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Chapter 1

Preamble

A large part in the design of secure cryptographic primitives consists in identifying hard algorithmic problems. Despite the fact
that several problems have been proposed as a foundation for public-key primitives, those effectively used are essentially classical
problems coming from integer factorization and discrete logarithm. On the other hand, coding theory appeared with the goal to
solve an important and challenging problem: how to transmit reliably information in noisy environments? It turns out that this
task is closely related to the famous problem of decoding a random linear code. It is widely admitted as a hard problem that has
led McEliece in 1978 to propose the first code-based public-key encryption scheme. The key concept of the scheme is to focus
on codes that come up with an efficient decoding algorithm. He also advocated the use of classical binary Goppa codes. Since
then, it still belongs to the very few cryptosystems which remain unbroken. All the existing attacks that recover either the private
key or basically the plaintext from a single ciphertext are exponential in time.

This thesis is primarily interested in studying the security of code-based primitives. The first category of primitives we
analyzed is composed of variants of the McEliece cryptosystem. A variant is any public-key encryption schemes that replace
classical binary Goppa codes with other codes provided that they can be decoded efficiently. In the past several proposals were
suggested but most of them did not withstand attacks that recover the private key. Another motivation for this kind of change is
to remedy the main disadvantage of McEliece’s scheme of having too large public keys. One trend in the area of the code-based
cryptography is to use highly structured codes which can be described by matrices totally defined from only few rows. Our works
show that this phenomenon also apply to many compact variants because it is possible to recover practically the private key, either
by mounting dedicated attacks, or by devising attacks of algebraic nature that are general enough to also apply to the original
McEliece cryptosystem. This result represents a new algebraic framework to assess the security of the McEliece cryptosystem
and a first step towards the design of new attacks based on the solving of algebraic systems (Gröbner bases, etc.)

Furthermore, this approach can be used to study a famous problem encountered in code-based cryptography called the
problem of the Goppa code Distinguishing problem. It asks whether there is an efficient way to distinguish a Goppa code from
a randomly drawn linear code. It represents an important assumption which supports the use of Goppa codes in cryptography.
It also makes possible to link the problem of decoding a random linear code to that of decoding a Goppa code. Thanks to it, it
can provide a security proof for the McEliece cryptosystem and other cryptographic primitives based on Goppa codes. We show
that it is possible to efficiently solve it as long as the code rate is sufficiently high. We show more precisely that it is possible to
differentiate between an alternate code, a Goppa code and a random linear code with high probability. The solving is possible
through the construction of a linear system deduced from an algebraic system that any Goppa code and, more generally, any
alternant code must satisfy. It is observed that the rank of this system has different values depending on the code we consider.
We are even able to predict its value and also provide an explanation.

Finally, we investigate the security of a signature scheme proposed by Kabatianskii-Krouk-Smeets. It relies on two random
linear codes, one is public whereas the other has to be secret. We first evaluate the security of the scheme against a passive attack.
Then, we show that it can be completely broken thanks to the construction of an auxiliary linear code from the public key. From
it, the private key of the scheme is then recovered by looking for low-weight codewords. Although, the time complexity of our
attack is exponential in the length of the codes, our analysis shows that the attack is sensitive to the rates of codes and therefore
can be practical if the values of the rates are very close.

The thesis is divided in two parts. The first one is an introduction to the area of the coding theory and code-based cryptog-
raphy. It also provides the state of the art in that field. It exposes the important challenges that are encountered in code-based
cryptography, and in particular with the McEliece cryptosystem. The second part deals specifically with my recent contributions
that appeared in proceedings of international conferences.
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Part I

Code-Based Cryptography
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Chapter 2

Algorithmic Issues

In this chapter, we describe important algorithmic problems arising from the theory of linear error-correcting codes. These
problems will serve as a foundation for building and assessing the security of code-based cryptographic primitives.

The key notion that we will require first is that of linear code over a finite field Fq with q elements. Such an object is basically
a vector subspace of Fnq . The dimension k of a (linear) code is its dimension as a linear space. The code C obviously admits a
basis of cardinality k. any k × n matrixG obtained from a basis of C is called a generator matrix, or equivalently:

C =
{
uG : u ∈ Fkq

}
.

The rationale of a linear code is to convey reliably and efficiently an information between a transmitter and a recipient through
a noisy link. This link is also termed channel. The information is represented as a sequence u = (u1, . . . , uk) of k symbols
taken from a finite alphabet Fq . Any attempt of sending u will inevitably results in a modification of a fraction of the symbols
uj . Actually the situation is worse because these modifications are not a priori predictable. So any realization in Fkq can be in
theory a possible event. The probability of obtaining one will completely depend on the channel. The latter can actually be seen
as a random process η : X → Y whose behaviour is described by transition probabilities P (η(z) = y | z = x) for each x in X
and y in Y . The X and Y are the input and output alphabets respectively. Generally, it is implicitly assumed that X ⊂ Y and
there exists a one-to-one correspondence between Fq and X .

Our focus will be on the q-ary symmetric channel of error probability 0 6 p < 1/2 where X = Y , both of cardinality q,
and such that P (η(z) = x | z = x) = 1 − p and P (η(z) 6= x | z = x) = p

q−1 . This kind of channel is memoryless which
means that the probability of obtaining one symbol at the output does not depend on the previous symbols transmitted in the past.
Mathematically, it is equivalent to say that the events are independent.

One would believe that the problem of reliably transmitting information can be solved by simply repeating the symbols a
given number of times. Recovering the initial symbol can be done by looking at which symbol appears most. This technique is
called majority-vote decision. In this context, the transmitted sequences are of the form u · · ·u where u belongs to an alphabet,
say {0, 1}, is repeated for instance n = 2m + 1 times for some integer m > 1. The symbol u represents the information to be
sent, so that k = 1. One can prove that indeed the error probability of the majority-vote decision algorithm can be made arbitrary
small provided that n is sufficiently large. So why is it not acceptable?

The main problem with this approach rests on its inefficiency namely the cost of transmitting and processing one single
symbol tends to infinity. This is clearly unrealistic in practical scenarios. Actually, this cost is captured by the ratio R def

= k/n
also called the rate of the coding system. In reality, this rate is imposed by the context and therefore cannot be modified, and in
particular decreased to be as small as wished.

A classical way to deal with this matter is to choose a generator matrixG of a linear code C of length n and dimension k < n

over Fq , and instead of directly sending the information u belonging to Fkq , one transmits rather the sequence c def
= uG. The

operation of transforming u into c is known as encoding of information. The task of the receiver, upon receiving the sequence r,
which is the result of the transmission of c amidst the noise, is to recover u. This phase of recovering u is called the decoding.
Therefore, the receiver has to define a decision rule ensuring him that, with high probability, he has made the good choice. It
also means that it is paramount for the receiver to detect errors when they occur. A way to achieve this is to equip the ambient

space Fnq with an inner product defined for any x = (x1, . . . , xn) and y = (y1, . . . , yn) of Fnq as x · y def
=

n∑
j=1

xjyj . It permits to

define the dual code of C as the linear space C⊥
def
=
{
y ∈ Fnq : ∀c ∈ C , y · c = 0

}
. Clearly, the dimension of C⊥ is n − k.

Furthermore, any (n− k)× n generator matrix of C⊥ characterizes C because we have:

C =
{
c ∈ Fnq :

n∑
j=1

cjHj = 0
}

9



10 CHAPTER 2. ALGORITHMIC ISSUES

where Hj denotes the j-th column of H . Such a matrix H is called a parity-check matrix of C . It becomes straightforward for
the receiver to know if there exists an error in r. It simply checks whether the quantity

∑n
j=1 rjHj called the syndrome of r, is

equal to 0. If ever an error is detected, it remains to find the corresponding information. A reasonable1 decoding rule is to choose
the most likely word ĉ among C , or formally, ĉ maximizes the probability P (r|c) when c describes C . Note that since we have
assumed the symbols are conveyed by means of a memoryless channel we therefore have:

P (r | c) =

n∏
j=1

P
(
η(z) = rj | z = cj

)
.

An obvious method to perform this search is to check all qk words of C which gives a procedure whose time complexity is
O
(
nqk
)

= O
(
nqRn

)
. This is of course unsatisfactory.

This discussion explains that one important challenge of coding theory is to find, given a fixed rate R < 1, a family of linear
codes (Cn)n>1 of length n and dimension k = Rn where Cn admits a polynomial time in n decoding algorithm such that the
decoding error probability is arbitrary small2 as n tends to infinity.

2.1 Minimum Distance Decoding
The optimal decoding rule for a code C consists in maximizing the probability P (r | c) when c describes C . Actually, one
can prove that for most common channels this resort to searching for the closest word to r in C for an appropriate metric. For
instance, in the case of the q-ary symmetric channel, the metric to choose is the Hamming’s one. The Hamming distance (or
metric) denoted by dist(x,y) between any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) from Fnq is the cardinality of the
set {j ∈ {1, . . . , n} : xj 6= yj}. The weight wt(x) of any x in Fnq is dist(x,0) i.e. the cardinality of {j : xj 6= 0}. We are now
able to give the following definition where we have assumed that C is a code over Fq of length n and dimension k.

Definition 1. A minimum distance decoding of C is a mapping D : Fnq −→ C such that the following holds3 for any z in Fnq :

∀c ∈ C , dist (z, D(z)) 6 dist (z, c)

We have seen that a naive approach to solve the minimum distance decoding for a given received word r is exponential in n.
One may ask whether a better strategy can be devised. Before, we will reformulate the problem in order study it in the realm of
the theory of complexity. First, let us set s def

=
∑n
j=1 rjHj . By remarking that s =

∑n
j=1(rj + cj)Hj for any c in C , we see

that minimum distance decoding is equivalent to looking for a vector e in Fnq of minimum weight such that:

s =

n∑
j=1

ejHj . (2.1)

This new way of tackling the problem enables to define an associated decision problem called the Syndrome Decoding problem.

Definition 2 (Syndrome Decoding Decision Problem). The inputs are an (n−k)×nmatrixH with entries in Fq with 1 6 k < n,
an integer t such that t < n and a vector s in Fn−kq . The question is does there exist e in Fnq such that wt(e) 6 t and

s =

n∑
j=1

ejHj?

Proposition 1 ([BMvT78]). The Syndrome Decoding problem is NP-Complete.

Observe that the matrixH is a part of the input but we can also investigate the problem without assuming it, that is to say, we
suppose that H is given once and for all and an arbitrary large preprocessing is performed on it. The problem remains however
a hard problem [BN90].

2.2 Bounded Distance Decoding
The NP-Completeness results about minimum distance decoding show it is illusory to expect that a general polynomial time
minimum distance decoding exists. But the situation can be different if some constraints are relaxed. In fact, since its introduction
by Shannon [Sha48], the coding theory has spawned a large amount of works dealing with the construction of family of codes
provided with polynomial time decoding algorithms. This is possible because of two main reasons. First, some specific structure
are added to linear codes and secondly, some limitations are put on the type of errors that can be corrected. It is important to keep
in mind that, whatever the decoding procedure is, some errors would necessarily lead to take either wrong decisions (decoding

1Actually it is the optimal rule because it achieves the smallest decoding error probability.
2Shannon showed in [Sha48] than the rate R has to be smaller than or equal to a quantity called the capacity C < 1 of the channel. The real change is in

reality to find capacity-approaching codes for which the decoding error probability can be made arbitrary small.
3Let us observe that we necessarily have D(c) = c for any c in C .



2.2. BOUNDED DISTANCE DECODING 11

error), or simply no decision at all (decoding failure). So one has to identify to which class an error should belong so that it can
be decoded correctly.

The answer is to interpret decoding inside a geometric setting. The minimum distance decoding of a received word r consists
in finding the nearest codeword c in C . Obviously, when the solution is unique then the decoder has no choice. But when there
are several solutions, one arbitrary choice has to be made leading necessarily in some cases to wrong decisions. It is therefore
important to define regions where the decoding is unique. The notion of minimum distance of a code C will serve us to do so.

Definition 3. The minimum distance is d
def
= min

{
dist(x,y) : x ∈ C ,y ∈ C ,x 6= y

}
.

One can easily see that d = min
{

wt(c) : c ∈ C , c 6= 0
}

when C is a linear code. Furthermore, if we define t def
=
⌊
d−1
2

⌋
then for any c in C , we have B(c, t)∩C = {c} where by definition B(c, t)

def
=
{
z ∈ Fnq : dist(c, z) 6 t

}
. Hence, if the number

of errors is less than or equal to t and if we have an efficient way for searching for codewords of C in balls of radius t then the
decoding is unique and correct. The parameter t is called the packing radius. Furthermore, the method that consists in searching
for a codeword within a given distance ` > 1 around the received word r is called an `-bounded distance decoding as explained
in the following definition.

Definition 4. Let ` be an integer > 1. An `-bounded distance decoding is the mapping f` :
⋃
c∈C

B(c, `) −→ C such that for any

z in ∪c∈CB(c, `):
∀c ∈ C , dist (z, f`(z)) 6 dist (z, c)

If it happens that ∪c∈CB(c, t) forms a partition of Fnq , the code C is called perfect. For such codes, the t-bounded minimum
distance decoding could not fail at outputting the correct codeword of C when of course the number of errors is less than or equal
to t.

An easy way to find a codeword within distance t from r is to exhaustively search for e in B(0, t) until
n∑
j=1

(rj + ej)Hj = 0.

Since the number of elements in B(r, t) is
t∑
i=1

(q − 1)i
(
n

i

)
and by observing that

t∑
i=1

(q − 1)i
(
n

i

)
6 qnhq(

t
n ) where hq(x) is

the entropy function defined over [0, 1] with hq(x)
def
= x logq(q−1)−x logq(x)− (1−x) logq(1−x), this obvious method has a

time complexityO
(
nqnhq(

t
n )
)

. The complexity of this basic procedure depends on the value t which in turn is about half of the
minimum distance of the code. Hence, in order to obtain a more complexity, we have to ask first whether it is easy to compute
the minimum distance. The answer is unfortunately negative as shown by [Var97].

Definition 5 (Minimal Weight Decision Problem). The inputs are an (n− k)× n matrix H with entries in Fq with 1 6 k < n,

an integer t such that t < n. The question is does there exist a nonzero c in Fnq such that: wt(c) 6 t and
n∑
j=1

cjHj = 0?

Proposition 2 ([Var97]). The Minimal Weight Problem is NP-Complete4.

Since the existence of a general polynomial time algorithm that computes the exact value is unlikely to exist, one may ask
what it is its typical value.

Definition 6. A given property is said to be typical for a code if the probability that a code picked uniformly at random satisfied
it tends to 1 when the length n tends to +∞. We will also say this feature is satisfied for almost all codes.

We are now able to state the following proposition.

Proposition 3 ([Bar98]). The minimum distance d for almost all codes of rate R satisfies d > nδGV(R) where δGV(R) is the
relative Gilbert-Varshamov distance which is defined as the smallest positive root of the equation:

hq(x) +R− 1 = 0. (2.2)

However, the bounded distance decoding within the packing radius t is most of the time pessimistic because generally for
most v in Fnq the ball B(v, `) when ` > t will contain at most one codeword from C . In fact, the only interest about t is the
guarantee of always having at most one codeword in B(v, t) for any v. But it does not prevent from a decoding failure. Hence,
the important question is to known what is the radius ` that guarantees a bounded distance decoding with similar performance as
minimum distance decoding.

That is precisely the role of an other important numerical parameter called the covering radius ρ. It is the smallest radius
for which for any v in Fnq the ball B(v, ρ) contains at least one codeword of C . Clearly we have t 6 ρ and one can see that an
alternative definition of ρ is as follows in which dist(z,C ) denotes for any z from Fnq the following quantity:

dist(z,C )
def
= min

{
dist(z, c) : c ∈ C

}
.

4The problem is still NP-Complete [BMvT78] if in the statement of Proposition 2, it is required to have a word of weight exactly t.
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Definition 7. The covering radius of C is ρ
def
= max

{
dist(z,C ) : z ∈ Fnq

}
.

The covering radius is important because it measures the largest number of errors within which it is still possible to get an
error-free minimum distance decoding. This means that if the error pattern has weight strictly greater than ρ then minimum
distance decoding will always return a wrong codeword. Hence computing ρ permits to known the best achievement one could
expect from C . The intuition would suggest computing the covering radius is more difficult than decoding since for the naive
approach would look for the closest vector in C for each r of Fnq . In a sense, one has to do qn decodings. So it raises the
questions of knowing the complexity of computing the covering radius in one hand and, in the other hand, its typical value when
a code is picked randomly. To answer to first point, it is possible to define a decision problem that measures the difficulty of
computing the covering radius. Again, the problem is likely to be difficult as shown by Proposition 4.

Definition 8 (Upper bound on covering radius problem). Given a linear code C and t > 0. Is it true that:

∀z ∈ Fnq ,∃c ∈ C , dist (z, c) 6 t?

Proposition 4 ([McL84]). The upper bound on covering radius problem is Πp
2-Complete

As for the second question, the answer is given by the following proposition.

Proposition 5 ([Bar98]). The covering radius for almost codes of rate R is nδGV(R) (1 + o(1)) where o(1) tends to 0 when n
tends to +∞.

This results explains why it suffices to focus on searching for a codeword within distance nδGV(R) from the received word r.
As a consequence, the complexity of the obvious way that consists in looking for a codeword inB (r, nδGV(R)) isO

(
nqn(1−R)

)
.

Let us observe that when R < 1/2 the exhaustive search is faster than the bounded distance decoding within distance nδGV(R).

2.3 General Decoding Methods
The decoding of a random linear code received a lot of attention over the past years from a practical point of view. Several works
[McE78, LB88, Leo88, Ste88, vT90, CC94, CC95, Dum96, CC98, CS98, BLP08] propose to solve it for an arbitrary binary
linear code C of length n and dimension k that is given either as a generator matrixG or a parity-check matrixH . The question
to solve is then, given a word r from Fn2 and an integer t > 1, find a codeword c from C such that dist(r, c) 6 t. This boils
down to seeking e in Fn2 such that wt(e) 6 t and r = c+ e.

2.3.1 Information Set decoding
General approach. One of the most natural approach is to locate a set U ⊂ {1, . . . , n} of cardinality k such that the restriction
GU over U ofG is invertible and eU = 0. Indeed, it can readily be checked that the following equality holds:

c =
(
rUG

−1
U

)
G

where of course rU is the restriction of r to the positions belonging to U . Such a set U is called an information set. The simple
observation first made by McEliece in [McE78] shows that the method of randomly picking a set U of cardinality k where GU

is invertible has a success probability PIS given by:

PIS
def
=

(
n−t
k

)(
n
k

) =
(n− t)!

k!(n− t− k)!

k!(n− k)!

n!
=

(
n−k
t

)(
n
t

) .

If we define τ def
= t/n and R def

= k/n then there exist [MS86, p. 309] two positive constants a and b such that PIS can be
upper-bounded by:

a · 2−n(h2(τ)−(1−R)h2(
τ

1−R )) 6 PIS 6 b · 2−n(h2(τ)−(1−R)h2(
τ

1−R )).

This method performs for each candidate of U a Gaussian elimination over a k × k matrix. So the time complexity is about
kω/PIS = O

(
nω2n(h2(τ)−(1−R)h2(

τ
1−R ))

)
where 2 < ω 6 3 is the “linear algebra constant”.

This general approach for searching a set U where the restriction of the generator matrix is invertible is termed Information
Set Decoding, or ISD for short. Many works used it with the goal to improve its efficiency. There exist two ways for enhancing
ISD principle: one aims at avoiding to perform too many Gaussian eliminations, and the other attempts to increase the probability
of getting a good candidate for the set U . Let us observe that if we set s def

=
∑n
j=1 rjHj whereH is an (n− k)×n parity-check

matrix of C then the problem to solve is to find e from Fn2 of weight t such that (2.1) holds. It is equivalent to to find a set
E ⊂ {1, . . . , n} of cardinality 6 t such that we have: ∑

j∈E
Hj = s (2.3)
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where Hj is j-th column of H . We now present the most important algorithms based on ISD. They all assume that, up to a
permutation of the columns,H is in systematic formH =

(
In−k A

)
whereA is a (n− k)× k submatrix ofH and In−k

is the identity matrix of size (n− k). For the sake of simplicity, we will always assume from now that U = {n− k + 1, . . . , n}.
In particular, when r is error-free over U (eU = 0) then the following equality happens:

s =
(
In−k A

)
eT = In−k · eT = eT .

where aT denotes the transpose of a. In that case s satisfies wt(s) 6 t. Hence, the whole goal of ISD is to find a parity-check
matrixH in systematic form so that s is exactly the error vector and a way to recognise it is through the condition wt(HrT ) 6 t.

Lee-Brickell’s approach. The constraint eU = 0 on the set U is replaced by the one where the weight of eU is a small value
p. The algorithm enumerates all the sets P ⊂ {n− k + 1, . . . , n} of cardinality p and it halts if the following conditions holds:

wt

s+
∑
j∈P

Aj

 6 t− p. (2.4)

The success probability of this algorithm denoted by PLB is:

PLB =

(
t
p

)(
n−t
k−p
)(

n
k

) =

(
k
p

)(
n−k
t−p
)(

n
t

) .

The running time of the algorithm is basically the cost for enumerating all
(
k
p

)
linear combinations of the columns ofAmultiplied

by (n− k)ω/PLB .

Leon’s approach. Leon’s idea [Leo88] follows Lee-Brickell’s constraint but it also requires to look for some random L ⊂
{1, . . . , n− k} of cardinality ` 6 n− k such that eL = 0. For simplicity we assume L = {1, . . . , `}. The reason for imposing
such a condition is to reduce the costs of the Gaussian elimination and the computation of the weight of words. The algorithm is
interested in parity-check matrices of the following form:

H =

(
X 0 T
Y In−k−` B

)
with A =

(
T
B

)
.

We emphasize that T is the `×k submatrix ofA obtained by keeping only the rows in L, andB is the (n−k−`)×k submatrix of
A obtained with the remaining rows. The algorithm first picks a random set L and then enumerates sets P ⊂ {n− k+ 1, . . . , n}
of cardinality p. Let us denote by R ⊂ {1, . . . , n− k} the complement of L. We will also denote by sL and sR the restrictions
of s to the positions in L and R respectively. Whenever it encounters a set P such that sL +

∑
j∈P

T j = 0, it next checks whether:

wt

sR +
∑
j∈P

Bj

 6 t− p. (2.5)

The advantage of this algorithm is threefold. First, a Gaussian elimination is performed on a smaller square matrix of size
n− k − `. Secondly, the linear combinations are executed on a relatively small matrix T . Eventually, the weight computation is
done only when a combination has a good chance to give the solution. As a side remark, let us notice that H is treated as if it is
equal to the following (n− k)× (n− `) matrix: (

0 T
In−k−` B

)
.

It the condition (2.5) holds the algorithm stops otherwise the algorithm continues with other random setsU andL. The probability
PL that this event occurs is given by:

PL =

(
n−t
`

)(
t
p

)(
n−`−t
k−p

)(
n
k

) =

(
n−k
`

)(
k
p

)(
n−k−`
t−p

)(
n
t

)
Stern’s approach. Stern proposed in [Ste88] to use “Birthday Paradox” techniques in Leon’s approach in order to enhance the
probability of getting a good candidate for L. After having chosen L, it chooses randomly two disjoint subsets U1 and U2 of
{n− k + 1, . . . , n} of the same size k/2. Hence, these two sets form a partition. The algorithm builds then two lists L1 and L2

obtained by considering all the subsets P1 ⊂ U1 and P2 ⊂ U2 of cardinal p/2:

L1
def
=

sL +
∑
j∈P1

T j : P1 ⊂ U1

 and L2
def
=

∑
j∈P2

T j : P2 ⊂ U2

 .
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For each collision between L1 and L2 obtained with P ?1 ⊂ U1 and P ?2 ⊂ U2, that is to say sL +
∑
j∈P1

T j =
∑
j∈P2

T j , the
algorithm checks whether the following condition (2.9) holds:

wt

sR +
∑

j∈P?1 ∪P?2

Bj

 6 t− p. (2.6)

The algorithm halts if it is the case. If none of the collisions in the lists give a valid solution, the algorithm chooses other sets
U and L, perform another Gaussian elimination and build two new lists with other randomly built sets U1 and U2. The success
probability Pt of this method is then:

Pt =

(
t
p/2

)(
n−t

k/2−p/2
)(

n
k/2

) (
t−p/2
p/2

)(
n−t−(k/2−p/2)

k/2−p/2
)(

n−k/2
k/2

) (
n−t−(k−p)

`

)(
n−k
`

) .

