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THÈSE DE DOCTORAT DE
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Introduction

1 Big (Visual) Data

With the explosion of information shared on the World Wide Web, the amount of accessible text and visual
data has significantly increased over time. This is a result of the accelerated expansion of social networks,
combined with user-friendly file-sharing tools and improved high-tech products, such as readily available
high-quality image capturing devices. Some illustrative examples of the omnipresence of information on
the Internet are: 1 billion websites1 and 14.3 trillion active webpages2 on the Internet, 50 billion webpages
indexed by Google.Inc.2, 350 million photos uploaded each day to the social network website Facebook.3,
6 billion hours of video watched each month on YouTube, with 400 years of video uploaded every day.4 In
order to exploit and enjoy that immense collection of data, people need tools to retrieve information. A
first solution to that problem is manual annotation, for which a significant example is human-edited web
directories such as DMOZ 5 and Yahoo! Directory6. These are websites specialized in linking to other
websites and categorizing those links. Many human-edited directories, including DMOZ, are edited by
volunteers who are often experts in particular categories. These directories are sometimes criticized due
to long delays in approving submissions. Indeed, manual annotation is a tedious task that can cover only
a tiny part of the available information due to the exponential growth of data on the Web.

We then need methods to automatically store the information so that it is easy to retrieve, compare
and exploit in a user-oriented and semantically meaningful way. For this reason, the problem of auto-
matic information categorization has attracted lots of research effort over decades. Automatic image
understanding is a domain in full expansion, in which great improvements have been proposed in the last
decade.

2 Motivation

In the context of visual data understanding, the challenge is that the low-level image representation
(i.e., the pixels) provides no or little clue about its semantic aspect. This absence of relationship is called
semantic gap [Smeulders et al., 2000]. In order to fill the gap, a first critical step is the extraction of ap-
propriate features from images, which are used to create an adequate representation of the visual content.
These“appropriate”features and“adequate”image representations greatly depend on the application task.
In classification, various computer vision models were developed by exploiting the popular Support Vector
Machine (SVM) [Cortes and Vapnik, 1995] model. The SVM is usually combined with one particular im-
age representation model, the Bag-of-Words model [Ma and Manjunath, 1997, Sivic and Zisserman, 2003]
which has emerged to achieve good image classification performances for many challenging datasets. The

1http://www.internetlivestats.com/total-number-of-websites/
2http://www.factshunt.com/2014/01/total-number-of-websites-size-of.html
3http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
4https://www.youtube.com/yt/press/statistics.html
5http://www.dmoz.org/
6https://dir.yahoo.com/
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Introduction

model maps from the pixel-level to the semantic-level through a series of data transformation steps,
namely: 1) feature extraction, 2) feature coding, 3) pooling and 4) classification with SVM. Deep learn-
ing has recently attracted a lot of attention by reaching state-of-the-state performance on many computer
vision tasks, particularly in classification [Krizhevsky et al., 2012]. While the bag-of-words model uses
data transformation to map from images to vector mid-level representations, deep connectionist mod-
els learn a mapping from input data to output classes via several successions of linear and non-linear
operations.

Many machine learning methods, such as SVMs and clustering, are based on a notion of similarity.
Their generalization performance then greatly depends on the choice of the metric. For some problems,
experts can determine an appropriate metric. However, when no prior knowledge is available, standard
metrics such as the Euclidean distance are often chosen. Unfortunately, most of them ignore any statistical
regularities that might be estimated from a large training set of examples. For this reason, a number
of researchers have demonstrated that learning an appropriate distance metric greatly improves the
generalization performance for the problem at hand [Xing et al., 2002, Goldberger et al., 2004]. This is
the so-called problem of distance metric learning, which is the focus of this dissertation.

Different types of data have been successfully exploited with metric learning. For instance, in contexts
where datasets are large-scale and dynamic (i.e., new images and new classes can be added and the
semantics of existing classes might evolve), classifier approaches that learn a global distance metric
[Mensink et al., 2013] enable the addition of new classes and new images to existing classes at (near) zero
cost. This approach is in contrast with discriminative models, such as SVM and deep neural networks, that
have to be relearned at a relatively high computational cost each time a new category is added. In contexts
where classes are described by high-level attributes (i.e., human-nameable descriptions), metric learning
approaches [Parikh and Grauman, 2011] have also been successfully applied to increase the similarity of
an image to the representation of its class in a high-level latent space. New classes, represented by a
high-level description, can therefore be introduced in the latent space to perform “zero-shot” transfer
learning [Lampert et al., 2009], where one trains a classifier for an unseen category simply by specifying
which attributes it has. In contexts where the goal is to determine whether two images represent the
same object or not [Xing et al., 2002], the learning problem usually infers a model that returns small
distances for similar pairs of samples, and large distances for dissimilar pairs of samples. The metric has
to be able to compare two samples whose respective labels were not necessarily is the training dataset.
An illustrative case of application is face verification [Chopra et al., 2005, Guillaumin et al., 2009] where
the goal is to determine whether two face images represent the same person or not. For this type of
problem different from predicting the label of an image, an appropriate similarity metric which is robust
to possible variations in appearance (e.g., scale, pose, lighting, background, expression, hairstyle, glasses,
age) has to be chosen. Metric learning approaches outperform the recognition obtained with standard
metrics in this task.

Distance metric learning rises many important questions. The first one concerns the type of informa-
tion provided about training data. When no label is available, the goal is usually to learn a representation
of data in a low-dimensional space such that the distances between observed data points are preserved
[Tenenbaum et al., 2000, Borg and Groenen, 2005]. This is particularly useful for visualization purpose.
On the other hand, when category or similarity information on training data is provided, a distance met-
ric can be learned in a supervised way [Xing et al., 2002, Weinberger and Saul, 2009] to make prediction.
The learning framework depends on the kind of information available on training data.

Another crucial question concerns the formulation of the learned (dis)similarity model. Some ap-
proaches [Frome et al., 2007] consider their metric as a linear combination of a set of local distances
between images (e.g., patch-to-patch or patch-to-image distances), some others [Chechik et al., 2009]
consider their similarity metric as a bilinear form between vector image representations. The most widely
used model in metric learning is the Mahalanobis distance metric which learns a linear transformation
of the input space. It is inferred so that the Euclidean distance in the transformed space can improve
prediction. When the linear transformation is low-rank, it allows a compact representation of the data
and cheap distance computations. Thanks to these nice properties, this model has attracted a lot of
attention.

2



2. Motivation

The examples of applications given above illustrate our interest of understanding images by learning a
meaningful distance metric. In this dissertation, supervised distance metric learning for image comparison
is considered for two specific aspects: exploiting rich information on training data, and learning a simple
metric model. We particularly focus on three challenging contexts that exploit metric learning to compare
visual information:

Image classification Recognizing categories of objects is a fundamental and natural human ability.
Indeed, psychologists have postulated that humans can recognize visually about 30 thousand visual object
categories [Biederman, 1987]. Moreover, humans can learn new classes in a very fast, effortless way which
requires minimal supervision and a small quantity of examples. Despite the relative simplicity of the task
for a human, this is a very challenging task in computer vision. Several works [Goldberger et al., 2004,
Weinberger et al., 2005, Mensink et al., 2013] have proposed to learn a distance metric so that images
from the same category are closer to each other than to images from other categories.

Face verification Face verification or authentitification means deciding whether two face images show the
same person or not. This is a difficult problem due to possible variations in appearance (e.g., scale, pose).
This task is related to image classification since it involves face recognition and can be seen as a binary
classification problem over pairs of images (i.e., an image pair is either similar or dissimilar). It gener-
ally involves being able to estimate an appropriate distance [Chopra et al., 2005, Guillaumin et al., 2009,
Mignon and Jurie, 2012] between two face images explicitly. This distance is then thresholded to deter-
mine whether the faces are similar or dissimilar. Face recognition is particularly useful in biometrics since
it is a non-intrusive process that can be done without the cooperation, or even the knowledge, of the
respective subject.

Web archiving Due to the growing importance of the World Wide Web, many national libraries and
organizations such as Internet Archive7 consider the Web as a cultural artifact and work to prevent
the Internet - a new medium with major historical significance - and other born-digital materials from
disappearing into the past. Archiving organizations have the mission of storing portions of the Web to
prevent useful content from disappearing. The major challenge of such organizations is to collect, preserve
and enable (possibly far) future accesses to a rich part of the Internet content from around the world.
Web archiving is typically performed using web crawlers (robots) which periodically harvest the Web and
update the archive with fresh versions. Crawlers cannot frequently visit all pages to archive them due to
the huge number of pages on the Web. Nevertheless, Web crawling strategies can be optimized to capture
the largest number of pages that have changed, and thus limit the loss of global useful information.. For
this purpose, a robot regularly visits webpages and measures their quantity of (semantical) change over
time. A page that changes frequently should be visited more often than a page that rarely changes.

To illustrate the importance of Web archiving, Internet Archive reports to store 450 billion webpages
saved over time, 2 million videos, 7 million digital books, 2 million audio recordings, 14 million historic
images8. In this thesis, we want to automatically quantify semantic changes and detect when a change
occurred between successive versions of the same webpage. In this way, the change frequency of pages can
be discovered, and optimized crawling strategies can be adopted to limit the loss of useful information
on the Internet.

7http://www.archive.org
8https://blog.archive.org/2014/08/29/millions-of-historic-images-posted-to-flickr/
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3 Contributions

The main contributions of this dissertation concern the development of novel techniques in supervised
metric learning for visual data. Supervised metric learning has been vastly investigated, particularly
Mahalanobis(-like) distance metric learning to compare feature vectors. Mahalanobis distance metric
learning essentially infers a linear transformation of the data into a new space wherein the Euclidean
distance in the transformed space satisfies similarity information better than in the original input space.

We pointed out two issues in supervised metric learning methods that have motivated our PhD work:

First, metric learning algorithms generally exploit only binary similarity labels (i.e., two images are
similar or dissimilar). In the context of classification, these binary labels correspond to the class mem-
bership information: two images are similar if they are in the same class, they are dissimilar otherwise.
Nonetheless, in some contexts, information richer than basic class membership is available. This is for
instance the case when categories are part of an underlying semantic taxonomy (e.g., owl and pigeon cat-
egories both belong to the bird family), and the corresponding taxonomy structure for the categories is
known. Some approaches [Weinberger and Chapelle, 2008, Verma et al., 2012] have considered this type
of context. One may then want to exploit rich information in order to learn a metric that reflects the
underlying relations between data. We propose in Chapter 2 a novel way to exploit rich information and
learn a metric that better reflects the relations between data. For this purpose, we introduce constraints
that involve quadruplets of images. The proposed constraints are generalizations of the constraints wildy
used in popular metric learning approaches, and can express relations that are not possible with classical
metric learning constraints.

Second, many metric learning algorithms do not control the complexity of their learned model, and
are thus prone to overfitting. As already mentioned, Mahalanobis distance metric learning infers a linear
transformation of the data. The number of independent parameters of the model is then proportional
to both the dimensionality of the input space and the rank of the learned linear transformation. In
order to avoid overfitting, it may be preferable to control the rank of the learned linear transformation.
Many approaches [McFee and Lanckriet, 2010, Shen et al., 2009, Lim et al., 2013] use specific regular-
ization methods for this purpose. We propose in Chapter 3 a new regularization method to explicitly
control the rank of the learned distance metric model. Our proposed approach minimizes the sum of the
k smallest singular values of the learned matrix. We provide a theoretical justification for our method
and experimentally demonstrate its effectiveness on synthetic and real-world datasets.

We validate our approaches on different types of recent and popular applications, namely the con-
texts of relative attributes, hierarchical image classification, face verification and webpage comparison
for archiving. Furthermore, another major contribution of this thesis, presented in Chapter 4, is a novel
method that exploits temporal relations in order to learn a distance metric that automatically focuses on
meaningful regions in webpages. The learned metric is used for webpage change detection purpose.

4



Chapter 1

Background

In this chapter, we briefly present image representations and machine learning techniques in order to
compare images and solve popular computer vision tasks such as image classification. We then provide
the necessary background on supervised metric learning used in the subsequent chapters.

1.1 Image Representations for Classification

How to properly represent images for challenging tasks such as classification or retrieval, and hence fill
the semantic gap, remains a major issue in computer vision. One of the most popular tasks in computer
vision is image classification which refers to the ability to predict a semantic concept based on the visual
content of the image. In this context, the problem of image representation has been extensively studied
in the last decades due to its large number of applications. Different methodologies have been explored to
fulfill this goal. Biologically inspired models [Serre et al., 2007, Theriault et al., 2013] try to mimic the
mammalian visual system, and show interesting performances for classification and detection. Recently,
deep learning has regained a lot of attention due to the large success of deep convolutional networks in
the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)9. Using pixels as input,
the network automatically learns useful image representations for the classification task. The results
[Krizhevsky et al., 2012] reveal that deep learning significantly outperforms state-of-the-art computer
vision representation competitors. In contexts where fewer training images are available for training,
the visual Bag-of-Words (BoW) model [Ma and Manjunath, 1997, Sivic and Zisserman, 2003] proved to
be the leading strategy in the last decade and remains a very competitive representation model. We
present in the following two popular image representation models used for image classification: the visual
Bag-of-Words and deep representations.

1.1.1 Visual Bag-of-Words

In the popular classification task, many approaches in the last decade have exploited the same classifi-
cation framework [Lazebnik et al., 2006, Yang et al., 2009, Liu et al., 2011], the only difference between
them is how they fine-tuned the low-level and mid-level feature extraction process to gain in recognition
performance.

To better understand this rush for performance, we describe the popular visual Bag-of-Words image
representation model that is illustrated in Fig. 1.1 and inspired from the Bag-of-Words used in text
information retrieval. The text Bag-of-Words model represents a document by a histogram, it assigns to
each term in a document a weight for that term that depends on the number of occurrences of the term

9http://www.image-net.org/challenges/LSVRC/2012/
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Chapter 1. Background

Input images:

Image representations:

Codebook of visual words:

Figure 1.1: An illustration of the visual Bag-of-Words (BoW) representation for three input images: the
presence of visual words from a codebook (bottom row) in input images (top row) is quantified in a
histogram. The histogram of “word counts” (middle row) is used to represent the image. Image courtesy
of Li Fei-Fei.

in the document. In the visual BoW model, images are first decomposed as a set of local features, usually
obtained by regular grid-based sampling (i.e., images are segmented as patches that are regularly spaced).
Converting the set of local descriptors of an image into the final image representation is performed by
a succession of two steps: coding and pooling. In the original BoW model, coding consists in assigning
each local descriptor to the closest visual word, while pooling averages the local descriptor projections.
The final BoW vector, which is the representation of the image, can thus be regarded as a histogram
counting the occurrences of each visual word in the image. Since the notion of “word” is not as easily
interpretable for image classification as for text retrieval, many efforts have been devoted to improve
coding and pooling.

Fig. 1.2 illustrates the whole classification pipeline of the visual Bag-of-Words model for image clas-
sification. Local features are first extracted from the input image, and encoded into an off-line trained
dictionary. The codes are then pooled to generate the image signature. This mid-level representation is
subsequently normalized before training the classifier, which is usually a Support Vector Machine (SVM)
[Cortes and Vapnik, 1995] model. Each block of the figure is detailed in the following.

A pioneer work using the visual BoW framework is probably Netra [Ma and Manjunath, 1997] which
exploits color feature dictionary learning.

1.1.1.1 Low-level feature extraction

The first step of the BoW framework corresponds to local feature extraction. To extract local descriptors,
one first issue is to detect relevant image regions. Many attempts have been done to achieve that goal,
generally based on a geometric criterion, using Harris affine region detector [Harris and Stephens, 1988]
or its multi-scale version [Mikolajczyk and Schmid, 2004], SIFT detector [Lowe, 2004], etc. However, for
classification tasks, most evaluations reveal that a regular grid-based sampling strategy leads to optimal
performances [Fei-Fei and Perona, 2005]. In each region of the image, SIFT descriptors [Lowe, 2004] are
computed because of their excellent performances attested in various datasets.

1.1.1.2 Mid-level coding and pooling scheme

We explain here how to compute the mid-level representation of images in order to obtain their BoW
representations.
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Figure 1.2: BoW pipeline for classification

Let X = (x1, . . . ,xj , . . . ,xN ) be the set of local descriptors in an image, where N is the number of
local descriptors in the image. In the BoW model, the mid-level signature generation first requires a set

of visual words (also called codewords)
{
bi ∈ Rd

}M
i=1

(where d is the local descriptor’s dimensionality,
and M is the number of visual words). This set of visual words is called visual codebook or dictionary,
we denote it B.

Table 1.1 gives a matrix illustration of the mid-level representation extraction in the BoW pipeline, for
scalar coding and pooling schemes. The set of local descriptors X is represented in columns, while the set
of dictionary elements B occupies the rows. One column of the matrix thus represents the encoding of a
given local descriptor xj into the codebook, that we denote as f(xj) = uj = (u1,j , u2,j , · · · , uM,j) ∈ RM .
In each row, aggregating the codes for a given dictionary element bi results in the pooling operation,
denoted as g(X, f).

Codebook Different strategies to compute the codebook exist. The codebook can be determined with
a static clustering, e.g., Smith and Chang [Smith and Chang, 1997] use a codebook of 166 regular colors
defined a priori. These techniques are generally far from optimal, except in very specific applications.
Usually, the codebook is learned using an unsupervised clustering algorithm applied on local descriptors
randomly selected from an image dataset, providing a set of M clusters with centers bi. K-means is
widely used in the BoW pipeline. Other approaches [Boureau et al., 2010, Goh et al., 2012] try to in-
clude supervision to improve the dictionary learning. However, Coates and Ng [Coates and Ng, 2011]
report that dictionary elements learned with “naive” unsupervised methods (e.g., k-means or even ran-
dom sampling) are sufficient to reach high performances on different image datasets. They also claim
[Coates and Ng, 2011] that the recognition performance mostly depends on the choice of architecture.
Specifically a good encoding function (i.e., sparse or soft) is required.

Coding The coding step has attracted a lot of attention in the computer vision community, different
coding methods have thus been proposed. In the original BoW model, the value of ui,j is 1 if bi is the
nearest visual word of xj and 0 otherwise. This method is called hard assignment or hard coding. In other
methods, such as the Local Soft Coding (LSC) algorithm [Liu et al., 2011], the value of ui,j is between 0
and 1 and grows with the relative proximity between xj and the codeword bi.

Note that some representation models, such as Fisher vector [Perronnin and Dance, 2007] or VLAD
[Jégou et al., 2010] descriptors, use a vector representation of ui,j ∈ RP , which results in vectors uj in
RPM . For instance, the Fisher Vector model [Perronnin et al., 2010] extends the BoW by encoding the
average first- and second-order differences between the descriptors and codewords.

Pooling The pooling step aggregates the resulting codes ui,j in order to compute the final vector
image representation z = {zi}ni=1 of the image. The two most popular pooling methods are the sum
and the max poolings. Sum pooling counts the number of occurences of each codeword in the image
(i.e., zi =

∑N
j=1 ui,j). Max pooling detects for each codeword its maximum score among all the patches

of the image (i.e., zi = maxj∈{1,...,N} ui,j). Sum pooling is particularly useful when hard coding is applied
since max pooling would return binary values of zi in this context. In the context of soft coding, where
codes are usually real values between 0 and 1, the max pooling plays the role of a codeword detector. Other
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x1 xj xN
b1 u1,1 · · · u1,j · · · u1,N

...
...

...
bi ui,1 · · · ui,j · · · ui,N ⇒ g : pooling

...
...

...
bM uM,1 · · · uM,j · · · uM,N

⇓
f : coding

Table 1.1: Coding and pooling strategies. The functions f and g are explicited below

pooling methods have been proposed. For instance, the BossaNova representation [Avila et al., 2013]
keeps more information than the BoW during the pooling step by estimating the distribution of the
descriptors around each codeword.

1.1.1.3 Normalization and learning

Once the signatures of the different images in the dataset are computed, the classic approach is to
learn a statistical machine learning model, usually an SVM learned using a one-against-all strategy.
Some authors normalize the image representations before learning the classifers [Perronnin et al., 2010,
Avila et al., 2013]. The choice of normalization also depends on the chosen representation model and
classifier model (e.g., linear or non-linear SVM).

1.1.1.4 Beyond Bag-of-Words

The pipeline described in Fig. 1.2 has been exploited in the last decade by many approaches on various
datasets [Lazebnik et al., 2006, Yang et al., 2009, Perronnin et al., 2010, Liu et al., 2011]. In particular,
many attempts for improving the coding and pooling steps have been done. Fig. 1.3 illustrates the perfor-
mance evaluations of different state-of-the-art methods on the Caltech-101 [Fei-Fei et al., 2007] dataset.
Most of them are extensions of the Bag-of-Words model which improve its mid-level representation.

The improvement of the mid-level step since 2006 significantly boosted performances: for exam-
ple, using 30 training examples, there is a substantial gain of about 20 points from the baseline work
of Lazebnik et al. [Lazebnik et al., 2006] (∼ 64% in 2006) to the pooling learning method of Feng et
al. [Feng et al., 2011] (∼ 83% in 2011). This work on the BoW model over years demonstrates in this
particular application task that the performance of machine learning methods is heavily dependent on the
choice of data representations. Especially, as a preliminary of this thesis, we performed a thorough study
of the different low-level and mid-level parameters of this pipeline that have an impact on classification
performance. This study led to the following publications [Law et al., 2012a, Law et al., 2014a].

While the methods mentioned above are interested in manually tuning the extraction process to
generate a useful image representation, other methods are concerned with questions surrounding how
we can best learn meaningful and useful representations of data. The latter approach is known as
representation learning and includes distance metric learning.

1.1.2 Deep representations

In the last decade, datasets of labeled images for computer vision tasks (e.g., image classification or
detection) have grown considerably. Recently, the handcrafted extensions of the BoW pipeline have
been substantially outperformed by the latest generation of Convolutional Neural Networks (CNNs)
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Figure 1.3: State-of-the-art results since 2006 on the Caltech 101 dataset for BoW pipeline methods in
mono-feature setup.

[LeCun et al., 1989] to many tasks that involve very large datasets, particularly in classification and de-
tection [Krizhevsky et al., 2012, Szegedy et al., 2013]. The general idea of deep representations is to learn
a hierarchy of representations from a dataset of images. CNNs have a substantially more sophisticated
structure than standard (shallow) representations such as BoWs. They comprise several layers of non-
linear feature extractors, and are therefore said to be deep. The representation at each level is composed
of lower-level ones. Since they involve a very large number of parameters to learn, they benefit from
large scale datasets of images to limit overfitting10. Note that an architecture with at least four layers is
considered to be a deep representation [Hinton et al., 2006, Bengio et al., 2007].

The architecture of CNNs takes raw input data at the lowest level (i.e., pixels) and processes them
via a sequence of basic computational units until the data is transformed to a suitable representation
in the higher layers to perform classification. Deep connectionist models learn a mapping from in-
put data to output classes by attempting to untangle the manifold of the highly nonlinear input space
[LeCun et al., 1989]. The strength of these models is that they are learned entirely in a supervised way
from the pixel level to the class level.

Furthermore, recent work observed the relevance of deep models for transfer learning. Features learned
on the ImageNet dataset may be used successfully in action recognition on a different benchmark dataset

10CNNs also benefit from other improvements, such as GPU computation and data augmentation (also known as virtual
sampling or data jittering).
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[Oquab et al., 2014]. Recently, the enthusiasm of computer vision researchers for CNNs has reached the
same level as the enthusiasm they had for BoWs some years ago. Many recent works try to extend CNNs
to increase performance in the same way as they extended BoW. For instance, at the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) 201411, the first and second places in the localisation and
classification tracks respectively, were achieved by a very deep architecture that has more than 15 weight
layers [Simonyan and Zisserman, 2014]. By contrast, the winner of the ILSVRC-2012 challenge had 8
layers.

The interested reader on deep learning of representations can refer to [Bengio, 2013].

Conclusion The choice of an appropriate image representation model remains a challenging task for
the good performance of recognition methods in many computer vision contexts. For instance, deep
learning which learns how to represent images directly from pixels, obtains state-of-the results in the
context of image classification when the model is trained on very large datasets. From this observation,
learning representations seems a promising paradigm to investigate for computer vision tasks such as
image classification. In this thesis, we focus on a special case of representation learning which consists
in learning an appropriate distance metric to compare images. For instance, we want to be able to
determine whether two images represent the same object or not. For this purpose, we take some given
image representation (e.g., BoW or deep features) as input of our model and infer a metric whose goal is
to compare two (possibly never seen) images. Our task actually learns a new transformation of the input
data such that the Euclidean distance in the transformed space satisfies most of the desired properties.
We present in the next section some interesting representation learning contexts where an appropriate
metric is learned.

1.2 Metric Learning for Computer Vision

Metrics play an important role for comparing images in many machine learning and computer vision
problems. In this section, we briefly present contexts where learning an appropriate metric may be useful.
Some successful examples of applications that greatly depend on the choice of metric are: k-Nearest
Neighbors (k-NN) classification [Cover and Hart, 1967] where an object is classified by a majority
vote of its nearest neighbors: the object is assigned to the class most common among its k nearest
neighbors. The nearest neighbors are determined based on a given metric (usually the Euclidean distance
in the input space). Notably, a recent work [Mensink et al., 2013] has shown that a metric learned for
k-NN reaches state-of-the-art performance when new images or classes are integrated in the dataset. K-
Means clustering [Steinhaus, 1956, MacQueen et al., 1967] aims at partitioning the training set into K
clusters in which each sample belongs to the cluster with the nearest mean. Test samples are assigned to
the nearest cluster by distance. Information/Image retrieval [Salton, 1975, Goodrum, 2000] returns
(the most) similar samples to a given query. Kernel methods [Scholkopf and Smola, 2001] exploit
kernel functions, a special case of similarity metrics. The most popular example of kernel methods
is the Support Vector Machines (SVM) model [Cortes and Vapnik, 1995] for which the choice of the
kernel, which is critical to the success of the method, is typically left to the user. Moreover, when
the data is multimodal (i.e., heterogeneous), multiple kernel learning (MKL) methods [Bach et al., 2004,
Rakotomamonjy et al., 2008] allow to integrate data into a single, unified space and compare them.

Contexts that transform the input data into another space (usually with lower dimensionality) to
make it interpretable are considered as metric learning approaches. Some examples are:

Manifold learning Humans often have difficulty comprehending data in many dimensions (more than
3). Thus, reducing data to a small number of dimensions is useful for visualization purposes. Moreover,
reducing data into fewer dimensions often makes analysis algorithms more efficient, and can help machine
learning algorithms make more accurate predictions. One approach to simplification is to assume that

11http://www.image-net.org/challenges/LSVRC/2014/
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Polar bear:
is black: no
is white: yes
is brown: no
has stripes: no
eats fish: yes

Otter:
is black: yes
is white: no
is brown: yes
has stripes: no
eats fish: yes

Zebra:
is black: yes
is white: yes
is brown: no
has stripes: yes
eats fish: no

Figure 1.4: High-level attributes describe categories of objects (here animals) with information that is
understandable by humans. Images from the Animals with Attributes dataset [Lampert et al., 2009].

the data of interest lies on an embedded non-linear manifold within the higher-dimensional space. If the
manifold is of low enough dimensionality, the data can be visualised in the low-dimensional space. The
key idea of manifold learning is to learn an underlying low-dimensional manifold preserving the distances
between observed data points. Some good representatives of manifold learning are Multidimensional
Scaling (MDS) [Borg and Groenen, 2005] and Isomap [Tenenbaum et al., 2000]. Since manifold learn-
ing methods do not consider labels of data to learn the low-dimensional space, they are considered as
unsupervised metric learning approaches.

Eigenvector methods Eigenvector methods such as Linear Discriminant Analysis (LDA) [Fisher, 1938]
or Principal Component Analysis (PCA) [Galton, 1889, Pearson, 1901, Hotelling, 1933] have been widely
used to discover informative linear transformations of the input space. They learn a linear transformation
x 7−→ Lx that projects the training inputs in another space that satisfies some criterion. For instance,
PCA projects training inputs into a variance-maximizing subspace while LDA maximizes the amount of
between-class variance relative to the amount of within-class variance. PCA can be viewed as a simple
linear form of linear manifold learning, i.e., characterizing a lower-dimensional region in input space near
which the data density is peaked [Bengio et al., 2013].

Visual high-level attributes While traditional visual recognition approaches map low-level image
features directly to object category labels, some recent works have proposed to focus on visual attributes
[Farhadi et al., 2009, Lampert et al., 2009]. Visual attributes are high-level descriptions of concepts in
images. Generally, they have human-designated names (e.g., striped, four-legged, see Fig. 1.4) and
are valuable tools to give a semantic meaning to objects or classes in various problems. They are
also easy to interpret and manipulate. Visual attributes have shown their benefit in face verification
[Kumar et al., 2009] and object classification [Lampert et al., 2009, Akata et al., 2013], particularly in
the context of zero-shot learning for which the goal is to learn a classifier that must predict novel cat-
egories that were omitted from the training set. It is particularly useful for contexts where datasets
are large and dynamic (i.e., new images and new classes can be added and the semantics of existing
classes might evolve). Indeed, when images of new labels are introduced in the dataset, discriminative
models, such as SVM, have to be relearned at a relatively high computational cost in large scale settings
(i.e., when the dataset contains more than 10 million images and 10,000 categories). Methods that learn
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Attribute: is natural

≺ ≺

class (d) class (e) class (f)

Attribute: smiles

∼

class (g) class (h)

Figure 1.5: Relative attributes: high-level descriptions of classes are given as a function of other classes.
While it is difficult to determine whether the image of class (e) is natural or not, it is easier to say that
it is more natural than class (d) and less natural than class (f). Scarlett Johansson (class (g)) smiles as
much as Miley Cyrus (class (h)).

an appropriate metric [Akata et al., 2013, Mensink et al., 2013] have shown promising results in these
contexts since the learned metric can be generalized to new images.

