N

N

Constraint Games: Modeling and Solving Games with
Constraints
Thi-Van-Anh Nguyen

» To cite this version:

Thi-Van-Anh Nguyen. Constraint Games: Modeling and Solving Games with Constraints. Computer
Science [cs]. Université de Caen, 2014. English. NNT: . tel-01138960

HAL Id: tel-01138960
https://hal.science/tel-01138960
Submitted on 3 Apr 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/tel-01138960
https://hal.archives-ouvertes.fr

LN Q\E N Microsoft’

=¥,
=vesresio SREYC e ® Research

UNIVERSITE DE CAEN BASSE NORMANDIE
U.F.R. de Sciences

ECOLE DOCTORALE SIMEM

THESE

Présentée par
Thi Van Anh NGUYEN

soutenue le
12 Décembre 2014

en vue de 1’obtention du

DOCTORAT de ’'UNIVERSITE de CAEN

Spécialité : Informatique et applications
Arrété du 07 aotit 2006

Titre

Constraint Games: Modeling and Solving Games
with Constraints

The work presented in this thesis was carried out at
GREYC - Université de Caen Basse-Normandie.

Jury
Francesca ROSSI Professor University of Padova, Italy Reviewer
Lakhdar SATs Professor Université d’ Artois, France Reviewer
Patrice BOIZUMAULT Professor Université de Caen, France Examiner
Lucas BORDEAUX Research Engineer = Microsoft Research, UK Examiner
Philippe JEGOU Professor Université d’ Aix-Marseille, France Examiner
Bruno ZANUTTINI Associate Professor Université de Caen, France Examiner

Arnaud LALLOUET Professor Université de Caen, France Supervisor

Abstract

This thesis presents a topic at the interface of game theory and constraint programming. More
precisely, we focus on modeling games in a succinct way and then computing their solutions on
these compactly encoded games thanks to constraint programming.

For a long period of time, game theory has suffered a modeling difficulty due to the lack of
compact representations for encoding arbitrary games. The basic game representation is still an
n-dimensional matrix called normal form which stores utilities of all players with all joint strategy
profiles. The matrix however exponentially grows with the number of players. This also causes a
solving difficulty for computing solutions in games.

In the thesis, we introduce a novel framework of Constraint Games to model strategic interaction
between players. A constraint game is composed of a set of variables shared by all the players.
Among these variables, each player owns a set of decision variables he can control and constraints
expressing his utility function. The Constraint Games framework is a generic tool to model
general games and can be exponentially more succinct than their normal form. We also show the
usefulness of the framework by modeling a few classical games as well as realistic problems.

The main solution concept defined for constraint games is Pure Nash Equilibrium. It is a situation
in which no player has an incentive to deviate unilaterally. It has been well-known that finding
pure Nash equilibrium is computationally complex. Nevertheless, we have achieved to build an
efficient solver called ConGa which includes various ways for solving constraint games.

Keywords

Game Theory e Constraint Programming e Nash Equilibrium

Acknowledgements

First of all, I undoubtedly give a special note of thanks to my supervisor, Arnaud Lallouet. I am
indebted to him for his kindly guidance and patience in conducting research and writing scientific
documents. In particular, he always stood by my side during my tough time when I got failure and
nothing worked. Honestly, there existed such extremely stress moments that I wanted to quit. But
Arnaud did not abandon me, he always stayed with me and gave me encouragement to continue
fighting. He taught me not only how to do research but also how to follow goals, not be afraid of
failures, keep smiling and never give up. Without him, I would not be able to succeed in finishing
this PhD thesis.

I am then grateful to my thesis committee including Francesca Rossi, Lakhdar Sais, Patrice Boizu-
mault, Lucas Bordeaux, Philippe Jégou and Bruno Zanuttini for their insightful comments and
valuable time.

I would like to thank Microsoft Research PhD Scholarship Programme for providing the financial
funding and other kinds of supports during my thesis. I also thank the members of Microsoft
Research Cambridge, in particular my research mentors, Youssef Hamadi and Lucas Bordeaux,
for their advices as well as the PhD scholarship administration team for their kindly help from the
very first day until the end of my thesis.

I am also very grateful to my master internship supervisor, Laurent d’Orazio, who guided me
the first steps to discover the world of research. Laurent is also the person who directly gave me
encouragement, support and motivation to do this PhD thesis.

I would like to thank my colleagues for making my three years at Greyc is one of the most precious
time in my life. Thank José Moréno (and also Gaél Dias, his supervisor for the comfortable
discussions about everything), Guillaume Poezevara, Paul Martin and Romain Brixtel for nicely
sharing the office with me. I am grateful to the members of the CoDaG team as well as the
system administrators for their helps to accomplish the works in this thesis. I think of Winn
Voravuthikunchai, Davy Gigan, Jean-philippe Métivier and the others I cannot all enumerate here.
Thank you very much for all the times we had together.

On a personal note, I am grateful to Gérard Fougeray who welcomed me on the first days when
I arrived in France. He did many things for helping me to overcome the tough period in my first
year without family in a foreign country. And of course, I would like to thank my Vietnamese
friends for the relaxing moments that make me forget the pressure of the PhD work.

At the end, I would like to thank my family for always loving me unconditionally. I am also
grateful to my brother and my sister-in-law for taking care of my mother at home. Thank you so
much for everything. Without you, I would not have what I have today.

To my father, with all my love.

Contents

Abstract
Acknowledgements
1 Introduction
I Background
2 Game Theory
2.1 Categoriesof Games e
2.1.1 Staticand Dynamic Games,
2.1.2 Cooperative and Non-cooperative Games
2.1.3 Complete and Incomplete Information Games
2.1.4 Summary e e e
2.1.5 Specific Classesof Games,
2.2 Solution Concepts forGames
2.2.1 Pure Nash Equilibrium
2.2.2 Pareto Nash Equilibrium,
2.2.3 Mixed Nash Equilibrium L L.
2.2.4 Approximate Nash Equilibrium
2.2.5 Strong Nash Equilibrium 0oL
2.2.6 Other Types of Equilibrium
2.2.7 Quantifying the Inefficiency of Equilibrium
2.3 Representations of Gameso
23.1 NormalForm
232 Extensive Form o
233 Graphical Games
234 Action-Graph Games Lo
235 BooleanGameso
2.3.6 Other Representations,
2.4 Existing Software in Game Theory
3 Constraint Programming
3.1 BasicNotions L
32 Reasoning e e e e e e
3.2.1 BacktrackingSearch,
322 LocalSearch
3.3 Constraint Programming in Game Theory

5

11

13
14
14
17
19
20
20
22
22
25
26
27
27
28
28
29
29
30
31
32
33
35
36

6 Contents
II Contributions 47
4 Constraint Games 49
4.1 Modeling Framework L 50
4.1.1 Constraint Satisfaction Games 50

4.1.2 Constraint Satisfaction Games with Hard Constraints 53

4.1.3 Constraint Optimization Games 54

4.1.4 Constraint Optimization Games with Hard Constraints 56

4.1.5 Usefulness and Compactness of Constraint Games 56

4.2 Applications e 59
4.2.1 Games Taken from the Gamut Suite 59

4.2.2 Games Taken fromReal Life 62

4.3 Solving Framework 68
43.1 ConGaSolver. e 69

4.3.2 Experimental Environment L. 70

4.4 Conclusion e 70

5 Local Search for Constraint Games 71
5.1 CG-IBR: Iterated Best Responses Algorithm in Constraint Games 72

5.2 CG-TS: Tabu Search Algorithm in Constraint Games 76

5.3 CG-SA: Simulated Annealing Algorithm in Constraint Games 78

54 EBxperiment e e e e e e 84
5.4.1 Description of Experimental Game Instances 84

54.2 Experimental Results 85

55 Related Work e 87

5.6 Conclusion 88

6 Complete Search for Constraint Games 89
6.1 CG-Enum-Naive: Naive Algorithm for Enumerating All Pure Nash Equilibrium . 90
6.2 Pruning Techniques L 91
6.2.1 Classical Techniques 91

6.2.2 Advanced Techniques 93

6.3 CG-Enum-PNE: Advanced Algorithm for Enumerating All Pure Nash Equilibrium 96

6.4 CG-Enum-PPNE: Algorithm for Finding All Pareto Nash Equilibrium 101

6.5 Experiment e e e 103

6.6 Related Work 106

6.7 Conclusion e e 107

7 Heuristic Search for Constraint Games 109
7.1 Deviation-based Heuristic for Variable and Value Ordering 109
7.2 Heuristic Algorithm 112

7.3 Experiment e e e e 117

74 Related Work e 120

7.5 Conclusion e 121

8 Conclusion and Perspective 123
8.1 Conclusion e e 123

8.2 Perspective e e 125

Bibliography 129

Chapter 1

Introduction

The mathematical field of game theory [von Neumann and Morgenstern, 1944c] has been set up
to address problems of strategic decision making in which agents interact in conflict situations.
Game theory has an incredible success in description of economic processes [Tesfatsion, 2006],
but is also used in various other domains such as biology or political sciences [Shubik, 1981,
Maynard-Smith and Price, 1973] . Other issues include sequential or simultaneous interaction

mode, complete or incomplete knowledge, determinism, coalitions, repetition, etc.

Nash equilibrium [Nash, 1951] is perhaps the most well-known and well-studied game-theoretic
solution concept for static games in which each player is assumed to know the strategies of the
other players, and no player has anything to gain by changing only their own strategy. In other
words, given a set of strategy choices (called strategy profile) in which each player has chosen his
strategy. The strategy profile is a Nash equilibrium if no player can improve his outcome (also

called payoff or utility) by changing his strategy while the others keep theirs unchanged.

Since a few years, games have been studied in a computational perspective, raising new issues like
complexity of equilibrium or succinctness of representation. The main representation for static
games is still an n-dimensional matrix called normal form that stores utilities of all players with
all possible strategy profiles [Fudenberg and Tirole, 1991]. However, normal form exponentially
grows with the number of players. Actually, there is a lack of a general modeling language that
can express arbitrary games while is also able to compactly encode utility functions exhibiting
commonly-encountered types of structure. Probably, that is one of the biggest challenges in game
theory. It seems responsible for the reason why there are too few solving tools available for

generic games.

Indeed, this thesis is mainly motivated by two questions. First, is it possible to design the game
representations that can compactly model a wide range of interesting games and are amenable
to efficient computation? Second, how do we build efficient algorithms for computing solution

concepts (e.g. Nash equilibrium) in these compactly represented games?

8 Chapter 1. Introduction

Along the path of exploration, we realize that most games have a natural understanding. More
precisely, utilities are not randomly generated, but frequently constrained by a form of functions
between players’ strategies. They can thus (often) be expressed in a language. There is no doubt
that it is better to understand utilities in terms of simple relationships than look up in enormous
matrix. Therefore, a language for utilities could be suitable for the compact game representation

that we expect to design.

On the other side, constraint programming [Rossi et al., 2006] is a framework for modeling and
solving combinatorial and optimization problems, e.g. designing schedules, optimizing round
trips, etc. Modeling a problem with constraints is fairly easy. We first need to define a set of
variables along with their domain. Then, we specify a set of constraints which state the relations
between the variables. A solution of the problem is an assignment of all the variables satisfying all
the constraints. The solving tool for constraint problems is called solver which generally includes
a set of constraint techniques. Once we have declared our problem, the solver runs until it finds a

solution or all the solutions (according to our desire).

Now, constraint programming can solve industrial-sized problems with comparable efficiency as
operational research techniques but with a clear and concise modeling language. In particular, side
constraints which appear in industrial problems are easily taken into account within the framework

and fully exploited during the solving phase.

In games, utility function (or preference) is usually expressed by a form of relations between
strategies of players. While in constraint programming, relations between variables are stated in a
form of constraints. We can see here an interesting similarity between the two fields. Indeed, our
idea in this thesis is to model and solve games as constraint problems in which preferences will be
encoded by constraints. Due to the efficiency of the framework, constraint programming would

offer us not only compact game representations but also a set of robust techniques for solving.

In summary, the purpose of this thesis is to build a unified framework to model and solve games
thanks to constraint programming. Referring to real-life problems, our framework is available to
solve the problems with the following features: multiple agents partially compete for the same

resources, have different (not mandatory disjoint) objectives and take decisions simultaneously.

Thesis Organization

Since this thesis is related to two different fields (game theory and constraint programming), we
provide some background knowledge of these fields in Part 1. The thesis contributions are then

represented in Part II. The thesis organization is sketched in Figure 1.1 (on the next page).

In the first part, Chapter 2 is devoted to recall the basic elements of game theory that could allow
to specify the position of the thesis in this huge field. We do the same thing, but for constraint

programming, in Chapter 3.

Local search (Chapter 5) Complete search (Chapter 6) Heuristic search (Chapter 7)
Contributions
Constraint Games and Applications (Chapter 4)
BaCkground { _

Figure 1.1: The thesis organization.

Reading order

The second part expressed by the upper orange layers describes the thesis contributions. The first
contribution, a compact game representation named constraint games, is represented in Chapter
4. We also illustrate the compactness as well as the usefulness of constraint games by modeling a

set of applications taken from both classical games in the literature and real-life.

The algorithms for computing solution concepts, i.e. Nash equilibrium, are depicted in the top
layer. Several local search algorithms are devised in Chapter 5. In Chapter 6, we propose a com-
plete solver including both naive and advanced algorithms for equilibrium enumeration. Finally,

a heuristic search for variable and value ordering is given in Chapter 7.

Thesis Contributions

The central contribution of the thesis is Constraint Games which are a new modeling framework
for generic games with the solving techniques along. These techniques have been implemented in

a solver for constraint games called ConGa. In detail, we have achieved the following outcomes.

o A modeling framework. By proposing constraint games, we have defined a multiple agents
language which allows to express their interaction within the problem to model. It is a
compact game representation which adapts to various modeling purposes thanks to its four
natural variants. All these variants, in which optimization and/or hard constraints are al-

lowed or not, are itemized as follows.

Constraint Satisfaction Games

Constraint Satisfaction Games with Hard Constraints

Constraint Optimization Games

Constraint Optimization Games with Hard Constraints

We also give a theory of multiple players games including equilibrium notions and their
computation. The main solution concepts defined for constraint games are Pure Nash Equi-
librium (abbreviated PNE) and its subset Pure Pareto Nash Equilibrium.

In this thesis, we demonstrate the utility of constraint games by modeling a few applications
in various fields, such as economy, network or cloud computing, to name a few. In addition,
these applications can be expressed in a compact and elegant way thanks to constraint
games.

10 Chapter 1. Introduction

o A solving framework. Solving games is a very difficult task because determining whether
a constraint game has a PNE is XJ-complete. The state-of-the-art solver is Gambit
[McKelvey et al., 2014] which includes a simple enumeration algorithm with exponential
complexity. We have implemented the solver ConGa including many search algorithms for

different purposes.

e Local search : Thanks to the compactness of constraint games, our local search solver
may find a PNE in very large games even with the simplest algorithm called iterated
best responses. The largest game tackled in our experiments has 200 players and 5040
strategies per player. A normal form representation of this game would have involved
200 x 5040°% entries. Additionally, two algorithms using the efficient metaheuristics
sometimes strengthen better performance for the solver [Nguyen et al., 2013].

e Complete search : Although finding one PNE is a very interesting problem in itself,
finding all of them allows more freedom for choosing equilibrium that fulfills some
additional requirements. For example, the correctness of the computation of pure
Pareto Nash equilibrium relies on the completeness of PNE enumeration. We present
in [Nguyen and Lallouet, 2014] a new, correct and complete solver which is based
on a fast computation of equilibrium condition that we call Nash consistency and a
pruning algorithm for never best responses. The experimental results demonstrate
that our solver is faster than the classical game solver Gambit by one to two orders of
magnitude.

e Heuristic search : Local search solver can find a PNE in very large games. However, it
does not guarantee to always detect a PNE as well as prove its absence. The complete
solver proposed can overcome this drawback. However, it does not fit well into large
games, even finding only the first PNE. Hence, we have also studied and implemented

a heuristic search which allows to pick the first PNE within reasonable time.

Part I

Background

11

Chapter 2

Game Theory

Contents
2.1 Categoriesof Games v v v v v v ittt e et e e e e 14
2.1.1 Staticand DynamicGames 14
2.1.2 Cooperative and Non-cooperative Games 17
2.1.3 Complete and Incomplete Information Games 19
214 Summary e e 20
2.1.5 Specific Classes of Games 20
2.2 Solution ConceptsforGames vt v v vttt vt v v 22
2.2.1 Pure Nash Equilibrium 22
2.2.2 Pareto Nash Equilibrium 25
2.2.3 Mixed Nash Equilibrium 26
224 Approximate Nash Equilibrium 27
2.2.,5 Strong Nash Equilibrium 27
2.2.6 Other Types of Equilibrium, 28
2.2.7 Quantifying the Inefficiency of Equilibrium 28
2.3 Representationsof Games. 0 i et e 29
23.1 NormalForm 29
232 Extensive Form o 30
2.3.3 Graphical Games 31
234 Action-Graph Gameso 32
235 BooleanGames 33
2.3.6 Other Representations 35
2.4 Ecxisting SoftwareinGame Theory 36

Our work is based on game theory which has been well-known a huge research field of study of
strategic decision making. We thus give in this chapter some background knowledge that allows

to put the thesis in its place.

13

14 Chapter 2. Game Theory

The central notion in game theory is game. Generally, a game is composed of a finite set of
intelligent rational decision-makers (usually called players) who have the intention of achieving
several purposes by choosing one or some strategies in their strategy set. A game can be identified
by multiple factors. Among them, the type of games plays a crucial role in representing and
solving games. In this chapter, the main categories of games are hence envisaged, including static

or dynamic, cooperative or non-cooperative, and complete or incomplete information games.

In game theory, a solution concept is a formal rule for defining the outcome of a game. The
solutions describe which strategies will be adopted by players, therefore, the results of games.
Equilibrium concepts are the most used solution concepts. Among them, Nash equilibrium is
the most well-known in the literature. Nash equilibrium is mainly addressed static games. A
situation is called Nash equilibrium if no player has an incentive to change his choice unilaterally.
The main solution concept defined in the thesis is Nash equilibrium. Nevertheless, we also give a

global view related to other equilibrium.

Another important issue in game theory is game representation. It is a data structure capturing all
information necessary to identify games. We hence enumerate and analyze both advantages and
drawbacks of the existing game representations as well as their solving tools from the literature.

Finally, this chapter is ended by several software available for solving games.

2.1 Categories of Games

We give here some main categories of games. Generally, a game is identified by interaction

modes, by behavior between players and by game knowledge.

2.1.1 Static and Dynamic Games

A game can be specified by the interaction mode of all players, i.e. the way how they play their
game. From this point of view, there are two main categories: static games and dynamic games.
In a static game (also called simultaneous game), all players make decisions (or select a strategy)
at the same time, without knowledge of the strategies that are being chosen by other players.
Meanwhile, in a dynamic game (also called sequential game), one player chooses his strategy
before the others choose theirs. Therefore, the later players must have some information of the
previous choices, otherwise the difference in time would have no strategic effect. Dynamic games
are hence governed by the time axis, while static games do not have a time axis as players choose

their moves without being sure of the other’s.

Static Games

A game is said to be static if all players take decision simultaneously and obtain the utility ac-

cording to the decisions made by all players, respectively.

2.1. Categories of Games 15

Definition 2.1 (Static Game). A static game is a 3-tuple (2, (S:)ic», (Ui)ic 22) where:

o P =1{1,...,n} is a finite set of players (also called agents);

e for each player i, S; # 0 is the strategy set of the player. Let s; € S; be a strategy (also called
action) that player i can choose. A strategy profile s = (si,...,8y) € ic»S; is a tuple of
strategies of n players. We denote by s_; the set of tuples of (n— 1) players, except i, under
the strategy profile s. The notation Il expresses the Cartesian product over the sets;

o u;:Il;c»S; — Ris i’s utility (also called payoff) function which specifies i’s utility given
any strategy profile.

Rock-Paper-Scissors (Example 2.1) is a famous hand game which is one of the simplest examples
of static games.

Example 2.1 (Rock-Paper-Scissors). Rock-paper-scissors is a game played by two people, where
players simultaneously form one of three shapes with an outstretched hand. The “rock” beats
scissors, the "scissors” beat paper and the "paper” beats rock (see Figure 2.1); if both players

throw the same shape, the game is tied.

SCISSO rs

beats paper

Figure 2.1: A chart showing how the three game elements interact in Rock-Paper-Scissors.
Source: http: //en. wikipedia. org/wiki/Rock-paper-scissors

This game can be formulated in static games as follows.

o 7 =1{1,2}
e Both the two players can choose a strategy from the same strategy set S| = S, =

{rock, paper,scissors}

The game has 9 strategy profiles: (rock, rock); (rock, paper); (rock, scissors); (paper, pa-

per); (paper, rock); (paper, scissors); (scissors, paper); (scissors, rock); (Scissors, Scissors).

99, 19’

The utility function obtained by each player is following, where “1” stands for “win
for “lose” and “0” for “a tied game”
- Vi€ P, ui(rock,rock) = ui(paper, paper) = u;(scissors, scissors) = 0

— uy(rock,scissors) = uy (scissors, paper) = u;(paper,rock) = 1

http://en.wikipedia.org/wiki/Rock-paper-scissors

16 Chapter 2. Game Theory

— ua(rock, scissors) = up(scissors, paper) = uy(paper,rock) = —1
— uy(scissors,rock) = uy(paper,scissors) = u) (rock, paper) = —1

— up(scissors,rock) = uy(paper,scissors) = uy(rock, paper) = 1

In the literature of game theory, “battle of the sexes” (Example 2.2) could be seen as a static game
as well.

Example 2.2 (Battle of the sexes). “ Battle of the sexes” is a two-player coordination game
[Osborne and Rubinstein, 1994] in which a couple planned to go out in the evening. However,
they have not yet decided where they would go. While the wife would like to go to the opera, her
husband enjoys going to the football match. Both would prefer to go to the same place rather

than different ones.
We can encode this game as a static game as follows.

o & ={wife,husband}
e Both the wife and the husband can choose a strategy from the same strategy set Sz =
Shusbana = {opera, football }
e The game has 4 strategy profiles: (opera, opera); (opera, football); (football, opera); (foot-
ball, football)
e The utility function obtained by each player is following:
— upie(opera,opera) = upyspana(football, football) =3
= uyife(football, football) = upyspana(0pera,opera) =2
— upie(opera, football) = upyspana(opera, football) = uys.(football,opera) =
Unusband (football,opera) =0

Dynamic Games

Unlike static games, in a dynamic game [Zaccour, 2005, Haurie and Krawczyk, 2000], the players
move sequentially, i.e. a player will choose his action before the others choose theirs. Several
real-life games such as chess, tic-tac-toe, and Go are typical dynamic games. Let us illustrate
dynamic games by the following example of the tic-tac-toe game.

