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12 Décembre 2014

en vue de l’obtention du

DOCTORAT de l’UNIVERSITÉ de CAEN
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Abstract

This thesis presents a topic at the interface of game theory and constraint programming. More
precisely, we focus on modeling games in a succinct way and then computing their solutions on
these compactly encoded games thanks to constraint programming.

For a long period of time, game theory has suffered a modeling difficulty due to the lack of
compact representations for encoding arbitrary games. The basic game representation is still an
n-dimensional matrix called normal form which stores utilities of all players with all joint strategy
profiles. The matrix however exponentially grows with the number of players. This also causes a
solving difficulty for computing solutions in games.

In the thesis, we introduce a novel framework of Constraint Games to model strategic interaction
between players. A constraint game is composed of a set of variables shared by all the players.
Among these variables, each player owns a set of decision variables he can control and constraints
expressing his utility function. The Constraint Games framework is a generic tool to model
general games and can be exponentially more succinct than their normal form. We also show the
usefulness of the framework by modeling a few classical games as well as realistic problems.

The main solution concept defined for constraint games is Pure Nash Equilibrium. It is a situation
in which no player has an incentive to deviate unilaterally. It has been well-known that finding
pure Nash equilibrium is computationally complex. Nevertheless, we have achieved to build an
efficient solver called ConGa which includes various ways for solving constraint games.
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Game Theory • Constraint Programming • Nash Equilibrium
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Chapter 1

Introduction

The mathematical field of game theory [von Neumann and Morgenstern, 1944c] has been set up

to address problems of strategic decision making in which agents interact in conflict situations.

Game theory has an incredible success in description of economic processes [Tesfatsion, 2006],

but is also used in various other domains such as biology or political sciences [Shubik, 1981,

Maynard-Smith and Price, 1973] . Other issues include sequential or simultaneous interaction

mode, complete or incomplete knowledge, determinism, coalitions, repetition, etc.

Nash equilibrium [Nash, 1951] is perhaps the most well-known and well-studied game-theoretic

solution concept for static games in which each player is assumed to know the strategies of the

other players, and no player has anything to gain by changing only their own strategy. In other

words, given a set of strategy choices (called strategy profile) in which each player has chosen his

strategy. The strategy profile is a Nash equilibrium if no player can improve his outcome (also

called payoff or utility) by changing his strategy while the others keep theirs unchanged.

Since a few years, games have been studied in a computational perspective, raising new issues like

complexity of equilibrium or succinctness of representation. The main representation for static

games is still an n-dimensional matrix called normal form that stores utilities of all players with

all possible strategy profiles [Fudenberg and Tirole, 1991]. However, normal form exponentially

grows with the number of players. Actually, there is a lack of a general modeling language that

can express arbitrary games while is also able to compactly encode utility functions exhibiting

commonly-encountered types of structure. Probably, that is one of the biggest challenges in game

theory. It seems responsible for the reason why there are too few solving tools available for

generic games.

Indeed, this thesis is mainly motivated by two questions. First, is it possible to design the game

representations that can compactly model a wide range of interesting games and are amenable

to efficient computation? Second, how do we build efficient algorithms for computing solution

concepts (e.g. Nash equilibrium) in these compactly represented games?

7



8 Chapter 1. Introduction

Along the path of exploration, we realize that most games have a natural understanding. More

precisely, utilities are not randomly generated, but frequently constrained by a form of functions

between players’ strategies. They can thus (often) be expressed in a language. There is no doubt

that it is better to understand utilities in terms of simple relationships than look up in enormous

matrix. Therefore, a language for utilities could be suitable for the compact game representation

that we expect to design.

On the other side, constraint programming [Rossi et al., 2006] is a framework for modeling and

solving combinatorial and optimization problems, e.g. designing schedules, optimizing round

trips, etc. Modeling a problem with constraints is fairly easy. We first need to define a set of

variables along with their domain. Then, we specify a set of constraints which state the relations

between the variables. A solution of the problem is an assignment of all the variables satisfying all

the constraints. The solving tool for constraint problems is called solver which generally includes

a set of constraint techniques. Once we have declared our problem, the solver runs until it finds a

solution or all the solutions (according to our desire).

Now, constraint programming can solve industrial-sized problems with comparable efficiency as

operational research techniques but with a clear and concise modeling language. In particular, side

constraints which appear in industrial problems are easily taken into account within the framework

and fully exploited during the solving phase.

In games, utility function (or preference) is usually expressed by a form of relations between

strategies of players. While in constraint programming, relations between variables are stated in a

form of constraints. We can see here an interesting similarity between the two fields. Indeed, our

idea in this thesis is to model and solve games as constraint problems in which preferences will be

encoded by constraints. Due to the efficiency of the framework, constraint programming would

offer us not only compact game representations but also a set of robust techniques for solving.

In summary, the purpose of this thesis is to build a unified framework to model and solve games

thanks to constraint programming. Referring to real-life problems, our framework is available to

solve the problems with the following features: multiple agents partially compete for the same

resources, have different (not mandatory disjoint) objectives and take decisions simultaneously.

Thesis Organization

Since this thesis is related to two different fields (game theory and constraint programming), we

provide some background knowledge of these fields in Part I. The thesis contributions are then

represented in Part II. The thesis organization is sketched in Figure 1.1 (on the next page).

In the first part, Chapter 2 is devoted to recall the basic elements of game theory that could allow

to specify the position of the thesis in this huge field. We do the same thing, but for constraint

programming, in Chapter 3.
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Figure 1.1: The thesis organization.

The second part expressed by the upper orange layers describes the thesis contributions. The first

contribution, a compact game representation named constraint games, is represented in Chapter

4. We also illustrate the compactness as well as the usefulness of constraint games by modeling a

set of applications taken from both classical games in the literature and real-life.

The algorithms for computing solution concepts, i.e. Nash equilibrium, are depicted in the top

layer. Several local search algorithms are devised in Chapter 5. In Chapter 6, we propose a com-

plete solver including both naive and advanced algorithms for equilibrium enumeration. Finally,

a heuristic search for variable and value ordering is given in Chapter 7.

Thesis Contributions

The central contribution of the thesis is Constraint Games which are a new modeling framework

for generic games with the solving techniques along. These techniques have been implemented in

a solver for constraint games called ConGa. In detail, we have achieved the following outcomes.

• A modeling framework. By proposing constraint games, we have defined a multiple agents

language which allows to express their interaction within the problem to model. It is a

compact game representation which adapts to various modeling purposes thanks to its four

natural variants. All these variants, in which optimization and/or hard constraints are al-

lowed or not, are itemized as follows.

• Constraint Satisfaction Games

• Constraint Satisfaction Games with Hard Constraints

• Constraint Optimization Games

• Constraint Optimization Games with Hard Constraints

We also give a theory of multiple players games including equilibrium notions and their

computation. The main solution concepts defined for constraint games are Pure Nash Equi-

librium (abbreviated PNE) and its subset Pure Pareto Nash Equilibrium.

In this thesis, we demonstrate the utility of constraint games by modeling a few applications

in various fields, such as economy, network or cloud computing, to name a few. In addition,

these applications can be expressed in a compact and elegant way thanks to constraint

games.
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• A solving framework. Solving games is a very difficult task because determining whether

a constraint game has a PNE is Σ
p
2 -complete. The state-of-the-art solver is Gambit

[McKelvey et al., 2014] which includes a simple enumeration algorithm with exponential

complexity. We have implemented the solver ConGa including many search algorithms for

different purposes.

• Local search : Thanks to the compactness of constraint games, our local search solver

may find a PNE in very large games even with the simplest algorithm called iterated

best responses. The largest game tackled in our experiments has 200 players and 5040

strategies per player. A normal form representation of this game would have involved

200×5040200 entries. Additionally, two algorithms using the efficient metaheuristics

sometimes strengthen better performance for the solver [Nguyen et al., 2013].

• Complete search : Although finding one PNE is a very interesting problem in itself,

finding all of them allows more freedom for choosing equilibrium that fulfills some

additional requirements. For example, the correctness of the computation of pure

Pareto Nash equilibrium relies on the completeness of PNE enumeration. We present

in [Nguyen and Lallouet, 2014] a new, correct and complete solver which is based

on a fast computation of equilibrium condition that we call Nash consistency and a

pruning algorithm for never best responses. The experimental results demonstrate

that our solver is faster than the classical game solver Gambit by one to two orders of

magnitude.

• Heuristic search : Local search solver can find a PNE in very large games. However, it

does not guarantee to always detect a PNE as well as prove its absence. The complete

solver proposed can overcome this drawback. However, it does not fit well into large

games, even finding only the first PNE. Hence, we have also studied and implemented

a heuristic search which allows to pick the first PNE within reasonable time.



Part I

Background
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Chapter 2

Game Theory

Contents
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2.2.5 Strong Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Other Types of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.7 Quantifying the Inefficiency of Equilibrium . . . . . . . . . . . . . . . 28

2.3 Representations of Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Extensive Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Graphical Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Action-Graph Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Our work is based on game theory which has been well-known a huge research field of study of

strategic decision making. We thus give in this chapter some background knowledge that allows

to put the thesis in its place.
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14 Chapter 2. Game Theory

The central notion in game theory is game. Generally, a game is composed of a finite set of

intelligent rational decision-makers (usually called players) who have the intention of achieving

several purposes by choosing one or some strategies in their strategy set. A game can be identified

by multiple factors. Among them, the type of games plays a crucial role in representing and

solving games. In this chapter, the main categories of games are hence envisaged, including static

or dynamic, cooperative or non-cooperative, and complete or incomplete information games.

In game theory, a solution concept is a formal rule for defining the outcome of a game. The

solutions describe which strategies will be adopted by players, therefore, the results of games.

Equilibrium concepts are the most used solution concepts. Among them, Nash equilibrium is

the most well-known in the literature. Nash equilibrium is mainly addressed static games. A

situation is called Nash equilibrium if no player has an incentive to change his choice unilaterally.

The main solution concept defined in the thesis is Nash equilibrium. Nevertheless, we also give a

global view related to other equilibrium.

Another important issue in game theory is game representation. It is a data structure capturing all

information necessary to identify games. We hence enumerate and analyze both advantages and

drawbacks of the existing game representations as well as their solving tools from the literature.

Finally, this chapter is ended by several software available for solving games.

2.1 Categories of Games

We give here some main categories of games. Generally, a game is identified by interaction

modes, by behavior between players and by game knowledge.

2.1.1 Static and Dynamic Games

A game can be specified by the interaction mode of all players, i.e. the way how they play their

game. From this point of view, there are two main categories: static games and dynamic games.

In a static game (also called simultaneous game), all players make decisions (or select a strategy)

at the same time, without knowledge of the strategies that are being chosen by other players.

Meanwhile, in a dynamic game (also called sequential game), one player chooses his strategy

before the others choose theirs. Therefore, the later players must have some information of the

previous choices, otherwise the difference in time would have no strategic effect. Dynamic games

are hence governed by the time axis, while static games do not have a time axis as players choose

their moves without being sure of the other’s.

Static Games

A game is said to be static if all players take decision simultaneously and obtain the utility ac-

cording to the decisions made by all players, respectively.



2.1. Categories of Games 15

Definition 2.1 (Static Game). A static game is a 3-tuple (P,(Si)i∈P ,(ui)i∈P ) where:

• P = {1, . . . ,n} is a finite set of players (also called agents);

• for each player i, Si 6= /0 is the strategy set of the player. Let si ∈ Si be a strategy (also called

action) that player i can choose. A strategy profile s = (s1, . . . ,sn) ∈ Πi∈PSi is a tuple of

strategies of n players. We denote by s−i the set of tuples of (n−1) players, except i, under

the strategy profile s. The notation Π expresses the Cartesian product over the sets;

• ui : Π j∈PS j → R is i’s utility (also called payoff) function which specifies i’s utility given

any strategy profile.

Rock-Paper-Scissors (Example 2.1) is a famous hand game which is one of the simplest examples

of static games.

Example 2.1 (Rock-Paper-Scissors). Rock-paper-scissors is a game played by two people, where

players simultaneously form one of three shapes with an outstretched hand. The ”rock” beats

scissors, the ”scissors” beat paper and the ”paper” beats rock (see Figure 2.1); if both players

throw the same shape, the game is tied.

Figure 2.1: A chart showing how the three game elements interact in Rock-Paper-Scissors.
Source: http: // en. wikipedia. org/ wiki/ Rock-paper-scissors

This game can be formulated in static games as follows.

• P = {1,2}
• Both the two players can choose a strategy from the same strategy set S1 = S2 =

{rock, paper,scissors}
• The game has 9 strategy profiles: (rock, rock); (rock, paper); (rock, scissors); (paper, pa-

per); (paper, rock); (paper, scissors); (scissors, paper); (scissors, rock); (scissors, scissors).

• The utility function obtained by each player is following, where “1” stands for “win”; “-1”

for “lose” and “0” for “a tied game”

– ∀i ∈P,ui(rock,rock) = ui(paper, paper) = ui(scissors,scissors) = 0

– u1(rock,scissors) = u1(scissors, paper) = u1(paper,rock) = 1

http://en.wikipedia.org/wiki/Rock-paper-scissors
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– u2(rock,scissors) = u2(scissors, paper) = u2(paper,rock) =−1

– u1(scissors,rock) = u1(paper,scissors) = u1(rock, paper) =−1

– u2(scissors,rock) = u2(paper,scissors) = u2(rock, paper) = 1

In the literature of game theory, “battle of the sexes” (Example 2.2) could be seen as a static game

as well.

Example 2.2 (Battle of the sexes). “ Battle of the sexes” is a two-player coordination game

[Osborne and Rubinstein, 1994] in which a couple planned to go out in the evening. However,

they have not yet decided where they would go. While the wife would like to go to the opera, her

husband enjoys going to the football match. Both would prefer to go to the same place rather

than different ones.

We can encode this game as a static game as follows.

• P = {wi f e,husband}
• Both the wife and the husband can choose a strategy from the same strategy set Swi f e =

Shusband = {opera, f ootball}
• The game has 4 strategy profiles: (opera, opera); (opera, football); (football, opera); (foot-

ball, football)

• The utility function obtained by each player is following:

– uwi f e(opera,opera) = uhusband( f ootball, f ootball) = 3

– uwi f e( f ootball, f ootball) = uhusband(opera,opera) = 2

– uwi f e(opera, f ootball) = uhusband(opera, f ootball) = uwi f e( f ootball,opera) =

uhusband( f ootball,opera) = 0

Dynamic Games

Unlike static games, in a dynamic game [Zaccour, 2005, Haurie and Krawczyk, 2000], the players

move sequentially, i.e. a player will choose his action before the others choose theirs. Several

real-life games such as chess, tic-tac-toe, and Go are typical dynamic games. Let us illustrate

dynamic games by the following example of the tic-tac-toe game.

Example 2.3 (Tic-tac-toe). Tic-tac-toe is a paper-and-pencil game for two players, X and O, who

take turns marking the spaces in a 3×3 grid. The player who succeeds in placing three respective

marks in a horizontal, vertical, or diagonal row wins the game.

Figure 2.2: An example of the tic-tac-toe game in which player “X” wins. Source: http: // en.
wikipedia. org/ wiki/ Tic-tac-toe

Dynamic games are managed by the time axis. Figure 2.2 illustrates an example of tic-tac-toe

along time, from the beginning with the first move of player “X” until the end when a player is

capable of placing a horizontal row.

http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe
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2.1.2 Cooperative and Non-cooperative Games

Since game theory focuses on studying problems in which players’ goals depend on each other, a

crucial characteristic for identifying a game is thus the cooperation between players. Therefore,

games can be divided into two categories: cooperative and non-cooperative games. In a coo-

perative game, several players may collaborate to achieve their goals together. Meanwhile, in a

non-cooperative game, all players are self-interested. Each player just wants to optimize his own

utility without caring about what happens with the others.

Cooperative Games

The central notion of cooperative games is coalition which is a group of players making collabo-

ration to gain the payoff together.

Definition 2.2 (Coalition). A coalition is a subset of players: C⊆P . If C is a coalition consisting

of only one player, i.e. C = {i}, C is called singleton. If C is formed by all players, i.e. C = P ,

then C is called grand coalition.

A cooperative game [Driessen, 1988] consists of two elements

(i) A set of players;

(ii) A characteristic function specifying the value created by different coalition C in the game

The definition of cooperative games is henceforth given as follows.

Definition 2.3 (Cooperative Games). A cooperative game is a pair (P,v) where:

• P = {1, . . . ,n}, a set of finite players.

• A characteristic function which associates a vector v(C) ∈ RC to each coalition C. Each

element vi ∈ v(C) specifies the utility obtained by each player i ∈C.

Example 2.4 (Example 2.2 continued). [Luce and Raiffa, 1957] express the battle of the sexes

game as a cooperative games as follows.

• P = {wi f e,husband}.
• There are 3 coalitions in the game: C1 = {wi f e,husband},C2 = {wi f e},C3 = {husband}.
• The characteristic functions of each coalition are following:

– v(C1) = (vwi f e,vhusband) where vi = 2∨ vi = 3,∀i ∈ {wi f e,husband}
– v(C2) = (vwi f e) where (vwi f e = 0)∨ (vwi f e = 2)∨ (vwi f e = 3)

– v(C3) = (vhusband) where (vhusband = 0)∨ (vhusband = 2)∨ (vhusband = 3)

In Example 2.4, when the wife and the husband appear in a same coalition, namely they put the

common interest as the first choice. Since both prefer to go to the same place than the different

one, they will choose one between two strategy profiles: (opera, opera) or (football, football).

Hence, their utility in this coalition can be 2 or 3. On the other side, in the two remaining coali-

tions, each player is free to choose his/her strategy, then all possible utilities will be considered.
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Non-cooperative Games

Non-cooperative games, which are a crucial class in game theory, capture many research interests.

A non-cooperative game can be either zero-sum [von Neumann and Morgenstern, 1944a] or non-

zero-sum [von Neumann and Morgenstern, 1944b] game. In a zero-sum game, a player’s gain (or

loss) is exactly balanced to the losses (or gains) of the others. If the total gains of the players are

added up, and the total losses are subtracted, they will sum to zero. Thus, zero-sum games are

also called strictly competitive games.

Example 2.5 (Berlin occupancy). Figure 2.3 illustrates a zero-sum game in which the allies

countries share the occupancy of Berlin after the chute of Germany in the second world war.

Figure 2.3: Sectors of divided Berlin. Source: http: // en. wikipedia. org/ wiki/ Berlin_
Blockade

As we can see in the figure, if a country widens his occupied land then the remaining area for all

the others will be henceforth more restricted. Zero-sum games are an important element studied

in various real-world problems in economy or politic such as the problems of dividing a set of

goods or resources between several people, such that each person receives his due share.

In contrast, non-zero-sum games describe a situation in which the interacting players’ aggregate

gains and losses are either less than or more than zero. Non-zero-sum games are also non-strictly

competitive, as opposed to the completely competitive zero-sum games. An interesting point of

non-zero-sum games is that such games include both competitive and cooperative issues. Thus,

they generally fit better into various real-world problems in which the interaction between players

is usually complex. Prisoner’s dilemma is a typical of non-zero-sum games (Example 2.6).

Example 2.6 (Prisoner’s dilemma). The classical prisoner’s dilemma [Poundstone, 1988] intro-

duces two prisoners put in jail without being able to talk to each other. The police plans to

sentence both of them one year, but proposes to each of them to testify against his partner in

exchange of liberty for him and three years for his partner. But if both testify, then both are

sentenced to two years in jail. In this game, each player has possibility to play 0 (defect) or 1

http://en.wikipedia.org/wiki/Berlin_Blockade
http://en.wikipedia.org/wiki/Berlin_Blockade
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(cooperate) with respect to the other player.

In the literature, [von Neumann and Morgenstern, 1944c] prove that any zero-sum game invol-

ving n players is in fact a generalized form of a zero-sum game for two players, and that any

non-zero-sum game for n players can be reduced to a zero-sum game for n+1 players; the (n+1)

player representing the global profit or loss.

2.1.3 Complete and Incomplete Information Games

We have surveyed the way players move as well as the cooperation between players in a game.

Another important point all players want to know is what has been happening in the game. This

raises two other categories for classifying games: Complete and Incomplete Information Games.

In a game of complete information, all players are perfectly informed of all other players payoff

for all possible strategy profiles. If instead, a player is uncertain of the payoffs to other players

then the game is one of incomplete information. In an incomplete information setting, players may

not possess full information about their opponents. The games are generally used for modeling

problems including uncertainty features.

Complete Information Games

A game is said to be complete information [Fudenberg and Tirole, 1991] if every player knows

the payoffs and strategies available to other players. Both Battle of the sexes (Example 2.2) and

Prisoner’s dilemma (Example 2.6) are classified into complete information games category. Then,

complete information games include perfect and imperfect information games.

In a perfect information game, players know the full history of the game, the moves made by

the others as well as all their strategies and their payoffs. Tic-tic-toe or chess are some typical

examples of such games. In contrast, there is at least one decision-node where a player does

not know where he is in the game in imperfect information games. There may also be a chance

element (as in most card games).

Incomplete Information Games

Incomplete information games (or Bayesian games) [Harsanyi, 1968] was firstly proposed by

John C. Harsanyi for modeling the multi-player situation in which at least one player is unsure of

the type (and so the payoff function) of another player. Because information is incomplete, in a

Bayesian game, it is to specify the strategy spaces, type spaces, payoff functions and beliefs for

every player. Incomplete information games are important in capturing many economic situations,

where a variety of features of the environment may not be commonly known.

Example 2.7 (Incomplete information Battle of the sexes). The battle of the sexes game (Example

2.2) can be modified to a new version in which there is no collaboration between the two players.
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Even more, a player does not know whether the other wishes to meet or wishes to avoid her/him.

This is a situation of incomplete information.

2.1.4 Summary

We summarize in Table 2.1 the game categories presented above along with the examples.

Example Interaction mode Behavior between players Game knowledge
Static Dynamic Cooperative Non-cooperative Complete information Incomplete information

Example 2.1 x x x
Example 2.3 x x x
Example 2.4 x x x
Example 2.5 x x x
Example 2.6 x x x
Example 2.7 x x x

Table 2.1: Summary of the game categories

In this thesis, we are interested in multiple players games which are static, non-cooperative, com-
plete information. In such games, all players make decision simultaneously with no cooperation

between players. Finally every player knows about the strategies and the utilities available for

himself as well as for all others.

2.1.5 Specific Classes of Games

Besides the general game categories mentioned above, there also exists some special game classes

having nice properties which facilitate the representation and the reasoning. Fortunately, such

games very often appear in real-world problems in various fields. Hence, they are also an inter-

esting research subject studied for decades.

In this section, we mention several specific classes of games for two reasons. First, many ap-

plications encoded by our modeling tools, constraint games, fall in these classes. Hence, we are

confident that it would be more comprehensive to understand the applications with the background

knowledge of the game classes. Second, in the thesis, we also concentrate on studying algorithmic

game theory in order to design the solving tools for games. We thus recall here potential games

as well as congestion games which are proven to always own at least one equilibrium.

Potential Games

Potential games [Rosenthal, 1973, Monderer and Shapley, 1996] were proposed by Robert W.

Rosenthal in 1973. A game is said to be a potential game if the incentive of all players to change

their strategy can be expressed using a single global function called the potential function.

Definition 2.4 (Potential Games). A potential game is a 4-tuple (P,(Si)i∈P ,(ui)i∈P ,Φ) where:

• P = {1, . . . ,n} is a finite set of players;
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• Si is a strategy set for player i;

• ui(s1, . . . ,sn) is an utility function for player i over the strategy profile s = (s1, . . . ,sn);

• Φ is a potential function which defines the kind of potential game.

Definition 2.5 (Potential Functions). There are several kinds of potential function as follows.

• Exact potential function: Φ : S→ R such that

∀s−i ∈ S−i,∀s′i,s′′i ∈ Si,Φ(s′i,s−i)−Φ(s′′i ,s−i) = ui(s′i,s−i)−ui(s′′i ,s−i).

• Weighted potential function: Φ : S→ R and a vector w ∈ RP such that

∀s−i ∈ S−i,∀s′i,s′′i ∈ Si,Φ(s′i,s−i)−Φ(s′′i ,s−i) = wi(ui(s′i,s−i)−ui(s′′i ,s−i)).

• Ordinal potential function: Φ : S→ R such that

∀s−i ∈ S−i,∀s′i,s′′i ∈ Si,ui(s′i,s−i)−ui(s′′i ,s−i)> 0→Φ(s′i,s−i)−Φ(s′′i ,s−i)> 0.

Because the moves of all players in potential games are mapped into one function, then the po-

tential function is usually an useful tool to analyze equilibrium properties of games.

Congestion Games

The class of congestion games [Rosenthal, 1973] is narrow. Nevertheless, it has widely been

used for encoding many problems, especially in network traffic. Any game where a collection

of homogeneous players has to choose from a finite set of alternatives, and where the payoff

of a player depends on the number of players choosing each alternative, is a congestion game.

In [Monderer and Shapley, 1996], the authors show that the class of congestion games coincides

with the class of finite potential games.

Definition 2.6 (Congestion Games). A congestion game is a 4-tuple (P,R,(Σi)i∈P ,(dr)r∈R)

where:

• P = {1, . . . ,n} is a finite set of players;

• R = {1, . . . ,m} is a set of resources;

• Σi ⊆ 2R is the strategy space of player i ∈P;

• dr : {1, . . . ,n}→ Z is the delay function of resource r ∈ R.

For any state s = (s1, . . . ,sn) ∈ Σ1× . . .×Σn, ∀i ∈P , let δi(s) be the payoff of player i, δi(s) =

Σr∈sidr.

Figure 2.4: An example of the network congestion game with 3 players.

Figure 2.4 illustrates an example of congestion games in the network domain. In this game, three

players take the possible paths to reach the target T from the source S. The delay function dr
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which is defined by the the number of players is noted on each path. For example, on the path

SA, its delay function is 1 if one player takes SA; 3 if SA is chosen by two players; and 5 if three

players pass through this path. Each player would like to allocate the minimal delay paths to reach

the target T . In this figure, the path chosen by player 1 is depicted by the solid lines, then the dash

lines for player 2 and the dotted lines for player 3. For the current state shown in the figure, the

payoff of player 1 is 3 + 2 + 4 = 9, of player 2 is 2 + 4 = 6 and player 3 is 3 + 1 = 4.

2.2 Solution Concepts for Games

Solution concepts for games have been discussed in the game theory community for decades since

there are many ways to define them [Osborne and Rubinstein, 1994]. One of the most fundamen-

tal problems in computational game theory is undoubtedly the computation of a Nash equilibrium

[Nash, 1951], which models a situation where no player has an incentive to change his decision

unilaterally. More precisely, Nash equilibrium is the canonical solution concept of static games.

In this section, we give a brief survey of most well-known concepts, focusing on Nash equilib-

rium, with their existing solving tools along in the literature.

2.2.1 Pure Nash Equilibrium

A situation is said to be a Pure-strategy Nash Equilibrium (hereafter just Pure Nash Equilibrium)

if in this situation, no player can improve his own utility, knowing the other players’ decision.

Definition 2.7 (Best Response). A strategy si is said to be a best response of player i if and only

if ∀s′i 6= si,ui(si,s−i)≥ ui(s′i,s−i).

Definition 2.8 (Pure Nash Equilibrium). A pure strategy profile s is a Pure Nash Equilibrium

(abbreviated PNE) if and only if ∀i ∈P,∀s−i,∀s′i 6= si,ui(si,s−i) ≥ ui(s′i,s−i), i.e. s is a best

response of all players.

Let us illustrate the couple of notions above in a static game in Figure 2.5. It is a game composed

of two players. Player 1 can take a strategy from a set given by {1,2,3} and player 2 from a set

given by {a,b,c}.

Figure 2.5a depicts a matrix that stores all utilities of the two players. In each cell, the first number

is the utility of player 1 and the second is for player 2. In Figure 2.5b, the strategy profile (2,c))

is a PNE because it is a best response of both the two players. The tuple (2,c) is a best response

of player 1 (Figure 2.5c) because, when player 2 keeps his strategy unchanged, i.e. strategy c, if

player 1 chooses either strategy 1 or strategy 3, he will receive a worse utility. Therefore, he would

not deviate to other strategies, i.e. he already gets his best response. The similar explanation is

proposed for the reason why the tuple (2,c) is also a best response of player 2.
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(a) Multimatrix stores all
utilities of the players.

(b) Strategy profile (2,c) is
a PNE of the game.

(c) Tuple (2,c) is a best
response of player 1.

(d) Tuple (2,c) is a best
response of player 2.

Figure 2.5: Illustration of Best Response and Pure Nash Equilibrium in a static game

There are many ways to define solution concepts [Osborne and Rubinstein, 1994] but PNE has the

notable advantage of giving a deterministic decision for the players. Moreover, PNE for games

are similar to solutions for constraint problems: not all games own a PNE, and when available,

some PNE may be more desirable than others. Therefore, we define PNE as the main solution

concept for our modeling tools proposed in this thesis, namely constraint games.

Algorithm 2.1. Finding all PNE in a game

1: function SOLVE(game G): setof tuple
2: PNE ← /0
3: for all s ∈Πi∈PSi do
4: if isPNE(s) then
5: PNE ← PNE ∪{s}
6: end if
7: end for
8: return PNE
9: end function

Algorithm 2.2. Checking whether a tuple is PNE

1: function ISPNE(tuple s): boolean
2: for all i ∈P do
3: if isDev(s, i) then return false
4: end if
5: end for
6: return true
7: end function
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For finding PNE in games, a generic algorithm is described in Algorithm 2.1. In this algorithm, we

simply enumerate all tuples of games. We then verify whether each tuple satisfies the equilibrium

condition (line 3 - 7). This verification is performed in Algorithm 2.2. A tuple is said to be a PNE

if no player can make a beneficial deviation from the current tuple. A player can deviate if he is

able to change to another strategy to get a better utility (Algorithm 2.3).

Algorithm 2.3. Checking whether a player can deviate from the current tuple

1: function ISDEV(tuple t, int i): boolean
2: for all v ∈ Si,v 6= si do
3: if ui(v,s−i)> ui(s) then
4: return true
5: end if
6: end for
7: return false
8: end function

This generic algorithm, which depends on game representations, is naive and inefficient. How-

ever, it is still the baseline algorithm for solving an arbitrary game in the literature. On the

complexity of determining PNE, [Gottlob et al., 2005] prove that finding a PNE of a game, even

if severe restrictions are posed is a hard problem. That is, the time required to solve the problem

using any currently known algorithm increases very quickly as the size of the problem grows (see

Theorem 2.1).

Theorem 2.1 (taken from [Gottlob et al., 2005]). Determining whether a game has a PNE is

NP-complete. 1.

[Duersch et al., 2012] show that every finite symmetric quasiconcave two-player zero-sum game

has a PNE. Earlier, in 1963, Shapley et al. prove that a finite two-player zero-sum game has a

PNE if every 2x2 submatrix of the game has a pure equilibrium [Shapley, 1963]. In aspect of

reasoning, [Cheng et al., 2004] exploit symmetry for more efficient methods, i.e. solving game

by function minimization and replicator dynamics, which apply for finding one or a set of PNE,

not all PNE.

The authors in [Monderer and Shapley, 1996] prove a nice property of potential games in The-

orem 2.2. It thus suggests an useful game class in order to test the solving tools for detecting

PNE.

Theorem 2.2. Every finite potential game has at least one pure Nash equilibrium.

The same thing happens with congestion games as they are a subclass of potential games. Even

more, it have been proposed in Theorem 2.3 in [Rosenthal, 1973] that:

Theorem 2.3. For every congestion game, every sequence of improvement steps is finite. Hence,

every congestion game has at least one PNE.

