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Master 2. Je la remercie pour ses multiples conseils et tous les heures qu’elle a consacrées
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par ses qualités d’humaine d’écoute et de compréhension tout au long de la thèse. Il m’a
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Introduction

History and motivations

This thesis begins with the works of Clément, Fill, Flajolet and Vallée [12, 13]. There
are two mains classes of sorting and searching algorithms: those which work with keys
and those which work with words (or strings). For a lot of basic (sorting and searching)
algorithms, a key is seen as a whole “atomic” structure and its representation is not taken
into account. By opposition the structure of a word as a sequence of symbols is essential
in algorithms on strings. The unit cost of algorithms in the first class is the comparison
between keys while, in the second class, it is the comparison between symbols. Thus, it
seems unfair in general to compare algorithms if we do not use the same unit cost. In 1998,
Sedgewick proposed to analyze basic algorithms (sorting and searching algorithms) when
dealing with words and not “atomic” keys. In this case, the realistic cost of comparing two
words is the number of symbol comparisons needed to distinguish them in lexicographic
order. This cost is closely related to the length of the longest common prefix of two words,
called here the coincidence. We wish in this thesis to provide a fairer comparison between
symbol-based algorithms (like radix-sort or algorithms using digital trees or tries) and
key-based algorithms (QuickSort, QuickSelect, etc.)

General context of the thesis

This thesis belongs to three domains in theoretical computer science: Algorithmics, Infor-
mation Theory and Analytic Combinatorics.

Algorithmics. As the title says, the objective of the thesis is the analysis of sorting and
searching algorithms. The algorithms QuickSort and QuickSelect, invented by Hoare in
1962 [41], are important, well-known and representative of the class of divide and conquer
algorithms. They appear in many algorithmic textbooks, for example, those of Knuth [48],
Sedgewick [62] or Cormen et al [17].

These algorithms have several variations such as the Median of Three Partition for
QuickSelect [47], the multikey QuickSelect [32], the approximate QuickSelect [51], the
Bentley-Sedgewick variation for QuickSort [7], etc.

Why analyzing algorithms? The analysis of algorithms aims to analyze the main pa-
rameters of an algorithm in order to determine the amount of resources (time and storage)
that are needed by the algorithm. The analysis of an algorithm provides a better under-
standing of the algorithm, may improve its implementation, helps predict its performance
and its efficiency, and also allows to compare algorithms and classify them in difficulty.

Why focusing on average-case analysis? There are two main points of view when study-
ing the performance of an algorithm: we may be interested in its worst-case performance
or its average-case performance. Even if there exist some algorithms where the worst case
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may be representative or “typical” of the observed behavior, more often, the worst-case
rarely happens, and thus is a too pessimistic measure of the cost of the algorithm. This
is why it is natural to deal with a probabilistic measure. The purpose of the average-case
analysis of algorithms is to characterize the mean value of their “costs” under a well-defined
probabilistic model that describes the initial distribution of the input.

Information theory. The efficiency of an algorithm which deals with words depends
on two factors: the strategy of the algorithm itself and the mechanism, called the source,
that generates the words constituting the input. We resort to information theory to define
a general model of source that encompasses many interesting models such as memoryless
sources (symbols are emitted independently), Markov chains (the emission of a symbol
depends on the k previous symbols) and even more complicated sources with unbounded
correlations between symbols. Unlike other random models which are usually uniform
models, we consider in this thesis that the input is generated by a general source. And the
model of source we choose encompasses other important models of sources (memoryless
source, Markov chain, dynamical source). We adopt a parameterized model where each
infinite word is characterized by a real number in the unit interval.

The probabilistic features of the source will play a crucial role in the analysis of the
algorithm, when it deals with words emitted by the source, and there is indeed an interplay
between the strategy of the algorithm and the probabilistic properties of the source. We
wish to explain how the efficiency of the algorithm depends on the source. In particular,
various notions of coincidence between words that will intervene in the analysis are char-
acteristic of the studied algorithms. Our study is thus a tool for a better understanding of
the algorithmic strategy.

Analytic combinatorics. There will be two phases in the analysis of the realistic cost of
the algorithm, as it usual in analysis of algorithms. The first algebraic (or combinatorial)
phase consists in computing the generating function (here a mixed Dirichlet series. The
exact mean number of symbol comparisons performed by the algorithm is expressed as
an alternative sum of the mixed Dirichlet series. This sum is usually complicated so that
it is difficult to guess its behavior. The second analytic (or asymptotic) phase extracts
the asymptotic behavior (which is generally not evident to guess at the end of the first
phase) using a precise study of the generating function (seen as a function of the complex
variable). The thesis deals with two main probabilistic models: the Poisson model where
the number of words follows a Poisson law (where it is easier to work) and the Bernoulli
model where this number is fixed (and is more natural in algorithmics). And it is possible
to return to the Bernoulli model, with tools of complex analysis, like the Nörlund-Rice
formula, the Mellin transform, the residue theorem, etc.

Contributions of the thesis.

In this thesis, we extend the applicability of the method which has been described in the
paper [12]. We describe a new point of view on the basic algorithms, and their analysis,
which can be (partially) automatized. Our study can be viewed as a first step towards
the “realistic” analysis of sorting and searching algorithms, for two reasons: we consider
a general model of inputs, and we deal with a (more) realistic cost, namely, the number
of symbols which are needed to distinguish two words. This approach provides a fair
comparison between comparison-based (e.g. QuickSort) and digital-based algorithms (e.g.
radix-sort or trie-based algorithms) on a common ground.
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An ordered sequence U of words
U = {U1 < U2 < · · · < Un},
A permutation σ ∈ Sn

The number
of symbol comparisons S[U , σ]

The mean number
of symbol comparisons S〈U〉

The mean number
of symbol comparisons S(n)

Input V := (V1, V2, . . . , Vn),
Vi = Uσ(i)

U fixed, and all possible σ ∈ Sn

all possible ordered sequences U
of size n randomly and indepen-
dently produced by the source.

Figure 1: The steps for the analysis.

Methods. In our analysis, we always deal with two objects: an ordered set of infinite
words U = {U1 < U2 < · · · < Un} and an algorithm A. For sorting and searching
algorithms, which operate on words, the input is an array of n strings, each produced
independently by a source. An input is described by a pair (U , σ) where U is a set of n
words and σ a permutation of [1 . . n].

The unit cost measure will no longer be the comparison between keys but between
symbols. We denote by S[U , σ] the number of symbol comparisons performed by the
algorithm A on the set U under the permutation σ. Varying over all possible σ ∈ Sn

(where n is the size of U), we compute the mean number of symbol comparisons S〈U〉
which depends only on the set U . In the next step, we fixed the cardinal n and consider
all the possible sets U generated by the source. Finally, the mean number of symbol
comparisons S(n) is the mean over all permutations σ ∈ Sn and all possible sets of infinite
words U of size n randomly and independently produced by the source.

The general method is already described in [12], but this is a short paper, without much
details. It was shown there that a “mixed” Dirichlet series denoted by $(s) characterizes
the behavior of an algorithm with respect to the source. The thesis highlights the main
principles of such an analysis, in order to make easier its application to various algorithms.
As it is often the case in analytic combinatorics, there are two main phases in the method,
a first phase where the series $(s) is built, and a second phase where it is analyzed
with analytic tools. We show here how the first phase may mostly be performed in an
“automatic” way.

Applications. We apply the method to three other popular algorithms: InsertionSort,
BubbleSort and SelectionMinimum, respectively denoted in the sequel by the short names
InsSort, BubSort, SelMin [14],[16] (see for instance the book [62] for a thorough descrip-
tion of these algorithms). With this approach, we also easily recover the results about the
QuickSort and QuickSelect algorithms [15] that were already obtained in [12]. The main
results are presented in Figure 2. The constants in the third column and the remainder
terms depend on the source. The constants that depend on the algorithms will be explained
respectively in Chapters 5,6,7. The remainder terms are precised in Theorem 6.2. The sub-
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dominant terms will be explained in details in Chapters 5, 6, and 7. We then measure the
robustness of the algorithms (i.e., the possible change in its complexity behavior, due to
the change in the complexity measure, from the number of key comparisons to the number
of symbol comparisons).

Algorithms K(n)
Dominant

term of S(n)

Subdominant

terms of S(n)

(see Proposition 6.3)

Remainder

term of S(n)

(see 6.2)

QuickSort 2n log n
1

h(S)
n log2 n κ0n log n + κ2n E(n)

InsSort
n2

4

c(S)

4
n2 1

h(S)
n log n +

(
κ0 −

c(S)

4

)
n E(n)

BubSort
n2

2

1

4h(S)
n2 log n

(
κ1 +

c(S)

4

)
n2 nE(n)

QuickMin 2n 2b(S)n F (n)

SelMin n a(S)n F (n)

Figure 2: Results.

Alternative proofs. We provide also another alternative proof for the mean number of
symbol comparisons of QuickSort and InsSort. This proof is obtained using the point
of view given by Seidel in [65], where he relates the mean number of key comparisons and
that of symbol comparisons (using the underlying structure of trie). In the case when the
algorithm is strongly faithful (a property about the mean number of “local” comparisons
between two keys by the algorithm), the mean number S(n) may be deduced directly from
the mean number K(n).

A lower bound. The lower bound for the mean number of key comparisons is known to
be Θ(n log n) using the decision tree. We obtain a lower bound for the mean number of sym-
bol comparisons, asymptotic to 1

2 log 2
1

h(S)n log2 n. This shows that between comparison-
based algorithms using lexicographic comparison of the symbol strings,QuickSort is always
a quasi optimal sorting algorithm with respect to the number of symbol comparisons.
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Thesis plan

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6 Chapter 7

Figure 3: Plan of the thesis.

Chapter 1. In Chapter 1, we describe the strategy of the five studied algorithms;
QuickSort, QuickSelect, BubSort, InsSort and SelMin. We also describe the permu-
tation model that is used for the analysis of sorting and searching algorithms to get the
mean number of key comparisons performed by these algorithms. Here, in this thesis, we
are interested by a more precise cost, called πn(i, j), which is the mean number of “local”
comparisons between the key of rank i and the key of rank j.

Chapter 2. Here, before analyzing an algorithm which now deals with words, we need to
describe a model for the inputs, namely a model of source. We describe different models
for simple sources and also a general model, which associates with each word a parameter
of the unit interval. The correlation between emitted symbols can indeed be very low (in
memoryless source, symbols are all independently generated), rely on a finite history (in the
case of Markov chain sources, the emission of a symbol depends on the k previous symbols)
but also possibly depend on an unbounded history (like in dynamical sources). We model
the source with its fundamental probabilities which are the probabilities of emitting words



6 CONTENTS

given their prefixes. The notion of coincidence is central in our study, and it is described by
the “geometry” of the source, thanks to its fundamental triangles (defined in 2.19). Each
fundamental triangle is associated to a prefix of word. It delimits a domain so that words
of which the parameter belongs to this domain admit this prefix. The Dirichlet series of
the source, denoted by Λ(s), encapsulates many probabilistic properties of the source, and
plays an important role here, as in many other studies.

Chapter 3. The probabilistic properties of the source depend on the analytic properties
of its Dirichlet series Λ(s). In this chapter, we study more deeply these properties. We
distinguish two regions where we analyze the set of poles of Λ(s): on the vertical line
<s = 1 and on the left half plane. The analysis is first done for simple sources (memoryless
sources, Markov chains) and then extended to dynamical sources. We are in particular
interested in “tameness” regions where Λ(s) is meromorphic (with a good knowlege of its
poles) and of polynomial growth when s becomes large. This will be essential for applying
the Rice method (described in the next chapter). We recall conditions on fundamental
probabilities that entail the series Λ(s) to be tame, and relate the shape of the tameness
region to specific properties of probabilities.

Chapter 4. Chapter 4 describes the main tools that will be used in our analysis: the Poisson
model where the number of input items follows a Poisson law, and the Bernoulli model
where this number is fixed. We describe the main tool which will be used in our analysis,
the Rice method, which is related to the Mellin transform. Chapter 4 marks the end of
the first part of the thesis. The next part describes the general framework for the realistic
analysis and its application to sorting and searching algorithms.

Chapter 5. Chapter 5 draws a general framework for the realistic analysis of sorting and
searching algorithms. The analysis has two mains steps: the algebraic (or combinatorial)
step and the analytic (or asymptotic) step. The first step aims at computing the exact
mean number of symbol comparisons performed by the algorithm. We first work in the
Poisson model, and we return to the Bernoulli model. The second step aims at deriving an
asymptotic (and human readable) form of this exact formula, and we use the Rice method.
While describing the general framework, we show its application in the analysis of SelMin.

Chapter 6. Chapter 6 applies the general framework 5 to three sorting algorithms, namely
QuickSort, InsSort, BubSort. We discuss the robustness of the algorithm, i.e., the possible
change in the complexity behavior, due to the change in the complexity measure, from the
number of key comparisons to the number of symbol comparisons. In the second part
of the Chapter, we provide an alternative approach for the analysis of QuickSort and
InsSort. We use the point of view given by Seidel who relates the mean number of key
comparisons and the mean number of symbol comparisons via the structure of a trie. In
the case when the algorithm is strongly faithful (a property about the mean number of
“local” comparisons between two keys, which is satisfied by both algorithms QuickSort

and InsSort), the mean number S(n) may be deduced directly from the mean number
K(n). This alternative proof does not apply to BubSort since it is not strongly faithful.
The lower bound for the mean number of key comparisons of sorting algorithms is well-
known to be Θ(n log n) (using bounds on the size of a decision tree). We prove that the
lower bound for the mean number of symbol comparisons for sorting algorithms using
strings comparisons is 1

2 log 2h(S)n log2 n. This means that QuickSort is quasi-optimal in

the model of symbol comparisons (as in the model of key comparisons).

Chapter 7. We analyze QuickSelect and its variations QuickMin, QuickRand, QuickQuant
and QuickVal (a dual version of QuickSelect introduced in Chapter 7). The analysis of



CONTENTS 7

QuickSelect was already presented in the paper [12] but several proofs remained implicit
or have not been written yet. To get the asymptotics of the mean number of symbol
comparisons of QuickSelect, we have to follow a slightly more complicated path (compared
to previous sorting algorithms in Chapter 6 and the minimum selection that illustrates
Chapter 5). We prove that its asymptotics is similar to that of the dual algorithm QuickVal,
with the use of the Laplace method.

Relations with other works. This thesis was carried out in the greyc Laboratory. During
the same time, another PhD student in the greyc, Kanal Hun, prepared his thesis [42]
under the supervision of Brigitte Vallée, on the subject “Analysis of depth of digital trees
built on general sources”. In fact, even if the subjects of the two theses are different, they
share two main important objects: general sources and Poisson-Rice methodology. This is
why there exist Chapters in our theses which are very closely related: The present Chapter
2 shares many sections with Chapter 2 of Kanal’s thesis, and our Chapter 4 is almost the
same as Chapter 4 of Kanal’s thesis.
During the preparation of the thesis, Eda Cesaratto and Brigitte Vallée wrote the last
version of their paper [11] and we worked together for the precise proof of Proposition 4.9
which finally appeared in the paper [11], in the present thesis and also in Kanal’s thesis
[42].
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Sorting and searching algorithms.
Analyses in the key model.
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Sorting and searching algorithms.

Analyses in the key model.

In this chapter, we first describe the general principles in analysis of algorithms, and
give more details in the case of sorting and searching algorithms, where the input is a
sequence of keys, and the main parameter is the number of key comparisons. We focus on
the average-case analysis of two main parameters. We recall the classical results on the
total number of key-comparisons, but we also study a “new” parameter (much less studied)
which plays a central role in the present thesis: the number of “local” comparisons, namely
comparisons between the key of rank i and the key of rank j.

We then present, in the following sections, the five algorithms which will be the main
actors of the thesis: these are the popular algorithms QuickSort, QuickSelect, and its
variants QuickMin and QuickRand, together with Insertion Sort (denoted here as InsSort),
Bubble Sort (denoted here as BubSort and finally Minimum Selection (denoted as SelMin).
For each algorithm, we focus on the average-case analysis of our two main parameters in
the so-called permutation model. In particular, we perform a precise analysis of the new
parameter (the number of “local” comparisons), which also allows us to recover (often very
easily) the expression of the mean number of total comparisons.

1.1 Algorithms and analysis of algorithms.

1.1.1 A general introduction

An algorithm is a mapping A : Ω→ S. The set Ω is the set of inputs and the set S is the
set of outputs. An algorithm is often described as a sequence of elementary steps.

The set of inputs. The first task is to choose a model for the inputs, with a good notion
of size. The size, denoted by |·|, is a mapping |·| : Ω → N. The size measures the space
which is occupied by the input. This is not an exact measure. For an input ω, the size |ω|
is roughly the space which is needed to represent the input ω (or more rigorously is linearly
related to this space). For any n ∈ N, the set Ωn gathers the inputs of size n, namely

Ωn := {ω ∈ Ω; |ω| = n}.

Parameters of interest. The algorithm A is often a very complex sequence of opera-
tions, and its exact description is not easy. In fact, all the operations performed have not
the same importance, and one isolates the main operations performed to better analyze
them. Very often, one first defines what is the main basic operation of interest, and its cost,
and the (total) cost of interest is the sum of the costs of all the basic operations performed
by the algorithm. Such a cost c depends on the input ω, and is then a function c : Ω→ N
which associates to the input ω the cost c(ω) performed by the algorithm A on the input
ω.

Analysis of algorithms. This sub-domain of the algorithmics domain aims to analyze
the main parameters of an algorithmA, in order to determine the amount of resources (time
and storage) that are needed by the algorithm A. Analysis of algorithms provides a better
understanding of algorithms, improves the implementation, predicts the performance and
the efficiency of algorithms, allows to compare algorithms and classify them in difficulty.

For this purpose, it is natural to analyze the main parameters of an algorithm A, as a
function of the input size. When the set of inputs Ω is modelled, when the size |·| is chosen,
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and when the cost c of interest is isolated, we consider the restriction of c to the set Ωn of
the inputs of size n, and, in particular, the image

c(Ωn) := {c(ω);ω ∈ Ωn},

and we wish to describe its behaviour in an asymptotic way, when the size n tends to ∞.
We may be interested by the minimum of c(Ωn), or the maximum of c(Ωn). This gives rise
to the best-case C(n), or the worst-case Ĉ(n), namely,

C(n) = min{c(ω), ω ∈ Ωn}, Ĉ(n) = max{c(ω), ω ∈ Ωn}.

However, these two measures are very often rough measures, since they are not “typical”.
For some algorithms, the worst case (and the best case) happens frequently, and they are
in a sense “typical”, but, for many other algorithms, the worst-case (for instance) rarely
happens, and this is a too pessimistic measure of the cost c.

Probabilistic analysis of algorithms. This is why it is natural to deal with a proba-
bilistic measure. One first chooses a probabilistic distribution Pn on each subset Ωn. This
choice is not easy to do, since this distribution must be both realistic (with respect to the
usual application of the algorithm), and yet manageable (as a probabilistic tool). Then,
the algorithm A and the cost c, or more precisely their restrictions to the set Ωn, become
random variables on the set Ωn. The probabilistic analysis of the algorithm A studies these
random variables. As it is usual in probabilistic contexts, one begins by the expectation,

C(n) := En[c] =

∫
Ωn

c(ω)dPn(ω),

but we may be interested by other measures, as the variance of cn, or the limit distribution
of the variable cn. When we limit ourselves to the study of the mean of the cost cn, we
perform average-case analysis of the algorithm A. This is the general framework of this
thesis.

Even when we restrict ourselves to the average-case analysis, it is often not easy to
obtain an exact formula for the mean value of the cost. And, when it is the case, it may
not be clear whether this exact formula provides a precise knowledge of the behaviour of
the algorithm when n → ∞. This is the case of the studies of the thesis, where we often
obtain exact formulae which are not easy to read. This is why the final description is:

The average-case analysis of algorithms aims to provide asymptotic estimates
for the mean values of the main parameters of interest, when the input size n
becomes large.

This explains why we will deal with the classical notions widely used in asymptotic studies
as O, o, Θ and Ω, which are recalled in the annex.

1.1.2 Sorting and searching algorithms: the input key model.

The initial model. Consider any (totally) ordered set O, and the Cartesian product
On.

A selection algorithm A is a family of mappings An, where the mapping An : On → On
computes, from a sequence (V1, V2, . . . , Vn), the ordered sequence (U1, U2, . . . , Un) (in the
increasing order) built from the initial sequence. If the initial sequence is formed with
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distinct elements, there exists a (unique) permutation σ ∈ Sn for which Vi = Uσ(i), and
the task of the sorting algorithm is to build this (unknown) permutation. This permutation
is called the underlying permutation.

A searching algorithm is a family of mappings An, where the mapping An : On ×
[1 . . n] → On outputs, on the input formed with a sequence (V1, V2, . . . , Vn) and an index
m ∈ [1 . . n], the element Vi whose rank equals m: This means that Vi = Um, and the
searching algorithm outputs in fact the index i on which the underlying permutation σ
satisfies σ(i) = m. When m = 1, the algorithm outputs the minimum; when m = n, the
algorithm outputs the maximum; when m = bn/2c, the algorithm computes the median.

In classical algorithmic studies, what is the ordered set O? In fact, this is not really
defined; it is just said: “this is a set of keys”. And the usual definition of a key is

A key is a data fragment whose internal structure is not taken into account.

Since the internal structure of a key is not specified, it is natural to give it a unit size.
Then any input of On is given the size n.

In this context, there are two natural operations on the set On —comparisons and
exchanges—, and we assume that the algorithm A (either a sorting or a searching algo-
rithm) uses only these two basic operations.

The permutation model. In fact, for sorting and searching algorithms, as defined
above, the set O has no clear meaning and no influence on the behaviour of the algorithm,
that only depends on the underlying permutation, as we now explain:

Consider, for some fixed n, two inputs of On, namely two sequences (V1, V2, . . . , Vn) and
(V ′1 , V

′
2 , . . . , V

′
n). Denote by (U1, U2, . . . Un) and (U ′1, U

′
2, . . . , U

′
n) the two ordered sequences,

and consider the two underlying permutations σ, σ′ ∈ Sn for which, for any i ∈ [1 . . n], one
has Vi = Uσ(i) and V ′i = U ′σ′(i). Assume that the equality σ = σ′ holds. Then the algorithm

A performs exactly the same way on the two inputs (V1, V2, . . . , Vn) and (V ′1 , V
′

2 , . . . , V
′
n).

This is why it is natural to define an equivalence relation ∼n on On,

(V1, V2, . . . , Vn) ∼n (V ′1 , V
′

2 , . . . , V
′
n) ⇐⇒ the underlying permutations σ and σ′ are equal.

Now, each equivalence class is represented by a permutation σ ∈ Sn, and the quotient
On/ ∼n is in bijection with the set Sn of permutations. Then, the set On can be replaced
by the set Sn of permutations over [1 . . n], endowed with the uniform probability. This is
the permutation model, where the notion of key is completely forgotten.

Here, we use an intermediate model, which will be easier to modify in the next steps
of our study. We consider as possible inputs of size n the pairs (U , σ) formed with a fixed
ordered sequence of keys U = {U1 < U2 < · · · < Un} together with a variable permutation
σ ∈ Sn. The set of inputs of size n is then equal to {U} × Sn. It is in bijection with
Sn and it is endowed with the uniform probability: this means that all the sequences
V = (V1, V2, . . . , Vn) obtained by the action of a permutation σ on U via the equalities
Vi = Uσ(i) are then equiprobable. Note that, on all these input sequences, the sorting
algorithm always outputs the sequence U . Note that later on along the study, the sequence
U will become a variable sequence of words.

1.1.3 Sorting and searching algorithms: the costs of interest.

Very often, and this is the case in this thesis, we focus on the comparison operation: this
will be the basic operation of the algorithm, with a unit cost. More precisely, for each
algorithm (either a sorting or searching algorithm), we consider two types of comparisons.
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Total number of comparisons. The usual cost of interest is the total number of com-
parisons performed by the algorithm A on the input (U , σ). The mean number of com-
parisons is the expectation of this random variable when Sn is endowed with the uniform
probability. It is denoted by K(n).

Number of “local” comparisons, between keys Ui and Uj. The previous cost is
a “global” cost, and it proves useful to consider also “local” costs, which provide a more
precise knowledge about the behaviour of the algorithm. Namely, for any pair (i, j) with
1 ≤ i < j ≤ n, we consider the number of comparisons performed by the algorithm A
between the pair (Ui, Uj) of keys, namely the key Ui of rank i and the key Uj of rank j,
and we denote its mean by πn(i, j).

There are two possible types of comparisons between two keys Ui and Uj :

– the positive comparisons which occur when Ui and Uj arrive in the good order: this
is the case, when, in the initial sequence, and for i < j, the key Ui arrives before the
key Uj .

– the negative comparisons which occur when Ui and Uj (for i < j) arrive in the wrong
order, namely Ui arrives after Uj .

The mean number of positive and negative comparisons between two keys Ui and Uj is
denoted respectively by π+

n (i, j) and π−n (i, j). The mean number of key comparisons is
πn(i, j) = π+

n (i, j) + π−n (i, j). And the equality

K(n) =
∑

1≤i<j≤n
πn(i, j)

is often an easy tool for recovering the classical formula for K(n).

1.1.4 Important parameters of permutations.

We repeat that we study random variables defined on the set Sn. We recall three important
variables: arrival times, inversions and left-to-right minimum.

Arrival times. When the ordered sequence U is given under the permutation σ, the
input is the sequence (V1, V2, . . . , Vn), with Vi = Uσ(i). It is also denoted by the pair (U , σ).
It is often more intuitive to deal with the arrival times. The arrival time of Ui, denoted
by τ(i) is the position j of Ui in the input array. We will also use the convenient notation
U[i,j] wich gathers all keys whose ranks are in [i, j].

Example. Consider the ordered sequence with three elements U = (−2.02,
√

2 ≈ 1.44, 100)
and V = (100,−2.02,

√
2). The permutation σ = (312) acts on the ordered set U and yields

the sequence V. The arrival times are given by τ = (231).

Of course, since the sequence U is fixed, there is a simple relation between the two
points of view: the equality τ(i) = j means Vj = Ui and also σ(j) = i; thus, there is a
bijection between the vector τ of arrival times and the underlying permutation σ, and τ is
associated to the inverse permutation σ−1 of σ. Then, for a fixed index i, the arrival time
τ(i) is a mapping [1 . . n] → [1 . . n] which defines a uniform random variable, and, for two
distinct indices i, j, the two random variables τ(i) and τ(j) are independent. Then one
has

Pr n[τ(i) = k] =
1

n
, Pr n[τ(i) = k and τ(j) = `] =

1

n2
.
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The mean numbers π±n (i, j) defined in the previous subsection are often computed in a
separate way, with direct probabilistic arguments dealing with the arrival times. We will
see that the event “Ui and Uj are compared” is generally “similar” to an event of the type
“The arrival times of the keys Ui and Uj into a given subset W of keys are the first two
(resp. the last two)”. For a subset W of cardinal `, the probability of such an event is

1
`(`−1) . Moreover, the subset W is often a subset U[x,y] which gathers all the keys of the

set U whose rank belongs to the interval [x, y], with three main cases, according to the
algorithms: [x, y] = [1, i], [x, y] = [1, j], or [x, y] = [i, j], which entails that ` belongs to
{i, j, j − i+ 1}. This explains why the expectations π±n (i, j) are usually expressed as sums
of rational functions depending on i, j or j − i.

Inversions. An inversion of a permutation σ is a pair of indices (i, j) with 1 ≤ i < j ≤ n
for which σ(i) > σ(j) (the images are in the reverse order). Using the Iverson bracket J·K
(see [36]), we define,

I(i,j)(σ) := Jσ(i) > σ(j)K , for a pair (i, j) with i < j, I(σ) :=
∑

1≤i<j≤n
I(i,j)(σ).

Then, when Sn is endowed with the uniform probability, the equalities hold

Pn[I(i,j) = 1] =
1

2
En[I] =

∑
1≤i<j≤n

1

2
=

1

4
n(n− 1).

Left to right minima. A left-to-right minimum is an index j for which all index k < j
the inequality σ(k) > σ(j) holds. With the point of view of arrival times, a left to right
minimum is an element Uj which arrives before all the keys of U[1,j[. This is the first-in
key of the subset U[1,j]. The probability that Uj be a left-to-right minimum is equal to 1/j.
The mean number of left-to-right minima equals the harmonic number

Hn = 1 +
1

2
+ · · ·+ 1

n
. (1.1)

We will see that the harmonic number plays a central role in our average-case analyses.

1.1.5 A lower bound for sorting in the key model

We assume again that all the elements to be sorted are distinct. Then tests of the form
“Vi = Vj” are useless, as we can assume that no tests of this form are made. Then the
algorithm only performs the tests denoted “Vi : Vj” which have only two possible outputs
Vi > Vj or Vj > Vi.

We associate with a sorting algorithm A its decision tree. This is a binary tree which
represents the comparisons performed by this algorithm when it operates on an input of
a given size n. Flow of control, data movement, and all other aspects of the algorithm
are ignored. Each internal node, labelled by i : j, with 1 ≤ i < j ≤ n represents a
comparison between the two keys Vi and Vj that are at positions i and j at the beginning
of the algorithm. Any decision node has (at most) two subtrees: the left subtree dictates
subsequent comparisons when the inequality Vi < Vj holds and the right subtree dictates
subsequent comparisons when the inequality Vi > Vj holds. For a clever algorithm, each
internal node has exactly two subtrees, but there are algorithms for which some internal
nodes have only one subtree. Each leaf is labelled by the permutation τ of the arrival
times, represented by the sequence (τ(1), τ(2), . . . , τ(n)). The execution of the algorithm
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A on an input with distinct elements corresponds to tracing a path from the root to one
leaf, and the path is completely determined by the permutation τ of arrival times, which
is the inverse of the permutation σ which underlies the input.

For instance, Figure 1.1 represents the decision tree of Insertion Sort when operating
on three elements. The bold path represents the execution of the algorithm on the input
(V1, V2, V3) when it satisfies V3 < V1 < V2. This means that V3 = U1, V1 = U2, V2 = U3:
The arrival times are τ(U1) = 3, τ(U2) = 1, τ(U3) = 2, and the underlying permutation is
σ = τ−1 and satisfies σ(1) = 2, σ(2) = 3, σ(3) = 1.

There is an (easy and) important result:

Lemma 1.1. A decision tree for a sorting algorithm A when it operates on n keys has
exactly n! leaves, each of them labelling a distinct underlying permutation.

Proof. On each input (U , σ), the execution of the algorithm takes a path which finishes at
the leaf labelled by τ . It is not possible to have two distinct leaves which labels the same
permutation: this would contradicts the fact that we deal with deterministic algorithms.

Figure 1.1: Decision tree of the Insertion Sort Algorithm when operating on three elements

The length of the longest path from the root to any of its leaves represents the worst-
case number of comparisons that the corresponding sorting algorithm performs. Hence,
the worst-case number of comparisons for a comparison sort equals the height H of its
decision tree. In the same vein, the average-case number of comparisons for a comparison
sort equals the mean length of a branch (called the depth D) of its decision tree (at least
in the uniform model of permutations).

For a binary tree, the height H, the depth D, and the number of leaves k satisfy the
following inequalities

k ≤ 2D ≤ 2H .

Since a decision tree in size n has exactly n! leaves, this shows the two inequalities

H ≥ D ≥ log2(n!).

The Stirling formula n! ∼ nne−n
√

2πn proves the estimate log2 n! = Ω(n log n). We have
obtained a lower bound for the number of comparisons in the worst-case, and in the average-
case.

Proposition 1.2. Any sorting algorithm which only performs comparisons and exchanges
performs at least a number of comparisons which is in the worst-case and in the average
case Ω(n log n). ([17])
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1.1.6 The main algorithms under study.

In the thesis, we mainly study five algorithms: three sorting algorithms —QuickSort,
Insertion Sort and Bubble Sort—and two selection algorithms —QuickSelect and Selection
Minimum. The description of these algorithms can be found in the textbooks [49, 1, 17, 9].
Here, in this first chapter, we describe these algorithms, and recall the well-known results
about their average-case complexity, denoted as K(n), when the cost is the total number of
key-comparisons. But, as we already mentioned it in Section 1.1.3, we are also interested
(for reasons which will appear more precisely at the end of this chapter) in another cost,
the number of comparisons between the key of rang i and the key of rank j, and by its
mean, denoted by πn(i, j). This type of average-case complexity is not classically studied
and the expressions of πn(i, j) for each of the five algorithms of interest appear to be new.
They are summarized at the end of this chapter in the table of Figure 1.12.

1.2 The QuickSort algorithm.

1.2.1 Description

The algorithm was introduced in 1962 by C.A.R Hoare in his original papers [38, 39, 41]
and be improved by several authors as Knuth [50], van Emden [73], Sedgewick [59]. It has
been cited [22] as one of the ten algorithms “with the greatest influence on the development
and practice of science and the engineering in the 20th century” . This algorithm is based
on the “Divide and Conquer” principle. All the keys are compared to the first key of the
array that is used as a “pivot”. During the Partition stage, each key is compared to
the pivot, and the keys that are smaller than the pivot are placed on its left in the array,
whereas the keys that are greater are placed on its right. After this partitioning process,
the pivot is at the right place, and we know its rank. Then, the algorithm recursively
sorts the two sub-arrays, the left subarray and the right subarray. In particular, for the
problem of equal keys in the array, one can use the tenary parition [60][74][6]. The problem
of how implementing this algorithm in an effective way is presented in [61]. The multikey
QuickSort is another variant of the regular QuickSort algorithm [7].

They are various possibilities for implementing the Partition process. It is first impor-
tant to remark that all the partition processes share the common following features: each
element of the array V [left . . right] with i 6= left is compared to the pivot V [left] (and thus
the number of comparisons is always greater or equal to n−1). At the end of the procedure,
the pivot is at the right place, the keys that are smaller than the pivot are placed on its
left, and keys that are greater than the pivot are placed on its right. However, the number
of exchanges, and the final positions of the elements inside the two sub-arrays, the left one
and the right, may depend on the precise implementation of the Partition procedure.

We now describe the implementation described in Figure 1.2, see also [64]. We choose
the first element of the array V [left . . right] as the pivot, and the variable v holds the value
of the pivot V [left]. We use two scan pointers i and j, the left pointer i scans from the
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left, and the right pointer j scans from the right. Each time we find a pair (i, j) such that
V [i] ≥ v and V [j] ≤ v, we exchange V [i] and V [j]. When the pointers cross each other, an
extra exchange of V [i] and V [j] is done with j < i just after the pointers cross (but before
the crossing is detected) and the outer repeat loop exited. The last three assignments
implement the exchange between V [i] and V [j] (to undo the extra exchange), and between
V [i] and V [left] to put the pivot into position.

Procedure Partition(V, left, right)

/* Partition (V, left, right) rearranges the sub-array V [left . . right] according to

its first element V [left], called the pivot, and returns the position of

the pivot after partitioning */

v ← V [left] ;
i← left;
j ← right;
repeat

repeat i← i+ 1 until V [i] ≥ v;
repeat j ← j − 1 until V [j] ≤ v;
t← V [i]; V [i]← V [j]; V [j]← t;

until j ≤ i;
t← V [i]; V [i]← V [left]; V [left]← t;

Figure 1.2: Partition Algorithm

Procedure Quicksort(V, left, right)

/* Sorts the sub-array V [left . . right]. */

/* Recursive function to be called for an array V [1 . . n]: Quicksort (V, 1, n)
*/

if left < right then
k ← Partition(V, left, right)
Quicksort (V , left, k − 1)
Quicksort (V , k + 1, right)

end

Figure 1.3: QuickSort Algorithm

1.2.2 Mean number of key-comparisons.

The method for analyzing QuickSort is typical in the analysis of a broad class of recursive
algorithms, or recursive data structures which are central in algorithmics.

Lemma 1.3. The mean number of key comparisons performed by QuickSort on a random
input of size n involves the harmonic number Hn under the form

K(n) = 2(n+ 1)Hn − 4n ∼ 2n log n, with Hn =
n∑
i=1

1

i
.

The maximum number of key comparisons satisfies

K̂(n) =
n(n− 1)

2
∼ n2

2
.

Proof. We consider the two cases (worst-case, then average case).
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Worst case. We denote by K̂(n) the maximal number of keys comparisons. By conven-
tion, one has K̂(0) = K̂(1) = 0. For n ≥ 2, the worst-case arises when the keys are already
sorted in increasing order. In this case, the first key (chosen as the pivot) is the minimum,
and, after the first partition stage which performs n− 1 comparisons, the left sub-array is
empty whereas the right sub-array contains the other n− 1 keys, which are also sorted in
increasing order. Then, the following recurrence holds on the sequence K̂(n),

K̂(n) = K̂(n− 1) + n− 1, and then K̂(n) = 1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2
.

Average case. The probability that the pivot has the rank i + 1 equals 1/n for any
i ∈ [0 . . n−1]. In the case where the pivot has rank i+ 1, the left sub-array has i elements,
and the right sub-array has n − i − 1 elements. Moreover, if the initial array is random,
it is the same for the two sub-arrays. Dealing with conditional expectations, we obtain a
recurrence on the sequence K(n):

K(n) = n− 1 +
1

n

n−1∑
i=0

(K(i) +K(n− i− 1)) = (n− 1) +
2

n

n−1∑
i=0

K(i).

This recurrence depends on the whole previous history, since each K(n) is defined in terms
of all the previous terms K(i) for i < n. To solve this recurrence, we begin with the two
relations (obtained by multiplying by n and shifting)

nK(n) = n(n− 1) + 2
n−1∑
i=0

K(i), (n− 1)K(n− 1) = (n− 1)(n− 2) + 2
n−2∑
i=0

K(i).

With a subtraction,

nK(n)−(n−1)K(n−1) = 2K(n−1)+2(n−1), and then nK(n) = (n+1)K(n−1)+2(n−1).

