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EVD Eigenvalue decomposition.

FDA Fisher Discriminant Analysis.

FERET Face Recognition Technology.

Fig Figure.

FLD Fisher’s Linear Discriminant.
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FR Face recognition.

GOM Gabor Ordinal Measures.

GSF Gabor surface feature.

HGPP Histogram of Gabor phase patterns.

HOG Histograms of Oriented Gradients.

HR High resolution.

ICA Independent Component Analysis.

ILBP Improved Local Binary Patterns.

IP Image Processing.

IR Infrared.

k-NN k-Nearest Neighbor.

KDA Kernel Discriminant Analysis.

KPCA Kernel Principal Component Analysis.

LBP Local Binary Patterns.

LDA Linear Discriminant Analysis.

LFD Local frequency descriptor.

LGBPHS Local Gabor binary pattern histogram sequence.

LGOBP Local gradient orientation binary pattern.

LPOG Local patterns of gradients.

LPQ Local Phase Quantization.

LQP Local Quantized Patterns.

LR Low resolution.

LTP Local Ternary Patterns.

LXP Local XOR pattern.

MB-LBP Multi-scale block LBP.
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MBC Monogenic Binary Coding.

MBP Monogenic binary pattern.

MLPQ Multi-scale Local Phase Quantization.

OPL Outer plexiform layer.

PCA Principal Component Analysis.

PDO Patterns of dominant orientations.

PLPQ Patch-based Local Phase Quantization.

PLPQMC Patch-based Local Phase Quantization of Monogenic components.

POEM Patterns of oriented edges magnitudes.

PR Pattern recognition.

RLTP Relaxed Local Ternary Patterns.

RR Recognition rates.

SCface Surveillance Camera face.

SIFT Scale Invariant Feature Transform.

SLF Statistical local features.

SRC Sparse representation-based classification.

SSEC Structured sparse error coding.

SSPP Single sample (image) per person.

STFT Short-term Fourier transform.

SVD Singular value decomposition.

SVM Support Vector Machine.

WPCA Whitened Principal Component Analysis.
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Nomenclature

∗ convolution operation

‖X‖ The Euclidean norm of vector X

� Element-wise multiplication

X Mean value of X

AT The transpose of matrix A
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Chapter 1

Introduction

This chapter presents an introduction about the Face recognition (FR) problem, its
perspectives and challenges, and the most important parts are for the explanation about
the purpose and the approaches of the thesis. An outline of the thesis is also included
after the list of main contributions is given.

1.1 Face recognition problem

Face recognition, an attractive and full of challenges research field of Computer
Vision and Biometrics concerning theoretical methods and software systems for

machines to recognize people based on their digital face images, has been fuelled by
many academic scientists and industrial developers for over twenty years. This is rooted
in its various potential applications and the availability of human face in computer’s
images and videos, which can be encountered in many corners of life. Face recognition
can be used for security applications (access control to authorized areas, computer,
airports, etc), surveillance devices in public spaces (such as football stadiums, train
stations, big trade centers), in forensic applications (identity verification/management
for criminal justice system, disaster victim identification), querying person’s identity in
image/video databases, human machine interaction applications, smart card solutions
(enhanced ATM’s security, biometrics passport-also known as ePassport) [65], and
targeted advertising. Face recognition, that exploits knowledge from many research
disciplines such as Image processing (IP), Pattern recognition (PR), Machine learning
(ML), Visual perception, psychophysics and neuroscience, is one of the most successful
studies of biometrics, the two others being fingerprint and iris recognition. While
fingerprint and iris recognition are mature technologies that can be deployed in real
life applications, face recognition still has many challenges that need to be solved with
more powerful methods even though numerous systems have been proposed for the
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last two decades [137, 65]. To the best of our knowledge, what follows are the biggest
challenges [137, 53] for face recognition:

• Pose variations. Face images are greatly varied by pose angles of people. When the
pose angles are large (not in the range of ±45◦), the system accuracy is drastically
degraded.

• Illumination variations. The acquired images are strongly affected by environment
illumination and finally result in severe impairments on the overall accuracy
performance of the systems since their intra-class dissimilarities are greater than
the extra-class margins.

• Facial expressions. They cause deformations of crucial facial features such as eyes,
eyebrows, mouth, nose and therefore affect the recognition results.

• Aging condition. As human faces are vastly changing over time, the identification
process of face images under long term aging effects is a real challenge, even by
human beings.

• Near infrared illumination (NIR). While reducing the bad effect of illumination
variations, NIR images are strongly affected by the environment temperature, the
pose variation, facial expressions and the health condition of the subject. This
becomes more compounded when the system has to match images captured under
NIR condition with ones acquired in natural illumination.

• Very large scale systems. Face database of a country’s population can reach up
to hundreds of millions or over one billion images. How to make a FR system
working efficiently with such huge databases in real time is a hard question to
answer.

• Low resolution images. Equipped with limited memory, usually average quality
lens, and having to operate in real time, surveillance cameras consequently pro-
duce blur, small, and low quality images that are too challenging to obtain high
recognition rates.

Unfortunately, these issues rarely come singly in realistic scenarios, however, grouped
together they mark their impairment, and result in extremely varied face images of
the same person, which are difficult to be recognized correctly even by humans. The
source of such challenges stems from the uncontrolled conditions of input face images
for a face recognition system. Unlike in fingerprint and iris recognition systems, which
require strictly cooperations (via step-by-step interaction, physical contact or attention)
of users to collect their biometrics features, the input face images of a face recognition
system can be easily gathered without any real interaction with users and does not
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Mood: he is happy

Perceived intelligence

Interaction signals Facial gestures

Figure 1.1: What’s in a Face?

necessarily need to proceed under controlled environments. Another reason making
face recognition more interesting is that face images contain a lot of useful information,
including human gender, facial expressions, human age, human ethnic and gaze direction
to name a few (see Fig. 1.1 for more details). Additionally, the rapid evolution of digital
camera/camcoder devices, together with the appearance and blooming developments of
image/video sharing services and social networks on the Internet, they have promoted
and advanced the researches on face recognition. Because the most pervasive objects
that can be found in image/video data are human faces.

The input data to a FR system can be 2D images, 3D images, video or image sequences
but we constrain our focus on 2D images due to the following reasons:

• Eventually, the most common unit data processed at a time by a FR system is
a 2D image. This is for achieving fast speed, efficient processing by many 2D
algorithms proposed through years of IP.

• Despite their advantages, such as more useful information, less affected by pose
and illumination variations, the widely usage of 3D images as input for a real FR
system is prohibited since this entails 3D acquisition devices, which leads to more
expensive and slower solutions.

• The obstacle caused by 3D acquisition process is just the tip of the iceberg. As
3D images mean more complicated image structures, thus many more efforts must
be done to push on the development of 3D methods to exploit these structures as
well as 3D information effectively.

Face recognition systems can fall into two kinds of tasks: face verification and face
identification [137]. Face verification is a validating system that accepts or rejects a
claimed identity based on a face image while a face identification system will identify
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an individual from unknown input face images. The works presented in this thesis is
confined to face identification only.

In a FR system, we have some still face images of known people (or labeled images)
meaning that we know exactly which images belong to which person, these images are
called reference or gallery images. The problem of FR is that when we have some new
images, we must identify which person those images belong to. In this regard, those
images are called probe images (also referred as test images).

The solution coming from PR is straightforward and spontaneous: we extract images’
intrinsic features of gallery images, store them into a database and when a probe image
arrives, we compare its intrinsic features with all the images in the database. The most
similar gallery image’s label is the probe image’s label. This principle is the same as
people’s face recognizer mechanism: when we see a face image, we will try to capture
the most intrinsic features of that face, such as characteristics of eyes, mouth, nose, ears,
overall face shape and skin color, and search in our memory the name of the person
that is most matched with the image. The unit used for facial features description in
FR is called feature vector.

For over a quarter of a century, plethora of systems with various approaches have been
developed for face recognition [137, 65]. These systems, based on the types of facial
features they use, can be categorized into three types of approaches: local (feature-
based), global (holistic) and hybrid [137]. In global methods, a single vector which
extracts holistic information from the entire face image is used. Eigenfaces [114] and
Fisherfaces [12] are the most representative systems that belong to holistic approaches.
Unlike holistic methods, local feature based ones rely on the segmentation of a face
image into different local facial features or components such as eyebrows, eyes, mouth,
nose, etc. Then each image is represented as a feature vector obtained by applying a
feature extraction algorithm to extract the most discriminant characteristics from those
local facial features. Hybrid approaches combine both global and local methods to
achieve better performance. Compared to global approaches, feature-based approaches
have a significant advantage: they can perform much better under various uncontrolled
conditions. More specifically, according to [47], when dealing with pose variation of
pose angles within the range ±40◦ by Support Vector Machine (SVM) classification, a
component-based feature extraction system could yield RRs about 60% higher than its
global counterpart.

1.2 Stages in a feature based FR system

Like human visual perception process, which is a multilayered model, there are multiple
major stages in a local feature-based FR system (see Fig. 1.2): face detection, face
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Figure 1.2: General local feature-based FR framework

preprocessing, feature extraction, dimension reduction and classification, and the results
of each stage act as inputs to the following stages.

In the face detection stage, the system has to detect whether or not there are human
faces in the input image. If the answer is yes, the face image’s location must be exactly
located. Then only the image region containing the face is cropped and aligned to have
good frontal face image for the next stage. On account of the fact that we work on
public face databases accompanied with annotation data about eyes coordinates and
since our objective is not face detection, we utilize a simple cropping algorithm based
on eyes’ locations to crop and align face images. After that, cropped face images are
processed by a preprocessing technique to eliminate the effect of illumination variations.
A feature extraction method is applied on those preprocessed images to capture the
most distinguishing features from the given images for classifying. Amongst all the
current methods, Gabor wavelets [27] and Local Binary Patterns (LBP) [3] are the
most widely used for facial feature extraction due to their efficiency. In order to make
obtained feature vectors more discriminant and compact, a learning technique from
Machine learning field is employed for dimensionality reduction task by projecting
these vectors into a trained subspace built from so-called training images. Principal
Component Analysis (PCA) [114] and Fisher’s Linear Discriminant (FLD) [12] are the
most well-known methods for dimension reduction purpose.

The identity (label) of the input face image is identified in the classification step based on
projected vectors resulted from previous stage. For doing the classification, SVM [24] and
k-nearest neighbor (k-NN) are the two most popular choices. Since FR’s classification
stage is a multi-label problem, SVM actually has to find multiple optimal hyper-planes
(which is a costly operation), each for one of its native binary classification solutions to
classify one test image. In the meantime, k-NN simply assigns each test image to the
label of the gallery image that has at least k

2 + 1 closest distances, which are computed
by using a distance metric, to it. In this thesis, we use k-NN with k = 1 (as the gallery
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set has one image for one person) due to its simplicity, fast implementation and good
results.

Among all these stages, the feature extraction is the paramount step for building robust,
reliable and viable face recognition systems [137, 100], because it is the only means to
extract the most distinguishing characteristic features of face images to form feature
vectors, which are then compared with each other to proceed the classification. This is
reflected in the history of FR study when the development of FR systems can be viewed
as the development of facial feature extraction methods.

1.3 Why feature extraction?

The performance of a FR system, with respect to both accuracy and computational
speed, is not solely based on feature extraction algorithms, but as earlier pointed out, the
most important stage is feature extraction. More importantly, as verified in [41], some
local features are not varied with pose, facial expression variations and lighting direction.
Additionally, evidences from [139] proved that local features are more appropriate for
machines to recognize human faces than holistic ones. Also, pioneer studies in face
perception [132, 36, 99] figured out that even with one local facial feature, such as the
eyes or eyebrows, famous faces can be recognized correctly. Therefore, the works in this
thesis are confined to local feature extraction methods.

Our goal in this thesis is to develop unified feature extraction methods which are ro-
bust in dealing with many, if not all, of aforementioned challenges (as they come in
battalions) and fast enough to be applied in real world applications. Towards this
end, we attempt to devise novel methods based on analyzing the disadvantages and
advantages of contemporary approaches as well as harnessing results gained over years
from visual perception researches and image processing algorithms, which are applicable
for improving facial feature extraction efficiency.

1.4 Contributions of the present thesis

The main contributions of this dissertation (illustrated in Fig. 1.3) are the four novel
feature extraction methods for FR succinctly described below:

1. Exploiting the fact that essential facial features, such as eyes, mouth, are ellipses
and that human face contains more horizontal direction information than that of
vertical direction, we propose Elliptical Local Binary Patterns (ELBP), a novel
variant of LBP, by using horizontal ellipse when thresholding each image pixel
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Figure 1.3: Main contributions of the thesis.

with its neighbors to encode micro textures from face images. Further, to capture
both horizontal and vertical information, a symmetric pair of ELBPs are used and
achieve excellent results while being fast in comparison with state of the art rivals.
In addition to that, ELBP, acted as an elementary descriptor, can be further used
to construct more robust feature extraction methods, such as EPOEM and LPOG
in this thesis.

2. Based on Monogenic filter and benefited from Local Phase Quantization (LPQ), a
novel multi-resolution feature extraction named as Patch based LPQ of Monogenic
component (PLPQMC) is proposed. For feature extraction target, the Monogenic
is employed to decompose the given input image into directional bandpass com-
ponents upon which two Patch based LPQ (PLPQ) operators, a novel variant
of LPQ, are applied to generate corresponding PLPQ images. The PLPQMC
feature vector is then built by incorporating every PLPQ image’s description into
an augmented group. The method gains leading edge results when coping with
various factors of FR and is competing with up-to-date methods. Meanwhile, it
necessitates less computational cost than other Gabor wavelets based methods
since only six Monogenic bandpass components are used compared to forty of
Gabor wavelets ones.

3. Utilizing ELBP on edge magnitude images, a new variant so-called Elliptical Pat-
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terns of Oriented Edge Magnitudes (EPOEM) of POEM is introduced. EPOEM
is shown to attain higher accuracy performance than POEM while preserving its
simplicity and without affecting the required computational time. In EPOEM,
oriented edge magnitudes images are computed from magnitude image and differ-
ent orientation qualification components of the input image. Then, descriptions
of these images are aggregated to form a global feature vector.

4. A novel robust feature extraction method, namely Local Patterns of Gradients
(LPOG), stemmed from applying Block-wised ELBP (BELBP), a refined variant
of ELBP, and LPQ on gradient images, is proposed. In LPOG, we first present
an enhanced variant of ELBP, entitled BELBP, by using horizontal and vertical
blocks to build accumulated images from which their facial features are extracted.
Then, inspired by their advantages over raw intensity images, we apply BELBP
and LPQ directly upon gradient images to encode local patterns from them to
constitute LPOG representation for face images. Extensive experiments on three
public databases show that our method outperforms other state-of-the-art systems
and is fast enough to be used in reality. Moreover, LPOG is verified to be robust
against many challenging issues, including illumination, facial expressions, pose,
time-lapse variations, occlusions and provide promising results when dealing with
low resolution probe images captured by surveillance cameras under unconstrained
conditions.

Alongside these feature extraction methods, their associated FR frameworks based on
two general models "Template matching" and "Whitened PCA based" are also proposed
and rigorously assessed upon three large public face databases following standard pro-
tocols by comparing with other state-of-the-art systems. Additionally, our results point
out that FR is far from being a completed research, at least in video surveillance context.
Besides, this suggests a pressing need of more attention from scientists on FR in video
surveillance systems with more powerful methods.

1.5 Thesis outline

The rest of this thesis is organized into 6 chapters as follows.

Chapter 2 reviews state-of-the-art of facial feature extraction methods, including pure
Gabor wavelets methods, LBP and its variants, LPQ based, multi-resolution/multi-
scale based on Gabor wavelets and Monogenic filters, and Sparse representation based
methods, each with key concepts upon which it is built, its drawbacks and advantages.
By this, all the works related to our propositions (in chapters 4, 5, and 6) are grouped
together in one place.
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Chapter 3 encompasses all the FR background materials being used throughout this
thesis. The chapter contains the details of three public face databases and their standard
protocols, the face cropping algorithm based on two eyes’ coordinates, two preprocessing
methods for illumination normalization, as well as two general FR frameworks namely
"Template matching" and "WPCA based".

A novel LBP variant so-called Elliptical LBP (ELBP) and LPQ, another intensity-based
descriptor, are presented and thoroughly assessed with both frameworks by means of a
variety of experiments in chapter 4.

In chapter 5, a novel feature extraction method based on Monogenic filter and Patch
based Local Phase Quantization (PLPQ), a variant of LPQ, is introduced.

Chapter 6 is dedicated to gradient images based approach with two proposed feature
extraction methods named Elliptical Patterns of Oriented Edge Magnitudes (EPOEM)
and Local Patterns of Gradients (LPOG). Moreover, the comparisons between each
proposed method and other contemporary ones, its associated parameters and compu-
tational cost are included in the corresponding chapters.

Finally, the thesis ends with some conclusions and perspectives about future work.
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Chapter 2

State of the art of facial feature
extraction

This chapter is intended to give a state of the art review of facial feature extraction
methods (global and local approaches). While this work concentrates on local feature
based methods, a large portion of the chapter’s content is hence mainly focused on that
kind of approach.

2.1 Global approaches

The first and most well-known holistic method is Eigenfaces [114] (for more details, see
Fig. 2.1), which is an expansion of Karhunen-Loève transform (also known as Principal
Component Analysis-PCA). Kirby et al. [59] argued that each face image of a given set
can be represented as a linear combination of basic orthogonal eigenvectors computed
by PCA on the image set itself. Inspired from that, in Eigenfaces method [114], training
images are first reshaped from their intensities values, in the form of 2-D integer matrices
of the same sizeMrows×Ncolumns, to column vectors of lengthM×N . These vectors
are then normalized to have unit norm and mean-subtracted to have zero-mean. From
normalized vectors, the PCA algorithm is employed to find the principal eigenvectors,
corresponding to the largest eigenvalues, which are used as a seed set to represent for
all other face images via a projection operation. This method is called Eigenfaces since
these eigenvectors can be reconstructed and visualized as face images, as shown in
Fig. 2.1. Eigenfaces [114] can work reasonably well with good quality images captured
under strictly same conditions of light, pose, facial expressions and if there are neither
aging variations nor occlusions. Conversely, its performance is dramatically degraded
(e.g. it only offers 4.7% average RR on SCface database [42]) and thus obviously can
not be applicable in reality.
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Figure 2.1: Eigenfaces scheme

When the training set has more than 1 image per subject, Eigenfaces [114] do not utilize
such available information to improve system accuracy since PCA is an unsupervised
learning technique. Motivated from that, Fisherfaces [12] was proposed by using Fisher’s
Linear Discriminant (FLD) [35] learning algorithm to maximize extra-class variations
between images belonging to different people while minimizing the intra-class variations
between those of the same person. Due to the fact that intra-class variations induced by
challenging factors such as illumination, head pose and expression changes are almost
always greater than extra-class variations come from the differences of face identities [2],
thus can make images of a same person extremely different, the usage of FLD to reduce
that impairment is valuable and leads to higher accuracy than Eigenfaces [12, 43]. But
on the contrary, Fisherfaces can be applied only when the training set has more than 1
image per person. While this prerequisite is not always satisfied, it can be viewed as a
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weakness of the method.

There also are some other global approaches that extend Eigenfaces and Fisherfaces,
such as Independent component analysis (ICA) [11], 2D PCA [125] and 2D LDA [126],
but their performance is far below those of local feature based methods, which are
forthcoming presented.

2.2 Local feature based approaches

While holistic approaches are based on global features, feature based ones are built upon
local facial features extracted from local components such as eyes, nose, mouth, etc.
and local segmented regions. In this section, pure Gabor wavelets methods (no fusion
strategy is used) are first surveyed. These methods exploit the fact that Gabor wavelets
coefficients encode both facial shape and local appearance features. In contrast to these,
LBP and LPQ, two intensity based elementary descriptors coming afterwards, capture
micro appearance features from face images via their own operators. The usage of
multiple LBPs, or LPQs with different core parameters creates new multi-scale methods.
More efficiently, fusion strategies are used in multi-resolution/multi-scale methods to
combine elementary methods with multi-resolution/multi-scale analysis tool. Recently
sparse-representation based and some other methods are also covered.

2.2.1 Gabor wavelets based methods

Gabor wavelets transformation is a powerful joint time-frequency tool for image anal-
ysis based on Gabor filters [38]. On account of their strong similarity to perception
mechanism of the human visual system [27] and their capability of providing multi-
resolution/multi-orientation representations [28, 62] encompassing a large amount of
meaningful salient visual features for FR, Gabor wavelets have been used for years in
numerous feature extraction algorithms [103]. Using 2-D Fourier transformations on
a set of Gabor kernels (also known as Gabor filters) parameterized by different orien-
tations (usually 8) and scales (usually 5) and an input image, the method generates
complex coefficients called Gabor wavelets components, which can be expressed by real
and imagine parts, or alternatively, by magnitude and phase parts (as can be seen in
Fig. 2.2). These components are representations of the given image and can be used for
facial feature extraction.

The first and very famous Gabor wavelets based system is elastic bunch graph matching
(EBGM) proposed by Wiskott et al. in [119] where face images are represented as
labeled graphs, which are generated by utilizing a special data structure called bunch
graph (see Fig. 2.3 for more details) to collect information from Gabor jets (all Gabor
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Figure 2.2: An image and its Gabor wavelets components (5 scales and 8 orientations)
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wavelets convolution values at a landmark location of local facial features). EBGM
method yields a very encouraging recognition rate of 98% on the frontal subset (300
samples) of FERET database [96], the most popular face database whose details will be
described in chapter 3, using a single sample (image) per person (SSPP) in the training
stage.

Figure 2.3: Bunch Graph structure proposed in [119].

Liu et at. [74] introduced augmented Gabor feature vector and used enhanced Fisher
linear discriminant model (EFM) model [73] to form Gabor-Fisher-classifier (GFC)
method for FR. The augmented feature vector is formed by first downsampling Gabor
wavelets parts by a factor of 64, then normalizing and concatenating all of them as
a whole representation. They showed that GFC could achieve very good results on a
subset of 200 subjects (frontal images) of FERET database and is robust to illumination
and facial expressions variations. The same technique was used in [72] to build Gabor
feature representations, which were then projected into a sub space generated by Kernel
Principal component analysis (KPCA) [101] with Fractional Power Polynomial Model.
In [29], Deng et al. used Labeled-Graph for face representation by combining sampled
Gabor magnitude values. The authors then applied whitened Principal component
analysis (WPCA) for dimension reduction and cosine distance for classification to obtain
encouraging performance on four standard frontal subsets of FERET database. Pang et
al. [93] presented a two-fold method based on Gabor wavelets and Linear Discriminant
Analysis (LDA-another name of FLD [35]). They used LDA directly on input image to
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extract LDA features and then on Gabor features generated from selected discriminant
pixels to produce Gabor-LDA features. Both types of features are finally fused to build
a sum rule based classifier. The results on a FERET’s subset of this method were higher
than PCA and LDA.

Despite their promising results, above methods have an inherent drawback: they need
huge calculation time for producing Gabor wavelets components to carry out feature
extraction task.

2.2.2 LBP based methods
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Figure 2.4: LBP encoding scheme
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Figure 2.5: LBP patterns

Initially designed for texture classification problem as a texture descriptor, Local Binary
Patterns (LBP) [91] has been quickly become one of the most popular features in FR
literature. In original LBP [3], every pixel of an input image is assigned with a decimal
number (called LBP label) which is computed by binary thresholding its gray level with
its P neighbors sparsely located on a circle of radius r centered at the pixel itself. A
bilinear interpolation is exploited to calculate the neighbor pixel values if they are not
at the center of a pixel. This encoding scheme is called LBP operator and denoted as
LBP (P, r) (for more details, see Fig. 2.4 and Fig. 2.5). Applying LBP operator on
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every pixel of a face image produces a LBP image (Fig. 2.6 shows some samples) that
contains very important information for FR: the local micro facial textures.

Input image

LBP(8,1) LBP(8,2) LBP(8,3) LBP(8,5)

Figure 2.6: A face image and its LBPs

The LBP image obtained by LBP operator is then divided evenly into W × H (3 ≤
W,H ≤ 9) non-overlapped rectangular subregions to calculate their histograms. The
LBP feature vector of the given face image is built by concatenating those histogram
sequences. In doing so, LBP vector incorporates useful spatial information (spatial
distribution of facial features in different subregions), that is widely known to have a
key role in FR [137].

Basically, a LBP vector is a 2P -bins representation, but statistical studies of LBP labels
on different kinds of images revealed that some bins are more frequent than the others.
Those principal bins, whose binary forms have no more than 2 bit transitions from 1 to
0 and vice versus, are called uniform patterns and are used to reduce the LBP feature
vectors’ size [3]. This compression operation results in shorter feature vectors and
thus makes the classification faster, but on the contrary it causes a small decrement in
accuracy performance. All of these steps can be seen in Fig. 2.7. It is worthwhile noting
that LBP descriptions are usually formed with P = 8 and as a result, they are 59-bins
feature vectors. Ahonen et al. [3] used LBP method to extract micro features of facial
images and then used template matching for classification and got very promising results.
Other applications of LBP (related to face recognition) include face detection [44], facial
expression recognition [33], age estimation [57], gender classification [68], face spoofing
detection [79], etc. But after all, LBP method was most successfully applied to face
recognition. The merits of LBP are simple computation, small feature vector’s size (in
comparison with Gabor wavelets based methods) and robustness towards illumination
variations.
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Figure 2.7: LBP description calculation

Following its first successful application [3], numerous variants of LBP have been pro-
posed for face recognition in recent years. A boosting LBP was introduced by Zhang
et al. in [134]. For one face image, over 7000 Chi Square distances of LBP patterns
generated by shifting and scaling sub-window over the given image, are calculated. Ad-
aboost [37] is next applied to select the most efficient LBP features. Boosting LBP
gains higher overall RR than LBP. In [71], Multi-scale Block LBP (MB-LBP) is formed
by using block regions instead of single pixel from input images. LBP can be considered
as a special case of MB-LBP when block region is one pixel. MB-LBP encodes both
micro-structures and macro-structures of face image and therefore provides a better
representation for face images. Improved LBP (ILBP) is proposed in [55], the authors
thresholds surrounding pixels of each pixel with theirs mean gray value. ILBP is proved
more effective than LBP in face detection. In [46], Heikkilä et al. compared center
symmetric pairs of pixels to form Center Symmetric LBP (CS-LBP). CS-LBP captures
both micro features and gradient features of face images. CS-LBP feature vector’ size
is half of LBP feature vector’ size using the same circular pattern. This technique was
expanded by Choi et al. [22] when pairs of symmetric pixels in different orientations
and various radii were compared to build up the Circular Center Symmetric-Pairs of
Pixels (CCS-POP) representation. This way, CCS-POP captures pixel-wise local edge
information and obtains higher accuracy than LBP when combining with Partial Least
Squares (PLS) [102] for dimensionality reduction.

Based on a ternary threshold operator, Tan et al. [112] proposed a new LBP variant
called Local Ternary Patterns (LTP) by using two LBP vectors for building one LTP
description. LTP was verified to be more efficient than LBP against illumination and
noise conditions. The downside of this approach are two times slower in speed and bigger
in feature vector size. Further, the idea of the LTP was extended by Ren et al. [97]
with a new variant called Relaxed LTP (RLTP). The authors used four LBP labels for
encoding each image pixel and then they were accumulated in one LBP histogram of
a RLTP vector. RLTP was claimed to bring improvement to LTP when dealing with
image noise. The concept of applying multiple elliptical patterns in LBP on weighted
facial regions was used by Liao et al. [70] in their Elongated LBP method. By using
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weighted factors for six regions of the face image and four different elliptical patterns
(in four directions), Elongated LBP was argued to encode the anisotropic information of
the image. While achieving better results than LBP, Elongated LBP had a shortcoming
since its feature vector’s size was four times longer than that of LBP.

Rather than digging into the fixed and predefined sets of neighbor pixels located on
different patterns (circles, ellipses, symmetric pairs) or into threshold algorithms (binary,
ternary or relaxed) as in above LBP variants, Maturana et al. [82] exploited a supervised
learning technique to seek for most discriminative neighborhoods when computing the
LBP label for one image pixel. This is done based on maximization of a Fisher-like
class separability criterion. Although the method, named as discriminative Local Binary
Patterns (DLBP), gained promising results, its computational cost for learning process
is a real weakness. In [117] a descriptor called patterns of oriented edge magnitudes
(POEM) was developed by applying multiple LBPs on accumulated magnitude images.
The authors then combined POEM with patterns of dominant orientations (PDO) [118]
and achieved better results.

Notwithstanding the fact that there is an abundance of its variants, LBP is still widely
used in many multi-resolution/multi-scale feature extraction methods. This is rooted
in its simplicity, computation effective and its compact representation for each input
image it gives.

Originally, LBP is designed for texture classification problem and it is turned out that
it has desirable properties for being an efficient facial representation in FR. While other
variants of LBP tried to improve its powerfulness by using learning techniques (such as
in [134, 82]) or different mechanisms in the thresholding step (for examples, MB-LPB,
CS-LBP, and LTP), they tend to leave behind the fact that their main objective is
for FR problem. For this goal, any kind of inspiration of a LBP variant must be based
on aspects that evidently lead to higher accuracy results. Guided by this rule, Elliptical
Local Binary Patterns (ELBP), one of our propositions in this work, is a LBP variant
and is emanated from following observations of face images:

• Crucial facial components, eyes and mouth, are naturally elliptical. Plus, human
faces contain more horizontal structures, which play important role in memorizing
and recognizing faces [106, 40], than the local ones. Thus, the horizontal elliptical
patterns are more efficient and more relevant than circular ones.

• When combining both horizontal and vertical information, the accuracy perfor-
mance is improved [40]. So, instead of using just single horizontal ELBP descrip-
tion, we propose to fuse it with its vertical counterpart to enhance the discrimi-
native of the resulted representation.

The details of ELBP as well as proofs to prove for its efficiency is described in chapter
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4 of this document.

Further, employing ELBP as an primitive description, we constitute more advanced
methods, Elliptical Patterns of Oriented Edge Magnitudes (EPOEM) and Local Patterns
of Gradients (LPOG), by applying it on gradient based images. These two methods are
presented in chapter 6 of this thesis.

2.2.3 LPQ based methods
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Figure 2.8: LPQ encoding scheme

Very recently, Local Phase Quantization (LPQ), a blur tolerant texture descriptor [92],
has been further investigated for FR. In texture classification problem, LPQ gains better
performance than Gabor wavelets based and LBP methods, particularly when working
with blurred images. Having experiences with the case of LBP (also initially developed
for texture classification but quickly gained its best notoriety as a feature extraction
method in FR), many researchers have further investigated the use of LPQ for FR.
While being proved to be blur insensitive [92], LPQ additionally reported promising
results when dealing with blurred face images recognition [5].

Based on the blur invariance characteristic of the phase spectrum of image in the
frequency domain, LPQ operator on an image pixel is done by using Short-term Fourier
transform (STFT) over a window of size M ×M , whose centre is the image itself, with
four scalar frequencies. Four imagine components and four real components are then
whitened based on a parameter ρ before being binary quantized to obtain the LPQ label
for the given pixel. The process of applying a LPQ operator LPQ(M,ρ) upon an image
pixel is demonstrated in Fig. 2.8.

After employing a LPQ operator to produce a LPQ image (Fig. 2.9 shows examples)
from input face image, Ahonen et al. [5] exploited the same technique as in [3] for
building LPQ face representation by concatenating histogram sequences of LPQ image’s
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Input image

LPQ(5,0.86) LPQ(7,0.86) LPQ(9,0.86)

Figure 2.9: A face image and its LPQs

rectangular sub-regions. But unlike LBP [3] feature vector, whose size can be reduced
efficiently by employing uniform patterns, each LPQ vector is a 256-bins description.
Hence, each LPQ vector is about four times longer than an LBP vector with 8 neighbor
pixels (a 59-bins representation), the most used LBP operator, when using the same
divided sub-regions.

As far as we know in FR field, there has not been many variants of LPQ that have come
up after its first appearance [5]. In LPQ, the magnitude information is not used. Taking
into account both magnitude and phase features of images obtained from STFT, Lei et
al. [63] presented a novel method called Local frequency descriptor (LFD), which could
be considered as a LPQ variant, for low resolution FR. The same encoding technique
as in LBP operator is applied on magnitude image whilst a binary qualification is used
upon phase image for generating two encoded images. LFD feature vector is then built
by concatenating sub-regions’ histogram sequences of those images. This method brings
higher performance than both LBP and LPQ under low resolution challenge.