Furthermore, the average number of operations Nt when the sets U (U1 and U2) and L are fixed is:

Nt = (n− k)3/2 + k(n− k)2 + p`

(
k/2

p/2

)
+ p(n− k − `)

(
k/2
p/2

)2
2`

. (2.7)

The value of Nt comprises the cost of the Gaussian elimination, the construction of one list and the cost of comparing words
when collisions occur. Th memory complexity is given the size of one list which is roughly `

(
k/2
p/2

)
. Stern’s approach improves

time complexity of decoding at the cost of increasing the memory complexity. Therefore, it requires to elaborate a time-memory
trade-off, which is controlled by the parameters p and `.

Canteaut-Chabaud’s approach. The method of [CC98] improves upon Stern’s approach by reducing the cost of the Gaussian
elimination. Firstly, the algorithm begins with a fully systematic parity-check matrix so that X = I` and Y = 0. Next, it
introduces a new small parameter c > 1. The general principle is to keep unchanged at least (n − k − c) columns of In−k
obtained from a previous Gaussian elimination instead of taking at random n− k new columns and then perform another costly
Gaussian elimination procedure. Of course, these new c columns are obtained from c randomly picked columns ofA.

Dumer’s approach. This method [Dum91, Dum96] relies on a generalisation of Leon’s approach. We keep the same notation
as Leon’s algorithm. Let us recall that the output of Leon’s method is a word e from Fn2 such that eL = 0 and wt(eU ) = p.
Dumer’s approach directly seeks a set V of cardinal k+ ` such that wt(eV ) = p. Hence, V replaces here the set U ∪L. Without
loss of generality, we assume that V = {n− k − `+ 1, . . . , n}. It first builds a parity-check matrixH with the following form:

H =

(
0 W

In−k−` Z

)
whereW is of size `×(k+`) andZ is of size (n−k−`)×(k+`). Equivalently, up to a permutation of columns, it corresponds
to setW def

=
(
X T

)
and Z def

=
(
Y B

)
in Leon’s approach. The goal now is to find a set P ⊂ {n− k− `+ 1, . . . , n} of

cardinality p such that sL +
∑
j∈P

W j = 0, and then it checks if the following inequality holds:

wt

sR +
∑
j∈P

Zj

 6 t− p. (2.8)

The way for obtaining a set P is the same as Stern’s one. It randomly picks two disjoint subsets V1 and V2 of {n−k−`+1, . . . , n}
with the same cardinality (k + `)/2. The rest of the algorithm is exactly the same as Stern’s algorithm. The algorithm builds L1

and L2 by considering all the subsets P1 ⊂ V1 and P2 ⊂ V2 of cardinal p/2:

L1
def
=

sL +
∑
j∈P1

W j : P1 ⊂ V1

 and L2
def
=

∑
j∈P2

W j : P2 ⊂ V2

 .

For each collision between L1 and L2 obtained with P ?1 ⊂ V1 and P ?2 ⊂ V2, the algorithm tests if:

wt

sR +
∑

j∈P?1 ∪P?2

Zj

 6 t− p. (2.9)

It halts when it is the case. The success probability denoted by PD is given by:

PD =

(
t
p/2

)(
n−t

(k+`)/2−p/2
)(

n
(k+`)/2

) (
t−p/2
p/2

)(
n−t−(k+`)/2+p/2

(k+`)/2−p/2
)(

n−(k+`)/2
(k+`)/2

) .
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2.3.2 Conclusion
We have seen that the problem of decoding a random linear code is NP-hard. On the other hand, all the existing decoding
algorithms have exponential complexity. Although these results substantiate the fact that minimum distance decoding is a hard
problem even if one allows an infinite preprocessing they do not provide enough information about its real difficulty. The input
of the problem deals with a so wide range of instances that some of them, the worst cases, happen to be very hard to solve. But
we know in fact nothing about the others and, more importantly, we have no information about the proportion of hard instances
among all the possible ones. A more relevant framework for assessing accurately the difficulty of real world problems is the
theory of average-case complexity [Lev86]. Unfortunately, the theory of error-correcting codes currently lacks arguments of that
kind and it is still an open problem to show that minimum distance decoding of linear codes is an NP-Complete problem on the
average.

2.4 Code Equivalence Problem
The classification of codes represents an important body of coding theory. Its aims at identifying codes that can be viewed
as similar objects when we focus on certain features. Hence, it requires the notion of equivalence. It is well-known that the
symmetric group Sn acts on Fnq through the group action vσ def

= (vσ−1(1), . . . , vσ−1(n)) defined for any σ in Sn and v in Fnq .
Now, let us assume that we have two linear codes A and B over Fq both of dimension k and length n. We say that A is

equivalent to B if there exists σ in Sn such that A = Bσ with Bσ def
=
{
bσ : b ∈ B

}
.

The code equivalence is an important tool for classifying codes, especially according to the minimum distance. Indeed, it is
obvious that equivalent codes have the same minimum distance and covering radius. Hence in terms of decoding performance,
they can be viewed as identical objects. In cryptography, this notion as we will see is important and requires to assess the
complexity of solving it. It is straightforward to define a decision problem related it.

Definition 9 (Code equivalence problem). Given two k × n generator matrices A and B with k 6 n. Are there a k × k matrix
S and an n× n permutation matrix P such thatB = SAP ?

The complexity of solving this problem is studied in [PR97] which shows that if the code equivalence problem is NP-
Complete then the polynomial time hierarchy collapses. On the other hand, the code equivalence problem is not easy either
because it also proved in [PR97] that the Graph Isomorphism problem reduces to it. These facts may substantiate the fact that
finding the permutation between two equivalent codes may be easy in some cases. This was studied in [Sen00] which proposes
an algorithm called the Support Splitting Algorithm whose heuristic time complexity is:

O
(
n3 + 2hn2 log n

)
where h is the dimension of the hull. The hull of a code A is defined by A ∩A ⊥. In the case of random linear codes, the hull
is most of the time trivial, or is of very small dimension.
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Chapter 3

Algebraic Coding

Classical Generalised Reed-Solomon Codes.

Definition 10 (Generalised Reed-Solomon codes). Let k and n be integers such that 1 6 k < n 6 q where q is a power of a
prime number. Let x = (x1, . . . , xn) where the xj are distinct elements of Fq and let y = (y1, . . . , yn) where the yj are nonzero
elements of Fq . The Generalized Reed-Solomon code consists of all vectors of the form:(

P (x1), . . . , P (x1)
)

where P (z) ranges over all polynomials of degree 6 k − 1 with coefficients from Fq .

Generalised Reed-Solomon (GRS) codes represent an important class of Maximum Distance Separable (MDS) codes. Indeed,
it is well-known that minimum distance is equal to n − k + 1. Furthermore, we can prove that the dual of a GRS code is also
a GRS code. This property will be useful to give an other way of defining GRS codes. For that purpose, we will require the
following definition.

Definition 11. Let n be an integer such that n 6 q. For any integer r > 1 and for any x and y from Fnq , we denote by V r(x,y)
the following r × n matrix

V r(x,y)
def
=


y1 · · · yn
y1x1 · · · ynxn
...

...
y1x

r−1
1 · · · ynx

r−1
n

 . (3.1)

Proposition 6. A code G is a Generalised Reed-Solomon code over Fq of length n 6 q and dimension if an only if there exist
x = (x1, . . . , xn) where the xj’s are distinct elements of Fq and y = (y1, . . . , yn) where the yj’s are nonzero elements of Fq
such that V r(x,y) is a parity-check matrix of G with r

def
= n− k .

The real interest of GRS codes is the existence of polynomial-time decoding algorithms that correct t errors as long as
2t 6 n− k. One of them is the Berlekamp-Massey algorithm which runs in time O(n2), and the other is the Berlekamp-Welsh
algorithm which runs inO(n3). This is an important feature but they suffer from a fundamental disadvantage. The field Fq has to
have at least n elements. As n grows, this leads to particularly less and less inefficient encoding and decoding algorithms. A way
to overcome this limitation is to consider the subcode obtained with the codewords for which each entry belongs to a subfield of
Fq . These codes are called either subfield subcodes or alternant codes.

Definition 12 (Alternant code). Let m and n be integers such that m > 1 and let n 6 qm. The alternant code Ar(x,y) of order
r and length n over Fq associated to the n-tuple x of distinct elements from Fqm and the n-tuple y of nonzero elements from Fqm
is:

Ar(x,y) =
{
c ∈ Fnq : V r(x,y)cT = 0

}
. (3.2)

It is clear that an alternant code is also the linear space S ∩ Fnq where S is the GRS code over Fqm whose parity-check
matrix is V r(x,y). We also have the following lower-bounds on the dimension and the minimum distance of an alternant code.

Proposition 7. The dimension k and the minimum distance d of an alternant code Ar(x,y) satisfy k > n− rm and d > r.

As an alternant code Ar(x,y) of order r is a subset of a GRS code, it inherits the same decoding algorithm. It is therefore
able to decode r

2 as long as x and y are known. Eventually, we recall on another very famous alternant code called Goppa code.

Definition 13 (Goppa codes). The Goppa code G (x, γ) over Fq associated to a polynomial γ(x) of degree r over Fqm and an
n-tuple x of distinct elements of Fqm satisfying γ(xi) 6= 0 with 1 6 i 6 n is the alternant code Ar(x,y) of order r where

yi
def
= γ(xi)

−1.

17
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Among all the possible Goppa codes, the collection of binary Goppa code (q = 2) defined by means of a polynomial γ(z)
without multiple roots represents without any doubt the most important alternant codes. The reason is the fact that the minimum
distance is twice as large as the minimum distance of an alternant code.

Proposition 8. Let γ(z) be a polynomial with coefficients from F2m without multiple roots. Let x be an n-tuple of elements from
F2m such that γ(xi) 6= 0. Let us denote γ(z)2 by γ2(z). We then have G (x, γ) = G (x, γ2) and G (x, γ) comes up in [Pat75]
with a decoding algorithm that corrects t errors in O(t2m2) operations.

Projective Generalised Reed-Solomon Codes.

It will be more convenient sometimes to work with the projective plane Fqm
def
= Fqm ∪{∞} and to consider the class of projective

GRS codes which are slightly more general. A projective alternant code has a parity-check matrix of the form V r(x,y) where x
is an n-tuple of distinct elements from Fqm and y is an n-tuple of nonzero elements from Fqm . When xi = ∞, the i-th column
of V r(x,y) is equal to (0, . . . , 0, yi)

T . We can also define a projective alternant and Goppa code thanks to the convention
γ(∞)

def
= γr for γ(z) =

∑r
i=0 γiz

i.



Chapter 4

McEliece Cryptosystem

An important tool in public-key cryptography is the notion of one-way function. Loosely speaking, a function f : X → Y is
one-way if it is easy to compute f(x) for any x in X but it is hard for (almost) all y in Y to find x in X such that y = f(x).
Another important concept is the one of trapdoor. It represents a quantity that facilitates the inversion of a function. Anyone who
knows it is able to compute the pre-image of any element in the codomain. When a function is both one-way and has a trapdoor
then it is called a trapdoor one way-function. It forms the basis for getting a public-key cryptosystem.

Formally, a public-key cryptosystem should provide three algorithms: a key generation algorithm, an encryption algorithm E
and a decryption algorithm D. Given a (security) parameter κ ≥ 0, the key generation algorithm is a probabilistic polynomial-
time in κ algorithm. It outputs a pair (pk, sk) of public/private key. It also specifies a finite set X of the plaintexts. The algorithm
E is a (probabilistic) polynomial-time algorithm parameterized by pk such that on input x in X , it outputs c def

= Epk(x) also
called the ciphertext of x. The decryption algorithm D is a deterministic polynomial-time algorithm parameterized by sk such
that on input c outputs x def

= Dsk(c). The cryptosystem should satisfy the correctness property which imposes that the decryption
must undo the encryption:

∀x ∈ X, Dsk

(
Epk(x)

)
= x.

The general problem of decoding random linear codes is a potential candidate for building public-key cryptographic primi-
tives such as an encryption scheme. McEliece in [McE78] was the first the use this problem to propose a public-key cryptosystem.
The general idea is to start from a family of codes equipped with a polynomial-time decoding algorithm. The fundamental con-
cept of this proposal is to consider two equivalent representations of a code: one should facilitate the decoding, whereas from
the other one, the decoding should be impossible. Although his design principle is general, he explicitly advocated to use binary
Goppa codes [Gop70].

4.1 Description

One of the main cryptographic primitives in code-based public-key cryptography is the McEliece encryption [McE78]. We recall
that a linear code over a finite field Fq of q elements defined by a k × n matrix G (with k ≤ n) over Fq is the vector space C
spanned by its rows. G is chosen as a full-rank matrix, so that the code is of dimension k. The rate of the code is given by the
ratio k/n. Code-based public-key cryptography focuses on linear codes that have a polynomial time decoding algorithm. The
role of decoding algorithms is to correct errors of prescribed weight. We say that a decoding algorithm corrects t errors if it
recovers u from the knowledge of uG+ e for all possible e ∈ Fnq of weight t.

We now define the McEliece cryptosystem as it was given in [McE78].

Key generation.

Secret Key. The triplet (S,Gs,P ) of matrices defined over a finite field Fq over q = 2s elements. Gs is a full rank matrix
of size k × n, with k < n, S is of size k × k and is invertible. P is a permutation matrix of size n× n. Gs is chosen such that
its associated linear code has a polynomial-time decoding algorithm which corrects r errors.

Public key. The k × n matrixG def
= SGsP .

Encryption. A plaintext u ∈ Fkq is encrypted by choosing a random vector e in Fnq of weight r. The corresponding ciphertext
is c = uG+ e.

19
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Decryption. c′
def
= cP−1 is first computed from the ciphertext c. Let us notice that we have:

c′ = (uSGsP + e)P−1 = uSGs + eP−1.

Since the weight of eP−1 is r, the decoding algorithm recovers in polynomial timeuS and thus, the plaintextu by multiplication
by S−1.

What is referred to as the McEliece cryptosystem is this scheme with the particular choice of the binary Goppa codes defined
by monic irreducible polynomials.

4.2 Best Known Attacks
The minimum requirement for an encryption functionEpk is that it should be infeasible from a given ciphertext c and public data1

like the public key pk, ciphertexts, etc. to recover the corresponding plaintext x. The one-wayness of the McEliece encryption
function is directly linked to the following computational problem.

Definition 14 (McEliece Problem). Let G be a generator matrix of a binary Goppa code of length n 6 2m and dimension
k = n − tm where m and t are positive integers. Let x be a vector from (F2m)k and let e be a vector from (F2m)n of weight t

and let us set c
def
= xG+ e.

The McEliece Problem consists in finding x and e only fromG and c,

One possible way of solving this problem consists in devising a method that recovers the private key sk. This existence
of such a method is devastating because the encryption scheme becomes useless. This kind of attacks are called key-recovery
attacks.

But, it is also possible to recover a plaintext from a specific ciphertext without resorting to a key-recovery attack. In particular,
an attacker against the McEliece scheme would find the plaintext by applying general decoding methods on the public matrixG.
This category of attacks is called decoding attacks.

Key-recovery attacks. From the previous description of the McEliece cryptosystem, one would say that the private key is the
triple (S,Gs,P ). But, one may ask why an attacker who knows these three matrices would be able to decode any ciphertext.
Actually, the knowledge of Gs is useless for decoding because all the existing decoding algorithms requires to know in reality
the polynomial γ(z) and the support x. So they are the real secret quantities. The role of P is to increase the number of possible
choices of the support x. As for the matrix S, its role is fuzzy and is linked to the manner of creating the generator matrix Gs.
It is clear that if a Goppa code and more generally an alternant codes is given under the form of a (rectangular) Vandermonde
matrix, a decoder can be easily devised. Hence, the public matrix should not reveal this particular matrix and a way for hiding it
is to take another basis of the code. But, an attacker has always the possibility to transform the public matrixG into a systematic
one by a Gaussian elimination and this matrix is unique up to a permutation. Consequently, one may view S as the matrix that
sends any generator matrix to the one in systematic form. Hence, without loss of generality, we will always assume that G is
systematic. We will also assume that it describes here a binary Goppa code of length n = 2m obtained from a monic irreducible
polynomial γ(z) of degree r and coefficients from F2m . We seek a way to recover x and γ(z).

Currently, the best known key-recovery attack relies essentially on an exhaustive search. The idea consists in fixing a support
a = (a1, . . . , an) from Fn2m where the aj are different and enumerating monic polynomials s(z) of degree r with coefficients in
Fn2m until a code equivalent to the one defined byG is found. This last test is done through SSA algorithm [Sen00]. Empirically,
the complexity of this algorithm applied to binary Goppa codes is about O(n3) because, with high probability, the hull is trivial.
Using the assumption n = 2m, we see that the overall time complexity is therefore about O(nt+3).

This approach can be slightly improved in theory. One can reduce the search space by identifying polynomials that lead to
equivalent Goppa codes. The first work to use this principle is [Gib91]. It proposes to define a equivalence relation between
polynomials by means of the action of two types of permutations of F2m , namely the affine permutations τa,b(z) = az+ b with a
from F2m\{0} and b from F2m , and the Frobenius automorphisms z 7−→ z2

`

with 0 6 ` 6 m− 1. On can easily check that the
Goppa codes defined by the polynomials γ(z) and γ(az+ b) are equivalent. Furthermore, if we define the polynomial γ2

`

(z) as:

γ2
`

(z)
def
=

r∑
i=0

γ2
`

i z
i

then the Goppa codes defined by γ2
`

(z) and γ(z) are also equivalent. More exactly, we have:

G (x, γ) = G (x2` , γ2
`

)

where x2` def
= (x2

`

1 , . . . , x
2`

n ). By composing these two types of transformations, one would expect that about m(n − 1)n
polynomials would give equivalent Goppa codes.

1This kind of attack is called a Chosen Plaintext Attack (CPA).
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This can be improved by considering extended Goppa codes. We use the property that codes are equivalent if and only if the
corresponding extended codes are equivalent. We denote by G̃r(x, γ) the extended code of Gr(x, γ). It requires to introduce a
new symbol denoted by∞ that is added to F2m . This symbol enables to define projective Goppa codes by means of the projective
plane F2m

def
= F2m ∪ {∞}.

We will also focus on special kind of permutations called fractional transformations. Let a, b, c, d be elements from F2m

such that ad − bc 6= 0 and let us define ψ : F2m −→ F2m such that ψ def
=

az + b

cz + d
. The usual rules are used to evaluate ψ(z)

namely ψ(∞) = a
c and ψ(−dc ) =∞. Then if we use the notation xψ def

= (ψ(x1), . . . , ψ(xn)) for any vector x from (F2m)n and
by defining γψ(z) as being (cz + d)rγ

(
ψ(z)

)
, or equivalently,

γψ(z) =

r∑
i=0

γi(az + b)i(cz + d)r−i,

we can prove that:
G̃r(x, γ

ψ) = G̃r(x
ψ, γ).

Again, by composing ψ with any Frobenius automorphism, we obtain about m(n2 − 1)(n2 − n) equivalent extended Goppa
codes. Using the fact that there are less that nr/r monic irreducible polynomials of degree r, we see that the exhaustive search
can be theoretically reduced to:

nr

r
× 1

m(n2 − 1)(n2 − n)
× n3 ' 1

mr
nr−1.

In reality, the precise cost of this attack is related to the number of inequivalent Goppa codes. So the classification of Goppa
codes is paramount to assess exactly the security of [McE78]. This matter is still an open problem.

Decoding attacks. We know that there exist many general-purpose decoding algorithms in the literature [McE78, LB88, Leo88,
Ste88, vT90, CC94, CC95, Dum96, CC98, CS98, BLP08]. All these algorithms strive to find an error-free information set. We

know that the complexity can be upper-bounded by kω (nr)
(n−kr )

. Clearly, this complexity is always better than that of the best known

key-recovery attack. Consequently, the parameters of a McEliece cryptosystem are then generated to resist against decoding
attacks.

Reaction attack. We have said that the one-wayness is a necessary criterion for a secure encryption scheme. However it is
useless if we do not define exactly what kind of security is desired, or more precisely, what kind of threats against which we
want to be protected. Especially, one has to explicitly tell what is the amount of resource that an attacker has at his disposal.
For example, we can imagine a scenario [HGS99] where an attacker sends ciphertexts and waits for the receiver’s answers.
These latter do not need to be the corresponding plaintexts but can just be yes or fail2 for instance. This type of attack can be
implemented against the McEliece encryption. It is however assumed that the decoding algorithm is unable to correct more than
r errors. It starts from an intercepted ciphertext and then flips one bit to the other value and sends this modified ciphertext to the
receiver. Hence, if the flipped bit corresponds to a position where the initial error vector of weight r is not zero, then its weight
becomes r + 1. Otherwise, its weight decreases to r − 1. These two different situations will lead to two different answers from
the receiver. In one case, he will be able to say yes when the weight is r − 1. In the other case, his answer will be fail because
the weight is beyond its decoding capacity. This attack is also called reaction-attack and can be regarded as a weaker version
of a Chosen Ciphertext Attack (CCA). In this model, an attacker can have the corresponding plaintexts of the ciphertexts of his
choice.

Resent-message attack. The paper [Ber97] (See also [VDv02]) treats the situation where plaintext x is encrypted twice by
means to the McEliece encryption function. Let us say that the ciphertexts are c1 = xG+e1 and c2 = xG+e2 where e1 and e2
are both of weight r. An easy way to detect resent message is to compute the weight of z def

= c1 + c2. Clearly, the weight is less
than or equal to 2r when the same message has been sent because the sum of two ciphertexts corresponding to different plaintexts
would be of weight about n/2. The next point to observe is a zero position in z comes with high probability from zero positions
from e1 and e2. This is because the probability p1 that the same position in e1 and e2 equal 1 is

(
r
n

)2
whereas the probability

p0 that the same position is 0 is
(
1− r

n

)2
. As p0 � p1 an adversary can seek k information bits among the zero positions of z

because they are certainly get from positions where e1 and e2 are both zero. Actually, the number of zeros obtained from two
common ones between e1 and e2 is a def

= 1
2 (2r − wt(z)). In other words, these a positions will be misinterpreted as error-free

positions by the adversary. The probability prob (wt(e1 ∩ e2) = a) that e1 and e2 share a positions is:

prob (wt(e1 ∩ e2) = a) =

(
r
a

)(
n−r
r−a
)(

n
r

) .

2Even no response from the receiver can be interpreted as a fail.
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The average value of a is given by:

E {a} =

r∑
a=0

a prob (wt(e1 ∩ e2) = a) =
1(
n
r

) r∑
a=0

a

(
r

a

)(
n− r
r − a

)
=
r2

n
.

The value of E {a}when computed with cryptographic parameters, is very small. The strategy a attacker can adopt is to randomly
choose k among the n− wt(z) zero of z and he flips ` positions with 0 6 ` 6 E {a} until he founds k positions without errors.
The running time of this attack is about:(

n− E {wt(z)}
k

)(
k

E {a}

)
=

(
n− 2r + 2 r

2

n

k

)(
k
r2

n

)
since E {wt(z)} = 2r − 2E {a}. Again with concrete parameters, the time complexity is relatively small.

The resent-message attack and the reaction attack show that the one-wayness property is a necessary condition but it does not
cover situation where an adversary has more than public data at his disposal. The adequate security notion that should verify any
secure encryption function is the resistance against Adaptive Chosen Ciphertext Attacks (CCA2). In this model, a polynomial-
time attacker is allowed to ask an oracle to decrypt any ciphertext of choice. This is done in two steps3. The first step can be
regarded as a learning phase in which in he collects as much information as he wants. In the second phase the attacker mounts
an attack in order to achieve one precise goal. It can be recovering the private key, inverting the encryption function or simply
guessing some bits of a given ciphertext, etc. The least ambitious goal is when a (polynomial-time) adversary is unable to guess
the ciphertext that corresponds to a plaintext, even if he has chosen it in advance. This means that the knowledge of a particular
ciphertext does not give any information about the corresponding plaintext. This property is called indistinguishability or also
semantic security. Note that this notion implies to have a probabilistic encryption. In reality, this notion is formally defined by a
game involving a challenger and an adversary. First, the adversary chooses by himself two plaintextsm0 andm1 that he submits
to the challenger. The challenger picks at random one of the two plaintexts, encrypts it and sends it to the adversary. The latter has
to guess which one of the plaintext has been encrypted. An encryption scheme is said semantically secure or indistinguishable if
there does not exist a polynomial-time algorithm that solves the game with a probability better than 1

2 .