In many attribute problems [Parikh and Grauman, 2011, Yu et al., 2013, Akata et al., 2013], a (lin-
ear) transformation is learned so that low-level representations of images are projected into a high-level
semantic space. Such a space is usually constructed so that each dimension describes the degree of pres-
ence of an attribute in a given image. In other words, an image is described by a vector, and each element
of the vector is the degree of presence of a given attribute in the image. In the high-level space, images
can be semantically compared to one another.

One of the most popular contexts that compare images with attributes is the relative attribute problem
[Parikh and Grauman, 2011]. In this problem, the representations of images in the high-level semantic
space are learned relatively to the learned representations of other images. The original relative attribute
problem considers relations between pairs of classes:

� inequality constraints: i.e., (e) ≺ (f): the presence of an attribute is stronger in class (f) than in
class (e)

� and equivalence constraints: i.e., (g) ∼ (h): the presence of an attribute is equivalent in class (g)
and class (h).

This type of relationship is particularly useful when a boolean score for the presence an attribute is
difficult to annotate for a class or an image (see Fig. 1.5). Relative attributes have also been used in
image retrieval [Kovashka et al., 2012] to find objects that match semantic queries (e.g., an example query
would be “Find a red shoe that is shinier than some given image of shoe”).

Conclusion Similarity metrics are key ingredients of many applications, such as image retrieval. The
choice of metric is a difficult task and is determined by the problem at hand. An appropriate metric
can be picked by experts in some problems, but it can also be learned to improve performance. In this
dissertation, we are interested in supervised distance metric learning that we present in the following.
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1.3 Supervised Distance Metric Learning

1.3.1 Notations

Throughout this thesis, Sd, Sd+ and Sd++ denote the sets of d×d real-valued symmetric, symmetric positive
semidefinite (PSD) matrices and symmetric positive definite matrices, respectively. The set of considered
images is P = {Ii}Ii=1, each image Ii is represented by a feature vector xi ∈ Rd. For matrices A ∈ Rb×c
and B ∈ Rb×c, denote the Frobenius inner product by 〈A,B〉 = tr(A>B) where tr denotes the trace of
a matrix. ΠC(x) is the Euclidean projection of the vector or matrix x on the convex set C (see Chapter
8.1 in [Boyd and Vandenberghe, 2004]). For a given vector a = (a1, . . . , ad)

> ∈ Rd, Diag(a) = A ∈ Sd
corresponds to a square diagonal matrix such that ∀i, Aii = ai where A = [Aij ]. For a given square matrix
A ∈ Rd×d, Diag(A) = a ∈ Rd corresponds to the diagonal elements of A set in a vector: i.e., ai = Aii.
λ(A) is the vector of eigenvalues of matrix A arranged in non-increasing order. λ(A)i is the i-th largest
eigenvalue of A. Finally, for x ∈ R, let [x]+ = max(0, x).

1.3.2 Distance and similarity metrics

The choice of an appropriate metric is crucial in many machine learning and computer vision problems For
some problems, the selected metric and its parameters are fine-tuned by experts, but its choice remains a
difficult task in general. Extensive work has been done to learn relevant metrics from labeled or unlabeled
data. The most useful property of metrics in this thesis is that they can be used to compare two never
seen samples, i.e., that were not present in the training dataset.

We present here widely used metrics in computer vision, especially the Mahalanobis distance metric
which is the focus of this thesis.

Minkowski distances The Minkowski distance is a metric on Euclidean space which can be considered
as a generalization of both the Euclidean distance and the Manhattan distance. The Minkowski distance
of order p ≥ 1 between two points x = (x1, x2, . . . , xd) ∈ Rd and z = (z1, z2, . . . , zd) ∈ Rd is defined as:(

d∑
i=1

|xi − zi|p
)1/p

= ‖x− z‖p

The most wildy used Minkowski distance in Computer Vision is the Euclidean distance, which corresponds
to p = 2. Note that for p < 1, the triangle inequality is violated.

Histogram distances In some contexts, the data is sampled from a probability simplex defined as
Pd = {x ∈ Rd|x ≥ 0,x>1 = 1} where 1 ∈ Rd denotes the vector of all-ones. Each input x ∈ Pd can be
interpreted as a histogram over d buckets. Examples of applications that use this type of data are ubiq-
uitous in computer vision (e.g., distributions over visual codebooks [Tuytelaars and Mikolajczyk, 2008]
or histograms of colors [Stricker and Orengo, 1995]). Different distance metrics have been proposed to
compare such histograms: e.g., quadratic-form distance [Globerson and Roweis, 2007], Earth Mover’s
distance [Rubner et al., 2000]. One of the most popular distance metrics is the χ2 histogram distance
whose origin is the χ2 statistical hypothesis test [Mood, 1950]. It is formulated as:

Dχ2(x, z) =
1

2

d∑
i=1

(xi − zi)2

xi + zi

and has been successfully applied in many computer vision domains. Some successful examples are
[Cula and Dana, 2004, Tuytelaars and Mikolajczyk, 2008, Varma and Zisserman, 2009].
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Mahalanobis(-like) distance metric We present here Mahalanobis distance metrics that are the
focus of this thesis and the most popular type of learned distance metrics in the machine learning and
computer vision communities.

The Mahalanobis distance [Mahalanobis, 1936] is originally a measure of the distance between an
observation x and from a group of observations with mean µ and covariance matrix Σ:

D2
Σ−1(x) = (x− µ)>Σ−1(x− µ) (1.1)

It can also be defined as a dissimilarity measure between two random vectors x and x′ of the same
distribution with the covariance matrix Σ:

D2
Σ−1(x,x′) = (x− x′)>Σ−1(x− x′)

In this thesis, we consider that a Mahalanobis distance metric is any dissimilarity function parame-
terized by a symmetric positive semidefinite (PSD) matrix M. It is written in this form:

D2
M(Ii, Ij) = (xi − xj)

>M(xi − xj) = 〈M, (xi − xj)(xi − xj)
>〉 s.t. M ∈ Sd+

where Sd+ is the set of symmetric positive semidefinite matrices. This formulation guarantees that D2
M is

a pseudo-metric (i.e., it is symmetric, its value is nonnegative and it satisfies the triangle inequality). In
this thesis, we will often refer to pseudo-metrics as metrics to simplify the discussion.

The mere fact that the learned model has to be in Sd+, which is a proper cone (see Definition A.1.3),
makes the learning framework more complex than classic optimization problems for which the domain
(i.e., search space) is the whole input space. We give the definition of positive semidefiniteness for
matrices:

Definition 1.3.1. (Positive semidefinite matrix) A matrix A ∈ Rd×d is positive semidefinite (PSD) iff

it satisfies:

∀x ∈ Rd,x>Ax ≥ 0

PSD matrices can be nonsymmetric (see [Dattorro, 2005], Appendix A). However, we are only inter-
ested in symmetric PSD matrices in this thesis. When we define a PSD matrix, we implicitly consider
that it is symmetric.

The set Sd+ is fundamental in Mahalanobis distance metric learning approaches, the interested reader
can refer to Appendix A for details on Sd+ and its properties. The main property to know is that a matrix

M is in Sd+ iff it can be rewritten as M = L>L where L ∈ Re×d and e ≥ rank(M). From this property,
the (squared) Mahalanobis distance metric DM can be rewritten equivalently:

D2
M(Ii, Ij) = (xi − xj)

>M(xi − xj)

= (xi − xj)
>L>L(xi − xj)

= ‖L(xi − xj)‖22 = ‖Lxi − Lxj‖22

A Mahalanobis distance metric parameterized by the matrix M = L>L can then be seen as calculating
the Euclidean distance in the space induced by the linear transformation parameterized by L. Actually,
since Mahalanobis distance metrics can be induced from linear transformations and vice versa, any method
that returns a linear transformation can be considered as a metric learning method. For this reason,
methods such as Principal component analysis (PCA) and Linear discriminant analysis (LDA) can be
seen as metric learning approaches.

Some approaches [Shalev-Shwartz et al., 2004, Globerson and Roweis, 2006, Mignon and Jurie, 2012]
have extended Mahalanobis distance metric so that a non-linear mapping is learned. Instead of considering
the linear transformation x 7−→ Lx, they consider the transformation x 7−→ L(φ(x)) where φ is a mapping
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from the input space (denoted X ) to a reproducing kernel Hilbert space (RKHS) H. The data is then
mapped to RN by a linear transformation L : H −→ RN . Since φ can be non-linear, this allows to learn
a non-linear metric D2

M(Ii, Ij) = ‖L(φ(xi))− L(φ(xj))‖22.

By exploiting the generalized representer theorem [Schölkopf et al., 2001], the operator L can be
expressed as the matrix product L = PΦ> where Φ is a matrix representation of X in H (i.e., the i-th
column of Φ is φ(xi) for i = {1, · · · , N}) and for some real-valued matrix P ∈ Re×N (with the parameter
e > 0 manually chosen). By denoting K ∈ SN+ the kernel matrix:

K = Φ>Φ = [Kij ] with Kij = 〈φ(xi),φ(xj)〉 = k(xi,xj)

the non-linear mapping can be written:

L(φ(x)) = PΦ>(φ(x)) = P(〈φ(xi),φ(x))〉)Ni=1 = P (k(xi,x))
N
i=1

where (·)Np=1 denotes concatenation in a N -dimensional vector. The main limitation of this approach
is that the resulting computational complexity, which depends on the size of the dataset, is generally
increased for a relatively small gain in recognition performance. Since the number of independent param-
eters can be very large when N is large, the risk of overfitting is high. For computational reasons and to
avoid overfitting, a simple linear mapping is generally used for Mahalanobis distance metrics.

Bilinear Similarity An approach very similar to Mahalanobis distance metric is the bilinear similarity.
The bilinear similarity between two vectors x ∈ Rd and z ∈ Re is formulated as:

SM(x, z) = x>Mz

where the matrix M ∈ Rd×e is not required to be PSD nor square. When d = e and M is in Sd+, this

corresponds to the similarity function SM(x, z) = 〈Lx,Lz〉 where M = L>L.

This type of similarity has been used for image classification [Chechik et al., 2009] and retrieval
[Chechik et al., 2009, Deng et al., 2011]. It has two main advantages: when the vectors x and z are
sparse and have kx and kz nonzero elements, SM(x, z) can be computed in O(kxkz) time. Moreover,
it can be used to compare objects of different types: for instance, in [Akata et al., 2013], images and
attributes (high-level descriptions of concepts) are embedded and compared in a single space.

1.3.3 Learning scheme

The goal of supervised distance metric learning is to infer a (linear) transformation that is optimized for a
specific prediction task, such as ranking or nearest-neighbor classification. The transformation induces a
distance metric that is generally learned so that distances between similar (resp. dissimilar) samples are
small (resp. large) or to preserve orders of distances between training samples. Metric Learning has been
applied to compare different types of data representations such as vectors, character strings or trees (see
[Bellet et al., 2013] for details). In this thesis, we focus on learning distance metrics to compare vector
representations of images (or webpages).

Distance metric learning is an area of machine learning and, as such, the formulation of its problems
is similar to many (supervised) machine learning problems. In this section, we present the general
formulation of machine learning problems, and particularly focus on metric learning problems.

1.3.3.1 Optimization problem

A metric learning algorithm aims at determining the matrix M ∈ Rd×d such that the metric parameterized
by M satisfies most of the constraints defined by the training information. The training information is
usually either:
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� Similar/Dissimilar pairs: the training set is composed of a set S of similar pairs of samples, and a
set D of dissimilar pairs of samples.

� Ordered relations of distances: the training set is composed of a set T = {(Ii, I+
i , I

−
i )}i of triplets

of samples. The goal is to learn a distance metric such that the distance between Ii and I+
i is

smaller than the distance between Ii and I−i .

The way the training information is provided and exploited will be discussed in Section 1.4. For simplicity,
we consider that all the sets S, D and T are subsets of the training set N . Metric learning problems are
generally formulated as an optimization problem of the form:

min
M

µR(M) + `(M,N ) s.t. M ∈ C (1.2)

where C an arbitrary convex domain (e.g., Sd or Sd+), `(M,N ) is a loss function that penalizes constraints
that are not satisfied by the model induced by M, R(M) is a regularization term on the parameter M,
and µ ≥ 0 is the regularization parameter. The loss function `(M,N ) measures the ability of the matrix
M to satisfy some distance constraints provided by the training set N . The details on the design of the
set N and the loss `(M,N ) are specified in the following.

In this thesis, we only consider the case where the learned model is a Mahalanobis(-like) distance
metric (i.e., C = Sd+, and the model is the metric D2

M(Ii, Ij) = (xi − xj)
>M(xi − xj)).

1.3.3.2 Loss and surrogate functions

Choosing an appropriate loss function is not an easy task and strongly depends on the problem at hand. In
order to explain surrogate functions, we first need to introduce how training data is provided and exploited
in supervised machine learning problems. We use the binary-class classification setting as a reference
problem for explanation. We are given a set of n training samples {(x1, y1), (x2, y2), · · · , (xn, yn)} where
each xi belongs to some input space X , usually Rd, and yi ∈ {−1, 1} is the class label of xi. The goal of
classification machine learning algorithms is to find a model that maximizes the number of correct labels
predicted for a given set of test samples.

For this purpose, we are given a loss function L : {−1, 1} × {−1, 1} −→ R that measures the error
of a given prediction. The loss function L takes as argument an arbitrary point (ŷ, y), and its value is
interpreted as the cost incurred by predicting the label ŷ when the true label is y. In the classification
context, this loss function L is usually the zero-one (0/1) loss, i.e., L(ŷ, y) = 0 if y = ŷ, and L(ŷ, y) = 1
otherwise. The goal is then to find a classifier, represented by the function h : X −→ {−1, 1}, with the
smallest expected loss on a new sample. However, the probability distribution of the variables is usually
unknown to the learning algorithm, and computing the exact expected value is not possible. That is
why it is approximated by averaging the loss function on the training set (i.e., averaging the number of
wrongly classified examples in the training set):

Remp(h) =
1

n

n∑
i=1

L(h(xi), yi)

which is called the empirical risk. Empirical risk minimization states that the learning algorithm should
choose a hypothesis ĥ which minimizes the empirical risk ĥ = argminh∈F Remp(h) where F is a fixed
class of functions.

Another issue is that the problem of finding the function ĥ that maximizes the number of correctly
classified training examples is NP-hard. The 0/1 loss is therefore generally replaced by a proxy to the loss,
called a surrogate loss function, which is usually convex and hence has better convergence properties.
The interested reader can refer to [Bartlett et al., 2006, Tewari and Bartlett, 2007]. For classification,
the most commonly used surrogate loss functions (with y ∈ {−1, 1} and h(x) ∈ R) are:
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Figure 1.6: Examples of surrogate loss functions for the zero-one loss.

� the hinge loss `hinge(h(x), y) = [1 − yh(x)]+ = max (0, 1− yh(x)) used in the support vector
machine (SVM) [Cortes and Vapnik, 1995] (note that slack variables used in SVMs are equivalent
to the hinge loss function: the non-negative ξ that minimizes the constraint t ≥ 1−ξ is max(0, 1−t)).

� the squared hinge loss `2hinge(h(x), y) = [1 − yh(x)]2+ = max (0, 1− yh(x))
2

used for relative at-
tributes [Parikh and Grauman, 2011].

� The modified Huber loss [Chapelle, 2007], a differentiable approximation of the hinge loss:

Lγhub(h(x), y) =


0 if yh(x) > 1 + γ (zero loss)
(1+γ−yh(x))2

4γ if |1− yh(x)| ≤ γ (quadratic part)

1− yh(x) if yh(x) < 1− γ (linear part)

where γ is typically a value in [0.01, 0.5].

� the exponential loss: `exp(h(x), y) = e−yh(x) used in Adaboost [Freund and Schapire, 1995].

� the logistic loss: `βlog(h(x), y) = 1
β ln(1 + e−yβh(x)) used in Logitboost [Friedman et al., 2000] and

PCCA [Mignon and Jurie, 2012].

Fig. 1.6 illustrates these loss functions12 along with the nonconvex 0/1 loss.

Since multiple surrogate loss functions exist to replace the 0/1 loss, a natural question is “which one
should be chosen?”. The answer strongly depends on the application task and the training data. In the
context of classification, Rosasco et al. [Rosasco et al., 2004] concluded that the hinge loss has better
convergence rate than the logistic loss. Chapelle [Chapelle, 2007] proposed to use the squared hinge loss
or the modified Huber loss functions that have better convergence rate than the hinge loss by using
Newton’s method. The interested reader can refer to [Mahdavi, 2014].

1.3.4 Review of popular metric learning approaches

We present some of the most popular approaches in metric learning. We particularly focus on Mahalanobis
distance metric learning where the goal is to learn a distance metric parameterized by a matrix M ∈ Sd+
such that the learned metric can be formulated: D2

M(Ii, Ij) = Φ(Ii, Ij)>MΦ(Ii, Ij) = 〈M,Cij〉 where
Cij = Φ(Ii, Ij)Φ(Ii, Ij)> and Φ(Ii, Ij) is usually (xi − xj). For an exhaustive list of metric learning
algorithms, the interested reader can read the recent surveys of [Kulis, 2012, Bellet et al., 2013].

12For the logistic loss, we actually plot `log2(h(x), y) = log(1 + e−yh(x))− log(2) + 1.
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1.3.4.1 MMC (Xing et al.)

The work of [Xing et al., 2002] is the first Mahalanobis distance metric learning problem. It relies on a
convex Semi-Definite Programming (SDP) formulation which aims at minimizing the distances of similar
samples while maintaining the sum of the dissimilar samples beyond a given threshold (here 1)13:

min
M∈Sd+

∑
(Ii,Ij)∈S

D2
M(Ii, Ij) s.t.

∑
(Ii,Ij)∈D

√
D2

M(Ii, Ij) ≥ 1 (1.3)

The term
∑

(Ii,Ij)∈S D
2
M(Ii, Ij) can be seen as a regularization term [Kulis, 2012] as will be explained

in Section 1.5.1.

The main drawback of the method is the basic SDP solver proposed by [Xing et al., 2002] which makes
it unscalable. Moreover, there is no regularization term to control the rank of the solution, this can lead
to high-rank solutions that are prone to overfitting.

1.3.4.2 Schultz & Joachims’ method

Schultz and Joachims [Schultz and Joachims, 2004] propose to write the PSD matrix M = AWA where
A is a fixed matrix, and the matrix W is diagonal. Instead of working on similar/dissimilar pairs as
in [Xing et al., 2002], they work on triplets (Ii, I+

i , I
−
i ) ∈ T and want the distance D2

M(Ii, I+
i ) to be

smaller than D2
M(Ii, I−i ). For this purpose, they write their problem as:

min
M∈Sd+

‖M‖2F +
∑

(Ii,I+i ,I
−
i )∈T

ξi

s.t. ∀(Ii, I+
i , I

−
i ) ∈ T , D2

M(Ii, I−i ) ≥ 1 +D2
M(Ii, I+

i )− ξi
ξi ≥ 0, M = AWA, A fixed, W diagonal

(1.4)

where ‖M‖2F is the squared Frobenius norm of M. Slack variables ξi are introduced to allow penalized
constraints. The problem in Eq. (1.4) is convex and actually an extension of RankSVM [Joachims, 2002],
it can thus be solved efficiently. The main drawback of the method is that the learned matrix W is
diagonal, which limits the domain of the solution but greatly reduces the number of learned parameters

(from d(d+1)
2 to d) and thus limits overfitting. Moreover, the matrix A has to be chosen carefully.

1.3.4.3 Neighbourhood Component Analysis (NCA)

Neighbourhood Component Analysis (NCA) [Goldberger et al., 2004] is the first approach that learns a
Mahalanobis distance metric for k-NN classification. They consider the multi-class classification problem
and want to find a distance metric that maximizes the performance of nearest neighbor classification.
Ideally, they would like to optimize performance on future test data, but since they do not know the true
data distribution, they instead attempt to optimize leave-one-out (LOO) performance on the training
data. For this purpose, they consider the decomposition M = L>L. They introduce a differentiable
cost function based on stochastic neighbor assignments in the space induced by L. Each point Ii selects
another point Ij as its neighbor with some probability pij , and inherits its class label from the point it
selects. They define the pij using a softmax over Euclidean distances in the space induced by L:

pij =
exp(−‖Lxi − Lxj‖22)∑
k 6=i exp(−‖Lxi − Lxk‖22)

=
exp(−D2

M(Ii, Ij))∑
k 6=i exp(−D2

M(Ii, Ik))
pii = 0

13The authors use the constraint
∑

(Ii,Ij)∈D

√
D2

M(Ii, Ij) instead of the usual squared Mahalanobis distance to avoid a

problem that would always return a rank 1 matrix M.
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Figure 1.7: LMNN: schematic illustration of one input’s neighborhood before training (left) versus after
training (right). The learned distance metric is optimized so that the k = 3 target neighbors of the input
image are its nearest neighbors. Image courtesy of Kilian Weinberger [Weinberger and Saul, 2009].

Let yi be the class label of Ii, and denote Ci = {Ij | yi = yj} the set of images in the same class as Ii.
Their objective problem then tries to maximize:

max
L

∑
i

∑
j∈Ci

pij

This problem is nonconvex and the optimization scheme is thus subject to local maxima.

1.3.4.4 Large Margin Nearest Neighbors (LMNN)

LMNN [Weinberger et al., 2005, Weinberger and Saul, 2009] is the most popular nearest neighbor metric
learning algorithm. For each sample Ii, LMNN tries to satisfy the condition that members of a pre-
defined set of k target neighbors (of the same class yi) are closer than samples from other classes. In
[Weinberger and Saul, 2009], those target neighbors are chosen using the `2-distance in the input space.
Formally, the constraints are defined in the following way:

S ={(Ii, Ij) | yi = yj and Ij is one of the k target neighbors of Ii}
T ={(Ii, Ij , Ik) | (Ii, Ij) ∈ S, yi = yj 6= yk}

Their optimization problem is formulated as:

min
M∈Sd+

∑
(Ii,I+i )∈S

D2
M(Ii, I+

i ) +
∑

(Ii,I+i ,I
−
i )∈T

ξi

s.t.∀(Ii, I+
i , I

−
i ) ∈ T , D2

M(Ii, I−i ) ≥ 1 +D2
M(Ii, I+

i )− ξi
ξi ≥ 0

(1.5)

It is convex in M when the target neighbors remain fixed.14 Note that the regularization term (i.e., the
sum of distances between similar samples

∑
(Ii,I+i )∈S D

2
M(Ii, I+

i )) is the same as in [Xing et al., 2002].

The authors developed an efficient method based on projected subgradient method to optimize this
problem with billions of constraints. This method obtains in practice excellent recognition performance,

14However, it would be nonconvex if the nearest neighbors were updated for each value of M.
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although it is prone to overfitting [Chechik et al., 2010] when the input space dimensionality is large.
Indeed, it usually returns high-rank solutions due to the lack of regularizer that controls its complexity.

1.3.4.5 Information-Theoretical Metric Learning (ITML)

ITML [Davis et al., 2007] introduces the LogDet divergence regularization. The LogDet divergence be-
tween the learned matrix M ∈ Sd+ and the fixed matrix M0 ∈ Sd+ is defined as:

D`d(M,M0) = tr(MM−1
0 )− log det(MM−1

0 )− d (1.6)

where d is the dimensionality of the input space. It represents a measure of “closeness” between M and
M0 via an information-theoretic approach, which will be explained in Section 1.5.1.3.

The matrix M is learned so that it remains as “close” as possible to the fixed matrix M0. In practice,
the matrix M0 is usually the identity matrix, i.e., the learned metric is learned to be similar to the
Euclidean distance that works well in practice. The advantage of this regularizer is that the value
D`d(M,M0) is finite if and only if M is in Sd++ (a subset of Sd+), which provides a cheap way to ensure
that we learn a Mahalanobis distance metric. However, the LogDet regularizer of ITML constrains M
to be (strictly) positive definite, which means that it returns a full rank matrix and is thus prone to
overfitting.

They consider the binary-class classification of pairs (with pairs either in S or D) and want the distance
of similar pairs to be smaller than a given threshold u > 0, and the distance of dissimilar pairs to be
greater than the threshold l (with u < l):

� ∀(Ii, Ij) ∈ S, D2
M(Ii, Ij) ≤ u

� ∀(Ii, Ij) ∈ D, l ≤ D2
M(Ii, Ij)

Let c(i, j) denote the index of the (i, j)-th constraint, and let ξ be a vector of slack variables initialized
to ξ0 (whose components equal u for similarity constraints and l for dissimilarity constraints). They pose
the following problem15:

min
M∈Sd+,ξ

D`d(M,M0) + γD`d(Diag(ξ),Diag(ξ0))

s.t.∀(Ii, Ij) ∈ S, D2
M(Ii, Ij) ≤ ξc(i,j)

∀(Ii, Ij) ∈ D, ξc(i,j) ≤ D2
M(Ii, Ij)

The optimization method, based on a succession of Bregman projections, is efficient and works well in
practice. However, it returns full rank solutions and the matrix M0 has to be chosen carefully.

1.3.4.6 Logistic Discriminant-based Metric Learning (LDML)

In the context of binary-class classification of pairs, LDML [Guillaumin et al., 2009] defines the probability
pij that the pair (Ii, Ij) is positive/similar:

pij = p((Ii, Ij) ∈ S|M, b) = S(b−D2
M(Ii, Ij))

where S(t) = 1
1+e−t is the sigmoid function, and b > 0 is a bias term that works as a threshold value to

know whether (Ii, Ij) is in S or D. The probability that (Ii, Ij) is negative/dissimilar is (1− pij). Their
optimization problem is formulated as a maximization of the log-likelihood:

L =
∑

(Ii,Ij)∈S

ln(pij) +
∑

(Ii,Ij)∈D

ln(1− pij)

15Note that the term D`d(Diag(ξ),Diag(ξ0)) implicitly constraints all the components of ξ to be positive.
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which is known to be smooth and concave. They optimize it using gradient ascent and claim that their
method is faster than ITML and LMNN since they remove the constraint M ∈ Sd+. If needed, the
constraint M ∈ Sd+ can be added and the problem is solved using the projected gradient method.

The main limitations of the method are that LDML does not guarantee M to be PSD, and it does
not use any regularization term to control the rank of M, which can lead to overfitting when the input
space is high-dimensional.

1.3.4.7 Pairwise Constrained Component Analysis (PCCA)

In order to deal with high-dimensional input spaces, PCCA [Mignon and Jurie, 2012] controls the rank
of M ∈ Sd+ by directly optimizing over the transformation matrix L ∈ Rd×e where e < d and M = L>L
(in the same way as NCA). Optimizing over L ensures that the rank of M is low since e ≥ rank(L) =
rank(M). Their constraints are similar to the ones used in ITML, i.e., ∀(Ii, Ij) ∈ S, DM2(Ii, Ij) < 1,
and ∀(Ii, Ij) ∈ D, DM2(Ii, Ij) > 1. Instead of using a hinge loss (or its equivalent formulation with slack
variables) to optimize the problem, they use another surrogate to the 0/1 loss, which is the logistic loss

function (see Section 1.3.3.2): `βlog(x) = 1
β ln(1 + e−βx). It is a smooth and differentiable approximation

of the hinge loss function. Their problem is formulated as

min
M

∑
(Ii,Ij)∈{S∪D}

`βlog(yij
(
D2

M(Ii, Ij)− 1)
)

where yij = 1 if (Ii, Ij) ∈ D and yij = −1 otherwise.

The advantage of their method is that it is fast to optimize, and their method returns a low rank
PSD matrix. However, the problem is nonconvex in L, and they do not use an explicit regularization
term (although they control the rank of M by optimizing over L). They then use early stopping to avoid
overfitting.

Structural metric learning Another family of metric learning approaches [McFee and Lanckriet, 2010,
Lim et al., 2013] are inspired from structural SVM [Tsochantaridis et al., 2005] which predicts a structure
output.

Structural SVM can be viewed as a generalization of multi-class SVM [Crammer and Singer, 2002] for
which the set of predicted outputs contains structures (instead of labels for the classic SVM). The output
of the structural SVM can be a parse tree, permutation, ranking, sequence alignment etc. The multiclass
SVM [Crammer and Singer, 2002] learns a different model wy ∈ X for each class y ∈ {1, · · · ,K} where
K is the number of classes in the training set. For each training example (x, y∗), the models are learned
so that the prediction score for the true class y∗ is greater (by a margin of 1) than the prediction scores
for the other classes:

∀y 6= y∗,w>y∗x ≥ w>y x + 1

In a similar manner, structural SVM enforces the prediction score of the true structure y∗ to be greater
than the score of other structures y in the set of outputs Y (by a margin of ∆(y∗, y) ≥ 0 which quantifies
the loss associated with a prediction y if the true structure is y∗):

∀y ∈ Y\{y∗}, w>ψ(x, y∗) ≥ w>ψ(x, y) + ∆(y∗, y) (1.7)

where ψ(x, y∗) is a vector-valued joint feature map which characterizes the relationship between an input
x and an output structure y. Structural predictions for a test example x̂ are made by finding the structure
y in Y which maximizes w>ψ(x̂, y).