As verified in [5], LPQ, when being used in a Template matching based FR scheme, is
more robust than LBP for dealing with blur, illumination and facial expression variations
images, but in FR literature, LPQ has not hitherto received the reputation it deserves
and has been usually overshadowed by LBP and its variants. In this dissertation, we will
show that LPQ is more efficient than LBP and its variants against all challenging issues
and when engaging with WPCA, it outperforms many other state-of-the-art FR systems.
Moreover, motivated from its efficiency against FR challenges and by delving further
into Monogenic filter’s components and gradient images, we exploit LPQ to constitute
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two novel facial feature extraction methods: Patch based LPQ of Monogenic components
(PLPQMC) and Local Patterns of Gradients (LPOG), which will be described in details
in chapter 5 and 6 of the present thesis, respectively.

2.2.4 Multi-resolution/multi-scale methods

2.2.4.1 Simple multi-scale approaches

An intuitive and straightforward approach to enhance feature extraction performance is
to use multiple elementary descriptors, such as LBP, LPQ and their variants, by varying
associated parameters on the same input image. More specifically, circular patterns
of various radii are used with LBPs and its variants while different windows sizes are
employed for LPQs. The methods in this kind of approach are simple and easy to
implement, but on the contrary, their performance improvements may not worth the
computational cost and the memory required when pursuing them. Multi-scale is the
general name for these methods.

Following this direction, in [17], multi-scale local phase quantization (MLPQ) was
proposed by applying multiple LPQ operators of different filter’s size and aggregating
corresponding LPQ vectors into a final multi-resolution description. MLPQ feature
vectors are then projected into a LDA subspace for FR. MLPQ has recently been fused
with multi-scale LBP (MLPB) in [18]. Chan et al. [18] used kernel discriminant analysis
(KDA) to improve recognition performance. MLPQ LDA [17] and MLPQ+MLBP
KDA [18] gained impressive results but they have an obvious disadvantage: they need
high computation time as using multiple LPQ operators (the authors used 7 ones in [17])
and multiple LBP operators (in [18]). Another MLPQ based method was introduced
in [110] with linear regression classifier (LRC) for classification process. Some noticeable
remarks about these multi-scale LPQ based systems are: their performance (MLPQ
LDA [17] and MLPQ+MLBP KDA [18]) is not better than leading LBP, Gabor wavelets
based methods (such as [104, 107, 52, 127, 16], see comparison tables in chapter 6 for
more details), or they lack comparisons with other state-of-the-art systems on large
public databases (LPQ [5]) so there is not enough evidence that these systems are really
efficient and reliable at coping with challenging conditions of FR.

2.2.4.2 Gabor wavelets components based methods

A more efficient multi-resolution/multi-scale scheme for feature extraction than the sim-
ple general multi-scale approach described in previous section is illustrated in Fig. 2.10.
In the methods complying to this model, an image multi-resolution/multi-scale analysis
technique, such as Gabor wavelets (the most popular) or Monogenic (recently used),
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Figure 2.10: General multi-resolution/multi-scale feature extraction scheme

is first employed to decompose a face image into multiple components in the form of
independent images. The number of images depends on the methodology in which they
are used, for example Gabor wavelets based methods usually generate 40 complex parts
at 5 scales and 8 orientations to encompass enough information from an input image,
but we can generate 160 Gabor wavelets images (40 real images, 40 imagine images,
40 magnitude images, 40 phase images) in total from these 40 complex parts. Next,
LBP and its variants are applied upon those component images to extract useful facial
features for FR and result in different descriptions, each for one image. To combine all
these separate descriptions, there are two fused strategies: score-level fusion and feature-
level fusion. By score-level fusion methods, fused similarities between test images and
gallery images are computed based on different scores and are used to determine the
identities of the test images. In feature-level fusion algorithms, global feature vectors are
obtained by incorporating all the descriptions from previous step. Consequently, these
vectors are high dimensional with much redundant information and need to be projected
into a subspace before proceeding the classification stage in an efficient manner.

Since its debut in FR literature [3], many researchers have attempted to combine LBP
with Gabor wavelets by employing a multi-resolution/multi-scale model as mentioned
above for improving recognition performance. Local Gabor binary pattern histogram
sequence (LGBPHS) [135], ensemble of piecewise FDA (EPFDA) based on spatial
histograms of local Gabor binary patterns [104], histogram of Gabor phase patterns
(HGPP) [133], system in [113], fusing local patterns of Gabor magnitude and phase
(FLPGMP) [107] and Gabor surface feature (GSF) [123] are the most representative
methods. Following the feature-level fusion strategy, LGBPHS [135] vector is formed
by using LBP operator on 40 Gabor magnitude pictures. The authors [135] then used
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template matching with Chi Square distance for classification and attained good results
on FERET [96] and AR [80] databases. To avoid direct FDA on very large size feature
vectors, EPFDA [104] partitions each image into small blocks which are further divided
into sub-blocks where Gabor filers are applied to produce feature segment of each block.
Ensemble FDA training processes are done on these feature segments to build up FDA
subspaces in which each face image is constituted as a sequence of projected feature
segments. A sum rule for combining individual classifiers on projected feature segments
is utilized in the classification stage. In HGPP [133], a quadrant bit coding scheme
was first proposed to assign each phase value by a 2-bit number from 0 to 3 (for more
details, see Fig. 2.11). Next, for extracting features from Gabor phase images, a LBP
alike descriptor named local XOR pattern (LXP) (see Fig. 2.12 for more details) was
introduced by applying XOR operator on quadrant bit codes. Then LXP was used on
real and imaginary parts of Gabor phase images (the authors used totally 90 images)
to encode both global and local Gabor phase patterns. High results of HGPP show
that Gabor phase information also plays an important role in FR. Tan et al. [113]
proposed a feature-level fusion method to fuse LBP with Gabor wavelets features.
They first used PCA for reducing LBP and Gabor wavelets representations and then
applied Kernel Discriminative Common Vectors [15] to project fused feature vectors
into discriminant subspace for proceeding the classification task. In FLPGMP [107],
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the definition of LXP and LBP were used to exploit both Gabor wavelets magnitude
and phase information, respectively. The resulted magnitude and phase feature vectors
were then fed into a block-based FDA (BFDA) procedure to shorten their lengths
and remove unnecessary information they carried. Both score-level (by a sum rule
formula) and feature-level fusion strategies were assessed on projected vectors [107],
and at the end, the former outperformed the latter by providing excellent results on
FERET and other face databases. GSF [123] method uses LBP on combined maps of
Gabor magnitude images and their 1st, 2nd derivatives. The EPFDA [104] was used
to reduce GSF feature vectors’ lengths and weighted scores based on cosine distances
were computed for classification stage. GSF [123] achieved state-of-the-art results on
FERET database.

Most recently, some novel Gabor wavelets based methods have been proposed and
achieved very significant results. In [52], Hussain et al. propose a new feature extraction
method so-called Local Quantized Patterns (LQP) by using vector quantization and
lookup table to build facial description upon Gabor wavelets images. Having advantages
over many existing LBP and Gabor wavelets based methods, LQP yields excellent
performance for both face identification and verification, when incorporating with PCA
and cosine metric. Statistical local features (SLF), a novel facial representation, has been
proposed by Yang et al. [127]. The authors use a multi-partition max pooling technique
for enhancing the invariance of SLF to image registration error first. After that, a
kernel based representation model is adopted to thoroughly exploit discriminant features
embedded in SLF. A FR framework named SLF-based robust kernel representation (SLF-
RKR) is also proposed then. Extensive experiments show that SLF-RKR (using Gabor
magnitude based SLF) is robust to occlusions and gains superior results in comparison
with state-of-the-art systems, except when it has to face with pose variations challenge,
even on small pose angles images (within the range±25◦). Another novel Gabor wavelets
based feature extraction method called Gabor ordinal measures (GOM) is introduced
in [16]. Ordinal measures, which reflect the ordering relationship information between
multiple variables (intensities or feature values), are used to encode facial feature from
magnitude, orientation, real and imagine images of 40 Gabor wavelets components (90
images in total). Each GOM feature vector is refined by a block based partition strategy
to have 5760 dimensions. LDA algorithm is used to further reduce GOM vectors’ sizes
and a sum rule score-level fusion of cosine distances is exploited in the classification. The
results provided by GOM are very amazing but not higher than those of SLF-RKR [127].
Additionally, a downside of GOM is that it is relatively slow, when spending about
700ms for processing one face image.

The applications of LBP, LXP and other proposed techniques on Gabor wavelets im-
ages (magnitude, phase, etc.) in above multi-resolution/multi-scale feature extraction
methods provide considerable performance as well as effectively reducing the size of
resulted feature vectors but even with these latest attempts, the heavy computational
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cost of this approach remains an unsolved problem. For real time systems, such as in
video surveillance context, where computational speed is a primary objective, this is
a must be solved issue.

Another important observation from the best results of the above cited works is that:
a plain feature extraction method that works solely on intensity images (such as LBP,
LPQ and their variants), even with the tuned parameters and at its best, is not sufficient
to meet the requirement of a high accuracy and reliable system. By some kind of way, a
robust facial representation must contain useful features that are subtly extracted from
multi-resolution/multi-scale components. In the mean time, it should not be suffered
from expensive computational cost.

2.2.4.3 Monogenic filter based methods

Recently, Monogenic filter [32], a multi-scale image analysis tool based on log-Gabor
wavelets, has been used in FR (Monogenic Binary Pattern (MBP) [130] and Monogenic
Binary Coding(MBC) [128] are examples) since it does not need huge calculations as
Gabor wavelets while having good performance. Given an input image, a Monogenic
filter will generate multiple component images of different types, including amplitude
(also called as magnitude), orientation, phase and bandpass (see more in Fig. 2.10). The
number of such images is established based on the number of scales used, and this one
is usually set as 3 or 4, which leads to at most 4 ∗ 6 = 24 images. As a consequence,
the Monogenic filter based feature extraction methods are more cost effective than the
ones based on Gabor wavelets, with regard to both memory and computational aspects.
Another advantage of Monogenic filter over Gabor wavelets is that its components
preserve more image information than those of Gabor wavelets, which can be clearly
seen in Fig. 2.10.

In [130], MBP representations are built by using LBP on Monogenic magnitude images,
quadrant bit coding scheme on orientation images to generate MBP maps at 3 scales.
A weighted intersection metric is used on MBP vectors to calculate the similarities
between test and gallery images for classification. This way, MBP [130] exhibits higher
RRs than LGBPHS [135], HGPP [133] but requires less computational cost and memory
space. Further, in [128], Monogenic Binary Coding(MBC), a combination of applying
LBP on Monogenic amplitude, LXP on Monogenic phase and the quadrant bit coding
scheme on bandpass components, is proposed. BFDA [107] is again used to make
MBC vectors more compact and a sum rule fusion tactic is applied to constitute a
FR system named MBC-F. As shown in [128], MBC-F offers competing results with
other leading edge Gabor wavelets based method while attaining a more cost effective
property. These encouraging results, in our point of view, could open the door to many
other FR researches based on Monogenic filter.
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Based on advantages of Monogenic filter in building robust facial representation, as
proved in prior cited works, and based on benefits from LPQ’s useful properties for FR,
a novel multi-scale feature extraction method called Patch based LPQ of Monogenic
components is presented in chapter 5.

2.2.5 Sparse representation based methods
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Figure 2.13: An image and its sparse representation

Recently, sparse representation has become a new kind of approach that attracts ever
increasing attention from FR community. In a sparse representation-based classification
(SRC) FR system, a test image is represented as a sparse linear combination of training
images (Fig. 2.13 shows an illustration). This is done via an optimal problem whose
sparsest solution can be found by solving an equivalent l1−Minimization problem [122].
In the classification stage, each test image is assigned to the label of training image
whose has min l2 − norm with it in the generated sparse feature space.

Through a SRC FR system [122], Wright et al. pointed out that the problem of choosing
the number of features for classification could be completely solved if the sparsity of the
representation is properly computed. SRC [122] was shown to be able to yield noticeable
results against occlusion and corruption. This conclusion is consistent with two other
sparse coding based systems: extended SRC (ESRC) [30] and structured sparse error
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coding (SSEC) [66]. ESRC [30] extends SRC by using an intraclass variant dictionary to
depict the variation that may appear between training and probe images. In SSEC [66],
a morphological graph model and an exponential probabilistic model are used for er-
ror support structure and error distribution structure, respectively. Applying sparse
representation-based classification (SRC) with features extracted by using LPQ descrip-
tor was the idea of LPQ+SRC facial expression recognition system in [138]. Beside
achieving good results with occlusion and corrupted test images (when using multiple
samples per person training sets), there is no evidence that a sparse representation-based
FR system can outperform other leading edge ones based on Gabor wavelets and LBP
in general. Additionally, a drawback of these sparse coding based methods is that they
require multiple samples (at least 4 images) per person for the training stage. This
prerequisite is actually not always fulfilled, even impossible, particularly in real-world
situations.

2.2.6 Other methods

Some other local descriptors, such as Scale Invariant Feature Transform (SIFT) [77] and
Histograms of Oriented Gradients (HOG) [26], have been commonly used in many real-
world applications due to their efficient computations, resistance to partial occlusions,
and being relatively insensitive to viewpoint changes. Even though SIFT and HOG
have been evidently proved as two of the best methods for encoding edge or local
shape information, there are not many contributions of them in building robust FR
systems. Bicego et al. [13], Rosenberger and Brun [98] reported that the usage of
SIFT for face authentification could yield promising results upon the BANCA [8] and
AR [80] databases respectively, but no further results on bigger databases were published.
According to [83], HOG features’ performance on the FERET database is worse than
that of LBP and Gabor wavelets. In summary, these evidences mean that SIFT and
HOG can not pave the way to a robust facial feature extraction as our expectation with
this thesis.

As face images captured under video surveillance context are low resolution (LR) while
gallery images are often of high quality, it is preferable to have test images with better
resolution. To do this, super-resolution techniques are employed to produce high reso-
lution (HR) images before conducting the feature extraction for the hope of improving
system accuracy. We have investigated three well-known super-resolution methods,
which use different algorithms for building a HR image from one or multiple LR input
images:

1. Bicubic Interpolation: the output image pixel is a weighted average of pixels in
the nearest 4× 4 neighborhood
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2. Sparse representation based super-resolution [124]: the different patches of the HR
image are assumed to have a sparse representation with respect to an over-complete
dictionary of prototype signal atoms. The principle of compressed sensing is then
applied to correctly recover the sparse representation from the down-sampled
input image.

3. Regression based method [58]: Here, the basic idea is to learn a mapping from input
LR images to target HR images based on pairs of example images using kernel
ridge regression. To remove the blurring and ringing effects around strong edges
introduced by the regression, a model that takes into account the discontinuity
property of images is used for post-processing.

Once output images of these methods are generated, we use them with Eigenfaces [114]
and LBP [3] upon SCface database to assess wether some accuracy improvements
are achieved or not. With Eigenfaces, the RRs are not improved. The overall RR
improvement from LBP is negligible, about 0.3%. As verified in [140], even when
combining a super-resolution method with the relationship between a HR image and
one of its LR version in training set for building a better mapping of LR testing images,
the RRs on SCface are very low (average RR is only 20.2%). These results underline
that super resolution techniques are not the right solution, at least at present, to
handle LR test images acquired by surveillance cameras. Additionally, a drawback of
super resolution algorithms is that they come with a significant computational cost for
producing HR images. As an open question, we think that the right way to deal with
low resolution FR may be to degrade the resolution of HR gallery images instead of
trying to enhance that of LR probe images.

2.3 Conclusions

Through this chapter, an up-to-date survey of the state-of-the-art of major facial feature
extraction approaches with their most representative methods is presented. Started with
Eigenfaces and Fisherfaces, the two most popular global algorithms, but almost the con-
tent of the chapter is about local feature extraction methods. From pure Gabor wavelets
methods, LBP and many of its variant, LPQ based methods, multi-scale/multi-resolution
methods based on simple approach and some well-known multi-resolution/multi-scale
transformations, such as Gabor wavelets and Monogenic filter, to Sparse representation
based methods, all are described with emphasis on their key ideas, advantages and
limitations. Some other local descriptors and super-resolution based approaches are
also considered. While analysing the pros and cons of these methods, we also provide
the main concepts behind our proposed approaches in this thesis, that are:
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• Using elliptical samples to capture micro textures from face images to form El-
liptical Local Binary Pattern (ELBP). Combining both horizontal and vertical
ELBP in building a facial representation with a richer feature set to improve the
recognition performance.

• Applying LPQ operator upon Monogenic components to build a multiresolu-
tion/multiscale face description.

• Employing ELBP upon oriented edge magnitude images to form Elliptical Pattern
of Oriented Edge Manitudes feature extraction method.

• Integrating two kinds of local patterns, ELBP and LPQ, directly on gradient
images to take into account meaningful characteristics of local features and benefit
the advantages of the gradient images over the raw intensity one.
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Chapter 3

Face recognition background

In this chapter, all the details of fundamental materials for the thesis are provided. The
chapter describes three public face databases and their experimental protocols used for
evaluating the accuracy performance of the proposed feature extraction methods. The
face cropping algorithm based on eyes’ coordinates is given in detail. Two preprocessing
techniques for illumination normalization and two general face recognition frameworks
are also presented.

3.1 General FR framework

Face
cropping

Preprocessing
Feature 

extraction
Dimension 
reduction

Classification
Identity

101...110..001 1010...01

Figure 3.1: Stages in a local feature-based face recognition system

A general local feature-based FR system used in this thesis consists of several stages (see
Fig. 3.1 for details). Face cropping based on eyes’ locations from input image is the first
stage, the image region that contains the face only is the result of this process. Next,
the preprocessing stage normalizes those cropped face images to reduce the effects of
illumination variations. Then a feature extraction method is applied to extract the most
discriminative facial features from normalized face images. Once the feature extraction
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stage is done, each face image is represented and stored as a high dimensional feature
vector. Since a feature vector can be of very high dimension (ranging from thousands
to hundreds of thousands dimensions) and conveys a lot of redundant information,
a dimensionality reduction method is therefore needed to reduce the feature vector’s
length to a reasonable value and to eliminate unnecessary features. The dimension
reduction stage also enhances the discrimination between face images of different people
while descending those of images belonging to the same person. All the training images
are used to generate the projection sub space in which the gallery and probe images
are projected for recognition task. In the classification stage, a k-NN classifier and a
distance metric are used to identify the identity of the probe image by assigning it to
the label of the nearest gallery image.

3.2 Face databases

In order to rigorously evaluate the performance of a face recognition system, one has
to use several public face databases with standard protocols. Results on one database
is not adequate to conclude the reliability and the steady of the system while following
standard experiments allows the comparisons between one FR system with other state-
of-the-art ones. A good database should have a big enough number of subjects whose
images are collected and used. More importantly, those images must be captured under
many, if not all, variant conditions, such as illumination, facial expressions, occlusion,
time-lapse, pose variations and video surveillance context.

With respect to above remarks, in this thesis, we consider three large public face
databases namely AR [80], FERET [96] and SCface [42] to assess the accuracy and
stability performance of all presented FR methods. Experiments on AR database are
used to verify for the robustness of a FR system against illumination, occlusion, facial
expression and time-lapse variations. Tests upon FERET database are for validating the
system performance when coping with large scale (FERET has images from 1199 people)
dataset under facial expression, illumination, time-lapse, and pose challenges. Different
from these two ones, experiments performed upon SCface database is for investigating
the effectiveness and efficiency of one FR system with low resolution images under
unconstrained conditions. The database is more challenging as the probe images are
of poor quality, small in size, have pose variation and are strong impaired by real
lighting changes whilst the gallery images are high quality frontal ones acquired under
controlled lighting conditions. Additionally, using single sample (image) per person
(SSPP) training set is another purpose of all the tests we proceeded.

Besides images, each database has annotation data about the eyes coordinates of ev-
ery face image. Based on that information, a simple face cropping algorithm is used
to crop only the face region for carrying out experiments. Since images of AR and
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SCface databases are color, they are converted to gray scale format before being pre-
processed by an illumination normalization algorithm. We report the results of all
experiments in terms of rank-1 recognition rates (RR) and compare them with those of
other contemporary systems.

3.2.1 AR (Aleix and Robert) database

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.2: Sample cropped images from AR database.

The AR face database [80], created by Aleix Martinez and Robert Benavente, has over
4000 color face images from 134 people (75 men and 59 women). These images were
collected under similar controlled conditions during two sessions, separated by 14 days
(2 weeks), and were divided into 26 subsets with different facial expressions (smile, anger
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and scream, see Figs. 3.2 (c-d)), illumination changes (right light on, left light on, and
both sides light on, see Figs. 3.2 (e-f)) and occlusions (sun glasses and scarf, see Figs. 3.2
(g-j)). Because images in some subsets were missing or corrupted, we eventually have
1742 images in 13 subsets (each one has 134 images) of sessions 1 and 1534 images in
13 subsets (each one has 118 images) of session 2 for our experiments.

From these 3276 images, we set up four single sample per person face recognition
experiments: experiment 1 (Exp 1) (134 images in reference and each probe set) uses
all images from session 1, experiment 2 (Exp 2) (118 images in reference and each probe
set) uses all images from session 2, experiment 3 (Exp 3) and experiment 4 (Exp 4)
use images from both sessions. In Exp 1 and Exp 2 tests, the first neutral images (see
Figs. 3.2 (a-b)) from each session are used for gallery set and all others corresponding
images of the same session (see Figs. 3.2 (c-j)) are chosen for probe sets. Exp 3 and
Exp 4 tests use first images of one session for the gallery and images of the other session
for probe sets. Exp 1 and Exp 2 are conducted to investigate system performance
under variations of expression, illumination and disguise whilst Exp 3 and Exp 4 are
performed to validate each method against all that challenges plus time-lapse variation.
Each experiment has 12 probe sets correspondingly named after their conditions as
Smile, Anger, Scream, Neutral+Left light, Neutral+Right light, Neutral+both sides
light, Sun glasses, Sun glasses+Left light, Sun glasses+Right light, Scarf, Scard+Left
light, Scard+Right light. We label these probe sets by numbers from 1 to 12 for short
notations. Each experiment uses one sample image (the first neutral image from each
session) per subject for the training stage. All the images are cropped to 128x128
resolution and then preprocessed by retinal model [116] in order to remove the effects
of illumination.

3.2.2 FERET (Face Recognition Technology) database

Frontal FERET image sets. FERET [96] is one of the most widely used face databases
to evaluate the performance of a SSPP FR system since it has images captured under
various conditions and from a large number of subjects (1199 people). The database has
five frontal image sets namely Fa, Fb, Fc, Duplicate I (Dup I) and Duplicate II (Dup
II) (see more at Figs. 3.3 (a-e)). Fa set, which is used for gallery set, has 1196 images
of 1196 subjects. Fc, Fb, Dup I and Dup II sets, which consist of 1195, 194, 722 and
234 images respectively, are used for probe sets in the tests with the same names. The
images of the Fb set are facial expression variations while Fc set contains images under
different lighting conditions. Images in the Dup I and Dup II sets were taken about 1
year and two years respectively after the ones in the Fa set. Among others, Dup I and
Dup II tests are more challenging as time-lapse is among the most difficult factors in
the FR literature. The image size and preprocessing technique are identical to those
applied upon images of AR database in previous subsection.
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(a) Fa (b) Fb (c) Fc (d) Dup1 (e) Dup2

(f) ba (g) bh (h) bc

(i) bg (j) bd (k) bf (l) be

Figure 3.3: Sample cropped images from FERET database.

Non-frontal FERET image sets. Aside from frontal images, FERET has pose view
images of 200 people (Figs. 3.3 (f-l) show examples). In this dissertation, we choose
six subsets (each one contains 200 images) that have images with pose angles ranging
from −40◦ to +40◦: bh, bg, bf, be, bd, bc, for probe sets. Frontal image set ba (200
images) is used for gallery while Fa set (1196 images) is used for training by WPCA.
We also use the same image size and illumination normalization method as with frontal
images. This experiment is used for verifying the performance of a system against pose
variation, a major challenge of FR.

3.2.3 SCface (Surveillance Camera face) database

While previous experiments upon AR and FERET databases show adequate evidences
to verify the predominance of one FR system based on a proposed feature extraction
method over its related counterparts as well as other state-of-the-art systems, we give
in this section the details of two experiments on SCface [42] database to validate the
capability of our proposed frameworks against low resolution probe images.

The database contains color probe images of 130 people (Figs. 3.4 (a-h) show examples),
which were captured by 7 different surveillance cameras named as cam1, cam2, cam3,
cam4, cam5, cam6 and cam7, in which cam6 and cam7 are cam1 and cam5, respectively,
but worked in infrared (IR) night vision mode (the rest worked in daylight condition).
These cameras worked under uncontrolled indoor conditions at three distances of 4.2m,
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(a) Frontal mugshots (b) Cam1_Distance1 (c) Cam1_Distance2

(d) Cam1_Distance3 (e) Cam4_Distance1 (f) Cam5_Distance1

(g) Cam6_Distance1 (h) Cam7_Distance1

Figure 3.4: Sample images from SCface database.

2.6m and 1.0m, and each one has three image sets (of 130 images) corresponding to three
distances. The challenge coming from its very low resolution probe images adversely
affected by various unconstrained conditions is the cause of very few reported results
on this database.

From 21 image sets, the authors [42] defined two experiments: DayTime and NightTime.
DayTime experiment has 15 probe sets (see Figs. 3.4 (b-f)) while NightTime has 6 ones
(see Figs. 3.4 (g-h)). The gallery set contains 130 high quality mug-shots (see Figs. 3.4a)
that were taken under standard lighting indoor condition. In this work, we perform both
experiments and report the results with two distinct training sets: the frontal Fa set
of FERET database [96] like in [42] and frontal mug-shot images like in [140] and [89].
All the images are converted into grayscale format and then cropped (using the eyes’
coordinates accompanied with the database) to have 48x48 pixels resolution. Next,
standard histogram equalization algorithm is applied for illumination normalization.

3.3 Face cropping

The face cropping technique based on eyes’ locations is depicted in Fig. 3.5. Considering
(x1, y1) and (x2, y2) are left eye and right eye coordinates, the rotation angle for face
alignment is computed as:

φ = atan( y2 − y1

x2 − x1
) ∗ 180

π
. (3.3.1)
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Figure 3.5: Face cropping based on eyes coordinates scheme.

The whole input image I of size W × H is then rotated by φ angle with the original
coordinate, which is the center of the image itself, being calculated as: xc = W

2

yc = H
2

. (3.3.2)

The rotation operation at every pixel I(x, y) at location (x, y) can be expressed by
matrix multiplication as:

Ir(x, y)− [xc yc] = [(x− xc) (y − yc)] ·Mrotate. (3.3.3)

Where Ir(x, y) is the coordinates of I(x, y) in the rotated image, Mrotate is the rotation
matrix obtained from equation:

Mrotate =
cos(φ) −sin(φ)
sin(φ) cos(φ)

 (3.3.4)

Thus, new coordinates of two eyes are computed as: (x1r, y1r) = [xc yc] + [(x1 − xc) (y1 − yc)] ·Mrotate

(x2r, y2r) = [xc yc] + [(x2 − xc) (y2 − yc)] ·Mrotate

. (3.3.5)

Next, the eyes distance is calculated:

disteyes =
√

(x1r − x2r)2 + (y1r − y2r)2. (3.3.6)

The image region contains the needed face is bounded by the rectangle that has upper-
left and lower-right corners located at: (xul, yul) = (x1r − rate ∗ disteyes, y1r − rate ∗ disteyes)

(xlr, ylr) = (x2r + rate ∗ disteyes, y2r + (1 + rate) ∗ disteyes)
. (3.3.7)
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In which rate is a constant to control the distance between eyes and boundaries of the
face region. By empirical experiments, we fix rate = 0.65. The cropped face image is
finally resized to 128× 128 resolution (with AR and FERET databases) or 48× 48 (for
SCface database) before being fed into the subsequent stage.

Beside face cropping objective, this method also aligns the face images based on the
rotation angle φ. Let us note that it is not a perfect approach and may not competing
with other state-of-the-art alignment methods, but the resulting images are nevertheless
sufficient for us to concentrate on the main goal of the thesis.

3.4 Preprocessing techniques

The purpose of the preprocessing algorithm is to remove the effects of illumination, the
factor that can impair the performance of a FR system by producing extremely different
images of one person. To select a preferable technique regarding system accuracy, many
state-of-the-art ones [136] have been carefully examined by applying them upon images
from the three face databases, which have been adopted earlier, before carrying out the
experiments. The retinal filter [116] and standard histogram equalization were chosen
in the end as they offer the best recognition rates.

3.4.1 Retinal filter

Light 
adaptation filter

Naka-Rushton 
function extends

Difference of 
Gaussian

Zero-mean 
normalization

Large values 
truncation

OLP filter

Input 
image

Result 
image

Post-processing

Figure 3.6: Retinal filter scheme for illumination normalization

Based on retinal modeling, Vu et al. [116] proposed retinal filter for illumination nor-
malization. The method mimics the operation of two layers of the human retina, the
photoreceptors and the outer plexiform layer (OPL), by applying two successive adap-
tive nonlinear functions, Difference of Gaussian (DoG) filter and a post-processing
truncation (see Fig. 3.6 for more details).
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The Naka-Rushton function [87], which is used to enhance image’s local contrast, is
expressed as:

Y = X

X +X0 (3.4.1)

in which X is the input light intensity, X0 is the adaptation factor (its value varies for
each pixel), and Y is the result.

From the input image I, the light adaptation filter is proceeded on every pixel p by two
lowpass filters stemmed from Naka-Rushton function (Eq. 3.4.1) as follow:

Ila1 = (max(I) + F1(p)) I(p)
I(p) + F1(p) , (3.4.2)

Ila2 = (max(Ila1) + F2(p)) Ila1(p)
Ila1(p) + F2(p) . (3.4.3)

The expressions (max(I) + F1(p)) and (max(Ila1) + F2(p)) act as normalization factors
while max is the function returning the maximal image intensity. Two adaptation
factors F1(p) and F2(p) are computed by:

F1(p) = I(p) ∗G1 + Ī

2 , (3.4.4)

F2(p) = Ila1(p) ∗G2 + Ila1

2 , (3.4.5)

where ∗ is the notation of convolution operation,¯denotes the mean function, G1, G2 are
Gaussian lowpass filters corresponding to two standard deviations σ1 = 1 and σ2 = 3:

G1(x, y) = 1
2πσ2

1
e
−x

2+y2

2σ2
1 , (3.4.6)

G2(x, y) = 1
2πσ2

2
e
−x

2+y2

2σ2
2 . (3.4.7)

The image Ila2 is then processed by a DoG filter to enhance its edge information:

Idog = DoG ∗ Ila2 (3.4.8)

where DoG is obtained by:

DoG = 1
2πσ2

Ph

e
−x

2+y2

2σ2
Ph − 1

2πσ2
H

e
−x

2+y2

2σ2
H (3.4.9)

with σPh = 0.5 and σH = 4. As DoG filter inherent drawback is the reduction in global
image contrast, a truncation of large values (with threshold TH = 5) followed by a
zero-mean normalization is applied as:

Inorm(p) = Idog − Idog
std(Idog)

= Idog
std(Idog)

(3.4.10)
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(a) Input images

(b) Output images

Figure 3.7: Retinal filter’s illustration on illumination samples of FERET database.

Iresult(p) =

 max(Th, |Inorm(p)|) if Inorm(p) ≥ 0
−max(Th, |Inorm(p)|) otherwise

. (3.4.11)

In Eq. 3.4.10, std is the standard deviation function and Idog is very close to zero.

In Figs. 3.7(a-b), one can observe the results of applying the retinal filter on face
images affected by illumination variations from FERET database: they (Figs. 3.7(a))
are normalized into the same lighting condition in the output images (Figs. 3.7(b)).

3.4.2 Histogram equalization

Input 
images

Histogram
equalization

Output 
images

Gallery image Probe image

Figure 3.8: Some face images from SCface database and their histogram equalization
versions.