We now define a new sequence as t(n) := K(n)/(n+ 1), which satisfies

t(n) = t(n− 1) +
2(n− 1)

n(n+ 1)
= t(n− 1)− 2

n
+

4

n+ 1
.

Finally,

t(n) = 2Hn +
4

n+ 1
− 4, and thus K(n) = 2(n+ 1)Hn − 4n.

As the harmonic number Hn satisfies Hn ∼ log n, the asymptotic behavior of K(n) is

K(n) ∼ 2n log n or K(n) ∼ 2n log n ∼ 1.39n log2 n.

Alternative proof using generating functions. We can use the generating function
G(z) of the sequence K(n) to obtain the exact expression of K(n). Beginning with the
expression of G(z) and the recurrence on the sequence Kn

G(z) :=
∑
n≥0

K(n)zn, nK(n) = n(n− 1) + 2
n−1∑
i=0

K(i), K(0) = K(1) = 0,

we obtain ∑
n≥1

nK(n)zn =
∑
n≥1

n(n− 1)zn + 2
∑
n≥1

n−1∑
i=0

K(i)zn.
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The left-side term is zG′(z), and the two generating functions terms on the right side are

2z2

(1− z)3
, and 2

zG(z)

1− z
.

Then the generating function G(z) satisfies a linear differential equation of the form

G′(z) =
2z

(1− z)3
+

2G(z)

1− z
, whose homogeneous version is G′(z) =

2G(z)

1− z
.

The homogeneous equation admits the solution G1(z) = 1/(1 − z)2. We now look for a
particular solution of the complete equation under the form G1(z)G0(z). The function
G0(z) satisfies

G′0(z) =
2z

1− z
, so that G0(z) = −2 log(1−z)−2z, and G(z) =

−2 log(1− z)− 2z

(1− z)2
.

The following expansions,

1

(1− z)2
=
∞∑
n=0

(n+ 1)zn, log
1

1− z
=
∞∑
n=1

zn

n

lead to the expressions

1

(1− z)2
log

1

1− z
=

∞∑
n=1

[
n∑
k=1

n+ 1− k
k

]
zn =

∞∑
n=1

n∑
k=1

[
n+ 1

k
− 1

]
zn,

[zn]
−1

(1− z)2
log(1− z) = (n+ 1)Hn − n and [zn]

z

(1− z)2
= n.

Finally, the coefficient K(n) of the generating function G(z) satisfies

K(n) = [zn]

(
−2

(1− z)2
log(1− z)− 2z

(1− z)2

)
= 2(n+ 1)Hn − 4n.

This is the same result as above!

The generating function together with the symbolic method A.1.2 are also used to
study the probability distribution of several characteristic parameters (average value, higher
moments of the distribution of the cost function, both exactly and asymptotically) on
various forms of QuickSort such as the “median of k” or “cutting small list” [37].

1.2.3 Mean number of local comparaisons.

Lemma 1.4. The mean number of key-comparisons performed by QuickSort algorithm
between the key of rank i and the key of rank j (1 ≤ i < j ≤ n) is

πn(i, j) =
2

j − i+ 1
.

Proof. While the pivot does not belong to the subset U[i,j], this set is not separated by the
pivot, and the keys Ui and Uj are not compared. When the pivot belongs to the subset
U[i,j], the keys Ui and Uj may be compared only if Ui or Uj is a pivot. This event coincides
with the event “Ui or Uj is the first key-in inside the subset U[i,j]”. After such a comparison,
the keys are separated and no longer compared. In the permutation model, the probability
of the event “Ui or Uj is the first key-in inside the subset U[i,j]” equals 2/(j− i+ 1), which
leads to the result.
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It is now easy to recover the expression of the mean number K(n) of comparisons
between all the keys. it is expressed with the sum of harmonic numbers Hi under the form

K(n) =
∑

1≤i<j≤n

2

j − i+ 1
= 2

n∑
j=1

j−1∑
i=1

1

j − i+ 1
= 2

n∑
j=1

j∑
k=2

1

k
= 2

n∑
j=1

(Hj − 1).

The equality

n∑
i=1

Hi = n+
n− 1

2
+ · · ·+ n− (j − 1)

j
+ · · ·+ 1

n
= (n+ 1)Hn − n

then leads to the expression of K(n).

1.3 The QuickSelect algorithm and its variants

1.3.1 Description

On an array formed with n (distinct) keys, the algorithm QuickSelect(m,n) returns the
key of rank m. The QuickSelect algorithm is often called Hoare’s Find algorithm [40].
As the QuickSort algorithm, it is based on the “Divide and Conquer” principle. It also
uses the first key of the array as a pivot and performs the Partition operation. However,
unlike QuickSort, after each Partition stage, the algorithm QuickSelect continues only
on one of the two sub-arrays, the subarray which contains the key of rank m. An extension
of the basic algorithm is the median-of-three Selection due to Singleton [66] in which the
pivot key is chosen as the median of the first, middle and the last keys of the set. Anderson
and Brown also analyze the combinatorial aspects of the algorithm in [2].

The algorithm QuickSelect(m,n) has many variants, depending on the value of the rank
m.

(i) The algorithms QuickMin and QuickMax are particular cases of QuickSelect(m,n)
when m = 1 and m = n respectively. The algorithm QuickMin returns the minimum
key of the array, whereas the algorithm QuickMax returns the maximum key.

(ii) The algorithm QuickQuantα returns the α-quantile, namely the key of rank b1 +
α(n−1)c. With this definition, the algorithm QuickQuant0 corresponds to QuickMin

and the algorithm QuickQuant1 corresponds to QuickMax.

(iii) The algorithm QuickMed returns the median key (m = bn+1
2 c) of the array.

(iv) The algorithm QuickRand outputs a key whose rank is uniformly chosen in the interval
[1 . . n].

1.3.2 Mean number of key comparisons.

The κ function, defined from the entropy function h, as

κ(α) = 2[1 + h(α)], with h(α) = α |logα|+ (1− α) |log(1− α)| (1.2)

plays an important role in this work, notably in the analysis of QuickQuantα. Its graph
is represented in Figure 1.5. The mean number K(m,n) of key comparisons performed
by QuickSelect(m,n), together with its variants is given in the following lemma. Its
asymptotic estimate is presented in the column 4 of Table 1.6. The proof for the expression
of K(m,n) of QuickSelect was obtained by Knuth in [48].
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Function QuickSelect(m, left, right)

/* Returns the key ranked m of the array V [left . . right] */

if left < right then
k ← Partition(V, left, right) /* Partition was defined in Quicksort */

if k = m then return V [k];
if k > m then QuickSelect(m, left, k − 1)
if k < m then QuickSelect(m− k, n− k, right)

end

Function QuickMin(n)

/* Returns the minimum of the array V [1 . . n] */

k ← Partition(V, 1,n) /* Partition was defined in Quicksort */

if k = 1 then return V [1] else return QuickMin(k − 1)

Figure 1.4: QuickSelect and QuickMin Algorithms. (N.B.: for clarity’s sake, we denote
by QuickSelect(m,n) a call to the procedure QuickSelect(m, 1, n) described here.)

Lemma 1.5. The mean number of key comparisons performed by QuickSelect(m,n) sat-
isfies the following:

(a) For the case of a general rank m, it involves the harmonic number Hk under the form

K(m,n) = 2 [(n+ 1)Hn − (n+ 3−m)Hn+1−m − (m+ 2)Hm + n+ 3] , (1.3)

In the case of QuickMin and QuickMax, one has respectively K(1, n) = K(n, n) =
2n− 2Hn.

(b) For the QuickQuantα algorithm, the mean number Kα(n) involves the κ function
defined in 1.2, under the form Kα(n) ∼ κ(α)n. In particular,

(b1) In the case of QuickMed, K1/2(n) ∼ 2(1 + log 2)n.

(b2) In the case of QuickRand(n), K(n) ∼ 3n.

Figure 1.5: The functions h and κ

Proof. We first consider the particular cases m = 1 or m = n, and prove the second
assertion of Part (a) of the Lemma. The case m = 1 corresponds to QuickMin algorithm.
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Variants of

QuickSelect(m,n)
Output Value of m

Asymptotic estimate

of K(m,n)

QuickQuantα α-quantile m = b1 + α(n− 1)c κ(α)n

QuickMed median m = bn+1
2 c 2(1 + log 2)n

QuickMin minimum m = 1 2n

QuickMax maximum m = n 2n

QuickRand random m ∈ [1 . . n]R 3n

Figure 1.6: The asymptotic estimates for the mean number of key comparisons .

In this case, the number of key comparisons for the first partition is n−1, and the recurrence
is, for indices n and n− 1,

K(1, n) = n− 1 +
1

n

n∑
i=2

K(1, i− 1), K(1, n− 1) = n− 2 +
1

n− 1

n−1∑
i=2

K(1, i− 1).

Then the difference nK(1, n)− (n− 1)K(1, n− 1) is written as

nK(1, n)− (n− 1)K(1, n− 1) = n(n− 1)− (n− 1)(n− 2) +K(1, n− 1),

and leads to the recurrence relation

K(1, n) = K(1, n− 1) + 2− 2

n
.

The solution is then K(1, n) = 2n − 2Hn, and, by symmetry, the equality K(n, n) =
2n− 2Hn also holds. This proves the second assertion of Part (a) of the lemma.

For a general rank m, and in the case when the pivot has rank i, there are always two
cases, according to the relative positions of the rank i of the pivot and the rank m of the
key of interest. As previously, in the case of QuickSort, using conditional probabilities
leads to the recurrence

K(m,n) = n− 1 +
1

n
(A(m,n) +B(m,n)) .

which two involves auxilliary sequences

A(m,n) =

m−1∑
i=1

K(m− i, n− i) and B(m,n) =

n∑
i=m+1

K(m, i− 1).

These sequences satisfy the relations

A(m+ 1, n+ 1)−A(m,n) = K(m,n), B(m,n+ 1)−B(m,n) = K(m,n), (1.4)

which allow us to eliminate the sequences A and B getting a “pure” recurrence for the
sequence K(m,n). We indeed remark the equality

(n+ 1)K(m+ 1, n+ 1)−nK(m+ 1, n)− nK(m,n) + (n− 1)K(m,n− 1)

= [(n− 1)n− 2n(n− 1) + (n− 1)(n− 2)]

+ [A(m+ 1, n+ 1)−A(m+ 1, n)−A(m,n) +A(m,n− 1)]

+ [B(m+ 1, n+ 1)−B(m+ 1, n)−B(m,n) +B(m,n− 1)]

= 2 +K(m+ 1, n+ 1)−K(m+ 1, n)−K(m,n) +K(m,n− 1).
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(We used (1.4) to obtain the last equality.) We finally obtain a recurrence which only
involves the sequence K(m,n), namely

K(m+ 1, n+ 1)−K(m+ 1, n)−K(m,n) +K(m,n− 1)

= [K(m+ 1, n+ 1)−K(m,n)]− [K(m+ 1, n)−K(m,n− 1)] =
2

n+ 1
.

The sequence K(m+ 1, n+ 1)−K(m,n) satisfies the relation

K(m+ 1, n+ 1)−K(m,n) =
2

n+ 1
+

2

n
+ · · ·+ 2

m+ 2
+K(m+ 1,m+ 1)−K(m,m)

= 2(Hn+1 −Hm+1) +K(m+ 1,m+ 1)−K(m,m).

Iterating the relation, we obtain the general term K(m,n) as a function of the particular
sequences relative to m = n or m = 1, namely

K(m,n) = 2

m∑
k=2

(Hn−m+k −Hk) +K(1, n+ 1−m) +K(m,m). (1.5)

Using the solution to these particular cases leads to the final solution

K(m,n) = 2 [(n+ 1)Hn − (n+ 3−m)Hn+1−m − (m+ 2)Hm + n+ 3] ,

valid for 1 ≤ m ≤ n. That proves Assertion (a) of the lemma.
We are interested in the asymptotic behaviour of the mean number Kα(n) of com-

parisons of the QuickQuantα algorithm for n → ∞. In this case, the index m equals
m = bα(n − 1) + 1c = αn + o(n). Applying Equation (1.3) and using the asymptotic
behaviour of the harmonic number, namely Hn = log n+γ+o(1), we can neglect the terms
of order o(n) in

K(m,n) = 2 [(n+ 1)Hn − (n+ 3−m)Hn+1−m − (m+ 2)Hm + n+ 3] ,

and write

K(m,n) ∼ 2 [n(log n+ γ)− (1− α)n (log ((1− α)n) + γ)− αn (log(αn) + γ) + n]

∼ 2 [n log n+ γn− ((1− α)n log n+ (1− α)n log(1− α) + γ(1− α)n)]

+ 2 [−αn log n− α logαn− αγn+ n]

∼ 2 [γn− (1− α)n log(1− α) + γ(1− α)n− αn logα− αγn+ n]

∼ 2n [(1− α) |log(1− α)|+ α |logα|+ 1] .

With the entropy function h(α) = (1− α) |log(1− α)|+ α |logα| and the expression of the
κ function as a function of the entropy, as κ(α) = 2[1 + h(α)], the mean number of key
comparisons of QuickQuantα has the asymptotic form:

K(m,n) = κ(α)n.

Case of QuickRand. The QuickRand algorithm is the algorithm QuickSelect(m,n)
where the rank m is chosen randomly in [1 . . n]. The asymptotic behaviour of the algorithm
QuickRand can be obtained from the asymptotic behaviour of the algorithm QuickQuant(α)
when α is uniformly chosen in the interval [0, 1]. Then, the mean number K(n) of com-
parisons performed by QuickRand satisfies

K(n) ∼ n
∫ 1

α=0
κ(α)dα.
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With the expression of κ given in (1.2) and the computation of the integral (by parts)∫ 1

0
x log xdx =

[
x2

2
log x

]1

0

− 1

2

∫ 1

0
xdx = −1

4
,

the previous integral equals 2(1 + 1/4 + 1/4) = 3. The mean number of key comparisons
of QuickRand is then asymptotic to 3n.

1.3.3 Mean number of local key-comparisons.

Lemma 1.6. The mean number π
(m)
n (i, j) of comparisons performed by the

QuickSelect(m,n) algorithm between the keys of rank i and j (with 1 ≤ i < j ≤ n)
is

π(m)
n (i, j) =

2

max(m, j)−min(m, i) + 1
.

Proof. For the QuickMin algorithm, as for the QuickSort algorithm, the keys Ui and Uj
are compared only if Ui or Uj is a pivot. This event coincides with the event “Ui or Uj is
the first key-in inside the subset U[1,j]” of probability 2/j. Hence, the mean number of key
comparisons πn(1, i, j) or πn(n, i, j) equals 2/j.

For the QuickSelect(m,n) algorithm, we will prove the following fact: Two keys Ui
and Uj (with i < j) are compared if and only if one of them is chosen as the first pivot
among keys in the set

X := {U` ∈ U , ` ∈ [min(i,m),max(j,m)]}.

The set X is not modified until one of its elements U` is chosen as pivot. We assume that
the chosen pivot U` is neither Ui nor Uj and we will prove that there is no comparison
between Ui and Uj at this step and at the subsequent steps. There are three main cases,
depending on the positions of m and ` with respect to the interval [i . . j].

First case m ∈ [i . . j] and ` ∈]i . . j[. In this case, the interval [min(i,m) . .max(j,m)]
coincides with the interval [i . . j]. Due to the strategy of the algorithm, all the keys in Y
are compared to U` so that the array Y is divided into two subarrays by U`, and Ui belong
to the left subarray, whereas Uj belongs to the right subarray. There is no comparison
between Ui and Uj at this step and at the subsequent steps.

Second case m < i and ` ∈]m, i[. In this case, the interval [min(i,m) . .max(j,m)]
coincides with the interval [m. . j]. If ` ∈]m. . i[, the array Y is divided into two subarrays
by U`. One contains Um that is less than U`. The other one contains Ui and Uj that are
both larger than U`. Due to the strategy of the the algorithm which searches the key Um,
only the first subarray containing Um is considered in the subsequent steps. Then, there is
no comparison between Ui and Uj at this step and at the subsequent steps.

Third case m > j and ` ∈]j . .m[. In this case, the interval [min(i,m) . .max(j,m)]
coincides with the interval [i . .m]. If ` ∈]j . .m[, Y is subdivided into two subarrays by U`,
one contains Um and the other one contains Ui and Uj that are both less than U`. As the
algorithm searches the key Um, only the first subarray is considered in the next step. Then,
there is no comparison between Ui and Uj at this step and at the subsequent steps.

The mean number of key comparisons in QuickMin is first easily recovered. One has

K(n) = 2
n∑
j=1

j−1∑
i=1

1

j
= 2

n∑
j=1

1

j
(j − 1) = 2n−Hn.
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For the general QuickSelect(m,n) algorithm, we split the set of pairs (i, j) into three
subsets, with respect to the point (m,m), namely j ≤ m, i < m < j, i ≥ m

K(m,n) = 2
∑

1≤i<j≤n

1

max(m, j)−min(m, i) + 1

=
∑

1≤i<j≤m

1

m− i+ 1
+
∑

i<m<j

1

j − i+ 1
+

∑
m≤i<j≤n

1

j −m+ 1
.

The first sum is the cost of QuickMax for a size m, previously denoted by K(m,m), whereas
the third sum is the cost of QuickMin for a size n + 1 −m, denoted as K(1, n + 1 −m).
The middle sum is

m−1∑
i=1

n∑
j=m+1

2

j − i+ 1
= 2

m∑
i=2

(Hn−m+i −Hi),

and we exactly recover the expression of K(m,n) already obtained in (1.5). The compu-
tation is ended as above.

1.4 The InsertionSort algorithm.

1.4.1 Description

The Insertion Sort algorithm (InsSort in shorthand notation) is very natural. The algo-
rithm uses the way people sort a hand of playing cards. One starts with an empty hand
and the cards face down on the table. Then the cards are removed one by one from the
table, and each removed card is inserted in a correct position inside the cards that are
already on the hand. The insertion is done by comparing the new card from right to left
with the cards already on the hand.

Figure 1.7: Sorting a hand of card using insertion sort. Figure from the source [17].

There are a sequence of n − 1 phases, indiced from i = 2 to i = n. At the i-th phase,
there are two parts in the current array: the left subarray W [1 . . i − 1] contains the keys
of the initial subarray V [1 . . i − 1] in the good order, whereas the right subarray is not
yet modified and coincides with the initial subarray V [i . . n]. During the i–th phase, the
InsSort algorithm inserts the key Vi into the left sub-array W [1 . . i− 1]. As this subarray
is already sorted, the right place for Vi is found by comparing Vi with the elements of the
subarray W [1 . . i− 1] from right to left.
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Procedure InsSort(V, n)

/* Sorts the array V [1 . . n] */

for i from 2 to n do
for j from i downto 2 do

if V [j − 1] ≥ V [j] then
swap(V [j], V [j − 1])

end
else Break /* exit the inner loop */

end

end

Figure 1.8: InsSort Algorithm.

Figure 1.9: Illustration for InsSort

1.4.2 Mean number of key comparaisons

Lemma 1.7. The number of key comparisons performed by InsSort on an array of n keys
is

n− 1 (best case),
n(n− 1)

2
(worst-case)

n(n− 1)

4
+ n−Hn (average-case).

Proof. The best-case arises when the array is already sorted. There are n−1 steps and the
algorithm performs only one comparison at each step. The worst-case of InsSort arises
when the initial array is sorted in the reverse order. There are exactly i−1 key comparisons
during the i-th phase. Finally, the total number of comparisons is

∑n−1
i=1 i = n(n− 1)/2.

Now we deal with the complexity on average case of InsSort, and we use the notion
of inversion, that is recalled in 1.1.4. We remark that the swap of two adjacent items that
are in the reverse order decreases the total number of inversions exactly by one. Then,
the number of swaps performed by the algorithm equals the number of inversions. We
have already analyzed the parameter “number of inversions” in Section 1.1.4, and we then
deduce there are n(n− 1)/4 such swaps on average. There are also the last comparison in
each phase which is not followed with a swap, (except when the element is a left-to-right
minimum). This is analyzed in the following result. There are n −Hn such comparisons
on average.
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1.4.3 Mean number of local key comparisons.

Lemma 1.8. The mean number πn(i, j) of comparisons performed by the InsSort algo-
rithm between the keys of rank i and j (with 1 ≤ i < j ≤ n) is

πn(i, j) =
1

2
+

1

(j − i+ 1)(j − i)
.

Proof. There are n − 1 phases in the algorithm. During the i-th phase, the key Vi of the
array is inserted into the left sub-array which contains an already sorted sequence built on
the set {V1, V2, . . . , Vi−1}.
First case. Ui and Uj arrive in the wrong order in the initial array (τ(Ui) >
τ(Uj)). In the phase when Ui is inserted into the left sub-array, this sub–array already
contains Uj with Uj > Ui, and the key Ui is always compared and exchanged with Uj . This
event is defined as “Inside the two keys set {Ui, Uj}, Uj is the first–in key, and Ui is the
second–in key” and the probability of such an event is 1/2 so that π−(i, j) = 1/2.

Second case. Ui and Uj arrive in the good order in the initial array (τ(Ui) <
τ(Uj)). The comparison does not always occur. In the phase when Uj is inserted into
the left sub–array, this left sub–array already contains the key Ui. If this left sub-array
contains one of the keys of the subset U[i,j[, then Uj “meets” (i.e., is compared to) this key
before meeting Ui and remains on its right. Finally, the comparison between Ui and Uj
occurs only if the subset U]i,j[ arrives after Uj . This defines the event “Ui is the first–in
key and Uj is the second–in key inside the set U[i,j]”. The probability of such an event and
the expected value of symbol comparisons π+(i, j) is

1

(j − i+ 1)(j − i)
.

The mean number of key comparisons performed by InsSort is then easily recovered.
One has

K(n) =
n∑
j=2

j−1∑
i=1

[
1

2
+

1

(j − i)
− 1

(j − i+ 1)

]
=
n(n− 1)

4
+

n∑
j=2

j−1∑
i=1

[
1

j − i
− 1

j − i+ 1

]

=
n(n− 1)

4
+

n∑
j=2

[
1− 1

j

]
=
n(n− 1)

4
+ n−Hn

1.5 The BubbleSort algorithm

1.5.1 Description.

Before 1962, BubbleSort (or briefly BubSort) had other names such as “sorting by ex-
change” [33] or “exchange sorting” [18, 30, 8]. It has been named “BubbleSort” by Iver-
son in 1962 in his book [43]. Even though Knuth writes that “BubbleSort seems to have
nothing to recommend” [50], the algorithm is easy to remember, commonly used where the
size n is not too large [67]. It is also easy to implement [63]. For these reasons, BubSort
becomes a popular algorithm. We can learn more about the history of this algorithm in
[3]. As its name says, the strategy of the algorithm is to push the smallest keys into the
left of the array as the air bubbles on to the surface of a liquid. The algorithm performs
n−1 phases. During one phase, the algorithm steps through the array, compares each pair
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of adjacent keys and swaps them if they are in the wrong order. The i-th phase aims at
finding the key of rank i and place it in the position i of the array. After the i-th phase,
the keys of U[1..i] are at their right places.

Procedure BubSort(V, n)

/* Sorts the array V [1 . . n] */

for i from 1 to n− 1 do
for j from n downto i+ 1 do

if V [j − 1] > V [j] then
swap(V [j − 1], V [j])

end

end

end

Figure 1.10: BubSort algorithm.

Here is an example. The initial array is (23, 78, 45, 8, 32, 56). At each pass, keys

Figure 1.11: Illustration for BubSort. Figure from the source [75]

are swapped from the right to the left if they are not in the increasing order with their
neighbor. After the first pass, the minimum of the array is found (8) and is positionned at
the first place. After the second pass, the next relative minimum of the array is found and
positionned at the second place, etc.

1.5.2 Mean number of comparisons.

Lemma 1.9. The number of key comparisons performed by the BubSort algorithm on an
array of n keys always equals n(n− 1)/2.

This is clear: At the first step, there are n− 1 key comparisons. At the second phase,
there are n − 2 key comparisons, and so on. In total, the number of key comparisons is
(n−1)n

2 .
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1.5.3 Mean number of local key comparisons.

Lemma 1.10. The mean number πn(i, j) of comparisons performed by the BubSort algo-
rithm between the keys of rank i and j (with 1 ≤ i < j ≤ n) is

πn(i, j) =
1

2
.+

1

(j − i+ 1)(j − i)
+

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)
.

Proof. The BubSort algorithm may perform several comparisons between two keys Ui and
Uj . We are first interested in the first comparison between Ui and Uj and we distinguish
two cases:

First case. Ui and Uj arrive in the right order in the initial array (τ(Ui) < τ(Uj)).
If there is one key of U]i,j[ which arrives after Ui and before Uj , it will stay between Ui
and Uj in the array thereafter, and will prevent Ui and Uj from meeting each other. If it
arrives after Uj , it will eventually come between Ui and Uj in the array before these two
keys meet each other. Hence, there is a comparison between Ui and Uj only if all the keys
of the subset U]i,j[ arrive before both Ui and Uj . This coincides with the event “the key Uj
is the last–in and the key Ui arrived just before inside the subset U[i,j]”. The probability
that the first comparison between Ui and Uj occurs is

1

(j − i+ 1)(j − i)
.

Second case. Ui and Uj arrive in the wrong order in the initial array (τ(Uj) <
τ(Ui)). The first comparison between Ui and Uj occurs just before they are swapped. The
probability of the event “Uj is the first–in key and Uj is the second–in key in {Ui, Uj}”
is 1/2.

Subsequent comparisons. There might be subsequent comparisons between two keys. Note
that, in both previous cases, immediately after the first comparison (either positive or
negative) Ui and Uj are in the right order and in consecutive positions. A necessary
condition for having at least one subsequent comparison between Ui and Uj is that all
the keys of U]i,j[ are still on the left of Ui after this point (for the same reasons exposed
previously in Case 1). Now we also remark that any key U` with ` ∈ [1, i[ which arrived
after U]i,j[ and before Ui in the first case, and after U]i,j[ and before Uj in the second case,
will be the cause of a stop of key Ui during some latter phases (such a key U` will never be
swapped with Ui because of its smaller value). Also each time a key Ui is stopped during a
phase by a key from U[1,i[, the set of keys from U[1,i[ between U]i,j[ and Ui decreases by one
during the same phase. After such a phase, as all keys to the right of Ui are in U[j,n], the key
Uj during the next phase will be swapped until reaching Ui (and results in a comparison).
In conclusion the number of subsequent comparisons is exactly the number of keys from
U[1,i[ which arrived after U]i,j[ and before Ui in the first case and before Uj in the second
case. For any ` ∈ [1 . . i[, the probabilities that U` arrives after U]i,j[ and before Ui (and Uj
arrives after Ui – Case 1) or after U]i,j[ and before Uj (and Ui arrives after Uj – Case 2)
have the same expression

1

(j − i+ 2)(j − i+ 1)(j − i)
.

Using independence of events for ` ∈ [1, i[, this yields that the mean number of subsequent
(positive) comparisons (summing up for both Cases 1 an 2) is

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)
.
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To conclude, one has

π+(i, j) =
1

(j − i+ 1)(j − i)
+

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)
, π−(i, j) =

1

2
.

It seems that the mean number of key comparisons performed by InsSort be not easily
recovered in this case...

1.6 The Selection-Minimum Algorithm

The algorithm SelMin is the first phase of SelectionSort. This is the most natural
strategy for finding the minimum key of an array. The variable called Min is initiated with
the first key of the array. While stepping through the array, each key is compared with
Min and replaces it if it is smaller. Then, the variable Min memorizes all the possible déjà
vus minimum, namely the successive left to right minimum of the array. We recall that a
left to right minimum of an array is the smallest key among all the keys which are on its
left. It is clear that there are always n− 1 key comparisons.

Lemma 1.11. The number of key comparisons performed by SelMin over an array of n
keys is n− 1, in the best case, worst-case or average-case.

Lemma 1.12. The mean number of key comparisons between two keys Ui and Uj is

πn(i, j) =
1

i(i+ 1)
+

1

j(j − 1)
.

Proof. If two keys Ui and Uj are compared, the first–in key of the set

U[i,j] = {Ui, Ui+1, . . . , Uj}

is a left to right minimum.

First case. Ui and Uj arrive in the right order (τ(Ui) < τ(Uj)). Then Ui is a left-
to-right minimum, and Uj must arrive before the following left-to-right minimum, namely
before all the keys of U[1,i[. Finally, inside the set U[1,i] ∪ {Uj}, of cardinal i + 1, the
key Ui is the first–in, and Uj is the second–in. Hence the number of key comparisons is
π+(i, j) = 1/(i(i+ 1)).

Second case. Ui and Uj arrive in the wrong order. (τ(Ui) > τ(Uj)). Then Uj is
a left-to-right minimum and Ui is the following left-to-right minimum. This means that
all the keys of the set U[1,i[ ∪ U]i,j[ arrived after Ui. Inside the set U[1,j] of cardinal j,
Uj is the first–in key, Ui is the second–in key. The mean number of key comparisons is
π−(i, j) = 1/(j(j − 1)).

The mean number of key comparisons performed by SelMin is then easily recovered.
One has

K(n) =

n∑
i=1

n∑
j=i+1

1

i(i+ 1)
+

n∑
j=1

j−1∑
i=1

1

j(j − 1)
=

n∑
i=1

(n− i)
[

1

i
− 1

i+ 1

]
+

n∑
j=1

1

j

=

n∑
i=1

n− i
i
−
n+1∑
i=2

n− i+ 1

i
+Hn = (n− 1)−

n∑
i=2

1

i
+Hn = n− 1
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1.7 Towards a realistic analysis of selection and sorting al-
gorithms.

1.7.1 Conclusion on the mean number of local comparisons.

We have seen in the previous sections the mean number of key comparisons performed by
some sorting and selection algorithms. However, the purpose of this thesis is to find the
mean number of symbol comparisons performed by these algorithms. For that, we first
compute the mean number of local comparisons, denoted by πn(i, j). This is also the first
step in the realistic analysis of selection and sorting algorithms that we will see in the
general framework described in Chapter 5.

We summarize in the following proposition all the results that we have obtained in the
chapter about the mean number πn(i, j) of (key)-comparisons between the key Ui of rank
i and the key Uj of rank j.

Proposition 1.13. Consider the five algorithms of interest. Then, in the permutation
model, the mean number πn(i, j) of comparisons between the keys of rank i and j, with
i < j admits the expression described in the second column of Figure 1.12.

Algorithms πn(i, j) K(n)

QuickSort
2

j − i+ 1
2n log n

InsSort
1

2
+

1

(j − i+ 1)(j − i)
n2

4

BubSort
1

2
+

1

(j − i+ 1)(j − i)
+

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)
n2

2

QuickSelect(m,n)
2

max(m, j)−min(m, i) + 1
Θ(n)

QuickMin
2

j
2n

SelMin
1

i(i+ 1)
+

1

j(j − 1)
n

Figure 1.12: Summary for the expressions of the mean number of local comparisons.

1.7.2 Normalized and non normalized algorithms.

Amongst these algorithms (and more generally amongst the sorting and searching algo-
rithms), there are algorithms which perform a systematic comparison between keys that
are in the reverse order. We say that these algorithms are non-normalized. Here, amongst
the studied algorithms, there are only two non-normalized algorithms, namely, the InsSort
and the BubSort Algorithms. Non-normalized algorithms may perform several comparisons
between two keys in reverse order, but we only consider the first comparison of this type1,
and we define it as the non-normalized comparison. In summary, a comparison is non-
normalized if this is a systematic comparison performed for the first time. Otherwise, it is
said to be normalized.

1This is important as BubSort may perform subsequent comparisons between these two keys.
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For non-normalized algorithms, and in the permutation model, the non-normalized
comparison arises with probability 1/2, the probability that any two keys are in the reverse
order. When the term π−n (i, j) (associated with comparisons between keys in reverse order)
contains a constant term 1/2, this means that this algorithm is non-normalized, and we
denote by π̂n(i, j) the term πn(i, j) from which this constant is removed, namely

π̂n(i, j) :=

{
πn(i, j)− 1/2 for non-normalized algorithms

πn(i, j) for normalized algorithms.

This notion will be important in Chapters 5 and 6: in our analysis, this term constant
equal to 1/2 plays a particular role and must be considered in a separate way.

Algorithms π̂n(i, j)

QuickSort
2

j − i+ 1

InsSort
1

(j − i+ 1)(j − i)

BubSort
1

(j − i+ 1)(j − i)
+

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)

QuickSelect(m,n)
2

max(m, j)−min(m, i) + 1

QuickMin
2

j

SelMin
1

i(i+ 1)
+

1

j(j − 1)

Figure 1.13: Summary for the expressions of the mean number of local normalized com-
parisons.

Towards a realistic analysis.

Replacing keys by words. In the thesis, when we perform the analysis of the main
searching and sorting algorithms, we wish to take into account the possible internal struc-
ture of the inputs. In any computer, indeed, any input is a sequence of symbols (which
belong to a given alphabet Σ), what is called a (finite) word, namely an element of Σ?.
When we compare two such words X and Y , it is natural to deal with the lexicographic
order: the alphabet Σ is itself endowed with a given order, which is extended to Σ? with
the lexicographic order. The cost of such a comparison between two words X and Y is
no longer a unit cost, and it now depends on the words themselves; it depends more pre-
cisely, on the coincidence between the two words. The coincidence c(X,Y ) between the
two words X and Y is defined as the length of the longest common prefix of the two words.
In this framework, the unit cost is now the comparison between symbols, and finally the
cost for comparing two words X and Y equals c(X,Y ) + 1, as the total number of symbol
comparisons that are needed in the comparison of the two words.

From an intuitive point of view, the cost of comparison between two words (in terms
of symbol comparisons) depends on their relative position, and in particular on their re-
spective ranks. For instance, an algorithm which often compares keys Ui and Uj whose
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ranks i and j are close will be probably less efficient (with respect to the number of symbol
comparisons) than another algorithm which performs the same total number of key com-
parisons, but between keys whose ranks are less close. This is why the cost πn(i, j) (the
mean number of comparisons between the key of rank i and the key of rank j) provides a
first (but very useful) information in terms of the efficiency of the algorithm, when it will
be further studied in terms of symbol comparisons.

Dealing with correlations between symbols. As keys are replaced by words which
are formed with symbols, we will be interested in the mechanism which emits the symbols,
namely a source. According to the source, successive emitted symbols may be strongly or
weakly correlated. For example, symbols emitted by a simple source (memoryless source
or Markov chain) are weakly correlated. They are independent in the case of memoryless
source. The next Chapter will describe various models of source and introduces the general
model we will choose for our analysis, the parameterized model.
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We have then decided to replace keys by words. The present chapter focuses on the
probabilistic process that generates words, which is called in information theory a source.
A source is a mechanism that emits symbols, which form words, that are given as inputs for
the sorting or searching algorithms. The nature of the source may have a strong influence
on the coincidence of words, and the coincidence between words is a central parameter in
the analysis of this class of algorithms in terms of symbol comparisons.

The source will be itself the main input for our algorithms, and then plays a central
role in the analysis of such algorithms. As it is usual in analysis of algorithms, we deal
with generating functions, and the generating function of the source will be one of the main
actors of our study. It involves fundamental probabilities, and is of Dirichlet type. And,
asymptotic properties of the source will be related, as usual, to the position and the nature
of these generating functions.

We first consider in this chapter various types of sources, simple sources (namely mem-
oryless sources and Markov chains), but also more complex sources, where the correlation
between symbols may depend on the whole previous history. We wish to describe a model
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of sources, that would be sufficiently general, but we also wish to deal with sources whose
Dirichlet generating function admits a nice expression, from which it would be possible to
investigate the nature of the position of its singularities. The model of dynamical sources,
introduced by Vallée and related to dynamical system theory goes beyond the cases of sim-
ple sources (memoryless sources and Markov chains). The transfer operator, a main tool
in dynamical system, is here a main tool: it is used as a generating operator which itself
generates... the generating function. These three classes of sources (memoryless sources,
Markov chains and dynamical sources) will be our main instances, as their Dirichlet series
are explicit.

However, our studies deal with a more general model of sources, which will be introduced
in Section 2.1. It further extends the point of view provided by dynamical sources, and
is based on a parametrization of the source. In this context, a source is just a random
process defined on the unit interval, and the coincidence admits a natural representation,
very useful in the sequel.

2.1 General sources

In information theory, a probabilistic source on the alphabet Σ is a mechanism which
produces symbols from Σ, one at each time unit. When (discrete) time evolves in N, a
source produces (infinite) words in ΣN. More precisely, if Xk is the symbol emitted at time
t = k, the source is defined by the sequence (Xk) of random variables with values in Σ.
The complexity of the source is related to the correlations between these random variables
(Xk).

2.1.1 Generating functions of the source.

The emitted infinite word (X1, X2, . . . , Xk, . . .) admits Xk
1 := (X1, X2, . . . , Xk) as its prefix

of length k. The random variable Xk
1 has its values which belong to the set Σk, and we are

interested in the distribution of this random variable. The probability pw that an infinite
word begins with the finite prefix w = w1w2 . . . wk is just

pw := Pr[Xk
1 = w] = Pr[X1 = w1, X2 = w2, . . . Xi = wi, . . . Xk = wk]. (2.1)

The probability pw is called the fundamental probability relative to the prefix w.

The set {pw, w ∈ Σ?} defines completely the source S, and it is natural to consider its
generating function. As the set pw is a set of probabilities, it has a multiplicative “flavour”
and it proves useful to introduce Dirichlet series as generating functions.

Definition 2.1. There are two main types of Dirichlet series associated to a source S.

(i) The Λ generating functions are defined as

Λk(s) =
∑
w∈Σk

psw, Λ(s) =
∑
k≥0

Λk(s) =
∑
w∈Σ∗

psw.

The bivariate generating function Λ(s, u), where the variable u marks the length of
the prefixes, is defined as

Λ(s, u) :=
∑
k≥0

ukΛk(s) =
∑
w∈Σ?

u|w| psw.
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(ii) The Π generating function is defined as

Π(s) =
∑
k≥0

πsk, with πk = sup{pw, w ∈ Σk}.