1It is the complexity in the multimatrix (also called Normal form) representation which is clearly described in
Section 2.3.1. We also notice that all the other complexity results of Nash equilibrium in this section are for games in
normal form.
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Hence, we can use the potential function in order to find an equilibrium point. The problem is that

the number of steps might be exponential in the size of the game. [Fabrikant et al., 2004] prove

that determining whether a congestion game has a PNE is PLS-complete 2, while in the symmet-

ric network case, PNE can be computed in polynomial time. While an unweighted congestion

game always have a PNE, it is no longer true with weighted variants that rely on sharing costs

proportional to players’ weights. [Kollias and Roughgarden, 2011] propose a way of assigning

costs to players with weights in congestion games that recovers the important properties of the

unweighted model.

Local search has also been studied for finding PNE such as iterated best responses

[Shoham and Leyton-Brown, 2009]. Additionally, the authors in [Son and Baldick, 2004] argue

that any iterative PNE search algorithms based on local optimization cannot differentiate real NE

and “local NE traps”. Thus, they apply coevolutionary programming, a parallel and global search

algorithm, to overcome this problem.

2.2.2 Pareto Nash Equilibrium

In games, it would happen that some equilibrium are more desirable than the others. Usually, the

purpose of solution concepts built up on Nash equilibrium aim at removing less realistic solutions

in games. Pure Pareto Nash Equilibrium (hereafter just Pareto Nash Equilibrium) is henceforth

such kind of concept.

Pareto efficiency, or Pareto optimality, is a state of allocation of resources in which it is impossible

to make any one individual better off without making at least one individual worse off. That is,

a Pareto Optimal outcome cannot be improved upon without hurting at least one player. Pareto

optimality has been widely used as the most fundamental solution concept for the multi-objective

optimization problems. Moreover, this solution concept has also been applied for games, e.g.

[Sen et al., 2003].

Definition 2.9 (Pareto Nash Equilibrium (taken from [Gottlob et al., 2005])). A Pure Nash Equi-

librium s is a Pareto Nash Equilibrium (abbreviated PPNE) if there does not exist a PNE s′ such

that ∀i ∈P,ui(s′)> ui(s).

Theorem 2.4 (taken from [Gottlob et al., 2005]). Determining whether a game has at least one

PPNE is NP-complete.

Obviously, if there exists a PNE, then there also exists a PPNE. In other words, let P1 be the set of

all PNE and P2 be the set of all PPNE, then P2 ⊆ P1. Both finding PNE and PPNE problems share

the same complexity. In terms of the existing algorithms, [Gasior and Drwal, 2013] propose a

distributed algorithm which provably stops at PPNE in capacity allocation game for self-managed

networks.

2Polynomial Local Search (abbreviated PLS) is a complexity class that models the difficulty of finding a locally
optimal solution to an optimization problem [Yannakakis, 2009].
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2.2.3 Mixed Nash Equilibrium

Most work in game theory concerns mixed equilibrium. A mixed equilibrium is the given of

a probability distribution for each player on his strategies such that no player has incentive to

change his distribution. While this notion of strategy allows each game to have an equilibrium

[Nash, 1951], it does not provide an implementable solution concept but more a guideline for all

players to choose their action.

In static games, a player plays a pure strategy when he deterministically chooses a strategy from

his strategy set. A mixed strategy is the one in which a player takes his available pure strategies

with certain probabilities. We denote by φ(Si) the set of mixed strategy for player i, than a mixed

strategy σ ∈ φ(Si) is a probability distribution over Si.

Definition 2.10 (Expected Utility). The expected utility of player i under the mixed strategy pro-

file σ , denoted by ui(σ), is ui(σ) = ∑s∈S ui(s)Π j∈Pσ j(s j), where σ j(s j) denotes the probability

that j plays s j.

Definition 2.11 (Mixed Nash Equilibrium). A mixed strategy profile σ is a Mixed Nash Equi-

librium if ∀i ∈P,σi ∈ argmaxσi ui(σi,σ−i) where σ−i is a tuple of mixed strategy of the other

players, except i.

Example 2.8 (Matching Pennies Game). It is a game composed of two players: player A and

player B. Each player owns a penny and chooses to turn the penny to head or to tail. Both turn

their penny simultaneously and immediately reveal the results together. If the pennies match, i.e.

both head or both tail. Player A wins and gets a score of 1, while −1 for player B. Otherwise, if

the pennies do not match (one heads and one tails) then player B wins and gets a score of 1 and

−1 for player A.

There is no PNE in this game. But since the two players turn their pennies secretly. Their plan

should be “unpredictable”. That is, we should randomize (or mix) between strategies. If each

player turns to head or to tail with a probability of 0.5, then their expected utility is 0.5× 1+

0.5×(−1) = 0 and neither A nor B can do better by deviating to another strategy. Thus, matching

pennies game has one mixed Nash equilibrium being (0.5,0.5).

Determining whether a game has at least one mixed Nash equilibrium does not fall into

a classical complexity class. More precisely, it is PPAD-hard 3 [Papadimitriou, 2007,

Daskalakis et al., 2006] even if the game is composed of only two players.

Many efficient algorithms have been devised for computing mixed equilibrium such as Lemke-

Howson [Lemke and Jr, 1964], Simplicial subdivision [Scarf, 1973], Porter-Nudelman-Shoham

[Porter et al., 2008]. Recently, local search algorithms have been introduced in this context

[Gatti et al., 2012, Ceppi et al., 2010] as well as genetic algorithms [Ismail et al., 2007].

3PPAD (Polynomial Parity Arguments on Directed graphs) is a complexity class introduced by C. Papadimitriou
in 1994. PPAD is a subclass of TFNP (Total Function Nondeterministic Polynomial) based on functions that can be
shown to be total by a parity argument.
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2.2.4 Approximate Nash Equilibrium

An approximate Nash equilibrium [Bubelis, 1979], is a strategy profile that approximately satis-

fies the condition of Nash equilibrium. This allows the possibility that a player may have a small

incentive to do something different.

Definition 2.12 (Approximate Nash Equilibrium). Given ε > 0, a mixed strategy profile σ is an

Approximate Nash Equilibrium (or ε-Nash Equilibrium) if for ∀i ∈P,∀σ ′i ∈ φ(Si),ui(σ)+ ε ≥
ui(σ

′
i ,σ−i).

Clearly, an approximate Nash equilibrium falls back to a general mixed Nash equilibrium when

ε = 0. Hence the complexity of computing an approximate Nash equilibrium of two-player games

is PPAD-complete as well, even for constant values of the approximation [Daskalakis, 2011].

Computing approximate Nash equilibrium has been studied in [Hémon et al., 2008] for multi-

player games. In [Daskalakis et al., 2009a], the authors propose a linear-time algorithm for games

consisting of only two strategies per player. The algorithm returns a 1
2 -approximate Nash equi-

librium in any 2-player game. Later, [Bosse et al., 2010] provide a polynomial time algorithm

that achieves an approximation guarantee of 0.36392. They also extend the algorithms for 2-

player games by exhibiting a simple reduction that allows to compute approximate equilibrium

for multi-player games.

Following another research approach, [Cartwright, 2003] presents an imitation heuristic and an

innovation heuristic to guide the players learn to play to converge to an approximate NE in large

games. On the other hand, [Chien and Sinclair, 2011] specify their interest in congestion games

by studying the ability of decentralized, local dynamics to rapidly reach an approximate Nash

equilibrium.

2.2.5 Strong Nash Equilibrium

All the solution concepts we have previously mentioned are for static games in which there is no

collaboration between players. Now, we present Pure Strong Nash Equilibrium [Aumann, 1959]

(hereafter just Strong Nash Equilibrium, also called core) which is a Nash equilibrium concept

for games with collaboration. It is a situation in which no coalition, taking the actions of its

complements as given, can cooperatively deviate in a way that benefits all of its members.

From [Gottlob et al., 2005], given K ⊆P , a coalition, let s be a strategy profile, and s′ ∈Πi∈KSi

a combined strategy in K. Then, we denote by s−K [s′] the strategy profile where for each player

i ∈ K, his individual strategy si ∈ s is replaced by his individual strategy profile s′i ∈ s′.

Definition 2.13 (Strong Nash Equilibrium). A strategy profile is a Strong Nash Equilibrium (ab-

breviated SNE) if, ∀K ⊆P,∀s′ ∈Πi∈KSi,∃i ∈ K such that ui(s)≥ ui(s−K [s′]).

Theorem 2.5 (taken from [Gottlob et al., 2005]). Determining whether a game has at least one

SNE is Σ
p
2 -complete.
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Note that the existence of a PNE does not imply the existence of a SNE. Several algorithms

have been proposed to compute SNE in specific classes of games, e.g., congestion games

[Hayrapetyan et al., 2006, Rozenfeld and Tennenholtz, 2006]. More recently, [Gatti et al., 2013]

design a spatial branch–and–bound algorithm to find a SNE in general games.

2.2.6 Other Types of Equilibrium

In order to model rationality, many other solution concepts have been proposed such as

Correlated Equilibrium [Aumann, 1974], Subgame Perfect Equilibrium [Osborne, 2004], Se-

quential Equilibrium [Kreps and Wilson, 1982] or Stackelberg Equilibrium [Stackelberg, 1952,

Sherali et al., 1983], etc. Although these notions are very interesting, they are not directly re-

lated to this thesis. Hence, we do not make a survey more detailed about them and we refer the

interested readers to the references cited above.

2.2.7 Quantifying the Inefficiency of Equilibrium

The previous parts of this section provided numerous notions of equilibrium for defining solution

concepts in games. But do the objective function value of an equilibrium of the game and of an

optimal outcome always coincide? The answer is “no”. This leads to an important notion called

“measures of the inefficiency of the equilibrium of a game” [Roughgarden and Tardos, 2007]. In

fact, all of these measures are defined as the ratio between the value of an equilibrium and of an

optimal outcome of games.

The price of anarchy (abbreviated PoA) is the most popular measure of the inefficiency of equi-

librium. It resolves the issue of multiple equilibria by adopting a worst-case approach. The price

of anarchy of a game is the ratio between the worst objective function value of an equilibrium of

the game and that of an optimal outcome [Koutsoupias and Papadimitriou, 2009].

A game with multiple equilibrium has a large PoA even if only one of its equilibrium is highly

inefficient. It has been proposed the price of stability (abbreviated PoS) of a game which is the

ratio between the best objective function value of one of its equilibrium and that of an optimal

outcome. In other words, the PoS is a measure of inefficiency designed to differentiate between

games in which all equilibrium are inefficient and those in which some equilibrium are inefficient.

Left Right
Top (2,1) (0,0)

Bottom (0,0) (5,10)

Table 2.2: A simple game for calculating the PoA and the PoS

We illustrate how to calculate the PoA and the PoS in the simple game described in Table 2.2. In

this game, there are two equilibrium points, (Top, Left) and (Bottom, Right), with values 3 and

15, respectively. The optimal value is 15. Thus, PoS = 15/15 = 1 while PoA = 3/15 = 1/5.
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2.3 Representations of Games

In order to study any games, the first issue we must care about is how to represent it. A game

representation is a data structure storing all information needed to specify a game. A game

representation is said to be fully expressive if it is able to represent any arbitrary game. Finally

the size of a game representation is the amount of data to express a game instance. In this section,

we make a survey about the existing game representations in the literature. Note that we will

generally focus on the fully expressive representations with their solving tools along.

2.3.1 Normal Form

The standard game representation of a static game is normal form [Fudenberg and Tirole, 1991]

which is an n-dimensional matrix stating all utilities of all players for all joint strategy profiles in

the game.

Definition 2.14 (Normal Form). A normal form representation of a game is an n-dimensional

matrix which represents all players’ utilities with regard to all strategy profiles of the game.

The size of this representation is n×Πi∈P |Si|, which is Θ(nmn) where m = maxi∈P |Si|. The

matrix thus exponentially grows with the number of players. In case of two-player game, the

mutilmatrix is called bimatrix and its size is 2×|S1|× |S2| (see Figure 2.6).

Figure 2.6: Normal form representation of a static game consisting of two players. The strategy
set of player 1 is {1,2,3} while the one of player 2 is {a,b,c}. In each cell, the first number depicts
the utility of player 1 while the second one is for player 2.

Normal form is fully expressive. However, it is not a compact game representation. For example,

in order to encode a game composed of 100 players and only 2 strategies per player, the normal

form needs to store 100×2100 entries. The matrix easily becomes huge to express a game which

is not really large. Accordingly, normal form is intractable for large games. This also causes a
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significant difficulty to the widespread use of game-based modeling. Despite its intractability,

normal form is still the basic representation for static games. All the algorithms for computing

equilibrium as well as the complexity results in Section 2.2 are based on normal form.

2.3.2 Extensive Form

Another basic representation for games is extensive form [Fudenberg and Tirole, 1991]. This rep-

resentation consists of a number of players, a game tree, and a set of payoffs. In the game tree,

players are presented by nodes, strategies that all players can choose disposed in the edge and

leave nodes are labeled by the utility of all players.

Figure 2.7: Extensive form of the game “battle of the sexes” (Example 2.2). The first numbers in
the leave nodes are the utilities for the wife while the second ones are for the husband.

Figure 2.7 depicts the extensive form of the battle of the sexes game. This game has a second

extensive form with the husband put at the root. However, since two players take decision at the

same time, the two versions are exactly equivalent. In static games consisting of multiple players

with multiple strategies taken by all players in parallel, the tree would become very complex.

Indeed, we will consider only normal form as the classical representation of general static games

in the rest of this thesis since it is absolutely equivalent to the extensive form associated.

Figure 2.8: A part of an extensive form of Tic-tac-toe. Source: http: // en. wikipedia. org/
wiki/ Tic-tac-toe .

http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe
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The advantage of extensive form is that it specifies the sequence of strategies taken by all players.

In other words, it expresses both the current status of a game as well as its history. Therefore, it is

often used for encoding dynamic games. For example, a part of an extensive form of tic-tac-toe

(Example 2.3) is given in Figure 2.8.

2.3.3 Graphical Games

As mentioned earlier, both normal form and extensive form are not succinct for encoding static

games. There is thus a need to define compact representations of utility which is a challenge in

computational game theory.

Several proposals have contributed to define more tractable representations, e.g. Graphical Games

[Kearns et al., 2001, Daskalakis and Papadimitriou, 2006], for games in which a player’s utility

only depends on a subset of the other players. In a graphical game, each player i is represented

by a vertex in a directed graph 4 G. We use N(i) ⊆P to denote the neighborhood of player i in

G - it means those vertices j such that the directed edge (i, j) appears in G. N(i) includes i itself

because player i’s utility depends on his decision as well. Let s be a joint strategy, we use φi(s) to

denote the projection of s onto just the players in N(i).

Definition 2.15 (Graphical Games). A Graphical Game is a pair (G, M ), where:

• G is a directed graph over the vertices {1, . . . ,n};
• M is a set of n local game matrices. For any joint strategy s, the local game matrix Mi ∈

M specifies the payoff Mi(φi(s)) for player i, which depends only on the strategies taken by

the players in N(i).

Example 2.9 (taken from [Bonzon, 2007]). Adam, Dylan and Julie are invited to a party. Adam

wants to accept the invitation. So does Dylan, but he will go if and only if Adam does go too. For

Julie, she wants to go with Dylan but without Adam.

Example 2.9 can be expressed by a graphical game which is composed of the directed graph in

Figure 2.9 and a set of local matrices in Table 2.3.

Figure 2.9: Directed graph of Example 2.9

4Graphical games are originally defined by [Kearns et al., 2001] on undirected graphs. While some later authors,
e.g. [Daskalakis and Papadimitriou, 2006], propose the version using directed graphs that is presented here.



32 Chapter 2. Game Theory

Adam

Adam
0 (0)
1 (1)

Dylan Dylan
0 1

Adam
0 (0) (0)
1 (0) (1)

Julie Dylan
(1 (yes)) 0 1

Adam
0 (0) (1)
1 (0) (0)

Julie Dylan
(0 (no)) 0 1

Adam
0 (0) (0)
1 (0) (0)

Table 2.3: Local matrices of all the players in Example 2.9. In the tables, each player controls a
set of two strategies where “1” states for “yes” and “0” for “no”. For the utility of all players,
“1” states for “go to the party” while “0” for “not go to the party”.

In Example 2.9, Adam’s utility depends on no one else. Hence, only his strategies appear in his

local matrix (the table in top left). Then, because Dylan’s utility is dependent of Adam, there are

the strategies of Adam and Dylan in Dylan’s local matrix (the table in top right). Finally, the final

decision of Julie depends on both Adam and Dylan. Therefore, the strategies of all the players

occur in the local matrix of Julie (the two tables in bottom). Indeed, instead of storing 3×23 = 24

entries in normal form, we only need to store 2+4+8 = 14 entries in the three local matrices of

the graphical game.

The total size of the representation is Θ(n×m(ξ+1)) where ξ is the maximum in-degree of G

[Jiang, 2011]. Graphical games allow to reduce the size of the utility tables because it only re-

quires a number of parameters that is exponential in the size d of the largest local neighborhood.

Hence, if d� n, then the graphical representation is significantly more compact than the normal

form. However, it also means that this representation does not fit well to games that are not de-

composable, i.e. when there exists a full interaction between all players in the games as the size

would fall back to the normal form size.

For reasoning on graphical games, [Kearns et al., 2001] propose a polynomial-time algorithm

to find approximate Nash equilibrium on tree graphs. Later, the same problem on games

encoded by general graphs are solved by [Ortiz and Kearns, 2002, Vickrey and Koller, 2002].

[Elkind et al., 2006] show that mixed Nash equilibrium can be computed in quadratic time if

the underlying graph is a path, and therefore in polynomial time if the underlying graph has max-

imum degree 2. On computing PNE, [Gottlob et al., 2005] try to enforce several restrictions on

graphical games. They have found out that the existence of a PNE and computation problems are

tractable for games that simultaneously have small neighborhood and bounded hypertree width.

In this case, finding PNE is feasible in polynomial time. Recently, [Chapman et al., 2010] attempt

to find the “best” pure Nash equilibrium but it is limited on tree graph.

2.3.4 Action-Graph Games

Based on graphical games, Bhat and Leyton-Brown propose Action-Graph Games (AGG)

[Bhat and Leyton-Brown, 2004] that exploit properties of certain games like context indepen-
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dence and anonymity to achieve a compact representation. Each node in the graph of AGG is

represented by action (strategy), not player (Definition 2.16).

Definition 2.16 (Action Graph). An Action Graph G = (A ,E) is a directed graph where A is

set of nodes. We call each node α ∈A an action and A the set of distinct strategies. E is a set

of directed edges where self edges are allowed. We say α ′ is a neighbor of α if there is an edge

from α ′ to α , i.e. (α ′,α) ∈ E.

[Jiang, 2011] extends the basic framework to three different variants of AGG: (1) the basic AGG

representation (AGG-/0); (2) AGG with function nodes (AGG-FNs); (3) AGG-FNs with additive

structure (AGG-FNA). Nevertheless, for understanding the principal idea of this game represen-

tation, extracting the most basic one (AGG-/0, Definition 2.17) is enough.

Definition 2.17 (Action-Graph Games). An Action-Graph Game (abbreviated AGG) is a 4-tuple

(P,S,G,u) where:

• P is a finite set of players;

• S = Πi∈PSi is the set of strategy profiles;

• G = (A ,E) is an action graph, where A = ∪i∈PSi is the set of distinct actions;

• u = (uα)α∈A is a tuple of |A | functions where uα is the utility function for action α .

In AGG, each player’s utility is calculated according to an function of the node he chooses and the

numbers of tokens placed on the nodes that neighbor chooses in the graph. Then, like graphical

games, matrix are still required to store utilities. The size of matrix is worst-case exponential.

Thus, the size of the utility functions determines whether an AGG can be tractably represented.

On the complexity of action-graph games, in [Daskalakis et al., 2009b], the authors demonstrate

that, generally, determining whether an AGG has a PNE is NP-complete, even for symmetric

AGG-/0 with bounded in-degrees, and PPAD-complete with mixed Nash equilibrium. This moti-

vates Jiang and Leyton-Brown to identify tractable subclasses of AGG. They therefore propose a

dynamic programming approach and show that if the AGG-/0 is symmetric and the action graph

has bounded tree width, their algorithm determines the existence of PNE in polynomial time

[Jiang and Leyton-Brown, 2007]. They also propose in [Jiang and Leyton-Brown, 2006] a poly-

nomial time algorithm (in the size of the AGG representation) for computing expected payoff

under mixed strategy profiles.

2.3.5 Boolean Games

Graphical games and AGG are the interaction-based game representations. Another approach is to

find a language-based representation, from which Boolean Games emerge as the most successful.

Boolean games are initially proposed by [Harrenstein et al., 2001]. Formally, a boolean game is

composed of a finite set of players. Each player controls a set of propositional variables to achieve

his goal (also called preference) which is encoded by a propositional formula.

Definition 2.18 (Boolean Games). A Boolean Game is a 3-tuple(P,V,φ ) where:
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• P = {1, . . . ,n} is a finite set of players;

• V = (Vi)i∈P such that i 6= j ↔ Vi ∩Vj = /0 where Vi is a set of propositional variables

controlled by player i;

• φ = {ϕ1, . . . ,ϕn} is a set of goals, where each ϕi for player i is a satisfiable formula.

Example 2.10 (Example 2.9 continued). The situation in Example 2.9 can be expressed as a

boolean game as follows.

• P = {1,2,3} where 1 stands for Adam, 2 for Dylan and 3 for Julie;

• ∀i ∈P,Vi = {xi} where xi is true if player i will go to the party ;

• The goals of all the players are following: ϕ1 = x1,ϕ2 = x1↔ x2,ϕ3 = ¬x1∧ x2∧ x3.

The advantage of boolean games over the interaction-based representations such as graphical

games or action-graph games is that they succeed in dealing with the worst case of the previous

game representations, i.e. in games where there is a full interaction between all players. However,

in boolean games, each player owns a SAT problem which defines his satisfaction. There is no

means to specify inside the language a non-boolean utility. This is why it is required to provide an

external way to define preferences. In [Bonzon et al., 2009b], CP-nets [Boutilier et al., 2004] are

used to define players’ preferences. It is the drawback of boolean game with regard to graphical

games or action-graph games because the two later can express non-boolean utility without using

any external tool.

On the complexity, [Dunne and van der Hoek, 2004] prove that determining whether a boolean

game has a PNE is Σ
p
2 -complete, while checking whether a particular strategy profile is a PNE

is co-NP-complete. Some work has been devised towards finding tractable classes of boolean

games. In [Bonzon et al., 2009a], the authors focus on benefiting the independence between play-

ers in boolean games, i.e. decomposable boolean games, by applying the principal techniques of

graphical games for boolean games. Such games can be divided into multiple subgames which are

smaller and easier for solving. Finally, the global equilibrium is a joint equilibrium of all the sub-

games. The tractable classes proposed by [Dunne and Wooldridge, 2012] comes from two issues:

development of an alternative solution concept and identification of the specific classes which are

tractable. One hand, they have relaxed the notion of PNE by defining a new equilibrium con-

cept named k-bounded Nash equilibrium for which no player can benefit by altering fewer than k

variables. On the other hand, specific classes have been determined by performing some restric-

tions on games that make checking for deviation of an individual player become computationally

tractable.

Many extensions of boolean games have been proposed for years. While in a basic boolean game,

each player is free to choose any strategy for achieving his goal, [Dunne et al., 2008] assume that

the strategies available to a player have some cost. Thus, the secondary purpose of all players is

to minimize this cost. They also propose preferences over possible coalitions between players.

All these ideas implied to an extensive boolean game named cooperative boolean games whose

solution concepts are defined by core and stable sets. Sharing the same idea of cooperation,

[Bonzon et al., 2012] study the properties of efficient coalitions in boolean games. Their main
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contributions are to demonstrate how a coalition in boolean games is effective, in terns of the

power about coalitions.

More recently, [Wooldridge et al., 2013] have also extended the basic framework of boolean

games by introducing an external element what they called taxation schemes. The idea of taxation

is inspired by the incentive mechanisms found in human societies which aims at perturbing the

preferences of the players in certain ways. Like in [Dunne et al., 2008], these schemes impose a

cost on every possible strategy that a player can choose. The main solution concept studied is still

PNE and it is also shown that Nash outcome verification is co-NP-complete. For implementing the

taxation schemes on a boolean game, Wooldridge et al. suppose that there is an external principal

who accomplishes these tasks (e.g. like government in social life). This arises a new problem

called Implementation. It is proved in the same paper that Implementation is Σ
p
2 -complete.

A variable must be under control of one and only one player in the basic boolean games.

[Grant et al., 2014] propose to add a set of environment variables in which each variable is un-

controlled by any player but imposes impact on the players’ goals. The players make decisions

according to their belief about the possible values assigned to the environment variables by an ex-

ternal player called principal. The game is therefore manipulated by sharing information since at

each moment, the principal will announce the possible values of the environment variables to the

players who therefore adapt their decision to the announcement. The solution concept of boolean

games in this case is defined by Nash stability [Grant et al., 2010] which is derived from the PNE

notion.

Iterated Boolean Games [Gutierrez et al., 2013] are also another extension of boolean games. An

iterated boolean game can be considered as an infinite series of rounds, where at each round

each player makes an assignment to his controlled variables. Goals in this game are expressed

as formula of Linear Temporal Logic [Emerson, 1990]. Gutierrez et al. also prove that check-

ing whether a strategy profile is a PNE and whether a game has at least one PNE are complete

problems for PSPACE and 2EXPTIME, respectively.

For reasoning on basic boolean games, the first methods for computing all PNE or core elements

have been proposed by [de Clercq et al., 2014a] in using disjunctive answer set programming

[Brewka et al., 2011]. Their idea is to transform a boolean game into an answer set program.

Henceforth, by using the saturation techniques [Baral, 2003], the obtained answer set will co-

incide with the set of PNE or the cores. They also note that their grounded disjunctive answer

set programming has the same complexity of determining whether a boolean game has a PNE,

yielding Σ
p
2 -complete [Baral, 2003].

2.3.6 Other Representations

Besides the game representations described above, there are also a few attempts to design compact

representations in the literature. In [de Vos and Vermeir, 1999], preferences are represented by

a choice logic program for which stable models coincide with Nash equilibrium. In a similar
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way, [Foo et al., 2004] represent games by LPOD (Logic Program with Ordered Disjunction).

However, these two formalisms actually encode the reaction operator in logic and do not provide

a compact representation in the worst case.

In addition, congestion games [Rosenthal, 1973], routing games [Roughgarden, 2007] are

other kinds of specific games that enjoy a compact representation, as well as symmetric

games [Dasgupta and Maskin, 1989], anonymous games [Brandt et al., 2009], local-effect games

[Leyton-Brown and Tennenholtz, 2003]. Nevertheless, they are not general games and not fully

expressive.

2.4 Existing Software in Game Theory

There are still not many software tools available for solving games as well as evaluating game-

theoretic algorithms. Along with designing modeling tools, our long-term goal is to implement a

robust software for reasoning on games. We recall here a generator of benchmark for games as

well as a few existing solvers for several game representations in the literature.

Gamut [Nudelman et al., 2004] is a java library for easily generating a benchmark of games.

Gamut includes thirty-five base game classes already studied in the literature. It also allows to

choose the parameter options for games and generates random utilities as well. The main purpose

of Gamut is for testing game-theoretic algorithms on the normal form representation. Gamut is

available at http://gamut.stanford.edu/.

Gambit [McKelvey et al., 2014] is a C++ library including many existing algorithms for solving

games in the literature. It provides both command line interface and graphical interface. The

input file of Gambit is based on the normal form representation. Although this solver focuses on

finding mixed Nash equilibrium, the authors also implemented a simple algorithm for finding pure

Nash equilibrium that can be launched by the command gambit-enumpure. Gambit is available

at http://www.gambit-project.org/.

Jiang and Leyton-Brown have implemented a solver for solving their action-graph games. Work-

ing on the text input file called “AGG file format”, the solver provides both command line tools

and graphical interface for finding Nash equilibrium. In addition, it also solves Bayesian Action-

Graph Games (abbreviated BAGG), an extension of AGG that compactly represents Bayesian

games [Jiang and Leyton-Brown, 2010]. The game instances in Gamut have also been generated

in the AGG representation. In addition, both the AGG and the BAGG file format have been

integrated into the Gambit solver. This solver is available at http://agg.cs.ubc.ca/.

A complete solver for boolean games implemented and maintained by Bauters and De Clercq

is available at http://www.cwi.ugent.be/BooleanGamesSolver.html. This solver allows

to compute PNE or core elements in boolean games. It is capable of finding Pareto optimal

equilibrium as well [de Clercq et al., 2014a].

http://gamut.stanford.edu/
http://www.gambit-project.org/
http://agg.cs.ubc.ca/
http://www.cwi.ugent.be/BooleanGamesSolver.html
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Constraint programming (abbreviated CP) is a programming paradigm which encodes and solves

problems using variables and constraints. The work in CP have been widely described in the

literature. Hence, we will only recall the essential notions as well as the solving techniques that

will be used or directly related to this thesis. The interested readers could find much more back-

ground knowledge of constraint programming in [Rossi et al., 2006]. At the end of this chapter,

we mention several existing CP attempts in game theory.

3.1 Basic Notions

Let V be a set of variables and D= (Dx)x∈V be the family of their (finite) domains. For W ⊆V , we

denote by DW the set of tuples on W , namely Πx∈W Dx. Projection of a tuple (or a set of tuples) on

a variable (or a set of variables) is denoted by |: for t ∈DV , t|x = tx, t|W = (tx)x∈W . For W,U ⊆V ,

the join of A⊆ DW and B⊆ DU is A on B = {t ∈ DW∪U | t|W ∈ A ∧ t|U ∈ B}. These notions will

be used in the rest of this thesis.

A CP problem is itself a constraint network. A constraint c = (W,T ) is a pair composed of a

subset W = var(c)⊆V of variables and a relation T ⊆DW . In other words, a constraint network is

formally defined as a Constraint Satisfaction Problem which is the essential concept in constraint

programming.

37
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Definition 3.1 (Constraint Satisfaction Problem). A Constraint Satisfaction Problem (abbreviated

CSP) is composed of a finite set of variables V and a finite set of domain D with D(x) is the domain

of variable x ∈V , together with a finite set of constraints C, each on a subset of V .

Then the solution concept for constraint satisfaction problems is defined as follows.

Definition 3.2 (Solution). A solution is an assignment of all variables that satisfies all the con-

straints simultaneously.

Example 3.1 (CSP). Given a CSP with the set of variables V = {X ,Y,Z}, the variables’ domains

D(X) = D(Y ) = D(Z) = {1,2,3}, the set of constraints C = {X >Y ;Y > Z}. The unique solution

is X = 3,Y = 2,Z = 1.

Constraint programming is a powerful modeling framework with many facilities. One of the most

useful is global constraints [van Hoeve and Katriel, 2006]. A constraint capturing the relations

between a non-fixed number of variables is called global constraint. An example is the con-

straint all different(x1, . . . ,xn) [Lauriere, 1978], which specifies that any pair of variables

must be assigned different values. Many global constraints are described in a catalog accessible

at http://sofdem.github.io/gccat/. Generally, a global constraint can be replaced by a

conjunction of a set of simpler constraints. Using global constraint not only helps to make the

model more explicit and declarative - therefore, it simplifies the modeling tasks - but also facili-

tates the work of constraint solver by providing a better view of the structure of the problem. In

addition, many specific efficient techniques for solving global constraints have been proposed, for

example [Puget, 1998, Mehlhorn and Thiel, 2000], to name a few.

We have mentioned the basic notions of constraint programming through Constraint Satisfaction

Problems. Many extensions of classical CSP have been developed. This survey will be continued

with Optimization [Tsang, 1993], an extension directly impacts to our work in this thesis. In

many applications, we would like to find a solution to a CSP that is optimal with respect to

certain criteria. In this case, the optimization condition needs to be embedded over the CSP.

Definition 3.3 (Constraint Optimization Problem). A Constraint Optimization Problem (abbre-

viated COP) is a CSP P defined on the variables x ∈ V together with an objective function f :

Πx∈V Dx→ R.

