the concurrent

experiments simulation.

Algorithme 4.1 Concurrent behavioral function for the Input atomic model.
1 def concBehavFunc(self):

2 if self.state['status'] == 'ACTIVE':

3 Singleton = self.simData.getInstance()

4 for exp in self.expDico:

5 if not self.myID in Singleton[exp]:

6 e = self.createExp()

7 Singleton.AddExperiment(exp,self.myID,e)

The Input layer model, can only add new sub-signatures to the signature database,

unlike all the other models that can read/write to the signature database. Algorithm

4.1 is a piece of code of the concurrent behavioral function for the Input layer atomic

model. The "concBehavFunc" function tests the state of the model. If "ACTIVE"
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(Line 2, Algorithm 4.1), then it checks the signature manager (the Singleton) if the

input layer signature already exists, if it is not the case a new model sub-signature is

added to the singleton class.

The created ANN library in Chapter 3 was designed for the classic DEVS simu-

lator. At this stage, the library is modi�ed to be able to work on the classic DEVS

simulator with the classic behavior and with the concurrent and comparative behav-

ior using the CCS plug-in. The CCS plug-in adds a new functionality to the DEVS

formalism transparently to the simulator and the user. With model changing and a

customized con�guration panel, the next sub-section presents a validation test on the

N-parity problem that also introduced to validate the classic DEVS-based ANN.

N-parity problem

Description

The N-parity problem is one of the �rst non-linear separation problems that validated

the capability of the back-propagation learning algorithm to solve complex problems.

It was also used in Chapter 2 in order to validate the DEVS-based ANN fragmentation

between the learning algorithm and the feed-forward calculations. To make the tests

more challenging and interesting, we will use the 4-bit parity problem, which means

a 4-bit problem di�erencing between two main classes as shown by Table 4.1. In this

table, x1− x4 are the 4 input bits of the ANN and the desired output is presented by

the y.

Modeling and Simulation

Two types of con�gurations will be tested in this example. First, the number of

neurons inside the Hidden layer (Table 4.2a), and how it can a�ect the simulation.

Second, is the learning (N) and momentum factor (M) (Table 4.2b) which can a�ect

the learning speed and the learning curve convergence. As this is a DEVS-based CCS,

the experiments can be added during the simulation time. Both tests will begin with

only one experiment at the beginning of the simulation. As the simulation goes, the

user will suspend the simulation and then add a new experiment with a di�erent

con�guration based on the previous con�guration learning evolution. The user will
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x1 x2 x3 x4 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Table 4.1 � The truth table of the 4-Bit parity problem.

Experiment ID Number of neurons

0 7
1 5
2 3

(a) Number of neurons inside the hidden layer.

Experiment ID N M

0 0.1 0.5
1 0.4 0.4
2 0.6 0.3
3 0.9 0.1

(b) Learning and momentum fac-
tors for learning.

Table 4.2 � ANN test con�gurations.

add an experiment or change its con�guration via the implemented interface inside the

CCS manager as shown in Figure 4.2. When the user chooses a speci�c experiment

the con�gurable panel loads the current con�guration and the user can change any of

the learning factor (N), the momentum factor (M) or the activation function for both

the Hidden and the Output layer atomic models.

Using the concurrent ANN con�guration panel and the desired con�guration in

Table 4.2b, di�erent experiments will be launched at runtime. First of all, the ref-

erence simulation (R) will get the experiment ID equal to 0, with a learning factor

of 0.1 and a 0.5 momentum factor. As shown in Figure 4.3b the �rst curve repre-

sents the �rst con�guration, at zone one, the simulation was suspended and the a

new experiment was added using the ADD button in Figure 4.2, and then con�gured
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Figure 4.2 � The simulation panel interface of the ANN con�gurations.

with the 0.4 learning and momentum factor. With the new con�guration the learning

curve shows a faster learning rate, suspending the simulation two more times (points

2 and 3 in Figure 4.3b) to increase the learning factor and decrease the momentum

factor. It is important to note that in order to create a new experiment at run-time,

the ADD button makes a copy of the best current experiment and then applies the

con�guration changes - which is the reason of the curve splitting e�ect shown in the

zones 1,2 and 3 of Figure 4.3b.

(a) Reduction of the number of neurons inside
the hidden layer.

(b) Changing the learning and momentum fac-
tors.

Figure 4.3 � ANN simulation results.

The second con�guration will show the e�ect of changing the number of neurons

inside the hidden layer without changing the learning, momentum factor or the acti-

vation functions. Figure 4.3a shows two splitting zones, 1 and 2, where the number

of neurons goes from 7 in the reference simulation to 5 then to 3 respectively. The

learning curves in this �gure show a non smooth splitting in both zones 1 and 2. This

is due to the sudden elimination of a neuron inside the hidden layer which introduces

the error shown.

For further study of the ANN and the classi�cation problem, some optimization

can be placed in order to have a faster learning and an easier comparison between

experiments and con�gurations.
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4.3 ANN Modular Optimization for Classi�cation

4.3.1 Introduction

Most of the used ANNs have a monolithic structure. A lot of the models work on

the fully connected feed-forward ANN. This network performs well on the small input

vector space dimension. The problem's complexity usually increases and the perfor-

mance decreases with a growing input dimension. Another problem that faces the

concurrent ANN is the simulation time. As mentioned previously, the overall simula-

tion time is reduced by simulating multiple experiments at the same time. However,

as the number of experiments increase the simulation time increases as well; which

is an expected result. We still aim for the smallest simulation time and the easiest

simulation con�guration. For that reason, a deeper research and analysis on the ANN

behavior and results took place.

The ANNs work best with a single task. Multiple ANN is a term used for separated

ANN architectures. These separated ANNs are used if di�erent information sources

(di�erent sensors) are available to give information on one object. Dividing the input

vector into several smaller ones might not be a good idea. In order to increase the

ANN classi�cation a new multistage ANN is introduced. The di�erence between

multiple ANNs and a multistage ANN is the hierarchical architecture and the input

data form. To explain the idea of a multistage ANN, an input pattern analysis is

presented followed by the multistage building process based on some analytical data.

Figure 4.4 � The company job hierarchy.

The proposed multistage ANN will follow the organizations' and the companies'
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job hierarchy as shown in Figure 4.4. In this hierarchy, the CEO (chief executive

o�cer) receives all the ideas and thoughts then he distributes tasks to the managers

[79]. Each manager has a smaller and more precise task. He must have all the

information from the CEO in order to distribute the job to the employees. After that,

each individual employee participates to produce a part of the �nal product. This

�nal product is the result of the participation of every employee in the company, in

other words, the participation of the three commanding levels of the company (stages).

Every company has a di�erent target and di�erent products from one another, which

makes it necessary for some analysis before the creation of the company's hierarchy.

This makes the input pattern analysis the �rst task to create a multistage neural

network.

4.3.2 Pattern Analysis

Each individual arti�cial neural network is considered as a brain or a processor where

the work is distributed. The �rst stage is the responsible of the work distribution to

the di�erent brains (processors), in our case it is the ANNs. The work can only be

well distributed if it was well understood and analyzed. The main goal is to identify

and distinguish between the di�erent data classes.

The data analysis at this stage consists of determining the similarity between the

di�erent classes (Example with classes: C1-C4) [80]. If two classes generate similar

signatures or a very close behavior, then more processing power has to be dedicated

in order to di�erentiate between them. An example with only four data classes is

shown in Figure 4.5. If fault C1 and C2 are very similar, equally, C3 and C4, the

identi�cation process can be divided into two stages. The �rst stage classi�es the four

patterns into two groups (G1 and G2). One specialist ANN (A1) is needed to perform

this task. As its only responsibility is to classify the data into these two groups, it

can be more e�cient and accurate to perform this task. The second stage consists of

two di�erent ANNs (A2,A3), one for each group. A2 and A3 are responsible for G1

and G2 respectively. A2 has to develop the criteria to distinguish between C1 and

C2. Similarly, A3 has to develop the criteria to distinguish between C3 and C4.

As shown in the example, the number of groups (two in the example) has to be

known to be able to create the stages and to know the number of ANNs needed. To
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Figure 4.5 � Work distribution on a multistage ANN explanation example.

do so, a very simple statistical calculation is performed. This analysis is done only

once to create the multistage architecture. For classi�cation purposes, the Euclidean

distance [80�82] calculation is chosen to help the architecture of a multistage ANN

building.

The Euclidean distance between two points p and q is the length of the line segment

connecting them (pq). In Cartesian coordinates, if p = (p1, p2, · · · , pn) and q =

(q1, q2, · · · , qn) are two point in Euclidean n-space, then the distance between them

is given by:

√
n∑

i=1

(qi − pi)2.

Figure 4.6 � Dendrogram cluster analysis on standardized Euclidean distance on ran-
dom data.

A dendrogram (from Greek dendro "tree" and gramma "drawing") is a tree di-

agram representation used to illustrate the arrangement of a hierarchical clustering.

Such a visual representation �ts the needs of this thesis to group and categories the
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given data to simplify an ANN work as it will be [53].