We have now all the ingredients to define what is the best preferred encryption scheme. When an encryption scheme is
qualified as Indistinguishable under an adaptative chosen ciphertext attack or (IND-CCA2), it means that there does not exist a
polynomial-time adversary with the most possible resources that achieves the simplest goal.

One may ask whether the McEliece scheme is IND-CCA2. Unfortunately, the answer is no because an adversary is always
able to recognize ciphertexts obtained from plaintexts of his choice. Let assume that he has chosen the plaintexts m0 and m1

from Fk2 and he receives from the challenger the ciphertext c corresponding under the public key G either to m0 or m1. He
then computes c+m0G and c+m1G. Clearly, one of these two vectors has a weight that equals r and the other has a weight
strictly greater than r. Indeed, if we assume for instance that c = m0G + e where e is of weight r. Then c +m0 = e1 and
c+m1G = (m0 +m1)G+ e. But the weight of (m0 +m1)G+ e is necessarily greater than r since the minimum distance
of the code defined byG is greater than or equal to 2r + 1.

We see that the encryption of [McE78] cannot be used as such. Indeed, the error vector e and the plaintextm has to be linked
as proposed in [VDv02]. Therefore, the scheme has to be modified “à la” OAEP (Optimal Asymmetric Encryption Padding)
[BR95] in order to become a semantically secure scheme. We will see in the following how this can be done.

4.3 Replacing Goppa Codes
Following McEliece’s pioneering work, several different public key cryptosystems based on the intractability of decoding a linear
code have been proposed [Nie86, GPT91, Sid94, JM96, BL04, BL05, BC07, BBC08, BCGO09, MB09]. We have seen that
McEliece’s proposal relies on irreducible binary Goppa codes. Except Niederreiter’s idea in [Nie86] which brought a significant
modification, all these encryption schemes can be seen as a slight variation of [McE78] because they keep the same principle
for encryption and decryption but use different family of codes. A variant of the McEliece cryptosystem is any public-key
cryptosystem that replaces binary Goppa codes by another family of codes. It is clear that McEliece’s idea is very generic and
hence can be used with any family of codes provided they can be decoded in polynomial time.

There are many reasons for suggesting such a change. Historically, the first one to design a significantly new code-based
cryptosystem is Niederreiter [Nie86]. The scheme considers parity-check matrices, and the plaintext messages have to be of
weight r. The corresponding ciphertexts are then the syndromes computed thanks to the public parity-check matrix. In terms of
security, these two schemes are totally equivalent: any attacker against one can be directly used against the other. Niederreter
also prompted to use Generalized Reed-Solomon codes as a possible alternative to binary Goppa codes. This work was then
followed by others with the hope to be as secure as McEliece’s proposal. Subcodes of Generalized Reed-Solomon codes were
also advocated in [BL05]. It was proposed in [Sid94] to use Reed-Muller codes. Algebraic-Geometric codes were suggested
in [JM96]. The Gabidulin-Paramonov-Tretjakov (GPT) cryptosystem considered Gabidulin codes devised for the rank-metric.
LDPC codes have also been repeatedly suggested in [MRS00, BC07, BBC08] for this use.

3In a classical Chosen Ciphertext Attack (CCA) scenario, there is only one step.
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Unfortunately, many of these schemes were broken [SS92, Gib95, MS07, OTD08, FM08, Ove08, Wie10, OTD10]. All these
attacks result in a total break of the system (the secret key, or an equivalent secret key is recovered from the knowledge of the
public key). For instance, Niederreiter’s suggestion to use Generalized Reed-Solomon codes turned out to be an insecure solution
[SS92]. This also the case with Reed-Muller codes [MS07]. The use of algebraic-Geometric codes becomes less and less secure
due to the works of [FM08] which break any cryptosystem with codes on curves of genus g 6 2. Recently this result was further
extended by [MCMMP11] where any code on curves of genus g and rate R satisfying one of the following conditions as n goes
to infinity:

γ 6 R 6
1

2
− γ, 1

2
+ γ 6 R 6 1− γ, 1

2
− γ 6 R 6 1− 3γ, 3γ 6 R 6

1

2
+ γ

with γ def
= g/n represents an insecure primitive. In particular, the union of these intervals is [γ, 1− γ] when and only when when

γ 6 1
6 . Eventually, it is shown in [Wie10] that GRS subcodes represent an insecure choice. As for the GPT cryptosystem, the

article [Ove08] proves that it cannot be considered as a trustworthy alternative.

However, these results do not affect the original McEliece cryptosystem. It remains unbroken because of the fact that the
best known attacks are exponential. Despite its impressive resistance against a variety of attacks and its fast encryption and
decryption, McEliece cryptosystem has not stood up for practical applications. This is most likely due to the large size of the
keys Indeed, the public keys are (binary) matrices which can be described at best4 by k(n−k) = R(1−R)n2 bits withR def

= k/n.
Currently, it is advocated to use n > 210 and generally R 6 3/4. So the number of bits necessary to store a public key is more
than 220 bits.

To overcome this limitation, a new trend initiated in [MRS00] and then followed by [Gab05, BC07, BBC08, BCGO09, MB09,
Per11, BLM11] tries to propose cryptosystems with a decreased key size. They all consider codes given by highly structured
generator (or parity-check) matrices. The advantage is to have very compact matrices so that they can be described from only
few rows. A famous example is the class of cyclic codes. A code C is cyclic if for any c = (c1, . . . , cn) from C , (c2, . . . , cn, c1)
also belongs to C . One can readily see that a cyclic code is stable under any right and left cyclic shift. It is well-known that a
cyclic code admits a generator matrix in almost5 circulant form.

Definition 15 (Circulant). A matrixA of size n× n is circulant if it is of the form:

A =


a1 a2 · · · an
an a1 · · · an−1
...

. . .
...

a2 · · · · · · a1

 .

The set of n× n circulant matrices over Fq is denoted by Cn(Fq).

Recently, a new kind of codes appeared in [MB09] called dyadic codes. These codes are defined for length n of the form
n = 2` where ` > 1. Next, the set of indices is not anymore {1, . . . , n} but Nn

def
= {0, . . . , n− 1} and each integer is identified

with its binary representation composed of ` bits. Finally, for any i and j from Nn, i ⊕ j is the integer in Nn obtained by the
bitwise “exclusive-or” from i and j which are of course viewed as sequences of ` bits. A code C is then dyadic if we have for
any c = (c0, . . . , cn−1) and for i in Nn the following property:(

c(0⊕i), c(1⊕i), . . . , c((n−1)⊕i)
)
∈ C

Such codes are also defined by very structured matrices naturally called dyadic matrices.

Remark 1. One sees that Nn equipped with the ⊕ operation is isomorphic to the vector space (F`2,+).

Definition 16 (Dyadic). Let ∆ = (∆i,j) with 0 6 i 6 n − 1 and 0 6 j 6 n − 1 be an n × n matrix. If we denote by
d = (d0, . . . , dn−1) the first row of ∆ then ∆ is dyadic if and only if ∆i,j = di⊕j . The set of n× n dyadic matrices over Fq is
denoted by Dn(Fq).

One realizes immediately the interest of cyclic and dyadic matrices in code-based cryptography: they are completely de-
scribed thanks to the first row. We will show that these two types of matrices and the corresponding linear codes fit in a wider
framework we called Φ-invariant codes.

4.4 Goppa Code Distinguishing Problem
The crucial issue regarding the one-wayness of the McEliece cryptosystem is to have a better idea of the difficulty of the McEliece
problem. We have seen that the only known methods that aim to solve it are based either on almost a exhaustive search of the
private key or on applying very general decoding methods. Both approaches run in exponential time. This situation is a sense
unsatisfactory because there is no certitude that there does not exist a better way to solve it.

4when the matrix contains k columns that form the identity matrix.
5Strictly speaking a generator matrix has to be of full rank but if we allow linearly dependant rows then a cyclic code admits a circulant generator matrix.
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A classical stance in code-based cryptography is to claim that binary Goppa codes look like random linear codes. It amounts
to saying that there does not exist a polynomial-time computable quantity which behaves differently depending on whether the
code is a Goppa or a random code. Currently, it is an open problem to establish a formal proof that would substantiate the claim
that a binary Goppa code is indistinguishable from a random code.

This assumption is clearly attractive because it enables to rely on the commonly admitted hardness of decoding a random
linear code to say that the McEliece function is hard to invert. This reasoning does make sense also because binary Goppa codes
share several common aspects6 with a randomly picked linear code. Furthermore, all the general decoding algorithms do not
exploit the information, even partially, that a matrix describes a Goppa code. Based on this, the authors of [CFS01] defined the
Goppa code distinguishing problem. Before defining this problem, we introduce some notation. For any n and k integers such
that k 6 n. We denote by Goppa(n, k) the set of k × n generator matrices of binary Goppa codes. Similarly, Random(n, k) is
the set of binary k × n random generator matrices.

Definition 17 (Goppa Code Distinguishing (GD) Problem). A distinguisher D is an algorithm that takes as input a matrix G
and returns a bit. D solves the GD problem if it wins the following game:

• b← {0, 1}

• If b = 0 thenG← Goppa(n, k) elseG← Random(n, k)

• If D(G) = b then D wins else D loses.

Definition 18. The advantage AdvGD(D) of a GD distinguisher D is defined by:

AdvGD(D)
def
=
∣∣∣Pr[D(G) = 1 : G← Goppa(n, k)]− Pr[D(G) = 1 : G← Random(n, k)]

∣∣∣
where Pr[D(G) = 1 : G← Goppa(n, k)] is the probability that D outputs 1 when G is a random binary generator matrix of a
Goppa code, and Pr[D(G) = 1 : G← Random(n, k)] is the probability that D outputs 1 whenG is a binary random matrix.

Definition 19. A function ε(k) is said negligible if for any integer a > 0, there exists an integer ka > 0 such that:

∀k > ka, ε(k) <
1

ka

The interest of negligible function is to offer the possibility of keeping the probability that an event occurs negligible even
after polynomially many tries. This notion will be fundamental when breaking for instance cryptographic primitives. We are
now able to state an important assumption7.

Assumption 1 ([CFS01]). AdvGD(D) is negligible for any polynomial-time algorithm D that solves the GD problem.

Note that up to our recent work in [FGUO+11], the only known algorithm that solves the Goppa code Distinguishing problem
enumerates binary Goppa codes and tests with SSA algorithm the code equivalence. We have seen that this approach runs in time

O(
nr−1

mr
). Recall finally that for binary Goppa codes, m 6 log n and r = 1

m (1−R)n.

4.5 Semantically Secure Conversions
The fundamental issue when dealing with cryptographic primitives is to prove its security. Several approaches are possible. The
most natural one is to show that the primitive resists to the best known attacks. However, this does not guarantee that there will
not appear one day a better attack that renders the primitive insecure. The methodology of security proof by reduction appeared
to remedy this question by linking a security notion that a cryptographic primitive should verify to an algorithmic problem widely
considered as hard. The approach is similar to the one that proves the NP-Completeness of a given problem. Such a “security
proof” proves that if an attacker exists then it can be used as a subroutine to solve a hard problem. In other words, such an
attacker has little chances to exist.

We have enumerated a list of the existing attacks against [McE78]. We have seen that under the CPA model, the best attack
belongs to the family of decoding attacks. But, under the CCA model, the cryptosystems can be broken very easily. These results
prompt code-based cryptographer to design conversions that would to an IND-CCA secure encryption scheme. The first article to
propose such a conversion for the McEliece cryptosystem is [KI01] which proposes a conversion of [McE78] that is IND-CCA2
in the Random Oracle Model under the assumption that the problem of decoding random linear codes is difficult. This works was
then followed by [NIKM08] which proposes another modification while providing an IND-CPA secure encryption scheme in
the standard model8 under the assumptions that both decoding random linear codes and distinguishing Goppa codes are difficult
problems. Finally, it was then improved in [DMQN09] which shows that under the same assumptions, (a modified) McEliece
cryptosystem is IND-CCA2 in the standard model.

6Like random codes, Goppa codes asymptotically meet the Gilbert-Varshamov bound. They have also a trivial permutation group like random codes.
7According to [CFS01], proving or disproving the hardness of the GD problem will have a significant impact: “Classification issues are in the core of coding

theory since its emergence in the 50’s. So far nothing significant is known about Goppa codes, more precisely there is no known property invariant by permutation
and computable in polynomial time which characterizes Goppa codes. Finding such a property or proving that none exists would be an important breakthrough
in coding theory and would also probably seal the fate, for good or ill, of Goppa code-based cryptosystems”.

8There is no hash function in this model
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Chapter 5

Group Invariant Codes

5.1 Motivation
This chapter is devoted to giving a general framework that encompasses cyclic and dyadic codes. We will see that in fact these
matrices can be viewed as the same objects once an appropriate algebra is set. This will permit us to have a better understanding
of the encryption schemes based on very structured matrices (circulant and dyadic) from both designer’s and cryptanalyst’s
perspectives.

Firstly, we have seen that all the cryptosystems proposed in [Gab05, BC07, BBC08, BCGO09, MB09, Per11, BLM11] use
codes that are stable under the action of a known and easily computable set of mappings, or more exactly a set of permutations.
The common point of all these permutations is to belong to a certain group that globally stabilize the codes. This aspect can be
formalized more precisely. Let us consider a code C of length n and dimension k over Fq . We denote by Sn the symmetric
group of order n and let N be the set of non-negative integers. Let us assume that there exists a set Φ = {φi : i ∈ I} where
I ⊂ N and φi is from Sn. We also assume that C is stable under the action of Φ:

∀φ ∈ Φ,∀c ∈ C , cφ ∈ C

with cφ meaning (cφ−1(1), . . . , cφ−1(n)). We give now a definition that will be useful for the sequel.

Definition 20. A code C is Φ-invariant if C is stable under the action of Φ.

The set of matrices of size k × n with k > 1 and n > 1, and entries in a commutative ring A is denoted by Mk,n(A).
Furthermore, we will always assume that 0 belongs to I and φ0 is the identity function.

Definition 21. Let ` be the cardinality of I . We define Φ : Fnq −→M`,n(Fq) as the mapping that sends v from Fnq to the matrix
Φ(v) whose i-th row is φi(v).

A generator matrix of a Φ-invariant C is then obtained by first picking a codeword a from C and next checking whether or
not the set Φ(a) is a generating set of C as a vector space. If that is not the case then another b is picked from C . If the linear
space spanned by Φ(a) ∪ Φ(b) is not equal to C then another c is picked, and the process continues so on until enough vectors
are picked to generate C . One sees that the representation of C is just reduced to the vectors {a, b, c, . . . }. The other codewords
are reconstructed thanks to Φ.

5.2 Fq[G]-Algebra
The main question with Φ-invariant codes is to exhibit interesting mappings φ. There exists a general approach for dealing with
this point. We will see for instance that cyclic and dyadic codes actually comply with the following principle. Let us assume that
the set of indices {1, . . . , n} is in one-to-one correspondence with a commutative group (G,+) of order n. For simplicity, we
use the formal summation

∑
g∈G vgX

g where vg is from Fq to denote a vector v = (v1, . . . , vn) from Fnq . This new formalism
will enable to view Fnq as the ring algebra Fq[G] with:

Fq[G]
def
=

∑
g∈G

vgX
g : ∀g ∈ G, vg ∈ Fq

 .

We recall that Fq[G] is a commutative ring where the addition of
∑
g∈G vgX

g and
∑
g∈G wgX

g is of course
∑
g∈G(vg+wg)X

g ,
and the product operation × is defined as:∑

g∈G
vgX

g

×
∑
g∈G

wgX
g

 =
∑
g∈G

 ∑
h+`=g

vhw`

Xg.
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We will exclusively consider the set of maps Φ = {φg : g ∈ G} where φg : G → G is defined by φg(z) = z + g. In
particular, we have ` = n. Circulant and dyadic matrices fit precisely in that framework as shown by the following examples.

Example 1. One can easily check that for cyclic codes of length n, G is the cyclic group (Zn,+) with n elements. In particular,
Fq[Zn] is exactly the quotient polynomial ring (Fq[X]/(Xn − 1),+,×).

Example 2. Dyadic codes of length n are obtained with n = 2` for some integer ` > 1 and a group G that is equal to (F`2,+).

From now on, Fnq = Fq[G] and we set Φ(Fq[G])
def
= {Φ(v) : v ∈ Fq[G]} which is clearly a subset of the ring Mn,n(Fq). In

particular, when G = Zn then Φ(Fq[G]) = Cn(Fq) (Definition 15 in Chapter 4). When G = F`q then Φ(Fq[G]) = Dn(Fq) with
n = 2` (Definition 16 in Chapter 4). The following proposition shows actually that Φ(Fq[G]) is always a ring because Φ is an
injective ring morphism.

Proposition 9. (Φ(Fq[G]),+,×) is a commutative ring isomorphic to (Fq[G],+,×).

Proof. Let us fix v =
∑
g∈G vgX

g and w =
∑
g∈G wgX

g from Fq[G], and let us denote their product by z =
∑
g∈G zgX

g .
The only difficult point is to prove:

Φ(z) = Φ(v)× Φ(w).

To do so, we will show that entries of Φ(z) are equal to those of Φ(v) × Φ(w). For the sake of simplicity, let us denote by A
this last matrix. The entry of Φ(z) at the row indexed by g and at the column indexed k with g and k in G is equal to the entry at
column k of the vector zφg , that is to say to zk−g . But we know that:

zk−g =
∑

h+`=k−g

vhw`.

On the other hand, the entry ag,k verifies the equality:

ag,k =
∑
`∈G

v`−gwk−` =
∑

h+`=k−g

vhw` = zk−g

which concludes the proof.

Corollary 1. (Cn(Fq),+,×) and (Fq[X]/(Xn − 1),+,×) are isomorphic.

This important property about Φ(Fq[G]) of being a commutative ring can be harnessed to build other interesting matrices.
Indeed, we can consider now matrices with entries from Φ(Fq[G]). Such matrices are actually block matrices where each block
is from Φ(Fq[G]). In the remaining and thanks to Proposition 9, they will be treated as matrices with entries in Fq[G]. The
operations of addition and multiplication are then well-defined and clearly satisfy the axioms of a ring. This kind of matrices are
used for instance to build quasi-cyclic and quasi-dyadic codes.

Definition 22. A linear code of N with N = bn for some integer b > 1 is quasi-cyclic (resp. quasi-dyadic) of order n if it is
defined by a block (generator or parity-check) matrix where each block is an n× n circulant (resp. dyadic) matrix.

5.3 Φ-Invariant Codes in Cryptography
The existence of codes invariant under the action of some specific transformations Φ = {φi : i ∈ I} while being equipped with
an efficient decoding algorithm is an important issue in coding theory and cryptography. They represent what is being ardently
sought over decades because they combine both time and memory efficiency. Furthermore, it is a challenge to use such codes in
cryptography in order to come up with a secure and efficient McEliece-like encryption scheme. Concretely, a cryptographer has
to focus on a set of transformation Φ and then identify among the existing families of codes having a decoding algorithm those
that contain Φ-invariant codes. Eventually, these schemes has to propose public matrices that are derived from secret Φ-invariant
codes. In particular, the transformation S and P applied to the secret matrices have to preserve the Φ-invariant property.

Currently, there are (at least) five McEliece variants with a reduced representation. They can be divided into two branches:
one includes variants that use quasi-cyclic codes [Gab05, BC07, BBC08, BCGO09], and the other is based on the use of quasi-
dyadic codes [MB09, Per11, BLM11]. The encryption schemes that used precisely this type of codes are the following:

• Quasi-cyclic case: subcode of BCH code ([Gab05]), LDPC code ([BC07]), alternant code ([BCGO09]).

• Dyadic case: classical Goppa code ([MB09]), Srivastava code ([Per11]).

We will focus more particularly in the four proposals [Gab05, BC07, BCGO09, MB09]. We will show how to cryptanal-
yse them either by specific methods [OTD08, OTD10] or by a more general technique [FOPT10a] that covers the McEliece
cryptosystem.



Chapter 6

Cryptanalysis of a Quasi-Cyclic BCH Scheme1

6.1 Description

BCH codes are well-known cyclic codes that can be decoded efficiently. Moreover, cyclic codes of length n over Fq are com-
pletely determined by a unique monic polynomial in Fq[X] that dividesXn−1. Consequently, there is one-to-one correspondence
between cyclic codes and divisors of Xn − 1. It is thus illusory to use them in a McEliece-like cryptosystem.

The idea of [Gab05] is to consider subcodes of a (cyclic) BCH code C0 of length N and dimension K. By doing so, it
“artificially” increases the number of possible codes, and hence preventing from an attack based on an exhaustive search. It is
assumed that N = nN0 for some non-negative integers n and N0. The key generation algorithm consists in picking randomly k0
codewords c1, . . . , ck0 from C0 where k0 is the greatest integer such that k0n 6 K − n. For the sake of simplicity, we assume
that there exists K0 such that K = nK0 so that k0 = K0 − 1. These codewords will serve to define a quasi-cyclic code C of
dimension k def

= nk0. A generator matrix of C is obtained by repeatedly block shifting each ci. The resulting matrix is a k ×N
block matrix Gs = (Bi,j) 16i6k0

16j6N0

where Bi,j is an n × n circulant matrix. To build the public generator matrix, S and P are

random block matrices with circulant blocks. Actually, the role of P is to reorder the blocks. There is therefore a permutation
π such that GsP =

(
Bi,π−1(j)

)
16i6k0
16j6N0

. Hence π belongs to the symmetric group SN0 of degree N0 and if we denote by Π

the N0 ×N0 matrix associated to π, we have P = Π⊗ In where In is the n× n identity matrix and ⊗ denotes the Kronecker
product according to the following definition.

Definition 23. The Kronecker product of two matricesA = (ai,j) andB = (bi,j) with entries in a commutative ringA denoted
byA⊗B is:

A⊗B def
= (ai,jB) .

6.2 Key-Recovery Attack

We describe the method we proposed in [OTD10] that recovers the secret permutation π. It exploits three facts:

1. The code C0 admits a binary (N −K) ×N parity check matrix H0 which can be assumed to be known. There are only
a few different primitive BCH codes and we can try all of them. This is a consequence of the fact that the number of such
codes is clearly upper-bounded by the number of primitive polynomials of degree m with N 6 2m.

2. Since C is a subcode of C0, any n-bit codeword c of C must satisfy the equation:

H0c
T = 0.

3. Finding Π actually boils down to solving a linear system of n20 unknowns representing the entries of Π−1 such that:

H0ΠG
T = 0.

Each row of G provides (N −K) binary linear equations. Thus the total number of linear equations is k(N −K) = n2(K0 −
1)(N0 − K0) that are satisfied by N2

0 unknowns. The parameters proposed in [Gab05] are such that n > N0. Hence, the
linear system is heavily over-constrained. For instance, Parameters A give 2, 025 unknowns that satisfy 695, 604 equations, and
Parameters B give 529 unknowns and 316, 840 equations. Many of these equations are obviously linearly dependent. The success
of this method depends on the size of the solution vector space. An implementation in Magma software actually always gave in
both cases a vector space of dimension one which is the secret permutation.

1This chapter is partially taken from [OTD10].
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6.3 Conclusion
Our attack on the cryptosystem [Gab05] aims at recovering the permutation matrix P . We have seen that the role of the permuta-
tion matrix P in the McEliece cryptosystem is to increase the number of secret support vectors x. The idea of the attack against
[Gab05] is to fix a code C0 for which a decoding algorithm is known and for which the public code is permutation equivalent
to it. It then sets up a linear system that the entries of the permutation matrix necessarily satisfy. In the case of the McEliece
cryptosystem with a public code of length n and dimension k, this method could not reveal it because the number of equations is
n(n− k) and the number of unknowns is n2.

As for the scheme of [Gab05], there exists essentially a single code C0. Furthermore, P has to be chosen among a subset of
all the possible permutations. It results in a permutation matrix defined by only n20 entries with n0 < n and secondly, the linear
system has many more linear equations that n20. In practise, we obtain a linear system with a single solution.