An optimal solution to a minimization (maximization) COP is a solution d to P that minimizes

(maximizes) the value of f (d). The objective function value is often represented by a variable, for

example z, together with the “constraint” min(z) or max(z) for a minimization or a maximization

problem, respectively.

Example 3.2 (COP). Given a COP with the set of variables V = {x,y}, the domains D(x) =

D(y)= {1,2}, the set of constraints C = {x≥ y;x 6= 2y}. The optimization condition is max(x+y).

In Example 3.2, if the optimization condition is not taken into account, the problem is a CSP in

which there are two solutions, (x = 1,y = 1) and (x = 2,y = 2). Among them, (x = 2,y = 2) is the

best solution which maximizes the optimization condition. The problem in Example 3.2 thus has

only one solution, i.e. (x = 2,y = 2).

http://sofdem.github.io/gccat/
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3.2 Reasoning

Determining whether a given CSP has a solution is NP-complete [Cohen and Jeavons, 2006]. It

is in NP because a solution of a CSP is an assignment of all variables which can be represented in

polynomial space with the number of variables. We can henceforth verify in polynomial time that

the solution satisfies all constraints. Then the completeness derives from the theorem of Cook

[Cook, 1971] which stipulates that the satisfaction problem of the conjunction clauses, which is a

restriction of CSP, is NP-complete in itself.

There are three main algorithmic techniques for solving constraint satisfaction problems: back-

tracking search [van Beek, 2006], local search [Hoos and Tsang, 2006], and dynamic program-

ming [Dechter, 2006]. We recall, in this section, some techniques of the two first solving methods

that inspire us to propose techniques for finding equilibrium in our constraint games.

3.2.1 Backtracking Search

An algorithm for solving Constraint Satisfaction Problems can be either complete or incom-

plete. Backtracking search algorithms are probably the the most canonical complete algo-

rithms in constraint programming. From the proposals in the early day [Davis et al., 1962,

Golomb and Baumert, 1965], many techniques have been suggested and evaluated for improving

the backtracking search. In this section, we only survey several techniques, including constraint

propagation, heuristic for variable and value ordering, backjumping and branch-and-bound tech-

niques.

Constraint Propagation

In constraint programming, local consistency is the consistency of subsets of variables or con-

straints. In other words, local consistency conditions require that all consistent partial evaluations

can be extended to another variable such that resulting assignment is consistent. A partial evalu-

ation is consistent if it satisfies all constraints whose scope is a subset of the assigned variables.

Several local consistencies are proposed in the literature, such as node consistency, arc consis-

tency, and path consistency, to name a few.

A fundamental insight in improving the performance of backtracking algorithms on CSP is that

local inconsistency can lead to unproductive search. Namely, inconsistency can be the reason

for many deadends in the search. This motivates many algorithms to maintain the local consis-

tency during search. The generic scheme is to perform constraint propagation [Bessière, 2006]

removing local inconsistencies. Constraint propagation is the central to the process of solving a

constraint problem.

Backtracking search is based on search tree. Generally, the search is divided into two main steps

which repeat successively: Propagate by removing the local inconsistencies and split and solve
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sub-problems recursively. The backtracking search is depicted in Algorithm 3.1 which launches

the recursive algorithm in Algorithm 3.2.

Algorithm 3.1. Backtracking algorithm for solving a CSP

1: V : List of variables
2: D: List of domains associated to variables
3: C: Constraints

4: function BT(V,D,C) : boolean . return true if the CSP has at least a solution
5: return rBT( /0, V, D, C)
6: end function

Algorithm 3.2. Solving sub-problems recursively

1: A: List of assignments
2: X : List of variables non assigned
3: D′: List of current domains of variables in X
4: C: List of constraints

5: function RBT(A,X ,D′,C) : boolean . return false if there is no solution in the sub-problem
6: if X = /0 then
7: return true
8: end if
9: D′← propagate(A,X ,D′,C)

10: if ∃x ∈ X such that D′(x) = /0 then
11: return false
12: end if
13: x← A variable in X
14: for all v ∈ D′(x) do
15: return rBT(A∪{x← v},X \{x},D′ \D′(x),C)
16: end for
17: end function

In Algorithm 3.2, a solution is found if all variables are instantiated by one of their values (line 6-

8). Otherwise, we perform the function of propagation in line 9. This function removes the local

consistencies in the subgame. It thus usually reduces the current domains of the variables non

assigned. In Example 3.1, when X is assigned to 2, then the domain of Y becomes D(Y ) = {1}.
Namely the two values, 2 and 3, are removed from D(Y ) due to the constraint X > Y .

If after having propagated, there exists a variable whose domain is empty, then the assignment A

can not appear in a solution because it violates at least one constraint c ∈C (line 10-12). In other

words, there in no solution on this branch. In Example 3.1, when X is assigned to 1, then the

domain of Y becomes D(Y ) = /0 due to the constraint X > Y . It means, there is no solution when

X = 1.

Otherwise, we choose a variable non instantiated in X (line 13). Then, for all values in its current

domain, we add branches for new nodes. We then recursively solve new sub-problems until a
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solution is found, or its absence is proven (line 14-16).

Figure 3.1: Backtracking algorithm runs on Example 3.1.

Figure 3.1 illustrates how backtracking search works on Example 3.1. Thanks to constraint prop-

agation, many deadends stated by cross are discovered without reaching to the leaves. A solution

in this example is noted by the bold lines while the dash branches depict the unexplored search

space.

Heuristics for Variable and Value Ordering

It has been shown that in many problems, efficient heuristics for variable and value

ordering can make a significant impact on the performance of backtracking algorithms

[Bacchus and van Run, 1995, Gent et al., 1996]. There are two kinds of heuristics. The first one

is called static heuristics in which we force a strict ordering for variable and value at the begin-

ning of search. The second one, which captures much more research attentions, is called dynamic

heuristics in which the variable and value ordering is adapted to the information recorded during

search. In other words, it could by seen as a part of search process.

Dynamic variable ordering [Golomb and Baumert, 1965, Bacchus and van Run, 1995] aims at re-

plying this question: given a node p, how to select a non-instantiated variable x to branch next?

In the early days, [Golomb and Baumert, 1965, Haralick and Elliott, 1980] propose a heuris-

tic named dom which suggests to choose the variable with the minimal domain left. Later,

[Brélaz, 1979] uses a new notion called degree of an unassigned variable x which is the number of

constraints which involves x and at least one other unassigned variable. He therefore proposes the

dom+ deg heuristic which chooses the variable with the smallest remaining numbers of values

and the variable with the highest degree. Also based on degree, the dom/deg heuristic proposed

by [Bessière and Régin, 1996] divides the domain size of a variable by the degree of the vari-

able and chooses the variable which has the minimal values numbers. In the dom/wdeg heuristic

[Boussemart et al., 2004] , the domain size is divided by the weighted degree. A weight, initially

set to one, is associated with each constraint. Every time a constraint is responsible for a deadend,

the associated weight is incremented. The weighted degree is the sum of the weights of the con-
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straints which involves x and at least one unassigned variable. In other ways, several heuristics

minimize specific functions, such as [Brown and Jr., 1982, Gent et al., 1996] or exploit structure-

guided variable ordering heuristics for CSP represented as a graph [Freuder, 1982, Zabih, 1990].

Given a node p, the variable ordering heuristic already chooses variable x to branch next, it is re-

quired to choose value a to assign to x from its remaining domain (after having been propagated).

Value ordering heuristics have been proposed in the literature which mainly based on either es-

timating the number of solutions or estimating the probability of a solution, for each choice of

value a for x. e.g. [Ginsberg et al., 1990, Frost and Dechter, 1995, Minton et al., 1992], to name

a few.

Backjumping

While backtracking always goes up one level in the search tree when all values for a variable

have been tested, backjumping [Gaschnig, 1979] is a form of non-chronological backtracking

algorithm as it may go up more levels (see Figure 3.2). Therefore, backjumping allows to reduce

the search space, indeed, to offer more efficient performance.

Figure 3.2: Backjumping. The figure in left side shows a search tree visited by regular backtrack-
ing. The backjumping occurs in the right side figure in which the dash node is not visited.

While constraint propagation and inconsistency removing could be seen as look-ahead techniques

which try to detect deadends early by pruning values from future variables, backjumping tech-

niques are look-back ones which try to deal with deadends in an intelligent way by recording and

exploiting the reasons for failures. We have applied this idea for our complete solving tools to

perform more pruning during search. This pruning is, of course, different to the standard pruning

in the literature.

For the existing backjumping techniques in CP, by discovering and maintaining nogoods during

search, [Gaschnig, 1979, Bruynooghe, 1981, Rosiers and Bruynooghe, 1986] design several al-

gorithms allowing to backjump from deadends. Based on graph, [Dechter, 1990] proposes the

first algorithm to jump back at internal deadends. Conflict-directed backjumping algorithm (CBJ)

proposed by [Prosser, 1993] can do the same. Moreover, CBJ has also been combined with con-

straint propagation. [Prosser, 1993] proposes FC-CBJ, an algorithm combining forward checking
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and conflict-directed backjumping. Furthermore, he also presents another algorithm called MAC-

CBJ which maintains arc consistency and CBJ simultaneously. However, this algorithm only

handles binary constraints. It is extended by [Chen, 2000] for general constraints.

Branch-and-bound Techniques

Backtracking search algorithms have been applied for solving Constraint Optimization Problems

as well. Because the goal is to find an optimal solution which maximizes (minimizes) the objective

function f , after having found all solutions of Constraint Satisfaction Problems, we need perform

a complementary task to take the best solution between them. It is the basic technique for solving

COP.

Fortunately, it is possible to use the function f to prune the search space in a technique well-

known as Branch-and-bound (or B&B) [van Beek, 2006]. With B&B, in an optimization problem

(say maximization of f ), we can add the constraint f > v in the remaining search after finding a

solution f = v. This constraint helps to propagate and cut branches that lead to a solution whose f

value is less than the one previously found. Therefore, the technique allows to reduce the search

space. Note that this classical B&B technique finds only one best solution, not all of the best

solutions of the problem.

3.2.2 Local Search

Local search [Hoos and Tsang, 2006] is classified into the category of incomplete algorithms,

meaning that it does not guarantee to always find a solution as well as prove its optimality in

every combinatorial problem. Nevertheless, it provides the basis for some of the most successful

and versatile methods for solving the large and difficult problem instances encountered in many

real-life applications. Despite impressive advances in systematic, complete search algorithms,

local search methods in many cases represent the only feasible way for solving these large and

complex instances.

Given a CSP C, the idea of local search for finding one solution in CSP is rather simple. For

starting, an initial point which is a complete variables assignment is randomly chosen. The possi-

ble points around the current point which is different at least one value assigned to a variable are

called neighbors. Deciding which neighbor will be chosen is performed by an evaluation func-

tion heuristic. Then, at each step, we move to a neighbor which will be served as the next current

point. The process is iterated until a termination criterion is reached. The termination criterion

could be the solution detected or user-specific such as the max step or time exceeded. The formal

definition of local search is described in [Hoos and Stützle, 2004].

Probably, the first algorithms which improve over the simple iterated improvement process in CSP

are min-conflicts heuristics (abbreviated MCH) [Minton et al., 1992]. In the algorithms, each at

step, we choose a random variable v from a set which records all variables appeared in at least
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one constraint violated. Then, a value a in the current domain of x will be selected such that

the number of constraint violated is minimal. It has been well-known that MCH are essentially

incomplete. They may be stagnated in local optima and is not available to escape by itself.

In order to avoid getting stuck in local optima of the given evaluation function, in the literature,

[Glover, 1989] introduces tabu search which uses a tabu tenure to memorize the search space

already tested. Hence, it may forbid to recheck the same state twice at one point and allows

to escape the trap of local optima. Tabu search is also used for solving constraint problems.

[Steinmann et al., 1997, Stützle, 1998] apply the idea of tabu search with Min Conflict Heuristics

with Tabu Search (abbreviated TMCH) algorithms. TMCH work like MCH except that after the

value of variable v is changed from a to a′ then the variable/value pair (v,a) is declared tabu for

next x steps, where x is the tabu tenure parameter. the variable/ value pair involved in each step.

By modifying evaluation function heuristic when the search processes, Dynamic Local

Search [Hoos and Stützle, 2004] leads to a set of Penalty-Based Local Search Algorithms like

GENET [Davenport et al., 1994], Breakout Method [Morris, 1993] or Guided Local Search

[Voudouris and Tsang, 1996].

Evolutionary algorithms have widely used for CSP [Hao and Dorne, 1994, Rojas, 1996], e.g. ge-

netic algorithms [Hao and Dorne, 1994, Lau, 1999]. Furthermore, ant colony optimization in-

spired by the path-finding behavior of ants [Dorigo and Stützle, 2004], is applied in CSP by

[Solnon, 2001]. Besides general problems, local search has also solved several specific types

of CSP instances. For example, simulated annealing algorithms [Kirkpatrick et al., 1983] which

allow non-improving search step with certain probabilities or iterated local search algorithms for

the graph coloring problem [Johnson et al., 1989, Paquete and Stützle, 2002].

As pointed out in Chapter 2, there are still not many tools available for solving games. In particu-

lar, it is almost intractable for very large games. It seems that a main reason is the lack of a good

compact representation. Even for compact representations such as graphical games or action-

graph games, matrix storing the payoffs are still required. In benefiting from the compactness of

constraint games, together with local search, our wish is a robust local search solver which is able

to break out this existing limitation in game theory.

3.3 Constraint Programming in Game Theory

There are a few attempts to use constraint programming in game theory. In [Apt et al., 2008], the

authors try to bridge a gap between the concept notions used in the area of soft constraints and

strategic games. They show that, for a class of soft constraints including weighted constraints,

every optimal solution is a Nash equilibrium. Furthermore, the optimality for soft constraints and

Pareto efficient joint strategy coincides in general.

In [Bordeaux and Pajot, 2004], it has been proposed to compute a mixed Nash equilibrium us-

ing continuous constraints. More recently, [Soni et al., 2007] define a new constraint satisfaction
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problems for finding approximate equilibrium in graphical games. They also provide an algorithm

to compute Bayes-Nash equilibrium in one-shot games for incomplete information games. Other

types of equilibrium such as Stackelberg equilibrium have been investigated within the Quantified

Constraint Satisfaction Problems [Bordeaux and Monfroy, 2002, Benedetti et al., 2008]. Quanti-

fied Constraint Satisfaction Problems is an extension of CSP in which some variables are univer-

sally quantified. They are often used for modeling the situations which include the uncertainty

features.

In [Gottlob et al., 2005], the authors present a CSP encoding the reaction operator in graphical

games. Each player has a constraint stating his best reaction for each possible strategy profile of

the other players. A solution of this CSP is thus a Nash equilibrium. However, this is mainly a

theoretical tool because the constraints are huge and not natural to model.

Some other formalisms try to solve a combinatorial problem by multiple agents, either by letting

the agents dynamically select their variable like in SAT-Games [Zhao and Müller, 2004] and Ad-

versarial CSP [Brown et al., 2004] or with a predefined assignment of variables to agents like in

Distributed Constraint Satisfaction Problems and Distributed Constraint Optimization Problems

[Faltings, 2006, Leite et al., 2014].

Definition 3.4 (Distributed Constraint Satisfaction Problems). A Distributed Constraint Satisfac-

tion Problems (abbreviated DisCSP) is a 4-tuple (P,V,D,C) where:

• P = {1, . . . ,n} is a finite set of n players;

• V = {v1, . . . ,vn} is a set of n variables;

• D = (Di)i∈P is a set of n domains where Di is the domain of vi, respectively;

• C = {c1, . . . ,cm} is a set of m constraints.

Unlike in the classical CSP setting, each variable vi of DisCSP is controlled by only player i. That

means only player i is available to assign a value in Di to vi. He therefore knows the domain

of his variable and all constraint involving vi which can be reliably communicated with all other

players. Thus, the main challenge in DisCSP is to develop distributed algorithms that solve the

CSP by exchanging messages among players.

Distributed Constraint Satisfaction Problems can be extended to Distributed Constraint Opti-

mization Problems (abbreviated DCOP). DCOP include a group of agents who must distributedly

choose values for a set of variables such that the cost of a set of constraints over the variables is

either minimized or maximized.

Both DisCSP and DCOP can be structurally represented as a graph, where the variables corres-

pond to nodes and the constraints between pairs of variables are the edges. Naturally, there

are several studies involving in the combination between the concept of graphical games and

distributed constraints problems. In [Grubshtein and Meisels, 2012], graphical games are mod-

eled as Distributed Constraint Satisfaction Problems with unique k-ary constraints in which each

agent is only aware of its part in the constraints. The authors also propose in the same paper

an asynchronous backtracking algorithm to find ε-Nash equilibrium of the problems. Conversely,
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[Maheswaran et al., 2004] introduce the distributed algorithms for DCOP by decomposing DCOP

into a graphical game and by investigating various evolutionary algorithms to compute Nash equi-

librium.
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In this chapter, we introduce the framework of Constraint Games to model strategic interaction

between players. A constraint game is composed of a set of variables shared by all the players.

Among these variables, each player owns a set of decision variables he can control while his

preference depends on the decisions taken by the remaining players as well. Each player may

try to improve his utility by choosing an assignment that optimizes his preference. Constraint

games include four variants in which optimization and/or hard constraints are allowed or not.

The solution concept for constraint games is defined by Nash equilibrium. They are situations

in which no player may improve his preference unilaterally. We show the practical utility of the

framework by modeling a few classical games in the literature as well as realistic problems. In

addition, we are also interested in solving tools for constraint games. We thus propose a set of

search methods for constraint games which will be detailed in the following chapters. In this

chapter, we only mention several general characteristics of our solving framework.
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4.1 Modeling Framework

Our main idea is to use CSP for expressing players’ utilities. In this section, we present Constraint

Games, a fully expressive representation for encoding games. Moreover, constraint games also

provide a means to compactly model static games using constraints.

4.1.1 Constraint Satisfaction Games

Let P be a set of n players and V a finite set of variables. The set of variables is partitioned into

controlled variables Vc =
⋃

i∈P Vi where Vi is the subset of variables controlled by player i, and

VE the set of uncontrolled or existential variables (VE =V \Vc).

In the spirit of boolean games, at the beginning, we start our work by trying to encode games

in which utilities are only boolean. In other words, the satisfaction of each player expressed by

his preference is simply “yes” or “no”. The basic representation of constraint games - Constraint

Satisfaction Games - is henceforth designed for such games.

Definition 4.1 (Constraint Satisfaction Game). A Constraint Satisfaction Game (abbreviated

CSG) is a 4-tuple (P,V,D,G) where:

• P is a finite set of players;

• V is a finite set of variables composed of a family of disjoint sets (Vi) for each player i ∈P

and a set VE of existential variables disjoint of all the players variables;

• D = (Dx)x∈V is the family of their domains;

• G = (Gi)i∈P is a family of CSP on V .

The CSP Gi is called the goal of the player i. The intuition behind CSG is that, while player i

can only control his own subset of variables Vi, his satisfaction will depend also on the variables

controlled by all the other players. The intuition behind existential variables is that no player

controls them and they are existentially quantified 1.

In terms of semantic, Constraint Satisfaction Games are almost equivalent to boolean games. The

unique difference is that variables are no longer limited to propositional ones. In Chapter 2, we

demonstrated how to encode Example 2.9 by graphical games (Figure 2.9 and Table 2.3) and by

boolean games (Example 2.10). Now, this example will be encoded by our Constraint Satisfaction

Games in Example 4.1.

Example 4.1 (Example 2.9 continued). The situation in Example 2.9 can be expressed as a Con-

straint Satisfaction Game as follows.

• P = {1,2,3} where 1 stands for Adam, 2 for Dylan and 3 for Julie;

• ∀i ∈P,Vi = {xi} where xi is controlled by player i;

• ∀i ∈P,D(xi) = {true, f alse}, xi = true means player i will go to the party;

1We will make a deeper discussion related to existential variables in Section 4.1.3. Now, we only envisage games
without this kind of variables.
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• The goals of all players are following: G1 = {x1},G2 = {x1↔ x2},G3 = {¬x1∧ x2∧ x3}.

As we can see in the above example, there is no difficulty to encode an arbitrary boolean game by

a Constraint Satisfaction Game. In addition, like boolean games, Constraint Satisfaction Games

are also able to easily encode games in which there is a full interaction between players.

Next, we define the basic notions of static games (previously described in Definition 2.1) in the

literature that link constraint games to general games.

Definition 4.2 (Strategy and Strategy Set). A strategy si for player i is an assignment of the

variables Vi controlled by player i. Therefore the strategy set Si of player i is DVi .

Definition 4.3 (Strategy profile). A strategy profile s = (si)i∈P is the given of a strategy for each

player.

A strategy of a player in CSG is a joint values assigned to his controlled variables while his

strategy set will be defined by the Cartesian product over the domains of his variables. A strategy

profile is a set of strategies in which each strategy is chosen by one player from his strategy set.

The boolean utility function of player i over a strategy profile s is set to 1 if s satisfies the goal of

i and to 0, otherwise.

Definition 4.4 (Utility). Let ui(s) be the utility function of player i over s, ui(s) = 1↔ s∈ sol(Gi)

and ui(s) = 0↔ s /∈ sol(Gi).

We denote by s−i the projection of s on V−i =V \Vi. Beneficial deviation represents the fact that

a player will try to maximize his satisfaction by changing the assignment of the variables he can

control if he is unsatisfied by the current assignment.

Definition 4.5 (Beneficial deviation). Given a strategy profile s, a player i has a beneficial devi-

ation if ∃s′i ∈ Si such that ui(s′i,s−i)> ui(si,s−i).

A tuple s is a best response for player i if this player is not able to make any beneficial deviation.

Definition 4.6 (Best response). A strategy profile s(si,s−i) is a best response (abbreviated BR) for

player i if and only if ∀s′i,ui(si,s−i)≥ ui(s′i,s−i).

The main solution concept defined for CSG is pure Nash equilibrium.

Definition 4.7 (Pure Nash Equilibrium). A strategy profile s is a Pure Nash Equilibrium (ab-

breviated PNE) of the CSG C if and only if no player has a beneficial deviation, i.e. s is a best

response of all players.

Among the PNE in a CSG, it would happen that several PNE are more desirable than the others.

Hence, we also propose another solution concept called Pareto Nash Equilibrium which is based

on PNE .

Definition 4.8 (Pareto Nash Equilibrium). A PNE s is a Pareto Nash Equilibrium (abbreviated

PPNE) if and only if there does not exist a PNE s′ such that ∀i ∈P,ui(s′)> ui(s).

The notions defined above will be illustrated on the following example.

Example 4.2 (CSG). We consider the following CSG: the set of players is P = {X ,Y,Z}. Each

player owns one variable: VX = {x},VY = {y} and VZ = {z} with Dx = Dy = Dz = {0,1,2}. The
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goals are GX = {x 6= y,x > z}, GY = {x≤ y,y > z} and GZ = {x+1 = y+ z} 2 .

The boolean multimatrix of this example is depicted in Table 4.1.

z = 0 y
0 1 2

x
0 (0,0,0) (0,1,1) (0,1,0)
1 (1,0,0) (0,1,0) (1,1,1)
2 (1,0,0) (1,0,0) (0,1,0)

z = 1 y
0 1 2

x
0 (0,0,1) (0,0,0) (0,1,0)
1 (0,0,0) (0,0,1) (0,1,0)
2 (1,0,0) (1,0,0) (0,1,1)

z = 2 y
0 1 2

x
0 (0,0,0) (0,0,0) (0,0,0)
1 (0,0,1) (0,0,0) (0,0,0)
2 (0,0,0) (0,0,1) (0,0,0)

Table 4.1: Example 4.2 is encoded in normal form. The pure Nash equilibrium are depicted in
bold and in italic where classical PNE for which no player is satisfied are depicted in italic.

Each solution of Gi is a best response of player i ∈P . For example 120 (which stands for

x = 1,y = 2,z = 0) is a best response of player X because it is a solution of GX . It is a best

response of player Y and player Z as well. So 120 is a pure Nash equilibrium. 100 is also a best

response of player X . However, it is not a PNE of the CSG because player Y may deviate from 0

to 1 to get a better strategy 110, a solution of GY . Player Z is able to do the same with 121. The

strategy profile 221 is a PNE because it is a solution for Y and Z, and player X is unable to deviate

because neither 021, 121 or 221 are solution of GX . Note that an equilibrium can leave one or

more player unsatisfied if no assignment is able to satisfy their goal. It may happen like for 022

that no player is satisfied. Among the PNE of this CSG, only the PNE depicted in bold are Pareto

Nash equilibrium while the PNE in italic, i.e. 022,202, are not because they are dominated by the

PNE 120.

We have defined the basic notions of constraint games through Constraint Satisfaction Games.

Now, let us discuss about its theoretical aspect, namely the complexity of constraint games. We

prove in the following theorem that determining whether a CSG has a PNE is a hard problem.

Theorem 4.1. Deciding whether a given CSG has at least one PNE is Σ
p
2 -complete.

Proof. The proof is adapted from the Σ
p
2 -completeness of boolean games [Bonzon et al., 2006].

Membership comes from the simple algorithm in which one guesses a strategy profile and checks

that no player has a beneficial deviation. Each verification consists in proving that a player i has

no solution if the strategy profile is not winning for i. This verification is in coNP because for a

strategy profile s, proving that there exists a solution for player i amounts to solve the CSP Gi,

which is in NP. Since the number of players is finite, there is a polynomial number of calls to a

coNP oracle (actually one for each player) and thus the problem is in Σ
p
2 .

2In this chapter, we give many examples illustrating the use of constraint games. In order to make this example
and the others easy to understand, the constraints in the players’ goals are often equalities or inequalities. However,
the constraints in constraint games are not limited to only these kinds of constraints. In contrast, our framework can
deal with all constraints defined in constraint programming, including arbitrary constraints, table constraints and soft
constraints, as well as arbitrary ways of aggregating the various constraints.
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For hardness, we introduce a special case of CSG: the 2-player 0-sum game. In this kind of game,

when one player wins, the other player looses. Thus it is enough to represent only the goal of

the first player, the other one being deduced by negation. Such a CSG can be represented by

(P = {1,2},V,D,C) where C is the goal of player 1 (the goal of player 2 is straightforwardly

deduced by negation).

We perform a reduction from a ∃∀-QCSP3 to a 2-player 0-sum CSG. ∃∀-QCSP are known to

be Σ
p
2 -complete. This reduction proves that even 2-player 0-sum CSG are at least as hard than

solving a ∃∀-QCSP. Together with membership of the Σ
p
2 class, it gives the exact complexity for

n-player CSG.

The reduction is from the QCSP Q = ∃X∀YC where X and Y are disjoint sets of variables to

the 2-player 0-sum CSG G = ({1,2},X ∪Y ∪{x,y},(D,Dx,Dy),C∨ (x = y)) where x is a new

variable controlled by player 1, y a new variable controlled by player 2 and Dx = Dy are domains

composed at least of 2 elements. It is obvious that the conversion can be performed in polynomial

time. If Q is valid, then let s1 be the assignment of variables of X and let s2 be an assignment of

variables of Y . Because Q is valid, ∀s′2 ∈ DY , (s1,s′2) ∈ sol(C). Thus (s1,s2) is a PNE because

player 1 is winning and player 2 has no beneficial deviation. Conversely, if Q is not valid then for

any assignment s1 ∈DX of player 1, player 2 can play s′2 ∈DY such that (s1,s′2) 6∈ sol(C). Then if

player 1 plays x = v and if (s1,s2) ∈ sol(C), then player 2 can play s′2 and y = w with w 6= v. Thus

player 2 has a beneficial deviation and (s1,s2,v,w) is not an equilibrium. If (s1,s2) 6∈ sol(C) and

player 2 plays y = w, then player 1 can play x = w and player 1 has a beneficial deviation. Thus

(s1,s2,w,w) is not an equilibrium. In conclusion, G has a PNE if and only if Q is valid, proving

the Σ
p
2 -hardness.

4.1.2 Constraint Satisfaction Games with Hard Constraints

The goals of players in constraint games could be considered as soft constraints or preferences.

It may happen however some games have rules that forbid several strategy profiles as they model

impossible situations. It is natural to reject such profiles by setting hard constraints shared by all

players. Hard constraints have been introduced in game theory under the name of shared con-

straints [Rosen, 1965] and are not related to constraint programming but to general constrained

optimization. Hard constraints can be easily expressed in the framework of constraint games by

adding an additional CSP on the whole set of variables in order to constrain the set of possible

strategy profiles.

Definition 4.9 (Constraint Satisfaction Game with Hard Constraints). A Constraint Satisfaction

Game with Hard Constraints (abbreviated CSG-HC) is a 5-tuple (P,V,D,C,G) where:

• (P,V,D,G) is a CSG;

• C is a CSP on V .

3QCSP stands for “Quantified Constraint Satisfaction Problems”.
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Example 4.3. We consider the following CSG-HC: the set of players is P = {X ,Y,Z}. Each

player owns one variable: VX = {x},VY = {y} and VZ = {z} with Dx = Dy = Dz = {1,2,3}. The

goals are GX = {x = y+ z}, GY = {x≥ z > y} and GZ = {x = y = z}. The set of hard constraints

is composed of the following constraints C = {x≤ y≤ z}

It is useful to distinguish a strategy profile which does not satisfy any player’s goal from a strategy

profile which does not satisfy the hard constraints. The former can be a PNE if no player has a

beneficial deviation while the latter cannot. In Example 4.3, the strategy profile (1,2,3) is a PNE

although all the players’ goals are not satisfied (but no player can deviate to a better strategy) while

the strategy profile (3,2,1) is not a PNE because it does not satisfy the hard constraints. Therefore

hard constraints provide an increase of modeling expressibility (without however changing the

general complexity of CSG).

It is also necessary to specify the notion utility in CSG-HC (see Definition 4.4 for CSG). In CSG,

it is allowed that all joint strategy of all players are considered as acceptable situations. In CSG-

HC, the condition is more restricted. Only strategy profiles, which satisfy hard constraints, are

permitted. The others are simply forbidden and therefore have no utility.

Figure 4.1: Illustration of the satisfiable search space restricted by hard constraints x≤ y≤ z in
Example 4.3.

From the definition of solution, any strategy profile which is rejected by hard constraints cannot be

a solution. Thus the hard constraints exclude the largest common unsatisfiable part of the search

space. The intended meaning of the hard constraints is that beneficial deviation is only allowed in

the satisfiable subspace defined by the additional CSP. An example is given in Figure 4.1 where

the plain and dotted red lines represent the possible deviations for each player. In addition, using

hard constraints could greatly improves readability of the model and solving efficiency.

4.1.3 Constraint Optimization Games

Boolean games are a powerful modeling tool for games because it can be exponentially more

compact than normal form, even for games with full interaction between players. Nevertheless,

there is no way to express the optimization condition inside boolean games without using external

tools. In reality, utilities in both classical games and real-world applications are non-boolean and
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that requires to incorporate optimization inside frameworks.

It is not difficult to integrate optimization condition into constraint games. A Constraint Opti-

mization Game is an extension of CSG in which each player tries to optimize his goal. This is

achieved by adding for each player i an optimization condition min(x) or max(x) where x ∈V is

a variable to be optimized by player i.

Definition 4.10 (Constraint Optimization Game). A Constraint Optimization Game (abbreviated

COG) is a 5-tuple (P,V,D,G,opt) where :

• (P,V,D,G) is a CSG;

• opt = (opti)i∈P is a family of optimization conditions for each player of the form min(xi)

or max(xi) where xi ∈V .

Let us show how to encode the prisoner’s dilemma game as a COG in the following example.

Example 4.4 (Example 2.6 continued). The prisoner’s dilemma can be represented by the values

given in Table 4.2. It is also encoded by the following COG:

• P = {A,B}
• VA = {x}, VB = {y}, VE = {zA,zB}
• D(x) = D(y) = {0,1}
• GA = {zA =−x+2y+1},GB = {zB = 2x− y+1}
• optA = min(zA),optB = min(zB)

y
0 1

x
0 (1,1) (3,0)
1 (0,3) (2,2)

Table 4.2: The bimatrix of the prisoners’ dilemma game in normal form.