Figure 4.6 shows a random data to distinguish between 30 di�erent input vectors

(s1-s30). The graph shown in the �gure has two di�erent cut levels. The height of

the higher cut makes it easier to di�erentiate between classes. Two cuts are shown in

Figure 4.6, the �rst is a cut at the height of 3.3 showing four di�erent classes, which

means all the 30 input vectors can be easily classi�ed into 4 classes. The next cut

is at the height of 2.7 which shows 6 di�erent classes. If two input vectors are not

separated until the height of zero then they are exactly the same and it is extremely

hard to di�erentiate between them.

The Euclidean distance is used as the metric distance between all of the 30 input

vectors and is presented in the graph of Figure 4.6 in a tree form which we previously

mentioned to be called the "Dendrogram".

4.3.3 Multistage ANN for Classi�cation

The multistage arti�cial neural network was inspired by the enterprise hierarchy (Fig-

ure 4.4). The work distribution on a multistage ANNs is an interesting concept that

comes as a solution for many complex problems [83�85]. A lot of the ANN research

work uses a di�erent unique concept di�erent from all the others without a de�ned

procedure that anyone could follow in order to increase the ANN performance all the

times. The classi�cation problems can be done using only statistical calculations [86],

also widely used with machine learning and ANNs. Using both at the same time

to enhance the overall performance is a further step towards a better system. For

building a multistage ANN capable of recognizing more e�ciently the input patterns

the dendrogram is used.

The multistage architecture will be based on the cut applied in the dendrogram

graph. As shown in Figure 4.6 at the height of 3.3 it is easy to distinguish between

the four classes. By consequence, it will be easy for a neural network to perform the

same task too. Then this makes the �rst ANN stage a di�erentiator between four

classes - the role of a CEO in a company, where he gives di�erent tasks to di�erent

managers. Then, at the second stage, four di�erent ANNs take the job. Each ANN

will be responsible for a simpler task, witch is to identify between a maximum of 10

di�erent input vectors. If at the second stage it is still di�cult to distinguish between
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all the input vectors, another stage can be added to make it easier to perform the

classi�cation task. Depending on the problem the number of stages can increase in

order to perform the classi�cation process.
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4.3.4 Conclusion

This chapter sums the work done in three di�erent working areas: the arti�cial neural

network, the discrete event system speci�cation formalism and the concurrent and

comparative simulations. For every one of these areas a new concept was introduced

and validated. First the DEVS formalism gained an optional concurrent behavior for

all its atomic models with a simple implementation of the concurrent behavioral func-

tion without any change of the classic DEVS simulation kernel. The neural network

was fragmented into di�erent small DEVS atomic model, and then they gained a con-

current behavior in order to compare di�erent simulation and lastly a classi�cation

optimization using statistical calculation is proposed - the multistage architecture.

For the concurrent and comparative simulation the option of being able to add an

experiment in run time was easily introduced with the integration of the DEVS for-

malism inside the DEVSimPy environment. At this stage of work, a concurrent neural

network based on the DEVS formalism is created and optimized for the classi�cation

tasks using some statistical calculation to build a multistage ANN capable of solving

complex tasks. It will be introduced in the next chapter to perform fault diagnosis in

the WRIMs.
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Case of Study: Electrical Machine

Diagnosis

5.1 Introduction

This thesis deals with multiple domains: discrete event system's modeling and sim-

ulation, arti�cial intelligence (ANNs), electrical machine fault diagnosis, and digital

data compression. This chapter is the summary for work done in each domain. The

work is inspired by the need of the wound rotor induction machine fault diagnosis of

the direct usage of digital data through an arti�cial neural network.

A new DEVS-based feed-forward arti�cial neural network (FF-ANN) is presented

in Chapter 2. A DEVS-based concurrent and comparative (DEVS-based CCS)

simulation is presented in Chapter 3 in order to add new, concurrent and comparative

features to the DEVS formalism without any changes in any DEVS simulator. This

chapter brings out two application layers: (i) the councurrent DEVS-based ANN with

a customized plug-in con�guration interface to manage the concurrent experiments.

(ii) The wound-rotor induction generator inter-turn short-circuit diagnosis using the

new digital neural network.

This chapter deals with three major points:

� The pre/post processing data for neural networks and their e�ect on the network

performance. A new digital transformation and compression for the digital input

used to train and test the FF-ANN for wound-rotor induction generators.
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� The usage of the DEVS-based ANN and applying a concurrent training, and

showing a developed DEVSimPy CCS plug-in con�guration panel to manage

the concurrent experiments for the WRIM fault diagnosis.

� An e�cient architecture of multistage neural network based on the Euclidean

distance between the di�erent training patterns and classes.

This chapter is organized into four sections. The �rst section deals with the ANN

digital data pre-processing. The data pre-processing usually has a big impact on the

neural network performance. This section applies new, e�cient digital data com-

pression for neural network classi�cation needs. The data presented is composed of

a pure periodic induction generator signal with di�erent frequencies. The second

section shows the use of the concurrent learning neural network and the simulation

managing with the developed con�guration panel. The third section shows the impact

of the pre-processing technique on the neural network for the electrical motor fault

diagnosis and a comparison with the uncompressed data. The last section brings an

e�cient study to create a multistage neural network capable of solving more compli-

cated problems faster and e�ciently. The multistage architecture is compared with

the single stage ANN for machine diagnosis.
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5.2 Short-Circuit Diagnosis

5.2.1 Set-up Description

The experimental set-up (Figure 5.1) has been designed in order to perform measure-

ments on a lab scaled three-phase 5.5kW, 50Hz, 220/380V, 8-poles. A back-to-back

voltage static inverter has been used to control the rotor currents. The WRIG is

driven by a prime mover designed around a 7kW three-phase squirrel-cage induction

machine and a 11kW programmable voltage static inverter (VSI). To emulate the wind

speed and allow the system to operate in di�erent modes and with di�erent output

power, the prime mover is controlled. Two operation modes are available: steady state

(constant wind) and transient state (wind speed slopes). The back-to-back converter

is able to control the DC bus voltage by the absorption of sinusoidal currents and im-

posing WRIG rotor currents with convenient magnitudes, frequencies and phased. A

three normalized stator current taken at steady states as an example shown in Figure

5.2. The normalization was done as the part of the pre-processing steps. The data

coding has been done with an accuracy of a 16-bit, which is the maximum available

on the DAB.

This setup was designed to collect both stator and rotor currents of the WRIG by

means of a data acquisition board with dedicated 16-bit analog to digital converters.

The current sensors (basically AC current measurement) are based on magnetic cores

with windings. The scaling factor for the current sensors is 0.1V/A and the frequency

bandwidth is 1Hz-20MHz. Therefore, the output of the current sensor is analog.

The digitizing process is performed with the data acquisition board having a signal

conditioner at its inputs in order to scale the maximum magnitude and to pass through

a low-pass �lter in order to perform the anti-aliasing task. It is highly expected in

future applications to use current sensors with a digitizer module inside each wireless

transmission.
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(a) Block-scheme con�guration.

(b) Picture of the real set-up.

Figure 5.1 � Set-up for di�erent tests.
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Figure 5.2 � Sample of 3 normalized stator currents (2000 samples each) at steady
state with fault F10.
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Short-circuited winding

The acquisition time has been set to 10s. The data is normalized, digitized and stored

in �les with a sampling period of 0.1ms. In order to perform a signi�cant training

for the neural network, 16 types of faults have been used depending on both rotor or

stator sides and phases and coils. Fifty percent of the data has been used as training

patterns for the neural network and the remaining �fty percent has been used for

tests. At the current time, no transients have been yet considered.

The type of electrical fault used in all experiments is based on winding short-

circuits (see Chapter 1.1.2). These faults have been tested with a rotor speed of

775rpm (rated load, slip=3.33%) and a synchronous rotating speed of 750rpm (grid

frequency of 50Hz for 8 poles) at steady state.

Both stator and rotor windings have been modi�ed by rewinding magnetic circuits

on the �rst and last turn of each winding for the three phases. Therefore, there are

two more windings per phase and per side (stator, rotor) on each phase. Stator and

rotor windings have the geometrical con�guration (1 : N − 2 : 1) turns for a total

number of N turns per phase (see Chapter 1.1.2). On the other end, every �rst and

last turn of each phase and side has a switch in parallel to directly short circuit any

of these turns. The total number of switches is 24. The direct short-circuit does not

greatly a�ect the magnitude of the short-circuited current which never crossed over

its rated value.

At this stage of work, a combination of short-circuits are considered as one fault

F. In other words, multiple winding short-circuits are considered as one fault. For the

time being, 16 di�erent fault combinations are considered, 6 for the rotor side and 10

for the stator side. Each short-circuit introduces a di�erent frequency in the currents

which can be detected by the frequency analysis. Another trend is to detect those

faults in real time without the expenses of the frequency analysis. To do so, some

data analysis is required to be able to match needs and requirements for the detection

mechanism.