This result shows that focusing on an extremely large family of codes is not a sufficient condition for ensuring a secure
scheme. In particular, the idea of artificially adding diversity by considering subcodes of a given code can be annihilated.
Secondly, it demonstrates that any technique of key-size reduction has to take into account of the real impact on the number of
unknowns that model the cryptosystem and how they can be exploited to devise an attack. Finally, the efficiency of our attack
proves that the scheme of [Gab05] could not be repaired.



Chapter 7

Cryptanalysis of a Quasi-Cyclic LDPC Scheme1

7.1 Description
LDPC codes are linear codes defined by sparse parity-check matrices. This sparsity is exploited to devise efficient decoding
algorithms. Classically, they are decoded by an iterative algorithm which can be assimilated to an instance of the more general
Belief Propagation algorithm.

The main challenge when using LDPC codes in cryptography is to prevent an attacker to reconstruct a sparse parity-check
matrices. Hence, the public code defined by G should not have low-weight codewords in its dual. This represents clearly a
weakness as demonstrated by the work [MRS00]. The other disadvantage of using LDPC codes is the constraint of taking very
long codes in order for the iterative decoding algorithm to perform well.

The article [BC07] attempts to solve these two points by first proposing a way to both eliminate the presence of low-weight
codewords in the dual and to decrease the size of matrices through the use of quasi-cyclic matrices. As in [BC07], we consider
LDPC codes of length n = pn0 and dimension k = p(n0 − 1) defined by a parity-check matrixH of the following form:

H =
(
H1 · · · Hn0

)
(7.1)

where each matrix Hj is a sparse circulant matrix of size p × p. Without loss of generality, Hn0 is of full rank. Each column
ofH has a fixed weight dv which is very small compared to the length n. We also assume that one has a good approximation of
the number t of correctable errors through iterative decoding of the code defined byH .

Unlike the McEliece cryptosystem, the encryption scheme of [BC07] does not take a permutation matrix P but an n × n
invertible matrixQ such that the weight of each row and each column ismwhich is a integer appropriately chosen. The invertible
k × k matrix S has also a particular constraint: each row and each column is of weight s. The private key consists of the triple
(S,H,Q). The public key G is the matrix S−1G′Q−1 where G′ is a generator matrix in row reduced echelon form deduced
from H . The plaintext space is Fk2 and the ciphertext space is Fn2 . The encryption of x ∈ Fk2 requires to randomly pick an n-bit
vector e of weight t′ 6 t/m. The corresponding ciphertext is c = xG+ e. The decryption step consists in iteratively decoding
cQ = xS−1G′ + eQ to output z = xS−1 and then computing x = zS. The crucial point that makes this cryptosystem valid
is that the weight of eQ is always less than or equal to t′m 6 t.

It is suggested in [BC07] to take a matrix Q in diagonal form and to attribute the following values: p = 4032, n0 = 4,
dv = 13 , m = 7 and t = 190 (t′ = 27). Finally, each circulant block of S has a column/row weight equals to m so that
s = m(n0 − 1).

From now on, we use the notation S = (si,j)16i6n0−1
16j6n0−1

and Q = (qi,j)16i6n0
16j6n0

where si,j and qi,j are from F2[Zp] '

F2[X]/(Xp − 1). By assumption, qi,j = 0 when i 6= j. For the sake of simplicity, we set qi
def
= qi,i. Since Q is invertible, qi is

also necessarily invertible modulo Xp − 1

7.2 Key-Recovery Attack
We have derived in [OTD10] a cryptanalysis that recovers the secret code C defined byH . The attack fully exploits the fact that
Q is diagonal. It is straightforward to see thatG′ verifies:

G′ =

 (H−1n0
H1)T

Ik
...

(H−1n0
Hn0−1)T

 .

1This chapter is taken from the articles [OTD08, OTD10].
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In others words, ifG6k is the restriction ofG to the first k columns then we have:

G6k = S−1 ×


q−11 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 q−1n0−1

 .

Let us denote the entries ofG−16k from F2[X]/(Xp − 1) by ri,j with 1 6 i 6 n0 − 1 and 1 6 j 6 n0 − 1. Clearly, we have:

ri,j = qi · si,j mod (Xp − 1). (7.2)

On can prove that, as q and s are of low weight, the weight of r is m2 with high probability [OTD10]. This means that
among the nonzero positions of r, some should belong to qi shifted by a certain number of times. So, one possible strategy to
recover the polynomial qi consists in enumerating m-tuples

∑
i∈Zp uiX

i that belong to the set of nonzero positions of ri,j until

u−1ri,j is of weight m for each integer j such that 1 ≤ j ≤ n0 − 1. The cost of this method is O
((
m2

m

)
· p2
)

. It corresponds to

250.3 operations for the parameters proposed in [BC07].

Actually, one can perform a better attack as explained in [OTD10]. Let us set di,j
def
= ri,jr

−1
i,1 and consider the quasi-cyclic

code Ei defined by the following generator matrix:

Ei =
(
Ip di,2 · · · di,n0−1

)
.

Ei contains at least p codewords of low weight (n0 − 1)m = 3× 7 = 21 since

si,1 ×Ei =
(
si,1 si,2 · · · si,n0−1

)
.

It is hence easy to recover si,1, . . . , si,n0−1 by applying an algorithm dedicated to the search of low-weight codewords in a linear
code. For instance, the time complexity of Stern’s algorithm is 232. After recovering S, q1, . . . , qn0−1, one has at his disposal
the matrix:

G′ ×


Ip 0 · · · 0

0
. . . . . .

...
...

. . . Ip 0
0 · · · 0 q−1n0

 =

 a1

Ik
...

an0−1


with ai

def
= (h−1n0

hi)
T × q−1n0

for 1 ≤ i ≤ n0 − 1, and where for any v from F2[Zp], zT represents the unique element of F2[Zp]
that defines the transpose of the circulant matrix defined by v.

We recall that h1, . . . ,hn0 and qn0
are still unknown. Let us observe that (aia

−1
i′ )T = hih

−1
i′ whenever hi′ is invertible.

Thus by defining bi,j
def
= (aia

−1
j )T and observing that bi,jhj = bi,j′hj′ = hi, one sees that the code defined by the generator

matrixGi
def
=
(
b1,i · · · bi−1,i Ip bi+1,i · · · bn0−1,i

)
contains low-weight codewords. Indeed, we have:

hi ×Gi =
(
h1 h2 · · · hn0−1

)
.

The minimum distance of this code is less than or equal to (n0 − 1)dv . For instance, the work factor of Stern’s algorithm for
searching codewords of weight (n0 − 1)dv = 3 × 13 = 39 in a code of dimension p = 4032 and length p(n0 − 1) = 12096 is
about 237 operations.

Once h1, . . . ,hn0−1 are recovered, f i
def
= (hTi )−1ai = (h−1n0

)Tq−1n0
is computed for any integer i with 1 ≤ i ≤ n0− 1. Here

again recovering the remaining secret quantities hn0
and qn0

can be done for instance by seeking low-weight codewords in the
code defined by the generator matrix

(
Ip f i

)
.

7.3 Conclusion
The scheme presented in [BC07] introduced a new technique to generate a public code from a secret LDPC code. Instead of
taking a permuation matrix P , it rather uses a matrix Q where each row/column has a small weight > 1. It is also based on a
sparse secret matrix S for efficiency reasons. The attack against [BC07] that we described here fully exploits that sparsity of
S. A natural reparation would be to remove this sparsity constraint. Actually, it is an open problem to know if there exists an
efficient attack against this new scheme, and more importantly, a challenging issue is to propose a security reduction.



Chapter 8

Cryptosystems Based on Φ-Invariant Alternant
Codes

The numerous unsuccessful attempts for designing a secure alternative to the McEliece cryptosystem lead us to believe that
Goppa codes represent the only possible choice, or if not so, that any variant should be as close as possible to them. Especially,
from a key-size reduction perspective, it is fundamental for example to identify Φ-invariant Goppa codes. Recently two works
[BCGO09, MB09] decided to concentrate on alternant codes. They are based on quasi-cyclic alternant codes in [BCGO09] and
quasi-dyadic Goppa codes in [MB09]. The approach is quite attractive because it results in an important improvement in the
reduction of the public key size. In [BCGO09], the size ranges between 8, 000 and 20, 000 bits, whereas it lies between 4, 000
and 20, 000 bits in [MB09]. The goal of this chapter is briefly to describe these two proposals.

8.1 Quasi-Cyclic Alternant Encryption Scheme
We present here the cryptosystem we designed in [BCGO09]. It consists in building quasi-cyclic alternant codes over Fq with
28 6 q 6 216.

It is well-known that Reed-Solomon codes over any field are cyclic. We propose to reorder the coordinates in order to obtain
quasi-cyclic Reed-Solomon over a fixed field Fq . Let α be a primitive element of Fqm and let us set N = qm − 1. We assume

thatN = N0` and we define β def
= αN0 . Clearly, β is of order `. Let t be a positive integer and letU2t

def
=
(
A0 · · · AN0−1

)
be the block parity-check matrix where for any integer j such that 0 6 j 6 N0 − 1:

Aj
def
=


1 1 · · · 1
αj αjβ · · · αjβ`−1

...
...

...
(αj)2t−1 (αjβ)2t−1 · · · (αjβ`−1)2t−1

 . (8.1)

Proposition 10 ([BCGO09]). The code of length N defined by the parity-check matrix U2t is quasi-cyclic of order ` and
dimension K with N −K = 2t+ 1.

This code will be used to obtain a quasi-cyclic alternant code of index ` over Fq and length n def
= n0` with n0 < N0. The idea

is to successively apply three operations that preserve the quasi-cyclic feature:

1. Randomly block shortening the code in order to obtain a code of length n = n0` with n0 < N0.

2. Multiplying each column by a nonzero scalar from Fqm to get a quasi-cylic generalized Reed Solomon code of length n.

3. Performing the subfield subcode operation over Fq .

We give the different steps of the key generation algorithm of the cryptosystem [BCGO09]. Let n0 be an integer such that
n0 < N0. This step consists in randomly choosing n0 different circulant blocks Aj1 , . . . ,Ajn0

of the parity-check matrix U2t.
Let us insist that we do not have necessarily j1 6 j2 6 · · · 6 jn0 . We then consider the code of length n = `n0 over Fqm defined

by the following parity-check matrix V 2t
def
= ( Aj1 Aj2 · · · Ajn0

). Next, for any integer s such that 1 6 s 6 `− 1,
letDs = (di,j) be the `× ` diagonal matrix such di,i = (βs)

i−1, that is to say:

Ds =


1

βs

. . .
(βs)`−1

 . (8.2)
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We consider now an n0-tuple a = (a1, . . . , an0) of nonzero elements from Fqm and an integer s with 1 6 s ≤ `− 1. Let Q be
the 2t× n block parity-check matrixQ =

(
Q1 · · · Qn0

)
with for any i such that 1 6 i 6 n0:

Qi
def
= aiAjiDs. (8.3)

This matrix defines a generalized Reed-Solomon code of length n that is quasi-cyclic of order ` and dimension K = N − 2t.

The public key is then a k × n generator matrix of the alternant code over Fq defined by the parity-check matrix Q. The
integer t is chosen such that k, which is necessarily equal to n− 2tm, is multiple of `. Hence, there exist k0 such that k = k0`.
The public matrix G is then a block matrix G = (Gi,j) where each block Gi,j is an ` × ` circulant matrix. Finally, the private
key is composed of (j1, . . . , jn0), the integer s and (a1, . . . , an0).

8.2 Quasi-Dyadic Goppa Code Encryption Scheme
The cryptosystem presented in [MB09] considers particular alternant codes called quasi-dyadic Goppa codes. The scheme in
[MB09] takes a Goppa code over Fq of length n 6 qm defined by a polynomial γ(z) of degree ` with coefficients in Fqm and for
which x is an n-tuple of distinct elements from Fqm and such that x does not contain a root of γ(z). The scheme enforces γ(z)
to have ` distinct roots z = (z0, . . . , z`−1) from Fqm so that we have:

γ(z) =

`−1∏
i=0

(z − zi).

In that special case G (x, γ) admits a parity-check matrix C(z,x) in Cauchy form [MS86, p. 345], that is to say:

C(z,x)


1

z0 − x1
· · · 1

z0 − xn
...

...
1

z`−1 − x1
· · · 1

z`−1 − xn

 .

The goal of the scheme [MB09] is build a Goppa code that admits a parity-check matrix that is both a Cauchy matrix and a block
matrix where each block is dyadic. An `× ` matrix ∆ = (∆i,j) with 0 ≤ i ≤ `− 1 and 0 ≤ j ≤ `− 1 is dyadic if and only if
∆i,j = hi⊕j where ⊕ is the bitwise exclusive-or on the binary representation of the indices and h = (h0, . . . , h`−1) is the first
row of ∆. Let h = (h0, . . . , hN−1) be a vector of FNqm with ` ≤ N . We denote by ∆`(h) = (∆i,j) the `×N matrix such that
∆i,j = hi⊕j . One can easily observe that ∆`(h) is the juxtaposition of N0 dyadic matrices of size ` × ` when N = N0` for
some integer N0. Proposition 11 proved in [MB09, Theorem 2] characterizes dyadic Cauchy matrices.

Proposition 11. A necessary and sufficient condition for ∆`(h) to be a Cauchy matrix C(z,x) is that Fqm is of characteristic
2 and for any i, j in {0, . . . , N − 1} we have:

1

hi⊕j
=

1

hj
+

1

hi
+

1

h0
. (8.4)

Furthermore, for any θ ∈ Fqm and for any z∗i = 1/hi + θ and x∗j = 1/hj + 1/h0 + θ, the Cauchy matrix C(z∗,x∗) is equal to
∆`(h).

The public generator matrixG is then a k × n block matrix where each block is an `× ` dyadic matrix with ` being a power
of 2. The entries ofG belong to Fq and the integers k and n are chosen such that n = n0` and k = n−m` = `(n0 −m) where
n0 is some integer and m defines the extension Fqm . The matrix G is obtained from a secret ` × n block parity-check matrix
H =

(
∆`(f0) · · · ∆`(fn0−1)

)
where each block ∆`(f j) with 0 6 j 6 n0 − 1 is an ` × ` dyadic matrix and f j is a

vector of F`qm such that:
f j = γj

(
hωj`⊕dj , h(ωj`+1)⊕dj , . . . , h((ωj+1)`−1)⊕dj

)
where h = (h0, . . . , hN−1) is a random vector of FNqm that satisfies Equation (8.4) and such that N = N0` for some integer
N0 � n0. The integers ωj , dj are chosen such that 0 6 ωj 6 N0 − 1 and 0 6 dj 6 ` − 1. The coefficients γj are non zero
elements of Fqm . Note that the integers ωj’s are different. The secret key consists then of the vectors h, ω = (ω0, . . . , ωn0−1),
d = (d0, . . . , dn0−1) and γ = (γ0, . . . , γn0−1).



Chapter 9

Algebraic Cryptanalysis1

Algebraic cryptanalysis is a general framework that permits to assess the security of theoretically all cryptographic schemes. So
far, such type of attacks has been applied successfully against several multivariate schemes and stream ciphers. The principle is
to associate to a cryptographic primitive a set of algebraic equations. The system of equations is constructed in a way to have a
correspondence between the solutions of this system, and a secret information like for instance the secret key of an encryption
scheme.

We have shown in [FOPT10a] that it is possible construct for the McEliece cryptosystem an algebraic system that a private
key has to satisfy. We emphasise that this algebraic approach can be mounted against any McEliece-like cryptosystem as long as
the considered codes are alternant codes. It is also important to recall that a Goppa code is a particular alternant code. This will
be exploited to propose key-recovery attacks2 against any cryptosystem based on alternant codes [McE78, BCGO09, MB09].

9.1 Algebraic Key-Recovery Attack
We explain more precisely how we construct the algebraic system. As explained, the McEliece cryptosystem relies on Goppa
codes which belong to the class of alternant codes and inherit from this an efficient decoding algorithm. For the ease of pre-
sentation, we will consider the public key G = (gi,j) as a generator matrix of an alternant code over Fq of length n 6 qm and
dimension k obtained by means of the n-tuple x of distinct elements xj from Fqm and the n-tuple y of nonzero elements yj from
Fqm . Let us recall gi,j belongs to Fq and k > n−mr. The key feature about an alternant code is the following fact.

Fact 1. It is possible to decode r/2 errors in polynomial-time with an alternant code of degree r whenever a parity-check matrix
is given in the form of V r(x,y).

This fact has an important consequence for any McEliece-like cryptosystem based on alternant codes. The private key is
therefore any vectors x∗ and y∗ from Fnqm such that the following equation V r(x

∗,y∗)GT = 0 holds, or equivalently:
y∗1 · · · y∗n
y∗1x
∗
1 · · · y∗nx

∗
n

...
...

y∗1(x∗1)r−1 · · · y∗n(x∗n)r−1


 g1,1 · · · gk,1

...
...

g1,n · · · gk,n

 = 0. (9.1)

Let X def
= (X1, . . . , Xn) and Y def

= (Y1, . . . , Yn) be 2n unknowns where Xi corresponds to x∗i and Yi to y∗i . We see that finding
the matrix as in (9.1) is equivalent to solving the following system of polynomial equations defined for any integer i and j such
that 1 6 i 6 k and 0 6 j 6 r − 1:

gi,1Y1X
j
1 + · · · + gi,nYnX

j
n = 0. (9.2)

Let us notice that the solutions are seen in Fqm whereas the entries gi,j are in the subfield Fq . Furthermore, we see that this
polynomial system is highly structured. It is also very sparse as the only monomials occurring are of the form YiX

j
i . Moreover

each block of k equations obtained when i varies while j is fixed, is bihomogeneous i.e. homogeneous if the variables of X and
Y are considered alone. We define this notion more formally.

Definition 24 ([FSS11]). A polynomial P (X,Y ) from Fqm [X,Y ] is said to be:

• bihomogeneous of bi-degree (a, b) if P (αX, βY ) = αaβbP (X,Y ) for any α and β from Fqm .

• bilinear if it is of bi-degree (1, 1).

• affine bilinear if there exists a bilinear polynomial Q(X,Y ) and a nonzero element α from Fqm such that P (X,Y ) =
Q(X,Y ) + α.

1This chapter is taken from the articles [FOPT10a, FOPT10b].
2An independent work [UL09] also proposes key-recovery attacks against [BCGO09, MB09].
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The existence of an algebraic polynomial system highlights a new way to tackle the security of the McEliece cryptosystem
especially regarding the design of better approach for a key-recovery attack. But more importantly, it raises also several important
question. The first fundamental issue is about the solving of such a system. Are the existing methods able to solve it? Is it possible
to determine the time and memory complexities of these methods? Furthermore, we have seen that the system is very structured.
In particular, the polynomial equations occurring in (9.2) are of bi-degree (j, 1) with 6 j 6 r − 1. So, is it possible to exploit
this particular features to devise dedicated and improved solving algorithms?

Eventually, the number of equations is rk > r(n − rm). In a cryptographic setting this number can be really high. For
instance, the outdated parameters (m = 10, r = 50 and n = 2m) proposed in the original paper [McE78] furnish at least
50× 524 = 26, 200 equations. On the other hand, the number of variables is 2n = 2048 and more importantly, the degree of the
polynomial equations is as high as r− 1 = 49. Actually, this analysis is not completely true when we consider binary irreducible
Goppa codes as it is advocated in the encryption scheme of [McE78].

Theorem 1. A binary Goppa code G (x, γ) defined by a polynomial γ(z) from F2m [z] of degree r without multiple roots is the
alternant code A2r(x,y), with yi = γ(xi)

−2.

This result about binary Goppa codes defined by polynomials that has no multiple roots, which is obviously the case for
irreducible polynomials, leads to the following fact.

Fact 2 ([Pat75]). There exists a polynomial time algorithm decoding all errors of Hamming weight at most r in a Goppa code
G (x, γ) when γ has degree r and has no multiple roots whenever x and γ(z) are known.

Consequently, when a Goppa code defined by n irreducible polynomial is viewed as an alternant defined by x and y with
yi = γ(xi)

−2 for any i such that 1 6 i 6 n, then they are necessarily solutions of the following polynomial equations obtained
for any integer i and j such that 1 6 i 6 k and 0 6 j 6 2r − 1:

gi,1Y1X
j
1 + · · · + gi,nYnX

j
n = 0. (9.3)

This particular system has therefore 2rk polynomial equations with a maximum degree 2r− 1. The number of unknowns is still
2n. For instance, with original parameters of [McE78], the system has 2 × 50 × 524 = 52, 400 equations. Unfortunately, the
maximum degree becomes extremely high, namely 99. With the current state of the art, it is not clear whether an algebraic attack
can be mounted efficiently against the original McEliece cryptosystem.

The fact that a binary Goppa code can have multiple descriptions raises the more general fundamental issue of finding all
possible description of an alternant code A , that is to say all x and y such that A = Ar(x,y). When the extension field Fqm
is the same as the definition field Fq i.e. if m = 1 the problem was solved in [Dür87]. This was the key of the cryptanalysis of
McEliece’s variant based on generalized Reed-Solomon codes [SS92]. Proposition 12 shows that there exist several solutions by
setting one of the Yi and two values of the Xi and Xj to arbitrary values provided that Yi 6= 0 and Xi 6= Xj .

Proposition 12 ([MS86, Chap. 10, p. 305]). Let x∗ and y∗ be a solution of (9.2). Let a 6= 0, b, c 6= 0 be elements from Fqm ,

and let us define ax∗ + b
def
= (ax∗1 + b, . . . , ax∗n + b) and cy∗

def
= (cy∗1 , . . . , cy

∗
n). Then ax∗ + b and cy∗ are also solution.

The general case is still unsolved. However, the results of [Dür87] basically show that the we have at least one degree of
freedom for Yi and three degrees of freedom for the Xi in the system (9.2). It is quite helpful to introduce the symbol∞ in order
to consider projective alternant codes over Fqm

def
= Fqm ∪ {∞}. We will now require to focus on special kind of permutations.

Let a, b, c, d be elements from Fqm such that ad− bc 6= 0. Let ψ : Fqm → Fqm be the function defined for any z from Fqm by:

ψ(z)
def
=
az + b

cz + d
.

The usual rules to evaluateψ(z) are used. We state now an important proposition where we use the notationxψ def
=
(
ψ(x1), . . . , ψ(xn)

)
for any x from (Fqm)n.

Proposition 13. Let x be an n-tuple formed by distinct elements of Fqm and let y be an n-tuple of nonzero elements of Fqm . Let

us set xψ
def
= (ψ(x1), . . . , ψ(xn)) and y′

def
= (y′1, . . . , y

′
n) with y′j

def
= (cxj + d)r−1yj . Let r be an integer > 1. We then have the

equality:
Ar(x

ψ,y′) = Ar(x,y).

At first glance, the degree of freedom should be less for Goppa codes. Indeed, there is an additional crucial constraint for
binary Goppa codes. A solution must verify Yi = γ(Xi)

−1 for some polynomial with coefficients from Fqm and of degree r.
Surprisingly, we can keep the same degree of freedom by considering a slight change. Indeed, if we consider the extended Goppa
code G̃r(x, γ) with γ(z) =

∑r
i=0 γiz

i then we have the following result. We recall that by convention γ(∞) = γr.

Proposition 14. Let us define γψ(z)
def
= (cz + d)rγ

(
ψ(z)

)
=

r∑
i=0

γi(az + b)i(cz + d)r−i. We have G̃r(x, γ
ψ) = G̃r(x

ψ, γ).
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These results enable to reduce the number of unknowns by attributing random values to one Yi and three Xi. However, this
highly structured system prompts us to study methods for solving it. It is well-known that the existing algorithms dealing with
polynomial systems are essentially based on Gröbner bases [Buc65, CLO01, Fau99, Fau02]. It is therefore natural to understand
what can be done with this kind of algorithms. Furthermore, we will see that we can extract an affine bilinear system from (9.2).
This is especially interesting since the complexity of solving such equations is well mastered in the generic case [FSS11]. On the
other hand, the question remains open for general bihomogeneous equations.

We briefly recall basic facts about the complexity of computing Gröbner bases [Buc65, CLO01, Fau99, Fau02].