The set of existential variable VE appears in the above example. In constraint games, each exis-

tential variable is not under control of any player. In several cases, existential variables can be

stated as non decision ones because their values can be computed by side-effect.

For the notions in COG, from CSG, the utility function needs to be slightly adapted. We give

below the notion in case of maximization 4.

Definition 4.11 (Utility (COG)). Let ui(s) be the utility function of player i over s, then ui(s) =

−∞↔ s /∈ sol(Gi) and ui(s) = s|xi ↔ s ∈ sol(Gi) where opti = max(xi).

Given this, the other notions are the same as for CSG.

4For readability, in the remaining sections, for COG, we assume that each player would like to maximize his utility,
i.e. the optimization condition is max(x). It is not difficult to cast into the inverse case, we just need change the sign
of variable x.
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4.1.4 Constraint Optimization Games with Hard Constraints

Constraint Optimization Games can also be extended with hard constraints the same way Con-

straint Satisfaction Games are, yielding COG-HC.

Definition 4.12 (Constraint Optimization Game with Hard Constraints). A Constraint Optimiza-

tion Game with Hard Constraints (abbreviated COG-HC) is a 6-tuple (P,V,D,C,G,opt) where

C is a CSP on V and (P,V,D,G,opt) is a COG.

We give in the following example a simple Constraint Optimization Game with Hard Constraints.

Example 4.5. We consider the following COG-HC: the set of players is P = {X ,Y,Z}. Each

player owns one variable: VX = {x},VY = {y},VZ = {z} and VE = {a,b,c} with Dx = Dz =

{1,2,3},Dy = {1, . . . ,5}. The goals are GX = {x = y + z,a = x× z}, GY = {x ≥ z > y,b =

x+z−y} and GZ = {x= y= z,c= x+y−z}. The optimization condition of each player is: opt1 =

max(a),opt2 = max(b),opt3 = max(c). The hard constraints set is composed of the following

constraints C = {x≤ y≤ z}.

Note that for games with hard constraints, a strategy profile is an equilibrium if it satisfies hard

constraints. Like in CSG-HC, a strategy profile is ruled out in COG-HC if it violates at least one

hard constraint. Hence, it does not has an utility function. Given this, the other notions are the

same as for COG.

4.1.5 Usefulness and Compactness of Constraint Games

We have previously defined constraint games. For ending this section, let us mention here the

usefulness and the compactness of our game representation.

Usefulness of Constraint Games

Constraint games are a generic tool which is able to encode any arbitrary static games. This

argument is proven through the normal form presentation in Proposition 4.1.

Proposition 4.1. Given G an arbitrary game which is represented by normal form, then G can be

encoded by a constraint game as well.

Proof. A game in normal form is a structure N = (P , S, U) where:

• P is a set of n players;

• S = {S1, . . . ,Sn} is a family of all players’ strategy set;

• U = {u1, . . . ,un} is a set of all players’ utility function where ui : Π j∈PS j→ R

A normal form is equivalent to a Constraint Optimization Game. In order to model a game as a

COG, we need to determine a 5-tuple G = (P,V,D,G,opt). Each element in G can be specified

from N as follows.
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• P is identical to the set of players in N

• V = (Vi)i∈P where Vi = {xi,oi} is controlled by player i

• ∀i ∈P,D(xi) = Si,D(oi) = R
• ∀i ∈P,Gi = {ci} is the goal of player i where ci = (W,T )

– W = {xi|i ∈P}∪{oi}
– T = {(a1, . . . ,an,ui(a1, . . . ,an))|(a1, . . . ,an) ∈Π j∈PS j}

• ∀i ∈P,opti = max(oi)

Since all the elements in G can be defined from N , the proposition is proven.

It has been well-known that normal form is a fully expressive game representation. According to

Proposition 4.1, if a game can be modeled by normal form then it is also possible to be encoded

by constraint games. Henceforth, our representation is fully expressive as well. We illustrate the

transformation process from a normal form representation into a constraint game in the following

example.

Example 4.6. Given a normal form of an arbitrary game that are represented in Table 4.3

B
b1 b2 b3 b4

A a1 (2,1) (4,3) (3,5) (7,7)
a2 (8,2) (1,4) (6,8) (5,9)

Table 4.3: An arbitrary normal form representation

Here is the constraint game model associated to this normal form.

• P = {A,B}
• Each player controls a variable VA = {x1,u1},VB = {x2,u2} where Vi is controlled by player

i ∈P .

• D(x1) = {a1,a2},D(x2) = {b1,b2,b3,b4},D(u1) = D(u2) = R
• Because the utilities do not have a specific structure, the goal of each player is represented

in the following table constraints where the table in left is the goal of player A, and the

table in right is the goal for player B.

x1 x2 u1
a1 b1 2
a1 b2 4
a1 b3 3
a1 b4 7
a2 b1 8
a2 b2 1
a2 b3 6
a2 b4 5

x1 x2 u2
a1 b1 1
a1 b2 3
a1 b3 5
a1 b4 7
a2 b1 2
a2 b2 4
a2 b3 8
a2 b4 9

• The optimization of the two players are optA = max(u1) and optB = max(u2).

We have shown that every normal form can be represented as a constraint game. It must be

similar for graphical games or action-graph games because these representations are based on
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matrix storing utilities of all players, like in normal form but using local matrix which are often

smaller. Similarly, it is also not difficult to encode boolean games in constraint games. In other

words, the boolean games representation is a particular case of constraint games.

Now, given a constraint game, is it possible to encode it by other representations, such as normal

form, graphical games, action-graph games or boolean games? The answer is fairly negative. It

can be explained by a comparison between constraint games and each other game representation

as follows.

• Constraint Games vs. Normal Form. Normal form allows any strategy profile to be given an

utility. Namely, there does not exist any hard rule that all players must respect. By using

hard constraint, constraint games exclude some strategies profiles from being a solution,

and this is unrepresentable with normal form, even by giving dummy values for forbidden

joint strategies. For example, in case a strategy profile does not satisfy the hard constraints,

we give it an utility of−∞ (actually, a negative value large enough). But there are situations

where all players obtain this score and normal form may report a spurious equilibrium. We

illustrate one of these situations in the following example.

Example 4.7. We consider the following CSG-HC: the set of players is P = {X ,Y,Z}.
Each player owns one variable: VX = {x},VY = {y} and VZ = {z} with Dx = Dz =

{0,1,2},Dy = {0,1}. The goals are GX = {x 6= y,x > z}, GY = {x ≤ y,y > z} and

GZ = {x+ y = z}. The set of hard constraints is C = {all different(x,y,z)}.

The normal form associated to this game may be as follows.

z = 0 y
0 1

x
0 (−∞,−∞,−∞) (−∞,−∞,−∞)
1 (−∞,−∞,−∞) (−∞,−∞,−∞)
2 (−∞,−∞,−∞) (1,0,0)

z = 1 y
0 1

x
0 (−∞,−∞,−∞) (−∞,−∞,−∞)
1 (−∞,−∞,−∞) (−∞,−∞,−∞)
2 (1,0,0) (−∞,−∞,−∞)

z = 2 y
0 1

x
0 (−∞,−∞,−∞) (0,0,0)
1 (0,0,0) (−∞,−∞,−∞)
2 (−∞,−∞,−∞) (−∞,−∞,−∞)

Table 4.4: A spurious normal form corresponding to a game with hard constraints.

In this game, there are 14 forbidden strategy profiles in which each player’s utility is de-

scribed by the notation −∞. However, if we encode this game by the normal form above,

two forbidden strategy profiles, (0,0,0) and (1,1,1), will be reported as PNE because no

player can deviate to another strategy to gain a greater utility.

• Constraint Games vs. Graphical Games and Action-Graph Games. Modeling games with

hard constraints are also out of capacity of graphical games and action-graph games since

they are also based on matrix storing utilities like normal form.

• Constraint Games vs. Boolean Games. As mentioned earlier, boolean games can encode
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only games with boolean utilities. External tools need to be used if we would like to model

constraint optimization games. 5

Compactness of Constraint Games

First, it may be noticed that constraint games are never larger than normal form. But just like

boolean games, constraint games can be exponentially more succinct than the utility matrix. An

example is when a player has constraints encoded by a CSP xi = yi for 2n variables (xi) and (yi)

on a domain with d elements. The representation takes n constraints while there are dn solutions,

which means that a payoff matrix, even in a sparse representation that only keeps positive entries,

would be exponential.

In the worst case, however, constraint games, just like CSP can blow-up to a size similar to their

set of models, as shown by a simple counting argument. In any formal language, using N bits

we can encode 2N models while there are 22N
boolean functions of N inputs. As for CSP, our

feeling is that this worst case does not happen often in practice. Moreover, we believe that the

modeling facilities offered by constraint languages, especially with global constraints, allows to

encode many useful problems in an elegant way.

4.2 Applications

Strategic games are an important object of research as many existing games have been studied in

the literature for decades. Moreover, the developed models can also be applied to real-life prob-

lems. In this thesis, we succeed in testing our modeling framework on classical games taken from

Gamut suite as well as on games inspired by problems in real-life. Additionally, the benchmarks

in our experiments are constructed by the examples described here.

4.2.1 Games Taken from the Gamut Suite

Gamut [Nudelman et al., 2004] is a suite of game generators designated for testing game-theoretic

algorithms. With gamut, instances of games from thirty-five base game classes can be easily

generated. We encode here a few classical games taken from the Gamut suite by constraint games.

Guess Two Thirds Average. This game was first proposed by Ledoux in his french magazine

[Ledoux, 1981]. Let see how to play the game in Example 4.8.

Example 4.8 (Guess Two Thirds Average (abbreviated GTTA)). In this game, all players guess

a number in a range from 0 to 100. The winners are the players whose number is the closest to

5Elise Bonzon proposed, in her PhD thesis, an extension of boolean games using CP-nets can encode games with
non-boolean utilities. The interested readers could find many examples as well as her explanation in [Bonzon, 2007].
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two thirds of the average of the numbers guessed by all players. Let m be the number of winners,

then all these players with get a score of 100/m. All others get a score of zero.

We need the following existential variables to model this game by constraint games. These vari-

ables are in the set VE .

• TwoT hirdsAvg stands for the two thirds average of the numbers guessed by all players.

• ∀i ∈P,yi stands for the absolute value of the distance between player i’s number and the

two thirds average.

• z stands for the minimum distance between the numbers and the two thirds average.

• ∀i ∈P,choicei is a boolean variable for player i. Each variable choicei is set to 1 if player

i’s number is the closest to the two thirds average. Otherwise, it is set to zero.

• ∀i ∈P, pi stands for the payoff of player i.

GTTA can be modeled by a COG as follows:

• P = {1, . . . ,n}
• ∀i ∈P,Vi = {xi}
• ∀i ∈P,D(xi) = {0, . . . ,100}
• ∀i ∈P , Gi contains the following constraints:

– TwoT hirdsAvg = (2/3)× ((∑n
i=1 xi)/n)

– ∀i ∈P,yi = |xi−TwoT hirdsAvg|
– z = min(y1, . . . ,yn)

– ∀i ∈P,choicei = 1⇔ yi = z

– choicei = 1→ pi = 100/(∑n
i=1 choicei)

– choicei = 0→ pi = 0

• ∀i ∈P , the optimization condition opti = max(pi)

Location Game (Gamut Version). This game is inspired by [Hotelling, 1929]. We call it Lo-

cation Game (Gamut Version) (Example 4.9) in order to distinguish to another game including

hard constraints which will be described in Example 4.12.

Example 4.9 (Location Game (Gamut Version)). Two vendors sell an identical product in their

shops settled at a street of length m. The distances from the shop of the vendors’ shop from the

beginning of the street are l1 and l2 (with l1 < l2), respectively. Each vendor i needs to determine

the price pi for their product from his finite set ρi in order to maximize his benefit bi. There is

exactly one client’s house at each point from 1 to m at the street. Each client will buy the product

of the vendor for whom he has to pay the minimal cost of the product price plus transport. We

assume that the transport cost unit of each customer j is u j. It may exist that the amounts a client

needs to pay to both vendors are the same. In this case, the client will privilege vendor labeled by

a smaller number (For example, if a client has to choose between vendor 1 and vendor 2, then he

will choose vendor 1) .

We need the following existential variables to model this game by constraint games. These vari-
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ables are in the set VE .

• ∀i ∈ {1,2}, j ∈ {1, . . . ,m} each variable costi j stands for the cost client j has to pay to

vendor i.

• ∀i ∈ {1,2}, j ∈ {1, . . . ,m} each choicei j is a boolean variable which is set to 1 if client j

chooses vendor i and to 0 if otherwise.

• ∀i ∈ {1,2} each variable bi stands for the profit of vendor i.

The game can be encoded by a COG as follows.

• P = {1,2}
• ∀i ∈P,Vi = {pi}
• ∀i ∈P,D(pi) = ρi

• ∀i ∈P , Gi contains the following constraints:

– ∀i ∈P,∀ j ∈ {1, . . . ,m},costi j = | j− li|×u j + pi

– ∀ j ∈ {1, . . . ,m},cost1 j ≥ cost2 j→ choice1 j = 1

– ∀ j ∈ {1, . . . ,m},cost1 j < cost2 j→ choice2 j = 1

– ∀i ∈P,bi = pi×∑
m
j=1 choicei j

• ∀i ∈P , the optimization condition opti = max(bi)

Minimum Effort Game It is a coordination game which demonstrates the coordination with

multiple equilibrium. The equilibrium will be reached if all players choose the same strategy.

Example 4.10 (Minimum Effort Game (abbreviated MEG)). In this game, given an identical

strategy set A for each player, his payoff is determined by the formula a+b×M− c×E where E

is the player’s effort and M is the minimum effort of all the players. a,b,c are the parameters of

the game.

We need the following existential variables to model this game by constraint games. These vari-

ables are in the set VE .

• M stands for the minimum effort of all players.

• ∀i ∈P, pi stands for the payoff of player i.

MEG can be modeled by a COG as follows:

• P = {1, . . . ,n}
• ∀i ∈P,Vi = {ei}
• ∀i ∈P,D(ei) = A

• ∀i ∈P , Gi contains the following constraints:

– M = min(e1, . . . ,en)

– pi = a+b×M− c× ei

• ∀i ∈P , the optimization condition opti = max(pi)
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Travelers’ Dilemma. This game can be viewed as an extension of prisoner’s dilemma but for

more than two players.

Example 4.11 (Travelers’ Dilemma (abbreviated TD)). An airline loses n suitcases belonging to

n different travelers. All the suitcases are identical and contain the same items. All the travelers

are told to claim the value of their suitcase between 2 and 100 (They can not discuss each other).

If any travelers write down the lowest value, he will get an extra value $n, and the remaining

travelers will get an minus value $n. All travelers would like to maximize the value they would be

reimbursed by the airline.

Like GTTA, TD has only one PNE when all players take the minimal number as their strategy.

We need the following existential variables to model this game by constraint games. These vari-

ables are in the set VE .

• y stands for the minimal value chosen by all the travelers.

• ∀i ∈P,choicei is a boolean variable which is set to 1 if the value of player i is minimal,

otherwise, it is set to zero.

• ∀i ∈P, pi stands for the payoff of player i.

TD can be expressed by a COG as follows.

• P = {1, . . . ,n}
• ∀i ∈P,Vi = {xi}
• ∀i ∈P,D(xi) = {2, . . . ,100}
• ∀i ∈P , Gi contains the following constraints:

– y = min(x1, . . . ,xn)

– ∀i ∈P,choicei = 1⇔ xi = y

– choicei = 1→ pi = xi +n

– choicei = 0→ pi = xi−n

• ∀i ∈P , the optimization condition opti = max(pi)

Several other classical games from the Gamut suite are also available to be encoded by constraint

games, such as: collaboration game, greedy game or NPlayer chicken game, to name a few.

4.2.2 Games Taken from Real Life

Besides the classical games, constraint games are also capable of expressing new, interesting

problems taken from various fields such as economics (and Example 4.12), scheduling (Example

4.13), network (Example 4.14 and Example 4.15) and cloud computing (Example 4.16). We show

that complex games can be easily and naturally modeled by constraint games.

Economics. Since the earliest days, game theory has mainly used in economics. It is not surpris-

ing that games have widely been applied for modeling many problems in this field. We illustrate
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here a decision making problem in economics which can be encoded by constraint games. This

problem is an extended version of Location Game described in Example 4.9 with n players.

Example 4.12 (Location Game with Hard Constraints). A group of n ice cream vendors would

like to choose a location numbered from 1 to m for their stand in a street. Each vendor i wants to

find a location li. He already has fixed the price of his ice cream to pi and we assume there is a

customer’s house at each location. The customers choose their vendor by minimizing the sum of

the distance between their house and the vendor plus the price of the ice cream. Because no two

vendors can stand at the same places, one need add a global constraints in the hard constraints

set of the game.

Figure 4.2: Location game with hard constraints.

A possible situation for 3 vendors and 14 customers is depicted in Figure 4.2. In this figure, the

arrows depict the behavior of customers. The triangles represent the ice cream vendors with their

selling price. In the first situation on top, player 1 can improve benefits by shifting two places to

the right, giving situation 2 at bottom. The strategy profile depicted at the top of the figure is not

an equilibrium since the left player can deviate and “steal” a customer to the middle player by

shifting two positions on the right.

The Location Game with Hard Constraints can be easily modeled by a COG-HC as follows:

• P = {1, . . . ,n}
• ∀i ∈P,Vi = {li}
• ∀i ∈P,D(li) = {1, . . . ,m}
• the hard constraints C are the following:

– no two vendors are located at the same place: all different(l1, l2, . . . , ln)

– ∀i ∈P,∀c ∈ [1..m], costic = |c− li|+ pi

– ∀c ∈ [1..m], minc = min(cost1c, . . . ,costnc)

– ∀c ∈ [1..m],(minc =costic)← (choiceic = 1)

– ∀c ∈ [1..m],∑i∈Pchoiceic = 1

• ∀i ∈P , Gi contains the following constraint: benefiti = pi.∑
m
c=1choiceic

• ∀i ∈P , the optimization condition opti = max(benefiti)
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An interesting feature of Example 4.12 is that it uses global constraints like all different the same

way as in constraint programming. It also shows the interest of modeling hard constraints in

games since it is perfectly natural to think that no two vendors can settle at the same place. It

is possible to transform this problem into a CSG by fixing a minimal profit mpi for each player

i and stating that player i is satisfied if his benefits is over mpi. It can be done by adding the

constraint benefiti ≥ mpi to Gi instead of the optimization condition. In the Gamut version of

the game (Example 4.9), vendors do not choose location but prices, because there is no way to

express that vendors should choose different locations in a normal form game like we do here

with the all different constraint.

Scheduling. Scheduling is a process of creating a schedule. It decides how to order tasks and

how to commit resources between the variety of possible tasks. Scheduling is a crucial application

of constraint programming, and also an important issue in computing, such as making real-time

schedule on multiple processors, etc. Example 4.13 shows an application of strategic scheduling,

which often occurs in real-life when multiple players share the same resource.

Example 4.13 (Strategic Scheduling). Consider a set P = {1, . . . ,n} of n > 1 players. Each

player i owns a task of cost di units to perform on any machine taken among m machines. All

machines are running in parallel. Each machine j has a maximal capacity of c j units. In case a

machine is overloaded, it simply stops and does not perform the task of the players who chose it.

Thus the goal of each player is to choose carefully a non-overloaded machine, taking into account

the decisions of the other players.

The strategic scheduling problem can be expressed as a Constraint Satisfaction Game as follows:

• P = {1, . . . ,n}
• Vi = {mi}, mi is the machine chosen by player i.

• ∀i ∈P,D(mi) = {1, . . . ,m}
• C is composed of channeling constraints for boolean variables choicei j stating that player i

chooses machine j: (mi = j)↔ (choicei j = 1)

• ∀i ∈P,Gi is composed of the capacity constraint:

m

∑
j=1

(choicei j× ∑
k∈P

(choicek j×dk))≤ c j

This constraint is true if the machine chosen by player i is not overloaded and false other-

wise.

Interestingly, strategic scheduling is not equivalent to classical scheduling. In a classical CSP,

it would be required that there is an assignment which satisfies all players. This is the case in

the instance Sch1 with 3 players having a task of respective cost 2,3,1 and two machines of

capacity 3. This instance is depicted in the left part of Figure 4.3 and the two Nash equilibrium

correspond to the solution of the CSP composed of the union of the player’s goals. With a slight

change, Sch2 is the same problem but the cost of any task is 2. Then there is no global assignment
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Figure 4.3: Two examples of strategic scheduling (Sch1 on the left and Sch2 on the right). Nash
equilibrium have a colored background and the arrows depict beneficial deviations.

which allows to place 2 tasks on the same machine and there is no situation where all players are

simultaneously satisfied. This situation is depicted in Figure 4.3, right-hand side. However, the

strategic formulation allows to find solutions in which one player can run her task while the others

are canceled, yielding 6 Nash equilibrium. More complex versions of strategic scheduling can be

found in [Vöcking, 2007].

Network. Computer network or internet actually plays an indispensable role in modern life. In

reality, network aims at serving many people in parallel. That may thus cause a conflict between

users’ objective. It also means that using game theory to model problems in network is a very

interesting idea. We give here two problems which can be naturally encoded by constraint games.

The first problem (Example 4.14) is inspired by [Bouhtou et al., 2007] and taken from telecom-

munication industry.

Example 4.14 (Network Game). A network provider owns m links to transfer data. Each link j is

specified by 3 parameters: capacity c j, speed per data unit s j and price per data unit p j. A group

of n clients would like to transfer data across theses links (client i from a source xi to a target yi,

each source and target are fully connected to each link of the vendor and each path has to cross a

tolled arc). In order to reach a link j of the network, each client i has to suffer a fixed fee αi j and

a fixed delay βi j.

Hence, with any link j customer i chooses, he has to pay an addition cost αi j per data unit and

it also takes an additional time βi j per data unit to transit on the tolled arc. Each customer

could always choose another provider with the time ψi, so if the provider’s data speed offered is

competitive, he therefore wishes to minimize the cost for transferring his data.

This problem can be modeled by a COG-HC as follows:

• P = {1, . . . ,n}
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• ∀i ∈P,Vi = {ri}
• ∀i ∈P,D(ri) = {1, . . . ,m}
• C is composed of the following constraints:

– channeling constraints for boolean variables stating that link j is requested by data di

of player i: (ri = j)↔ (choicei j = 1)

– capacity constraints: ∀ j ∈ {1, . . . ,m},∑n
i=1 choicei j×di ≤ c j

• ∀i ∈P,Gi is composed of the following constraints:

– costi = ∑
m
j=1 choicei j×di× (p j +αi j)

– timei = ∑
m
j=1 choicei j×di× (s j +βi j)

– timei ≤ ψi

• ∀i ∈P,opti = min(costi)

While in the first problem, all players would like to minimize the cost they have to pay. In the

second problem described in Example 4.15, they want to cross their data through network in the

fastest way.

Example 4.15 (Hypercube Network Congestion Games). Congestion Games [Rosenthal, 1973]

are a well-known class of games in game theory. In a congestion game, there are a set of players

and a set of resources. Each player can choose a subset of resources and his payoff depends on

the resources he chooses and the number of players choosing the same ones (see Section 2.1.5).

Figure 4.4: An example of m-dimensional hypercube network congestion game with m = 3 and 3
players

Figure 4.4 depicts a network congestion game which will be modeled by constraint games. In

this game, network is created as a m-dimensional hypercube. To reach T from S, each player

must choose m paths with different directions. Henceforth, each player owns m variables with the

domain from 1 to m and all values instantiated of his variables must be different. In the figure,

the bold lines depict the paths chosen by player 1, the dash lines for player 2 and the dotted lines

for player 3. The strategies of player 1, player 2 and player 3 are (3,2,1), (3,1,2) and (1,3,2),

respectively. The delay function on each path is determined by the number of players selecting

the path. Let s and s′ be the paths chosen by two different players. Then s j and s′j share a same

path if and only if s j = s′j and ∀k ∈ [1, j− 1],sk ∈ s′ and s′k ∈ s. In Figure 4.4, the paths SA and



4.2. Applications 67

CT are shared by the players while the others are not. Finally, the players’ payoff are 4 (2 + 1

+1 for the paths SA - AB - BT), 5 (2 + 1 + 2 for the paths SA - AC - CT) and 4 (1 + 1 + 2 for the

paths SD - DC - CT).

This problem can be modeled by the following COG-HC:

• P = {1, . . . ,n}
• ∀i ∈P,Vi = {vi1, ...,vim}
• ∀i ∈P,∀ j ∈ [1,m],D(vi j) = {1, . . . ,m}
• C is composed of the following constraints:

– each player chooses m paths with different directions:

∀i ∈P, all different(vi1, ...,vim)

– channeling constraints for boolean variables di jk for delay caused by each variable:

∀i, i′ ∈P, i 6= i′,∀ j ∈ [1,m],∀k ∈ [1,m−1]; (di jk = 1)↔
cardinality atleast(1,(vi1, . . . ,vi( j−1)), (vi′1, . . . ,vi′( j−1))) ∧ (vi j = vi′ j)

• ∀i ∈P,Gi is composed of the following constraint:

delayi = ∑
m
j=1(∑

m−1
k=1 di jk +1)

• ∀i ∈P , the optimization condition opti = min(delayi)

Cloud computing. Cloud computing is an emergent field which refers to the on-demand de-

livery of IT resources and applications via the Internet with pay-as-you-go pricing. Resource

allocation is a central issue in cloud computing where clients use and pay computing resources on

demand. In order to manage conflicting interests between clients, [Jalaparti et al., 2010] has pro-

posed the framework of CRAG (Cloud Resource Allocation Game) in which resource assignments

are defined by game equilibrium (Example 4.16)

Example 4.16 (Cloud Resource Allocation Game). A cloud computing provider owns a set M =

{M1, . . . ,Mm} of m machines, each machine M j having a capacity c j representing the amount

of resource available (for example CPU-hour, memory) (see Figure 4.5 on the next page). The

cost of using machine j is given by l j(x) = x× u j where x is the number of resources requested

and u j some unit cost. A set of n clients P = {1,2, . . . ,n} wants to use simultaneously the cloud

in order to perform tasks. Client i ∈P has mi tasks {Ti1, . . . ,Timi} to perform, with respective

requested capacity of {di1, . . . ,dimi}. Each client i ∈P chooses selfishly an allocation rik for the

task Tik (k ∈ [1..mi]) and wishes to minimize his cost costi = ∑
mi
k=1 lrik(dik). We assume that the

provider’s resources amount is sufficient to accommodate the resources requested by all of the

clients: ∑
n
i=1 ∑

mi
k=1 dik ≤ ∑

m
j=1 c j.

This problem can be modeled by the following COG-HC:

• P = {1, . . . ,n}
• ∀i ∈P,Vi = {ri1, . . . ,rimi}
• ∀i ∈P,∀k ∈ [1..mi],D(rik) = {1, . . . ,m}
• C is composed of the following constraints:
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Figure 4.5: An example of a Cloud Resource Allocation Game with 4 clients and 4 machines.

– channeling constraints for boolean variables stating that machine j is requested by

task tik: (rik = j)↔ (choicei jk = 1)

– capacity constraints: ∀ j ∈ [1..m], ∑
n
i=1 ∑

mi
k=1 choicei jk×dik ≤ c j

• ∀i ∈P,Gi is composed of the following constraint: costi = ∑
m
j=1 ∑

mi
k=1 choicei jk× l j(dik)

• ∀i ∈P,opti = min(costi)

Along with the problems described here, we are confident that constraint games can express many

others as well. That suggests a real utility of this new modeling framework for a potential wide

range of problems in practice.

4.3 Solving Framework

As mentioned in Section 2.4, there are still not many solving tools for generic games. This

motivates us to concentrate our interest on designing a new solving framework for games. In

this section, we give a bird’s-eye view about ConGa, our solver for solving constraint games.

Additionally, we also specify the environment for all the experiments we have performed.
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4.3.1 ConGa Solver

We have built a solver called ConGa on top of the constraint library Choco [Choco Team, 2013].

This solver allows to express constraint games and solves them using multiple tools. These tools

are composed of local search algorithms (Chapter 5), complete algorithms (Chapter 6) and heuris-

tic algorithms (Chapter 7). We will give full information about these algorithms in the following

chapters. Another important point is that our solver accepts all the constraints provided by Choco,

and reuses the existing constraint propagators in the library.

The ConGa solver has been built up on Choco-2.1.5 released in 2013. Choco [Choco Team, 2010]

is a java library for constraint programming. It is a complete solver for solving constraint satis-

faction problems. Generally, given a constraint satisfaction problem, for solving it in Choco, we

just need to define a set of variables along with their domains. We then define a set of constraints

for the problem. They are the essential elements. Choco also provides multiple heuristics for

variables and values ordering as well as the extension to constraint optimization problems. After

we have declared the model, Choco takes care of the remaining parts and returns the solutions

according to our desire, for example, only the first solution or all the solutions.

Choco basically solves a CSP by backtracking search (Section 3.2.1). It defines two types of en-

vironments in backtracking system: EnvironmentTrailing and EnvironmentCopying. Then

it defines the notion of world. A world contains values of storable objects or operations that per-

mit to backtrack to its state. The environment therefore pushes and pops worlds when storing or

restoring previous states of the solver.

Reusing solver is a very crucial task in ConGa because we need to often restore previous states

of the solver in the algorithms. Hence we have applied EnvironmentTrailing which is more

efficient than EnvironmentCopying in our solver. Every operation applied to a data type is

pushed in a trailer (worldPush). When a world is pushed, the index of the last operation is

stored. When a world is popped (worldPop), these operations are popped and unapplied until

reaching the last operation of the previous world. This technique will be frequently used in the

algorithms of the ConGa solver in the next chapters.

On the other side, checking players’ deviation is an essential task for finding pure Nash equilib-

rium since it is repeatedly executed during search. Unfortunately, reusing solver in Choco for this

task is very costly even though the current solver state requires only little modification. That is

why we have implemented a custom solver for only verifying whether a player can deviate from

a current strategy profile. In the custom solver, for player i, it is composed of hard constraints (if

existed) and the player’s goal. The difference here is that all variables controlled by the remaining

players, except i, have been assigned before the propagation are performed. The custom solver

henceforth becomes smaller and simpler for solving in comparison to the general Choco solver.

It hence offers a better performance than Choco.
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4.3.2 Experimental Environment

All the experiments presented in this thesis have been executed on a server of 48-core AMD

Opteron 6174 of 4-processor at 2.2 GHz with 256 GB of RAM. The operating system installed is

ubuntu 64bit 12.04 LTS. All the benchmarks in our experiments are constructed by the examples

described in Section 4.2.

4.4 Conclusion

In this chapter, we have presented Constraint Games, the first framework allows to model and

solve static games by using constraint programming. Constraint games come in two issues: Con-

straint Satisfaction Games and Constraint Optimization Games, with or without hard constraints.

The most prominent advantage of constraint games is that they provide a new compact yet nat-

ural encoding to games. The main solution concept defined for constraint games is the one of

Nash equilibrium. They are the situations in which no player has an incentive to deviate from the

current ones. We have also demonstrated the usefulness of constraint games by using this frame-

work for modeling a few classical games as well as games inspired by applications in real-world

problems. Finally, we have mentioned several basic elements of our solver ConGa, including the

solving tools which will be precised in the following chapters.
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Local search has been recognized as an efficient method for solving large and complex combi-

natorial problems. Because of the huge size of several problems, it even emerges as the unique

feasible way for reasoning. Local search has been widely used to find a solution in constraint

programming (see Section 3.2.2). In contrast, few local search researches have been devised to

compute a pure Nash equilibrium or a mixed Nash equilibrium in game theory (see Section 2.2).