Since the set Y of possible output structures is generally very large, enforcing all margin constraints
in Eq. (1.7) may not be feasible in practice. Therefore, cutting plane methods have been proposed
[Tsochantaridis et al., 2005], the idea is to find a small working set W ⊂ Y that is a subset of all possible
predictions. These methods work with very small active sets and are sufficient to optimize w within some
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Method Optimum Regularization Rank control Constraints
MMC Global

∑
(Ii,Ij)∈S D

2
M(Ii, Ij) No Pairwise

Schultz & Joachims Global Frobenius norm No Triplet-wise
NCA Local Optimization over L Yes For k-NN
LMNN Global

∑
(Ii,Ij)∈S D

2
M(Ii, Ij) No Triplet-wise for k-NN

ITML Global LogDet divergence No Pairwise
LDML Global None No Pairwise
PCCA Local optimization over L Yes Pairwise

Table 1.2: Popular metric learning approaches.

prescribed tolerance. At each iteration of the cutting plane method, a vector w is first optimized for a
given small active set W ⊂ Y, and the output ŷ in Y that maximizes:

ŷ ←− argmax
y∈Y

w>ψ(x̂, y) + ∆(y∗, y) (1.8)

is added to the active set W. Efficient algorithms [Joachims, 2005, Yue et al., 2007] have been proposed
to compute Eq. (1.8) accurately or approximately depending on the context.

Structural SVM has shown promising results to learn a model optimized for information retrieval
evaluation metrics such as Average Precision [Yue et al., 2007], it was then naturally adapted to metric
learning for image retrieval [McFee and Lanckriet, 2010]. For each image, a ranking is learned so that
similar images to the given image are ranked better than dissimilar images. Moreover, the 1-slack cutting
plane method [Joachims et al., 2009], that shares a single slack variable ξ across all constraint batches,
allows to optimize the problem more efficiently than classic cutting plane methods.

Recently, structural metric learning has been extended [Lajugie et al., 2014] to predict a partition for
a given dataset. It has been successfully applied to image and video segmentation, and bioinformatics
application.

Conclusion We have presented popular metric learning approaches summarized in Table 1.2. Two
important aspects can be highlighted from them. First, we note that all these methods exploit binary
similarity information to generate their constraints. For instance in LMNN, they exploit the class member-
ship information (Ii, I+

i ) ∈ S and (Ii, I−i ) ∈ D to generate their constraints D2
M(Ii, I+

i ) < D2
M(Ii, I−i ).

However, in some contexts that we will present in the following, this binary similarity information can be
unknown. Moreover, we remark that large margin metric learning approaches are the most widely used
metric learning approaches nowadays. Second, we remark that most of the popular approaches do not
control the complexity of their learned model and are thus prone to overfitting. We investigate these two
aspects in the following.
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1.4 Training Information in Metric Learning

In this section, we study the way information and/or knowledge are exploited to create training constraints
and learn a distance metric.

1.4.1 Binary similarity labels

A first remark is that all the approaches presented in Section 1.3 exploit binary similarity labels to
generate pairwise or triplet-wise constraints16. Depending on the application, different criteria generate
these binary similarity labels:
• two images represent the same object/face or not. [Guillaumin et al., 2009, Mignon and Jurie, 2012].
• two images belong to the same class or not. [Goldberger et al., 2004, Weinberger and Saul, 2009].
• an image/document is relevant to a given query or not. [Frome et al., 2007, Chechik et al., 2010,
McFee and Lanckriet, 2010].

In pairwise approaches [Xing et al., 2002, Davis et al., 2007, Mignon and Jurie, 2012], the problem is
formulated as learning the PSD matrix M ∈ Sd+ such that the distance metric DM allows to separate the
set S of pairs of similar samples from the set D of pairs of dissimilar samples.

Triplet-wise approaches [Weinberger and Saul, 2009, Frome et al., 2007, Chechik et al., 2010] also ex-
ploit binary similarity labels: for a given image Ii, similar images I+

i and dissimilar images I+
i are

provided. Since the goal in k-NN classification and retrieval is to find the closest images rather than
determining whether images are similar or not, a learning to rank approach is adopted. From the pairs
(Ii, I+

i ) ∈ S and (Ii, I−i ) ∈ D, they generate the triplet (Ii, I+
i , I

−
i ) ∈ T and want D2

M(Ii, I+
i ) to be

smaller than D2
M(Ii, I−i ).

1.4.2 Richer provided information

In order to learn a metric that reflects more accurately relations between data, some approaches exploit
information different from binary similarity labels. For instance, in [Weinberger and Chapelle, 2008],
a class taxonomy is used in order to get elements of related classes, close to each other. Verma et
al. [Verma et al., 2012] extend this work by learning a local Mahalanobis distance metric for each category
in a hierarchy. Shaw et al. [Shaw et al., 2011] learn a distance metric from a network such that the learned
distances are tied to the inherent connectivity structure of the network. Hwang et al. [Hwang et al., 2011]
learn discriminative visual representations while exploiting external semantic knowledge about object
category relationships. Parikh and Grauman [Parikh and Grauman, 2011] use semantic comparisons
between classes over different criteria, called attributes. They consider totally ordered sets of classes
that describe relations among classes. Based on these rich relations, they learn image representations by
exploiting only pairwise class relations.

In this thesis, we propose to explore this type of data knowledge in metric learning for image com-
parison. Particularly, from these contexts where rich information is provided, we will exploit meaningful
constraints between quadruplets of images that are not possible in the contexts handled by the methods
presented in Section 1.3.

1.4.3 Quadruplet-wise approaches

Approaches that exploit relative distances between quadruplets of objects have been proposed in the
context of embedding problems. Embedding problems consist in assigning Euclidean coordinates to a
set of objects such that a given set of dissimilarity, similarity or ordinal relations between the points are
satisfied. Unlike metric learning approaches, classic embedding methods do not extend to new samples,

16Even the softmax formulation of NCA can be seen as an aggregation of triplet-wise constraints.
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a new embedding has to be learned each time a (new) test sample is added. Shepard [Shepard, 1962a,
Shepard, 1962b] considered in 1962 the following problem that involves quadruplets of samples:

Problem: Given a symmetric zero diagonal matrix of distances ∆ = [dij ] ∈ Sn between samples i and
j, find the Euclidean coordinates X = [xi] ∈ Rd×n such that:

∀i, j, k, l ‖xi − xj‖22 < ‖xk − xl‖22 ⇐⇒ dij < dkl (1.9)

In 1964, Kruskal posed the problem as an optimization problem and introduced an algorithm to solve it
[Kruskal, 1964]. He formulated the distance matrix ∆ as an exhaustive table of distances where all the
values of dij are given as input. The goal is then to find an Euclidean embedding such that each distance
‖xi − xj‖2 is close enough to dij . This leads to the problem of minimizing the stress-1 functional:

σ1(X) = min
θ

∑
ij

(
‖xi − xj‖2 − θ(dij)

)2∑
ij ‖xi − xj‖2

(1.10)

where θ is an arbitrary monotonic function. The problem in Eq. (1.10) consists in minimizing the distance
between the scalar input value θ(dij) and the distance between the samples i and j in the underlying
low-dimensional space. The underlying idea is that if σ1(X) is minimized, then (most of) the constraints
in Eq. (1.9) are satisfied.

Noticing that the problem formulated by Kruskal requires the magnitudes of all the distances dij as
input, and not the relative orderings of distances as in Eq. (1.9), Agarwal et al. [Agarwal et al., 2007] pro-
pose to consider only ordinal information as input to learn a generalized non-metric multidimensional scal-
ing. This work is extended to kernels in [McFee and Lanckriet, 2009]. Hwang et al. [Hwang et al., 2013]
exploit analogy preserving constraints that involve four different classes (e.g., “a canine is to a dog as a cat
is to feline” or “a fish is to water as a bird is to sky”). However, they are only interested in equivalence
constraints.

The idea of comparing pairs of distances (between quadruplets of images) seemed interesting to us to
adapt in the context of supervised distance metric learning.

Conclusion We have shown in this section that popular metric learning methods exploit basic similarity
information in order to generate their constraints and solve generic metric learning problems. Nonetheless,
some metric learning approaches [Weinberger and Chapelle, 2008, Verma et al., 2012] have considered
specific problems where rich information (in this case class taxonomy) is exploited to generate appropriate
training constraints.

In this thesis, we will investigate such contexts where the training information is not simply binary
similarity information. In particular, we will propose a general distance metric learning framework that
exploits meaningful relations between quadruplets of images in specific problems. Our motivation to
exploit constraints between quadruplets of images will be detailed in Chapter 2.
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1.5. Regularization in Metric Learning

1.5 Regularization in Metric Learning

The goal of regularization in machine learning is to prevent overfitting. The choice of regularization
has a significant impact on the learned model, both theorically and algorithmically. The most popular
regularization methods in machine learning are the inclusion of a regularization term in the objective
function or stopping the learning process before convergence by using a validation set. In this section,
we present popular regularization methods applied in Mahalanobis distance metric learning where the
learned model is a vector or PSD matrix.

1.5.1 Representative regularization terms

This subsection presents popular regularization terms used in metric learning.

1.5.1.1 Frobenius norm regularization

One of the most popular regularization techniques is based on the squared Frobenius norm:

R(M) =
1

2
‖M‖2F =

1

2
〈M,M〉

which can be viewed as the matrix analog of the standard-`2 regularizer used in SVMs or ridge regression.
Since the Frobenius norm does not promote low rank solution, using it as a regularizer can lead to a learned
matrix M ∈ Sd with d(d+ 1)/2 independent parameters, which is prone to overfitting when d is large.

When the learned matrix M = Diag(w) ∈ Sd is constrained to be diagonal (as for instance in
[Schultz and Joachims, 2004]), the advantage of the method is that the number of parameters grows
linearly (instead of quadratically in the general case) in the input space dimensionality and is therefore
more scalable and more robust. Moreover, the optimization over the diagonal w ∈ Rd becomes similar
to the SVM with the exception that the constraint M ∈ Rd implies w ∈ Rd+ since the diagonal elements
of a symmetric matrix are its eigenvalues.

1.5.1.2 Linear regularization

We now consider two cases where the regularization term can be written as:

R(M) = tr(MC) = 〈M,C〉 where C ∈ Sd+

Sum of distances between similar samples The sum of the distances between similar samples is
used in popular metric learning approaches [Xing et al., 2002, Weinberger and Saul, 2009]. It is formu-
lated

∑
(Ii,Ij)∈S D

2
M(Ii, Ij) = 〈M,C〉 where C =

∑
(Ii,Ij)∈S Φ(Ii, Ij)Φ(Ii, Ij)>.

The advantage of this regularizer is that it does not only focus on separating similar and dissimilar
samples, it also promotes small distances for similar samples, which is the natural goal of a learned metric.
Let b be the bias term that works as a threshold value to know whether a given pair (Ii, Ij) is in S or
D, this regularizer implicitly promotes small values of b. The main problem of this regularizer is that it
does not promote a low-rank solution and is then prone to overfitting when d is large.

Nuclear norm/Trace-norm regularization : C = Id

The two previously presented regularizers are prone to overfitting when the dimensionality d of the
input space is large since they can lead to matrix solutions with d(d + 1)/2 independent parameters.
Two standard ways to limit the number of independent parameters are promoting (1) sparsity (small
number of nonzero elements) or (2) low-rank solutions (since a matrix in Sd+ of rank e has O(e × d)
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Chapter 1. Background

independent parameters). Low-rank solutions are usually preferred because they allow to better exploit
correlations between data. However, minimizing a convex function subject to a rank constraint is NP-
hard [Natarajan, 1995]. A standard way to promote low-rank solutions is then to use the nuclear norm
‖X‖∗ as a regularization term as it is the convex envelope17 of rank(X) on the set {X ∈ Rm×n : ‖X‖ ≤ 1}
[Fazel, 2002]. The nuclear norm can also be thought of as a convex relaxation of the number of non-zero
singular values (i.e., the rank). In the case of PSD matrices, the nuclear norm (i.e., the sum of singular
values of a matrix) corresponds to the trace (i.e., the sum of eigenvalues) since the singular values of
a symmetric PSD matrix are also its eigenvalues (see Proposition A.1.5): ∀M ∈ Sd+, ‖M‖∗ = tr(M) =
〈M, Id〉 where Id ∈ Sd+ is the identity matrix.

This formulation of the nuclear norm for PSD matrices allows nice methods to optimize it.

1.5.1.3 LogDet divergence regularization

The regularization term considered in ITML [Davis et al., 2007] is:

R(M) = tr(M)− log det(M)

which is a special case of the LogDet divergence:

D`d(M,M0) = tr(MM−1
0 )− log det(MM−1

0 )− d

where d is the dimensionality of the input data (and hence, a constant value). Minimizing R(M) is
then equivalent to minimizing D`d(M, Id) where Id is the identity matrix. We also have the following

equivalence: D`d(M,M0) = R(M
−1/2
0 MM

−1/2
0 ).

The LogDet divergence has some nice properties that are useful for metric learning:

� Its value is finite (and can thus be minimized) only if M is in Sd++. This ensures that the learned
matrix satisfies the constraint M ∈ Sd+ (since Sd++ ⊂ Sd+) without performing projections onto Sd+.

� Scale invariance: it satisfies D`d(M,M0) = D`d(αM, αM0) for all α > 0.

� Translation invariance: for any invertible S, it satisfies D`d(M,M0) = D`d(S
>MS,S>M0S).

� Connection to multivariate Gaussians: let us consider the multivariate Gaussian parameterized
by mean µ and precision matrix M: p(x;µ,M) = 1

Z exp(−D2
M(x,µ)). We have the following

property between the Kullback-Leibler divergence (KL) between two multivariate Gaussians of the
same mean:

KL(p(x;µ,M0)||p(x;µ,M)) =
1

2
D`d(M,M0)

The last property exhibits the connection between this regularization term and information theory.

The main limitation of this method is that it returns a solution matrix in Sd++, which is full rank and
thus prone to overfitting when the input space is high-dimensional.

1.5.2 Other regularization methods in Computer Vision

Other regularization methods that do not include a regularization term in the objective function are used
in metric learning, particularly in the computer vision community.

17The convex envelope of a function f : C → R is the largest convex function g such that g ≤ f on convex domain C ⊆ Rn.

26



1.5. Regularization in Metric Learning

Name Formula Pros Cons
`0-norm ‖M‖0 Number of nonzero elements sparsity nonconvex, nonsmooth
`1-norm ‖M‖1

∑
ij |Mij | convex, sparsity nonsmooth

Nuclear norm ‖M‖∗ Sum of singular values convex, low-rank nonsmooth
Sq. Frobenius norm ‖M‖2F

∑
ij M

2
ij convex, smooth no rank control

Sum of similar distances
∑

(Ii,Ij)∈S D
2
M(Ii, Ij) convex nonsmooth18, no rank control

LogDet Divergence tr(M)− log det(M) convex, smooth full-rank

Table 1.3: Common regularizers for PSD matrices in metric learning.

1.5.2.1 Optimizing a metric over a transformation matrix

Since every matrix M ∈ Sd+ can be decomposed M = L>L where L ∈ Re×d and e ≥ rank(M), some
methods [Mignon and Jurie, 2012, Mensink et al., 2013] directly write their optimization problem as a
function of L, and optimize over L. This type of regularization has some nice properties:

� The induced matrix L>L = M is guaranteed to be PSD.

� The rank of the induced matrix M is upperbounded by e, which guarantees a low-rank solution
and limits overfitting if e is small.

However, the problem is generally nonconvex in L and can lead to degenerate solutions. Indeed, the
gradient OL of the optimization problem w.r.t. L is generally written OL = 2LOM where OM is the
gradient of the optimization problem w.r.t. M. This implies that two linearly dependent rows of L will
remain linearly dependent after the next gradient descent iteration. The rank of L is then nonincreasing
as a function of the number of gradient descent iterations. If L = 0 at some iteration, it will remain 0.

1.5.2.2 Early stopping

The last popular regularization method presented in this thesis and used in metric learning is early
stopping. Most machine learning methods are iterative algorithms that try to minimize an objective
function. However, the real goal of these methods is not to learn an algorithm that minimizes the
objective function, it is to minimize prediction error on a test set. Models with a large number of
parameters to learn compared to the size of the training dataset are prone to overfitting. To avoid a
model that overfits training data, early stopping stops the training process before the iterative algorithm
converges. For this purpose, a validation set is generally exploited and the training process stops when the
average prediction error on the validation set increases. Early stopping has been wildy used and studied
for neural networks [Prechelt, 1998], and has been reported to be superior to regularization methods in
many cases [Geman et al., 1992]. Its simplicity to understand and implement has made it easy to adapt
to various machine learning methods.

In distance metric learning, early stopping is exploited by methods that do not use an explicit reg-
ularization term [Mignon and Jurie, 2012, Mensink et al., 2013] and thus have to stop the learning pro-
cess before the model overfits training data. It is particularly problematic in the main application of
[Mignon and Jurie, 2012] where they learn a model that has more than 100, 000 independent parameters,
and exploit only ∼ 5, 000 training constraints. Their performance accuracy on the test dataset drops
from 82.2% with early stopping to 63.2% when their training algorithm converges.

18It is nonsmooth because it is not differentiable at points M ∈ Sd+ for which there exists a pair (Ii, Ij) ∈ S such that

D2
M(Ii, Ij) = 0. Indeed, both 0 and Φ(Ii, Ij)Φ(Ii, Ij)> are subgradients of D2

M(Ii, Ij) when the domain is Sd+ and

D2
M(Ii, Ij) = 0.
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Chapter 1. Background

Conclusion Regularization terms are summarized in Table 1.3 along with the `0 and `1-norms. Most
of them do not control the complexity of the learned model although it is a crucial task in machine
learning to avoid overfitting. In Mahalanobis distance metric learning, promoting low-rank solutions is
the most popular way to control the number of independent parameters of the model. The two most
popular approaches for this purpose are (1) optimizing over the matrix L ∈ Re×d (where L>L = M)
which leads to nonconvex problems and prevents solutions with rank greater than e or (2) using trace-
norm regularization that minimizes all the singular values and can also lead to solutions whose rank is
too small.

We propose an alternative regularization method that minimizes the sum of the k smallest singular
values of the learned matrix. Such a regularizer has been proposed in the Computer Vision community
(e.g., for image impainting [Criminisi et al., 2004]) to learn any type of real-valued matrix (i.e., which
does not have to be a square matrix, nor PSD), it is called the truncated nuclear norm [Hu et al., 2013].
However, we exploit special properties of the cone Sd+ to propose efficient algorithms.

1.6 Summary

We have presented an overview of metric learning techniques for computer vision. This allowed us to
highlight two fundamental points in metric learning schemes, namely: the generation of constraints from
training information, and the control of the complexity of the learned metric through regularization.

One of the main contributions of this thesis is the proposal of a metric learning framework to incorpo-
rate rich knowledge between data. We investigate in Chapter 2 how constraints which involve quadruplets
of images can be useful in some contexts such as relative attributes and hierarchical image classification.

Another contribution is the introduction of a novel regularization method in metric learning to explic-
itly control the rank of the learned Mahalanobis distance metric. Specifically, a regularization term that
minimizes the sum of the k smallest singular values of the learned PSD matrix is proposed in Chapter 3
to limit overfitting.

We also propose in Chapter 4 a novel metric learning application that exploits a type of learning
information different from classic metric learning approaches. In particular, we use temporal relationships
between successive versions of a same webpage to automatically discover meaningful regions in webpages.
We will investigate how the proposed method can be useful in the context of Web archiving and allows
to compare only meaningful regions in webpages to detect semantic changes.
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Chapter 2

Quadruplet-wise Distance Metric

Learning

Chapter Abstract This chapter is concerned with the problem of learning a distance metric

by considering meaningful and discriminative distance constraints in some contexts where rich

information between data is provided.

Classic metric learning approaches focus on constraints that involve pairs or triplets of images. We

first present the limitations of such constraints in some contexts, and the necessity for more general

constraints (Section 2.1). We then propose a general Mahalanobis distance metric learning frame-

work that exploits distance constraints over up to four different images (Section 2.2). Particularly,

in order to get efficient optimization, it is based on Mahalanobis-like distance metrics embedded

in a convex optimization scheme. We present optimization techniques, such as active set methods,

to deal with a large number of constraints and make the learning scheme tractable (Section 2.3).

We demonstrate the benefit on recognition performance of this type of constraints, in rich contexts

such as relative attributes (Section 2.4) and hierarchical image classification (Section 2.5).

In Chapter 4, we also propose a new emerging context about webpage visual screenshot comparison.

The proposed context exploits this quadruplet-wise approach to automatically discover important

semantic regions in webpages and perform change detection.

Some of the material in this chapter has been published at the following conference:

� Law, M.T., Thome, N., Cord, M. (2013) Quadruplet-wise Image Similarity Learning. IEEE

International Conference on Computer Vision (ICCV). [Law et al., 2013]

2.1 Motivation

As explained in Section 1.4, most metric learning approaches focus on contexts where binary similarity
information (such as class membership) is used to create pairwise or triplet-wise similarity constraints.
We propose in this chapter to investigate meaningful relations between quadruplets of images.

We first motivate why these quadruplet-wise constraints may be useful in some contexts. For this
purpose, we illustrate in Fig. 2.1 our approach in the context of relative attributes (see Section 1.2) for
which the goal is to learn a projection of visual image features into a high-level semantic space. Each
dimension of this high-level semantic space corresponds to the degree of presence of a given attribute
(e.g., the presence of nature or large objects in the images). Four scene classes are considered in Fig. 2.1:
tall building (T ), inside city (I), street (S) and open country (O). Class membership information and
relative orderings on classes for the attributes “Natural” and “Large objects” are also provided as training
information.

In Fig. 2.1, the degrees of presence of nature and of large objects in the street image and the inside-
city image are clearly not equivalent even though their corresponding classes are annotated as hav-
ing equivalent presence of these attributes. The formulation of the original relative attribute problem
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Attribute "Natural":

Tall Building ≺ Inside-city ~ Street ≺ Open-country

Attribute "Large Objects":

Open-country ≺ Inside-city ~ Street ≺ Tall Building

Rich Relationship-based Learned Space 

Learn dissimilarity D such that:

D( , ) < D( , )

Figure 2.1: Illustration of the quadruplet-wise (Qwise) strategy in the relative attribute context. The
goal is to learn a projection of scene images by exploiting rich relationships (here relative attributes) over
quadruplets of images such that samples satisfy the relationship constraints in the projected space.

[Parikh and Grauman, 2011] that promotes equal scores of presence of these attributes in these images
then seems limited. We argue in this chapter that this type of absolute similarity information between
the two images or classes is restrictive, and thus noisy. Alternatively, a natural way to relax and exploit
this equivalence information is to upper bound the difference of attribute presence by considering pairs
of classes for which the difference of attribute presence is greater. Such pairs of classes are easy to find
when the following ordering is given: (e) ≺ (f) ∼ (g) ≺ (h). The difference between classes (f) and (g) is
smaller than the difference between (h) and (e). Since the proposed relaxed constraints better describe
relative orderings between the different classes, they are more robust to noisy information.

We propose to exploit this type of constraints, that involves quadruplets of images, in order to learn
a simple form of distance metric. Unlike other quadruplet-wise approaches mentioned in Section 1.4.3
(e.g., Eq. (1.9)), we do not learn an embedding but a metric with a different type of supervision. We
investigate how constraints that involve quadruplets can better exploit rich relationships between samples
in different contexts.

2.2 Quadruplet-wise Similarity Learning Framework

Our goal is to learn a metric that satisfies constraints involving quadruplets of images. We describe
the proposed constraints and the distance metric learning problem. The optimization scheme will be
presented in Section 2.3.

2.2.1 Quadruplet-wise Constraints

We are given a set P of images Ii, and the target dissimilarity function D : P ×P → R between pairs of
images (Ii, Ij), we note D(Ii, Ij) = Dij . We are interested in comparing pairs of dissimilarities (Dij , Dkl).
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Each of them involves up to four different images (Ii, Ij , Ik, Il). Two types of relations R are considered
between Dij and Dkl:

1. strict inequality between dissimilarities: Dij < Dkl,

2. non-strict inequality: Dij ≤ Dkl. Note that Dij = Dkl can be rewritten as two relations Dij ≤ Dkl

and Dij ≥ Dkl.

In order to deal with these constraints, we approximate them by creating the set of constraints N in
this way:

∀q = (Ii, Ij , Ik, Il) ∈ N , Dkl ≥ Dij + δq (2.1)

where δq ∈ R is a safety margin specific to the quadruplet q. The non-strict inequality constraint
corresponds to δq = 0. And the strict inequality constraint corresponds to δq > 0, δq is usually set to 1.

Eq. (2.1) is actually a generalization of triplet-wise and pairwise constraints. Indeed:

• every triplet-wise constraint Dik ≥ Dij +δq (i.e., that involves the triplet (Ii, Ij , Ik)) can be formulated
by creating the quadruplet q = (Ii, Ij , Ii, Ik) ∈ N .

• every pairwise constraint Dij ≥ l that involves a dissimilar pair of images (Ii, Ij) ∈ D, and where l
is a given lower bound that represents the minimum value such that images (Ii, Ij) are considered as
dissimilar, can be formulated by creating the quadruplet q = (Ii, Ii, Ii, Ij) ∈ N with δq = l.

• every pairwise constraint u ≥ Dij that involves a similar pair of images (Ii, Ij) ∈ S, and where u is a
given upper bound that represents the maximum value such that images (Ii, Ij) are considered as similar,
can be formulated by creating the quadruplet q = (Ii, Ij , Ii, Ii) ∈ N with δq = −u.

Although quadruplet-wise constraints can be inferred from pairwise approaches [Davis et al., 2007,
Mignon and Jurie, 2012], the converse is not true. Indeed, if two given pairs (Ii, Ij) and (Ik, Il) are in
S and D, respectively, the following constraints Dij < Dkl can be inferred. However, the constraint
Dij < Dkl does not imply that the pairs (Ii, Ij) and (Ik, Il) are in S and D, respectively. In other
words, from a quadruplet-wise constraint Dij < Dkl, there is no need to determine arbitrary values of
u and l such that Dij < u and l < Dkl since u and l can take all the possible values (as long as u ≤ l)
and satisfy the quadruplet-wise constraint. Only the order of similarity between (Ii, Ij) and (Ik, Il) is
required. Since the provided constraints are less restrictive and thus less prone to noise, relative distances
are particularly useful when human users that are not experts of the domain have to annotate similarity
or relation information on data. A similar issue is pointed out in the context of relative attributes
[Parikh and Grauman, 2011] in which boolean presence of an attribute is difficult to annotate, whereas
relative comparisons are easier and more natural for humans to annotate.

Fig. 2.2 illustrates some examples of constraints for which a pairwise formulation is difficult, or at
least for which constraints of relative distance comparisons seem more natural and intuitive. It shows
different members of the Canis lupus species that are gathered together depending on their respective
subspecies and breeds. By considering only pairwise similarity constraints, it is difficult to formulate the
distance metric learning problem such that (1) members of the same breed are closer to each other than
other members of the same subspecies are, and (2) members of the same subspecies are closer to each
other than members from different subspecies. Depending on whether we consider members of the same
subspecies as similar or dissimilar, the distance metric learned with pairwise constraints does not fully
exploit the rich information given by the provided taxonomy. This limitation can be easily overcome by
using relative distance comparison constraints as illustrated in Fig. 2.2.

We present in the following two different frameworks to learn a Mahalanobis distance metric that
exploit this type of constraints. The first one considers the learning of a Mahalanobis distance metric
parameterized by a full matrix M ∈ Sd+ (i.e., any type of matrix in Sd+). The second one considers the
learning of a distance metric parameterized by one or many vectors that are learned independently.
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Same breed

Same subspecies

Same subspecies

Same species

Same breed

Learn dissimilarity D such that:

D( , ) < D( , )

D( , ) < D( , )

Figure 2.2: Illustration of the quadruplet-wise (Qwise) strategy in a class taxonomy context. The goal
is to learn a projection of animals of the same species such that members of the same breed are closer
to each other than members from different breeds, and members from the same subspecies are closer to
each other than member from different subspecies.

2.2.2 Full matrix Mahalanobis distance metric learning

We present in this subsection the general Mahalanobis-like distance metric learning framework where we
consider a distance metric parameterized by a PSD matrix M ∈ Sd+. The distance between two images
Ii and Ij represented by vectors xi ∈ Rd and xj ∈ Rd is formulated as:

D2
M(Ii, Ij) = 〈M,Cij〉 (2.2)

where Cij = Φ(Ii, Ij)Φ(Ii, Ij)>, and typically Φ(Ii, Ij) = (xi − xj).