Example 2.3 (Tic-tac-toe). Tic-tac-toe is a paper-and-pencil game for two players, X and O, who
take turns marking the spaces in a 3 x 3 grid. The player who succeeds in placing three respective

marks in a horizontal, vertical, or diagonal row wins the game.

Q @ @ Q Q
O @ 0 g@

Figure 2.2: An example of the tic-tac-toe game in which player “X” wins. Source: http: //en.
wikipedia. org/wiki/ Tic-tac-toe

¥

Dynamic games are managed by the time axis. Figure 2.2 illustrates an example of tic-tac-toe
along time, from the beginning with the first move of player “X” until the end when a player is

capable of placing a horizontal row.

http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe

2.1. Categories of Games 17

2.1.2 Cooperative and Non-cooperative Games

Since game theory focuses on studying problems in which players’ goals depend on each other, a
crucial characteristic for identifying a game is thus the cooperation between players. Therefore,
games can be divided into two categories: cooperative and non-cooperative games. In a coo-
perative game, several players may collaborate to achieve their goals together. Meanwhile, in a
non-cooperative game, all players are self-interested. Each player just wants to optimize his own

utility without caring about what happens with the others.

Cooperative Games

The central notion of cooperative games is coalition which is a group of players making collabo-
ration to gain the payoff together.

Definition 2.2 (Coalition). A coalition is a subset of players: C C 2. If C is a coalition consisting
of only one player, i.e. C = {i}, C is called singleton. If C is formed by all players, i.e. C = 2,

then C is called grand coalition.
A cooperative game [Driessen, 1988] consists of two elements

(1) A set of players;

(i1) A characteristic function specifying the value created by different coalition C in the game

The definition of cooperative games is henceforth given as follows.

Definition 2.3 (Cooperative Games). A cooperative game is a pair (?,v) where:

o & ={l1,...,n}, a set of finite players.
e A characteristic function which associates a vector v(C) € R to each coalition C. Each
element v; € v(C) specifies the utility obtained by each player i € C.
Example 2.4 (Example 2.2 continued). [Luce and Raiffa, 1957] express the battle of the sexes

game as a cooperative games as follows.

o & ={wife,husband}.
e There are 3 coalitions in the game: C; = {wife,husband},C, = {wife},C3 = {husband}.
o The characteristic functions of each coalition are following:

= v(C1) = (Vwife> Vhusbana) Where vi =2V v; = 3,Vi € {wife, husband}

= v(C2) = (Vwife) where (Vyige = 0)V (Vire =2) V (Vwife = 3)

= v(C3) = (Vhusbana) Where (Vhusband = 0) vV (Vhusband = 2) V (Vhusband = 3)

In Example 2.4, when the wife and the husband appear in a same coalition, namely they put the
common interest as the first choice. Since both prefer to go to the same place than the different
one, they will choose one between two strategy profiles: (opera, opera) or (football, football).
Hence, their utility in this coalition can be 2 or 3. On the other side, in the two remaining coali-

tions, each player is free to choose his/her strategy, then all possible utilities will be considered.

18 Chapter 2. Game Theory

Non-cooperative Games

Non-cooperative games, which are a crucial class in game theory, capture many research interests.
A non-cooperative game can be either zero-sum [von Neumann and Morgenstern, 1944a] or non-
zero-sum [von Neumann and Morgenstern, 1944b] game. In a zero-sum game, a player’s gain (or
loss) is exactly balanced to the losses (or gains) of the others. If the total gains of the players are
added up, and the total losses are subtracted, they will sum to zero. Thus, zero-sum games are
also called strictly competitive games.

Example 2.5 (Berlin occupancy). Figure 2.3 illustrates a zero-sum game in which the allies

countries share the occupancy of Berlin after the chute of Germany in the second world war.

Figure 2.3: Sectors of divided Berlin. Source: http: //en. wikipedia. org/wiki/Berlin_
Blockade

As we can see in the figure, if a country widens his occupied land then the remaining area for all
the others will be henceforth more restricted. Zero-sum games are an important element studied
in various real-world problems in economy or politic such as the problems of dividing a set of

goods or resources between several people, such that each person receives his due share.

In contrast, non-zero-sum games describe a situation in which the interacting players’ aggregate
gains and losses are either less than or more than zero. Non-zero-sum games are also non-strictly
competitive, as opposed to the completely competitive zero-sum games. An interesting point of
non-zero-sum games is that such games include both competitive and cooperative issues. Thus,
they generally fit better into various real-world problems in which the interaction between players
is usually complex. Prisoner’s dilemma is a typical of non-zero-sum games (Example 2.6).

Example 2.6 (Prisoner’s dilemma). The classical prisoner’s dilemma [Poundstone, 1988] intro-
duces two prisoners put in jail without being able to talk to each other. The police plans to
sentence both of them one year, but proposes to each of them to testify against his partner in
exchange of liberty for him and three years for his partner. But if both testify, then both are
sentenced to two years in jail. In this game, each player has possibility to play 0 (defect) or 1

http://en.wikipedia.org/wiki/Berlin_Blockade
http://en.wikipedia.org/wiki/Berlin_Blockade

2.1. Categories of Games 19

(cooperate) with respect to the other player:

In the literature, [von Neumann and Morgenstern, 1944c] prove that any zero-sum game invol-
ving n players is in fact a generalized form of a zero-sum game for two players, and that any
non-zero-sum game for n players can be reduced to a zero-sum game for n+ 1 players; the (n+1)

player representing the global profit or loss.

2.1.3 Complete and Incomplete Information Games

We have surveyed the way players move as well as the cooperation between players in a game.
Another important point all players want to know is what has been happening in the game. This
raises two other categories for classifying games: Complete and Incomplete Information Games.
In a game of complete information, all players are perfectly informed of all other players payoff
for all possible strategy profiles. If instead, a player is uncertain of the payoffs to other players
then the game is one of incomplete information. In an incomplete information setting, players may
not possess full information about their opponents. The games are generally used for modeling

problems including uncertainty features.

Complete Information Games

A game is said to be complete information [Fudenberg and Tirole, 1991] if every player knows
the payoffs and strategies available to other players. Both Battle of the sexes (Example 2.2) and
Prisoner’s dilemma (Example 2.6) are classified into complete information games category. Then,

complete information games include perfect and imperfect information games.

In a perfect information game, players know the full history of the game, the moves made by
the others as well as all their strategies and their payoffs. Tic-tic-toe or chess are some typical
examples of such games. In contrast, there is at least one decision-node where a player does
not know where he is in the game in imperfect information games. There may also be a chance

element (as in most card games).

Incomplete Information Games

Incomplete information games (or Bayesian games) [Harsanyi, 1968] was firstly proposed by
John C. Harsanyi for modeling the multi-player situation in which at least one player is unsure of
the type (and so the payoff function) of another player. Because information is incomplete, in a
Bayesian game, it is to specify the strategy spaces, type spaces, payoff functions and beliefs for
every player. Incomplete information games are important in capturing many economic situations,
where a variety of features of the environment may not be commonly known.

Example 2.7 (Incomplete information Battle of the sexes). The battle of the sexes game (Example

2.2) can be modified to a new version in which there is no collaboration between the two players.

20 Chapter 2. Game Theory

Even more, a player does not know whether the other wishes to meet or wishes to avoid her/him.

This is a situation of incomplete information.

2.1.4 Summary

We summarize in Table 2.1 the game categories presented above along with the examples.

Example Interaction mode Behavior between players Game knowledge
Static | Dynamic | Cooperative | Non-cooperative | Complete information | Incomplete information
Example 2.1 X X X
Example 2.3 X X X
Example 2.4 X X X
Example 2.5 X X
Example 2.6 X X
Example 2.7 X 3

Table 2.1: Summary of the game categories

In this thesis, we are interested in multiple players games which are static, non-cooperative, com-
plete information. In such games, all players make decision simultaneously with no cooperation
between players. Finally every player knows about the strategies and the utilities available for

himself as well as for all others.

2.1.5 Specific Classes of Games

Besides the general game categories mentioned above, there also exists some special game classes
having nice properties which facilitate the representation and the reasoning. Fortunately, such
games very often appear in real-world problems in various fields. Hence, they are also an inter-

esting research subject studied for decades.

In this section, we mention several specific classes of games for two reasons. First, many ap-
plications encoded by our modeling tools, constraint games, fall in these classes. Hence, we are
confident that it would be more comprehensive to understand the applications with the background
knowledge of the game classes. Second, in the thesis, we also concentrate on studying algorithmic
game theory in order to design the solving tools for games. We thus recall here potential games

as well as congestion games which are proven to always own at least one equilibrium.

Potential Games

Potential games [Rosenthal, 1973, Monderer and Shapley, 1996] were proposed by Robert W.
Rosenthal in 1973. A game is said to be a potential game if the incentive of all players to change
their strategy can be expressed using a single global function called the potential function.

Definition 2.4 (Potential Games). A potential game is a 4-tuple (P, (S;)ic 2, (Ui)ic 2, D) where:

o & ={l1,...,n} is a finite set of players;

2.1. Categories of Games 21

o §; is a strategy set for player i;
o u;(s1,...,Sy) is an utility function for player i over the strategy profile s = (s1,...,8,);
o ® is a potential function which defines the kind of potential game.

Definition 2.5 (Potential Functions). There are several kinds of potential function as follows.

e Exact potential function: ® : § — R such that
Vs_i € 8_;,Vs},s! € Si, ®(st,5-;) —P(s7,5-;) = ui(s],s-;) —ui(s],s_).

o Weighted potential function: ® : S — R and a vector w € R? such that
Vs_i € S_;,Vsh,s! € Si, ®(s},5-;) — P(s7,5-i) = wi(ui(s},5-) — ui(s],5-7)).

e Ordinal potential function: ® : S — R such that
Vs_i € 8_;,Vst,s! € Si,ui(sh,s—i) —ui(s! ,s-) >0 — D(s},5_;) — D(s/,5-;) > 0.

171

Because the moves of all players in potential games are mapped into one function, then the po-

tential function is usually an useful tool to analyze equilibrium properties of games.

Congestion Games

The class of congestion games [Rosenthal, 1973] is narrow. Nevertheless, it has widely been
used for encoding many problems, especially in network traffic. Any game where a collection
of homogeneous players has to choose from a finite set of alternatives, and where the payoff
of a player depends on the number of players choosing each alternative, is a congestion game.
In [Monderer and Shapley, 1996], the authors show that the class of congestion games coincides
with the class of finite potential games.

Definition 2.6 (Congestion Games). A congestion game is a 4-tuple (2R, (%))ic 2, (d;)rer)

where:

o P =1{1,...,n} is a finite set of players;

e R={1,...,m} is a set of resources;

o X, C 2R is the strategy space of playeri € P;

e d.:{1,...,n} — Zis the delay function of resource r € R.

For any state s = (s1,...,5,) € X1 X ... X ¥L,, Vi € Z, let §;(s) be the payoff of player i, 5;(s) =
Z"rES,-dr-

Figure 2.4: An example of the network congestion game with 3 players.

Figure 2.4 illustrates an example of congestion games in the network domain. In this game, three
players take the possible paths to reach the target T from the source S. The delay function d,

22 Chapter 2. Game Theory

which is defined by the the number of players is noted on each path. For example, on the path
SA, its delay function is 1 if one player takes SA; 3 if SA is chosen by two players; and 5 if three
players pass through this path. Each player would like to allocate the minimal delay paths to reach
the target T. In this figure, the path chosen by player 1 is depicted by the solid lines, then the dash
lines for player 2 and the dotted lines for player 3. For the current state shown in the figure, the
payoff of player 1is3+2+4 =9, of player 2is 2 + 4 =6 and player 3is 3 + 1 = 4.

2.2 Solution Concepts for Games

Solution concepts for games have been discussed in the game theory community for decades since
there are many ways to define them [Osborne and Rubinstein, 1994]. One of the most fundamen-
tal problems in computational game theory is undoubtedly the computation of a Nash equilibrium
[Nash, 1951], which models a situation where no player has an incentive to change his decision
unilaterally. More precisely, Nash equilibrium is the canonical solution concept of static games.
In this section, we give a brief survey of most well-known concepts, focusing on Nash equilib-

rium, with their existing solving tools along in the literature.

2.2.1 Pure Nash Equilibrium

A situation is said to be a Pure-strategy Nash Equilibrium (hereafter just Pure Nash Equilibrium)
if in this situation, no player can improve his own utility, knowing the other players’ decision.
Definition 2.7 (Best Response). A strategy s; is said to be a best response of player i if and only
ifYs) £ s ui(siys—i) > ui(sh,s-;).

Definition 2.8 (Pure Nash Equilibrium). A pure strategy profile s is a Pure Nash Equilibrium
(abbreviated PNE) if and only if Vi € P Ns_;,Ns # si,ui(si,s—i) > ui(s},s_;), i.e. s is a best

response of all players.

Let us illustrate the couple of notions above in a static game in Figure 2.5. It is a game composed
of two players. Player 1 can take a strategy from a set given by {1,2,3} and player 2 from a set
given by {a,b,c}.

Figure 2.5a depicts a matrix that stores all utilities of the two players. In each cell, the first number
is the utility of player 1 and the second is for player 2. In Figure 2.5b, the strategy profile (2,¢))
is a PNE because it is a best response of both the two players. The tuple (2,c¢) is a best response
of player 1 (Figure 2.5¢c) because, when player 2 keeps his strategy unchanged, i.e. strategy c, if
player 1 chooses either strategy 1 or strategy 3, he will receive a worse utility. Therefore, he would
not deviate to other strategies, i.e. he already gets his best response. The similar explanation is

proposed for the reason why the tuple (2,c¢) is also a best response of player 2.

2.2. Solution Concepts for Games

23

13 | 21 12

31 13 | 24

21 | 31 12

(a) Multimatrix stores all
utilities of the players.

1 2
3 1 2
2 3

(c¢) Tuple (2,c) is a best
response of player 1.

(b) Strategy profile (2,c) is
a PNE of the game.

1 1 2

(d) Tuple (2,c) is a best
response of player 2.

Figure 2.5: Illustration of Best Response and Pure Nash Equilibrium in a static game

There are many ways to define solution concepts [Osborne and Rubinstein, 1994] but PNE has the

notable advantage of giving a deterministic decision for the players. Moreover, PNE for games

are similar to solutions for constraint problems: not all games own a PNE, and when available,

some PNE may be more desirable than others. Therefore, we define PNE as the main solution

concept for our modeling tools proposed in this thesis, namely constraint games.

Algorithm 2.1. Finding all PNE in a game

1: function SOLVE(game G): setof tuple
2 PNE + 0

3 for all s € I1;c »S; do

4 if isPNE(s) then

5: PNE < PNEU{s}
6 end if

7 end for

8 return PNE

9: end function

Algorithm 2.2. Checking whether a tuple is PNE

1: function ISPNE(tuple s): boolean

2 foralli e & do

3 if isDev(s,i) then return false
4: end if

5 end for

6 return true

7: end function

24 Chapter 2. Game Theory

For finding PNE in games, a generic algorithm is described in Algorithm 2.1. In this algorithm, we
simply enumerate all tuples of games. We then verify whether each tuple satisfies the equilibrium
condition (line 3 - 7). This verification is performed in Algorithm 2.2. A tuple is said to be a PNE
if no player can make a beneficial deviation from the current tuple. A player can deviate if he is

able to change to another strategy to get a better utility (Algorithm 2.3).

Algorithm 2.3. Checking whether a player can deviate from the current tuple

1: function ISDEV(tuple ¢, int i): boolean
2 for all v € S;,v # s; do

3 if u;(v,s_;) > u;(s) then

4. return true

5: end if

6 end for

7 return false

8: end function

This generic algorithm, which depends on game representations, is naive and inefficient. How-
ever, it is still the baseline algorithm for solving an arbitrary game in the literature. On the
complexity of determining PNE, [Gottlob et al., 2005] prove that finding a PNE of a game, even
if severe restrictions are posed is a hard problem. That is, the time required to solve the problem
using any currently known algorithm increases very quickly as the size of the problem grows (see
Theorem 2.1).

Theorem 2.1 (taken from [Gottlob et al., 2005]). Determining whether a game has a PNE is
NP-complete. .

[Duersch et al., 2012] show that every finite symmetric quasiconcave two-player zero-sum game
has a PNE. Earlier, in 1963, Shapley et al. prove that a finite two-player zero-sum game has a
PNE if every 2x2 submatrix of the game has a pure equilibrium [Shapley, 1963]. In aspect of
reasoning, [Cheng et al., 2004] exploit symmetry for more efficient methods, i.e. solving game
by function minimization and replicator dynamics, which apply for finding one or a set of PNE,
not all PNE.

The authors in [Monderer and Shapley, 1996] prove a nice property of potential games in The-
orem 2.2. It thus suggests an useful game class in order to test the solving tools for detecting
PNE.

Theorem 2.2. Every finite potential game has at least one pure Nash equilibrium.

The same thing happens with congestion games as they are a subclass of potential games. Even
more, it have been proposed in Theorem 2.3 in [Rosenthal, 1973] that:
Theorem 2.3. For every congestion game, every sequence of improvement steps is finite. Hence,

every congestion game has at least one PNE.

Ut is the complexity in the multimatrix (also called Normal form) representation which is clearly described in
Section 2.3.1. We also notice that all the other complexity results of Nash equilibrium in this section are for games in
normal form.

2.2. Solution Concepts for Games 25

Hence, we can use the potential function in order to find an equilibrium point. The problem is that
the number of steps might be exponential in the size of the game. [Fabrikant et al., 2004] prove
that determining whether a congestion game has a PNE is PLS-complete 2, while in the symmet-
ric network case, PNE can be computed in polynomial time. While an unweighted congestion
game always have a PNE, it is no longer true with weighted variants that rely on sharing costs
proportional to players’ weights. [Kollias and Roughgarden, 2011] propose a way of assigning
costs to players with weights in congestion games that recovers the important properties of the

unweighted model.

Local search has also been studied for finding PNE such as iterated best responses
[Shoham and Leyton-Brown, 2009]. Additionally, the authors in [Son and Baldick, 2004] argue
that any iterative PNE search algorithms based on local optimization cannot differentiate real NE
and “local NE traps”. Thus, they apply coevolutionary programming, a parallel and global search

algorithm, to overcome this problem.

2.2.2 Pareto Nash Equilibrium

In games, it would happen that some equilibrium are more desirable than the others. Usually, the
purpose of solution concepts built up on Nash equilibrium aim at removing less realistic solutions
in games. Pure Pareto Nash Equilibrium (hereafter just Pareto Nash Equilibrium) is henceforth

such kind of concept.

Pareto efficiency, or Pareto optimality, is a state of allocation of resources in which it is impossible
to make any one individual better off without making at least one individual worse off. That is,
a Pareto Optimal outcome cannot be improved upon without hurting at least one player. Pareto
optimality has been widely used as the most fundamental solution concept for the multi-objective
optimization problems. Moreover, this solution concept has also been applied for games, e.g.
[Sen et al., 2003].

Definition 2.9 (Pareto Nash Equilibrium (taken from [Gottlob et al., 2005])). A Pure Nash Equi-
librium s is a Pareto Nash Equilibrium (abbreviated PPNE) if there does not exist a PNE s' such
that Vi € 2 ,ui(s') > u;(s).

Theorem 2.4 (taken from [Gottlob et al., 2005]). Determining whether a game has at least one
PPNE is NP-complete.

Obviously, if there exists a PNE, then there also exists a PPNE. In other words, let P; be the set of
all PNE and P, be the set of all PPNE, then P, C P;. Both finding PNE and PPNE problems share
the same complexity. In terms of the existing algorithms, [Gasior and Drwal, 2013] propose a
distributed algorithm which provably stops at PPNE in capacity allocation game for self-managed

networks.

ZPolynomial Local Search (abbreviated PLS) is a complexity class that models the difficulty of finding a locally
optimal solution to an optimization problem [Yannakakis, 2009].

26 Chapter 2. Game Theory

2.2.3 Mixed Nash Equilibrium

Most work in game theory concerns mixed equilibrium. A mixed equilibrium is the given of
a probability distribution for each player on his strategies such that no player has incentive to
change his distribution. While this notion of strategy allows each game to have an equilibrium
[Nash, 1951], it does not provide an implementable solution concept but more a guideline for all

players to choose their action.

In static games, a player plays a pure strategy when he deterministically chooses a strategy from
his strategy set. A mixed strategy is the one in which a player takes his available pure strategies
with certain probabilities. We denote by ¢ (S;) the set of mixed strategy for player i, than a mixed
strategy o € ¢(S;) is a probability distribution over S;.

Definition 2.10 (Expected Utility). The expected utility of player i under the mixed strategy pro-
file o, denoted by u;(0), is uj(6) = Yesui(5)I1jc0/(sj), where o(s;) denotes the probability
that j plays s;.

Definition 2.11 (Mixed Nash Equilibrium). A mixed strategy profile ¢ is a Mixed Nash Equi-
librium if Vi € &, 0; € argmaxg, u;(0;,0_;) where 0_; is a tuple of mixed strategy of the other
players, except i.

Example 2.8 (Matching Pennies Game). It is a game composed of two players: player A and
player B. Each player owns a penny and chooses to turn the penny to head or to tail. Both turn
their penny simultaneously and immediately reveal the results together. If the pennies match, i.e.
both head or both tail. Player A wins and gets a score of 1, while —1 for player B. Otherwise, if
the pennies do not match (one heads and one tails) then player B wins and gets a score of 1 and

—1 for player A.

There is no PNE in this game. But since the two players turn their pennies secretly. Their plan
should be “unpredictable”. That is, we should randomize (or mix) between strategies. If each
player turns to head or to tail with a probability of 0.5, then their expected utility is 0.5 x 1+
0.5 x (—1) = 0 and neither A nor B can do better by deviating to another strategy. Thus, matching

pennies game has one mixed Nash equilibrium being (0.5,0.5).

Determining whether a game has at least one mixed Nash equilibrium does not fall into
a classical complexity class. More precisely, it is PPAD-hard 3 [Papadimitriou, 2007,

Daskalakis et al., 2006] even if the game is composed of only two players.

Many efficient algorithms have been devised for computing mixed equilibrium such as Lemke-
Howson [Lemke and Jr, 1964], Simplicial subdivision [Scarf, 1973], Porter-Nudelman-Shoham
[Porter et al., 2008]. Recently, local search algorithms have been introduced in this context
[Gatti et al., 2012, Ceppi et al., 2010] as well as genetic algorithms [Ismail et al., 2007].