The main difficulty, in our opinion, comes from the intractability of the classical game represen-

tation, namely normal form.

We present here three local search algorithms, including two metaheuristics to find a pure Nash

equilibrium in constraint games. The simplest algorithm is CG-IBR, iterated best responses on

the constraint games representation. Then we propose CG-TS, a tabu search based on the CG-IBR

algorithm. The last algorithm called CG-SA is a metaheuristic search inspired by the simulated

annealing algorithm. All these algorithms have been implemented in the solver ConGa. The

experimental results demonstrate that our local search solver is able to solve game instances whose

size is beyond the size accessible to algorithms based on normal form 1.

1A part of work in this chapter has been published in [Nguyen et al., 2013].
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5.1 CG-IBR: Iterated Best Responses Algorithm in Constraint
Games

Iterated best responses (abbreviated IBR) [Shoham and Leyton-Brown, 2009] is the simplest lo-

cal search algorithm to find a PNE in any game representation. In constraint games, we have

also implemented an algorithm of IBR, what we call CG-IBR. In spite of its naivety, it could be

considered as the baseline algorithm to evaluate the next ones. CG-IBR (Algorithm 5.1) is an

iterative process starting at an arbitrary pure strategy profile (line 2). If there exists some hard

constraints in games, the initial strategy profile must satisfy them.

At each step, if there exists a player for whom the current strategy profile is not a best response,

then this player deviates to his best response which will be considered as the candidate in the next

step (line 7). The process stops when all players are no longer able to change their strategy. The

current candidate is thus a best response of all players, i.e. a PNE is found (line 9). Otherwise,

the algorithm fails to find one PNE within the max step (line 13).

Algorithm 5.1. CG-IBR, Iterated Best Response Algorithm for Constraint Games

1: function CG-IBR(Constraint Game CG): tuple
2: s← get a random solution of the solver (with hard constraints if they exist)
3: step← 1
4: while step ≤ max step do
5: s′ ← neighborIBR(s,P) . find a neighbor of the current solution to move
6: if s′ 6= null then
7: s← s′

8: else . s is best response of all players
9: return s

10: end if
11: step++
12: end while
13: return null
14: end function

Algorithm 5.2. Find a neighbor in the CG-IBR algorithm

1: function NEIGHBORIBR(tuple s, set of players P): tuple
2: while P 6= /0 do
3: pick player i from P randomly
4: s′ ← findBR C*G(s,i) . find a random best response of player i over s
5: if s′ 6= null then
6: return s′

7: end if
8: remove i from P
9: end while

10: return null
11: end function

Algorithm 5.2 shows how a neighbor is chosen in CG-IBR. Given a set of players P , a player

is randomly picked to verify whether he can deviate (line 3). If the player can make a beneficial

deviation from s to a best response s′ then s′ will be considered as the next candidate (line 4-7). In
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line 4, the notation “*” is replaced by “S” for Constraint Satisfaction Games (Algorithm 5.3) and

by “O” by Constraint Optimization Games (Algorithm 5.4). Otherwise, no neighbor is returned

(line 10).

Example 5.1. We consider the following CSG-HC: the set of players is P = {X ,Y,Z}. Each

player owns one variable: VX = {x},VY = {y} and VZ = {z} with Dx = Dy = Dz = {1,2,3}. The

goals are GX = {y≤ z,x≥ z}, GY = {x≤ y,y≥ z} and GZ = {x+ y = z}. The hard constraint is

{x 6= y+ z}.

The following schema illustrates how CG-IBR runs on Example 5.1.

Figure 5.1: CG-IBR runs on an simple example.

At the beginning, an initial point is randomly chosen. However it must satisfy the hard constraint.

An example of forbidden strategy profile could be (3,2,1) since this tuple violates the hard con-

straint. During search, we let the players deviate until a pure Nash equilibrium is detected or other

termination conditions are met. In Figure 5.1, we start at the tuple (1,2,1). Only player Z can

deviate from (1,2,1), we thus let Z deviate to his best response (1,2,3) (which is a solution of his

goal). Now, both the two players, X and Y , can deviate. We randomly pick player X at first, so we

let him deviate to (3,2,3). Finally, player Y deviates from (3,2,3) to his best response (3,3,3)

which is a best response of the two remaining players as well. We thus find a PNE of the example

and the algorithm terminates. In some other constraint games, this process may stop within the

max step without finding a PNE.

We distinguish the process of finding a best response for a tuple s of player i for CSG and COG in

two separated algorithms (Algorithm 5.3 and Algorithm 5.4). In Algorithm 5.3, a solver including

the goal Gi and the hard constraints (if they exist) for games is created (line 2). There may be

more than one best response. In a CSG, it means that several assignments are solution of the

player’s solver. If player i could deviate to a best response, it should be a random one in his set

of best responses. We thus set a random heuristic for variable and value ordering in line 3. In

Example 5.1, a random variable ordering could be z→ x→ y while a random value ordering for

player Y could be 2→ 1→ 3.

Line 4 - 10 are devoted to instantiate the values taken from s to the variables controlled by the

remaining players. This current state of the solver needs to be saved (line 11) in order to be

restored later (line 18). Then, we assign the values for player i’s variables (line 12 - 14). If the
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Algorithm 5.3. Find a random best response for CSG in the CG-IBR algorithm

1: function FINDBR CSG(tuple s, int i): tuple
2: initialize solver Si with Gi (and hard constraints if they exists)
3: set a random heuristic for variable and value ordering in Si
4: for all j ∈P do . instantiate the values from s to the variables controlled by other players
5: if i 6= j then
6: for all (k = 1; k ≤ |Vj|; k++) do
7: add constraints Vjk = s jk
8: end for
9: end if

10: end for
11: save the current state of the solver
12: for all (k = 1; k ≤ |Vi|; k++) do . instantiate the values to the variables of player i
13: add constraints Vik = sik
14: end for
15: if Si.isFeasible() then . s is solution of player i
16: return null
17: end if
18: restore the previous state of the solver
19: sol ← Si.getSolution() . find the first solution of the solver
20: if sol = null then . Si has no solution,
21: return null
22: else
23: return sol . player i can deviate from s to sol
24: end if
25: end function

tuple s is a solution of the solver than it is also his best response (line 15 -17). Otherwise, we try

to find another solution for which the goal is satisfied (line 19). If no solution is detected (line

20), the goal Gi is not satisfied by any tuple s = (si,s−i),∀si ∈ Si. Thus, the player cannot deviate

to another strategy (line 21). Otherwise, the first solution found by the solver will be returned

(line 23).

Three following cases can appear when we search a best response from a tuple s for a player.

(i) The tuple s is already the player’s best response.

(ii) There is no solution for the player’s goal with every tuple including si, so all strategies

s = (si,s−i) are the player’s best responses.

(iii) The tuple s is not a best response, and the player can deviate to one of his best responses.

In Example 5.1, the tuple (1,2,3) is a best response of player Z because (1,2,3) is a solution of

player Z’s goal (line 16 in Algorithm 5.3). While (3,3,3) is a best response of player Z even the

player’s goal is not satisfied because player Z does not either change to another strategy in order

to be satisfied (line 21). Finally, the tuple (1,2,1) is not a best response of player Z because it

is not a solution of the player’s goal. Moreover, Z is available to deviate to the tuple (1,2,3) for

improving his satisfaction (line 23).
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Algorithm 5.4. Find a random best response for COG in the CG-IBR algorithm

1: function FINDBR COG(tuple s, int i): tuple
2: initialize solver Si with Gi and opti (and hard constraints (if exists))
3: set a random heuristic for variable and value ordering in Si
4: for all j ∈P do . instantiate the values from s to all variables controlled by other players
5: if i 6= j then
6: for all (k = 1; k ≤ |Vj|; k++) do
7: add constraints Vjk = s jk
8: end for
9: end if

10: end for
11: save the current state of the solver
12: for all (k = 1; k ≤ |Vi|; k++) do . instantiate the values from s to the variables of player i
13: add constraints Vik = sik
14: end for
15: if Si.isFeasible() then . s is a solution of Si
16: get payoff x from s
17: else
18: payoff x from s is set to −∞ . −∞ is a large enough negative number
19: end if
20: restore the previous state of the solver
21: sol ← Si.getOptSolution() . find the first random optimal solution
22: if sol = null then . Si has no solution,
23: return null . goal Gi is not satisfied by any tuple s = (si,s−i) with si ∈ Si
24: else
25: get the optimal payoff xOpt
26: if xOpt > x then . s is not best response
27: return sol . Player i can deviate from s to sol
28: else . s is an optimal solution of Si
29: return null
30: end if
31: end if
32: end function

The same process for COG depicted in Algorithm 5.4 is fairly similar but more complex. The

difference is that we need to find optimal solutions of Constraint Optimization Problem. Unlike

in CSG, being a solution of Gi does not guarantee to be player i’s best response. That is why we

need to compute the payoff of the current tuple (line 15 - 19). We recall that in all Constraint

Optimization Games, we assume that each player would like to maximize his objective variable.

If s is not a solution, we set his payoff to be a very large negative number (line 18).

Line 21 is devoted to find a solution which optimizes the objective variable x in the optimization

condition opti of the player. Like in CSG, no solution found implies that goal Gi is never satisfied

from s (line 22 - 24). Otherwise, we get the optimal payoff in line 25. We note that the solver can

reach to the optimal value from different points but this value is unique. So if the current payoff

is less than the optimal one, s is not a best response than the optimal solution is returned (line 26

-27). Otherwise, no tuple is returned (line 29).

We have specified how the algorithm CG-IBR works for finding one PNE in constraint games.

We also prove its correctness in the following proposition.
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Proposition 5.1. The CG-IBR algorithm in constraint games is correct.

Proof. A PNE is reported by CG-IBR if and only if it satisfies the hard constraints and no player

is able to deviate from it. Hence, the CG-IBR algorithm is correct.

Besides the iterated best responses algorithm for constraint games, another algorithm called iter-

ated better responses could be naturally derived. Given a strategy profile s = (si,s−i), a strategy

profile s′ = (s′i,s−i) is said to be a better response from s for player i if ui(s) < ui(s′). Note that

s′ is not mandatory to be a best response of player i because it may exist another strategy profile

s′′ = (s′′i ,s−i) such that ui(s′) < ui(s′′). For Constraint Satisfaction Games, the iterated best re-

sponses algorithm and the iterated better responses algorithm are exactly identical. In Constraint

Optimization Games, there is only a little difference in Algorithm 5.4. It is no longer necessary

to compute the optimal payoff in line 25. We only need to detect a greater payoff than the current

one instead.

In these naive algorithms, a random best response of a player who can deviate is chosen without

any condition. Actually, we would like to improve the performance of our local search solver

by studying several metaheuristics which select a next candidate according to some rules. We

therefore describe a couple of new algorithms in the following sections.

5.2 CG-TS: Tabu Search Algorithm in Constraint Games

Tabu search (abbreviated TS) is a metaheuristic proposed by Fred W. Glover [Glover, 1989].

By using memory structures that describe the visited solutions, it allows to avoid the trap of local

optima. Since if a potential solution has been previously visited within a certain short-term period,

it is marked as “forbidden” so that the algorithm does not consider that possibility repeatedly.

In our local search solver, we have implemented an algorithm called CG-TS which is inspired

by the tabu search for avoiding getting stuck in infinite looping. In constraint games, a strategy

profile is not a PNE if a player can deviate to his best response. A neighbor in CG-IBR and CG-

TS is thus defined by a best response of this player. Henceforth, there does not exist “real” local

optima in these two algorithms, but infinite loops. It means we can always move to a neighbor if

the current candidate is not a PNE, but we move in infinite looping instead.

In CG-TS, the visited strategy profiles are not saved in the tabu list but the players who have

recently moved. The tabu list is used to forbid a player to be chosen too early after his recent

movement (See Figure 5.2). In contrast with classical search space where a local search algorithm

wants to escape local optima, it may happen that the trajectory gets stuck in cycles. Thus a tabu

list of size L allows to avoid direct cycles of length L and in practice allows also larger cycles to

be escaped.
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(a) After having deviated,
player 1 is recorded in the
tabu list.

(b) After having deviated,
player 2 is recorded in the
tabu list.

(c) Player 1 and 2 are
recorded in the tabu list.
Only player 3 can deviate.

Figure 5.2: Illustration of using the tabu list in a game of 3 players

CG-TS is depicted in Algorithm 5.5. In this algorithm, we keep two global variables that describe

the tabu list and the tabu length. The main difference with CG-IBR is that the process of choosing

a neighbor is divided into two phases. First, we verify whether a non-tabu player could make a

deviation (line 8). If no one can, tabu players are checked against deviation (line 10).

Algorithm 5.5. CG-TS, Tabu Search Algorithm for Constraint Games

1: global variables
2: Tabu list : a queue M
3: Tabu length: L
4: function CG-TS(Constraint Game CG): tuple
5: s← get an arbitrary solution of solver (with hard constraints if they exist)
6: step← 1
7: while step ≤ max step do
8: s′ ← neighborTabu(s,P\M ) . check deviation of non-tabu players
9: if s′ = null then

10: s′ ← neighborTabu(s, M ) . check deviation of tabu players
11: if s′ = null then return s . no player could deviate
12: end if
13: end if
14: s← s′

15: step++
16: end while
17: return null
18: end function

Finding a neighbor in CG-TS is specified in Algorithm 5.6. This algorithm is similar to Algorithm

5.2. The difference is that we need to perform some additional operations for dealing with the

tabu list.

The tabu list M is implemented by a queue. When a player deviates, he is pushed in M (line 6).

As soon as the size of the tabu list is greater than the tabu length L, the first element in the queue

will be popped (line 7-9).
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Algorithm 5.6. Find a neighbor in the CG-TS algorithm

1: function NEIGHBORTABU(tuple s, list of players P ′): tuple
2: while P ′ 6= /0 do
3: pick a player i from P ′ randomly
4: s′ ← findBR C*G(s,i)
5: if s′ 6= null then
6: M .push(i) . add player i into the tabu list
7: if |M |> L then
8: M .pop() . remove the first element from the queue
9: end if

10: return s′

11: end if
12: remove i from P ′

13: end while
14: return null
15: end function

Like the CG-IBR algorithm, the CG-TS algorithm is correct as well (see Proposition 5.2).

Proposition 5.2. The CG-TS algorithm in constraint games is correct.

Proof. A reported equilibrium is correct because it has been successively checked against devia-

tion for all tabu and non-tabu players and it satisfies the hard constraints.

5.3 CG-SA: Simulated Annealing Algorithm in Constraint Games

Simulated annealing (abbreviated SA) [Kirkpatrick et al., 1983] is a generic probability meta-

heuristic which was originally inspired from the process of annealing in metal work. Annealing

involves heating and cooling a material to alter its physical properties due to the changes in its

internal structure. As the metal cools, its new structure becomes more fixed. Due to the anneal-

ing technique with slow cooling, we will obtain a crystal solid state with the global minimum of

energy.

The intuition of the simulated annealing algorithm is composed of two key ideas. First, given a

situation s and a set of its neighbors, we use a function for evaluating the neighbors compared

with s. We move from the current candidate s to a neighbor if it is proven to be better than s.

Nevertheless, the algorithm also moves to a worse neighbor with an acceptance probability. This

gives the algorithm the possibility to jump out if it gets stuck in a local optimum.

Figure 5.3 illustrates how to apply SA in a simple problem. We would like to climb to the highest

point in this schema, therefore a point s′ is said to be better a point s if s′ is higher than s. We

assume that the algorithm starts at the point A. Because the point B is better than A, thus we

climb to B at the next step. Unfortunately, B is a local optimum of the problem. In order to avoid

getting stuck at this point, the algorithm also allows to descend to the point C even though C is

worse than B. Finally, we have opportunity to reach to D, the optimal point.



5.3. CG-SA: Simulated Annealing Algorithm in Constraint Games 79

Figure 5.3: The simulated annealing algorithm runs on a simple example.

For solving constraint games, based on the simulated algorithm, we integrate into ConGa an

algorithm named CG-SA. More precisely, in CG-SA, inspired from the process of annealing in

metal work, we initially set the temperature T I high and then allow it to slowly “cool” as the

algorithm runs. Let s be a strategy profile, then BRs be the set of players for whom s is a best

response. In Example 5.1, given a strategy profiles s1 = (1,2,3), then BRs1 = {Z} because s1

is a best response of player Z. While the strategy profile s2 = (3,3,3) is a PNE because BRs2 =

{X ,Y,Z}, namely s2 is a best response of all the players. We assume that s is the current candidate

of the algorithm, and s′ is a neighbor of s. Then s′ is said to be better than s if |BRs′ | > |BRs|,
hence the algorithm moves from s to s′ unconditionally. However, even if s′ is worse than s

than the movement can be still accepted if e
|BRs′ |−|BRs|

T I ≥ random([0,1]) where e
|BRs′ |−|BRs|

T I is the

acceptance probability.

At high temperature, the search is more random because it is suited to explore quickly large

areas of the search space. But at low temperature, the search is more like hill-climbing. As the

temperature is reduced that the algorithm gradually focuses on an area of the search space in which

hopefully, a close to optimum solution can be found. This gradual “cooling” process makes the

simulated annealing algorithm remarkably effective at finding a close to optimum solution when

dealing with large problems which contain numerous local optima.

In Algorithm 5.7, we seek to apply CG-SA to increase the size of BRs to |P|, namely, to detect a

PNE. In this algorithm, we set the initial temperature T I (line 2) and the cooling rate cr (line 3).

T I plays an important role in CG-SA as it makes a direct impact on the algorithm performance.

T I must be high enough such that the final candidate is independent of the starting one, but not

too high because this may make the algorithm run very slowly. T I is calculated from the formula

e−
|P|
T I = τ where τ will be fixed later in experiments.
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Algorithm 5.7. CG-SA, Simulated Annealing Algorithm for Constraint Games
1: function CG-SA(Constraint Game CG): tuple
2: TI← set the initial temperature
3: cr← set the cooling rate
4: s← get an arbitrary solution of the solver (with hard constraints if they exist)
5: BRs ← /0 . BRs is the number of players for whom s is best response
6: Ψ← s . Ψ is the best strategy profile found so far
7: BRΨ ← BRs
8: incTL← 1
9: while TI > ε do

10: TL← incT L×|P|
11: for (iter = 1 to TL) do
12: if |BRs|> |BRΨ| then . keep track of the best solution
13: (Ψ,BRΨ)← (s,BRs)
14: end if
15: (s′,BRs′ )← neighborSA(s,BRs,TI) . get a neighbor of the current solution
16: if (s′,BRs′ ) = null then . no good enough neighbor is found
17: if |BRs|= |P| then . solution s is the best response of all players
18: return s . return the PNE
19: else
20: (s,BRs)← (Ψ, BRΨ) . restart from the best solution
21: end if
22: else
23: (s,BRs)← (s′,BRs′ ) . move from the current solution to the neighbor
24: end if
25: end for
26: incTL← incTL + 1
27: TI← TI × (1 - cr) . cool system
28: end while
29: return null . the algorithm fails to find a PNE
30: end function

For each strategy profile s, we keep along with a list of players BRs (line 5). During search, we

keep track of the best strategy profile which is a best response of the maximal number of players

(line 6 - 7 and line 12 - 13). The algorithm may restart at this best strategy profile in line 20.

In line 10, T L is the number of iterations at a given temperature. In order to avoid cooling the

system too fast, we perform T L times of iterations before decreasing the temperature (line 11-

25). For example, let assume that at the current moment, the temperature T I = 10 and T L = 100.

Then we iterate the movement from the current strategy profile to its neighbor for 100 times at

the temperature 10 before T I is decreased, e.g. down to T I = 9. T L may vary from temperature

to temperature. It is necessary to spend sufficiently long time at lower temperatures. Thus, T L is

increased when we go down with T I (line 10 and line 26).

Line 15 is devoted to detect a neighbor (Algorithm 5.8). If no neighbor is found than one of two

following possibilities occurs.

(i) No player can change to a better strategy since s is a best response of all players. Therefore,

a PNE is returned (line 17 -18).

(ii) All neighbors are worse than the current candidate. Moreover, their acceptance possibilities
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are not high enough to be chosen as the next candidate. The algorithm gets stuck in local

optima. It should thus restarts with the best solution found so far (line 20).

Finally, the decreasing rule of the temperature T I is described in line 27. The algorithm may also

stop when T I ≤ ε where ε is fixed later in experiments.

Algorithm 5.8. Find a random neighbor in the CG-SA algorithm
1: function NEIGHBORSA(tuple s, list of players BRs, double T I): (s′,BRs′ )
2: P ′←P \BRs . P ′ is the list of players for whom s may be not a best response
3: while P ′ 6= /0 do
4: pick player i from P ′ randomly
5: s′ ← findBR-C*G(s,i) . find a random best response of player i from s
6: if s′ = null then
7: BRs ← BRs∪{i} . s is a best response of player i
8: else
9: BRs′ ← eval(s′, i,BRs)

10: r← a random number in rang [0,1]

11: if (|BRs′ |> |BRs|) or (e
|BRs′ |−|BRs |

T I ≥ r) then
12: return (s′,BRs′ )
13: end if
14: end if
15: remove i from P ′

16: end while
17: return null
18: end function

Finding a neighbor of a tuple s is specified in Algorithm 5.8. A neighbor s′ is chosen in this

algorithm according to the comparison between the size of the list BRs and BRs′ . From the list

of players for whom s may not be a best response (line 2), we try to find a best response which

could be a good neighbor (line 3 -16). In line 5, the function of finding a random best response

is previously specified in Algorithm 5.3 for CSG and in Algorithm 5.4 for COG. It is compu-

tationally complex to detect for which player a strategy profile is a best response because, for

CSG, this concerns solving a Constraint Satisfaction Problem, while for COG, it is a Constraint

Optimization Problem. Hence, it is necessary to decrease the times of finding best responses as

much as possible. This is the reason why we always keep a list BRs along with s during search.

In line 3 - 16, the list is gradually filled when s is a best response of the player (line 6 - 7).

We find a best response s′ from s and evaluate it against s (line 9 - 13). Line 9 is devoted to

determine the list BRs′ (Algorithm 5.9). The new strategy profile s′ is accepted if it is either a

better strategy profile or a worse one with a high enough acceptance probability (line 11-13).

Given a neighbor s′, Algorithm 5.9 demonstrates how to determine the list BRs′ . Because s′ is

already a best response of player i, the list BRs′ initially includes i (line 2). The main idea of this

algorithm is as follows. Given the current list BRs, for evaluating neighbor s′, we seek to find a set

of players BRs′ . This list is composed of player j ∈ BRs who does not make a beneficial deviation

from s′ (line 3 - 9). Hence, the upper bound of |BRs′ | is |BRs|+1. Therefore, s′ is better than s only

if no player in BRs can deviate from s′. In all of the remaining cases, s′ is worse than s. However,

we remind that in CG-SA, a worse strategy profile can be still chosen if its probability is greater
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Algorithm 5.9. Determine the list BRs′ of a neighbor s′ in the CG-SA algorithm
1: function EVAL(tuple s′, player i, list of players BRs ): list of players BRs′

2: BRs′ ← {i}
3: while BRs 6= /0 do
4: pick player j from BRs randomly
5: if dev-C*G(s′, j) then return BRs′

6: end if
7: BRs′ ← BRs′ ∪{ j}
8: remove j from BRs
9: end while

10: return BRs′

11: end function

than or equal to a random number in [0,1]. It is possible to check the deviation for all players in

BRs. Nevertheless, the deviation verification for players is computationally complex. In addition,

we may have to evaluate many neighbors of s in Algorithm 5.8. Henceforth, in Algorithm 5.9, if

there exists a player in BRs making a deviation then s′ may be not better than s. In consequence,

the list BRs′ will be returned immediately (line 5). Although this evaluation between s and s′ is

incomplete, it allows us not to spend too much time for the costly deviation verification (for CSG

in Algorithm 5.10 and for COG in Algorithm 5.11).

Figure 5.4 illustrates the evaluation (in Algorithm 5.9) between two strategies s and s′ in a game

composed of 5 players.

Figure 5.4: Algorithm 5.9 works on an example.
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The strategy s is a best response of players 1,2,3,5. The strategy s′ is a best response of player

4 from s (Figure 5.4.a). In Figure 5.4.b, we randomly pick player 1 and verify if this player can

deviate from s′. Because 1 can not deviate, it is inserted into BRs′ . The same thing happen with

player 5 (Figure 5.4.c). In Figure 5.4.d, we find out that player 2 can make a beneficial deviation

from s′. This function immediately stops and the list BRs′ = {1,4,5} is returned.

Algorithm 5.10. Verify whether a player can make a beneficial deviation in CSG

1: function DEV-CSG(tuple s, int i): boolean
2: initialize solver Si with Gi (and hard constraints if they exists)
3: for all j ∈P do . instantiate the values from s to the variables controlled by the others
4: if i 6= j then
5: for all (k = 1; k ≤ |Vj|; k++) do
6: add constraints v jk = s jk where v jk ∈Vj
7: end for
8: end if
9: end for

10: set search tree to begin with ∀vik ∈Vi,vik = sik
11: f sol ← Si.getSolution() . find the first solution of the solver
12: if f sol 6= null then
13: if f sol = s then . s is a solution of the solver
14: return false
15: else
16: return true . player i can deviate from s to f sol
17: end if
18: else . Si has no solution, i.e. goal Gi is not satisfied by any tuple s = (si,s−i) with si ∈ Si
19: return false . s is also best response
20: end if
21: end function

Algorithm 5.11. Verify whether a player can make a beneficial deviation in COG

1: function DEV-COG(tuple s, int i): boolean
2: initialize solver Si with Gi and opti (and hard constraints if they exists)
3: for all j ∈P do . instantiate the values from s to the variables controlled by the others
4: if i 6= j then
5: for all (k = 1; k ≤ |Vj|; k++) do
6: add constraints v jk = s jk where v jk ∈Vj
7: end for
8: end if
9: end for

10: set search tree to begin with ∀vik ∈Vi,vik = sik
11: f sol ← Si.getSolution() . find the first solution of the solver
12: if ( f sol 6= null) and ( f sol = s) then
13: get the current payoff x of player i from f sol
14: add constraint vopti > x . branch and bound
15: end if
16: if Si.getSolution() 6= null then
17: return true . player i can deviate to a solution of Si
18: end if
19: return false
20: end function

Algorithm 5.10 is devoted to verify whether player i could make a beneficial deviation from s for
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CSG. In line 3 - 9, we instantiate the values to the variables controlled by the remaining players to

check whether s is a solution of player i. Because the search tree is set to begin with the variables

and values of player i in s (line 10), if the solver finds a solution and s is a solution then s must

be identical to the first solution f sol (line 12 - 14). Otherwise, player i could make a beneficial

deviation from s to f sol (line 16). The solver has no solution suggests that the goal Gi is never

satisfied hence player i cannot deviate to a better solution (line 19).

A similar procedure for COG is depicted in Algorithm 5.11. But it is more complex because s is

a solution of the solver does not guarantee that player i cannot make a deviation. Hence, we need

calculate the current payoff of i (line 13) and post a complementary branch and bound technique

in line 14. Then, the solver has a solution means that player i can change to another strategy to

improve his payoff (line 16 -18).

The two above algorithms are similar to the ones of finding a random best response (Algorithm

5.3 and Algorithm 5.4). But they are faster because we only need to check whether the player

is able to deviate to a better utility. While in the previous algorithms, it is required to detect

a random strategy profile such that the player gets the best utility. We also note that these two

algorithms will be reused in the complete algorithms in Chapter 6.

Finally, we prove the correctness of the algorithm in the following proposition.

Proposition 5.3. The CG-SA algorithm is correct.

Proof. A PNE s is reported only if |BRs| = |P|, namely s is a best response of all players. In

addition, s also satisfies the hard constraints. Indeed the CG-SA algorithm for constraint games

is correct.

5.4 Experiment

We have implemented three algorithms described above in the ConGa solver. We will demonstrate

in this section the usefulness and the compactness of our constraint games representation as well

as our solver ConGa. In terms of modeling tools, constraint games can overcome the drawbacks

of the existing game representations in Section 2.3, because they can encode the game instances

much larger or unrepresentable by the others. In terms of solving tools, thanks to the compactness

of the game representation, ConGa could find a PNE in very large games even with the most

simple algorithm CG-IBR. Additionally, the two metaheuristic algorithms (CG-TS and CG-SA)

sometimes offer a better performance to the solver.

5.4.1 Description of Experimental Game Instances

We provide here the detailed description of the game instances in our experiments. Each game

instance is specified by two main parameters: clients number and vendors number for Location
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Games with Hard Constraint (abbreviated LGHC) (Example 4.12), dimensions number and play-

ers number for Hypercube Network Congestion Games (abbreviated HNCG) (Example 4.15). In

the tables, v stands for the number of variables controlled by each player, d for the domain size of

each variable, s for the number of strategies per player.

#client 40 50 60
#vendor v d s NF v d s NF v d s NF

10 1 40 40 1.05E+17 1 50 50 9.77E+17 1 60 60 6.05E+18
11 1 40 40 4.61E+18 1 50 50 5.37E+19 1 60 60 3.99E+20
12 1 40 40 2.01E+20 1 50 50 2.93E+21 1 60 60 2.61E+22
13 1 40 40 8.72E+21 1 50 50 1.59E+23 1 60 60 1.70E+24
14 1 40 40 7.36E+23 1 50 50 8.54E+24 1 60 60 1.10E+26

Table 5.1: Game instances description of Location Games with Hard Constraints in the local
search solver experiments. The number aE+b is equal to a×10b.

#dimension 5 6 7
#player v d s NF v d s NF v d s NF

100 5 5 120 100×120100 6 6 720 100×720100 7 7 5040 100×5040100

120 5 5 120 120×120120 6 6 720 120×720120 7 7 5040 120×5040120

140 5 5 120 140×120140 6 6 720 140×720140 7 7 5040 140×5040140

160 5 5 120 160×120160 6 6 720 160×720160 7 7 5040 160×5040160

180 5 5 120 180×120180 6 6 720 180×720180 7 7 5040 180×5040180

200 5 5 120 200×120200 6 6 720 200×720200 7 7 5040 200×5040200

Table 5.2: Game instances description of Hypercube Network Congestion Games in the local
search solver experiments.

All the games experimented are Constraint Optimization Games with Hard Constraints, thus they

can not be encoded by normal form and by boolean games (see Section 4.1.5). However, in order

to demonstrate the compactness of constraint games, in the above tables, we give the number of

entries which would be involved in the induced normal form representation in the column labeled

by NF. As we can see in the tables, these game instances are out of storage capacity of the normal

form representations. Especially, the largest game in our experiments consists of 200 players

and 5040 strategies per player. A normal form representation of this game would have stored

200×5040200 entries (Table 5.2).

5.4.2 Experimental Results

In the experiments, each algorithm has been launched 100 times per instance. The max step is set

to 50× 106. If an algorithm fails to find a PNE within the max step then the time taken will be

noted by the notation “–”.

The average time results of the three algorithms on LGHC are depicted in Table 5.3 (on the next

page). As we can see in the table, the solver is already able to find a PNE by CG-IBR within

reasonable time for the large instances (the size of game instances is detailed in Table 5.1). The

time needed for CG-IBR has been seen as the baseline time for evaluating the other algorithms,

i.e. CG-TS and CG-SA. In several instances, CG-TS offers a better performance than CG-IBR
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#client 40 50 60
#vendor CG-IBR CG-TS CG-SA CG-IBR CG-TS CG-SA CG-IBR CG-TS CG-SA

10 4.78 5.20 4.18 12.89 11.59 7.78 47.21 41.41 23.21
11 6.37 5.78 3.81 57.07 68.69 25.22 274.69 276.13 82.06
12 24.63 23.06 11.13 78.87 83.56 35.01 89.84 84.50 31.04
13 – – – 57.00 72.67 22.40 406.69 400.34 108.80
14 231.22 153.79 86.60 78.51 63.68 23.02 1143.49 633.41 398.73

Table 5.3: Average time (in seconds) taken of CG-IBR, CG-TS and CG-SA on Location Game with
Hard Constraints. The tabu length is set to round of quarter of the number of players in CG-TS.
For CG-SA, the cooling rate is set to 0.005. T I is calculated from the formula e

−|P|
T I = 0.2.

but not for all the instances. There even exists some instances on which CG-TS is worse than CG-

IBR. In addition, the time needed for CG-IBR and CG-TS is almost the same. This suggests that

the tabu list is not sufficient to significantly improve the solver. Actually, both the two algorithms

randomly select a neighbor without being driven by an efficient metaheuristic (see Algorithm 5.2

and Algorithm 5.6). CG-SA can climb over this obstacle. By including an evaluation between the

current candidate and its neighbors (see Algorithm 5.8), CG-SA beats both CG-IBR and CG-TS,

as mentioned in the table. Moreover, in most of the cases, CG-SA is approximately 2 times faster

than CG-IBR.