108



CHAPTER 5

5.2.2 Learning and Test Patterns Study

As previously discussed, data analysis is a very important task to improve the ANN

performance. Two main data features are very important when it comes to data

analysis: the nature (periodic, aperiodic, biased, unbiased, etc.) and the size (vector

dimensions). The data used as the neural network input for the electrical fault de-

tection (learning and validation) is consisted of: the values of 3 stator currents and

3 rotor currents when the WRIG is operating in both healthy and faulty modes at a

steady state. For the electric current used in this application, the two points that we

studied are the:

� Data type: all data patterns are composed of pure periodic. The rotor and stator

operate at di�erent frequencies. This di�erence in the operating frequencies has

to be considered when it comes to data sampling time or data compression

technique.

� Data dimension: Each pattern consists of 6 currents (3 rotor, 3 stator) for a

periodic time of 0.2s. Each pattern is composed of 10 periods of the stator

side (frequency of 50Hz) and 1/3 of a rotor period (frequency of 1.9Hz). Since

the sampling period is 0.1ms, each pattern is composed of 2,000 points for every

current. This means an input pattern for the neural network with a dimension of

2,000*6 (i.e. 12,000). Sixteen di�erent faults have to be identi�ed by the neural

network as well as the healthy mode, making the input patterns consistent of

2000 ∗ 6× 17 (i.e. 204,000). Each fault type is represented by ten patterns. The

number ten has been chosen to ensure a good generalization while teaching the

neural network each fault.

To be able to use periodic data as input to an arti�cial neural network, the data has

to start with a �xed phase point. To be able to do so, a phase detector [87, 88] has

to be integrated while collecting the currents to be an input to the ANN. Otherwise,

the data has to be transformed or compressed in a manner to eliminate the phase

in�uence on the neural network learning.

Another time domain analysis can be performed to predict how easy the classi�ca-

tion can be. This analysis is based on the hierarchical ascendant classi�cation (HAC),

which is a method to represent and compute an index related to the distance between
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the centers of gravity of each input vector to the neural network. Also another study

is called the Euclidean distance (ED). These types of analysis have a tree presentation

form called dendrogram. Dendrograms are useful to validate classi�cation models [89].

They give a tree diagram that represents a hierarchy of input vectors based on the

degree of similarity. This type of analysis will be used later in this chapter in order

to build a multistage neural network.

As shown, the data type and dimension impose some di�culties for the neural

network to learn the di�erent electrical faults. Large periodic data might cause some

learning di�culties. As it can be seen, our data has two di�culties: periodic and large

dimension. With this in mind, data pre-processing techniques have to take place in

order to transform this data to be fully optimized for the ANN learning.
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5.3 Data Pre-Processing

Data analysis is one of the earliest pre-processing stages. The pre-processing is a

process of inspecting, cleaning, transforming the data, in order to discover useful

information. As it has been often evaluated, during learning and validation modes,

the ANN exhibits poor performances when the input data are periodic with zero mean

values. The same conclusion can be reached when the dimension of the input vector

is too large. Usually, the complexity, redundancy and the large dimension of the

input data used for training the ANN, leads to a weak performance and e�ciency.

Thus, most applications transforms the data into a new presentation before training

the ANN. This data transformation is often application related and is still a very

interesting research domain. In many cases, the data transformation (sometimes

called pre-processing) techniques is one of the most signi�cant factors to determine

the ANN �nal performance [50, 90]. In many applications, the dimensions reduction

of the input vectors can be e�cient to reduce the problem complexity and the learning

time.

Figure 5.3 � Data pre/post processing for neural networks.

The ANN usually has data processing blocks that surrounds it (Figure 5.3). Both

pre/post-processing are important steps to use the ANN e�ciently. A new pre-

processing technique for digital data is presented in this thesis, followed by a new

vision of the post-processing by proposing a multistage neural network, which will

be discussed later in Chapter 5.5. As shown in the �gure, the pre-processing is a

sequence of multiple steps. Some of these steps is considered as linear transformation,

although later in this section a new digital compression technique is presented.
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Linear Aspect

A simple linear rescaling of the input variable is the �rst step to be considered. The

data rescaling is more required if di�erent variables have typical values which di�er

signi�cantly. By applying a linear transformation, all input are in the same scale. To

do so, each input variable is treated independently. For each input xi we calculate its

normalized value xi,0−1 using:

xi,0 to 1 =
xi − xmin

xmax − xmin

where xi,0 to t1 is the data point xi normalized between 0 and 1. For a more cen-

tralized and normalized data set, with the zero being the central point, the following

equation is used instead:

xi,−1 to 1 =
xi − (xmax−xmin

2
)

xmax−xmin

2

where xi represents the data point i, xmin is the minima among all the data points,

xmax is the maxima among all the data points.

For the WRIM data, the currents' values oscillate between [23A,-23A]. For the

absolute values, the xmax is equal to 23 and the xmin is equal to 0. The linear pre-

processing scales the data in such way that all neural network's weights remain small

and avoid the saturation of the activation function. On the other hand, this data

transformation is not the only pre-processing step. In some application domains,

the data compression is recommended to reduce the dimension of the input vectors

and reduce the learning time. The next subsection shows a new digital compression

technique for periodic scaled data.

Digital Compression Aspect

The electric currents are periodic, which means the phasing has to be considered,

otherwise it has to be eliminated. One stator current with a 2, 000 acquisition points

will be used as an example (Figure 5.4) to show the digital compression steps.
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Figure 5.4 � Digital compression procedure.

The new digital compression technique that will be applied on the electric current

to reduce the input dimension space and eliminate the phase in�uence needs two

steps:

� Digitizing the data: Nowadays, it is common to use digital sensors. On the other

hand for an analog sensor, a 16-bit AD (analog to digital) converter is used to

convert the analog data. Figure 5.4 shows a 2000 points vector that needs to

be converted and compressed. First, each signed �oat point is converted into

a train of 16 bits. This step transforms the 2000 �oat points into a matrix

of 2000 × 16. This matrix contains 2000 rows of ones and zeros. Any digital

data is presented with digital bits, is considered to be composed of MSBs (most

signi�cant bits) and LSBs (least signi�cant bits).

� Averaging binary columns: This process converts the matrix of 2000 × 16 to

only one row of 16 values (Figure 5.4). As the average has been calculated, the

�oat points order is no longer important, which means the signal phase is not

available any more.

These calculations are neither time nor frequency transformations but a new binary

technique which is very simple in term of operation. As the binary data is a combi-

nation of ones and zeros, the averaging represents the percentage of ones per column.
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As it is a 16-bit analog to digital conversion, we estimate that MSBs might contain

more information than the LSBs. This estimation is based on the constant change of

the LSBs, while the MSBs are represent more of the currents envelope where more

information exists. This concept has been studied in [91] and all validations and

comparisons are shown in the next section of this chapter.

The two digital compression steps, digitizing and averaging, are the only steps used

to compress the data. All kinds of compression methods must certainly introduce

some data loss. However, if too much information is lost during pre-processing it

will obviously lead to performance deterioration. In the digital compression case,

the redundancy of the periodic data has been eliminated, and the input dimension is

reduced by a very large factor making the ANN learning much faster and easier.

The compression ratio (CR) for this technique is inversely proportional to the

number of bits used by the AD converter (B = 16). This can be represented by:

CR = N
B
= 2000

16
= 125.

The input of the ANN for the machine diagnosis is composed of 6 electric currents,

each consisting of a 2000 original values and will be compressed into a 16 values

after the digital conversion and the averaging. This transforms implies a new neural

network input composed of a 16*6 input values making each input vector composed

of 96 values rather than 12,000.

Summary

In this section two categories of pre-processing were presented: linear and digital

compression aspects. The linear aspect was already well known and used with di�erent

application domains. It was applied on the periodic stator and rotor currents in

order to normalize the currents and insure that they will be on the same scale. The

data scaling is always important to equalize the di�erent impact of data types. The

presented digital compression is a column averaging applied on a 16-bit converted data

to produce a percentage of the ones per column. This eliminates the data periodic

redundancy. The digital averaging reduces the input vector dimension with a CR

equals to N
B

where N is the number of inputs and B is the number of bits used

for the conversion. Both aspects are going to be validated with a comparative and

concurrent DEVS-based ANN implemented inside the DEVSimPy environment using
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the 6 electric currents of the WRIM, to localize the short-circuited windings.
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5.4 ANN Con�guration and Simulation

In this sub-section, 12 electrical faults are used concurrently, the �rst 6 faults are on

the stator side and the other 6 are on the rotor side (F1-F12). On the �rst step,

a single stage ANN is used to di�erentiate between the 12 di�erent faults. As the

number of bits used by the AD converter has a signi�cant impact on the neural

network performance, di�erent tests are made. First, a full 16 bits study is made

then followed by a 12, 9 and 6 bits variant. It was previously mentioned that the

MSBs might contain more information than the LSBs, for that reason the 12, 9, and

6 bits variant are all used from the MSBs side.

16 bits Patterns

As the DEVS-based CCS is used, di�erent con�gurations are tested and compared

concurrently. Table 5.1 represents the di�erent con�guration combinations for the

ANN. It is recommended that the learning factor (N) and the momentum factor (M)

oscillate between 0 and 1. The optional transfer functions are: linear, hyperbolic

tangent, and sigmoid. Only the sigmoid and the hyperbolic tangent were used, they

are the most common and reliable activation functions for non-linear problems. For all

experiments of this sub-section, 4 outputs for the ANN are considered. The outputs

are represented with 4 bits; the ANN can di�erentiate between up to 16 di�erent

classes with these 4 bits. In our case we need only 13, 12 for the faulty patterns and

one represents the safe mode.