The Λ series was introduced for the first time in [71]. It plays a central role in many
probabilistic studies about sources which adopt a point of view of analytic combinatorics.
It also intervenes in this thesis, mainly in the analysis of sorting algorithms. The Π series
was introduced for the first time in [12], and it is central here in the analysis of searching
algorithms.

We remark the two equalities

Λk(1) = 1, ∀k ≥ 0; Πk(0) = 1, ∀k ≥ 0.

This proves that the series Λ(s) is infinite at s = 1, and the series Π(s) is infinite at s = 0.
We will see that important probabilistic properties of the source can be expressed in terms
of the regularity of Λ near s = 1 or the regularity of Π(s) near s = 0.

2.1.2 Entropy.

Definition 2.2. The entropy h(S) of the source S is defined as the following limit (if it
exists)

h(S) = − lim
k→∞

1

k
E[log p(Xk

1 )], (2.2)

where the random variable p(Xk
1 ) is defined in Eq. (2.1).

Lemma 2.3. The entropy admits an alternative expression which involves the fundamental
probabilities. It is also expressed with the Λ series

h(S) = lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

−1

k

d

ds
Λk(s)|s=1.

2.1.3 Coincidence.

In the previous chapter, a comparison between two keys has a unit cost. When the two
keys are two (infinite) words built on an alphabet Σ, we are interested in a more realistic
cost, which is equal to the number of symbols which are needed to distinguish these two
(infinite) words. This cost is closely related to the coincidence, defined as follows.

Definition 2.4. The coincidence c : ΣN × ΣN → N ∪ {∞} is the random variable which
measures the length of the longest common prefix between between two infinite words X and
Y ,

c(X,Y ) := max{i; Xj = Yj , ∀j ∈ [1 . . i]}. (2.3)

The number of symbols which are needed to distinguish the words X and Y is then equal
to c(X,Y ) + 1.

Lemma 2.5. The distribution of the coincidence between two independently drawn words
admits an alternative expression which involves the fundamental probabilities. It is also
expressed with the Λ series,

Pr[c ≥ k + 1] =
∑
w∈Σk

p2
w = Λk(2), E[c] =

∑
k≥1

Pr[c ≥ k] = Λ(2)− 1.

The mean number of symbols which is needed to distinguish two random words, called the
coincidence of the source, and denoted by c(S), is thus equal to Λ(2).
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Figure 2.1: Illustration of the coincidence between two words

Proof. The event [c(X,Y ) ≥ k + 1] coincides with the event “The two words X and Y
begin with the same prefix of length k”, and thus with the disjoint union of the events,
(taken over the words w ∈ Σk), “The two words X and Y begin with the prefix w”. When
the two words X and Y are independently drawn from the source, the probability of the
last event equals p2

w.

2.2 Simple sources.

2.2.1 Memoryless sources.

Definition 2.6. A source S is said to be memoryless if the variables Xk are independent
with the same distribution. It is defined by the set pi of probabilities, where pi is the
probability of emitting the symbol i ∈ Σ at any time k, namely pi := Pr[Xk = i] for any k.

Then, the generation of the k-th symbol Xk of the word does not depend on the previous
emitted symbols. It is also independent of the time k when it is emitted.

The fundamental probability pw that the word begins with the prefix w = w1w2 . . . wk
is then expressed as the product pw =

∏k
i=1 pwi . This multiplicative property leads to an

exact expression of the Dirichlet series

Lemma 2.7. In the memoryless case, the Λ Dirichlet series defined in (2.1), are expressed
as a function of

λ(s) =
∑
i∈Σ

psi ,

as

Λk(s) = λ(s)k, Λ(s) =
1

1− λ(s)
, Λ(s, u) =

1

1− uλ(s)
. (2.4)

Proof. We begin with the multiplicative property of pw which extends to psw. Then∑
w∈Σk

psw =
∑
w∈Σk

k∏
i=1

pswi =
k∏
i=1

∑
wi∈Σ

pswi = λ(s)k.

This proves the first relation in Equation (2.4). When summing over k the expression of
λ(s)k,

Λ(s) =
∑
k

∑
w∈Σk

psw =

∞∑
k=0

λ(s)k =
1

1− λ(s)
,

we get the second relation in Equation (2.4).

Lemma 2.8. In the memoryless case, the entropy of the source, defined in Equation (2.2),
and the coincidence admit expressions that involve the function λ(s), namely

h(S) = −λ′(1) = −
∑
i∈Σ

pi log pi, c(S) =
1

1− λ(2)
=

1

1−
∑
i

p2
i

.
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Proof. Taking the derivative with respect to s (at s = 1) of the expression provided in (2.4)
provides,

d

ds
Λk(s)|s=1 = kλ(1)k−1λ′(1) = kλ′(1) = k

∑
i

pi log pi.

The definition of the entropy then entails the result.

In the memoryless case, and for an alphabet of a given cardinality r, the entropy is
maximal when all the probabilities pi are equal to 1/r. In this case, the source is said to be
unbiased. This maximal value equals log2 r. In the case of a binary alphabet Σ = {0, 1},
we let p := p0 so that p1 = 1− p. The entropy is then simply denoted by h(p) and is equal
to

h(p) = −p log p− (1− p) log(1− p).

We already met this classical function in Chapter 1, and its graph is represented there, in
Figure 1.5.

2.2.2 Markov chains.

A Markov chain source (of order 1) is a model of sources where the correlations between
symbols may exist but are “weak”, as the emitted symbol can only be correlated with the
previous symbol.

Definition 2.9. A source on the alphabet Σ is a Markov chain of order 1 if and only if
it satisfies the following : At each time k, and for each pair (i, j) of symbols of Σ2, the
conditional probability of emitting i knowing that the previously emitted symbol is j does
not depend on the time k, and is denoted by pi|j

∀k ∈ N, P[Xk+1 = i | Xk = j] = pi|j .

A Markov source is then completely defined by the vector V of initial probabilities (vi)i∈Σ

together with the transition matrix P := (pi|j)(i,j)∈Σ2.

For example, with Σ = {0, 1}, and the initial probabilities V = (p, 1 − p), the funda-
mental probability of the prefix w = 001010 is pw = p.p0|0.p

2
1|0.p

2
0|1.

Lemma 2.10. Denote by Ps the matrix with general coefficient psi|j, and by Vs the vector
of components vsi . Then the Dirichlet series of the Markov chain source are

Λk(s) = t1·Pk−1
s ·Vs, Λ(s) = 1+t1·(I−Ps)

−1 ·Vs, Λ(s, u) = 1+ut1·(I−uPs)
−1 ·Vs.

(2.5)

Proof. For k ≥ 1, the coefficient of the matrix Pk−1
s at the index (i, j) is the sum of all the

terms of the form

psi2|i1 · p
s
i3|i2 · · · p

s
ik|ik−1

, with i1 = j, ik = i, and (i2, . . . , ik−1) any vector of Σk−2.

Then, the matrix Pk−1
s · Vs (that has r rows and one column) has in its i-th row the sum

of all the terms of the form

vsj · psi2|j · p
s
i3|i2 · · · p

s
i|ik−1

, with (j, i2, . . . , ik−1) any vector of Σk−1.

This is the sum of all the terms of the form psw where the prefix w of length k ends with
the symbol i. To obtain the sum over all the prefixes of length k, we apply the matrix with
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one row, and r colums, whose all its coefficients equal to 1, namely the matrix t1. We have
then proven the equality

Λk(s) =t1 ·Pk−1
s · Vs.

The first relation in Equation (2.5) is proven for all k ≥ 1. We sum over k to get the second
relation in Equation (2.5):

Λ(s) = 1 +
∑
k≥1

Λk(s) = 1 +
∑
k≥1

t1 ·Pk−1
s · Vs = 1 +t1 · (I −Ps)

−1 · Vs.

The coefficient (i, j) of the matrix Pk, denoted by P ki,j , represents the probability of
going from the state j to the state i in k time units. The matrix P is irreducible if all the
states communicate (possibly in an indirect way), i.e., if it is possible to go to any state
from any state.

∀i,∀j, ∃n, Pn
i,j > 0.

A state i is recurrent if there exists an integer n = n(i, i) > 0 such that Pn
i,i > 0. A Markov

chain is irreducible if all the states i ∈ Σ are recurrent. The period of a recurrent state i
is the length of the smallest cycle which contains i; this is also equal to

di = gcd{n; Pn
i,i > 0}.

The chain is aperiodic if the gcd d := gcd{di, i ∈ Σ} of all these periods is equal to 1.
In the thesis, the term “aperiodic” is used with another meaning. This is why we never

use the term aperiodic with the previous meaning. A Markov chain whose transition matrix
is irreducible and aperiodic will be said to be a good Markov chain. This will be said for
the transition matrix too.

The Perron-Frobenius theorem [55] [34] states the following: Consider a matrix T with
positive coefficients which is moreover good. Then, the matrix T has a unique dominant
eigenvalue λ, and a unique dominant eigenvector Π with positive components πi whose sum
equals 1.

We apply this theorem to the matrix Ps for any real s. Then, the matrix Ps has
a unique dominant eigenvalue λ(s), and a unique dominant eigenvector Πs with positive

components π
(j)
s whose sum equals 1. Since the matrix P is stochastic, the dominant value

λ(s) satisfies λ(1) = 1, and the matrix P = P1 has a unique (normalized) fixed vector
Π := Π1 with positive components π(j), whose sum equals 1.

Moreover, the matrix Ps decomposes as a sum

Ps = λ(s)Qs + Rs,

where Qs is the projection on the dominant eigenspace, and Rs is the remainder matrix,
whose spectral radius ρ(s) satisfies ρ(s) := max{|λ|; λ ∈ SpPs} < |λ(s)|. These matrices
satisfy Qs ·Rs = Rs ·Qs = 0, so that the previous decomposition extends to any k ≥ 1,
namely

Pk
s = λk(s)Qs + Rk

s , and thus (I −Ps)
−1 =

λ(s)

1− λ(s)
Qs + (I −Rs)

−1.

This entails the following asymptotic behavior for the Λ Dirichlet series

Λk(s) = λk−1(s)
[
t1 ·Qs · Vs

]
+t1 ·Rk

s · Vs = λk(s)ws

[
1 + o(ρk)

]
,
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for some nonzero constant ws and some ρ < 1. We remark that w1 = 1. This also proves
that Λ(s) has a simple pole at s = 1. Moreover, there is a closed-form expression for the
entropy.

Lemma 2.11. In the case of a good Markov chain, with a transition matrix P = (pi|j), a

dominant eigenvalue λ(s), and a (normalized) fixed vector Π := (π(j)) the entropy satisfies

h(S) = −λ′(1) = −
∑

(i,j)∈Σ2

π(j) pi|j log pi|j . (2.6)

Proof. We first prove the equality h(S) = −λ′(1). This is obtained by taking the derivative
of the estimate Λk(s) = λk(s)ws

[
1 + o(ρk)

]
with respect to k, namely

1

k

d

ds
Λk(s) ∼k→∞ λ′(s)λk−1(s)ws and then

1

k

d

ds
Λk(s)|s=1 ∼k→∞ λ′(1),

since the equality w1 = 1 holds.

We then obtain an alternative expression for the derivative λ′(1). Taking the derivative
(with respect to s) of the equality Ps ·Πs = λ(s) Πs leads at s = 1 to the equality

t1 ·P′1 ·Π1 + t1 ·P1 ·Π′1 = λ′(1) t1 ·Π1 + λ(1) t1 ·Π′1.

Moreover, since the matrix P is stochastic, the equality t1 ·P1 = t1 holds. This entails the
expression for the entropy of the source given in (2.6).

2.2.3 Other instances of “simple” sources: intermittent sources.

Intermittent sources are an interesting particular case of a source of VLMC type (Variable
Length Markov Chain), where the dependency from the past is unbounded. An intermittent
source has two regimes, depending whether it emits a particular symbol σ ∈ Σ or not.
Consider a source with an alphabet of finite cardinality r ≥ 2. The source is intermittent of
exponent a > 0 with respect to σ if one has the following conditional probability distribution
for the emission of each symbol in the word given the prefix preceding it. Define the
event Sk as Sk := {the prefix ends with a sequence of exactly k occurrences of σ}. Then
the conditional distribution of the next symbol emitted depends on the length k; more
precisely, one has Pr[σ | S0] = 1/r and, for k ≥ 1,

Pr[σ | Sk] =

(
1− 1

k + 1

)a
, Pr[σ | Sk] =

(
1−

(
1− 1

k + 1

)a) 1

r − 1
for σ 6= σ.

Then, in the case of a binary alphabet Σ := {0, 1}, when the source is intermittent with
respect to 0, the probability of the prefixes 0k and 0k1 are respectively equal to

p0k =
1

2
· 1

ka
, p0k1 =

1

2

(
1

ka
− 1

(k + 1)a

)
,

and, with the language description {0, 1}? = (0?1)?·0?, the series Λ(s) admits the expression

Λ(s) =
1 + 2−sζ(as)

1− 2−s[1 + Σa(s)]
with Σa(s) =

∑
k≥1

[
1

ka
− 1

(k + 1)a

]s
.

(Here, ζ(·) is the Riemann zeta function.)
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Figure 2.2: A Markovian dynamical system

2.3 Dynamical sources

A (probabilistic) dynamical source is defined by two objects: first, a symbolic mechanism,
described by a dynamical system that associates an infinite word M(x) to a real number
x of the interval [0, 1]; second, a density on the unit interval.

2.3.1 Definition of a dynamical source

Definition 2.12. A dynamical system of the interval I := [0, 1] is defined by a mapping
T : I → I (called the shift), for which

(a) There exists a finite alphabet Σ and a family of disjoint open intervals Im indiced by
Σ which define a topological partition of I; namely,

∃ (Im)m∈Σ, I =
⋃
m∈Σ

Im.

(b) The restriction T[m]of T to each interval Im is a C2 injection from Im to I.

The system is complete when each restriction T[m] is surjective, .i.e, T (Im) = I.
The system is Markovian when each interval T (Im) is a union of intervals Ij.

In the sequel, we restrict ourselves to the case of a complete mapping, With this dy-
namical system, we build a probabilistic source as follows.

Dynamical source. The mapping τ : I → Σ which is equal to symbol m on each open
interval Im will be useful for encoding the trajectories. To each x ∈ I, one first associates
the trajectory (x, T (x), T 2(x), . . . , T j(x)) ∈ IN, then the (infinite) word M(x) ∈ ΣN formed
with the successive symbols:

M(x) = (m1(x),m2(x), . . . ,mn(x), . . . ), with mj(x) = τ(T j−1(x)).

When the unit interval I is endowed with a density f , and its associate distribution function
F , the mapping M becomes a random variable M : I → ΣN. A dynamical system, together
with a density f on the unit interval I defines a :probabilistic dynamical source.

For m ∈ Σ, the interval Im = τ−1({m}) is the subset of x ∈ I for which the word
M(x) begins with m. If we denote by h[m] : I → Im the inverse of T[m], this interval Im
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xT xT x2 T x3

Figure 2.3: A dynamical system, with Σ = {a, b, c} and a word M(x) = (c, b, a, c, . . . )
.

is also equal to h[m](I). For any integer k ≥ 1, each local inverse of the k-iterate T k is

said to be of depth k; it is associated to a word w = m1m2 . . .mk ∈ Σk, and is of the form
h[w] = h[m1] ◦ h[m2] ◦ · · · ◦ h[mk]. The set of all the inverse branches of depth k is then

Hk = {h[w], w ∈ Σk}, and we let H? :=
⋃
k≥0

Hk = {h[w], w ∈ Σ?},

so that H? is the set of all inverse branches of any depth.

Fundamental intervals. Consider more generally, for any w ∈ Σ?, the interval Iw,
defined as the transform of the unit interval I by the inverse branch h[w], namely Iw =
h[w](I). By definition of the word M(x), this interval Iw gathers all the x ∈ I for which
the word M(x) begins with the prefix w. Then, the fundamental probability pw (defined
in (2.1) is expressed with the inverse branch h[w] and the distribution F of the density f ,
namely

pw =

∫
Iw
f(t)dt =

∫
h[w](I)

f(t)dt =
∣∣F (h[w](1))− F (h[w](0))

∣∣ . (2.7)

Possible correlations. A dynamical source may have a high degree of correlations, due
to both the geometry and the shape of its branches.

The geometry of the branches is defined by the position of horizontal intervals with respect
to vertical intervals Jl = T (Il). This provides a first access to the correlation between
successive symbols and allows to describe the set Sm formed with symbols that can be
possibly emitted after symbol m. In a complete system, any symbol of Σ can be emitted
after any symbol m so that Sm = Σ. In Markovian system, the set of symbols that can be
possibly emitted after the symbol m is denoted by Km, and thus Sm = Km.

The shape of the branches, more precisely, the behavior of the derivatives h′[m] has also
a great influence on correlations between symbols. For a fixed geometry of branches, a
system with affine branches is less correlated than other systems with the same geometry.
We will see that simple sources are defined by systems with affine branches, and uniform
initial (local) density.

When the branches of the shift T are all increasing or all decreasing, the shift T is
said to be “homoclinic”. Otherwise, the shift T is “heteroclinic”. As we will see, the
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dynamical systems of continued fraction source and binary numeration are homoclinic,
and the dynamical system underlying simple sources may be heteroclinic or homoclinic.

2.3.2 Simple sources seen as dynamical sources

Simple sources (memoryless, or Markov chains sources) can be viewed as dynamical source:
They are associated to dynamical systems, with affine branches and uniform initial distri-
bution. When the derivatives h′ of the branches are not constant, this creates correlations
between successive symbols and the sources are no longer simple.

Memoryless sources. A memoryless source is a dynamical source which satisfies the
two properties:

(a) It is associated to a complete dynamical system whose each restriction T[m] of T to
Im is affine (increasing or decreasing)

(b) Its initial density is uniform.

Figure 2.4 is an example of a memoryless sources associated to the three intervals of
respective lengths p1 = 1/6, p2 = 1/3, p3 = 1/2 and equal to

I1 = [0, 1/6], I2 = [1/6, 1/2], I3 = [1/2, 1].

The shift T is defined by

T |I1 : x 7→ 6x, T |I2 : x 7→ 3x− 1

2
, T |I3 : x 7→ 2x− 1.

Figure 2.4: Memoryless sources: On the left the shift T . On the right, the encoding τ .

Numeration system in base b. The shift of the numeration system of base b is

T (x) = {bx} = bx− bbxc, τ(x) = bbxc.

This transformation computes the expansion in base b of the real x

x =
∞∑
j=1

mjb
−j , with mj := τ(T j(x)).

For example, in the case b = 2, the shift T is defined as

T (x) = 2x, x ∈
[
0,

1

2

]
and T (x) = 1− 2x, x ∈

[
1

2
, 1

]
,
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and, each end of a fundamental interval admits two expansions; for instance, for x = 1
4 ,

there are two distinct words M(x),

N

(
1

4

)
= 0.01000 . . . or N

(
1

4

)
= 0.001111 . . . .

The numeration system of base 2 is illustrated by Figure 2.5. When the initial density is
uniform, this gives rise to an unbiased memoryless source.

Figure 2.5: Numeration system of base 2

Markov chains. A Markov chain is a dynamical source which satisfies the two properties:

(a) It is associated to a Markovian dynamical system whose each restriction T[m] of T
to Im is affine (increasing or decreasing)

(b) Its initial density is constant on each Im.

Figure 2.6 illustrates how a Markov chain may be viewed as a dynamical source.

Figure 2.6: a Markov chain, viewed as dynamical sources.

The continued fraction source. The continued fraction source is an instance of a
dynamical source for which correlations between symbols may depend on the whole past.
Here, as its alphabet is the set of integers N, it does not enter the framework of this
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thesis, where the alphabet Σ is always finite. The topological partition of I is defined by
Im =]1/(m+ 1), 1/m[, i and the shift is defined as

T (x) =

{
1

x

}
=

1

x
−
⌊

1

x

⌋
, τ(x) =

⌊
1

x

⌋
.

The restriction of the shift T to the interval Im is T (x) = (1/x) − m, and the inverse
branch h[m] is defined on the interval I by h[m](x) = 1/(x + m). The iteration of this
transformation gives rise to the continued fraction expansion of x.

Figure 2.7: The Continued fraction source: on the left the shift T , on the right, the encoding
application τ .

2.3.3 Transfer operators

One of the main tool in dynamical system theory is the transfer operator, introduced
by Ruelle [58], denoted by Hs. It generalizes the density transformer H that describes
the evolution of the density. A generalized version of the transfer operator is the secant
operator Hs that gives rise to an expression of the Dirichlet series Λ(s) as a quasi inverse,
in a way that generalizes expressions obtained in Equation (2.4), (2.5).

Density transformer. The density transformer associated to the dynamical system de-
fined by (I, T ) describes the evolution of densities on I under iteration of T : if X is a
random variable with density f , what is the density of the iterate TX? We define the
density transformer H as

H[f ](x) :=
∑
i∈Σ

|h′[i](x)| · f ◦ h[i](x) =
∑
h∈H
|h′(x)| · f ◦ h(x).

This is an operator which transforms a function defined on the interval I into another
function H[f ], also defined on the interval I. In the case of a complete dynamical system,
if f0 is the initial density on I and f1 is the density on I after one iteration of T , then f1

can be written as f1 = H[f0], where H is defined as

H =
∑
h∈H

H(h), ,with, H(h)[f ](x) = |h′(x)|f ◦ h(x).
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Transfer operators. The transfer operator extends the density transformer. One adds
a complex parameter s, and replace the derivatives |h′(x)| by |h′(x)|s; we consider

Hs[f ] :=
∑
h∈H
|h′(x)|s · f ◦ h(x) =

∑
i∈Σ

|h′[i](x)|s · f ◦ h[i](x), (2.8)

where, as previously, the set H is the set of all inverse branches h of T . Multiplicative
properties of derivatives prove that the k-th iterate of the transfer operator involves the
set Hk under the form:

Hk
s [f ](x) =

∑
h∈Hk

|h′(x)|s · f ◦ h(x) =
∑
w∈Σk

|h′[w](x)|s · f ◦ h[w](x).

For obtaining an alternative expression of fundamental probabilities defined in Equation
(2.7), it proves convenient to introduce the secant operator which is a further generalization
of the Ruelle operator introduced by Vallée [70]. This operator replaces tangents of inverse
branches by their secants, and considers∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣s instead of
∣∣h′(x)

∣∣s .
Such an operator acts on functions F of two variables, and is defined as

Hs[F ](x, y) :=
∑
h∈H

∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣s · F (h(x), h(y)). (2.9)

The secant operator is an extension of the plain transfer operator, since, on the diagonal
x = y, one has

Hs[F ](x, x) = Hs[diag F ](x), (2.10)

where the function diag F is defined by diag F (x) := F (x, x).
Multiplicative properties of secants prove that the k–th iterate of H admits the expression

Hk
s [F ](x, y) =

∑
h∈Hk

∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣s F (h(x), h(y)) =
∑
w∈Σk

∣∣∣∣h[w](x)− h[w](y)

x− y

∣∣∣∣s F (h[w](x), h[w](y)).

(2.11)

Expression of the Λ series. Moreover, for w ∈ Σk, the probability psw can be written
as

psw = |F (h[w](1))− F (h[w](0))|s =

∣∣∣∣F (h[w](1))− F (h[w](0))

h[w](1)− h[w](0)

∣∣∣∣s · ∣∣∣∣h[w](1)− h[w](0)

1− 0

∣∣∣∣s .
This is a product of two factors which each involves a secant, the secant of the inverse
branch h[w], and the secant L of the distribution F related to the initial density f , namely

psw =

∣∣∣∣h[w](1)− h[w](0)

1− 0

∣∣∣∣s · Ls(h[w](0), h[w](1)), with L(x, y) :=

∣∣∣∣F (x)− F (y)

x− y

∣∣∣∣ .
(2.12)

The comparison of the two relations given in (2.11) and in (2.12) is a main step for the
following result which provides an alternative expression of the Λ series as a function of
the secant transfer operator:
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Lemma 2.13. Consider a complete dynamical system defined from a dynamical system
(I, T ) together with an initial density f . Then, the Λ Dirichlet series are expressed with
the secant L of the distribution F related to the density f , together with the secant transfer
operator Hs defined as (2.9), namely

Λk(s) :=
∑
w∈Σk

psw = Hk
s [L

s](1, 0), Λ(s) = (1−Hs)
−1[Ls](1, 0), (2.13)

Λ(s, u) = (1− uHs)
−1[Ls](1, 0).

Proof. We have already proven the expression for Λk(s) as a function of the iterate Hs by
comparing (2.11) and (2.12). The sum over k leads to the quasi-inverse of Hs as it is stated
in (2.13).

Transfer operator of memoryless sources. In the case of the memoryless sources,
the function Hs[1](x) is a constant function, and for any x ∈ I, one has

Hs[1](x) =
∑
h∈H
|h′(x)|s =

∑
m∈Σ

|h′[m](x)| =
∑
m∈Σ

psm = λ(s).

Then, λ(s) is the eigenvalue of Hs for the eigenfunction 1 and Λ(s) = 1/(1 − λ(s)) is the
eigenvalue of (I−Hs)

−1 for the eigenfunction 1. In the same vein, λ(s) is the eigenvalue of
Hs, relative to the constant function 1, equal to 1 on the square I2 and Λ(s) = 1/(1−λ(s))
is the eigenvalue of (I −Hs)

−1 for the same function 1.

Good Class. Here we consider particular complete dynamical systems, for which it is
possible to prove that the quasi-inverse has nice spectral properties on a convenient func-
tional space. This will entail nice properties for the Λ(s) series.

Definition 2.14. A dynamical system of the interval (I, T ) belongs to the Good Class if
it is complete, with a set H of inverse branches which is uniformly contracting, i.e, there
exists a constant ρ < 1 (called the contraction ratio) for which

∀h ∈ H, ∀x ∈ I, |h′(x)| ≤ ρ.

When the dynamical system belongs to the Good Class, the transfer operator (acting
on a convenient functional space) behaves as a finite matrix, and all what we have said for
the transition matrix Ps of a good Markov chain can be extended to the transfer operator
Hs : It admits dominant spectral properties for s near the real axis, together with a spectral
gap. This implies the following:

Lemma 2.15. In the case of a dynamical source of the Good Class, the function Λ(s) is
analytic on the half plane {<s > 1} and admits a simple pole at s = 1 with a residue equal
to −1/λ′(1). Moreover the entropy of the source is well defined and expressed with the
dominant eigenvalue λ(s) of the transfer operator Hs as h(S) = −λ′(1).

2.4 Parametrization of a general source.

In the case of a dynamical system, we have associated to a real x ∈ I a word M(x) that is
the encoding of the trajectory T (x). We have also built a family of fundamental intervals
Iw, whose measures are the fundamental probabilities of the source. Moreover, for each
depth k, the fundamental intervals Iw form a topological partition of the interval I.



2.4 Parametrization of a general source. 49

A general source is completely defined by the family (pw). We will now adopt the
inverse point of view and wish to associate to this source a family of fundamental intervals
Iw whose probability is equal to pw and a parametrization M : I → ΣN, which will extend
the point of view of dynamical sources.

2.4.1 Non ambiguous sources.

Here, and in all the sequel, we restrict ourselves to a class of particular sources, that gathers
non ambiguous sources.

Definition 2.16. Let Σ be a totally ordered alphabet of cardinality r. A source over the
alphabet Σ produces infinite words of ΣN, and is specified by the fundamental probabilities
pw, w ∈ Σ?, where pw is the probability that an infinite word begins with the finite prefix
w. When the two following properties hold,

(i) pw > 0 for any w ∈ Σ?, (ii) πk := max{pw : w ∈ Σk} tends to 0, as k →∞,

the source is said to be non-ambiguous.

In the sequel, all the sources are assumed to be non-ambiguous.

2.4.2 Parametrization of a general source.

We will now build the fundamental intervals and the parametrization M which will extend
their “dynamical” analogs. These objects will depend on the order which is defined on the
alphabet.

The sets Σk, for k ≥ 1 and the set ΣN are endowed with the strict lexicographic order
(associated to the order on Σ) and denoted by ‘<’. For any prefix w ∈ Σ?, we denote by
|w| the length of w (i.e., the number of the symbols that it contains) and aw, bw, pw the
probabilities that a word produced by the source begins with a prefix α of the same length
as w, which satisfies α < w, α ≤ w, or α = w, meaning

aw :=
∑

α,|α|=|w|,
α<w

pα, bw :=
∑

α,|α|=|w|,
α≤w

pα, pw = bw − aw. (2.14)

Thus, for a given k, when the prefix w varies in Σk, this gives rise to a partition of the
unit interval with subintervals of length pw. When the prefixes w ∈ Σk are ordered in
increasing lexicographic order, and the subintervals are arranged from left to right, then,
the subinterval corresponding to prefix w has left (respectively, right) endpoint equal to
aw (resp., bw). See Figure 2.8.

Consider the set ΣN of (infinite) words produced by the source S, ordered via the
lexicographic order. Given an infinite wordX ∈ ΣN, denote by wk its prefix of length k. The
sequence (awk)k≥0 is increasing, the sequence (bwk)k≥0 is decreasing, and bwk − awk = pwk
tends to 0 for k → ∞. Thus a unique real P (X) ∈ [0, 1] is defined as the common
limit of (awk) and (bwk), and P (X) is simply the probability that an infinite word Y be
smaller than X. The mapping P : ΣN → [0, 1] is surjective and strictly increasing outside
the exceptional set formed with words of ΣN which end with an infinite sequence of the
smallest symbol or with an infinite sequence of the largest symbol.

Conversely, almost everywhere (except on the set {aw, w ∈ Σ?}), there is a mapping M
which associates, to a number u of the interval I := [0, 1], a word M(u) ∈ ΣN. Hence, the
probability that a word Y be smaller than M(u) equals u. The lexicographic order on words
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Figure 2.8: The parametrization of a source

(‘<’) is then compatible with the natural order on the interval I, namely, M(t) ≤M(u) if
and only if t ≤ u.

In Figure 2.8, we see the representation of two words of respective parameters u and t.
For each depth `, the prefix of length ` of a word M(u) is by definition the prefix w for
which u belongs to the fundamental interval [aw, bw].

The symmetric source. The symmetric source Š of a source S is defined on the same
alphabet Σ := [0 . . r − 1]. However, this alphabet is ordered with the symmetric order;
namely, we consider the mapping Σ → Σ which maps the symbol σ to the symbol σ̌ =
(r − 1)− σ. This mapping is then extended to Σ? using concatenation: for any w ∈ Σ?, of
the form w = w1 ·w2 · . . . ·wk, the word w̌ is defined as w̌ = w̌1 · w̌2 · . . . · w̌k. This is further
extended to ΣN in a similar way, and gives rises to a parametrization M̌ for the source
Š which is closely related to the initial parametrization of the source S via the equality
M̌(u) = M(1− u).

2.4.3 Geometry of the source

This parametrization will play a central role in our work. It allows to consider a proba-
bilistic source as a random variable defined on the unit interval. Each (infinite) word X is
represented by its parameter u for which the equality X = M(u) holds.

Fundamental intervals. We first define the fundamental intervals, related (as previ-
ously in the case of a dynamical source) to possible finite prefixes.

Definition 2.17. For w ∈ Σ?, the interval Iw := [aw, bw] is called the fundamental interval
relative to the prefix w. It gathers (up to a denumerable set) all the real numbers u for
which M(u) begins with the finite prefix w. It is of length pw. When w ∈ Σk, it is said of
depth k.
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Parametrized version of the coincidence. We recall that we are interested in a
more realistic cost related to the number of symbol comparisons needed to distinguish two
words, and closely related to the coincidence, defined in Section 2.1. We now describe a
parametrized version of the coincidence.

Definition 2.18. The coincidence γ(u, t) is the length of the largest common prefix of
words M(u) and M(t). The function γ is then defined on the square [0, 1] × [0, 1] and
associates to the pair (u, t) the coincidence γ(u, t) := c(M(u),M(t)). The realistic cost of
the comparison between M(u) and M(t) then equals γ(u, t) + 1

Fundamental triangles. A pair of words of the source is of the form (M(u),M(t)),
with (u, t) ∈ [0, 1]2. All the functions of interest only depends on the set {M(u),M(t)}.
Thus, it is convenient to deal with the unit triangle

T = {(u, t), 0 ≤ u ≤ t ≤ 1}, (2.15)

which is the set of parameters needed to describe the ordered pairs of words (M(u),M(t))
with u ≤ t. We now present the notion of fundamental triangle that gathers and “mixes”
the two notions that we have already introduced – fundamental interval Iw and coincidence
function γ–.

Definition 2.19. Consider the unit triangle T defined in (2.15). For w ∈ Σ?, the funda-
mental triangle Tw associated to the prefix w is the set of all the pairs (u, t) ∈ T for which
the two words M(u) and M(t) both begin with the prefix w, namely

Tw := (Iw × Iw) ∩ T = {(u, t), aw ≤ u ≤ t ≤ bw}. (2.16)

Figure 2.9 represents the family of triangles Tw, which defines the “geometry” of the
source for two memoryless sources that are built on an alphabet of cardinality 2 and 3
respectively. The sum of all the triangle areas involves the Λ series defined in (2.1), under

the form
1

2

∑
w∈Σ?

p2
w =

1

2
Λ(2),

and equals (1/2) c(S) where c(S) is the coincidence of the source, already mentioned in
Section 2.1.

Figure 2.9: The geometry of two memoryless sources. On the left, the case of Σ := {a, b} with
pa = pb = 1/2. On the right, the case of Σ := {a, b, c} with pa = 1/2, pb = 1/6, pc = 1/3
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Level sets of the coincidence function. The level sets of the function γ, namely the
sets [γ ≥ ` + 1] ∩ T are written as a disjoint union of fundamental triangles Tw. More
precisely, the equality

[γ ≥ `+ 1] ∩ T =
⋃
w∈Σ`

Tw

expresses that the coincidence γ(u, t) is at least ` + 1 if and only if the two words M(u)
and M(t) begin by the same prefix of length `. Then, the two relations

T ∩ [γ ≥ `+ 1] =
⋃
w∈Σ`

Tw,
∑
`≥0

1[γ≥`] =
∑
`≥0

(`+ 1)1[γ=`],

entail the following equality which holds for any integrable function g on the unit triangle
T , and will be extensively used in the sequel,∫

T
[γ(u, t) + 1]g(u, t) du dt =

∑
w∈Σ?

∫
Tw
g(u, t) du dt. (2.17)

Conclusion of the chapter. In this chapter, we have introduced different types of
simple sources, we have described dynamical sources and focused on the general model
of sources we introduce for our further analyses: the parametrized sources. We associate
with each type of sources its Λ-series, which can be viewed as a generating function of
the source. This series plays a center role in the analysis of the algorithms which deal
with words, and this will be also the case here, in the thesis. The analytic properties of
the Λ series encapsulates the probabilistic properties of the source and “returns” them in
our further analyses. This is why the following chapter 3 is devoted to study the analytic
properties of the Λ series of the source.
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Tameness of Sources
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The methodology of analytic combinatorics relies on the study of analytical properties
of generating functions. And here, our main generating function is the Λ series, which is
the Dirichlet generating function of the fundamental probabilities. We now consider the
generating function Λ : s 7→ Λ(s) as a function of the complex variable s, and explain how
probabilistic properties of the source may be transfered into analytic properties of this Λ
function.

This Λ series will intervene as a main object when we use the Rice method. As we will
see in Chapters 5, 6 and 7, we need to locate regions of the complex plane where the Λ
series fulfills two properties: it is analytic (or meromorphic, with a good knowledge of the
positions of its poles), and of polynomial growth when |=s| becomes large.

However, there are other Dirichlet series, which will intervene in our analyses, as a
characteristic object of the pair “source, algorithm”. They are called the mixed Dirichlet,
and they will be related to the series Λ of the source (sometimes to the other generating
function Π defined in Definition 2.1). As we wish to use the Rice method on these mixed
Dirichlet series, we are interested in their tameness, which is itself related to the tameness
of the Λ series. The mixed Dirichlet depends on the type of the algorithm (sorting or
searching algorithms): for sorting algorithms (see Chapter 6), the mixed Dirichlet series
are closed related to the Λ series, we are interested in the tameness of Λ on the left of the
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vertical line <s = 1, and we ask there “strong” properties for Λ. For searching algorithms
(see Chapter 7), the mixed Dirichlet can be also related to the Λ series, and sometimes to
the Π series ; we are interested in the tameness of Λ on the right of the vertical line <s = 1,
and Π on the right of the vertical line <s = 0 and we ask there “weak ” properties for Λ
or for Π.

Plan of the chapter. This Chapter contains three sections; the first two are devoted to
study strong properties of Λ(s) on the left of <s = 1, which will be used in the analysis of
sorting algorithms, whereas the third section reviews weak properties of Λ(s) on the right
of <s = 1, or Π(s) on the right of <s = 0 which will be used in the analysis of searching
algorithms

For our study of strong analytical properties of Λ(s), as we already know that the series
Λ(s) is not defined at s = 1, our study will be divided into two steps. We first consider the
vertical line {<s = 1}, and then the situation on the left of this vertical line. We are also
interested in the behaviour of the bivariate series Λ(s, u) when <s is close to 1 and u close to
1. We first describe the properties of the Λ series for classical sources that are considered in
the previous chapter (memoryless sources, Markov chains, dynamical sources). The study
of these particular cases gives rise to interesting phenomena: periodicity, quasi-periodicity,
and tameness. It is thus natural to propose (at the end of the chapter) a classification of
general (non-ambiguous) sources with respect to these phenomena.

In the first section of this chapter, we study the properties of the Λ-series of our “clas-
sical” sources (memoryless sources, Markov chains, dynamical sources) on the half-plane
{<s ≥ 1} and we study two important phenomena which characterise the behaviour of the
Λ series on the vertical line {<s = 1}, namely the periodicity1 and the quasi-periodicity.