9.2 General Complexity of Gröbner Bases

The complexity of computing Gröbner bases depends on the so-called degree of regularity. This is roughly the maximal degree
of the polynomials appearing during the computation of a Gröbner bases with respect to a Degree Reverse Lexicographical order.
This degree of regularity, denoted by Dreg in what follows, is the key parameter. Indeed, the cost of computing a Gröbner basis
is polynomial in Dreg. Precisely, the complexity of computing a Gröbner basis with F5 – most efficient algorithm so far – is:

O
((

N +Dreg

Dreg

)ω)
(9.4)

with 2 < ω 6 3 being the “linear algebra constant”, and N being the number of variables. This basically correspond to the
complexity of reducing a matrix of size

(
N+Dreg

Dreg

)
. The degree of regularity depends on the number of variables, the number of

equations, the degree of the considered system and the system itself. In general, predicting its value for a given system is a hard
problem. However, the behavior of the degree of regularity is well understood [Bar04, BFS04, BFS02, BFSY05] for semi-regular
(resp. regular) systems (i.e. algebraic definition of random systems). In particular, we have:

Proposition 15 (Macaulay’s bound). The degree of regularity of a square (same number of equations and variables) regular
quadratic system over Fq[X] is 1 + nX where nX is the number of variables in the set of variablesX .

It is worth mentioning that however this bound no longer holds if the system has some type of structure. A particular example
is that of affine bilinear system [FSS11]. This type of algebraic is also interesting in our context because it is possible to exhibit
such a system. A first important result of [FSS11] is that F5 [Fau02] is already optimal for “generic” (random) affine bilinear
systems, i.e. all reductions to zero are removed by the F5 criterion. Another fundamental result is that the degree of regularity of
a square generic affine bilinear system is much smaller than the degree of regularity of a generic system.

Proposition 16 ([FSS11]). The degree of regularity of a square generic affine bilinear system in X and Y is bounded by
1 + min(nX , nY ) where nX and nY are the number of variables inX and Y respectively.

This bound is sharp for a generic square affine bilinear system and is much better than the usual Macaulay’s bound that we
would obtain for a similar square quadratic system with nX + nY quadratic equations in nX + nY variables because generally,
it holds that:

1 + min(nX , nY )� 1 + nX + nY .

One case of particular interest is when the minimum is constant because the computing becomes polynomial in time. It appears
that the matrices occurring during the matrix version of F5 can be divided into smaller matrices thanks to the bilinear structure
[FSS11]. To estimate precisely the complexity of solving, we recall the following definitions.

Definition 25 ([FSS11]). Let d1, d2 be positive integers.

• An ideal is bihomogeneous if there exists a set of bihomogeneous generators. The vector space of bihomogeneous polyno-
mials of bi-degree (d1, d2) in a polynomial ring R will be denoted by Rd1,d2 . It holds that:

dim(Rd1,d2) =

(
d1 + nX
d1

)(
d2 + nY
d2

)
.

• If I is a bihomogeneous ideal, then Id1,d2 is the vector space I ∩Rd1,d2 .

• Let I be a bihomogeneous ideal of R. The Hilbert bi-series is defined by

HSI(t1, t2) =
∑

(d1,d2)∈N2

dim(Rd1,d2/Id1,d2)tα1 t
β
2 .

The Hilbert bi-series defined below allows to study precisely the complexity of a Gröbner basis computation. For (bi-regular)
bilinear systems, [FSS11] provides an explicit form of the bi-series.
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Theorem 2. Let Im = 〈f1, . . . , fm〉 ⊂ R be a (bi-regular) bilinear ideal with m ≤ nX′ + nY ′ . Then

HSIm(t1, t2) =
(1− t1t2)m +NnX′+1(t1, t2) +NnY ′+1(t1, t2)

(1− t1)nX′+1(1− t2)nY ′+1
,

where

Nn(t1, t2) = t1t2(1− t2)n
m−n∑
`=1

(1− t1t2)m−n−`

[
1− (1− t1)`

n∑
k=1

tn−k1

(
`+ n− k − 1

n− k

)]
.

From this, we can estimate the size of the matrices occurring at degree D during the matrix-F5 on a bilinear systems. Indeed,
these matrices are of size: (

dim(Rd1,d2)− [td11 t
d2
2 ]HS(t1, t2)

)
× dim(Rd1,d2),

with (d1, d2) such that d1 + d2 = D where 1 6 d1, d2 6 D − 1 and [td11 t
d2
2 ]HS(t1, t2) stands for the coefficient of the term

td11 t
d2
2 in the Hilbert bi-serie HS(t1, t2). As pointed out, these results hold for a bilinear system. For an affine bilinear, this can

be considered as a good (i.e. first order) approximation. The idea is that we have to “bi-homogenize” the affine bilinear system
which corresponds to add some columns.

9.3 Extraction of a Bilinear System

The method for extracting an (affine) bilinear system from (9.2) works as follows. The first fundamental remark is that k linear
equations in the n variables of the block Y occur in (9.2). This implies that all the variables Y can be expressed in terms of
nY ′ > n − k variables. We will always assume that the variables Y ′ only refer to these nY ′ free variables. The system (9.2)
is rewritten only in function of X and Y ′ i.e., the variables of Y \ Y ′ are substituted by linear combinations involving only
variables of Y ′. For simplicity, we keep calling this new system by (9.2). The number nY ′ of variables of Y ′ is of course n− k
and the total number of equations becomes (r − 1)k. Eventually, this system is still bihomogeneous with bi-degree (j, 1) with
1 6 j 6 r − 1.

Next, the polynomial system being naturally overdetermined, some equations can be removed. It makes sense then to consider
the set of equations whose degree in the variables of X ′ is a power of q i.e. equations of bi-degree (qj , 1). We obtain another
subsystem of having k logq r equations. This system is almost a bilinear system over Fmq . But if each variable Xi with 1 6 i 6 n
is viewed as m q-ary variables say (Xi,1, . . . , Xi,m) by fixing a basis of Fqm treated as a Fq-vector space. This new set of
variables is denoted byX ′. This decomposition blows up the number of unknowns because we get m times as many as variables
for X ′. But the number of variables of Y ′ has not changed. The resulting system denoted by biMcE(X ′,Y ′) is now Fq-linear
with nX′ = mn unknownsX ′ and nY ′ = n− k unknowns Y ′. The number of equations is k logq r. Since biMcE(X ′,Y ′) is a
bilinear system it is tempting to claim the following conjecture.

Conjecture 1. The degree of regularity of biMcE(X ′,Y ′) is less than 1 + min(nX′ , nY ′).

If the claim is ever true then we would get a degree of regularity that is less then (n − k) = n(1 − R). Let us emphasize
that the bound [FSS11] only considered systems whose number of equations does not exceed the number of variables. But
in our context, by posing R def

= k/n and remarking that m 6 logq n and r = n−k
m , the number of equations is k logq r >

Rn logq

(
(1−R) n

logq n

)
while the number of unknowns is nX′ +nY ′ = (m+ 1)n−k 6 n(1−R+ logq n). So, it may happen

for some range of parameters that biMcE(X ′,Y ′) has less equations than the number of variables.

The situation is different for the variants based on Φ-invariant alternant codes, namely quasi-cyclic and quasi-dyadic variants
of [BCGO09, MB09]. The constraint on the entries of the public matrix can be directly translated into new linear equations.
This allows to reduce considerably the number of variables in (9.2). The reduction is so drastic that it becomes possible to
efficiently solve it leading to practical key-recovery attacks. Furthermore, because of the high number of equations, a theoretical
explanation can be given. This is based on the following estimation of the space/time complexity for computing a Gröbner basis
of biMcE(X ′,Y ′).

Proposition 17. Let us setD
def
= min(nX′ , nY ′)+1. Assuming Conjecture 1, the time complexity T of computing a DRL-Gröbner

basis GDRL of biMcE(X ′,Y ′) is bounded from above by

T =
∑

d1+d2=D
16d1,d26D−1

(
dim(Rd1,d2)− [td11 t

d2
2 ]HS(t1, t2)

)ω−1
dim(Rd1,d2)

with 2 6 ω 6 3.
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9.4 Key-Recovery Attack Against Φ-Invariant Alternant Variants

9.4.1 Quasi-Cyclic Alternant Variant
The scheme presented in [BCGO09] (See Chapter 8) suggests to use block matrices where each block is a circulant matrix. The
public code C is a quasi-cyclic alternant code defined over a field Fq = F2s also considered as a subfield of Fqm for some integer
m > 2. Let α be a primitive element of Fqm , ` and N0 be integers such that qm − 1 = N0` and eventually β be an element of
Fqm of order `.

The public code C is obtained3 from an r × n parity-check matrix Q over Fqm which is the juxtaposition of n0 (n = `n0)

circulant matrices Q1, . . . ,Qn0
of size r × `. Each Qb+1 =

(
Q

(b)
i,j

)
with 0 6 b 6 n0 − 1, 0 6 i 6 r − 1 and 0 6 j 6 `− 1 is

given by (See Equation (8.3)):
Q

(b)
i,j = γbβ

(db+j)e
(
αwbβdb+j

)i
(9.5)

where γb is a nonzero element of Fqm , db is an integer of {0, . . . , ` − 1}, e is an integer of {0, . . . , ` − 1} and the wb’s are
distinct integers of {0, . . . , N0 − 1}. C is therefore an alternant code Ar(x,y) of order r associated to x = (x0, . . . , xn−1) and
y = (y0, . . . , yn−1) which satisfy for any j in {0, . . . , `− 1} the following linear relations:

xb`+j = αwbβdb+j (9.6)

yb`+j = γbβ
(db+j)e. (9.7)

It can be checked that C has a public generating matrixG which is block circulant of size k × n with k of the form k = k0` for
some integer k0 (recall that k ≥ n− rm).

We present now an algebraic attack that recovers x and y by setting up the algebraic system (9.2). This would also give a
system with 2n unknowns. We can obtain a huge reduction of the number of unknowns by using Equations (9.6) and (9.7) which
induce some linear relations between the xi’s and the yi’s. Indeed, we can deduce that:

xb`+j = xb`β
j (9.8)

yb`+j = yb`β
je, (9.9)

for any integers b and j such that 0 6 b 6 n0 − 1 and 0 6 j 6 ` − 1. Let us recall that e verifies 0 6 e 6 ` − 1. Since in the
cases considered in [BCGO09], ` is small (less than 100), one may assume that:

Assumption 2. The secret integer e such that 0 6 e 6 `− 1 is known.

Another important assumption we will make is about the representation of the field Fqm . We can fairly consider α and β as
known quantities because any other representation of Fqm is equivalent to the one fixed by the designer.

Assumption 3. The primitive element α from Fqm and the element β of order ` are known.

These two assumptions simplify the description of the algebraic system. By setting up the unknown Xb for xb` and Yb for
yb` we obtain the following algebraic system.

Proposition 18. LetG = (gi,j) be the k×n public generator matrix with k = k0` and n = n0`. The unknowns X0, . . . , Xn0−1
and Y0, . . . , Yn0−1 satisfy the following polynomial equation obtained for any integers w and i such that 0 6 w 6 r − 1 and
0 6 i 6 k − 1:

n0−1∑
b=0

g′i,b,wYbX
w
b = 0 with g′i,b,w

def
=

`−1∑
j=0

gi,b`+jβ
j(e+w). (9.10)

Proof. We first observe that
n−1∑
j=0

gi,jyjx
w
j =

n0−1∑
b=0

`−1∑
j=0

gi,b`+j yb`+jx
w
b`+j , or also:

n−1∑
j=0

gi,jyjx
w
j =

n0−1∑
b=0

`−1∑
j=0

gi,b`+jyb`x
w
b`β

jeβjw =

n0−1∑
b=0

`−1∑
j=0

gi,b`+jβ
jeβjw

 yb`x
w
b`.

By setting Xb for xb` and Yb for yb` we obtain the aforementioned system.

The first important consequence by adding new linear relations is the number of unknowns becomes n0 for the Xi’s and n0
for the Yi’s. Theoretically by Proposition 12, we would be able to fix two variables, say X0 and X1, and one variable Yj , for
instance Y0, to arbitrary values as long as X0 6= X1 and Y0 6= 0. However, if we do it, we then lose the linear relations between
the xi’s given in (9.8). Therefore we can only fix one Xi and one Yi as stated in Proposition 19 that is straightforward to prove.

Proposition 19. For any a 6= 0 and c 6= 0 from Fqm , if x and y are solution to (9.10) then ax and by are also solution.

3By keeping the notation of Chapter 8, the integer r def
= 2t.
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Hence, we can fix one Xi and one Yi so that the total number of unknowns is 2(n0 − 1). Let us remark that the resulting
system becomes affine bihomogeneous. As for the number of equations, one would believe that for each w from {0, . . . , r − 1}
we would get k equations. But in reality, there are many redundant equations in Proposition 18. This comes from the block
circulant form of G. More exactly, G has the following form G = (Gi,j) with Gi,j is an `× ` circulant matrix for any i and j
such that 0 6 i 6 k0 − 1 and 0 6 j 6 n0. Using that fact, we therefore have gi`+u,b`+j = gi`,b`+((j−u) mod `) for all u and i
such that 0 6 u 6 `− 1 and 0 6 i 6 k0 − 1. Hence, we can deduce that:

g′i`+u,b,w =

`−1∑
j=0

gi`+u,b`+jβ
j(e+w) =

`−1∑
j=0

gi`,b`+((j−u) mod `)β
j(e+w)

=

`−1∑
j=0

gi`,b`+jβ
j(e+w)βu(e+w) = g′i`,b,wβ

u(e+w)

We used the fact β`(e+w) = 1 since β is of order `. So for any i such that 0 6 i 6 k0 − 1, when u describes {0, . . . , `− 1}, the

equations
n0−1∑
b=0

g′i`+u,b,wYbX
w
b = 0 are all linearly dependant. The only equations that should be considered are those obtained

with i and w such that 0 6 i 6 k0 − 1 and 0 6 w 6 r − 1 and defined by:

n0−1∑
b=0

g′1+i`,b,wYbX
w
b = 0. (9.11)

This means that instead of having rk equations we have only rk/` = k0r polynomial equations. In particular, the k/` = k0
linear equations involving only the unknowns Yb enable to express k0 unknowns in function of n0 − 1 − k0 free variables. We
denote these remaining unknowns by Y ′. The variables Y \ Y ′ do not appear anymore henceforth in the system. This study
enables to prove the following proposition.

Proposition 20. It is possible to derive from the polynomial system (9.10) an affine bihomogeneous polynomial system that has

nY ′
def
= n0 − 1− k0 unknowns Y ′i and nX = n0 − 1 unknowns Xi. The only possible bi-degrees are (w, 1) with 1 6 w 6 r− 1.

Finally, the number of different equations of bi-degree (w, 1) is k0 so that the total number is (r − 1)k0.

9.4.2 Quasi-Dyadic Goppa Code Variant
The cryptosystem presented in [MB09] considers particular alternant codes called quasi-dyadic Goppa codes. A detailed de-
scription of the key generation is given in Chapter 8. We only provide important facts that are useful for recovering the private
key. An important fact to know about G is that it is a k × n matrix over Fq such that n = n0` and k > n−m` where n0, ` are
given integers. We now state an important result.

Proposition 21. The code defined by the public generator matrixG is an alternant code A`(x,y) where for any 0 6 j ≤ n0−1
and 0 6 i, i′ 6 `− 1, we have the following equations: yj`+i = yj`

xj`+i + xj` = xi + x0
xj`+(i⊕i′) = xj`+i + xj`+i′ + xj`

(9.12)

where ⊕ is the bitwise exclusive-or on the binary representation of the indices.

The cryptanalysis of the system consists in defining n0 unknowns Y0, . . . , Yn0−1 that play the role of the yj’s and n unknowns
X0, . . . , Xn that represent the xj’s. We know specify the system of equations that we obtain directly from Proposition 21.

Proposition 22. For any w, j, i and i′ such that 0 6 w 6 `− 1, 0 6 j 6 n0 − 1 and 1 6 i, i′ 6 `− 1, we have:

n0−1∑
j=0

Yj

`−1∑
l=0

gi,j`+lX
w
j`+l = 0

Xj`+i +Xj` +Xi +X0 = 0

Xj`+(i⊕i′) +Xj`+i +Xj`+i′ +Xj` = 0

(9.13)

It is possible to simplify (9.13) by observing, thanks to the third equation, that actually many variables Xi’s can be expressed
in function of some few variables, namely X2j with 0 6 j 6 log2(`− 1) and Xb with 0 6 b 6 n0 − 1.

Corollary 2. For any 1 6 i 6 `−1, if we write the binary decomposition of i =

log2(`−1)∑
j=0

ηj2
j thenXi = X0+

log2(`−1)∑
j=0

ηj(X2j+

X0).
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We will denote by X ′ the variables Xi that serve to express all the others. We are also able to provide the exact number of
unknowns we can fix to arbitrary values. Indeed, thanks to the following lemma, one Yi can be chosen arbitrarily provided that
Yi 6= 0, and two Xi and Xj with i 6= j can be fixed to two distinct random values.

Lemma 1. If x and y are solution of (9.13) then for any a 6= 0, b, c 6= 0 from Fqm , ax+ b and cy are also solution.

Proof. The only fact to prove is that (x0 + b, . . . , xn−1 + b) is also a solution of the last two equations in (9.13). It is readily
checked since Fqm is of charateristic two.

We can now completely give the effective number of equations after elimination of redundant equations.

Proposition 23. It is possible to derive from the polynomial system (9.13) another polynomial system that has nY ′ = m − 1
unknowns Y ′i and nX′ = n0 − 2 + log2(`) unknowns X ′i . Furthermore, it has (` − 1)`(n0 − m) polynomial equations only
involving the terms of the form YiX

w
i with 1 6 w 6 `− 1.

Proof. The number of variables Yj is (n0 − 1) since we can choose Y0 = 1. As for the variables Xj , we observe that they can
all be expressed only in function of X2j and Xi` with 0 6 j 6 log2(`− 1) and 0 6 i 6 n0 − 1. So the number of unknowns Xj

is log2(`− 1) + 1 + n0 − 2 since we can fix two different arbitrary values for two variables, say X0 and X` (Lemma 1). Using
the fact that log2(`− 1) = log2(`)− 1 since ` is a power of 2, we get the claimed number of unknowns. Furthermore, because of
the dyadicity of G, the equations obtained with w = 0 are identical when g describes all the rows of a dyadic block of G. This
does not appear when w > 1. So we have k/` = n0−m linear equations that involve the Yi’s and (`− 1)k = (`− 1)`(n0−m)
polynomial equations that contain variables of the form YiX

w
i where 1 6 w 6 `− 1.

9.4.3 Strategy for Solving the Algebraic System
The method to solve the systems that we derived from [BCGO09, MB09] consists in extracting the bilinear subsystem of poly-
nomial equations of bi-degree (qj , 1) as explained in Section 9.3. For the sake of simplicity, we denote it by McEk,n,r(X

′,Y′).
The ultimate goal of the attack is to compute the variety (i.e. set of solutions) V associated to McEk,n,r(X

′,Y′). As soon as we
have a DRL-Gröbner basis GDRL of biMcE(X ′,Y ′), the variety can be obtained in O

(
(#V)ω

)
thanks to a change of ordering

algorithm [FGLM93]. Therefore, one has to be sure that the variety V has few elements. In particular, it is crucial to remove
parasite solutions corresponding to Xi = Xj an Yj = 0 for instance. A classical way to do that is to introduce new variables uij
and vi and add equations of the form:

uij(Xi −Xj) + 1 = 0 and viYi + 1 = 0.

In practice, we have not added all these equations but only few of them (namely 4 or 5). The reason is that we do not want to
add too many new variables. However, these equations and variables can be added to biMcE(X ′,Y ′) whilst keeping the affine
bi-linear structure. To do so, we have to add the vi to the block X ′, and the variables uij to the block Y ′. So, as we add only
few new variables, the complexity of solving biMcE(X ′,Y ′) with these new constraints is essentially similar to Proposition 17.

Eventually, thanks to the works of [FSS11] on the solving of bilinear systems, we can revisit the strategy previously we used
in [FOPT10a]. The approach is as efficient than the “ad-hoc” technique proposed initially in [FOPT10a] but with the advantage
that its complexity can be more easily analyzed.

9.4.4 Comparison with Theoretical Results
Wee give the experimental results we obtained in [FOPT10a] for cryptanalyzing the schemes [BCGO09] and [MB09]. We
also include a bound on theoretical complexity Ttheo of computing a Gröbner bases of biMcE(X ′,Y ′) using ω = 2 as given
in Proposition 17 for comparison. This is a optimistic but in the other hand, we are not using the fact that the systems are
overdetermined and secondly, we have only considered a subsystem of McEk,n,r(X

′,Y′).

One can see that the theoretical bound Ttheo provides a reasonable explanation regarding the efficiency of the attack presented
in [FOPT10a]. In particular, it is important to remark that the hardness of the attack seems linked to d def

= min(n′X , n
′
Y ). The

complexity of the attack clearly increases with this quantity. For the design of future compact variants of McEliece, d should not
be too small. Regarding the current state of the art, it is difficult to provide an exact value. Very roughly speaking, biMcE(X ′,Y ′)
can be considered as hard as solving a random (overdetermined) algebraic system with d = min(nX′ , nY ′) equations over a big
field. With this in mind, we can say that any system with d 6 20 should be within the scope of an algebraic attack.

Let us remark that another phenomena can occur. In the particular case of binary quasi-dyadic codes, the Gröbner basis
of biMcE(X ′,Y ′) can be easily computed, but the variety associated is too large. This is due to the fact that the Gröbner
basis is “trivial” (reduced to one equation) and does not provide then enough information. This is due to the fact that we have
used only a subset of the equations of bi-degree (qj , 1). So, an open question is how we can use cleverly all the equations of
McEk,n,r(X

′,Y′) in the binary case.
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Table 9.1: Cryptanalysis results for [BCGO09] (m = 2).

Challenge q ` n0 nY ′ Security nX′ Time (Op., Mem.) Ttheo

A16 28 51 9 3 80 8 0.06 sec (218.9 op, 115 Meg) 217

B16 28 51 10 3 90 9 0.03 sec (217.1 op, 116 Meg) 218

C16 28 51 12 3 100 11 0.05 sec (216.2 op, 116 Meg) 220

D16 28 51 15 4 120 14 0.02 sec (214.7 op, 113 Meg) 226

A20 210 75 6 2 80 5 0.05 sec (215.8 op, 115 Meg) 210

B20 210 93 6 2 90 5 0.05 sec (217.1 op, 115 Meg) 210

C20 210 93 8 2 110 7 0.02 sec (214.5 op, 115 Meg) 211

QC600 28 255 15 3 600 14 0.08 sec (216.6 op, 116 Meg) 221

Table 9.2: Cryptanalysis results for [MB09].

Challenge q nY ′ ` n0 Security nX′ Time (Op., Mem.) Ttheo

Table 2 22 7 64 56 128 59 1, 776.3 sec (234.2 op, 360 Meg) 265

Table 2 24 3 64 32 128 36 0.50 sec (222.1 op, 118 Meg) 229

Table 2 28 1 64 12 128 16 0.03 sec (216.7 op, 35 Meg) 28

Table 3 28 1 64 10 102 14 0.03 sec (215.9 op, 113 Meg) 28

Table 3 28 1 128 6 136 11 0.02 sec (215.4 op, 113 Meg) 27

Table 3 28 1 256 4 168 10 0.11 sec (219.2 op, 113 Meg) 27

Table 5 28 1 128 4 80 9 0.06 sec (217.7 op, 35 Meg) 26

Table 5 28 1 128 5 112 10 0.02 sec (214.5 op, 35 Meg) 27

Table 5 28 1 128 6 128 11 0.01 sec (216.6 op, 35 Meg) 27

Table 5 28 1 256 5 192 11 0.05 sec (217.5 op, 35 Meg) 27

Table 5 28 1 256 6 256 12 0.06 sec (217.8 op, 35 Meg) 27

Dyadic256 24 3 128 32 256 37 7.1 sec (226.1 op, 131 Meg) 229

Dyadic512 28 1 512 6 512 13 0.15 sec (219.7 op, 38 Meg) 28



Chapter 10

A Distinguisher For High-Rate McEliece
Cryptosystems1

10.1 Introduction
We investigate the difficulty of the Goppa Code Distinguishing (GCD) problem which first appeared in [CFS01]. This is a
decision problem that aims at recognizing a generator matrix of a binary Goppa code from a randomly drawn binary matrix.
Up to now, it is assumed that no polynomial time algorithm exists that distinguishes a generator matrix of a Goppa code from a
randomly picked generator matrix.