Experiment ID N M Activation function Neurons (Hidden layer)

1 0.1 0.1 tanh 20
2 0.9 0.1 tanh 20
3 0.9 0.1 sigmoid 20
4 0.9 0.1 sigmoid 50
5 0.9 0.1 sigmoid 70
6 0.9 0.1 sigmoid 60
7 0.9 0.5 sigmoid 55
8 0.9 0.2 sigmoid 54
9 0.7 0.1 sigmoid 56
10 0.9 0.1 sigmoid 56
11 0.9 0.5 sigmoid 56

Table 5.1 � ANN con�gurations.
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All experiments are simulated concurrently using the concurrent DEVS-based

ANN. Di�erent number of neurons inside the hidden layer is tested with di�erent

con�gurations (Table 5.1). The "Errorgenerator" atomic model inherits the oscillo-

scope display to show the error evolution curve during the learning phase as shown

in Figure 5.5.

Figure 5.5 � Mean squared learning error for the concurrent simulation presented in
Table 5.1.

Figure 5.5 shows 6 di�erent learning curves among the eleven con�gurations pre-

sented in Table 5.1 in order to be visible. The presented curves shows the mean

squared learning error over 8000 iterations. As it can be noticed from the �gure, the

error curves converge only when a suitable con�guration is adapted and diverge when

inappropriated con�gurations exist. As shown, the lowest learning error comes from

the experiment ID number 9 (blue curve in Figure 5.5) where the learning factor is

0.7, momentum factor is 0.1, activation function is sigmoid and 56 neurons inside

the hidden layer. This con�guration con�rms some of the recommendations made

by [23,50] as the number of hidden neurons is equal to the number of inputs.

The best result among the 11 concurrent simulations is detailed in a the 4 columns

Table 5.2. The �rst column shows the fault ID number (detailed in previously in

Chapter 1.1.2), the second column represents the desired/optimum output for the

neural network. The third gives an output example for the real output of the ANN

during the test. The last column gives an error percentage per fault during the tests.

Each row represents the data for a speci�c fault. For example, the F7, the network
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Fault type Desired output Real output Test error [%]

Healthy 0, 0, 0, 0 0.08 ,0.05, 0.03, 0.05 0.0
F1 0, 0, 0, 1 0.07, 0.09, 0.04, 0.90 0.0
F2 0, 0, 1, 0 0.07, 0.05, 0.98, 0.04 0.0
F3 0, 0, 1, 1 0.05, 0.15, 0.91, 0.93 0.0
F4 0, 1, 0, 0 0.09, 0.93, 0.10, 0.08 20
F5 0, 1, 0, 1 0.06, 0.80, 0.26, 0.90 40
F6 0, 1, 1, 0 0.10, 0.92, 0.88, 0.07 0.0
F7 0, 1, 1, 1 0.41, 0.71, 0.86, 0.77 70
F8 1, 0, 0, 0 0.99, 0.05, 0.04, 0.01 0.0
F9 1, 0, 0, 1 0.90, 0.02, 0.18, 0.75 0.0
F10 1, 0, 1, 0 0.92, 0.08, 0.94, 0.04 0.0
F11 1, 0, 1, 1 0.95, 0.08, 0.85, 0.91 0.0
F12 1, 1, 0, 0 0.90, 0.98, 0.09, 0.19 0.0

Table 5.2 � Results for classi�cation of the �rst 12 faults with a 16-bit AD (simulation
ID = 9).

should generate an output (desired output) of [0, 1, 1, 1] from the 4 output neurons.

The experiment was not able to correctly detect more than 30% of the test patterns

(three out of the ten tested). An example of the real output generated by the network

is [0.41, 0.71, 0.86, 0.77] for the same F7.

Using all of the 16-bit values for each electric current, the single input pattern

to the neural network is composed of a 96 input values (16 values per current, for 6

currents). To di�erentiate between all of the 12 faults and the safe mode 4 output

neurons are used. The performance of the ANN with the digitally compressed data

shows a better learning convergence over the non compressed data (Figure 5.6). The

comparison is made with twelve di�erent simulations. The neural network is �rst

tested to classify only one fault (F1) with the WRIM safe mode. At this stage, both

compressed and uncompressed networks performed well. Second, an additional fault

(F2) was added to the classi�cation, then the fault F3 was added and so on, until the

last simulation was made with all the 12 faults plus the safe mode. In Figure 5.6a, the

quadratic error for the learning shows the bene�t of the digitally compressed periodic

data.

In summary, the data compression shows a much better performance to classify

and di�erentiate between the twelve faults and the safe mode. The compression

with a 16-bit AD converter transforms and compresses the input patterns from a

1200 input values vector to only a 96 values with a CR of 125. After ten faults the
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(a) Quadratic error for the 12 faults classi�cation
comparison.

(b) Test error percentage for the 12 faults classi�-
cation comparison.

Figure 5.6 � Learning and test error comparison between compressed and non-
compressed data.

ANN performance decreases. One step further is to test di�erent AD converters with

di�erent number of bits.

Variant Bit Patterns

After validating the digital pre-processing technique, it is very interesting to see the

impact of changing the number of digits used to code the analog data extraction from

the test bench. All results presented above are based on 16-bit AD converter and

used an accuracy level of 4 digits after the decimal point.

Most commonly the right hand side values (LSBs) of the input patterns remains

unchanged. This is due to the constant change of the LSB of the converted data,

making the averaging are always around to 0.5. On the other hand, the MSBs of

the converted data changes are less frequent which give di�erent average values. This

kind of unchanged input values introduces data redundancy which is unhealthy to

train the neural network.

Finding the best accuracy needed by the ANN to be able to distinguish between

the di�erent faults is the goal of this sub-section. Three di�erent set-ups are made to

get di�erent levels of accuracy using:

1. Three digits after the decimal point with a 12-bit AD converter.

2. Two digits after the decimal point with a 9-bit AD converter.
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3. Only one digit after the decimal point with a 6-bit AD converter.

As the AD converter in�uence the number of input data, Table 5.3 shows the di�erent

number of input corresponding to the di�erent AD accuracies. The number of inputs

is a function of the electrical currents' number and the number of bits used by the

AD converter. For a 12-it AD converter with 6 currents, it gives 16 ∗ 6 = 96 ANN

inputs. To make a fair comparison, the NB has been changed keeping all other ANN

parameters unchanged (based on the best results with the 16-bit AD converter: one

hidden layer, 56 hidden neurons, sigmoid transfer function and 4 output neurons). As

NB of bits ANN inputs Training quadratic error Testing error [%] Iterations

6 36 0.12 5.3 10,000
9 54 0.15 10.0 10,000
12 72 0.25 13.9 10,000
16 96 0.25 13.9 12,000

Table 5.3 � In�uence of the AD converter accuracy.

shown (Table 5.3) the ANN performances are improved when the number of bits used

by the AD converter in the pre-processing mode is reduced (only using the MSBs).

This means that the ANN can �nd the fault signature inside only the average of

the MSBs and additional data is considered as noise. The 6-bit AD converter is

the minimal con�guration that can be used to encode the di�erent currents with a

minimal accuracy of only one digit after the decimal point. The LSBs average does

not o�er to the ANN informative data because of the always close to 0.5 value due to

the constant change of these bits.

To resume the di�erent simulations, the one digit after the decimal point with a 6-

bit AD converter proved to be the best simulation result with a 0.12 global quadratic

error value and a 5.3% test unrecognized patterns. The error is meanly concentrated

in F7 and F5, which their digital signature might be very similar to other faults

making the di�erentiation between them very di�cult to the ANN. These results are

for the 12 faults and the safe mode operation with ten patterns for each mode. The

same amount of patterns is used for testing.
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Summary

The new digital compression technique has been presented in order to reduce the input

dimension space. It also eliminates the phase in�uences of the periodic data. The

technique was applied to twelve di�erent electrical fault of the WRIM (F1 - F12) with

a signi�cant improvement of the neural network performance over the uncompressed

data.

As a matter of fact, a very large number of unique faults F are tested with this

technique as we sometimes consider multiple short-circuits as one fault (i.e. F1 is

a short-circuit on the �rst two turns of the �rst two phases and on the �rst turn

of the third phase of the rotor side). The number of the combined faults can be

very large. An arti�cial neural network even with the best pre-processing techniques

might have di�culties to classify and recognize all existing faults. As a result, this

problematic tends to limit the fault detection capabilities with the ANNs. To solve

this problematic, a multistage ANN is proposed to take over and maximize the number

of faults that can be detected.

5.5 Multistage Optimization

The idea of multistage neural network is inspired by several researchers, but also by

the multi-core processing solutions. The idea is based on distributing the calculations

and the problems on several processing units. Each processing units has a smaller

task to do. As we talk about neurons and neural networks, humans tends to work

together to get jobs done faster and more e�cient.