In the second section of this chapter, we describe the properties of the Λ-series of our
“classical” sources (memoryless sources, Markov chains, dynamical sources) on the half-
plane {<s < 1} and we study an important phenomenon which describes the situation of
the Λ series on this half-plane, namely the shape of their tameness regions. Finally, we will
give general definitions for periodicity, quasi-periodicity and tameness for general sources.

Finally, the last section is devoted to tameness properties of another type, which de-
scribe weaker properties of Λ(s) on the right of <s = 1, and properties of the series Π(s) on
the right of <s = 0. These properties will be sufficient to entail tameness of the Dirichlet
series which intervene in the analysis of searching algorithms, in Chapter 7

3.1 Properties on the line {<s = 1}. (Quasi-)periodicity.

3.1.1 Case of a memoryless source.

We begin with this simplest case, where we use the expression of the Λ series previously
obtained in Lemma 2.7:

Λ(s) =
1

1− λ(s)
.

Characterization of the set of poles. The following result describes the first properties
of the Λ series.

1We recall that the periodicity phenomenon (which may also occur in the Markov chain) must not
be mixed up with the usual aperiodicity property for Markov chains which we never used under this
terminology: in this thesis, a Markov chain which is irreducible and aperiodic (in the usual sense) will be
said to be good.
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Lemma 3.1. The Dirichlet series Λ(s) of a memoryless source is meromorphic on the
complex plane, is analytic on the half plane <s > 1 and has a simple pole at s = 1.
Moreover, the set Z of poles is defined as:

Z = {s; λ(s) = 1}. (3.1)

Proof. The function s 7→ λ(s) defined in 2.1 is analytic on the complex plane, and thus
the function s 7→ Λ(s) is meromorphic with a set of poles Z defined in (3.1). Let σ := <s,
and assume σ > 1. Then, the inequality |λ(s)| ≤ λ(σ) < λ(1) = 1 entails that the set Z is
contained in the half plane <s ≤ 1.

Periodicity. To the family of probabilities P = (p1, p2, . . . , pr), we associate the ratios

α(i, j) :=
log pi
log pj

for any pair (i, j) ∈ Σ2. (3.2)

The following classical result proves that the position of the set Z with respect to the
vertical line <s = 1 is related to the rationality of the ratios α(i, j)(see [26]).

Lemma 3.2. For a memoryless source of probabilities P, the following conditions are
equivalent:

(a)The intersection Z ∩ {<s = 1} contains a point s 6= 1.

(b) All the ratios α(i, j) defined in (3.2) are rational numbers.

(c) There exists τ > 0 for which the equality Z ∩ {<s = 1} = 1 + 2iπτZ holds.

(d) The function λ(s) is periodic of period 2iπτ .

A source which satisfies one of these conditions is said to be periodic.

When a memoryless source is periodic, then (e) holds

(e) there exists an algebraic integer a < 1 for which all the probabilities pi belong to
the semi-group generated by a.

Example. For any unbiased memoryless source, all the ratios α(i, j) are equal to 1. Such a
source is periodic, and λ(s) is periodic of period (2π)i/ log r. An instance of a (non trivial)
periodic memoryless source on the binary alphabet is given by p0 = 1/φ, p1 = 1/φ2 where
φ = (1 +

√
5)/2 is the golden ratio.

Proof. We will prove (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a)

(a)⇒ (b). For s = 1 + 2iπt, one has

λ(s) =
∑
`∈Σ

p` e
2iπt log p` so that |λ(s)| = |

∑
`∈Σ

p` e
2iπt log p` | ≤

∑
`∈Σ

p` = 1.

Now, if the equality λ(1 + 2iπt) = 1 holds, this entails (by the converse of the triangular
inequality) the following equalities,

∀`, e2iπt log p` = 1, and then t log p` ∈ Z. (3.3)

Now, if t 6= 0, one deduces

α(i, j) :=
log pi
log pj

∈ Q, ∀i, j.
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(b)⇒ (c). The previous proof shows that the possible solutions of the equation λ(1+2iπt) =
1 arise when

t ∈ 1

log pj
Z ∀j ∈ [1 . . r].

When all the real numbers α(i, j) are rational, the intersection of the lattices generated by
(1/ log pi) is not reduced to {0} and has a smallest element τ > 0. Then, all the solutions
of the equation λ(1 + 2iπt) = 1 are of the form t = τZ.

(c)⇒ (d). One always has, for any real t,

λ(s+ 2iπt) =
∑
`

p`
s+2iπt =

∑
`

ps` e
2iπt log p` .

Assume now that the equality λ(1 + 2iπt) = 1 holds with t ∈ τZ. Then, the proof of
(a)⇒ (b) shows that Relation (3.3) holds and then, for any t ∈ τZ, one has

λ(s+ 2iπt) =
∑
`

ps` e
2iπt log p` =

∑
`

ps` = λ(s).

(d)⇒ (a). Clear.

(d)⇒ (e). Clear if we let a := exp(1/τ)

Quasi-periodicity. For a general complex number of modulus 1, we will be also inter-
ested in the description of the set

Z := {s; |λ(s)| = 1},

and its position with respect to the vertical line {<s = 1}. The following result provides an
extension of the previous Lemma 3.2. It is related to the rationality of the ratios α(k, j, `),
defined as

α(i, j, k) :=
log pi − log pj
log pi − log pk

for any pair (i, j, k) ∈ Σ3. (3.4)

Lemma 3.3. For a memoryless source of probabilities P, the following conditions are
equivalent:

(a) The intersection Z ∩ {<s = 1} contains a point s 6= 1.

(b) All the ratios α(i, j, k) defined in (3.4) are rational numbers.

(c) There exists τ > 0 for which the equality Z ∩ {<s = 1} = 1 + iτZ holds.

A source which satisfies one of these conditions is said to be quasi-periodic.

Proof. We will prove (a)⇒ (b)⇒ (c)

(a)⇒ (b). For s = 1 + 2iπt, one has

λ(s) =
∑
`∈Σ

p` e
2iπt log p` so that |λ(s)| = |

∑
`∈Σ

p` e
2iπt log p` | ≤

∑
`∈Σ

p` = 1.

Now, if the equality λ(1 + 2iπt) = u = e2iπθ holds, this entails (by the converse of the
triangular inequality) the following equalities,

∀`, e2iπt log p` = u = e2iπθ, and then t log p` ∈ θ+ Z, t (log pi − log pj) ∈ Z. (3.5)

Thus, if t 6= 0, one deduces

α(i, j, k) :=
log pi − log pj
log pi − log pk

∈ Q ∀i, j, k.
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(b)⇒ (c). The previous proof shows that the possible solutions of the equation λ(1+2iπt) =
u verify

t ∈ 1

log pi − log pj
Z.

When all the real numbers α(i, j, k) are rational, the intersection of all these lattices is a
not reduced to {0} and is of the form Zτ , with τ > 0.

Fix an element of the lattice Zτ , of the form t = kτ for k ∈ Z, and denote by θk the
real θk ∈ [0, 2π[ for which kτ log p1 ≡ θk mod 1. Now, the pair (kτ, θk) is a solution of the
system

kτ log p1 ≡ θ mod 1, kτ log p2 ≡ θ mod 1, . . . , kτ log pr ≡ θ mod 1.

This means that the set Z ∩ {<s = 1} coincides with the set {1 + 2iπkτ, k ∈ Z}.

3.1.2 Case of a Markov chain.

We now consider the case of a good Markov chain, where the expression of Λ is provided
in Lemma 2.10.

Characterization of the set of poles. There is an analog of Lemma 3.1 in the case of
a good Markov chain.

Lemma 3.4. The Dirichlet series Λ(s) of a good Markov chain is meromorphic on the
complex plane, is analytic on the half plane <s > 1 and has a simple pole at s = 1.
Moreover, the set Z of poles is defined as

Z = {s; det(I −Ps) = 0}. (3.6)

Proof. The function s 7→ Ps is analytic on the complex plane, and thus the function
s 7→ Λ(s) is meromorphic with a set of poles Z defined in (3.6). Let σ := <s. Then, the
inequality ||Pk

s || ≤ ||Pk
σ|| holds and entails the inequality on the spectral radius r(s) ≤ r(σ).

In the case of a good Markov chain, the spectral radius r(σ) equals the dominant eigenvalue
λ(σ). Assume now the strict inequality σ > 1, we wish to prove the strict inequality
λ(σ) < λ(1) = 1. As the inequality λ(σ) ≤ λ(1) holds, we assume that the equality
λ(σ) = λ(1) holds, and we look for a contradiction.

The equalities ∑
j

pσi|jπ
(j)
σ = λ(σ)π(i)

σ , λ(1) = 1 =
∑
i

pi|j =
∑
j

π(j)
σ

entail

λ(σ) =
∑
i,j

pσi|jπ
(j)
σ =

∑
j

π(j)
σ

∑
i

pσi|j ,

and thus

0 = λ(1)− λ(σ) =
∑
j

π(j)
σ

[∑
i

(pi|j − pσi|j)

]
.

This implies that for any i ∈ Σ there is a unique j = τ(i) ∈ Σ for which the probability
pi|j = 1. When the Markov chain is good, there does not exist such a map τ : Σ→ Σ.
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Periodicity. Consider a good Markov chain, its transition matrix P, and, for any cycle
of length k ≥ 1, of the form C := {i1i2 . . . ik), its probability p(C) := pi1|ikpi2|i1 . . . pik|ik−1

and its normalized probability π(C) = p(C)1/k. We also consider all the possible ratios of
the form

α(C,K) :=
log π(C)
log π(K)

for each pair (C,K) of cycles, (3.7)

α(C,K,L) :=
log π(C)− log π(K)

log π(C)− log π(L)
for each triple (C,K,L) of cycles. (3.8)

These ratios play a similar role to the previous ratios α(i, j) or α(i, j, k) in the memoryless
case. Indeed, the following result holds and extends the previous Lemmas 3.2 and 3.3. Its
proof is omitted.

Lemma 3.5. For a good Markov chain, with transition matrix P, the following conditions
are equivalent:

(a) The intersection Z ∩ {<s = 1} contains a point s 6= 1.

(b) All the ratios α(K,L) defined in (3.7) are rational.

(c) There exists τ > 0 for which the equality Z ∩ {<s = 1} = 1 + 2iπτZ holds.

(d) The matrix s 7→ Ps is periodic of period iτ .

A Markov chain which satisfies one of these conditions is said to be periodic.

When a Markov chain is periodic, there exists an algebraic integer a and a vector of positive
reals (ν1, ν2, . . . , νr) for which the matrix P is written as P = D−1QD, where D is the
matrix whose diagonal is (ν1, ν2, . . . , νr) and all the nonzero coefficients of the matrix Q
belong to the group generated by a.

Quasi-periodicity. We will be also interested in the description of the set

Z := {s; ∃u, |u| = 1, det(I − uPs) = 0},

and its position with respect to the vertical line {<s = 1}. The following result provides an
extension of the previous Lemma 3.5 in the case when u is a general complex of modulus
1. It is related to the rationality of the ratios α(C,K,L), defined in (3.8).

Lemma 3.6. For a good Markov chain, with transition matrix P, the following conditions
are equivalent:

(a) The intersection Z ∩ {<s = 1} contains a point s 6= 1.

(b) All the ratios α(C,K,L) defined in (3.8) are rational.

(c) There exists τ > 0 for which the equality Z ∩ {<s = 1} = 1 + 2iπτZ holds.

A Markov chain which satisfies one of these conditions is said to be quasi-periodic.

3.1.3 Case of a dynamical source.

We now consider the case of a dynamical system, where Lemma 2.13 provides an expres-
sion of the generating function Λ(s) as a function of the transfer operator Hs defined in
(2.9). Moreover, we limit ourselves to good dynamical sources whose definition is given in
Definition 2.14. We now recall the statements of Lemma 3.7 in a more concise form.

Lemma 3.7. In the case of a good dynamical source, the function Λ(s) is analytic on the
half plane {<s > 1} and admits a simple pole at s = 1.
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Now, we study the possible periodicity (or quasi-periodicity) of such a good dymamical
source, and we introduce the analogs of quantities α(i, j) defined in (3.2) for memoryless
sources or α(C,K) defined in (3.7) for Markov chains. All these quantities are defined with
cycles, and we are then led to study the fixed points of inverse branches h ∈ H?. First, it
is clear that, for a good dynamical system, any inverse branch h ∈ H? has a unique fixed
point, denoted by h?.

For an inverse branch h ∈ H?, we denote the depth of h by p(h) and for h, k, ` ∈ H?,
we consider

π(h) := |h′(h?)|1/p(h), α(h, k) :=
log π(h)

log π(h)
, α(h, k, `) :=

π(h)− π(k)

π(h)− π(`)
. (3.9)

These ratios α(h, k) or α(h, k, `) provide an extension of our previous quantities α
that we have already defined for simple sources. The following result is an extension of
the previous results described in Lemma 3.2, 3.3, 3.5 and 3.6. It relates the possible
singularities of the quasi-inverse (I − uHs)

−1 on the vertical line <s = 1 to the rationality
of the ratios α’s . However, as there is an infinite number of possible ratios α, there are no
longer exact equivalences.

Proposition 3.8. Consider a dynamical system of the Good Class and its secant transfer
operator Hs, acting on the space C1(I × I). Then, the following holds:

(a) If there exists t0 6= 0 for which the spectrum SpH1+it0 contains an eigenvalue equal
to 1, then all the ratios α(h, k) are rational numbers, and the set of the real numbers
t for which the spectrum SpH1+it contains an eigenvalue equal to 1 is a lattice Z · τ
for some τ > 0. In this case, the source is said to be periodic.

(b) If there exists a ratio α(h, k) which is not rational, then, the quasi-inverse (I−Hs)
−1

is analytic on <s = 1 except at s = 1 where it has a simple pole.

(c) If there exists t0 6= 0 for which the spectrum SpH1+it0 contains an eigenvalue u of
modulus 1, then all the ratios α(h, k, `) are rational numbers, and the set of the real
numbers t for which the spectrum SpH1+it contains eigenvalue u of modulus 1 is a
lattice Z · τ for some τ > 0. In this case, the source is said to be quasi-periodic.

(d) If there exists a ratio α(h, k, `) which is not rational, then, the spectral radius of Hs

is strictly less than 1 on {s;<s = 1, s 6= 1} and, for any u of modulus 1, the quasi-
inverse (I − uHs)

−1 is analytic on the line <s = 1 except for s = 1 and u = 1 where
it admits a simple pole.

3.1.4 Quasi periodicity is exceptional.

We have mentioned that the periodicity phenomenon arises in a natural context for simple
sources, since any unbiased memoryless source is periodic. Then a natural further question
is: Do there exist many general dynamical sources which are periodic? quasi-periodic?

The following result shows that the (quasi)-periodicity phenomenon is in a sense excep-
tional for general good dynamical sources: It only occurs for sources which are obtained
from simple sources by some conjugation. We recall that two dynamical sources (I, T ) and
(I, U) are conjugate if there exists a bijection Φ : I → I of class C2 for which T : Φ◦U ◦Φ−1.
Then, it is clear that a dynamical system conjugate to a periodic dynamical system is itself
periodic. More precisely, it is proven for instance in [4] the following:

Proposition 3.9. A (complete) good dynamical source may be quasi-periodic only if it is
conjugate to a source with affine branches.
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We will be more interested in the contrapositive of the previous statement:

NA. Non-Affine. If a good dynamical system is not conjugate to a dynamical system with
affine branches, then Λ(s, u) is analytic for any (s, u) 6= (1, 1), with <s = 1, |u| = 1.

3.2 Properties on the left half-plane {<s < 1}. Tameness.

The previous section describes the position of the set Z of singularities of the Λ-function
in the half-plane {<s ≥ 1}. We now focus on the left halfplane {<s < 1} and isolate a
region R ⊃ {<s < 1} where the Λ function is analytic. In fact, we have to re-inforce our
needs for the region R, because it is also essential (for applying the Rice method, as we
shall see it later in Chapter 4) that Λ(s) be of polynomial growth for s ∈ R, |=s| → ∞.
Such a region will play a central role in the subsequent analyses. We are then led to the
following definition.

Definition 3.10. [Tameness region] A tameness region for a source S is a region R ⊃
{<s ≥ 1} where the Λ series is meromorphic, with a only pole (simple) located at s = 1,
and is of polynomial growth when |=s| → ∞.

We wish to obtain sufficient conditions on probabilistic probabilities of the source under
which the “shape” of a tameness region R for S may be made precise.

3.2.1 Shape of tameness regions.

As we will see later, regions with an hyperbolic shape or vertical strips arise in a natural
way as possible tameness regions for interesting subclasses of sources. This is why the
following definition will be important in the sequel. It describes three cases of possible
tameness regions R which will occur for a classical source:

Definition 3.11. [Shape of regions] A region R ⊃ {<s ≥ 1} has a

(a) S-shape (shorthand for Strip shape) if R is a vertical strip <(s) > 1 − δ for some
δ > 0.

(b) H-shape (shorthand for Hyperbolic shape) if R is an hyperbolic region R, defined
as, for some A,B, ρ > 0

R := {s = σ + it; |t| ≥ B, σ > 1− A

|t|ρ
}
⋃
{s = σ + it; σ > 1− A

Bρ
, |t| ≤ B}.

(c) P -shape (shorthand for Periodic shape) if R is a vertical strip “with holes”, namely

R := R0\R1, R0 := {<s > 1−δ}, R1 := {s = 1 + it; t = 2iπkτ, k ∈ Z \ {0}} ,

for some δ, τ > 0.

When they exist, δ is the width, ρ is the hyperbolicity exponent, and τ is the period.

3.2.2 Three types of tameness

Definition 3.12. [Shape of tameness]. A source is Λ-tame if its Λ-series satisfies the
following:
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(a) It admits at s = 1 a simple pole, with a residue equal to 1/h(S), (where h(S) is the
entropy of the source)

(b) It admits a tameness region with one of the shapes that are described in Definition
3.11.

A vertical strip can be viewed as a region with a zero hyperbolicity exponent. We are
interested by tameness regions which are the largest possible. Then, it is natural to define
the hyperbolicity exponent of the source S as the infimum of all the hyperbolicity exponents
of tameness regions of the source S. For instance, if the source admits as tameness region
a vertical strip, then the hyperbolicity exponent of the source equals 0. There also exist
some sources for which the singularities of the Λ function come close to the vertical line
<s = 1 very fast, with an exponential speed. Such sources have an hyperbolicity exponent
equal to ∞.

Figure 3.1: Three possible tameness regions R for the Λ series. On the left, the case of
a periodic source. On the middle, the case of the S-shape. On the right, the case of a
H-shape.

3.2.3 Tameness in vertical strips “with holes”. The periodic case.

In the case of a periodic source, which is conjugate to a simple source, the function s 7→ λ(s)
is periodic of period iτ , and there is a vertical strip on the left of the vertical line <s = 1
where the Λ function is analytic and of polynomial growth. There exists in this case a
tameness region of the source which is a “vertical strip with holes”. Then:

Lemma 3.13. A periodic source is P -tame.

3.2.4 Tameness in vertical strips. The UNI condition.

When a good dynamical source is not conjugate to a dynamical source with affine branches,
we already know, with Section 3.1.4, that it cannot be periodic. Moreover, the series Λ is
meromorphic on <s ≥ 1, with a only pole at s = 1. A source which is tame with a strip
shape strongly differs from a periodic source. It is thus natural to search S-tame sources
amongst sources whose geometry strongly differs from the geometry of simple sources.

This is the idea of Dolgopyat when he introduces the UNI Condition that expresses
that the source strongly differs from a source with affine branches.

Condition UNI. One first defines a probability Πn on each set Hn ×Hn, in a natural
way, and lets Πn{(h, k)} := |h(I)| · |k(I)|, where |J | denotes the length of the interval J .
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Furthermore, ∆(h, k) denotes the “distance” between two inverse branches h and k of same
depth, defined as

∆(h, k) = inf
x∈I
|Ψ′h,k(x)| with Ψh,k(x) = log

∣∣∣∣h′(x)

k′(x)

∣∣∣∣ . (3.10)

The distance ∆(h, k) is a measure of the difference between the “shape” of the two branches
h, k. The UNI Condition, stated as follows [20], is a geometric condition which expresses
that the probability that two inverse branches have almost the same “shape” is very small:

Definition 3.14. [Condition UNI]. A good dynamical system (I, T ) with contraction ratio
ρ < 1 satisfies the UNI condition if its set H? of inverse branches satisfies the following

For any ρ̂ ∈]ρ, 1[, and for any integer n, one has Πn[ ∆ ≤ ρ̂n] << ρ̂n.

For a source with affine branches, the “distance” ∆ is always zero, and the probabilities
Prn[ ∆ ≤ ρ̂n] are all equal to 1. Such a source never satisfies the Condition UNI. Conversely,
a good dynamical source of the UNI Class cannot be conjugate to a source with affine
branches, as it is proven by Baladi and Vallée [5]. Then, the condition UNI excludes all the
simple sources, which cannot be S–tame.

Condition UNI and S–tameness. The strength of the Condition UNI is due to the
fact that this condition is sufficient to imply S–tameness:

Theorem 3.15. [Dolgopyat, Baladi–Vallée, Cesaratto–Vallée] A good dynamical system
that satisfies the condition UNI is S-tame.

3.2.5 Tameness in hyperbolic regions. Diophantine conditions.

There are other conditions, of arithmetical type, which are sufficient to imply H-tameness.

Irrationality exponent and diophantine conditions. The irrationality exponent of
an irrational number was introduced by Liouville. The irrationality exponent of the irra-
tional number x is defined by

µ(x) := sup

{
ν,

∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

q2+ν
for an infinite number of pairs (p, q)

}
.

The irrationality exponent of the irrational x is then a measure of its approximability by
rational numbers.

The approximability of an irrational number x is closely related to its continued fraction
expansion, since truncations of this expansion give rise to the rational numbers that provide
the best rational approximations of the irrational x. When all the quotients that occur
in the continued fraction expansion of x are bounded, the irrational x cannot be well
approximable by rationals.

An irrational number x is diophantine if its irrationality exponent is finite. Then,
a diophantine irrational number is not too well approximable by rational numbers: it
can be viewed (in an informal way...) as an irrational number “quite different” from a
rational number. An irrational number whose quotients that occur in its continued fraction
expansion of x are bounded is diophantine.
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H–tameness of simple sources. It is possible to define the irrationality exponent of
a finite family of numbers, provided that they are not all rational. The irrationality µ(S)
of a non-periodic simple source S, is then defined as the irrationality exponent of the set

{α(C,K); K, C cycles of length ≤ r}.

The source is diophantine if the irrationality exponent is finite. For a memoryless source
over an alphabet of size r, the irrationnality exponent satisfies almost everywhere the
inequality

µ(P) + 1 =
1

r − 1
.

(“everywhere” means here: when the probability family P is randomly chosen in the subset
{(p1, p2, . . . , pr) : pj > 0, p1 + p2 + · · ·+ pr = 1} with respect to the Lebesgue measure.)

Theorem 3.16. [Roux-Vallée] For a simple non-periodic source, there exists an exact rela-
tion between the two exponents –the irrationality exponent µ and the hyperbolicity exponent
ρ, namely the equality ρ = 2µ + 2. A simple source is never S–tame. A diophantine
non-periodic source is H–tame.

The remark above together with the previous Theorem entail that the hyperbolicity
exponent of a non-periodic memoryless source over an alphabet of size r is “almost ev-
erywhere” equal to 2/(r − 1). The hyperbolicity exponent of a binary source is “almost
everywhere” equal to 2.

H–tameness of a dynamical source. The DIOP conditions. We consider a re-
inforcement of Proposition 3.8. Since, from an informal point of view, a diophantine
irrational number is an irrational number which is quite different from a rational number,
we are interested in the following situation where the hypotheses of Proposition 3.8 are
respectively re-inforced and replaced by

(b′) There exist two branches h, k ∈ H? for which the ratio α(h, k) is diophantine.
(d′) There exist three branches h, k, ` ∈ H? for which the ratio α(h, k, `) is diophantine.

We remark that there is no clear relation between Hypothesis (b′) and (d′).

We are then led to consider the following sources:

Definition 3.17. [2DIOP and 3DIOP] A non-periodic good dynamical source is

(a) 2-diophantine (2DIOP in shorthand) if there exist two branches h, k ∈ H? for which
the ratio α(h, k) is diophantine.

(b) 3-diophantine (3DIOP in shorthand) is there exist three branches h, k, ` ∈ H? for
which the ratio α(h, k, `) is diophantine.

The following result relates the arithmetic properties of the source probabilities to the
geometry of the tameness region. This is the main contribution of Roux’ PhD thesis [56].

Theorem 3.18. [Dologopyat, Naud, Melbourne, Roux–Vallée] [20][21][56] (a) A good
dynamical system that satisfies the DIOP3 condition is H–tame.

(b) A good dynamical system that satisfies the DIOP2 condition is H–tame.

However, in the case of a general source, the optimality of the tameness region is not
proven, and there is only an upper bound on the hyperbolicity exponent. We cannot exclude
that there may exist a vertical strip as a tameness region, for which the hyperbolicity
exponent equals 0. This happens when the UNI condition is also fulfilled.
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3.2.6 A small piece of history.

The UNI and DIOP conditions are introduced by Dolgopyat in the paper [20][21]. He proves
that, under these conditions, and in the case of a finite alphabet, the quasi inverse of the
plain transfer operator is analytic and of polynomial growth in a region on the left of the
line <s = 1. When the UNI condition holds, this region is a vertical strip. When the DIOP

condition holds, this region is of hyperbolic type. There are extensions of these previous
results to the quasi-inverse of the secant operator, which are proven to hold for the UNI

condition by Cesaratto and Vallée [10][11], and for the DIOP condition by Roux and Vallée
[57].

3.2.7 Conclusion of the study for classical sources.

The table of Figure 3.2 describes various possible behaviors of classical sources.

Tameness Simple sources Dynamical sources Arithmetic Geometric
shape not conjugate conditions conditions

to simple sources on ratios α on branches

Periodic Possible Impossible α(h, k) ∈ Q —
Quasi-periodic Possible Impossible α(h, k, `) ∈ Q —
Strip tame Impossible Possible — UNI
Hyperbolic tame Possible Possible DIOP2 or DIOP3 —

Figure 3.2: Tameness properties for classical sources, and sufficient conditions under which
these tameness properties hold

“Most of the time”, the simple sources (memoryless sources or good Markov chains)
are Λ-tame. They never have a S-shape, but they may have a H-shape or a P -shape,
according to arithmetic properties of their probabilities.

Dynamical sources may have a P -shape only if they are “conjugate” to simple sources.
Adapting deep results of Dolgopyat [20],[21] to the “secant transfer operator” Hs, it is
possible to prove that dynamical sources are “most of the time” Λ-tame with a S-shape,
but they may also have a H-shape. For more details, see the cited papers where all these
facts, here described in a informal way, are stated in a formal way and proven.

3.3 Weak tameness of source.

We now describe tameness properties which deal with the series Λ(s) on the right of the
vertical line <s = 1. The series Λ(s) always satisfies Λk(1) = 1 and thus Λ(1) = +∞. Then,
on the left of the vertical line <s = 1, the series Λ(s) cannot be absolutely convergent,
but we have deeply studied in the first two sections of this Chapter what are the possible
behaviors of the series Λ(s) there. We will see that this study will be central for sorting
algorithms.

However, it will appear that such strong properties are not needed for searching algo-
rithms, where we will be interested in the behaviour of Λ(s) on the right of the vertical
line <s = 1. The situation is completely different on the right of the vertical line, where
there is an abscissa of absolute convergence σa ≥ 1, that we now define.

Assume that there exists a real σ > 1 for which the series Λ(σ) is convergent. Then,
as the probabilities pw are positive, one has |psw| = p<sw and the series Λ(s) is convergent
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on the whole vertical line <s = σ. Furthermore, as the probabilities pw are at most 1, the
map σ 7→ Λ(σ) is decreasing. Finally, if we define

σa(Λ) := inf{σ; Λ(σ) < +∞},

then, the series Λ(σ) is convergent for any real σ > σa(Λ). Morever, the Dirichlet series
Λ is normally convergent on the halfplane <s ≥ σ, and defines an analytic function there,
which is furthermore of bounded growth on this halfplane.

The situation is similar with the series Π(s). The series Π(s) always satisfies π0
k = 1

and thus Π(0) = +∞. Then, on the left of the vertical line <s = 0, the series Π(s) cannot
be absolutely convergent. But, on the right of the vertical line <s = 0, there is an abscissa
of absolute convergence defined as

σa(Π) := inf{σ, ; Π(σ) < +∞}.

Then, the series Π(σ) is convergent for any real σ > σa(Π). Morever, the Dirichlet series
Π is normally convergent on the halfplane <s ≥ σ, and defines an analytic function there,
which is furthermore of bounded growth on this halfplane.

We now give the definition of weak-tameness which will be used in Chapters 5 and 7:

Definition 3.19. A source is weakly Λ-tame with width δ if the abscissa of absolute con-
vergence of the Dirichlet series Λ(s) is equal to 1 + δ.

A source is weakly Π-tame with width δ if the abscissa of absolute convergence of the
Dirichlet series Π(s) is equal to δ.

Furthermore, as the two series Λ and Π satisfy the relations

|Π(s)| ≤ Λ(<s) (for <s ≥ 0), and |Λ(s)| ≤ Π(<s− 1) (for <s ≥ 1), (3.11)

this entails the following inequality between the two widths δ(Π) and δ(Λ), namely

δ(Π) ≥ δ(Λ).

These definitions are in fact very natural, since they describe various possible behaviors
of classical sources. “Most of the time”, the simple sources (memoryless sources or aperiodic
Markov chains) are both weakly Λ-tame and Π-tame with width δ = 0. However, there
exist “natural” sources, for example intermittent sources described in Section 2.2.3 which
are Π-tame with width δ = 1/a and weakly Λ-tame with δ = 0 as soon as a > 1.

Conclusion of the Chapter. We have described the tameness of sources, and an-
nounced it was a key property to apply the Rice method. The next chapter describes
all the main analytical tools which will be used in our analyses. In particular the Rice
method can be viewed as the central method of the thesis. This explains why tameness
which was deeply studied in this Chapter is also a key tool in our work.
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In this chapter, we first define the probabilistic models for our analyses. The initial
model is the Bernoulli model where the number of keys (now words) is fixed. As we already
mentioned, the Poisson model where the number of words follows a Poisson law is usually
easier to deal with. Very often, one performs the main analyses in the Poisson model, and
then we wish to return to the (natural) Bernoulli model.

The following of the chapter is then devoted to this return from the Poisson model to
the Bernoulli model. We first present de-poissonization methods in Section 4.2, then we
focus on the method which will be mainly used in this thesis: the Rice method, which is
described in Section 4.3, and proven in Section 4.4. The Mellin transform was a tool which
underlies the two technics – Depoissonization technics, as well as Rice method –. This is
why we recall the main facts on this transform in Section 4.5. We conclude by a description
of the “Poisson-Mellin-Newton-Rice” cycle which gathers all the main tools of this chapter
and is central in our work.

4.1 Poisson and Bernoulli models

4.1.1 Definition of the models.

When the cardinal n of V is fixed, and words Vi ∈ V are independently emitted by the
source S, this is the Bernoulli model denoted by (Bn,S). However, it proves technically
convenient to consider that the sequence V has a variable number N of elements that obeys
a Poisson law of rate Z, which is defined as

P[N = k] = e−Z
Zk

k!
. (4.1)

4.1.2 Poisson model.

In this model, called the Poisson model of rate Z, the rate Z plays a role much similar
to the cardinal of V. When it is relative to probabilistic source S, the model, denoted by
(PZ ,S), is composed with two main steps:

(a) The number N of words is drawn according to the Poisson law of rate Z;

(b) Then, the N words are independently drawn from the source S.

There is an important property of the Poisson law. We know that each infinite word is
associated to a parameter that is a real in the interval ]0, 1[.

Lemma 4.1. Consider the Poisson model (PZ ,S), and, for subintervals J ,K of I, of
respective lengths u, t, denote by NJ , NK the number of words of the source whose parameter
belongs to the intervals J ,K. Then:

(i) The random variable NJ follows a Poisson law of parameter Zu.

(ii) For disjoint subintervals I,J , with I ∩J = ∅, the random variables NJ and NK are
independent, namely

P[NI = k and NJ = `] = P[NI = k] · P[NJ = `].
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Proof. We first recall the binomial and the multinomial laws which hold in the Bernoulli
model (Bn,S),

P[n][NJ = k] =

(
n

k

)
uk(1−u)n−k, P[n][NI = k and NJ = `] =

(
n

k, `, n− k − `

)
ukt`(1−u−t)n−k−`.

Assertion (i). We begin with conditional probabilities,

PZ [NJ = k] =
∑
n≥k

PZ [NJ = k | N = n] PZ [N = n]

=
∑
n≥k

P[n][NJ = k] PZ [N = n].

Using the Definition of the Poisson law, and the binomial law of the Bernoulli model,

PZ [NJ = k] =
∑
n≥k

e−Z
Zn

n!

(
n

k

)
uk(1− u)n−k.

Then we distribute the powers of Zn and the factors of the binomial coefficient

PZ [NJ = k] = e−Z
(Zu)k

k!

∑
n≥k

Zn−k

(n− k)!
(1− u)n−k.

We recover the expression of eZ(1−u), and finally

PZ [NJ = k] =
(Zu)k

k!
· e−Z · eZ(1−u)

= e−Zu
(Zu)k

k!

This proves Assertion (i).

Assertion (ii). We begin with conditional probabilities,

PZ [NJ = k and NK = `] =
∑
n≥k+`

PZ [NJ = k and NK = ` | N = n] PZ [N = n]

=
∑
n≥k+`

P[n][NI = k and NJ = `] PZ [N = n].

Using the definition of the Poisson law, and the multinomial law of the Bernoulli model

PZ [NJ = k and NK = `] = e−Z
∑
n≥k+`

Zn

n!

(
n

k, `

)
ukt`(1− u− t)n−k−`.

Then we distribute the powers of Zn and the factors of the multinomial coefficient

PZ [NJ = k and NK = `] = e−Z
(Zu)k

k!

(Zt)`

`!

∑
n≥k+`

Zn−k−`

(n− k − `)!
(1− u− t)n−k−`.

We recover the expression of eZ(1−u−t), and finally

PZ [NJ = k and NK = `] =
(Zu)k

k!

(Zt)`

`!
· e−Z · eZ(1−u−t) = e−Zu

(Zu)k

k!
· e−Zt (Zt)

`

`!
.

This proves Assertion (ii).



70 Presentation of the main tools
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in the Poisson model =⇒ in the Bernoulli model

Figure 4.1: Possible ways to obtain the asymptotic mean value in the Bernoulli model from
the exact mean value in the Poisson model.

4.1.3 Generating functions.

Consider a sequence T (n) and denote by B(z), P (z) the two following generating functions

B(z) :=
∑
n≥0

T (n)
zn

n!
, P (z) := e−zB(z) = e−z

∑
n≥0

T (n)
zn

n!
.

The first one is the exponential generating function of the sequence T (n) whereas the
second one is the Poisson generating function of the sequence T (n).

If now T (n) is the expectation of some random variable R in the Bernoulli model
(Bn,S), then P (Z) is the expectation of the same random variable in the Poisson model
(PZ ,S) of rate Z. Indeed, with conditional probabilities

EZ [R] =
∑
n≥0

EZ [R | N = n]PZ [N = n] = e−Z
∑
n≥0

E[n][R]
Zn

n!
= e−Z

∑
n≥0

T (n)
Zn

n!
= P (Z).

4.1.4 Return from the Poisson model to the Bernoulli model.

Assume now that the expectation of the random variable R is known in the Poisson model.
Is it easy to return to the Bernoulli model (Bn,S) and obtain the expectation of R in the
Bernoulli model? There are two possibilities

(a) The expression of the series P (Z) is known, via its series expansion and its coefficients
ϕ(n), defined as

ϕ(n) := (−1)n[Zn]P (Z), with the expansion P (Z) :=
∑
n≥0

(−1)nϕ(n)
Zn

n!
.

Given these coefficients, an exact expression in the Bernoulli model is obtained
through the use of a binomial recurrence (see Section 4.3.1).

(b) The asymptotics of the series P (Z) is known as Z →∞, in particular in cones. Then,
it is possible to depoissonize and prove, under some natural conditions, that the two
sequences T (n) and P (n) behave in the same asymptotic way.

The diagram of Figure 4.1 is very useful for understanding the two points of view.
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4.2 Depoissonization.

We first focus in the path (b) and we consider depoissonization techniques. This method
is used when one has a good knowledge of the Poisson transform P (z) itself (whereas the
Rice method will be used when one has a good knowledge of its coefficients ϕ(n)). As
previously, we wish to return to the Bernoulli model, and we can expect that P (n) which
is the expectation of the Poisson model (when the cardinality N follows a Poisson law of
rate z = n) is close to T (n) (which is the expectation in the Bernoulli model when N is
fixed and equal to n).

This return to the Bernoulli model needs a good behaviour of P (z) with respect to
cones. For θ < π/2, the cone Sθ is the set of complex numbers z whose argument arg z
satisfies the inequality |arg z| ≤ θ.

4.2.1 A general depoissonization result.

We use the following theorem of Jacquet and Szpankowski. This is a new result [44] which
is very helpful; and greatly simplifies the previous depoissonization results due to the same
authors, described in [45] and [46].

Theorem 4.2 (Jacquet and Szpankowski, 2014). Let P (z) be the Poisson transform of a
sequence T (n), namely

P (z) = e−z
∑
n≥0

T (n)
zn

n!
.

This series is assumed to be absolutely convergent for z ∈ C. Assume moreover that the
sequence T (n) admits an analytic extension z 7→ T (z) in a cone Sα, which is of polynomial
growth in this cone Sα when |z| → ∞, i.e., there exists γ such that, for |z| → ∞

|arg(z)| ≤ α =⇒ |T (z)| = O(|z|γ).