3PPAD (Polynomial Parity Arguments on Directed graphs) is a complexity class introduced by C. Papadimitriou
in 1994. PPAD is a subclass of TFNP (Total Function Nondeterministic Polynomial) based on functions that can be
shown to be total by a parity argument.

2.2. Solution Concepts for Games 27

2.2.4 Approximate Nash Equilibrium

An approximate Nash equilibrium [Bubelis, 1979], is a strategy profile that approximately satis-
fies the condition of Nash equilibrium. This allows the possibility that a player may have a small
incentive to do something different.

Definition 2.12 (Approximate Nash Equilibrium). Given € > 0, a mixed strategy profile © is an
Approximate Nash Equilibrium (or €-Nash Equilibrium) if for Vi € &2 No! € ¢(S;),ui(0) + € >
ui(o},0_;).

Clearly, an approximate Nash equilibrium falls back to a general mixed Nash equilibrium when
€ =0. Hence the complexity of computing an approximate Nash equilibrium of two-player games

is PPAD-complete as well, even for constant values of the approximation [Daskalakis, 2011].

Computing approximate Nash equilibrium has been studied in [Hémon et al., 2008] for multi-
player games. In [Daskalakis et al., 2009a], the authors propose a linear-time algorithm for games
consisting of only two strategies per player. The algorithm returns a %-approximate Nash equi-
librium in any 2-player game. Later, [Bosse et al., 2010] provide a polynomial time algorithm
that achieves an approximation guarantee of 0.36392. They also extend the algorithms for 2-
player games by exhibiting a simple reduction that allows to compute approximate equilibrium

for multi-player games.

Following another research approach, [Cartwright, 2003] presents an imitation heuristic and an
innovation heuristic to guide the players learn to play to converge to an approximate NE in large
games. On the other hand, [Chien and Sinclair, 2011] specify their interest in congestion games
by studying the ability of decentralized, local dynamics to rapidly reach an approximate Nash

equilibrium.

2.2.5 Strong Nash Equilibrium

All the solution concepts we have previously mentioned are for static games in which there is no
collaboration between players. Now, we present Pure Strong Nash Equilibrium [Aumann, 1959]
(hereafter just Strong Nash Equilibrium, also called core) which is a Nash equilibrium concept
for games with collaboration. It is a situation in which no coalition, taking the actions of its

complements as given, can cooperatively deviate in a way that benefits all of its members.

From [Gottlob et al., 2005], given K C 22, a coalition, let s be a strategy profile, and 5" € IT;cxS;
a combined strategy in K. Then, we denote by s_g[s'] the strategy profile where for each player
i € K, his individual strategy s; € s is replaced by his individual strategy profile s; € 5.
Definition 2.13 (Strong Nash Equilibrium). A strategy profile is a Strong Nash Equilibrium (ab-
breviated SNE) if, VK C 2 Vs’ € I;ekS;, i € K such that u;(s) > u;(s_k|s']).

Theorem 2.5 (taken from [Gottlob et al., 2005]). Determining whether a game has at least one
SNE is 2127 -complete.

28 Chapter 2. Game Theory

Note that the existence of a PNE does not imply the existence of a SNE. Several algorithms
have been proposed to compute SNE in specific classes of games, e.g., congestion games
[Hayrapetyan et al., 2006, Rozenfeld and Tennenholtz, 2006]. More recently, [Gatti et al., 2013]

design a spatial branch—and-bound algorithm to find a SNE in general games.

2.2.6 Other Types of Equilibrium

In order to model rationality, many other solution concepts have been proposed such as
Correlated Equilibrium [Aumann, 1974], Subgame Perfect Equilibrium [Osborne, 2004], Se-
quential Equilibrium [Kreps and Wilson, 1982] or Stackelberg Equilibrium [Stackelberg, 1952,
Sherali et al., 1983], etc. Although these notions are very interesting, they are not directly re-
lated to this thesis. Hence, we do not make a survey more detailed about them and we refer the

interested readers to the references cited above.

2.2.7 Quantifying the Inefficiency of Equilibrium

The previous parts of this section provided numerous notions of equilibrium for defining solution
concepts in games. But do the objective function value of an equilibrium of the game and of an
optimal outcome always coincide? The answer is “no”. This leads to an important notion called
“measures of the inefficiency of the equilibrium of a game” [Roughgarden and Tardos, 2007]. In
fact, all of these measures are defined as the ratio between the value of an equilibrium and of an

optimal outcome of games.

The price of anarchy (abbreviated PoA) is the most popular measure of the inefficiency of equi-
librium. It resolves the issue of multiple equilibria by adopting a worst-case approach. The price
of anarchy of a game is the ratio between the worst objective function value of an equilibrium of

the game and that of an optimal outcome [Koutsoupias and Papadimitriou, 2009].

A game with multiple equilibrium has a large PoA even if only one of its equilibrium is highly
inefficient. It has been proposed the price of stability (abbreviated PoS) of a game which is the
ratio between the best objective function value of one of its equilibrium and that of an optimal
outcome. In other words, the PoS is a measure of inefficiency designed to differentiate between

games in which all equilibrium are inefficient and those in which some equilibrium are inefficient.

Left | Right
Top | (2,1) | (0,0
Bottom | (0,0) | (5,10)

Table 2.2: A simple game for calculating the PoA and the PoS

We illustrate how to calculate the PoA and the PoS in the simple game described in Table 2.2. In
this game, there are two equilibrium points, (Top, Left) and (Bottom, Right), with values 3 and
15, respectively. The optimal value is 15. Thus, PoS = 15/15 = 1 while PoA = 3/15 = 1/5.

2.3. Representations of Games 29

2.3 Representations of Games

In order to study any games, the first issue we must care about is how to represent it. A game
representation is a data structure storing all information needed to specify a game. A game
representation is said to be fully expressive if it is able to represent any arbitrary game. Finally
the size of a game representation is the amount of data to express a game instance. In this section,
we make a survey about the existing game representations in the literature. Note that we will

generally focus on the fully expressive representations with their solving tools along.

2.3.1 Normal Form

The standard game representation of a static game is normal form [Fudenberg and Tirole, 1991]
which is an n-dimensional matrix stating all utilities of all players for all joint strategy profiles in
the game.

Definition 2.14 (Normal Form). A normal form representation of a game is an n-dimensional

matrix which represents all players’ utilities with regard to all strategy profiles of the game.

The size of this representation is n X IT;c »|S;

, which is @(nm") where m = max;c »|S;|. The
matrix thus exponentially grows with the number of players. In case of two-player game, the

mutilmatrix is called bimatrix and its size is 2 x |S1| x |S2]| (see Figure 2.6).

3

Figure 2.6: Normal form representation of a static game consisting of two players. The strategy
set of player 1 is {1,2,3} while the one of player 2 is {a,b,c}. In each cell, the first number depicts
the utility of player 1 while the second one is for player 2.

Normal form is fully expressive. However, it is not a compact game representation. For example,

in order to encode a game composed of 100 players and only 2 strategies per player, the normal

2100

form needs to store 100 x entries. The matrix easily becomes huge to express a game which

is not really large. Accordingly, normal form is intractable for large games. This also causes a

30 Chapter 2. Game Theory

significant difficulty to the widespread use of game-based modeling. Despite its intractability,
normal form is still the basic representation for static games. All the algorithms for computing

equilibrium as well as the complexity results in Section 2.2 are based on normal form.

2.3.2 Extensive Form

Another basic representation for games is extensive form [Fudenberg and Tirole, 1991]. This rep-
resentation consists of a number of players, a game tree, and a set of payoffs. In the game tree,
players are presented by nodes, strategies that all players can choose disposed in the edge and

leave nodes are labeled by the utility of all players.

Wife

Football

Opera
(3.2) (0,0) (0,0) (2,3)

Figure 2.7: Extensive form of the game “battle of the sexes” (Example 2.2). The first numbers in
the leave nodes are the utilities for the wife while the second ones are for the husband.

Figure 2.7 depicts the extensive form of the battle of the sexes game. This game has a second
extensive form with the husband put at the root. However, since two players take decision at the
same time, the two versions are exactly equivalent. In static games consisting of multiple players
with multiple strategies taken by all players in parallel, the tree would become very complex.
Indeed, we will consider only normal form as the classical representation of general static games

in the rest of this thesis since it is absolutely equivalent to the extensive form associated.

PV

X

ARRZIAN

Figure 2.8: A part of an extensive form of Tic-tac-toe. Source: http: //en. wikipedia. org/
wiki/ Tic-tac-toe.

http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe

2.3. Representations of Games 31

The advantage of extensive form is that it specifies the sequence of strategies taken by all players.
In other words, it expresses both the current status of a game as well as its history. Therefore, it is
often used for encoding dynamic games. For example, a part of an extensive form of tic-tac-toe

(Example 2.3) is given in Figure 2.8.

2.3.3 Graphical Games

As mentioned earlier, both normal form and extensive form are not succinct for encoding static
games. There is thus a need to define compact representations of utility which is a challenge in

computational game theory.

Several proposals have contributed to define more tractable representations, e.g. Graphical Games
[Kearns et al., 2001, Daskalakis and Papadimitriou, 2006], for games in which a player’s utility
only depends on a subset of the other players. In a graphical game, each player i is represented
by a vertex in a directed graph * G. We use N(i) C & to denote the neighborhood of player i in
G - it means those vertices j such that the directed edge (i, j) appears in G. N(i) includes i itself
because player i’s utility depends on his decision as well. Let s be a joint strategy, we use @;(s) to
denote the projection of s onto just the players in N(i).

Definition 2.15 (Graphical Games). A Graphical Game is a pair (G, #), where:

e G is a directed graph over the vertices {1,...,n};
e /s a set of n local game matrices. For any joint strategy s, the local game matrix M; €
M specifies the payoff M;(¢;(s)) for player i, which depends only on the strategies taken by
the players in N(i).
Example 2.9 (taken from [Bonzon, 2007]). Adam, Dylan and Julie are invited to a party. Adam
wants to accept the invitation. So does Dylan, but he will go if and only if Adam does go too. For

Julie, she wants to go with Dylan but without Adam.

Example 2.9 can be expressed by a graphical game which is composed of the directed graph in

Figure 2.9 and a set of local matrices in Table 2.3.

Figure 2.9: Directed graph of Example 2.9

4Graphical games are originally defined by [Kearns et al., 2001] on undirected graphs. While some later authors,
e.g. [Daskalakis and Papadimitriou, 2006], propose the version using directed graphs that is presented here.

32 Chapter 2. Game Theory

Adam Dylan Dylan
0 1
0] (0) 0]
Adam RED) Adam BEORED)
Julie Dylan Julie Dylan
(1 (yes)) 0 1 (0 (no)) 0 1
ORED) 01| (©
Adam BEOREO] Adam BEOREO)

Table 2.3: Local matrices of all the players in Example 2.9. In the tables, each player controls a
set of two strategies where “1” states for “yes” and “0” for “no”. For the utility of all players,
“17” states for “go to the party” while “0” for “not go to the party”.

In Example 2.9, Adam’s utility depends on no one else. Hence, only his strategies appear in his
local matrix (the table in top left). Then, because Dylan’s utility is dependent of Adam, there are
the strategies of Adam and Dylan in Dylan’s local matrix (the table in top right). Finally, the final
decision of Julie depends on both Adam and Dylan. Therefore, the strategies of all the players
occur in the local matrix of Julie (the two tables in bottom). Indeed, instead of storing 3 x 23 =24
entries in normal form, we only need to store 2 +4 + 8 = 14 entries in the three local matrices of

the graphical game.

The total size of the representation is ®(n x m(é“)) where £ is the maximum in-degree of G
[Jiang, 2011]. Graphical games allow to reduce the size of the utility tables because it only re-
quires a number of parameters that is exponential in the size d of the largest local neighborhood.
Hence, if d < n, then the graphical representation is significantly more compact than the normal
form. However, it also means that this representation does not fit well to games that are not de-
composable, i.e. when there exists a full interaction between all players in the games as the size

would fall back to the normal form size.

For reasoning on graphical games, [Kearns et al., 2001] propose a polynomial-time algorithm
to find approximate Nash equilibrium on tree graphs. Later, the same problem on games
encoded by general graphs are solved by [Ortiz and Kearns, 2002, Vickrey and Koller, 2002].
[Elkind et al., 2006] show that mixed Nash equilibrium can be computed in quadratic time if
the underlying graph is a path, and therefore in polynomial time if the underlying graph has max-
imum degree 2. On computing PNE, [Gottlob et al., 2005] try to enforce several restrictions on
graphical games. They have found out that the existence of a PNE and computation problems are
tractable for games that simultaneously have small neighborhood and bounded hypertree width.
In this case, finding PNE is feasible in polynomial time. Recently, [Chapman et al., 2010] attempt

to find the “best” pure Nash equilibrium but it is limited on tree graph.

2.3.4 Action-Graph Games

Based on graphical games, Bhat and Leyton-Brown propose Action-Graph Games (AGG)

[Bhat and Leyton-Brown, 2004] that exploit properties of certain games like context indepen-

2.3. Representations of Games 33

dence and anonymity to achieve a compact representation. Each node in the graph of AGG is
represented by action (strategy), not player (Definition 2.16).

Definition 2.16 (Action Graph). An Action Graph G = (<7 ,E) is a directed graph where </ is
set of nodes. We call each node o € o7 an action and <f the set of distinct strategies. E is a set
of directed edges where self edges are allowed. We say o is a neighbor of o if there is an edge
from o' to o, ie. (') €E.

[Jiang, 2011] extends the basic framework to three different variants of AGG: (1) the basic AGG
representation (AGG-0); (2) AGG with function nodes (AGG-FNs); (3) AGG-FNs with additive
structure (AGG-FNA). Nevertheless, for understanding the principal idea of this game represen-
tation, extracting the most basic one (AGG-0, Definition 2.17) is enough.

Definition 2.17 (Action-Graph Games). An Action-Graph Game (abbreviated AGG) is a 4-tuple
(P,S,G,u) where:

o X is a finite set of players;
o S =1IL;c S, is the set of strategy profiles;
e G=(4,E) is an action graph, where o/ = U;c %S, is the set of distinct actions;

o u= (u*)qe is a tuple of |.</ | functions where u® is the utility function for action q.

In AGG, each player’s utility is calculated according to an function of the node he chooses and the
numbers of tokens placed on the nodes that neighbor chooses in the graph. Then, like graphical
games, matrix are still required to store utilities. The size of matrix is worst-case exponential.

Thus, the size of the utility functions determines whether an AGG can be tractably represented.

On the complexity of action-graph games, in [Daskalakis et al., 2009b], the authors demonstrate
that, generally, determining whether an AGG has a PNE is NP-complete, even for symmetric
AGG-0 with bounded in-degrees, and PPAD-complete with mixed Nash equilibrium. This moti-
vates Jiang and Leyton-Brown to identify tractable subclasses of AGG. They therefore propose a
dynamic programming approach and show that if the AGG-0 is symmetric and the action graph
has bounded tree width, their algorithm determines the existence of PNE in polynomial time
[Jiang and Leyton-Brown, 2007]. They also propose in [Jiang and Leyton-Brown, 2006] a poly-
nomial time algorithm (in the size of the AGG representation) for computing expected payoff

under mixed strategy profiles.

2.3.5 Boolean Games

Graphical games and AGG are the interaction-based game representations. Another approach is to

find a language-based representation, from which Boolean Games emerge as the most successful.

Boolean games are initially proposed by [Harrenstein et al., 2001]. Formally, a boolean game is
composed of a finite set of players. Each player controls a set of propositional variables to achieve
his goal (also called preference) which is encoded by a propositional formula.

Definition 2.18 (Boolean Games). A Boolean Game is a 3-tuple(Z?,V, ¢) where:

34 Chapter 2. Game Theory

o & ={l1,...,n} is a finite set of players;
o V= (Vi)icw such that i # j <> ViNV; = 0 where V; is a set of propositional variables
controlled by player i;
o O ={q1,...,0,} is a set of goals, where each @; for player i is a satisfiable formula.
Example 2.10 (Example 2.9 continued). The situation in Example 2.9 can be expressed as a

boolean game as follows.

o & ={1,2,3} where 1 stands for Adam, 2 for Dylan and 3 for Julie;
o Vi P V;={x;} where x; is true if player i will go to the party ;
o The goals of all the players are following: @ =Xx1, Q> = x| <> X2, 3 = X1 Ax2 AX3.

The advantage of boolean games over the interaction-based representations such as graphical
games or action-graph games is that they succeed in dealing with the worst case of the previous
game representations, i.e. in games where there is a full interaction between all players. However,
in boolean games, each player owns a SAT problem which defines his satisfaction. There is no
means to specify inside the language a non-boolean utility. This is why it is required to provide an
external way to define preferences. In [Bonzon et al., 2009b], CP-nets [Boutilier et al., 2004] are
used to define players’ preferences. It is the drawback of boolean game with regard to graphical
games or action-graph games because the two later can express non-boolean utility without using

any external tool.

On the complexity, [Dunne and van der Hoek, 2004] prove that determining whether a boolean
game has a PNE is X4-complete, while checking whether a particular strategy profile is a PNE
is co-NP-complete. Some work has been devised towards finding tractable classes of boolean
games. In [Bonzon et al., 2009a], the authors focus on benefiting the independence between play-
ers in boolean games, i.e. decomposable boolean games, by applying the principal techniques of
graphical games for boolean games. Such games can be divided into multiple subgames which are
smaller and easier for solving. Finally, the global equilibrium is a joint equilibrium of all the sub-
games. The tractable classes proposed by [Dunne and Wooldridge, 2012] comes from two issues:
development of an alternative solution concept and identification of the specific classes which are
tractable. One hand, they have relaxed the notion of PNE by defining a new equilibrium con-
cept named k-bounded Nash equilibrium for which no player can benefit by altering fewer than k
variables. On the other hand, specific classes have been determined by performing some restric-
tions on games that make checking for deviation of an individual player become computationally

tractable.

Many extensions of boolean games have been proposed for years. While in a basic boolean game,
each player is free to choose any strategy for achieving his goal, [Dunne et al., 2008] assume that
the strategies available to a player have some cost. Thus, the secondary purpose of all players is
to minimize this cost. They also propose preferences over possible coalitions between players.
All these ideas implied to an extensive boolean game named cooperative boolean games whose
solution concepts are defined by core and stable sets. Sharing the same idea of cooperation,

[Bonzon et al., 2012] study the properties of efficient coalitions in boolean games. Their main

2.3. Representations of Games 35

contributions are to demonstrate how a coalition in boolean games is effective, in terns of the

power about coalitions.

More recently, [Wooldridge et al., 2013] have also extended the basic framework of boolean
games by introducing an external element what they called taxation schemes. The idea of taxation
is inspired by the incentive mechanisms found in human societies which aims at perturbing the
preferences of the players in certain ways. Like in [Dunne et al., 2008], these schemes impose a
cost on every possible strategy that a player can choose. The main solution concept studied is still
PNE and it is also shown that Nash outcome verification is co-NP-complete. For implementing the
taxation schemes on a boolean game, Wooldridge et al. suppose that there is an external principal
who accomplishes these tasks (e.g. like government in social life). This arises a new problem

called Implementation. 1t is proved in the same paper that Implementation is £5-complete.

A variable must be under control of one and only one player in the basic boolean games.
[Grant et al., 2014] propose to add a set of environment variables in which each variable is un-
controlled by any player but imposes impact on the players’ goals. The players make decisions
according to their belief about the possible values assigned to the environment variables by an ex-
ternal player called principal. The game is therefore manipulated by sharing information since at
each moment, the principal will announce the possible values of the environment variables to the
players who therefore adapt their decision to the announcement. The solution concept of boolean
games in this case is defined by Nash stability [Grant et al., 2010] which is derived from the PNE

notion.

Iterated Boolean Games [Gutierrez et al., 2013] are also another extension of boolean games. An
iterated boolean game can be considered as an infinite series of rounds, where at each round
each player makes an assignment to his controlled variables. Goals in this game are expressed
as formula of Linear Temporal Logic [Emerson, 1990]. Gutierrez et al. also prove that check-
ing whether a strategy profile is a PNE and whether a game has at least one PNE are complete
problems for PSPACE and 2EXPTIME, respectively.

For reasoning on basic boolean games, the first methods for computing all PNE or core elements
have been proposed by [de Clercq et al., 2014a] in using disjunctive answer set programming
[Brewka et al., 2011]. Their idea is to transform a boolean game into an answer set program.
Henceforth, by using the saturation techniques [Baral, 2003], the obtained answer set will co-
incide with the set of PNE or the cores. They also note that their grounded disjunctive answer
set programming has the same complexity of determining whether a boolean game has a PNE,
yielding X5 -complete [Baral, 2003].

2.3.6 Other Representations

Besides the game representations described above, there are also a few attempts to design compact
representations in the literature. In [de Vos and Vermeir, 1999], preferences are represented by

a choice logic program for which stable models coincide with Nash equilibrium. In a similar

36 Chapter 2. Game Theory

way, [Foo et al., 2004] represent games by LPOD (Logic Program with Ordered Disjunction).
However, these two formalisms actually encode the reaction operator in logic and do not provide

a compact representation in the worst case.

In addition, congestion games [Rosenthal, 1973], routing games [Roughgarden, 2007] are
other kinds of specific games that enjoy a compact representation, as well as symmetric
games [Dasgupta and Maskin, 1989], anonymous games [Brandt et al., 2009], local-effect games
[Leyton-Brown and Tennenholtz, 2003]. Nevertheless, they are not general games and not fully

expressive.

2.4 Existing Software in Game Theory

There are still not many software tools available for solving games as well as evaluating game-
theoretic algorithms. Along with designing modeling tools, our long-term goal is to implement a
robust software for reasoning on games. We recall here a generator of benchmark for games as

well as a few existing solvers for several game representations in the literature.

Gamut [Nudelman et al., 2004] is a java library for easily generating a benchmark of games.
Gamut includes thirty-five base game classes already studied in the literature. It also allows to
choose the parameter options for games and generates random utilities as well. The main purpose
of Gamut is for testing game-theoretic algorithms on the normal form representation. Gamut is

available at http://gamut.stanford.edu/.

Gambit [McKelvey et al., 2014] is a C++ library including many existing algorithms for solving
games in the literature. It provides both command line interface and graphical interface. The
input file of Gambit is based on the normal form representation. Although this solver focuses on
finding mixed Nash equilibrium, the authors also implemented a simple algorithm for finding pure
Nash equilibrium that can be launched by the command gambit-enumpure. Gambit is available

athttp://www.gambit-project.org/.