The main motivation for introducing the GCD problem is to relate the security of the McEliece public-key cryptosytem
[McE78] to the difficulty of decoding a random linear code. Since its apparition, this cryptosystem has withstood many attacks
and after more than thirty years now, it still belongs to the very few unbroken public key cryptosystems. This situation substanti-
ates the claim that inverting the encryption function, and in particular recovering the private key from public data, is intractable.
The classical methods that are dedicated to inverting the McEliece encryption function without finding a trapdoor all resort to the
use of the best general decoding algorithms [LB88, Leo88, Ste88, CC98, BLP08]. All these algorithms, whose time complexity
is exponential, attempt to solve the long-standing problem of decoding random linear code [BMvT78]. They also assume (im-
plicitly or explicitly) that there does not exist an algorithm that is able to decode more efficiently McEliece public keys. Let us
note that if ever such an algorithm exists, it would permit to solve the GCD problem.

On the other hand, no significant breakthrough has been observed with respect to the problem of recovering the private key
[Gib91, LS01]. This has led to claim that the generator matrix of a binary Goppa code does not disclose any visible structure that
an attacker could exploit. This is strengthened by the fact that Goppa codes share many characteristics with random code. For
instance they asymptotically meet the Gilbert-Varshamov bound, they have a trivial permutation group, etc. Hence, the hardness
of the GCD problem has become a classical belief, and as a consequence, a de facto assumption to prove the semantic security
in the standard model (IND-CPA in [NIKM08] and IND-CCA2 in [DMQN09]), and the security in the random oracle model
against existential forgery [CFS01, Dal07] of the signature scheme [CFS01].

We present a deterministic polynomial-time distinguisher for high rate codes. This kind of codes are mainly encountered
with the public keys of the signature scheme [CFS01]. It is based on the algebraic attack developped against compact variants
of McEliece [FOPT10a]. In this approach, the key-recovery problem is transformed into the one of solving an algebraic system.
By using a linearization technique, we are able to derive a linear system whose rank is different from what one would expect.
More precisely, we observe experimentally that this defect in the rank is directly related to the type of codes. We provide explicit
formulas for “generic” random, alternant, and Goppa code over any alphabet. We performed extensive experiments to confirm
that the formulas are accurate. Eventually, we prove the formula in the random case and give explanations in the case of alternant
codes over any field and binary Goppa codes. We insist on the fact that the existence of our distinguisher does not undermine the
security of primitives based on Goppa codes, but basically, it proves that the GCD assumption is false for some parameters.

The chapter is organized as follows. In Section 10.2, we introduce the algebraic system that any McEliece cryptosystem must
satisfy. In Section 10.3, we construct a linear system deduced from the algebraic system. This defines an algebraic distinguisher.
We then provide explicit formulas that predicts the behavior of the distinguisher coming from heavy experimentations. In Section
10.4, we give a proof of its typical behavior in the random case. In Section 10.5.1 and Section 10.5.2, we give explanations of
the formulas for alternant and binary Goppa codes. Lastly, we conclude over the cryptographic implications the distinguisher
induces.

10.2 Algebraic Cryptanalysis of McEliece-like Cryptosystems
The McEliece cryptosystem relies on binary Goppa codes which belong to the class of alternant codes. It is convenient to
describe this class through a parity-check matrix over an extension field Fqm of Fq over which the code is defined. For alternant

1This chapter is a reproduction of the article published in the ITW 2011 conference [FGUO+11].
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codes of length n 6 qm, there exists a parity-check matrix with a very special form related to rectangular Vandermonde matrices:

V r(x,y)
def
=


y1 · · · yn
y1x1 · · · ynxn
...

...
y1x

r−1
1 · · · ynx

r−1
n

 (10.1)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are in (Fqm)n.

Definition 26 (Alternant code). The alternant code of order r over Fq associated to x = (x1, . . . , xn) ∈ (Fqm)n where all xi’s
are distinct and y = (y1, . . . , yn) ∈

(
F∗qm

)n
denoted by Ar(x,y) is

{
c ∈ Fnq | V r(x,y)cT = 0

}
. The dimension k satisfies

k > n− rm.

A key feature about alternant codes of degree r is the fact that there exists a polynomial time algorithm decoding all errors of
weight at most r2 once a parity-check matrix is given in the form V r(x,y).

Definition 27 (Goppa codes). The Goppa code G (x, γ) over Fq associated to a polynomial γ(z) of degree r over Fqm and a
certain n-tuple x = (x1, . . . , xn) of distinct elements of Fqm satisfying γ(xi) 6= 0 for all i, 1 6 i 6 n, is the alternant code
Ar(x,y) of order r with yi being defined by yi = γ(xi)

−1.

Goppa codes, viewed as alternant codes, naturally inherit a decoding algorithm that corrects up to r
2 errors. But in the case

of binary Goppa codes, we can correct twice as many errors (Fact 3). The starting point is the following result given in [MS86,
p. 341].

Theorem 3. A binary Goppa code G (x, γ) associated to a Goppa polynomial γ(z) of degree r without multiple roots is equal
to the alternant code A2r(x,y), with yi = γ(xi)

−2.

Fact 3 ([Pat75]). There exists a polynomial time algorithm decoding all errors of Hamming weight at most r in a Goppa code
G (x, γ) when γ(z) has degree r and has no multiple roots, if x and γ(z) are known.

We are now able to construct an algebraic system as explained in [FOPT10a] for the McEliece cryptosystem. This algebraic
system is the main ingredient of the distinguisher. We assume that the public matrix is a k×n generator matrixG. We have seen
that the knowledge of V r(x

∗,y∗) permits to efficiently decode. By definition ofG, we have:

V r(x
∗,y∗)GT = 0.

Let X1, . . . , Xn and Y1, . . . , Yn be 2n variables corresponding to the x∗i ’s and the y∗i ’s. Observe that such x∗i ’s and y∗i ’s are a
particular solution [FOPT10a] of the following system:

gi,1Y1X
j
1 + . . .+ gi,nYnX

j
n = 0 (10.2)

with 1 6 i 6 k and 0 6 j 6 r − 1, and where the gi,j’s are the entries of the known matrixG.
Solving this system boils down to finding an equivalent private key. For compact variants [BCGO09, MB09] of [McE78],

additional structures permit to drastically reduce the number of variables allowing to solve (10.2) for a large set of parameters in
polynomial-time using dedicated Gröbner bases techniques [FOPT10a]. The general case is currently an open problem.

10.3 A Distinguisher of Alternant and Goppa Codes
We present in this part the algebraic distinguisher which is based on the non-linear system (10.2). We can assume thatG = (gij)
with 1 6 i 6 k and 1 6 j 6 n is in reduced row echelon form over its k first positions i.e. G = (Ik | P ) where P = (pij)
for 1 6 i 6 k, k + 1 6 j 6 is the submatrix of G formed by its last n − k = mr columns. We describe now a simple way for
solving (10.2). For any i ∈ {1, . . . , k} and e ∈ {0, . . . , r − 1}, we can rewrite (10.2) as

YiX
e
i =

n∑
j=k+1

pi,jYjX
e
j . (10.3)

Thanks to the trivial identity YiYiX2
i = (YiXi)

2, for all i in {1, . . . , k}, we get for all i ∈ {1, . . . , k}:

n∑
j=k+1

pi,jYj

n∑
j=k+1

pi,jYjX
2
j =

 n∑
j=k+1

pi,jYjXj

2

.

It is possible to reorder this to obtain:

n−1∑
j=k+1

n∑
j′>j

pi,jpi,j′
(
YjYj′X

2
j′ + Yj′YjX

2
j

)
= 0.
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We can now linearize this system by letting Zjj′
def
= YjYj′X

2
j′+Yj′YjX

2
j . We obtain a system LP of k linear equations involving

the Zjj′ ’s:

LP
def
=


n−1∑
j=k+1

n∑
j′>j

pi,jpi,j′Zjj′ = 0

∣∣∣∣ i ∈ {1, . . . , k}
 . (10.4)

To solve this system it is necessary that the number of equations is greater than the number of unknowns i.e. k >
(
mr
2

)
with the

hope that the rank of LP denoted by rank(LP ) is almost equal to the number of variables. Observe that the linear systems (10.4)
have coefficients in Fq whereas solutions are sought in the extension field Fqm . But the dimension D of the vector space solution
of LP does not depend on the underlying field because LP can always be seen as a system over Fqm . Remark that we obviously
have D =

(
mr
2

)
− rank(LP ).

We carried out intensive computations with Magma [BCP97] by randomly generating alternant and Goppa codes over the
field Fq with q ∈ {2, 4, 8, 16, 32} for r in the range {3, . . . , 50} and several values ofm. Furthermore, in our probabilistic model,
a random alternant code is obtained by picking uniformly and independently at random two vectors (x1, . . . , xn) and (y1, . . . , yn)
from (Fqm)n such that the xi’s are all different and the yi’s are all nonzero. A random Goppa code is obtained by taking a random
vector (x1, . . . , xn) in (Fqm)n with all the xi’s different and a random irreducible polynomial γ(z) =

∑
i γiz

i of degree r. In
our experiments, it appears that D is amazingly large even in the case where k >

(
mr
2

)
. It even depends on whether or not the

code with generator matrixG is chosen as a (generic) alternant code or as a Goppa code. Interestingly enough, whenG is chosen
at random, rank(LP ) is equal to min

{
k,
(
mr
2

)}
with very high probability. In particular, the dimension of the solution space is

typically 0 when k is larger than the number of variables
(
mr
2

)
as one would expect. This will be proved in Section 10.4.

Although this defect in the rank is an obstacle to break the McEliece cryptosystem, it can be used to distinguish the public
generator from a random code. But before doing so, let us remark first that although the linear system LP is defined over Fq ,
there exists potentially two vector spaces of solutions depending on whether we focus on Fqm or Fq . We shall see that this
ambiguity can be solved through the following definition.

Definition 28. For any integer r > 1 and m > 1, let us denote by N
def
=
(
mr
2

)
the number of variables in the linear system LP

as defined in (10.4) and D the dimension of the vector space of solutions of LP . The normalized dimension of LP denoted by ∆

is defined as ∆
def
= D

m .

Throughout the paper we consider three cases: when the pij’s are chosen uniformly and independently at random in Fq then
we denote the normalized dimension by ∆random. When G is chosen as a generator matrix of a random alternant (resp. Goppa)
code of degree r, we denote it by ∆alternant (resp. ∆Goppa). Our experiments have revealed that the normalized dimension of the
vector space over Fq of the solutions of (10.4) is predictable and follows formulas.

Experimental Fact 1 (Alternant Case). As long as N −m∆alternant < k, with very high probability the normalized dimension
∆alternant is equal to Talternant where by definition:

Talternant
def
=

1

2
(r − 1)

(
(2e+ 1)r − 2

qe+1 − 1

q − 1

)
(10.5)

and where e
def
=
⌊
logq(r − 1)

⌋
.

As for the case of random Goppa codes we also obtain formulas different from those of alternant codes. Note however that
the Goppa codes are generated by means of a random irreducible γ(z) of degree r and hence γ(z) has no multiple roots. In
particular, we can apply Theorem 3 in the binary case.

Experimental Fact 2 (Goppa Case). As long asN −m∆Goppa < k, with very high probability the normalized dimension ∆Goppa

is equal to TGoppa where by definition:

TGoppa
def
=


1
2 (r − 1)(r − 2) = Talternant for r < q − 1

1
2r
(

(2e+ 1)r − 2qe + 2qe−1 − 1
)

for r > q − 1
(10.6)

and where e is the unique integer such that:

qe − 2qe−1 + qe−2 < r 6 qe+1 − 2qe + qe−1.

Based upon these experimental observations, we are now able to define a distinguisher between random codes, alternant codes
and Goppa codes. This distinguisher will be in particular useful to distinguish McEliece public keys from random matrices.

Definition 29. Let m and r be integers such that m > 1 and r > 1. Let G be a k × n matrix whose entries are in Fq with

n 6 qm and k
def
= n − rm. Without loss of generality, we assume that G is systematic i.e. G = (Ik | P ). Let LP be the linear

system associated to G as defined in (10.4), and ∆ the normalized dimension of LP . We define the Random Code Distinguisher
D as the mapping which takes in input G and outputs b in {−1, 0, 1} such that D(G) = −1 if ∆ = Talternant, D(G) = 0 if
∆ = TGoppa, and D(G) = 1 otherwise.
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10.4 Random Case
The purpose of this section is to study the behavior of Drandom, namely the dimension of the solution space of LP when the
entries of the matrix P are drawn independently from the uniform distribution over Fq . In this case, we can show that:

Theorem 4. Assume that N 6 k and that the entries of P are drawn independently from the uniform distribution over Fq . Then
for any function ω(x) tending to infinity as x goes to infinity, we have that as mr goes to infinity

prob
(
Drandom > mrω(mr)

)
= o(1).

Notice that if choose ω(x) = log(x) for instance, then asymptotically the dimension Drandom of the solution space is with
very large probability smaller than mr log(mr). When m and r are of the same order – which is generally chosen in practice
– this quantity is smaller than Dalternant or DGoppa which are of the form Ω(mr2). The main ingredient for proving Theorem

4 consists in analyzing a certain (partial) Gaussian elimination process on the matrix M def
= (pijpij′) 16i6k

k+16j<j′6n
. Basically it

amounts to view the matrix M in block form, each block consisting in the matrix Bj = (pijpij′) 16i6k
j<j′6n

with k + 1 6 j < n.

EachBj is of size k × (rm− j). Notice that inBj , the rows for which pi,j = 0 consist only of zeros.
To start the Gaussian elimination process withB1, we will therefore pick up rm− 1 rows for which pi,k+1 6= 0. This gives a

square matrixM1. We perform Gaussian elimination onM by adding rows involved inM1 to put the first blockB1 in standard
form. We carry on this process withB2 by picking now rm− 2 rows which have not been chosen before and which correspond
to pi,k+2 6= 0. This yields a square submatrixM2 of size rm− 2 and we continue this process until reaching the last block. The
key observation is that:

rank(M) > rank(M1) + rank(M2) + · · ·+ rank(M rm−1).

A rough analysis of this process yields the theorem above. The important point is what happens for different blocks are inde-
pendent processes, it corresponds to looking at different rows of the matrix P . A more detailed analysis would probably yield a
stronger result that prob(Drandom > ω(mr)) = o(1), for any function ω going to infinity with mr or allowing to treat the case
N > k where we would like to show that prob(Drandom > N − k + ω(mr)) = o(1).

10.5 Interpretation of the Normalized Dimension

10.5.1 Alternant Case
We consider alternant codes over Fq of degree r. The goal is to identify a set of vectors of (Fqm)n which, after decomposing
each entry according to a basis of Fqm over Fq , provides a basis of the solution space of LP . Let us observe that to set up the
linear system LP as defined in (10.4), we have used the trivial identity YiYiX2

i = (YiXi)
2. Actually, we can use any identity

YiX
a
i YiX

b
i = YiX

c
i YiX

d
i with a, b, c, d ∈ {0, 1, . . . , r− 1} such that a+ b = c+ d. It is straightforward to check that we obtain

the same algebraic system LP with:

n∑
j=k+1

∑
j′>j

pi,jpi,j′(YjX
a
j Yj′X

b
j′ + Yj′X

a
j′YjX

b
j + YjX

c
jYj′X

d
j′ + Yj′X

c
j′YjX

d
j ) = 0. (10.7)

So, the fact that there are many different ways of combining the equations of the algebraic system together yielding the same
linearized system LP explains why the dimension of the vector space solution is large. For larger values of r, the automorphisms
of Fqm of the kind x 7→ xq

`

for some ` ∈ {0, . . . ,m−1} can be used to obtain the identity for any integers a, b, c, d, `, `′ such that
aq`
′
+bq` = cq`

′
+dq`. We get again the linear system LP but the decomposition over Fq of the entries of vectors obtained from

such equations give vectors that are dependent of those coming from the identity YiXa
i Y

q`−`
′

i Xbq`−`
′

i = YiX
c
i Y

q`−`
′

i Xdq`−`
′

i if
we assume `′ 6 `. Therefore, we are only interested in vectors that satisfy equations obtained with 0 6 a, b, c, d < r, 0 6 ` < m
and a+ q`b = c+ q`d.

Definition 30. Let a, b, c and d be integers in {0, . . . , r − 1} and ` in
{

0, . . . , blogq(r − 1)c
}

such that a+ q`b = c+ q`d. We

defineZa,b,c,d,`
def
=
(
Za,b,c,d,`[j, j

′]
)
k+16j<j′6n

whereZa,b,c,d,`[j, j′]
def
= YjX

a
j Y

q`

j′ X
q`b
j′ +Yj′X

a
j′Y

q`

j Xq`b
j +YjX

c
jY

q`

j′ X
q`d
j′ +

Yj′X
c
j′Y

q`

j Xq`d
j , for any j and j′ satisfying k + 1 6 j < j′ 6 n.

Without loss of generality, we can assume that d > b and set δ def
= d − b. The next proposition shows that some vectors

Zc+q`δ,b,c,b+δ,` can be expressed as a linear combination of vectors defined with δ = 1.

Proposition 24. Let `, δ, b and c be integers such that ` > 0, δ > 1, 1 6 b+ δ 6 r− 1 and 1 6 c+ q`δ 6 r− 1. Let us assume

that δ > 2 and let bi
def
= b+ i− 1 and ci

def
= c+ q`(δ − i). We have

Zc+q`δ,b,c,b+δ,` =

δ∑
i=1

Zci+q`,bi,ci,bi+1,`. (10.8)
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Definition 31. Let Br be the set of nonzero vectors Zc+q`δ,b,c,b+δ,` obtained with tuples (δ, b, c, `) such that δ = 1 while
satisfying 0 6 b < c 6 r − 2 if ` = 0, and if 1 6 ` 6 blogq(r − 1)c:{

0 6 b 6 r − 2,
0 6 c 6 r − 1− q`.

Proposition 25. For any integer r > 3 the cardinality of Br is equal to Talternant.

Proposition 25 gives an explanation of the value of Dalternant and gives the following heuristic.

Heuristic 1. Consider a certain decomposition of the elements of Fqm in a Fq basis. Let πi : Fqm → Fq be the function
giving the i-th coordinate in this decomposition where 1 6 i 6 m. By extension we denote for z = (zj)16j6n ∈ (Fqm)n by
πi(z) the vector (πi(zj))16j6n ∈ Fnq . Then, for any j such that 1 6 j 6 n and for random choices of xj’s and yj’s, the set
{πi(Z) | 1 6 i 6 m,Z ∈ Br} forms a basis of the vector space of solutions of LP .

10.5.2 Binary Goppa Case
In this section we will explain Experimental Fact 2 observed for binary Goppa codes. We denote by r the degree of the Goppa
polynomial. The theoretical expression TGoppa has a simpler expression in that special case.

Proposition 26. Let e
def
= dlog2 re+ 1 and N

def
=
(
mr
2

)
. When q = 2, Formula (10.6) can be simplified to:

TGoppa =
1

2
r
(

(2e+ 1)r − 2e − 1
)
. (10.9)

Theorem 3 shows that a binary Goppa code of degree r can be regarded as a binary alternant code of degree 2r. This seems to
indicate that we should have DGoppa(r) = mTalternant(2r). This is not the case however. It turns out that DGoppa(r) is significantly
smaller than this. In our experiments, we have found out that the vectors of B2r still form a generating set for the solution
space of LP , but they are not independent anymore. Our goal is therefore to identify the dependencies between πi(Z)’s with
Z in B2r. Although we are firstly interested in linear relations between the πi(Z)’s, we shall see that many of them come from
F2m -relations that link directly the Z’s as shown by the following proposition which exploits the fact that the Yi’s are derived
from the Goppa polynomial γ(z) by Yi = γ(Xi)

−1.

Proposition 27. Let t, ` and c be integers such that 0 6 t 6 r − 2, 1 6 ` 6 blog2(2r − 1)c and 0 6 c 6 2r − 2` − 1. We set

c∗
def
= c+ 2`−1. It holds that:

r∑
b=0

γ2
`

b Zc+2`,t+b,c,t+b+1,` = Zc∗+2`−1,2t,c∗,2t+1,`−1 +Zc+2`−1,2t+1,c,2t+2,`−1. (10.10)

As a consequence, the set {πi(Z) | 1 6 i 6 m,Z ∈ B2r} can not be a basis of the linearized system in the Goppa case.

Proposition 28. The number NL of equations of the form (10.10) is 2(r − 1) (ru+ 1− 2u) where u
def
= blog2(2r − 1)c.

Notice that each equation of the form (10.10) involves one vector of B2r that does not satisfy the other equations. These
equations are therefore independent and if we denote by < B2r >F2m

the vector space over F2m generated by the vectors of B2r
we should have:

dim < B2r >F2m
6 |B2r| −NL.

The experimentations we have made indicate that actually equality holds here. However, this does not mean that the dimension
of the vector space over F2 generated by the set {πi(Z) | Z ∈ B2r, 1 6 i 6 m,Z ∈ B2r} is equal to mdim < B2r >F2m

.

It turns out that there are still other dependencies among the πi(Z)’s. To see this, let us define the vector Qa,b,c,d,`
def
=(

Qa,b,c,d,`[j, j
′]
)
k+16j<j′6n

with:

Qa,b,c,d,`[j, j
′] = (Za,b,c,d,`[j, j

′])
2
.

Observe also that for any 1 6 i 6 m we always have:

πi(Qa,b,c,d,`) ∈ {πi(Z) | 1 6 i 6 m,Z ∈ B2r} .

Proposition 29. For any integers b > 0, t > 0, δ > 1 and ` such that 0 6 ` 6 blog2(2r − 1)c − 1, b + δ ≤ 2r − 1 and
t+ 2`δ 6 r − 1, we have

Z2t+2`+1δ,b,2t,b+δ,`+1 =

r∑
c=0

γ2cQc+2`δ,b,t+c,b+δ,`. (10.11)

Proposition 30. Let NQ he number of vectors of B2r satisfying Equation (10.11) and u
def
= blog2(2r − 1)c, we have that

NQ = (2r − 1)(ru− 2u + 1).
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Table 10.1: A binary Goppa code of length n = 2m and degree r < rmax is distinguishable from a random code.

m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
rmax 5 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400

Each of such equation gives rise to m linear equations over F2 involving the πi(Z) for Z in B2r. Therefore, it could be
expected that ∆Goppa = |B2r| − NL − NQ. But, some of the NQ vectors of B2r are counted twice because they appear both in
linear relations of the form (10.10) and “quadratic” equations of the form (10.11). Let NL∩Q be the number of such vectors. By
counting them carefully we can prove that:

Proposition 31. NL∩Q = (r − 1)
(

(u− 1
2 )r − 2u + 2

)
where u

def
= blog2(2r − 1)c.

Proposition 32. For any integer r > 2, we have

TGoppa(r) = |B2r| −NL −NQ +NL∩Q.

10.6 Conclusion and Cryptographic Implications
The existence of a distinguisher for the specific case of binary Goppa codes is not valid for any value of r and m but tends to be
true for codes that have a rate n−mr

n close to one. This kind of codes are mainly encountered with the signature scheme [CFS01].
If we assume that the length n is equal to 2m and we denote by rmax the smallest integer r such that N −mTGoppa > 2m −mr
then any binary Goppa code defined of degree r < rmax can be distinguished (Table 10.1). For example, the binary Goppa
code obtained with m = 13 and r = 19 corresponding to a McEliece public key of 90 bits of security, is distinguishable. More
interestingly, all the keys proposed in [FS09] for the signature scheme can be distinguished.

We recall that the existence of such a distinguisher does not undermine the security of [McE78] and [CFS01]. It only shows
that their security should not be reduced to the difficulty of decoding a random linear code by means of the GCD assumption.
Therefore this would suggest to directly assume that the McEliece trapdoor function is one-way without any other assumptions.



Chapter 11

Cryptanalysis of KKS Signature Scheme1

11.1 Introduction
Digital signature schemes are probably among the most useful cryptographic algorithms. If quantum computers were to become
reality, it would be useful to devise such schemes which would resist to it. A possible approach to meet this goal could be to
build such schemes whose security relies on the difficulty of decoding linear codes. Two code based schemes of this kind have
been proposed, namely the Courtois-Finiasz-Sendrier signature scheme [CFS01] and the Kabatianskii, Krouk and Smeets (KKS)
scheme [KKS97, KKS05].