Then, there exists a cone Sβ where the following estimate holds for |z| → ∞,

P (z) = T (z) +
z

2
T ′′(z) +O(zγ−2).

4.2.2 The J S conditions.

This theorem is based itself on two previous results of the same authors. The first one
describes two sufficient conditions (a) and (b) sometimes called the J S conditions under
which one can relate the asymptotic behaviours of P and T .

Theorem 4.3 (Jacquet and Szpankowski, 1998). Let P (z) be the Poisson transform of a
sequence T (n), namely

P (z) = e−zB(z), with B(z) =
∑
n≥0

T (n)
zn

n!
,

that is assumed to be an entire function of z. It is also assumed that there exists θ ∈]0, π/2[
for which the two following conditions simultaneously hold in a linear cone Sθ, for some
real numbers a, b, r > 0, β, and δ < 1:

(i) For z ∈ Sθ, |z| > r =⇒ |P (z)| ≤ b |z|β.

(ii) For z 6∈ Sθ, |z| > r =⇒ |P (z)ez| = |B(z)| ≤ a exp(δ |z|).

Then, one has T (n) ∼ P (n) for n→∞.
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4.2.3 Analytic extension of the sequence T (n).

We now explain how it is possible to obtain sufficient conditions under which Conditions
(i) and (ii) are fulfilled.

Condition (i) is proven to hold with the use of Mellin transform. We study the asymptotics
of P (n) (for n→∞) with the Mellin transform P ∗ of the function z 7→ P (z).

Condition (ii) is proven to hold as soon as the coefficients T (n) satisfy the following:
There exists a function z 7→ T (z) which exists in a linear cone, is analytic there and is of
polynomial growth when |z| → ∞. More precisely:

Theorem 4.4 (Jacquet and Spzankowski, 1999). Let T (z) be an analytic continuation of
a sequence T (n) which is O(|z|γ) in a linear cone. Then, for some θ0, and for all linear
cones Sθ with θ < θ0, there exist δ < 1 and a > 0 such that the exponential generating
function B(z) of T (n) satisfies

z 6∈ Sθ =⇒ |B(z)| ≤ a exp(δ|Z|).

4.3 Binomial recurrence and Rice method

4.3.1 Binomial recurrence.

We now focus on the Case (a) described in Section 4.1.4. In this case, the expression of
the series P (z) is known, via its coefficients ϕ(n), as

ϕ(n) := (−1)n[zn]P (z), P (z) :=
∑
n≥0

(−1)nϕ(n)
zn

n!
.

It is then easy to recover the coefficients T (n) (and thus the expectation of R in the
Bernoulli model) with the equality between the two series

P (z) = e−zB(z) and then B(z) = ezP (z).

This entails the following relations between the coefficients T (n) and ϕ(n)

ϕ(n) =
∑
k≤n

(
n

k

)
(−1)kT (k), T (n) =

∑
k≤n

(
n

k

)
(−1)kϕ(k).

This gives rise to a binomial recurrence.

4.3.2 First step: An integral form.

For a sequence T of general term T (k), with T (k) ∈ C, the valuation val(T ) is the smallest
index of non-zero elements of T . We assume in the following that val(T ) is at least equal to
2. This is due to the fact that the cost of sorting or searching algorithms on a subsequence
of cardinality strictly less than 2 equals zero. We then let in the following 1+σ0 := val(T ),
with an integer σ0 ≥ 1. The first step of the Rice method transforms the sum of the
binomial recurrence

T (n) =
n∑

k=1+σ0

(−1)k
(
n

k

)
ϕ(k).

into an integral form [53, 54]. When the sequence ϕ(k) admits an analytic lifting, this is
just an (easy) application of the Residue formula.
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Proposition 4.5. Let T (n) be a numerical sequence which can be written as

T (n) =
n∑

k=1+σ0

(
n

k

)
(−1)kϕ(k).

Assume that the sequence (ϕ(k)) admits an analytic lifting $(s) in the half plane <s > σ1

with σ0 < σ1 < 1 + σ0, which is there of polynomial growth with order at most r. Then
the sequence T (n) admits a Nörlund-Rice representation, for n > r + 1 and any d with
d ∈]σ1, 1 + σ0[

T (n) = − 1

2iπ

∫ d+i∞

d−i∞
Ln(s) ·$(s)ds with Ln(s) :=

(−1)n n!

s(s− 1) . . . (s− n)
(4.2)

The function Ln(s) is called the Rice Kernel.

Proof. The proof has two main steps. We begin with the following lemma which transforms
the sum T (n) into an integral over a rectangle C which encircles the segment [1 + σ0, n].

Lemma 4.6. Let T (n) be a numerical sequence which can be written as

T (n) =

n∑
k=1+σ0

(
n

k

)
(−1)kϕ(k).

Assume that the sequence (ϕ(k)) admits an analytic lifting $(s) in the half plane <s > σ1

with σ0 < σ1 < 1 + σ0. Then T (n) admits the integral representation

T (n) =
1

2iπ

∫
ρM

Ln(s) ·$(s)ds (4.3)

where Ln(s) is defined in (4.2) and ρM is a positively oriented rectangle defined by the two
vertical lines <s = d (with d ∈]σ1, 1+σ0[), <s = n+M and two horizontal lines =s = ±M

Proof. Consider the rectangle ρM and denote by CM its interior. Since $(s) is analytic on
the half plane <s > σ1, the set of poles of the integrand

Ln(s) ·$(s) :=
(−1)n n!$(s)

s(s− 1) . . . (s− n)

inside the rectangle CM is the set {1 + σ0, . . . , n}. The sum of residues of the integrand
inside the rectangle CM is

n∑
k=1+σ0

Res(Ln(s) ·$(s); s = k).

However, for an integer k ∈ {1 + σ0, . . . , n}, the equality holds

Res(Ln(s) ·$(s); s = k) = (−1)n(−1)n−k
n!$(k)

k! (n− k)!
= (−1)k

(
n

k

)
$(k).

Then, the Residue Theorem proves the Lemma.

The second step for the proof of Proposition 4.5 transforms the rectangle ρM into a
vertical line. When M → ∞, the horizontal lines are pushed to ±∞, then the rightmost
boundary to +∞. Using the fact that $(s) is of polynomial growth, the integral of Ln(s) ·
$(s) on the positively oriented contour ρM tends to the integral of Ln(s) · $(s) on the
vertical line <s = d oriented from the north to the south. This end the proof of Proposition
4.5.
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4.3.3 Step 2. Shifting to the left.

The previous proposition shows how to transform a binomial sum into an integral in the
complex plane. For any real d ∈]σ1, 1 + σ0[, one has

T (n) :=
n∑

k=1+σ0

(−1)k
(
n

k

)
ϕ(k) = − 1

2iπ

∫
<s=d

Ln(s) ·$(s) ds, (4.4)

where Ln(s) is the Rice kernel defined in (4.2) and$(s) is the analytic lifting of the sequence
ϕ(k). Then, along general principles in analytic combinatorics [27, 29], the integration line
can be pushed to the left, as soon as Ln(s) ·$(s) (closely related to $(s)) has good analytic
properties: we need a region R on the left of <s = σ0, where $(s) is of polynomial growth
(for |=s| → ∞) and meromorphic. With a good knowledge of its poles, we finally obtain a
residue formula

T (n) = −

[∑
k

Res [Ln(s) ·$(s) : sk] +
1

2iπ

∫
C2
Ln(s) ·$(s) ds

]
, (4.5)

where C2 is a curve of class C1 enclosed in R oriented from the south to the north and the
sum is extended to all poles sk of Ln(s) ·$(s) inside the domain delimited by the vertical
line <s = σ1 and the curve C2.

The dominant singularities of Ln(s) ·$(s) provide the asymptotic behaviour of T (n),
and the remainder integral is estimated using the polynomial growth of Ln(s) ·$(s) when
|=(s)| → ∞.

4.3.4 Tameness of $(s).

To shift the integration path to the left, we need a region R on the left of <s = σ0, where
$(s) is of polynomial growth (for |=s| → ∞) and meromorphic. We need also a good
knowledge of its poles. These properties are described by the tameness of the function
$(s) (illustrated in Figure 4.2).

Definition 4.7. A function $(s) is tame at σ0 if one of the three following properties
holds:

(a) [S–shape] (shorthand for Strip shape) there exists a vertical strip <(s) > σ0− δ for
some δ > 0 where $(s) is meromorphic, has a sole possible pole (of order k0 ≥ 0) at s = σ0

and is of polynomial growth as |=s| → +∞.
(b) [H–shape] (shorthand for Hyperbolic shape) there exists an hyperbolic region R,

defined as, for some A,B, ρ > 0

R := {s = σ + it; |t| ≥ B, σ > σ0 −
A

tρ
}
⋃
{s = σ + it; σ > σ0 −

A

Bρ
, |t| ≤ B},

where $(s) is meromorphic, with a sole possible pole (of order k0 ≥ 0) at s = σ0 and is of
polynomial growth in R as |=s| → +∞.

(c) [P–shape] (shorthand for Periodic shape) there exists a vertical strip <(s) > σ0 − δ
for some δ > 0 where $(s) is meromorphic, has only a pole (of order k0 ≥ 0) at s = σ0

and a family (sk) (for k ∈ Z \ {0}) of simple poles at points sk = σ0 + 2kiπt with t 6= 0,
and is of polynomial growth as |=s| → +∞1.

There are four parameters relative to the tameness: the real σ0 is the position, the
integer k0 is the order, and, when they exist, the real δ is the width, and the real ρ is the
exponent.

1More precisely, this means that $(s) is of polynomial growth on a family of horizontal lines t = tk with
tk →∞, and on vertical lines <(s) = σ0 − δ′ with some δ′ < δ.
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Figure 4.2: Three possible domains where the function $(s) is analytic and of polynomial
growth.

4.3.5 Asymptotic estimates for T (n).

The Rice kernel defined in (4.2) plays a center role in Section 4.4. The position σ0 of
tameness of $(s) will also be an integer σ0 ∈ {1, 2}. In this case, the tameness of $(s)
entails the tameness of Ln(s)$(s). The tameness parameters for Ln(s) ·$(s) are closely
related to those of $(s): the position, the width and the exponent are the same. We also
remark that the tameness order for Ln(s) · $(s) equals k0 + 1, where k0 is the tameness
order of $(s). With the tameness properties of Ln(s) ·$(s), the shifting to the left inside
the tameness region is possible and leads to the result stated in Proposition 4.8. Note that,
from Eq. (4.5), the dominant part of the asymptotics comes from considering poles in the
region R (residue calculus) and the error term comes from the evaluation of the integral
on the curve C2 in Eq. (4.5).

Proposition 4.8. The following holds for the sequence T (n), when it is related to $(s)
by the Rice formula (4.4), with σ0 ∈ {1, 2}. If $(s) is tame at s = σ0 with order k0, then
there exists a polynomial Q of degree k0 such the following asymptotics hold, depending on
the tameness shape:

(a) With a S-shape and width δ0, for any δ < δ0, one has, for n→∞,

(−1)n+1T (n) = nσ0Q(log n) +O(nσ0−δ).

(b) With a H-shape and exponent β0, then, for any β with β < 1/(β0 + 1), one has, for
n→∞,

(−1)n+1T (n) = nσ0Q(log n) +O
(
nσ0 · exp[−(log n)β]

)
.

(c) With a P -shape and width δ0, then, for any δ < δ0, one has, for n→∞,

(−1)n+1T (n) = nσ0 (Q(log n) + Φ(n)) +O(nσ0−δ),

where nσ0 · Φ(n) is the part of the expansion brought by the family of the non real
poles of G(s) located on the vertical line <s = σ0.

Proof. If $(s) is of polynomial growth in a region R, the line of integration <s = d can be
moved to the left until a curve ρ, which lies inside the region R, provided residues of poles
inside R be taken into account. If $(s) has a pole of order k0 at s = σ0, then $(s)/(s− σ0)
has a pole of order k0 + 1, it admits near this pole the singular expression

$(s)

s− σ0
=

k0+1∑
k=1

ak
(s− σ0)k

,
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and this pole contributes with a quantity of the form

nσ0

[
k0∑
k=0

(−1)k
ak
k!

logk n

]
.

In the cases (a) or (c), the curve ρ can be chosen as a vertical line of equation <s = α with
α = σ0 − δ. In the case (b), the curve ρ can be chosen as an hyperbolic curve of the form

ρ :=

{
s = σ + it, |t| ≥ B, σ = σ0 −

A

|t|β0

}
∪
{
s = σ + it, σ = σ0 −

A

Bβ0
, |t| ≤ B

}
,

for some strictly positive constants (A,B, β0). The remainder of the proof is devoted to
the computation of the integral ∫

ρ
Ln(s) ·$(s)ds.

Proposition 4.9 proves the following : if $(s) is of polynomial growth on the curve ρ as
|s| → ∞, this integral is of order nσ0O(n−δ) in the cases (a) and (c) of Proposition 4.8. It
is of order nσ0O(exp[−(log n)β]) with β < 1/(1 + β0) in the case (b).

4.4 Proof of the asymptotic estimates in the Rice method.

4.4.1 The statement

Proposition 4.9. Associate with a function $(s) the function Ln(s)$(s), where Ln(s) is
the Rice kernel defined in (4.2).

(i) Consider the vertical line <s = α, and assume that $(s) be continuous on <s = α
and be of at most polynomial growth there: $(s) = O(sr) as |s| → ∞ on <s = α.
Then the integral on the vertical <s = α of Ln(s)·$(s) admits the following estimate,
as n→∞: ∫

<s=α
Ln(s) ·$(s)ds = O(nα).

(ii) Consider a curve ρ of hyperbolic type, namely of the form:

ρ :=

{
s = σ + it, |t| ≥ B, σ = σ0 −

A

|t|β0

}
∪
{
s = σ + it, σ = σ0 −

A

Bβ0
, |t| ≤ B

}
,

for some strictly positive constants (A,B, β0), and assume that $(s) be continuous
on ρ and be of (at most) polynomial growth there $(s) = O(|s|r) as |s| → ∞. Then
the integral of Ln(s) ·$(s) on the curve ρ admits the following estimate, as n→∞,∫

ρ
Ln(s) ·$(s)ds = nσ0 · O(exp[−(log n)β]), with β <

1

1 + β0
.

For the proof, we only need to consider the upper half-plane. We use T =
√
n as a

cut-off point and decompose each of the curves –the vertical line or the hyperbolic curve ρ–
into two parts. The first result provides estimates when s is near the real axis (|=s| ≤ T )
and the second lemma deals with the case when s is far from the real axis (|=s| ≥ T ) [72].
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4.4.2 Estimates near the real axis.

Lemma 4.10. For s outside of a fixed sector containing the negative real axis in its interior,
and under the condition |s| ≤

√
n, one has, as n→∞:

Ln(s) :=
n!(−1)n

s(s− 1) . . . (s− n)
= −nsΓ(−s)

(
1 +O

(
1√
n

)
+O

(
s2

n

))
. (4.6)

Also, for any s fixed with s 6∈ N, one has

Ln(s) = −nsΓ(−s)
(

1 +O

(
1

n

))
. (4.7)

Proof. One has

Ln(s) =
(−1)nn!

s(s− 1) . . . (s− n)
= − n!

−s(−s+ 1) . . . (−s+ n)
= −Γ(n+ 1)Γ(−s)

Γ(n− s+ 1)
.

Stirling’s formula holds in the complex plane, provided a sector around the negative real
axis is avoided. Under this condition, one has

Γ(w + 1) = wwe−w
√

2πw

(
1 +O

(
1

n

))
, |w| → +∞. (4.8)

With the Stirling formula,

Γ(n+ 1)

Γ(n− s+ 1)
=

nne−n
√

2πn

(n− s)n−ses−n
√

2π(n− s)

(
1 +O

(
1

n

))
= exp [n log n− (n− s) log(n− s)− s]

(
1 +O

(
1√
n

))
= exp [s log n− (n− s) log(1 + s/n)− s]

(
1 +O

(
1√
n

))
.

In the region under consideration, we have s/n = O(1/
√
n), which is a small quantity, so

that log(1 + s/n) = s/n+O(s2/n2). Consequently,

Γ(n+ 1)

Γ(n− s+ 1)
= ns exp

[
O

(
s2

n

)](
1 +O

(
1√
n

))
= ns

(
1 +O

(
1√
n

)
+O

(
s2

n

))
,

and the estimate (4.6) results. The proof of (4.7) is similar, even simpler, via the relation
s/n = O(1/n).

4.4.3 Far from the real axis.

Lemma 4.11. Fix any number m > 0. Then, there exists a computable constant Km > 0
such that for n large enough, s = b+ it, b fixed and t ≥

√
n, one has

|Ln(s)| ≤ Km

tm
e−L

√
n, for Ln(s) = (−1)n

n!

s(s− 1)(s− 2) . . . (s− n)
,

with L = log(
√

2).
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Proof. Choose an integer m > 0 and set A = b
√
nc . We write

|Ln(s)| = 1

|s|

m∏
a=1

∣∣∣∣ a

a− s

∣∣∣∣ m+A∏
a=m+1

∣∣∣∣ a

a− s

∣∣∣∣ n∏
a=m+A+1

∣∣∣∣ a

a− s

∣∣∣∣ .
The first product has a trivial bound

m∏
a=1

∣∣∣∣ a

a− s

∣∣∣∣ < m!

tm
. (4.9)

For the second product, the complex s is close to the imaginary axis when n → ∞. The
triangle (a, 0, s) is approximately a right triangle. The angle β at a. satisfies, for n large
enough,

tan(β) ∼ |s|
|a|
≥ 1, and thus

∣∣∣∣ a

a− s

∣∣∣∣ = cos(β) < cos(
π

4
) =

(
1√
2

)A
.

resulting in
m+A∏
a=m+1

∣∣∣∣ a

s− a

∣∣∣∣ < ( 1√
2

)A
. (4.10)

For the third product, we plainly use the triangle inequality, which gives |a/(a− s)| < 1
and

n∏
a=m+A+1

∣∣∣∣ a

a− s

∣∣∣∣ < 1. (4.11)

Collecting (4.9), (4.10), (4.11), we have:

|Ln(s)| < m!

tm

(
1√
2

)A
=
m!

tm
e−L

√
n.

Then, Km = m! and L = log(
√

2).

4.4.4 Proof of Proposition 4.9.

We only need to consider the upper half-plane. We use T =
√
n as a cut-off point and

decompose each positive part ρ̃ of the curve –the vertical line or the hyperbolic curve ρ–
into two parts.

Case of a vertical line. We use the decomposition∫
ρ̃
Ln(s) ·$(s)ds =

∫ α+iT

s=α
Ln(s) ·$(s)ds+

∫ α+i∞

s=α+iT
Ln(s) ·$(s)ds.

Near the real axis, namely for s ∈ [α, α+ iT ], we apply Lemma 4.10:∫ α+iT

s=α
Ln(s) ·$(s)ds = −

∫ α+iT

s=α
nsΓ(−s)$(s)(1 +O(n−1))ds (4.12)

As the fast decay of Γ(s) compensates more for the polynomial growth of $(s) and |ns| =
nα, the integral is O(nα).
Far from the real axis, namely for s ∈ [α+ iT, α+∞t], we apply Lemma 4.11:∫ α+i∞

s=α+iT
|Ln(s) ·$(s)| ds < Kme

−L
√
n

∫ ∞
t=T

tr

tm
dt = O(e−L

√
n) (4.13)

for n large enough, provided m has been chosen such that m > r + 2. The combination of
Equations (4.12) and (4.13) yields the claimed estimate in the case of a vertical line.
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Case of an hyperbolic curve. Consider now the case of an hyperbolic curve, and
consider the two parts of the curve ρ̃: the curve ρ− (near the real axis) and the curve ρ+

(near imaginary infinity).∫
ρ̃
Ln(s) ·$(s)ds =

∫
ρ+

Ln(s) ·$(s)ds+

∫
ρ−
Ln(s) ·$(s)ds. (4.14)

In the case of the curve ρ+, which can be compared to a vertical line, we apply Lemma
4.11 and∣∣∣∣∫

ρ+

Ln(s) ·$(s)ds

∣∣∣∣ < Km

∫ ∞
T

O(tr) ·O(t−m) · e−L
√
ndt = O

(
e−L

√
n
)
, (4.15)

for n large enough, provided m has been chosen such that m > r + 2.
Now, near the real axis, Lemma 4.10 gives∫

ρ−
Ln(s) ·$(s)ds = −

(∫
ρ−
nsΓ(−s)$(s)ds

)(
1 +O(n−1)

)
. (4.16)

Letting s := σ + it, and L := log n, we use the following estimates (for some K > 0)

|ns| = nσ = nσ0 exp[−ALt−β0 ], |$(s)Γ(−s)| ≤ exp[−Kt].

The first one is due to the definition of the curve whereas the second one uses the fast
decay of Γ(−s) which more than compensates for the polynomial growth of $(s). If we let
L := log n, the modulus of the integrand is at most

|Ln(s) ·$(s)| ≤ nσ0 exp[−Kt−ALt−β0 ].

When n (and then L) is fixed, the minimum of the function t 7→ Kt+ALt−β0 is reached for
tβ0+1 = β0L/K. Then the maximum of |Ln(s) ·$(s)| is of order nσ0 exp[−(log n)β] with
β < 1/(1 + β0). Using the same principles as in the Laplace method (see Sectionchap 8:
sec: Laplace method), we obtain the estimate∫

ρ−
Ln(s) ·$(s)ds = nσ0O(exp[−(log n)β]) with β < 1/(1 + β0).

this yields the claimed estimate in the case of a hyperbolic curve.

4.5 Mellin transform

The Mellin transform is a central tool in this chapter. We already mentioned it in Section
4.3 about Depoissonization techniques when we said that it is a main tool for obtaining
asymptotic estimates of the Poisson transform P (z). Even when we use the Rice method,
it is also a central tool since it helps to obtain the analytic lifting of the sequence ϕ(n), as
we will explain in Section 4.6.2.

4.5.1 Definition of the Mellin transform

Definition 4.12. Let f : x 7→ f(x) be a function integrable over [0,+∞[. Then, the Mellin
transform of f , denoted f∗, is defined by:

M(f, s) = f∗(s) =

∫ +∞

0
f(x)xs−1dx.

The maximal open vertical strip {s : <s ∈]α, β[} where the integral is absolutely convergent
is called the fundamental strip. It also denoted as 〈α, β〉.
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When the conditions f(x) =x→0+ O(xu), f(x) =x→+∞ O(xv) hold, with u > v, the
Mellin transform f∗ exists in the vertical strip 〈−u,−v〉.

For instance, the Mellin transform of the function g : x 7→ e−x exists in the strip
〈0,+∞〉 and defines there the Γ function [25][29],

Γ(s) =

∫ ∞
0

e−xxs−1dx.

4.5.2 Main properties of the Mellin transform.

Lemma 4.13. [Functional properties] Let f be a function whose Mellin transform f∗

admits the fundamental strip 〈α, β〉. Let ρ be a non zero real number, and µ, ν be positive
reals. Then the table 4.3 summarizes the main properties of the Mellin transform f∗.

Function Mellin transform Fundamental strip

f(x) f∗(s) 〈α, β〉

xνf(x) f∗(s+ ν) 〈α− ν, β − ν〉

f(xρ)
1

ρ
f∗(

s

ρ
) 〈ρα, ρβ〉 , ρ > 0

f( 1
x) f∗(−s) 〈−β,−α〉

f(µx) µ−s f∗(s) 〈α, β〉 , µ > 0

∑
k

λkf(µkx)

(∑
k

λkµk
−s

)
f∗(s)

f(x) log x
d

ds
f∗(s) 〈α, β〉

d

dx
f(x) −(s− 1)f∗(s− 1) 〈α+ 1, β + 1〉∫ x

0
f(t)dt −1

s
f∗(s+ 1)

Figure 4.3: Properties of the Mellin transform

As an example, consider the function

f(x) =
e−x

1− e−x
= e−x + e−2x + e−3x + · · · =

∑
k≥1

e−kx.

Applying the previous properties, one has, for <(s) > 1,

f∗(s) = Γ(s)

(
1

1s
+

1

2s
+

1

3s
+ . . .

)
= Γ(s)

∑
k≥1

1

ks

 = Γ(s)ζ(s) (s ∈ 〈1,+∞〉).
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Note that the condition <(s) > 1 entails the absolute convergence of the Mellin transform
of f and of the sum defining the zeta function.

4.5.3 Inverse Mellin transform

It is possible to recover f from f∗ via an integral along a vertical line <s = c which lies
inside the fundamental strip of Mellin transform, namely

f(x) =
1

2iπ

∫ c+i∞

c−i∞
f∗(s)x−sds, when c ∈ 〈α, β〉

4.5.4 Asymptotic expansion of f with its Mellin transform f ∗.

There is a direct correspondence between the asymptotic expansion of the function f , either
at 0 or ∞ and the singularities of its Mellin transform f∗, as we now explain. We begin
with the expression of the inverse Mellin transform,

f(x) =
1

2iπ

∫ c+i∞

c−i∞
f∗(s)x−sds.

Proposition 4.14. Let f be continuous in ]0,+∞[ with Mellin transform f∗(s) having a
non-empty fundamental strip 〈α, β〉. Assume that f∗(s) admits a meromorphic continua-
tion to 〈α, γ〉 for some γ > β and is analytic on the vertical line <(s) = γ. Assume also
that there exists a real η ∈]α, β[ such that

|f∗(s)| = O(|s|−r) with r > 1 for |s| → ∞ in the strip 〈η, γ〉.

If f∗(s) admits the singular expression, for s ∈ 〈η, γ〉,

f∗(x) =
∑

(ξ,k)∈A

dξ,k
1

(s− ξ)k
,

then an asymptotic expression of f(x) at +∞ is

f(x) =
∑

(ξ,k)∈A

dξ,k

(
(−1)k−1

(k − 1)!
x−ξ(log x)k

)
+O(x−γ).

Singularities of f∗(s) Terms in the asymptotic expansion of f(x)

Simple pole at s = a x−a

Pole of order k + 1 at s = a
(−1)k

k!
x−a(log x)k

Simple pole at a = σ + it, with σ, t ∈ R Fluctuating term x−σe−it log x

For example, when f(x) is defined as

f(x) =
+∞∑
k=1

(−1)k log k e−k
2x,
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its Mellin transform is

f∗(s) =
[
21−2s(log 2)ζ(2s) + (1− 21−2s)ζ

′
(2s)

]
Γ(s),

with

Γ(s) =

∫ ∞
0

e−xxs−1dx, ζ(s) =

∞∑
k=1

1

ks
.

This equation is true for <s > 1, which ensures simultaneously absolute convergence of the
Mellin integral and Dirichlet series. As Γ function has simple poles at non positive integers
and ζ function has a simple pole at s = 1, the integral contour might be legitimately shifted
to the left. By sweeping the integration contour till the vertical line <s = 5

2 , one takes into
account the poles s = 0,−1,−2, whose contributions are

f(x) = log

√
π

2
+ c1x+ c2x

2 +O(x
5
2 ).

4.6 The “Poisson–Mellin–Newton–Rice” cycle.

We returm here to the Rice method described in 4.3. It needs an analytic lifting for the
sequence ϕ(k). We recall that ϕ(k) are the coefficients of the Poisson transform of our
initial sequence T (k). As we will see in Chapter 5, the existence of a simple lifting $(s) for
the sequence ϕ(n) of the coefficients of the Poisson transform is not always directly granted,
but it can be obtained by the “Poisson–Mellin–Newton–Rice” cycle, well described in [28],
that we now adapt to our setting.

4.6.1 The Valuation-Degree Condition

This will be an important condition for obtaining such an analytic lifting.

Definition 4.15. For a sequence T of general term T (k), with T (k) ∈ C,

(i) the valuation val(T ) is the smallest index of non-zero elements of T .

(ii) the degree deg(T ) as the infimum of all c such that T (k) = O(kc).

The Valuation-Degree Condition (VLC) is : the strict equality val(T ) > deg(T ) holds.

This is not a very restrictive hypothesis, since if the inequality deg(T ) ≥ val(T ) holds,
we can subtract to the sequence T (k) its leading terms so that the new sequence satisfies
the inequality val(T ) > deg(T ).

4.6.2 Existence and expression of the analytic lifting $(s)

When the inequality val(T ) > deg(T ) holds, we use the Mellin transform P ∗(s) of the
Poisson generating function P (z) of the sequence T (k) in order to build $(s):

Proposition 4.16. Consider a sequence T (k) which satisfies the inequality val(T ) >
deg(T ), and let val(T ) := 1 + σ0. Denote by P (z) its Poisson generating function, and by
ϕ(k) the coefficients of P (z),

P (z) := e−z
∑

k≥1+σ0

T (k)
zk

k!
=

∑
k≥1+σ0

(−1)kϕ(k)
zk

k!
,
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so that the binomial relations hold between the two sequences T (k) and ϕ(k), namely

T (n) =
n∑

k=1+σ0

(
n

k

)
(−1)kϕ(k) ϕ(n) =

n∑
k=1+σ0

(
n

k

)
(−1)kT (k). (4.17)

Then, for any c ∈]σ0, 1 + σ0[, the sequence ϕ(k) admits an analytic lifting $(s) on the
half-plane <s > c which involves the Mellin transform P ∗(s) under the form

$(s) =
P ∗(−s)
Γ(−s)

. (4.18)

Proof. There are three main steps.

Step 1. We prove that the Mellin transform P ∗(s) of the Poisson generating function
P (z) exists in the fundamenral strip 〈−1 − k0,−c〉 and is well defined by the following
formal exchange of integration and summation, which is justified in the fundamentl strip
〈−1− k0,−c〉,

P ∗(s) =
∑

k≥1+σ0

T (k)

k!

∫ ∞
0

e−zzkzs−1dz =
∑

k≥1+σ0

T (k)

k!
Γ(k + s) (4.19)

= Γ(s)

 ∞∑
k=1+σ0

T (k)
s(s+ 1) . . . (s+ k − 1)

k!

 . (4.20)

Indeed, each Γ(k+ s) is well defined for k ≥ 1 + k0 as soon as <s > −1− k0. Furthermore,
we use the following estimate, already proven in Lemma 4.10,

s(s+ 1) . . . (s+ n− 1)

n!
=
ns−1

Γ(s)

[
1 +O

(
1

n

)]
(n→∞). (4.21)

This estimate holds uniformly with respect to s in a compact subset of C \ Z≤1, and this
proves that the series of (4.19) is uniformy convergent for <s < −c.

Step 2. If we now let

$(s) :=
P ∗(−s)
Γ(−s)

=

∞∑
k=2

(−1)kT (k)
s(s− 1) . . . (s− k + 1)

k!
, (4.22)

the right-side is expressed as a Newton interpolation series converges on the half-plane
<s > c and defines there an analytic continuation $(s) of the ratio P ∗(−s)/Γ(−s).

Step 3. With Equations (4.17) and (4.22), the function $(s) satisfies $(n) = ϕ(n) for
n ≥ 1 + σ0.

Then, the “Poisson–Mellin–Newton–Rice” cycle provides the analytic lifting $(s) which
is used in the Rice method. With the expression given by (4.18) the singularities of $(s)
are often apparent. But this “Poisson–Mellin–Newton–Rice” cycle does not prove that
$(s) is of polynomial growth. This property is essential for using the Rice method and
must be proven by other means.
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Conclusion for the first part of the thesis. The first part of the thesis ends here.
In these first four chapters, we have described all the tools that will be needed to perform
our task: the realistic analysis of sorting and searching algorithms. We recall the plan of
the thesis in Figure 4.4.

Before going to the realistic analysis of the studied algorithms QuickSort,
QuickSelect, BubSort, InsSort and SelMin, we describe in Chapter 5 the general method
we use for the analysis, with its two steps: in the algebraic combinatoric step, we compute
the exact number of symbol comparisons performed by the algorithms, and also the mixed
Dirichlet series of the pair “source-algorithm”. Then, we deal with this Dirichlet series,
with its poles and its tameness, which makes possible the use of the Rice method. This
gives rise to the asymptotics of the mean number of comparisons. Each step of the method
is illustrated in the analysis of SelMin. Then, we apply the same method in Chapter 6 for
sorting algorithms and in Chapter 7 for QuickSelect and its variants.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6 Chapter 7

Figure 4.4: Plan of the thesis.
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5.5.4 Situation on the left of the vertical line <s = 1 . . . . . . . . . . . 100

In this chapter, we describe our general framework for the realistic analysis of sorting
and searching algorithms. We consider a (general) algorithm A (which only performs com-
parisons and exchanges) and we study the mean number of symbol comparisons performed
by the algorithm when the keys are words that are drawn from a given source S (described
in Chapter 2). This analysis is more realistic than the classical analyzes which study the
mean number of keys comparisons in two ways. First it studies a more realistic cost, that
is the number of symbol comparisons instead of the number of key comparisons. Second it
deals with more realistic inputs: words drawn from a specified source instead of keys.

5.1 Main principles.

5.1.1 Two probabilistic models for the inputs of the algorithm.

The set of inputs is the probabilistic set of all sequences formed with infinite words in-
dependently produced by the same source S. We denote by M the set ΣN when it is
endowed with the probability defined by the source. As we deal with the parametrization
of a source M defined in Chapter 2.4, the set M is just M(I) where the unit interval is
endowed with the uniform probability. Then the probabilistic set of inputs of sorting and
searching algorithms is then M?. This means the following: we consider a finite sequence
V = (V1, . . . , VN ) ∈ M? of infinite words independently produced by the same source S.
Such a sequence V is obtained by N independent drawings v1, v2, . . . , vN in the interval
I = [0, 1] via the mapping M , and we set Vi := M(vi).

We recall (see Chapter 4) that there are two main probabilistic models of interest for
the set M? of the inputs: the Poisson model and the Bernoulli model.

(i) When the cardinality N of V is fixed and equal to n, and words Vi ∈ V are inde-
pendently emitted by the source S, this is the (usual) Bernoulli model denoted by
(Bn,S), and the equality (Bn,S) =Mn holds between the two probabilistic models.

(ii) When the cardinality N of V obeys a Poisson law of rate Z, that is

P[N = k] = e−Z
Zk

k!
, (5.1)

this is the Poisson model of rate Z, denoted by (PZ ,S), where there are two main
steps:

(a) the number N of words is drawn according to the Poisson law the rate Z;

(b) then, the N words are independently drawn from the source S.

In the Poisson model, the rate Z plays a role much similar1 to the cardinal of V.

5.1.2 The cost of interest.

We want to study the random variable S defined as the number of symbol comparisons
performed by the algorithm on a sequence of words independently drawn from the source.
The random variable S is then defined on the set M?, and, by definition,

S[V] := the number of symbol comparisons performed by the algorithm on the input V.
1In particular EZ [N ] = Z for a random variable N obeying a Poisson law of rate Z.
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The average of the cost S on all sequences equivalent to V up to some permutations is
denoted as S〈V〉.

Our general approach follows the general approach described in Sections 4.1, 4.3 and
4.4 of Chapter 4.

(i) Our final interest is the mean number S(n) of symbol comparisons in the Bernoulli
model (Bn,S), that is the expectation of the random variable S on the set Mn.

(ii) First we study the mean number of another random variable Ŝ which counts the
number of normalized symbol comparisons (to be described soon) in the Bernoulli
model (Bn,S). This expectation is noted Ŝ(n), and as stated in Section 5.3.3, S(n)
is easily derived from Ŝ(n).

(iii) It is easier to begin the study in the Poisson model (PZ ,S), where ŜZ denotes the
mean number of normalized symbol comparisons, that is the expectation of the vari-
able Ŝ in the Poisson model. We prove that the coefficients ϕ(k) of the series expan-
sion of ŜZ can be computed in an explicit way.

(iv) Chapter 4 explains that it is now possible to return in the Bernoulli model (Bn,S),
and, as recalled in Section 5.3.3, the mean number Ŝ(n) is expressed as an explicit
binomial sum

Ŝ(n) =
n∑

k=1+σ0

(−1)k
(
n

k

)
ϕ(k), for some integer σ0,

and we easily obtain an expression for S(n).

(v) We prove that the sequence ϕ(k) admits an analytic lifting $(s) for <s > σ0 and we
wish to use Rice method. This is possible provided that the function $(s) be tame
at σ0, as defined in Section 4.3.4. We prove that it is the case, provided that the
source itself be tame, as described in Chapter 3. We state such tameness conditions
on the source. We then continue as described in Sections 4.3 and 4.4.

5.1.3 A general scheme for the analysis.

Like many studies in analytic combinatorics, such an analysis is divided into two main
parts: an algebraic or combinatorial part and an asymptotic and analytic step. In analytic
combinatorics, the first part computes a mathematical object (most of the times a generat-
ing function) with algebraic and exact tools, and the second part deals with the generating
function as a function of the complex variable, studies its singularities, and transfers this
knowledge about its singularities into an asymptotic expansion.

We adopt and adapt the same philosophy here. First we compute the generating func-
tion related to our specific problem: this is the mixed Dirichlet series $(s), that encap-
sulates both the properties of the source and the characteristics of the algorithm. In the
algebraic part, it yields the exact value of the mean number of symbol comparisons per-
formed by each algorithm on words produced by a parametrized source. We then perform
a second part of the analysis where we study the analytic properties of the mixed Dirich-
let series $(s), namely the position and the nature of its singularities, and transfer this
knowledge to obtain the asymptotic mean number of symbol comparisons.

We deal with all the tools that were described in the previous chapters, and we detail
more precisely how they are used.
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5.1.4 Four steps in the analysis.

Both the algebraic analysis and the asymptotic analysis are themselves divided into two
steps.

For technical reasons, that will be explained later in Section 5.2.1, we deal with
a normalized cost Ŝ which arises in a natural way in computations, even though
it has not an actual algorithmic meaning.