2.2.2.1 Optimization problem

The goal of our distance metric learning framework is to maximize the number of satisfied constraints
in Eq. (2.1). However, the problem of maximizing the number of satisfied constraints in Eq. (2.1) is
NP-hard [Joachims, 2002], we then approximate it by using slack variables. By noting each quadruplet
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q = (Ii, Ij , Ik, Il) ∈ N , we optimize the following problem:

min
M∈Sd+

Ω(M) + CQ
∑
q∈N

ξq

s.t.∀q ∈ N , D2
M(Ik, Il) ≥ D2

M(Ii, Ij) + δq − ξq
∀q ∈ N , ξq ≥ 0

(2.3)

where Ω(M) is a regularization term and CQ > 0 a regularization parameter that controls the trade-off be-
tween fitting and regularization. The problem in Eq. (2.3) is similar to LMNN [Weinberger and Saul, 2009]
(see Eq. (1.5)) with the exception that we exploit quadruplets in our constraints instead of triplets.

We will explain in Section 2.3.1 how to efficiently solve the problem in Eq. (2.3). We first propose to
enrich the model with other types of constraints.

2.2.2.2 Combining pairwise and quadruplet-wise constraints

In some contexts, both absolute and relative similarity informations can be provided. We present here
how to combine them in a single optimization problem.

As mentioned in Section 2.2.1, pairwise constraints can be rewritten as quadruplet-wise constraints.
Nonetheless, in order to enhance the readability of the thesis, we consider to explicitly distinguish the
sets of similar image pairs S and of dissimilar image pairs D from the set of relative distance comparisons
N .

Especially, if we are provided with a set of similar pairs (S) and a set of dissimilar pairs (D), we expect
the distances of similar pairs to be smaller than a given threshold u and the distances of dissimilar pairs
to be greater than another threshold l (with u ≤ l). To know whether a test pair is similar or dissimilar,
one only needs to compute its distance and compare it to b = u+l

2 . The resulting absolute similarity
constraints can be written in this way:

∀(Ii, Ij) ∈ S : D2
M(Ii, Ij) ≤ u (2.4)

∀(Ii, Ij) ∈ D : D2
M(Ii, Ij) ≥ l (2.5)

The integration of pairwise information in Eq. (2.3) then results in the following problem:

min
M∈Sd+

Ω(M) + CQ
∑
q∈N

ξq + CP
∑

(Ii,Ij)∈(S∪D)

ξij

s.t.∀q ∈ N , D2
M(Ik, Il) ≥ D2

M(Ii, Ij) + δq − ξq
∀(Ii, Ij) ∈ S, D2

M(Ii, Ij) ≤ u+ ξij

∀(Ii, Ij) ∈ D, D2
M(Ii, Ij) ≥ l − ξij

∀q ∈ N , ξq ≥ 0

∀(Ii, Ij) ∈ (S ∪ D), ξij ≥ 0

(2.6)

which can be rewritten equivalently:

min
M∈Sd+

Ω(M) + CQ
∑
q∈N

[δq + 〈M,Cij −Ckl〉]+

+ CP
∑

(Ii,Ij)∈S

[〈M,Cij〉 − u]+ + CP
∑

(Ii,Ij)∈D

[l − 〈M,Cij〉]+
(2.7)

where ∀x ∈ R, [x]+ = max(0, x), CQ ≥ 0 and CP ≥ 0. This problem is equivalent to Eq. (2.3) when
CP = 0 or S = D = ∅. It is convex w.r.t. M. However, naive optimization methods to solve it can
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be comptutationally expensive. We discuss optimization schemes to efficiently solve this problem in
Section 2.3. Before that, we present an alternative distance metric formulation.

2.2.3 Simplification of the model by optimizing over vectors

In this subsection, we consider cases where a distance metric is formulated as a function of one or many
vectors. The distance metric is learned by optimizing over those vectors. We particularly focus on two con-
texts where the optimization process may be done efficiently [Chapelle, 2007, Chapelle and Keerthi, 2010]
by using this vector optimization approach and by learning a model with a relatively small number of
parameters. The first one constrains the PSD matrix M ∈ Sd+ to be diagonal. The second one considers
multiple prior relative ordering informations about data, and learns a linear transformation that tries to
satisfy all those informations.

2.2.3.1 Learning a diagonal PSD matrix

In the first context, we constrain in Eq. (2.7) the learned PSD matrix M ∈ Sd+ to be a diagonal matrix.
By noting w = Diag(M) ∈ Rd the diagonal vector of M, it is easy to verify that, if M is a diagonal
matrix, we have the following equivalence:

D2
M(Ii, Ij) = Φ(Ii, Ij)>MΦ(Ii, Ij) = w>[Φ(Ii, Ij) ◦ Φ(Ii, Ij)]

where ◦ is the Hadamard product (element-by-element product). For convenience, we note Φ◦2(Ii, Ij) =
Φ(Ii, Ij) ◦ Φ(Ii, Ij). The problem can then be rewritten as a function of w.

In this context, the constraint M ∈ Sd+ is equivalent to the constraint w ∈ Rd+ (the elements of w are
non-negative). Indeed, all the diagonal elements of a square diagonal matrix are its eigenvalues and a
symmetric matrix is PSD iff all its eigenvalues are non-negative. We then consider the constraint w ∈ Rd+
when the learned matrix M ∈ Sd+ is constrained to be diagonal.

2.2.3.2 Learning the rows of a transformation matrix

If the training annotations are M different relative orderings, and each of them is focused on a given
criterion (e.g., Ii is smiling more than Ij , Ii is more natural than Ij ...), then we can learn M dissimilarity
functions that try to satisfy these relative orderings. Each of these learned dissimilarity functions can
be parameterized by a vector wm ∈ Rd, and its corresponding function Dwm

: P × P −→ R where
Dwm(Ii, Ij) = w>mΦ(Ii, Ij) describes the difference of presence of the m-th criterion between Ii and Ij .
The M parameters wm can be concatenated in a single matrix L ∈ RM×d in this way:

L =

w1,1 . . . w1,d

...
...

...
wM,1 . . . wM,d

 =

w>1
...

w>M

 , w>m : mth row of L (2.8)

In the end, a transformation matrix L is learned (with each row learned independently from one another).
As mentioned in Section 1.3.2, learning a transformation matrix L is equivalent to learning a distance
metric parameterized by the matrix M = L>L.

2.2.3.3 Unified problem formulation

In both cases mentioned above, the learning problem may be expressed as a linear combination of the
parameter w ∈ C d where C d is a d-dimensional convex set in Rd. In this thesis, the convex set C d is
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either Rd or Rd+. Without loss of generality, we consider optimizing the following dissimilarity function:

Dw(Ii, Ij) = w>Ψ(Ii, Ij) s.t. w ∈ C d (2.9)

where

• Ψ = Φ◦2 and C d = Rd+ in the case M ∈ Sd+ is a diagonal matrix.

• Ψ = Φ and C d = Rd in the other case.

We formulate our vector optimization problem as:

min
(w,b)

1

2
(‖w‖22 + b2) + CQ

∑
q∈N

ξq + CP
∑

(Ii,Ij)∈(S∪D)

ξij

s.t.∀(Ii, Ij) ∈ S,Dw(Ii, Ij) ≤ b− 1 + ξij

∀(Ii, Ij) ∈ D,Dw(Ii, Ij) ≥ b+ 1− ξij
∀q ∈ N ,Dw(Ik, Il) ≥ Dw(Ii, Ij) + δq − ξq
ξq ≥ 0, ξij ≥ 0,w ∈ C d, b ∈ C

(2.10)

It is very similar to Eq. (2.7) when the matrix Diag(w) = M is constrained to be diagonal, Ω(M) =
1
2‖M‖

2
F = 1

2‖w‖
2
2, u = b − 1 and l = b + 1. The only difference is the inclusion of the b2/2 term in the

regularizer. Note that both w and b are learned in Eq (2.10).

The problem is convex w.r.t. w and b, and the inclusion of the b2/2 term in the regularizer does
not affect generalization [Keerthi and DeCoste, 2005]. The optimization process is briefly discussed in
Section 2.3.2 and a detailed discussion is provided in Appendix B.

2.3 Quadruplet-wise (Qwise) Optimization

In this section, we discuss optimization details of our proposed Quadruplet-wise distance metric frame-
work. We first focus on the case where M ∈ Sd+ is a full (i.e., non-diagonal) matrix, then we discuss the
case where the learned metric is parameterized by one vector of a set of vectors. Finally, we describe
optimization issues that are common to both presented distance metric formulations.

2.3.1 Full matrix metric optimization

We solve our problem by using the projected subgradient method as done in [Weinberger and Saul, 2009].

Projected Subgradient Method The optimization problem in Eq. (2.7) consists in minimizing a con-
vex function that is subject to the constraint M ∈ Sd+. Since the set Sd+ is convex, the problem in Eq. (2.7)
is convex and can be solved by the projected subgradient method [Boyd and Vandenberghe, 2008]. The
projected subgradient method is an extension of the subgradient method, which is a generalization of gra-
dient methods for non-differentiable (and subdifferentiable) convex functions. The projected subgradient
method solves the following constrained convex optimization problem:

min
x
f(x) subject to x ∈ C

where f is a convex function and C is a convex set. Let xt denote the value of x at iteration t, the
projected subgradient method is given by a sequence of the following operation xt+1 = ΠC(x

t − ηtgt)
where ΠC is the Euclidean projection on C, gt is any subgradient of f at xt (when f is differentiable,
the subgradient gt is unique and is the gradient of f at xt). ηt ≥ 0 is the step size at iteration t (see
[Boyd and Vandenberghe, 2008] for optimal stepsize strategies in subgradient methods). The algorithm
provably converges [Boyd and Vandenberghe, 2008].
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Algorithm 1 Projected Subgradient Method

Require: Sets N , D, S (some of them can be empty)
1: Iteration t = 0
2: Initialize Mt ∈ Sd+ (e.g., Mt = 0)
3: Initialize the step size ηt > 0 (e.g., ηt = 1)
4: repeat
5: Compute Ot (subgradient w.r.t. Mt, Eq. (2.11))
6: Mt+1 ← ΠSd+(Mt − ηtOt)
7: t← t+ 1
8: until ||Mt −Mt−1||2F ≤ ε
9: Return Mt

Subgradient of our problem A subgradient of Eq. (2.7) at M is computed as follows:

O = ∂Ω(M) + CP

 ∑
(Ii,Ij)∈S+

Cij −
∑

(Ii,Ij)∈D+

Cij

+ CQ
∑
q∈N+

(Cij −Ckl) (2.11)

where ∂Ω(M) is a subgradient19 of Ω at M and where N+, S+ and D+ are the subsets of violated
constraints in N , S, D, respectively, i.e., :

• q ∈ N+ ⇐⇒ q = (Ii, Ij , Ik, Il) ∈ N and δq + 〈M,Cij −Ckl〉 > 0

• (Ii, Ij) ∈ S+ ⇐⇒ (Ii, Ij) ∈ S and D2
M(Ii, Ij) > u

• (Ii, Ij) ∈ D+ ⇐⇒ (Ii, Ij) ∈ D and D2
M(Ii, Ij) < l

The whole algorithm of this subgradient method is presented in Algorithm 1 where ηt is the step
size. The complexity of Algorithm 1 is linear in the number of constraints. When the input space
dimensionality d is large, its complexity is dominated by the projection ΠSd+ onto the PSD cone performed

at each iteration (step 6, see Appendix A.3 for more details on the projection onto Sd+).

2.3.2 Vector metric optimization

To solve the vector optimization problem introduced in Eq. (2.10), we adapt the RankSVM model
[Joachims, 2002]. The complexity is linear in the number of constraints and large-scale efficient solvers
have been proposed such as Newton’s method [Chapelle and Keerthi, 2010]. In order to exploit Newton’s
method, we use a Huber loss function instead of a hinge loss function like in Eq. (2.7). The optimization
process is detailed in Appendix B and is a Newton adaptation of Algorithm 1 for vector optimization.

19The value of ∂Ω(M) depends on the choice of regularizer Ω(M). For instance

1. ∂Ω(M) = Id if Ω(M) = tr(M).

2. ∂Ω(M) = M if Ω(M) = 1
2
‖M‖2F .

3. ∂Ω(M) =
∑

(Ii,Ij)∈S Cij if Ω(M) = 〈M,
∑

(Ii,Ij)∈S Cij〉 in the case of MMC [Xing et al., 2002] and LMNN

[Weinberger and Saul, 2009].
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2.3.3 Implementation details

Projection onto Sd+ In the full matrix case (Section 2.3.1), the projection onto Sd+ requires an eigen-
decomposition of the matrix (Mt − ηtOt), whose complexity is cubic in the dimensionality d. This can
be prohibitive if d is large. However, the dimensionality d of our input data is always smaller or equal to
1000 in our experiments. On a single 3,40 GHz computer, the eigendecomposition of a 103 × 103 matrix
takes less than 0.1 second, which is tractable for our applications.

Regularization parameter In the experiments, we use the same regularization as LMNN (i.e., the
term

∑
(Ii,Ij)∈S D

2
M(Ii, Ij)) when we use LMNN as a baseline and we want to study the benefit of our

proposed constraints in order to have a fair comparison. When we constrain M ∈ Sd+ to be diagonal, we
use the squared Frobenius norm in order to apply an efficient RankSVM [Chapelle and Keerthi, 2010]
optimization scheme.

Efficient subgradient computation As one can see in Eq. (2.11), the subgradient related to the loss
of each quadruplet of images q = (Ii, Ij , Ik, Il) ∈ N is:

∂ [δq + 〈M,Cij −Ckl〉]+ =

{
0 if q /∈ N+

(Cij −Ckl) if q ∈ N+

The value of the subgradient does not depend on the degree to which the constraint associated to the
quadruplet q ∈ N is violated, but depends only on whether q is in N+ or not. Then let h(N+) be a
subgradient associated to the set N+, i.e., : h(N+) =

∑
q∈N+ (Cij −Ckl). Let N+

t be the set of violated
constraints in N at iteration t. We note that:

h(N+
t+1) = h(N+

t )− h(N+
t \ N+

t+1) + h(N+
t+1 \ N

+
t )

Since the sets (N+
t \ N+

t+1) and (N+
t+1 \ N

+
t ) are very small in practice, it is more efficient to store the

matrix h(N+
t ) and compute h(N+

t \N+
t+1) and h(N+

t+1 \N
+
t ) to obtain h(N+

t+1) than naively computing∑
q∈N+ (Cij −Ckl) for which the complexity is O(|N+

t+1|d2). Note that the same technique can be used
for the sets S and D when they are not empty.

A small adaptation needs to be done for the vector metric optimization (see Section 2.3.2) to exploit
this subgradient computation technique since we use Huber loss functions instead of a hinge loss. As the
Huber loss function is composed of two linear parts (sets β0

i,y and βLi,y in Appendix B.2) and a quadratic
part, this technique for the hinge loss can be applied to the linear parts of the Huber loss function, which
represent nearly all the domain of Lhi .

Active set strategy We describe here an active set strategy to deal with large number of constraints.
Since the number of possible quadruplets can be very large, it is computationally prohibitive and sub-
optimal to use all the quadruplets. To overcome this limitation, we propose to add to our optimization
schemes an active set strategy that exploits the fact that the great majority of training quadruplets do not
incur margin violations. Only a small fraction of the quadruplets in N are in N+. In a similar manner as
in LMNN [Weinberger and Saul, 2009], we check all the quadruplets and maintain an active list of those
with margin violations: a full re-check is performed every 10-20 iterations, depending on fluctuations of
the set N+

t . For intermediate iterations, we only check for margin violations from among those active
quadruplets accumulated over previous iterations. When the optimization converges for a given active
set N+

t , the most active constraints that are not in N+
t are added in N+

t+1, note that N+
t ⊂ N+

t+1. If

all the possible active constraints are already in N+
t , then we have reached an optimal solution for the

global (and convex) optimization problem. Otherwise, some remaining active constraints are added to
the current set Nt until convergence.
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Presence of smile− +

Least smiling ≺ ? ∼ ? ≺ Most smiling

Class (e) Class (f) Class (g) Class (h)︸ ︷︷ ︸
⇓

Learn dissimilarity D such that:

D( , ) < D( , )

D( , ) < D( , )

Figure 2.3: Quadruplet-wise (Qwise) strategy on 4 face classes ranked according to the degree of pres-
ence of smile. Qwise strategy defines quadruplet-wise constraints to express that dissimilarities between
examples from (f) and (g) should be smaller than dissimilarities between examples from (e) and (h).

2.4 Experimental Validation on Relative Attributes

In this section, we present and compare different strategies to sample quadruplet-wise constraints in the
context of relative attributes.

Relative attributes have been introduced in [Parikh and Grauman, 2011]. Attributes are human-
nameable concepts used to describe images. For instance, in Fig. 2.3, the attribute am = “presence
of smile” allows to rank 4 celebrity classes from the least to the most smiling. Instead of considering
attributes as boolean values as done in [Lampert et al., 2009] (i.e., the concept is present in the image
or not), Parikh and Grauman [Parikh and Grauman, 2011] consider relative orderings between classes of
images (e.g., the concept “presence of smile” is more present in class (h) than in class (e)). They learn
for each attribute am a vector wm ∈ Rd such that the score w>mxi ∈ R represents the degree of presence
of am in the image Ii.

Let M be the total number of attributes that are considered for a given dataset. Once the optimal
weight vectors wm are learned for all the attributes am with m ∈ {1, . . . ,M}, each image Ii is described
by a high level feature representation:

hi = [w>1 xi, . . . ,w
>
mxi, . . . ,w

>
Mxi]

> ∈ RM

This corresponds to learning a linear transformation parameterized by the matrix L ∈ RM×d such that
hi = Lxi where the mth row of L is w>m (see Eq. (2.8)). As explained in Section 2.2.2, their problem can
be cast as a metric learning problem since they learn a linear transformation.

To learn wm, they use original training sets about relative ordering between classes such as the one
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OSR Attributes Relative Ordering of Classes
Natural T ≺ I ∼ S ≺ H ≺ C ∼ O ∼ M ∼ F
Open T ≺ F ≺ I ∼ S ≺ M ≺ H ∼ C ∼ O

Perspective O ≺ C ≺ M ∼ F ≺ H ≺ I ≺ S ≺ T
Large-Objects F ≺ O ≺ M ≺ I ∼ S ≺ H ∼ C ≺ T
Diagonal-Plane F ≺ O ≺ M ≺ C ≺ I ∼ S ≺ H ≺ T

Close-Depth C ≺ M ≺ O ≺ T ∼ I ∼ S ∼ H ∼ F

PubFig Attributes Relative Ordering of Classes
Masculine-Looking S ≺ M ≺ Z ≺ V ≺ J ≺ A ≺ H ≺ C

White A ≺ C ≺ H ≺ Z ≺ J ≺ S ≺ M ≺ V
Young V ≺ H ≺ C ≺ J ≺ A ≺ S ≺ Z ≺ M
Smiling J ≺ V ≺ H ≺ A ∼ C ≺ S ∼ Z ≺ M
Chubby V ≺ J ≺ H ≺ C ≺ Z ≺ M ≺ S ≺ A

Visible-Forehead J ≺ Z ≺ M ≺ S ≺ A ∼ C ∼ H ∼ V
Bushy-Eyebrows M ≺ S ≺ Z ≺ V ≺ H ≺ A ≺ C ≺ J

Narrow-Eyes M ≺ J ≺ S ≺ A ≺ H ≺ C ≺ V ≺ Z
Pointy-Nose A ≺ C ≺ J ∼ M ∼ V ≺ S ≺ Z ≺ H

Big-Lips H ≺ J ≺ V ≺ Z ≺ C ≺ M ≺ A ≺ S
Round-Face H ≺ V ≺ J ≺ C ≺ Z ≺ A ≺ S ≺ M

Table 2.1: Relative orderings used in [Parikh and Grauman, 2011] for the OSR dataset (categories: coast
(C), forest (F), highway (H), inside-city (I), mountain (M), open-country (O), street (S) and tall-building
(T)) and the PubFig dataset (categories: Alex Rodriguez (A), Clive Owen (C), Hugh Laurie (H), Jared
Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo Mortensen (V) and Zac Efron (Z)).

presented in Fig. 2.3: (e) ≺ (f) ∼ (g) ≺ (h). In [Parikh and Grauman, 2011], only pairwise relations are
considered for learning:
• (e) ≺ (f) meaning that images in class (f) have stronger presence of the attribute am than images in
class (e).
• (f) ∼ (g) meaning that images in (f) and (g) have equivalent strength of presence of the attribute am.

In [Parikh and Grauman, 2011], the training information concerning the degree of presence of an
attribute in an image is provided at a class level: pairwise constraints based on classes may be noisy or
irrelevant, leading to less than optimal learning scheme. Considering triplet-wise constraints (e.g., class
(x) is more similar to (y) than to (z)) could be helpful but also generates inconsistent constraints in some
cases: in Fig. 2.3 (second row), Owen (f) seems to be smiling more like Johansson (h) than like Rodriguez
(g). To further exploit the available ordered set of classes and overcome these limitations, we consider
relations between quadruplets of images to relax pairwise relations. Two types of Qwise constraints may
be derived from the provided training set.

2.4.1 Integrating quadruplet-wise constraints

Following our vector formalism defined in Section 2.2.3.2, we consider to learn for each attribute am the
signed dissimilarity function Dwm

such that Dwm
(Ii, Ij) = w>mΨ(Ii, Ij), with Ψ(Ii, Ij) = (xi − xj) and

w ∈ Rd. The sign of Dwm
(Ii, Ij) determines the relative ordering of presence of the attribute am between

the images Ii and Ij . For instance, Dwm(Ii, Ij) > 0 means that the presence of am is stronger in Ii than
in Ij .

2.4.1.1 Replacing ordered pairs by quadruplets

The first type of relation that we consider in this section is: (e) ≺ (f) ≺ (g) ≺ (h) in order to relax
the relation (f) ≺ (g) exploited in [Parikh and Grauman, 2011]. We do the following assumption: any

39



Chapter 2. Quadruplet-wise Distance Metric Learning

image pair from the extreme border classes (e) and (h) is more dissimilar than any image pair from the
intermediate classes (f) and (g). This information can be written:

∀(Ii, Ij , Ik, Il) ∈ (g)× (f)× (h)× (e) Dkl > Dij (2.12)

By sampling such quadruplets from the whole set of relative orderings over classes (i.e., Table 2.1, see
experiments for details), we build our Qwise set N such that for all quadruplet q in N , we have δq = 1
in Eq. (2.10).

2.4.1.2 Flexible constraints instead of equivalence constraints

The second type of relation that we consider is: (e) ≺ (f) ∼ (g) ≺ (h) in order to relax the relation
(f) ∼ (g). To take into account the fact that the dissimilarity Dij between Ii and Ij is signed, we
consider the following constraint20: Dkl > |Dij | where (Ik, Il) ∈ (h) × (e). In order to have a convex
problem, we rewrite it as two constraints: {

Dkl ≥ Dij + 1
Dkl ≥ Dji + 1

(2.13)

From Eq. (2.13), we then generate two quadruplets in N .

2.4.2 Classification experiments

In order to evaluate and compare our Qwise scheme, we follow a classification framework inspired from
[Parikh and Grauman, 2011] for scene and face recognition on the OSR [Oliva and Torralba, 2001] and
Pubfig [Kumar et al., 2009] datasets.

Datasets: We experiment with the two datasets used in [Parikh and Grauman, 2011]: Outdoor Scene
Recognition (OSR) [Oliva and Torralba, 2001] containing 2688 images from 8 scene categories and a
subset of Public Figure Face (PubFig) [Kumar et al., 2009] containing 771 images from 8 face categories.
We use the image features made publicly available by [Parikh and Grauman, 2011]: a 512-dimensional
GIST [Oliva and Torralba, 2001] descriptor for OSR and a concatenation of the GIST descriptor and a
45-dimensional Lab color histogram for PubFig. Relative orderings of classes according to some semantic
attributes are also available (see Table 2.1).

2.4.2.1 Recognition with Gaussian Models

We study here the impact of our constraints on the original relative attribute problem.

Baseline: As a baseline, we use the model proposed in [Parikh and Grauman, 2011] that exploits relative
attribute orderings between classes (see Table 2.1) to generate pairwise constraints. A multivariate
Gaussian model is learned to perform recognition, as explained below.

Qwise Method: We use for OSR and Pubfig the quadruplet-wise constraints defined in Section 2.4.1.
The Qwise scheme uses relative attribute information to learn a linear transformation. Particularly, we
propose two different QWise strategies named QWSL and OQWSL:

- QWSL: this method exploits the same pairwise ordered constraints as [Parikh and Grauman, 2011]
(e.g., (e) ≺ (f)) and relaxes pairwise equivalence constraints (i.e., in Section 2.4.1.2, we consider the
relation (e) ≺ (f) ∼ (g) ≺ (h) instead of (f) ∼ (g)). By relaxing only restrictive pairwise equivalence
constraints, this method is more robust to the annotation problems described in Fig 2.3.

20It is not necessary to discuss the sign of Dkl since Ik was annotated to have stronger presence of am than Il. We infer
Dkl > 0.
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Figure 2.4: Recognition performance of the baseline [Parikh and Grauman, 2011] and the proposed meth-
ods on OSR dataset (a) and PubFig dataset (b) as a function of B (the number of pairs of classes used
to generate relative constraints per attribute). Accuracies smaller than 69% are not reported for B = 1
on OSR. Accuracies smaller than 66% are not reported for B = 1 or B = 2 on PubFig.

- OQWSL: this method exploits solely quadruplet-wise constraints for training. The pairwise equiv-
alence constraints are relaxed in the same way as QWSL, and pairwise ordered constraints are replaced
by quadruplet-wise constraints (i.e., in Section 2.4.1.1, we consider the relation (e) ≺ (f) ≺ (g) ≺ (h)
instead of (f) ≺ (g)). On some datasets, the pairwise ordered annotations performed by humans may
be noisy in the same way as equivalence constraints. The purpose of this method is to relax pairwise
constraints generated by these possibly noisy annotations.

Learning setup: We use the same experimental setup as [Parikh and Grauman, 2011] to learn our
Qwise metric. N = 30 training images are used per class, the rest is for testing. Let B be the number of
pairs of classes that we select to learn the projection direction wm of attribute am, From each of the B
selected pairs of classes, we extract N ×N image pairs or quadruplets to create training constraints. To
carry out fair comparisons, we generate one Qwise constraint for each pairwise constraint generated by
[Parikh and Grauman, 2011] using the strategies described in Section 2.4.1. In this way, we have the same
number of constraints. Once all the M projection directions wm are learned, a Gaussian distribution is
learned for each class cs of images: the mean µs ∈ RM and covariance matrix Σs ∈ RM×M are estimated
using the hi of all the training images Ii in cs. A test image It is assigned to the class corresponding
to the highest likelihood. The performance is measured as the average classification accuracy across all
classes over 10 random train/test splits.

Concerning the values of B, when at least one of the two images Ii and Ij belongs to extreme border
classes (e.g., the most or least smiling classes), a pair of images (Ik, Il) such that Dkl > Dij cannot
be sampled. We ignore the constraint in this case: since we cannot generate Qwise constraint from a
pairwise constraint that involves extreme border classes, the maximum possible value for B is

(
C−2

2

)
= 15

for OQWSL where C = 8 is the number of classes. Otherwise, the maximum possible value for B is(
C
2

)
= 28.

Results: The comparison of our proposed methods and the baseline [Parikh and Grauman, 2011] is
illustrated in Fig. 2.4 for the OSR dataset and PubFig dataset.

- Pairwise baseline study: we first study for the baseline [Parikh and Grauman, 2011] the impact of
the pairwise equivalence constraints (i.e., (f) ∼ (g)) on recognition performance to better analyze the
benefit of our Qwise constraints. On both OSR and PubFig, recognition performance is comparable
when pairwise equivalence constraints are exploited and when they are not. This proves that equivalence
constraints are not informative and do not appropriately exploit the provided equivalence information.
In the following, we study the impact on recognition induced by the integration of our proposed Qwise
constraints:
- OSR: On OSR, our methods reach an accuracy of 74.3% and 74.1%, which is 3% better than the optimal
baseline accuracies. QWSL is more robust as B increases, it seems to benefit both from the precision
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Figure 2.5: Recognition performance of our proposed methods for
different neighbor sampling strategies (see text) on OSR dataset ((a)
& (b)) and PubFig dataset ((c) & (d)) as a function of B (the number
of pairs of classes used to generate relative constraints per attribute).
Accuracies smaller than 69% are not reported for B = 1 on OSR.
Accuracies smaller than 66% are not reported for B = 1 or B = 2 on
PubFig.

of strict order pairwise constraints and from the flexibility applied on problematic equivalent pairs of
classes. OQWSL performs surprisingly well with a set of 4 classes (B = 1) per attribute, attesting that
our Qwise scheme performs well with a small number of constraints.
- PubFig: On PubFig, since there are not many equivalence constraints (see Table 2.1), QWSL mostly
uses the same pairwise constraints as the baselines and then performs similarly. OQWSL reaches 72%
accuracy, which is 2% better than baselines with comparable B (i.e., comparable number of constraints).
Moreover, when combining OQWSL and pairwise ordered constraints for extreme border classes, our
method reaches 74.5% accuracy.

The recognition performance of all the baselines and proposed methods decreases with large values of
B on OSR but increases on PubFig, which suggests that the provided annotations of OSR are noisy, or
at least not reliable. QWSL is more robust and performs at least as well as baselines on both datasets.
However, OQWSL is clearly better than all the other methods on PubFig with comparable B.

In conclusion, our approach outperforms the baselines on both OSR and PubFig with a margin of 3%
accuracy, reaching state-of-the-art results in this original setup21 [Parikh and Grauman, 2011].