Jiang and Leyton-Brown have implemented a solver for solving their action-graph games. Work-
ing on the text input file called “AGG file format”, the solver provides both command line tools
and graphical interface for finding Nash equilibrium. In addition, it also solves Bayesian Action-
Graph Games (abbreviated BAGG), an extension of AGG that compactly represents Bayesian
games [Jiang and Leyton-Brown, 2010]. The game instances in Gamut have also been generated
in the AGG representation. In addition, both the AGG and the BAGG file format have been

integrated into the Gambit solver. This solver is available at http://agg.cs.ubc.ca/.

A complete solver for boolean games implemented and maintained by Bauters and De Clercq
is available at http://www.cwi.ugent.be/BooleanGamesSolver.html. This solver allows
to compute PNE or core elements in boolean games. It is capable of finding Pareto optimal

equilibrium as well [de Clercq et al., 2014a].

http://gamut.stanford.edu/
http://www.gambit-project.org/
http://agg.cs.ubc.ca/
http://www.cwi.ugent.be/BooleanGamesSolver.html

Chapter 3

Constraint Programming

Contents
31 BasicNotions00 i i it i e e e e e 37
32 ReasOmiNg. . . v v v v v v v vttt e et ot ottt e e 39
3.2.1 Backtracking Search, 39
322 LocalSearch 43
3.3 Constraint Programming in Game Theory 44

Constraint programming (abbreviated CP) is a programming paradigm which encodes and solves
problems using variables and constraints. The work in CP have been widely described in the
literature. Hence, we will only recall the essential notions as well as the solving techniques that
will be used or directly related to this thesis. The interested readers could find much more back-
ground knowledge of constraint programming in [Rossi et al., 2006]. At the end of this chapter,

we mention several existing CP attempts in game theory.

3.1 Basic Notions

Let V be a set of variables and D = (Dy),cy be the family of their (finite) domains. For W CV, we
denote by D" the set of tuples on W, namely IT,cw D,. Projection of a tuple (or a set of tuples) on
a variable (or a set of variables) is denoted by |: fort € DV, t|, =t,, tlw = (ty)xew. For W,U C V,
the join of AC DY and BC DY isA x B= {t € D"V | t|yy €A A t|y € B}. These notions will
be used in the rest of this thesis.

A CP problem is itself a constraint network. A constraint ¢ = (W,T) is a pair composed of a
subset W =var(c) CV of variables and a relation 7 C DY . In other words, a constraint network is
formally defined as a Constraint Satisfaction Problem which is the essential concept in constraint

programming.

37

38 Chapter 3. Constraint Programming

Definition 3.1 (Constraint Satisfaction Problem). A Constraint Satisfaction Problem (abbreviated
CSP) is composed of a finite set of variables V and a finite set of domain D with D(x) is the domain

of variable x € V, together with a finite set of constraints C, each on a subset of V.

Then the solution concept for constraint satisfaction problems is defined as follows.

Definition 3.2 (Solution). A solution is an assignment of all variables that satisfies all the con-
straints simultaneously.

Example 3.1 (CSP). Given a CSP with the set of variables V = {X,Y,Z}, the variables’ domains
D(X)=D(Y)=D(Z) ={1,2,3}, the set of constraints C = {X >Y;Y > Z}. The unique solution
isX=3Y=27Z=1.

Constraint programming is a powerful modeling framework with many facilities. One of the most
useful is global constraints [van Hoeve and Katriel, 2006]. A constraint capturing the relations
between a non-fixed number of variables is called global constraint. An example is the con-
straint all different(xy,...,x,) [Lauriere, 1978], which specifies that any pair of variables
must be assigned different values. Many global constraints are described in a catalog accessible
at http://sofdem.github.io/gccat/. Generally, a global constraint can be replaced by a
conjunction of a set of simpler constraints. Using global constraint not only helps to make the
model more explicit and declarative - therefore, it simplifies the modeling tasks - but also facili-
tates the work of constraint solver by providing a better view of the structure of the problem. In
addition, many specific efficient techniques for solving global constraints have been proposed, for
example [Puget, 1998, Mehlhorn and Thiel, 2000], to name a few.

We have mentioned the basic notions of constraint programming through Constraint Satisfaction
Problems. Many extensions of classical CSP have been developed. This survey will be continued
with Optimization [Tsang, 1993], an extension directly impacts to our work in this thesis. In
many applications, we would like to find a solution to a CSP that is optimal with respect to
certain criteria. In this case, the optimization condition needs to be embedded over the CSP.
Definition 3.3 (Constraint Optimization Problem). A Constraint Optimization Problem (abbre-
viated COP) is a CSP P defined on the variables x € V together with an objective function f :
II,cy Dy — R

An optimal solution to a minimization (maximization) COP is a solution d to P that minimizes
(maximizes) the value of f(d). The objective function value is often represented by a variable, for
example z, together with the “constraint” min(z) or max(z) for a minimization or a maximization
problem, respectively.

Example 3.2 (COP). Given a COP with the set of variables V = {x,y}, the domains D(x) =
D(y) ={1,2}, the set of constraints C = {x > y;x # 2y}. The optimization condition is max(x+y).

In Example 3.2, if the optimization condition is not taken into account, the problem is a CSP in
which there are two solutions, (x =1,y =1) and (x =2,y = 2). Among them, (x =2,y = 2) is the
best solution which maximizes the optimization condition. The problem in Example 3.2 thus has

only one solution, i.e. (x =2,y = 2).

http://sofdem.github.io/gccat/

3.2. Reasoning 39

3.2 Reasoning

Determining whether a given CSP has a solution is NP-complete [Cohen and Jeavons, 2006]. It
is in NP because a solution of a CSP is an assignment of all variables which can be represented in
polynomial space with the number of variables. We can henceforth verify in polynomial time that
the solution satisfies all constraints. Then the completeness derives from the theorem of Cook
[Cook, 1971] which stipulates that the satisfaction problem of the conjunction clauses, which is a

restriction of CSP, is NP-complete in itself.

There are three main algorithmic techniques for solving constraint satisfaction problems: back-
tracking search [van Beek, 2006], local search [Hoos and Tsang, 2006], and dynamic program-
ming [Dechter, 2006]. We recall, in this section, some techniques of the two first solving methods

that inspire us to propose techniques for finding equilibrium in our constraint games.

3.2.1 Backtracking Search

An algorithm for solving Constraint Satisfaction Problems can be either complete or incom-
plete. Backtracking search algorithms are probably the the most canonical complete algo-
rithms in constraint programming. From the proposals in the early day [Davis et al., 1962,
Golomb and Baumert, 1965], many techniques have been suggested and evaluated for improving
the backtracking search. In this section, we only survey several techniques, including constraint
propagation, heuristic for variable and value ordering, backjumping and branch-and-bound tech-

niques.

Constraint Propagation

In constraint programming, local consistency is the consistency of subsets of variables or con-
straints. In other words, local consistency conditions require that all consistent partial evaluations
can be extended to another variable such that resulting assignment is consistent. A partial evalu-
ation is consistent if it satisfies all constraints whose scope is a subset of the assigned variables.
Several local consistencies are proposed in the literature, such as node consistency, arc consis-

tency, and path consistency, to name a few.

A fundamental insight in improving the performance of backtracking algorithms on CSP is that
local inconsistency can lead to unproductive search. Namely, inconsistency can be the reason
for many deadends in the search. This motivates many algorithms to maintain the local consis-
tency during search. The generic scheme is to perform constraint propagation [Bessiere, 2006]
removing local inconsistencies. Constraint propagation is the central to the process of solving a

constraint problem.

Backtracking search is based on search tree. Generally, the search is divided into two main steps

which repeat successively: Propagate by removing the local inconsistencies and split and solve

40 Chapter 3. Constraint Programming

sub-problems recursively. The backtracking search is depicted in Algorithm 3.1 which launches

the recursive algorithm in Algorithm 3.2.

Algorithm 3.1. Backtracking algorithm for solving a CSP

1: V: List of variables
2: D: List of domains associated to variables
3: C: Constraints

N

: function BT(V,D,C) : boolean > return true if the CSP has at least a solution
5: return rBT(0, V, D, C)
6: end function

Algorithm 3.2. Solving sub-problems recursively

1: A: List of assignments

2: X: List of variables non assigned

3: D': List of current domains of variables in X
4: C: List of constraints

5: function RBT(A,X,D’,C) : boolean > return false if there is no solution in the sub-problem
6: if X = (then
7: return true
8: end if
9: D' + propagate(A,X,D’,C)
10: if 3x € X such that D’(x) = 0 then

11: return false

12: end if

13: x < A variable in X

14: for all v € D'(x) do

15: return rBT(AU {x < v}, X\ {x},D'\ D'(x),C)
16: end for

17: end function

In Algorithm 3.2, a solution is found if all variables are instantiated by one of their values (line 6-
8). Otherwise, we perform the function of propagation in line 9. This function removes the local
consistencies in the subgame. It thus usually reduces the current domains of the variables non
assigned. In Example 3.1, when X is assigned to 2, then the domain of ¥ becomes D(Y) = {1}.

Namely the two values, 2 and 3, are removed from D(Y) due to the constraint X > Y.

If after having propagated, there exists a variable whose domain is empty, then the assignment A
can not appear in a solution because it violates at least one constraint ¢ € C (line 10-12). In other
words, there in no solution on this branch. In Example 3.1, when X is assigned to 1, then the
domain of ¥ becomes D(Y) = 0 due to the constraint X > Y. It means, there is no solution when
X=1.

Otherwise, we choose a variable non instantiated in X (line 13). Then, for all values in its current

domain, we add branches for new nodes. We then recursively solve new sub-problems until a

3.2. Reasoning 41

solution is found, or its absence is proven (line 14-16).

3 123 123 123
\

XXX XX 66666

Figure 3.1: Backtracking algorithm runs on Example 3.1.

Figure 3.1 illustrates how backtracking search works on Example 3.1. Thanks to constraint prop-
agation, many deadends stated by cross are discovered without reaching to the leaves. A solution
in this example is noted by the bold lines while the dash branches depict the unexplored search

space.

Heuristics for Variable and Value Ordering

It has been shown that in many problems, efficient heuristics for variable and value
ordering can make a significant impact on the performance of backtracking algorithms
[Bacchus and van Run, 1995, Gent et al., 1996]. There are two kinds of heuristics. The first one
is called static heuristics in which we force a strict ordering for variable and value at the begin-
ning of search. The second one, which captures much more research attentions, is called dynamic
heuristics in which the variable and value ordering is adapted to the information recorded during

search. In other words, it could by seen as a part of search process.

Dynamic variable ordering [Golomb and Baumert, 1965, Bacchus and van Run, 1995] aims at re-
plying this question: given a node p, how to select a non-instantiated variable x to branch next?
In the early days, [Golomb and Baumert, 1965, Haralick and Elliott, 1980] propose a heuris-
tic named dom which suggests to choose the variable with the minimal domain left. Later,
[Brélaz, 1979] uses a new notion called degree of an unassigned variable x which is the number of
constraints which involves x and at least one other unassigned variable. He therefore proposes the
dom + deg heuristic which chooses the variable with the smallest remaining numbers of values
and the variable with the highest degree. Also based on degree, the dom/deg heuristic proposed
by [Bessiere and Régin, 1996] divides the domain size of a variable by the degree of the vari-
able and chooses the variable which has the minimal values numbers. In the dom/wdeg heuristic
[Boussemart et al., 2004] , the domain size is divided by the weighted degree. A weight, initially
set to one, is associated with each constraint. Every time a constraint is responsible for a deadend,

the associated weight is incremented. The weighted degree is the sum of the weights of the con-

42 Chapter 3. Constraint Programming

straints which involves x and at least one unassigned variable. In other ways, several heuristics
minimize specific functions, such as [Brown and Jr., 1982, Gent et al., 1996] or exploit structure-

guided variable ordering heuristics for CSP represented as a graph [Freuder, 1982, Zabih, 1990].

Given a node p, the variable ordering heuristic already chooses variable x to branch next, it is re-
quired to choose value a to assign to x from its remaining domain (after having been propagated).
Value ordering heuristics have been proposed in the literature which mainly based on either es-
timating the number of solutions or estimating the probability of a solution, for each choice of
value a for x. e.g. [Ginsberg et al., 1990, Frost and Dechter, 1995, Minton et al., 1992], to name

a few.

Backjumping
While backtracking always goes up one level in the search tree when all values for a variable
have been tested, backjumping [Gaschnig, 1979] is a form of non-chronological backtracking

algorithm as it may go up more levels (see Figure 3.2). Therefore, backjumping allows to reduce

the search space, indeed, to offer more efficient performance.

N

5L

Figure 3.2: Backjumping. The figure in left side shows a search tree visited by regular backtrack-
ing. The backjumping occurs in the right side figure in which the dash node is not visited.

While constraint propagation and inconsistency removing could be seen as look-ahead techniques
which try to detect deadends early by pruning values from future variables, backjumping tech-
niques are look-back ones which try to deal with deadends in an intelligent way by recording and
exploiting the reasons for failures. We have applied this idea for our complete solving tools to
perform more pruning during search. This pruning is, of course, different to the standard pruning

in the literature.

For the existing backjumping techniques in CP, by discovering and maintaining nogoods during
search, [Gaschnig, 1979, Bruynooghe, 1981, Rosiers and Bruynooghe, 1986] design several al-
gorithms allowing to backjump from deadends. Based on graph, [Dechter, 1990] proposes the
first algorithm to jump back at internal deadends. Conflict-directed backjumping algorithm (CBJ)
proposed by [Prosser, 1993] can do the same. Moreover, CBJ has also been combined with con-

straint propagation. [Prosser, 1993] proposes FC-CBJ, an algorithm combining forward checking

3.2. Reasoning 43

and conflict-directed backjumping. Furthermore, he also presents another algorithm called MAC-
CBJ which maintains arc consistency and CBJ simultaneously. However, this algorithm only

handles binary constraints. It is extended by [Chen, 2000] for general constraints.

Branch-and-bound Techniques

Backtracking search algorithms have been applied for solving Constraint Optimization Problems
as well. Because the goal is to find an optimal solution which maximizes (minimizes) the objective
function f, after having found all solutions of Constraint Satisfaction Problems, we need perform
a complementary task to take the best solution between them. It is the basic technique for solving
COP.

Fortunately, it is possible to use the function f to prune the search space in a technique well-
known as Branch-and-bound (or B&B) [van Beek, 2006]. With B&B, in an optimization problem
(say maximization of f), we can add the constraint f > v in the remaining search after finding a
solution f =v. This constraint helps to propagate and cut branches that lead to a solution whose f
value is less than the one previously found. Therefore, the technique allows to reduce the search
space. Note that this classical B&B technique finds only one best solution, not all of the best

solutions of the problem.

3.2.2 Local Search

Local search [Hoos and Tsang, 2006] is classified into the category of incomplete algorithms,
meaning that it does not guarantee to always find a solution as well as prove its optimality in
every combinatorial problem. Nevertheless, it provides the basis for some of the most successful
and versatile methods for solving the large and difficult problem instances encountered in many
real-life applications. Despite impressive advances in systematic, complete search algorithms,
local search methods in many cases represent the only feasible way for solving these large and

complex instances.

Given a CSP C, the idea of local search for finding one solution in CSP is rather simple. For
starting, an initial point which is a complete variables assignment is randomly chosen. The possi-
ble points around the current point which is different at least one value assigned to a variable are
called neighbors. Deciding which neighbor will be chosen is performed by an evaluation func-
tion heuristic. Then, at each step, we move to a neighbor which will be served as the next current
point. The process is iterated until a termination criterion is reached. The termination criterion
could be the solution detected or user-specific such as the max step or time exceeded. The formal
definition of local search is described in [Hoos and Stiitzle, 2004].

Probably, the first algorithms which improve over the simple iterated improvement process in CSP
are min-conflicts heuristics (abbreviated MCH) [Minton et al., 1992]. In the algorithms, each at

step, we choose a random variable v from a set which records all variables appeared in at least

44 Chapter 3. Constraint Programming

one constraint violated. Then, a value a in the current domain of x will be selected such that
the number of constraint violated is minimal. It has been well-known that MCH are essentially

incomplete. They may be stagnated in local optima and is not available to escape by itself.

In order to avoid getting stuck in local optima of the given evaluation function, in the literature,
[Glover, 1989] introduces tabu search which uses a tabu tenure to memorize the search space
already tested. Hence, it may forbid to recheck the same state twice at one point and allows
to escape the trap of local optima. Tabu search is also used for solving constraint problems.
[Steinmann et al., 1997, Stiitzle, 1998] apply the idea of tabu search with Min Conflict Heuristics
with Tabu Search (abbreviated TMCH) algorithms. TMCH work like MCH except that after the
value of variable v is changed from a to @’ then the variable/value pair (v,a) is declared tabu for

next x steps, where x is the tabu tenure parameter. the variable/ value pair involved in each step.

By modifying evaluation function heuristic when the search processes, Dynamic Local
Search [Hoos and Stiitzle, 2004] leads to a set of Penalty-Based Local Search Algorithms like
GENET [Davenport et al., 1994], Breakout Method [Morris, 1993] or Guided Local Search
[Voudouris and Tsang, 1996].

Evolutionary algorithms have widely used for CSP [Hao and Dorne, 1994, Rojas, 1996], e.g. ge-
netic algorithms [Hao and Dorne, 1994, Lau, 1999]. Furthermore, ant colony optimization in-
spired by the path-finding behavior of ants [Dorigo and Stiitzle, 2004], is applied in CSP by
[Solnon, 2001]. Besides general problems, local search has also solved several specific types
of CSP instances. For example, simulated annealing algorithms [Kirkpatrick et al., 1983] which
allow non-improving search step with certain probabilities or iterated local search algorithms for

the graph coloring problem [Johnson et al., 1989, Paquete and Stiitzle, 2002].

As pointed out in Chapter 2, there are still not many tools available for solving games. In particu-
lar, it is almost intractable for very large games. It seems that a main reason is the lack of a good
compact representation. Even for compact representations such as graphical games or action-
graph games, matrix storing the payoffs are still required. In benefiting from the compactness of
constraint games, together with local search, our wish is a robust local search solver which is able

to break out this existing limitation in game theory.

3.3 Constraint Programming in Game Theory

There are a few attempts to use constraint programming in game theory. In [Apt et al., 2008], the
authors try to bridge a gap between the concept notions used in the area of soft constraints and
strategic games. They show that, for a class of soft constraints including weighted constraints,
every optimal solution is a Nash equilibrium. Furthermore, the optimality for soft constraints and

Pareto efficient joint strategy coincides in general.

In [Bordeaux and Pajot, 2004], it has been proposed to compute a mixed Nash equilibrium us-

ing continuous constraints. More recently, [Soni et al., 2007] define a new constraint satisfaction

3.3. Constraint Programming in Game Theory 45

problems for finding approximate equilibrium in graphical games. They also provide an algorithm
to compute Bayes-Nash equilibrium in one-shot games for incomplete information games. Other
types of equilibrium such as Stackelberg equilibrium have been investigated within the Quantified
Constraint Satisfaction Problems [Bordeaux and Monfroy, 2002, Benedetti et al., 2008]. Quanti-
fied Constraint Satisfaction Problems is an extension of CSP in which some variables are univer-
sally quantified. They are often used for modeling the situations which include the uncertainty

features.

In [Gottlob et al., 2005], the authors present a CSP encoding the reaction operator in graphical
games. Each player has a constraint stating his best reaction for each possible strategy profile of
the other players. A solution of this CSP is thus a Nash equilibrium. However, this is mainly a

theoretical tool because the constraints are huge and not natural to model.

Some other formalisms try to solve a combinatorial problem by multiple agents, either by letting
the agents dynamically select their variable like in SAT-Games [Zhao and Miiller, 2004] and Ad-
versarial CSP [Brown et al., 2004] or with a predefined assignment of variables to agents like in
Distributed Constraint Satisfaction Problems and Distributed Constraint Optimization Problems
[Faltings, 2006, Leite et al., 2014].

Definition 3.4 (Distributed Constraint Satisfaction Problems). A Distributed Constraint Satisfac-
tion Problems (abbreviated DisCSP) is a 4-tuple (£?,V,D,C) where:

o & ={l1,...,n} is a finite set of n players;
o V={vy,...,v,} is a set of n variables;
e D= (D,)ic» is a set of n domains where D; is the domain of v;, respectively;

e C={ci,...,cm} is a set of m constraints.

Unlike in the classical CSP setting, each variable v; of DisCSP is controlled by only player i. That
means only player i is available to assign a value in D; to v;. He therefore knows the domain
of his variable and all constraint involving v; which can be reliably communicated with all other
players. Thus, the main challenge in DisCSP is to develop distributed algorithms that solve the

CSP by exchanging messages among players.

Distributed Constraint Satisfaction Problems can be extended to Distributed Constraint Opti-
mization Problems (abbreviated DCOP). DCOP include a group of agents who must distributedly
choose values for a set of variables such that the cost of a set of constraints over the variables is

either minimized or maximized.

Both DisCSP and DCOP can be structurally represented as a graph, where the variables corres-
pond to nodes and the constraints between pairs of variables are the edges. Naturally, there
are several studies involving in the combination between the concept of graphical games and
distributed constraints problems. In [Grubshtein and Meisels, 2012], graphical games are mod-
eled as Distributed Constraint Satisfaction Problems with unique k-ary constraints in which each
agent is only aware of its part in the constraints. The authors also propose in the same paper

an asynchronous backtracking algorithm to find £-Nash equilibrium of the problems. Conversely,

46 Chapter 3. Constraint Programming

[Maheswaran et al., 2004] introduce the distributed algorithms for DCOP by decomposing DCOP
into a graphical game and by investigating various evolutionary algorithms to compute Nash equi-

librium.

Part 11

Contributions

47

Chapter 4

Constraint Games

Contents
4.1 Modeling Framework it ittt ittt eennns 50
4.1.1 Constraint Satisfaction Games 50
4.1.2 Constraint Satisfaction Games with Hard Constraints 53
4.1.3 Constraint Optimization Games 54
4.1.4 Constraint Optimization Games with Hard Constraints 56
4.1.5 Usefulness and Compactness of Constraint Games 56
42 Applications e e e e e 59
4.2.1 Games Taken from the Gamut Suite 59
4.2.2 Games Taken fromReal Life 62
43 SolvingFramework ittt 68
43.1 ConGaSolver. 69
4.3.2 Experimental Environment 70
44 Conclusionttt it ittt i i e e e e 70

In this chapter, we introduce the framework of Constraint Games to model strategic interaction
between players. A constraint game is composed of a set of variables shared by all the players.
Among these variables, each player owns a set of decision variables he can control while his
preference depends on the decisions taken by the remaining players as well. Each player may
try to improve his utility by choosing an assignment that optimizes his preference. Constraint
games include four variants in which optimization and/or hard constraints are allowed or not.
The solution concept for constraint games is defined by Nash equilibrium. They are situations
in which no player may improve his preference unilaterally. We show the practical utility of the
framework by modeling a few classical games in the literature as well as realistic problems. In
addition, we are also interested in solving tools for constraint games. We thus propose a set of
search methods for constraint games which will be detailed in the following chapters. In this

chapter, we only mention several general characteristics of our solving framework.