First step of the algebraic analysis. We recall the set of keys M is mapped to the
unit interval. This step is devoted to computing the density of the algorithm. It uniquely
depends on the algorithm and provides a precise measure of the mean number of key-
comparisons performed near specific points. As it is easier to compute this density in the
Poisson model, where the number of keys instead of being fixed follows a Poisson law of
parameter Z, this first step provides an expression of the Poissonized density relative to
each algorithm. We use the following chain to get the result. We begin with the mean
number of local key-comparisons between two keys, obtained in Chapter 1. Then keys are
viewed as words, and finally we use the parametrization of sources described in Section
2.4, and basic properties of the Poisson model, described in Section 4.1.

Second step of the algebraic analysis. Then, the source intervenes via its coincidence
defined in Section 2.1.3, and its geometry defined by fundamental triangles (see Paragraph
2.4.3), which describe the location of pairs of words which share a common prefix. With
integrals, we then obtain an exact expression for the mean number of symbol comparisons
in the Poisson model. As described in Chapter 4, we deduce an exact expression of the
mean number of symbol comparisons in the Bernoulli model where the number n of keys
is fixed. This expression is given as a binomial sum which deals with the mixed Dirichlet
series.

First step of the asymptotic analysis. We approach the corresponding asymptotic
analysis with Rice method, described in Sections 4.3 and 4.4. To use this method, we
need the mixed Dirichlet series to be tame (see Section 4.3.4). This series $(s) is obtained
by twisting the generating function of the source Λ(s). This twisting is induced by the
algorithm and first depends on the type of the algorithm: is it a sorting algorithm or a
searching algorithm? Then we need the source itself to be tame, in various senses related
to Definitions given in Section 3.2. We prove that convenient tameness of the source indeed
entails tameness of the mixed Dirichlet series.

Second Step of the asymptotic analysis. Finally, Proposition 4.8 provides asymptotic
estimates for the mean number of symbol comparisons of the algorithm when it deals with
words produced by a given source. Constants in these estimates will depend on the pair
algorithm/source considered.

5.1.5 Main objects in the analysis.

Figure 5.1 describes the main objects which intervene in the two steps of the algebraic
analysis. All the intermediary computation steps deal with the cost Ŝ. In the table of
Figure 5.1, all the lines (except the first line and the last line) deal with this normalized
cost. In the table of Figure 5.2, all the lines (except the last line) deal with this normalized
cost.
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Objects of
the analysis

Definition Computation

πn(i, j) Mean number of key comparisons between the keys of rank i and j Fig. 5.1 (Chap. 1)

π̂n(i, j) Mean number of normalized key comparisons between the keys of rank
i and j

Fig. 5.1 (Chap. 1),
Eq. (5.2)

π̂[u, t] Mean number of normalized key comparisons between the words of
parameters u and t

Eq. (5.4)

ΦZ(u, t) Density of the algorithm at (u, t) in the model PZ Eq. (5.6)

ϕ(k, u, t) k-th coefficient of ΦZ(u, t), i.e., ϕ(k, u, t) = (−1)kk![Zk]ΦZ(u, t) Prop. 5.5

ŜZ Mean number of normalized symbol comparisons in the model PZ Eq. (5.12)

ϕ(k) k-th Coefficient of ŜZ , i.e., ϕ(k) = (−1)kk![Zk]SZ Eq. (5.16)

Ŝ(n) Exact mean number of normalized symbol comparisons in the model
Bn

Eq. (5.17)

S(n) Exact mean number of symbol comparisons in the model Bn Eq. (5.17)

Figure 5.1: The two steps of the algebraic analysis, the main objects used in the analysis,
with their name, their definition and their computation.

Objects of
the analysis

Definition and Properties Method of analysis

$(s) Expression of the mixed Dirichlet series obtained as an analytic lifting
of the sequence k 7→ ϕ(k) in <s > σ0

– Relation of $(s) with Dirichlet series of the source

– Singular expansion of $(s)/(s− σ0) at s = σ0

– Tameness of $(s) at s = σ0

Ŝ(n) Asymptotic expansion of the mean number of normalized symbol com-
parisons in the model Bn

– Dominant and sub-dominant terms,

with the singular expansion of $(s)/(s− σ0)) Rice formula

– Remainder terms, with the tameness of $(s)) Rice formula

S(n) Asymptotic expansion of the mean number of symbol comparisons in
the model Bn

Rice formula

Figure 5.2: The two steps of the asymptotic analysis, the main objects used in the analysis
with their name, their definition and their computation.

5.1.6 General Results. The case of the SelMin Algorithm.

We describe a general framework which will be used and instantiated in the following two
chapters. We explain the general approach, announce and state the results, but we do
not prove them here. The following two chapters are devoted to apply and prove these
general results to each studied algorithm. The notion of “studied algorithm” refers to all
algorithms which will fall in our scrutiny in one of the following two chapters.

However, we choose to provide a first example in this chapter, and we precisely de-
scribe the analysis of the SelMin Algorithm (selection of the minimum of an array). This
algorithm is different from algorithms studied in the next chapters, as this is a searching
algorithm which does not belong to the Quickselect class. This analysis is interesting per
se but it is also used as a connecting thread for giving this Chapter a more concrete feel
to the reader.



90 General framework for a more realistic analysis

5.2 Expression of the Poissonized density.

5.2.1 Mean number of comparisons between two keys.

We begin with the expressions of the mean numbers of local comparisons that we have
studied in Chapter 1.

MetaTheorem 5.1. All the expressions of πn(i, j) are rational fractions in i, j, j− i. For
the algorithms InsSort and BubSort, πn(i, j) contains a constant term equal to 1/2.

Note. We have already given some intuition p. 90 in Eq. (5.1) why rational functions may
indeed be expected.

Amongst these algorithms (and more generally amongst the sorting and searching algo-
rithms), there are algorithms which perform a systematic comparison between keys that are
in the reverse order. We say that these algorithms are non-normalized. Here, amongst the
studied algorithms of Chapter 1, there are only two non-normalized algorithms, namely, the
InsSort and the BubSort Algorithms. Non-normalized algorithms may perform several
comparisons between two keys in reverse order, but we only consider the first comparison of
this type2, and we define it as the non-normalized comparison. In summary, a comparison
is non-normalized if this is a systematic comparison performed for the first time. Other-
wise, it is said to be normalized. And we define K̂, Ŝ as the total number of normalized
key comparisons or normalized symbol comparisons.

For non-normalized algorithms, and in the permutation model, the non-normalized
comparison arises with probability 1/2, the probability that any two keys are in the reverse
order. When the term π−n (i, j) (associated with comparisons between keys in reverse order)
contains a constant term 1/2, this means that this algorithm is non-normalized, and we
denote by π̂n(i, j) the term πn(i, j) from which this constant is removed, namely

π̂n(i, j) :=

{
πn(i, j)− 1/2 for non-normalized algorithms

πn(i, j) for normalized algorithms.
(5.2)

Then the mean number K̂(n) is the sum of π̂n(i, j) for 1 ≤ i < j ≤ n, and thus the
following equality holds

K(n) =

{
K̂(n) + 1

2

(
n
2

)
for non-normalized algorithms ,

K̂(n) for normalized algorithms .

In the same vein, the mean number Ŝ(n) of normalized symbol comparisons is related to
the mean number S(n) of symbol comparisons by the equality

S(n) =

{
Ŝ(n) + 1

2

(
n
2

)
c(S) for non-normalized algorithms ,

Ŝ(n) for normalized algorithms .
(5.3)

where c(S) is the coincidence of the source. (c(S) + 1) is the mean number of symbol
comparisons needed to distinguish two random words.

For SelMin. In this case, one has

π̂n(i, j) = πn(i, j) =
1

i(i+ 1)
+

1

j(j − 1)
.

This is a normalized algorithm.

2This is important as BubSort may perform subsequent comparisons between these two keys
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5.2.2 Mean number of comparisons between two parametrized words.

Consider a sequence V ∈ M? that contains two given words M(u) and M(t). We define
π̂[u, t][V] as the number of (normalized) key comparisons performed by the algorithm on
the input sequence V between the keys M(u) and M(t), and by π̂[u, t]〈V〉 the mean of the
cost taken with respect to all the permutations of V. We recall that NJ is a variable defined
on M? as the number of words whose parameter belongs to J . The following equalities
hold

RankVM(u) = N[0,u[[V] + 1, RankVM(t) = N[0,u[[V] +N]u,t[[V] + 2,

where the respective translations of 1 and 2 express that M(u) and M(t) belong to V.
We now relate the mean number π̂[u, t]〈V〉 to the (normalized) number π̂N (i, j) defined

in the previous Section 5.2.1. More precisely, the equality holds

π̂[u, t]〈V〉 = π̂|V|(N[0,u[[V] + 1, N[0,u[[V] +N]u,t[[V] + 2). (5.4)

We remark that the right side of (5.4) is defined on the total set M?. Setting N = N[0,1],
the function

π̂N (N[0,u[ + 1, N[0,u[ +N]u,t[ + 2). (5.5)

provides thus an extension of the function V 7→ π̂[u, t]〈V〉 on the total setM? (defined even
for sequences which do not contain M(u) or M(t)). This expression plays a central role
in our analyses. In our framework, expressions obtained for π̂N (i, j) ensure that π̂[u, t] is
always a sum of rational functions in variables N[0,u[, and N]u,t[. Note that, in the Poisson
model (PZ ,S), the variables N[0,u[, N]u,t[ are themselves independent Poisson variables of
parameters Zu and Z(t−u) (respectively). This implies that the sum N[0,u[ +N]u,t[ is also
a Poisson variable of parameter Zt.

5.2.3 Density of an algorithm – A first expression.

We first give a formal definition of the density.

Definition 5.2. For a given algorithm, and a parametrized source S, the Poissonized
density ΦZ(u, t) at the point (u, t) of the triangle T is the mean number in the Poisson
model (PZ ,S) of (normalized) key comparisons performed by the algorithm between a pair
(M(u′),M(t′)) with (u′, t′) close to (u, t). More formally

ΦZ(u, t)du dt := the mean number of (normalized) key comparisons performed by the

algorithm between M(u′) and M(t′) for u′ ∈ [u− du, u] and t′ ∈ [t, t+ dt].

It is possible to relate the Poissonized density and the expectation of the random
variable defined in (5.5). This is due to the nice properties of this model, and this is why
we choose the Poisson model as our (first) probabilistic model.

Lemma 5.3. The Poissonized density ΦZ(u, t) satisfies

ΦZ(u, t) = Z2 · EZ
[
π̂N (N[0,u[ + 1, N[0,u[ +N]u,t[ + 2)

]
. (5.6)

Proof. We consider the interesting subsets K ∈ Set[M] that contain two words of which
the parameters belong respectively to [u− du, u] and [t, t+ dt]:

K ∩M [u− du, u] 6= ∅, K ∩M [t, t+ dt] 6= ∅,

and the subset K ⊂ Set[M] which gathers such interesting subsets. We also consider the
set K ⊂ M? of all the sequences K built from K with all the possible permutations. The



92 General framework for a more realistic analysis

subset K gathers sequences which contain a pair (M(u′),M(t′)) with u′ ∈ [u − du, u] and
t′ ∈ [t, t+ dt]. We wish to consider the restriction of the (normalized) cost Ŝ to K, and the
mean value which defines the density is exactly the expectation

ΦZ(u, t)dudt := EZ [1K · Ŝ] =

∫
M?

1K[V]S[V] dZV .

Gathering all the sequences V corresponding to the same set U gives rise to the expression

ΦZ(u, t)dudt =

∫
Set[M]

1K 〈U〉 S〈U〉 dZU .

Now, when U ∈ K, it contains an interesting pair, and the equality holds, from the previous
Section,

S〈U〉 = π̂|U|(N[0,u[[U ] + 1, N[0,u[[U ] +N]u,t[[U ] + 2) .

Remark that this last variable only depends on the intervals [0, u[ and ]u, t[, whereas 1K
only depends on the intervals [u − du, u] and [t, t + dt]. Then, in the Poisson model, the
two functions are independent. We may moreover return from Set(M) toM?, and finally
get

ΦZ(u, t)du dt =

(∫
M?

1K[V]dZV
)
·
(∫
M?

π̂|V|(N[0,u[[V] + 1, N[0,u[[V] +N]u,t[[V] + 2)dZV
)
.

As the two intervals [u− du, u] and [t, t+ dt] are disjoint, with the independence property
of the Poisson model, the first integral equals

EZ [1K] = PZ [K] = Zdu · Zdt = Z2du dt.

The second integral is just EZ
[
π̂N (N[0,u[ + 1, N[0,u[ +N]u,t[ + 2)

]
. The lemma is proven

In order to use the Rice method of Section 4.3.5 we are interested in the coefficients of
the following series expansion of ΦZ(u, t) defined as

ΦZ(u, t) =
∑
k≥2

(−1)k
Zk

k!
ϕ(k, u, t), ϕ(k, u, t) := (−1)kk![Zk]ΦZ(u, t) (5.7)

and, with (5.6), the coefficients ϕ(k, u, t) satisfy ϕ(k, u, t) = 0 for k = 0, 1. We now explain
why these coefficients ϕ(k, u, t) may be computed in an “automatic way”.

5.2.4 Expression of the density in the Poisson model via its coefficients.
Automatic transfer.

We state our first result:

MetaTheorem 5.4. For any studied algorithm, the random variable π̂[u, t] is expressed
as a linear combination of basic random variables Gm(NJ ) with

Gm(X) :=
1

(X + 1)(X + 2) . . . (X +m)
(m ≥ 1), (5.8)

and J is an interval J ⊂ [0, 1].
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For SelMin. In this case, the random variable π̂[u, t] is

π̂[u, t] =
1

(N[0,u[ + 1)(N[0,u[ + 2)
+

1

(N[0,t[ + 1)(N[0,t[ + 2)
.

It decomposes in the basis Gm as π̂[u, t] = G2(N[0,u[) +G2(N[0,t[).

The following proposition describes how to compute the expectations of the basic ran-
dom variables in the Poisson model.

Proposition 5.5. Consider an integer m ≥ 1 and an interval J ⊂ I = [0, 1]. The
expectation in the Poisson model (PZ ,S) of the random variable Gm(NJ ) only depends on
m and λZ where λ is the length of the interval J . It is denoted by Fm(λZ). Moreover, the
two sequences

βm(k, λ) = (−1)kk![Zk]
(
Z2 Fm(λZ)

)
, γm(k, λ) := (−1)kk![Zk]

(
Z3 Fm(λZ)

)
admit the following expressions, resp. for k > 1 and k > 2,

βm(k, λ) =
1

(m− 1)!

k(k − 1)

k +m− 2
λk−2, γm(k, λ) =

−1

(m− 1)!

k(k − 1)(k − 2)

k +m− 3
λk−3. (5.9)

Proof. With Lemma 4.1, we know that NJ follows a Poisson law of parameter λZ. Then,
EZ [Gm(NJ )] only depends on m and λZ and

EZ [Gm(NJ )] =
∑
k≥0

Gm(k)PZ [NJ = k] = e−λZ
∑
k≥0

Gm(k)
(λZ)k

k!
:= Fm(λZ).

We first compute the coefficients αm(k, λ) in the series expansion of Fm(Z)

αm(k) := (−1)kk![Zk]Fm(Z) =
1

(m− 1)!

1

k +m
. (5.10)

Then, the coefficients βm(k, λ) and γm(k, λ) are related to αm(k), respectively for k > 1
and k > 2,

βm(k, λ) = k(k − 1)λk−2αm(k − 2), γm(k, λ) = −k(k − 1)(k − 2)λk−3αm(k − 3),

which proves, with the help of (5.10), the expressions in Eq. (5.9) and finally the result.

With Theorem 5.4, and Proposition 5.5, we obtain our second Theorem.

MetaTheorem 5.6. For any studied algorithm, there exists an integer σ0, for which, for
any k ≥ σ0 + 1, the sequence of coefficients (ϕ(k, u, t)) of the density ΦZ(u, t) is expressed
in a unique way as a linear combination of the sequences (βm(k, λ)) and (γm(k, λ)) (defined
in Eq. (5.9)) for various values of λ ∈]0, 1[ and m ∈ N. The precise linear combination
and the choice of the various parameters depends on the algorithm. The integer σ0 is equal
to 1 or 2, and is equal to 2 only if the linear combination involves a sequence of type γ.

For SelMin. In this case, the integer σ0 equals 1, and the coefficient ϕ(k, u, t) satisfies

ϕ(k, u, t) = β2(k, t) + β2(k, u) = (k − 1)[uk−2 + tk−2]. (5.11)
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5.3 Exact mean number of comparisons.

In the model (PZ ,S), the density ΦZ is a main tool for computing, not only the mean
number of (normalized) key comparisons K̂Z performed by the algorithm, but also the
mean number of (normalized) symbol comparisons ŜZ .

5.3.1 Density and symbol-density.

With the definition of density ΦZ(u, t) given in Definition 5.2, the mean number of nor-
malized key comparisons K̂Z is obtained via the integral

K̂Z = L[ΦZ ], (5.12)

where L is a linear functional defined for a function Φ : T → R as

L[Φ] =

∫
T

Φ(u, t) du dt.

The definitions of the density ΦZ(u, t) and the coincidence given in Definition 2.18 allow
to define symbol-density as the product [γ(u, t) + 1] ΦZ(u, t). This is the mean number of
normalized symbol comparisons (in the Poisson model PZ) between two words M(u′) and
M(t′) for (u′, t′) close to (u, t). Then, the mean number of symbol comparisons ŜZ is
obtained via the formula

ŜZ = J [ΦZ ] with J [Φ] =

∫
T

[γ(u, t) + 1] Φ(u, t) du dt. (5.13)

As we have already seen in Chapter 2 (see Eq. (2.17)), the functional J admits an alter-
native expression which involves the fundamental triangles Tw,

J [ΦZ ] :=

∫
T

(γ(u, t) + 1) ΦZ(u, t) du dt =
∑
w∈Σ?

∫
Tw

ΦZ(u, t) du dt. (5.14)

This is a general phenomenon: formulas for the mean number of key compar-
isons or symbol comparisons are similar. When considering symbol compar-
isons, the functional J replaces the simple integral L used for key comparisons.

5.3.2 Coefficients of the mean number of symbol comparisons in the
Poisson model

We now wish deal with the coefficients ϕ(k) in the series expansion of ŜZ , defined via the
equality

ŜZ =
∑

k≥1+σ0

(−1)k
Zk

k!
ϕ(k). (5.15)

Using the series expansion stated in (5.7), the expressions of ŜZ as integrals (given in (5.12)
and (5.14)) and the linearity of such integrals, the sequence ϕ(k) is now defined, for any
k ≥ 1 + σ0, in terms of integrals,

ϕ(k) :=

∫
T

(γ(u, t) + 1)ϕ(k, u, t) du dt =
∑
w∈Σ?

∫
Tw
ϕ(k, u, t) du dt. (5.16)

Theorem 5.6 provides a close expression of the coefficients ϕ(k, u, t). It is then easy to
obtain the expression of the coefficients ϕ(k) of the mean number SZ via computations of
the integrals of ϕ(k, u, t) on the triangles Tw. This leads to
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MetaTheorem 5.7. For any studied algorithm, there exists an integer σ0 ∈ {1, 2}, for
which the coefficients ϕ(k) of the mean number of normalized symbol comparisons ŜZ in
the Poisson model admit an explicit expression for k > σ0. The sequence ϕ(k) admits an
analytic lifting on for <s > σ0.

For SelMin. In this case, the coefficient ϕ(k) is equal to

ϕ(k) =
∑
w∈Σ∗

(bw − aw)
[
bk−1
w − ak−1

w

]
.

Proof. We take the integral of ϕ(k, u, t) of (5.11) on each fundamental triangle Tw, we
obtain:

ϕ(k)

k − 1
=
∑
w∈Σ∗

∫
(u,t)∈Tw

(uk−2 + tk−2)du dt

=
∑
w∈Σ∗

∫ bw

aw

uk−2(u− aw)du,+
∑
w∈Σ∗

∫ bw

aw

uk−2(bw − u)du

=
∑
w∈Σ∗

(bw − aw)

∫ bw

aw

uk−2du,

so that one has
ϕ(k) =

∑
w∈Σ∗

(bw − aw)
(
bk−1
w − ak−1

w

)
.

5.3.3 Exact expression of the mean number of symbol-comparisons in
the Bernoulli model.

We now wish to return to the Bernoulli model (Bn,S), where the number of keys is fixed
and equal to n. The mean number Ŝ(n) of normalized symbol comparisons used by the
algorithm when it deals with n words independently drawn from the same source is related
to ŜZ and then to the sequence ϕ(k) by the equation

Ŝ(n) =

n∑
k=1+σ0

(−1)k
(
n

k

)
ϕ(k). (5.17)

As the coefficient ϕ(k) are explicit, as stated in Theorem 5.7, this provides an explicit
formula for Ŝ(n). Now, we return to the “true” cost S, and with (5.3)

S(n) =

Ŝ(n) +
Λ(2)

2

(
n

2

)
for InsSort and BubSort

Ŝ(n) for the other algorithms.

MetaTheorem 5.8. For any studied algorithm, there exists an integer σ0 ∈ {1, 2}, and
a sequence ϕ(k) defined for k ≥ 1 + σ0 for which the mean number of symbol comparisons
S(n) in the Bernoulli model is expressed as a binomial sum of the form

S(n) =



n∑
k=1+σ0

(−1)k
(
n

k

)
ϕ(k) +

Λ(2)

2

(
n

2

)
for InsSort and BubSort

n∑
k=1+σ0

(−1)k
(
n

k

)
ϕ(k) for the other algorithms.
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Moreover, the sequence ϕ(k) is explicit and admits an analytic lifting3 $(s) on the halfplane
<s > σ0.

For SelMin. In this case, the mean number of symbol comparisons is

S(n) =
∑
w∈Σ∗

(bw − aw)
n∑
k=2

(−1)k
(
n

k

)[
bk−1
w − ak−1

w

]
.

We have here concluded the algebraic part of the analysis and we have now the exact
expression of S(n). It is obtained in an “automatic” way, from the expectations πn(i, j)
given in Chapter 1, using the geometry of the source described in Chapter 2, and the
general Poisson-Bernoulli framework described in Section 4.1

5.4 Analytic study of the mixed Dirichlet series.

The algebraic analysis also provides an explicit expression of the analytic lifting $(s) on
the halfplane <s > σ0, where σ0 is defined in Theorem 5.6.

For SelMin. In this case, the mixed series is defined for <s > 1 as

$(s) =
∑
w∈Σ∗

(bw − aw)
[
bs−1
w − as−1

w

]
.

5.4.1 Using Rice method.

We wish to use the Rice method presented in Section 4.3, that it is now recalled:

Assume that the lifting $(s) of the sequence ϕ(k) is meromorphic in a region R which
contains the half plane <s ≥ σ0 and is of polynomial growth there (for |=s| → ∞). Then

S(n) = −

[∑
k

Res[$(s)Ln(s); sk] +
1

2iπ

∫
C
$(s)Ln(s) ds

]
, (5.18)

where C is a curve positively oriented of class C1 included in R and the sum is extended to
all poles sk of $(s) ·Ln(s) inside the domain D which lies between the vertical line <s = σ0

and the curve C.

This application of Rice method is possible, only if the series $(s) is tame at σ0, as it
is defined in Section 4.3.4 and if we have a good knowledge of its poles and their residues.

5.4.2 Tameness of the mixed Dirichlet series.

We first need to prove the tameness of the Dirichlet series $(s) at σ0. For this, we analyse
the general form of $(s) and we compare it to one of the Dirichlet series of the source Λ
or Π.

3The lifting coincides on values s = k (see Section 4.3).
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Relation between the mixed Dirichlet series and the Dirichlet series of the
source.

MetaTheorem 5.9. The form of the mixed Dirichlet depends on the type of the algorithm:
sorting algorithm or searching algorithm.

(a) For any of the three sorting algorithms, the mixed series $(s) is closely related
to some variant Λ[F ](s) of the Dirichlet series Λ(s), that involves a function F :
[0, 1]2 → R+ of class C1

Λ[F ](s) :=
∑
w∈Σ?

F (aw, bw) psw, (5.19)

where aw and bw are the ends of the fundamental intervals (i.e., Iw := [aw, bw] and
pw = bw − aw). More precisely, the equality holds

$(s) = A(s)Λ[F ](s− 1 + σ0),

where A(s) is a rational function of s.

(b) For searching algorithms, there exist relations between the mixed Dirichlet $(s) and
the Dirichlet series Λ and/or Π of the source, but these are only inequalities.

|$(s)| ≤ |P (s)|Λ(σ′) or |$(s)| ≤ |P (s)|Π(σ′′),

for some reals σ′ > 1 and σ′′ > 0 related to σ := <s, and some polynomial P .

This Theorem will be made more precise for each class of algorithms (sorting or search-
ing).

5.4.3 Tameness transfer.

As the series $(s) is closely related to the Dirichlet generating functions of the source, we
can transfer to the mixed Dirichlet series $(s) the various notions of tameness that we
have defined in Chapter 3 for the source S. In particular the Λ-tameness, largely described
in Chapter 3, but also the weak-tameness (weak Λ-tameness or weak Π-tameness described
in Section 3.3).

(a) For sorting algorithms, there is an exact relation between $(s) and Λ[F ](s+ 1−σ0).
Then, the tameness of $(s) at s = σ0 is related to the tameness of Λ[F ] at s = 1.
Then the Λ-tameness of the source may be transferred to the tameness of $(s) with
the same shape.

(b) For searching algorithms, there are inequalities between $(s) and Λ(σ′) with σ′ > 1,
or between $(s) and Π(σ′′) with σ′′ > 0. Then, the weak tameness of the source
(weak Π-tameness, or weak Λ-tamenes) may be transferred to the tameness of $(s)
at s = 1, and this is a tameness with a S-shape.

5.4.4 Tameness of the mixed Dirichlet series.

MetaTheorem 5.10. For any studied algorithm, tameness properties of the source S
described in Chapter 3 are sufficient to entail the Dirichlet mixed series $(s) to be tame at
σ0. The convenient tameness properties of the source depend on the type of the algorithm:
sorting algorithm or searching algorithm.

For SelMin. The tameness of $(s) at s = 1 will be studied in Section 5.5.
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5.4.5 Singular expression of the mixed Dirichlet series at s = σ0.

It remains to study the possible singularities of $(s) at σ0. Due to the occurrence of Rice
kernel, and as σ0 is always an integer, the function of interest is the ratio $(s)/(s − σ0).
Again, there are two main cases, depending on the type of algorithm (sorting or searching).

MetaTheorem 5.11. For any studied algorithm, the behaviour of $(s) at s = σ0 depends
on the type of the algorithm

(a) For sorting algorithms, the function $(s) has a pole of order at least one at σ0, with
a leading term which involves the entropy. Then the ratio $(s)/(s − σ0) has a pole
of order at least two at σ0

(b) For searching algorithms, the function $(s) is analytic at s = σ0 and the ratio
$(s)/(s − σ0) has a pole of order 1. Moreover, the value of $(s) at s = σ0 in-
volves constants which are related to various notions of coincidence.

5.4.6 Asymptotic expansions for S(n).

With Theorems 5.10 and 5.11, together with Proposition 4.8, we obtain an asymptotic
expansion for the mean number of symbol comparisons in the Bernoulli model:

MetaTheorem 5.12. For any studied algorithm, as soon as the source satisfies tameness
properties adapted to the class of algorithms, there is an asymptotic expansion for the
mean number of symbol comparisons in the Bernoulli model. The dominant terms involve
specific constants obtained by residue calculus from the singular expression of $(s), and
the remainder terms are related to the tameness of the mixed Dirichlet series.

5.5 Asymptotic study in the SelMin case.

We now perform the analytic study in the case of the Algorithm Selmin. We start with
the expression of the function $(s) in this case,

$(s) = (s− 1)
∑
w∈Σ?

(bw − aw)

∫ bw

aw

us−2du. (5.20)

We know that σ0 is equal to 1, and we wish to study its tameness ans its singular expression
at s = 1.

5.5.1 Main result.

Proposition 5.13. Assume the source S to be weakly tame. Then, the mixed Dirichlet
series $(s) relative to SelMin algorithm is tame at σ0 = 1 with order k0 = 0 and a S–shape.

(i) the singular expression of $(s)/(s− 1) is

$(s)

s− 1
= a(S)

1

s− 1
+ o(s− 1),

and involves the constant a(S) defined as the mean length of the maximal prefix w of
the form w = 0k of a random word from M.

(ii) the width δ depends on an exponent a, attached to the source and defined in (5.27).

The following subsections are devoted to the proof of this proposition. There are three
cases: the halfplane <s ≥ 2, the vertical strip <s ∈ [1, 2], and finally the left of the vertical
line <s = 1.
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5.5.2 Study on the halfplane <s ≥ 2.

With the expression of $(s) in (5.20), there is an easy upper bound, valid for σ ≥ 2,

|$(s)| ≤ |s− 1|
∑
w∈Σ∗

(bw − aw)

∫ bw

aw

uσ−2du ≤ |s− 1|Λ(2),

that proves that $(s) is tame of order 0 for any σ0 for σ0 ≥ 2. The sequel of the proof is
devoted to the case σ ≤ 2.

We first consider the Dirichlet series of depth `, namely

$`(s) = (s− 1)
∑
w∈Σ`

(bw − aw)

∫ bw

aw

us−2du,

where Σ` is the set of the prefixes of length `.

The first term of the sum which defines $` is particular. It is relative to the prefix
α` = 0`, whose probability is denoted by q` = pα` . So we have

(s− 1)q`

∫ q`

0
us−2du = qs` .

We then consider the remainder of the sum

R`(s) =
∑
w∈Σ`,
w>α`

(bw − aw)(bs−1
w − as−1

w ),

and prove that the series of general term R`(s) is normally convergent for <s > 1 − δ2

for some δ2 > 0. Then, the sum R(s) of this series defines a tame function at σ0 = 1 of
abscissa δ2. And the equality R(1) = 0 holds since on the real axis R(s) is positive for
s > 1 and negative for s < 1. Finally,

$(1) = a(S) =
∑
`≥0

q`, with q` := probability of the prefix w = 0` . (5.21)

We then study R`(s) for σ ≤ 2. We consider a real A ∈ [0, 1] (to be fixed later as a
function of s and `) and split the sum into three sums, each of them relative to a subset
of prefixes: the prefixes w for which bw < A, the prefixes w for which aw > A and
finally the unique prefix β for which A ∈ [aβ, bβ]. These sums are respectively denoted by

R
(−)
` (s), R

(+)
` (s), R

(=)
` (s).

When aw > A, we use the mean-value theorem. There exists cw ∈ [aw, bw] for which∣∣bs−1
w − as−1

w

∣∣ ≤ |s− 1| cσ−2
w (bw − aw) ≤ |s− 1|Aσ−2(bw − aw),

and this entails the inequality

|R(+)
` (s)| ≤ |s− 1|Aσ−2Λ`(2). (5.22)

There are two cases for the other two sums, according to the position of σ := <s with
respect to 1.
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5.5.3 Study on the vertical strip <s ∈ [1, 2].

We first consider the situation on the vertical strip <s ∈ [1, 2]. In this case, when bw < A,
we remark the inequality∣∣bs−1

w − as−1
w

∣∣ ≤ ∣∣bs−1
w

∣∣+
∣∣as−1
w

∣∣ = bσ−1
w + aσ−1

w ≤ 2Aσ−1,

and this entails the inequality

|R(−)
` (s)| ≤ 2Aσ−1 ·A = 2Aσ. (5.23)

For the sum R
(=)
` (s), we use the upper bound

|bs−1
w − as−1

w | ≤ 2, R
(=)
` (s) ≤ 2 pβ ≤ 2π` ≤ 2Λ`(2)1/2, (5.24)

which deals with the length pβ of the interval [aβ, bβ] and where π` := max{pw, w ∈ Σ`}.
Finally, with (5.22), (5.23), (5.24), one obtains when 1 ≤ σ ≤ 2,

R`(s) ≤ Aσ−2|s− 1|Λ`(2) + 2Aσ + 2Λ`(2)1/2.

We choose the value of A so that the first two terms are equal, namely

2Aσ = |s− 1|Aσ−2Λ`(2), i.e., A =

(
|s− 1|

2

)1/2

Λ`(2)1/2.

Then, rewriting Λ`(2)σ/2 = Λ`(2)σ/2Λ`(1)1−σ/2 and using the well-known log-convexity
bound of s 7→ Λ`(σ) and the equality Λ`(1) = 1, one has the inequality for σ ≤ 2

Λ`(2)σ/2 ≤ Λ`

(
2
σ

2
+ 1− σ

2

)
= Λ`(1 +

σ

2
) , (5.25)

one has∣∣∣R(−)
` (s) +R

(+)
` (s)

∣∣∣ ≤ 4

(
|s− 1|

2

)σ/2
Λ`(2)σ/2 ≤ 4

(
|s− 1|

2

)σ/2
Λ`

(
1 +

σ

2

)
.

Finally, if the source is weakly tame, R(s) is analytic and of polynomial growth for <(s) ≥ 1.

5.5.4 Situation on the left of the vertical line <s = 1

We now consider the case where σ ≤ 1. The upper bounds for R
(−)
` (s) and R

(=)
` (s) are∣∣∣R(−)

` (s)
∣∣∣ ≤ 2qσ−1

` A,
∣∣∣R(=)

` (s)
∣∣∣ ≤ 2qσ−1

` π`, (5.26)

and involve the probability π` := max{pw, w ∈ Σ`}.
The upper bound for |R(+)

` (s)| is the same as previously in (5.22). We choose A such

that the bounds, for |R(−)
` (s)| in (5.26), and |R(+)

` (s)| in (5.22), are equal

2qσ−1
` A = |s− 1|Λ`(2)Aσ−2, i.e., A =

(
|s− 1|

2

)1/(3−σ) (
Λ`(2)q`

1−σ)1/(3−σ)
.

Then, one has∣∣∣R(−)
` (s) +R

(+)
` (s)

∣∣∣ ≤ 4

(
|s− 1|

2

)1/(3−σ) (
Λ`(2)q`

1−σ)1/(3−σ) · qσ−1
` .
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To conclude in this case, we need to compare the two sequences q` and Λ`(2) which already
satisfy q` ≤ Λ`(2)1/2 (since q2

` ≤ Λ`(2)) and we assume that q` is not too small with respect
to Λ`(2), namely

a := lim sup

∣∣∣∣ log q`
log Λ`(2)

∣∣∣∣ < +∞. (5.27)

Then, for ` large enough, one has q` ≥ Λ`(2)a, and∣∣∣R(−)
` (s) +R

(+)
` (s)

∣∣∣ ≤ |C(s)| Λ`(2)b, with b =
1

(3− σ)
(1 + a(1− σ)(σ − 2)) ,

where the function C(s) is of polynomial growth. For the remainder term R
(=)
` (s), one has,

with (5.27) and (5.26),

π` ≤ Λ`(2)1/2 so that
∣∣∣R(=)

` (s)
∣∣∣� Λ`(2)c with c =

1

2
+ a(σ − 1).

The two exponents b and c depend continuously on σ and equal 1/2 for σ = 1. Then, for
any b0 > 1/2 − ε, there exists δ3 > 0 such that b, c satisfy b, c > b0 for σ > 1 − δ3. Then,
the convexity argument already used in (5.25) proves that

|R`(s)| ≤ |C(s)| Λ`(1 + b0),

which defines a convergent series. Then, if the source is weakly tame, the related series
R(s) is analytic and of polynomial growth in the vertical strip σ ∈]1− δ3, 1].

Finally, we have proven that the series $(s) is tame, with a S-shape, related to the
half plane <s > 1− δ3 for some δ3 > 0. Moreover, at s = 1, the series satisfies (5.21) and
we obtain the “singular” expansion of $(s) at s = σ0 = 1.

Conclusion for the Chapter. Our general method is now described, with its Theorems.
It remains to prove them, for sorting algorithms in Chapter 6 and for QuickSelect in
Chapter 7.
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Lower bounds for the digital cost.

In this chapter, we apply the general method described in Chapter 5 to three sorting
algorithms QuickSort, InsSort, BubSort. This leads to one of the main results of the
thesis, stated as Theorem 6.2. Then, we focus on lower bounds for the mean number
of symbol comparisons performed by any sorting algorithm dealing with the standard
(lexicographic) word comparison. We first recall the approach due to Seidel together with
the notion of faithfulness he introduced [65]. This approach naturally leads to the structure
of trie, and we make a detour to the analysis of trie parameters. Combining the approach
of Seidel and ours leads to a lower bound for the mean number of symbol comparisons
of any sorting algorithm using words emitted by a Λ-tame source. This result, stated as
Theorem 6.5, is the second main result of the thesis.

6.1 The two main results

6.1.1 Tameness properties of the source.

Tameness and the main analytical properties were introduced in Chapter 3 with respect to
the source and its Dirichlet series. We define a slightly different notion of tameness which
enables a more direct derivation of analytical properties from Dirichlet series of the source
to $(s). We recall the definition of the Dirichlet series of the source

Λ(s) =
∑
w∈Σ∗

psw, Λk(s) =
∑
w∈Σk

psw.

There are also extensions of Λ(s) and Λk(s) which involve the fundamental probabilities pw,
together with the ends aw, bw of the fundamental intervals (see Section 2.4), via a function
F : [0, 1]2 → R+ of class C1,

Λ[F ](s) :=
∑
w∈Σ?

F (aw, bw) psw, Λk[F ](s) :=
∑
w∈Σk

F (aw, bw) psw. (6.1)

For F ≡ 1, we recover the classical function Λ := Λ[1]. On the half-plane σ := <s > 1,
these series satisfy the relation |Λ[F ](s)| ≤ ‖F‖Λ(σ), where the norm ‖·‖ is the sup-norm
on [0, 1]× [0, 1].

We now describe properties of the source that will entail tameness for the mixed series
$(s).