This proves that relaxing noisy pairwise constraints by intuitive quadruplet-wise constraints introduces
robustness and compensates for labeling imprecisions described in Section 2.4.1.

Impact of the distance of surrounding classes to create quadruplets: We have a totally or-
dered set of classes per attribute to describe relations. We only studied the case where we upper bound
the dissimilarity between two classes with their nearest neighbor classes in the ordered set. What hap-
pens if we choose more distant classes in the set to create quadruplets? Fig. 2.5 shows that our meth-
ods are very robust to the distance of surrounding classes. In the figures, the methods (O)QWSL-1,
(O)QWSL-2, (O)QWSL-3 correspond to different sampling strategies to generate a given quadruplet
q = (Ii, Ij , Ik, Il) from a given pair (Ii, Ij). For a given p ∈ {1, 2, 3}, (O)QWSL-p corresponds to
sampling the images Ik and Il from the pth closest classes of the classes of Ii and Ij .22

Except in Fig 2.5 (b) where OQWSL-3 performs little worse than OQWSL-1, choosing further neigh-
bors gives better results than choosing nearest neighbors. Our best accuracies are obtained by doing so:
QWSL-2 in Fig. 2.5 (a), OQWSL-2 in Fig. 2.5 (b) and OQWSL-3 in Fig. 2.5 (d). Our performances are
about 4% and 1.5% better than the optimal baselines accuracies on OSR and PubFig respectively (3.5%
better on PubFig with comparable B). The reason of this phenomenon seems to be the high intra-class

21A different setup is used in [Parkash and Parikh, 2012] where additional feedback improves recognition.
22For instance, if we have (k) ≺ (i) ≺ (e) ≺ (f) ∼ (g) ≺ (h) ≺ (j) ≺ (l), the classes (i) and (j) and the second closest

classes to (f) and (g). The classes (k) and (l) are their third closest classes.
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variance. In general, using two close classes seems to be the right choice to learn a good margin between
classes. However, if the generated training constraints are noisy due to annotation limitations (here be-
cause annotations are performed on whole classes instead of individual images), the quality of the learned
projection direction w is affected.

In conclusion, Qwise constraints allow to refine relations between samples and can improve recognition.

2.4.2.2 Comparison of different classification models

The relative attribute problem learns a high-level representation of images that reflects the relative
degrees of presence of attributes between classes. Nevertheless, the learned transformation is not explicitly
optimized so that a global distance metric measures semantical similarities between images. In particular,
if we are interested in obtaining a global metric that accurately describes class membership, one can exploit
the learned image representations as input data to train a metric-based classifier.

Note that learning for each class a multivariate Gaussian distribution N (µs,Σs) can be seen as
learning a Mahalanobis distance metric DΣ−1

s
(x,µs) (see Eq. (1.1)). We propose to compare the per-

formances of our learned representations when combined with another metric learning approach: LMNN
[Weinberger and Saul, 2009]. LMNN exploits only class membership information in order to learn a
Mahalanobis-like distance metric. For each image, LMNN tries to satisfy the condition that members of
a predefined set of target neighbors (of the same class) are closer than samples from other classes. In
[Weinberger and Saul, 2009], those neighbors are chosen using the `2-distance in the input space.

Setup: we propose a strategy called Qwise + LMNN for which the high level features hi ∈ RM learned
with our method are used as input of LMNN.

As baselines, we denote:

- LMNN : the methods for which a k-NN classifier is used (since LMNN is designed for k-NN classification).
In its basic setup, we use low-level features (i.e., GIST or GIST+lab features) as input of LMNN.

- LMNN-G : the methods for which a linear transformation is learned (using the LMNN method) but used
with a multivariate Gaussian model instead of a k-NN classifier. We propose these methods in order to
have the same classifier as [Parikh and Grauman, 2011] and be fair in comparison.

- RA + LMNN is a combination of [Parikh and Grauman, 2011] and [Weinberger and Saul, 2009] that
first uses relative attribute annotations to learn a representation of images in attribute space, and second,
learns a metric in attribute space with LMNN.

We use the publicly available codes of [Parikh and Grauman, 2011] and [Weinberger and Saul, 2009].

OSR Pubfig
LMNN 71.2± 2.0% 71.5± 1.6%

LMNN-G 70.7± 1.9% 69.9± 2.0%
RA (Parikh’s code) 71.3± 1.9% 71.3± 2.0%

RA + LMNN 71.8± 1.7% 74.2± 1.9%

Qwise 74.1± 2.1% 74.5± 1.3%
Qwise + LMNN 74.3± 1.9% 77.6± 2.0%

Table 2.2: Test classification accuracies on the OSR and Pubfig datasets for different methods.

Results: Table 2.2 reports the classification scores for the different baselines, Qwise, and Qwise+LMNN.
On OSR and Pubfig, our method reaches an accuracy of 74.1% and 74.5%, respectively (see previous re-
sults). It outperforms the baselines [Parikh and Grauman, 2011] and [Weinberger and Saul, 2009] on
both datasets by a margin of 3% accuracy. Moreover, performance is further improved when relative
attributes and LMNN are combined. Particularly, an improvement of about 3% is obtained on Pubfig,
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reaching 77.6%. Relative attribute annotations (used for Qwise learning) and class membership informa-
tion (used for LMNN) then seem complementary.

In conclusion, we have proposed and compared different strategies to sample constraints and com-
pensate for labeling imprecisions. Relaxing strong equivalence constraints by quadruplet-wise constraints
improves recognition in the context of relative attributes.

2.5 Experimental Validation on Hierarchical Information

In this section, the goal is to learn a distance metric that is relevant to a given hierarchical object class
taxonomy. More precisely, our objective is to learn a metric such that images from close (e.g., sibling)
classes with respect to the class semantic hierarchy are more similar than images from more distant
classes. Our strategy is illustrated in Fig. 2.2 where different subclasses of the general class Canis lupus
are gathered together depending on their subspecies and their breed, which corresponds to subclasses and
subsubclasses in the taxonomy, respectively.

We show the benefit of exploiting full matrix metrics over diagonal matrix metrics in the context
of k-NN classification. The experiments are performed on datasets where billions of constraints can be
generated. To have a tractable framework, we use the optimization strategies mentioned in Section 2.3.

2.5.1 Formulation of our metric and constraints

Constraints: Given a semantic taxonomy expressed by a tree of classes, let us consider two sibling
classes ca and cb and a class cd that is not their sibling (we call it a cousin class). We generate two types
of quadruplet-wise constraints in order to:

(1) Enforce the dissimilarity between two images from the same class to be smaller than between two
others from sibling classes. If (Ii, Ij) are both sampled from ca, and (Ik, Il) are sampled from ca× cb, we
wantDij < Dkl. These constraints are similar to the ones exploited by LMNN [Weinberger and Saul, 2009]
with the exception that we use quadruplets of images (i.e., Ii = Ik in LMNN) and that LMNN does not
exploit taxonomy information: i.e., we sample Il from a sibling class of ca whereas LMNN samples Il
from any class different from ca.

(2) Enforce the dissimilarity between two images from sibling classes to be smaller than between
two images from cousin classes. If (Ii, Ij) are sampled from ca × cb and (Ik, Il) from ca × cd, we want
Dij < Dkl. These constraints are strongly related to the taxonomy information and allow to discriminate
images from sibling classes better than from any other class. They follow the idea that semantically close
objects should be closer with the learned distance metric.

In order to limit the number of training constraints, we sample the image Ij such that Ij is one of
the k nearest neighbors of Ii: Ij is sampled in the same class in the case (1) and in a sibling class in the
case (2).
Distance metric: in this section, we consider both the diagonal PSD matrix and the full matrix distance
metric formulations described in Section 2.2.

2.5.2 Experiments

2.5.2.1 Datasets and classification task

Classification task: In order to validate the Qwise ability to learn a powerful metric using a class
hierarchy, we focus on the local subtree classification task described in [Verma et al., 2012]. In this
section, the goal is to discriminate classes (leafs of a hierarchical subtree) amongst a hierarchical subtree
that contains all the considered classes.
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Subtree Dataset Non-linear SVM TaxEmb Verma et al. Qwise (Diag. Matrix) Qwise (Full Matrix)
Amphibian 38% 38% 41% 43.5% 43.5%

Fish 34% 37% 39% 41% 41.6%
Fruit 22.5% 20% 23.5% 21.1% 21.1%

Furniture 44% 41% 46% 48.8% 48.9%
Geological Formation 50.5% 50.5% 52.5% 56.1% 56.1%
Musical Instrument 30.5% 23% 32.5% 32.9% 32.9%

Reptile 21.5% 18.5% 22% 23.0% 23.1%
Tool 27.5% 24.5% 29.5% 26.4% 26.7%

Vehicle 30.5% 22.5% 27% 34.7% 34.7%

Average Accuracy 33.2% 30.6% 34.8% 36.4% 36.5%

Table 2.3: Standard classification accuracy for the various datasets.

Datasets: We use the same 9 datasets as in [Verma et al., 2012] (which are all subsets of ImageNet
[Deng et al., 2009]): Amphibian, Fish, Fruit, Furniture, Geological Formation, Musical Instrument, Rep-
tile, Tool, Vehicle. Each of these 9 datasets contains 8 to 40 different classes and from 8000 to 54000 images
each. We use the train, validation and test sets defined in [Verma et al., 2012], and also the same publicly
available features23: 1000 dimensional SIFT-based Bag-of-Words (BoW) [Sivic and Zisserman, 2003].

2.5.2.2 Optimal strategy

We learn a PSD matrix M ∈ Sd+ that exploits the constraints described in Section 2.5.1 and that we

decompose24 as M = L>L. The matrix L is used to project input data in another representation space
which is the input space of another classifier. We choose a standard classifier (linear SVM) to perform
classification.

When we constrain M ∈ Sd+ to be diagonal, we formulate our metric D2
M(Ii, Ij) = Dw(Ii, Ij) =

w>Ψ(Ii, Ij) where Ψ(Ii, Ij) = (xi − xj) ◦ (xi − xj) and w = Diag(M). Once the diagonal PSD matrix
M ≥ 0 is learned, we project the input space using the linear transformation parameterized by the
diagonal matrix M1/2 = L ∈ Rd×d such that ∀i ∈ {1, . . . , d},Lii =

√
Mii (note that L>L = M).

Table 2.3 presents for the 9 different datasets the test classification accuracies:

- reported in [Verma et al., 2012] for different methods (TaxEmb [Weinberger and Chapelle, 2008], a non-
linear SVM and the method proposed in [Verma et al., 2012]). The model of [Verma et al., 2012] and
TaxEmb [Weinberger and Chapelle, 2008] also exploit class taxonomy information to learn hierarchical
similarity metrics or an embedding. It is worth mentioning that Verma et al. [Verma et al., 2012] have a
complex learning framework: they learn a local metric parameterized by a full PSD matrix for each class
(leaf of the subtree), which can lead to overfitting.

- of our two methods: the first one constrains the learned matrix M ∈ Sd+ to be diagonal, the second one
does not. Our Qwise-learning model is simpler than [Verma et al., 2012] since we learn only one global
metric for each subtree. Moreover, when we use a diagonal matrix model, the number of parameters only
grows linearly with the input space dimension. Both proposed methods obtain surprisingly very similar
results with a global accuracy of 36.4 ∼ 36.5%, which beats the method of Verma et al. [Verma et al., 2012]
by 1.6%. The similar performances of the full and diagonal matrix models seem to be due to the linear
SVM classifier which implicitly decorrelates training data by ignoring irrelevant features and giving special
importance to discriminant features. Both proposed methods outperform all the reported methods,
globally and on each dataset except Fruit and Tool. All these results validate the fact that the proposed
constraints are useful when richer information compared to class membership information is provided.

23http://www.image-net.org/challenges/LSVRC/2010/
24We use the eigendecomposition M = UDU> where D is a diagonal matrix, and we formulate L = D1/2U>.
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Model Amph. Fish Fruit Furn. Geol. F. Mus. I. Rept. Tool Vehi. AVG
Euclidean distance 35.5 33.9 16.9 36.6 43.3 27.0 17.2 24.5 20.2 28.3
LMNN Diag. Matrix 39.0 37.4 19.5 39.4 47.2 27.5 19.8 23.8 22.9 30.8
LMNN Full Matrix 41.8 38.3 21.1 41.1 49.5 28.5 21.2 24.0 28.0 32.6
Qwise Diag. Matrix 39.3 37.6 20.6 40.0 47.6 28.0 20.7 23.8 24.8 31.4
Qwise Full Matrix 41.8 38.5 21.7 41.6 51 29.3 21.8 24.2 29.3 33.2

Table 2.4: Standard classification accuracy for the various datasets using the k-NN classification frame-
work, with k = 10.

Model Amph. Fish Fruit Furn. Geol. F. Mus. I. Rept. Tool Vehi. AVG
Euclidean distance 50.1 35.3 32.1 42.2 45.1 28.5 21.3 26.2 29.1 34.4
LMNN Diag. Matrix 53.0 42.0 34.2 42.7 48.5 30.2 22.4 25.5 32.2 36.7
LMNN Full Matrix 56.0 42.3 34.5 44.1 51.1 31.7 22.4 25.7 32.8 37.8
Qwise Diag. Matrix 54.8 42.5 39.1 44.8 50.0 33.1 24.4 25.6 33.2 38.6
Qwise Full Matrix 56.7 43.6 39.7 46.9 53.2 34.1 25.5 26.1 34.7 40.1

Table 2.5: Classification accuracy that takes class information into account for the various datasets using
the k-NN classification framework (see text), with k = 10.

2.5.2.3 Further analysis with k-NN classification

We further study the impact of our proposed constraints in a k-NN classification context. For this
purpose, we also learn a metric that exploits the constraints described in Section 2.5.1. Each test image
is assigned to the class with maximum number of nearest neighbors w.r.t. the learned metric.

Table 2.4 reports the average classification accuracy across all classes for different k-NN methods:

• the Euclidean distance which corresponds to the Mahalanobis-like distance metric parameterized by
the unlearned identity matrix M = Id. We report the results for 10 nearest neighbor classification (which
performs better than 1-NN, 5-NN and 50-NN).

• LMNN [Weinberger and Saul, 2009] that is a popular metric learning approach for classification. It
does not exploit taxonomy information.

• our two proposed methods: the first one learns a diagonal PSD distance matrix, the second one learns
a full PSD distance matrix as described in Section 2.2.2.

All the learned models outperform the Euclidean distance metric in this setup for the mentioned
datasets. Full matrix models that exploit correlations between features outperform metric learning models
that learn a diagonal distance matrix. We note that our proposed methods, which exploit hierarchical
taxonomy information, slightly outperform LMNN that uses only class membership information. It is
worth mentioning that this gain is not straightforward since our proposed constraints focus on preserving
semantic distances w.r.t. the provided taxonomy rather than performing k-NN classification task. In
order to better observe the preservation of relationships between classes using our learned metric, we use
another evaluation criterion that takes into account the relationship between the predicted class and the
true class instead of only focusing on the correct assignment of an image to its true class.

The proposed accuracy metric can be written as the average accuracy across all classes 1/C
∑C
c=1 Accc

where C is the number of considered categories. The accuracy for each class c is Accc = 1− 1
m

∑m
t=1 ∆(c, ŷct )

where c and ŷct denote the true and predicted class labels of the tth test example; m denotes the total
number of test examples in the class c. In the standard classification accuracy and the proposed evaluation
metrics, each correct prediction has zero loss (i.e., ∆(c, ŷct ) = 0 when c = ŷct ). However:

• ∆(a, ŷct ) = 1 iff a 6= c for the standard classification accuracy.

• for the proposed metric: ∆(a, ŷct ) = 0.5 when a is a sibling class of ŷct in the hierarchical taxonomy.
∆(yt, ŷt) = 1 otherwise.
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2.6. Conclusion

In this way, we can measure and interpret the ability of models to preserve semantic relationships.
Table 2.5 reports the recognition scores when using the proposed accuracy metric. When the evaluation
metric considers semantic closeness between categories, the gap between our method and LMNN is more
important. Our proposed method outperforms all the tested methods. This demonstrates that the pro-
posed constraints allow to better fit semantic relationships between classes. This result corroborates the
claim of [Verma et al., 2012] that exploiting class taxonomy to learn a metric is beneficial for recognition.

2.6 Conclusion

In this chapter, we have proposed a general and efficient Mahalanobis distance metric learning framework
that exploits constraints over quadruplets of images. Our approach is a generalization of pairwise and
triplet-wise approaches, it can also describe relations between data that are not possible with classic ap-
proaches. Moreover, it can easily combine relative and absolute distance constraints. In many contexts,
relations between pairs of samples seem intuitive and prove to be reliable information to improve recogni-
tion when combined with or when replacing pairwise or triplet-wise approaches. We experimentally show
in different scenarios (i.e., relative attributes and metric learning on class hierarchy) that it is specifically
adapted to incorporate knowledge from rich or complex semantic label relations. In the context of relative
attributes, we have shown that some pairwise comparisons of images are limited and can be improved
by relaxing them with quadruplet-wise constraints. A meaningful high-level representation of images has
then been learned and used in the context of image classification. In the context of hierarchical classifi-
cation, class taxonomies have been used to better describe semantical relationships between images, and
thus improve recognition performance. We will complete these experiments with another application in
Chapter 4. Furthermore, our approach can be used in contexts where billions of constraints are generated
thanks to an active set strategy. Future work includes the adaptation in our framework of other efficient
methods to deal with huge numbers of constraints, such as the 1-slack cutting plane method used for
structural SVMs.
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Chapter 3

Fantope Regularization

Chapter Abstract This chapter introduces a regularization method to explicitly control the

rank of a learned symmetric positive semidefinite distance matrix in Mahalanobis distance metric

learning. For this purpose, we propose to incorporate in the objective function a regularization

term that minimizes the sum of the k smallest eigenvalues of the learned distance matrix. It is

equivalent to minimizing the trace of the product of the distance matrix with a matrix in the convex

hull of rank-k projection matrices, called a Fantope. Based on this new regularization method, we

derive an optimization scheme to efficiently learn the distance matrix.

We first present classic methods to control the rank of the learned model in Mahalanobis dis-

tance metric learning (Section 3.1). We then introduce our proposed regularizer and an algorithm

to solve our resulting objective problem (Section 3.2). We provide a theoretical justification for

the algorithm (Section 3.3). We experimentally demonstrate the effectiveness of the method on

synthetic and challenging real-world datasets of face verification and image classification with rel-

ative attributes (Section 3.4), on which our method outperforms state-of-the-art metric learning

algorithms.

Some of the material in this chapter has been published at the following conference:

� Law, M. T., Thome, N., and Cord, M. (2014). Fantope Regularization in Metric Learning.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Law et al., 2014b]

3.1 Introduction

In the previous chapter, we focused on the generation of meaningful constraints to improve recogni-
tion when rich information on the dataset is provided. This chapter is dedicated to the control of the
complexity of the learned distance metric model.

Mahalanobis distance metric learning approaches infer a symmetric positive semidefinite matrix and
hence a linear transformation of the data. The number of independent parameters of the learned model
is proportional to both the dimensionality of the input space and the rank of the learned PSD matrix.
Controlling the rank of the learned model has several theoretical and practical advantages. First, it
is a powerful way to limit overfitting, especially because the number of independent parameters of the
model can be quadratic in the input space dimensionality if its rank is not controlled. It also allows
to better exploit correlations between features. In practice, low-rank models often perform better than
high-rank models, particularly in contexts with high-dimensional input space. Finally, it has practical
interest since it allows to efficiently store data projected in a low-dimensional space, which also speeds
up the computation of Euclidean distances in this space.

Nonetheless, the formulation of Mahalanobis distance metric learning problems to obtain a low-rank
solution remains an open problem. Indeed, minimizing a convex function subject to a rank constraint is
NP-hard [Natarajan, 1995]. Diverse approaches have then been proposed to learn a low-rank solution.
The most popular ones in metric learning are (1) using the nuclear norm (i.e., the sum of singular values)
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of the learned matrix as a convex regularization term and (2) writing the metric learning problem as a
function of a low-rank transformation matrix and optimizing the problem with respect to this matrix.

In the first case, the nuclear norm ‖X‖∗ has been widely used as a regularization term in metric
learning [Shen et al., 2009, McFee and Lanckriet, 2010, Lim et al., 2013] since it is the convex envelope
of rank(X) on the set {X ∈ Rm×n : ‖X‖ ≤ 1} [Fazel, 2002]. The nuclear norm can also be thought of
as a convex relaxation of the number of non-zero singular values (i.e., the rank). However, although it
promotes low-rank solutions, it does not allow to explicitly control the rank of the learned matrix. As
with the `1 norm that penalizes the largest elements of a vector more than the smallest ones, trace norm
penalizes the largest singular values more than the smallest ones. This can be problematic to approximate
the rank function and describe high correlations between data.

On the other hand, decomposing the learned model M ∈ Sd+ as M = L>L where L ∈ Re×d and
optimizing over the transformation matrix L prevents solutions of rank greater than e. It also makes
the optimization of the problem efficient as it avoids to project M onto Sd+ at each iteration. How-
ever, it makes the problem nonconvex, and the gradient formulation makes the rank of the learned
matrix nonincreasing (see Section 1.5.2.1) at each descent iteration. Since methods that optimize over
L [Mignon and Jurie, 2012, Mensink et al., 2013] do not use a regularization term, their method usually
rely on early stopping to limit overfitting.

Other distance metric learning approaches such as LMNN [Weinberger and Saul, 2009] and ITML
[Davis et al., 2007] do not promote low-rank solutions and are thus prone to overfitting when the dimen-
sionality of the input space is large.

This chapter introduces a novel type of regularization which allows to explicitly control the rank of
the learned symmetric PSD matrix M ∈ Sd+. The regularization term that we propose minimizes the sum
of the k smallest eigenvalues of a symmetric PSD matrix. It is minimized when the rank of the learned
matrix is smaller than or equal to (d−k). As in the truncated nuclear norm [Hu et al., 2013], it minimizes
the sum of the k smallest singular values of the matrix since the singular values of a PSD matrix are
also its eigenvalues (see Appendix A). However, the problem formulated in [Hu et al., 2013] requires the
truncated nuclear norm to be combined with some specific type of smooth convex loss function in order to
be optimized efficiently. On the other hand, our formulation of the truncated nuclear norm with respect
to eigenvalues, although restricted to the domain Sd+, can be efficiently optimized when our regularization
term is combined with any type of (subdifferentiable) convex loss function.

3.2 Regularization Scheme

We formulate our metric learning problem in a classic way (see Section 1.3):

min
M

µR(M) + `(M,N ) s.t. M ∈ Sd+ (3.1)

where R(M) is the regularization term, `(M,N ) is a (convex) loss function over a training set N , and
µ ≥ 0 a regularization parameter.

We propose a regularization term that reaches its minimum when the rank of the learned PSD matrix
is smaller than or equal to a fixed target rank. We formulate the regularization term R(M) as the sum
of the k smallest eigenvalues of M ∈ Sd+:

R(M) =

d∑
i=d−k+1

λ(M)i (3.2)

Since the rank of the PSD matrix M ∈ Sd+ is the number of its non-zero eigenvalues and all the eigenvalues
of M ∈ Sd+ are non-negative, the proposed regularization term R(M) allows an explicit control over the
rank of M:

R(M) = 0⇔ rank(M) ≤ d− k (3.3)
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We explain in the following how to express R(M) in a convenient way.

3.2.1 Regularization term linearization

The sum of the k smallest eigenvalues of M can be written as tr(WM) = 〈W,M〉 where W ∈ Sd+ is the
orthogonal projector on the eigenvectors of M with k smallest eigenvalues. We describe in this subsection
how to construct such an orthogonal projection matrix W.

Let M = VMDiag(λ(M))V>M be the eigendecomposition of M ∈ Sd+ where VM is an orthogonal
matrix. Let us construct w = (w1, . . . , wd)

> ∈ Rd such that:

wi =

{
0 if 1 ≤ i ≤ d− k (the first d− k elements)

1 if d− k + 1 ≤ i ≤ d (the last k elements)

We then express W as:
W = VMDiag(w)V>M (3.4)

It is simple to verify that R(M) = tr(WM) is the sum of the k smallest eigenvalues of M ∈ Sd+:

R(M) = tr(WM) = tr(VMDiag(w)V>MVMDiag(λ(M))V>M)

= w>λ(M) =

d∑
i=d−k+1

λ(M)i

Since the last k elements of λ(M) (the k smallest eigenvalues of M) equal 0 iff rank(M) ≤ d− k, one
can deduce the expected property given in Eq. (3.3) that R(M) = 0 iff the rank of M is smaller or equal
to d− k.

As one can see in Eq. (3.4), the value of W such that R(M) = tr(WM) depends on the value M.

3.2.2 Optimization scheme

The regularization term R(M) has been introduced in the previous subsection, we now explicit the
formulation of the loss function `(M,N ) and the objective function.

Loss Function We focus on quadruplet-wise constraints, introduced in the previous chapter of this
thesis, that encompass pairwise and triplet-wise constraints. We briefly recall them in this paragraph.
They involve distance comparisons of the form D(Ik, Il) > D(Ii, Ij) for any quadruplet of images q =
(Ii, Ij , Ik, Il). Our goal is to learn a metric DM parameterized by M that satisfies the following constraint
for all q in a training set N :

∀q ∈ N , D2
M(Ik, Il) ≥ δq +D2

M(Ii, Ij) (3.5)

where δq is a safety margin specific to each quadruplet q and our learned distance metric can be written
D2

M(Ii, Ij) = 〈M,Cij〉 (see Chapter 2 for details).

Our quadruplet-wise constraints in Eq. (3.5) using q = (Ii, Ij , Ik, Il) ∈ N can be rewritten equiva-
lently:

∀q ∈ N , 〈M,Ckl −Cij〉 ≥ δq (3.6)

Once these constraints have been established, we define a global loss `(M,N ) =
∑
q∈N `M(q) that

accumulates losses over all the constraints in Eq.(3.6). We design the loss for a single quadruplet:
`M(q) = max (0, δq + 〈M,Cij −Ckl〉).
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Algorithm 2 Metric Learning with Fantope Regularization

input : Training constraints N , hyper-parameter µ and step size η > 0.
output : M ∈ Sd+

1: Initialize M1 ∈ Sd+, iteration n = 1
2: repeat
3: Wn ← VMnDiag(w)V>Mn (Eq. (3.4))
4: Compute 5Mn (Eq. (3.8))
5: Mn+1 ← ΠSd+ (Mn − η5Mn)
6: n← n+ 1
7: until stopping criterion (e.g., convergence)

Optimization By including our regularization term and `(M,A), our optimization problem in Eq. (3.1)
can be written:

min
M

µ〈W,M〉+
∑
q∈N

max (0, δq + 〈M,Cij −Ckl〉)

s.t. M ∈ Sd+,W = VMDiag(w)V>M

(3.7)

In order to solve Eq. (3.7), we present a method that alternately updates the values of M and W
since the value of W depends on the value of M.

Although the objective function defined in Eq. (3.7) is nonconvex, it is convex w.r.t. M when W is
fixed. We then propose to perform a subgradient method over M with W fixed. We alternate the update
of M and W by fixing one of these matrices and updating the other. M is updated by performing a
projected subgradient method iteration (see Section 2.2.2).

Algorithm 2 illustrates our method. Let Mn be the value of M at the n-th iteration, Wn is constructed
such that it is the orthogonal projector on the eigenvectors of Mn witk k smallest eigenvalues (step 3).
A subgradient at M of Eq. (3.7) with W = Wn fixed is computed (step 4):

5Mn = µWn +
∑
q∈N+

(Cij −Ckl) (3.8)

where N+ is the subset of constraints in N that are not satisfied (Eq. (3.6)). Mn+1 is determined by
projecting (Mn− η5Mn) onto Sd+ (step 5). The process stops when the objective value stops decreasing.

The fact that the value of W depends on the value M is not clearly visible in our proposed algo-
rithm. We demonstrate in the next section that 5Mn is the gradient of our objective function when it is
differentiable at Mn.
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3.3. Theoretical Analysis

3.3 Theoretical Analysis

In this section, we introduce different useful mathematical concepts to study the theoretical properties of
R. Particularly, we show that R is a concave function. From this observation, we exhibit its corresponding
(super-)gradient.

3.3.1 Concavity analysis

Definition of Fantope We show in this subsection that R (the sum of the k smallest eigenvalues) is
a concave function. For this purpose, we introduce the convex nonempty hull of the set of projection
matrices of rank-p [Overton and Womersley, 1992, Overton and Womersley, 1993]. It is called a Fantope
[Dattorro, 2005], we denote it Fdp:

Fdp = conv({VV>|V ∈ Rd×p,V>V = Ip})
= {F ∈ Sd+ | 0 � F � Id, tr(F) = p}
= {Id −W | W ∈ Fdd−p}

(3.9)

where conv(X ) denotes the convex hull of the set X of points. To describe it simply, the second row of
Eq. (3.9) indicates that Fdp is the set of all symmetric matrices for which:

� all the eigenvalues have values between 0 and 1

� and the trace is p.

Fantope and sum of the largest eigenvalues Once the Fantope is defined, we introduce a function
whose properties are well known. Its relation w.r.t. R will be explicited in the following.