49

50 Chapter 4. Constraint Games

4.1 Modeling Framework

Our main idea is to use CSP for expressing players’ utilities. In this section, we present Constraint
Games, a fully expressive representation for encoding games. Moreover, constraint games also

provide a means to compactly model static games using constraints.

4.1.1 Constraint Satisfaction Games

Let & be a set of n players and V a finite set of variables. The set of variables is partitioned into
controlled variables V. = |J;c » Vi where V; is the subset of variables controlled by player i, and

Vg the set of uncontrolled or existential variables (Vg =V \ V,).

In the spirit of boolean games, at the beginning, we start our work by trying to encode games
in which utilities are only boolean. In other words, the satisfaction of each player expressed by
his preference is simply “yes” or “no”. The basic representation of constraint games - Constraint
Satisfaction Games - is henceforth designed for such games.

Definition 4.1 (Constraint Satisfaction Game). A Constraint Satisfaction Game (abbreviated
CSG) is a 4-tuple (2,V,D,G) where:

o ¥ is a finite set of players;

e V is a finite set of variables composed of a family of disjoint sets (V;) for each playeri € &
and a set Vg of existential variables disjoint of all the players variables;

e D = (Dy)evy is the family of their domains;

e G=(G))icw is afamily of CSP on'V.

The CSP G; is called the goal of the player i. The intuition behind CSG is that, while player i
can only control his own subset of variables V;, his satisfaction will depend also on the variables
controlled by all the other players. The intuition behind existential variables is that no player

controls them and they are existentially quantified '.

In terms of semantic, Constraint Satisfaction Games are almost equivalent to boolean games. The
unique difference is that variables are no longer limited to propositional ones. In Chapter 2, we
demonstrated how to encode Example 2.9 by graphical games (Figure 2.9 and Table 2.3) and by
boolean games (Example 2.10). Now, this example will be encoded by our Constraint Satisfaction
Games in Example 4.1.

Example 4.1 (Example 2.9 continued). The situation in Example 2.9 can be expressed as a Con-

straint Satisfaction Game as follows.

o & =1{1,2,3} where 1 stands for Adam, 2 for Dylan and 3 for Julie;
o Vic P,V;={x;} where x; is controlled by player i;
o Vie P D(x;) = {true, false}, x; = true means player i will go to the party;

'We will make a deeper discussion related to existential variables in Section 4.1.3. Now, we only envisage games
without this kind of variables.

4.1. Modeling Framework 51

e The goals of all players are following: G1 = {x1},G2 = {x1 <> x2},G3 = {—x; Axp Ax3}.

As we can see in the above example, there is no difficulty to encode an arbitrary boolean game by
a Constraint Satisfaction Game. In addition, like boolean games, Constraint Satisfaction Games

are also able to easily encode games in which there is a full interaction between players.

Next, we define the basic notions of static games (previously described in Definition 2.1) in the
literature that link constraint games to general games.

Definition 4.2 (Strategy and Strategy Set). A strategy s; for player i is an assignment of the
variables V; controlled by player i. Therefore the strategy set S; of player i is DV,

Definition 4.3 (Strategy profile). A strategy profile s = (s;);c # is the given of a strategy for each
player.

A strategy of a player in CSG is a joint values assigned to his controlled variables while his
strategy set will be defined by the Cartesian product over the domains of his variables. A strategy

profile is a set of strategies in which each strategy is chosen by one player from his strategy set.

The boolean utility function of player i over a strategy profile s is set to 1 if s satisfies the goal of
i and to O, otherwise.

Definition 4.4 (Utility). Let u;(s) be the utility function of player i over s, u;(s) = 1 <> s € sol(G;)
and u;(s) = 0 <> s ¢ sol(G;).

We denote by s_; the projection of s on V_; = V' \ V;. Beneficial deviation represents the fact that
a player will try to maximize his satisfaction by changing the assignment of the variables he can
control if he is unsatisfied by the current assignment.

Definition 4.5 (Beneficial deviation). Given a strategy profile s, a player i has a beneficial devi-
ation if 3s} € S; such that u;(s},s_;) > u;(si,s_;).

A tuple s is a best response for player i if this player is not able to make any beneficial deviation.
Definition 4.6 (Best response). A strategy profile s(s;,s_;) is a best response (abbreviated BR) for
player i if and only if Vs, u;(si,s—i) > ui(s},s_;).

The main solution concept defined for CSG is pure Nash equilibrium.
Definition 4.7 (Pure Nash Equilibrium). A strategy profile s is a Pure Nash Equilibrium (ab-
breviated PNE) of the CSG % if and only if no player has a beneficial deviation, i.e. s is a best

response of all players.

Among the PNE in a CSG, it would happen that several PNE are more desirable than the others.
Hence, we also propose another solution concept called Pareto Nash Equilibrium which is based
on PNE .

Definition 4.8 (Pareto Nash Equilibrium). A PNE s is a Pareto Nash Equilibrium (abbreviated
PPNE) if and only if there does not exist a PNE s' such that Vi € 2, u;(s") > ui(s).

The notions defined above will be illustrated on the following example.
Example 4.2 (CSG). We consider the following CSG: the set of players is &? = {X,Y,Z}. Each
player owns one variable: Vx = {x},Vy = {y} and V; = {z} with D, = D, = D, = {0,1,2}. The

52 Chapter 4. Constraint Games

goals are Gx = {x #y,x >z}, Gy = {x<y,y>z}and Gz = {x+ 1 =y +7} 2.

The boolean multimatrix of this example is depicted in Table 4.1.

z=0 y z=1 y
0 1 2 0 1 2
0| (0,0,0) | (0,1,1) | (0,1,0) 0 | (0,0,1) | (0,0,0) | (0,1,0)
x| 1] (1,00 | (0,1,0) | (1,1,1) x| 110,00 | (0,01 | (0,1,0)
2 | (1,0,0) | (1,0,0) | (0,1,0) 2 | (1,0,0) | (1,0,0) | (0,1,1)
z=2 y
0 1 2

(0,0,0) | (0,0,0) | (0,0,0)
x| 17](0,0,1) | (0,00 | (0,0,0)
(0,0,0) | (0,0,1) | (0,0,0)

Table 4.1: Example 4.2 is encoded in normal form. The pure Nash equilibrium are depicted in
bold and in italic where classical PNE for which no player is satisfied are depicted in italic.

Each solution of G; is a best response of player i € &?. For example 120 (which stands for
x =1,y =2,z=0) is a best response of player X because it is a solution of Gy. It is a best
response of player Y and player Z as well. So 120 is a pure Nash equilibrium. 100 is also a best
response of player X. However, it is not a PNE of the CSG because player Y may deviate from 0
to 1 to get a better strategy 110, a solution of Gy. Player Z is able to do the same with 121. The
strategy profile 221 is a PNE because it is a solution for Y and Z, and player X is unable to deviate
because neither 021, 121 or 221 are solution of Gx. Note that an equilibrium can leave one or
more player unsatisfied if no assignment is able to satisfy their goal. It may happen like for 022
that no player is satisfied. Among the PNE of this CSG, only the PNE depicted in bold are Pareto
Nash equilibrium while the PNE in italic, i.e. 022,202, are not because they are dominated by the
PNE 120.

We have defined the basic notions of constraint games through Constraint Satisfaction Games.
Now, let us discuss about its theoretical aspect, namely the complexity of constraint games. We
prove in the following theorem that determining whether a CSG has a PNE is a hard problem.
Theorem 4.1. Deciding whether a given CSG has at least one PNE is £5-complete.

Proof. The proof is adapted from the X5-completeness of boolean games [Bonzon et al., 2006].

Membership comes from the simple algorithm in which one guesses a strategy profile and checks
that no player has a beneficial deviation. Each verification consists in proving that a player i has
no solution if the strategy profile is not winning for i. This verification is in coNP because for a
strategy profile s, proving that there exists a solution for player i amounts to solve the CSP G;,
which is in NP. Since the number of players is finite, there is a polynomial number of calls to a

coNP oracle (actually one for each player) and thus the problem is in X5.

2In this chapter, we give many examples illustrating the use of constraint games. In order to make this example
and the others easy to understand, the constraints in the players’ goals are often equalities or inequalities. However,
the constraints in constraint games are not limited to only these kinds of constraints. In contrast, our framework can
deal with all constraints defined in constraint programming, including arbitrary constraints, table constraints and soft
constraints, as well as arbitrary ways of aggregating the various constraints.

4.1. Modeling Framework 53

For hardness, we introduce a special case of CSG: the 2-player O-sum game. In this kind of game,
when one player wins, the other player looses. Thus it is enough to represent only the goal of
the first player, the other one being deduced by negation. Such a CSG can be represented by
(Z ={1,2},V,D,C) where C is the goal of player 1 (the goal of player 2 is straightforwardly
deduced by negation).

We perform a reduction from a 3V-QCSP? to a 2-player 0-sum CSG. 3V-QCSP are known to
be Xf-complete. This reduction proves that even 2-player O-sum CSG are at least as hard than
solving a 3V-QCSP. Together with membership of the X4 class, it gives the exact complexity for
n-player CSG.

The reduction is from the QCSP Q = dXVYC where X and Y are disjoint sets of variables to
the 2-player O-sum CSG G = ({1,2},X UY U {x,y},(D,Dy,Dy),CV (x =y)) where x is a new
variable controlled by player 1, y a new variable controlled by player 2 and D, = D, are domains
composed at least of 2 elements. It is obvious that the conversion can be performed in polynomial
time. If Q is valid, then let 51 be the assignment of variables of X and let s, be an assignment of
variables of Y. Because Q is valid, Vs, € DY, (s1,55) € sol(C). Thus (s1,s2) is a PNE because
player 1 is winning and player 2 has no beneficial deviation. Conversely, if Q is not valid then for
any assignment s; € DX of player 1, player 2 can play s, € D' such that (s, s5) & sol(C). Then if
player 1 plays x = v and if (s1,s2) € sol(C), then player 2 can play s, and y = w with w # v. Thus
player 2 has a beneficial deviation and (sy,s2,v,w) is not an equilibrium. If (s1,s2) ¢ sol(C) and
player 2 plays y = w, then player 1 can play x = w and player 1 has a beneficial deviation. Thus
(s1,82,w,w) is not an equilibrium. In conclusion, G has a PNE if and only if Q is valid, proving
the X -hardness. O

4.1.2 Constraint Satisfaction Games with Hard Constraints

The goals of players in constraint games could be considered as soft constraints or preferences.
It may happen however some games have rules that forbid several strategy profiles as they model
impossible situations. It is natural to reject such profiles by setting hard constraints shared by all
players. Hard constraints have been introduced in game theory under the name of shared con-
straints [Rosen, 1965] and are not related to constraint programming but to general constrained
optimization. Hard constraints can be easily expressed in the framework of constraint games by
adding an additional CSP on the whole set of variables in order to constrain the set of possible
strategy profiles.

Definition 4.9 (Constraint Satisfaction Game with Hard Constraints). A Constraint Satisfaction
Game with Hard Constraints (abbreviated CSG-HC) is a 5-tuple (£?,V,D,C,G) where:

o (#,V,D,G)isaCSG;
e CisaCSPonV.

3QCSP stands for “Quantified Constraint Satisfaction Problems”.

54 Chapter 4. Constraint Games

Example 4.3. We consider the following CSG-HC: the set of players is & = {X,Y,Z}. Each
player owns one variable: Vx = {x},Vy = {y} and Vz = {z} with Dy = D, = D, = {1,2,3}. The
goals are Gx = {x =y+z}, Gy ={x >z >y} and Gz = {x =y = z}. The set of hard constraints
is composed of the following constraints C = {x <y <z}

It is useful to distinguish a strategy profile which does not satisfy any player’s goal from a strategy
profile which does not satisfy the hard constraints. The former can be a PNE if no player has a
beneficial deviation while the latter cannot. In Example 4.3, the strategy profile (1,2,3) is a PNE
although all the players’ goals are not satisfied (but no player can deviate to a better strategy) while
the strategy profile (3,2,1) is not a PNE because it does not satisfy the hard constraints. Therefore
hard constraints provide an increase of modeling expressibility (without however changing the

general complexity of CSG).

It is also necessary to specify the notion utility in CSG-HC (see Definition 4.4 for CSG). In CSG,
it is allowed that all joint strategy of all players are considered as acceptable situations. In CSG-
HC, the condition is more restricted. Only strategy profiles, which satisfy hard constraints, are

permitted. The others are simply forbidden and therefore have no utility.

- -
-
- |-
- b -
-z 3
-
3 L
2 _ 2 Y 7
1| -7
X
1
1 2 3

Figure 4.1: Illustration of the satisfiable search space restricted by hard constraints x <y < zin
Example 4.3.

From the definition of solution, any strategy profile which is rejected by hard constraints cannot be
a solution. Thus the hard constraints exclude the largest common unsatisfiable part of the search
space. The intended meaning of the hard constraints is that beneficial deviation is only allowed in
the satisfiable subspace defined by the additional CSP. An example is given in Figure 4.1 where
the plain and dotted red lines represent the possible deviations for each player. In addition, using

hard constraints could greatly improves readability of the model and solving efficiency.

4.1.3 Constraint Optimization Games

Boolean games are a powerful modeling tool for games because it can be exponentially more
compact than normal form, even for games with full interaction between players. Nevertheless,
there is no way to express the optimization condition inside boolean games without using external

tools. In reality, utilities in both classical games and real-world applications are non-boolean and

4.1. Modeling Framework 55

that requires to incorporate optimization inside frameworks.

It is not difficult to integrate optimization condition into constraint games. A Constraint Opti-
mization Game is an extension of CSG in which each player tries to optimize his goal. This is
achieved by adding for each player i an optimization condition min(x) or max(x) where x € V is
a variable to be optimized by player i.

Definition 4.10 (Constraint Optimization Game). A Constraint Optimization Game (abbreviated
COG) is a 5-tuple (2,V,D,G,opt) where :

e (#,V,D,G) is a CSG;
e opt = (opt;)ic is a family of optimization conditions for each player of the form min(x;)

or max(x;) where x; € V.

Let us show how to encode the prisoner’s dilemma game as a COG in the following example.
Example 4.4 (Example 2.6 continued). The prisoner’s dilemma can be represented by the values
given in Table 4.2. It is also encoded by the following COG:

P — {A,B)

Va={x}, Vg ={y}, Ve = {za,28}

D(x) =D(y) ={0,1}
Gar={za=—x+2y+1},Gg={zp=2x—y+1}

opty = min(za),optg = min(zp)

Y
0 1

0] (1) (30
11](0,3)]| (2,2)

Table 4.2: The bimatrix of the prisoners’ dilemma game in normal form.

The set of existential variable Vg appears in the above example. In constraint games, each exis-
tential variable is not under control of any player. In several cases, existential variables can be

stated as non decision ones because their values can be computed by side-effect.

For the notions in COG, from CSG, the utility function needs to be slightly adapted. We give
below the notion in case of maximization *.
Definition 4.11 (Utility (COG)). Let u;(s) be the utility function of player i over s, then u;(s) =

—o0 4> 5 ¢ 50l(G;) and u;(s) = s|, <> s € s0l(G;) where opt; = max(x;).

Given this, the other notions are the same as for CSG.

4For readability, in the remaining sections, for COG, we assume that each player would like to maximize his utility,
i.e. the optimization condition is max(x). It is not difficult to cast into the inverse case, we just need change the sign
of variable x.

56 Chapter 4. Constraint Games

4.1.4 Constraint Optimization Games with Hard Constraints

Constraint Optimization Games can also be extended with hard constraints the same way Con-
straint Satisfaction Games are, yielding COG-HC.

Definition 4.12 (Constraint Optimization Game with Hard Constraints). A Constraint Optimiza-
tion Game with Hard Constraints (abbreviated COG-HC) is a 6-tuple (Z?,V,D,C,G,opt) where
CisaCSPonV and (2,V,D,G,opt) is a COG.

We give in the following example a simple Constraint Optimization Game with Hard Constraints.
Example 4.5. We consider the following COG-HC: the set of players is & = {X,Y,Z}. Each
player owns one variable: Vx = {x},Vy = {y},Vz = {z} and Vg = {a,b,c} with D, = D, =
{1,2,3},D, ={1,...,5}. The goals are Gx = {x =y+za=xxz}, Gy ={x>z>yb=
x+z—y}and Gz ={x=y=z,c=x+y—z}. The optimization condition of each player is: opt; =
max(a),opty = max(b),opts = max(c). The hard constraints set is composed of the following

constraints C = {x <y <z}.

Note that for games with hard constraints, a strategy profile is an equilibrium if it satisfies hard
constraints. Like in CSG-HC, a strategy profile is ruled out in COG-HC if it violates at least one
hard constraint. Hence, it does not has an utility function. Given this, the other notions are the

same as for COG.

4.1.5 Usefulness and Compactness of Constraint Games

We have previously defined constraint games. For ending this section, let us mention here the

usefulness and the compactness of our game representation.

Usefulness of Constraint Games

Constraint games are a generic tool which is able to encode any arbitrary static games. This
argument is proven through the normal form presentation in Proposition 4.1.
Proposition 4.1. Given G an arbitrary game which is represented by normal form, then G can be

encoded by a constraint game as well.

Proof. A game in normal form is a structure 4" = (22, S, U) where:

e Zis aset of n players;
o S={Si,...,S5,} is a family of all players’ strategy set;
o U={uy,...,u,} is aset of all players’ utility function where u; : MicpS; — R

A normal form is equivalent to a Constraint Optimization Game. In order to model a game as a
COG, we need to determine a 5-tuple ¥ = (£?,V,D,G,opt). Each element in ¢ can be specified

from .4 as follows.

4.1. Modeling Framework 57

& is identical to the set of players in .4

V = (Vi)ic» where V; = {x;,0;} is controlled by player i
Vie Z,D(x;) =S;,D(0o;) =R
Vie P,G; = {c;} is the goal of player i where ¢; = (W, T)
- W={xie Z}U{oi}
- T={(ar,...,an,ui(ai,...,an))|(ai,...,a,) €MjcpS;}
o Vie P, opt; = max(0;)

Since all the elements in ¢ can be defined from ./", the proposition is proven. O

It has been well-known that normal form is a fully expressive game representation. According to
Proposition 4.1, if a game can be modeled by normal form then it is also possible to be encoded
by constraint games. Henceforth, our representation is fully expressive as well. We illustrate the
transformation process from a normal form representation into a constraint game in the following
example.

Example 4.6. Given a normal form of an arbitrary game that are represented in Table 4.3

B
by by b3 by
a | 2,1) | &3) | @G35 | (17
a | (8,2) | (1,4) | (6,8) | (5,9

A

Table 4.3: An arbitrary normal form representation

Here is the constraint game model associated to this normal form.

2 ={A,B}

Each player controls a variable Vo = {xy,u; },Vg = {x2,us } where V; is controlled by player
ieA.

D(x1) ={a1,a2},D(x2) = {by,b2,b3,bs},D(u;) = D(up) =R

Because the utilities do not have a specific structure, the goal of each player is represented

in the following table constraints where the table in left is the goal of player A, and the
table in right is the goal for player B.

X1 X2 | Up X1 X2 | 12
aq bl 2 aq b] 1
aq b2 4 aq bz 3
aj b3 3 aq b3 5
aj b4 7 aq b4 7
ar b] 8 an b] 2
a by |1 a by | 4
ar b3 6 an b3 8
ar b4 5 ay b4 9

e The optimization of the two players are opty = max(u,) and opty = max(uy).

We have shown that every normal form can be represented as a constraint game. It must be

similar for graphical games or action-graph games because these representations are based on

58 Chapter 4. Constraint Games

matrix storing utilities of all players, like in normal form but using local matrix which are often
smaller. Similarly, it is also not difficult to encode boolean games in constraint games. In other

words, the boolean games representation is a particular case of constraint games.

Now, given a constraint game, is it possible to encode it by other representations, such as normal
form, graphical games, action-graph games or boolean games? The answer is fairly negative. It
can be explained by a comparison between constraint games and each other game representation

as follows.

o Constraint Games vs. Normal Form. Normal form allows any strategy profile to be given an

utility. Namely, there does not exist any hard rule that all players must respect. By using
hard constraint, constraint games exclude some strategies profiles from being a solution,
and this is unrepresentable with normal form, even by giving dummy values for forbidden
joint strategies. For example, in case a strategy profile does not satisfy the hard constraints,
we give it an utility of —oo (actually, a negative value large enough). But there are situations
where all players obtain this score and normal form may report a spurious equilibrium. We
illustrate one of these situations in the following example.
Example 4.7. We consider the following CSG-HC: the set of players is & = {X,Y,Z}.
Each player owns one variable: Vx = {x},Vy = {y} and V; = {z} with D, = D, =
{0,1,2},Dy = {0,1}. The goals are Gx = {x # y,x >z}, Gy = {x < y,y > z} and
Gz = {x+y = z}. The set of hard constraints is C = {all_different(x,y,z)}.

The normal form associated to this game may be as follows.

z=0 y z=1 y
0 1 0 1
(—o0, —00, —00) | (—o0,—00,—00) 0 | (—o0,—00, —00) | (—o0, —o0, —00)
x| 1] (—e0,—00,—00) | (—00,—00,—00) x| 1| (=00, —00,—00) | (—00, —00, —00)
(—o00,—00,—00) (1,0,0) 2 (1,0,0) (—o00, —o0, —0o0
z=2 y
0 1
0 | (—o0,—o00, —00) (0,0,0)
x| 1 (0,0,0) (—o0, —00, —00)
2 | (=00, —00,—00) | (00, —00, —00)

Table 4.4: A spurious normal form corresponding to a game with hard constraints.