This technique is dedicated for SCface database [42]. As aforementioned, many other
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algorithms have been tested but they did not give better results than this simple
histogram equalization technique. This occurs due to the fact that images from SCface
database are low quality, blurred and contain very little fine image details (see Fig. 3.4
for more information). Plus, since the images are small in size, any noise filter of
illumination methods (such as DoG in retinal filter [116] or proposed method in [112])
will inevitably blur the edges in them. On large images of higher quality (like the
ones from FERET and AR databases), these degradations can be tolerated since the
kernel size of the used filter is very small compared with the image size and the edge
information is strong to be preserved after filtering. Therefore, applying other methods
will discard such poor but crucial fine details from face images and thus no performance
enhancement is achieved. In the meantime histogram equalization, while improving face
images’ global contrast for illumination normalization, does not affect images’ visual
features too much. This can be evidently seen in Fig. 3.8.

Input 
histogram

Output 
histogram

Histogram 
equalization

Figure 3.9: Histogram equalization mechanism.

Theoretically, histogram equalization algorithm redistributes the occurrences of intensi-
ties values in the input image to make them appear more equally in the output image
(see Fig. 3.9 for more details). To do that, two steps, namely histogram normalization
and intensity mapping, are performed as follows. Let L− 1 is the maximum intensity
value, N is the number of intensity values, nk is the number of pixels having intensity
k, of the input image I. Then the probability of a pixel to have intensity k in the image
I is estimated as:

px(k) = p(x = k) = nk
N
, k = [0, L) (3.4.12)

Based on those probabilities, the histogram equalized image G is defined as:

G(x, y) = floor((L− 1)
I(x,y)∑
i=0

pi), (3.4.13)
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where floor() function rounds a real number down to the nearest integer, G(x, y) and
I(x, y) are intensity values at pixel (x, y) of image I and G, respectively. This is
equivalent to the intensity mapping T that transforms each intensity value k of image
I to a new one sk in image G as:

sk = T (k) = floor((L− 1)
k∑
i=0

pi) = floor((L− 1)
k∑
i=0

nk
N

) (3.4.14)

Equalized image G is obtained by applying the above intensity transformation upon all
the pixels of image I.

3.5 Template matching framework

Face 
cropping

Feature 
extraction

  k-NN with  Chi 
Square distance

Identity

Input image
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Normalized 

image

Feature vector

101...110..001
Matching

Retinal filter

Figure 3.10: General template matching framework

Ahonen et al. [3] used template matching method with k-Nearest Neighbor (k-NN) and
Chi Square distance functions (non-weighted and weighted) for classification. Inspired
by that technique, a general template matching framework, whose steps are illustrated
in Fig. 3.10, is used to investigate the discriminant capacity of a feature extraction
method as follows. Firstly, the face images are cropped and aligned using their eyes
coordinates. Then they are preprocessed by retinal filter [116] in order to diminish
the bad effect of illumination variations. Next, a feature extraction method is used to
extract the most distinguishing features from every normalized image. After the feature
extraction stage, each face image is represented in terms of a feature vector and the
Chi Square (non-weighted) distance is exploited to calculate the similarities between
one test image and all the gallery ones. The Chi Square distance between two vectors
X = [x1x2...xM ] and Y = [y1y2...yM ] is:

distχ(X, Y ) =
M∑
i=0

(xi − yi)2

xi + yi
(3.5.1)
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The identity of one test image is assigned to the label which has highest similarity, also
means the smallest distance, to it. There is no training stage to decrease the feature
vector’s length, hence this classification process will cost a long time for computing all
needed distances. In every experiment, we will show that this unsupervised framework
does not yield better accuracies than the WPCA based framework (which is presented
in the next section) but it helps to verify the efficiency of one proposed feature extrac-
tion method. The weighted Chi Square function is not utilized since the performance
improvement is negligible. Additionally, considering that experimental results upon AR
and FERET are sufficient to conclude if one feature extraction algorithm is better than
others or not, we do not evaluate this FR framework on SCface database.

3.6 Whitened PCA based framework

Face 
cropping

Retinal filter or 
histogram 

equalization

Feature 
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Aligned image
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101...110..001 1010...01

Figure 3.11: General WPCA based framework

Stages of the general Whitened PCA (WPCA) based framework used in this manuscript
are showed in Fig. 3.11. All the stages before dimensionality reduction process are
almost the same as in template matching framework, with a small addition that the
preprocessing stage uses both retinal filter [116] (on AR and FERET databases) and
histogram equalization technique (on SCface database). The main difference here are
the use of WPCA and angle based distance functions (for classification).

For addressing the need of high performance (speed and accuracy) systems in reality,
the template matching framework described in previous section is inadequate due to
some reasons. Firstly, in their original forms, feature vectors obtained from the feature
extraction stage are usually very big data thus making the classification task slow as it
has to calculate the distances between them. Secondly, feature vectors contain redundant
information that should be eliminated since it is meaningless to system performance.
Hence, it is desirable to reduce their size and improve their distinctiveness by a learning
algorithm. Towards this end, we adopt WPCA for dimensionality reduction stage. This
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is a two-fold operation: the feature vector size is reduced to make the classification faster
since it only works on smaller data and the recognition rates are higher as the projected
vectors are more discriminative. WPCA is PCA [114] followed by a postprocessing
operation called whitening step to weight eigenvectors by eigenvalues. Conventional
PCA has two main disadvantages: the poor discriminative power in its sub space [109]
if the feature vector length is larger than the samples number for training and the
performance degradation when using its three leading eigenvectors [1]. The simple but
effective whitening step rectifies these two main disadvantages of PCA whilst helping
to enrich the discriminatory power in its projection space [29].

In order to determine the identity of the probe images in the classification stage, a
distance function is needed for estimating the distance between projected feature vectors.
Since the recognition performance of PCA based FR systems can varied significantly by
using different functions, as reported by Moon et al. in [85], the best fit distance measures
for our WPCA based systems have been selected via experiments by trying all available
ones [95]. Among all distance measures involved [95], the negative angle distance and the
weighted angle-based distance are found to bring the highest performance, depending on
the used feature extraction method. Considering two vectors X = (x1, x2, ..., xN)T , Y =
(y1, y2, ..., yN)T , their negative angle and weighted angle-based distances are computed
as follow:

distnang(X, Y ) = − XTY

‖X‖‖Y ‖
= −

∑N
i=1 xiyi√∑N

i=1 xi
2 ∑N

i=1 yi
2

(3.6.1)

distwang(X, Y ) = −
∑N
i=1 zixiyi√∑N

i=1 xi
2 ∑N

i=1 yi
2
, zi =

√
1/λi, (3.6.2)

here λi, (i = 1..N) are the eigenvalues of WPCA.

Also, it is worth indicating that in our WPCA based framework, each feature vector
is standardized by firstly taking its square root and then the z-score normalization
is applied on the obtained values. According to [120], this usage of the square root
offers better results. Concretely, once taken its square root, a feature vector X =
(x1, x2, .., xN)T is normalized as:

norm(X) = ( x1 − x̄
std(X) ,

x2 − x̄
std(X) , ..,

xN − x̄
std(X) )T , (3.6.3)

in which:
x̄ =

∑N
i=1 xi
N

, (3.6.4)

and

std(X) =

√√√√ 1
(N − 1)

N∑
i=1

(xi − x̄)2. (3.6.5)
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There are two steps in the usage of WPCA for FR: the training and the projecting
ones. In the training step, a projection matrix is built from eigenvectors and eigenvalues,
which are computed from feature vectors of training images. The projection matrix is
then employed in the projecting step to project each feature vector of gallery or probe
image into the WPCA subspace. In order to generate the projection matrix, there
are two different ways that can be utilized: the one uses Eigenvalue decomposition
algorithm and the one is based on Singular value decomposition method. Both of them
are next described in detail and we will explain which one is better and therefore be
used throughout this thesis.

3.6.1 EVD (Eigenvalue decomposition) based WPCA

From K training samples, each one is represented as a column vector Xi (i = 1..K) of
size N , the matrix L is generated as:

L = 1
K
ATA,A = [Φ1Φ2..ΦK ] (3.6.6)

where
Φi = norm(

√
Xi). (3.6.7)

In original PCA, we have to find eigenvectors and eigenvalues of covariance matrix
C = 1

K
AAT , a symmetric matrix of size N ×N , as:

C = WΣW T . (3.6.8)

This is not feasible since N is large. Turk and Pentland [114] overcame this obstacle
by a subtle trick (called Turk and Pentland’s trick) that computes needed values from
L = 1

K
ATA, a smaller matrix of size K ×K, based on an observation when considering

an eigenvector vi of L as:

AATAvi = Aλivi = λiAvi. (3.6.9)

From above equation, we can see that Avi is an eigenvector, corresponding to eigenvalue
λi, of C. Following the Turk and Pentland trick, K eigenvectors vi, (i = 1..K) derived by
eigenvalue decomposition of matrix L are used to generate eigenvectors, which are then
sorted decreasingly based on their associated eigenvalues λi, (i = 1..K), of covariance
matrix C as:

ui = Avi. (3.6.10)

K′ (K′ < K−1) leading eigenvectors ui, (i = 1..K′), also known as principal components,
are retained to build the projection matrix Uproj of PCA as:

Uproj = [u1u2...uK′ ]. (3.6.11)
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The whitening step of WPCA normalizes eigenvectors of PCA by eigenvalues to construct
its projection matrix Wproj as:

Wproj = Λ−1/2Uproj, Λ = [λ1λ2...λK′ ]. (3.6.12)

This step is called whitening in the sense that it makes the projected data has an identity
covariance matrix. Each feature vector y of gallery or probe images is projected into
WPCA subspace by the formula:

ỹ = WT
proj(y− x̄). (3.6.13)

3.6.2 SVD (Singular value decomposition) based WPCA

In EVD WPCA (also known as standard WPCA), we have to calculate the transpose
matrix L of covariance matrix C and to use matrix A in conducting the projection matrix
Uproj, these steps are time consuming if the features number of each vector xi and N are
large. Besides, the multiplication between matrix A and its transpose AT causes loss of
precision with a lot of multiply and addition operations. So we propose to use Singular
value decomposition (SVD) based WPCA (in the rest of this thesis when we refer to
WPCA, it means SVD based WPCA) for boosting the computational performance. For
this objective, the eigenvectors ui, i = 1..K and eigenvalues λi, i = 1..K are calculated
directly from the matrix A as:

[U,Σ,V] = svd(A),Σ2 = Λ. (3.6.14)

Then the whitening step is performed as:

Wproj = Λ−1/2U = Σ−1U. (3.6.15)

This can be done due to the property of SVD that decomposes A as:

A = UΣV T , (3.6.16)

in which V is an orthogonal matrix which entails V TV = I. Covariance matrix C then
can be expressed as:

C = AAT = (UΣV T )(UΣV T )T = (UΣV T )(V ΣUT ) = UΣ2UT . (3.6.17)

That means Σ =
√
Λ are square roots of eigenvalues, which are associated with eigen-

vectors stored in matrix U , of the covariance matrix C.
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3.7 Conclusions

In this chapter, all the background materials employed with the propositions for feature
extraction stage are presented. We first discussed the general FR scheme in which a
k-NN classifier is adopted to determine the identities of test images. Afterwards, with
respect to criteria of a good database for using to assess the performance of a FR system
in comparison with other state-of-the-art rivals, three large public face databases, namely
AR, FERET and SCface, and their standard protocols are selected and described. It
is worth highlighting that a broad range of challenges, including illumination, facial
expressions, time-lapse, and pose variations, face occlusions, and low resolution probe
images, is the purpose of experiments which will be conducted to verify our proposed
feature extraction methods in the present dissertation. For face cropping, a simple
yet efficient algorithm based on two eyes’ coordinates, which are accompanied in the
annotation data of the face databases, is used to crop and to align input face images. In
the preprocessing stage, retinal filter [116], a powerful technique, is applied on AR and
FERET databases while standard histogram equalization is wielded particularly upon
images from SCface database as other methods do not bring accuracy improvement.

Based on the general FR scheme, we define two frameworks to be used with the feature
extraction methods proposed in this thesis, which are called Template matching and
WPCA based. In the "Template matching" framework, an unsupervised FR system is
formed by using Chi Square distance and the k-NN classifier to recognize a face image.
Meanwhile, in the "WPCA based" framework, we use SVD based WPCA method for
dimensionality reduction and angle based distances with k-NN for classification.

Up to now, towards the purpose of building an efficient FR system, we have solutions for
almost all of its stages, including face cropping, preprocessing, dimensionality reduction
and classification, via adopting rational techniques for each stage, except the feature
extraction one. By these, we next concentrate on the goal of devising robust facial
feature extraction methods, as they play the most crucial part of a FR system. The
content of the following three chapters will address this aim, step by step, by our
propositions of novel facial descriptions.

71



Chapter 3. Face recognition background

72



Chapter 4

Intensity-based feature extraction
methods

LBP
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Figure 4.1: Contributions presented in this chapter: ELBP and LPQ methods and their
associated FR frameworks.

With solutions for their stages of the two FR frameworks defined in chapter 3, the
content of this thesis now moves to methods for facial feature extraction. In this
chapter, two intensity-based local feature descriptors, Elliptical Local Binary Patterns
(ELBP) and Local Phase Quantization (LPQ), are presented in detail (see Fig 4.1).
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Both kinds of features are thoroughly explored via a long list of experiments upon
preselected face databases (AR, FERET and SCface) and comparisons with other state-
of-the-art systems. Additionally, the computational costs of the two methods are also
investigated via a benchmark test upon images from Fa set of the FERET database.
Since we primarily focus on local features to develop robust facial representations under
challenging circumstances, the elementary descriptors scrutinized in this chapter play
a key role for designing more sophisticated methods. Also importantly, via analyzing
the results gained by ELBP and LPQ when they are plugged into Template matching
and WPCA based frameworks, multiple useful conclusions, which drive the way we
proceed in the subsequent two chapters, are made.

In the rest of this chapter, the ELBP feature extraction method is described in Sec-
tion 4.1. Section 4.2 gives details of LPQ facial representation for face recognition.
Experimental results of each method are provided in corresponding subsections and the
conclusions are expressed in Section 4.3.

4.1 ELBP, a novel variant of LBP

In this section, we propose a novel variant of Local Binary Patterns (LBP) so-called
Elliptical Local Binary Patterns (ELBP) which is dedicated to face analysis. In ELBP,
we use horizontal and vertical ellipse patterns to capture micro facial feature of face
images in both horizontal and vertical directions. ELBP is applied in face recognition
with the Template matching framework and the WPCA based one in which dimension
reduction step is done by Whitened Principal Component Analysis (WPCA). Our
experiment results upon AR, FERET and SCface databases prove the advantages of
ELBP over LBP for face recognition under different conditions and with ELBP WPCA
we can get very remarkable results.

Before going further into details of the proposed method, it is worth recalling that an
up-to-date survey on LBP and related works is presented in Section 2.2.2 of chapter 2.

4.1.1 Motivations

The purpose of a feature extraction method in a FR system is to capture the most
intrinsic and discriminative facial features of face images in an efficient manner to form
powerful face representations. As prior mentioned in chapter 1, these representations
should be robust to as many as possible FR challenges. To meet this requirement, they
must contains facial characteristics that maximize extra-class variations between face
images of different identities while minimizing the intra-class variations between those
of an individual.
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4.1. ELBP, a novel variant of LBP

As far as we know, the most important facial parts of the human face are the eyes
and the mouth [106, 45, 14, 108]. The natural shapes of human eyes and mouth are
ellipses. Plus, there is more horizontal information in a face image than vertical one.
Furthermore, horizontal information plays a very significant role in face recognition
and the recognition performance is improved when we combine horizontal with vertical
information [40]. As a consequence, in this chapter, we propose a novel variant of LBP
so-called Elliptical LBP (ELBP) which uses horizontal and vertical ellipse patterns to
form the ELBP feature representation for face recognition. The concept of applying
elliptical patterns in LBP was also used by S. Liao and A.C.S Chung [70] to build the
Elongated LBP. The authors used weighted factors for six regions of the face image and
four different elliptical patterns (in four directions) to encode the anisotropic information
of the image. Differently, in our ELBP scheme, we use only one horizontal ellipse and
one vertical ellipse for capturing the micro facial features of face image and weighted
factors are not used in producing the histogram sequence of ELBP images.

4.1.2 ELBP in detail

LBP(8,1) LBP(8,2) ELBP(8,2,1) ELBP(8,1,2)

Figure 4.2: LBP and ELBP patterns
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Figure 4.3: ELBP encoding scheme

In ELBP, at each pixel (xc, yc) of the input image, we consider its neighboring pixels
that lie on an ellipse (see Fig. 4.2 for more details) with (xc, yc) is the center itself. The
ELBP code of image pixel (xc, yc) with P surrounding pixels at (R1, R2) distances is
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(a) (b) (c) (d)

Figure 4.4: An image (a) and its LBP8,1 (b), ELBP8,3,1 (c), ELBP8,4,3 (d)

computed as:

ELBP P,R1,R2(xc, yc) =
P∑
i=1

s(gP,R1,R2
i − gc)2i−1 (4.1.1)

where s(x) is a binary encoding function and is defined as:

s(x) =

 1 if x ≥ 0;
0 if x < 0.

(4.1.2)

In details, the coordinates of the ith neighboring pixel of (xc, yc) are calculated using
the formulas: 

angle_step = 2 ∗ π/P
xi = xc +R1 ∗ cos((i− 1) ∗ angle_step))
yi = yc −R2 ∗ sin((i− 1) ∗ angle_step))

, (4.1.3)

Illustration of ELBP calculation for one pixel can be seen in Fig. 4.3. In Fig. 4.4 one
can see a face image and its LBP and ELBP versions.1

When the coordinate of a pixel pi = (xi, yi) on an ellipse computed from Eqs. 6.3.3 is
not in the center of an image pixel, a bilinear interpolation of four the nearest pixels
is applied to obtain its gray value gi. This process is illustrated in Fig. 4.5. Let the
four nearest pixels of pi be a, b, c, d, whose centers are the black dots in Fig. 4.5, and
ga, gb, gc, gd be their gray values, respectively. The distances between these pixels, more
precisely their centers, is one pixel. Let dx denote the horizontal distance between pi

(the red dot) and the centers of a and c and let dy denote the vertical distance between
pi and the centers of b and d. Then the gray value of pi is calculated as:

gi = ga(1− dx)(1− dy) + gb(dx)(1− dy) + gc(1− dx)(dy) + gd(dx)(dy), (4.1.4)

1As image pixels at the border do not have enough neighbors, the ELBP feature extraction procedure
(the same as in original LBP method [3]) is not carried out on them.
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with dx and dy are computed as:
 dx = 1− (xi − floor(xi))
dy = 1− (yi − floor(yi))

, (4.1.5)

in which floor() is the function that maps a real number to the largest previous integer.

ELBP(8,2,1)

a b

c d

p
i

d

dx

dy

Figure 4.5: ELBP bilinear interpolation scheme

In [106, 14], authors indicated that eyes and mouth are the most important facial
features in face recognition. The natural shapes of human eyes and mouth are ellipses.
So horizontal ELBP is more suitable and more efficient than LBP in features extraction
for face recognition. When R1 = R2, ELBP is LBP, when R1 < R2 we have a vertical
ellipse and if R1 > R2 we have an horizontal ellipse, which matches most for human
eyes and mouth. Additionally, studies in face perception [25, 40] verify that horizontal
information drives the face identification of humans. Thus, by using horizontal ellipse to
do the binary thresholding process in ELBP, the ELBP micro textures convey also the
horizontal visual structures extracted from face images. Further, in this work, we use
both horizontal and vertical ELBP to encode the micro facial feature in both directions
because the combination of horizontal and vertical information of the face image gives
the best recognition performance [40].

Building ELBP feature vector: For building the ELBP feature vector of input face
images, we use ELBP operator to generate ELBP image (in Fig. 4.4 one can see an
image and its ELBP images) and apply the similar method as Ahonen et al. [4]. When
only horizontal ELBP is used, we firstly generate the ELBP image for the input image,
then the ELBP image is divided into sub non-overlapped rectangular regions. In the
next step, histogram sequences of sub regions are calculated and then concatenated
to form the ELBP feature vector, uniform patterns [4] are employed in this step to
reduce the vector’s length. In the case of using both horizontal and vertical ELBP, we
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Input
image

Uniform
patternshELBP

(h+v)ELBP 
feature vector

vELBP Uniform
patterns

59-bin

256-bin

256-bin

Figure 4.6: ELBP feature vector computation

apply two symmetric ELBP operators ELBP P,R1,R2 and ELBP P,R2,R1 to produce two
ELBP images simultaneously. Then each ELBP feature vector corresponding to ELBP
image is computed. After that, the two vectors are concatenated to form the complete
horizontal and vertical ELBP feature vector for the given face image. All these steps
are illustrated in Fig. 4.6.

The ELBP image is divided intoW ×H sub regions to build feature vector. So normally,
with (8, R1, R2) neighborhood patterns the horizontal ELBP feature vector length is
W ∗H ∗256 and the complete (both horizontal and vertical) ELBP feature vector length
is 2*W*H*256. Similar as in LBP [4], an ELBP value is called uniform pattern if its
binary representation has no more than two bitwise transitions from 0 to 1 and vice
versa. For example, the patterns 00000001 (1 transition) and 01111100 (2 transitions)
are uniform but 01101001 (4 transitions) and 01010101 (7 transitions) are not. When
they are used, each uniform ELBP value is assigned by a bin whereas only one bin
is shared by all the rest ones (not uniform). In this document, ELBP feature vectors
are only generated with P = 8 neighbor pixels, they are 59-bin histogram sequences
as there are 58 uniform patterns. Thus, the ELBP feature vector length is reduced
about 4 times (from W ∗H ∗ 256 down to W ∗H ∗ 59 and from 2 ∗W ∗H ∗ 256 down
to 2 ∗W ∗ H ∗ 59). For this reason, we use uniform patterns to speed up the ELBP
calculations and to save required memory for storing ELBP feature vectors.

4.1.3 Face recognition with ELBP

In applying ELBP for face recognition, we use the template matching method (see
Section 3.5 in chapter 3 for more details) and an advanced method that uses negative
cosine distance function for classification and WPCA for dimension reduction, which is
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described in detail in Section 3.6 of chapter 3. With the template matching framework,
we use LBP, ELBP(h) (means only horizontal ELBP is used), ELBP(h+v) (means a
symmetric pair of both horizontal and vertical ELBPs is used) notations to indicate the
corresponding feature extraction method while their equivalent WPCA based methods
are named by adding the word "WPCA" as a suffix. The obtained recognition rates
on AR, FERET and SCface databases are compared with other state-of-the arts FR
systems.

4.1.4 Experimental results

4.1.4.1 Results on AR database

Table 4.1: Rank-1 RRs (%) comparison between LBP and ELBP based methods on AR
database

Test/Method Probe set Avg1 2 3 4 5 6 7 8 9 10 11 12

Exp1

LBP 100 100 74.4 100 100 97.8 76.9 55.2 45.4 98.5 76.9 71.6 83.1
LBP WPCA 100 100 76.7 100 100 100 77.6 61.2 51.5 99.3 98.5 92.5 87.9
ELBP(h) 100 100 79.7 100 100 98.5 85.1 55.2 46.3 98.5 86.6 76.9 85.6
ELBP(h) WPCA 100 100 79.9 100 100 100 85.1 65.7 56.7 100 96.3 97.0 90.0
ELBP(h+v) 100 100 81.2 100 100 98.5 91.0 55.2 47.0 99.3 86.6 79.1 86.5
ELBP(h+v) WPCA 100 100 81.2 100 100 100 91.0 67.2 61.9 100 97.8 97.0 91.3

Exp2

LBP 100 100 74.8 100 100 100 81.5 55.1 46.6 97.5 76.3 68.6 83.4
LBP WPCA 100 100 76.3 100 100 100 81.5 67.0 56.0 98.3 93.2 90.7 88.6
ELBP(h) 100 100 75.6 100 100 100 84.9 57.6 46.6 98.3 85.6 81.4 85.8
ELBP(h) WPCA 100 100 77.1 100 100 100 85.6 67.8 56.0 100 96.6 96.6 90.0
ELBP(h+v) 100 100 79.0 100 100 100 87.3 58.5 49.2 98.3 85.6 81.4 86.6
ELBP(h+v) WPCA 100 100 80.5 100 100 100 87.3 70.3 61.8 100 97.5 96.6 91.2

Exp3

LBP 95.0 96.6 56.3 94.9 94.9 82.2 57.2 50.0 43.2 95.0 46.6 46.6 71.5
LBP WPCA 97.5 97.5 57.6 100 100 93.2 74.6 56.9 47.5 95.0 78.0 67.0 80.4
ELBP(h) 95.0 98.3 57.2 97.5 94.9 83.9 57.2 52.5 44.9 95.0 55.9 49.2 73.5
ELBP(h) WPCA 97.5 98.3 68.6 100 100 94.9 75.4 61.0 51.7 97.5 88.1 89.0 85.2
ELBP(h+v) 96.6 98.3 62.2 97.5 94.9 83.9 65.6 52.5 47.5 95.8 58.5 52.5 75.5
ELBP(h+v) WPCA 97.5 99.2 73.7 100 100 95.8 80.5 66.1 63.6 97.5 90.7 92.4 88.1

Exp4

LBP 92.3 95.7 45.7 97.4 97.4 90.6 66.7 55.6 49.6 72.7 58.1 41.9 72.0
LBP WPCA 94.9 98.3 55.2 100 98.3 94.9 57.3 60.7 58.1 88.9 84.6 71.8 80.3
ELBP(h) 94.9 95.7 45.7 98.3 98.3 90.6 66.7 59.0 50.4 78.6 61.5 56.4 74.7
ELBP(h) WPCA 95.7 98.3 60.3 100 100 95.7 66.7 67.5 59.0 94.9 89.7 86.3 84.5
ELBP(h+v) 95.7 95.7 48.3 98.3 98.3 90.6 68.4 63.3 55.6 82.1 62.4 58.1 76.4
ELBP(h+v) WPCA 98.3 98.3 63.8 100 100 97.4 79.5 67.5 59.8 95.7 90.6 91.5 86.9

It is worth reminding that the probe sets of AR database, which are numbered from 1 to
12 in table 4.1, consist of images captured under various conditions of facial expressions
(Smile, Anger, Scream), lighting changes (Neutral+Left light, Neutral+Right light,
Neutral+both sides light), and occlusions (Sun glasses, Sun glasses+Left light, Sun
glasses+Right light, Scarf, Scard+Left light, Scard+Right light). Results of LBP and
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Figure 4.7: Accuracy performance of LBP and ELBP based systems on AR database.

ELBP based methods is provided in table 4.1 whilst the comparison between ELBP(h+v)
WPCA and other well-known systems is shown in table 4.2. For clarifying purpose, we
visualize the RRs of LBP and ELBP based systems as scatter plots in Figs. 4.7.

From results in table 4.1 and Figs 4.7, we can conclude that:

1. The horizontal ELBP (ELBP(h)) is more efficient than LBP in encoding micro
facial features for FR. This superiority is consistent under all conditions (facial ex-
pressions, illumination variations and occlusions), in all experiments and with both
template matching and WPCA based frameworks. The dominance of ELBP(h)
over LBP is more significant on probe sets 3 (Scream), 8 and 9 (Sun glasses with
illumination variations), 11 and 12 (Scarf with illumination variations), especially
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in Exp 3 and Exp 4, where the time-lapse variation is presented. In summary,
these results confirm the efficiency of our proposition of using horizontal elliptical
pattern to encode micro texture features in ELBP(h).

2. The fusion at feature level of both horizontal and vertical ELBPs in feature
extraction (ELBP(h+v)) gives better performance than using single horizontal
ELBP (ELBP(h)). Again, this improvement is steady since it is achieved in
all experiments with both template matching and WPCA based FR methods.
We believe that this comes from useful horizontal and vertical texture features
which are extracted by the combination of the symmetric pair of ELBPs. These
results also point out that ELBP(h+v) method is strong against facial expressions,
illumination variations and occlusions.

3. Between the Template matching and WPCA based frameworks, the latter signifi-
cantly outperforms the former. In all probe sets of four experiments and with all
feature extraction methods, the usage of WPCA brings higher recognition rates
than the direct matching method using the Chi Square distance. As mentioned in
chapter 3, this improvement is gained since WPCA produces more discriminative
feature vectors by eliminating redundant information from their original forms.
Importantly, these improvements validate that if one feature extraction method
is more powerful than another one in Template matching framework, the corre-
sponding results it achieves with WPCA based paradigm will be higher than that
of the compared method as a consequence.

4. Among all the facial expressions, the recognition rates with scream image sets
(number 3) are lowest because the shapes of human eyes and mouth are changed
most when screaming. Under occlusions conditions, the recognition rates upon
scarf probe sets are higher than that on sun-glasses probe sets due to the fact that
with glasses, the most important facial feature for face recognition, the eyes, are
hidden. The combination of high and stable results on scarf sets and corresponding
rates upon glasses probe sets point out that the upper part (above the mouth) of
the human face is much more important than the lower part in face recognition.
This is consistent with conclusion from face perception researches in [106, 45] that
the upper portion of the face is more useful for FR than the lower one. The results
of experiment 3 and 4 show that time-lapse conditions, even in a short period
(about 2 weeks), but when appearing simultaneously with other variations (i.e.
illumination, expression and occlusion), can degrade face recognition performance
dramatically.

Although experiments on AR database of other methods in the literature usually used
some probe sets only, their results were commonly compatible with those from our Exp
1, Exp 2, Exp 3 because the same SSPP protocol has been used. Hence, we report in
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table 4.2 the most representative comparison results between ELBP(h+v) WPCA and
other systems.

Table 4.2: Rank-1 RRs (%) comparison with other contemporary systems
on AR database using the same evaluation method

1 2 3 7 10
Method Smile Anger Scream Glasses Scarf Classes1

Exp 1
S-LNMF [90] 96.0 N/A2 49.0 84.0 87.0 100
LGBP[135] N/A2 80.0 98.0 50
IRF [141] 87.5 91.7 120
String face [21] 87.5 87.5 25.9 88.0 96.0 100
Sparse coding [129] N/A2 94.7 91.0 100
DMMA[78] 99.0 93.0 69.0 N/A2 100
Our 100 81.2 91 100 134

Exp 2
DMMA[78] 85.0 79.0 45.0 N/A2 100
Method in [90] 96.0 N/A2 54.0 66.0 89.0 100
LGBP[135]

N/A2

62.0 96.0 50
Sparse coding [129] 80.3 72.7 100
String face [21] 76.0 88.0 100
IRF [141] 82.5 84.0 120
SIS [75] 86.0 96.0 90.0 100
Sparse LF [76] N/A2 96.6 96.6 119
Our 100 80.5 87.3 100 118

Exp 3
S-LNMF [90] 62.0 N/A2 27.0 49.0 55.0 100
Method in [84] N/A2 52.3 54.2 81.3 80
PLD [54] 86.0 90.0 89.0 100
Our 97.5 99.2 73.7 80.5 97.5 118
1 : The classes column is the number of persons whose images are used in
experiments.

2 N/A: Not available result.

It can be seen from table 4.2 that our system is comparable with other state-of-the-art
methods. ELBP(h+v) WPCA is the only system that has perfect recognition rates
on Smile, Anger and Scarf probe sets in Exp 1 and 2. While upon Scream and Sun
glasses probe sets of Exp 1 and Exp 2 and all probe sets of Exp 3, our method also
surpasses other rivals with higher recognition rates. These results are more interesting
when considering that they are obtained with larger number of gallery/probe images
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(see the Classes column of table 4.2) in comparison with most of other methods as the
recognition task becomes harder when there are more subjects involved.

4.1.4.2 Results on FERET database

This Section gives the rank-1 RRs of ELBP based systems in comparison with LBP
and other Gabor wavelets based ones upon FERET database (for more details, see
Section 3.2 in chapter 3). We report the comparative results of the standard protocol in
table 4.3 whilst in table 4.4 and table 4.5, one can see those upon pose variation probe
images.