We denote gp(M) the sum of the p largest eigenvalues of a symmetric matrix M ∈ Sd. It can be
expressed as:

gp(M)
(a)
= max

V>V=Ip
〈M,VV>〉 (b)

= max
A∈Fd

p

〈M,A〉 (3.10)

Identity (a) is an extremal property known as Ky Fan’s maximum principle [Fan, 1949]. The proofs of
identities (a) and (b) are given in [Overton and Womersley, 1992]. The sum of the p largest eigenvalues of
M ∈ Sd is a convex function in M [Overton and Womersley, 1992], this is obvious from Eq. (3.10) since
it is the pointwise maximum of a set of convex functions.

Fantope and sum of the smallest eigenvalues Now that gp is defined, we remark that R can be
written as a function of gd−k:

R(M) =

d∑
i=d−k+1

λ(M)i =

d∑
i=1

λ(M)i −
d−k∑
i=1

λ(M)i

= tr(M)− gd−k(M)

(3.11)

As the trace function is linear, it is both convex and concave. From Eq. (3.10), we see that R is the sum
of two concave functions (i.e., tr and −gd−k), it is then a concave function.

Since the k smallest eigenvalues of M are also the opposite of the k largest eigenvalues of −M, R(M)
can also be written:

R(M) = −gk(−M) = − max
A∈Fd

k

〈−M,A〉 = min
A∈Fd

k

〈M,A〉 (3.12)
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3.3.2 (Super-)Gradient of the regularizer

We describe here how to compute the (super-)gradient of R : Sd+ −→ R+ at some point M.

Theorem 1. Every matrix F ∈ argminA∈Fd
k
〈M,A〉 is a supergradient of the concave function R at M.

Proof: By definition, each matrix G ∈ Sd that satisfies:

∀X ∈ Sd+, R(M) + 〈G,X−M〉 ≥ R(X)

is a supergradient of the concave function R at M. Since ∀F ∈ argminA∈Fd
k
〈M,A〉, we have 〈F,M〉 =

R(M) and ∀X ∈ Sd+, 〈F,X〉 ≥ R(X) = minA∈Fd
k
〈X,A〉. We then have the property: ∀X ∈ Sd+, R(M) +

〈F,X〉 ≥ 〈F,M〉+R(X) =⇒ R(M) + 〈F,X−M〉 ≥ R(X).

Definition 3.3.1. (Superdifferential) The superdifferential of the concave function R at M, denoted

∂R(M), is the set of all the supergradients of R at M. If ∂R(M) is a singleton, then R is differentiable

at M and the single element in ∂R(M) is the gradient of R at M.

We show here that the superdifferential of R at M is argminA∈Fd
k
〈M,A〉.

Property 3.3.2. ([Overton and Womersley, 1993], Corollary 3.5) The subdifferential of the sum of the

d− k largest eigenvalues of M is the set {A ∈ Fdd−k|〈A,M〉 = gd−k(M)} = argmaxA∈Fd
d−k
〈A,M〉.

From this property and from Eq. (3.11), we deduce that the superdifferential of our regularization
function R at M is the set ∂R(M) = argminA∈Fd

k
〈M,A〉.

Property 3.3.3. ([Overton and Womersley, 1993], Corollary 3.10) if λ(M)d−k > λ(M)d−k+1, the func-

tion gd−k is differentiable at M (and the solution Z ∈ argmaxA∈Fd
d−k
〈M,A〉 is unique).

From this property, if λ(M)d−k > λ(M)d−k+1, the unique solution F ∈ argminA∈Fd
k
〈M,A〉 is the gra-

dient of R at M. Otherwise, all the possible supergradients of R at M are solutions of argminA∈Fd
k
〈M,A〉.

The interested reader that wants to explicitly construct all the possible solutions of argminA∈Fd
k
〈M,A〉

can refer to [Overton and Womersley, 1993].

Proposed regularization scheme The matrix W (constructed as in Eq. (3.4)) used to compute the
sum of the k smallest eigenvalues of M is a rank-k projection matrix, it then belongs to Fdk (convex
hull of rank-k projection matrices). Since we have shown that 〈M,W〉 = R(M), we deduce W ∈
argminA∈Fd

k
〈M,A〉. It is then the gradient of R at M if λ(M)d−k 6= λ(M)d−k+1, and a supergradient of

R at M otherwise. Algorithm 2 can then be seen as a (projected) gradient method over our objective
function for points where it is differentiable.25 In the general case (e.g., when the optimization problem is
not differentiable at some given point Mn), our algorithm can be seen as a subgradient method iteration
over a convex upper bound26 of Eq. (3.1) at Mn. Our method then allows to optimize over Eq. (3.1)
although it does not necessarily leads to its global optimum since Eq. (3.1) is not a convex problem.

Generalization of trace(-norm) regularization Fantope regularization is a generalization of trace
regularization. Indeed, for every matrix M ∈ Sd, tr(M) = tr(IdM). Since Fdd = {Id}, trace regularization
is equivalent to a Fantope regularization where tr(WM) is the sum of the d smallest eigenvalues of M
(i.e., W = VMDiag(1)V>M = Id).

25 5Mn (see Eq. (3.8)) is the gradient of Eq. (3.1) if both R and `(·,N ) are differentiable at Mn, i.e., :

� R is differentiable at Mn if λ(Mn)d−k 6= λ(Mn)d−k+1.

� `(·,N ) is differentiable at Mn if ∀q ∈ N , D2
Mn (Ik, Il) 6= δq +D2

Mn (Ii, Ij).

26Indeed, for all fixed matrix F ∈ Fd
k, we have the following property: ∀M ∈ Sd+, 〈M,F〉 ≥ minA∈Fd

k
〈M,A〉 = R(M) ≥ 0.
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Regularization Acc. rank(M) ‖M−T‖2F
No Regularization 89.3% 31 1.07
Subgradient Descent over L 92.7% 10 0.44
Trace 95.1% 4 0.38
Fantope 97.5% 10 0.04
Fantope and Trace 98.0% 10 0.03

Table 3.1: Toy experiment results. Fantope regularization allows to approximate the target matrix T
better than other methods.

3.4 Experimental Validation

3.4.1 Synthetic example

We propose to start exploring the behavior of our Fantope regularization method using a synthetic dataset
with a target metric DT parameterized by a known low-rank distance matrix T ∈ Sd+. For this purpose,
we create a random symmetric positive definite matrix A ∈ Se+ with rank(A) = e and e < d, and define

the target PSD distance matrix T ∈ Sd+: T =

(
A 0
0 0

)
with rank(T) = rank(A) = e. We generate a

set X of feature vectors xi ∈ Rd from a uniform distribution in [0, 1[ for each component. The distance
between two feature vectors xi and xj is given by: D2

T(xi,xj) = (xi−xj)T(xi−xj). In order to build a
training set N , we randomly sample pairs of distances using quadruplets in X 4 and get the ground-truth
using D2

T, so that: ∀(xi,xj ,xk,xl) ∈ N , D2
T(xk,xl) > D2

T(xi,xj). The set N is used to learn our matrix
M by solving Eq. (3.1) where δq = 1 and W ∈ Sd+ such that rank(W) = (d− e) as defined in Eq. (3.4).

A test set T and a validation set V are generated in the same way as N . To illustrate the relevance
of the proposed method, we focus on having a small e and large d: we set e = 10, d = 50, |N | = 104,
|V| = |T | = 106 and |X | = 8000. In this setting, 80% of the features are noisy.

Evaluation Metrics We compute the number of satisfied constraints on the test set T , the accuracy
being measured as the percentage of satisfied constraints on T . We also compare the similarity between
the learned PSD matrix M ∈ Sd+ and the target matrix T ∈ Sd+. The similarity between M and T is
measured as the distance ‖M − T‖2F =

∑
ij(Mi,j − Ti,j)2. M and T are rescaled so that their largest

element is 1.

Results To evaluate the impact of Fantope regularization, we compare the following metric learning
schemes:

–No Regularization: setting µ = 0 in Eq. (3.1), and applying a subgradient descent over M ∈ Sd+27.

–Subgradient Descent over L: setting µ = 0, Eq. (3.1) is solved using a subgradient descent over L ∈ Re×d
where M = L>L28. This approach is different from our proposed method since it cannot return a solution
whose rank is greater than d− k, whereas our method can.

–Trace(-norm) Regularization: setting µ > 0 and W = Id.

–Fantope Regularization: setting µ > 0.

–Fantope and Trace Regularization: replacing the regularization term µtr(WM) by R(M) = γtr(M) +
µtr(WM).

For each method, the hyper-parameters γ > 0 and µ > 0 are determined based on the validation set
V.

27This scheme usually leads to high-rank solutions prone to overfitting.
28This method is often used in the Computer Vision literature [Mensink et al., 2013, Mignon and Jurie, 2012]. Although

the problem is not convex w.r.t. L, this method controls the rank of M and avoids overfitting since rank(M) = rank(L) ≤ e
with e < d.
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Target Low-rank Distance
Matrix T

Learning without
regularization

Subgradient Method
w.r.t. L

Trace Regularization Fantope Regularization Fantope and Trace

Figure 3.1: Target distance matrix T and the learned PSD distance matrices M. Higher absolute values
are darker.

Target Low-rank Distance
Matrix T

Learning without
regularization

Subgradient Method
w.r.t. L

Trace Regularization Fantope Regularization Fantope and Trace

Figure 3.2: Difference between the matrices and the target PSD distance matrix T. Smaller differences
are darker.
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Table 3.1 reports the accuracies and distances between T and the learned matrices M. Methods
without explicit regularization obtain the worst results (89.3% and 92.7% accuracy). Trace regularization
ignores most of the noisy features but learns a matrix whose rank is a lot smaller than the target rank
e = 10. That leads to an accuracy of 95.1% and illustrates the fact that trace regularization cannot
fine-control the rank of the solution matrix, although it promotes low-rank solutions. Finally, Fantope
regularization outperforms the other methods by reaching 97.5% accuracy (and 98% when combined with
trace regularization). In addition, the rank of the learned matrix corresponds exactly to the target rank.

Fig. 3.1 illustrates the target PSD distance matrix T and the PSD distance matrices M learned with
the different methods reported in the toy experiment. Higher absolute values are darker.

Fig. 3.2 illustrates (the absolute value of each element of) the difference between the distance matrices
and the target PSD matrix T. A zero difference is represented by a black square whereas larger differences
are brighter. All the 6 images of the figure are rescaled with the same scale factor.

The distance matrix learned with trace regularization ignores noisy features but does not approximate
the submatrix A of the target matrix T correctly because trace regularization penalizes large eigenvalues
too much. On the other hand, methods without regularization do not ignore noisy features. Fantope
regularization allows to learn a matrix very similar to the target distance matrix T. Our proposed method
is then ideal for this type of experiment.

3.4.2 Real-world experiments

We evaluate the proposed metric learning regularization method in two different Computer Vision applica-
tions. The first experiment is a face verification task, for which the similarity constraints come from rela-
tions between pairs of face images that are either similar or dissimilar. In the second experiment, we evalu-
ate recognition performance on image classification with relative attributes [Parikh and Grauman, 2011].
In this context, we work with features defined in attribute space.

3.4.2.1 Face verification: LFW

In the face verification task, we are provided with pairs of face images. The goal is to learn a classifier
that determines whether image pairs are similar (represent the same person) or dissimilar (represent two
different persons). Some examples of similar and dissimilar pairs are provided in Fig. 3.3 and Fig. 3.4,
respectively.

Dataset and evaluation metric We use the publicly available Labeled Faces in the Wild (LFW) dataset
[Huang et al., 2007]. It contains more than 13,000 images of faces collected from the Web and can be
considered as the current state-of-the-art face recognition benchmark. We focus in this chapter on the
“restricted” paradigm where we are only provided with two sets of pairs of images: set S of similar
pairs (same person) and set D of dissimilar images (different person). We follow the standard evaluation
protocol that uses View 2 data for training and testing (10 predefined folds of 600 image pairs each), and
View 1 for validation.

To generate our constraints, we use S and D and we set the upper bound u = 0.5 and the lower bound
l = 1.5 following the scheme explained in Section 3.2.2 . The distance of a test pair is compared to the
threshold l+u

2 = 1 to determine whether the pair is similar or dissimilar.

Image representation We use the same input features and setup as popular metric learning meth-
ods [Davis et al., 2007, Guillaumin et al., 2009, Mignon and Jurie, 2012] that were already tested on this
dataset. We strictly follow the setup described in [Mignon and Jurie, 2012]. We use the SIFT descrip-
tors [Lowe, 2004] computed by [Guillaumin et al., 2009] available on their website. Each face image is
represented by 27 SIFT descriptors. Those 27 descriptors are concatenated in a single histogram, and a
element-wise square-root is performed on this histogram to return face image representations xi.

Initialization of the distance matrix M ∈ Sd+ Let e be the target rank of the learned matrix M ∈ Sd+.
To initialize the PSD matrix M, we first compute the matrix L ∈ Re×d that is composed of the coefficients
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Figure 3.3: Examples of similar pairs in the Labeled Faces in the Wild (LFW) dataset.

Figure 3.4: Examples of dissimilar pairs in the Labeled Faces in the Wild (LFW) dataset.

Regularization Method Accuracy (in %)
Trace-norm Regularization 77.6 ± 0.7
Fantope Regularization 82.3 ± 0.5

Table 3.2: Accuracies (mean and standard error) obtained on LFW in the “restricted” setup with our
learning framework in different regularization settings.

for the e most dominant principal components of the training data. M is then initialized by computing
M = L>L.

We now provide a quantitative evaluation of our method in the described setup. The target rank e of
our regularization term is fixed to e = 40, as in [Mignon and Jurie, 2012].

Impact of regularization We compare here the impact of Fantope regularization over trace regulariza-
tion. Table 3.2 shows classification accuracies when solving Eq. (3.1) with both regularization methods.
Fantope regularization outperforms trace regularization by a large margin (82.3% vs. 77.6%). This illus-
trates the importance of having an explicit control over the rank of the distance matrix. In the following,
we combine trace and Fantope regularization by replacing the regularization term R(M) = µtr(WM) by
R(M) = γtr(M) + µtr(WM), with γ � µ.

State-of-the-art results We now compare Fantope Regularization to other popular metric learning
algorithms. Table 3.3 shows performances of ITML [Davis et al., 2007], LDML [Guillaumin et al., 2009]
and PCCA [Mignon and Jurie, 2012] reported in [Guillaumin et al., 2009] and [Mignon and Jurie, 2012]
in the linear metric learning setup. These methods are the most popular metric learning methods when the
task is to decide whether a pair is similar or dissimilar. Fantope regularization, which reaches 82.3±0.5%
accuracy, outperforms ITML and LDML and is comparable to PCCA on LFW in this setup. We explain
in the following how our method can reach 83.5± 0.5 %.

Impact of early stopping It is worth mentioning that the accuracy of 82.2% obtained with PCCA
[Mignon and Jurie, 2012] is achieved by performing early stopping. Table 3.4 reports the accuracies we
obtained on LFW by testing the code of PCCA [Mignon and Jurie, 2012] kindly provided by its authors,
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Method Accuracy (in %)
ITML [Guillaumin et al., 2009] 76.2 ± 0.5
LDML [Guillaumin et al., 2009] 77.5 ± 0.5
PCCA [Mignon and Jurie, 2012] 82.2 ± 0.4
Proposed Method 83.5 ± 0.5

Table 3.3: Results (mean and standard error) on LFW in the “restricted” setup of state-of-the-art linear
metric learning algorithms and of our method with early stopping.

Number of iterations 10 30 100 1000 104

Accuracy (in %) 79.2 82.2 79.3 75.8 63.2
± 0.5 ± 0.5 ± 0.5 ± 0.5 ± 0.5

Table 3.4: Accuracy of Mignon’s code [Mignon and Jurie, 2012] on LFW as a function of the number
of iterations of gradient descent. The performance of PCCA [Mignon and Jurie, 2012] greatly depends
upon the early stopping criterion.

as a function of the number of iterations of gradient descent. 82.2% is the accuracy obtained with
30 iterations. We can notice that the PCCA performance decreases for larger numbers of iterations
(e.g., 75.8% and 63.2% with 1000 and 10000 iterations, respectively). As in [Mignon and Jurie, 2012], we
integrated this early stopping criterion in our method and determined the maximum number of iterations
of subgradient descent from the validation set View 1. We reach an accuracy of 83.5± 0.5%. To the best
of our knowledge, this is the best result obtained for linear metric learning methods in the same setup
(same input features). As a conclusion, our regularization scheme makes our method much more robust
than PCCA [Mignon and Jurie, 2012] to early stopping.
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Figure 3.5: (left) Rank and (right) accuracy of the learned metric on LFW in the “restricted” setup as
a function of the hyper-parameter µ with early stopping. The expected rank is e = 40. The proposed
regularization controls rank(M) while improving accuracy when compared to the absence of regularization
(µ = 0).

Impact of the hyper-parameter µ Fig. 3.5 illustrates the impact of the Fantope regularization on
the rank of the solution matrix M ∈ Sd+ and on the accuracy on LFW as we modify the value of the
regularization parameter µ when we perform early stopping. We observe that µ has a real impact on
the rank of the solution matrix: the rank of M decreases as µ increases and reaches the expected rank
e = 40 for high values of µ. On the other hand, the accuracy of the method first increases and eventually
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Classification model OSR PubFig
RA [Parikh and Grauman, 2011] 69.7 ± 1.5 70.6 ± 1.8
RA + LMNN 71.7 ± 1.7 74.3 ± 1.9
RA + LMNN + Trace 72.4 ± 2.0 75.0 ± 1.6
RA + LMNN + Fantope (ours) 73.7 ± 1.8 77.5 ± 1.6
Qwise + LMNN + Fantope (ours) 75.0 ± 2.0 77.6 ± 1.1

Table 3.5: Test accuracies (mean and standard deviation in %) obtained on the OSR and Pubfig datasets.
Fantope regularization improves recognition in the classification task.

decreases as µ increases. Nonetheless, the recognition performed with high values of µ (82.3%) is still
better than without regularization (81.2% with µ = 0).

3.4.2.2 Metric learning in attribute space

In this subsection, we focus on the image classification task where the goal is to assign an image to a
predefined class. Particularly, we focus on the case where classes are described with relative attributes
(for more details on relative attributes, see Section 2.4). Each image Ii is described by a vector xi ∈ Rd
where d is the number of attributes. The j-th element of xi represents the score (degree) of presence of
the j-th attribute in xi.

Experiment setup To evaluate and compare our Fantope regularization approach, we follow the
same classification framework as [Parikh and Grauman, 2011] for scene and face recognition on the OSR
[Oliva and Torralba, 2001] and PubFig [Kumar et al., 2009] datasets. The framework and the datasets
are described in Section 2.4.

Baselines We use two baselines already described in the previous chapter:
- RA: The relative attribute learning problem [Parikh and Grauman, 2011] that uses relative attribute
annotations on classes to compute high-level representations of images xi ∈ Rd, a Gaussian distribution
is learned for each class.
- RA + LMNN: High-level representations xi ∈ Rd are used as input features of the LMNN classifier
[Weinberger and Saul, 2009].

We use the publicly available codes of [Parikh and Grauman, 2011] and [Weinberger and Saul, 2009].

Integration of regularization We modify the code of LMNN to integrate trace and Fantope regu-
larization, the stopping criterion is the convergence of the algorithm (i.e., the objective function stops
decreasing).

Learning setup We use the same experimental setup as [Parikh and Grauman, 2011]. N = 30 training
images are used per class to learn the representations xi and classifiers, the rest is for testing. The
performance is measured as the average classification accuracy across all classes over 30 random train/test
splits.

Results Table 3.5 reports accuracies of baselines and our proposed regularization method on both OSR
and PubFig datasets. Fantope regularization applied to LMNN significantly improves recognition over
baselines, particularly on PubFig. It outperforms the classic LMNN algorithm (without regularization)
with a margin of 2 and 3% on OSR and PubFig, respectively. Trace-norm regularization also outperforms
the absence of regularization. These results validate the importance of a proper regularization.

The Qwise strategy presented in Chapter 2 combined with Fantope regularization improves recognition
only on the OSR dataset. RA + LMNN + Fantope and Qwise + LMNN already perform similarly on
PubFig (see Table 2.2). We recall that PubFig has a very small number of pairwise equivalence constraints,
it then seems that Fantope regularization implicitly counterbalances noisy ordered pairwise annotation
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Query Top 5 results

Figure 3.6: Some results of similarity search on the PubFig and OSR datasets. We show for each query
the 5 nearest neighbors returned by our method (first row) and by LMNN (second row). Results in green
correspond to images in the same class as the query whereas results in red are images from different
classes.

problems on this dataset by reducing the complexity of the model, and thus better exploiting correlations
between data.

Fantope regularization finds a low e-dimensional subspace where distances can be computed with
e < d (e.g., e = 8 with d = 11 on PubFig) and allows to exploit correlations between features better than
methods that learn a high-rank distance matrix. In this case, each feature corresponds to the score of
presence of an attribute in images. Notably, by considering the learned matrix M ∈ Sd+ as a covariance
matrix, the most correlated attributes w.r.t. the Pearson product-moment correlation coefficient are
“smiling”, “chubby” and “male-looking” on the PubFig dataset. This result is expected since the women of
the PubFig dataset (Scarlett Johansson and Miley Cyrus) are annotated in [Parikh and Grauman, 2011]
as more chubby and smiling more than most men of the dataset. On the OSR dataset, the attributes
“close depth”, “open” and “perspective”, which are all related to the notion of depth, are also strongly
correlated.

Fig. 3.6 illustrates on some examples how our scheme is effective to learn semantics. Particularly
on PubFig, the learned metric gives priority to semantical similarity rather than visual similarity: the
images retrieved by the classic LMNN are more visually similar than the images returned by our Fantope
regularization. However, they are more often in different categories than the category of the query.

3.5 Discussion

We discuss how the proposed metric learning framework can exploit the concavity property of the regu-
larization term to adapt other efficient optimization techniques.

Difference of convex functions First, we remark that Eq. (3.1) can be rewritten as a difference of
two convex functions v and w:

min
M∈Sd+

v(M)− w(M)⇔ min
M∈Sd+

`(M,N ) + µR(M) (3.13)
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where v(M) = `(M,N ) and w(M) = −µR(M). In the same way as many machine learning methods that
exploit a nonconvex regularization term [Candès et al., 2008, Rakotomamonjy et al., 2011, Hu et al., 2013],
a majorization-minorization [Hunter and Lange, 2004] method can be used.

Definition 3.5.1. (Majorization-minimization) A majorization-minimization algorithm for minimizing

a function ϕ : Sd+ → R classically consists of the iteration:

Mn+1 := argmin
M∈Sd+

ϕ̂(M,Mn) (3.14)

where ϕ̂(M,Mn) is a convex upper bound to ϕ that is tight at Mn, i.e., , ∀M ∈ Sd+, ϕ̂(M,Mn) ≥ ϕ(M)

and ϕ̂(M,M) = ϕ(M).

In our case, we can formulate ϕ(M) = µR(M) + `(M,N ) and ϕ̂(M,Mn) = µ〈M,Wn〉 + `(M,N )
where Wn ∈ argminW∈Fd

k
〈Mn,W〉.29 In other words, the matrix Wn is fixed in the regularization term30

of ϕ̂(·,Mn). For convenience, we write the convex function ϕ̂(M,Mn) = ϕ̂n(M).

Algorithm 3 presents a majorization-minimization adaptation of our problem.

Algorithm 3 Basic majorization-minimization scheme

input : M1 ∈ Sd+ (initial estimate); N (number of iterations)

output : MN+1 ∈ Sd+ (final estimate)
for n = 1 to N do

Compute a tight surrogate ϕ̂n of ϕ at Mn

Mn+1 ∈ argminM∈Sd+ ϕ̂n(M)

end for

Projection onto the PSD cone A classic way (see the survey in [Kulis, 2012]) to solve distance metric
learning problems is to use the projected gradient method. However, this method is computationally
inefficient for large values of d since the projection onto Sd+ performed at each iteration is cubic in d.

To deal with this problem, many distance metric learning algorithms can be written as the following
constrained convex optimization problems (e.g., Eq. (3.13)):

min
X∈Sd,Z∈Sd

f(X) + ĨSd+(Z) s.t. X = Z (3.15)

where f is a convex function and the convex function ĨSd+ is called the indicator function of the set Sd+:

ĨSd+(Z) =

{
0 if Z ∈ Sd+

+∞ if Z /∈ Sd+

Efficient algorithms, such as the Alternating Direction Method of Multipliers (ADMM) ([Boyd et al., 2011]
Section 5), can be used to optimize the kind of problem described in Eq. (3.15). ADMM alternates between
the optimization over X and Z, it relaxes the constraint X ∈ Sd+ by X ∈ Sd and then does not require to
perform costly projection at each gradient descent.

29Although the solution of Wn ∈ argminW∈Fd
k
〈Mn,W〉 is not unique in general (i.e., if λ(M)d−k = λ(M)d−k+1), we

assume that the choice of Wn is unique for a given Mn. This allows a unique choice of the convex function ϕ̂(·,Mn) for a
given Mn.

30We recall that for all fixed matrix F ∈ Fd
k, the function 〈·,F〉 is a convex upperbound of R since we have the following

property: ∀M ∈ Sd+, 〈M,F〉 ≥ minA∈Fd
k
〈M,A〉 = R(M) ≥ 0.
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3.6. Conclusion

Dealing with large number of constraints If some pairs of images are involved in many training
constraints, structural metric learning [McFee and Lanckriet, 2010] approaches can be adapted to learn
to rank pairs that are involved in lots of constraints. This reduces the number of training constraints
since the newly created constraints involve rankings between (a large number of) pairs instead or only
four images at a time.

3.6 Conclusion

We have proposed a new regularization scheme for metric learning that explicitly controls the rank of
the learned distance matrix. The proposed regularization term, which minimizes the sum of the smallest
eigenvalues of the learned matrix, reaches its minimum value when the rank of the matrix is smaller than
or equal to a target threshold. Unlike traditional nuclear norm heuristics, which take into account all
the singular values, our approach achieves a better approximation of the rank function. Our method
actually generalizes nuclear norm regularization for PSD matrices. Although the new objective function
is no longer convex, it is formulated as a difference of convex functions. It can be solved either by classic
gradient descent method as proposed in this chapter, or with a majorization-minimization approach.
Indeed, the definition of our regularization term allows the formulation of a linear upper bound which
is simple to optimize. We demonstrate that the proposed regularization greatly improves recognition
on both synthetic and real-world datasets, showing the relevance of this new regularization to limit
overfitting. Future work includes a generalization of this regularization approach to better approximate
the rank function.
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Chapter 4

Discovering Important Semantic

Regions in Webpages

Chapter Abstract This chapter illustrates how our quadruplet-wise distance metric learning

framework can be applied in the context of webpage understanding. In particular, we train a

distance metric by exploiting temporal relationships between successive versions of a same webpage

to detect important semantical change regions and ignore unimportant ones. Our learned metric

also allows to determine whether semantical changes occurred between two versions of the same

webpage or not.

Three main contributions can be claimed in this chapter in the context of webpage analysis: 1)

We propose an unsupervised and a semi-supervised metric learning schemes that exploit fully

automatically generated quadruplet-wise constraints. 2) The formalization of our metric allows

to visually segment webpages and detect spatial regions wherein important changes occur. 3) We

show the good performance on different websites of our change detection algorithm learned without

human supervision. We also demonstrate that the performance of our approach can be improved

with very little human effort and structural information. We show that our method is robust to

noise (e.g., advertisement and menus) and works on different types of pages.

We first present challenges related to webpage change detection (Section 4.1), and introduce our

framework (Section 4.2). We present how to compute similarities between webpage screenshots

(Section 4.3) and provide experimental results on real websites (Section 4.4).

Some of the material in this chapter has been published at the following conferences:

� Law, M.T., Thome, N., Gançarski, S., and Cord, M. (2012). Structural and visual com-

parisons for web page archiving. ACM Symposium on Document Engineering (DocEng).

[Law et al., 2012b]

� Law, M.T., Thome, N., Cord, M. (2013) Quadruplet-wise Image Similarity Learning. IEEE

International Conference on Computer Vision (ICCV). [Law et al., 2013]

4.1 Introduction

This chapter focuses on an unusual Computer Vision task, which is webpage change detection in the
contexts of Web crawling and archiving. In this context, change detection aims at determining whether
a change that occurred between two successive versions of a page is important enough to increase the
frequency of crawling of the page or not. Particularly, a change detection algorithm has to understand
the semantic structure of the document by ignoring unimportant changes (e.g., advertisement changes)
and detecting important semantical changes (e.g., the change of the main news in a news page).

Fig. 4.1 and Fig. 4.2 illustrate two pairs of successive versions of webpages. In Fig. 4.1, the change of
advertisement (yellow region) is the only observable change. Since it does not change the content shared
by the webpage, the two versions are considered as similar. A human (or indexing robot) does not need
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Figure 4.1: A pair of successive versions of the New York Times homepage wherein only the advertisement
(yellow region) is different. The change of advertisement does not affect the information shared by the
page, the two versions are thus considered as similar.

Figure 4.2: A pair of successive versions of the CNN homepage. The change of news title (blue region),
which is the main information shared by the page, makes the two versions dissimilar and is thus considered
as an important change.

to visit these two versions since the shared content is the same. On the contrary, in Fig. 4.2, although
an advertisement (yellow region) has also changed, the main news shared by the webpage (blue region)
is different. The versions then both need to be visited and indexed, and are considered as dissimilar. In
this thesis, we denote a webpage version as a full rendered page with included resources (images...).