In this game, there are 14 forbidden strategy profiles in which each player’s utility is de-
scribed by the notation —eo. However, if we encode this game by the normal form above,
two forbidden strategy profiles, (0,0,0) and (1,1, 1), will be reported as PNE because no
player can deviate to another strategy to gain a greater utility.

e Constraint Games vs. Graphical Games and Action-Graph Games. Modeling games with
hard constraints are also out of capacity of graphical games and action-graph games since

they are also based on matrix storing utilities like normal form.

e Constraint Games vs. Boolean Games. As mentioned earlier, boolean games can encode

4.2. Applications 59

only games with boolean utilities. External tools need to be used if we would like to model

constraint optimization games. >

Compactness of Constraint Games

First, it may be noticed that constraint games are never larger than normal form. But just like
boolean games, constraint games can be exponentially more succinct than the utility matrix. An
example is when a player has constraints encoded by a CSP x; = y; for 2n variables (x;) and (y;)
on a domain with d elements. The representation takes n constraints while there are d" solutions,
which means that a payoff matrix, even in a sparse representation that only keeps positive entries,

would be exponential.

In the worst case, however, constraint games, just like CSP can blow-up to a size similar to their
set of models, as shown by a simple counting argument. In any formal language, using N bits
we can encode 2V models while there are 22" boolean functions of N inputs. As for CSP, our
feeling is that this worst case does not happen often in practice. Moreover, we believe that the
modeling facilities offered by constraint languages, especially with global constraints, allows to

encode many useful problems in an elegant way.

4.2 Applications

Strategic games are an important object of research as many existing games have been studied in
the literature for decades. Moreover, the developed models can also be applied to real-life prob-
lems. In this thesis, we succeed in testing our modeling framework on classical games taken from
Gamut suite as well as on games inspired by problems in real-life. Additionally, the benchmarks

in our experiments are constructed by the examples described here.

4.2.1 Games Taken from the Gamut Suite

Gamut [Nudelman et al., 2004] is a suite of game generators designated for testing game-theoretic
algorithms. With gamut, instances of games from thirty-five base game classes can be easily

generated. We encode here a few classical games taken from the Gamut suite by constraint games.

Guess Two Thirds Average. This game was first proposed by Ledoux in his french magazine
[Ledoux, 1981]. Let see how to play the game in Example 4.8.
Example 4.8 (Guess Two Thirds Average (abbreviated GTTA)). In this game, all players guess

a number in a range from 0 to 100. The winners are the players whose number is the closest to

SElise Bonzon proposed, in her PhD thesis, an extension of boolean games using CP-nets can encode games with
non-boolean utilities. The interested readers could find many examples as well as her explanation in [Bonzon, 2007].

60 Chapter 4. Constraint Games

two thirds of the average of the numbers guessed by all players. Let m be the number of winners,

then all these players with get a score of 100/m. All others get a score of zero.

We need the following existential variables to model this game by constraint games. These vari-

ables are in the set V.

e TwoT hirdsAvg stands for the two thirds average of the numbers guessed by all players.

e Vie Z,y; stands for the absolute value of the distance between player i’s number and the
two thirds average.

e z stands for the minimum distance between the numbers and the two thirds average.

e Vie & choice; is a boolean variable for player i. Each variable choice; is set to 1 if player
i’s number is the closest to the two thirds average. Otherwise, it is set to zero.

o Vie & p;stands for the payoff of player i.

GTTA can be modeled by a COG as follows:

P ={1,...,n}

Vie P,Vi={x}

Vie 2,D(x;) = {0,...,100}

Vi e &, G; contains the following constraints:
— TwoThirdsAvg = (2/3) x (X} xi)/n)
- Vie P,y = |x;— TwoT hirdsAvg|

z=min(y1,...,Yn)

Vie P, choice; =1y, =72

choice; =1 — p; =100/ (X, choice;)

choice; =0— p; =0

e Vi &, the optimization condition opt; = max(p;)

Location Game (Gamut Version). This game is inspired by [Hotelling, 1929]. We call it Lo-
cation Game (Gamut Version) (Example 4.9) in order to distinguish to another game including
hard constraints which will be described in Example 4.12.

Example 4.9 (Location Game (Gamut Version)). Two vendors sell an identical product in their
shops settled at a street of length m. The distances from the shop of the vendors’ shop from the
beginning of the street are [and I, (with [} < b»), respectively. Each vendor i needs to determine
the price p; for their product from his finite set p; in order to maximize his benefit b;. There is
exactly one client’s house at each point from 1 to m at the street. Each client will buy the product
of the vendor for whom he has to pay the minimal cost of the product price plus transport. We
assume that the transport cost unit of each customer j is u;j. It may exist that the amounts a client
needs to pay to both vendors are the same. In this case, the client will privilege vendor labeled by
a smaller number (For example, if a client has to choose between vendor 1 and vendor 2, then he

will choose vendor 1) .

We need the following existential variables to model this game by constraint games. These vari-

4.2. Applications 61

ables are in the set V.

o Vie {1,2},j € {1,...,m} each variable cost;; stands for the cost client j has to pay to
vendor i.

o Vie {1,2},j € {1,...,m} each choice;; is a boolean variable which is set to 1 if client j
chooses vendor i and to O if otherwise.

e Vie {1,2} each variable b; stands for the profit of vendor i.

The game can be encoded by a COG as follows.

o 7 ={1,2}

Vie 2.V, ={pi}

Vie Z,D(pi) = pi

Vi e &, G; contains the following constraints:

- Vie@,Vje{l,...,m},costij:]j—lilxuj+pi

- Vje{l,...,m},cost;j > costy; — choice; j =1
- Vje{l,...,m},cost1j < costrj — choiceyj = 1
- Vi€ P,b;=p; x ¥\ choice;

Vi € &, the optimization condition opt; = max(b;)

Minimum Effort Game It is a coordination game which demonstrates the coordination with
multiple equilibrium. The equilibrium will be reached if all players choose the same strategy.

Example 4.10 (Minimum Effort Game (abbreviated MEG)). In this game, given an identical
strategy set A for each player, his payoff is determined by the formula a+b X M — ¢ X E where E
is the player’s effort and M is the minimum effort of all the players. a,b,c are the parameters of

the game.

We need the following existential variables to model this game by constraint games. These vari-

ables are in the set Vg.

e M stands for the minimum effort of all players.

e Vie & p;stands for the payoff of player i.
MEG can be modeled by a COG as follows:

o Z={1,...,n}
Vie ‘@7‘11':{81'}
Vie @,D(ei) =A

Vi e &, G; contains the following constraints:

- M =min(ey,...,e,)

- pi=a+bxM—cxe;

Vi e 2, the optimization condition opt; = max(p;)

62 Chapter 4. Constraint Games

Travelers’ Dilemma. This game can be viewed as an extension of prisoner’s dilemma but for
more than two players.

Example 4.11 (Travelers’ Dilemma (abbreviated TD)). An airline loses n suitcases belonging to
n different travelers. All the suitcases are identical and contain the same items. All the travelers
are told to claim the value of their suitcase between 2 and 100 (They can not discuss each other).
If any travelers write down the lowest value, he will get an extra value $n, and the remaining
travelers will get an minus value $n. All travelers would like to maximize the value they would be

reimbursed by the airline.
Like GTTA, TD has only one PNE when all players take the minimal number as their strategy.

We need the following existential variables to model this game by constraint games. These vari-

ables are in the set V.

e y stands for the minimal value chosen by all the travelers.
o Vi€ X choice; is a boolean variable which is set to 1 if the value of player i is minimal,
otherwise, it is set to zero.

o Vie &, p; stands for the payoff of player i.
TD can be expressed by a COG as follows.

o #Z={1,...,n}
o Vie 2.V,={x;}
o Viec Z.D(x;) ={2,...,100}
e Vie &, G; contains the following constraints:
- y=min(xy,...,%,)
- Vie P,choice;=1x=y
— choice;=1—p;=x;+n
— choice;=0— p;=x;—n

e Vi e &, the optimization condition opt; = max(p;)

Several other classical games from the Gamut suite are also available to be encoded by constraint

games, such as: collaboration game, greedy game or NPlayer chicken game, to name a few.

4.2.2 Games Taken from Real Life

Besides the classical games, constraint games are also capable of expressing new, interesting
problems taken from various fields such as economics (and Example 4.12), scheduling (Example
4.13), network (Example 4.14 and Example 4.15) and cloud computing (Example 4.16). We show

that complex games can be easily and naturally modeled by constraint games.

Economics. Since the earliest days, game theory has mainly used in economics. It is not surpris-

ing that games have widely been applied for modeling many problems in this field. We illustrate

4.2. Applications 63

here a decision making problem in economics which can be encoded by constraint games. This
problem is an extended version of Location Game described in Example 4.9 with n players.

Example 4.12 (Location Game with Hard Constraints). A group of n ice cream vendors would
like to choose a location numbered from 1 to m for their stand in a street. Each vendor i wants to
find a location l;. He already has fixed the price of his ice cream to p; and we assume there is a
customer’s house at each location. The customers choose their vendor by minimizing the sum of
the distance between their house and the vendor plus the price of the ice cream. Because no two
vendors can stand at the same places, one need add a global constraints in the hard constraints

set of the game.

Figure 4.2: Location game with hard constraints.

A possible situation for 3 vendors and 14 customers is depicted in Figure 4.2. In this figure, the
arrows depict the behavior of customers. The triangles represent the ice cream vendors with their
selling price. In the first situation on top, player 1 can improve benefits by shifting two places to
the right, giving situation 2 at bottom. The strategy profile depicted at the top of the figure is not
an equilibrium since the left player can deviate and “steal” a customer to the middle player by

shifting two positions on the right.
The Location Game with Hard Constraints can be easily modeled by a COG-HC as follows:

o 7 =A{l1,...,n}
Vie 2,Vi={l;}
Vie Z,D(l;) ={1,...,m}

the hard constraints C are the following:

- no two vendors are located at the same place: all different(l,,15,...,1,)
- Vie P.Nce[l.m], costic = |c — ;| + p;

- Ve € [1..m], min, = min(costyc,. .. ,COSt,)

- Ve € [1..m], (min, =cost;.) <— (choice;. = 1)

- Ve € [1..m],Y ;e pchoice. = 1

Vi e &, G; contains the following constraint: benefit; = p;. Y’ ,choice;,

Vi € &, the optimization condition opt; = max(benefit;)

64 Chapter 4. Constraint Games

An interesting feature of Example 4.12 is that it uses global constraints like all_different the same
way as in constraint programming. It also shows the interest of modeling hard constraints in
games since it is perfectly natural to think that no two vendors can settle at the same place. It
is possible to transform this problem into a CSG by fixing a minimal profit mp; for each player
i and stating that player i is satisfied if his benefits is over mp;. It can be done by adding the
constraint benefit; > mp; to G; instead of the optimization condition. In the Gamut version of
the game (Example 4.9), vendors do not choose location but prices, because there is no way to
express that vendors should choose different locations in a normal form game like we do here

with the all_different constraint.

Scheduling. Scheduling is a process of creating a schedule. It decides how to order tasks and
how to commit resources between the variety of possible tasks. Scheduling is a crucial application
of constraint programming, and also an important issue in computing, such as making real-time
schedule on multiple processors, etc. Example 4.13 shows an application of strategic scheduling,
which often occurs in real-life when multiple players share the same resource.

Example 4.13 (Strategic Scheduling). Consider a set & = {1,...,n} of n > 1 players. Each
player i owns a task of cost d; units to perform on any machine taken among m machines. All
machines are running in parallel. Each machine j has a maximal capacity of c; units. In case a
machine is overloaded, it simply stops and does not perform the task of the players who chose it.
Thus the goal of each player is to choose carefully a non-overloaded machine, taking into account

the decisions of the other players.
The strategic scheduling problem can be expressed as a Constraint Satisfaction Game as follows:
o 7 =A{l1,...,n}
e V; = {m;}, m; is the machine chosen by player i.
o Vic ,D(m;)={1,...,m}
e Cis composed of channeling constraints for boolean variables choice;; stating that player i
chooses machine j: (m; = j) <> (choice;j = 1)
e Vie &, G;is composed of the capacity constraint:

m
Z (choice;j x Z (choiceyj < di)) < c;j
j=1 ke

This constraint is true if the machine chosen by player i is not overloaded and false other-

wise.

Interestingly, strategic scheduling is not equivalent to classical scheduling. In a classical CSP,
it would be required that there is an assignment which satisfies all players. This is the case in
the instance Sch; with 3 players having a task of respective cost 2,3,1 and two machines of
capacity 3. This instance is depicted in the left part of Figure 4.3 and the two Nash equilibrium
correspond to the solution of the CSP composed of the union of the player’s goals. With a slight

change, Sch; is the same problem but the cost of any task is 2. Then there is no global assignment

4.2. Applications 65

B B
0 1 0 1
| —— | ——
| A | Y
0 0,00) | (@11) | C=0 0 0,00 1| (01,0 C=0
A ¥ 4 A ¥
1 (1,00 |—-» (0,0,1) 1 (1,00) | (0.0.1)
0 (0,0,1) +> (1,0,0) —J 0 ©,0,1) | (1,0,0)
A ¥ |_ 4 A 4
1l @11 |54 (000 c=1 1 ©,1,00 | 4 (0,0,0) c=1
A I A I
———] ———]
0 1 0 1
B B

Figure 4.3: Two examples of strategic scheduling (Schy on the left and Schy on the right). Nash
equilibrium have a colored background and the arrows depict beneficial deviations.

which allows to place 2 tasks on the same machine and there is no situation where all players are
simultaneously satisfied. This situation is depicted in Figure 4.3, right-hand side. However, the
strategic formulation allows to find solutions in which one player can run her task while the others
are canceled, yielding 6 Nash equilibrium. More complex versions of strategic scheduling can be
found in [Vocking, 2007].

Network. Computer network or internet actually plays an indispensable role in modern life. In
reality, network aims at serving many people in parallel. That may thus cause a conflict between
users’ objective. It also means that using game theory to model problems in network is a very

interesting idea. We give here two problems which can be naturally encoded by constraint games.

The first problem (Example 4.14) is inspired by [Bouhtou et al., 2007] and taken from telecom-
munication industry.

Example 4.14 (Network Game). A network provider owns m links to transfer data. Each link j is
specified by 3 parameters: capacity c, speed per data unit s and price per data unit p . A group
of n clients would like to transfer data across theses links (client i from a source x; to a target y;,
each source and target are fully connected to each link of the vendor and each path has to cross a
tolled arc). In order to reach a link j of the network, each client i has to suffer a fixed fee o;; and
a fixed delay B;;.

Hence, with any link j customer i chooses, he has to pay an addition cost ;; per data unit and
it also takes an additional time B;; per data unit to transit on the tolled arc. Each customer
could always choose another provider with the time ;, so if the provider’s data speed offered is

competitive, he therefore wishes to minimize the cost for transferring his data.
This problem can be modeled by a COG-HC as follows:

o 7 =A{l1,...,n}

66 Chapter 4. Constraint Games

Yie PV, = {I"i}
Vie 2,D(ri)={l1,...,m}
C is composed of the following constraints:

— channeling constraints for boolean variables stating that link j is requested by data d;
of player i: (r; = j) <+ (choice;j = 1)

— capacity constraints: Vj € {1,...,m},Y" | choice;j x d; < c;

Vie &,G;is composed of the following constraints:
- cost; = ZT:I choice;j x d; < (pj + o)
— time; = Yi_ choice;j x d; x (sj + Bij)
— time; <

o Vie P, opt; = min(cost;)

While in the first problem, all players would like to minimize the cost they have to pay. In the
second problem described in Example 4.15, they want to cross their data through network in the
fastest way.

Example 4.15 (Hypercube Network Congestion Games). Congestion Games [Rosenthal, 1973]
are a well-known class of games in game theory. In a congestion game, there are a set of players
and a set of resources. Each player can choose a subset of resources and his payoff depends on

the resources he chooses and the number of players choosing the same ones (see Section 2.1.5).

Figure 4.4: An example of m-dimensional hypercube network congestion game with m = 3 and 3
players

Figure 4.4 depicts a network congestion game which will be modeled by constraint games. In
this game, network is created as a m-dimensional hypercube. To reach T from S, each player
must choose m paths with different directions. Henceforth, each player owns m variables with the
domain from 1 to m and all values instantiated of his variables must be different. In the figure,
the bold lines depict the paths chosen by player 1, the dash lines for player 2 and the dotted lines
for player 3. The strategies of player 1, player 2 and player 3 are (3,2,1), (3,1,2) and (1,3,2),
respectively. The delay function on each path is determined by the number of players selecting
the path. Let s and s’ be the paths chosen by two different players. Then s; and s;- share a same
path if and only if sj = s'; and ¥k € [1, j — 1],s; € ' and s; € 5. In Figure 4.4, the paths SA and

4.2. Applications 67

CT are shared by the players while the others are not. Finally, the players’ payoff are 4 (2 + 1
+1 for the paths SA - AB - BT), 5 (2 + I + 2 for the paths SA - AC - CT) and 4 (I + 1 + 2 for the
paths SD - DC - CT).

This problem can be modeled by the following COG-HC:

o 7Z=A{l1,...,n}
Vi e @,Vl = {V,‘],...,V,‘m}
Vie 2 Nje[l,m],D(vi;) ={1,...,m}

C is composed of the following constraints:

— each player chooses m paths with different directions:
Vie P, all_different(v,...,Vip)

— channeling constraints for boolean variables d;j; for delay caused by each variable:
Vi,i' € Z,i# i Vje[l,m|\Vke[l,m—1]; dijx=1) <

cardinality_atleast(1,(v;1, . .. ViGj—=1))s Wirts -5 Vir(i—1)) A (Vij = virj)

Vie &,G; is composed of the following constraint:
delay; = Y7, (X0 diji + 1)
Vi € &, the optimization condition opt; = min(delay;)

Cloud computing. Cloud computing is an emergent field which refers to the on-demand de-
livery of IT resources and applications via the Internet with pay-as-you-go pricing. Resource
allocation is a central issue in cloud computing where clients use and pay computing resources on
demand. In order to manage conflicting interests between clients, [Jalaparti et al., 2010] has pro-
posed the framework of CRAG (Cloud Resource Allocation Game) in which resource assignments
are defined by game equilibrium (Example 4.16)

Example 4.16 (Cloud Resource Allocation Game). A cloud computing provider owns a set M =
{Mi,....My,} of m machines, each machine M; having a capacity c; representing the amount
of resource available (for example CPU-hour, memory) (see Figure 4.5 on the next page). The
cost of using machine j is given by 1;(x) = x X u; where x is the number of resources requested
and uj some unit cost. A set of n clients &7 = {1,2,...,n} wants to use simultaneously the cloud
in order to perform tasks. Client i € & has m; tasks {T;1,...,Tim,} to perform, with respective
requested capacity of {di1, ... ,dim, }. Each client i € & chooses selfishly an allocation ry, for the
task Ty (k € [1..m;]) and wishes to minimize his cost cost; = Y, ° | Iy, (dix). We assume that the

provider’s resources amount is sufficient to accommodate the resources requested by all of the
clients: Y Y0 dig < Yrc.
This problem can be modeled by the following COG-HC:
o #Z={1,...,n}
Vie t@,Vi: {r,-l,...,r,-ml.}
Vie P Nke[l.m],D(rg) ={1,...,m}

C is composed of the following constraints:

68 Chapter 4. Constraint Games

My tasks My tasks
+t =1 +ty = 6

+t2 =4 +t2 =10

+t3 = 9

\ 10 /
20 !g;f! 50

5 um P $10
$1

My tasks My tasks
+t = 2 +t; = 5
+toy +ty = 4
+; = 6 +t3 = 6
+ty =7

Figure 4.5: An example of a Cloud Resource Allocation Game with 4 clients and 4 machines.

1]
S

— channeling constraints for boolean variables stating that machine j is requested by
task tx: (rix = j) <> (choice;jx = 1)
— capacity constraints: Vj € [1..m], Y7L Y;" | choicejjx x dix < ¢;
e Vi€ Z,G; is composed of the following constraint: cost; = Y7 | Yo choicejjx x 1j(dy)
e Viec &, opt; = min(cost;)

Along with the problems described here, we are confident that constraint games can express many
others as well. That suggests a real utility of this new modeling framework for a potential wide

range of problems in practice.

4.3 Solving Framework

As mentioned in Section 2.4, there are still not many solving tools for generic games. This
motivates us to concentrate our interest on designing a new solving framework for games. In
this section, we give a bird’s-eye view about ConGa, our solver for solving constraint games.

Additionally, we also specify the environment for all the experiments we have performed.

4.3. Solving Framework 69

4.3.1 ConGa Solver

We have built a solver called ConGa on top of the constraint library Choco [Choco Team, 2013].
This solver allows to express constraint games and solves them using multiple tools. These tools
are composed of local search algorithms (Chapter 5), complete algorithms (Chapter 6) and heuris-
tic algorithms (Chapter 7). We will give full information about these algorithms in the following
chapters. Another important point is that our solver accepts all the constraints provided by Choco,

and reuses the existing constraint propagators in the library.

The ConGa solver has been built up on Choco-2.1.5 released in 2013. Choco [Choco Team, 2010]
is a java library for constraint programming. It is a complete solver for solving constraint satis-
faction problems. Generally, given a constraint satisfaction problem, for solving it in Choco, we
just need to define a set of variables along with their domains. We then define a set of constraints
for the problem. They are the essential elements. Choco also provides multiple heuristics for
variables and values ordering as well as the extension to constraint optimization problems. After
we have declared the model, Choco takes care of the remaining parts and returns the solutions

according to our desire, for example, only the first solution or all the solutions.

Choco basically solves a CSP by backtracking search (Section 3.2.1). It defines two types of en-
vironments in backtracking system: EnvironmentTrailing and EnvironmentCopying. Then
it defines the notion of world. A world contains values of storable objects or operations that per-
mit to backtrack to its state. The environment therefore pushes and pops worlds when storing or

restoring previous states of the solver.

Reusing solver is a very crucial task in ConGa because we need to often restore previous states
of the solver in the algorithms. Hence we have applied EnvironmentTrailing which is more
efficient than EnvironmentCopying in our solver. Every operation applied to a data type is
pushed in a trailer (worldPush). When a world is pushed, the index of the last operation is
stored. When a world is popped (worldPop), these operations are popped and unapplied until
reaching the last operation of the previous world. This technique will be frequently used in the

algorithms of the ConGa solver in the next chapters.

On the other side, checking players’ deviation is an essential task for finding pure Nash equilib-
rium since it is repeatedly executed during search. Unfortunately, reusing solver in Choco for this
task is very costly even though the current solver state requires only little modification. That is
why we have implemented a custom solver for only verifying whether a player can deviate from
a current strategy profile. In the custom solver, for player i, it is composed of hard constraints (if
existed) and the player’s goal. The difference here is that all variables controlled by the remaining
players, except i, have been assigned before the propagation are performed. The custom solver
henceforth becomes smaller and simpler for solving in comparison to the general Choco solver.