Frontal FERET image sets

Table 4.3: Rank-1 RRs (%) comparison with other state-of-the-
art results on FERET database using the standard evaluation
protocol [96]
Method Fb Fc Dup 1 Dup 2 Average
LBP 96.2 92.3 70.4 68.4 85.2
ELBP(h) 96.7 94.9 71.3 70.1 86.1
ELBP(h+v) 97.0 95.4 72.0 71.0 86.6
LGBPHS [135] 98.0 97.0 74.0 71.0 87.8
HGPP [133] 97.6 89.9 77.3 76.1 88.7
LGBP [88] 98.1 98.9 83.8 81.6 92.1
LBP WPCA 98.7 99.0 83.9 78.2 92.1
ELBP(h) WPCA 99.3 99.0 87.7 83.8 94.2
FGLBP [113] 98.0 98.0 90.0 85.0 94.2
ELBP(h+v) WPCA 99.4 100 89.1 86.8 95.0

The result of [70] is not included in this table because: the
authors only provided the average RR (93.2%) and they did
not follow the standard protocol [96] (They used a small
subset of FERET database).

The comparison results in table 4.3 confirm that horizontal ELBP is more robust
than LBP in micro facial features extraction (in both template matching and WPCA
methods), especially in Dup 2 probe set. It is obvious that the usage of horizontal and
vertical ELBPs brings very impressive improvement of recognition rates in comparison
with original LBP and single horizontal ELBP (the most significant improvement cases
are in the aging condition: Dup 1 and Dup 2 experiments). Once, with each method
used for feature extraction (LBP,ELBP(h) and ELBP(h+v)), WPCA based framework
yields higher accuracies than the Template matching one. The perfect recognition rate

83



Chapter 4. Intensity-based feature extraction methods

(100%) upon Fc probe set of ELBP(h+v) WPCA illustrates the effectiveness of ELBP
under illumination variations.

Non-frontal FERET image sets

Table 4.4: Rank-1 RRs comparison between LBP and ELBP based methods on b-series
of FERET database

LBP ELBP ELBP(h+v) LBP WPCA ELBP WPCA ELBP(h+v) WPCA
−40◦-bh 56.5 61.0 64.5 75.0 77.0 80.5
−25◦-bg 89.0 91.0 91.5 97.0 98.0 98.5
−15◦-bf 97.5 97.5 98.5 99.5 99.5 99.5
+15◦-be 98.5 98.5 98.5 99.5 99.5 99.5
+25◦-bd 90.0 91.5 92.0 98.0 98.5 99.0
+40◦-bc 54.0 59.5 59.5 74.0 74.5 79.5
Avg 80.9 83.2 84.1 90.5 91.2 92.8

One can observe that the results upon probe sets under pose variations of FERET
database in table 4.4 are agreed with those in table 4.1 and 4.3 when the recognition
rates are improved gradually from LBP to ELBP(h), and from ELBP(h) to ELBP(h+v)
in both Template matching and WPCA based frameworks. These improvements are
more apparent when the head poses are larger (from ±15◦ to ±40◦). This is the
confirmation for our approach to feature extraction with ELBP: firstly, the horizontal
elliptical pattern in horizontal ELBP is more efficient than circular pattern in LBP, and
secondly, the combination of both horizontal and vertical ELBPs yields a substantial
improvement in accuracy performance. Besides, another conclusion is drawn from those
results is that the learnt FR framework (WPCA based) is superior to the Template
matching one.

Table 4.5 contains comparison results between ELBP(h+v) WPCA and other systems
upon b-series images of FERET database. It can be noticed that our system achieves
very promising accuracies as it outperforms many state-of-the-art counterparts. Being
a general FR framework, ELBP(h+v) WPCA’s results are lower than leading-edge
systems, which are dedicated for pose variations challenge, but they are evidences that
an efficient feature extraction method can probably deal with head pose changes, at
least when the pose angles are small (within ±25◦, our results are competing with the
best ones in the FR literature).

4.1.4.3 Results on SCface database

This section gives results ofWPCA based methods using LBP, ELBP(h) and ELBP(h+v)
for feature extraction. Since experiments are evaluated with WPCA based methods, we
name each method according to the feature extraction algorithm it employs. The high
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Table 4.5: Rank-1 RRs comparison with other leading methods on FERET
b-series.

Method −40◦ −25◦ −15◦ +15◦ +25◦ +40◦ Avgbh bg bf be bd bc
SLF-RKR [127] N/A1 55.0 100 96.0 57.0 N/A1 N/A1

LSED [121] *2 78.0 84.0 88.0 89.0 88.0 83.0 85.0
CCA [64] *2 81.0 91.0 92.0 94.0 89.0 80.0 87.8
PAN [39] 81.5 93.0 97.0 98.5 91.5 78.5 90.0
RFC [20] 84.2 90.2 94.0 93.2 92.5 89.5 90.6
ADMCLS [105] 85.0 94.0 96.0 95.0 94.0 82.0 91.0
LMG [94] N/A1 91.5 98.0 98.5 93.5 N/A1 N/A1

MRH [7] *2 87.0 94.0 98.0 99.0 96.0 74.0 91.3
GLOH [100] **3 81.1 94.5 100 100 94.5 81.1 91.9
ELBP(h+v) WPCA 80.5 98.5 99.5 99.5 99.0 79.5 92.8
DWFF [86] 87.5 98.0 100 99.0 98.5 82.4 94.2
MRF [48] 91.0 97.3 98.0 98.5 96.5 91.5 95.5
3D Pose Norm [6] 90.5 98.0 98.5 97.5 97.0 91.9 95.6
CPN [31] 94.5 98.0 98.5 99.0 98.5 97.0 97.6
1 N/A: Not available result.
2 *: The RRs of the method are estimated from plotted figures.
3 **: The RRs on ±25◦ and ±40◦ subsets are average results.

quality mug-shots are used for training with WPCA in both DayTime and NightTime
experiments (for more details, see Section 3.2 in chapter 3).

The results from table 4.6 and table 4.7 show that the ELBP(h+v) WPCA framework
outperforms other state of the art systems, especially when compared to the baseline
PCA [42] (our average result in DayTime experiment is about nine times higher than
in [42]). These results (table 4.6 and table 4.7) also prove that horizontal ELBP
descriptor is more robust than LBP in micro facial features extraction (under both day
time and night time conditions at three distances) and again (as evaluations on AR and
FERET databases), the combination of horizontal and vertical ELBP brings the best
performance. To the best of our knowledge, our results on SCface database are the first
complete and highest results reported in the literature so far.

It is clear that the results on SCface database are much lower than the recognition
rates on AR database (table 4.1) and on FERET database (table 4.3). The very low
resolution (small in size and very poor quality) of probe images in SCface database is
the cause of those results.
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Table 4.6: Rank-1 RRs (%) comparison with other state-of-the-art results on
SCface database using the DayTime protocol [42]
Camera/Distance PCA[42] DSR[140] LBP ELBP(h) ELBP(h+v)

cam1_1 2.3

N/A1

43.1 43.1 43.1
cam1_2 7.7 50.0 51.5 56.2
cam1_3 5.4 41.5 41.5 45.4
cam2_1 3.1 31.5 36.2 36.9
cam2_2 7.7 44.6 48.5 50.8
cam2_3 3.9 34.6 35.4 42.3
cam3_1 1.5 20.8 25.4 34.6
cam3_2 3.9 38.5 37.7 46.9
cam3_3 7.7 49.2 49.2 51.5
cam4_1 0.7 30.0 32.3 32.3
cam4_2 3.9 50.0 50.0 50.0
cam4_3 8.5 44.6 46.2 50.8
cam5_1 1.5 28.5 31.5 36.2
cam5_2 7.7 26.9 30.8 32.3
cam5_3 5.4 23.9 29.2 31.5
Average 4.7 20.2 37.2 39.2 42.7

1 N/A: Not available result

Table 4.7: Rank-1 RRs (%) comparison with other state-of-the-art results on SCface
database using the NightTime protocol [42]

Camera/Distance PCA[42] LBP ELBP(h) ELBP(h+v)
cam6_1 1.5 6.9 9.2 9.2
cam6_2 3.1 13.9 14.6 15.4
cam6_3 3.9 19.2 19.2 25.4
cam7_1 0.7 10.0 10.8 13.1
cam7_2 5.4 11.5 10.8 13.1
cam7_3 4.6 9.2 13.9 13.9
Average 3.2 11.8 13.1 15.0

4.1.4.4 ELBP parameters

The original LBP [3] for face recognition uses LBP 8,1 and LBP 8,2 operators on 7x7
sub regions of input images (128x128 resolution) to get the best performance. Our
best results on AR database use LBP 8,5 (9x9 sub regions), ELBP 8,5,3 and ELBP 8,3,5

(9x9 sub regions). The LBP 8,5 (9x9 sub regions), ELBP 8,5,3 and ELBP 8,3,5 (9x9 sub
regions) are used with FERET database. On SCface database, the LBP 8,3 (6x6 sub
regions), ELBP 8,3,5 and ELBP 8,5,3 (6x6 sub regions) give the highest recognition rates.
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All this information about ELBP’s parameters indicates that the best ratio between
horizontal radius and vertical radius of ELBP is 1.67(5/3). However, we think that the
radii of ellipse samples used by ELBP probably depend on what kind of image it deals
with (in this chapter, ELBP only works on intensity image) and a proof for this remark
will be shown in chapter 6 when it is used upon accumulated oriented edge magnitudes
images. Besides, the number of sub regions is definitely counted on the image size and
it decides the length of the resulting feature vector.

With every feature extraction method presented in this dissertation, we first try to find
and assign some core parameters to fixed values, e.g, the radii of ELBP in this part,
via empirical experiments. Then, those values are used uniformly across 3 databases
(AR, FERET and SCface) to report their corresponding results. Other depending
parameters (on image size or kind of image used) may vary with appropriate explanations.
By doing this way, we wish to show and highlight the true reliability of each method,
which comes consistently from its inherent efficiency, rather than exhibiting the best
RRs obtained after performing an exhausted search for the best fit parameters’ values
of a specific database or experiment.

4.1.4.5 Computational cost

Table 4.8: Computation time of ELBP in comparison with other feature extraction
methods
Method Image size Time

(seconds)
Extraction time
(miliseconds)

Images/second

ELBP(h) 128× 128 4.44 3.71 269
ELBP(h+v) 128× 128 7.28 6.09 164
Monogenic [128]*1 150× 130 19.81 16.56 60
MBC-A [128]*1 150× 130 30.54 25.54 39
MBC-O [128]*1 150× 130 87.0 72.74 14
Gabor wavelets 88× 80 96.23 80.46 12
1 *: We used the Matlab code provided by the author.

When considering to deploy a FR system in real-life situations, its efficiency (high ac-
curacy) is not the only prerequisite. In many scenarios, especially video surveillance,
processing speed plays a vital role. For examining computational cost of feature extrac-
tion methods presented in this thesis, we proceeded some benchmark tests by running
its Matlab implementation upon the whole Fa set (1196 images) of the FERET database
and compared resulting metrics (total required time, extraction time for one image and
its speed, which is measured as a number of images per second) with those of initial
step of Gabor wavelets (just generating Gabor wavelets components at 5 scales and 8
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orientations) based approaches, initial step of Monogenic filter (only producing its com-
ponents at 3 scales) based methods, and some advanced feature extraction algorithms
such as MBC-A, MBC-O [128].

To be fair, we used 88× 80 resolution images for generating Gabor wavelets images like
in [135] and 150 × 130 pixels images with monogenic based algorithms [128] while all
other methods performed on 128× 128 ones. More specifically, the same parameters as
upon frontal FERET images were applied with ELBP(h), ELBP(h+v) while Monogenic
based methods [128] use their default parameters.

All above experiments were performed on a Dell OptiPlex 790 desktop machine (CPU
Core i7-2600 @3.4 GHz, 4Gb RAM) which was installed with Windows 7 64 bit SP1
and Matlab 2011b 32 bits programming environment. Although the machine has a
multi-core CPU (4 cores), all tested implementations are not parallel. We ran each
benchmark 100 times and reported the average results in table 4.8.

It can be seen from table 4.8 that ELBP(h) is very rapid when it can finish up to
269 images per second (just about 3.7 millisecond for one image). In addition, ELBP
(h+v) is fast as it requires only 6.1 millisecond to process one image. The initial step of
Gabor wavelets based method is about 13 times slower than ELBP (h+v) (although the
image size in Gabor wavelets calculation is much smaller) while that of Monogenic filter
based one is about 2.7 times slower than ELBP (h+v). Two Monogenic filter based
feature extraction methods, MBC-A and MBC-O [128], are also slower than ELBP
(h+v). With its fast speed, ELBP can be used as an elementary descriptor to form
advanced multi-resolution/multi-scale facial representations.

4.1.5 Conclusions

This part of the dissertation introduces a novel variant of LBP operator so-called ELBP.
We use a horizontal and a vertical ellipse patterns to form the ELBP face descriptor
for feature extraction. Then ELBP images are divided into sub rectangular regions
to build their ELBP histogram sequences. The ELBP feature vector is generated by
concatenating sub regions’ histogram sequences. In dimension reduction stage, we use
WPCA for better recognition performance.

The experimental evaluations upon AR, and FERET databases show that, ELBP is
more efficient than LBP in encoding micro facial features and ELBP can perform well
under various conditions such as partial occlusion, facial expressions, time-lapse and
pose variations. Additionally, the recognition performance on SCface database proves
the effectiveness of ELBP for the problem of face recognition in video surveillance
context. The original LBP is popular for its robustness to rotation because it uses
circular patterns. While our results in this Section demonstrate advantages of ELBP

88



4.2. LPQ as a facial feature extraction

over LBP for face recognition, we do not suggest that ELBP is robust against rotation.
Plus, ELBP code is an oriented feature that contains facial characteristics in horizontal
orientation, the main direction of the face information, and also the information of
vertical direction. This makes ELBP description has stronger discriminative power and
hence gains higher performance than LBP. Without doubt, we strongly believe that
ELBP can achieve better results in the research fields related to face recognition, where
LBP was applied.

4.2 LPQ as a facial feature extraction

In this part, we present an intensive investigation of LPQ [5] as a facial feature extraction
method by evaluating it in many experiments upon AR, FERET and SCface databases.
These experiments are carried out with both Template matching and WPCA based
frameworks. By doing so, we will indicate that LPQ is more powerful than LBP [3]
and ELBP in extracting facial features from face images. More interestingly, the results
show that the incorporation of LPQ with WPCA can be comparable with other state-
of-the-art systems.

4.2.1 Blur invariance of Fourier Phase spectrum

According to [9], the model for expressing blur effects in digital image processing can be
defined in the Fourier domain by using a convolution between an image and the point
spread function (PSF) of the image acquisition system as:

G(u) = F (u) · P (u), (4.2.1)

where G(u), F (u), P (u) correspond to the discrete Fourier transforms of the blur
image, the original image, the PSF of the blur, and u is a 2D frequency [u, v]T . When
considering only the phase spectrum part of (4.2.1), we have:

∠G(u) = ∠F (u) + ∠P (u). (4.2.2)

With the assumption that the PSF P (u) is a positive and even function, its phase is
consequently a binary values function, given by:

∠P (u) =
{

0 if P (u) ≥ 0
π if P (u) < 0 . (4.2.3)

This means:
P (u) =

∑
x∈N0

p(x)cos(2πuTx), (4.2.4)
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where p(x) is the PSF representation in the spatial domain, x is a vector of coordinates
[x, y]T , N0 is a window region of M ×M pixels.

In other words, since the value of P (u) is positive when ∠P (u) = 0, the phase parts
of G(u) and F (u) are equal, hence a blur invariant representation can be obtained by
using phase information.

4.2.2 LPQ in detail

Input image

5x5 window

x

y

Input image in
frequency domain

5x5 window

u

v

[a,a]

[a,-a]

[0,a]

[a,0]
STFT

Figure 4.8: The neighborhood and Fourier frequencies in LPQ.

Based on the blur invariance of phase response from Fourier transformation, Ojansivu
at al. [92] developed local phase quantization (LPQ) method to extract local phase
information. At each pixel x of the input image, a short-term Fourier transform (STFT,
a special case of 2-D Discrete Fourier Transform) is applied over its rectangular M ×M
neighborhood by the formula:

F (u,x) =
∑

y∈Nx

f(x− y)e−j2πuTy = wT
ufx, (4.2.5)

where wu is the DFT’s window function at 2-D frequency u, fx is the vector that contains
M ×M pixels (image samples) at x position, and Nx is the window region associated
with x position. One can notice from Eq. 4.2.5 that STFT is separable, therefore it can
be implemented by applying 1-D convolutions on rows and columns successively. Then
the local coefficients Fc

x are calculated for every pixel at four low frequencies (as shown
in Fig. 4.8), corresponding to 2-D frequencies u1 = [a, 0]T ,u2 = [0, a]T ,u3 = [a, a]T ,
and u4 = [a,−a]T , in which a is the highest scalar frequency satisfying the condition
P (ui) ≥ 0. There are some ways to compute a from M but in this work, by empirical
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experiments, we fix:
a = 8

M − 1 . (4.2.6)

With
Fc

x = [F(u1,x),F(u2,x),F(u3,x),F(u4,x)], and (4.2.7)

Fx = [Re{Fc
x}, Im{Fc

x}]T , (4.2.8)

where Re{.} and Im{.} return the real and imaginary responses of Fc
x, respectively. The

STFT transform can be rewritten by vector notation as:

Fx = Wfx, (4.2.9)

where W is a 8×M2 transformation matrix computed from four frequencies ui, i = 1..4
by the equation

W = [Re{wu1 ,wu2 ,wu3 ,wu4},
Im{wu1 ,wu2 ,wu3 ,wu4}]T .

(4.2.10)

To improve the performance of LPQ by maximally preserving scalar quantization infor-
mation, Ojansivu et al. [92] applied a whitening transform to decorrelate Fx

Gx = VTFx, (4.2.11)

where V is an orthogonal matrix derived by using singular value decomposition of the
matrix D which is

D = UΣVT . (4.2.12)

D is the covariance matrix of the Fourier coefficients Fx and can be expressed by

D = WCWT , (4.2.13)

where (C) is the covariance matrix of M ×M samples in Nx and can be computed as:

C =


1 σ1,2 · · · σ1,M2

σ2,1 1 · · · σ2,M2

... ... . . . ...
σM2,1 σM2,2 · · · 1

 . (4.2.14)

In (4.2.14), σi,j = ρ‖xi−xj‖ (‖.‖ is the L2 norm, ρ is the correlation coefficient between
adjacent pixel values with assumption that the image function f(x) is a result of a first-
order Markov process, and the variance of each sample is 1) is the covariance between
xi and xj. After decorrelating operation, the jth decorrelated coefficient gj of Gx is
quantized by a binary quantizer

qj =
{

1 if gj ≥ 0
0 otherwise . (4.2.15)
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Then the quantized values are represented as 8-bits decimal numbers (in the 0-255
range) by a simple binary coding

LPQdesc =
8∑
j=1

qj2j−1. (4.2.16)

As LPQ codewords are in the range 0-255, an LPQ image2 containing local phase
quantized information of the input image is obtained as a result. The LPQ image is
divided into R×C non-overlapped rectangular sub-regions to calculate their histograms.
These histogram sequences are then concatenated to build the Local Phase Quantization
(LPQ) feature vector for FR. The whole process of building a facial representation from
a given face image by using LPQ operator is illustrated in Fig. 4.9.

Input image

LPQ 
operator

LPQ image

256-bins

LPQ feature 
vector

Figure 4.9: LPQ feature vector computation

It is worth indicating that there is no special technique to reduce the length of a LPQ
feature vector as the uniform patterns effectively do with ELBP and LBP ones. Hence,
when using the same number of sub-regions, a LPQ vector is a 256-bins representation
and is about four times and two times longer than a ELBP(h) vector and a ELBP(h+v)
one, respectively.

4.2.3 Face recognition with LPQ

Using LPQ for feature extraction, two FR frameworks, the Template matching (with
details are presented in Section 3.5 of chapter 3) and the WPCA based that employs neg-
ative cosine distance function for classification and WPCA for dimension reduction (for
more details, see Section 3.6 in chapter 3) are formed and assessed on AR, FERET
and SCface databases. These systems are named as LPQ for the Template matching case
and as LPQ WPCA when referring to the WPCA based framework in the comparison
tables in the next Section.

2The same as in ELBP method in previous Section, the LPQ label of image pixels at the image
border are not calculated.
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4.2.4 Experimental results

4.2.4.1 Results on AR database

Table 4.9: Rank-1 RRs (%) comparison between ELBP(h+v) and LPQ based methods
on AR database

Test/Method Probe set Avg1 2 3 4 5 6 7 8 9 10 11 12

Exp1
ELBP(h+v) 100 100 81.2 100 100 98.5 91.0 55.2 47.0 99.3 86.6 79.1 86.5
LPQ 100 100 82.7 100 100 100 85.1 69.4 56.7 99.3 97.0 94.8 90.4
ELBP(h+v) WPCA 100 100 81.2 100 100 100 91.0 67.2 61.9 100 97.8 97.0 91.3
LPQ WPCA 100 100 83.5 100 100 100 88.8 79.6 67.2 100 97.0 95.5 92.6

Exp2
ELBP(h+v) 100 100 79.0 100 100 100 87.3 58.5 49.2 98.3 85.6 81.4 86.6
LPQ 100 100 77.1 100 100 100 89.0 72.0 65.3 99.2 98.3 99.2 91.7
ELBP(h+v) WPCA 100 100 80.5 100 100 100 87.3 70.3 61.8 100 97.5 96.6 91.2
LPQ WPCA 100 100 83.9 100 100 100 92.4 79.7 70.3 100 98.3 99.2 93.7

Exp3
ELBP(h+v) 96.6 98.3 62.2 97.5 94.9 83.9 65.6 52.5 47.5 95.8 58.5 52.5 75.5
LPQ 95.8 97.5 67.0 99.2 97.5 93.2 78.0 64.4 57.6 94.1 89.0 83.9 84.8
ELBP(h+v) WPCA 97.5 99.2 73.7 100 100 95.8 80.5 66.1 63.6 97.5 90.7 92.4 88.1
LPQ WPCA 98.3 100 74.6 100 100 96.6 78.0 74.6 65.3 97.5 89.0 86.4 88.4

Exp4
ELBP(h+v) 95.7 95.7 48.3 98.3 98.3 90.6 68.4 63.3 55.6 82.1 62.4 58.1 76.4
LPQ 94.0 99.2 69.0 100 100 98.3 69.2 71.8 63.3 94.0 89.0 89.7 86.5
ELBP(h+v) WPCA 98.3 98.3 63.8 100 100 97.4 79.5 67.5 59.8 95.7 90.6 91.5 86.9
LPQ WPCA 96.6 99.2 77.6 100 100 100 79.5 77.8 71.8 94.0 89.0 89.7 89.6

The full results of LPQ based FR frameworks on AR database are reported and compared
with those of ELBP(h+v) based ones in table 4.9 while the comparisons between LPQ
WPCA and other state-of-the-art methods is shown in table 4.10. Plus, the RRs of LPQ
and ELBP(h+v) based systems are plotted in Figs. 4.10 for more visual comparisons.

It is apparent from table 4.9 and Figs. 4.10 that in the Template matching framework,
LPQ significantly outperforms ELBP(h+v), particularly upon challenging probe sets,
such as 8, 9, 11, 12 (Scarf and Sun glasses with illumination variations) of four exper-
iments and 3 in experiments 3 and 4. On average recognition rate, in experiments 1
and 2, LPQ is about 4% and 5% higher than ELBP(h+v), respectively, while those
numbers in experiments 3 and 4 are even more impressive: about 9% and 10%. The
LPQ WPCA based framework also has higher overall results than ELBP(h+v) WPCA
in all experiments. For more detailed comparison, in experiments 3 and 4, where there
is the presence of time-lapse variations, on Sun glasses probe sets (number 10, 11 and
12), LPQ WPCA has lower, but not much, recognition rates than ELBP(h+v) WPCA.
In summary, we conclude that LPQ is more robust than ELBP(h+v), ELBP(h) and
LBP [3] feature extraction methods when coping with facial expressions, illumination,
time-lapse variations and occlusions. Another conclusion from very high results of LPQ
WPCA (all 4 experiments) on probe sets number 4, 5, and 6 (Neutral expression with
lighting changes) is that LPQ is robust to illumination variations.

93



Chapter 4. Intensity-based feature extraction methods

1 2 3 4 5 6 7 8 9 10 11 12
30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n 

ra
te

s 
(%

)

Probe set

 

 

ELBP(h+v)
LPQ
ELBP(h+v) WPCA
LPQ WPCA

(a) Experiment 1

1 2 3 4 5 6 7 8 9 10 11 12
30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n 

ra
te

s 
(%

)

Probe set

 

 

ELBP(h+v)
LPQ
ELBP(h+v) WPCA
LPQ WPCA

(b) Experiment 2

1 2 3 4 5 6 7 8 9 10 11 12
30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n 

ra
te

s 
(%

)

Probe set

 

 

ELBP(h+v)
LPQ
ELBP(h+v) WPCA
LPQ WPCA

(c) Experiment 3
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Figure 4.10: Accuracy performance of LPQ and ELBP(h+v) based systems on AR
database.

Based on the comparison results in table 4.10, it is clear that LPQ WPCA framework is
efficient against facial expressions, time-lapse variations and occlusions as its recognition
rates are higher than many other contemporary systems. This superiority is more
significant particularly upon Scream, Scarf and Sun glasses image sets in all experiments.
Our system is the only one that gains 100% recognition rates on Smile, Anger and Scarf
probe sets in experiment 1 and 2.

4.2.4.2 Results on FERET database

Frontal FERET image sets
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Table 4.10: Rank-1 RRs (%) comparison with other contemporary systems
on AR database using the same evaluation method

1 2 3 7 10
Method Smile Anger Scream Glasses Scarf Classes1

Exp 1
S-LNMF [90] 96.0 N/A2 49.0 84.0 87.0 100
LGBP[135] N/A2 80.0 98.0 50
IRF [141] 87.5 91.7 120
String face [21] 87.5 87.5 25.9 88.0 96.0 100
Sparse coding [129] N/A2 94.7 91.0 100
DMMA[78] 99.0 93.0 69.0 N/A2 100
SIS [75] 99.0 99.0 98.0 100
PLD [54] 99.0 100 97.0 100
Our 100 83.5 88.8 100 134

Exp 2
DMMA[78] 85.0 79.0 45.0 N/A2 100
Method in [90] 96.0 N/A2 54.0 66.0 89.0 100
LGBP[135]

N/A2

62.0 96.0 50
Sparse coding [129] 80.3 72.7 100
String face [21] 76.0 88.0 100
IRF [141] 82.5 84.0 120
SIS [75] 86.0 96.0 90.0 100
Our 100 83.9 92.4 100 118

Exp 3
S-LNMF [90] 62.0 N/A2 27.0 49.0 55.0 100
Method in [84] N/A2 52.3 54.2 81.3 80
PLD [54] 86.0 90.0 89.0 100
Our 98.3 100 74.6 78.0 97.5 118
1 : The classes column is the number of persons whose images are used in
experiments.

2 N/A: Not available result.

The results of LPQ based FR systems on FERET database (using the standard protocol)
in comparison with ELBP based and other state-of-the-art rivals are presented in
table 4.11. These results confirm that LPQ is more powerful than LBP, ELBP(h)
and ELBP(h+v) against facial expressions, illumination and time-lapse variations in
both Template matching and WPCA based frameworks. The dominance of LPQ over
LBP (LGBPHS [135], HMBP [130], DLBP [82], Tan et al. [113] and POEM PDO [118])
and ELBP based methods is more convincing on Dup 1 and Dup 2 probe sets, whose
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Table 4.11: Rank-1 RRs (%) comparison of LPQ based systems with other state-of-the-
art results on the FERET database [96]

Method Fb Fc Dup 1 Dup 2 Average
ELBP(h+v) 97.0 95.4 72.0 71.0 86.6
LGBPHS [135] 98.0 97.0 74.0 71.0 87.8
HMBP [130] 98.1 98.5 75.8 75.2 89.0
GEWC [29] 96.3 99.5 78.8 77.8 89.3
LPQ 97.7 97.9 79.5 77.8 90.1
HGPP [133] 97.5 99.5 79.5 77.8 90.2
DMMA [78] 98.1 98.5 81.6 83.2 91.6
LGBPWP [88] 98.1 98.9 83.8 81.6 92.1
CHG [22] 97.5 98.5 85.6 84.6 92.6
DLBP [82] 99.0 99.0 86.0 85.5 93.6
Tan et al. [113] 98.0 98.0 90.0 85.0 94.2
ELBP(h+v) WPCA [89] 99.4 100 89.1 86.8 95.0
LMG [94] 99.8 100 89.2 86.8 95.3
ESRC [30] 97.3 99.0 93.8 92.3 95.9
MS-LPQ [17] 99.2 100 92.0 88.0 95.9
EPFDA [104] 99.6 99.0 92.0 88.9 96.1
POEM PDO [118] 99.7 100 91.7 90.6 96.4
LPQ WPCA 99.5 100 92.9 91.0 96.7
FLPGMP [107] 99.0 99.0 94.0 93.0 96.9
G-LQP [52] 99.9 100 93.2 91.0 97.0
MBC-F [128] 99.7 99.5 93.6 91.5 97.0
GSF [123] 99.6 99.5 94.0 91.5 97.1

images are affected by time-lapse variation, one of the most challenging factors of FR.
Also, the high recognition rate of LPQ based frameworks lead us to new findings that
LPQ is an efficient feature extraction method under facial expression, illumination
and time-lapse variations and the combination of LPQ with WPCA can constitute an
excellent FR system.

Apparently, the results of LPQ WPCA are lower than leading systems (such as
FLPGMP [107], G-LQP [52], MBC-F [128], GSF [123]) as they all employ advanced
multi-resolution/multi-scale feature extraction methods based on Gabor wavelets or
Monogenic filter.

Non-frontal FERET image sets

In this Section, recognition rates of LPQ based frameworks are exhibited and compared
with ELBP (h+v) WPCA in table 4.12 while the comparison between them and other
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Table 4.12: Rank-1 RRs comparison between ELBP(h+v) WPCA and LPQ based
methods on b-series of FERET database

ELBP(h+v) WPCA LPQ LPQ WPCA
−40◦-bh 80.5 83.5 89.0
−25◦-bg 98.5 97.0 99.0
−15◦-bf 99.5 99.0 99.5
+15◦-be 99.5 99.5 100
+25◦-bd 99.0 98.0 99.0
+40◦-bc 79.5 81.5 86.5
Avg 92.8 93.1 95.5

Table 4.13: Rank-1 RRs comparison of LPQ WPCA with other leading
systems on FERET b-series.

Method −40◦ −25◦ −15◦ +15◦ +25◦ +40◦ Avgbh bg bf be bd bc
SLF-RKR [127] N/A1 55.0 100 96.0 57.0 N/A1 N/A1

LSED [121] *2 78.0 84.0 88.0 89.0 88.0 83.0 85.0
CCA [64] *2 81.0 91.0 92.0 94.0 89.0 80.0 87.8
PAN [39] 81.5 93.0 97.0 98.5 91.5 78.5 90.0
RFC [20] 84.2 90.2 94.0 93.2 92.5 89.5 90.6
ADMCLS [105] 85.0 94.0 96.0 95.0 94.0 82.0 91.0
LMG [94] N/A1 91.5 98.0 98.5 93.5 N/A1 N/A1

MRH [7] *2 87.0 94.0 98.0 99.0 96.0 74.0 91.3
GLOH [100] **3 81.1 94.5 100 100 94.5 81.1 91.9
DWFF [86] 87.5 98.0 100 99.0 98.5 82.4 94.2
LPQ WPCA 89.0 99.0 99.5 100 99.0 86.5 95.5
MRF [48] 91.0 97.3 98.0 98.5 96.5 91.5 95.5
3D Pose Norm [6] 90.5 98.0 98.5 97.5 97.0 91.9 95.6
CPN [31] 94.5 98.0 98.5 99.0 98.5 97.0 97.6
1 N/A: Not available result.
2 *: The RRs of the method are estimated from plotted figures.
3 **: The RRs on ±25◦ and ±40◦ subsets are average results.

systems can be seen in table 4.13.

As shown in table 4.12, LPQ convincingly outperforms ELBP(h+v) method when
its Template matching framework can even achieve higher results than the ELBP(h+v)
WPCA framework. Moreover, the LPQ WPCA framework attains very encouraging
recognition rates. Based on these numbers, we conclude that LPQ is better than
ELBP(h+v) in coping with pose variations and the LPQ WPCA framework is more
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efficient than the LPQ based Template matching one.