Change detection to monitor Internet information and activity With the explosion of in-
formation on the World Wide Web, keeping track of the constant changes in media is a challenging
task. Several applications and domains that want to keep track of those changes focus on temporal as-
pects of (usually textual) information on the Web. Some examples of such applications are large-scale
information monitoring and delivery systems [Douglis et al., 1998, Liu et al., 2000, Lim and Ng, 2001,
Flesca and Masciari, 2003, Jacob et al., 2004], active databases [Jacob et al., 2004], servicing of continu-
ous queries [Abiteboul, 2002], Web cache optimization [Cho and Garcia-Molina, 2000], and Web archiving
[Ben Saad and Gançarski, 2011, Pehlivan et al., 2010]. All these applications use change detection meth-
ods at semi-structured data level.
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4.2. Constraint Formalization

In some of these tasks [Cho and Garcia-Molina, 2000, Ben Saad and Gançarski, 2011], change detec-
tion is exploited to determine crawling strategies which are optimized for the corresponding application.
Many papers [Cho and Garcia-Molina, 2000, Ntoulas et al., 2004, Jatowt et al., 2007, Adar et al., 2009b,
Ben Saad and Gançarski, 2011] then focus on observing the change pattern behaviors of websites. The
reported results are quite variable because the similarity metrics used to observe changes (e.g., Dice’s
coefficient of words in [Adar et al., 2009b]) are different. In order to determine a good crawling strategy,
the choice of an appropriate webpage change detection metric is thus a challenging task. In this chapter,
we are interested in learning an appropriate metric by exploiting visual information.

Proposed method We propose to exploit our quadruplet framework to learn a metric that detects
regions wherein important changes occur. Our approach considers webpage screenshots as images and
computes distances between their visual representations. Our learned metric is subsequently used to de-
tect semantic changes between page versions (e.g., the one illustrated in Fig. 4.2). To guide the learning
process, our method can integrate annotations provided by humans. Each of these annotations indicates
whether two page versions are similar or dissimilar. This type of proposed annotations requires signif-
icantly less human interaction than classic methods [Song et al., 2004, Ben Saad and Gançarski, 2011]
which require the importance score of each region for each page version.

Several papers that extract meaningful information in webpages admit the importance of visual in-
formation [Song et al., 2004, Luo et al., 2009, Spengler and Gallinari, 2010] since the layout is taken into
account when pages are created. In order to exploit visual information, these approaches actually inte-
grate visual descriptors from the structure (e.g., position, width, border of regions or font colors) rather
than computer vision based features. Moreover, according to [Kohlschütter et al., 2010], four different
levels of features can be extracted: individual text blocks, the complete HTML document, the rendered
document image, and the complete website. A major argument usually mentioned against using the
rendered document image is that template statistics need to be learned separately for each website since
each website uses a different layout. We propose in this chapter to learn a semantic distance metric that
does not require human interaction, but exploits temporal relationships. In this way, learning template
statistics is cheap.

Context of the thesis chapter The idea of learning a visual distance metric to compare semantic
changes between page versions came from a collaboration of our department at LIP6 with digital preserva-
tion organizations (such as the British Library31, the national library of the United Kingdom, or Internet
Memory Foundation32) in the European FP7 project SCAPE33 (Scalable Preservation Environments).
The goal of SCAPE project was to develop scalable tools for digital preservation.

Change detection for webpage archiving had already been investigated at LIP6 [Pehlivan et al., 2010,
Ben Saad and Gançarski, 2011] to compare pages via their DOM trees after rendering. In order to extend
previous works that exploited visual content via the structural architecture of pages, we propose to
integrate computer vision methods in this webpage analysis task.

4.2 Constraint Formalization

4.2.1 Automatic generation of constraints

Our approach relies on an assumption on the behavior of many websites, which we call monotony of
changes. This assumption lies on the way pages are usually modified: when a content is added to a page,
it is usually added to the recent content that was present in the last version of the page. The significant
information that disappears usually does not reappear on the page. For a page version captured at some

31http://www.bl.uk/
32http://internetmemory.org/en/
33http://www.scape-project.eu/
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given time, its similarity of significant content with successive versions then decreases over time. Indeed,
the content of the version gradually diseappears from the page and new significant content that is added
is different. However, advertisements tend to disappear and reappear frequently.

Monotony of changes in a webpage is illustrated in Fig. 4.3 where four successive versions of the same
webpage vt−1, vt, vt+1, vt+2 are crawled with a sufficiently high frequency (each hour). Although the
four versions are different, one human eye can compare visual dissimilarities between them. For instance,
vt seems more similar to vt+1 than to vt+2. Similarly, vt and vt+1 are more similar than vt−1 and vt+2

are. From this observation, we can generate a set B of quadruplets of versions (vt, vt+1, vr, vs) ∈ B where
r ≤ t < s, and we would like our visual dissimilarity function D to satisfy the maximum number of the
following constraints:

∀(vt, vt+1, vr, vs) ∈ B : D(vt, vt+1) ≤ D(vr, vs) (4.1)

In order to satisfy these constraints, the metric D has to ignore random and periodic changes, which are
often caused by advertisements. Fig. 4.3 illustrates a case where a car advertisement (at the right of the
page) is identical in vt−1, vt and vt+2 and different in vt+1. By ignoring that advertisement region, it is
easier for D to satisfy the constraints in Eq. (4.1).

Nonetheless, a trivial solution to satisfy all the constraints in Eq. (4.1) is a pseudometric such that:
∀(vi, vj), D(vi, vj) = 0. To avoid this degenerate solution, one can assume that there exists a change
period γ > 1 such that for all r ≤ t < r + γ we have the strict inequality D(vt, vt+1) < D(vr, vr+γ). In
other words, we assume that there exists a change period γ of the page such that the changes that occurred
between the two versions vr and vr+γ are more important than between directly successive versions vt
and v+1 where r ≤ t < r + γ. Although vt and vt+1 may be dissimilar, their dissimilarity is assumed
smaller than the dissimilarity between vr and vr+γ . Different ways to determine the parameter γ exist.
It can be determined with prior knowledge about the page or it can be chosen heuristically following the
observation in Adar et al. [Adar et al., 2009a]: human users tend to visit more frequently webpages that
often change. In other words, human users can be considered as intelligent web crawlers with a good
crawling strategy. For example, a page that is visited everyday by a lot of unique visitors can be assumed
to be different everyday (in this case γ = 24 hours). This popularity information can be obtained from
services that provide detailed statistics about the visits to a website (e.g., Google Analytics).

In the same way as B, we create a set A (with A∩B = ∅) and we want the maximum number of the
following constraints to be satisfied:

∀(vt, vt+1, vr, vs) ∈ A : D(vt, vt+1) + 1 ≤ D(vr, vs) (4.2)

where 1 is a safety margin, r ≤ t and s ≥ r + γ ≥ t + 1. Quadruplets of versions that violate Eq. (4.2)
penalize content that does not change much in some regions although a change in the whole page is
expected. This type of static content usually corresponds to menus and the algorithm learns to ignore
these areas. Note that γ determines whether a quadruplet belongs to B or A, and thus its corresponding
constraint (Eq. (4.1) or (4.2)). Since constraints satisfied in Eq. (4.2) are also satisfied in Eq. (4.1),
choosing a value of γ greater than the actual change period of the page is not problematic.

There is a straight connection between these two equations and our quadruplet-wise distance metric
learning formulation given in Chapter 2. Any quadruplet q in B can be formulated as q ∈ N with δq = 0
and any quadruplet q in A can be formulated as q ∈ N with δq = 1.

4.2.2 Similarity information provided by human users

Additionally to the automatically generated constraints based on monotony of changes, richer information
of whether a pair of versions is similar or dissimilar can be integrated. It can be provided by human users
or automatically determined (e.g., by exploiting RSS feeds).

Let S be the set of pairs of versions annotated as (or assumed) similar and D the set of dissimilar
version pairs, an interesting property of the function D would be that it satisfies the following constraints:
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Figure 4.3: Four successive versions of the NPR homepage. Although it is hard and expensive to ask human users to annotate whether version pairs
are similar or not, it is cheaper to infer that the dissimilarity between vt and vt+1, or even vt−1 and vt+1 is smaller than the dissimilarity between
vt−1 and vt+2.
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∀(vr, vs) ∈ S : D(vr, vs) + 1 ≤ b (4.3)

∀(vr, vs) ∈ D : b+ 1 ≤ D(vr, vs) (4.4)

where 1 is a safety margin and b ∈ R a learned threshold.

These two types of constraints (Eq. (4.3) and Eq. (4.4)) follow the classic approach in metric learning
that minimizes the distance of similar pairs while separating dissimilar pairs (in our case, keeping their
distances beyond the threshold b). To know whether a test pair (vr, vs) is similar or not, one only has to
study the sign of D(vr, vs)− b, which is positive for dissimilar pairs and negative for similar pairs.

4.2.3 Distance metric formulation

We integrate the constraints mentioned from Eq. (4.1) to (4.4) in the distance metric learning framework
described in Chapter 2 by generating the training set N = A ∪ B. We consider the diagonal and full
matrix Mahalanobis-like distance metrics that we formulate as follows:

- the distance metric Dw is parameterized by the d-dimensional vector w ∈ Rd+. This metric tries to
satisfy the ideal properties of the target function D (Eq. (4.1) to (4.4)). Dw is a linear combination of d
distances between versions vi and vj over d different spatial regions (one distance per region). These d
distances are concatenated in the vector dregions(vi, vj) ∈ Rd. The computation of dregions is detailed is
Sections 4.3.1 and 4.3.2. We formulate Dw as:

Dw(vi, vj) = w>dregions(vi, vj) (4.5)

where w ∈ Rd+ is the weight vector: the value of the k-th element of w corresponds to the importance of
change assigned to the k-th region of the page. An element of w close to 0 means that the corresponding
region is ignored, whereas an element with a relatively high absolute value has more impact on the global
dissimilarity function Dw. By avoiding w to have negative elements, the learned metric tends to ignore
unimportant changes rather than penalizing them (which would mean negative scores in order to minimize
the learned function).

- the metric DM is parameterized by the symmetric PSD matrix M ∈ Sd+. DM is written:

D2
M(vi, vj) = c>ijMcij (4.6)

where cij = (dregions(vi, vj))
◦ 1

2 and ◦ 1
2 is the Hadamard square root (element-wise square root).

4.3 Visual and Structural Comparisons of Webpages

We present in this section:

- different ways to compute the vector of visual distances between vi and vj : dregions(vi, vj).

- how to learn a multimodal metric that combines the learned visual metric with structural metrics.

4.3.1 Regular grid segmentation

We propose to regularly segment page regions. Our method computes the GIST [Oliva and Torralba, 2001]
descriptors of screen captures, we consider screen captures of page versions as images. In our experiments,
we consider only the visible part of webpages without scrolling since it generally contains the most useful
information [Song et al., 2004]. Our image sizes are then about 1000× 1000 pixels. The bottom part of
webpage sceen captures is cropped so that the maximum height of the capture is 1000 pixels.

70
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GIST descriptor segments images by an m by m grid. We formulate dregions(vi, vj) ∈ Rm2

(see
Section 4.2.3) as an m2-dimensional vector where each element corresponds to the squared `2-distance
between bins that fall into the same cell of the grids of the screenshots of vi and vj . GIST descriptor was
proven to provide very high accuracy for near-duplicate detection [Douze et al., 2009], which is close to
our context of successive versions of the same document. The high efficiency, small memory usage and
estimation of coarsely localized information of the global GIST descriptor, allowing to scale up to very
large datasets [Douze et al., 2009], motivated this choice. Examples of our regular m×m segmentations
are illustrated in Fig. 4.4 with 8× 8 and 10× 10 grids.

4.3.2 Structural segmentation

Instead of using a regular grid segmentation, the structure of webpages may be analyzed to compute
dregions(vi, vj). We use the webpage segmenter of [Sanoja and Gançarski, 2012] that analyzes pages based
on their DOM tree information (after rendering). The tool returns rectangular regions (see Fig. 4.9) that
correspond to visually different semantic entities. In this way, dregions(vi, vj) corresponds to a vector of
visual distances between semantical blocks determined by the structure of the page.

By assuming that the structure of a page does not change much with time, we randomly choose a
version and segment it. The resulting segmentation is applied to all the versions of the correspond-
ing webpage. For each version, GIST [Oliva and Torralba, 2001] descriptors of the captured rectan-
gular regions are computed and `2-normalized in order to avoid being biased towards larger regions.
dregions(vi, vj) ∈ Rd is the concatenation of the Euclidean distances between the descriptors of the d
regions returned by the automatic segmenter.

4.3.3 Integration of structural distance metrics

In addition to visual information, we can use structural information of webpages. We use two discriminant
structural distance metrics34: (1) the Jaccard distance dL between hyperlinks of two versions and (2) the
Jaccard distance dI between image URLs of the two versions. The smaller dL(vi, vj) the more similar
vi and vj are. We proved in [Law et al., 2012b] that these structural distance metrics are scalable and
discriminant for change detection.

The combination of visual and structural metrics is a process in two steps. First, the visual metric
Dw is learned as explained in Section 4.2 (for simplicity of explanation, we only consider the diagonal
matrix distance metric case). Second, a multimodal metric Dhybrid that combines visual and structural
metrics is learned. Dhybrid is formulated as the linear combination:

Dhybrid(vi, vj) = α1Dw(vi, vj) + α2DL(vi, vj) + α3DI(vi, vj) (4.7)

where the coefficients αi ≥ 0 are learned with a linear classifier (SVM in our case). In the second step,
the visual and structural distance metrics are fixed.

4.4 Experimental Results

We present in this section experimental results of our method. We mainly investigate how our learned
metric performs in change detection task when human supervision is missing, or when it is provided. We
also investigate strategies that exploit only visual information or the combination of visual and structural
information.

34We also tried to include the Jaccard distance of words (similar to Dice’s coefficient of words used in [Adar et al., 2009b],
with the exception that it satisfies the properties of a distance metric) but it degraded performances. We assume it is because
random textual content has more impact than random hyperlinks on the differences between sets of words or hyperlinks of
vi and vj , making this metric less stable.
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4.4.1 Dataset

Since there is no public dataset that provides both the source code of pages and their visual rendering,
we created our own dataset . For this purpose, we hourly crawled different types of popular websites as
done in [Adar et al., 2009a, Ben Saad and Gançarski, 2011] for approximatly 50 days: the version vt+1

is visited 1 hour after vt. The chosen websites were already used in other papers on Web crawling. For
the sake of diversity and to validate the genericness of our approach, the crawled webpages35 are:

- the homepages of some news websites (e.g., CNN, BBC, National Public Radio (NPR), New York Times
(NYT)),

- the finance section of Yahoo! News,

- the music section of NPR (that is not often updated) and

- educational webpages: the homepage of Boston’s University and the open courseware page of the
Massachusetts Institute of Technology (MIT).

To evaluate our approach with quantitative results, we annotated pairs of versions of some of these
websites (∼ 1, 200 per site). To simplify the manual labeling process, we select only homepages of NCC,
BBC, NPR and New York Times that are easier to annotate, and we choose as similarity criterion the
presence of change of the main news in the page. Only the successive version pairs (vt, vt+1) of the CNN,
BBC, NPR and New York Times homepages were annotated. We distinguish 4 labels of annotation:

- identical: the two versions are identical.

- similar: an unimportant change occurs (e.g., an advertisement change, see Fig. 4.1).

- dissimilar: the main news of the page changes. Particularly, we consider a version pair (vt, vt+1) as
dissimilar only if textual news information is added in the page between vt and vt+1. We give more details
about the annotation criterion in Section 4.4.4.

- ambiguous: the decision of labeling the version pair as similar or dissimilar is difficult.

4.4.2 Setup parameter

GIST setup To represent each page screenshot as a vector, we use GIST [Oliva and Torralba, 2001]
descriptors built from 8 oriented edge responses at 4 different scales combined to a spatial resolution of
m×m. We use the publicly available code of Oliva and Torralba [Oliva and Torralba, 2001] in MATLAB
to compute GIST descriptors. They can be computed independently (and then in parallel)36.

Computation time The whole process of computation of distances between GIST descriptors, gen-
eration of constraints and learning of the diagonal matrix distance Dw takes 0.7 seconds on a 3.4GHz
machine in MATLAB. It takes 4.5 seconds in the full matrix distance case.

4.4.3 Evaluation protocol

Train/Test split The dataset is composed of versions crawled each hour for about 50 days. For each
annotated page (e.g., the homepage of CNN), we create 10 train/test splits: for each split, we use 5
successive days for training, the 45 remaining days for test. We minimize the number of common versions
used for training among the different splits, i.e., the first training split contains the first 5 days, the second
one the 6th to 10th days, the third one the 11th to 15th days...

35 www.cnn.com, www.bbc.co.uk, www.npr.org, www.nytimes.com, finance.yahoo.com, www.npr.org/music, www.bu.edu,
ocw.mit.edu

36The computation time of the GIST descriptor of a page version (of ∼ 1000 × 1000 pixels) using a 10 × 10 grid is 3.2
seconds.
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4.4. Experimental Results

Figure 4.4: Important change maps for the homepages of BBC, CNN, NYTimes, NPR, Boston’s Univer-
sity, the open courseware page of the MIT, the finance section of Yahoo! News and the music section
of NPR. (left) Webpage screenshot, with relevant area (news) in blue, unimportant parts (menu and
advertisement) in green and purple, respectively. (right) Spatial weights of important change learned
by our method with versions crawled during 5 days and without human annotations (higher values are
darker).
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Version pairs labeled as ambiguous are ignored in the test evaluation process. However, they are used
to automatically generate quadruplet-wise constraints in the training process. The identical versions are
also ignored for test because their distance would be 0 (i.e., the lowest possible value) with any distance
metric; since they are easy examples (e.g., they would be the first retrieved similar pairs in the average
precision evaluation), the performance measures would return very high scores by using them for test.

Performance measures We use two performance measures widely used in information retrieval and
image classification: average precision and classification accuracy.

Average Precision (AP) By considering the binary class problem similar/dissimilar, we compute
the average precision for the similar class APS by ranking distance values of test pairs of successive
versions (vt, vt+1) in ascending order and the average precision for the dissimilar class APD by ranking
distance values of test pairs in descending order. The Mean Average Precision (MAP) is the mean of
APS and APD.

Classification Accuracy The reported accuracy is the mean of the accuracies of the class of similar
pairs (S) and of the class of dissimilar pairs (D).

Average precision is particularly useful to measure how much the relative orderings of distances are
respected by the distance metric. Classification accuracy is useful to determine optimal crawling strategies
since it can measure how frequently a webpage changes within a given period.

4.4.4 Learning results without human supervision

We present in this subsection qualitative and quantitative results when no human supervision is integrated
in the learning process (i.e., D ∪ S = ∅).

4.4.4.1 Qualitative Results

A first qualitative evaluation is illustrated in Fig. 4.4. The figure shows maps learned for the 8 web-
pages mentioned in Section 4.4.1 without human annotations. In order to learn the importance maps of
important change regions, we sample version quadruplets (vt, vt+1, vr, vs) using Eq. (4.1) and Eq. (4.2)
so that r ≥ t − 6, s ≤ t + 7, γ = 4, and images are segmented as a 10 × 10 or 8 × 8 grid. Training
sets to learn these maps contain screenshots of pages hourly visited during 5 days. In terms of training
constraints, we deal with less than 10, 000 constraints in our experiments, which makes the learning of
the diagonal matrix metric Dw very fast. The maps plot the relative values of the learned w ∈ Rd+. The
highest positive values, represented by dark regions, correspond to important change regions of the page
(e.g., news title). Menus and advertisements are ignored by the map as expected.

We also tested our method on governmental sites but their change frequency is so low (the page often
remains unchanged in 5 days) that a map cannot be learned in only 5 days. This is consistent with the
observations of Adar et al. [Adar et al., 2009b]: government domain addresses do not change as frequently
or as much as pages in other domains do, and this may reflect the fact that this type of site provides
richer and less transient content which only requires small, infrequent updates.

A second qualitative evaluation is illustrated in Fig. 4.5. The figure shows the eigenvector v1 of the
largest eigenvalue λ1 of M when we learn a full matrix metric DM. The matrix M′ = λ1v1v

>
1 is the

projection of M onto rank-1 symmetric PSD matrices, and is thus the nearest rank-1 matrix of M in
the `2 norm. Since we have D2

M′(vi, vj) = λ1(v>1 cij)
2, the vector v1 weighs the importance of spatial

regions of the webpage. As shown in Fig. 4.5, the vector v1 correctly detects important change regions
and ignores menus and advertisements.
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Figure 4.5: Important change maps for the homepages of BBC, CNN, New York Times and NPR. (left)
Webpage screenshot with webpage regular segmentation blocks (red lines). (right) Absolute values of the
eigenvector of the dominant eigenvalue of the distance non-diagonal matrix learned by our method with
versions crawled during 5 days and without human supervision (higher values are darker).

4.4.4.2 Quantitative results

Average precision Table 4.1 compares the average precision scores obtained using different distance
metrics:

- the Euclidean distance often used for the GIST descriptor [Oliva and Torralba, 2001].

- a triplet-based method for which the set N is used to generate triplet-wise constraints.

- our learned visual metric Dw parameterized by a vector w ∈ Rd+.

- our learned visual metric DM parameterized by the non-diagonal matrix M ∈ Sd+.

More precisely, Table 4.1 presents the recognition scores when screenshot images of webpages are
segmented as m2 regions (i.e., dregions(vi, vj) ∈ Rm2

) where m = 4, 8 and 10. All the metrics benefit
from greater values of m, which means that they need to focus on highly detailed small regions of
pages. Moreover, the Euclidean distance metric is outperformed by all the learned metrics although its
performance is good, which means that the Euclidean distance is appropriate for change detection. The
triplet-based method which exploits a small number of constraints is outperformed by quadruplet-wise
methods that exploit a larger number of meaningful constraints. The full matrix distance metric DM

outperforms all the other methods. Particularly, it outperforms the diagonal matrix distance metric Dw

due to the exploitation of correlations between the different spatial regions.

The relatively low APD for the BBC homepage is explained by the similarity criterion used to label
version pairs. In particular, we consider that two versions are dissimilar only if their textual news content
is different. Fig. 4.6 illustrates a recurring example on BBC where a breaking news logo appears for a very
recent news (the left picture) and vanishes one hour later (the right picture). The breaking news logo, that
repeatedly appears in and vanishes from the only region where important changes occur, generates false
detections. It returns high distance values for some pairs although the textual information is unchanged.
In a context where any new image about an important event has to be archived, the example illustrated
in Fig. 4.6 would be considered as dissimilar, and the APD of BBC would be higher.
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National Public Radio (NPR)

Visual Euclidean Distance Proposed Visual Dissimilarity Dw

Grid Resolution APS APD MAP APS APD MAP

4 × 4 93.2 ± 0.3% 79.6 ± 0.7% 86.4 ± 0.5% 96.5 ± 1.6% 89.1 ± 4.5% 92.8 ± 3.0%
8 × 8 94.8 ± 0.3% 84.9 ± 0.6% 89.9 ± 0.4% 98.0 ± 0.8% 92.5 ± 1.9% 95.2 ± 1.4%

10 × 10 96.3 ± 0.2% 89.5 ± 0.5% 92.9 ± 0.3% 98.6 ± 0.2% 94.3 ± 0.6% 96.5 ± 0.4%

Triplet-based method Proposed Visual Dissimilarity DM

Grid Resolution APS APD MAP APS APD MAP

4 × 4 95.8 ± 1.8% 86.4 ± 3.8% 91.1 ± 2.8% 97.6 ± 0.3% 91.6 ± 0.9% 94.6 ± 0.6%
8 × 8 96.2 ± 0.9% 91.7 ± 2.3% 94.0 ± 1.6% 98.5 ± 0.5% 93.2 ± 2.1% 95.8 ± %1.3

10 × 10 98.0 ± 0.6% 92.5 ± 1.1% 95.2 ± 0.9% 98.7 ± 0.2% 94.5 ± 0.7% 96.6 ± 0.4%

New York Times

Visual Euclidean Distance Proposed Visual Dissimilarity Dw

Grid Resolution APS APD MAP APS APD MAP

4 × 4 68.3 ± 0.9% 75.1 ± 0.7% 71.7 ± 0.6% 77.3 ± 6.0% 84.2 ± 5.8% 80.7 ± 5.9%
8 × 8 70.3 ± 1.0% 78.7 ± 0.5% 74.5 ± 0.6% 83.9 ± 5.7% 90.9 ± 4.7% 87.4 ± 5.2%

10 × 10 69.8 ± 0.9% 79.5 ± 0.4% 74.6 ± 0.5% 85.5 ± 5.4% 92.3 ± 4.1% 88.9 ± 4.6%

Triplet-based method Proposed Visual Dissimilarity DM

Grid Resolution APS APD MAP APS APD MAP

4 × 4 77.0 ± 5.5% 82.7 ± 4.9% 79.9 ± 5.2% 86.3 ± 5.0% 92.8 ± 3.2% 89.5 ± 4.1%
8 × 8 81.9 ± 4.2% 87.8 ± 3.9% 84.9 ± 4.1% 89.3 ± 6.1% 93.0 ± 3.4% 91.2 ± 4.8%

10 × 10 83.2 ± 1.4% 89.1 ± 2.7% 86.1 ± 2.0% 91.6 ± 4.4% 94.7 ± 2.4% 93.1 ± 3.4%

CNN

Visual Euclidean Distance Proposed Visual Dissimilarity Dw

Grid Resolution APS APD MAP APS APD MAP

4 × 4 66.1 ± 0.6% 81.1 ± 0.5% 73.6 ± 0.4% 75.0 ± 5.0% 90.1 ± 4.3% 82.5 ± 4.6%
8 × 8 68.0 ± 0.6% 84.3 ± 0.6% 76.2 ± 0.5% 81.5 ± 4.2% 94.3 ± 2.0% 87.9 ± 3.1%

10 × 10 68.1 ± 0.6% 85.9 ± 0.6% 77.0 ± 0.5% 82.7 ± 4.1% 94.6 ± 1.8% 88.6 ± 2.9%

Triplet-based method Proposed Visual Dissimilarity DM

Grid Resolution APS APD MAP APS APD MAP

4 × 4 73.8 ± 4.5% 88.4 ± 3.3% 81.1 ± 3.9% 76.5 ± 15.5% 92.2 ± 8.3% 84.3 ± 11.9%
8 × 8 77.6 ± 3.8% 91.1 ± 2.2% 84.4 ± 3.0% 88.3 ± 1.0% 96.6 ± 0.3% 92.5 ± 0.6%

10 × 10 78.8 ± 1.9% 91.7 ± 1.7% 85.2 ± 1.8% 87.9 ± 3.1% 96.6 ± 0.6% 92.2 ± 1.9%

BBC

Visual Euclidean Distance Proposed Visual Dissimilarity Dw

Grid Resolution APS APD MAP APS APD MAP

4 × 4 90.5 ± 0.3% 75.7 ± 0.7% 83.1 ± 0.5% 92.8 ± 0.8% 78.5 ± 1.9% 85.6 ± 1.4%
8 × 8 90.6 ± 0.2% 75.4 ± 0.6% 83.0 ± 0.4% 91.9 ± 0.7% 77.2 ± 1.7% 84.5 ± 1.2%

10 × 10 91.1 ± 0.3% 76.7 ± 0.6% 83.9 ± 0.4% 92.8 ± 0.4% 79.3 ± 1.3% 86.1 ± 0.8%

Triplet-based method Proposed Visual Dissimilarity DM

Grid Resolution APS APD MAP APS APD MAP

4 × 4 91.5 ± 1.2% 76.7 ± 1.0% 84.1 ± 1.1% 92.8 ± 0.5% 80.0 ± 1.3% 86.4 ± 0.9%
8 × 8 91.7 ± 0.9% 76.5 ± 1.1% 84.1 ± 1.0% 93.0 ± 1.1% 82.7 ± 2.0% 87.8 ± 1.5%

10 × 10 92.5 ± 0.4% 80.1 ± 1.0% 86.3 ± 0.6% 93.0 ± 0.6% 82.5 ± 1.3% 87.7 ± 1.0%

Table 4.1: Test average precisions with the classic Euclidean distance and with learned metrics in the
fully unsupervised setup. The proposed visual dissimilarity DM obtains the best scores for all webpages.
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4.4. Experimental Results

Figure 4.6: The important region of two successive versions of the BBC homepage. A specificity of the
BBC website is that it always uses its“breaking news” logo to introduce recent breaking news and removes
it after a short period. In this case, since the textual content of the main news is unchanged, we consider
the two versions are similar. However, in a Web archiving context, these two versions are considered as
dissimilar since a relevant visual information is updated. Our algorithm tends to detect a visual change
in the important change region although the news is the same.

Classification accuracy We now present a strategy to learn a change detection metric without hu-
man supervision. For this purpose, we automatically generate our sets S and D (see Section 4.2.2) to
discriminate similar pairs of versions from dissimilar pairs. For the sake of clarity and of scalability of
the method, we present in the following only the results obtained with the diagonal Qwise visual distance
metric Dw. The relative quantitative performances of other models follow the same trend as in Table 4.1.