The idea of a multistage neural network is presented by several researchers [81�

85]. To be able to understand how the multistage neural networks might work, a

comparison with human behavior can be applied. Humans tend to work together to

be able to get work done faster and more e�cient. Each person handles one speci�c

task, that makes it easier to understand and faster to accomplish. Correspondingly,

the multi-core processing units tends to solve problems of the single processor (heat,

complexity, etc). Each processing core is able to work independently from the other

cores, the results are collected and assembled together in order to have the �nal result.

In like manner, ANN has to work for di�cult tasks, distribute the work and collect the
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�nal result. In order to do so with ANNs, two steps are necessary to make this idea

to work. First is to analyze the input patterns and second is building the multistage

architecture.

5.5.1 Patterns Analysis

For the statistical calculations and presentations, the R-project for statistical com-

puting [92] is used on a 64-bit Windows 7 Professional machine with an Intel® Core

i5 CPU M460 Processor (4M Cache, 2.53 GHz) with 4GB of RAM. The data used

for analysis is composed of a two input vectors per fault for all of the 16 faults (F1 -

F16), making a total of 32 input vectors. Each vector is composed of the 96 values (for

the 16-bit accuracy level, explained in the previous subsection). For the multistage

purposes, the dendrogram will visualize the similarity between the di�erent patterns.

Figure 5.7 shows the similarity index between the 32 input vectors (Euclidean 96 di-

Figure 5.7 � Dendrogram for similarity study between 32 input vectors.

mensional space). The X axes is composed of a 32 values (from 0 to 31) representing

the 32 input vectors, each fault got two vectors. F1 is represented by vector 0 and 1,

F2 with 2 and 3, ... , F16 with 30 and 31. The Y axes represents the similarity index

calculated by the R-project for statistical computing using the Euclidean distance

between the di�erent vectors. High index means less similarity, as the index goes

higher the classi�cation gets easier.

In the Figure 5.7 two main branches are created separating F1, F2, ..., F6 (rotor

side faults, pattern from 0 to 11) from F7, F8, ... , F16 (stator side faults, patterns
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from 12 to 31). The �rst thing to notice is the di�erence between the rotor side

fault patterns and the stator side fault patterns. With a closer look on the rotor

side, another two main branches are created separating F1, F2 and F5 from F3, F4

and F6. Even closer, F1 and F2 are still separated from F5. This analysis can be

inspiring to create three di�erent levels of classi�cation. The �rst is to �nd out the

di�erence between faulty stator, faulty rotor or the healthy mode. The second level is

to �nd which phase is short-circuited, and the third stage determines on which turn

the short-circuit occurrs. Based on the dendrogram (Figure 5.7), three di�erent levels

are detected, the multilayer ANN architecture is built in the next subsection based

on this analysis.

5.5.2 Multistage Architecture

The WRIM 16 fault patterns are analyzed previously with a statistical analysis given

by the previous dendrogram in Figure 5.7. The goal is to distribute equally the

classi�cation di�culties on all of the ANNs used in the architecture. Figure 5.8 unveils

Figure 5.8 � Proposed multistage neural network for WRIG short circuit classi�cation.

the proposed triply staged ANN composed of nine ANNs distributed as follows: (i)

one in the �rst stage responsible to distinguish healthy, rotor side fault and stator

side fault. (ii) two in the second stage, one for each side (rotor,stator) to detect on

which phase the short-circuit took place. Both are also capable to detect multiple

short circuits on di�erent phases at once (shown in the example later). (iii) six ANNs
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in the last and third stage, one for each phase (three-phase) on both sides (rotor and

stator).

This proposed design came from the similarity index study, as previously seen in

Figure 5.7. The dendrogram clearly is divided into two branches, which the reason

for the �rst stage role has been chosen. The second and the third stages are chosen as

phase identi�er and turn identi�er respectively. The patterns tend to be more similar

when the short circuit on same phase and particularly on the same turn are common.

For all three stage ANNs has the same input provided with the 96 values input

vectors representing the compressed data of the electrical machine with the 6 currents

with using the 16-bit AD values and an accuracy level of 4 digits after the decimal

point. All ANNs also are con�gured with the back-propagation con�guration of a

learning factor = 0.7, a momentum factor= 0.1, 56 neurons in the hidden layer, a bias

= 1 and a sigmoid activation function.

Stage one: has two output values that can be either ones or zeros. An output of

"00" means a healthy mode, "10" means a rotor side fault and "01" means a stator

side fault.

Stage two: Both sides ANNs have three output values, one for each phase. As

this stage is only triggered when there is short-circuit on this side, the output cannot

be "000". When short-circuit is detected in a phase, the associated output bit shows

"1". When three short circuits, one in each phase are present, the ANN output would

be "111". When the output is "1" it triggers the associated ANN in the next stage

to localize the short-circuit turn.

Stage three: Both sides ANNs have only two outputs, one for each turn. The

same token of the previous layers for the output numbering is applied. The �nal

output from the di�erent ANNs will represent the short-circuit localization as shown

in the example below.

Example1 (Figure 5.8): F14 will be taken as an example, to show how would

each stage works in order to get the �nal result which is to identify all of the 17 fault

as well as the healthy mode. F14 is short-circuit on the �rst turn of the �rst phase

and the second turn of the second phase. The 96 values of this pattern enters the

�rst stage in the only ANN present there. The output from the �rst stage is: "01"

1In this example real simulation outputs are shown.
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triggering only the stator phase detector ANN in the second stage. In its turn, the

second stage ANN receives the 96 input values and generates an output of "110".

This second stage output, triggers two ANNs in the third (last) stage, which are the

�rst and second phases turn detectors ANNs. Both triggered ANNs in receive the

96 input pattern and generates outputs. The �rst ANN generates an output of "10"

which indicates the existence of short-circuit in the �rst turn of the �rst phase in

the stator side. The second ANN generates an output of "01" which indicates the

existence of short-circuit in the second turn of the second phase in the stator side.

Combining the results of the third stage con�rms the short-circuit on the �rst turn of

the �rst phase and the second turn of the second phase which represents F14.

Simulation Results

The results presented in this subsection represents the best results obtained by the

multistage ANN, pre-processing techniques to compress periodic data and con�gura-

tion comparison using DEVS-based CCS for Feed Forward ANNs. Seventeen di�erent

simulations are executed to get the results presented in Figure 5.9. The �rst simula-

Figure 5.9 � Absolute error, comparing the performance of a single ANN to the mul-
tistage architecture.

tion is a classi�cation between healthy mode and the fault F1. For each simulation

after that another fault was added, until the 17th simulation represents the ability to

classify all of the seventeen faults and the healthy mode. In the �gure a comparison

125



CHAPTER 5

between a single ANN classi�cation capability and the proposed multistage ANN.

The single ANN gets an acceptable error rate with only 12 electrical faults, with

more faults to classify, the error goes higher until it reaches a 38% test error rate

with the 17 input vectors. On the other hand the multistage ANN is capable to get

only test error rate with the same number of faults. The performance goes to the

multistage architecture with a 28% better classi�cation rate.

Added fault ID Single ANN Multistage ANN

F1 52 12
F2 547 295
F3 840 820
F4 3283 894
F5 1039 1103
F6 >20000 1429
F7 12696 1570
F8 >20000 7573
F9 >27000 7791
F10 >20000 7711
F11 >20000 6230
F12 >20000 5434
F13 >20000 7531
F14 >20000 >19000
F15 >20000 >15000
F16 >20000 >20000

Table 5.4 � Iteration number needed to get the best results during the learning mode.

Table 5.4 presents the number of iterations needed to get the best results for

both with/without the multistage architecture for each of the seventeen simulations.

The number of iterations for the multistage ANN represents the sum of all iterations

needed to train all of the nine used ANN in the architecture. As the numbers tell

from the table, the multistage needs much less iterations to get better results than a

single ANN. This is phenomenon is the result of the problem distribution on multiple

ANNs.
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5.6 Conclusion

The �fth chapter might be the meeting point between the theoretical concepts and

the application domains. The aim of this chapter is to get the best out of the ANNs

using the CCS DEVS-based simulation and apply it for machine diagnosis and pattern

classi�cation.

This chapter presents a set-up description and the acquisition equipments used

to generate the training and test patterns. It also presents some pattern analysis

and studies made to verify the data quality and determine the type of pre-processing

needed for ANNs. It has been noticed that the data is signi�cantly large and periodic.

Both criteria are not advisable for ANN uses the pre-processing compression technique

based on digital data was introduced. The proposed compression technique has a CR

of 125 using a 16-bit AD converter using multiple precision levels of 4 digits after

the decimal point or less. In order to test the new technique, a CCS DEVS-based

ANN was build and multiple con�gurations are tested concurrently. All tests were

developed inside the DEVSimPy environment. The ANN performance has increased

50% using the proposed pre-processing technique based on the digits data for a 12

unique faults.