Although LPQ WPCA is not devoted to pose variation, one can observe from table 4.13
that its results are very interesting when they are higher than many other state-of-the-
art systems. While having lower recognition rates than some leading systems (such as
3D Pose Norm [6] or CPN [31]), which are dedicated to handle head pose challenge by
employing special tactics, it is not overrated to conclude that LPQ is robust to this
difficulty. Upon probe sets of relatively small head pose (in the range of ±25◦), LPQ
WPCA even outperforms the best one (CPN [31]). This characteristic of LPQ should
be highlighted as pose variation is widely regarded as one of the greatest challenges of
the Face recognition problem.

4.2.4.3 Results on SCface database

Table 4.14: Rank-1 RRs (%) comparison with other state-of-the-art
results on SCface database using the DayTime protocol [42]
Camera/Distance PCA[42] DSR[140] ELBP(h+v) [89] LPQ

cam1_1 2.3

N/A1

43.1 54.6
cam1_2 7.7 56.2 58.5
cam1_3 5.4 45.4 41.5
cam2_1 3.1 36.9 43.9
cam2_2 7.7 50.8 54.6
cam2_3 3.9 42.3 40.8
cam3_1 1.5 34.6 39.2
cam3_2 3.9 46.9 54.6
cam3_3 7.7 51.5 47.7
cam4_1 0.7 32.3 37.7
cam4_2 3.9 50.0 56.9
cam4_3 8.5 50.8 48.5
cam5_1 1.5 36.2 46.2
cam5_2 7.7 32.3 40.8
cam5_3 5.4 31.5 33.1
Average 4.7 20.2 42.7 46.6

1 N/A: Not available result

This Section presents the results of LPQ WPCA on the SCface [42] database follow-
ing its DayTime and NightTime protocols. The gallery images are also exploited for
training stage as in ELBP based systems (for more details, see Section 3.2 of chapter 3
and Section 4.1.4.3 in this chapter). As our results are all yielded by WPCA based
frameworks, we label each system by the name of the facial description it used.
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Table 4.15: Rank-1 RRs (%) comparison with other state-of-the-art results on SCface
database using the NightTime protocol [42]

Camera/Distance PCA[42] ELBP(h+v) LPQ
cam6_1 1.5 9.2 11.5
cam6_2 3.1 15.4 16.2
cam6_3 3.9 25.4 25.4
cam7_1 0.7 13.1 13.9
cam7_2 5.4 13.1 15.4
cam7_3 4.6 13.9 14.6
Average 3.2 15.0 16.2

It is clear from table 4.14 and table 4.15 that LPQ WPCA method outperforms other
state of the art systems in both experiments. Our average result is about 10 times higher
than PCA baseline [42] in DayTime tests. In NightTime tests, the average recognition
rate of PCA baseline [42] is 5 times lower than ours. LPQ WPCA also significantly
outperforms ELBP(h+v) WPCA [89] on most of the probe sets and obtains better
overall recognition rates by 3.9% (46.6% vs. 42.7%) in DayTime experiment and 1.2%
(16.2% vs. 15.0%) in NighTime one. According to the best of our knowledge, LPQ
WPCA’s results upon SCface database are the best reported results to date in face
recognition literature. These results are consistent with those upon AR and FERET
face databases in previous Sections.

We argue that the LPQ WPCA’s good results upon SCface databases as well as its
superiority over ELBP based methods are mainly stemmed from meaningful phase based
patterns in LPQ feature vector and the blur tolerant characteristic of LPQ description.

4.2.4.4 LPQ parameters

There are several parameters in building a LPQ vector: the window size of the STFT
transform-M , the whitening argument-ρ and the R × C sub-regions for capturing the
final spatial histogram sequence. Empirically, ρ is fixed at 0.91 for all experiments. The
divided sub-regions are assigned as 8 × 9 and 10 × 10 for AR and FERET databases,
respectively. On SCface database, since the images are of small sizes, they are divided
into 4× 4 non-overlapped rectangular sub-regions for doing the feature extraction with
LPQ. Also, the M parameter depends on the image’s size when it is set at 7 for SCface
database and at 9 for AR and FERET ones.
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Table 4.16: Computation time of LPQ in comparison with other feature extraction
methods
Method Image size Time

(seconds)
Extraction time
(miliseconds)

Images/second

ELBP(h) 128× 128 4.44 3.71 269
LPQ 128× 128 5.45 4.56 219
ELBP(h+v) 128× 128 7.28 6.09 164
Monogenic [128]*1 150× 130 19.81 16.56 60
MBC-A [128]*1 150× 130 30.54 25.54 39
MBC-O [128]*1 150× 130 87.0 72.74 14
Gabor wavelets 88× 80 96.23 80.46 12
1 *: We used the Matlab code provided by the author.

4.2.4.5 Computational cost

To investigate the computational performance of LPQ, the same benchmark tests as
described in Section 4.1.4.5 of this chapter are carried out with it and the obtained
metrics are compared with those of ELBP based and some other feature extraction
methods.

From the benchmark results (in table 4.16), it is apparent that LPQ is very fast, despite
the fact that its speed is a little slower than ELBP(h). It is because of the eight
1D convolution operations that are required to build the LPQ feature vector while
in ELBP(h) (and also LBP [3]), only thresholding between each image pixel and its
neighbors are done. LPQ is faster than ELBP(v+h) [89] since ELBP(v+h) needs a pair
of ELBP operators to form a facial representation. Gabor wavelets images generation are
fairly slow, although it is only an initial step and it works on much smaller images (80x88
resolution). Based on the comparison between LPQ and Gabor wavelets initial step (in
table 4.16), we conclude that LPQ is about 96.23/5.45 = 17.7 times faster than every
Gabor wavelets based feature extraction method (such as LGBP [135], HGPP [133],
FLPGMP [107], GFS [123], G-LQP [52], MFR [48], DWFF [86], 3D Pose Norm [6],
CPN [31], etc.). With its 219 images per second processing speed, LPQ could certainly
be applied in more efficient multi-resolution/multi-scale feature extraction methods.

4.2.5 Conclusions

We summarize here the intriguing properties of the LPQ feature extraction method. For
each pixel, LPQ captures local phase based patterns based on STFT transformation
over its square neighborhood whose center is the pixel itself. The LPQ representation
has the following properties:
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1. LPQ patterns are phase based features and they are blur invariant. As the LPQ
codeword of an image pixel is calculated based on all the pixels in a square window
centered at the pixel, the dependence of that pixel and its neighbors is stronger
than in LBP and ELBP methods. Thus, LPQ is more robust than LBP and
ELBP methods when applying them on intensity image. This superiority of LPQ
is proved to be stable and consistent under a wide range of FR issues such as
facial expression, illumination, pose, time-lapse variations, partial occlusions and
with low resolution images.

2. LPQ is an efficient facial feature extraction method when dealing with various FR
challenges which are mentioned in the above remark. The extensive experimental
results upon AR, FERET and SCface databases are apparent evidences for this
conclusion.

3. LPQ is fast to compute and consequently can be further harnessed to develop
more advanced feature extraction methods by using a multi-resolution/multi-scale
strategy.

4. When joining LPQ with WPCA, the LPQ WPCA framework achieves excellent
results and outperforms many state-of-the-art LBP and Gabor wavelets based
systems in the FR literature.

Besides those precious characteristics, LPQ method has one drawback: its feature vector
is a dense description of 256-bins histogram sequence, and thus it requires more memory
space to be stored than ELBP based methods but does not affect its processing speed.
How to resolve this issue to reduce LPQ vector’s length before feeding it into the training
and projecting steps of WPCA is still an open question.

Obtained results presented through out this Section once again confirm the advantages of
the WPCA based framework over the Template matching one when all the comparisons
between the two systems in terms of accuracy performance are led to that unassailable
conclusion.

4.3 Conclusions

On the way to devise an elite facial representation, this chapter presents two intensity
based feature extraction methods: the Elliptical Local Binary Patterns (ELBP) and
the Local Phase Quantization (LPQ). Both of them are local feature based approaches
that extract local micro patterns from the face images to build their feature vectors. In
ELBP, a novel variant of LBP, an ELBP label is computed from its scattered neighbor
pixels lied on an horizontal ellipse instead of a circle as in LBP. Its inspiration comes
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naturally from the shape and structures of the human faces: the eyes, mouth are ellipses
and there is more horizontal information, which drives the face perception, than vertical
one. By this, ELBP is more domain-specific than LBP, but, on the contrary it may
neither be rotation invariant since the sampling patterns are not circular, nor be good
for texture classification task as original LBP.

Based on extensive experiments upon three large public face databases, AR, FERET
and SCface, we have pointed out that horizontal ELBP (using an horizontal ellipse
sample) is more efficient than LBP. Further, we have shown that the fusion of horizontal
ELBP with its vertical one, under the form of a symmetric pair of descriptions, achieves
higher accuracy than using it solely. This results from a richer set of valuable features
contained in the fused vector in comparison with that of a horizontal ELBP one.

From the comparisons of recognition rates obtained on the same databases as ELBP,
LPQ is proved to be an efficient facial feature extraction method under a wide spectrum
of FR challenges as its accuracy performance surpasses many contemporary LBP and
its variants, including the ELBP, and Gabor wavelets based systems. Hence, we suppose
that LPQ is worthy of receiving more attentions from FR researchers.

The computational cost of ELBP and LPQ is also practically assessed via benchmark
experiments upon the Fa set of the FERET database. The comparative results show
that both of them are computation efficient even though their tested implementations
are neither optimized nor parallelized.

The excellent performance, with respect to both high accuracy and fast processing
speed requirements, of ELBP and LPQ makes them good candidates for being primitive
descriptors that can be further applied in building more robust multi-resolution/multi-
scale feature extraction methods.

Importantly, the experiment results in this chapter evidently validate that, when using
the same facial representation, the supervised FR framework, namely WPCA based,
significantly outperforms its Template matching counterpart and if one feature extraction
method is superior over another one, this superiority will be reflected in both frameworks’
outcomes. Thus, from now on, in this thesis, experiments for evaluating the efficiency
of a feature extraction method are conducted only by the WPCA based framework.

The comparison results in this chapter also lead us to another critical conclusion that the
preeminence of one feature extraction method over other ones, as well as that of a FR
system over other competitors, is illustrated more apparently and in a more credible way
under the toughest challenges such as Scream expression (among other ones), time-lapse
(Exp 3 and 4 on AR database, Dup 1 and Dup 2 tests on FERET database) and pose
variations (on b-series images of FERET database), and especially low resolution probe
images (from SCface database).
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Patch based Local Phase Quantization
of Monogenic components for Face
recognition

LBP

ELBP PLPQ

(v+h)ELBP EPOEM LPOG PLPQMC

Template matching Whitened PCA based

Feature extraction

LPQ

BELBP

Gradient imageIntensity image Monogenic components

Elementary descriptors

Advanced descriptors

Face recognition frameworks

Figure 5.1: Contributions presented in this chapter: Patch based LPQ of Monogenic
components WPCA system.
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5.1 Introduction

The in-depth survey in chapter 2 provides a lot of clues that an elementary feature
extraction method does not fulfil the need of a high accuracy FR system. This is
reinforced in the previous chapter by numerous comparisons between results of ELBP
and LPQ based frameworks1, in which the facial features are extracted directly from
intensity images, and those of other state-of-the-art systems. Besides, the best results
upon the FERET database (both on frontal images and pose varied ones), the most
widely adopted benchmark for evaluating the recognition performance of a FR system,
are all delivered by multi-resolution/multi-scale feature extraction methods (for more
details, refer to Section 4.2.4.2 in chapter 4). While almost all of these methods are
Gabor wavelets based, Monogenic filter is also used by a fusion strategy in MBC-F
system [128] and in MBP [130]. Targeting a fast feature extraction algorithm, we do not
turn our attention to Gabor wavelets based direction due to its heavy computational
burden. Compared with Gabor wavelets transformation, Monogenic filter requires
substantially less computational cost (see table 4.16 in chapter 4 for more details) but
it is proved to be capable to offer excellent accuracy. Additionally, owning desirable
characteristics and fast speed as shown in chapter 4, LPQ is a standout elementary
descriptor for building up a multi-resolution/multi-scale feature extraction method.

Inspired by the advantages of Monogenic filter and LPQ descriptor, in this part of the
present dissertation, we propose a novel feature extraction method for Face recognition
called patch based Local Phase Quantization of Monogenic components (PLPQMC) by
applying patch based LPQ (PLPQ), a new variant of LPQ operator, upon Monogenic
directional bandpass images (see Fig. 5.1). From the input image, the directional Mono-
genic bandpass components are generated. Then, each pixel of a bandpass image is
substituted by the mean value of its rectangular neighborhood. Next, LPQ histogram
sequences are computed upon those images. Finally, these histogram sequences are
concatenated for constituting a global representation of the face image. Using the
proposed method for feature extraction, a new WPCA based face recognition system is
constructed with Whitened Principal Component Analysis (WPCA) for dimensionality
reduction, k-nearest neighbor classifier and weighted angle distance for classification.
Performance evaluations on the three public face databases, AR, FERET and SCface,
show that the PLPQMC feature extraction method is efficient against a broad range
of FR challenges, for instance, expressions, illumination, time-lapse, and pose variations,
and partial occlusions, as well as low resolution probe images. In the mean time, by
comparing the results from these experiments with those of other state-of-the-art coun-
terparts, we evidently verify that the PLPQMC WPCA based framework is competing
with the best systems in the FR literature so far. Especially, from these comparisons,

1In chapter 4, we have shown that the ELBP and LPQ methods are efficient facial representations
with remarkable RRs but there are still large gaps between their results and that of the leading systems.
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one of the most outstanding characteristic of our method, which is its robustness to
illumination changes2 when it attains excellent RRs without employing any preprocess-
ing algorithm to normalize the illumination conditions of the face images, is empirically
shown. In addition to that, comparative results from timing experiments validate that
the proposed method has inexpensive computational cost and is feasible for practical
applications in real life.

As the related works of Monogenic filter and LPQ based methods are covered in chapter 2,
the remainder of this chapter is organized as follows. We first present in Section 5.2 the
steps of Monogenic filter as a multi-scale image analytic technique. Then all the details
of the proposed method are given in Section 5.3. Experimental results and comparative
studies between them and those of state-of-the-art systems are provided in Section 5.4.
Conclusions are finally expressed in Section 5.5.

5.2 Monogenic filter

5.2.1 Log-Gabor filter

Proposed by Field [34], Log-Gabor filter is a bandpass filter and is an alternative of the
Gabor function [38] based on the observation that the coding procedure of natural images
is more efficient by filters whose Gaussian transformation functions work on logarithmic
frequency scale instead of the scale value itself. Keeping the focus on the topic of
Monogenic transformation, hereafter, we briefly describe the steps of constructing multi-
scale Log-Gabor filters for producing Monogenic components. For more information
about Log-Gabor filter, works in [34, 60], and references therein are recommended.

Let the size (rows and columns) of the input image be rows × cols pixels, then two
matrices of the same size, u1 and u2, which contain horizontal and vertical frequency in
the range [−0.5, 0.5], are first computed as:

{
u1(i, j) = −0.5 + (j − 1) ∗ colStep
u2(j, i) = u1(i, j) , (5.2.1)

in which (i, j) is the location of one image pixel, colStep is a stepping value calculated
from cols by the following formula:

colStep =
{ 1

cols
if cols is even

1
cols−1 otherwise . (5.2.2)

2Within the FR domain, illumination variations is widely accepted as one of the biggest challenges
that a FR system must face with [137, 65].
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Then u1 and u2 are quadrant shifted to move zero frequency to their corners:{
u1 = ifftshift(u1)
u2 = ifftshift(u2) , (5.2.3)

where ifftshift is a function that swaps the first and the third quadrants, and the second
and fourth quadrants of the input matrix.

Next, a matrix, namely radius, whose values are frequencies as radii from the center,
is generated as:

radius =
√
u2

1 + u2
2 (5.2.4)

To avoid trouble caused by zero radius value when taking its logarithm or dividing by
it, the top left corner of radius is assigned to 0:

radius(1, 1) = 0. (5.2.5)

In the ensuing step, at each scale s (in the range [1,maxScale]), one Log-Gabor filter,
named as logGabors, is computed as:

wavelength = minWaveLength ∗mult(s−1)

fo = wavelength−1

exp = −log( radius
fo

)2

2∗log(sigmaOnf)2

logGabors = eexp

logGabors(1, 1) = 0

, (5.2.6)

where minWaveLength is the wavelength of the smallest scale filter, mult is scaling
factor between successive filters, while sigmaOnf is the parameter used to control the
bandwidth of the filter, and the last Eq. is for setting the value at the 0 frequency point
back to zero.

With these Log-Gabor filters, each input image is decomposed into multiple components
by Monogenic transformation whose details are presented in the subsequent Section.

5.2.2 Image representation by Monogenic filter

Monogenic [32] is a signal analysis tool towards decomposing an image into multiple
components of different types. These components are local amplitude A (also known
as local magnitude), local orientation θ ∈ [0, π), local phase φ ∈ [0, 2π), and bandpass
components h, hx, hy (for more details, see Fig. 5.2). By using the Riesz transform, for
each scale value, Monogenic components of an input image I is computed as:

A =
√
h2 + h2

x + h2
y

θ = atan(hy/hx)
φ = −sign(hx)atan2(

√
h2
x + h2

y, h)
, (5.2.7)
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(a) Input

(b) Amplitude - A (c) Orientation - θ

(d) Phase - φ (e) Bandpass - h

(f) Horizontal Bandpass - hx (g) Vertical Bandpass - hy

Figure 5.2: A face image and its Monogenic components at 3 scales.

where, h = I ∗ F−1(G(ω))
hd = F−1((i · ωd/

√
ω2
x + ω2

y)F (h)), d ∈ {x, y}
, (5.2.8)

in which “∗" denotes the convolution operator, i =
√
−1, F is the 2D Fourier transform,

G(ω) is the bandpass Log-Gabor filter response, ωx and ωy are the oriented frequencies
(horizontal and vertical).

With one Log-Gabor filter logGabors produced from previous Section, we have:ωx = u1

ωy = u2
, (5.2.9)

Then, by applying filtering operations in the frequency domain and retaining the spatial
results, h, hx, and hy are generated as:h = real(F−1(F (I)� logGabors))

hd = real(F−1(F (I)� ((i · ωd/radius)� logGabors))), d ∈ {x, y}
, (5.2.10)
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where radius is calculated from u1 and u2 by Eq. 5.2.4 and � is the notation of the
element-wise multiplication between two matrices.

As Log-Gabors are bandpass filters, a multi-scale (from 3 to 5) Monogenic filter is
mandatory to have a complete representation of an image. Our approach in this thesis
uses three scales as they give the best results.

5.3 Patched based LPQ of Monogenic bandpass compo-
nents for FR

5.3.1 Patched based LPQ of Monogenic bandpass components feature
extraction method

Input image

Directional Monogenic 
bandpass components

Y-axis direction

X-axis direction

Patch based LPQ

h
x

h
y

PLPQMC
representation

Figure 5.3: Steps in PLPQ of Monogenic components feature extraction method.

The procedure to compute the PLPQMC feature vector of a given face image is il-
lustrated in Fig. 5.3. In the first step, Monogenic directional bandpass components
(DBC) at three scales are generated from the input image. Then, a new variant of LPQ
called patch based LPQ (PLPQ) is applied on each of these DBCs to produce their
own descriptions. In PLPQ, we replace each image pixel with the average value of the
pixels in a rectangular neighborhood whose center is the pixel itself before applying
the LPQ operator. With this step, the relation between one pixel and its neighbors is
taken into account, thus making the feature extraction more robust. Here, we use two
kinds of PLPQ namely horizontal and vertical, corresponding to two patch pattern types
(horizontal and vertical rectangles), for x-axis and y-axis DBCs respectively. Specifically,
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3× 5 pattern is used for x-axis DBCs and 5× 3 is used for y-axis DBCs. After applying
PLPQ operators, each PLPQ image is split into non-overlapped rectangular sub-regions
to calculate theirs histogram sequences. Then each PLPQ description of one PLPQ
image is constituted by concatenating its corresponding histogram sequences. At the
last step, the PLPQMC representation is built up by aggregating all the individual
PLPQ descriptions as a whole.

(a) Input images

(b) Bandpass component

(c) Horizontal bandpass component

(d) Vertical bandpass component

Figure 5.4: Comparison between bandpass components of illumination images from
FERET database.

Different from other Monogenic based methods ([130, 128]), which use LBP and its
variants on amplitude, phase and orientation components, our method employs PLPQ
upon DBCs for three reasons:

• Firstly, since LPQ was proved to be strong against many FR challenges in chapter 4,
we suppose that PLPQ is more efficient for FR since each PLPQ pixel, being the
mean value of an image patch, carries more discriminating information than the
corresponding intensity value of the DBCs. Furthermore, by using correspondingly
horizontal and vertical patches for horizontal and vertical DBCs, the distinctive
property of the PLPQMC description is accelerated.
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• Secondly, the bandpass components contain finer details from input image than
the rest ones (for more details, refer to Fig. 5.2) so the feature extraction process
performs on these components is better.

• The last reason is that the feature vector extracted from directional bandpass
components (hx and hy) is more discriminative than the ones computed just from
h or from all the bandpass components (h, hx and hy). Moreover, as intuitively
illustrated in Fig. 5.4, while the bandpass components h (Fig. 5.4b) of images
affected by lighting changes are in varied illumination conditions, their directional
versions (Fig. 5.4 (c-d)), without losing much image information, are less influenced
when having the similar illumination conditions. Thus, the facial representation
extracted from DBCs is robust to illumination variations. This will be empirically
justified by comparing the results of PLPQMC for FR when no illumination nor-
malization technique is employed with recognition accuracies from other systems
in Section 5.4.

Besides, since our method uses 3 scales for generating Monogenic directional bandpass
components, it therefore requires much less computational cost in comparison with other
Gabor wavelets based ones which usually work with 5 scales and 8 orientations. More
precisely, the PLPQMC feature extraction procedure operates upon 6 DBCs of an input
image to form its feature vector.

5.3.2 PLPQMC WPCA FR framework

Using PLPQMC method for feature extraction stage, a new FR system is built based
on WPCA based framework described in Section 3.6 of chapter 3. For doing the
classification task, the weighted angle-based function (Eq. 3.6.2) is used to calculate the
similarities between probe images and gallery ones as it gives the highest recognition
rates.

5.4 Experimental results

In this Section, comparative studies of the RRs of the proposed method and that of
many existing systems are given to prove for its efficiency and the key concepts based
on which it is built. Hence, beside reporting the results of PLPQMC WPCA framework,
we provide those from LPQMC WPCA one, which uses LPQ instead of PLPQ on DBCs,
and PLPQMC WPCA NP, which is PLPQMC WPCA but no preprocessing method
is adopted for illumination normalization. To be fair, all these systems are evaluated
on AR and FERET databases with the same parameters.
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5.4.1 Results on AR database

Table 5.1: Rank-1 RRs (%) comparison between LPQ WPCA and PLPQMC based
WPCA methods on AR database

Test/Method Probe set Avg1 2 3 4 5 6 7 8 9 10 11 12

Exp1
LPQ 100 100 83.5 100 100 100 88.8 79.6 67.2 100 97.0 95.5 92.6
LPQMC 100 100 92.5 100 100 100 97.0 96.3 87.3 98.5 98.5 97.8 97.3
PLPQMC NP 100 100 93.2 100 100 100 97.8 96.3 86.6 99.3 99.3 97.0 97.5
PLPQMC 100 100 94.7 100 100 100 97.8 96.3 90.3 100 100 97.8 98.1

Exp2
LPQ 100 100 83.9 100 100 100 92.4 79.7 70.3 100 98.3 99.2 93.7
LPQMC 100 100 94.1 100 100 100 96.6 93.2 91.5 100 98.3 95.7 97.5
PLPQMC NP 100 100 94.9 100 100 100 97.5 94.9 94.9 99.2 98.3 95.8 98.0
PLPQMC 100 100 94.9 100 100 100 98.3 94.9 94.9 100 98.3 99.2 98.4

Exp3
LPQ 98.3 100 74.6 100 100 96.6 78.0 74.6 65.3 97.5 89.0 86.4 88.4
LPQMC 99.2 99.2 77.1 100 100 98.3 88.1 78.8 77.1 97.5 89.8 86.4 91.0
PLPQMC NP 99.2 100 82.2 100 100 96.6 90.7 81.4 73.7 96.6 91.5 87.3 91.6
PLPQMC 100 100 82.2 100 100 100 90.7 81.4 78.0 97.5 95.8 91.5 93.1

Exp4
LPQ 96.6 99.2 77.6 100 100 100 79.5 77.8 71.8 94.0 89.0 89.7 89.6
LPQMC 99.2 99.2 78.5 100 100 98.3 90.6 81.2 79.7 94.9 89.0 89.7 91.7
PLPQMC NP 99.2 99.2 81.9 100 100 99.2 88.9 81.2 79.7 97.4 91.5 87.2 92.1
PLPQMC 100 100 81.9 100 100 100 90.6 81.2 81.2 97.4 92.3 89.7 92.9

The full results of four WPCA based frameworks, which use LPQ, LPQMC and
PLPQMC methods for feature extraction, upon AR face database are compared in
table 5.1. The LPQ WPCA’s RRs are presented as they are the highest results before
the appearance of PLPQMC WPCA in this part of the thesis. Also, the comparisons
between these results are visualized in Figs 5.5.

Based on results in table 5.1 and Figs. 5.5, we have several remarks:

1. The multi-scale feature extraction methods based on Monogenic filter and LPQ
(LPQMC and PLPQMC) significantly outperform intensity based methods whose
best delegation is the LPQ method. This is demonstrated when the overall RRs
of the formers are much higher than those of the latters in all experiments. More
concretely, the advances of multi-scale approaches over LPQ method are more
apparent in more challenging conditions, such as in probe set number 3 (Scream
expression), and the ones from number 7 to 12 (sun glasses and scarf occlusions,
occlusions with illumination effects), when the RRs of LPQ are far below that of
LPQMC and PLPQMC.

2. PLPQ is more efficient than LPQ when they are exploited to extract facial features
from DBCs of Monogenic filter. The proofs for this conclusion are more convincing
in the results upon difficult probe sets mentioned in the previous comments, where
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Figure 5.5: Accuracy performance of LPQ, LPQMC and PLPQMC WPCA systems on
AR database.

PLPQMC achieves its most noticeable performance improvements in comparison
with LPQ and LPQMC. These verify the conjecture we made in the paragraph
about the PLPQMC methodology that a patch based pixel of a DBC conveys
more image features than its original intensity value.

3. With negligible differences of overall recognition accuracies in four experiments
between using or not the retinal filter for illumination normalization, as can be
observed in the lines PLPQMC NP and PLPQMC, and the comparability in results
of LPQMC, which uses retinal filter, and PLPQMC NP (in fact, PLPQMC NP’s
average RRs are even slightly higher than LPQMC), as well as the superiority of
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PLPQMC NP over LPQ, where retinal filter is also employed, PLPQMC is shown
to be robust towards illumination variations. Also, the perfect accuracy upon
image sets 4, 5, and 6 in Exp 1 and Exp 2 without the usage of any illumination
normalization technique is a strong evidence for this conclusion.

Table 5.2: Rank-1 RRs (%) of PLPQMC WPCA in comparison with other
contemporary systems on AR database using the same evaluation method

1 2 3 7 10
Method Smile Anger Scream Glasses Scarf Classes1

Exp 1
String face [21] 87.5 87.5 25.9 88.0 96.0 100
Sparse coding [129] N/A2 94.7 91.0 100
DMMA[78] 99.0 93.0 69.0 N/A2 100
SIS [75] 99.0 99.0 98.0 100
PLD [54] 99.0 100 97.0 100
Sparse LF [76] N/A2 100 99.2 126
3D [10] 100 100 97.0 N/A2 100
PLPQMC NP 100 93.2 97.8 99.3 134
PLPQMC 100 94.7 97.8 100 134

Exp 2
LGBP[135]

N/A2

62.0 96.0 50
Sparse coding [129] 80.3 72.7 100
String face [21] 76.0 88.0 100
IRF [141] 82.5 84.0 120
SIS [75] 86.0 96.0 90.0 100
Sparse LF [76] N/A2 96.6 96.6 119
PLPQMC NP 100 94.9 97.5 99.2 118
PLPQMC 100 94.9 98.3 100 118

Exp 3
S-LNMF [90] 62.0 N/A2 27.0 49.0 55.0 100
Method in [84] N/A2 52.3 54.2 81.3 80
PLD [54] 86.0 90.0 89.0 100
3D [10] 99.0 99.0 82.0 N/A2 100
Bag of words [67] 97.5 97.5 77.3 77.3 89.9 119
PLPQMC NP 100 82.2 90.7 96.6 118
PLPQMC 100 82.2 90.7 97.5 118
1 : The number of persons whose images are used in experiments.
2 N/A: Not available result.

In table 5.2, the most compatible results upon probe sets number 1 (Smile), 2 (Anger),
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3 (Scream), 7 (Sun glasses) and 10 (Scarf) in experiments 1, 2, and 3 of PLPQMC (with
and without using retinal filter to reduce the bad effects of illumination conditions)
are compared with other existing systems. From that table, one can see that even
when the retinal filter is not used, PLPQMC outperforms the state-of-the-art systems
as its accuracy performance is better than theirs. Some systems, such as the ones
in [54, 76, 10], may have higher or comparable RRs, but since the numbers of probe
images (in the column Classes) are much smaller (100 and 126 versus 134 in Exp 1, 100
versus 118 in Exp 3), so at the end, their recognition performance is less precise than
our proposed method as the correct number of probe images recognized by them are
lower than ours3, especially when retinal filter is applied in the preprocessing stage for
illumination normalization to achieve the best accuracy. In addition to that, when there
are more subjects in the gallery/probe set, there are more gallery images to confuse
one probe with, thus the recognition task becomes harder. For this, we conclude that
PLPQMC is an efficient facial representation against facial expression, and time-lapse
variations, and occlusions.

5.4.2 Results on FERET database

Similar as with ELBP and LPQ based systems in chapter 4, the performance of
PLPQMC WPCA framework is assessed upon frontal and pose-variant image sets
of FERET database via results comparisons with state-of-the-art approaches. These
comparisons are reported in tables 5.3 and 5.4 for frontal and non-frontal images, re-
spectively.

Frontal FERET image sets

From the comparisons in table 5.3, one can observe that PLPQMC WPCA outperforms
all other existing systems in the FR literature in overall RR and upon Fc, Dup 1, and
Dup 2 probe sets. The most considerable results are on Dup 1 and Dup 2 subsets,
whose probe images are more challenging than that of Fb and Fc, where our system has
reached up to 96.8% and 95.7% accuracy while the highest published ones are 96.3%
and 94.4%, correspondingly. This means our method is robust to time-lapse variations,
which is one of the most challenging factors of FR study. Besides, the RRs of Fb and
Fc tests prove the efficiency of the proposed system against expression and illumination
variations.

Importantly, there are three other main conclusions inferred from table 5.3:

3For the clarity of the comment, let’s consider, for instance, the system in [10] with Scream set, its
RRs on 100 probe images of in Exp 1 and Exp 3 are 97.0% and 82.0%, respectively, when ours (no
preprocessing method) are 93.2% (for 134 images) and 82.2% (for 118 images). Hence, our method
recognizes correctly 125 and 97 probe images in Exp 1 and Exp 2, while its corresponding numbers are
97 and 82, which are obviously far below.
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Table 5.3: Rank-1 RRs (%) comparison of PLPQMC based systems with other state-of-
the-art results on the FERET database [96]

Method Fb Fc Dup 1 Dup 2 Average
HMBP [130] 98.1 98.5 75.8 75.2 89.0
CHG [22] 97.5 98.5 85.6 84.6 92.6
Tan et al. [113] 98.0 98.0 90.0 85.0 94.2
LMG [94] 99.8 100 89.2 86.8 95.3
ESRC [30] 97.3 99.0 93.8 92.3 95.9
MS-LPQ [17] 99.2 100 92.0 88.0 95.9
EPFDA [104] 99.6 99.0 92.0 88.9 96.1
POEM PDO [118] 99.7 100 91.7 90.6 96.4
LPQ WPCA 99.5 100 92.9 91.0 96.7
FLPGMP [107] 99.0 99.0 94.0 93.0 96.9
G-LQP [52] 99.9 100 93.2 91.0 97.0
MBC-F [128] 99.7 99.5 93.6 91.5 97.0
GSF [123] 99.6 99.5 94.0 91.5 97.1
PLPQMC WPCA NP 99.6 100 95.4 94.0 97.8
GOM [16] 99.9 100 95.7 93.1 97.9
LPQMC WPCA 99.6 100 96.0 94.4 98.0
SLF-RKR [127] 99.7 99.5 96.3 94.4 98.1
PLPQMC WPCA 99.7 100 96.8 95.7 98.4

1. The superiority of PLPQ over LPQ when performing feature extraction on Mono-
genic DBCs is validated as results of PLPQMC are better than LPQMC, partic-
ularly when facing with time-lapse variation of images in Dup 1 and Dup 2 sets.
This is consistent with the remark coming from results upon AR database in the
previous Section.