The Courtois-Finiasz-Sendrier (CFS) scheme presents the advantage of having an extremely short signature and its security
has been proven to rely on the well-known syndrome decoding problem and the distinguishability of binary Goppa codes from a
random code. However, it has been proved in [FGUO+11] that the latter problem can be solved in the range of parameters used
in the CFS signature algorithm. This does not prove that their proposal is insecure. However, it invalidates the hypotheses of their
security proof. The main difficulty in suggesting a CFS type scheme is to come up with a family of very high rate codes with an
efficient decoding algorithm and whose structure can be hidden in the same way as in the McEliece scheme. This narrows down
quite a bit the families of codes which can be used in this setting and up to now only Goppa codes are known to meet this goal. It
should be emphasized that it is precisely their rich algebraic structure which makes it possible to distinguish them from random
codes.

On the other hand, the KKS proposal does not rely on Goppa codes and can be instantiated with random codes. Moreover,
unlike in the CFS signature scheme, it does not compute a signature by using a decoding algorithm for the code and thus
completely avoids the necessity of having to use restricted families of codes with a “hidden” trapdoor. Moreover, a variation of
it has been proposed in [BMJ11] and has been proved to be EUF-1CMA secure in the random oracle model. The security of the
KKS scheme has been investigated in [COV07]. It was shown that a passive attacker who may intercept just a few signatures can
recover the private key. All the schemes proposed in [KKS97] can be broken in this way with the help of at most 20 signatures.
Basically it uses the fact that a valid message-signature pair reveals on average half of the secret support J (see Section 11.3
where this set is defined precisely). Therefore with O(log |J |) message-signature pairs it is expected to recover the whole set J .
The security of the scheme is not compromised by this attack however if only one signature is computed, and this especially in
the variant proposed in [BMJ11] where some random noise is added on top of the signature.

The purpose of this article is to present a completely new security analysis of the KKS scheme and its variant proposed in
[BMJ11]. Our approach for breaking the scheme is to define a certain error correcting code from the couple of public matrices
used in the scheme and to notice that certain rather low weight codewords give actually valid signatures. It is therefore natural to
use standard algorithms for finding low-weight codewords in this setting, such as Stern’s algorithm [Ste88] or its Dumer variant
[Dum96, FS09] (see also [BLP11]). It turns out that such algorithms are unusually successful in this setting due to the conjunction
of three factors: (i) there are many low-weight codewords, (ii) they are localized on a rather small support, (iii) some part of
this support is known to the attacker. It appears that all parameters suggested in [KKS97, KKS05, BMJ11] are easily broken by
this approach and this without even knowing a single signature pair. Moreover, this approach can exploit the knowledge of a
message-signature pair which speeds up the attack.

We provide an analysis of this attack which explains what makes it feasible for the parameters proposed in [KKS97, KKS05,
BMJ11]. The KKS scheme relies on a couple of matrices which can be viewed as parity-check matrices of two linear codes. We
show that when the first code has a rate which is smaller than the rate of the second one (or has approximately the same rate),
then our attack is quite successful. This was exactly the case for all the parameters suggested in the past. In other words, our
attack does not compromise the security of the whole KKS scheme. It just points out that the region of weak parameters is really
much larger than previously thought.

11.2 Terminology and Notation
In the whole paper q denotes some prime power and we denote by Fq the finite field with q elements. Let n be a non-negative
integer. The set of integers i such that 1 6 i 6 n is denoted by [1 · · ·n]. The cardinality of a set A is denoted by |A|. The

1This chapter is a complete reproduction of the article [OT11] that will be presented at PQCrypto 2011.
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concatenation of the vectors x = (x1, . . . , xn) and y = (y1, . . . , ym) is denoted by (x||y)
def
= (x1, . . . , xn, y1, . . . , ym). The

support supp(x) of x ∈ Fnq is the set of i’s such that xi 6= 0. The (Hamming) weight wt(x) is the cardinality of supp(x). For a
vector x = (xi) and a subset I of indices of x, we denote by xI its restriction to the indices of I , that is:

xI
def
= (xi)i∈I .

We will also use this notation for matrices, in this case it stands for the submatrix formed by the columns in the index set, i.e. for
any k × n matrixH

HJ
def
= (hij)16i6k

j∈J
.

A linear code C of type [n, k, d] over Fq is a linear subspace of Fnq of dimension k and minimum distance d where by

definition d def
= min{wt(x) : x ∈ C and x 6= 0}. The elements of C are codewords. A linear code can be defined either by a

parity check matrix or a generator matrix. A parity check matrixH for C is an (n−k)×n matrix such that C is the right kernel
ofH:

C = {c ∈ Fnq : HcT = 0}

where xT denotes the transpose of x. A generator matrix G is a k × n matrix formed by a basis of C . We say that G is in
systematic form if there exists a set J such that GJ = Ik. The syndrome s by H of x ∈ Fnq is defined as sT def

= HxT . A
decoding algorithm forH is an algorithm such that, given s in Frq , finds a vector e of minimum weight whose syndrome is s.

11.3 The Kabatianskii-Krouk-Smeets Signature Scheme and its Variant
This section is devoted to the description of two code-based signature schemes proposed in [KKS97] and more recently in
[BMJ11], where the latter can be viewed as a “noisy” version of the former [KKS97]. Our presentation presents the main
ideas without giving all the details which can be found in the original papers. We first focus on the scheme of [KKS97] whose
construction relies on the following ingredients:

1. a full rank binary matrixH of size (N −K)×N with entries in a finite field Fq .

2. a subset J of {1, . . . , N} of cardinality n,

3. a linear code Chidden over Fq of length n 6 N and dimension k defined by a generator matrixG of size k×n. Let t1 and t2
be two integers such that with very high probability, we have that t1 6 wt(u) 6 t2 for any non-zero codeword u ∈ Chidden.

The matrixH is chosen such that the best decoding algorithms cannot solve the following search problem.

Problem 1. Given the knowledge of s ∈ FN−Kq which is the syndrome by H of some e ∈ FNq whose weight lies in [t1 · · · t2],
find explicitly e, or eventually x in FNq different from e sharing the same properties as e.

Finally let F be the (N −K)×k matrix defined by F def
= HJG

T . The Kabatianskii-Krouk-Smeets (KKS) signature scheme
is then described in Figure 11.1.

Figure 11.1: Description of the KKS scheme given in [KKS97].

• Setup.

1. The signer S chooses N , K n, k, t1 and t2 according to the required security level.

2. S draws a random (N −K)×N matrixH .

3. S randomly picks a subset J of {1, . . . , N} of cardinality n.

4. S randomly picks a random k × n generator matrix G that defines a code Chidden such that with high probability
t1 6 wt(u) 6 t2 for any non-zero codeword u ∈ Chidden.

5. F def
= HJG

T whereHJ is the restriction ofH to the columns in J .

• Keys.

– Private key. J andG

– Public key. F andH

• Signature. The signature σ of a message x ∈ Fkq is defined as the unique vector σ of FNq such that σi = 0 for any i 6∈ J
and σJ = xG.

• Verification. Given (x, σ) ∈ Fkq × FNq , the verifier checks that t1 6 wt(σ) 6 t2 andHσT = FxT .
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The scheme was modified in [BMJ11] to propose a one-time signature scheme by introducing two new ingredients, namely
a hash function f and adding an error vector e to the signature. It was proved that such a scheme is EUF-1CMA secure in the
random oracle model. The description is given in Figure 11.2.

Figure 11.2: Description of the scheme of [BMJ11].

• Setup.

1. The signer S chooses N , K n, k, t1 and t2 according to the required security level.

2. S chooses a hash function f : {0, 1}∗ × FN−K2 −→ Fk2 .

3. S draws a random binary (N −K)×N matrixH .

4. S randomly picks a subset J of {1, . . . , N} of cardinality n.

5. S randomly picks a k × n generator matrix G that defines a binary code Chidden such that with high probability
t1 6 wt(u) 6 t2 for any non-zero codeword u ∈ Chidden.

6. F def
= HJG

T whereHJ is the restriction ofH to the columns in J .

• Keys.

– Private key. J andG

– Public key. F andH

• Signature. The signature of a message x ∈ {0, 1}∗ is (h, σ) defined as follows:

– S picks a random e ∈ FN2 such that wt(e) = n.

– Let h def
= f(x,HeT ) and y be the unique vector of FN2 such that (i) supp(y) ⊂ J , (ii) yJ = hG. The second part

of the signature σ is then given by σ def
= y + e.

• Verification. Given a signature (h, σ) ∈ Fk2 × FN2 for x ∈ {0, 1}∗, the verifier checks that wt(σ) 6 2n and h =
f(x,HσT + FhT ).

11.4 Description of the Attack
The purpose of this section is to explain the idea underlying our attack which aims at recovering the private key. The attack
is divided in two main steps. First, we produce a valid signature for some message using only the public key. To do so, we
define a certain code from matrices H and F . It turns out that low weight codewords of this code give valid message-signature
pairs. Then we just apply Dumer’s algorithm [Dum91] in order to find these low weight codewords. This attack can even be
refined in the following way. Whenever we are able to produce one valid message-signature pair, and since each signature reveals
partial information about the private key (especially about J as explained further in this section), we can use it to get another
valid message-signature pair revealing more information about J . We repeat this process a few times until we totally recover the
whole private key. More details will be given in the following sections.

In what follows, we make the assumption that all the codes are binary because all the concrete proposals are of this kind. The
non-binary case will be discussed in the conclusion.

11.4.1 An auxiliary code
We give here the first ingredient we use to forge a valid message/signature pair for the KKS scheme just from the knowledge of
the public pair H,F . This attack can also be used for the second scheme given by Figure 11.2. In the last case, it is not a valid
message/signature pair anymore but an auxiliary quantity which helps in revealing J . This ingredient consists in a linear code
Cpub of length N + k defined as the kernel of Ĥ which is obtained by the juxtaposition of the two public matrices H and F as
given in Figure 11.3. The reason behind this definition lies in the following Fact 4.

Fact 4. Let x′ be in FN+k
2 and set (σ||x)

def
= x′ with σ in FN2 and x in Fk2 . Then σ is a signature of x if and only if:

1. Ĥx′T = 0

2. t1 6 wt(σ) 6 t2.

The code Cpub is of dimension k + K, and of particular interest is the linear space Csec ⊂ Cpub that consists in words that
satisfy both conditions of Fact 4 and that are obtained by all pairs (σ,x) of valid message-signature pairs which are obtained by
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Figure 11.3: Parity-check matrix Ĥ of the code Cpub

  

N k

N−KH = 
^

H F

3

H H

H

0

1
1

...

10

0

1 2

N−K−l(K+k+l)/2(K+k+l)/2

N−K−l

l

   

Figure 11.4: A parity-check matrix for Cpub in quasi-systematic form.

the secret signature algorithm, that is to say:

Csec
def
=
{

(σ||x) ∈ FN+k
2 : x ∈ Fk2 , σ ∈ FN2 , σJ = xG, σ[1···N ]\J = 0

}
. (11.1)

Clearly, the dimension of Csec is k. Additionally, we expect that the weight of σ is of order n/2 for any (σ,x) in Csec, which is
much smaller than the total length N . This strongly suggests to use well-known algorithms for finding low weight codewords
to reveal codewords in Csec and therefore message-signature pairs. The algorithm we used for that purpose is specified in the
following subsection.

11.4.2 Finding low-weight codewords
We propose to use the following variation on Stern’s algorithm due to [Dum91] (See also [FS09]). The description of the
algorithm is given in Algorithm 1. It consists in searching for low-weight codewords among the candidates that are of very
low-weight 2p ( where p is typically in the range 1 6 p 6 4) when restricted to a set I of size slightly larger than the dimension
k + K of the code Cpub, say |I| = k + K + l for some small integer l. The key point in this approach is to choose I among a
set S of test positions. The set S will be appropriately chosen according to the considered context. If no signature pair is known,
then a good choice for S is to take:

S = [1 · · ·N ]. (11.2)

This means that we always choose the test positions among the N first positions of the code Cpub and never among the k last
positions. The reason for this choice will be explained in the following subsection.

11.4.3 Explaining the success of the attack
It turns out that this attack works extremely well on all the parameter choices made in the literature, and this even without
knowing a single message-signature pair which would make life much easier for the attacker as demonstrated in [COV07]. In a
first pass, the attack recovers easily message-signature pairs for all the parameters suggested in [BMJ11, KKS97, KKS05]. Once
a signature-message pair is obtained, it can be exploited to bootstrap an attack that recovers the private key as we will explain
later.

The reason why the attack works much better here than for general linear codes comes from the fact that Ĥ does not behave
like a random matrix at all even if the two chosen matrices for the scheme, namelyH andG are chosen at random. The left part
and the right partH and F are namely related by the equation:

F = HJG
T .

Indeed, the parity-check matrix Ĥ displays peculiar properties: Cpub contains Csec as a subcode and its codewords represent valid
message-signature pairs. This subcode has actually a very specific structure that helps greatly the attacker:

1. There are many codewords in Csec, namely 2k.

2. The support of these codewords is included in a fixed (and rather small) set of size k + n.
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Algorithm 1 KKSforge: algorithm that forges a valid KKS signature.
PARAMETERS:

r : number of iterations,

l : small integer (l 6 40),

p : very small integer (1 6 p 6 4).

S : a subset of [1 · · ·N ] from which in each iteration a subset of cardinality K + k + l will be randomly chosen.

INPUT: Ĥ
OUTPUT: a list L containing valid signature/message pairs (σ,x) ∈ FN2 × Fk2 .

1: L ← ∅.
2: for 1 6 t 6 r do
3: Step 1: Randomly pick K + k + l positions among S to form the set I . This set is partitioned into I = I1 ∪ I2 such that

||I1| − |I2|| 6 1.
4: Step 2: Perform Gaussian elimination over the complementary set {1, 2, . . . , N + k} \ I to put Ĥ in quasi-systematic

form (as shown in Figure 11.4).
5: Step 3:
6: Generate all binary vectors x1 of length b(K + k + l)/2c and weight p and store them in a table at the address H1 x

T
1

7: for all binary vectors x2 of length d(K + k + l)/2e and weight p do
8: for all x1 stored at the address H2 x

T
2 do

9: Compute x3
def
= (x1||x2)HT

3 and form the codeword x def
= (x1||x2||x3) of Cpub

10: if t1 6 wt(x[1···N ]) 6 t2 then
11: L ← L ∪ {x}
12: end if
13: end for
14: end for
15: end for
16: return L

3. k positions of this set are known to the attacker.

4. These codewords form a linear code (of dimension k).

Because of all these properties, the aforementioned attack will work much better than should be expected from a random code.
More precisely, let us bring in:

I ′
def
= I ∩ J.

Notice that the expectation E {|I ′|} of the cardinality of the set I ′ is equal to:

E {|I ′|} =
n

N
(k +K + l) = (R+ αρ+ λ)n (11.3)

where we introduced the following notation:

R
def
=
K

N
, ρ

def
=
k

n
, α

def
=

n

N
and λ

def
=

l

N
.

The point is that whenever there is a codeword c in Csec which is such that wt(cI′) = 2p we have a non-negligible chance
to find it with Algorithm 1. This does not hold with certainty because the algorithm does not examine all codewords x such
that wt(xI) = 2p, but rather it consists in splitting I in I1 and I2 of the same size and looking for codewords x such that
wt(xI1) = wt(xI2) = p. In other words, we consider only a fraction δ of such codewords where:

δ =

(
(K+k+l)/2

p

)(
(K+k+l)/2

p

)(
K+k+l

2p

) ≈

√
(K + k + l)

πp(K + k + l − 2p)
.

We will therefore obtain all codewords c in Csec which are such that wt(cI1 = wt(cI2) = p. Consider now the restriction C ′sec of
Csec to the positions belonging to I ′, that is:

C ′sec =
{

(xi)i∈I′ : x = (xi)i∈[1···N+k] ∈ Csec

}
. (11.4)

The crucial issue is now the following question:

Does there exist in C ′sec a codeword of weight 2p?



54 CHAPTER 11. CRYPTANALYSIS OF KKS SIGNATURE SCHEME

The reason for this is explained by the following proposition.

Proposition 33. Let I ′s
def
= Is ∩ J for s ∈ {1, 2}. If there exists a codeword x′ in C ′sec such that wt(x′I′1 = wt(x′I′2) = p, then it

will be the restriction of a codeword x in Csec which will belong to the list L output by Algorithm 1.

Proof. Consider a codeword x′ in C ′sec such that wt(x′I′1) = wt(x′I′2) = p. For s ∈ {1, 2}, extend xI′s with zeros on the other
positions of Is and let xs be the corresponding word. Notice that x1 and x2 will be considered by Algorithm 1 and x1 will be
stored at the address H1x

T
1 . By definition of x′, (x1||x2) is the restriction of a codeword x of Csec to I , say x = (x1||x2||y)

with y ∈ FN−K−l2 . Since Csec ⊂ Cpub we have ĤxT = 0. Let Ĥ
′

be the matrix obtained from Ĥ put in quasi-systematic form
through a Gaussian elimination as given in Figure 11.4. We also have Ĥ

′
xT = 0 and hence:

H1x
T
1 +H2x

T
2 = 0 (11.5)

and
H3(x1||x2)T + yT = 0. (11.6)

Equation (11.5) shows that x1 is stored at address H2x
T
2 and will be considered at Step 8 of the algorithm. In this case, x will

be stored in L.

We expect that the dimension of C ′sec is still k and that this code behaves like a random code of the same length and dimension.
Ignoring the unessential issue whether or not x′ satisfies wt(x′I′1) = wt(x′I′2) = p, let us just assume that there exists x′ in C ′sec

such that |x′| = 2p. There is a non negligible chance that we have wt(x′I′1) = wt(x′I′2) = p and that this codeword will be found
by our algorithm. The issue is therefore whether or not there is a codeword of weight 2p in a random code of dimension k and
length |I ′|. This holds with a good chance (see [BF02] for instance) as soon as:

2p > dGV(|I ′|, k) (11.7)

where dGV(|I ′|, k) denotes the Gilbert-Varshamov distance of a code of length |I ′| and dimension k. Recall that [MS86]:

dGV(|I ′|, k) ≈ h−1 (1− k/|I ′|) |I ′|

where h−1(x) is the inverse function defined over [0, 12 ] of the binary entropy function h(x)
def
= −x log2 x− (1− x) log2(1− x).

Recall that we expect to have:
|I ′| ≈ (R+ αρ+ λ)n,

which implies
k

|I ′|
≈ ρ

R+ αρ+ λ
≈ ρ

R

when α and λ are small. Roughly speaking, to avoid such an attack, several conditions have to be met:

1. ρ has to be significantly smaller than R,

2. n has to be large enough.

This phenomenon was clearly not taken into account in the parameters suggested in
[KKS97, KKS05, BMJ11] as shown in Table 11.1. The values of dGV(|I ′|, k) are extremely low (in the range 1 − 6). In
other words, taking p = 1 is already quite threatening for all these schemes. For the first parameter set, namely (k, n,K,N) =
(60, 1023, 192, 3000), this suggests to take p = 3. Actually taking p = 1 is already enough to break the scheme. The problem
with these low values of p comes from the dependency of the complexity in p as detailed in the following section. For instance
as long as p is smaller than 3 the complexity of one iteration is dominated by the Gaussian elimination Step 2.

Finally, let us observe that when this attack gives a message/signature pair, it can be used as a bootstrap for an attack that
recovers the whole private key as will be explained in the following subsection.

Table 11.1: KKS Parameters with the corresponding value of dGV(n′, k).
Article ρ n l n′

def
= E {|I ′|} R N dGV(n′, k)

[KKS97] 60
1023 ≈ 0.059 1,023 8 89 192

3000 ≈ 0.064 3,000 6
[KKS05] 48

255 ≈ 0.188 255 8 65 273
1200 ≈ 0.228 1,200 5

[KKS97] 48
180 ≈ 0.267 180 8 64 335

1100 ≈ 0.305 1,100 4
[BMJ11] 1/2 320 12 165 1/2 11,626 1
[BMJ11] 1/2 448 13 230 1/2 16,294 1
[BMJ11] 1/2 512 13 264 1/2 18,586 1
[BMJ11] 1/2 768 13 395 1/2 27,994 2
[BMJ11] 1/2 1,024 14 527 1/2 37,274 2
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11.4.4 Exploiting a signature for extracting the private key

If a signature σ of a message x is known, then y def
= (σ,x) is a codeword of Csec which has weight about n/2 when restricted

to its N first positions. This yields almost half of the positions of J . This can be exploited as follows. We perform the
same attack as in the previous subsection, but we avoid choosing positions i for which σi = 1. More precisely, if we let
Jσ

def
= supp(σ) = {i : σi = 1}, then we choose K + k + l positions among [1 · · ·N ] \ Jσ to form I . The point of this choice is

that we have more chances to have a smaller size for I ′ = I ∩ J . Let n′ def
= |I ′|, we have now:

E {n′ |Jσ } =
n− |Jσ|
N − |Jσ|

(k +K + l) (11.8)

E {|I ′|} = E {E {n′ |Jσ }} ≈
n/2

(N − n/2)
(k +K + l). (11.9)

The last approximation follows from the fact that the weight wt(σ) is quite concentrated around n/2. The same reasoning can
be made as before, but the odds that the algorithm finds other valid signatures are much higher. This comes from the fact that the

expectation |I ′| is half the expected size of I ′ in the previous case as given in Equation (11.3). Previously we had E
{
|I ′|
k

}
≈ R

ρ
,

whereas now we have:

E
{
|I ′|
k

}
≈ R

2ρ
.

In other words, in order to avoid the previous attack we had to take ρ significantly smaller than R and now, we have to take ρ
significantly smaller than R/2. For all the parameters proposed in the past, it turns out that dGV(|I ′|, k) is almost always equal
to 1, which makes the attack generally successful in just one iteration by choosing p = 1.

Moreover, if another valid signature σ′ is obtained and by taking the union Jσ ∪ Jσ′ of the supports, then about 3/4 of the
positions of J will be revealed. We can start again the process of finding other message/signature pairs by choosing K + k + l
positions among {1, 2, . . . , N} \ (Jσ ∪ Jσ′) to form the sets I . This approach can be iterated as explained in Algorithm 2. This
process will quickly reveal the whole set J and from this, the private key is easily extracted as detailed in [COV07].

Algorithm 2 Recovering the private key from t > 1 signatures.
PARAMETERS:

r : number of iterations

l : small integer (l 6 40)

p : very small integer (1 6 p 6 4).

INPUT:

Ĥ : public matrix as defined in Figure 11.3

{σ1, . . . , σt} : list of t > 1 valid signatures

OUTPUT: J ⊂ [1 · · ·N ] of cardinality n
1: J ← ∪ti=1supp(σi)
2: repeat
3: S ← [1 · · ·N ] \ J
4: L ← KKSforge(r,l,p,S,Ĥ)
5: for all σ ∈ L do
6: J ← J ∪ supp(σ)
7: end for
8: until |J | = n
9: return J

Finally, let us focus on the variant proposed in [BMJ11]. In this case, we have slightly less information than in the original
KKS scheme. This can be explained by the following reasoning. In this case too, we choose S again as [1 · · ·N ] \ Jσ , where as
before Jσ is defined as Jσ

def
= {i : σi = 1}. However this time, by defining n′ again as n′ def

= |I ′|, we have

E {n′ |Jσ } =
|J ′σ|

N − |Jσ|
(k +K + l)

where
J ′σ = J \ Jσ.

However, this time due to the noise which is added, |Jσ| is expected to be larger than before (namely of order n2 + (N−n)n
N ).
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11.5 Analysis of the Attack
The purpose of this section is to provide a very crude upper-bound on the complexity of the attack. We assume here that the code
Crand of length n which is equal to the restriction on J of Csec:

Crand
def
=
{

(xj)j∈J : x = (x1, . . . , xN+k) ∈ Csec

}
behaves like a random code. More precisely we assume that it has been chosen by picking a random parity-check matrix
H rand of size (n − k) × n (by choosing its entries uniformly at random among F2). This specifies a code Crand of length n as
Crand = {x ∈ Fn2 : H randx

T = 0}. We first give in the following section some quite helpful lemmas about codes of this kind.

11.5.1 Preliminaries about random codes

We are interested in this section in obtaining a lower bound on the probability that a certain subset X of Fn2 has a non empty
intersection with Crand. For this purpose, we first calculate the two following probabilities. The probabilities are taken here over
the random choices ofH rand.