It hence offers a better performance than Choco.

70 Chapter 4. Constraint Games

4.3.2 Experimental Environment

All the experiments presented in this thesis have been executed on a server of 48-core AMD
Opteron 6174 of 4-processor at 2.2 GHz with 256 GB of RAM. The operating system installed is
ubuntu 64bit 12.04 LTS. All the benchmarks in our experiments are constructed by the examples

described in Section 4.2.

4.4 Conclusion

In this chapter, we have presented Constraint Games, the first framework allows to model and
solve static games by using constraint programming. Constraint games come in two issues: Con-
straint Satisfaction Games and Constraint Optimization Games, with or without hard constraints.
The most prominent advantage of constraint games is that they provide a new compact yet nat-
ural encoding to games. The main solution concept defined for constraint games is the one of
Nash equilibrium. They are the situations in which no player has an incentive to deviate from the
current ones. We have also demonstrated the usefulness of constraint games by using this frame-
work for modeling a few classical games as well as games inspired by applications in real-world
problems. Finally, we have mentioned several basic elements of our solver ConGa, including the

solving tools which will be precised in the following chapters.

Chapter 5

Local Search for Constraint Games

Contents

5.1 CG-IBR: Iterated Best Responses Algorithm in Constraint Games 72
5.2 CG-TS: Tabu Search Algorithm in Constraint Games 76
5.3 CG-SA: Simulated Annealing Algorithm in Constraint Games 78
54 Experiment ittt ittt e 84

5.4.1 Description of Experimental Game Instances 84

5.4.2 Experimental Results 85
55 RelatedWork, 87
5.6 Conclusion it e e e e e 88

Local search has been recognized as an efficient method for solving large and complex combi-
natorial problems. Because of the huge size of several problems, it even emerges as the unique
feasible way for reasoning. Local search has been widely used to find a solution in constraint
programming (see Section 3.2.2). In contrast, few local search researches have been devised to
compute a pure Nash equilibrium or a mixed Nash equilibrium in game theory (see Section 2.2).
The main difficulty, in our opinion, comes from the intractability of the classical game represen-

tation, namely normal form.

We present here three local search algorithms, including two metaheuristics to find a pure Nash
equilibrium in constraint games. The simplest algorithm is CG-IBR, iterated best responses on
the constraint games representation. Then we propose CG-TS, a tabu search based on the CG-IBR
algorithm. The last algorithm called CG-SA is a metaheuristic search inspired by the simulated
annealing algorithm. All these algorithms have been implemented in the solver ConGa. The
experimental results demonstrate that our local search solver is able to solve game instances whose

size is beyond the size accessible to algorithms based on normal form .

LA part of work in this chapter has been published in [Nguyen et al., 2013].

71

72 Chapter 5. Local Search for Constraint Games

5.1 CG-IBR: Iterated Best Responses Algorithm in Constraint

Games

Iterated best responses (abbreviated IBR) [Shoham and Leyton-Brown, 2009] is the simplest lo-
cal search algorithm to find a PNE in any game representation. In constraint games, we have
also implemented an algorithm of IBR, what we call CG-IBR. In spite of its naivety, it could be
considered as the baseline algorithm to evaluate the next ones. CG-IBR (Algorithm 5.1) is an
iterative process starting at an arbitrary pure strategy profile (line 2). If there exists some hard

constraints in games, the initial strategy profile must satisfy them.

At each step, if there exists a player for whom the current strategy profile is not a best response,
then this player deviates to his best response which will be considered as the candidate in the next
step (line 7). The process stops when all players are no longer able to change their strategy. The
current candidate is thus a best response of all players, i.e. a PNE is found (line 9). Otherwise,
the algorithm fails to find one PNE within the max step (line 13).

Algorithm 5.1. CG-IBR, Iterated Best Response Algorithm for Constraint Games

1: function CG-IBR(Constraint Game CG): tuple
2 s <— get a random solution of the solver (with hard constraints if they exist)
3 step <+ 1
4: while step < max_step do
5: s' < neighborIBR(s, &) > find a neighbor of the current solution to move
6 if s’ # null then
7 s+ s
8 else > s is best response of all players
9: return s
10: end if
11: step++
12: end while
13: return null

14: end function

Algorithm 5.2. Find a neighbor in the CG-IBR algorithm

1: function NEIGHBORIBR(tuple s, set of players &?): tuple
2 while & # 0 do
3 pick player i from & randomly
4: s" « findBR_C*G(s,1) > find a random best response of player i over s
5: if s’ # null then
6: return s’
7 end if
8: remove i from &
9: end while
10: return null
11: end function

Algorithm 5.2 shows how a neighbor is chosen in CG-IBR. Given a set of players &, a player
is randomly picked to verify whether he can deviate (line 3). If the player can make a beneficial

deviation from s to a best response s’ then s’ will be considered as the next candidate (line 4-7). In

5.1. CG-IBR: Iterated Best Responses Algorithm in Constraint Games 73

line 4, the notation “*” is replaced by “S” for Constraint Satisfaction Games (Algorithm 5.3) and
by “O” by Constraint Optimization Games (Algorithm 5.4). Otherwise, no neighbor is returned
(line 10).

Example 5.1. We consider the following CSG-HC: the set of players is & = {X,Y,Z}. Each
player owns one variable: Vx = {x},Vy = {y} and V; = {z} with D = D, = D, = {1,2,3}. The
goals are Gx ={y <z,x >z}, Gy = {x <y,y > z} and Gz = {x+y = z}. The hard constraint is

{x#y+z}.

The following schema illustrates how CG-IBR runs on Example 5.1.

Player Z deviates
1,21

Player X deviates

3,3,3
Player Y deviates

Figure 5.1: CG-IBR runs on an simple example.

At the beginning, an initial point is randomly chosen. However it must satisfy the hard constraint.
An example of forbidden strategy profile could be (3,2, 1) since this tuple violates the hard con-
straint. During search, we let the players deviate until a pure Nash equilibrium is detected or other
termination conditions are met. In Figure 5.1, we start at the tuple (1,2,1). Only player Z can
deviate from (1,2, 1), we thus let Z deviate to his best response (1,2,3) (which is a solution of his
goal). Now, both the two players, X and Y, can deviate. We randomly pick player X at first, so we
let him deviate to (3,2,3). Finally, player Y deviates from (3,2,3) to his best response (3,3,3)
which is a best response of the two remaining players as well. We thus find a PNE of the example
and the algorithm terminates. In some other constraint games, this process may stop within the

max step without finding a PNE.

We distinguish the process of finding a best response for a tuple s of player i for CSG and COG in
two separated algorithms (Algorithm 5.3 and Algorithm 5.4). In Algorithm 5.3, a solver including
the goal G; and the hard constraints (if they exist) for games is created (line 2). There may be
more than one best response. In a CSG, it means that several assignments are solution of the
player’s solver. If player i could deviate to a best response, it should be a random one in his set
of best responses. We thus set a random heuristic for variable and value ordering in line 3. In
Example 5.1, a random variable ordering could be z — x — y while a random value ordering for
player Y could be 2 — 1 — 3.

Line 4 - 10 are devoted to instantiate the values taken from s to the variables controlled by the
remaining players. This current state of the solver needs to be saved (line 11) in order to be

restored later (line 18). Then, we assign the values for player i’s variables (line 12 - 14). If the

74 Chapter 5. Local Search for Constraint Games

Algorithm 5.3. Find a random best response for CSG in the CG-IBR algorithm

1: function FINDBR_CSG(tuple s, int i): tuple
2: initialize solver S; with G; (and hard constraints if they exists)
3 set a random heuristic for variable and value ordering in S;
4: for all j € & do > instantiate the values from s to the variables controlled by other players
5: if i # j then
6: for all (k = 1; k < |V;|; k++) do
7 add constraints Vi = s i
8 end for
9: end if
10: end for
11: save the current state of the solver
12: for all (k= 1; k < |V|; k++) do > instantiate the values to the variables of player i
13: add constraints Vj, = sj;
14: end for
15: if S;.isFeasible() then > s is solution of player i
16: return null
17: end if
18: restore the previous state of the solver
19: sol < S;.getSolution() > find the first solution of the solver
20: if sol = null then > S; has no solution,
21: return null
22: else
23: return sol > player i can deviate from s to sol
24: end if

25: end function

tuple s is a solution of the solver than it is also his best response (line 15 -17). Otherwise, we try
to find another solution for which the goal is satisfied (line 19). If no solution is detected (line
20), the goal G; is not satisfied by any tuple s = (s;,5_;),Vs; € S;. Thus, the player cannot deviate
to another strategy (line 21). Otherwise, the first solution found by the solver will be returned
(line 23).

Three following cases can appear when we search a best response from a tuple s for a player.

(1) The tuple s is already the player’s best response.
(i) There is no solution for the player’s goal with every tuple including s;, so all strategies
s = (s;,5_;) are the player’s best responses.

(iii) The tuple s is not a best response, and the player can deviate to one of his best responses.

In Example 5.1, the tuple (1,2,3) is a best response of player Z because (1,2,3) is a solution of
player Z’s goal (line 16 in Algorithm 5.3). While (3,3, 3) is a best response of player Z even the
player’s goal is not satisfied because player Z does not either change to another strategy in order
to be satisfied (line 21). Finally, the tuple (1,2, 1) is not a best response of player Z because it
is not a solution of the player’s goal. Moreover, Z is available to deviate to the tuple (1,2,3) for

improving his satisfaction (line 23).

5.1. CG-IBR: Iterated Best Responses Algorithm in Constraint Games 75

Algorithm 5.4. Find a random best response for COG in the CG-IBR algorithm

1: function FINDBR_COG(tuple s, int i): tuple
2: initialize solver S; with G; and opt; (and hard constraints (if exists))
3 set a random heuristic for variable and value ordering in S;
4: for all j € & do > instantiate the values from s to all variables controlled by other players
5: if i # j then
6: for all (k = 1; k < |V;|; k++) do
7 add constraints Vi = s i
8 end for
9: end if
10: end for
11: save the current state of the solver
12: for all (k= 1; k < |V|; k++) do > instantiate the values from s to the variables of player i
13: add constraints Vj, = sj;
14: end for
15: if S;.isFeasible() then > s is a solution of §;
16: get payoff x from s
17: else
18: payoff x from s is set to —oo > —oo is a large enough negative number
19: end if
20: restore the previous state of the solver
21: sol < S;.getOptSolution() > find the first random optimal solution
22: if sol = null then > S; has no solution,
23: return null > goal G; is not satisfied by any tuple s = (s;,5_;) with s; € §;
24: else
25: get the optimal payoff xOpt
26: if xOpt > x then > s is not best response
27: return so! > Player i can deviate from s to sol
28: else > s is an optimal solution of S;
29: return null
30: end if
31: end if

32: end function

The same process for COG depicted in Algorithm 5.4 is fairly similar but more complex. The
difference is that we need to find optimal solutions of Constraint Optimization Problem. Unlike
in CSG, being a solution of G; does not guarantee to be player i’s best response. That is why we
need to compute the payoff of the current tuple (line 15 - 19). We recall that in all Constraint
Optimization Games, we assume that each player would like to maximize his objective variable.

If s is not a solution, we set his payoff to be a very large negative number (line 18).

Line 21 is devoted to find a solution which optimizes the objective variable x in the optimization
condition opt; of the player. Like in CSG, no solution found implies that goal G; is never satisfied
from s (line 22 - 24). Otherwise, we get the optimal payoff in line 25. We note that the solver can
reach to the optimal value from different points but this value is unique. So if the current payoff
is less than the optimal one, s is not a best response than the optimal solution is returned (line 26

-27). Otherwise, no tuple is returned (line 29).

We have specified how the algorithm CG-IBR works for finding one PNE in constraint games.

We also prove its correctness in the following proposition.

76 Chapter 5. Local Search for Constraint Games

Proposition 5.1. The CG-IBR algorithm in constraint games is correct.

Proof. A PNE is reported by CG-IBR if and only if it satisfies the hard constraints and no player
is able to deviate from it. Hence, the CG-IBR algorithm is correct. O

Besides the iterated best responses algorithm for constraint games, another algorithm called iter-
ated better responses could be naturally derived. Given a strategy profile s = (s;,5_;), a strategy
profile s" = (s},s_;) is said to be a better response from s for player i if u;(s) < u;(s"). Note that
s' is not mandatory to be a best response of player i because it may exist another strategy profile
s” = (s/,s_;) such that u;(s") < u;(s"). For Constraint Satisfaction Games, the iterated best re-
sponses algorithm and the iterated better responses algorithm are exactly identical. In Constraint
Optimization Games, there is only a little difference in Algorithm 5.4. It is no longer necessary
to compute the optimal payoff in line 25. We only need to detect a greater payoff than the current

one instead.

In these naive algorithms, a random best response of a player who can deviate is chosen without
any condition. Actually, we would like to improve the performance of our local search solver
by studying several metaheuristics which select a next candidate according to some rules. We

therefore describe a couple of new algorithms in the following sections.

5.2 CG-TS: Tabu Search Algorithm in Constraint Games

Tabu search (abbreviated TS) is a metaheuristic proposed by Fred W. Glover [Glover, 1989].
By using memory structures that describe the visited solutions, it allows to avoid the trap of local
optima. Since if a potential solution has been previously visited within a certain short-term period,

it is marked as “forbidden” so that the algorithm does not consider that possibility repeatedly.

In our local search solver, we have implemented an algorithm called CG-TS which is inspired
by the tabu search for avoiding getting stuck in infinite looping. In constraint games, a strategy
profile is not a PNE if a player can deviate to his best response. A neighbor in CG-IBR and CG-
TS is thus defined by a best response of this player. Henceforth, there does not exist “real” local
optima in these two algorithms, but infinite loops. It means we can always move to a neighbor if

the current candidate is not a PNE, but we move in infinite looping instead.

In CG-TS, the visited strategy profiles are not saved in the tabu list but the players who have
recently moved. The tabu list is used to forbid a player to be chosen too early after his recent
movement (See Figure 5.2). In contrast with classical search space where a local search algorithm
wants to escape local optima, it may happen that the trajectory gets stuck in cycles. Thus a tabu
list of size L allows to avoid direct cycles of length L and in practice allows also larger cycles to

be escaped.

5.2. CG-TS: Tabu Search Algorithm in Constraint Games 77

Player 2 Player 2 Player 2
S‘ g‘ g Non Tabu
o o o
ﬂ(b ﬂ’b
\ Q\'I’*G k Q\’ﬁe
Pla Only Player 3 can
yer 1 becomes Tabu Player 2 becomes Tabu Be chosen

(a) After having deviated, (b) After having deviated, (c) Player 1 and 2 are
player 1 is recorded in the player 2 is recorded in the recorded in the tabu list.
tabu list. tabu list. Only player 3 can deviate.

Figure 5.2: Illustration of using the tabu list in a game of 3 players

CG-TS is depicted in Algorithm 5.5. In this algorithm, we keep two global variables that describe
the tabu list and the tabu length. The main difference with CG-IBR is that the process of choosing
a neighbor is divided into two phases. First, we verify whether a non-tabu player could make a

deviation (line 8). If no one can, tabu players are checked against deviation (line 10).

Algorithm 5.5. CG-TS, Tabu Search Algorithm for Constraint Games

1: global variables

2: Tabu list : a queue .4

3: Tabu length: L

4: function CG-TS(Constraint Game CG): tuple

5 s <— get an arbitrary solution of solver (with hard constraints if they exist)
6 step + 1
7: while step < max_step do
8: s' < neighborTabu(s, 2\ .#) > check deviation of non-tabu players
9 if s’ = null then
10: s" < neighborTabu(s, .#) > check deviation of tabu players
11: if s’ = null then return s > no player could deviate
12: end if
13: end if
14: s+
15: step++
16: end while
17: return null

18: end function

Finding a neighbor in CG-TS is specified in Algorithm 5.6. This algorithm is similar to Algorithm
5.2. The difference is that we need to perform some additional operations for dealing with the

tabu list.

The tabu list .# is implemented by a queue. When a player deviates, he is pushed in .# (line 6).
As soon as the size of the tabu list is greater than the tabu length L, the first element in the queue

will be popped (line 7-9).

78 Chapter 5. Local Search for Constraint Games

Algorithm 5.6. Find a neighbor in the CG-TS algorithm

1: function NEIGHBORTABU(tuple s, list of players &7'): tuple
2 while &' £ 0 do
3 pick a player i from £?’ randomly
4 s' « findBR_C*G(s,1)
5: if s’ # null then
6 A .push(i) > add player i into the tabu list
7 if |.#| > L then
8: A .pop() > remove the first element from the queue
9: end if
10: return s’
11: end if
12: remove i from &’
13: end while
14: return null

15: end function

Like the CG-IBR algorithm, the CG-TS algorithm is correct as well (see Proposition 5.2).

Proposition 5.2. The CG-TS algorithm in constraint games is correct.

Proof. A reported equilibrium is correct because it has been successively checked against devia-

tion for all tabu and non-tabu players and it satisfies the hard constraints. O

5.3 CG-SA: Simulated Annealing Algorithm in Constraint Games

Simulated annealing (abbreviated SA) [Kirkpatrick et al., 1983] is a generic probability meta-
heuristic which was originally inspired from the process of annealing in metal work. Annealing
involves heating and cooling a material to alter its physical properties due to the changes in its
internal structure. As the metal cools, its new structure becomes more fixed. Due to the anneal-
ing technique with slow cooling, we will obtain a crystal solid state with the global minimum of

energy.

The intuition of the simulated annealing algorithm is composed of two key ideas. First, given a
situation s and a set of its neighbors, we use a function for evaluating the neighbors compared
with s. We move from the current candidate s to a neighbor if it is proven to be better than s.
Nevertheless, the algorithm also moves to a worse neighbor with an acceptance probability. This

gives the algorithm the possibility to jump out if it gets stuck in a local optimum.

Figure 5.3 illustrates how to apply SA in a simple problem. We would like to climb to the highest
point in this schema, therefore a point s is said to be better a point s if 5" is higher than s. We
assume that the algorithm starts at the point A. Because the point B is better than A, thus we
climb to B at the next step. Unfortunately, B is a local optimum of the problem. In order to avoid
getting stuck at this point, the algorithm also allows to descend to the point C even though C is

worse than B. Finally, we have opportunity to reach to D, the optimal point.

5.3. CG-SA: Simulated Annealing Algorithm in Constraint Games 79

Figure 5.3: The simulated annealing algorithm runs on a simple example.

For solving constraint games, based on the simulated algorithm, we integrate into ConGa an
algorithm named CG-SA. More precisely, in CG-SA, inspired from the process of annealing in
metal work, we initially set the temperature 7/ high and then allow it to slowly “cool” as the
algorithm runs. Let s be a strategy profile, then BR; be the set of players for whom s is a best
response. In Example 5.1, given a strategy profiles s; = (1,2,3), then BR;, = {Z} because s;
is a best response of player Z. While the strategy profile s, = (3,3,3) is a PNE because BR;, =
{X,Y,Z}, namely s, is a best response of all the players. We assume that s is the current candidate
of the algorithm, and s’ is a neighbor of s. Then s’ is said to be better than s if |[BRy| > |BRy|,
hence the algorithm moves from s to s’ unconditionally. However, even if s’ is worse than s
than the movement can be still accepted if ew > random([0, 1]) where ew is the

acceptance probability.

At high temperature, the search is more random because it is suited to explore quickly large
areas of the search space. But at low temperature, the search is more like hill-climbing. As the
temperature is reduced that the algorithm gradually focuses on an area of the search space in which
hopefully, a close to optimum solution can be found. This gradual “cooling” process makes the
simulated annealing algorithm remarkably effective at finding a close to optimum solution when

dealing with large problems which contain numerous local optima.

In Algorithm 5.7, we seek to apply CG-SA to increase the size of BR, to | Z?|, namely, to detect a
PNE. In this algorithm, we set the initial temperature 7/ (line 2) and the cooling rate cr (line 3).
T1 plays an important role in CG-SA as it makes a direct impact on the algorithm performance.
TI must be high enough such that the final candidate is independent of the starting one, but not
too high because this may make the algorithm run very slowly. T/ is calculated from the formula

|2 . . .
e~ 11 = 7 where T will be fixed later in experiments.

80 Chapter 5. Local Search for Constraint Games

Algorithm 5.7. CG-SA, Simulated Annealing Algorithm for Constraint Games

1: function CG-SA(Constraint Game CG): tuple
2: TI < set the initial temperature
3 cr < set the cooling rate
4: S < get an arbitrary solution of the solver (with hard constraints if they exist)
5: BR; < 0 > BR; is the number of players for whom s is best response
6 Vs > ¥ is the best strategy profile found so far
7 BRy < BR;
8 incTL + 1
9: while TI > ¢ do
10: TL «+ incTL x | 2|
11: for (iter = 1 to TL) do
12: if |[BR;| > |BRy| then > keep track of the best solution
13: (¥,BRy) < (s,BRy)
14: end if
15: (s',BRy) <+ neighborSA(s,BR;,TI) > get a neighbor of the current solution
16: if (s', BRy) = null then > no good enough neighbor is found
17: if |BR;| = | 7| then > solution s is the best response of all players
18: return s > return the PNE
19: else
20: (s,BRy) < (W, BRy) > restart from the best solution
21: end if
22: else
23: (s,BRy) + (s',BRy) > move from the current solution to the neighbor
24: end if
25: end for
26: incTL < incTL + 1
27: TI <+ TI x (1 -cr) > cool system
28: end while
29: return null > the algorithm fails to find a PNE

30: end function

For each strategy profile s, we keep along with a list of players BR; (line 5). During search, we
keep track of the best strategy profile which is a best response of the maximal number of players

(line 6 - 7 and line 12 - 13). The algorithm may restart at this best strategy profile in line 20.

In line 10, TL is the number of iterations at a given temperature. In order to avoid cooling the
system too fast, we perform 7L times of iterations before decreasing the temperature (line 11-
25). For example, let assume that at the current moment, the temperature 7/ = 10 and 7L = 100.
Then we iterate the movement from the current strategy profile to its neighbor for 100 times at
the temperature 10 before 7'/ is decreased, e.g. down to 7/ = 9. TL may vary from temperature
to temperature. It is necessary to spend sufficiently long time at lower temperatures. Thus, T'L is

increased when we go down with 77 (line 10 and line 26).

Line 15 is devoted to detect a neighbor (Algorithm 5.8). If no neighbor is found than one of two

following possibilities occurs.

(i) No player can change to a better strategy since s is a best response of all players. Therefore,
a PNE is returned (line 17 -18).