2. As expected, PLPQMC is verified to be robust to illumination variations. There
are two evidences for this conclusion. The first one is the perfect identification rate
on illumination variant images (the Fc probe set) of PLQMC even when it does not
require any preprocessing technique for the illumination normalization purpose.
The second evidence is the high results it gains without using an illumination
normalization algorithm. While the images in Fc set is strongly affected by
illumination changes, this does not mean other images (from Fb, Dup 1 and Dup
2 sets) are not. In fact, illumination variations, being a major challenge, influence
generally and thus sharply decrease the overall accuracy performance of any FR
system. But, by performing feature extraction on Monogenic DBCs, PLPQMC
method, without employing any technique to alleviate the effect of lighting changes,
achieves comparable results with the best reported ones (GOM [16] and SLF-
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RKR [127]).

3. The concept of applying PLPQ upon Monogenic DBCs shows its efficiency to prove
for the correctness of our proposition. This is illustrated via excellent results of
PLPQMC WPCA in general, and through the substantial outperformance of
the proposed method over other Monogenic and LPQ based systems (such as
HMBP [130], MBC-F [128], MS-LPQ [17]) in particular.

Non-frontal FERET image sets

Table 5.4: Rank-1 RRs comparison of PLPQMC WPCA with other leading
systems on FERET b-series.

Method −40◦ −25◦ −15◦ +15◦ +25◦ +40◦ Avgbh bg bf be bd bc
SLF-RKR [127] N/A1 55.0 100 96.0 57.0 N/A1 N/A1

LSED [121] *2 78.0 84.0 88.0 89.0 88.0 83.0 85.0
CCA [64] *2 81.0 91.0 92.0 94.0 89.0 80.0 87.8
PAN [39] 81.5 93.0 97.0 98.5 91.5 78.5 90.0
RFC [20] 84.2 90.2 94.0 93.2 92.5 89.5 90.6
ADMCLS [105] 85.0 94.0 96.0 95.0 94.0 82.0 91.0
LMG [94] N/A1 91.5 98.0 98.5 93.5 N/A1 N/A1

MRH [7] *2 87.0 94.0 98.0 99.0 96.0 74.0 91.3
GLOH [100] **3 81.1 94.5 100 100 94.5 81.1 91.9
DWFF [86] 87.5 98.0 100 99.0 98.5 82.4 94.2
MRF [48] 91.0 97.3 98.0 98.5 96.5 91.5 95.5
3D Pose Norm [6] 90.5 98.0 98.5 97.5 97.0 91.9 95.6
PLPQMC WPCA NP 92.0 99.5 100 99.5 99.5 91.5 97.0
LPQMC WPCA 93.0 99.5 100 99.5 99.0 92.0 97.2
CPN [31] 94.5 98.0 98.5 99.0 98.5 97.0 97.6
PLPQMC WPCA 95.0 100 100 100 99.5 95.0 98.3
PAF [131] 98.0 98.5 99.25 98.5 98.0 98.6
1 N/A: Not available result.
2 *: The RRs of the method are estimated from plotted figures.
3 **: The RRs on ±25◦ and ±40◦ subsets are average results.

Based on comparable results in table 5.4, we draw the following conclusions: 1)
PLPQMC method is efficient when coping with pose variant probe images since
its WPCA based framework outperforms almost other contemporary systems, except the
one in [131] (PAF). This is more interesting when considering that PLPQMC WPCA
is a general FR framework while all other systems are dedicated for pose variation
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challenge by equipping special tactics to tackle this difficulty4. Further, with relatively
small pose angles (within ±25◦), our system is the only one that has nearly perfect RR:
it only misses one image in the bd set. It is also preferable to expect that when the
head poses are not large (bounded by ±40◦), an elite feature extraction could effectively
solve the problem. 2) Once again, these results verify that PLPQ is more efficient
than LPQ (upon Monogenic DBCs). This is clearer when the head pose increases from
±15◦ to ±40◦. 3) PLPQMC is robust towards illumination variations. Without using
any illumination normalization procedure, PLPQMC WPCA framework still obtains
very high RRs in comparison with other competitors. In such a challenging situation,
amongst all other listed systems in the literature, there are only two ones that surpass
ours: CPN [31] and PAF [131].

5.4.3 Results on SCface database

As extensive experiments upon AR and FERET databases in prior Sections are adequate
to justify the efficiency and the effectiveness of the PLPQMC method for facial feature
extraction, in this Section, the performance of the PLPQMC WPCA framework against
low resolution images is estimated via DayTime and NightTime protocols upon SCface
database. The results are given with two different training sets: the Fa set of the FERET
database (denoted as Our-F) and the high quality frontal images from SCface database
(denoted as Our-S). They are compared with reported results of PCA [42], DSR [140],
ELBP(h+v) WPCA [89] and LPQ WPCA in chapter 4.

It can be seen from tables 5.5 and 5.6 that our system outperforms all state-of-the-art
systems when dealing with low resolution probe images. The reasons for this excellent
results are probably that PLPQMC is robust to blur images, one property it has by
using PLPQ, a variant of LPQ [92], and the illumination invariant strength rooted in the
feature extraction process upon Monogenic DBCs. These two meaningful characteristics
play a critical role when dealing with such low resolution images of SCface database
as they were acquired under unconstrained indoor illumination conditions and are real
blurred images. Our average RRs, with training images from FERET database, are
about 10 and 5 times higher than those of the baseline PCA method in the DayTime
and NightTime tests, respectively (50.5% versus 4.7% and 18.2% versus 3.2%). The
proposed system, when using the training images from SCface database, surpasses the
best known method (ELBP [89]) in the FR literature by 12.6% and 5.8% on these two
experiments. It also outperforms LPQ WPCA system with large margins in overall
RRs. This confirms that the multi-resolution approach based on LPQ in the PLPQMC
method is more efficient than using LPQ on intensity appearance only. Besides, when
training with mug-shots of the same individuals whose probe images are captured by

4It is widely known that along with illumination variations, face recognition across pose is one of
the hardest factors of FR.
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Table 5.5: Rank-1 RRs (%) comparison with other state-of-the-art results
on SCface database using the DayTime protocol [42]
Camera/Distance PCA DSR ELBP(h+v) LPQ Our-F Our-S

cam1_1 2.3

N/A1

43.1 54.6 64.6 70.0
cam1_2 7.7 56.2 58.5 63.9 68.5
cam1_3 5.4 45.4 41.5 42.3 43.9
cam2_1 3.1 36.9 43.9 46.9 54.6
cam2_2 7.7 50.8 54.6 57.7 65.4
cam2_3 3.9 42.3 40.8 37.7 41.5
cam3_1 1.5 34.6 39.2 42.3 49.2
cam3_2 3.9 46.9 54.6 59.2 64.6
cam3_3 7.7 51.5 47.7 43.1 49.2
cam4_1 0.7 32.3 37.7 46.9 47.7
cam4_2 3.9 50.0 56.9 68.5 72.3
cam4_3 8.5 50.8 48.5 46.2 51.5
cam5_1 1.5 36.2 46.2 54.6 55.4
cam5_2 7.7 32.3 40.8 51.5 56.2
cam5_3 5.4 31.5 33.1 31.5 40.0
Average 4.7 20.2 42.7 46.6 50.5 55.3

1 N/A: Not available result

Table 5.6: Rank-1 RRs (%) comparison with other state-of-the-art results on SCface
database using the NightTime protocol [42]

Camera/Distance PCA[42] ELBP(h+v) LPQ Our-F Our-S
cam6_1 1.5 9.2 11.5 10.0 14.6
cam6_2 3.1 15.4 16.2 22.3 24.6
cam6_3 3.9 25.4 25.4 25.4 25.4
cam7_1 0.7 13.1 13.9 15.4 15.4
cam7_2 5.4 13.1 15.4 15.4 22.3
cam7_3 4.6 13.9 14.6 20.8 22.3
Average 3.2 15.0 16.2 18.2 20.8

surveillance cameras, the achieved RRs are higher than using a set of images from
totally different people. In summary, we conclude that the PLPQMC WPCA system is
efficient to cope with low resolution images.

In spite of very encouraging results brought by PLPQMC WPCA framework, one can
notice that the recognition performance upon SCface database is still poor and can not
be comparable with that of AR and FERET datasets. This means that there is immense
room for the research on the topic of FR by machine with low resolution images under
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video surveillance context.

5.4.4 Computational performance

Table 5.7: Computation time of PLPQMC in comparison with other feature
extraction methods
Method Image size Time

(seconds)
Extraction time
(miliseconds)

Images/second

ELBP(h) 128× 128 4.44 3.71 269
LPQ 128× 128 5.45 4.56 219
ELBP(h+v) 128× 128 7.28 6.09 164
PLPQMC 128× 128 27.91 23.34 43
MBC-A [128]*1 150× 130 30.54 25.54 39
MBC-O [128]*1 150× 130 87.00 72.74 14
Gabor wavelets 88× 80 96.23 80.46 12
1 *: We used the Matlab code provided by the author.

Keeping in mind that one of the key points in designing an elite feature extraction
method is processing speed, the same timing benchmark described in Section 4.1.4.5
of chapter 4 is conducted with PLPQMC to measure its computational perormance in
practice. The obtained results are compared with some other methods and the initial
step of a Gabor wavelets based approach in table 5.7.

It is transparent from table 5.7 that the proposed method has fast computational
speed when it can process 43 images within a second. In PLPQMC, the feature ex-
traction procedure performs on 6 DBCs, hence it is much slower than ELBP, LPQ
and ELBP(h+v) methods, in which only one intensity image is processed. Even
though MBC-A and MBC-O just work with 3 amplitude images and 3 orientation
images, respectively, but they are slower than our method since they need to generate
3 scales× 5 components = 15 images while that of PLPQMC is 6. Additionally, MBC-
A and MBC-O require images of larger resolution than PLPQMC (150 × 130 versus
128×128). Our method is about 3.5x faster than the initial step of Gabor wavelets based
methods, which produces 40 Gabor wavelets components at 5 scales and 8 orientations.
This means PLPQMC is much faster than any Gabor wavelets based feature extraction
methods. Requiring only 23.34 milliseconds for processing one image by an unoptimized
and un-parallelized implementation, we believe that PLPQMC is capable of being used
in real world applications.
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5.5 Conclusions

As one step further, in this chapter, a novel multi-resolution feature extraction method,
named as Patch based Local Phase Quantization of Monogenic components (PLPQMC),
is presented. The proposed method is based on Monogenic filter and Patch based LPQ,
a new variant of LPQ. By exploring the insights of different Monogenic components,
we have found that its directional bandpass components (DBC) are good candidates
to perform the facial feature extraction task. On the other hand, for accelerating the
discriminatory power of local patterns captured from those DBCs, we have proposed to
apply PLPQ, where local phase patterns are computed from a patch based version of
each DBC, instead of LPQ on them. Since there are two kinds of DBC, the horizontal
one and the vertical one, their patch based images are computed with two oriented
patches of sizes 3 × 5 and 5 × 3, respectively. Once the PLPQ images of 6 DBCs
are generated, they are divided into non-overlapped sub-regions whose histograms are
computed and concatenated to form the final PLPQMC facial representation. Our
method, while benefiting many useful properties from LPQ (by using PLPQ, such as
the robustness to blur images), is inherited reasonable computation cost from Monogenic
filter. More importantly, as its features are extracted from DBCs, which are strong
to illumination variations, PLPQMC has been shown to be robust to that challenge.
Also, since many image details are preserved in DBCs, the features extracted from them
contribute much to make the proposed method an efficient facial representation for
coping with challenging issues. Employing PLPQMC method for feature extraction, a
new FR system has been also constituted with WPCA for dimension reduction, k-NN
classifier and weighted angle based distance for classification.

Comparative experimental studies on three databases AR, FERET and SCface prove
the efficiency of our method against various challenging factors, such as illumination,
facial expression, time-lapse, and pose variations, and occlusion, and low resolution
images also, since it yields excellent results and outperforms other state-of-the-art
systems. Additionally, PLPQMC is fast to compute and can certainly be used in real
life applications.

Compared with intensity-based methods shown in chapter 4, ELBP and LPQ, PLPQMC
is a multi-scale description whose features are extracted by PLPQ from DBCs of Mono-
genic filter. By itself, PLPQMC representation is highly insensitive to both illumination
variations and blur, two major difficulties a FR system must confront, especially under
video surveillance context. As a result, it significantly outperforms ELBP and LPQ in
terms of accuracy performance while sustaining a notably fast processing speed. How-
ever, its results upon unconstrained low resolution probe images in video surveillance
context of the SCface database are still far from adequate for practical applications.
For this, more robust approaches are needed and that is the goal of the next chapter’s
content.
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Gradient images based facial features
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Elementary descriptors
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Figure 6.1: Proposed methods in this chapter: EPOEM and LPOG.

6.1 Introduction

The intensity appearance of a human face captured and recognized by machines con-
tains raw image information together with a lot of unexpected variations produced by
the effects of unpredictable environment conditions, e.g., light, pose, occlusions and
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(a) Input image (b) X-Gradient (c) Y-Gradient (d) Magnitude (e) Orientation

Figure 6.2: An image and its gradient based components. The orientation component
is visualized from its radiance values.

background, to name a few. Since these variations are the source of the persistent
challenges that hinder high and reliable recognition performance, it is hence desirable
to have methods for eliminating them and retaining as many as possible discrimina-
tive features of the face images. To the best of our knowledge, illumination variations
is one of the major factors that affect the accuracy performance of a FR system the
most [137, 65]. This is justified by the fact that the within-class variations caused by
lighting changes are almost always greater than the inter-class variations due to the
difference of identity [2]. To counteract that, a quite large number of methods/strategies
have been developed. Amongst all, using gradient images is one of the most effective
solutions.

Gradient images, as showed in pioneer works of visual perception [61, 56, 49], play an
important role for human visual perception system. This is on account of the fact that
there is a wealth of helpful image features carried inside them, such as edge information,
discontinues, orientations, local changes of intensity values. Additionally, one crucial
advantage of gradient images for FR, as we will point out, is that they are strong to
illumination variations. From an intensity image, its horizontal and vertical gradients
are usually computed for building the magnitude and orientation components. At each
edge pixel of the input image, the magnitude of gradient conveys information about
the strength of the edge while its orientation counterpart contains information about
the direction of the edge. In Fig. 6.2, one can see a face image and its x-axis gradient
(b), y-axis gradient (c), magnitude (d) and orientation (e) images. In comparison with
magnitude and orientation components, the gradient images along the x-axis and y-axis
direction preserve more image details.

Within the computer vision domain, Scale Invariant Feature Transform (SIFT) [77] and
Histograms of Oriented Gradients (HOG) [26] are the most well-known local descriptors
based on gradient images. However, as figured out in chapter 2, they did not help
much in forming an efficient facial representation, at least until now regarding the
context of the present thesis. This is comprehensible since they are not designed
specifically for FR task. Inspired by the insensitivity to the illumination variations of
the orientation component [19], the Gradientfaces method, in which the L1 distance
is used to calculate the similarity between two orientation images, was proposed [111].
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Further, in [115], Tzimiropoulos at al. proposed to use PCA with orientation images to
construct the Image Gradient Orientations PCA (IGO-PCA) system and gained higher
RRs than Gradientfaces. Also, local gradient orientation binary pattern (LGOBP) [69],
where gradient angles of salient regions are first assigned as one of the four labels
according to the quadrant they belong to and then these assigned values are encoded by
a similar way as LBP does with image intensities, is another feature extraction method
rooted in gradient orientations. Patterns of Oriented Edge Magnitudes (POEM) [117]
is an efficient feature extraction method that exploits the discriminative power from
accumulated oriented magnitude images, which are computed from both magnitude and
orientation components, by applying LBP descriptor on them.

With the arrival of the new ELBP method in chapter 4, it is preferable to believe that
by replacing LBP, where it is used for feature extraction, with ELBP, the recognition
performance will be improved. Hence, a new variant of POEM called Elliptical POEM
(EPOEM) is proposed by taking into account useful characteristics from POEM and the
goodness of ELBP (illustrated in Fig. 6.1). Furthermore, motivated from the advantages
of gradient images over intensity appearance as well as magnitude and orientation
components, and from the concept of combining two kinds of local descriptors: Block-
wised ELBP (BELBP), a new variant of ELBP, and LPQ, we propose a novel feature
extraction method named as Local Patterns of Gradients (LPOG) (as can be seen in
Fig. 6.1). Comparative studies of obtained results and that of existing systems upon
the AR, FERET and SCface databases prove the efficiency and effectiveness of the
proposed methods under a diverse range of FR challenges.

The content of this chapter is structured as follows. The details of the EPOEM method,
its results and the corresponding comparative studies are presented in Section 6.2. In
Section 6.3, we describe the LPOG facial representation alongside with the experimental
results upon public databases and show its superiority in recognition accuracy perfor-
mance over other reported results in the literature. Finally, the conclusions constitute
Section 6.4.

6.2 Elliptical Patterns of Oriented Edge Magnitudes for
Face recognition

6.2.1 Elliptical Patterns of Oriented Edge Magnitudes feature extrac-
tion method

The underpinning idea of EPOEM is shown in Fig. 6.3, where the procedure of computing
the EPOEM code for an input pixel of the orientation image is illustrated. First,
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Figure 6.3: Steps in EPOEM encoding scheme for one pixel.

each pixel from orientation image is evenly discretized over the [0, π] range. Hence,
at each pixel, the magnitude and its discretized orientations are hold. Then, every
discretized orientation is weighted by its corresponding magnitude to generate oriented
edge magnitudes values. In Fig. 6.3, the current pixel is referred as p, the local magnitude
is represented by the red arrow emitted from p whilst the blue arrow is the discretized
orientation. Next, each oriented pixel is replaced by the mean value of its neighbors
within a cell, which is a square neighborhood of the pixel. By this, the accumulated
pixels are obtained and the EPOEM code of the given pixel is computed by a horizontal
ELBP descriptor as:

EPOEMN,R1,R2
m (p) =

N∑
i=1

f(cN,R1,R2
i − Ip)2i−1 (6.2.1)

where N is the number of neighbors of p, which is fixed as 8 in this work1, m is the
current orientation, ci, i ∈ [1, N ] is the intensity value of the ith neighboring pixel of p,
Ip is the intensity at p location in the accumulated image, R1, R2 are the radii of the
ellipse sample used with ELBP, and f(x) is a binary encoding function and is defined
as:

f(x) =
{

1 if x ≥ 0;
0 if x < 0. (6.2.2)

The whole process of building the EPOEM feature vector from a given face image is
depicted in Fig. 6.4. First, the edge magnitude and orientation images are generated
from the input image. Next, each orientation angle is evenly discretized intoM partitions

1In fact, POEM [117] results were reported with N = 6 but we have found that higher RRs are
achieved when N = 8. Hence all related results presented in this thesis are yielded with that value.
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Figure 6.4: Facial representation computation by EPOEM method.

(the number of partitions used in this work is 3 or 4, depending on the tested database).
Then, M oriented edge magnitudes images are computed from edge magnitude image
and discretized orientation ones by a element-wise multiplication of them. These two
steps are called as Orientation assignment process in Fig. 6.4. By doing this, the
information of both magnitude and orientation images are incorporated and thus makes
the feature extraction stage more efficient. Each pixel in an oriented edge magnitude
image is then substituted by its neighbors’ average value to obtain an accumulated
image, this is also a boosting step for the discriminatory power of EPOEM features
since each accumulated value not only carries its original intensity from oriented image,
but also holds that of its neighbors. Once this accumulation step is finished, the ELBP
descriptor is applied on all accumulated images to form their own histogram sequences.
Finally, the EPOEM vector is constructed by concatenating all the histogram sequences
of the accumulated images. To be a compact facial representation, uniform patterns are
used to reduce the size of every EPOEM description. By using N = 8 neighbors when
computing a EPOEM code for a given pixel, the EPOEM vector is a 59-bins histogram
sequence.

Due to the advantages of magnitude and orientation components, the efficiency of ELBP,
as well as the manner it is built, the EPOEM descriptor has the following interesting
properties:

1. It has oriented features. By varying the number of partitions discretized by
the orientation of each pixel, EPOEM is capable to capture features in different
orientations.

2. As prior mentioned in the first part of this chapter, orientation image is insensitive
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to lighting changes. Plus, one of the most significant of ELBP (as proved in
Section 4.1 of chapter 4) is invariance to illumination variations. As a consequence,
EPOEM is even more robust to illumination changes.

3. EPOEM features are encoded from accumulated oriented edge magnitudes im-
ages, they encompass many meaningful characteristics from both orientation and
magnitude images, thus make them more efficient against FR challenges that are
ubiquitous when dealing with face images.

4. By thresholding accumulated pixels when they are computed, EPOEM codes
extend the locality property of ELBP features, which are calculated based on
intensity pixels, to enhance their discriminatory power.

Regarding to the EPOEM’s parameters, we use 7 × 7 and 5 × 5 cells for images of
128× 128 and 48× 48 resolutions when performing the accumulation step, respectively.
Also, with 128× 128 pixels images, the radii of horizontal ellipse used with ELBP are 7
(horizontal radius) and 5 (vertical radius) while those for 48 × 48 pixels images are 5
and 3. Each accumulated image of size 128× 128 is divided into 8× 8 non-overlapping
sub-regions to compute theirs histograms. Since 48 × 48 pixel images (from SCface
database) are small, they are split into 5 × 5 sub-images. The 128 × 128 orientation
images are partitioned into M = 3 partitions whereas that number for 48× 48 images
is 4. Almost these values are used with POEM, except that the radii used with LBP
are 5 and 3 for 128× 128 and 48× 48 images, correspondingly.

6.2.2 Using EPOEM for face recognition

In order to apply EPOEM representation for FR, the WPCA based framework, whose
details are presented in Section 3.6 of chapter 3, is used. The negative angle based
distance function (Eq. 3.6.1) is adopted in the classification stage for measuring the
similarity scores between probe images and gallery ones as it offers the best accuracy
results.

6.2.3 Experimental results

In this Section, the recognition performance of EPOEM WPCA framework is evaluated
via experiments on AR, FERET and SCface databases. The obtained results are then
compared with that of POEM WPCA and other state-of-the-art systems using the same
protocols. With respect to the order of appearance in the FR literature, some leading
systems published after the year 2012, when EPOEM was shown, are not listed in the
comparisons.
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6.2.3.1 Results on AR database

Table 6.1: Rank-1 RRs (%) comparison between POEM and EPOEM WPCA based
methods on AR database

Test/Method Probe set Avg1 2 3 4 5 6 7 8 9 10 11 12

Exp1 POEM 100 100 83.6 100 100 100 91.0 70.9 64.9 98.5 96.3 97.0 91.9
EPOEM 100 100 85.1 100 100 100 91.0 72.4 66.4 100 97.8 97.0 92.5

Exp2 POEM 100 100 83.9 100 100 100 89.8 72.9 63.6 99.2 96.6 96.6 91.9
EPOEM 100 100 86.4 100 100 100 91.5 74.6 66.9 100 97.5 97.5 92.9

Exp3 POEM 97.5 100 74.6 100 100 97.5 80.5 65.3 63.6 96.6 90.7 90.7 88.1
EPOEM 99.2 100 78.0 100 100 97.5 80.5 66.9 65.3 97.5 91.5 91.5 89.0

Exp4 POEM 97.4 100 69.8 100 100 99.2 78.6 66.7 60.7 95.7 90.6 90.6 87.4
EPOEM 98.3 100 71.6 100 100 99.2 79.5 67.5 61.5 96.6 91.5 91.5 88.1

It can be seen in table 6.1, where the comparisons between full results of POEM
and EPOEM on AR database are tabulated, that EPOEM gains higher RRs than
POEM. This performance improvement is not so significant but it is indisputable and
consistent, particularly in RR of every probe set and generally in overall average RR of
each experiment. The most notable cases are shown in probe sets 3 (Scream), 8 (Sun
glasses+Left light) and 9 (Sun glasses+Right light). Thus, we conclude that EPOEM is
more efficient than POEM when handling face images under variations of illumination,
facial expression, time-lapse and occlusions.

Another noteworthy observation about those results is the distinction in recognition
accuracies between the images disguised by Sun glasses (in probe sets 7, 8, and 9) and
the ones partially masked by Scarves (in probe sets 10, 11, and 12). The relatively high
RRs offered by EPOEM on Scarves images and that of far lower on Sun glasses images
mean that EPOEM is very sensitive when dealing with face images whose eyes and
eyebrows, the two most crucial features, are largely obscured. This is even worse when
there is the presence of other factors, such as illumination and time-lapse variations.
The accumulated oriented images might be a reason for this weakness of EPOEM since
they retain few image details to form a robust representation that can rectify the lack
of such important facial features.

Similarly to other proposed methods in this thesis, the results of EPOEM in experiments
1, 2, and 3 on probe sets 1, 2, 3, 7, and 10 are compared with other existing systems in
table 6.2. From these results, it becomes evident that EPOEM WPCA substantially out-
performs other state-of-the-art systems on AR database. This performance superiority
of EPOEM WPCA is more interesting when considering the fact that most of the listed
works are dedicated to tackle with FR under occlusions by various approaches, such as
Sparse representation based [129, 76], Bag of words [67] or 3D [10], whilst the proposed
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Table 6.2: Rank-1 RRs (%) of EPOEM WPCA in comparison with other
contemporary systems on AR database using the same evaluation method

1 2 3 7 10
Method Smile Anger Scream Glasses Scarf Classes1

Exp 1
String face [21] 87.5 87.5 25.9 88.0 96.0 100
Sparse coding [129] N/A2 94.7 91.0 100
DMMA[78] 99.0 93.0 69.0 N/A2 100
SIS [75] 99.0 99.0 98.0 100
PLD [54] 99.0 100 97.0 100
Sparse LF [76] N/A2 100 99.2 126
3D [10] 100 100 97.0 N/A2 100
EPOEM 100 85.1 91.0 100 134

Exp 2
LGBP[135]

N/A2

62.0 96.0 50
Sparse coding [129] 80.3 72.7 100
String face [21] 76.0 88.0 100
IRF [141] 82.5 84.0 120
SIS [75] 86.0 96.0 90.0 100
Sparse LF [76] N/A2 96.6 96.6 119
EPOEM 100 86.4 91.5 100 118

Exp 3
S-LNMF [90] 62.0 N/A2 27.0 49.0 55.0 100
Method in [84] N/A2 52.3 54.2 81.3 80
PLD [54] 86.0 90.0 89.0 100
3D [10] 99.0 99.0 82.0 N/A2 100
Bag of words [67] 97.5 97.5 77.3 77.3 89.9 119
EPOEM 99.2 100 78.0 80.5 97.5 118
1 : The classes column is the number of persons whose images are used in
experiments.

2 N/A: Not available result.

framework is a general system. In addition to that, these RRs are attained under more
diffusing conditions as there are more gallery/probe images used in our experiments (in
the last column of table 6.2) than those of cited systems. In combination, a conclusion
is drawn that EPOEM is efficient to facial expression and time-lapse variations, and
partial occlusions.
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6.2.3.2 Results on FERET database

The comparison results between EPOEMWPCA framework and state-of-the-art systems
upon FERET database can be observed in table 6.3 for standard protocol of frontal
images, and in table 6.4 for pose variations images.

Frontal FERET image sets

Table 6.3: Rank-1 RRs (%) comparison of EPOEM WPCA with
other state-of-the-art results on the FERET database [96]
Method Fb Fc Dup 1 Dup 2 Average
LGBPHS [135] 98.0 97.0 74.0 71.0 87.8
HMBP [130] 98.1 98.5 75.8 75.2 89.0
GEWC [29] 96.3 99.5 78.8 77.8 89.3
HGPP [133] 97.5 99.5 79.5 77.8 90.2
DMMA [78] 98.1 98.5 81.6 83.2 91.6
LGBPWP [88] 98.1 98.9 83.8 81.6 92.1
CHG [22] 97.5 98.5 85.6 84.6 92.6
DLBP [82] 99.0 99.0 86.0 85.5 93.6
IGO-PCA [115] N/A1 88.9 85.4 N/A1

Tan et al. [113] 98.0 98.0 90.0 85.0 94.2
ELBP(h+v) WPCA [89] 99.4 100 89.1 86.8 95.0
LMG [94] 99.8 100 89.2 86.8 95.3
POEM WPCA 99.3 100 90.4 90.2 95.3
ESRC [30] 97.3 99.0 93.8 92.3 95.9
MS-LPQ [17] 99.2 100 92.0 88.0 95.9
EPFDA [104] 99.6 99.0 92.0 88.9 96.1
POEM PDO [118] 99.7 100 91.7 90.6 96.4
EPOEM WPCA 99.6 100 92.4 92.3 96.7
FLPGMP [107] 99.0 99.0 94.0 93.0 96.9
G-LQP [52] 99.9 100 93.2 91.0 97.0
GSF [123] 99.6 99.5 94.0 91.5 97.1

1 N/A: Not available result.

According to the results in table 6.3, some conclusions can be stated as follows:

1. EPOEM outperforms POEM on FERET database. This is more evident on RRs
of Dup 1 and Dup 2 tests where EPOEM achieves a performance improvement
of about 2.0% when dealing with images affected by time-lapse variations. Plus,
EPOEM also surpasses another system based on POEM in [118].
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2. Inherited advantages from both ELBP and POEM, EPOEM is strong to illumi-
nation variations as it gains perfect accuracy on Fc probe set.

3. The results provided by EPOEM is encouraging, despite the fact that they are
lower than those of three leading Gabor wavelets based systems (FLPGMP [107],
G-LQP [52] and GSF [123]). On average RR, there is only a slight difference
between ours and theirs. More importantly, since ELBP is significantly faster
than any Gabor wavelets based method (about 22×, refer to table 4.8 in chapter 4
for more details) and EPOEM uses an ELBP operator on 3 accumulated images,
the proposed method therefore requires much less computational cost than the
three mentioned systems.

Non-frontal FERET image sets

Table 6.4: Rank-1 RRs comparison of EPOEM WPCA with other systems on
FERET b-series.

Method −40◦ −25◦ −15◦ +15◦ +25◦ +40◦ Avgbh bg bf be bd bc
LSED [121] *2 78.0 84.0 88.0 89.0 88.0 83.0 85.0
CCA [64] *2 81.0 91.0 92.0 94.0 89.0 80.0 87.8
PAN [39] 81.5 93.0 97.0 98.5 91.5 78.5 90.0
RFC [20] 84.2 90.2 94.0 93.2 92.5 89.5 90.6
ADMCLS [105] 85.0 94.0 96.0 95.0 94.0 82.0 91.0
LMG [94] N/A1 91.5 98.0 98.5 93.5 N/A1 N/A1

MRH [7] *2 87.0 94.0 98.0 99.0 96.0 74.0 91.3
GLOH [100] **3 81.1 94.5 100 100 94.5 81.1 91.9
ELBP(h+v) WPCA 80.5 98.5 99.5 99.5 99.0 79.5 92.8
POEM 84.0 99.0 99.5 99.5 99.0 83.0 94.0
DWFF [86] 87.5 98.0 100 99.0 98.5 82.4 94.2
EPOEM 87.5 99.5 100 99.5 99.0 86.0 95.3
MRF [48] 91.0 97.3 98.0 98.5 96.5 91.5 95.5
3D Pose Norm [6] 90.5 98.0 98.5 97.5 97.0 91.9 95.6
CPN [31] 94.5 98.0 98.5 99.0 98.5 97.0 97.6
1 N/A: Not available result.
2 *: The RRs of the method are estimated from plotted figures.
3 **: The RRs on ±25◦ and ±40◦ subsets are average results.