The �nal stage in the ANN multistage architecture approach is based on the input

vectors analysis. The study is based on the Euclidean distance between the input

vectors creating a similarity index between the di�erent input patterns. This index

is presented in a form of a dendrogram (a tree representation). The calculated index

gives the idea of how easily the classi�cation can be performed, sometimes multiple

ANNs are needed to solve the problem. For WRIG diagnosis, nine di�erent ANNs

were used in a three level architecture. The proposed design improved the overall

performance enabling up to 16 di�erent electrical faults detection and localization.

These results are about 30% more e�cient than a single layer ANN.
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DEVS is a hierarchical formalism description for a discrete-event system. The DEVS

formalism di�erentiates between modeling and simulation, the simulation is done

automatically by a generic simulator. The DEVS modularity can be very bene�cial

to an arti�cial intelligence branch known as the arti�cial neural network (ANN). The

ANN is known for its black box behavior, as it receives input and generates output

depending on the training it received. It was commonly introduced in the DEVS

environment as one con�gurable atomic model. To change the learning algorithm

or the network architecture, the code inside the model is modi�ed. A solution to

eliminate this black-box e�ect and make the ANN more �exible and easy to develop

is introduced in chapter three. This solution consists of fragmenting the feed-forward

neural network into a DEVS library composed of atomic models easy to modify and

replace.

The DEVS-based ANN has two groups of models: feed-forward calculations and

the learning models. This modeling concept ensures the separation between the feed-

forward calculations and the learning algorithms. This separation makes a new tool

for mathematicians to easily replace and test new learning algorithms or di�erent

architectures. The new ANN modeling is composed of four di�erent atomic models:

calculation (hidden and output layers), non-calculation (input layer), Error-Genarator

and Delta-Weight models. The calculation and the non-calculation models are the

location where fee-forward calculations takes place, and the Error-Generator with the

Delta-Weight are where the learning algorithms are implemented. This ANN's DEVS

library is implemented inside the DEVSimPy environment o�ering a graphical user

interface for the DEVS modeling and simulation. The DEVSimPy environment also
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o�ers the ability to add plug-ins on top of the atomic models in order add some

functionalities. The Error-Generator has a plug-in to show the learning or the testing

error curves, making it easy to the user to visualize the results. The DEVS-based

ANN can also bene�t from the DEVS extensions.

As DEVS becomes more popular, researchers �nd the need to add and develop

some enhancements to the formalism. Adding new behavior to the DEVS formalism

is called a DEVS-extension. Sometimes, adding extensions to DEVS requires the sim-

ulator modi�cation. The BFS-DEVS is an extension to DEVS that adds a behavioral

fault simulation. This extension is used for fault simulation in digital circuits with

a concurrent behavior. At the same time, changing the simulator may lead to an

incompatibility between extensions, which can reduce their usability.

The concurrent and comparative simulation (CCS) is a concept developed in order

to compare di�erent simulations, reduce the overall simulation time and the manual

con�guration work. To add this interesting concept to the DEVS simulator, that

might need to create a DEVS-extension and modify the classic DEVS simulator. A

new generic solution inspired by the BFS-DEVS extension was introduced in this

thesis to extend the DEVS classic behavior with and additional concurrent behavior

called the DEVS-based CCS.

The DEVS-based CCS, is a concurrent DEVS simulation based on runtime code

modi�cation. The main idea of this generic solution is to modify the atomic model in

the manner to keep the interface required by classic DEVS simulator. This idea makes

any concurrent atomic model able to be simulated with any generic DEVS simulator.

The DEVS-based CCS is implemented in two parts. First, an addition concurrent

behavioral function is added to the atomic model along side with an additional object

called the model signature. The second part is composed of a DEVSimPy plug-in,

always executed before the simulation starts, and link the concurrent behavioral func-

tion with a classic DEVS transition function. By default, the concurrent behavioral

function is linked to the external transition function. All signature are managed by a

signature manager, which is responsible of adding or deleting any experiment during

the simulation time. For simulation managing, the signature manager has a customiz-

able interface that can be adapted to any type of applications. The ANN can be a

very interesting application to apply the concurrent DEVS extension.
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The DEVS-based CCS is combined with the DEVS-based ANN to give a new

concurrent ANN able to simulate di�erent con�gurations at the same time. This con-

current ANN is used to �nd the best con�guration possible for the electrical machine

diagnosis.

The number of wind farm is growing every year, as a result condition monitoring

is an essential tool for wind turbine generators to reduce the maintenance cost and

the machines reliability. It is well known that any AC electrical machine can still

operates with shorted turns even at its rated load. It is clear that early stage detection

can prevent a full winding failure. The condition monitoring can be performed by

several methods, but the electric monitoring is the most common among them. This

thesis an ANN with back-propagation learning algorithm has been used to be trained

directly by signals coming from sensors eliminating the analysis mode and simplify

the architecture for diagnosis. The ANN used is based on the concurrent DEVS-based

ANN developed also in this work making the di�erent ANN con�guration comparison

a lot easier and interactive. However, periodic or very large input vector (hundreds

of inputs) can result a poor performance for the ANN. Therefore, a new compression

technique has been presented in this thesis in order to eliminate the periodic e�ect and

reduce the input vector dimension. The compression technique is based on digitizing

and averaging data using the bene�t of the most and least signi�cant bit of the digital

data. The compression technique used with the DEVS-basd ANN has shown more

than 30% increase in the overall performance trying to localize twelve di�erent short-

circuited turns on both stator and rotor sides.

Last but not least, the multistage architecture for electric fault diagnosis is a new

study for designing a multistage ANN based on statistical analysis. For sure the

digital compression technique proved performance increase over the non-compressed

data, but still does not give the expected results when seventeen di�erent faults are

tested. Therefore, this thesis presented a statistical analysis based on the Euclidean

distance between the input vectors creating a tree graph also known as the Dendro-

gram. Based on this graph, three ANN stages were built for seventeen short-circuited

fault localization. The proposed multistage architecture shows a performance increase

of almost 25%.

Figure 5.10 resumes all of the work done during this thesis. Boxes with gray
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Figure 5.10 � Global view of the realized work.

shadow are the introduced concepts or the proposed architectures. It also shows two

application stages, as well as three di�erent points of view. The DEVS formalism

and the CCS concept are used to create a new generic DEVS extension that o�ers

a concurrent simulation without any changes in the classic DEVS simulator. The

�rst application stage is to create a concurrent learning for ANNs. This is done

using the DEVS-based CCS extension with the developed DEVS-based ANN inside

the DEVSimPy environment. The second level of application is to have a WRIM

short-circuit fault classi�cation using the concurrent learning multi-stage ANN. This

is done using the Euclidean distance analysis with a new digital data compression

technique and the developed multistage architecture.

After reading this thesis, the reader can achieve three di�erent point of views

(Figure 5.10). If the reader looks from the DEVS formalism perspective (view 1),

then most probably the DEVS-based CCS is the most interesting part of the work,

where a concurrent simulation can take place without changing the simulation ker-

nel. To validate this concept, the concurrent ANN is presented. The second point of

view comes from the ANN (view 2, Figure 5.10), where it is decomposed to several

atomic models inside the DEVS formalism creating a new DEVS library. The pre-

sented modeling o�ers a more �exible ANN able to receive enhancements from the

DEVS formalism. The concept was validated with the CCS simulation, giving run-

time comparison between di�erent con�gurations. The third point is presented from

the WRIM perspectives, where it is important to detect the electrical faults as fast

as possible with the lowest cost. At this point of view, the reader can be interested
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into the electric currents digital compression, the neural network fault detection and

localization for up to 16 faults, and the multistage architecture optimization.

After reading this thesis, the document order can be justi�ed by the implemen-

tation orders where it begins with the DEVS-based CCS and ANN followed by the

WRIM short-circuit diagnosis. The introduction presented the problem of the WRIM

electrical fault detection and then unveiled the proposed solution track using the ANN,

DEVS and the CCS. We preferred to well introduce the main application domain in

the general introduction followed by the implementation in Chapters 2, 3 and 4 to

�nish with the results of the WRIM electrical fault detection in Chapter 5.

Perspectives

This thesis can be a new start to a multi-domain research. The new DEVS-based CCS

is currently helpful for a single simulation path and with di�erent values. Further

studies have to take place in order to get the DEVS-based CCS to the next level

of generalization where the DEVS messaging become more path independent. This

idea can be realized by changing the classic DEVS messaging management (without

changing the DEVS simulator) on the �y with respect for the object interface. In that

manner the concurrent messaging can propagate disguised with the classic message

interface. This idea bring a much wider range of applications and make easier for

users and researchers a better tool to simulate concurrent behaviors.

The feed-forward arti�cial neural network architecture saw a new redesign where

separation between feed-forward calculations and the learning algorithms makes it

easier to alternate between di�erent learning algorithms. As presented the DEVS-

based ANN bene�t from a concurrent DEVS extension. Further work might attack

di�erent DEVS extensions as Fuzzy-DEVS or PDEVS. Not only this model fragmen-

tation is useful but also the new multistage building technique based on statistical

analysis. Bringing the multistage architecture applied on di�erent domains as pat-

tern recognition and data prediction is a future. Automating the process between the

statistical analysis and building the ANN architecture also is considered.