Definition 6.1 (Tameness of Sources). Denote by F the set of functions F : [0, 1]2 → R+

of class C1. A source is Λ-tame if Λ(s) admits at s = 1 a simple pole, with a residue equal
to 1/h(S), (where h(S) is the entropy of the source) and if for any F ∈ F , there exists
X ∈ {S,H, P} (shorthand for strip, hyperbolic and periodic) for which the series Λ[F ] is
tame at s = 1 with a X-shape.

Remark. If Λ(s) admits at s = 1 a simple pole, with a residue equal to 1/h(S), then any
series Λ[F ](s) for any F ∈ F , F > 0, admits at s = 1 a simple pole, with a residue equal
to (see the end of the proof of Proposition 6.6 in Section 6.2.5 for details)

1

h(S)

∫ 1

0
F (x, x) dx.
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6.1.2 The main result.

We describe here the final results about the asymptotic expression of S(n) for three algo-
rithms. All the proofs are described in Section 6.2.

Theorem 6.2. Consider a general source S, assumed to be Λ-tame. Then, the mean
number S(n) of symbol comparisons performed by each of the three algorithms on a sequence
of n words independently drawn from the same source S admits the asymptotic behavior
described in Table of Figure 6.1.

(i) [Dominant terms.] The constants h(S) and c(S) in the dominant terms are described
in the next Proposition 6.3.

(ii) [Sub-dominant terms.] The constants κi in the sub-dominant terms are described in
the next Proposition 6.3.

(iii) [Error terms.] The following holds

(a) if the source has a S–shape with width δ, then E(n) = O(n1−δ);

(b) if the source has a H–shape with exponent β0, then E(n) = n· O
(
exp[−(log n)β]

)
with β < 1/(1 + β0);

(c) if the source has a P–shape with width δ, then E(n) = n ·Φ(n) +O(n1−δ) where
n ·Φ(n) is the expansion given by the family of imaginary poles (sk) of Λ(s) on
<s = 1.

Algorithms K(n)
Dominant term

of S(n)

Sub-dominant terms

of S(n)

Remainder term

of S(n) (see 6.2)

QuickSort 2n log n
1

h(S)
n log2 n κ0n log n + κ2n E(n)

InsSort
n2

4

c(S)

4
n2 1

h(S)
n log n +

(
κ0 −

c(S)

4

)
n E(n)

BubSort
n2

2

1

4h(S)
n2 log n

(
κ1 +

c(S)

4

)
n2 nE(n)

Figure 6.1: Results for Theorem 6.2. Constants are described in Proposition 6.3.

6.1.3 Main constants of interest.

We finally describe the main constants which intervene in the dominant terms of the sin-
gular expression of $(s)/(s− σ0) at s = σ0.

Proposition 6.3. (a) The constants which intervene in the dominant terms displayed in
the third column of Figure 6.1 are:

(i) The entropy h(S) of the source (defined in Definition 2.2).

(ii) The coincidence c(S), namely the mean number of symbols needed to compare two
random words produced by the source (see Lemma 2.5).
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The constants κi which intervene in the sub-dominant terms1 displayed in the fourth column
of Figure 6.1 involve the Euler constant γ together with the sub-dominant constant of the
source d(S) equal to the constant term in the singular expansion of Λ(s) at s = 1,

d(S) = lim
s→1

[
Λ(s)− 1

h(S)

1

s− 1

]
,

under the form

κ0 =
2

h(S)
(γ − 2) + 2d(S), κ1 =

1

8h(S)
(2γ − 3) +

d(S)

4
.

The entropy h(S) and the coincidence c(S) are defined in Chapter 2. The constants
c(S) and h(S) are easy to compute for any memoryless source. For the unbiased source
Mr, one has:

c(Mr) =
r

r − 1
, h(Mr) = log r.

For the source Bp on the alphabet {0, 1}, with p := p0, one has

c(Bp) =
1

2p(1− p)
, h(Bp) = −p log p− (1− p) log(1− p).

6.1.4 Beyond Λ-tameness?

In this chapter, we insist on sources which are Λ-tame, as they are the most natural.
However, our results can be extended to other sources, whose Dirichlet series Λ fulfills
more general tameness properties.

Proposition 6.4. Consider a source S and its Dirichlet series Λ(s). The following holds:

(i) If the Dirichlet series Λ is tame at s = s0, with s0 ∈]1, 2[ and order 1, then the
asymptotic order of the mean number S(n) of symbol comparisons performed by each
of the three algorithms is described in the second column of Figure 6.2.

(ii) If the Dirichlet series is Λ-tame at s = 1 with order k0 ≥ 1, then the asymptotic
order of the mean number S(n) of symbol comparisons performed by each of the three
algorithms is described in the third column of Figure 6.2.

Algorithms

Asymptotic order of S(n)

when Λ is tame at s = s0,

(s0 ∈]1, 2[) with order 1

Asymptotic order of S(n)

when Λ is tame at s = 1

with order k0

QuickSort ns0 n log1+k0 n

InsSort n2 n2

BubSort n1+s0 n2 logk0 n

Figure 6.2: Results for Proposition 6.4.

This result applies to intermittent sources with parameter a defined in Section 2.2.3.
More precisely, Assertion (i) applies for a ∈]1, 1/2[, and Assertion (ii) applies for a = 1,
with k0 = 2.

1The constant κ2 is not described here.
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6.1.5 Robustness.

We now compare the asymptotic estimates for the two mean numbers, the mean number
K(n) of key-comparisons (column 2 of Figure 6.1) and the mean number S(n) (column 3
of Figure 6.1). There are two types of algorithms

(a) The “robust” algorithms for which K(n) and S(n) are of the same order. This is
the case for only one algorithm, the InsSort algorithm, and the ratio S(n)/K(n)
involves the coincidence c(S), described in Section 6.1.3.

(b) The algorithms for which S(n) and K(n) are not of the same order, here QuickSort

and BubSort. In both cases, the ratio S(n)/K(n) satisfies

S(n)

K(n)
∼ 1

2h(S)
log n. (6.2)

We will see later in Section 6.1.6 that the same ratio also appears in lower bounds.

6.1.6 An asymptotic lower bound for S(n).

Combining our methods described in Proposition 6.11 together with the approach of Seidel
for lower bounds, we obtain an asymptotic lower bound S(n) for the mean number of
symbol comparisons for any sorting algorithm (not necessarily faithful) using the standard
string comparison procedure and dealing with words of a Λ-tame source S.

Theorem 6.5. For a Λ-tame source S, the following asymptotic lower bound S(n) holds
for the mean number of symbol comparisons performed by any key-comparison based sorting
algorithm and dealing with words emitted by S,

S(n) ∼ 1

2 log 2

1

h(S)
n log2 n.

Remark. This lower bound shows that QuickSort is quasi-optimal in the model of symbol-
comparisons, as it is quasi-optimal in the model of key-comparisons.

6.2 Mean number of symbol comparisons.

We prove in this section the results given in Theorem 6.2 with the help of the framework
described in Chapter 5.

6.2.1 Expression for πn(i, j)

Figure 6.3 (above) recalls, for each algorithm of interest, the expressions for the mean
number πn(i, j) of key comparisons between the key of rank i and the key of rank j. Figure
6.3 (below) considers only the normalized comparisons between keys (see Section 5.2.1 and
particularly Eq. (5.2)).

6.2.2 Expression of π̂[u, t] in the basis Gm.

We deal with the random variables defined in (5.8) and an easy computation leads to the
proof of MetaTheorem 5.4.

The random variable π̂[u, t] is expressed in the “basis” Gm(NJ ), as displayed
in the table in Figure 6.4.
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Algorithms π(i, j)

QuickSort
2

j − i+ 1

InsSort
1

2
+

1

(j − i+ 1)(j − i)

BubSort
1

2
+

1

(j − i+ 1)(j − i)
+

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)

Algorithms π̂n(i, j)

QuickSort
2

j − i+ 1

InsSort
1

(j − i+ 1)(j − i)

BubSort
1

(j − i+ 1)(j − i)
+

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)

Figure 6.3: (Above) Expression of the mean number πn(i, j) of key comparisons between
the key of rank i and the key of rank j for each sorting algorithm. (Below) Expression of
the mean number π̂n(i, j) of normalized key comparisons (i.e., omitting the constant 1/2).

6.2.3 Expression of the coefficient ϕ(k, u, t)

We obtain an explicit expression for the k-th coefficient ϕ(k, u, t) in the series expansion
as in (5.7),

ΦZ(u, t) =
∑

k≥1+σ0

Zk

k!
(−1)kϕ(k, u, t)

It is deduced from the decomposition described in Figure 6.4 together with expressions in
(5.9). This leads to the proof of MetaTheorem 5.6. We recall that σ0 + 1 is (by definition)
the first integer where the decomposition is valid.

For each sorting algorithm, the value of the integer σ0 is provided in the second
column of Figure 6.5 and the expression of ϕ(k, u, t) is stated in the third and
fourth column of Figure 6.5.

6.2.4 Expressions of the mixed Dirichlet series $(s).

With computations of the previous expressions over the fundamental triangles, we obtain
the expression of ϕ(k), then the analytic lifting $(s) (on the halfplane <s > σ0) which is
also the mixed Dirichlet series:

Consider any general source, together with the fundamental intervals [aw, bw]
and its Dirichlet series Λ(s). For any of the three algorithms, the mixed Dirich-
let series $(s) admits in the domain <s > σ0, the expressions displayed in the
second column of Table of Figure 6.6, together with the values of σ0 in the third
column, and the main term in the singular expression of $(s)/(s− σ0).
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Algorithms π̂[u, t] (in the “basis” Gm)

QuickSort 2[G1(N[u,t[)−G2(N[u,t[)]

InsSort G2(N[u,t[)

BubSort G2(N[u,t[) + 2N[0,u[ ·G3(N[u,t[)

Figure 6.4: Decomposition of π̂N (u, t) in the basis Gm

Algorithms σ0 ϕ(k, u, t), k ≥ 1 + σ0 ϕ(k, u, t), k ≥ 1 + σ0

QuickSort 1 2[β1(k, t− u)− β2(k, t− u)] 2(t− u)k−2

InsSort 1 β2(k, t− u) (k − 1)(t− u)k−2

BubSort 2 β2(k, t− u) + 2uγ3(k, t− u) (k − 1)(t− u)k−3[t− (k − 1)u]

Figure 6.5: Expressions for ϕ(k, u, t).

6.2.5 Tameness of the mixed Dirichlet series.

In the three cases, the mixed Dirichlet series is closely related to the Dirichlet series Λ(s)
of the source, and the transfer of tameness between Λ(s) and $(s) is easy.

Proposition 6.6. Assume the source S to be Λ–tame. Then, the mixed Dirichlet series
$(s) relative to sorting algorithms satisfy the following:

– [QuickSort] $(s) is tame at σ0 = 1 with order k0 = 2.

– [InsSort] $(s) is tame at σ0 = 1 with order k0 = 1.

– [BubSort] $(s) is tame at σ0 = 2 with order k0 = 1.

Moreover, the source gives its shape of tameness to the mixed Dirichlet series.

Proof. The cases of QuickSort and InsSort is different from the one of BubSort.

Case of QuickSort and InsSort. The integral of (s − 1)(t − u)s−2 on the fundamental
triangle Tw equals (1/s) psw. This entails the nice formula for both $Q(s) and $I(s) (where
Q and I stand respectively for QuickSort and InsSort)

$Q(s) =
Λ(s)

s(s− 1)
, $I(s) =

Λ(s)

s
.

Then, the functions s 7→ $(s) are tame at s = 1. Moreover, the shape of tameness of $(s)
at s = 1 coincides with the shape of Λ–tameness of the source. For InsSort, the function
$I(s) has a simple dominant pole at s = 1 with a residue equal to 1/h(S), whereas, for
QuickSort, the function $I(s) has a dominant pole at s = 1 of order 2. Moreover, the
singular expressions of the functions $(s)/(s−1) can be easily computed from the singular
expression of Λ(s).
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Algorithms $(s) $(s) σ0
Main term

of $(s)/(s− σ0)

QuickSort
2

s(s− 1)

∑
w∈Σ?

psw
2

s(s− 1)
Λ(s) 1

2

h(S)

1

(s− 1)3

InsSort
1

s

∑
w∈Σ?

psw
1

s
Λ(s) 1

1

h(S)

1

(s− 1)2

BubSort −
∑
w∈Σ?

awp
s−1
w −Λ[F0](s− 1) 2 − 1

2h(S)

1

(s− 2)2

Figure 6.6: Expressions for $(s). (N.B.: The function F0 is F0(x, y) = x.)

C ase of BubSort. The integral of $(s, u, t) = (s−1)(t−u)s−3[t− (s−1)u] over the funda-
mental triangle equals − awpws−1. Then, the Dirichlet series $(s) admits the expression

$(s) = −
∑
w∈Σ?

aw pw
s−1 = −Λ[F0](s− 1),

where F0(x, y) = x. By hypothesis, the series s 7→ Λ[F0](s) is tame at s = 1. Then, the
series$(s) is tame at s = 2, with the same shape of tameness as the series s 7→ Λ[F0](s). We
now study its precise behavior at s = 2. We remark, with the relation Λ`(1) = Λ`(1)2 = 1,
the equality

2Λ`[F0](1) = 2
∑
w∈Σ`

awpw = 2
∑
w∈Σ`

[∑
w′<w

pw′

]
pw = Λ`(1)2 −

∑
w∈Σ`

p2
w = Λ`(1)− Λ`(2).

(6.3)
The series

L(s) :=
∑
`≥0

L`(s) with L`(s) := 2Λ`[F0](s)− Λ`(s),

is convergent at s = 1 and satisfies

L(1) =
∑
`≥0

L`(1) = −
∑
`≥0

Λ`(2) = −Λ(2) = −c(S),

where c(S) is the coincidence of the source defined in Lemma 2.5. Since Λ(s) admits a
simple pole at s = 1 with a residue equal to 1/h(S), then Λ[F0](s) admits a simple pole
at s = 1 with a residue equal to 1/2h(S). More precisely, given the singular expansion of
Λ(s) at s = 1 written as

Λ(s) =
1

h(S)

1

s− 1
+ d(S) +O(s− 1),

the singular expansion of $(s) at s = 2 is

$(s) = − 1

2h(S)

1

s− 2
+

1

2
(c(S)− d(S)) +O(s− 2).
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Remark that Equation (6.3) can be generalized to any function F of class C1. The sum
of interest can be viewed as a Riemann sum on the fundamental intervals of depth `, so
that the decomposition holds∑

w∈Σ`

F (aw, bw)pw = I[F ] + ρ`[F ].

where the main term is the integral I[F ] of the diagonal function x 7→ F (x, x) and the
remainder term ρ`[F ] is the difference between the integral and the Riemann sum, that
satisfies

|ρ`[F ]| ≤
∑
w∈Σ`

∫ bw

aw

|F (aw, bw)− F (x, x)| dx.

On each interval [aw, bw], the inequality holds (with D the differential),

|F (x, x)− F (aw, bw)| ≤ C · |aw − bw| , with C := sup
(x,y)∈[0,1]2

|DF (x, y)| ,

and entails the bound ρ`[F ] ≤ C · Λ`(2) . Then, for any function F ≥ 0 of class C1, with
F 6≡ 0, the integral I[F ] is not zero, and the Dirichlet series Λ[F ](s) has a residue at s = 1
equal to I[F ]/h(S).

The singular expressions obtained when studying the tameness of $(s) are stated in
the last column of the table in Figure 6.6. It is then a simple matter to apply the Rice
method to obtain (by residue calculus) the asymptotic expansions needed in Theorem 6.2
(or in the last column of Figure 6.1).

6.2.6 Mean number of symbol comparisons

One last step in order to get the last column of Figure 6.1 is to take into account the
non-normalized comparisons. The mean number S(n) of symbol comparisons is

S(n) =

{
Ŝ(n) (for QuickSort),

Ŝ(n) +
(
n
2

)Λ(2)
2 (for InsSort and BubSort).

Remark that the extra term which is added is the main term for InsSort, for which the
cost of non normalzed comparisons is the leading one.

6.3 An alternative approach.

We first recall the approach due to Seidel [65], together with the notion of faithfulness he
introduced (Section 6.3.3). This approach leads to analyze additive trie parameters (Section
6.3.4). We then make a “detour” via tries and trie parameters in Section 6.3.5, and we
use the methods of Chapter 4 in such analyses: the Rice method and the Poisson-Mellin
approach. When the first one may be applied (this is the case for our analyses in previous
sections), this greatly simplifies the probabilistic analysis. But, we also explain how to deal
with the second method when the first one cannot be applied. Then, in Section 6.3.7, we
return to faithful sorting algorithms and describe how to mix the two approaches (Seidel’s
one and the analysis of Section 6.3.5). This leads to an alternative derivation for results
for QuickSort and InsSort algorithms.
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An ordered sequence U of words
U = {U1 < U2 < · · · < Un},
A permutation σ ∈ Sn

The number
of symbol comparisons S[U , σ]

The mean number
of symbol comparisons S〈U〉

The mean number
of symbol comparisons S(n)

Input V := (V1, V2, . . . , Vn),
Vi = Uσ(i)

U fixed, and all possible σ ∈ Sn

all possible ordered sequences U
of size n randomly and indepen-
dently produced by the source.

Figure 6.7: The probabilistic steps for the analysis.

6.3.1 Seidel’s point of view.

Seidel [65] introduces the following framework, which is well-described in Figure 6.7.

Definition 6.7. Consider a set U of words that are independently emitted by the same
source S. Denote by S[U , σ] the number of symbol (resp. K[U , σ] the number of key
comparisons performed by the algorithm when the input set U is under the permutation σ.
More generally, for a subset V ⊂ U , denote by S[U ,V, σ] (resp. K[U ,V, σ]) the number of
symbol (resp. key) comparisons performed by the algorithm on the subset V when the input
set U is under the permutation σ. The quantities S〈U〉, S〈U ,V〉, (resp. K〈U〉, K〈U ,V〉) are
the expected values of S[U , σ], S[U ,V, σ] (resp. K[U , σ], K[U ,V, σ]) when σ is a uniform
random permutation of Sn.

Remark The notation 〈·〉 denotes an average over all the possible sequences that “come
from” the same set.

6.3.2 Seidel’s result

Seidel [65] proves the following result that is now described in our framework.

Proposition 6.8 (Seidel, 2010). Consider the previous framework. Denote by U〈w〉 the
subset of U which gathers all the words which begin by the prefix w, and by P (U) the set of
common prefixes of U , defined as the prefixes w for which the cardinality |U〈w〉| is at least
equal to 2. The following relations hold:

S[U , σ] =
∑

w∈P (U)

K[U ,U〈w〉, σ], S〈U〉 =
∑

w∈P (U)

K〈U ,U〈w〉〉. (6.4)

Proof. The following equality

S[U , σ] =
∑

1≤i<j≤n
(c(Ui, Uj) + 1)K[U , {Ui, Uj}, σ],
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involves (by definition) the coincidence c(Ui, Uj) between the two keys Ui and Uj (namely
the length of their longest common prefix). The set P (U) of common prefixes of U exactly
gathers the prefixes w for which the cardinality |U〈w〉| is at least equal to 2. All these sets
only depend on U , not on the permutation σ.

Seidel remarks that c(Ui, Uj) + 1 is also the number of prefixes w ∈ P(U) —including
the empty prefix— which are shared by Ui and Uj . This is also the number of subsets of
the form U〈w〉 — including the total set U — which contain Ui and Uj . Then,

S[U , σ] =
∑

1≤i<j≤n

∑
w∈P (U)

Ui,Uj∈U〈w〉

K[U , {Ui, Uj}, σ] =
∑

w∈P (U)

∑
1≤i<j≤n
Ui,Uj∈U〈w〉

K[U , {Ui, Uj}, σ].

Now the equality ∑
1≤i<j≤n
Ui,Uj∈U〈w〉

K[U , {Ui, Uj}, σ] = K[U ,U〈w〉, σ],

holds, and entails the first equality of Proposition 6.8. As the subsets U〈w〉 do not depend
on the permutation σ, averaging over σ leads to the second equality of Proposition 6.8.

6.3.3 Faithfulness.

Seidel introduces the notion of a faithful algorithm, and we consider here a slightly different
notion, the notion of a strongly faithful algorithm, on which we give an alternative point
of view. We first recall the notation U[i,j] (already used in Section 1.1.4) which denotes the
subset formed with the keys of U whose rank k belongs to the interval [i, j].

Definition 6.9 (Seidel, 2010). An algorithm is strongly faithful if, for any n ≥ 2, any
subset U of cardinality n, and any pair (i, j), with 1 ≤ i < j ≤ n, the mean number of key
comparisons K〈U ,U[i,j]〉 performed by the algorithm only depends on the cardinality j−i+1
of the subset U[i,j].

There is an easy translation of this notion in our framework.

Lemma 6.10. For a sorting algorithm A, the following three assertions are equivalent

(a) The algorithm is strongly faithful.

(b) The mean number of key comparisons π(i, j) performed by A between the two keys
Ui and Uj only depends on the difference j − i between their ranks.

(c) The density ΦZ(u, t) of A in the Poisson model only depends on the difference t− u.

The algorithms Quicksort and InsSort are strongly faithful. The third algorithm BubSort

is not strongly faithful.

Proof. Denote by P (i, j) := K[U ,U[i,j]] the expectation of the total number of key compar-
isons between any pair of two keys of U[i,j]. By definition, an algorithm is strongly faithful
if P (i, i+ k) does not depend on i, and only depends on k.

The relation

P (i, i+ `) =
∑

(i′,j′)
i≤i′<j′≤i+`

π(i′, j′)

= P (i, i+ `− 1) + π(i, i+ `) +

`−1∑
k=1

π(i+ k, i+ `), (6.5)
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holds for ` ≥ 2 between the two sequences P (i, j) and π(i, j). We will use it to prove that
the following two assertions are equivalent, with a recurrence on `.

(a) For any k ≤ `, the expected values P (i, i+ k) do not depend on i.

(b) For any k ≤ `, the expected values π(i, i+ k) do not depend on i.

If ` = 1, there is only one pair of keys in U[i,i+1] and P (i, i + 1) = π(i, i + 1). Then, the
lemma is true for ` = 1.

Let us suppose now that the lemma holds for k < `. We will prove that it holds for
k = `.

Assume first that Assertion (b) holds for k ≤ `. Then, none of the terms π(i+ k, i+ `)
for k ∈ [0 . . `−1] depends on i. Furthermore, by recurrence hypothesis, Assertion (a) holds
for k ≤ `− 1, and P (i, i+ `− 1) does not depend on i. Then, with Eq. (6.5), it is the same
for P (i, i+ `). and Assertion (a) holds for k ≤ `.

Conversely, assume that Assertion (a) holds for k ≤ `. Then, none of the two terms
P (i, i+ `) or P (i, i+ `−1) depends on i. Furthermore, by recurrence hypothesis, Assertion
(b) holds for k < ` and all the terms π(i + k, i + `) are independent of i for k ∈ [1 . . `].
Then, with Eq. (6.5), it is the same for π(i, i+ `), and Assertion (b) holds for k ≤ `.

For a strongly faithful algorithm, the mean number K〈U ,U〈w〉〉 only depends on the car-
dinality Nw of U〈w〉. It equals K(Nw), where K(n) is the mean number of key comparisons
of the algorithm in the permutation model, and Relation (6.4) entails the equality

S〈U〉 =
∑

w∈P(U)

K(Nw), (6.6)

where Nw is the number of words of U which begin with the prefix w. We remark that, for
any sorting algorithm, the equalities K(0) = K(1) = 0 hold. Then, the previous relation
can be written as

S〈U〉 =
∑

w∈P(U)

K(Nw) =
∑
w∈Σ?

K(Nw).

6.3.4 A relation between faithful sorting algorithms and trie parameters.

Consider, more generally, a function f : N → R which satisfies f(0) = f(1) = 0 and
f(k) ≥ 0 for k ≥ 2, and a random variable R defined on M? by the relation

R[U ] :=
∑
w∈Σ?

f(Nw), (6.7)

where Nw is the number2 of words of U which begin with the prefix w. Remark that the
right member only depends on the underlying set, then the equality R[U ] = R〈U〉 holds.
We now explain why such a random variable defines an additive parameter on the trie
T (U).

2This notation is in conflict with the notations used in the other chapters. Previously in the thesis, we
have used NJ to denote the number of words whose parameter belongs to J . Then we should use NIw
instead of Nw.
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a
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a

b
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b

a

c

b

cba
...

a

bbc
...

b

ca
b
...

c

c U1 = aaabc . . .
U2 = abcab . . .
U3 = abcbc . . .
U4 = abccb . . .
U5 = bcaab . . .
U6 = bcabb . . .
U7 = cacba . . .
U8 = cbbbc . . .
U9 = cccab . . .

Figure 6.8: The trie T (U) associated with a set U of nine (infinite) words on the alphabet
Σ := {a, b, c}

The trie T (U). A trie is a tree structure, used as a dictionary, which compares words
via their prefixes. Since its introduction [31, 19] the trie has become a fundamental data
structure in computer science [24]. Given a finite set U = {U1, U2, . . . , Un} formed with n
(infinite) words emitted by the source, the trie T (U) built on the set U is defined recursively
by the following three rules:

(i) If |U| = 0, T (U) = ∅.

(ii) If |U| = 1, U = {U}, T (U) is a leaf labeled by U .

(iii) If |U| ≥ 2, then T (U) is formed with an internal node and r subtries respectively
equal to

T (U 〈0〉), . . . , T (U 〈r−1〉),

where U 〈σ〉 denotes the subset consisting of words of U〈σ〉 (i.e., words beginning with
letter σ), stripped of their initial symbol σ. If the set U〈σ〉 is nonempty, the edge
which links the subtrie T (U 〈σ〉) to the internal node is labelled with the symbol σ.

Then, the internal nodes are used for directing the search, and the leaves contain suffixes
of words of U . There are as many leaves as words in U . Internal nodes are labeled by
prefixes w for which the cardinality Nw of the subset U〈w〉 is at least 2 (see Figure 6.8).

Additive parameters on tries. Trie analysis aims at describing the average shape of
a trie (number of internal nodes, external path length, height). We focus here on additive
parameters, whose (recursive) definition exactly copies the (recursive) definition of the trie.
Consider a function f : N → R which satisfies f(0) = f(1) = 0 and f(k) ≥ 0 for k ≥ 2,
together with a random variable R[U ], associated with f , and defined on the trie T (U) as:

(i) If |U| < 2, then R[U ] = 0;

(ii) If |U| ≥ 2, then R[U ] = f(|U|) +
∑
σ∈Σ

R[U〈σ〉].

Iterating the recursion, we obtain exactly Equation (6.7). The cost f is the “toll” that
is “paid” at each internal node of the trie. In particular, when f(k) = 1 for k ≥ 2, the
quantity R[U ] equals the number of internal nodes in the trie T (U), and when f(k) = k
for k ≥ 2, the variable R[U ] equals the external path length of the trie T (U). These trie
parameters have been very deeply studied: first in the case when the words are emitted
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by a simple source (see [46] for instance), and later on, when the words are produced by a
general (non-ambiguous) source (see [13, 11]).

However, even for simple sources, these existing analyses are usually performed with
the Poisson-Mellin tools, need Depoissonization techniques, and do not precisely deal with
the tameness of the source3. The following result has thus two main purposes: it first
deals with the usual cases f(k) = 1 or f(k) = k and explains how the Rice method
provides in these cases very natural proofs, with precise error terms, that do not need
Depoissonization techniques. It also makes more precise the role played by the tameness
of the source. Second, it describes the method that can be used in the case of the “toll”
f(k) = k log k, where it does not seem possible to apply directly the Rice method.

6.3.5 Analysis of additive trie parameters.

The following result compares the two methodologies, the Rice method and the Poisson-
Mellin approach, it is thus of independent interest, and also important in our context.

Proposition 6.11. Consider, a source S assumed to be Λ-tame. For each set4 U of infinite
words independently produced by S, consider the trie T (U) and a trie parameter R defined
by Relation (6.7) from a toll function f : N → R which satisfies f(0) = f(1) = 0 and
f(k) ≥ 0 for k ≥ 2. Then, the mean value R(n) of the random variable R in the Bernoulli
model (Bn,S) satisfies the following:

(i) In the case when f(k) = k(k − 1), then R(n) = Λ(2)n(n− 1).

(ii) Define the degree of f as deg(f) := inf{c, f(k) = O(kc)} and assume that d := deg f
belongs to [0, 2[. Then, R(n) is written as

R(n) =
n∑
k=2

(−1)k
(
n

k

)
Λ(k)r(k), with r(n) =

n∑
k=2

(−1)k
(
n

k

)
f(k),

and there exist analytic liftings ρ(s), for n 7→ r(n), and $(s), for n 7→ R(n), on the
half-plane <s > d.

(iii) In the case when ρ(s) is proven to be tame at s = max(d, 1), the Rice method
can be applied. This arises in particular in the two cases f(k) = 1 and f(k) = k.
The function ρ, and the asymptotic behavior of the mean value R are described in
Figure 6.9.

(iv) In the case when f(k) = k log k, the function ρ(s) has a pole of order 2 at s = 1,
and, even though it is not proven to be tame at s = 1, Poisson-Mellin tools prove the
asymptotic behaviour for R(n) given in Figure 6.9.

Remark. There exist two extensions of Proposition 6.11 (that will be described in [69]),
in the following cases:

(i) The source is not Λ-tame, but its Λ series fulfills nice tameness properties as described
in Section 6.1.4.

(ii) The function f admits an analytic lifting that satisfies f(n) = na logb n, with b ∈ N
and a ∈]0, 2[.

3There is an exception in [11].
4Or sequence since it does not matter for tries.
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Toll function Lifting ρ(s) Lifting $(s)
Dominant term

of R(n)

f(k) = 1 s− 1 (s− 1)Λ(s)
n

h(S)

f(k) = k s sΛ(s)
1

h(S)
n log n

f(k) = k log k − ζ ′(s)

Γ(−s)
+
H1(s)

Γ(−s)
−ζ
′(s)Λ(s)

Γ(−s)
+ Λ(s)

H1(s)

Γ(−s)
1

2h(S)
n log2 n

Figure 6.9: Results for Proposition 6.11. The function H1(s) is defined in (6.13).

6.3.6 Proof of Proposition 6.11.

We first work inside the Poisson model (PZ ,S) where the cardinality N follows a Poisson
law of rate Z. Then, the cardinality Nw follows a Poisson law of rate Zpw. Denote by
F (Z) the expectation of the variable f(N) and G(Z) the expectation of the variable R[U ]
in the Poisson model of rate Z, namely

F (Z) = e−Z
∑
k≥2

Zk

k!
f(k), G(Z) = e−Z

∑
k≥2

Zk

k!
R(k), (6.8)

where R(n) is the expectation of R[U ] in the Bernoulli model in (Bn,S). If we wish to
adopt the Rice method, as in Chapter 4, we write F (Z), G(Z) under the form

F (Z) =
∑
n≥0

(−1)n
Zn

n!
r(n), with r(n) =

n∑
k=2

(−1)k
(
n

k

)
f(k), (6.9)

G(Z) =
∑
n≥0

(−1)n
Zn

n!
ϕ(n), with ϕ(n) =

n∑
k=2

(−1)k
(
n

k

)
R(k). (6.10)

Averaging Relation (6.7) in the Poisson model of rate Z entails the equality

G(Z) =
∑
w∈Σ?

EZ [f(Nw)] =
∑
w∈Σ?

F (Zpw). (6.11)

Assertion (i). Consider first the case where f(k) = k(k − 1). Then, Relation (6.8) entails
the equality F (Z) = Z2, and, with (6.11), the equality G(Z) = Λ(2)Z2. This implies the
exact equality R(n) = n(n− 1) Λ(2).

Assertion (ii). Relations (6.9), (6.10) and (6.11) entail the equality

ϕ(n) =

(∑
w∈Σ?

pnw

)
r(n) = Λ(n)r(n), (6.12)

and, inverting the triangular set of relations (6.10) leads to the binomial relations

R(n) =

n∑
k=2

(−1)k
(
n

k

)
ϕ(k), and then R(n) =

n∑
k=2

(−1)k
(
n

k

)
Λ(k)r(k).

If there exists an analytic lifting ρ(s) of r(n), there is an analytic lifting $(s) for ϕ(n),
equal to Λ(s)ρ(s), and we can use the Rice Formula, as previously in Section 6.2.5, as soon
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as the analytic liftings can be proven tame. Previously, for each of the three algorithms, we
computed such an analytic lifting $(s), given in the second column of Table of Figure 6.6,
which is moreover proven to be tame. However, in the present general setting, the existence
of a simple lifting $(s) for ϕ(k) is not always directly granted, but it can be obtained by
the cycle “Poisson–Mellin–Newton–Rice”, that we have described in Section 4.6.

First, the Valuation-Degree Condition is satisfied for the sequence f(k) = k log k that
satisfies deg f = d ∈ [0, 2[ and val(f) = 2. Then, we use Proposition 4.16 that proves the
existence of an analytic lifting ρ(s) for the sequence r(k) on the half plane <s > 1. As
the Dirichlet series Λ of the source has a pole at s = 1, the product s 7→ $(s) = ρ(s)Λ(s)
is analytic on the halfplane <s > max(d, 1). And its tameness (needed to apply the Rice
formula) depends both on the relative position of d and 1, and the tameness of ρ.

We now describe particular instances of such a situation, in the context of Assertions
(iii) and (iv).

Assertion (iii). We now consider the cases f(k) = 1 or f(k) = k. In both cases, the degree
d satisfies max(d, 1) = 1, and we study the tameness of ρ at s = 1. The sequences r(n)
satisfy respectively

r(n) =
n∑
k=2

(−1)k
(
n

k

)
= 0− 1 + n = n− 1,

r(n) =

n∑
k=2

(−1)k
(
n

k

)
k = −n

n−1∑
k=1

(−1)k
(
n− 1

k

)
= n,

and the analytic liftings ρ(s) are respectively s−1 and s, whereas the analytic liftings of the
sequence ϕ are $(s) = (s− 1)Λ(s) and sΛ(s). In the case of a source Λ-tame, the analytic
lifting $(s) is tame at s = 1, and we apply the Rice method. We then easily recover the
main results already known for the asymptotic mean of the size and path length, with
precise remainder terms which depend on the tameness of the source.

Assertion (iv). The case f(k) = k log k is different. The degree d equals 1, and we study
the tameness of ρ at s = 1. We write

F ∗(s) =
∑
k≥2

f(k)

k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥2

f(k)

k

Γ(k + s)

Γ(k)
.

The ratio of Gamma Functions can be estimated with the Stirling Formula,

Γ(k + s)

Γ(k)
=

(k + s)k+s

kk
e−k−s

e−k

√
k + s

k

[
1 +O

(
1

k

)]
= ks

[
1 +O

(
|s|
k

)]
,

where the O-term is uniform with respect to k. Then, the Mellin transform of F satisfies,
for f(k) = k log k,

F ∗(s) =
∑
k≥2

ks log k

[
1 +O

(
|s|
k

)]
= −ζ ′(−s) +H1(s), (6.13)

where H1(s) is analytic and of polynomial growth in <s < 0. Then F ∗(−s) is tame at
s = 1 with order 2, and the relation

ρ(s) =
F ∗(−s)
Γ(−s)

= − ζ ′(s)

Γ(−s)
+
H1(s)

Γ(−s)
,
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proves that the function ρ(s) has a pole of order 1 at s = 1. However, the function 1/Γ(−s),
even though it is analytic on the halfplane <(s) > 1, is not tame there. And it does not
seem possible to directly prove that ρ(s) is tame at s = 1. We cannot a priori apply
the Rice method, and we thus follow the alternative approach, using the Mellin-Poisson
transform, followed by Depoissonization. These techniques not yet used in this thesis, are
described in Chapter 4.2.

We also use some easy facts on the Mellin transform, described in Section 4.5. We first
consider the Mellin transforms F ∗(s) and G∗(s). Due to Relation (6.11), the function G(Z)
is an harmonic sum, with base function F and frequencies pw (see Section 4.5 and [25]).
With classical properties recalled in Section 4.5.2, its Mellin transform G∗(s) factorizes as

G∗(s) =

(∑
w∈Σ?

p−sw

)
· F ∗(s) = Λ(−s) · F ∗(s). (6.14)

The singular expressions of F ∗(s) and G∗(s) at s = −1 are, with tameness of Λ(s) and
(6.14),

F ∗(s) � 1

(s+ 1)2
, G∗(s) � 1

h(S)

1

(s+ 1)3
.

The tamenesses of F ∗(s) and Λ(s) are enough to deduce, using standard Mellin inverse
transform, recalled in Section 4.5, the estimates, for Z →∞,

F (Z) = Z logZ(1 + o(1)), G(Z) =
1

2h(S)
Z log2 Z(1 + o(1)). (6.15)

Now, we wish to return to the Bernoulli model, with Depoissonization techniques, which
need a good behaviour of G(Z) with respect to cones. We use the theorem due to Jacquet
and Szpankowski, described in Section 4.2, that we now re-formulate in our framework.

Depoissonization (reformulation from Theorem 4.2). Let G(Z) be the Poisson transform
of a sequence R(n), namely

G(Z) = e−Z
∑
n≥0

R(n)
Zn

n!
.

This series is assumed to be absolutely convergent for z ∈ C. Assume moreover that the
sequence R(n) admits an analytic extension Z 7→ R(Z) in a cone Sα, which is of polynomial
growth in this cone Sα when |Z| → ∞, i.e., there exists γ such that, for |Z| → ∞

|arg(Z)| ≤ α =⇒ |R(Z)| = O(|Z|γ).

Then, there exists a cone Sβ where the following estimate holds for |Z| → ∞,

G(Z) = R(Z) +
Z

2
R′′(Z) +O(|Z|γ−2).

An easy application of the previous result, with the estimates for G(Z) given in (6.15)
leads to the proof of Assertion (iv). This ends the proof of Proposition 6.11.

6.3.7 An alternative proof for QuickSort and InsSort.

It is clear that two algorithms of the studied family —QuickSort and InsSort— are
strongly faithful whereas the last one BubSort is not strongly faithful.