It can be evidently seen from table 6.4 that EPOEM, once again, yields higher accuracy
performance than POEM upon probe images of varying head poses. And the larger the
pose angles are, higher the improvements are. Compared with other methods, there
are few ones that can surpasses EPOEM (MRF [48], 3D Pose Norm [6] and CPN [31]).
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However, when the head poses are in small scope (of ±25◦), EPOEM is more stable
and attains higher RRs with at least 99.0% of accuracy, which is the best result of those
3 leading systems. Plus, considering that MRF [48], 3D Pose Norm [6] and CPN [31]
are all Gabor wavelets based approaches, they are obviously slower than our method.
As a consequence, we argue that EPOEM is a promising solution to the pose variations
challenge.

6.2.3.3 Results on SCface database

From comparative studies between results of EPOEM and POEM, as well as other
existing system in the literature via a large set of experiments upon AR and FERET
database in previous sections, there are sufficient evidences to validate the improvement
of EPOEM over POEM and the efficiency of EPOEM when coping with a wide range
of challenges. Hence, in this Section, tests on SCface database are conducted to assess
the performance of the EPOEM WPCA framework in confronting with low resolution
image captured under video surveillance context. The results are obtained with high
quality mug-shot images from the same database and then are compared with those of
PCA [42], DSR [140] and ELBP(h+v) WPCA [89].

Table 6.5: Rank-1 RRs (%) comparison with other state-of-the-
art results on SCface database using the DayTime protocol [42]
Camera/Distance PCA DSR ELBP(h+v) EPOEM

cam1_1 2.3

N/A1

43.1 40.0
cam1_2 7.7 56.2 62.3
cam1_3 5.4 45.4 47.7
cam2_1 3.1 36.9 33.9
cam2_2 7.7 50.8 46.2
cam2_3 3.9 42.3 46.9
cam3_1 1.5 34.6 28.5
cam3_2 3.9 46.9 48.5
cam3_3 7.7 51.5 55.4
cam4_1 0.7 32.3 26.2
cam4_2 3.9 50.0 59.2
cam4_3 8.5 50.8 53.1
cam5_1 1.5 36.2 30.8
cam5_2 7.7 32.3 41.5
cam5_3 5.4 31.5 37.7
Average 4.7 20.2 42.7 43.9

1 N/A: Not available result
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Table 6.6: Rank-1 RRs (%) comparison with other state-of-the-art results on SCface
database using the NightTime protocol [42]

Camera/Distance PCA[42] ELBP(h+v) EPOEM
cam6_1 1.5 9.2 8.5
cam6_2 3.1 15.4 16.2
cam6_3 3.9 25.4 24.6
cam7_1 0.7 13.1 10.8
cam7_2 5.4 13.1 14.6
cam7_3 4.6 13.9 17.7
Average 3.2 15.0 15.4

(a) Gallery images (b) Camera 1

(c) Camera 2 (d) Camera 3

(e) Camera 4 (f) Camera 5

Figure 6.5: Some challenging SCface images captured at distance 1 where EPOEM fails
to recognize.

It is can be clearly observed in tables 6.5 and 6.6 that EPOEM outperforms other
reported results on SCface database followed both DayTime and NightTime protocol.
Generally, comprehensive performance of the proposed method, in terms of average RR,
is higher than ELBP(h+v) [89] (43.9% versus 42.7% in DayTime test, 15.4% versus
15.0% in NightTime tests), the best results so far. It seems obvious since EPOEM
significantly surpasses ELBP(h+v) on FERET database (for more details, refer to
tables 6.3 and 6.4). However, surprisingly, this superiority is not appeared in probe sets
of distance 1, where the RRs of ELBP(h+v) are all better than EPOEM’s results. The
anomaly occurs not only with DayTime test, but also with NightTime one.

As an effort to pinpoint and understand the source of that incident poor performance
of the proposed method, we gather some common images which were acquired by first
5 cameras at distance 1 and were wrongly identified in Figs. 6.5. The probe images
in SCface database were captured at three distances: distance 1 is 4.2m, distance 2 is
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2.6m and distance 3 is 1.0m. Amongst all probe images, the ones of distance 1 are most
blurred as they were taken at the farthest distance. The blurring level of those images can
be intuitively seen in Figs 6.5(b-f). Also, one can notice the extreme contrast between
them and the gallery images (Figs 6.5a) with respect to several important aspects, e.g.,
image quality, resolution, blurring level, misalignment level. But why under the same
conditions, ELBP(h+v) can harvest better performance than EPOEM? The answer
for this question might be rooted in the fact that EPOEM patterns are extracted by
an horizontal ELBP descriptor from accumulated oriented edge magnitudes images.
While computing accumulated oriented images from oriented and magnitude ones, many
image details are unavoidably lost (refer to Fig. 6.4 for an intuitive illustration). As a
result, the accumulated oriented images do not preserve much edge information. This
image degradation is specially critical with probe images of distance 1 as they are so
blurred. Plus, ELBP is not a blur tolerant method. Thus, the EPOEM representation,
in this particular case, is not efficient as ELBP(h+v) one, which extracts features
straightly from intensity images.

There are probably several solutions to the above problem:

1. Using a blur insensitive descriptor, such as LPQ or PLPQ, rather than ELBP, to
strengthen the robustness of EPOEM against blurred images. Due to the lack
of time, we have not tried this approach but we believe it is a worth pursuing
direction.

2. In order to avoid the image degradation issue, the resulting features should be
extracted from other types of image, which are capable of retaining more image in-
formation than accumulated images. In the next Section, a novel method followed
this manner is presented by performing the feature extraction task efficiently upon
horizontal and vertical gradient images.

6.2.4 Conclusions

As an attempt to develop an efficient facial representation, the horizontal ELBP descrip-
tor is used to extract local micro patterns on oriented edge magnitudes components,
which are generated from gradient images by varying orientations. In this way, the
EPOEM feature extraction method has been built. Having many intriguing characteris-
tics, EPOEM, when used in WPCA based framework, has been extensively assessed via
experiments on three public database (AR, FERET and SCface). The results show that
the proposed method outperforms POEM and gives competitive accuracy performance
in comparison with state-of-the-art algorithms.

Nevertheless, the drawback of EPOEM was exposed when it faced some extremely
challenging conditions, such as important facial features (eyebrows and eyes) hidden
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and under variations of illumination and time-lapse, or very blurred images captured
by surveillance cameras.

6.3 Local Patterns of Gradients for Face recognition

In this Section, we propose a novel feature extraction method so-called Local Patterns
of Gradients (LPOG) for FR. It provides an unified way to capture local patterns from
gradient images.

We firstly introduce a novel variant of ELPB [89] named Block-wised ELBP (BELBP),
which is more efficient than ELBP for encoding micro facial features. In BELBP,
the average value of the rectangular block at every image pixel is calculated, then a
thresholding over that values of each pixel and its neighbors, who lie on an elliptical
pattern, is undertaken. For vertical ellipse, a vertical rectangular block is used while a
horizontal rectangular block is applied for horizontal ellipse, that is the reason why we
name this method Block-wised ELBP.

As the researches in visual perception [61, 56, 49] showed that human visual system is
more sensitive to local changes of intensity (gradient images) than to the image intensity
itself, in our LPOG method, feature extraction is done upon gradient images instead
on intensity images as many other algorithms usually do. Towards this purpose, we use
BELBP and LPQ operators on gradient images to encode local patterns in the form of
histogram sequences. Finally, a global feature vector (LPOG) is built by concatenating
BELBP and LPQ descriptions.

Using LPOG as facial features, a novel single sample per person FR framework called
Local Patterns of Gradients Whitened Principal Component Analysis (LPOG WPCA)
is proposed with WPCA for training stage and weighted angle-based distance and
k-Nearest Neighbor (k-NN) classifier for classification.

Our LPOG WPCA system is evaluated and compared with other competitors through
extensive experiments upon large public face databases including AR [80], FERET [96]
and SCface [42]. Comparisons between our experimental results and other state-of-the-
art systems confirm that our framework consistently outperforms other contemporary
systems while illustrating its robustness by setting the best ever performance against
major challenges like facial expression changes, occlusion, pose and time-lapse variations
as well as low resolution images.

Moreover, practical timing tests show that LPOG is faster than many leading feature
extraction algorithms and is feasible for constraints of real life applications.
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6.3.1 Local Patterns of Gradients feature extraction method

6.3.1.1 Block-wised ELBP: a novel variant of ELBP

hBELBP

vBELBP

Horizontal block

3x5

5x3

Local texture
encoding

Vertical block

Input image

Figure 6.6: BELBP encoding operators

Inspired by ELBP [89], a so-called block-wised ELBP (BELBP) (see Fig. 6.6) operator of
an image I is formed by first generating its two accumulated images (AI) corresponding
to two block patterns (BP) as:

AIBPv,h (x, y) = 1
N

∑
(x,y)∈BP

I(x, y), (6.3.1)

where v and h are notations for vertical and horizontal directions, N is the number
of pixels in pattern BP and I(x, y) is the intensity value at location (x, y) of I. The
block patterns BPs are directional rectangulars: horizontal one for horizontal AI and
vertical one for vertical AI. After that, the BELBP code of a given pixel (a decimal
value) in each AI image is computed by comparing its value with surrounding pixels
which are located on an ellipse, whose center is at the current pixel itself. In details,
with K neighboring pixels, horizontal radius R1 and vertical radius R2, the formula for
calculating BELBP label of one pixel P=AI(xc,yc) is:

BELBPK,R1,R2(xc, yc) =
K∑
i=1

s(gK,R1,R2
i − gc)2i−1, (6.3.2)

where gc is the gray scale value of P and gi is the gray scale value of its ith neighbor
whose coordinates are generated by using the formulas:

angle = 2 ∗ π/K, (6.3.3)
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xi = xc +R1 ∗ cos((i− 1) ∗ angle)), (6.3.4)
yi = yc −R2 ∗ sin((i− 1) ∗ angle)). (6.3.5)

The binary encoding function s(x) is defined as

s(x) =
{

1 if x ≥ 0
0 if x < 0 . (6.3.6)

If R1 > R2 and if considering a horizontal AI, one has horizontal BELBP (hBELBP)
operator, vertical BELBP (vBELBP) operator is obtained on a vertical AI whenR2 > R1
(see Fig. 6.7). A symmetric pair of BELBP (see Fig. 6.7) operators consists of two
BELBPs where the first one’s horizontal radius is the other’s vertical radius and vice
versa.

Horizontal BELBP Vertical BELBP A symmetric BELBP pair

Figure 6.7: BELBP operators

In this work, we use a symmetric pair of BELBP with two block patterns size 3 × 5
and 5× 3. By doing this, the dependence between each pixel of the input image I(x,y)
and its neighbors is taken into account when extracting its local micro texture, thus
making the feature extraction process more efficient. Besides, the usage of a symmetric
pair of BELBP to encode both horizontal and vertical texture information gives a
more discriminative representation of the face image than just using a single horizontal
BELBP. Consequently, two BELBP images are generated from every input image (see
Fig. 6.8 for more details).

6.3.1.2 LPOG in details

Gx = −1
2 · I(x− 1, y) + 0 · I(x, y) + 1

2 · I(x+ 1, y) (6.3.7)

Gy = −1
2 · I(x, y − 1) + 0 · I(x, y) + 1

2 · I(x, y + 1) (6.3.8)
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Figure 6.8: Steps in LPOG scheme

The proposed feature extraction method called local patterns of gradients (LPOG)
in this work (Fig. 6.8 illustrates steps of LPOG) is a powerful face description for
dealing with challenging issues of FR. From the input image I, two directional gradient
images along x-axis and y-axis (Gx, Gy) are generated using the formulas (6.3.7)-
(6.3.8). Then, a symmetric pair of BELBP and a LPQ operator, whose details are
in Section 4.2 of chapter 4, are used (the details of used parameters will be given at
the end of Section 6.3.3) to extract local patterns from each gradient image under the
form of BELBP and LPQ images (we call them local patterns images). Next, each
local pattern image is divided into disjoint rectangular sub-regions to calculate their
histogram sequences, which are then concatenated to constitute a description of the
image. Uniform patterns [3], which are binary strings with no more than two bitwise
transitions from 0 to 1 or 1 to 0, are utilized to reduce the BELBP descriptions’ length.
As a last step, all the local patterns image’s representations are aggregated to form a
global LPOG feature vector of the given image.

The LPOG method of this work is primarily stemmed from two inspirations.

The first motivation comes from the observation of early perception researches results
([61, 56, 49]). While these results prove the more sensitivity of visual human system
to local intensity differences, than to raw intensity values, they suggest that extracting
texture information from gradient images is more efficient than from intensity image.
Fig. 6.9 illustrates the advantages of this approach: the illumination condition effect on
gradient images is less than on raw intensity ones, so the feature extraction stage on
gradient images will be more illumination invariant. In addition to that, the gradient
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(a) Input images

(b) Horizontal gradient images

(c) Vertical gradient images

Figure 6.9: Comparison between gradient images of illumination images from AR
database. The first image on the left is the gallery one while the rest are probe ones.

(a) Histograms of input images

(b) Histograms of horizontal gradient images

(c) Histograms of vertical gradient images

Figure 6.10: Comparison between histograms of images in Figs. 6.9.
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images contain enhanced edge information, which is very important for building a strong
facial representation. Indeed, one can observe in Figs. 6.9 (b-c) that the gradient images
(of gallery and probe images) are in a much more similar illumination condition than
their intensity appearances Figs. 6.9 (a), and the details of important facial features,
such as eyebrows, eyes, nose and mouth, are also strengthened. Plus, it can be seen in
Figs 6.10 that the similarities between the gallery image (the left one in Figs. 6.9 (a)) and
its probe ones (the right ones in Figs. 6.9 (a)), when they are represented as histograms,
are more marked within the gradient domain (Figs 6.10 (b-c)) than in the intensity
domain (Figs 6.10 (a)). Therefore, these leads us to apply LPOG on gradient images
for building LPOG representation. This process makes LPOG different from many
other intensity-based methods as well as gradient magnitudes and gradient orientations
based ones (e.g. [111, 117, 118, 115]) since it is gradient images based. It also enriches
discrimination power of LPOG feature vector with a wealth of meaningful visual features
from gradient images, including local contrast, edges, discontinuities properties, thus
making LPOG more robust against FR’s challenges such as illumination, pose and
time-lapse variations.

Secondly, the discriminant power of LPOG is built upon the usage of BELBP and LPQ
operators to extract local texture patterns from gradient images. The novel BELBP
operator inherits the efficiency of ELBP, since it is a ELBP variant, and encodes
macroscopic relation between one gradient pixel and its neighbors. The ideas of ELBP
about the nature orientation (horizontal) of important facial features (such as eyes,
eyebrows, mouth) and using a symmetric pair of ELBP for integrating both horizontal
and vertical information from a face image are augmented in BELBP with the oriented
block patterns when computing the accumulated images as they are not only present on
the used ellipse patterns but also on the block-wised neighborhoods. All of those aspects
result that LPOG contains rich micro patterns of gradient images as BELBP provides
it with such useful properties in a more efficient manner than ELBP [89]. Beside the
role of BELBP, LPQ operator has a significant impact on the robustness of LPOG
method as well. While BLEBP is based on binary thresholding of each pixel from an
accumulated gradient image with its neighbor, LPQ is based on quantization of STFT
phase responses and it extracts the local phase patterns from gradient images. LPQ was
proved to be strong against blurred faces [5], as a result its presence in LPOG equips
our approach with blur invariant property. On the other hand, LPOG is also strong to
uniform illumination, an attribute derived from LPQ [92].

6.3.2 Using LPOG for face recognition

Using LPOG method for feature extraction, a new FR system called LPOG whitened
PCA (LPOG WPCA) is formed by employing the WPCA based framework, whose are
detailed in Section 3.6 of chapter 3. In the classification stage, the weighted angle-based
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function, which is used to estimate the distances between projected feature vectors of
gallery and probe images, is applied due to the highest results it delivers.

6.3.3 Experimental results

For evaluating the performance of the proposed LPOG WPCA system, we proceed
experiments (with standard protocols) upon three large public face databases: AR [80],
FERET [96] and SCface [42]. Details of these experiments are presented in Section 3.2
of chapter 3.

To validate the illumination invariant characteristic of the LPOG method, the recog-
nition performance of its WPCA based framework without the usage of retinal filter
for illumination normalization, denoted as LPOG NP or LPOG WPCA NP in result
tables, is evaluated and analyzed in comparison with other systems.

Alongside LPOG WPCA’s results, the comparisons between them and those of other
gradient based methods, including ELBP WPCA, BELBP WPCA, and LPQ WPCA
(which are referred as ELBP, BELBP, LPQ in the comparison tables for short notations),
are also presented. ELBP WPCA, BELBP WPCA, LPQ WPCA are formed by using a
symmetric pair of ELBP, BELBP and LPQ on gradient images for feature extraction,
respectively, while other details of dimension reduction and classification stages are the
same as in LPOG WPCA. Lastly, tests with very low resolution probe face images
from SCface database are done to validate LPOG WPCA’s performance under video
surveillance context. All LPOG WPCA’s results are compared with other state-of-the-
art systems using the same evaluation protocols.

Besides recognition performance evaluations and details about LPOG’s parameters,
the speed of LPOG is also assessed and compared with some other feature extraction
methods via computational benchmarks on Fa image set of FERET database.

6.3.3.1 Results on AR database

It is apparent from table 6.7 and Figs. 6.11 that LPOG has the highest RRs (almost in
all probe sets of all experiments) and the performance differences with other gradient
based methods are even more obvious on difficult probe sets (such as 3, 7, 8, 9, 11, 12)
as well as when there is the influence of time-lapse (Exp 3 and Exp 4). This approves
for the approach we use in LPOG method when combining both BELBP and LPQ to
extract local patterns from gradient images rather than using them separately. Along
with the above conclusion, the increasing average accuracies from ELBP to BELBP (in
all four experiments) make a confirmation that BELBP is better than ELBP.

Another important conclusion based on comparison results in table 6.7 is that the
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Table 6.7: Rank-1 RRs (%) comparison between ELBP, BELBP, LPQ and LPOG
(WPCA) on AR database

Test/Method Probe set Avg1 2 3 4 5 6 7 8 9 10 11 12

Exp1

ELBP 100 100 91.7 100 100 100 94.8 92.5 94.8 97.8 97.8 94.8 97.0
BELBP 100 100 94.0 100 100 100 100 97.8 97.0 100 98.5 97.8 98.8
LPQ 100 100 91.7 100 100 100 97.8 97.0 97.0 99.3 99.3 99.3 98.4
PLPQMC NP 100 100 93.2 100 100 100 97.8 96.3 86.6 99.3 99.3 97.0 97.5
PLPQMC 100 100 94.7 100 100 100 97.8 96.3 90.3 100 100 97.8 98.1
LPOG NP 100 100 94.0 100 100 100 97.0 95.5 86.6 100 99.3 99.3 97.6
LPOG 100 100 94.0 100 100 100 100 98.5 97.0 100 100 99.3 99.1

Exp2

ELBP 100 100 93.2 100 100 100 97.5 94.9 97.5 97.5 94.9 92.4 97.3
BELBP 100 100 95.8 100 100 100 100 96.6 97.5 100 100 96.6 98.9
LPQ 100 100 94.9 100 100 100 97.5 94.9 96.6 100 100 100 98.7
PLPQMC NP 100 100 94.9 100 100 100 97.5 94.9 94.9 99.2 98.3 95.8 98.0
PLPQMC 100 100 94.9 100 100 100 98.3 94.9 94.9 100 98.3 99.2 98.4
LPOG NP 100 100 94.1 100 100 100 96.6 94.9 91.5 100 99.2 100 98.0
LPOG 100 100 96.6 100 100 100 100 97.5 100 100 100 100 99.5

Exp3

ELBP 98.3 100 73.7 98.3 100 94.9 82.2 71.2 73.7 94.1 88.1 83.1 88.1
BELBP 100 100 81.4 100 100 95.8 92.4 80.5 78.8 99.2 93.2 89.8 92.6
LPQ 99.2 100 78.8 100 100 97.5 85.6 78.8 74.6 98.3 95.8 91.5 91.7
PLPQMC NP 99.2 100 82.2 100 100 96.6 90.7 81.4 73.7 96.6 91.5 87.3 91.6
PLPQMC 100 100 82.2 100 100 100 90.7 81.4 78.0 97.5 95.8 91.5 93.1
LPOG NP 100 100 80.5 100 100 97.5 89.0 82.2 72.0 99.2 95.8 92.4 92.4
LPOG 100 100 81.4 100 100 97.5 92.4 82.2 83.9 99.2 95.8 92.4 93.7

Exp4

ELBP 97.4 97.4 74.1 100 100 97.4 87.2 74.4 65.8 96.6 92.3 88.0 89.2
BELBP 100 100 81.4 100 100 98.3 93.2 84.6 78.8 97.5 92.3 88.1 92.9
LPQ 98.3 99.2 77.6 100 100 99.2 87.2 82.9 75.2 96.6 94.9 89.7 91.7
PLPQMC NP 99.2 99.2 81.9 100 100 99.2 88.9 81.2 79.7 97.4 91.5 87.2 92.1
PLPQMC 100 100 81.9 100 100 100 90.6 81.2 81.2 97.4 92.3 89.7 92.9
LPOG NP 100 100 83.1 100 100 99.2 89.7 84.6 71.8 97.4 94.9 91.5 92.7
LPOG 100 100 83.1 100 100 99.2 93.2 84.6 83.9 97.4 94.9 91.5 94.0

proposed method is robust to lighting changes as it achieves very high RRs when
no illumination normalization is employed. The performance improvement brought
by retinal filter is clearly seen only on Sun glasses probe sets (numbers 7, 8 and 9),
especially with the one of number 9 (Sun glasses with right light on), while it is negligible
or not existed upon the rest ones, in all four experiments.

More concretely, it can be seen from table 6.7 that LPOG shows a performance dis-
tinction against other gradient based methods when reaching over 99.1% of accuracy in
Exp 1, Exp 2, and over 93.7% in Exp 3, Exp 4. The average result of LPOG WPCA
is 99.3% when Exp 3 and Exp 4 are excluded. According to the best of our knowledge,
these are the best results on AR database with just SSPP for both training and gallery
sets. It has perfect accuracy on 8 probe sets of Exp 1 and 10 probe sets of Exp 2.
These excellent results confirm the efficiency of LPOG WPCA against variations of
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(d) Experiment 4

Figure 6.11: Comparisons of recognition performance between LPOG and other gradient
images based methods on AR database.

illumination, facial expression, occlusion and time-lapse. More concretely, our system
gains perfect accuracy with neutral images under the effect of illumination (probe sets
4-6) in Exp 1 and Exp 2 while missing only 4/236 images in Exp 3 and Exp 4. When
occlusions are present (probe set 7-12), the performance reduction is small, from 1.5%
to 3.0%, in spite of the fact that the test images are partially occluded about 25%, 40%
by sun glasses and scarves, respectively, if time-lapse variation is excluded (Exp 1 and
Exp 2).

Among all facial expressions (Smile, Anger, Scream), LPOG WPCA’s results on Scream
probe sets are the lowest (all experiments). They are even lower than those of all other
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Figure 6.12: Comparisons of recognition performance between LPOG and PLPQMC
on AR database.

probe sets when there is no presence of time-lapse variation (only in Exp 1 and Exp
2). This is due to the radical deformations of important facial features (eyes, eyebrows,
mouth, etc.) and the overall shape of the face when people scream. Even though the
time-lapse interval is only 14 days, it makes sharp performance degradations from Exp 1,
Exp 2 to Exp 3, Exp 4, respectively (about 5.4%). The worst performance declinations
are on the two illumination affected Sun glasses probe sets (8 and 9).

Additionally, one can observe in table 6.7 and Figs. 6.12 that LPOG surpasses PLPQMC,
one of our propositions based on Monogenic components and Patch based LPQ (PLPQ)
within chapter 5, in all four experiments. This performance superiority presents under
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both cases when the retinal filter is used with the two methods (LPOG versus PLPQMC)
or not (LPOG NP versus PLPQMC NP).

Table 6.8: Rank-1 RRs (%) of LPOG WPCA in comparison with other
contemporary systems on AR database using the same evaluation method

1 2 3 7 10
Method Smile Anger Scream Glasses Scarf Classes1

Exp 1
String face [21] 87.5 87.5 25.9 88.0 96.0 100
Sparse coding [129] N/A2 94.7 91.0 100
DMMA[78] 99.0 93.0 69.0 N/A2 100
SIS [75] 99.0 99.0 98.0 100
PLD [54] 99.0 100 97.0 100
Sparse LF [76] N/A2 100 99.2 126
3D [10] 100 100 97.0 N/A2 100
LPOG NP 100 94.0 97.8 100 134
LPOG 100 94.0 100 134

Exp 2
LGBP[135]

N/A2

62.0 96.0 50
Sparse coding [129] 80.3 72.7 100
String face [21] 76.0 88.0 100
IRF [141] 82.5 84.0 120
SIS [75] 86.0 96.0 90.0 100
Sparse LF [76] N/A2 96.6 96.6 119
LPOG NP 100 94.1 96.6 100 118
LPOG 100 96.6 100 118

Exp 3
S-LNMF [90] 62.0 N/A2 27.0 49.0 55.0 100
Method in [84] N/A2 52.3 54.2 81.3 80
PLD [54] 86.0 90.0 89.0 100
3D [10] 99.0 99.0 82.0 N/A2 100
Bag of words [67] 97.5 97.5 77.3 77.3 89.9 119
LPOG NP 100 80.5 89.0 99.2 118
LPOG 100 81.4 92.4 99.2 118
1 : The classes column is the number of persons whose images are used in
experiments.

2 N/A: Not available result.

Results in table 6.8 clearly shows that LPOG WPCA system substantially outperforms
all other state-of-the-art competitors in all three experiments. The margins between
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LPOG WPCA’s results and other methods increase from Exp 1 to Exp 3, particularly
on Scream and Glasses probe sets, which are the most difficult cases. Only our system
that yields perfect RRs on 4/5 probe sets of Exp 1 and Exp 2 as well as 2/5 probe sets
of Exp 3. This is an important superiority of our method over the others, especially
considering that it uses all available images from AR database while almost others
did not (refer to the column Classes of table 6.8 for details). Besides, surprisingly,
even when the retinal filter is not used, the LPOG WPCA framework (with results in
the LPOG NP rows) consistently surpasses all cited systems. By this, the illumination
invariant of the proposed method is convincingly verified.

Apart from above observations, our results are not compared with SRC based systems
([122], [30], [66]) and SLF-RKR [127], which were claimed to be robust to occlusion
variations, because of some common shortcomings:

1. The authors did not follow a well-defined protocol when using random ([30], [66])
or unrevealed [122] selections of images for their experiments. Besides, only at
most 120 subjects’ images were used, thus making it unfair to compare them with
other methods, including ours.

2. As noted earlier (refer to Section 2.2.5 in chapter 2 for more details), methods
in ([127], [122], and [66]) used multiple samples per person for training stage (at
least 4 images) or the results were not provided as RRs [30].

6.3.3.2 Results on FERET database

Frontal FERET image sets

Table 6.9: Rank-1 RRs comparison between ELPB, BELBP, LPQ and LPOG (WPCA)
on FERET database using standard protocol [96]

ELBP BELBP LPQ LPOG
Fb 99.4 99.7 99.6 99.8
Fc 100
Dup I 92.8 96.5 95.3 97.4
Dup II 92.3 97.0 94.9 97.0
Avg 96.7 98.5 97.8 98.8

Results in table 6.9 evidently demonstrate the effectiveness of the LPOG method as it
substantially surpasses ELBP, BELBP, LPQ on all four probe sets. The dominance of
LPOG over those methods are clearer and more cogent on Dup I and Dup II, the most
difficult probe sets of FERET database (see table 6.10 for more details), on which great
performance improvements are shown. These findings are exactly in accordance with
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those upon AR database (table 6.7) and our aforementioned expectations from LPOG.
Again, one can observe without difficulty the increasing performance enhancements
from ELBP to BELBP as well as the advantages of fusing both BELBP and LPQ (at
feature level) in LPOG over just using them separately.

Table 6.10: Rank-1 RRs (%) comparison of LPOG based systems with other state-of-
the-art results on the FERET database [96]

Method Fb Fc Dup 1 Dup 2 Average
HMBP [130] 98.1 98.5 75.8 75.2 89.0
CHG [22] 97.5 98.5 85.6 84.6 92.6
Tan et al. [113] 98.0 98.0 90.0 85.0 94.2
LMG [94] 99.8 100 89.2 86.8 95.3
ESRC [30] 97.3 99.0 93.8 92.3 95.9
MS-LPQ [17] 99.2 100 92.0 88.0 95.9
EPFDA [104] 99.6 99.0 92.0 88.9 96.1
POEM PDO [118] 99.7 100 91.7 90.6 96.4
FLPGMP [107] 99.0 99.0 94.0 93.0 96.9
G-LQP [52] 99.9 100 93.2 91.0 97.0
MBC-F [128] 99.7 99.5 93.6 91.5 97.0
GSF [123] 99.6 99.5 94.0 91.5 97.1
PLPQMC NP 99.6 100 95.4 94.0 97.8
GOM [16] 99.9 100 95.7 93.1 97.9
LPOG WPCA NP 99.7 100 96.1 94.4 98.1
SLF-RKR [127] 99.7 99.5 96.3 94.4 98.1
PLPQMC 99.7 100 96.8 95.7 98.4
LPOG WPCA 99.8 100 97.4 97.0 98.8

According to results in table 6.10, it is indisputable that LPOG WPCA convincingly
and significantly outperforms other state-of-the-art systems on FERET database using
standard protocol [96]. Our method is proved to be efficient to facial expression and
illumination variations when it achieves perfect accuracy (100%) on Fc set and only
misses two images on Fb set. But the most impressive results are on time-lapse variation
probe sets: Dup I and Dup II, where LPOG WPCA gains 97.4% and 97.0% RRs,
respectively, while the best published ones in the literature are only 96.3% and 94.4%.
These numbers surely confirm the robustness of LPOG WPCA against time-lapse
variation, which is widely known as one of the most difficult challenges associated to
FR. From the best of our knowledge, our system, with its average accuracy of 98.8%,
establishes the best results upon FERET database.

Additionally, it can be readily seen that, without using any preprocessing method for
illumination normalization, PLOG WPCA attains very impressive results:
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00277fb010_940422 00368fb010_940422

(a) Fb images

00185fa010_940128 00463fa010_940422

(b) Wrong assigned Fa

00277fa010_940422 00368fa010_940422

(c) True Fa

Figure 6.13: Two Fb probe images (a), their wrongly assigned ones (b) and their correct
gallery ones (c).

• Perfect recognition performance on Fc set, in which the probe images are strongly
affected by illumination variations.

• Comparable with the best reported system in the literature. Indeed, the proposed
system has the same overall RR with SLF-RKR [127] while surpassing the rest
ones. Since the effect of lighting changes is elusive and omnipresent, it is not
isolated in Fc but impairs all four probe sets. Hence, the high RRs of LPOG
WPCA on the whole frontal FERET database are big evidences for its efficiency
against variable lighting.

From above remarks, we conclude that LPOG is an illumination invariant feature
extraction method.

Besides, in comparison with PLPQMC method presented in chapter 5, the results
from tables 6.10 and 6.7 agree with each other as in both databases, LPOG outper-
forms PLPQMC on all probe sets regardless the usage of retinal filter for illumination
normalization or not.