All the three algorithms have not found a PNE within the max step on the instance LGHC.13.40.

A hypothesis is this instance does not contain a PNE. Like other local search algorithms, not

surprisingly, these algorithms cannot guarantee to find a PNE as well as prove the absence of

PNE in constraint games.

We also notice that the standard deviations in all these game instances are very large. It may

be caused by the sensitiveness of initial point which are randomly generated at each launch for

each instance in LGHC. Unfortunately, our interest in this thesis does not include heuristics for

choosing good initial points. In fact, we leave this work for perspectives. We then analyze the

solver performance with standard deviation in the instances of Hypercube Network Congestion

Games which are less dependent of initial points.

The below tables (on the next page) represent the experimental results of the three algorithms

on HNCG. The abbreviations avg, sdt stand for average time taken (in second), and standard

deviation. The rate of sdt on avg in percent is depicted in the column labeled by rate.

The tables show an impressive result because all the algorithms run very fast with small stan-

dard deviation on the very large game instances (The size of game instances is detailed in Table

5.2). Namely, the algorithms converge to a PNE in short time. It is because Hypercube Network

Congestion Games belong to the class of congestion games. The most prominent property of this

game class is that from an arbitrary initial point, local search algorithm always converges to a

PNE. It is also proven that the number of improvements is upper-bounded by 2×∑r∈R ∑
n
i=1 |dr(i)|

where n is the number of players, R is the set of resources and dr is the delay function of resource

r (see Definition 2.6) [Rosenthal, 1973]. In other words, the algorithms have never get stuck in

infinite looping or local optima.
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#dimension 5 6 7
#player avg std rate(%) avg std rate(%) avg std rate(%)

100 8.69 0.58 6.71 13.35 1.04 7.81 305.83 62.31 20.38
120 9.37 0.47 5.03 17.97 1.61 8.95 445.90 64.03 14.36
140 10.44 0.39 3.71 18.45 1.03 5.58 1066.49 158.65 14.88
160 22.91 1.79 7.81 22.91 1.79 7.81 209.86 17.92 8.54
180 13.93 0.53 3.80 30.74 3.77 12.25 499.28 64.40 12.90
200 15.83 0.60 3.77 30.74 2.30 7.48 694.34 85.29 12.28

Table 5.4: Time taken of CG-IBR on Hypercube Network Congestion Games

#dimension 5 6 7
#player avg std rate(%) avg std rate(%) avg std rate(%)

100 8.56 0.55 6.42 12.58 0.76 6.06 286.50 62.75 21.90
120 9.40 0.42 4.43 18.19 2.22 12.22 422.44 76.66 18.15
140 10.43 0.46 4.38 17.92 1.00 5.58 991.97 166.25 16.76
160 11.38 0.48 4.25 21.44 1.84 8.57 191.71 15.61 8.14
180 13.96 0.53 3.77 29.55 3.40 11.51 462.01 68.26 14.77
200 15.88 0.53 3.36 29.39 2.11 7.18 626.77 88.34 14.10

Table 5.5: Time taken of CG-TS on Hypercube Network Congestion Games. The tabu length is
set to round of quarter of the number of players.

#dimension 5 6 7
#player avg std rate(%) avg std rate(%) avg std rate(%)

100 8.17 0.35 4.26 20.72 2.15 10.40 329.44 38.80 11.78
120 9.46 0.44 4.66 30.55 5.74 18.79 861.45 203.39 23.61
140 10.86 0.56 5.17 30.95 3.73 12.06 1162.59 229.93 19.78
160 12.59 0.63 5.04 40.65 4.40 10.81 1521.89 176.50 11.60
180 15.35 0.28 1.80 58.80 9.56 16.27 2515.50 328.13 13.04
200 17.38 0.81 4.67 52.39 6.53 12.47 7464.92 1399.45 18.75

Table 5.6: Time taken of CG-SA on Hypercube Network Congestion Games. The cooling rate is
set to 0.1. T I is calculated from the formula e

−|P|
T I = 0.2.

Generally, the results of CG-SA are worse than the ones of CG-IBR and of CG-TS. In CG-SA,

the cooling process is very slow with acceptance probability in order to jump out local optima.

Moreover, it also requires the time for the evaluation of neighbors. This procedure often takes

large computation time. It is reasonable that CG-SA does not work well in these game instances

without local optimum (or infinite loops). It rather fits well on the games like LGHC that contain

numerous local optima.

5.5 Related Work

Local search has not been largely used for computing Nash equilibrium in games. Several related

works often concentrate on finding mixed Nash equilibrium and very few works address PNE for

general games.

The most trivial local search algorithms for finding PNE are Iterated Best/Better Responses

which can be used on whatever game representations [Shoham and Leyton-Brown, 2009]. In
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[Son and Baldick, 2004], the authors apply hybrid coevolutionary programming for differentiat-

ing local optima and PNE, not for computing PNE. There are also several works using local search

for computing mixed equilibrium on normal form, such as [Gatti et al., 2012, Ceppi et al., 2010]

as well as genetic algorithms [Ismail et al., 2007].

In [Ortiz and Kearns, 2002], it has been proposed an iterative and local message-passing al-

gorithm for computing mixed Nash equilibrium on arbitrary undirected graphs. Similarly,

[Vickrey and Koller, 2002] use a greedy local search algorithm in their proposal of finding ap-

proximate mixed Nash equilibrium. With the proposal which is not for finding Nash equilibrium

but for learning graphical games, [Duong et al., 2009] explore two versions of simulated anneal-

ing algorithm for loss-minimizing neighborhoods.

Finally, to the best of our knowledge, no local search method has been proposed for computing

Nash equilibrium in both action-graph games and classical boolean games so far.

5.6 Conclusion

In this chapter, we have presented a set of local search algorithms which allow to quickly detect

one pure Nash equilibrium in constraint games. In detail, we have implemented three algorithms

in the ConGa solver. First, we have proposed a baseline local search algorithm, what we called

CG-IBR, the iterated best responses algorithm for solving constraint games. Second, we have

modified CG-IBR by using a tabu list in order to avoid getting stuck in infinite looping. This

algorithm is named CG-TS. Third, we have described CG-SA, an adapted version of the simulated

annealing algorithm in constraint games.

Thanks to the compactness of constraint games, the local search solver is capable of solving

game instances which are out of storage capacity of normal form. More precisely, among the

three algorithms, CG-IBR and CG-TS are reasonable for solving some specific game classes such

as congestion games in which the games do not consist of any local optima/infinite loop. While

CG-SA seems well suitable for solving games including many local optima.

In our experiments, we have only tested a set of parameters randomly chosen for CG-SA, e.g. the

cooling rate. It has been well-known that selecting good parameters in the simulated annealing

algorithm could offer a much better performance. We are thus confident that the CG-SA algorithm

can be more improved by a deeper study on good rules for choosing these parameters. There are

also other lines of work for improvement on the existing algorithms, such as, heuristic for selec-

ting good initial points, or restarts techniques. Moreover, the current solver could be extended by

implementing other kinds of local search, for example, genetic algorithms.
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Although finding one PNE is a very interesting problem in itself, finding all of them allows more

freedom for choosing equilibrium that fulfills some additional requirements. We thus present

in this chapter a complete solver for constraint games. In this solver, we first implement the

naive algorithm on the constraint games representation. Then, we improve this algorithm by

including several advanced techniques in an algorithm named CG-Enum-PNE. Among the PNE

of a constraint game, some PNE are probably more desirable than the others. In other words,

these PNE may be also Pareto Nash equilibrium while the others are not. It has been well-known

that the correctness of Pareto Nash equilibrium is based on the completeness of PNE enumeration.

Hence, it is also interesting to detect all PPNE after we have obtained the set of all PNE. That

is what we have done in an algorithm called CG-Enum-PPNE. Finally, the experimental results

demonstrate that our complete solver is faster than the normal form solver Gambit by one or two

orders of magnitude. 1

1This chapter could be seen as an extended version of our published paper [Nguyen and Lallouet, 2014].
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6.1 CG-Enum-Naive: Naive Algorithm for Enumerating All Pure
Nash Equilibrium

A natural algorithm is to use “generate and test” to enumerate equilibrium (Algorithm 2.1 in

Section 2.2.1). This naive algorithm is however the only known algorithm for finding PNE

[Turocy, 2013] and from the complexity result, it is unlikely that any fast (polynomial) algorithm

could exist. This algorithm is actually the basis of the implementation of the Gambit solver for

the PNE enumeration.

Algorithm 6.1 is similar to the one implemented in Gambit. The difference is that it works on

constraint games, not on normal form.

Algorithm 6.1. The naive algorithm for enumerating all PNE

1: function CG-ENUM-NAIVE(Constraint Game CG): setof tuples
2: Nash← /0
3: initialize solver S (with hard constraints if they exist)
4: s← S.getSolution()
5: while s 6= nul do
6: if isPNE(s) then
7: Nash = Nash ∪ {s}
8: end if
9: s← S.getSolution()

10: end while
11: return Nash
12: end function

This naive algorithm consists in enumerating all strategy profiles which satisfy hard constraints

(line 3 -10), testing each of them for each player for deviation (line 6) and skipping to the next

profile when the Nash verification is done (line 9). The procedure of checking whether a tuple is a

PNE is depicted in Algorithm 6.2. We recall that the function dev-C*G(s, i) in line 3 is previously

specified in Algorithm 5.3 for CSG and Algorithm 5.4 for COG in Chapter 5.

Algorithm 6.2. Verify whether a tuple is a PNE

1: function ISPNE(tuple s): boolean
2: for i ∈P do
3: if dev-C*G(s, i) then
4: return false
5: end if
6: end for
7: return true
8: end function

Despite its simplicity, the naive algorithm benefits from the compactness of the framework, in

particular in the games with hard constraints, because it only needs to consider strategy profile in

a satisfiable search space already restricted by hard constraints.
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Proposition 6.1. CG-Enum-Naive is correct and complete.

Proof. A strategy profile is said to be a PNE only if no player is able to deviate from it. Clearly,

the satisfiable search space of the games consists of all tuples which do not violate hard con-

straints. The deviation checking is made on all strategy profiles in this satisfiable search space.

The algorithm is thus correct and complete.

6.2 Pruning Techniques

We give, in this section, a set of pruning techniques available for solving constraint games. At the

beginning, we survey several existing techniques in the literature. We then propose our advanced

techniques for efficiently solving constraint games.

6.2.1 Classical Techniques

Elimination of dominated strategies can be seen as a form of propagation for games [Apt, 2004,

Apt, 2011]. Several types of domination have been devised, among them the best-known are strict

dominance (also called strong dominance), weak dominance and never best response.

(a) Strict dominance (b) Weak dominance (c) Never best response

Figure 6.1: Dominance notions. In Figure 6.1a, strategy c is strictly dominated by strategy a. In
Figure 6.1b, strategy d is weakly dominated by strategy a. In Figure 6.1c, strategy e is a never
best response.

A player’s strategy (e.g. strategy c in Figure 6.1a) is said to be strictly dominated by another

strategy (e.g. strategy a in Figure 6.1a) if the player is always able to deviate from it to the other

strategy in order to obtain a better utility, no matter what other players choose.

Definition 6.1 (Strict Dominance). Strategy si is said to be strictly dominated by strategy s′i (or

equivalently s′i strictly dominates si) if ∀s−i,ui(s′i,s−i)> ui(si,s−i).

A player’s strategy si (e.g. strategy d in Figure 6.1a) is said to be weakly dominated by another

strategy s′i (e.g. strategy a in Figure 6.1a) if there is at least one set of other players’ strategies for

which si gives a worse utility than s′i, while all other sets of other players’ strategies give si the

same utility as s′i.
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Definition 6.2 (Weak Dominance). Strategy si is said to be weakly dominated by strategy s′i
(or equivalently s′i weakly dominates si) if ∀s−i,ui(s′i,s−i) ≥ ui(si,s−i) and ∃s−i,ui(s′i,s−i) >

ui(si,s−i).

A strategy profile is said to be never best response (e.g. strategy d in Figure 6.1c) of a player

if whatever remaining players choose, the player can always deviate to another strategy to get a

better utility.

Definition 6.3 (Never Best Response). Strategy si is said to be never best response (abbreviated

NBR) if ∀s−i,∃s′i such that ui(s′i,s−i)> ui(si,s−i).

These dominance notions derive a set of elimination techniques as follows.

Elimination of strictly dominated strategies. Clearly, a player would not like to choose his

strictly dominated strategy because he can always deviate to a better strategy. Then, this strategy

can be eliminated. The resulting game becomes smaller, thus simpler for solving. In general,

an elimination of strictly dominated strategies is not an one step process. It may be an iterative

procedure. Let us illustrate this process in the following example.

Example 6.1. Consider the following 2-player game encoded by normal form

A B C
X 2,3 4,5 1,1
Y 5,4 8,1 0,2
Z 3,3 7,2 5,2

We see that C is strictly dominated by A and X is strictly dominated by Z. Thus we eliminate these

two strategies. The game becomes as follows.

A B

Y 5, 4 8, 1

Z 3, 3 7, 2

Now Z is strictly dominated by Y, so we get

A B
Y 5, 4 8, 1

Finally, the pure Nash equilibrium of the game is

A

Y 5, 4

Given a game G, if G is finite and solved by elimination of strictly dominated strategies, then

the resulting joint strategy is the unique pure Nash equilibrium of the game. Additionally, it is

established by [Gilboa et al., 1990] that all iterated eliminations of strictly dominated strategies

yield the same outcome. In other words, strict dominance is order independent.
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Elimination of weakly dominated strategies. In the literature, several classical games can be

solved by the elimination of weakly dominated strategies, such as Guess Two Thirds Average

(Example 4.8) or Travelers’ dilemma (Example 4.11). However, a weakly dominated strategy

may appear in a pure Nash equilibrium as well. In consequence, during this eliminating process,

we may “lose” several pure Nash equilibrium in games.

Elimination of never best responses. While with a strictly dominated strategy, the player can

make beneficial deviation to one strategy, the player may deviate to a set of different strategies

with a NBR. Hence, NBR notion can be seen as the extension of strictly dominated dominance.

In other words, a strictly dominated strategy is a never best response as well. But the vice versa is

not always true. As the class of never best responses is larger, there is more opportunity to detect

never best responses than dominated strategies. The interesting issue is that never best responses

of a player do not either appear in PNE since the player can always deviate. So they can be

removed from the player’s strategy set. For example, in Figure 6.1c, we can eliminate strategy e

from the game.

In conclusion. The techniques described above could be seen as pruning techniques for solving

games. However, the detection of domination for a strategy is computationally complex, because

we need to consider the joint strategies of all remaining players which is well-known to be a

Cartesian product. These techniques are henceforth not used in practice.

6.2.2 Advanced Techniques

In our complete solver, we prune never best responses, but in subgames. The second key technique

is the fast deviation verification.

The first technique consists in elimination of never best responses in subgames. A subgame in

constraint games is defined as follows.

Definition 6.4 (Subgame). Let CG = (P,V,D,G,opt) be a constraint game. A game CG′ =

(P,V,D′,G,opt) is a subgame of CG if ∃i ∈P,D′i ⊆ Di and ∀ j 6= i→ D′j = D j.

We denote by <opti the (partial) order on strategy profiles such that s <opti s′ if s−i = s′−i and

s|x < s′|x when opti = min(x) (resp. s|x > s′|x when opti = max(x)). In other words, s <opti s′

means that player i gets a better utility on s than on s′ with regard to the identical s−i taken by

other players.

Definition 6.5. A strategy si for player i is a never best response if ∀s−i,∃s′i such that (s′i,s−i)<opti

(si,s−i).

Iterative elimination of NBR is a sound pruning for games [Apt, 2004] which additionally is

stronger than elimination of strictly dominated strategies. But unfortunately their detection is

very costly in the n-player case since it needs to know that this action will never been chosen by
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player i for all strategy profiles of the other players. However, being a NBR in a subgame is a

sufficient condition for not being an equilibrium.

Proposition 6.2. Let CG be a constraint game and CG′ a subgame of CG such that Di ⊆ D′i. Let

s j ∈ D′j be a NBR in CG′ with j 6= i. Then for all s− j, if s = (s j,s− j) is a PNE, then si 6∈ D′i.

Proof. The proof is by contradiction. Suppose there exists a PNE s = (s j,s− j) with (s− j)i ∈ D′i.

Because s is a PNE, we have ∀k ∈P,sk ∈ br(s)|k. Then because s j is a NBR for j in CG′, there

exists s′j such that (s′j,s− j)<opt j (s j,s− j). Thus s j 6∈ br(s)| j.

Let us illustrate the proposition above in the following example.

Example 6.2. Given a constraint game CG including: the set of players is P = {1,2,3}. Each

player owns one variable: V1 = {s1},V2 = {s2} and V3 = {s3} with D1 = D(s1) = {1},D2 =

D(s2) = {1,2,3},D3 =D(s3) = {1,2}. The goals are G1 = {s1 6= s2,s1 > s3}, G2 = {s1 ≤ s2,s2 >

s3} and G3 = {s1 + s2 = s3}.

Let CG′ be a subgame of CG such that D′1 = {1},D′2 = {1},D′3 = {1,2} (according to Proposition

6.2, i = 2). We see that s3 = 1 is a NBR of player 3 in CG′ because while s1 = 1 and s2 = 1,

player 3 would like to choose the strategy s3 = 2 which is a solution of his goal G3 (according to

Proposition 6.2, j = 3). Then, for all s−3, if s = (s3,s−3) is a PNE, then (s2 = 1) 6∈ D′2. In other

words, if (1,1,1) (which stands for s1 = 1,s2 = 1,s3 = 1) is a PNE then 1 6∈ D′2.

By applying inductively Proposition 6.2 on a sequence of assignments of strategies for player 1

to k with k < n, we see that if we detect that a strategy sk is NBR for player k in the subgame

defined by the sequence of assignments, then this strategy will not participate to a PNE and we

can prune it. In Example 6.2, the strategy s3 = 1 is a NBR for player 3 in the subgame defined

by the sequence of assignments (1,1) (which stands for s1 = 1 and s2 = 1), then we can remove 1

from D′3 when we deal with this subgame.

We then present our technique for fast deviation checking. The issue which motivates us to

propose this technique is the complexity of the verification process for each player’s deviation.

We first demonstrate that the naive technique (in Algorithm 6.1) is subject to a form of trashing.

The following example shows that some deviations are performed several times.

Example 6.3. Let G be the 2-player game defined by the following table:

G y

1 2 3

x

a (0,1)α (1,0) (1,0)

b (0,1)β (0,0) (1,0)

c (1,0) (1,1) (0,0)

We assume that the enumeration starts by player x. The first tuple to be enumerated is (a,1)

denoted by α . Deviation is checked for player y and no deviation is found. Then deviation is

checked for player x and a deviation towards (c,1) is found. Thus this tuple is not a PNE. The
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next candidate is (b,1) denoted by β . This tuple is checked for player y and again no deviation is

found. But when checked for player x, the same deviation towards (c,1) is found as for tuple α .

This form of trashing is a strong motivation to investigate search and pruning techniques for con-

straint games. To introduce our technique, we first recall [Gottlob et al., 2005] where the authors

introduce (originally for graphical games) a CSP composed of Nash constraints to represent best

responses for each player.

Definition 6.6 (GGS-CSP). Let CG= (P,V,D,G,opt) be a COG. The Nash constraint of player

i ∈P is gi = (Vc,T ) where T = {t ∈ DV | 6∃t ′ ∈ DV s.t. t ′ <opti t}. The GGS-CSP G (CG) of CG

is the set of Nash constraints for all players.

This CSP has the important property that it defines the PNE of the game:

Theorem 6.1. ([Gottlob et al., 2005]) t is a PNE of CG↔ t ∈ sol(G (CG))

Then it follows that a PNE of a constraint game, CG, has a support in all of its Nash constraints.

Our technique consists to perform a traversal of the search space by assigning the variables of

each player in turn according to a predefined ordering on P . For each candidate tuple, we seek

for supports by performing an incremental computation of the Nash constraints. Each computed

deviation is recorded in a table for each player. By retrieving tuples in Nash constraints, we can

avoid computing costly deviations.

However, since we are studying general games, each Nash constraint has the same arity as the

whole problem, which is challenging in terms of space requirements. First, note that any tuple

deleted from a table does not hinder the correctness of the Nash test. It may only force a deviation

to be computed twice. Hence we are free to limit the size of the tables and trade space with time.

In practice, two features limit the size of the tables.

First, deviation checks are performed in reverse player ordering. It means that a tuple checked

for the first player must have succeed the deviation test for all other players. In practice for most

problems, this limits the number of tuples reaching the upper levels. Second, we can delete a tuple

t recorded in a table when we can ensure that no candidate t ′ will deviate anymore towards t. This

property is given by the following independence of subgames theorem. We denote by bri(t), the

set of best responses from t for player i such that ∀t ′ ∈ bri(t), t ′−i = t−i and t ′ is a best response of

player i.

Proposition 6.3. Let CG be a constraint game and CG′ a subgame of CG such that D′i ⊆ Di. Let

D′′ = D\D′, t ′ ∈ D′V and t ′′ ∈ D′′V . Then ∀ j ∈P, j 6= i→ br j(t ′)∩br j(t ′′) = /0.

Proof. The proof is by contradiction. Suppose there exists t ′ ∈D′V and t ′′ ∈D′′V such that br j(t ′)∩
br j(t ′′) 6= /0. Let s ∈ br j(t ′)∩br j(t ′′). Then since s ∈ br j(t ′), si ∈D′Vi . Since s ∈ br j(t ′′), si ∈D′′Vi .

Hence the contradiction.

Example 6.4. We consider the following constraint game CG: the set of players is P = {X ,Y,Z}.
The set of variables V is composed of : VX = {x},VY = {y} and VZ = {z} with Dx = {2,3},Dy =

{0,1,2},Dz = {1,2}. The goals are GX = {x= y+z}, GY = {y= x−z} and GZ = {x+1= y+z}.
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Let CG′ be a subgame of CG such that D′x = {2,3},D′y = {0,1,2},D′z = {1}, then D′′z = {2}.
Given t ′ = (2,2,1) ∈ D′V , t ′′ = (2,2,2) ∈ D′′V . For player X , brX(t ′) = {(3,2,1)},brX(t ′′) =

{(2,2,2),(3,2,2)}, then brX(t ′)∩ brX(t ′′) = /0. For player Y , brY (t ′) = {(2,1,1)},brY (t ′′) =

{(2,0,2)}, then brY (t ′)∩brY (t ′′) = /0.

This proposition is also illustrated in Figure 6.2. If we split the search space following player Z,

best responses for players X and Y are forced to remain in different subspaces.

Figure 6.2: Independence of subgames

By applying inductively Proposition 6.3 on a sequence of assignments of strategies for player 1

to k with k < n, we see that two branches of the search tree will not share best responses for the

remaining unassigned players. Hence we can freely remove all tuples from the table of subsequent

players once the branch is explored.

6.3 CG-Enum-PNE: Advanced Algorithm for Enumerating All Pure
Nash Equilibrium

In order to simplify the exposition, we assume that each player i only controls one variable xi

with domain Di. The extension to more than one variable per player is not difficult (indeed our

complete solver does not have this limitation since many examples require a player to control

several variables) . We propose a tree-search algorithm for finding all PNE. The general method

is based on three ideas:

• All candidates (except those which are detected as NBR) are generated in lexicographic

order;

• Best responses for each player are recorded in a table;

• Whenever a domination check is performed, it first checks this player’s recorded best re-

sponses.

We assume given an ordering on players from 1 to n. The main algorithm (Algorithm 6.3)

launches the recursive traversal (Algorithm 6.4) starting by player 1. We distinguish the original

domains of the variables (called D) used to compute deviations from their actual domain explored

by the search tree (called A) and subject to pruning by arc-consistency on hard constraints.

Propagation of hard constraints allows to ensure that no forbidden tuple will be explored. If the

propagation returns false, then at least one domain has been wiped out and there is no solution in
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Algorithm 6.3. CG-Enum-PNE, the complete algorithm for Nash equilibrium enumeration

1: global:
2: BR: array[1..n] of tuples . best responses for all players
3: cnt: array[1..n] of integer . counters for NBR detection
4: Nash: set of tuples . Nash equilibrium
5: S: global solver

6: function CG-ENUM(Game CG): setof tuples
7: Nash← /0
8: initialize solver S with hard constraints
9: A← D

10: enum(A,1)
11: return Nash
12: end function

Algorithm 6.4. Enumerate the strategy profiles in the CG-Enum-PNE algorithm

1: procedure ENUM(domains A, int i)
2: if S.propagate(A) then
3: if i > n then
4: checkNash(tuple(A),n)
5: else
6: BR[i]← /0
7: cnt[i]← Π j>i|D j|
8: while Ai 6= /0 do
9: choose v ∈ Ai

10: B← A
11: enum((B−i,(Bi = {v})), i+1)
12: Ai ← Ai−{v}
13: if cnt[i] ≤ 0 then
14: checkEndOfTable(A, i)
15: break
16: end if
17: end while
18: end if
19: end if
20: end procedure

this subspace. Otherwise domains A are reduced according to arc-consistency. Values for each

player are then recursively enumerated. When a tuple is reached, it is checked for Nash condition

(line 4) by Algorithm 6.5. Otherwise, at least one domain remains to be explored. Each player i

owns a table BR[i] of best responses, initialized empty (line 6) and a counter cnt[i] initialized with

the size of the subspace needed to detect potential never best responses (line 7). For the sake of

efficiency, the table BR[i] is actually implemented by a search tree. Hence insertion and search

are done in O(n). After the recursive call of enum (line 11), we test whether all the subspace after

player i has been checked for deviation. Then all subsequent values are never best responses. In

this case an exit from the loop causes backjumping to the ancestor node. This backjumping is

done after the exploration by checkEndOfTable (Algorithm 6.8) of the potential values which are

stored in the table and belong to the unexplored space (lines 13-16).
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Algorithm 6.5. Verify whether a tuple is PNE in the CG-Enum-PNE algorithm

1: procedure CHECKNASH(tuple t, int i)
2: if i = 0 then
3: Nash← Nash∪{t}
4: else
5: d← search table(t,BR, i)
6: if d = /0 then
7: d ← findBestResponses-C*G(t, i)
8: if d = /0 then d←{(t−i,y)|y ∈ Di} end if
9: insert table(i,BR,d)

10: cnt[i] - -
11: end if
12: if t ∈ d then checkNash(t, i−1) end if
13: end if
14: end procedure

Algorithm 6.6. Find the set of best responses for CSG in the CG-Enum-PNE algorithm
1: function FINDBESTRESPONSES-CSG(tuple t, int i): set of tuples
2: d ← /0
3: initialize solver Si with Gi (and hard constraints if they exist)
4: add constraints x j = t j for all j 6= i
5: sol ← Si.getSolution()
6: while sol 6= nil do
7: d ← d∪{sol}
8: sol ← Si.getSolution()
9: end while

10: return d
11: end function

Algorithm 6.7. Find the set of best responses for COG in the CG-Enum-PNE algorithm

1: function FINDBESTRESPONSES-COG(tuple t, int i): set of tuples
2: d ← /0
3: initialize solver Si with Gi and opti (and hard constraints if they exist)
4: add constraints x j = t j for all j 6= i
5: save the current state of Si
6: sol ← Si.getOptimalSolution()
7: if sol = nil then
8: return d
9: else

10: get the optimal value opt of player i from sol
11: restore the previous state of Si
12: add constraints opti = opt
13: sol ← Si.getSolution()
14: while sol 6= nil do
15: d ← d∪{sol}
16: sol ← Si.getSolution()
17: end while
18: end if
19: return d
20: end function
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The checkNash procedure in Algorithm 6.5 verifies whether a player can make a beneficial devi-

ation from a tuple. Since the exploration of the search tree is done level by level, the verification

starts from the deepest level. First the tuple is searched in the table of stored best response for this

player (line 5). If not found, a solver for Gi is called in function findBestResponses-C*G (line 7).

This function returns the set of deviation for player i from a tuple t. There can be more than one

deviation. In a CSG (Algorithm 6.6), it means that several assignments satisfy the constraints of

Gi. In a COG (Algorithm 6.7), it means that the optimal value is reached for more than one point.

If d is empty, it means that there is no possible action for player i which can satisfy the constraints

of her goal. Indeed, a tuple can be an equilibrium even if a (or all) player is unsatisfied. In this

case we return all strategy profiles in which each profile is (t−i,y) where y ∈ Di is a strategy

controlled by player i since all these strategies can participate to a PNE (line 8).

Algorithm 6.6 is devoted to detect the set of best responses of player i from the tuple t. A strategy

profile s = (t−i,y) is said to be a best response of player i in CSG if s is a solution of Gi. In line 4,

we add the constraints into the solver Si for assigning values from t−i for all variables controlled

by other players. Then, we launch Si for finding all the player’s best responses from t (line 5-9).

The similar function for COG is depicted in Algorithm 6.7. However, it is more complex because

we have to find all optimal solutions of the solver Si. Hence, it is required to solve a Constraint

Optimization Problem instead.

The procedure checkEndOfTable depicted in Algorithm 6.8 is used when the subset has been

explored and we are able to perform backjumping. In this case, all tuples of the table which

belong to the unexplored zone are checked for PNE.

Algorithm 6.8. Check end of table in the CG-Enum-PNE algorithm

1: procedure CHECKENDOFTABLE(domain A, int i)
2: for all t ∈ BR[i] such that t ∈Πi=1..nAi do
3: checkNash(t,n)
4: end for
5: end procedure

Let us illustrate how CG-Enum-PNE algorithm works on Example 6.5 in Figure 6.3 (on the next

page).

Example 6.5. Given a CSG: the set of players is P = {X ,Y,Z}. Each player owns one variable:

VX = {x},VY = {y} and VZ = {z} with Dx = Dy = {1, . . . ,9} and Dz = {1,2,3}. The goals are

GX = {x = yz}, GY = {y = xz} and GZ = {xy≤ z≤ x+ y,(x+1)(y+1) 6= 3z}.

The resolution starts in Figure 6.3.a (abbreviated 6.3.a) with tuple 111. During the descent to the

leaf, X counter is initialized to |DY |× |DZ|= 9×3 = 27, Y ’s counter to |DZ|= 3, and Z’s counter

to 1. Tuple 111 is first checked for deviation for Z. It is found in 6.3.b that best responses for Z

are 111 itself and 112, thus we store these two values in Z’s table. Then we check players Y and

X for deviation and find that none of them deviate. Thus 111 is a PNE, we record it and store it in

Y and X’s tables. Y ’s counter is decremented to 2.
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Figure 6.3: The CG-Enum-PNE algorithm runs on an example.

Since the possible deviations for Z are explored, we continue by checkEndOfTable for Z to 112 as

in 6.3.c. This tuple is obviously a best response for Z (as found in Z’s table), and is checked for

deviation for the other players in reverse order. It is thus checked for Y in 6.3.d and a deviation is

found to 122, inserting 122 in Y ’s table. Y ’s counter is decremented to 1.