The electric motor fault detection is the main application of this thesis, which

was the inspiration for all the work done, di�erent ideas about future work can be
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proposed. First, the multistage ANN validation on a unique fault detection, where

neural networks learn only unique faults (only one short-circuit) and be able to detect

combined faults (multiple short-circuits on both sides: rotor and stator). Second,

testing this proposed pre-processing technique on the transient state of the machine

and how well it can perform. Third, the implementation of the proposed ANN work

on a FPGA board. The FPGA would allow to the ANN a hardware implementation,

where the learning process is created on a PC with the concurrent DEVS-based ANN

and then exported directly to the FPGA to be ready for an automatic short-circuit

detection on the WRIMs. A �rst step towards this implementation already began with

a study of the Nexys 3 FPGA board. As the FPGA boards are easily compatible with

the VHDL programming language might create the challenge of the incomparability

of the �oat numbers. This makes this thesis an open ground for a lot of future work

in multiple �elds.
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Annexes

Dendrogram DEVS plug-in

1 import wx

2 from matplotlib.pyplot import show from hcluster import pdist,

3 linkage, dendrogram

4

5 def OnLeftDClick(self, event)

6 """ Left Double Click has been invocked.

7 This plugin call pdist function from hcluster package and plot

8 the dendrogram using matplotlib.pyplot package. """

9 model = canvas.getCurrentShape(event)

10 devs = self.getDEVSModel()

11 if devs:

12 Y = pdist(devs.vectors)

13 Z = linkage(Y)

14 dendrogram(Z)

15 show()

16 else:

17 wx.MessageBox(_("No DEVS model is instanciated.Go back to the simulation!"),

18 _("Info"), wx.OK|wx.ICON_INFORMATION)

134



Annexes

Signature Class

1 class Signature(object):

2 def __init__(self, *args, **kwargs):

3 for key,value in kwargs.items():

4 setattr(self, key, value)

5 for val in args:

6 if isinstance(val, dict):

7 for k,v in val.items():

8 setattr(self, k, v)

9 elif isinstance(val, list):

10 for c in filter(lambda a: isinstance(a, (tuple,list)), val):

11 setattr(self, c[0], c[1])
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Input Layer Atomic Model

1 class Input(DomainBehavior):

2 """ Input Layer model

3 2 input ports:

4 - Learning input

5 - Validation input

6 Number of output depends of the input number

7 """

8 def __init__(self):

9 DomainBehavior.__init__(self)

10 self.state = {'status':'Idle', 'sigma': INFINITY}

11 self.current_tpattern = 0

12 self.current_vpattern = 0

13 self.t_pattern = []

14 self.v_pattern = []

15 def extTransition(self):

16 for port, msg in self.peek_all():

17 i = port.myID

18 if i == 0:

19 self.t_pattern.append(map(float,msg.value[0]))

20 self.dt = 1.0/len(self.t_pattern)

21 self.state = {'status':'PASSIVE', 'sigma':self.dt}

22 self.msgListOut =

23 [Message([None,None],0.0) for i in xrange(len(self.OPorts))]

24 else:

25 self.v_pattern.append(map(float,msg.value[0]))

26 def outputFnc(self):

27 if self.state['status'] == 'ACTIVE':

28 for i in xrange(len(self.t_pattern[self.current_tpattern])):

29 tval = self.t_pattern[self.current_tpattern][i]

30 vval = self.v_pattern[self.current_vpattern][i] if self.v_pattern != []

31 else None

32 msg = self.msgListOut[i]

33 msg.value = [tval,vval,self.myID]

34 self.poke(self.OPorts[i], msg)

35 def intTransition(self):

36 if self.state['status'] == 'PASSIVE':

37 self.state = {'status':'ACTIVE', 'sigma':0.0}

38 elif self.state['status'] == 'ACTIVE':

39 self.current_tpattern += 1

40 if self.current_tpattern >= len(self.t_pattern):

41 self.current_tpattern = 0

42 self.current_vpattern += 1

43 if self.current_vpattern >= len(self.v_pattern):

44 self.current_vpattern = 0

45 self.state = {'status':'PASSIVE', 'sigma':self.dt}

46 def concTransition(self): if self.state['status'] == 'ACTIVE':
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47 for sim in self.simData.simDico:

48 if not self.myID in self.simData.simDico[sim]:

49 s = self.createSim()

50 self.simData.addSim(sim,self.myID,s)

51 l = self.t_pattern[self.current_tpattern]

52 l_v = self.v_pattern[self.current_vpattern] if self.v_pattern != []

53 else None

54 self.simData.simDico[sim][self.myID].outputs =

55 dict(zip(xrange(len(l)),l))

56 self.simData.simDico[sim][self.myID].val_outputs =

57 dict(zip(xrange(len(l_v)),l_v)) if self.v_pattern != [] else None

58 def createSim(self,dataInit={}):

59 dataInit['outputs'] = {}

60 dataInit['val_outputs'] = {}

61 def timeAdvance(self):

62 return self.state['sigma']
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Hidden Layer Atomic Model

1 class Hidden(DomainBehavior):

2 """ Hidden Layer """

3 def __init__(self, bias = 1.0,

4 N = 0.9,

5 M = 0.1,

6 activation_f = ("tanh","sigmoid"),

7 k = 1.0,

8 a = -0.2,

9 b = 0.2,

10 fileName = os.path.join(os.getcwd(),"weights_%d"%randint(1,100)),

11 learning_flag = True):

12 """ constructor.

13 @param bias = the bias value of hidden layer.

14 @param activation_function = the type of the activation function.

15 @param k = param. for sigmoide activation function only.

16 @param a = weight initialization range [a,b]

17 @param b = weight initialization range [a,b]

18 @param fileName = weights file

19 @param learning_flag = model status

20 """

21

22 DomainBehavior.__init__(self)

23 self.state = {'status':'Idle','sigma':INFINITY}

24 self.dataInit = {'N':N,'M':M,'bias':bias,'activation':activation_f[0]}

25 self.k = k

26 self.a = a

27 self.b = b

28 self.msgListOut = []

29 self.msgListIn = {}

30 self.sim = None

31 self.fileName = fileName

32 self.learning_flag = learning_flag

33 self.layerId = self.myID

34 seed(0)

35 def extTransition(self):

36 """ receiving only new input to claculate or

37 just a signal of weight changes. """

38 i=0

39 for port,msg in self.peek_all():

40 i = port.myID

41 self.msgListIn[i] = msg

42 value = msg.value

43 if i == (len(self.IPorts)-1):

44 """ receiving weight changing signal """

45 self.sim = value

46 self.msgListIn = {}
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47 break

48 else:

49 """ receiving new input to calculate """

50 if self.sim == None:

51 self.sim = Signature(self.createSim(self.dataInit))

52 self.sim.inputs[i] = value[0]

53 self.sim.val_inputs[i] = value[1]

54 if not i == (len(self.IPorts)-1):

55 self.transfer(self.sim)

56 self.state = {'status':'ACTIVE','sigma':0.0}

57 def concTransition(self):

58 if self.state['status'] == 'ACTIVE':

59 plid = self.msgListIn[0].value[2]

60 for Id in self.simData.simDico:

61 try:

62 sim = self.simData.simDico[Id]

63 if not self.layerId in sim:

64 self.simData.addSim(Id,self.layerId,self.createSim(self.dataInit))

65 sim[self.layerId].previousId = plid

66 sim[self.layerId].inputs.update(sim[plid].outputs)

67 try:

68 sim[self.layerId].val_inputs.update(sim[plid].val_outputs)

69 except:

70 pass

71 self.transfer(sim[self.layerId])

72 except:

73 pass

74 def outputFnc(self):

75 Nbports = len(self.OPorts)-1

76 for i in range(Nbports):

77 msg = self.msgListOut[i]

78 try:

79 T = self.sim.outputs[i]

80 V = self.sim.val_outputs[i]

81 except:

82 V = None

83 msg.value= [T,V,self.layerId]

84 self.poke(self.OPorts[i],msg)

85 msg = self.msgListOut[Nbports]

86 msg.value = [self.sim,None,self.layerId]

87 self.poke(self.OPorts[Nbports],msg)

88 self.msgListIn = {}

89 def intTransition(self):

90 self.state = {'status': 'Idle', 'sigma':INFINITY}

91 def rand(self,a,b):

92 return (b-a)*random() + a

93 def timeAdvance(self):

94 return self.state['sigma']
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95 def transfer(self,sim):

96 for i in sim.wh:

97 s = sum([sim.inputs[j]*sim.wh[i][j] for j in sim.wh[i]])

98 sim.outputs[i] = self.activation(sim.activation,s)

99 try:

100 s_val = sum([sim.val_inputs[j]*sim.wh[i][j] for j in sim.wh[i]])

101 sim.val_outputs[i] = self.activation(sim.activation,s_val)

102 except:

103 sim.val_outputs[i]= None

104 def activation(self,activation,x,k=1.0):

105 """ activation Functions."""