As the proposed method only misses two probe images of the Fb set, it is tempt-
ing to shed light on the cause of that failure. To this end, we present together in
Figs. 6.13 (a-c) two missed Fb probe images (a), their wrongly recognized ones (b) and
their expected galleries (c). Surprisingly, three images of each case seem to share one
identical identity. It is worthwhile indicating that we determine wether one probe
image is correctly recognized to have the same identity with one assigned gallery
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image based on their annotated identities, which are the first five characters in the
images’ file names and can be seen in Figs. 6.13 (a-c) (the file name of each image
is the text below it). By this, images 00277fb010_940422 and 00368fb010_940422
(Figs. 6.13 a), having identities 00277 and 00368 respectively, were incorrectly identi-
fied since they were assigned to images 00185fa010_940128 and 00463fa010_940422
(Figs. 6.13 b), whose identities are 00185 and 00463, correspondingly. Their true
and expected gallery images, in order, are the ones named as 00277fa010_940422
and 00368fa010_940422. However, it is probably that they belong to two iden-
tical individuals and the proposed system was correct. To clarify this, the orig-
inal versions of images in Figs. 6.13 are displayed in Figs 6.14. From that fig-
ure, we can conclude that the three images 00277fb010_940422, 00185fa010_940128
and 00277fa010_940422 belong to one person. The same conclusion is drawn for im-
ages 00368fb010_940422, 00463fa010_940422 and 00368fa010_940422. Hence, our
system was turned out to be right and its RR on Fb set of FERET is indeed 100%. To
the best of our understanding, this is the first time a FR system reaches such perfect
accuracy. Nevertheless, as the finding about these two cases of Fb set above has never
been detailed in any study on the FERET database and all the earlier experiments were
conducted upon the same datasets, we do not change the reported RRs on the Fa set
of every system presented in this thesis.

Non-frontal FERET image sets

Table 6.11: Rank-1 RRs comparison between ELBP, EBLBP, LPQ and LPOG (WPCA)
on b-series of FERET database

ELBP BELBP LPQ LPOG
−40◦-bh 81.5 90.5 91.5 95.0
−25◦-bg 99.5 100 100 100
−15◦-bf 99.5 100 100 100
+15◦-be 100 100 100 100
+25◦-bd 99.3 100 100 100
+40◦-bc 81.5 92.0 92.5 95.5
Avg 93.6 97.1 97.3 98.4

It is easily noticed that the numbers in table 6.11 are consistent with those from table 6.7
and 6.9, with respect to accuracy performance. These results, in addition to prove the
efficiency of LPOG WPCA framework, help to confirm again the effectiveness of the
LPOG method, when dealing with pose variations challenge. Besides, the RRs are
enhanced from ELBP to BELBP as expected. These enhancements are more marked
when the pose angles are larger (from ±15◦ to ±40◦).

From comparison results provided in table 6.12, we can conclude that LPOG WPCA
is robust against pose variation since it actually outperforms other contemporary com-
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00277fb010_940422 00368fb010_940422

(a) Fb images

00185fa010_940128 00463fa010_940422

(b) Wrong assigned Fa

00277fa010_940422 00368fa010_940422

(c) True Fa

Figure 6.14: Original versions of images in Figs 6.13.

petitors. Admittedly, this is an outstanding capability of our system when taking into
account the fact that it is only a general framework for FR while almost others (in
table 6.12), except SLF-RKR [127], LSED [121], RFC [20], and GLHO [100], are dedi-
cated ones with special tactics for tackling the problem of pose changes. Besides, our
method is the only one that attains perfect RR (100%) under minor changes in head
pose (within ±25◦). This is the best known result so far. Furthermore, leading systems,
such as DWFF [86], MRF [48], 3D Pose Norm [6], CPN [31] and PAF [131], require a
lot of landmark points of the face images or 3D information to synthesize a face model
or for extracting facial features to proceed the recognition while our system only need
two eyes’ coordinates. Additionally, all the top six systems (in table 6.12) are Gabor
wavelets based approaches, which are proved to be slower than our (see table 6.16).
With its average success rate of 98.4% on b-series images, LPOG WPCA achieves an
overall average RR of 98.6% on both frontal and non-frontal probe sets.

Once again, and in consistence with comparison results in tables 6.8 (on AR database)
and 6.10 (on frontal FERET dataset), one can observe in table 6.12 that even when no
preprocessing method is used to handle illumination changes, the proposed system still
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Table 6.12: Rank-1 RRs comparison of LPOG WPCA with other leading
systems on FERET b-series.

Method −40◦ −25◦ −15◦ +15◦ +25◦ +40◦ Avgbh bg bf be bd bc
SLF-RKR [127] N/A1 55.0 100 96.0 57.0 N/A1 N/A1

LSED [121] *2 78.0 84.0 88.0 89.0 88.0 83.0 85.0
CCA [64] *2 81.0 91.0 92.0 94.0 89.0 80.0 87.8
PAN [39] 81.5 93.0 97.0 98.5 91.5 78.5 90.0
RFC [20] 84.2 90.2 94.0 93.2 92.5 89.5 90.6
ADMCLS [105] 85.0 94.0 96.0 95.0 94.0 82.0 91.0
LMG [94] N/A1 91.5 98.0 98.5 93.5 N/A1 N/A1

MRH [7] *2 87.0 94.0 98.0 99.0 96.0 74.0 91.3
GLOH [100] **3 81.1 94.5 100 100 94.5 81.1 91.9
DWFF [86] 87.5 98.0 100 99.0 98.5 82.4 94.2
MRF [48] 91.0 97.3 98.0 98.5 96.5 91.5 95.5
3D Pose Norm [6] 90.5 98.0 98.5 97.5 97.0 91.9 95.6
CPN [31] 94.5 98.0 98.5 99.0 98.5 97.0 97.6
LPOG WPCA NP 93.5 100 99.5 94.0 97.8
PLPQMC 95.0 100 99.5 95.0 98.3
LPOG WPCA 95.0 100 95.5 98.4
PAF [131] 98.0 98.5 99.25 98.5 98.0 98.6
1 N/A: Not available result.
2 *: The RRs of the method are estimated from plotted figures.
3 **: The RRs on ±25◦ and ±40◦ subsets are average results.

offers a great performance on pose varied images as there is only one method, PAF [131],
whose RRs surpass what it gains. Thus, in combination, those results evidently confirm
the robustness of the LPOG facial representation under illumination variations.

6.3.3.3 Results on SCface database

In this Section, to investigate the performance of LPOG under video surveillance context,
we perform two experiments on SCface database and report our results with two distinct
training sets: the frontal Fa set of FERET database [96] (denoted as Our-F) like in
PCA [42] and PLPQMC-F, and frontal mug-shot images (denoted as Our-S) like in
DSR [140], ELBP(h+v) [89] and PLPQMC-S.

As can be seen in table 6.13 and table 6.14, the LPOG WPCA framework significantly
outperforms other methods on all probe sets in both experiments. It has average
performance improvements of 8.1% and 4.4% with DayTime and NightTime experiments
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Table 6.13: Rank-1 RRs (%) comparison with other state-of-the-art results on SCface
database using the DayTime protocol [42]
Probe set PCA DSR ELBP(h+v) PLPQMC-F Our-F PLPQMC-S Our-S
cam1_1 2.3

N/A1

43.1 64.6 62.3 70.0 69.2
cam1_2 7.7 56.2 63.9 71.5 68.5 73.1
cam1_3 5.4 45.4 42.3 45.4 43.9 47.7
cam2_1 3.1 36.9 46.9 47.7 54.6 57.7
cam2_2 7.7 50.8 57.7 56.2 65.4 66.2
cam2_3 3.9 42.3 37.7 43.1 41.5 48.5
cam3_1 1.5 34.6 42.3 36.2 49.2 49.2
cam3_2 3.9 46.9 59.2 59.2 64.6 63.1
cam3_3 7.7 51.5 43.1 49.2 49.2 54.6
cam4_1 0.7 32.3 46.9 39.2 47.7 43.9
cam4_2 3.9 50.0 68.5 66.9 72.3 75.4
cam4_3 8.5 50.8 46.2 52.3 51.5 58.5
cam5_1 1.5 36.2 54.6 43.1 55.4 53.9
cam5_2 7.7 32.3 51.5 53.9 56.2 52.3
cam5_3 5.4 31.5 31.5 36.2 40.0 38.5
Average 4.7 20.2 42.7 50.5 50.8 55.3 56.8
1 N/A: Not available result

Table 6.14: Rank-1 RRs (%) comparison with other state-of-the-art results on SCface
database using the NightTime protocol [42]
Camera/Distance PCA[42] ELBP(h+v) PLPQMC-F Our-F PLPQMC-S Our-S

cam6_1 1.5 9.2 10.0 13.1 14.6 13.1
cam6_2 3.1 15.4 22.3 22.3 24.6 23.9
cam6_3 3.9 25.4 25.4 26.2 25.4 31.5
cam7_1 0.7 13.1 15.4 17.7 15.4 17.7
cam7_2 5.4 13.1 15.4 17.7 22.3 20.0
cam7_3 4.6 13.9 20.8 19.2 22.3 19.2
Average 3.2 15.0 18.2 19.4 20.8 20.9

(with Fa training set), respectively, in comparison with ELBP(v+h) [89], the best
reported results in the literature. Amongst probe images at three distances, the ones
of distance 2 (2.6m) bring the highest RRs while those of distance 1 (4.2m) have the
lowest accuracies. Since camera 1 has the best resolution [42], its accuracy is higher.
One can also notice the accuracy discrepancies between DayTime and NightTime probe
sets (i.e., 50.8% versus 19.4% on average RR). These tremendous performance drops are
caused by the extreme effect of IR night vision mode’s illumination conditions on the
probe images of NightTime test. The illumination variations, therefore, will continue
being a substantial challenge to FR systems. Another conclusion we can draw from
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these results is that the accuracy rates of LPOG WPCA are higher (50.8% versus 56.8%
in DayTime tests and 19.4% versus 20.9% in NightTime tests on average RR) when
using images of test objects for training than a totally different image set (the frontal
Fa set of FERET database).

Specifically, when comparing the overall RRs between LPOG and PLPQMC, LPOG is
the winner as it surpasses PLPQMC in both protocols and with two training sets: the
Fa set from the FERET database and the mugshot set of the SCface database. This
victory of the proposed method is consistent with the comparison results upon the AR
and FERET databases in the previous Sections.

Although LPOG WPCA’s results on SCface database are interesting, they are far below
the ones upon AR, FERET databases previously reported (in tables (6.7-6.12)). In our
opinion, the striking contrast between gallery images, which are high quality frontal
mug-shot taken under controlled lighting condition, and probe images, that are low
resolution ones (small in size and very poor in quality) acquired under uncontrolled
conditions (with variations due to blur, pose, illumination, distance) by varying quality
surveillance cameras, is the reason for those massive performance gaps. These are also
the proofs that FR is far from being a completed research, at least in video surveillance
context. Besides, this suggests a pressing need of more attention from scientists on FR
in video surveillance systems with more powerful methods.

6.3.3.4 Parameters setting

Table 6.15: Details of divided sub-regons and window size used with LPOG
AR FERET SCface

Window size (M) 11 11 9
BELBP sub-regions 7x9 9x9 3x3

LPQ sub-regions 8x9 10x10 4x4

There are several parameters in LPOG method: the BELBP radiuses (horizontal and
vertical), its number of neighborhood pixels, the window size (M) and ρ associated to
LPQ, and the number of divided sub-regions for each local patterns image. All the
values of these parameters (except the window size and the divided sub-regions) are
selected through empirical experiments and fixed when testing with all databases.

We use two symmetric pairs of radiuses, (5, 3) and (3, 5), and 8 neighborhood pixels in
BELBP to build LPOG feature vectors. LPQ’s parameter ρ is assigned as 0.89. Details
of sub-regions and window size used with BELBP and LPQ upon different databases
are shown in table 6.15. One can notice that on SCface database, because of their quite
small images’ sizes (48x48 resolution), we just use 3 × 3 and 4 × 4 sub rectangles for
BELBP and LPQ, respectively.

152



6.3. Local Patterns of Gradients for Face recognition

6.3.3.5 Computational cost

For examining computational cost of the LPOG method, its Matlab implementation
is benchmarked by the test upon the Fa image set of the FERET database, whose
description is in Section 4.1.4.5 of chapter 4. The obtained results (total required time,
extraction time and speed-in terms of number of images per second) are compared with
those of initial step of Gabor wavelets (just generating Gabor wavelets components at
5 scales and 8 orientations) based approaches, and some advanced feature extraction
algorithms such as MBC-A, MBC-O [128], PLPQMC (one of our propositions presented
in chapter 5 of this dissertation) as well as LPQ [5] and BELBP.

Table 6.16: Computation time of LPOG in comparison with other feature ex-
traction methods
Method Image size Time

(seconds)
Extraction time
(miliseconds)

Images/second

LPQ 128× 128 5.45 4.56 219
BELBP 128× 128 7.4 6.19 162
PLPQMC 128× 128 27.91 23.34 43
LPOG 128× 128 27.02 22.59 44
MBC-A [128]*1 150× 130 30.54 25.54 39
MBC-O [128]*1 150× 130 87.00 72.74 14
Gabor wavelets 88× 80 96.23 80.46 12
1 *: We used the Matlab code provided by the author.

The comparison results from table 6.16 apparently indicate the fast speed of the LPOG
method, despite the fact that it requires about twice the total time of BELBP and LPQ.
This is because LPOG operates on two gradient images while BELBP and LPQ only
work with one intensity image of the same size. Our method is around 3 times faster
than MBC-O [128]. As MBC-F [128] is the fusion approach which needs MBC-A, MBC-
O and MBC-P (which extracts LXP [128] features from phase component of monogenic
signals and has the same speed as MBC-O), LPOG is obviously faster than this method.
One can observe that the initial step of Gabor based methods is really slow since it
could only process 12 images in a second, even though this operation works on quite
smaller images of 80×88 resolution. More impressively, LPOG is faster than any feature
extraction algorithms in advanced systems, whose average RRs on FERET database
(in table 6.10) are at least 96.9%, since they are Gabor wavelets based (EPFDA [104],
FLPGMP [107], G-LQP [52], GSF [123], GOM [16] and SLF-RKR [127]), or Monogenic
based (MBC-F [128]), which are all slower than our method. Also, since its first step
is just generating two directional gradient images whilst PLPQMC needs to produce
6 DBCs for doing the feature extraction process, LPOG is slightly faster PLPQMC.
Having the processing speed of 44 images per second, LPOG is at least 3.5 times faster
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than any Gabor wavelets based feature extraction methods and it is definitely capable
of being used in real-world applications, including video surveillance context.

6.3.4 Conclusions

Motivated by the results of visual perception researches ([61], [56], [49]), and the ben-
efits of BELBP and LPQ operators in local texture patterns encoding, we presented
the Local Patterns of Gradients (LPOG), a novel feature extraction method for FR.
Firstly, a new variant of ELBP is proposed and named as Block-wise ELBP. Through
comparative experiments’ results upon AR and FERET databases, BELBP is proved
to be more efficient than ELBP. Then, LPOG method is formed by exploiting both
BELBP and LPQ operators on gradient images to generate LPOG images. Each LPOG
image is next partitioned into non-overlapped sub-regions from which we calculate the
histogram sequences. The concatenations of histogram sequences from each image are
then incorporated to constitute the LPOG feature vector of the input image. Equipped
with LPOG for feature extraction, we have proposed a novel, unified, single sample per
person FR framework called Local Patterns of Gradients Whitened Principal Compo-
nents Analysis (LPOG WPCA) by using WPCA for dimension reduction, k-NN and
weighted angle-based distance function for classification.

Extensive experiments conducted on three large scale public face databases prove the
efficiency and effectiveness of the proposed method. Comparison results upon these
databases strongly show that LPOG WPCA convincingly outperforms other contempo-
rary systems. The method achieves stable, consistent and outstanding performance with
respect to a diversity of challenges such as single sample per person, illumination, facial
expressions, occlusion, time-lapse, pose variations and low resolution probe images. In
more details, our system gains, for the first time ever, 99.3% average recognition rate
on AR database (without time-lapse variation) using just one sample per person for
training and gallery sets, 98.6% overall accuracy on frontal and non-frontal probe sets
of FERET database. Meanwhile, it also outperforms other methods and attains good
performance on SCface database, whose probe images are extremely challenging. To
the best of our knowledge, these are the best results in the FR literature.

In addition to the robustness in feature extraction, one of the most prominent properties
of the LPOG method is its fast processing speed. LPOG is faster than many advanced
feature extraction methods, which are usually based on Gabor wavelets. With its
processing speed up to 44 images per second (provided by an un-optimized Matlab
implementation), LPOG is certainly able to be used in any real-world application.

As a summary, we highlight here some representative characteristics of LPOG method:

1. LPOG extracts local texture patterns from gradient images, this makes it contains
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many discriminative features for FR and provides it with illumination invariant
capability. These attributes come both from the fact that LPOG works on gradient
images instead of intensity images, and from the capacity of BELBP and LPQ
operators.

2. LPOG is strong to blurred images, a characteristic derived from LPQ. This ac-
counts for the high recognition rates it achieves on SCface database.

3. LPOG is robust against many challenging factors such as: facial expression, oc-
clusion, pose, time-lapse variations and low resolution images.

4. Illumination insensitivity is a great property of LPOG description. This is mainly
stemmed from the fact that LPOG features are extracted from gradient images
where the illumination effects are highly reduced.

5. The method is computational efficiency and can be used in real life scenarios.

Notwithstanding the standout performance we have shown in this paper, the results also
confirm that FR remains an open problem, especially under the effects of the hardest
challenges such as time-lapse, pose, illumination variations, and low resolution probe
images.

6.4 Conclusions

In this chapter we have focused on feature extraction based on gradient images and have
presented two novel methods referred as Ellitical Patterns of Oriented Edge Magnitude
Images (EPOEM) and Local Patterns of Gradients (LPOG).

With the aim to enhance the discriminatory features of POEM, a description based on
LBP, an horizontal ELBP descriptor is proposed to be used in EPOEM to extract local
patterns from oriented edge magnitudes images of different orientations. As expected,
EPOEM has been demonstrated tobe more effective than POEM under various FR issues.
In addition to that, the efficiency of the method was also verified when it attained very
promising results upon AR, FERET and SCface databases. Besides, however, the
existence of a weakness of EPOEM is figured out. To rectify this drawback, several
suggestions have been given.

Inspired by the advantages of the gradient images (horizontal and vertical) over magni-
tude and orientation components, as well as the intensity appearance of a face image, and
by introducing Block-wised ELBP (BELBP), a new variant of ELBP, then employing it
together with LPQ to capture local features from gradient images, we proposed Local
Patterns of Gradients, a robust yet low computation cost feature extraction method for
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face recognition. In applying LPOG for FR, the WPCA based framework is employed
to build a new SSPP FR system, in which the weighted angle based distance function
is used to measure the similarities between probe images and gallery ones. Numerous
experiments on three public databases (AR, FERET and SCface) have been undertaken
and the results show that the proposed method outperforms almost all other existing
systems and is robust against a variety of challenges. Impressively, LPOG is an illu-
mination invariant facial representation as it gained amazing RRs without relying on
any illumination normalization technique. Additionally, due to its low complexity, the
method is viable to be implemented in real world applications.

In comparison with other methods in chapter 4, which are intensity-based features, and
the one based on Monogenic components and PLPQ in chapter 5 (PLPQMC), our facial
representations described within this chapter are gradient images based features. In
fact, EPOEM was proposed just after the appearance of horizontal ELBP as a proof
of the superiority of ELBP over LBP when applying in a multi-resolution method.
Afterwards, the PLPQMC was introduced, and then the LPOG came, for addressing
the aim of more sophisticated descriptions. As empirically shown, LPOG has achieved
the highest results and in our standpoint, it has met our objectives with this thesis the
most. Nevertheless, we do not slavishly believe that these results are the best a FR
system can gain. Instead, we keep churning out new, more advanced methods in the
future work.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

With the main focus on feature extraction, the task being at the heart of every Face
recognition system, this doctoral dissertation has proposed several methods targeted
to robust facial representations against a diversity of challenging factors, including
variations of illumination, expression, occlusion, time-lapse and pose, and unconstrained
low resolution probe images. Another important aspect is aimed at low computational
cost solutions that are feasible to apply in real life applications.

To address the above objectives, while how to devise such a method is not available in
words in the literature, we have explored into the insights of knowledge gained over years
from Image processing, Visual perception and Face recognition fields. It is worth noting
that merely mimicking how human beings recognize each others based on their faces, or
copying what has been done, does not lead to a right and sufficient approach, and is not
the way we have followed. However, by analyzing pros and cons of the currently used
methods and distilling thoughtful observations learnt from the results of those study
areas into detailed steps, new methods were proposed.

Before enumerating what has been made in this thesis, we wish to recount in brief, and
in order of time, the underlying concepts of all the propositions we have done. Our
first finding is that facial information is oriented in horizontal direction and important
facial features, like the eyes and mouth, are in shapes of horizontal ellipse. This is the
motivation for the horizontal Elliptical Local Binary Pattern (ELBP) descriptor, which
is further applied to construct the Elliptical Patterns of Oriented Edge Magnitudes
(EPOEM) description. Afterwards, the complementary property of a symmetric pair
of a horizontal and a vertical ELBP is discovered. Then, advantages of Monogenic
filter’s directional bandpass components and Local Phase of Quantization (LPQ) are
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found and exploited in the Patch based LPQ of Monogenic components (PLPQMC)
method. Lastly, the Local Patterns of Gradients (LPOG) facial representation is inspired
from the fact that horizontal and vertical gradient images contain a large amount of
meaningful features while being unaffected by variable lighting, and from the efficiency
of Block-wised ELBP, a new variant of ELBP, and LPQ descriptors.

Amongst those methods, PLPQMC and LPOG are the most preeminent ones for which
we have strived. But it should be underlined that they are not a matter of luck and
the details of their methodologies did not come instantly or by coincidence. Instead,
they are logical results of a long-term continuous progress of attacking FR challenges
based on elementary descriptors, like ELBP and LPQ, while pursuing some common
key principles derived from analysis of existing systems and our results (in chapters 2
and 4): 1) the local features extracted by elementary methods on intensity image are
not adequate for a robust facial representation. By some manner, the extraction process
must be effectively carried out on multiple components generated from an input image
and it is better if they are less affected by illumination variations. 2) The larger amount
of facial information these components retain, the more robust features the resulting
vector has. 3) Though it will be a long period of time before we can see a perfect FR
system, however, there are always some ways to improve the efficiency of a feature
extraction method. For this, we did not stop, because the solutions did not reach
the perfection stage. One can raise a question like that: Why did you continue when
EPOEM and PLPQMC, at some level of accuracy and in some certain circumstances,
were enough? Fortunately, their results are good with controlled conditions, but under
uncontrolled scenarios, i.e. video surveillance context, poor performance is the best
they gained. Spontaneously, we have struggled to find new and more efficient feature
extraction strategies with the hope that, someday, the newly discovered things are
sufficient to propose a novel method, because we believe, that day will come.

The list below are some of the main contributions of the present thesis:

• Despite the existence of many variants, LBP is still widely used as an elementary
descriptor for building up numerous advanced facial feature extraction methods. This
is probably changed with the advent of ELBP, our novel method detailed in chapter 4,
due to its substantial performance superiority over LBP, especially under challenging
obstacles, while having the same complexity and computing cost (horizontal ELBP) or
does not affect the speed too much (when the combination of horizontal and vertical
ELBP is used). Based on oriented characteristics of facial information and critical
features, such as eyes and mouth, we showed that horizontal ELBP, using a horizontal
ellipse sample for computing ELBP patterns, is more relevant and efficient for FR than
LBP, which is originally designed for texture classification problem. Further, realizing
that a pair of symmetric ELBPs (horizontal and vertical) are complementary descriptors,
they are so combined to capture more useful features from face images. Delivering
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promising results when plugging in the WPCA based framework and owing a rapid
processing speed, ELBP is potential for extracting local features in more sophisticated
methods and using in other face analysis related tasks, for instance face detection and
gender classification.

• Through extensive experiments under various conditions, LPQ, a phase based local
descriptor whose details are in Section 4.2.2 of chapter 4, was found much more robust
than a lot of Gabor wavelets, LBP and its variants based methods. The merits of
LPQ are blur tolerant, uniform illumination invariant and fast speed. Being elementary
methods and proceeding the feature extraction step on intensity image, which is largely
affected by lighting changes and has noise, it is understandable that the performance of
ELBP and LPQ can not competing with the best approaches in the literature. However,
importantly, these basic descriptors have their places, they are cornerstones in founding
more robust descriptions. This was evidently illustrated in chapters 5 and 6 where
they were exploited to constitute PLPQMC, EPOEM and LPOG, three powerful facial
representations in this thesis.

• Description in chapter 5 are details of PLPQMC, a novel feature extraction method
for FR. Based on Patch based LPQ, a new variant of LPQ, and the Directional Bandpass
components generated by Monogenic filter, the descriptor has many valuable attributes,
e.g. tolerant to blurred images, high discriminant features and illumination insensitivity.
Experimental results showed that our method significantly outperforms almost all other
state-of-the-art systems when coping with a large spectrum of difficulties. Even with-
out the usage of any illumination normalization technique, it accuracy performance is
comparable to the leading rivals. Regarding to the computational aspect, the proposed
method is faster than all other advanced algorithms based on Gabor wavelets and
Monogenic filter.

• In the first part of chapter 6, a new variant of POEM, referred as EPOEM, was
presented. To improve the discriminatory power of local patterns extracted from oriented
edge magnitudes images in POEM, the horizontal EBP descriptor was applied instead
of LBP one. As expected, EPOEM was empirically shown its superiority over POEM
and gained very encouraging results in comparison with state-of-the-art systems.

• To mining local patterns hidden inside gradient images, which serve as the supply of
facial features rather than the intensity appearance, Block-wised ELBP (BELBP), a
refined variant of ELBP, is applied together with LPQ directly on them. By this way,
the Local Patterns of Gradients, an elite facial feature extraction method is formulated
with many desirable characteristics. Chiefs among these are blur insensitivity and
illumination invariant. They are the fruition of the methodology in which the LPOG
vector is built. It contains two kinds of local features: the micro textures from BELBP
and the phase based textures from LPQ. While BELBP features contribute to the general
discriminative ability of the method, LPQ ones provide it with blur tolerant attribute.
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Since the extraction process is performed on gradient images, which carry a number of
helpful visual features, e.g. local contrast, strong edges, discontinuities properties, and
especially are less influenced by illumination variations, the resulting representation is
thus more discriminant and robust to lighting changes. The robustness of the method
was convincingly validated when it substantially outperformed all other considered
systems and established the best results on all three tested databases. Moreover, having
a fast processing speed, LPOG is capable of applied in real time scenarios, even under
video surveillance context.

• For the first time in the FR literature, the complete and highest results upon SCface, a
very challenging database with unconstrained and low resolution probe images captured
by surveillance cameras, is reported by ELBP(h+v) WPCA framework in chapter 4.
These are then considerably improved by PLPQMC WPCA and LPOG WPCA in
chapter 5 and 6, respectively.

• For evaluating one feature extraction methods or other related techniques, for instance
face detection, face alignment and illumination normalization, the Template matching
and WPCA based frameworks in chapter 3 are good paradigms to use. They can be
adapted without difficulties to meet such kinds of requirement.

7.2 Future work

In spite of excellent results delivered by our propositions in this thesis, there are many
unanswered questions. Face recognition is like a never ending story where the perfection
is hard to come by, particularly under uncontrolled conditions or in video surveillance
context.

For future works, there are two sorts of task we wish to do: (1) improving the proposed
methods by remedying some weaknesses they have or adding some boosting steps, and
(2) further exploring the capabilities of them in face analysis related tasks. Hereafter is
the list of some potential directions that could be pursued.

• As the upper part of the face (above the nose) contains a larger amount of important
facial features than the lower part, it is expectable that this can be a suggestion to
apply for enhancing the discriminant of local descriptors like ELBP and LPQ in which
the final vector is a combination of histogram sequences computed from evenly divided
sub-regions. We believe that an asymmetric dividing strategy should be better.

• In order to reduce LPQ vector size, a statistic algorithm or a learning method from
machine learning study can be exploited.

• Whilst Directional Bandpass components are better than other ones generated by
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Monogenic filter, greater performance might be achieved if a fusion tactic (at feature
level or score level) is applied with the join of ELBP.

• Gradient images in horizontal and vertical directions, which were proved to be good
source of facial features in LPOG method, are in fact the first order gradients, then
some new questions are arisen. What about the second order gradient images? Do they
play any part in the feature extraction context? Can they be combined with their first
order counterparts? And if the answers are positive, then how to do that effectively?

• With a variety of local feature extraction methods presented in this thesis, we wish
to have a fusion method to combine all kinds of features from them to found an unified
and robust facial representation.

• In order to make what we have proposed more feasible for real life situations, an auto-
matic face detection method, such as Active Appearance Model [23] and its variants [81],
should be applied.

• One sound way to improve the recognition performance of FR frameworks examined
in this dissertation is the use of an efficient face alignment technique, rather than the
simple face cropping algorithm we adopted. For this, works in [50, 51] are interesting
to proceed with.

• As pointed out in chapters 2 (Section 2.2.6 about super resolution approaches) and 6
(Section 6.2), one of the major issues with low resolution probe images captured under
video surveillance context is the contrast in image quality, particularly the blur level,
between gallery images and probe ones. Hence, finding a relevant method to make gallery
images more blurred before feeding them into feature extraction stage is a worthwhile
path to take.

• Further exploring proposed methods for face recognition related tasks, such as facial
expressions recognition, gender classification, age estimation, face verification, face
anti-spoofing, forensic sketches-mugshots matching, and video-based face recognition.

• There is a haunting question that is: while LBP, LPQ, Gabor wavelets approaches are
first successfully introduced for the texture classification problem and then are brought
into FR to exhibit their efficiency, is it possible to apply what we have proposed,
ELBP(h+v), EPOEM, PLPQMC and LPOG, back into such kind of task? This will be
great if the answer is yes.
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Contributions à l’extraction de caractéristiques pour la
reconnaissance de visages

Résumé – La tâche la plus délicate d’un système de reconnaissance faciale est la phase
d’extraction de caractéristiques significatives et discriminantes. Dans le cadre de cette thèse,
nous nous sommes focalisés sur cette tâche avec comme objectif l’élaboration d’une représen-
tation de visage robuste aux variations majeures suivantes: variations d’éclairage, de pose,
de temps, images de qualité différentes (vidéosurveillance). Par ailleurs, nous avons travaillé
également dans une optique de traitement temps réel.

Tout d’abord, en tenant compte des caractéristiques d’orientation des traits principaux du
visages (yeux, bouche), une nouvelle variante nommée ELBP de célèbre descripteur LBP a
été proposée. Elle s’appuie sur les informations de micro-texture contenues dans une ellipse
horizontale. Ensuite, le descripteur EPOEM est construit afin de tenir compte des informations
d’orientation des contours. Puis un descripteur nommée PLPQMC qui intégre des informations
obtenues par filtrage monogénique dans le descripteur LPQ est proposé. Enfin le descripteur
LPOG intégrant des informations de gradient est présenté. Chacun des descripteurs proposés est
testé sur les 3 bases d’images AR, FERET et SCface. Il en résulte que les descripteurs PLPQMC
et LPOG sont les plus performants et conduisent à des taux de reconnaissance comparables
voire supérieur à ceux des meilleurs méthodes de l’état de l’art.

Contributions to facial feature extraction for Face recognition
Abstract – Centered around feature extraction, the core task of any Face recognition system, our
objective is devising a robust facial representation against major challenges, such as variations
of illumination, pose and time-lapse and low resolution probe images, to name a few. Besides,
fast processing speed is another crucial criterion. Towards these ends, several methods have
been proposed through out this thesis.

Firstly, based on the orientation characteristics of the facial information and important features,
like the eyes and mouth, a novel variant of LBP, referred as ELBP, is designed for encoding micro
patterns with the usage of an horizontal ellipse sample. Secondly, ELBP is exploited to extract
local features from oriented edge magnitudes images. By this, the Elliptical Patterns of Oriented
Edge Magnitudes (EPOEM) description is built. Thirdly, we propose a novel feature extraction
method so called Patch based Local Phase Quantization of Monogenic components (PLPQMC).
Lastly, a robust facial representation namely Local Patterns of Gradients (LPOG) is developed
to capture meaningful features directly from gradient images. Chiefs among these methods are
PLPQMC and LPOG as they are per se illumination invariant and blur tolerant. Impressively,
our methods, while offering comparable or almost higher results than that of existing systems,
have low computational cost and are thus feasible to deploy in real life applications.

Key words: Robust face recognition, real-time, illumination, facial expressions, occlusion, time-
lapse and pose variations, video surveillance, local descriptors, local features, ELBP, Patch
based LPQ, Monogenic filter based, EPOEM, LPOG, gradient images based features.
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