When human annotations to distinguish similar pairs from dissimilar pairs are not provided (i.e., S ∪
D = ∅), a distance metric Dw can be learned from the training set N = A ∪ B composed solely of
automatically generated quadruplets of successive versions. However, no threshold (i.e., b in Eq. (4.3)
and Eq. (4.4)) is learned to distinguish similar pairs from dissimilar pairs. In other words, distances
between version pairs can be compared with one another but our learned metric cannot determine whether
important changes occurred in a given version pair or not. We present how to learn a algorithm that
can detect whether semantic changes occurred or not without exploiting information provided by human
users. In particular, we propose to learn a change detection algorithm that exploits the metric Dw learned
from the set N to automatically generate the training sets S (class −1) and D (class +1).

Since the average precision scores for the different websites are high, we assume that the metric Dw

learned in Eq. (2.10) provides lowest distance values for similar pairs and highest values for dissimilar
pairs. The training pairs in S and D can then be automatically inferred from the training set of page
versions in N . Let k be the cardinality of the created sets S and D (k = |S| = |D|). The k version pairs
(vt, vt+1) (among the 24 × 5 = 120 possible pairs) with highest values of Dw(vt, vt+1) form D, whereas
the k version pairs with values Dw(vt, vt+1) closest to 0 (and that are not completely identical) form S.
Once these sets are created, we learn a linear SVM that discriminates pairs in S from pairs in D.

Fig. 4.7 and Table 4.2 report classification accuracies in the unsupervised setup described above. We
learn a linear SVM with the automatically created sets S and D using the |S| = |D| = k = 25 version
pairs with lowest and highest distances.

Fig. 4.7 illustrates that change detection gets improved as the grid resolution increases. At a grid
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Figure 4.7: Test accuracies in the similarity detection task without human annotations as the grid reso-
lution of the GIST descriptor increases (k = 25).

Web Site Visual Method Hybrid Visual+Structural Method
NPR 87.0 86.7

NYTimes 76.4 77.0
CNN 72.9 75.0
BBC 68.6 68.6

Table 4.2: Test accuracies (in %) in the fully unsupervised setup using only visual descriptors or combining
them with structural metrics. A 10× 10 grid resolution is considered (k = 25).

resolution of 4 × 4, the change detection is already better for all websites than a naive classifier that
randomly determines whether a test pair is similar (such a classifier would obtain a performance of 50%
accuracy). We reach accuracies up to 87% on NPR with a 10 × 10 grid resolution. Table 4.2 compares
accuracies (using a 10× 10 grid resolution) depending on whether visual features are used independently
(as in Fig. 4.7) or combined with structural distances. The combination of structural and visual distances
improves the accuracy up to 2% on CNN.

All these results illustrate the ability of our model to learn a change detection algorithm without
human supervision.

4.4.5 Supervised learning results

The previous experiments were realized without human annotations. We show here that change detection
(classification accuracy) can be improved with very little human effort.

Fig 4.8 reports classification accuracies on the different websites as the number of annotated pairs per
class (|S| = |D|) increases37. Using 5 annotated pairs per class improves accuracy of 5%, and using 20
annotated pairs further improves performance of 5.5%. However, we reach a ceiling for |S| = |D| > 20,
around which the accuracy does not improve much. Using a small number of annotated pairs is then
sufficient. Moreover, note that the selected pairs in S and D are randomly chosen among the 24×5 = 120
possible pairs. Active strategies can be performed to minimize integrated human supervision.

In Table 4.3, we compare the performance of our learned multimodal distance presented in Section 4.3.3
with a learned multimodal distance that combines the Euclidean distance between GIST regions with
structural metrics on hyperlinks and image URLs. The difference between the two methods is that the
first one focuses on important page regions to visually compare versions whereas the second one does
not. We actually proposed the second method in [Law et al., 2012b]. The margin is 12% in our favour.
Moreover, combining structural and visual distances (see Table 4.3) slightly improves recognition over
visual distances alone (see Fig 4.8) with a global margin of 1% for all websites. This result shows that
structural and visual distances are complementary.

37The accuracies reported with zero annotated pair sample per class correspond to those of Section 4.4.4.2, Fig. 4.7 and
Table 4.2.
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Figure 4.8: Test accuracies in the similarity detection task as the number of annotated samples increases.
A 10× 10 grid GIST descriptor is used.

Number of annotated samples per class

Law et al. [Law et al., 2012b] Proposed method

Web Site 5 20 5 20

NPR 81.4 86.1 90.6 90.6
New York Times 65.3 68.3 83.4 90.2

CNN 70.2 71.6 77.4 85.1
BBC 69.8 72.3 80.0 83.9

Table 4.3: Test accuracies (in %) in the supervised setup of the baseline method described in
[Law et al., 2012b] and our method using the same visual and structural descriptors.

4.4.6 Structural segmentation maps

We now study the case where, instead of using a regular grid-based segmentation, we visually segment
pages using the segmenter of [Sanoja and Gançarski, 2012] as described in Section 4.3.2.

Fig. 4.9 illustrates the relative importances learned without human supervision for regions obtained
using structural segmentation (and using versions crawled during 5 days). The illustrated webpages are
the same as the first four pages of Fig 4.4. The important change regions are well recognized (higher
values are darker) and unimportant regions are ignored as expected. However, quantitative results are
comparable to those that use a regular grid segmentation. There are many reasons:

- Using the same segmentation structure for all the versions of a webpage is a strong limitation.

- Although the webpage segmentation performed by [Sanoja and Gançarski, 2012] is specific to the
analyzed webpage, a regular grid segmentation with high granularity already overlaps well with the
different important semantical regions that cover large parts of the page (see Fig. 4.9).

- Learning weights using a regular grid segmentation allows to focus on subregions that are convenient
to satisfy the constraints mentioned in Section 4.2. The learned weights are then more specialized than
weights that only consider distances on large (segmented) regions.

- Webpage segmentation algorithms [Cai et al., 2003, Sanoja and Gançarski, 2012] rely on heuristics
that are not necessarily optimal for a change detection purpose. This is observable in the segmen-
tation performed on the New York Times homepage: the weights learned with a regular grid seg-
mentation (see Fig. 4.4) focus on the top of the main news whereas the segmentation algorithm in
[Sanoja and Gançarski, 2012] considers all the news contents (i.e., top and bottom region of the news
region, the largest region in this webpage in Fig. 4.9) as the same block (semantical entity). Future work
includes further investigating the degree of granularity used by the segmentation algorithm.

Visual segmentation is a difficult task even for real-world images. Moreover, performing a webpage
segmentation is computationally expensive (the prototype [Sanoja and Gançarski, 2012] takes from 5 to
8 seconds to segment our pages) and does not improve recognition. In order to be scalable, it is then
preferable to use a regular grid segmentation with our framework except if one wants to compute the
relative importance of changes in segmented blocks.
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Figure 4.9: Important change maps for BBC, CNN, New York Times and NPR. (left) Webpage screenshot
with segmentation blocks (red lines) [Sanoja and Gançarski, 2012]. (right) Spatial weights learned by our
method with versions crawled during 5 days and without human supervision (higher values are darker).

4.4.7 Summary

We have shown different interesting results:
- the metric learned with our strategy allows to detect important regions in webpages. The learned
metric also implicitly returns small distances for semantically similar pairs of versions and larger values
for semantically distant versions.
- our sampling strategy allows to create a lot of significant constraints. This is particularly useful when
triplet-wise sampling strategies generate a relatively small number of constraints.
- the metrics learned without human supervision perform very well and their recognition performance
can be improved with very little human interaction.
- the learned metric can be extended by combining both visual and structural information metrics.

4.5 Conclusion

We have proposed a novel webpage change detection method that detects important change regions in
webpages. Our approach learns a distance metric between versions of a same webpage and exploits
temporal relationships between them. The proposed change detection algorithm learned without human
supervision obtains good recognition results on different websites. We also showed how a small number
of human annotations boost our performances. Since our method mostly relies on visual comparisons on
rendered pages, it is generic and robust to the way the analyzed pages are coded. Structural distances,
which use the source code of webpages, are easy to integrate in our framework.

The possible applications of our approach are diverse: Web crawling and search engine improvements,
navigation in Web archives (e.g., from a given version in a Web archive, find the next one in which a
semantical change occurred), improvement of mobile phone applications that load the important content
of webpages... Future work includes the implementation of a webpage segmentation method dedicated
to change detection by using our algorithm as a preprocessing step. For instance, the adjacent regularly
segmented regions with comparable weighs can be merged in a single semantic block. Future work also
includes the use of more complex metrics.
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In this PhD thesis, we have proposed a supervised distance metric learning framework to deal with rich
kind of training information and to efficiently control the complexity of the learned distance model.

Incorporating rich information Most distance metric learning algorithms exploit binary similarity
information (e.g., “is similar” or “is dissimilar”) to generate training constraints. A central contribution of
this work is the quadruplet-wise distance metric learning framework, presented in Chapter 2, to extend
the expressivity of constraints and incorporate rich information. For instance, in the context of relative
attributes where degrees of presence of attributes are provided at a class level, relaxing equivalence con-
straints between pairs of images by exploiting inequality constraints between quadruplets of images seems
more natural and intuitive. From this observation, we derived a general distance metric learning frame-
work that exploits constraints which involve quadruplets of images. We demonstrated that the proposed
constraints are a generalization of classic pairwise and triplet-wise constraints. In addition, they can also
describe relationships between images that are not possible with classic approaches. We experimentally
showed in contexts such as relative attributes, hierarchical image classification and webpage analysis that
incorporating rich information helps improve recognition.

In the particular context of webpage understanding (see Chapter 4), we proposed a novel framework to
automatically discover important change regions by exploiting temporal relationships between successive
versions of a webpage. The proposed quadruplet-wise framework allowed us to increase the number of pos-
sible constraints and learn a meaningful metric compared to a triplet-wise approach. We experimentally
showed that the learned metric can be exploited in the context of webpage change detection. Especially,
change detection performance is improved when the learned metric focuses on important regions and
ignores irrelevant regions. Moreover, We have successfully extended our metric learning formulation by
including manually annotated pairwise constraints. This combination increases performances. We have
also proposed to combine visual information with structural information to better describe webpages.

Controlling the complexity of the learned model In Chapter 3, we introduced in Mahalanobis-like
distance metric a novel regularization method to explicitly control the rank of the learned distance matrix,
and thus avoid overfitting. The key idea is to include a regularization term which minimizes the sum of
the smallest singular values of the learned PSD matrix. The regularization term is minimized if and only
if the rank of the PSD matrix is smaller than or equal to a target rank. For this purpose, we express
the (super-)gradient of the regularization term and propose efficient optimization. We experimentally
validated that our regularization framework allows to control the rank of the learned distance matrix.
The results obtained were competitive against other distance metric learning approaches on synthetic
and real-world computer vision datasets.

In addition to the contributions presented in this dissertation, a number of open questions suggest
further investigations:

Dealing with large numbers of constraints and structured predictions In Chapter 2, we have
proposed to incorporate rich information by generating “independant” constraints, each of them involving
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quadruplets of images. However, if some or many pairs of images are present in a lot of constraints,
one can exploit structured predictions, such as rankings over these image pairs, to limit the number
of generated constraints. Structural metric learning presents a lot of advantages, one of them is the
possibility to exploit efficient optimization techniques such as the 1-slack cutting plane method.

Generalization of the proposed regularization method In Chapter 3, our proposed regularization
framework penalizes only the k smallest eigenvalues of the learned PSD matrix and not the other ones.
One can imagine a generalization of our regularization term by weighing the penalty depending on the
value of eigenvalues. For instance, a penalization such as the one used in [Candès et al., 2008] can be
generalized in our framework to PSD matrices. A vast literature exists for cases where the learned model
is a vector or any type of matrix. It would be interesting to study the case where the learned model is a
symmetric PSD matrix.

Multimodal webpage analysis In Chapter 4, we have proposed a first attempt to combine visual and
structural information and compare webpages for change detection. Although recognition is improved by
including structural information, the gain is small. Future work includes a further investigation of how
structural and visual informations can be combined to improve webpage change detection. A possible
direction is the prior structural segmentation dedicated to the change detection task and used to segment
webpage screenshots.
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Appendix A

Positive Semidefinite Cone

A.1 Definitions

We give the basic properties of the set of symmetric positive semidefinite (PSD) matrices Sd+ that are
fundamental for this thesis. The first one is that Sd+ is a convex set, particularly a proper cone, which
allows to use efficient projected algorithms in order to solve convex problems. We first give some definitions
related to convex cones.

Definition A.1.1. (Cone) In linear algebra, a set X is called a cone if and only if:

Γ ∈ X ⇒ ∀µ > 0, µΓ ∈ X (A.1)

or equivalently

Γ ∈ X ⇒ ∀µ ≥ 0, µΓ ∈ X̄ (A.2)

where X̄ denotes the closure of cone X . All closed cones38 contain the origin 0 and are unbounded,

excepting the cone {0}.

Definition A.1.2. (Convex cone) A set K is called a convex cone if and only if:

Γ1,Γ2 ∈ K ⇒ ∀µ1, µ2 ≥ 0, µ1Γ1 + µ2Γ2 ∈ K̄ (A.3)

i.e., any conic combination of elements from K belongs to its closure. K is convex since for any particular

µ1, µ2 ≥ 0, we have:

∀ν ∈ [0, 1], νµ1Γ1 + (1− ν)µ2Γ2 ∈ K̄ (A.4)

Definition A.1.3. (Proper cone) A cone K ⊆ Rn is called a proper cone if it satisfies the following:

� K is convex

� K is closed

� K is solid, which means it has nonempty interior

� K is pointed, which means that it contains no line (i.e., Γ ∈ K,−Γ ∈ K ⇒ Γ = 0)

38A set X is closed iff X̄ = X .

83



Appendix A. Positive Semidefinite Cone
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Figure A.1: Examples of truncated cones in R2. (b) and (d) are convex cones, and only (d) is a proper
cone.

A proper cone K can be used to define a generalized inequality, which is a partial ordering on Rn. The
partial ordering on Rn associated with the proper cone K is defined by

Γ1 �K Γ2 ⇐⇒ Γ2 �K Γ1 ⇐⇒ Γ2 − Γ1 ∈ K (A.5)

The nonnegative orthant Rn+ is a proper cone in Rn and the positive semidefinite cone Sd+ is a proper
cone in Sd.

Definition A.1.4. The set Sd+ is the set of d × d symmetric matrices that have all their eigenvalues

non-negative. In other words: M ∈ Sd+ ⇐⇒M ∈ Sd, λ(M) ∈ Rd+.

This implies the following property:

Property A.1.5. The eigenvalues of a matrix in Sd+ are also its singular values.

Proof: The singular values of a matrix M are the square roots of the eigenvalues of M>M. Since for all
M ∈ Sd+, we have M = M> and since every symmetric matrix can be decomposed M = VDiag(λ(M))V>

where V is an orthogonal matrix, we obtain the following eigendecomposition of M>M:

M>M = MM = VDiag(λ(M))V>VDiag(λ(M))V>

= VDiag(λ(M))Diag(λ(M))V>

= V [Diag(λ(M))]
2
V>

(A.6)

which means that the eigenvalues of M>M are the squared values of the eigenvalues of M. Since the

eigenvalues of M are all nonnegative (i.e., λ(M) ∈ Rd+), it follows
[
[Diag(λ(M))]

2
]1/2

= Diag(λ(M)).

The square roots of the eigenvalues of M>M are then λ(M).

In the general case where M is a symmetric matrix, its singular values are the absolute values of its
eigenvalues.

Property A.1.5 implies that the nuclear norm of a matrix M ∈ Sd+ (sum of its singular values) is also
the trace of M (sum of its eigenvalues): ∀M ∈ Sd+, ‖M‖∗ = tr(M).

Moreover, since the rank of a matrix is its number of non-zero singular values, the rank of a matrix
in Sd+ (and in Sd in general) is also its number of non-zero eigenvalues.
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A.2. Rank of a Matrix

X =

(
a b
b c

)
∈ Sd+ ⇐⇒ a ≥ 0, c ≥ 0, ac ≥ b2

This equivalence is a consequence of the following
properties:
- The diagonal entries of a matrix in Sd+ are real
and nonnegative.
- Since the eigenvalues of a matrix in Sd+ are non-
negative, the determinant (product of its eigenval-
ues) is also nonnegative: we then have det(X) =
ac− b2 ≥ 0.

Figure A.2: Truncated boundary of positive semidefinite cone in S2 plotted in R3 as (a, b, c). The
boundary of S2

+ is the set of parameters (a, b, c) that satisfy a ≥ 0, c ≥ 0, ac = b2, it represents the set of
symmetric PSD matrices that are not full rank. The interior of the cone is the set of positive definites
matrices (S2

++).

A.2 Rank of a Matrix

The rank of a matrix M is the maximal number of linearly independent rows or columns of M. If the
matrix M ∈ Rm×n is of rank r, then it can be factored

M = CR where C ∈ Rm×r and R ∈ Rr×n. (A.7)

This implies that the rank determines the number of independent parameters of M, i.e., r × (m+ n) in
Eq. (A.7). If the matrix M ∈ Sd+ is of rank r, then it can be factored

M = L>L where L ∈ Rr×d. (A.8)

which implies that M has O(r × d) independent parameters in Eq.(A.8).39

A.3 Projection onto the PSD Cone

We define a projection of a point on a convex set.

Definition A.3.1. The distance of a point x0 ∈ Rn to a closed set C ⊆ Rn, in the norm ‖ · ‖, is defined

as

dist(x0,C ) = inf{‖x0 − x‖ | x ∈ C }

The infimum is always achieved in our case. Any point z ∈ C which satisfies ‖z− x0‖ = dist(x0,C ),
i.e., which is closest to x0, is called a projection of x0 on C . When C is closed and convex, and when the
norm is strictly convex (e.g., the Euclidean norm), then the projection z ∈ C of x0 on C is unique.

39Actually, when rank(M) = d, the number of independent parameters is
∑d

i=1 i =
d(d+1)

2
since M is symmetric.
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We note ΠC : Rn → Rn any function for which ΠC (x0) is a projection of x0 on C :

ΠC (x0) = argmin
x
{‖x− x0‖ | x ∈ C } (A.9)

Note that when C = Rn, we have ΠC (x0) = x0. In this thesis, we particularly consider two widely used
projections that are useful for Mahalanobis distance metric learning:

For C = Sd+, and the Euclidean (or Frobenius) norm ‖·‖F , we have the following projection ΠSd+(X0) =∑d
i=1 max{0, λi}viv>i where X0 =

∑d
i=1 λiviv

>
i is the eigendecomposition of X0 ∈ Sd. The projection on

Sd+ is obtained by forming the eigendecomposition of X0 and dropping terms associated with negative
eigenvalues.

For C = Rd+, we have ΠC (x0)k = max{x0k, 0} where x0 = (x01, · · · , x0d}. The Euclidean projection
of a vector onto the nonnegative orthant is obtained by replacing negative components of the vector with
0.
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Appendix B

Solver for the Vector Optimization

Problem

We describe here the optimization process when the goal is to learn a dissimilarity function Dw parame-
terized by a vector w.

B.1 Primal Form of the Optimization Problem

We first rewrite Eq. (2.10) in the primal form in order to use the efficient and scalable primal Newton
method [Chapelle and Keerthi, 2010].

The first two constraints of Eq. (2.10) over S and D try to satisfy Eq. (2.4) and Eq. (2.5). They are
equivalent to yij(Dw(Ii, Ij)− b) ≥ 1− ξij where yij = 1⇐⇒ (Ii, Ij) ∈ D and yij = −1⇐⇒ (Ii, Ij) ∈ S.
Eq. (2.10) can then be rewritten equivalently:

min
(w,b)

1

2
(‖w‖22 + b2) + CP

∑
(Ii,Ij)∈S∪D

L1(yij ,Dw(Ii, Ij)− b)

+ CQ
∑
q∈N

Lδq (1,Dw(Ik, Il)−Dw(Ii, Ij))

s.t. w ∈ C d, b ∈ C

(B.1)

where L1 and Lδq are loss functions and yij ∈ {−1; 1}. In particular, for Eq. (2.10) and Eq. (B.1) to be
strictly equivalent, they have to correspond to the classic hinge loss function Lδ(y, t) = max(0, δ − yt).
We actually use a differentiable approximation of this function to have good convergence properties
[Chapelle, 2007, Chapelle and Keerthi, 2010].

For convenience, we rewrite some variables:

• ω = [w>, b]> is the concatenation of w and b in a single (d+ 1)-dimensional vector. We note e = d+ 1
and then have ω ∈ Re.

• cij = [(Ψ(Ii, Ij))>,−1]> is the concatenation vector of Ψ(Ii, Ij) and −1. We also have cij ∈ Re.

• p = (Ii, Ij)⇐⇒ cp = cij and yp = yij .

• q = (Ii, Ij , Ik, Il)⇐⇒ zq = xkl − xij .
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Appendix B. Solver for the Vector Optimization Problem

Eq. (B.1) can be rewritten equivalently with these variables:

min
ω∈C e

1

2
‖ω‖22 + CP

∑
p∈S∪D

L1(yp,ω
>cp) + CQ

∑
q∈N

Lδq (1,ω>zq) (B.2)

With such a regularization, our scheme may be compared to a RankSVM [Chapelle and Keerthi, 2010],
with the exception that the loss function Lδq works on quadruplets. The complexity of this convex problem
w.r.t. ω is linear in the number of constraints (i.e., the cardinality of N ∪D∪S). It can be solved with a
classic or stochastic (sub)gradient descent w.r.t. ω depending on the number of constraints. The number
of parameters to learn is small and grows linearly with the input space dimension, limiting overfitting
[Mignon and Jurie, 2012]. It can also be extended to kernels [Chapelle and Keerthi, 2010].

We describe in the following how to apply Newton method [Keerthi and DeCoste, 2005, Chapelle, 2007,
Chapelle and Keerthi, 2010] to solve Eq. (B.2) with good convergence properties. The primal Newton
method [Chapelle and Keerthi, 2010] is known to be fast for SVM classifier and RankSVM training. As
our vector model is an extension of the RankSVM model, the learning is also fast.

B.2 Loss Functions

Let us first describe loss functions that are appropriate for Newton method. Since the hinge loss function is
not differentiable, we use differentiable approximations of L1 and Lδq inspired by the Huber loss function.

For simplicity, we also constrain the domain of δq to be 0 or 1 (i.e., δq ∈ {0, 1}). The set N can then
be partitioned as two sets N and B such that for all:

• q ∈ N , δq = 1⇐⇒ q ∈ N

• q ∈ N , δq = 0⇐⇒ q ∈ B

In Eq. (B.2), we consider tp = ω>cp or tq = ω>zq . Without loss of generality, let us consider tr with
r ∈ β (with β = S, D, N or B) and y ∈ {−1,+1}. Our loss functions are written:

Lh1 (y, tr) =


0 if ytr > 1 + h set: β0

1,y
(1+h−ytr)2

4h if |1− ytr| ≤ h set: βQ1,y
1− ytr if ytr < 1− h set: βL1,y

(B.3)

Lh0 (y, tr) =


0 if ytr > 0 set :β0

0,y
t2r
4h if | − h− ytr| ≤ h set :βQ0,y
−h− ytr if ytr < −2h set :βL0,y

(B.4)

where h ∈ [0.01, 0.5]. In all our experiments, we set h = 0.05. Fig. B.1 illustrates the loss functions Lh1
and Lh0 for the values h = 0.5 and y = 1.

As described in [Chapelle, 2007], Lh1 is inspired from the Huber loss function, it is a differentiable
approximation of the hinge loss (L1(y, t) = max(0, 1− yt)) when h→ 0. Similarly, Lh0 is a differentiable
approximation when h→ 0 of L0(y, t) = max(0,−yt), the adaptation of the hinge loss that considers the
absence of security margin. Given set β and y ∈ {−1,+1}, we can infer three disjoint sets:

• β0
i,y is the subset of elements in β that have zero loss in Lhi (y, ·).

• βQi,y is the subset of elements in β that are in the quadratic part of Lhi (y, ·).

• βLi,y is the subset of elements in β in the non-zero loss linear part of Lhi (y, ·).

88
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Figure B.1: Illustration of the different loss functions used in this paper for the values y = 1 and h = 0.5.

Algorithm 4 Projected Newton Step

Require: Sets S, D, N , B (some of them can be empty)
1: Iteration t = 0
2: Initialize ωt ∈ C e (e.g., ωt = 1)
3: Initialize the step size ηt > 0 (e.g., ηt = 1)
4: repeat
5: Compute Ot and Ht (gradient and hessian w.r.t. ωt)
6: ωt+1 ← ΠC e(ωt − ηtH−1

t Ot)
7: t← t+ 1
8: until ||ωt − ωt−1||22 ≤ ε
9: Return ωt

B.3 Gradient and Hessian Matrices

By considering L1 = Lh1 and L0 = Lh0 in Eq. (B.2), the gradient O ∈ Re of Eq. (B.2) w.r.t. ω is:

O = ω +
CP
2h

∑
p∈(S∪D)Q1,yp

(ω>cp − (1 + h)yp)cp

− CP
∑

p∈(S∪D)L1,yp

ypcp +
CQ
2h

∑
q∈NQ

1,1

(ω>zq − (1 + h))zq

+
CQ
2h

∑
q∈BQ

0,1

(ω>zq)zq − CQ
∑

q∈(NL
1,1∪BL

0,1)

zq

(B.5)

and the Hessian matrix H ∈ Re×e of Eq. B.2 w.r.t. ω is:

H = Ie +
CP
2h

∑
p∈(S∪D)Q1,yp

cpc
>
p +

CQ
2h

∑
q∈(NQ

1,1∪B
Q
0,1)

zqz
>
q (B.6)

where Ie ∈ Re×e is the identity matrix. H is the sum of a positive definite matrix (Ie) and of positive
semi-definite matrices. H is then positive definite, and thus invertible (because every positive definite
matrix is invertible).

Proof: H can be written H = Ie + B with B ∈ Re×e a positive semi-definite matrix. For all vector
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z ∈ Re, we have z>Hz = z>Iez + z>Bz. By definition of positive (semi-)definiteness, we have the
following property: for all nonzero z ∈ Re, z>Iez > 0 and z>Bz ≥ 0. Then for all nonzero z ∈ Re,
z>Hz > 0. H is then a positive definite matrix.

The global learning scheme is described in Algorithm 4. The step size ηt > 0 can be set to 1 and
unchanged as in [Chapelle, 2007], or optimized at each iteration through line search (see Section 9.5.2 in
[Boyd and Vandenberghe, 2004]). The parameter ε ≥ 0 determines the stopping criterion by controlling
the `2-norm of the difference of ω between iteration t and t− 1.

Complexity: Computing the Hessian takes O(σe2) time (where σ = |(S ∪ D)Q1,yp | + |(N
Q
1,1 ∪ B

Q
0,1)|)

and solving the linear system is O(e3) because of the inversion of Ht ∈ Re×e. This can be prohibitive
if e is large but we restrict e ≤ 1001 in our experiments; the inversion of Ht is then very fast. Other
optimization methods are proposed in [Chapelle and Keerthi, 2010] (e.g., a truncated Newton method)
if e is large.

The projected gradient method requires the projection of the learned vector on the set C d at each
iteration. The Euclidean projection on Rd of all vector a ∈ Rd is itself (ΠRd(a) = a, there is no need of
projection in this case) and its projection on Rd+ is found by replacing each negative component of a with
0. The latter projection is linear in the size of w and ensures that the symmetric matrix Diag(w) = M
is PSD.

It can be noticed that Newton method is appropriate for unconstrained problems, where the inclusion
of H−1 at each iteration allows to converge faster to the global minimum. When C e is Re+, Eq. (B.2) is
a constrained problem and the minimum of the unconstrained problem is not necessarily the minimum
of the constrained problem. In Eq. (B.2), since our loss functions are linear almost everywhere on their
domain, the Hessian of the problem is close to the identity matrix and it is affected almost exclusively
by the regularization term. This is why applying a projected Newton method is not a major issue in our
case. If computing the inverse of the Hessian is too much expensive, the Hessian can be omitted and a
classic projected gradient method can be used.
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pages changes. In Conference on Database and expert systems applications: Part I. Springer-Verlag.
66, 67

97



Bibliography

[Perronnin and Dance, 2007] Perronnin, F. and Dance, C. (2007). Fisher kernels on visual vocabularies
for image categorization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–8. IEEE. 7

[Perronnin et al., 2010] Perronnin, F., Sánchez, J., and Mensink, T. (2010). Improving the fisher kernel
for large-scale image classification. In Computer Vision–ECCV 2010, pages 143–156. Springer. 7, 8, 9

[Prechelt, 1998] Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade,
pages 55–69. Springer. 27

[Rakotomamonjy et al., 2008] Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y., et al. (2008).
Simplemkl. Journal of Machine Learning Research, 9:2491–2521. 10

[Rakotomamonjy et al., 2011] Rakotomamonjy, A., Flamary, R., Gasso, G., and Canu, S. (2011). Penalty
for sparse linear and sparse multiple kernel multitask learning. Neural Networks, IEEE Transactions
on, 22(8):1307–1320. 62

[Rosasco et al., 2004] Rosasco, L., Vito, E., Caponnetto, A., Piana, M., and Verri, A. (2004). Are loss
functions all the same? Neural Computation, 16(5):1063–1076. 17

[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a
metric for image retrieval. International Journal of Computer Vision, 40(2):99–121. 13

[Salton, 1975] Salton, G. (1975). A theory of indexing, volume 18. SIAM. 10
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