Then backtracking occurs in 6.3.e at Y ’s level, which resets the table for Z. The next candidate

is 121. In 6.3.f, a deviation is found for Z to 123. In 6.3.g, the tuple 123 is considered by

checkEndOfTable for Z, checked for deviation for Z and found stable by looking up in Z’s table.

A further check for Y in 6.3.h finds a deviation to 133 and stores this tuple in Y ’s table. Y ’s

counter is decremented to 0.

In this example, the domain of player Z is of size 3. Hence cnt[Y ] was initialized to 3. All tested

tuples are of the form 1yz where 1 is the value on X . It happens in this example that only by

exploring values 1, 2, 3 for Y yield a complete traversal of the subspace defined by Z (all values
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from Z’s domain have been considered). Thus we know that, from that point, only 133 recorded

in Y ’s table can be a PNE with X = 1. The other remaining values of player Y are NBR. It is

sufficient to check tuple 133 in checkEndOfTable as depicted in 6.3.i. Deviation is found for

player X to 933, so 133 is not a PNE. Then, backjumping can occur. Figure 6.3.j makes a small

summary of player Y’s deviation possibilities. We see that tuples 111, 112, 123 are stable for Z,

thus these tuples were lifted to Y level to be checked for Y ’s deviation. Solid arrows depict the

deviations recorded for player Y on the different values for Z. After having checked 133, we can

backjump to the next value of player X (the dotted arrows) (6.3.k).

In general checkEndOfTable tests all tuples of BR[Y ] which belong to the unexplored part of the

search space. Here, we perform a lazy NBR detection that is incomplete but comes almost for

free because it only takes a counter. Note that by Proposition 6.3, when exploring X = 2, the table

for Y can be reset because no other tuple will deviate to a tuple where X = 1.

Note that the tables are actually implemented by a tree whose nodes represent all players but i,

with i’s best responses attached on the leaves. Thus the search for deviation in the table does not

depend on the number of recorded tuples but only on the number of players and is performed in

O(|P|).
Proposition 6.4. CG-Enum-PNE is correct and complete.

Proof. Correctness comes from the one of PNE check (Theorem 6.1). A reported PNE has been

checked for deviation for every player. Either the tuple has been recorded in the table as deviation

from another one, or had been directly checked by the solver against the player’s goal. Com-

pleteness is due to the traversal of the whole search space and soundness of never best response

pruning.

6.4 CG-Enum-PPNE: Algorithm for Finding All Pareto Nash Equi-
librium

Based on CG-Enum-PNE, we propose an algorithm called CG-Enum-PPNE which allows to find

all Pareto Nash equilibrium in a constraint game. The unique difference between the two algo-

rithms is that, in CG-Enum-PPNE, we perform an additional checking of Pareto optimality among

the pure Nash equilibrium of the game. Hence, we just need to modify Algorithm 6.5 to a new

algorithm in CG-Enum-PPNE (Algorithm 6.10). Given this, the other algorithms are the same

like the ones implemented in CG-Enum-PNE.

Given t, t ′ two pure Nash equilibrium in a constraint game, Algorithm 6.9 verifies whether there

exists a Pareto dominance between the two tuples. We assume that all players would like to

maximize their utilities. In Algorithm 6.9, the tuple t is said to dominate the tuple t ′ if ∀i ∈
P, t|xi > t ′|xi where the optimization condition of player i is opti =max(xi) (line 3 - 9). Otherwise,

there is no Pareto dominance if ∃i, j ∈P such that t|xi ≥ t ′|xi and t|x j ≤ t ′|x j (line 11 - 15) (See
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Algorithm 6.9. Verify whether a PNE is dominated in Pareto Optimality

1: function DOMPARETO(tuple t, tuple t ′): integer
2: dom← true
3: for i ∈P do
4: if (t|xi ≤ t ′|xi ) then
5: dom← false
6: break
7: end if
8: end for
9: if dom then return 1

10: end if
11: for i ∈P do
12: if (t|xi ≥ t ′|xi ) then
13: return 0
14: end if
15: end for
16: return -1
17: end function

Definition 4.8). In the remaining case, the tuple t is dominated by the tuple t ′ in Pareto optimality

(line 16). In detail, the function in Algorithm 6.9 returns 1 if t dominates t ′, −1 if t is dominated

by t ′ and 0 if there is no dominance.

Algorithm 6.10. Verify whether a tuple is PPNE

1: procedure CHECKPARETONASH(tuple t, int i)
2: if i = 0 then
3: isPPNE← true
4: for all t ′ ∈ Nash do
5: x← domPareto(t, t ′)
6: if x = 1 then
7: Nash← Nash\{t ′}
8: end if
9: if x =−1 then

10: isPPNE← false
11: break
12: end if
13: end for
14: if isPPNE then
15: Nash← Nash∪{t}
16: end if
17: else
18: d← search table(t,BR, i)
19: if d = /0 then
20: d ← findBestResponses-C*G(t, i)
21: if d = /0 then d←{(t−i,y)|y ∈ Di} end if
22: insert table(i,BR,d)
23: cnt[i] - -
24: end if
25: if t ∈ d then checkParetoNash(t, i−1) end if
26: end if
27: end procedure

Algorithm 6.10 shows how to verify whether a tuple is a PPNE. This algorithm is derived from
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Algorithm 6.5 with an additional procedure for checking the Pareto dominance in line 3 - 16.

When a new PNE t is detected, all the PNE dominated by t are removed from the set of Nash

equilibrium (line 6 - 8). Similarly, the tuple t is inserted into the Nash set only if it is not dominated

by an existing PNE (line 14-16).

Proposition 6.5. CG-Enum-PPNE is correct and complete.

Proof. From the correctness of CG-Enum-PNE (Proposition 6.4), a PPNE reported is a correct

PNE. Then, because the dominance check for Pareto optimality successively progresses during

search, a tuple is said to be PPNE when it is not dominated by any other PNE. Indeed, the algo-

rithm is correct. Moreover, the PPNE set is reduced from the PNE set by eliminating the PNE

dominated in Pareto optimality. Hence, the algorithm is complete as well.

6.5 Experiment

We have implemented the algorithms described above in a complete solver which has been in-

tegrated into the ConGa solver. In this section, we first compare the performance among the

PNE enumeration algorithms. Then, we evaluate the algorithm for finding all PPNE in constraint

games.

We have performed experiments on classical games of the Gamut suite [Nudelman et al., 2004]

and some games with hard constraints. Results are summarized in the below tables in which

the name of the game is followed by the number of players and the size of the domain. Gamut

games are Guess Two Thirds Average (abbreviated GTTA, Example 4.8), Location Game, Gamut

version (abbreviated LGGV, Example 4.9), Minimum Effort Game (abbreviated MEG, Example

4.10) and Traveler’s Dilemma (abbreviated TD, Example 4.11). The other games are Location

Game with Hard Constraints (abbreviated LGHC, Example 4.12) and Cloud Resource Allocation

Game (abbreviated CRAG, Example 4.16).

For each instance, we have compared the CG-Enum-PNE algorithm (Algorithm 6.3) to the game

solver Gambit and to the naive enumeration algorithm named CG-Enum-Naive (Algorithm 6.1).

This algorithm works like Gambit by examining each tuple but the only difference is that it uses

the compact constraint game representation. In all the tables, time taken for each solver is given

in seconds and time out is set to 20000 seconds. The number aE+b is equal to a×10b. TO stands

for Time Out, MO for Memory Out and “–” means there is no information (for example, if the

generation times out, it is not possible to launch the resolution).

The experiment on Gambit is divided into two steps: we first generate the normal form matrix

(column NF gen. in Table 6.2) and then we launch the command line gambit-enumpure on

the normal form to find all PNE. Table 6.1 (on the next page) describes the experimental game

instances over normal form on games without hard constraints. We do not mention the information

involving in games with hard constraints anymore because they are unrepresentable by normal

form. Therefore, they are not applicable (abbreviated N/A) for being solved by Gambit.
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Name #S #Tuple NF Size
GTTA.3.101 101 1.0E+6 3× (1.0E+6) 14 MB
GTTA.4.101 101 1.0E+8 4× (1.0E+8) 1.8 GB
GTTA.5.101 101 1.0E+10 5× (1.0E+10) 216 GB
LGGV.2.1000 1000 1.0E+6 2× (1.0E+6) 11 MB
LGGV.2.2000 2000 4.0E+6 2× (4.0E+6) 40 MB
LGGV.2.3500 3500 1.2E+7 2× (1.2E+7) 116 MB
LGGV.2.5000 5000 2.5E+7 2× (2.5E+7) 231 MB
LGGV.2.20000 20000 4.0E+9 2× (4.0E+9) 3.7 GB
MEG.3.100 100 1.0E+6 3× (1.0E+6) 14 MB
MEG.4.100 100 1.0E+8 4× (1.0E+8) 1.9 GB
MEG.5.100 100 1.0E+10 5× (1.0E+10) 241 GB
MEG.30.2 2 1.1E+9 30× (1.1E+9) 91 GB
MEG.35.2 2 3.4E+10 35× (3.4E+10) –
TD.3.99 99 9.7E+5 3× (9.7E+5) 7.8 MB
TD.4.99 99 9.6E+7 4× (9.6E+7) 997 MB
TD.5.99 99 9.1E+9 5× (9.1E+9) 119 GB

Table 6.1: Description of the game instances solved by the complete algorithms

In Table 6.1, the notation #S stands for the number of strategies controlled by each player; #Tuple

for the total of strategy profiles of the game instances; NF for the number of entries storing in

every game instance’s normal form; finally Size for the size of files saved in external memory of

all the instances. As predicted, the size of the normal form soon becomes intractable. Especially,

it grows up to 241GB for MEG.5.100.

Name NF Gen. Gambit CG-Enum-Naive CG-Enum #PNETime Time Time #Cand #Dev Time #Cand #Dev
GTTA.3.101 2 18 4 1.0E+6 1.4E+6 1 1.0E+4 1.0E+4 1
GTTA.4.101 125 1844 337 1.0E+8 1.3E+8 12 1.0E+6 1.0E+6 1
GTTA.5.101 14705 MO TO – – 816 1.0E+8 1.1E+8 1
LGGV.2.1000 2 131 340 1.0E+6 1.0E+6 8 2.0E+3 1.5E+3 0
LGGV.2.2000 6 534 1448 4.0E+6 4.0E+6 33 4.0E+3 3.5E+3 0
LGGV.2.3500 18 2614 6893 1.2E+7 1.2E+7 96 7.0E+3 6.0E+3 0
LGGV.2.5000 35 7696 19990 2.5E+7 2.5E+7 205 1.0E+4 9.0E+3 0
LGGV.2.20000 551 MO TO – – 3462 4.0E+4 3.9E+5 0
MEG.3.100 1 14 1 1.0E+6 1.0E+6 1 1.9E+4 1.5E+4 100
MEG.4.100 96 1555 46 1.0E+8 1.0E+8 10 1.9E+6 1.3E+6 100
MEG.5.100 11414 MO 3844 1.0E+10 1.0E+10 447 1.9E+8 1.2E+8 100
MEG.30.2 8998 MO 437 1.1E+9 2.1E+9 1085 5.4E+8 1.1E+9 2
MEG.35.2 TO – 15408 3.4E+10 6.9E+10 TO – – 2
TD.3.99 2 15 1 9.7E+5 9.8E+5 1 1.9E+4 1.5E+4 1
TD.4.99 82 1572 28 9.6E+7 9.7E+7 10 1.9E+6 1.3E+6 1
TD.5.99 9301 MO 3338 9.1E+9 9.6E+9 488 1.8E+8 1.2E+8 1
CRAG.7.9 N/A N/A 302 4.7E+6 5.3E+6 58 1.0E+6 5.9E+5 1
CRAG.8.9 N/A N/A 3137 4.2E+7 4.8E+7 546 9.5E+6 5.3E+6 1
CRAG.9.9 N/A N/A TO – – 4980 4.3E+7 4.8E+7 1
LGHC.4.30 N/A N/A 27 6.5E+5 8.0E+5 9 1.4E+5 4.4E+4 24
LGHC.5.30 N/A N/A 701 1.7E+7 2.1E+7 231 4.1E+6 1.2E+5 240
LGHC.6.30 N/A N/A 19040 4.3E+8 5.5E+8 17263 1.1E+8 3.2E+7 2160

Table 6.2: Results for Gamut and other games solved by ConGa and by Gambit

In Table 6.2, we have measured the time needed to generate the normal form, then the time

required for the game to be solved by Gambit. For CG-Enum-Naive and CG-Enum-PNE, we
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have measured the time needed to solve an instance, the number of candidate profiles and the

number of deviation checks performed when checking whether a candidate is a PNE. Finally, the

number of PNE in each game instance is depicted in the last column.

As we can see in the table, the size of normal form rapidly exceeds the capacity of Gambit. On

the other side, in spite of its simplicity, the naive algorithm on constraint games is already faster

than Gambit in most of the instances. From a simple reasoning, the number of candidates for

CG-Enum-Naive is simply |DVc |, and the number of checks is comprised between the number of

candidates and an upper bound of |DVc | × |P|. For games without hard constraints, the naive

algorithm simply enumerates all strategy profiles in the whole search space, then checks each

tuple against the equilibrium condition. That is why the entries in the column #Tuple in Table 6.1

and in the column #Cand of CG-Enum-Naive (in Table 6.2) are identical. We recall that the games

with hard constraints are not implementable in Gambit, indicated by N/A for not applicable. The

naive algorithm runs better for these games since it does not require to check all strategy profiles

in the whole search space. In other words, this algorithm only tests tuples in the feasible search

space restricted by hard constraints.

Not surprisingly, CG-Enum-PNE prunes most of the time a large part of the search space, mainly

thanks to NBR detection. But interestingly, most of the time, it also saves deviation checks,

meaning that the solution is found in the tables before a check is performed. A notable coun-

terexample is the Minimum Effort Game with a domain of size 2 (MEG.30.2 and MEG.35.2) for

which neither the tables nor the NBR detection are working because the domains are too small.

In all other benchmarks, CG-Enum-PNE outperforms both Gambit and CG-Enum-Naive by one

order of magnitude or even more.

A potential problem of CG-Enum-PNE could be that the size of the tables grows too much. It is

easy to build an example for which the first player will get a table of exponential size: the game

with no constraint for each player. In this game, each profile is a PNE and is thus stored in the

table of the first player. However, this behavior has not been observed in practice in any of our

examples. Tables rather stay of reasonable size, either because they belong to lower level players

and they are often reset or because many profiles do not reach high level players.

Next, we evaluate the performance of CG-Enum-PPNE over CG-Enum-PNE. Clearly, the exis-

tence of PPNE depends on the PNE existence. For the games in which there does not contain a

PNE or they have only one PNE, it is worthless performing algorithms for enumerating all PPNE.

That is why, among the examples, we compare the two algorithms - CG-Enum-PNE and CG-

Enum-PPNE - on only Location Games with Hard Constraints (Example 4.12) due to the number

of PNE in each game instance (see Table 6.2). The time taken of these algorithms is depicted in

Figure 6.4 (on the next page).

The unique difference between the two algorithms is an additional checking process for the Pareto

dominance after having partially detected the PNE set. Thus, the additional time taken of CG-

Enum-PPNE depends on the size of the existing PNE set. In Figure 6.4, the two curves almost
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Figure 6.4: Time taken of CG-Enum-PNE and CG-Enum-PPNE on Location Games with Hard
Constraints. The street length of all instances is set to 20.

overlap in most of the instances. This suggests that not much time is required for checking Pareto

dominance, also means that the existing PNE set is fairly small during search. The additional

time is more clearly noticeable on the last instance consisting of 8 vendors because the PNE set

significantly grows up in this case.

6.6 Related Work

The generic algorithm for computing all PNE on normal form is the “generate and test” algo-

rithm (Algorithm 2.1 in Section 2.2.1). Although this algorithm is quite trivial and inefficient,

it is still the baseline algorithm. In addition, it is the unique algorithm implemented in Gambit

[McKelvey et al., 2014] for enumerating all PNE in general normal form games.

In [Gottlob et al., 2005], the authors focus on theoretical results on determining and computing

PNE in graphical games rather than PNE enumeration algorithms. They also use constraints net-

work for modeling the best responses set of each player. Then the solution obtained is a PNE.

However, the number of constraints is huge and it is not natural for encoding games. There have

not existed efficient algorithms for enumerating all PNE in general graphical games yet. How-

ever, Daskalakis and Papadimitriou succeed in determining several tractable classes in which

PNE can be computed in polynomial time. In [Daskalakis and Papadimitriou, 2006], they map

from any graphical game to a Markov random field (abbreviated MRF) in order to inherit the

problem of finding a maximum a posteriori configuration of the MRF [Lauritzen, 1996]) for de-
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termining the existence of PNE in graphical games. Then, they apply the junction tree algorithm

[Jensen et al., 1990] to derive polynomial time algorithms for checking the existence of PNE and

for computing all PNE for several classes of graphical games. In this paper, they demonstrate that

in the following classes, deciding whether a game has a PNE is in P when computing all PNE can

be done in polynomial time.

• Graphical games where the hypergraph of the game is acyclic

• Graphical games with bounded treewidth

• Graphical games with bounded hypertreewidth

• Graphical games with Θ(logn) treewidth, bounded number of strategies and bounded neigh-

borhood size

• Graphical games with primal graphs of treewidth Θ(logn) and bounded cardinality strategy

sets

Recently, [Chapman et al., 2010] propose an algorithm called Valued Nash Propagation which

integrates the optimization problem of maximizing a criterion with the constraint satisfaction

problem of finding PNE in graphical games. However, this algorithm is limited on only tree

graphs, not general graphs.

Like in graphical games, determining whether an action-graph game (abbreviated AGG) has a

PNE in NP-complete in general. Similarly, there have not existed efficient algorithms for com-

puting all PNE in general AGG. However, in some classes of AGG, there exist polynomial time

algorithms. In [Jiang and Leyton-Brown, 2007], the authors use dynamic programming approach

for computing all PNE in such tractable classes. They henceforth demonstrate that if the game is

symmetric and the action graph has bounded treewidth, their algorithm determines the existence

of pure Nash equilibrium and computes these equilibrium in polynomial time.

In [de Clercq et al., 2014a], the authors present a method for computing PNE as well as Pareto

optimal equilibrium and core elements for boolean games that is based on disjunctive answer set

programming [Brewka et al., 2011]. They use answer sets as strategy profiles and then create a

programming with three parts: (i) a part representing strategy profiles and verifying the players’

satisfaction by their goals, (ii) a part describing possible strategies for all players, and (iii) a part

checking the deviation of every player and selecting PNE by saturation techniques [Baral, 2003].

6.7 Conclusion

In this chapter, we have presented a complete solver integrated into ConGa for constraint games.

The main contributions are a couple of advanced techniques based on a fast computation of Nash

consistency and pruning of never best responses along with the algorithm CG-Enum-PNE. The

experimental results demonstrate a significant improvement of our complete solver over the Gam-

bit solver.
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Finding PNE in constraint games is computationally complex because determining whether a

constraint game has at least a PNE is Σ
p
2 -complete (Theorem 4.1 in Section 4.1). It is hence very

interesting to determine tractable classes of constraint games in which all PNE can be computed

in polynomial time.

We have also presented a naive algorithm based on CG-Enum-PNE for enumerating all pure

Pareto Nash equilibrium. Besides the pruning techniques already implemented in the CG-Enum-

PNE algorithm, we could also use the Pareto constraint as global constraint attached to hard

constraints in constraint games for pruning larger search space. This kind of constraint has been

explored in constraint programming for solving bi-objective combinatorial optimization problems

exactly [Hartert and Schaus, 2014]. Similarly, by using Pareto constraint in constraint games, the

dominated tuples can be eliminated from the search space. Nevertheless, the difference is that,

in constraint games, a tuple is Pareto dominated by a PNE, not by any tuple in general. Hence,

the Pareto global constraints are only added into the solver after having already detected pure

Nash equilibrium. That raises another problem in constraint games that is the use of heuristics

for finding PNE in short time. In addition, the heuristic search must be complete as well. We

therefore concentrate our interest on heuristic search for constraint games that will be presented

in the following chapter (Chapter 7).

As mentioned earlier, finding all pure Nash equilibrium in games is a difficult task. In conse-

quence, there are still not many techniques as well as solving tools addressing this problem. By

proposing several techniques and the complete solver in this chapter, we hope that they will open

directions for further investigations on efficient algorithmic techniques to compute pure Nash

equilibrium in game theory.
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In many cases, an algorithm to compute one PNE might be more desirable than an enumeration

algorithm. The local search solver described in Chapter 5 addresses these cases. Not surprisingly,

large games can be solved but with no guarantee of finding an equilibrium or prove its absence. On

the other side, the complete solver with the static heuristic designed in Chapter 6 can be modified

to detect only the first PNE and of course, it allows to prove the absence of PNE. However,

the enumeration algorithms in the complete solver work as the exhaustive search and become

sometimes impractical, especially for large games. There is thus a need of a dynamic heuristic

method that can be used to speed up the process of finding the first PNE. Inspired by the analogue

with the efficiency of dynamic heuristics in Constraint Programming, in this chapter, we focus our

interest on heuristic search for constraint games that allows to pick the first PNE within reasonable

time as well as prove that there does not exist a PNE.

7.1 Deviation-based Heuristic for Variable and Value Ordering

Dynamic heuristics for backtracking search have been largely studied in constraint programming.

Actually, there are two main kinds of heuristic: (i) for variables and (ii) for values. In constraint

programming, a variable/value ordering heuristic is a function that guides the solver toward a

solution. When the solver has to make a choice for the next branching, a heuristic provides an

ordering of the variables/values from the best to the worst where the best candidate owns the

109
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highest probability for solving the problem, i.e lead to a solution. On the other side, to the best of

our knowledge, heuristics have been rarely used for computing Nash equilibrium in games.

Our aim, with the proposal of a dynamic heuristic for variable and value ordering in constraint

games, is to explore the search tree in order to find a PNE as fast as possible, i.e. visiting as few

nodes as possible.

Deviation-based Heuristic. An assignment is said to be a solution in CSP if it satisfies all

constraints simultaneously. Many dynamic heuristics have been proposed to find a solution or

all solutions in constraint programming. These heuristics are often based on the capacity of

satisfying/violating the constraints of the current partial assignment. In constraint games, the

situation has changed. Because of the interaction between players, being a solution of a player

or many players’ goals does not assure to be a PNE. Henceforth, the classical heuristics proposed

in constraint programming cannot work in constraint games anymore. It is thus required a novel

view for dealing with heuristics in constraint games instead.

The first question has to be solved is: “What is a good strategy in constraint games?”. Like in

constraint programming, a good strategy allows the solver to lead to a solution, i.e. a PNE in

constraint games. That is to say, this strategy should guide the solver to a PNE. As defined earlier,

given a strategy profile s, s = (si,s−i) is a PNE if and only if s is a best response of all players.

Thus, si may be a good strategy of player i if s = (si,s−i) is his best response.

PNE can be also defined as follows. A strategy profile is a PNE if no player has an incentive

to deviate while the others keep their strategies unchanged. Thus, the strategy si could be better

when it is not only in a best response of player i but also a part of other players’ best response. In

other words, (si,s−i) is also a best response of player j 6= i.

Based on the analysis above, we propose a deviation-based heuristic that could drive the solver

to choose good strategies during search. Before presenting this heuristic, we first define a notion

called evaluation function of a strategy as follows.

Definition 7.1 (Evaluation function of a strategy). Given si a strategy of player i. Let Asi be a set

composed of all strategy profiles s = (si,s−i) such that each strategy profile s is a best response of

player i. ∀s ∈ Asi , let φ(s) be the number of players for whom s is a best response. We denote by

eval(si) the evaluation function of si, then eval(si) = ∑s∈Asi
φ(s).

Let us show how to determine the evaluation function of a strategy in the following example.

Example 7.1. We consider the following CSG: the set of players is P = {X ,Y,Z}. Each player

owns one variable: VX = {x},VY = {y} and VZ = {z} with Dx = Dy = {1,2},Dz = {1,2,3,4}.
The goals are GX = {x≥ y,x < z}, GY = {x≤ y,y 6= z} and GZ = {x+ y = z}.

We will determine the evaluation function of a strategy of player Z in Example 7.1, let say, z = 3.

There are 4 strategy profiles involving in this strategy, i.e. (1,1,3),(1,2,3),(2,1,3),(2,2,3) ( the

tuple (1,1,3) stands for x = 1,y = 1,z = 3, it is the same for the other tuples). Among them, only

(1,2,3) and (2,1,3) are the best responses of player Z, thus A(z=3) = {(1,2,3),(2,1,3)}.
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z = 3 Players
Z Y X

Tuples
(1,2,3) +1 +1 0
(2,1,3) +1 0 +1

Table 7.1: Calculating the evaluation function of strategy z = 3 of player Z in Example 7.1.

Table 7.1 shows how to determine the evaluation function of the strategy. We see that eval(z =

3) = φ((1,2,3))+ φ((2,1,3)) = 2+ 2 = 4. We have φ((1,2,3)) = 2 because (1,2,3) is a best

response of player Z and Y and φ((2,1,3)) = 2 because (2,1,3) is a best response of player Z

and X .

Let θ be a strategy in constraint games. At the beginning, eval(θ) is set to zero. During search,

eval(θ) will be increased progressively. The deviation-based heuristic dynamically sorts the

strategies from the best to the worst according to their function evaluation. Because each strategy

of a player is composed of the values assigned to his decision variables, we compute and update

scores for all values during search. Given a strategy si of player i, when eval(si) is increased by

an amount ε , the score of each value v ∈ si will gain an amount ε . All values with their scores are

stored in a table called Heuristic Table (abbreviated HTB) (see Figure 7.1).

Figure 7.1: A situation of the heuristic table

Figure 7.1 also illustrates how the heuristic chooses variables and values during search. The black

cells indicate the forbidden choices. Namely, the variables have been already instantiated or the

values are not in the actual domain of their variables. Among the allowed variables and values in

Figure 7.1, the maximal score is 7. Our heuristic chooses the pair (variable, value) whose score is

maximal (in the red cross cells).

Restarts. In constraint programming, ordering heuristics for backtracking algorithms may make

mistakes in some instances. These are cases in which small changes to variable or value heuris-

tic can lead to great difference in running time. A technique called randomization and restarts

has been proposed to correct these mistakes. The usual method for randomizing a backtracking
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algorithm is to randomize the variable or value ordering heuristics according to a restart strategy

S = (t1, t2, t3, . . .). The idea is that a randomized backtracking heuristic is restarted at random and

runs for t1 steps. If no solution is found, the algorithm runs for t2 step and so on. Because S is

an infinite sequence and is generated in increasing, the randomized algorithm always gives the

correct answer when it terminates.

In constraint games, we maintain the heuristic table recording scores of all values instead of using

a function in the heuristic like in constraint programming. At the beginning, all scores are initially

set to zero. Variables and values are thus selected fairly randomly. A situation may occur that

we get stuck in a branch that does not lead to any PNE. Hence, restarts techniques need to be

performed in order to escape this trap. In other words, we first launch the algorithm in order to

collect enough information in the heuristic table. We henceforth restart the algorithm taking into

account the scores recorded in the heuristic table for detecting a PNE. Another reason is that, like

other heuristics, our heuristic may also make mistakes during search. Thus, the restart is used for

fixing them. The restart strategy S is also used in constraint games. Many restart suites have been

proposed but in this preliminary work, we only focus on the Luby suite with a geometrical factor

of 2, given by (1,1,2,1,1,2,4, . . .) [Luby et al., 1993].

7.2 Heuristic Algorithm

We propose in this section a tree-search complete algorithm including the dynamic heuristic for

variable and value ordering which has been presented previously. Overall, in this algorithm, we

make the branching for variables and values according to the dynamic heuristic. This heuristic is

done by recording the information involved in best responses in previous search steps. The algo-

rithm stops as soon as a PNE is detected. Otherwise, we regularly perform the restarts according

to the Luby suite in order to avoid getting stuck in the branches that do not contain any PNE.

Before starting the detailed description of the pseudo code, we first describe the following global

variables that will have been using during search.

• Global solver S. The global solver is taken from the constraint game. It includes all variables

along with all hard constraints (if they exist). Note that it does not contain any player’s

goal. This solver will be reinitialized when we restart the algorithm.

• Luby suite Su. The Luby suite Su = {1,1,2,1,1,2,4, ...} aims at determining the number of

steps to restart where each element u in Su is a coefficient.

• Best responses tables. We store the best responses of each player in a table (like in Algorithm

CG-Enum-PNE in Section 6.3 of Chapter 6)

• Heuristic table. The heuristic table is used for storing scores of each value per variable during

search. It is actually implemented by a 3-dimensional array whose initial state is specified

in Figure 7.2.
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Figure 7.2: Initial state of the heuristic table

The space needed to stock the heuristic table is |P|+ |V |+∑v∈V |Dv| while the time com-

plexity to access and update a score is Θ(1).

Algorithm 7.1 specifies the main algorithm which runs until finding a PNE or proving its absence.

Algorithm 7.1. CG-Heuristic, the heuristic search algorithm to find the first PNE

1: global variables:
2: S: global solver
3: Su: Luby suite
4: BR: best responses tables
5: HT B: heuristic table

6: function CG-HEURISTIC(Game CG): tuple
7: stop← false . stop is set to be true if the algorithm detects the first PNE or proves its absence
8: nbRestart← 1 . nbRestart counts the number of restarts
9: nbStep← 0 . nbStep counts the number of steps at each restart

10: S← CG.getSolver() . get the initial global solver
11: σ ← Su[nbRestart] ×η . σ determines the maximal number of steps to restart
12: L← /0 . L states the list of variables already assigned
13: while !stop do
14: FirstPNE← rSolve(L, σ , nbStep)
15: if FirstPNE 6= null then . the first PNE is found
16: stop← true
17: else
18: if nbStep < σ then . the game has no PNE
19: stop← true
20: else . restart
21: nbRestart++
22: nbStep← 0
23: σ ← Su[nbRestart] ×η

24: S← CG.getSolver()
25: end if
26: end if
27: end while
28: return FirstNE
29: end function
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In Algorithm 7.1, at the beginning, we initialize the restart parameters in line 7 -12. We then

perform the recursive algorithm (Algorithm 7.2) (line 14) for finding the first PNE. If it has not

been found yet, two following possibilities will happen.

First, the maximal number of steps for each restart is determined by σ = Su[nbRestart]×η where

η is fixed according to each game instance. If the number of strategy profiles visited, i.e. number

of steps, is less than σ , then the whole search space has been already wiped out. The game thus

has no PNE (line 18 - 19).

nbRestart Su[nbRestart] η σ

1 1 1000 1000
2 1 1000 1000
3 2 1000 2000

Table 7.2: Calculating the maximal number of steps (σ ) for restarting in a constraint game

For example, given a constraint game G consisting of 1500 strategy profiles. We apply the CG-

Heuristic algorithm in order to detect the first PNE of G . We fix the number η to 1000. Table 7.2

specifies the number σ for each restart. We first let the algorithm run for 1000 steps (the algorithm

verifies 1000 strategy profiles), no PNE is found. At the second restart, the algorithm is run for

1000 steps. No PNE is detected either. At the third restart, σ = 2000. After having visited 1500

strategy profiles, i.e. the whole search space of the game, we do not find a PNE (nbStep < σ in

this case). It means that there is no PNE in G .

Second, we restart the algorithm by reinitializing the restart parameters (line 21 - 24). More

precisely, the number of steps is reset to zero (line 22). In line 23, the new maximal number of

steps σ is recalculated. And finally, the solver is initialized from the constraint game (line 24).

Algorithm 7.2 depicts the recursive algorithm of CG-Heuristic. The propagation function on

hard constraints rules out all forbidden joint strategies in the game (line 2). If after having been

propagated, the domain of one variable becomes empty, then all strategy profiles in the subspace

do not satisfy the hard constraints. In other words, there is no PNE on this branch (line 3 - 5).