Lemma 2. Let x and y be two different and nonzero elements of Fn2 . Then

prob(x ∈ Crand) = 2k−n (11.10)
prob(x ∈ Crand,y ∈ Crand) = 22(k−n) (11.11)

To prove this lemma, we will introduce the following notation and lemma. For x = (xi)16i6s and y = (yi)16i6s being two
elements of Fs2 for some arbitrary s, we define x · y as

x · y =
∑

16i6s

xiyi,

the addition being performed over F2.

Lemma 3. Let x and y be two different and nonzero elements of Fn2 and choose h uniformly at random in Fn2 , then

prob(x · h = 0) =
1

2
(11.12)

prob(x · h = 0,y · h = 0) =
1

4
(11.13)

Proof. To prove Equation (11.12) we just notice that the subspace {h ∈ Fn2 : x · h = 0} is of dimension n − 1. There are
therefore 2n−1 solutions to this equation and

prob(x · h = 0) =
2n−1

2n
=

1

2
.

On the other hand, the hypothesis made on x and y implies that x and y generate a subspace of dimension 2 in Fn2 and that the
dual space, that is {h ∈ Fn2 : x · h = 0,y · h = 0} is of dimension n− 2. Therefore

prob(x · h = 0,y · h = 0) =
2n−2

2n
=

1

4

Proof of Lemma 2. Let h1, . . . ,hn−k be the n− k rows ofH rand. Then

prob(x ∈ Crand) = prob(H randx
T = 0)

= prob(h1 · x = 0, . . . ,hn−k · x = 0)

= prob(h1 · x = 0) . . .prob(hn−k · x = 0) (11.14)
= 2k−n (11.15)

where Equation (11.14) follows by the independence of the events and Equation (11.15) uses Lemma 3. Equation (11.11) is
obtained in a similar fashion.

Lemma 4. Let X be some subset of Fn2 of size m and let f be the function defined by f(x)
def
= max

(
x(1− x/2), 1− 1

x

)
. We

denote by x the quantity m
2n−k

, then
prob(X ∩ Crand 6= ∅) > f(x).
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Proof. For x in X we define Ex as the event “x belongs to Crand” and we let q def
= 2k−n. We first notice that

prob(X ∩ Crand 6= ∅) = prob

( ⋃
x∈X

Ex

)
.

By using the Bonferroni inequality [Com74, p. 193] on the probability of the union of events we obtain

prob

( ⋃
x∈X

Ex

)
>

∑
x∈X

prob(Ex)−
∑

{x,y}⊂X

prob(Ex ∩ Ey) (11.16)

> mq − m(m− 1)

2
q2 (11.17)

> mq − m2q2

2
> mq(1−mq/2),

where (11.17) follows from Lemma 2. This bound is rather sharp for small values of mq. On the other hand for larger values of
mq, another lower bound on prob(X ∩ Crand 6= ∅) is more suitable [dC97]. It gives

prob

( ⋃
x∈X

Ex

)
>

∑
x∈X

prob(Ex)2∑
y∈X prob(Ex ∩ Ey)

(11.18)

>
mq2

q + (m− 1)q2
(11.19)

> 1− 1

mq
,

By taking the maximum of both lower bounds, we obtain our lemma.

11.5.2 Estimating the complexity of Algorithm 1
Here we estimate how many iterations have to be performed in order to break the scheme when no signature is known and when
S = [1 · · ·N ]. For this purpose, we start by lower-bounding the probability that an iteration is successful. Let us bring the
following random variables for i ∈ {1, 2}:

I ′i
def
= Ii ∩ J and Wi

def
= |I ′i| .

By using Lemma 33, we know that an iteration finds a valid signature when there is an x in Csec such that

|xI′1 | = |xI′2 | = p.

Therefore the probability of success Psucc is lower bounded by∑
w1+w26n

prob
{
∃x ∈ Csec : |xI′1 | =

∣∣xI′2 | = p|W1 = w1,W2 = w2

}
prob(W1 = w1,W2 = w2) (11.20)

On the other hand, by using Lemma 4 with the set

X
def
=
{
x = (xj)j∈J : |xI′1 | =

∣∣xI′2 | = p
}

which is of size
(
w1

p

)(
w2

p

)
2n−w1−w2 , we obtain

prob
{
∃x ∈ Csec : |xI′1 | =

∣∣xI′2 | = p|W1 = w1,W2 = w2

}
> f(x). (11.21)

with

x
def
=

(
w1

p

)(
w2

p

)
2n−w1−w2

2n−k
=

(
w1

p

)(
w2

p

)
2k−w1−w2

The first quantity is clearly equal to

prob(W1 = w1,W2 = w2) =

(
n
w1

)(
n−w1

w2

)(
N−n

(K+k+l)/2−w1

)(
N−n−(K+k+l)/2+w1

(K+k+l)/2−w2

)(
N

(K+k+l)/2

)(
N−(K+k+l)/2
(K+k+l)/2

) . (11.22)

Plugging in the expressions obtained in (11.21) and (11.22) in (11.20) we have an explicit expression of a lower bound on
Psucc. The number of iterations for our attack to be successful is estimated to be of order 1

Psucc
. We obtain therefore an upper-

bound on the expected number of iterations, what we denote by UpperBound. Table 11.2 shows for various KKS parameters,
p and l the expected number of iterations.
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Table 11.2: KKS Parameters with the corresponding value of 1
Psucc

.

Article ρ n l p n′ def
= E {|I ′|} R N UpperBound

[KKS97] 60
1023
≈ 0.059 1,023 8 1 91 192

3000
≈ 0.064 3,000 111.26

60
1023
≈ 0.059 1,023 14 2 91 192

3000
≈ 0.064 3,000 14.17

[KKS05] 48
255
≈ 0.188 255 8 1 66 273

1200
≈ 0.228 1,200 26.41

48
255
≈ 0.188 255 14 2 66 273

1200
≈ 0.228 1,200 4.37

[KKS97] 48
180
≈ 0.267 180 8 1 65 335

1100
≈ 0.305 1,100 6.07

48
180
≈ 0.267 180 15 2 65 335

1100
≈ 0.305 1,100 1.82

[BMJ11] 1/2 320 12 1 165 1/2 11,626 1.24

[BMJ11] 1/2 448 13 1 230 1/2 16,294 1.34

[BMJ11] 1/2 512 13 1 264 1/2 18,586 1.39

[BMJ11] 1/2 768 13 1 395 1/2 27,994 1.61

[BMJ11] 1/2 1,024 14 1 527 1/2 37,274 1.85

11.5.3 Number of operations of one iteration
The complexity of one iteration of Algorithm 1 is C(p, l) = CGauss +Chash +Ccheck where CGauss is the complexity of a Gaussian
elimination,Chash is the complexity of hashing all the x1’s andCcheck is the complexity of checking all the x2’s with the following
expressions:

CGauss = O
(

(N + k)(N − k)(N − k − l)
)

= O(N3) (11.23)

Chash = O

((
(K + k + l)/2

p

))
(11.24)

Ccheck = O

(
1

2l
(N −K − l)2

(
(K + k + l)/2

p

)2
)

(11.25)

The last expression giving Ccheck comes from the fact that the algorithm considers
(
(K+k+l)/2

p

)
elements x2, and for each of

these candidates, we check about O
(

1
2l

(
(K+k+l)/2

p

))
elements x1’s, which involves a matrix multiplication in Step 9. Let us

note that l will be chosen such that Chash and Ccheck are roughly of the same order, say 2l ≈
(
(K+k+l)/2

p

)
.

11.6 Experimental Results
The attack described in Section 11.4 was implemented in C and was run on a laptop MacBook Pro with an Intel Core i7 of
2.66 GHz to validate the analysis developed in Section 11.5. Table 11.3 presents the average number of iterations that were
necessary to obtain a codeword of weight in the range [t1 · · · t2]. The average is computed with 4000 tests most of the time, with
the exceptions of the penultimate entry (only 1000 tests) and the last entry (only 500 tests). The values of t1 and t2 are taken
from [KKS97] and [BMJ11]. The algorithm halts whenever it finds a word in the prescribed set. Note that for [BMJ11], we
have taken t1 = n/2 − 3

2

√
n and t2 = n/2 + 3

2

√
n as advocated by the authors. All the codes that we considered during our

simulations were randomly chosen. This setting does not completely comply with the recommendations made by the authors for
the schemes given in [KKS97]. In one case, it is suggested to use binary BCH codes of length n = 255 and dimension k = 48,
and in another case a binary code of length n = 180 and dimension k = 48 that was constructed by means of 12 random binary
equidistant codes of length 15, dimension 4 and minimum distance 8. However, we emphasize that these specific constraints are
irrelevant because the attack is generic and only requires public data (F and H) and aims at forging a valid signature. We can
see in Table 11.3 that the number of iterations are in accordance with the theoretical upper-bound UpperBound on the value of
1
Psucc

obtained in the previous section, which is an upper bound on the average number of iterations.

11.7 Concluding Remarks
Design principles. As explained in Section 11.3, the parameters of the KKS scheme were chosen in order to make decoding
of Cknown intractable when the weight of errors is in the range [t1 · · · t2], where Cknown denotes the code defined by the parity-
check matrix H . In [BMJ11], it is further required that Cknown is of minimum distance greater than 4n. Both requirements
are clearly insufficient to ensure that the scheme is secure as demonstrated by this paper. We suggest here to replace all these
requirements by choosing the parameters such as to make our attack impracticable. This algorithm is exponential in nature
when the parameters are well chosen. If we want to avoid that the knowledge of a message-signature pair allows to recover the
secret key, this implies for instance that the rate R of Cknown should be significantly larger than 2ρ, that is twice the rate of the
secret code Chidden. This would change the parameters of the scheme significantly and give much larger key sizes than has been
proposed in [KKS97, KKS05, BMJ11]. Choosing these parameters requires however to analyze properly the complexity of the
attack when one message-signature is known (here we just analyzed the complexity of the attack which does not make use of any
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message-signature pair). The analysis we performed in our case can be carried over to the case when a message-signature pair is
known but this is beyond the scope of this paper and will appear in a full version of this paper.

Relating the security to the problem of decoding a linear code. The attack which has been suggested here is nothing but a
well known algorithm for finding low weight codewords or for decoding a generic linear code. It just happens that this algorithm
is much more powerful here than for a random linear code due to the peculiar nature of the code it is applied to. However as
mentioned above, this attack is exponential in nature and can easily be defeated by choosing the parameters appropriately. It
would be interesting to analyze the relationship of the problem of breaking the KKS scheme with decoding problems in more
depth, or to prove that the problem which has to be solved is indeed NP hard.

Non-binary codes. Obviously there is a non binary version of the KKS scheme which would deal with codes defined over
larger alphabets. The benefits of the generalized scheme are questionable. The attack presented here generalizes easily to higher
order fields. What is more, moving to non-binary fields seems to be a poor idea in terms of security. For instance, whereas a
message/signature pair reveals only half the positions of J in the binary case, in the q-ary case we expect to obtain roughly a
fraction q−1

q of positions of J , which is significantly larger.

Decoding one out of many. Another approach could have been used for attacking the scheme. Let us denote by s1, · · · , sk
the columns of F . These vectors can be considered as k syndromes of codewords of Chidden with respect to the parity-check
matrix H . If we want to obtain one message/pair we can try to find an error ei of weight in the range [t1 · · · t2] such that
HeTi = si. This suggests to use “the decoding one out of many” approach [Sen11], that is we have k words to decode and we
want to decode at least one of them. This problem can be solved more efficiently than just decoding one instance. We can even
refine this approach by considering all possible syndromes obtained by all possible (non-zero) combinations

∑
i αisi. In this

case, we would have to solve “a decoding one out of many” problem with 2k − 1 instances. However a naive use of the results
of [Sen11] would be far from indicating that all the parameters of [KKS97, KKS05, BMJ11] are easily broken by this approach.
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Chapter 12

Conclusion and Perspectives

12.1 Algebraic Crytanalysis
Code-based cryptography is still an area in development in spite of its age. The field poses many questions and challenges
that have to be studied. The first issue consists in better assessing key-recovery attacks of the McEliece cryptosystem [McE78]
because unlike decoding attacks which has benefited from several results [McE78, LB88, Leo88, Ste88, vT90, CC94, CC95,
Dum96, CC98, CS98, BLP08], the only known key-recovery attack amounts to performing an exhaustive search. As a result, the
time complexity of any decoding attack is currently always lower than the best key-recovery attack.

The algebraic cryptanalysis that we introduced in [FOPT10a] is a first step towards a solving of this important question. In
this approach, we define a bihomogeneous algebraic system the private key has to satisfy. For a binary Goppa code of length

n 6 2m and dimension k and code-rate R = k/n, the polynomial system has 2rk > 2(1 − R)R
n2

log(n)
equations and 2n

unknowns. Even if the system is heavily over-constrained (there are more equations than unknowns) and is highly structured (of
Vandermonde form and the monomials are YjXa

j avec 0 6 a 6 2r − 1 et 1 6 j 6 n), the solving in the field extension F2m/F2

of degree m is currently an open problem. The classical algorithms based on Gröbner bases [Buc65, CLO01, Fau99, Fau02] are
not efficient with the current parameters. We have seen that the time complexity of this technique is O

((
N+d
d

)ω)
where ω is the

“linear-algebra constant” i.e. 2 < ω 6 3, N is the number of unknowns and d is the degree of regularity.

This observation prompts us to ask whether the algebraic cryptanalysis represents the appropriate framework for mounting
efficient attacks. The recent results of [FSS11] show that for a square bilinear system (the number of equations is equal to the
number of unknowns), the complexity of F5 algorithm is upper-bounded by O

((
N+d
d

)ω)
with N def

= nY + nX where nY (resp.

nX ) is the number of variables Yj (resp. Xj) and d def
= min(nY + 1, nX + 1).

This result motivates us to restrict ourselves to the subsystem only built with equations that contain monomials of the form
YjX

2b

j with 0 6 b 6 log2(2r− 1) where r is the degree of the Goppa polynomial. This leads to a quadratic system by replacing
each variable Xj by m binary variables Xj,1, . . . , Xj,m so that the number of variables Xj,l becomes mn. The system still has
n variables Yj . In that particular context, the degree of regularity d is then n− k for a binary Goppa code (or alternant code) of
dimension k and length n, andN = 2n−k = (2−R)n. However, the system is not square because it has at leastRn log2(2r−1)
equations. Usually in cryptography, the parameters are chosen such that R > 1/2 and r > 9, which implies N 6 3

2n whereas
Rn log2(2r − 1) > 2n. Therefore, this situation requires to assess exactly what is the impact on the complexity of F5 when the
number of equations increases. This study would permit in particular to propose an tighter analysis of the attacks proposed in
[FOPT10a] against variants of [McE78]. Let us recall that we have shown in [FOPT10a] that it is possible to recover efficiently
the private key of [Gab05, BCGO09, MB09]. The main reasons of this outcome are firstly the number of variables is very low,
and the number of equations is very high.

The existence of algebraic methods raises the fundamental question of whether it will bring a real breakthrough approach in
cryptanalyzing McEliece-like schemes. A first and natural step for answering it is to compare with existing attacks that recover
the private keys. The most interesting attack to compare with is the Sidelnikov and Shestakov attack [SS92] which recovers
very efficiently the secret codes when it is a Generalized Reed-Solomon code. The complexity of the attack is O(n3) where n
is the length of the code. If the algebraic cryptanalysis is applied to that precise case and if we assume that the dimension of
Generalized Reed-Solomon code is k = n− r where r is a nonzero integer < n, the polynomial system would have n unknowns
Xj , r free variables Yj and k(r − 1) equations. The key argument to assess of the efficiency of this attack is to determine th
value of the degree of regularity d of the system. In particular, if d is very small or more generally upper-bounded by a constant,
it would give a new polynomial attack.

Another possible strategy that would enable to measure the input of the algebraic approach, and more importantly, to de-
termine the area inside which it becomes efficient, is to consider simplified system by for instance decreasing the number of
unknowns. One could think for example to alternant codes obtained with yj = 1. In that context, the number of variables then
becomes n− k which corresponds to only variables Xj .

61
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12.2 Code Equivalence Problem
The algebraic approach defined in [FOPT10a] can be exploited to study an important problem in coding theory, namely the code
equivalence problem (Definition 9). We rephrase it in the following manner:

Given two codes A and B having the same length n and the same dimension k, is there a permutation π in the symmetric
group of order n denoted by Sn such that for any a = (a1, . . . , an) in A , we have always have that (aσ−1(1), . . . , aσ−1(n))
belongs to B?

This issue is essential in the classification of codes having the same parameters (length, dimension, minimum distance are
all the same). The article [PR97] proves that Graph Isomorphism problem reduces to it. On the other hand, Sendrier’s algorithm
[Sen00] solves it with a time complexity exponential in the dimension of A ∩A ⊥ and polynomial in n.

We propose another way of studying the code equivalence problem based on the solving of a quadratic polynomial system.
Let us assume that A is defined by a generator matrix A and B is defined by a parity-check matrix B. Let us denote by
X = (xi,j) a n× n square matrix which is expected to represent a permutation matrix. We then have the following equality:

XXT = XTX = In. (12.1)

If there exists a permutation (matrix) that sends A onto B, it should satisfy the linear system:

AXBT = 0

whereBT is the transpose ofB. Moreover, we can use the fact thatX is necessarily a binary matrix, which is equivalent to say
that x2i,j = xi,j for any i and j, and it should also satisfy the following polynomial equations obtained for any couples (i, i′) et
(j, j′) such that i 6= i′ and j 6= j′:

xi,jxi,j′ = 0 and xi,jxi′,j = 0

We can observe that if we also add the linear equations
n∑
j=1

xi,j = 1 and
n∑
i=1

xi,j = 1 with 1 6 i 6 n then (12.1) can be safely

removed from the polynomial system. Consequently, the number of linear equations is k(n − k) + 2n = n2
(
R(1−R) + 2

n

)
with R def

= k/n. By assuming1 that these equations are independent, it enables to reduce the number of unknowns to N def
=

n2 − n2
(
R(1−R) +

2

n

)
= n2

(
R2 −R+ 1− 2

n

)
. On the other hand the number of quadratic equations denoted by M is

given by n2 + 2n
(
n
2

)
= n3. So by writing that n3 =

(
N

R2 −R+ 1− 2
n

) 3
2

we see that
M

N
>

1

2
√

2

√
N . The key parameter for

measuring the efficiency is the degree of regularity. In the article [BFSY05], an asymptotic analysis is proposed when the ration
M/N is constant. It is therefore interesting to generalise this result to cases where the ratio is larger.

12.3 Reductionist Security
The design of cryptographic primitives has to imperatively rely on convincing arguments accrediting that the proposed schemes
are sure. Since, the apparition of the McEliece scheme, code-based primitive designers’ practise is to suggest schemes and prove
the security by showing that all the existing attacks are inefficient. Our works in this thesis show that this way of thinking is not
safe and does not give a formal proof that the scheme is secure. Indeed, no guarantee is given that there won’t be a better attack
in the future.

Reductionist security addresses this matter by showing that if an attacker succeeds in impairing a wished security notion there
would exist a (polynomial) transformation resulting in solving a hard problem. This methodology has the merit of identifying
algorithmic problems whose difficulty can be evaluated independently.

Currently, the McEliece cryptosystem has not undergone any attack that would show that encryption function is not one-way.
But, the unsuccessful attempts that propose encryption schemes copying McEliece’s general idea prompts researchers to provide
reductionist security proofs. Recently, [DMQN09] shows that it is possible to convert the McEliece scheme into a semantically
secure one in the standard model against an adaptative Chosen Ciphertext Attack (IND-CCA2) under the assumption that the
problem of decoding random linear codes and Goppa code distinguishing problem are difficult. The problem of decoding random
linear codes is an old problem that received a lot of attention these last years and hence is widely accepted as a hard problem.
But the Goppa code distinguishing problem appeared quite recently in [CFS01] and consequently few things are known about
its difficulty. However, it becomes the centerpiece for elaborating a reductionist security proof for any trapdoor function whose
trapdoor is a binary Goppa code.

Under certain conditions, we have shown that is possible to solve efficiently the Goppa code distinguishing problem. The
idea is to compute the dimension D of solution space of a linear system deduced from the algebraic system that any alternant
code should verify. It turns out that the value of D is huge and varies depending on the type of code, namely a generic alternant

1It is a realistic assumption for random linear codes.
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code, Goppa code or random code. This surprising outcome has however a limitation. Indeed, the code rate has to be very close
to 1. This kind of code are well-suited for the CFS signature scheme [CFS01] whereas for encryption scheme the preferred codes
have code rates that are less than 1, and hence do not fit in the area of validity of our distinguisher.

But the existence of such a distinguisher has at least one consequence. As already observed, even if it does not question neither
the security of the scheme [McE78] nor the security reduction given in [DMQN09], it does invalidate the security reduction of
the CFS signature scheme. The situation was already critical for this scheme because the recommended parameters [FS09] lead
to extremely large keys. In other words, the area of code-based cryptography returns to a situation where there is no efficient
and provably secure signature scheme.

Furthermore, it is natural to ask whether we can extend the range of validity of the distinguisher. Ideally, one would like
to find a method that would distinguish a Goppa code of any rate. One first idea is to generalize the linearization technique.
Unfortunately, there is little chance that this succeeds because we can show that any linear system obtained by this way is
essentially equivalent. Therefore, it seems that a totally new approach has to be designed in order to extend the distinguisher.

Another fundamental question is to know if one can devise a key-recovery attack derived from the distinguisher, in particular
against the CFS scheme. This phenomenon has already happened in the past for the SFLASH signature scheme which was
broken thanks to the existence of a distinguisher. This point needs to be investigated and it undoubtedly requires new ideas to
address it.

Eventually, even if there is no attack based on the distinguisher and even if the distinguisher does not cover the parameters
one encounters in the McEliece scheme, its existence might throw doubt on the interest of using the Goppa code distinguishing
assumption. But this problem is deeply linked to the problem of decoding random linear codes. It seems that it is impossible
to get rid of it whenever one seeks to a security reduction from the problem of decoding random linear codes. The Goppa
code distinguishing problem actually represents the link between an ideal object, which is the random code, and a real object,
namely the Goppa code. One easily understands that getting rid of the Goppa code distinguishing problem means to define a
new problems [Dal10]. One solution is to directly claim that the McEliece function is one-way like it is done in the case of
RSA cryptosystem. This area of research deserves to be investigated in order to prove for instance that the McEliece scheme is
IND-CCA2 in the standard model under the assumption that the McEliece problem (Definition 14) is difficult. This also implies
to study it further and in particular to pursue the study of general decoding algorithms. This field of research has currently
received a renewed interest [MMT11]. We know that practically these algorithms do not represent a real threat once parameters
are generated to resist them. However, the attack we developed against the KKS signature scheme shows that this field should be
active, and one very important question is to know whether these algorithms can be improved by exploiting the property that the
underlying code has an algebraic structure.
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Abstract

A large part in the design of secure cryptographic primitives consists in identifying hard algorithmic problems. Despite the
fact that several problems have been proposed as a foundation for public-key primitives, those effectively used are essentially
classical problems coming from integer factorization and discrete logarithm. On the other hand, coding theory appeared with the
goal to solve the challenging problem of decoding a random linear code. It is widely admitted as a hard problem that has led
McEliece in 1978 to propose the first code-based public-key encryption scheme. The key concept is to focus on codes that come
up with an efficient decoding algorithm. He also advocated the use of binary Goppa codes. Since then, it belongs to the very few
cryptosystems which remain unbroken.

This thesis is primarily interested in studying the security of code-based primitives. The first category we analyzed consists
of variants of the McEliece cryptosystem. Our works expose practical key-recovery attacks either by mounting dedicated tech-
niques, or by devising algebraic attacks. This latter result also provides a new framework to assess the security of the McEliece
cryptosystem and a first step towards the design of attacks based on the solving of algebraic systems. Furthermore, we show
that this approach can be used to study the Goppa Code Distinguishing problem, which asks whether there is an efficient way
to distinguish a Goppa code from a randomly drawn linear code. It represents an important assumption which supports the use
of Goppa codes in cryptography. We show that it is possible to efficiently solve it as long as the code rate is sufficiently high.
Finally, we investigate the security of a signature scheme based on two random linear codes. Our analysis shows that the attack
is sensitive to their rates and can be practical when the rates are close.

Keywords. Code-based cryptography, key-recovery attacks, algebraic cryptanalysis, Goppa code distinguishing problem.