106 if activation == "tanh":

107 return math.tanh(x)

108 elif activation == "sigmoid":

109 return 1.0/(1.0+math.exp(float(k)*(-float(x))))

110 else:

111 return x

112 def finish(self, msg):

113 """ optional method to control the

114 behavior when simulation finished """

115 pass

116 def createSim(self,dataInit):

117 dataInit['inputs'] = {len(self.IPorts)-1:self.dataInit['bias']}

118 dataInit['val_inputs'] = {len(self.IPorts)-1:self.dataInit['bias']}

119 dataInit['outputs'] = {}

120 dataInit['val_outputs'] = {}

121 dataInit['wh'] = {}

122 dataInit['c'] = {}

123 dataInit['errors'] = {}

124 dataInit['errorglobal'] = 0.0

125 dataInit['errorglobalvalidation'] = 0.0

126 dataInit['previousId'] = None

127 for i in range(len(self.OPorts)-1):

128 dataInit['wh'][i] = {}

129 dataInit['c'][i] = {}

130 for j in range(len(self.IPorts)):

131 dataInit['wh'][i][j] = self.rand(self.a, self.b)

132 dataInit['c'][i][j] = 0.0

133 self.msgListOut = [Message([None,None],0.0) for i in xrange(len(self.OPorts))]

134 return dataInit

135 def __str__(self):

136 return 'Hidden'
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ErrorGenerator Atomic Model

1 class ErrorGenerator(QuickScope):

2 def __init__(self, stop_learning_factor = 0.0,

3 stop_error_factor = 0.0,fusion = True, eventAxis = False):

4 """ Constructor

5 @param stop_learning_factor = descr1

6 @param stop_error_factor = descr2

7 """

8 QuickScope.__init__(self,fusion = True, eventAxis = False)

9 self.current_pattern = 0

10 self.current_validation_pattern = 0

11 self.iteration = 0

12 self.validation_iteration = 0

13 self.input_list = {}

14 self.input_list_validation = {}

15 self.errors = {}

16 self.errors_validation = {}

17 self.output_targets = []

18 self.output_validation_targets = []

19 self.globalerror = 0.0

20 self.globalerror_validation = 0.0

21 self.layerId = None

22 def extTransition(self):

23 """ recieving """

24 for port,msg in self.peek_all():

25 i = port.myID

26 if i>1:

27 value = msg.value

28 self.layerId = value[2]

29 self.input_list[i-2] = value[0]

30 self.input_list_validation[i-2] = value[1]

31 elif i == 0:

32 self.output_targets.append(map(float,msg.value[0]))

33 else:

34 self.output_validation_targets.append(map(float,msg.value[0]))

35 if i > 1:

36 results = self.errorCalc(self.input_list,self.input_list_validation)

37 self.globalerror += results['gErrors']

38 self.globalerror_validation += results['gErrors_v']

39 self.errors = results['errors']

40 self.state = {'status': 'ACTIVE' , 'sigma': 0.0}

41 def concTransition(self):

42 if self.state['status'] == 'ACTIVE':

43 for Id in self.simData.simDico:

44 '''

45 extracting the signature of the output layer

46 to get the output and calculate the errors
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47 '''

48 try:

49 sim = self.simData.simDico[Id][self.layerId]

50 results = self.errorCalc(sim.outputs,sim.val_outputs)

51 sim.errors = results['errors']

52 sim.errorglobal += results['gErrors']

53 sim.errorglobalvalidation += results['gErrors_v']

54 if self.current_pattern == len(self.output_targets)-1:

55 try:

56 self.results['t'+str(Id)].append((self.iteration,sim.errorglobal))

57 except:

58 self.results['t'+str(Id)] = [(self.iteration,sim.errorglobal)]

59 sim.errorglobal = 0.0

60 if self.current_validation_pattern == len(self.output_validation_targets)-1:

61 try:

62 self.results['v'+str(Id)].append((self.iteration,sim.errorglobalvalidation))

63 except:

64 self.results['v'+str(Id)] = [(self.iteration,sim.errorglobalvalidation)]

65 sim.errorglobalvalidation = 0.0

66 except:

67 pass

68 def outputFnc(self):

69 self.poke(self.OPorts[0], Message([self.errors,None,None], self.timeNext))

70 def intTransition(self):

71 if self.current_pattern == len(self.output_targets)-1:

72 try:

73 self.results['t'].append((self.iteration,self.globalerror))

74 except:

75 self.results['t'] = [(self.iteration,self.globalerror)]

76 self.iteration += 1

77 self.current_pattern = 0

78 self.globalerror = 0.0

79 else:

80 self.current_pattern += 1

81 if self.current_validation_pattern == len(self.output_validation_targets)-1:

82 try:

83 self.results['v'].append((self.iteration,self.globalerror_validation))

84 except:

85 self.results['v'] = [(self.iteration,self.globalerror_validation)]

86 self.validation_iteration += 1

87 self.current_validation_pattern = 0

88 self.globalerror_validation = 0.0

89 else:

90 self.current_validation_pattern += 1

91 self.state = {'status':'Idle', 'sigma':INFINITY}

92 def timeAdvance(self):

93 return self.state['sigma']

94 def errorCalc(self,in_lst,in_lst_v):
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95 errors = {}

96 errors_v = {}

97 a = 0.0

98 b = 0.0

99 cp = self.current_pattern

100 for i in in_lst:

101 errors[i] = float(self.output_targets[cp][i] - in_lst[i])

102 a = a + 0.5*(errors[i]*errors[i])

103 if self.output_validation_targets != []:

104 errors_v[i] = float(self.output_validation_targets[cp][i]-in_lst_v[i])

105 b = b+ 0.5*(errors_v[i]*errors_v[i])

106 return {'errors':errors,'gErrors':a,'gErrors_v':b}
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DeltaWeight DEVS Atomic Model

1 class DeltaOutput_Weight(DomainBehavior):

2 def __init__(self):

3 """ constructor. """

4 DomainBehavior.__init__(self)

5 self.state = { 'status': 'Idel', 'sigma':INFINITY}

6 self.layerId = None

7 self.outError = {}

8 self.sim = None

9 self.msgListOut = [Message([None,None,None],0.0),Message([None,None,None],0.0)]

10 def extTransition(self):

11 """

12 receiving Errors and calculates new weights

13 """

14 for port,msg in self.peek_all():

15 i = port.myID

16 msg = self.peek(self.IPorts[i])

17 if i == 0:

18 self.sim = msg.value[0]

19 self.layerId = msg.value[2]

20 else:

21 self.sim.errors = msg.value[0]

22 self.outError = self.run(self.sim)

23 self.state = {'status': 'ACTIVE', 'sigma':0}

24 def run(self,sim):

25 m = {}

26 deltas = {}

27 outError = {}

28 for j in sim.wh:

29 m[j] = self.dactivation(sim.outputs[j],sim.activation)

30 deltas[j] = m[j]* float(sim.errors[j])

31 for k in sim.wh[j]:

32 change = deltas[j]*sim.inputs[k]

33 try:

34 outError[k] = outError[k] + deltas[j]*sim.wh[j][k]

35 except:

36 outError[k] = deltas[j] * sim.wh[j][k]

37 sim.wh[j][k] = sim.wh[j][k]+sim.N*change + sim.M*sim.c[j][k]

38 sim.c[j][k] = change

39 return outError

40 def outputFnc(self):

41 if (len(self.outError)) != 0:

42 msgError = self.msgListOut[0]

43 msgError.value = [self.outError,None,None]

44 msgSim = self.msgListOut[1]

45 msgSim.value = self.sim

46 self.poke(self.OPorts[1], msgError)
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47 self.poke(self.OPorts[0],msgSim)

48 def intTransition(self):

49 self.state = {'status': 'Idle', 'sigma':INFINITY}

50

51 def concTransition(self):

52 if self.state['status'] == 'ACTIVE':

53 for Id in self.simData.simDico:

54 try:

55 sim = self.simData.simDico[Id][self.layerId]

56 errors = self.run(sim)

57 self.simData.simDico[Id][sim.previousId].errors = errors

58 except:

59 pass

60 def timeAdvance(self):

61 return self.state['sigma']

62 def dactivation(self,y,function="sigmoid"):

63 if function == "tanh":

64 return 1.0 - (y*y)

65 elif function == "sigmoid":

66 return y-y*y

67 else:

68 return 1.0
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Abstract

This thesis deals with the time-domain analysis of the electrical machines fault di-

agnosis due to early short-circuits detection in both stator and rotor windings. It

also introduces to the Discrete EVent system Speci�cation (DEVS) a generic solu-

tion to enable concurrent and comparative simulations (CCS). The DEVS-based CCS

is an extension introduced using an aspect-oriented programming (AOP) to inter-

act with the classic DEVS simulator. A new DEVS-based ANN is also introduced

with a separation between learning and calculation models. The DEVS-based CCS

is validated on the proposed ANN DEVS library inside the DEVSimPy environment.

The concurrent ANN contributes in the time-domains analysis for the electrical ma-

chine fault diagnosis. This new method is based on data coming directly from the

sensors without any computation but with a new dedicated pre-processing technique.

Later, some enhancements are brought to the arti�cial neural network based on a new

multistage architecture reducing the training time and errors compared to the single

ANN. The new architecture and techniques has been validated on real data sixteen

non-destructive windings faults analysis and localization.
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