Otherwise, a variable and a value are selected by the heuristic for exploring a new search space

(line 7). Because we need to restore the actual state of the global solver in the future, the current

state is therefore saved in line 8 before the value is assigned to the variable (line 9). Since we

perform here a dynamic heuristic for variable and value ordering, the list L is necessary to keep

track of the variables already assigned. When a variable is assigned, it is pushed into L (line 10).

When this variable is no longer assigned, it is popped from L (line 12).

We continue to recursively deepen the search tree (line 11). If a PNE is not found and the restart

requirement is not met (line 13), we backtrack and explore the search space (line 14 - 18).

The domains of all variables contain only one value confirms that an entire strategy profile is

reached (line 22 - 26). We first increase the steps counter (line 22), than we get this tuple to verify

whether it is a PNE (line 23 - 26).
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Algorithm 7.2. The recursive algorithm in the CG-Heuristic algorithm

1: function RSOLVE(list of variables L, int σ , int nbStep) returns tuple
2: S.propagate()
3: if ∃v ∈V such that D(v) = /0 then . there is no solution in this subspace
4: return null
5: end if
6: if ∃v ∈V such that |D(v)| ≥ 2 then
7: (var,val)← heuristic(L) . heuristic is encoded in Algorithm 7.4
8: S.worldPush() . save the current state of the global solver to restore later
9: S.instantiate(var, val) . remove all values except val from the domain of var

10: L.push(var) . push var into L
11: tuple← rSolve(L, σ , nbStep)
12: L.pop(var) . pop var from L
13: if (tuple = null) and (nbStep < σ ) then
14: S.worldPop() . restore the previous state of the solver
15: if |D(var)| ≥ 2 then
16: S.remove(var, val) . remove val from the domain of var
17: rSolve(L, σ , nbStep)
18: end if
19: end if
20: return tuple
21: else . reach to the entire strategy profile
22: nbStep++
23: if checkNash(D) then return D . return the first PNE found
24: else
25: return null
26: end if
27: end if
28: end function

Checking whether a tuple is a PNE is depicted in Algorithm 7.3 (This algorithm is similar to

Algorithm 6.5 in Chapter 6.). Because our heuristic is based on deviation, we update the scores

of values in the heuristic table in this algorithm.

The verification starts from the deepest level, i.e. from the last player (line 3). We first look up

into the player’s best responses table from the current tuple (line 4). If the player’s best responses

toward tuple t have not been computed yet (line 5), we than compute them by solving a Constraint

Satisfaction Problem or Constraint Optimization Problem (line 6). The notation “*” is replaced

either by S for CSG (Algorithm 6.6) or by O for COG (Algorithm 6.7).

In the previous chapter (Chapter 6), for making the advanced algorithm in Section 6.3 simpler to

understand, we assume that each player controls only one variable. In this chapter, because we

no longer keep this limitation while presenting the heuristic algorithm, the two algorithms, i.e.

Algorithm 6.6 and Algorithm 6.7, need to be slightly adapted. The unique modification is line 4

in both the algorithms. In the current version, we assume that player j controls the variable x j,

thus we add the constraint x j = t j for all j 6= i. In the adapted version for the heuristic algorithm,

player j controls a set of variable Vj. Line 4 must be hence changed to “∀ j 6= i,∀x jk ∈Vj, add the

constraints x jk = t jk”. Given that, all others are the same.

We note that in line 7, Si is the initial strategy set of player i. In line 8, the best responses detected
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Algorithm 7.3. Check whether a tuple is PNE in the CG-Heuristic algorithm

1: function CHECKNASH(tuple t) returns bool
2: ε ← 0 . compute the score the values may gain
3: for (i← n; i ≥ 1; i← i -1) do
4: dev← search table(t,BR, i)
5: if dev = /0 then
6: dev← findBestResponses-C*G(t, i)
7: if dev = /0 then dev← Si end if
8: insert table(i,BR,dev)
9: end if

10: if ti 6∈ dev then
11: for (j← n; j > (n - ε) ; j← j -1) do
12: for all v ∈Vj do . update the heuristic table
13: HTB[j][v][t j|v] += ε

14: end for
15: end for
16: return false
17: else
18: ε++
19: end if
20: end for
21: return true
22: end function

by the previous algorithms (Algorithm 6.6 and Algorithm 6.7) are added into the player’s table

to reuse in the future. We use the same data structure for the tables like in Chapter 6, namely

they are actually implemented by a set of trees. Henceforth, the search for deviation in the tables

and the insert into the trees in Θ(|P|) for the time complexity. Player i obviously deviates if the

current tuple is not his best response (line 10). Otherwise, the variable ε is incremented by one

point (line 18).

The variable ε expresses the number of players for whom the tuple t is a best response. We check

the deviation from player n to player 1 and this verification stops as soon as a player makes a

beneficial deviation (line 16). If t is not a PNE then the player at position n - ε can deviate.

In other words, the players in range [n− ε + 1,n] do not make any beneficial deviation. Then

∀ j ∈ [n− ε +1,n],∀v ∈ t j, the score of value v gains an amount ε (line 11 -15).

The evaluation process presented in Algorithm 7.3 is based on Definition 7.1 but we do not com-

pute the number of all players for whom t can be a best response. In this algorithm, we immedi-

ately break from the verification loop when a player deviates (line 16). Although this evaluation

is incomplete, it help us not to spend too much time on the costly deviation verification.

Finally, the heuristic function is described in Algorithm 7.4. We remind that this function has

been previously illustrated in Figure 7.1.

Among the variables non assigned along with their current domain, Algorithm 7.4 returns the pair

(var,val) whose score is maximal. During search, we also store an array called V P. This array

specifies to which player a variable x belongs. We use this array to determine player p of the

variable x in line 7. We recall that the time complexity to access to a score in the heuristic table is
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only Θ(1). Let x be the variable such that |D(x)| is maximal. Thus the complexity of the heuristic

function in the worst case is Θ(|D(x)|× |V \L|).

Algorithm 7.4. Select the best pair (var,val) for next branching in the CG-Heuristic algorithm

1: function HEURISTIC(list of variables L) returns (var,val)
2: max← 0
3: var← a variable x0 in V \L
4: val← a value in D(x0)
5: for all x ∈ (V \L) do
6: for all v ∈ D(x) do
7: p← VP[x]
8: if HTB[p][x][v] ≥ max then
9: max← HTB[p][x][v]

10: (var, val)← (x,v)
11: end if
12: end for
13: end for
14: return (var,val)
15: end function

We presented in this section the algorithm including the heuristic proposed in Section 7.1. Fur-

thermore, this algorithm is available to integrate other heuristics as well. In other words, it could

be seen as a sample for using heuristics in constraint games. In order to adapt the algorithm to

another heuristic, we need to modify the algorithm in spirit of two following questions.

(i) How to calculate the scores for variables and values in constraint games in order to record

in the heuristic table? (that is what we have done in Algorithm 7.3.)

(ii) How to select the best pair (var,val) from the heuristic table for next branching? (that is

what we have done in Algorithm 7.4.)

In conclusion, we believe that there is a wide range of opportunities for designing many efficient

heuristics in constraint games.

7.3 Experiment

In this section, we show some experimental results on using heuristics in constraint games. We

have built up a heuristic solver on the top of ConGa that includes the heuristic mentioned above.

We compare the performance of this solver with the two other solvers in ConGa, i.e. the local

search solver (Chapter 5) and the complete solver (Chapter 6). We modify the current version of

the advanced algorithm CG-Enum-PNE (Algorithm 6.3) in the complete solver to stop as soon as

the first PNE is detected. All the three solvers hence find only one PNE of games. We no longer

make a comparison with Gambit because it is significantly slower than ConGa, as demonstrated

in Section 6.5 in the previous chapter.
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Hypercube Network Congestion Games

First of all, we compare the performance of the heuristic solver on Hypercube Network Conges-

tion Games (abbreviated HNCG in Example 4.15) with the complete solver with a static heuristic

for variable and value ordering.

The experimental result is given in Table 7.3. For the complete solver, we give the number of

candidates (strategy profiles) needed to detect the first PNE. For the heuristic solver, we provide

the number of restarts as well as the number of candidates visited to detect one PNE. The two

solvers may report the PNE different but the existence of PNE is identical. This is demonstrated in

the last column labeled by PNE. Time needed to compute an equilibrium is measured in seconds.

The time out is set to 3600 seconds (1 hour). Finally, the number aE +b is equal to a×10b.

#Players Complete Search Heuristic Search PNE#Cand Time #Restart #Cand Time
4 1.4E+3 1.93 2 5.1E+2 1.89 Yes
5 7.9E+3 3.88 2 5.5E+2 2.08 Yes
6 1.6E+5 12.52 3 1.1E+3 3.01 Yes
7 3.3E+6 173.56 62 9.3E+4 19.50 Yes
8 4.3E+7 2481.86 2046 5.5E+6 1231.11 Yes

Table 7.3: Results for solving the 4-dimensional hypercube network congestion game CG-Enum-
PNE (Algorithm 6.3, implemented in the complete solver in Chapter 6) and CG-Heuristic (Algo-
rithm 7.1, implemented in the heuristic solver in Chapter 7) for computing only one PNE. The
number η in the heuristic algorithm is fixed to 500.

According to the results depicted in Table 7.3, the heuristic solver works very well. It is more

powerful than the complete solver, in terms of both the number of candidates and the running

time. The deviation-based heuristic is thus useful to guide the solver toward a PNE.

Location Games with Hard Constraints

Hypercube Network Congestion Games belong to the class of congestion games. It has been

proven in [Rosenthal, 1973] that every congestion game always has at least one PNE. We hence-

forth evaluate the performance of our heuristic solver on Location Games with Hard Constraints

(abbreviated LGHC, in Example 4.12) in which some instances may have no PNE.

In the below tables, the name of game is followed by the number of players (or vendors) and the

size of domain (or the number of customers). For example, LGHC.6.30 stands for the game with

6 vendors and 30 customers (or the street length is 30). We let our experiments run up to one day

(or 24 hours or 86400 seconds). The notation “–” means we have no information (for example, in

case of expiring the time-out). Finally, the notation TO stands for “Time out”.

First, we evaluate the performance of the advanced algorithm with a static heuristic for variable

and value ordering in the complete solver and the dynamic heuristic algorithm described in this

chapter. The experimental results are depicted in Table 7.4.
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Name CG-Enum-PNE CG-Heuristic PNE#Cand Time η #Restart #Cand Time
LGHC.3.30 4.5E+3 1.87 1000 62 1.8E+5 5.47 No
LGHC.4.30 4.5E+4 5.02 300 6 3.0E+3 2.54 Yes
LGHC.5.30 7.3E+5 20.37 6000 6 6.4E+4 9.48 Yes
LGHC.6.30 1.4E+7 295.18 10000 6 1.1E+5 15.60 Yes
LGHC.7.30 1.4E+9 66199.02 – – – TO No

Table 7.4: Results for solving Location Games with Hard Constraints (Example 4.12) by CG-
Enum-PNE (Algorithm 6.3, implemented in the complete solver in Chapter 6) and CG-Heuristic
(Algorithm 7.1, implemented in the heuristic solver in Chapter 7) for picking only one PNE.

As we can observe in the table, for two instances without PNE (LGHC.3.30 and LGHC 7.30),

the heuristic solver is slower than the complete solver. A reason is that while the complete solver

includes the pruning of never best responses, the heuristic solver does not contain any pruning

technique to restrict the search space 1. In addition, by using restarts techniques, in games with-

out PNE, it may visit some strategy profiles twice or even more. In contrast, on the remaining

instances having at least one PNE, like HNCG, the heuristic solver works very well.

Name
Heuristic Solver Local Search Solver

PNECG-Heuristic CG-IBR CG-TS CG-SA
Time avg sdt avg sdt avg std

LGHC.3.30 5.47 – – – – – – No
LGHC.4.30 2.54 0.80 0.06 0.80 0.06 0.84 0.09 Yes
LGHC.5.30 9.48 1.04 0.16 1.10 0.27 0.95 0.04 Yes
LGHC.6.30 15.60 1.13 0.19 1.16 0.26 1.04 0.07 Yes
LGHC.7.30 TO – – – – – – –

Table 7.5: Results for solving Location Games with Hard Constraints (Example 4.12) by CG-
Heuristic (Algorithm 7.1, implemented in the heuristic solver in Chapter 7) and three algorithms
(CG-IBR (Algorithm 5.1), CG-TS (Algorithm 5.5) and CG-SA (Algorithm 5.7)) in the local search
solver (Chapter 5) for picking only one PNE. For CG-TS, the tabu length is set to be round of
quarter of the number of players. For CG-SA, the cooling rate is set to 0.1. T I is calculated from
the formula e

−|P|
T I = 0.2.

It does not totally accurate to compare local search and complete search since they are absolutely

different methods. However, in next experiments, we compare the performance of the heuristic

solver with the three algorithms implemented in the local search solver, including:

(i) CG-IBR, the iterated best responses algorithm in constraint games

(ii) CG-TS, the tabu search algorithm in constraint games

(iii) CG-SA, the simulated annealing algorithm in constraint games

1Designing a pruning technique for computing PNE in games is computationally complex. Removing strictly
dominated strategy or never best responses (NBR) whose time complexity in boolean games raises to Σ

p
2 -complete

[Bonzon et al., 2006] has been known as the unique pruning techniques in the literature. For constraint games, the
unique technique that has been designed is pruning of NBR in subgames [Nguyen and Lallouet, 2014]. Even in sub-
games, the detecting of NBR is still difficult. In [Nguyen and Lallouet, 2014], a static heuristic is used for variable
and value ordering. We can thus detect NBR in a lazy way by the counter for each player in subgames. Even though
we may not detect all NBR, this detection is almost free. Unfortunately, in this chapter, we can no longer apply this
technique of counter because the variable and value ordering is not static anymore. Investigating a pruning technique
with dynamic heuristics is a challenge, we thus let it for future work.
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Our aim is to provide a global view of all possible methods for solving constraint games.

In these experiments, each local search algorithm is launched 100 times per instance. The max

step is set to 50×106. If an algorithm fails to find a PNE within the max step than the time taken

will be noted by the notation “–”. The abbreviations avg, std stand for average time (in seconds)

and standard deviation. The experimental results are given in Table 7.5.

In this table, all the instances are too small to be solved by the local search solver. The results

of the three algorithms are thus almost similar. It is not surprising that the local search solver

is much faster than the heuristic solver. It has been well-known that local search is particularly

designed for detecting a solution in very large problems. However, the dead point of local search

is problems without solution because there is no way to prove this absence. On the other side, the

heuristic algorithm can overcome this drawback, for example, on the instance LGHC.3.30 in the

table. It is because the heuristic search is complete as well.

7.4 Related Work

Heuristics have been largely used in constraint programming and in game theory. However, there

are a few works related to apply heuristics for computing Nash equilibrium in games. In addition,

these works mainly focus on finding mixed Nash equilibrium. In this section, we concentrate on

heuristic methods on normal form as well as other compact game representations (Section 2.3).

In [Porter et al., 2008], the authors apply the support-enumeration methods for finding a sample

mixed Nash equilibrium in games. Instead of searching through all mixed strategy profiles, the

support-enumeration methods search through support profiles and check whether there is an equi-

librium with this particular support. The algorithm proposed by Porter et al. uses heuristics to

order its exploration of the space of supports and this order can speed up equilibrium computing.

Earlier, [Cartwright, 2003] applies an imitation dynamic for computing approximate Nash equi-

librium. Nevertheless, they are rather dynamic models of learning than computing equilibrium in

games.

There are few attempts of applying heuristics on graphical games. In [Vickrey and Koller, 2002],

the authors propose a number of heuristics for finding approximate Nash equilibrium in graphical

games based on a hill-climbing approach and on constraint satisfaction that essentially provide

a junction tree approach for arbitrary graphical games. Following the same goal, a distributed,

message-passing algorithm for computing approximate Nash equilibrium in graphical games is

described in [Ortiz and Kearns, 2002]. In this algorithm, the authors apply a promising and effec-

tive heuristic in loopy graph.

On the other side, [Duong et al., 2009] apply heuristics for learning graphical games, not for

computing equilibrium. Their goal is to seek algorithms that derive a normal form to a graphical

game. In this paper, they present four algorithms for learning the graphical structure and payoff

function of a game from data. For evaluating the algorithms’ performance, they define three
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metrics based on minimizing empirical loss. One of the algorithms is a greedy heuristic, along

with a branch and bound algorithm and two local search algorithms. They demonstrate that

when many profiles are observed, greedy is nearly optimal and considerably better than the other

algorithms.

On action-graph games (AGG), [Jiang and Leyton-Brown, 2006] concentrate on computing ex-

pected payoffs under a mixed strategy profile. They integrate a simple heuristic to minimize the

number of intermediate configurations in their algorithm which runs in polynomial time in the

size of the AGG representation.

Solving boolean games has not been largely explored yet. The first heuristic approach us-

ing a stochastic and iterative algorithm on boolean games has been recently proposed in

[de Clercq et al., 2014b]. Moreover, the authors also argue that for some classes of boolean

games, this algorithm is guaranteed to converge to a PNE without checking the deviation condi-

tion. This heuristic could be seen as one of the first heuristic methods for computing PNE. How-

ever, as mentioned earlier, boolean games are not available to encode games with non-boolean

utilities without using external tools. Our heuristic presented in this chapter thus may be con-

sidered as the first heuristic for speeding the computation of the first pure Nash equilibrium in

general games 2.

7.5 Conclusion

The main contributions in this chapter are the deviation-based heuristic and the algorithm allowing

to include heuristics for solving constraint games. Using the observation that local search solvers

based on Iterated Best Responses are very efficient, we propose the heuristic based on deviation

to evaluate the most promising candidate for branching. Together with the use of restarts, we

show that this heuristic yields to interesting speed-ups to find the first equilibrium. Furthermore,

we give here several ideas for improving our work.

In terms of storage, a potential problem of the heuristic algorithm is that each player’s ta-

ble for recording his best responses could grow too fast. It is because we only add new

elements into the tables without removing them. It is thus necessary to study an effective

method for frequently cleaning these tables. It is also required to use a more compressed

data structure instead. A proposal is Multi-valued Decision Diagram (abbreviated MDD)

[Miller and Drechsler, 1998, Miller and Drechsler, 2002] which is a compressed representation

of sets or relations. In MDD, operations are directly performed on the compressed representa-

tion, i.e. without decompression. Furthermore, we need to apply efficient algorithms in MDD

for adding new tuples or retrieving them in short time because these operations are frequently

invoked in the heuristic algorithm.

2We remind that the term “general games” in this thesis demonstrates a set of games in which each element is an
arbitrary static game, includes no collaboration between players and is complete information game. In addition, the
players’ utilities are not limited on boolean.
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In terms of running time, on the one hand, the algorithm visits nodes in the search tree according

to the dynamic heuristic, but on the other hand, it includes no pruning technique like in the

complete search (Chapter 6). Henceforth, integrating several techniques such as pruning never

best response would give it a better performance.

We have concentrated on examining the deviation-based heuristics. Another interesting direction

could be the propagation-based heuristics. Moreover, we would even combine these two kinds of

heuristics. Other lines of improvement could be using other restarts suite or deciding when we

perform restarts technique during search.

In summary, it has been known that heuristics are not largely studied for finding Nash equilibrium

in games. By proposing the heuristic along with the algorithm for constraint games in this chapter,

we hope that they could motivate further research to discover efficient heuristics for computing

Nash equilibrium in game theory.
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In this chapter, we summarize the contents and the contributions of the thesis by discussing the

results along with some possible directions for future work.

8.1 Conclusion

The purpose of this thesis is to build a unified framework to model and to solve optimization

problems in which multiple players partially compete for the same resources and have different

goals (not mandatory disjoint). In particular, we focus our interest on static games which allow

simultaneous moves, have complete information and include no collaboration. A static game is

composed of a finite set of self-interested players. Each player takes a strategy from his strategy

set to optimize his own utility. Because all the players choose their strategy simultaneously, they

have not been informing the choices of the others. However, they know the utility functions of all

the players, this game is thus classified into complete information games. Many examples can be

cited as static games, for example, Rock-Paper-Scissors or Prisoners’ dilemma.

In this thesis, our research interest includes the following directions.

•Modeling. The basic representation of games is an n-dimensional matrix called normal form

whose size is exponential in the number of players. The intractability of this representation

is a severe limitation to the widespread use of game-based modeling. There is thus a need to

define a multiple players language for encoding games. This key issue has been addressed

by several types of compact representations. An approach is the interaction-based represen-

tations from which two prominent representations are graphical games [Kearns et al., 2001,

Kearns, 2007] and action-graph games [Bhat and Leyton-Brown, 2004, Jiang et al., 2011].

123
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Another approach is the language-based modeling where the most well-known is boolean

games [Harrenstein et al., 2001]. In a boolean game, each player controls a set of propo-

sitional variables while his preference is encoded by a set of propositional formula. The

generic framework presented in this thesis, constraint games, can be considered as an ex-

tension of boolean games but provides a richer modeling language due to optimization and

hard constraints. In a constraint game, each player’s preference is expressed by a CSP. As

proven by the compactness of constraint programming, for encoding games, this frame-

work can be exponentially more compact than normal form. In addition, hard constraints

can be provided to limit the joint strategies all players may take. This allows unrealistic

equilibrium to be ruled out. Note that these constraints are global to all players, and they

provide crucial expressivity in modeling.

• Applications. In this thesis, we succeed in testing our constraint games on both classical games

and a large range of applications inspired by real-life problems. It has been demonstrated

that constraint games are declarative and generic. Moreover, this game representation can

express new, interesting problems taken from emergent fields, for example, applications in

cloud computing.

• Solving. Despite the high interest of games for modeling strategic interaction, it is still difficult

to find an efficient solver for computing Nash equilibrium in games. The normal form game

solver Gambit [McKelvey et al., 2014] is currently considered as state-of-the-art. In this

thesis, we have achieved to implement a solver named ConGa which allows to use multiple

solving tools inside the same modeling environment, including local search (Chapter 5),

complete search (Chapter 6) and heuristic search (Chapter 7).

Several parts of the work in this thesis have been validated by accepted papers in proceedings of

international peer-reviewed conferences.

• Thi-Van-Anh Nguyen and Arnaud Lallouet : A Complete Solver for Constraint Games,

runner-up best student paper, in CP’14, International Conference on Principles and Practice

of Constraint Programming, Lyon, France, pages 58-74, September 8-12, 2014.

• Thi-Van-Anh Nguyen, Arnaud Lallouet and Lucas Bordeaux : Constraint Games: Frame-
work and Local Search Solver, in ICTAI’13, International Conference on Tools with Ar-

tificial Intelligence, Washington DC, USA, pages 963-970, November 4-6, 2013.

The content of this thesis extensively elaborates upon previous published work and mistakes (if

any) are corrected. Large sections of this work are previously unpublished, although they may

appear in some papers in the future.

In conclusion, we believe that using constraint programming in game theory is an interesting

proposal that would be worth studying in depth in the future. Additionally, we are confident that

there is a wide range of opportunities for improvement, since this discipline has been until now

largely unexplored.
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8.2 Perspective

In this thesis, we focus on modeling and solving static games. In reality, along with simultaneous

moves, many optimization problems also demand sequential moves between agents which can

be modeled by dynamic games. For example, in the applications taken from cloud computing

and network field (Example 4.16 and Example 4.14), it is natural to suggest that the provider

would like to maximize their profit gained by all his clients. Therefore, there are two levels

of making decisions in these applications. First, the provider fixes the price for his resource.

Second, the clients minimize the cost that they have to pay to the provider according to this price.

This scenario of bi-level decision-making, or even multiple levels, often appears in real-world

economic problems, transportation or energy planning, etc.

Indeed, an interesting idea of future work is to mix static and dynamic games into a unified

modeling and solving framework. This is what we call Multilevel Constraint Games (abbreviated

MCG). Like constraint games, we will investigate this proposal in three directions: (i) Modeling

(ii) Applications and (iii) Solving.

Modeling Framework

Quantified Constraint Satisfaction Problems (abbreviated QCSP) are an interesting extension of

classical CSP where some variables may be universally quantified. QCSP model scenarios where

uncertainty does not allow us to decide the values for some variables. Many research results

related to QCSP have been developed. Among them, we have particular interest in Quantified

Constraint Optimization Problems [Benedetti et al., 2008] which bring optimization into multi-

level decision problems. This suggests an interesting idea of using constraint programming for

encoding multilevel optimization games with multiple players that would be potential future work

after this thesis.

Probably, the most well-known multilevel model in game theory is Stackelberg game

[Stackelberg, 1952]. In this game, there are two actors: a leader and a follower who perform

decisions sequentially but having no control on each other. The leader moves first to achieve

his goal, henceforth, the follower takes decision to optimize his objective function according to

the decision already made by the leader. The key idea here is that the leader and the follower

have different objectives depending on each other, maybe in conflict. The original concept of

Stackelberg was extended to an oligopolistic market with one leader and a group of followers by

[Sherali et al., 1983].

Indeed, we plan to extend constraint games to multilevel constraint games. This new framework

should be able to capture both two types of structures, i.e. (i) “a leader and a follower” and (ii)

“a leader and a group of followers” where subgames among followers are encoded by constraint

games.
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Generally, the Stackelberg model can be solved to find the subgame Nash equilibrium, i.e. the

strategy profile that serves best each player, given the strategies of the leader and that entails every

follower playing in a Nash equilibrium in the subgame. Finally the leader chooses the strategies

that offer him the optimum for his goal. This raises a solution concept called Stackelberg Nash

Equilibrium which should be studied as the main solution concept of MCG.

The intuition meaning of the solution concept defined for MCG is as follows. Given a strategy

chosen by the leader, the followers will optimize their outcome along with this strategy. In his

turn, the leader reaches to his best in respect of equilibrium between all the followers. Therefore,

Stackelberg Nash equilibrium assure a good balance between preferences of all the players in

games.

Finally, the framework should be developed more deeply, to prove its properties, such as space

complexity, existence of equilibrium and complexity of computing such equilibrium, etc.

Applications

Actually, many applications require a new language which allows multiple agents to express par-

tially competitive objectives. In addition, there is always a need to define a modeling language for

multilevel problems. Therefore, it is not difficult to demonstrate the usefulness of multilevel con-

straint games by real-world problems. Besides the extension of the examples already represented

in this thesis (Example 4.14, Example 4.15 or Example 4.16), we also provide another example

in order to illustrate a potential range of interesting applications that multilevel constraint games

would capture to.

The following example is taken from aerial industry. The problem is to plan aircraft arriving at an

airport [Soomer and Franx, 2008].

Example 8.1 (Arrival Aircraft Planning). Consider a set F = {1, . . . ,n} of airlines whose flights

would land on p runways at the airport. Each airline i∈F has to schedule mi flights. We assume

that an aircraft is used for one and only one flight. Each flight/aircraft fi j of airline i arrives in

the neighborhood of the airport at a time ti j and is scheduled by the airport authority to land on

a runway at a time si j. If si j > ti j, then the aircraft has to wait. Depending on its gas reserve, the

aircraft fi j is able to wait for a time ri j but this is increasing its costs. Note that ri j is constant

and already determined for each flight. A runway can be used by aircraft fi j for a landing time

of ldi j. Each airline company has control on the time ti j to present an aircraft and is willing to

suffer a minimum cost ci for all its aircraft.

This problem is illustrated in Figure 8.1. There are two runways labeled by R1 and R2 at the

airport. At the moment t1, an aircraft a1 arrives to the airport. Because both the two runways

are available, a1 would land on whatever runway. The airport authority allows it to use R1. This

runway will be occupied by a1 until the moment t5. At the moment t2, an aircraft a2 arrives.

Because R1 is already occupied, so a2 is commanded to land on R2, for a period from t2 to t4.

At the moment t3, an aircraft a3 would like to land on at the airport. Unfortunately, both the two
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Figure 8.1: Arrival Aircraft Planning Problem

runways are not available to be used. If a3 lands on whatever runway, two aircraft will collide. So

a3 has to wait until the moment t4 when R2 is reset to be free. Therefore, a3 has to bear a delay

time t4− t3. In the classical problem, all aircraft belong to an airline. But here, the aircraft are

controlled by different companies. So, the problem is how to find an equilibrium for the delay

time of all companies.
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The problem described in Example 8.1 is obviously a bi-level optimization problem in which the

airport authority plays the role of leader and the airline companies as followers. Each company

must wait for the authority’s permit for landing while the authority need to assure a balance

between all companies and to achieve the minimum delay for his best serve.

Solving Framework

Solving constraint games is computationally complex. In consequence, it is unlikely that solving

multilevel constraint games is an easy task. But we think that it would be very interesting to

investigate specialized techniques for computing Stackelberg Nash equilibrium in MCG. Another

line of work is to try to define proper notions of approximation, both on the semantics side and

on the solving side which could allow to drastically restrict the search space. In this perspective,

local search will be studied. In summary, we are confident that an efficient solver for multilevel

constraint games would be very appreciated in practice.
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Constraint Games: Modeling and Solving Games with Constraints

This thesis presents a topic at the interface of game theory and constraint programming. More precisely, we focus on
modeling games in a succinct way and then computing their solutions on these compactly encoded games thanks to
constraint programming.

For a long period of time, game theory has suffered a modeling difficulty due to the lack of compact representations
for encoding arbitrary games. The basic game representation is still an n-dimensional matrix called normal form
which stores utilities of all players with all joint strategy profiles. The matrix however exponentially grows with the
number of players. This also causes a solving difficulty for computing solutions in games.

In the thesis, we introduce a novel framework of Constraint Games to model strategic interaction between players.
A constraint game is composed of a set of variables shared by all the players. Among these variables, each player
owns a set of decision variables he can control and constraints expressing his utility function. The Constraint Games
framework is a generic tool to model general games and can be exponentially more succinct than their normal form.
We also show the usefulness of the framework by modeling a few classical games as well as realistic problems.

The main solution concept defined for constraint games is Pure Nash Equilibrium. It is a situation in which no player
has an incentive to deviate unilaterally. It has been well-known that finding pure Nash equilibrium is computationally
complex. Nevertheless, we have achieved to build an efficient solver called ConGa which includes various ways for
solving constraint games.

Keywords: Game Theory, Constraint Programming , Nash Equilibrium

Constraint Games: Modélisation et Résolution des Jeux avec Contraintes

Cette thèse se situe dans le cadre à la fois de la théorie des jeux et de la programmation par contrainte. Plus
précisément, nous nous concentrons sur modéliser les jeux de manière succincte et puis calculer leurs solutions sur
ces représentations compactes grâce à la programmation par contraintes.

Depuis longtemps, la théorie des jeux subit une difficulté de modélisation en raison de l’absence de représentations
compactes pour modéliser les jeux. La représentation basique est encore une matrice appelée forme normale qui
stocke les utilités des joueurs avec tous les profils de stratégie. Pourtant, cette matrice s’agrandit exponentiellement
avec le nombre de joueurs. Cela cause une difficulté de la résolution des jeux.

Dans cette thèse, nous introduisons un nouveau framework de Constraint Games afin de modéliser l’interaction
stratégique entre les joueurs. Un constraint game est composé d’un ensemble de variables partagées par tous les
joueurs. Parmi ces variables, chaque joueur possède un ensemble de variables décisionnelles qu’il peut contrôler et
les contraintes représentant sa fonction d’utilité. Le framework de Constraint Games est un outil générique pour
modéliser les jeux généraux et peut être exponentiellement plus succinct que leur forme normale. Nous montrons
également l’utilité du framework pour modéliser quelques jeux classiques et problèmes réels.

Le concept principal de solution défini pour Constraint Games est l’Équilibre de Nash en Stratégies Pures. C’est une
situation dans laquelle aucun joueur n’a un intérêt à dévier unilatéralement. Il est bien connu qu’il est complexe de
calculer les équilibres de Nash en stratégies pures dans les jeux. Pourtant, nous réussissons à construire un solver
appelé ConGa qui inclut plusieurs méthodes pour résoudre Constraint Games efficacement.
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