(i1) All neighbors are worse than the current candidate. Moreover, their acceptance possibilities

5.3. CG-SA: Simulated Annealing Algorithm in Constraint Games 81

are not high enough to be chosen as the next candidate. The algorithm gets stuck in local

optima. It should thus restarts with the best solution found so far (line 20).

Finally, the decreasing rule of the temperature 7'/ is described in line 27. The algorithm may also

stop when 71 < € where € is fixed later in experiments.

Algorithm 5.8. Find a random neighbor in the CG-SA algorithm

function NEIGHBORS A (tuple s, list of players BR;, double T1): (s',BRy)

1:
2 P+ P\ BR, > & is the list of players for whom s may be not a best response
3 while &2’ £ 0 do
4 pick player i from &' randomly
5: s" + findBR-C*G(s,i) > find a random best response of player i from s
6 if s/ = null then
7 BR; < BR;U{i} > 5 is a best response of player i
8: else
9: BRy < eval(s',i, BRy)
10: r < arandom number in rang [0,1]
1: if (|BRy| > |BRy|) or S 1) then
12: return (s', BRy)
13: end if
14: end if
15: remove i from &'
16: end while
17: return null

18: end function

Finding a neighbor of a tuple s is specified in Algorithm 5.8. A neighbor s’ is chosen in this
algorithm according to the comparison between the size of the list BR; and BRy. From the list
of players for whom s may not be a best response (line 2), we try to find a best response which
could be a good neighbor (line 3 -16). In line 5, the function of finding a random best response
is previously specified in Algorithm 5.3 for CSG and in Algorithm 5.4 for COG. It is compu-
tationally complex to detect for which player a strategy profile is a best response because, for
CSQG, this concerns solving a Constraint Satisfaction Problem, while for COG, it is a Constraint
Optimization Problem. Hence, it is necessary to decrease the times of finding best responses as
much as possible. This is the reason why we always keep a list BR; along with s during search.

In line 3 - 16, the list is gradually filled when s is a best response of the player (line 6 - 7).

We find a best response s’ from s and evaluate it against s (line 9 - 13). Line 9 is devoted to
determine the list BRy (Algorithm 5.9). The new strategy profile s is accepted if it is either a
better strategy profile or a worse one with a high enough acceptance probability (line 11-13).

Given a neighbor s/, Algorithm 5.9 demonstrates how to determine the list BRy. Because s is
already a best response of player i, the list BRy initially includes i (line 2). The main idea of this
algorithm is as follows. Given the current list BRy, for evaluating neighbor s, we seek to find a set
of players BRy. This list is composed of player j € BR; who does not make a beneficial deviation
from s’ (line 3 - 9). Hence, the upper bound of |BRy | is |BR;|+ 1. Therefore, s’ is better than s only
if no player in BR; can deviate from s’. In all of the remaining cases, s’ is worse than s. However,

we remind that in CG-SA, a worse strategy profile can be still chosen if its probability is greater

82 Chapter 5. Local Search for Constraint Games

Algorithm 5.9. Determine the list BRy of a neighbor s’ in the CG-SA algorithm

1: function EVAL(tuple §', player i, list of players BR;): list of players BRy
2 BRy + {1}

3 while BR; # 0 do

4 pick player j from BR; randomly

5: if dev-C*G(s’, j) then return BRy

6: end if

7: BRy < BRy U {]}

8 remove j from BR;

9 end while

0 return BRy

1:

10:
11: end function

than or equal to a random number in [0,1]. It is possible to check the deviation for all players in
BR;. Nevertheless, the deviation verification for players is computationally complex. In addition,
we may have to evaluate many neighbors of s in Algorithm 5.8. Henceforth, in Algorithm 5.9, if
there exists a player in BR; making a deviation then s’ may be not better than s. In consequence,
the list BRy will be returned immediately (line 5). Although this evaluation between s and s’ is
incomplete, it allows us not to spend too much time for the costly deviation verification (for CSG
in Algorithm 5.10 and for COG in Algorithm 5.11).

Figure 5.4 illustrates the evaluation (in Algorithm 5.9) between two strategies s and 5" in a game

composed of 5 players.

2

o

BR BR..

:

BR, BR

s

:

BR, BR

s

:

BR BR,

Figure 5.4: Algorithm 5.9 works on an example.

5.3. CG-SA: Simulated Annealing Algorithm in Constraint Games 83

The strategy s is a best response of players 1,2,3,5. The strategy s’ is a best response of player
4 from s (Figure 5.4.a). In Figure 5.4.b, we randomly pick player 1 and verify if this player can
deviate from s’. Because 1 can not deviate, it is inserted into BRy. The same thing happen with
player 5 (Figure 5.4.¢). In Figure 5.4.d, we find out that player 2 can make a beneficial deviation
from s'. This function immediately stops and the list BRy = {1,4,5} is returned.

Algorithm 5.10. Verify whether a player can make a beneficial deviation in CSG

1: function DEV-CSG(tuple s, int i): boolean

2 initialize solver S; with G; (and hard constraints if they exists)

3 forall j € & do > instantiate the values from s to the variables controlled by the others

4 if i # j then

5: for all (k = 1; k <|V}|; k++) do

6: add constraints vj; = s where v, € V;

7 end for

8 end if

9: end for
10: set search tree to begin with Vv, € V; vy = si
11: fsol < §;.getSolution() > find the first solution of the solver
12: if fsol # null then
13: if fsol = s then > s is a solution of the solver
14: return false
15: else
16: return true > player i can deviate from s to f'sol
17: end if
18: else > S; has no solution, i.e. goal G; is not satisfied by any tuple s = (s;,s_;) with s; € S;
19: return false > s is also best response
20: end if

21: end function

Algorithm 5.11. Verify whether a player can make a beneficial deviation in COG

1: function DEV-COG(tuple s, int i): boolean
2 initialize solver S; with G; and opt; (and hard constraints if they exists)
3 for all j € & do > instantiate the values from s to the variables controlled by the others
4 if i £ j then
5: for all (k =1; k < |V;|; k++) do
6: add constraints vj; = s where v, € V;
7 end for
8 end if
9: end for
10: set search tree to begin with Vv, € V;, v = sk
11: fsol < S;.getSolution() > find the first solution of the solver
12: if (fsol # null) and (fsol = s) then
13: get the current payoff x of player i from fsol
14: add constraint v,p; > x > branch and bound
15: end if
16: if S;.getSolution() # null then
17: return true > player i can deviate to a solution of S;
18: end if
19: return false

20: end function

Algorithm 5.10 is devoted to verify whether player i could make a beneficial deviation from s for

84 Chapter 5. Local Search for Constraint Games

CSG. In line 3 - 9, we instantiate the values to the variables controlled by the remaining players to
check whether s is a solution of player i. Because the search tree is set to begin with the variables
and values of player i in s (line 10), if the solver finds a solution and s is a solution then s must
be identical to the first solution fsol (line 12 - 14). Otherwise, player i could make a beneficial
deviation from s to fsol (line 16). The solver has no solution suggests that the goal G; is never

satisfied hence player i cannot deviate to a better solution (line 19).

A similar procedure for COG is depicted in Algorithm 5.11. But it is more complex because s is
a solution of the solver does not guarantee that player i cannot make a deviation. Hence, we need
calculate the current payoff of i (line 13) and post a complementary branch and bound technique
in line 14. Then, the solver has a solution means that player i can change to another strategy to

improve his payoff (line 16 -18).

The two above algorithms are similar to the ones of finding a random best response (Algorithm
5.3 and Algorithm 5.4). But they are faster because we only need to check whether the player
is able to deviate to a better utility. While in the previous algorithms, it is required to detect
a random strategy profile such that the player gets the best utility. We also note that these two
algorithms will be reused in the complete algorithms in Chapter 6.

Finally, we prove the correctness of the algorithm in the following proposition.
Proposition 5.3. The CG-SA algorithm is correct.

Proof. A PNE s is reported only if |BR;| = ||, namely s is a best response of all players. In
addition, s also satisfies the hard constraints. Indeed the CG-SA algorithm for constraint games

is correct. O

5.4 Experiment

We have implemented three algorithms described above in the ConGa solver. We will demonstrate
in this section the usefulness and the compactness of our constraint games representation as well
as our solver ConGa. In terms of modeling tools, constraint games can overcome the drawbacks
of the existing game representations in Section 2.3, because they can encode the game instances
much larger or unrepresentable by the others. In terms of solving tools, thanks to the compactness
of the game representation, ConGa could find a PNE in very large games even with the most
simple algorithm CG-IBR. Additionally, the two metaheuristic algorithms (CG-TS and CG-SA)

sometimes offer a better performance to the solver.

5.4.1 Description of Experimental Game Instances

We provide here the detailed description of the game instances in our experiments. Each game

instance is specified by two main parameters: clients number and vendors number for Location

5.4. Experiment 85

Games with Hard Constraint (abbreviated LGHC) (Example 4.12), dimensions number and play-
ers number for Hypercube Network Congestion Games (abbreviated HNCG) (Example 4.15). In
the tables, v stands for the number of variables controlled by each player, d for the domain size of

each variable, s for the number of strategies per player.

#client 40 50 60
#vendor | v d s NF | v d s NF | v d s NF
10 40 | 40 | 1.05E+17 50 | 50 | 9.77E+17 60 | 60 | 6.05E+18

1 1 1
11| 1|40 | 40| 461E+18 | 1 | 50 | 50 | 5.37E+19 | 1 | 60 | 60 | 3.99E+20
12| 1|40 | 40 | 201E+20 | 1 | 50 | 50 | 293E+21 | 1 | 60 | 60 | 2.61E+22
13| 1|40 | 40 | 872E+21 | 1 | 50 | 50 | 1.59E+23 | 1 | 60 | 60 | 1.70E+24
14| 1|40 | 40 | 736E+423 | 1 | 50 | 50 | 8.54E+24 | 1 | 60 | 60 | 1.10E+26

Table 5.1: Game instances description of Location Games with Hard Constraints in the local
search solver experiments. The number aE+b is equal to a x 10°.

#dimension 5 6 7
#iplayer | v | d s NF |v |d s NF |v |d s NF
100 | 5] 5] 120 100x120 [6 [6 | 720 | 100x 72010 [7 | 7 | 5040 | 100 x 5040100
120 515120 1201200 | 6 [6 [720 | 120x 72020 | 7 [7 | 5040 | 120 x 5040120
140 | 55| 120 | 140x 1200 | 6 [6 | 720 | 140x720™0 | 7 [7 | 5040 | 140 x 50400
160 | 55120 160x120™0 | 6 [6 [720 | 160 x 72070 | 7 [7 | 5040 | 160 x 5040760
180 [55120 1801200 | 6 [6 [720 [18072080 | 7 [7 | 5040 | 180 x 5040™%0
200 | 5[5 120]200%x12020 | 6 [6 | 720 | 200x 72020 | 7 [7 | 5040 | 200 x 5040%00

Table 5.2: Game instances description of Hypercube Network Congestion Games in the local
search solver experiments.

All the games experimented are Constraint Optimization Games with Hard Constraints, thus they
can not be encoded by normal form and by boolean games (see Section 4.1.5). However, in order
to demonstrate the compactness of constraint games, in the above tables, we give the number of
entries which would be involved in the induced normal form representation in the column labeled
by NF. As we can see in the tables, these game instances are out of storage capacity of the normal
form representations. Especially, the largest game in our experiments consists of 200 players
and 5040 strategies per player. A normal form representation of this game would have stored
200 x 504029 entries (Table 5.2).

5.4.2 Experimental Results

In the experiments, each algorithm has been launched 100 times per instance. The max step is set
to 50 x 10°. If an algorithm fails to find a PNE within the max step then the time taken will be

9

noted by the notation “-".

The average time results of the three algorithms on LGHC are depicted in Table 5.3 (on the next
page). As we can see in the table, the solver is already able to find a PNE by CG-IBR within
reasonable time for the large instances (the size of game instances is detailed in Table 5.1). The
time needed for CG-IBR has been seen as the baseline time for evaluating the other algorithms,
i.e. CG-TS and CG-SA. In several instances, CG-TS offers a better performance than CG-IBR

86 Chapter 5. Local Search for Constraint Games

#client 40 50 60
#vendor | CG-IBR | CG-TS | CG-SA | CG-IBR | CG-TS | CG-SA | CG-IBR | CG-TS | CG-SA
10 4.78 5.20 4.18 12.89 11.59 7.78 47.21 41.41 23.21
11 6.37 5.78 3.81 57.07 68.69 25.22 274.69 | 276.13 82.06
12 24.63 23.06 11.13 78.87 83.56 35.01 89.84 84.50 31.04
13 - - - 57.00 72.67 22.40 406.69 | 400.34 | 108.80
14 231.22 | 153.79 86.60 78.51 63.68 23.02 1143.49 | 633.41 | 398.73

Table 5.3: Average time (in seconds) taken of CG-IBR, CG-TS and CG-SA on Location Game with

Hard Constraints. The tabu length is set to round of quarter of the number of players in CG-TS.
-2
For CG-SA, the cooling rate is set to 0.005. T1 is calculated from the formula e% =0.2.

but not for all the instances. There even exists some instances on which CG-TS is worse than CG-
IBR. In addition, the time needed for CG-IBR and CG-TS is almost the same. This suggests that
the tabu list is not sufficient to significantly improve the solver. Actually, both the two algorithms
randomly select a neighbor without being driven by an efficient metaheuristic (see Algorithm 5.2
and Algorithm 5.6). CG-SA can climb over this obstacle. By including an evaluation between the
current candidate and its neighbors (see Algorithm 5.8), CG-SA beats both CG-IBR and CG-TS,
as mentioned in the table. Moreover, in most of the cases, CG-SA is approximately 2 times faster
than CG-IBR.

All the three algorithms have not found a PNE within the max step on the instance LGHC.13.40.
A hypothesis is this instance does not contain a PNE. Like other local search algorithms, not
surprisingly, these algorithms cannot guarantee to find a PNE as well as prove the absence of

PNE in constraint games.

We also notice that the standard deviations in all these game instances are very large. It may
be caused by the sensitiveness of initial point which are randomly generated at each launch for
each instance in LGHC. Unfortunately, our interest in this thesis does not include heuristics for
choosing good initial points. In fact, we leave this work for perspectives. We then analyze the
solver performance with standard deviation in the instances of Hypercube Network Congestion

Games which are less dependent of initial points.

The below tables (on the next page) represent the experimental results of the three algorithms
on HNCG. The abbreviations avg, sdt stand for average time taken (in second), and standard

deviation. The rate of sdf on avg in percent is depicted in the column labeled by rate.

The tables show an impressive result because all the algorithms run very fast with small stan-
dard deviation on the very large game instances (The size of game instances is detailed in Table
5.2). Namely, the algorithms converge to a PNE in short time. It is because Hypercube Network
Congestion Games belong to the class of congestion games. The most prominent property of this
game class is that from an arbitrary initial point, local search algorithm always converges to a
PNE. It is also proven that the number of improvements is upper-bounded by 2 x ¥, cr Y7 |d,(i)]
where 7 is the number of players, R is the set of resources and d, is the delay function of resource
r (see Definition 2.6) [Rosenthal, 1973]. In other words, the algorithms have never get stuck in

infinite looping or local optima.

5.5. Related Work 87

#dimension 5 6 7
#player avg std | rate(%) avg std | rate(%) avg std | rate(%)
100 8.69 | 0.58 6.71 | 13.35 | 1.04 7.81 305.83 62.31 20.38
120 9.37 | 047 5.03 | 17.97 | 1.61 8.95 445.90 64.03 14.36
140 | 10.44 | 0.39 371 | 18.45 | 1.03 5.58 | 1066.49 | 158.65 14.88
160 | 22.91 | 1.79 7.81 | 2291 | 1.79 7.81 209.86 17.92 8.54
180 | 13.93 | 0.53 3.80 | 30.74 | 3.77 12.25 499.28 64.40 12.90
200 | 15.83 | 0.60 3.77 | 30.74 | 2.30 7.48 694.34 85.29 12.28

Table 5.4: Time taken of CG-IBR on Hypercube Network Congestion Games

#dimension 5 6 7
#player avg std | rate(%) avg std | rate(%) avg std | rate(%)
100 8.56 | 0.55 6.42 | 12.58 | 0.76 6.06 | 286.50 62.75 21.90
120 9.40 | 042 443 | 18.19 | 2.22 12.22 | 422.44 76.66 18.15
140 | 10.43 | 0.46 438 | 17.92 | 1.00 5.58 | 991.97 | 166.25 16.76

160 | 11.38 | 0.48 425 | 2144 | 1.84 8.57 | 191.71 15.61 8.14
180 | 13.96 | 0.53 3.77 | 29.55 | 3.40 11.51 | 462.01 68.26 14.77
200 | 15.88 | 0.53 3.36 | 29.39 | 2.11 7.18 | 626.77 88.34 14.10

Table 5.5: Time taken of CG-TS on Hypercube Network Congestion Games. The tabu length is
set to round of quarter of the number of players.

#dimension 5 6 7
#player avg std | rate(%) avg std | rate(%) avg std | rate(%)
100 8.17 | 0.35 426 | 20.72 | 2.15 10.40 329.44 38.80 11.78
120 946 | 0.44 4.66 | 30.55 | 5.74 18.79 861.45 203.39 23.61
140 | 10.86 | 0.56 5.17 | 30.95 | 3.73 12.06 | 1162.59 229.93 19.78

160 | 12.59 | 0.63 5.04 | 40.65 | 4.40 10.81 | 1521.89 176.50 11.60
180 | 1535 | 0.28 1.80 | 58.80 | 9.56 16.27 | 2515.50 328.13 13.04
200 | 17.38 | 0.81 4.67 | 52.39 | 6.53 12.47 | 7464.92 | 1399.45 18.75

Table 5.6: Time taken of CG-SA on Hypercube Network Congestion Games. The cooling rate is
-7

setto 0.1. Tl is calculated from the formula e 7 = (.2.

Generally, the results of CG-SA are worse than the ones of CG-IBR and of CG-TS. In CG-SA,
the cooling process is very slow with acceptance probability in order to jump out local optima.
Moreover, it also requires the time for the evaluation of neighbors. This procedure often takes
large computation time. It is reasonable that CG-SA does not work well in these game instances
without local optimum (or infinite loops). It rather fits well on the games like LGHC that contain

numerous local optima.

5.5 Related Work

Local search has not been largely used for computing Nash equilibrium in games. Several related
works often concentrate on finding mixed Nash equilibrium and very few works address PNE for

general games.

The most trivial local search algorithms for finding PNE are lterated Best/Better Responses

which can be used on whatever game representations [Shoham and Leyton-Brown, 2009]. In

88 Chapter 5. Local Search for Constraint Games

[Son and Baldick, 2004], the authors apply hybrid coevolutionary programming for differentiat-
ing local optima and PNE, not for computing PNE. There are also several works using local search
for computing mixed equilibrium on normal form, such as [Gatti et al., 2012, Ceppi et al., 2010]

as well as genetic algorithms [Ismail et al., 2007].

In [Ortiz and Kearns, 2002], it has been proposed an iterative and local message-passing al-
gorithm for computing mixed Nash equilibrium on arbitrary undirected graphs. Similarly,
[Vickrey and Koller, 2002] use a greedy local search algorithm in their proposal of finding ap-
proximate mixed Nash equilibrium. With the proposal which is not for finding Nash equilibrium
but for learning graphical games, [Duong et al., 2009] explore two versions of simulated anneal-

ing algorithm for loss-minimizing neighborhoods.

Finally, to the best of our knowledge, no local search method has been proposed for computing

Nash equilibrium in both action-graph games and classical boolean games so far.

5.6 Conclusion

In this chapter, we have presented a set of local search algorithms which allow to quickly detect
one pure Nash equilibrium in constraint games. In detail, we have implemented three algorithms
in the ConGa solver. First, we have proposed a baseline local search algorithm, what we called
CG-IBR, the iterated best responses algorithm for solving constraint games. Second, we have
modified CG-IBR by using a tabu list in order to avoid getting stuck in infinite looping. This
algorithm is named CG-TS. Third, we have described CG-SA, an adapted version of the simulated

annealing algorithm in constraint games.

Thanks to the compactness of constraint games, the local search solver is capable of solving
game instances which are out of storage capacity of normal form. More precisely, among the
three algorithms, CG-IBR and CG-TS are reasonable for solving some specific game classes such
as congestion games in which the games do not consist of any local optima/infinite loop. While

CG-SA seems well suitable for solving games including many local optima.

In our experiments, we have only tested a set of parameters randomly chosen for CG-SA, e.g. the
cooling rate. It has been well-known that selecting good parameters in the simulated annealing
algorithm could offer a much better performance. We are thus confident that the CG-SA algorithm
can be more improved by a deeper study on good rules for choosing these parameters. There are
also other lines of work for improvement on the existing algorithms, such as, heuristic for selec-
ting good initial points, or restarts techniques. Moreover, the current solver could be extended by

implementing other kinds of local search, for example, genetic algorithms.

Chapter 6

Complete Search for Constraint Games

Contents

6.1 CG-Enum-Naive: Naive Algorithm for Enumerating All Pure Nash Equi-

librium e e e 90
6.2 Pruning Techniques ittt tieeennns 91
6.2.1 Classical Techniques 91
6.2.2 Advanced Techniques 93

6.3 CG-Enum-PNE: Advanced Algorithm for Enumerating All Pure Nash
Equilibrium i i e e e e 96

6.4 CG-Enum-PPNE: Algorithm for Finding All Pareto Nash Equilibrium . . 101

65 Experiment ittt ittt et 103
6.6 Related Work i i i i i i it ittt it ittt e e eenns 106
6.7 Conclusion i ittt ittt eneeneeoeeeeeeeos 107

Although finding one PNE is a very interesting problem in itself, finding all of them allows more
freedom for choosing equilibrium that fulfills some additional requirements. We thus present
in this chapter a complete solver for constraint games. In this solver, we first implement the
naive algorithm on the constraint games representation. Then, we improve this algorithm by
including several advanced techniques in an algorithm named CG-Enum-PNE. Among the PNE
of a constraint game, some PNE are probably more desirable than the others. In other words,
these PNE may be also Pareto Nash equilibrium while the others are not. It has been well-known
that the correctness of Pareto Nash equilibrium is based on the completeness of PNE enumeration.
Hence, it is also interesting to detect all PPNE after we have obtained the set of all PNE. That
is what we have done in an algorithm called CG-Enum-PPNE. Finally, the experimental results
demonstrate that our complete solver is faster than the normal form solver Gambit by one or two

orders of magnitude. !

IThis chap