In the case of the two faithful algorithms, the following result easily follows from Propo-
sition 6.11 and Relation (6.6). We only provide here the asymptotic main terms.
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Theorem 6.12. Consider a strongly faithful algorithm which sorts words that are inde-
pendently drawn from the same source, assumed to be Λ-tame.

(i) If the mean number K(n) of key comparisons is An2 +O(n), then the mean number
of symbol comparisons satisfies S(n) = Ac(S)n2 + O(n log n), and S(n)/K(n) is
asymptotic to c(S).

(ii) If the mean number K(n) of key comparisons is An log n+O(n), then the mean num-
ber S(n) of symbols comparisons is asymptotic to A/(2h(S)) ·n log2 n and S(n)/K(n)
is asymptotic to log n/(2h(S)).

Then, the approach of Seidel, combined with our methods, provides an alternative ap-
proach for our main theorem, at least for the algorithms QuickSort and InsSort. However,
this approach cannot be applied to BubSort that is not strongly faithful.

6.4 An asymptotic lower bound for S(n).

Combining our methods described in Proposition 6.11 together with the approach of Seidel
for lower bounds, we obtain an asymptotic lower bound S(n) for the mean number of
symbol comparisons for any sorting algorithm (not necessarily faithful) using the standard
string comparison procedure and dealing with words of a Λ-tame source S. This result was
already stated as Theorem 6.5.

6.4.1 Proof of Theorem 6.5.

We use the same notations as in Section 6.3.1. We consider a set U of n distinct words, and
a key-comparison based sorting algorithm A. The set U is presented as input to algorithm
A in order given by some permutation σ, and we denote by K[U ,U〈w〉, σ] the number of
comparisons performed by A on the subset U〈w〉 when U is input under permutation σ.

We denote by L the function L(n) = log2(n!), which appears in the lower bound for
the mean number of key comparisons. We fix a subset U and an algorithm A and we say
that a permutation σ is k-good for V ⊂ U if K[U ,V, σ] ≥ L(|V|)− k. If it is not k-good, it
is said to be k-bad. We will use the following lemma due to Seidel [65].

Lemma 6.13. [Seidel] For any subset U of cardinality n, and any algorithm A, there is a
set S ⊂ Sn for which the following holds:

(i) The cardinality |S| satisfies: |S| ≥ n! (1− (1/n));

(ii) All the elements of S are (2 log n)-good for any U〈w〉.

We will prove the Lemma later on. We first explain how it entails the proof of Theo-
rem 6.5. Indeed, with the second relation of Eq. (6.4), Lemma 6.13 entails the inequality,
for any set U of cardinality n,

S[U ] ≥
(

1− 1

n

)
(R1[U ]− 2 log nR2[U ]) ,

where the parameters R1 and R2 are respectively associated with the toll functions f(k) =
L(k) := log2(k!) and f(k) = 1. Now, Proposition 6.11 provides the asymptotic behaviour
for the mean values R1(n) and R2(n), namely

R1(n) ∼ 1

2 log 2

1

h(S)
n log2 n, R2(n) = Θ(n).
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This proves that the mean number of symbol comparisons of the algorithm A admits the
asymptotic lower bound

S(n) ≥ S(n), with S(n) ∼ 1

2 log 2

1

h(S)
n log2 n,

and Theorem 6.5 is proven.

6.4.2 Proof of Lemma 6.13

We follow Seidel and use decision trees that have been described in Section 1.1.5, and we
copy here as Figure 6.10 the figure which already appeared in Chapter 1.

Figure 6.10: Decision tree of the Insertion Sort Algorithm when operating on three ele-
ments

Consider the decision tree D associated with the algorithm A. The set U〈w〉 is an order
contiguous subrange of U , i.e., U〈w〉 = U[i,j]. Consider the set of permutations S whose
restriction to the set [1 . . n] \ [i . . j] is fixed. Thus |S| = Nw!. Each leaf of D corresponds
to a permutation σ. Take the leaves that correspond to permutations in S along with their
rootpaths. They induce a subtree of D. We contract all the paths in this tree by removing
all the non branching nodes; there results a binary tree D that represents a valid decision
tree for a sorting algorithm on U〈w〉. Since D is a binary tree with Nw! leaves, for any

k > 0, there can be at most a 1/2k-fraction of these leaves that have distance less than
L(Nw) − k from the root. In other words, at most a 1/2k-fraction of the permutations
σ ∈ S are k-bad for U〈w〉. Since this is true for any which way the permutation values
outside [i, j] were fixed, we get that for any k > 0, the fraction of all permutations that are
k-bad for U〈w〉 is at most 2−k.

Now, we observe that, although the trie T (U) can have arbitrarily many nodes w, there
are only at most n− 1 different sets U〈w〉. There is a clear equality between the number of
different sets U〈w〉 and the number of branching nodes in the trie. We now prove that the
number of branching nodes in a trie with n leaves is at most n− 1, with an easy recursion.
For n = |U| = 2, there is at most 1 branching node. For a cardinality n := |U| ≥ 2, we
consider the first branching node in the trie (the one with the smallest level). Then, each
subtrie of cardinality ni < n has at most ni − 1 branching nodes, and there are at most
1 +

∑
i∈Σ(ni − 1) ≤ n− 1 branching nodes.

Thus choosing k ≥ 2 log n ensures that there is a subset S of Sn whose cardinality is
at least (1 − n2−k)n! ≥ [1 − (1/n)]n! and whose elements are k-good for all the subsets
U〈w〉. This ends the proof of Lemma 6.13.
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6.4.3 Relation between various lower bounds.

The well-known lower bound K(n) for any sorting algorithm using key comparisons is
asymptotic to n log2 n. Then, we have proven that

S(n)

K(n)
∼ 1

2h(S)
log n, (6.16)

and this is the same ratio as the ratio which appears in (6.2) for the non-robust algorithms,
namely QuickSort and BubSort.

There is also a classical lower bound in information theory which states that the number
D(n) of symbol comparisons used by any sorting algorithm on words which uses the symbol
representation of words satisfies

D(n) ≥ D(n), with D(n) ∼ 1

h(S)
n log n,

and the following ratio between the two asymptotic lower bounds for sorting words holds

S(n)

D(n)
∼ 1

2 log 2
log n.

Conclusion of the Chapter. We have described two main results of the thesis about
sorting algorithms, namely Theorem 6.2 which provides our results on the three algorithms
QuickSort, InsSort and BubSort, together with Theorem 6.5 which provides a lower
bound. We also gave an alternative approach to the proof of QuickSort and InsSort

using Seidel’s point of view. In the following Chapter, we apply our general framework to
QuickSelect, a typical searching algorithm using “divide and conquer” principle, and its
variants like QuickMin and QuickMax. We will see that it is not possible to use our general
method for Quickselect. We will use an indirect way, via a new algorithm QuickVal. We
will use the Laplace method to prove that Quickselect and QuickVal have have the same
asymptotic behavior.
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This chapter is devoted to the analysis of the QuickSelect algorithm and its variants.
The QuickSelect(m,n) algorithm is based on the “Divide and Conquer” principle and
returns the key of rank m of an input array of n keys. As QuickSort, it uses the first key
of the array as a pivot and performs the partition operation (see the description of the
algorithm in Section 1.3). If the rank k of the pivot equals m, the algorithm returns the
pivot. If k > m, the algorithm continues with the left sub-array; otherwise, it continues
with the right sub-array. We shall mostly focus our attention on situations where the rank
m is proportional to n, being of the form m = b1 + α(n− 1)c, for some α ∈ [0, 1], so that
the algorithm determines the α-th quantile; it will then be denoted by QuickQuantα(n).
For α = 0, the rank m equals 1 and this is QuickMin(n). For α = 1, the rank m equals n
and this is QuickMax(n). We also consider the case where m is randomly chosen in [1 . . n],
and this is QuickRand(n): this last algorithm is of course artificial and is defined to model
an “average” QuickSelect procedure.

It is possible to directly apply the general method of Chapter 5 to QuickMin or
QuickMax. But this is not the case of QuickSelect for a general rank. This is why
we introduce a new algorithm, the QuickVal algorithm, which can be seen as a dual ver-
sion of QuickSelect. This algorithm is analyzed with the general method of Chapter 5,
and we explain how we can return from the analysis of QuickVal to the analysis of the
QuickSelect Algorithm, its dual counterpart.

7.1 Results

Our main result stated in Theorem 7.2, describes the case of the QuickSelect algorithm
with all its variants [15]. It involves various constants that depend on the source S (and
possibly on the parameter α ∈ [0, 1]). These are precisely described in Theorem 7.3 (with
some plots displayed in Figure 7.1) and obtained in Section 7.4.3. Our results hold under
tameness conditions that we now describe.

7.1.1 Tameness properties needed for the source.

As we already announced in Section 3 of Chapter 5, we need tameness properties for the
source S, which are not of the same type as for Sorting algorithms. In fact, we need here
weakest notions of tameness which involve the two series Π and Λ, whose definition is
recalled here:

Λ(s) :=
∑
w∈Σ?

psw =
∑
k≥0

Λk(s), with Λk(s) :=
∑
w∈Σk

psw, (7.1)

Π(s) :=
∑
k≥0

πsk, where πk := max{pw : w ∈ Σk}. (7.2)

We will see in Section 7.4.3 that the mixed Dirichlet series $(s) relative to QuickSelect

studies may be related to these two Dirichlet series Λ and Π.

Two types of properties of the source may entail tameness for the mixed series $(s).
They involve the weak tameness of the Dirichlet series Λ or Π, as it is defined in Section 3.3
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(Chapter 3). The Dirichlet series Π does not intervene in the analyses of sorting algorithms
in Section in Chapter 6: only the Λ series plays a central role. We recall there this definition,
already given in Chapter 3.

Definition 7.1. A source is weakly Λ-tame with width δ if the abscissa of absolute
convergence of the Dirichlet series Λ(s) is equal to 1 + δ.
A source is weakly Π-tame with width δ if if the abscissa of absolute convergence of the
Dirichlet series Π(s) is equal to δ.

Furthermore, as the two series Λ and Π satisfy the relations

|Π(s)| ≤ Λ(<s) (for <s ≥ 0) and |Λ(s)| ≤ Π(<s− 1) (for <s ≥ 1), (7.3)

this entails the inequality δ(Π) ≥ δ(Λ) between the two widths δ(Π) and δ(Λ).

7.1.2 General result.

Theorem 7.2. For a source S both Π-tame and weakly Λ-tame with a small enough width,
the mean number of symbol comparisons of all the variants of QuickSelect(n) is Θ(n).
More precisely, the following holds:

(a) If the source is Π-tame with width δ0 < 1/2, then the mean number of symbol com-
parisons QQα(n) for QuickQuantα satisfies, for δ < 1− 2δ0, and for any α ∈ [0, 1],

QQα(n) = ρS(α)n+O(n1−δ),

where the constant hidden in the O-term is uniform (in α) for any interval of the
form [α1, 1− α1] with α1 > 0.

(b) If the source is Π-tame with width δ0 < 1/2, the mean number QR(n) of symbol
comparisons performed by QuickRand(n) satisfies, for δ < 1− 2δ0,

QR(n) = γS n+O(n1−δ), with γS =

∫ 1

0
ρ(α) dα.

(c) If the source is weakly Λ-tame with width δ1 < 1/2, the mean number of symbol
comparisons, QM(−)(n) for QuickMin(n) and QM(+)(n) for QuickMax(n), satisfies, δ <
1− 2δ1, with ε = ±,

QM(ε)(n) = ρ
(ε)
S n+O(n1−δ), with ρ

(+)
S = ρS(1), ρ

(−)
S = ρS(0).

7.1.3 Constants of the analysis.

The following result provides precise expressions for the constants which appear in the
dominant terms (and corrects small errors in Figure 1 of [12]) in terms of the probabilities

p
(−)
w , p

(+)
w defined as

p(−)
w :=

∑
α: |α|=|w|,

α≺w

pα, p(+)
w :=

∑
α: |α|=|w|,

α�w

pα . (7.4)

They are related to the ends of the fundamental intervals aw, bw and probabilities pw usually
used in the thesis and defined in Chapter 2 as

p(−)
w = aw, p(+)

w = 1− bw, pw = 1−
(
p(+)
w + p(−)

w

)
. (7.5)
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Theorem 7.3. For a general source S, where the probabilities p
(+)
w , p

(−)
w , and pw = 1 −

p
(+)
w −p(−)

w are defined in Eq. (7.4), the constants of interest involved in Theorem 7.2 admit
the following expressions:

(a) The quantile constant ρS(α) is defined as

ρS(α) :=
∑
w∈Σ?

pw κ

(
α− p(−)

w

pw

)
,

and involves the function κ given by κ(y) := 2[1 +H(y)]

H(y) :=


y log

(
1− 1

y

)
if y < 0,

h(y) = −y log y − (1− y) log(1− y) if y ∈ [0, 1],

(y − 1) log

(
1− 1

y

)
if y > 1.

Note that H(y) is a continuous extension, symmetric with respect to y = 1/2, of the
entropic function, using the entropy function h(y) = −y log y − (1 − y) log(1 − y) to
the whole real line.

(b) The Random selection constant is

γS =
∑
w∈Σ?

p2
w

2 +
1

pw
+
∑
ε=±

log

(
1 +

p
(ε)
w

pw

)
−

(
p

(ε)
w

pw

)2

log

(
1 +

pw

p
(ε)
w

) .
(c) The QuickMin/QuickMax constants are

ρ
(ε)
S = 2

∑
w∈Σ?

pw

[
1− p

(ε)
w

pw
log

(
1 +

pw

p
(ε)
w

)]
.

Note that the κ function —at least its restriction to the [0, 1] interval that coincides with
the entropy function— already intervenes in the mean number K(n) of key comparisons
of the QuickQuant algorithm, as recalled in Section 1.3.2. Figure 7.1 shows the graphs of
the function α 7→ ρ(α) for different Bernoulli sources, together with the graph of the κ
function.

It appears that the graph of ρ is a deformation of the graph of κ, and the plots illustrate
the fractal character of the constants involved in QuickQuant, as the expression for ρ in
terms of κ suggests. We see that the function ρ is not always maximized at α = 1/2, not
even for symmetric sources, even though κ is maximized at 1/2. There is then a natural
question to ask: For which (symmetric) sources is the maximum for ρ attained at α = 1/2?
If the maximum is not attained at α = 1/2, at which point is it attained?

7.1.4 Particular case of the binary source.

All these constants specialize nicely for the standard binary source B (when keys are com-
pared via their binary expansions, with uniform independent bits), in which case they
admit pleasant expressions that simplify and extend those of Fill and Nakama [23] and
Grabner and Prodinger [35] and lead themselves to precise numerical evaluations.
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Figure 7.1: Plots of the function ρS(α) for α ∈ [0, 1] and three sources: B(1/2, 1/2),
B(1/3, 2/3), and B(1/3, 1/3, 1/3). The curves are deformations of the curve α 7→ κ(α)
whose plot is on the bottom-right corner. The plots illustrate the fractal character of the
constants involved in QuickQuant.

Proposition 7.4. For a binary source, the constants admit the following expressions:

ρB(α) =
∑
`≥0

1

2`

2`−1∑
k=0

κ(2`α− k)

ρ
(ε)
B = 4 + 2

∑
`≥0

1

2`

2`−1∑
k=1

[
1− k log

(
1 +

1

k

)] .
= 5.27937 82410 80958

γB =
14

3
+ 2

∞∑
`=0

1

22`

2`−1∑
k=1

[
k + 1 + log(k + 1)− k2 log

(
1 +

1

k

)] .
= 8.20730 88638.

Here, the function κ is defined in Theorem 7.3(a).
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7.2 Algebraic analysis.

7.2.1 Generalities

We recall our results of Chapter 1: in the QuickSelect algorithm, as in the QuickSort

algorithm, the keys Ui and Uj are compared if and only if Ui or Uj is the first key among
the subset U[k,`], with k := i ∧m, ` := j ∨m. Then, the mean number of key comparisons
between Ui and Uj performed by QuickSelect(m) is, for i < j, equal to

π(m)
n (i, j) =

2

card U[k,`]
=

2

`− k + 1
, k := i ∧m, ` := j ∨m.

Observe that this probability depends on both i and j, except when m = 1 (case of
QuickMin) or m = n (case of QuickMax), where it satisfies

π(1)
n (i, j) =

2

card U[1,j]
=

2

j
, π(n)

n (i, j) =
2

card U[i,n]
=

2

n− i+ 1
.

We are also interested in two variants of the QuickSelect(m,n) algorithm:

(a) The QuickQuantα(n) algorithm outputs the α-quantile (with α ∈ [0, 1]), namely, the
key of rank b1 + α(n− 1)c. With this definition, we remark that QuickQuant0(n)
coincides with QuickMin(n), whereas QuickQuant1(n) coincides with QuickMax(n).

(b) The QuickRand(n) algorithm outputs a key whose rank is chosen uniformly at random
in the interval [1 . . n].

7.2.2 When the keys are words.

Here, the keys are words, and we adopt the following general model for the set of inputs: we
consider a finite sequence V = (V1, . . . , Vn) of infinite words independently produced by the
same source S. Such a sequence V is obtained with a sequence x = (x1, x2, . . . , xn) formed
by n independent drawings x1, x2, . . . , xn in the interval I = [0, 1] via the mapping M , and
we set Vi := M(xi). Inside this model, the words M(xi) are distinct with probability 1.

We assume moreover that V contains two given words M(u) and M(t), with u < t.
We first consider the number of key comparisons between M(u) and M(t), and deal with
the mean number π̂[u, t] of key comparisons performed by the algorithm between two
words M(u) and M(t) chosen as keys, where the mean is taken with respect to all the
permutations of V.

For (x, y) ∈ [0, 1]2 with x < y, the variables N[x,y], N]x,y[ respectively denote the number
of words of V whose parameter belong to [x, y] or ]x, y[. In Section 1.3.2, the mean number
π(i, j) depends on the cardinality of sets of the form U[`,k] for various pairs (`, k). The
present study is based on the variables N[x,y] or N]x,y[, and, in the same vein as in Section
1.3.2, the mean number π̂(u, t) depends on the cardinalities N[x,y] or N]x,y[ for various pairs
(x, y) ∈ [0, 1]2 related to (u, t) and possibly α in the case of QuickQuantα.

QuickMin and QuickMax. When M(u) and M(t) are chosen as keys, the variable N[0,t]

satisfies the equality N[0,t] = 2+N[0,u[ +N]u,t[. In the same vein, the variable N[u,1] satisfies
the equality N[u,1] = 2 +N]u,t[ +N]t,1], and then

π̂−(u, t) =
2

N[0,t]
=

2

N[0,u[ +N]u,t[ + 2
, π̂+(u, t) =

2

N[u,1]
=

2

N]u,t[ +N]t,1] + 2
. (7.6)
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QuickSelect. For the QuickSelect(m) algorithm, we assume that V contains two given
words M(u) and M(t), with u < t. We denote by α the parameter of the word of rank
m. The mean number of comparisons π̂α(u, t) performed by the QuickSelect algorithm
between the words M(u) and M(t) chosen as keys when it searches the word M(α) is

π̂α(u, t) =
2

N[x,y]
with x := u ∧ α, y := t ∨ α.

We denote by z the “middle point” (i.e., x ≤ z ≤ y), so that the equality {x, y, z} = {α, u, t}
holds.

(i) In the case when α 6= u and α 6= t, the three words M(x),M(y) and M(z) are distinct
and, in the same vein as previously, N[x,y] = N]x,z[ +N]z,y[ + 3 where the translations
of 3 expresses that the three words M(x),M(y),M(z) belong to V.

(ii) In the case when α = u or α = t, there are only two distinct words amongst
M(x),M(y) and M(z) and, N[x,y] = N]x,z[ + N]z,y[ + 2 where the translation of 2
expresses that there are only two distinct words.

Finally, with x := u ∧ α, y := t ∨ α, {x, y, z} = {α, u, t}, we write

π̂α(u, t) =


2

N]x,z[ +N]z,y[ + 3
, (u 6= α and t 6= α);

2

N]x,z[ +N]z,y[ + 2
, (u = α, or t = α).

(7.7)

7.2.3 The QuickVal algorithm

We remark that Eq. (7.7) does not provide a clear tool for computing the mean number
of comparisons π̂(u, t) of the QuickSelect(m) algorithm for a general rank m. This is
due to the fact that the interval [x, y] depends on the parameter α of the word of rank m,
which is not directly related to the rank m. This is why we consider a dual algorithm of
QuickSelect that admits α as the input of the algorithm. That is called QuickVal.

QuickVal takes as input a set of words V and a given word V ∈ V, and returns
the rank of V inside the set V. This algorithm is of independent interest and is easily
implemented as a variant of QuickSelect by resorting to the usual partitioning phase,
then doing a comparison between the value of the pivot and the input word V (rather than
a comparison between their ranks). We call this algorithm QuickValα when it is used to
seek the rank of the word M(α). By definition, the two algorithms QuickSelect(m) and
QuickValα behave exactly in the same way when the rank of the word M(α) equals m.
Now, with (7.7), one computes the mean number of key comparisons π̂α(u, t) performed
by QuickValα between two words M(u) and M(t).

If we consider the algorithm QuickQuantα(n) which outputs the key of rank b1 + (n−
1)αc = bnα + 1 − αc, then, for α = 0, we recover QuickMin, and, for α = 1, we recover
QuickMax. For a general α ∈]0, 1[, the behaviors of the two algorithms of QuickValα(n) and
QuickQuantα(n) should be asymptotically similar. Indeed, the parameter of the α-quantile
of a random set of words of large enough cardinality must be, with high probability, close
to α. It is proven in [52] that this parameter follows asymptotically a Gaussian law with
mean α and variance α(1− α)/n. We will return to this question in Section 7.3.2.
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Function QuickSel(V, 1, n,m)

/* Returns the element of rank m of the array V [1 . . n] */

k ← Partition(V, 1, n)
if k > m then

return QuickSel (V, 1, k − 1,m)
else

if k < m then
return QuickSel (V, k, n,m− k)

else
return V [k]

end

end

Function QuickVal(V, 1, n, v)

/* Returns the rank of the element v ∈ V */

k ← Partition(V, 1, n)
if V [k] > v then

return QuickVal (V, 1, k − 1, v)
else

if V [k] < v then
return QuickVal (V, k, n, v)

else
return k

end

end

Figure 7.2: The two algorithms QuickSel and QuickVal. The Partition procedure is
discussed in Section 1.2.

7.2.4 Poissonized density.

We are first interested in the density ΦZ(u, t) of the three algorithms, that is computed via
its coefficients ϕ(k, u, t).

Lemma 7.5. For each algorithm QuickMin, QuickMax and QuickValα, the sequence
ϕ(k, u, t) satisfies for k ≥ 2,

ϕ−(k, u, t) = 2tk−2

ϕ+(k, u, t) = 2(1− u)k−2

ϕα(k, u, t) =


4

k + 1
(t ∨ α− u ∧ α)k−2 (u 6= α and t 6= α)

2(t ∨ α− u ∧ α)k−2 (u = α, or t = α).

Proof. This is an (easy) application of Proposition 5.5. First, we observe the decomposi-
tions in the “basis” Gm(X) of Eq. (5.8)

1

X + 2
= G1(X)− g2(X),

1

X + 3
= 2G3(X)− 2G2(X) +G1(X).

Then, we rewrite the density according to 5.3 for QuickMin (using λ = t) and the density
for QuickMax (using λ = 1− u)

ΦZ(u, t) = 2Z2 [G1(Zt)−G2(Zt)] , ΦZ(u, t) = 2Z2 [G1(Z(1− u))−G2(Z(1− u))] .
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For QuickValα, we use λ = y − x with x = u ∧ α, y = t ∨ α, and we obtain

ΦZ(u, t) =

 2Z2 [2G3(Z(y − x))− 2G2(Z(y − x)) +G1(Z(y − x))] , (t 6= α and u 6= α)

2Z2 [G1(Z(y − x))−G2(Z(y − x))] , (t = α, or u = α)

Then, applying Proposition 5.5 ends the proof of the Lemma.

7.3 Expectation in the Poisson model.

The coefficient ϕ(k) is easy to compute with integrals of ϕ(k, u, t) on the triangles Tw. It
depends both on the algorithm (via the sequence of functions ϕ(k, u, t)) and the source
(via the fundamental triangles Tw). In Lemma 7.5, for the QuickVal algorithm, there are
two expressions for ϕα(k, u, t), and the first one holds almost everywhere on the triangle
T , except on the reunion of the two lines u = α and t = α whose contribution is zero in
the integral.

Lemma 7.6. For each algorithm QuickMin, QuickMax and QuickValα, the sequence ϕ(k)
satisfies for k ≥ 2 respectively

ϕ−(k) = 2J [tk−2], ϕ+(k) = 2J [(1− u)k−2], ϕα(k) =
4

k + 1
J [(t ∨ α− u ∧ α)k−2] .

7.3.1 Exact formulae for the mean number of symbol comparisons in the
Bernoulli model.

It is easy to return to the Bernoulli model (Bn,S), where we are interested in the mean
number S(n) of symbol comparisons performed by the algorithm. The mean number S(n)
of symbol comparisons used by the algorithm when it deals with n words independently
drawn from the same source is related to SZ and then to ϕ(n) by the equalities

S(n) =
n∑
k=2

(−1)k
(
n

k

)
ϕ(k), (7.8)

which provide an exact formula for the mean number S(n) of symbol comparisons, in the
case of QuickValα (denoted by QVα(n)).

Proposition 7.7. The mean number of symbol comparisons for each algorithm of interest,
QM±(n) for QuickMin and QuickMax, QVα(n) for QuickValα(n) admits an exact expression
which involves the functional J of the source (see Eq. (2.17)) recalled here

J [Φ] =
∑
w∈Σ?

∫
Tw
g(u, t) du dt.

One has respectively

QM−(n) = 2

n∑
k=2

(−1)k
(
n

k

)
J [tk−2], (7.9)

QM+(n) = 2
n∑
k=2

(−1)k
(
n

k

)
J [(1− u)k−2], (7.10)

QVα(n) = 4

n∑
k=2

(−1)k

k + 1

(
n

k

)
J [(t ∨ α− u ∧ α)k−2]. (7.11)
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7.3.2 The case of the algorithm QuickQuant.

We now relate the mean number of symbol comparisons QQα(n) of the algorithm
QuickQuantα(n) to the mean number of symbol comparisons QVα(n) of the algo-
rithm QuickValα(n). For a sequence x = (x1, x2, . . . , xn) ∈ In, the algorithm
QuickQuant(α, n,x) outputs the word whose parameter is the real of rank b1 + α(n −
1)c = bαn + 1 − αc in the sequence x, denoted by R(α, n,x). The two algorithms
QuickQuant(α, n,x) and QuickVal(R(α, n,x), n,x) behave exactly in the same way. This
is why we have to study, for each α and n fixed, the distribution of the random variable
[0, 1]n → [0, 1], defined as x 7→ R(α, n,x). This variable is just the statistics of order
m := bαn+ 1− αc, and its density fn(α, v) is the Beta law of parameters (m,n−m+ 1)
defined as

fn(α, v) =
n!

(m− 1)!(n−m)!
vm−1(1− v)n−m, with m := bαn+ 1− αc . (7.12)

This means that fn(α, v)dv is the probability that R(α, n,x) belongs to the interval [v, v+
dv].

On the other hand, if we denote by QQ(α, n,x) and QV(α, n,x) the mean number of
symbol comparisons of each algorithm on the sequence x (the mean is taken over all the
permutations of x), the two mean numbers QQα(n), QVα(n) are defined as

QQα(n) =

∫
In

QQ(α, n,x) dx, QVα(n) =

∫
In

QV(α, n,x) dx.

Then, there is an exact integral formula for QQα(n), namely,

QQα(n) =

∫
In

QQ(α, n,x) dx

=

∫
In×I

QV(v, n,x) fn(α, v)dv dx

=

∫
I
QVv(n) fn(α, v)dv. (7.13)

The mean number QS(m,n) of symbol comparisons of the algorithm QuickSelect(m,n)
is then related to the Beta law β(m,n−m+ 1) via the equality

QS(m,n) =

∫
I
QVv(n)β(m,n−m+ 1)(v)dv

=
n!

(m− 1)!(n−m)!

∫
I
QVv(n)vm−1(1− v)n−mdv . (7.14)

The mean number of symbol comparisons QR(n) performed by the QuickRand Algorithm
on n words is equal to

QR(n) =
1

n

n∑
m=1

QS(m,n) ,

and involves the mean of the densities β(m,n−m+ 1) which can be written as a binomial
sum,

1

n

n∑
m=1

β(m,n−m+ 1)(v) =

n∑
i=1

(n− 1)!

(m− 1)!(n−m)!
vm−1(1− v)n−m = 1 .

This proves the equality

QR(n) =

∫
I
QVv(n)dv .
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Proposition 7.8. The mean number of symbol comparisons QQα(n) for QuickQuantα(n),
and QR(n) for QuickRand admits an exact expression which involves the functional J of
the source and the density of the Beta law of (7.12)

QQα(n) =

∫
I
fn(α, v)QVα(n)dα (7.15)

QR(n) = 4

n∑
k=2

(−1)k

k + 1

(
n

k

) ∫
I
J [(t ∨ α− u ∧ α)k−2]dα. (7.16)

Note that our principle applies and, when we replace the functional J by the integral
L on the triangle T , we obtain a formula for the number of key comparisons for each
algorithm.

7.3.3 General principles for the Asymptotic Analysis

We now explain how to obtain the asymptotic analysis for the variants of the QuickSelect

algorithm. There are two cases:

(a) For the algorithms QuickVal (and its variants), the methods of Chapter 5 can directly
be applied, and this is done in Section 7.4. The mixed series $(s) admits an exact
expression, and can be directly related to the series Λ(s) and Π(s). We exhibit such
relations in Section 7.4.3, as we see in the statements of Lemmas 7.13 and 7.14. Then,
we use the weak tameness of series Λ,Π, as defined in Section 7.1.1, and the series
$(s) may be proven tame in Proposition 7.12. It will be possible to shift the contour
of the Rice integral to the left, use the Rice method and apply Proposition 7.10.
This leads in Theorem 7.11 to the asymptotics of QM±(n) and QVα(n), from which we
derive the asymptotics of QuickRand.

(b) For the QuickQuantα(n) algorithm, we operate in an indirect way. We do not use the
general scheme, and we deal with QQα(n) by computing QVα(n), with the help of the
relation (7.13). This is done in Section 7.5; with a strong use of the Laplace method.

7.4 Asymptotic Analysis of QuickVal

7.4.1 Analytic lifting and Rice formula.

We deal with the analytic lifting s 7→ $(s) of coefficients ϕ(k) computed in Lemma 7.6.
Here, for each algorithm QuickMin, QuickMax or QuickValα, the analytic lifting exists in
the domain <s > 1.

Lemma 7.9. For each algorithm QuickMin, QuickMax and QuickValα, the mixed Dirichlet
series are equal to

$−(s) = 2J [ts−2], $+(s) = 2J [(1− u)s−2] $(α, s) =
4

s+ 1
J [(t ∨ α− u ∧ α)s−2].

We wish to apply Rice Method, and we need the series $(s) to be tame at σ0 = 1.
This will be the case, as we will prove in Proposition 7.12. We will also prove in the same
Proposition 7.12 that the Dirichlet series $(s) remains analytic at s = 1. (This means in
our vocabulary that it is tame at s = 1 with order 0). Then, Rice method leads in this
case to the following result:

Proposition 7.10. If the mixed Dirichlet $(s) is tame at s = σ0 = 1 with order 0 and
width δ, then the following asymptotics holds for the mean number of symbol comparaisons,

S(n) = $(1) · n+O(n1−δ′), with δ′ < δ.
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7.4.2 Asymptotic estimates for the mean number of symbol compara-
isons for QuickMin, QuickMax, QuickVal and QuickRand.

Then, if we prove the series$(s) to be tame at s = 1 with order 0, we apply Proposition 7.10
and obtain the first asymptotic estimates which entail Assertions (b) and (c) of Theorem
7.2.

Theorem 7.11. The following holds:

(a) Consider a Π-tame source with width δ0 < 1/2. Then, the mean number of symbol
comparisons for the QuickValα(n) algorithm satisfies

QVα(n) = nρ(α) +O(n1−δ), with δ < 1− 2δ0.

The constant ρ(α) is the value of the mixed series $(α, s) at s = 1, and the constant
hidden in the O-term is uniform for α ∈ [0, 1]. The function α 7→ ρ(α) is called the
asymptotic slope of the QuickVal algorithm.

(b) Consider a Π-tame source with width δ0 < 1/2. Then, the mean number of symbol
comparisons for the QuickRand(n) algorithm satisfies

QR(n) = n

[∫
I
ρ(α)dα

]
+O(n1−δ), with δ < 1− 2δ0.

(c) Consider a weakly Λ-tame source with width δ1 < 1/2. Then, the mean number of
symbol comparisons for the QuickMin(n) and QuickMax(n) algorithm satisfy

QM±(n) = nρ± +O(n1−δ), with δ < 1− 2δ1.

The constant ρ± is the value of the mixed series $±(s) at s = 1. The equalities
ρ− = ρ(0) and ρ+ = ρ(1) hold.

Proof. This is a clear application of the Rice formula, as stated in Proposition 7.10. We will
see that the upper bounds obtained in Lemmas 7.13 and 7.14 do not depend on α ∈ [0, 1].
Thus the hidden constant in the O-term does not depend on α.

It then remains to study the tameness of $(s) at s = 1.

7.4.3 Tameness of the mixed series $(s).

We have already mentioned in Chapter 5.4.2, and more precisely describe in Section 7.1.1
two types of properties of the source that may entail tameness for the mixed series $(s).
They are related to the convergence abcsissae of the two Dirichlet series: see Definition 7.1
and Section 3.3 of Chapter 3.

We will show the following result, which relates the tameness of the mixed series $(α, s)
to the tameness of the source.

Proposition 7.12. Consider a source, and for α ∈ [0, 1], its mixed series $−(s), $+(s)
relative to QuickMin, QuickMax, and the series $(α, s) relative to the QuickValα algorithm.
Then, the following holds:

(a) If the source is weakly Λ-tame with width δ1 < 1/2, then the mixed series $−(s),
$+(s), $(0, s), $(1, s) are tame at s = 1 with width δ ≤ 1− 2δ1 and order 0.

(b) If the source is Π-tame with width δ0 < 1/2, then the mixed series $(α, s) for any
α ∈]0, 1[ are tame at s = 1 with width δ ≤ 1− 2δ0 and order 0.

We recall the relation between Π-tameness and weakly Λ-tameness: If the source is
Π-tame with width δ0, it is also weakly Λ-tame with width δ0. But there are instances (for
instance intermittent sources) for which the inverse implication is not true.
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7.4.4 Principles of the proof of Proposition 7.12.

We recall that the analysis of the QuickMin or QuickMax algorithms is based on the study
of the mixed series

$±(s) = 2J [φs−2
± ], with φ−(u, t) = t, φ+(u, t) = 1− u,

whereas the analysis of the algorithm QuickValα is based on the study of the mixed series

$(α, s) :=
4

s+ 1
$(α, s) with $(α, s) := J [φs−2

α ] =
∑
w∈Σ?

∫
Tw
φα(u, t)s−2du dt,

(7.17)
which involves the function

φα(u, t) := t ∨ α− u ∧ α. (7.18)

For α = 0, the function φ0(u, t) coincides with the function φ−(u, t) = t of QuickMin on
the whole triangle T , whereas, for α = 1, the function φ1(u, t) coincides with the function
φ+(u, t) = 1 − u of QuickMax on the whole triangle T . And, for α ∈]0, 1[, there are three
domains for the function φα, shown in Figure 7.3:

(i) The rectangle R = [0, α]× [α, 0] where φα(u, t) equals t− u.

(ii) The lower triangle T− = T[0,α], with basis [0, α], where φα(u, t) equals α− u.

(iii) The upper triangle T+ = T[α,1], with basis [α, 1], where φα(u, t) equals t− α.

There is only one domain of interest (the whole triangle T ) when α equals 0 or 1.

$−(s) =
s+ 1

2
$(0, s), $+(s) =

s+ 1

2
$(1, s).

The important behavior of the mixed series $(s) is around <s = 1 and more precisely at
s = 1, where the factor (s+ 1)/2 equals 1. This explains why the behaviours of QuickMin
and QuickVal0 at one hand, and the behaviours of QuickMax and QuickVal1 one the other
hand, are quite similar.

Scheme of the proof of Proposition 7.12. For a domain U ⊂ T and any integer
` ≥ 2, and any function φ ∈ L1(T ) we define

J (U)[φ] :=

∫
U

(γ(u, t) + 1)φ(u, t)du dt, J (U)
` [φ] :=

∫
T (`)∩U

φ(u, t) du dt,

where T (`) is the union of all triangles Tw with w ∈ Σ`. Then the following decomposition
holds

J (U)[φ] =
∑
`≥0

J (U)
` [φ].

In the case of a general α, the integral $(α, s) is the sum of three terms. Each term is of
the form

$(U)(α, s) =
4

s+ 1
$(U)(α, s), with $(U)(α, s) := J (U)[φs−2

α ],

and U is any subset Rα, T[0,α] or T[α,1]. Furthermore, the following decomposition holds

$(U)(α, s) =
∑
`≥0

$
(U)
` (α, s), with $

(U)
` (α, s) := J (U)

` [φs−2
α ].

We first consider the integral on the two triangles, then on the (possible) rectangle.
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Figure 7.3: The three domains useful for the study of $(α, s) (left) and the straddling
triangle (right).

7.4.5 Study of integrals over triangles.

We first consider integrals over triangles T[0,α], T[α,1] and we prove the following estimates:

Lemma 7.13. For U ∈ {T[0,α], T[α,1]}, the function $(U)(α, s) satisfies the inequality, for
σ := <s, ∣∣∣$(U)(α, s)

∣∣∣ ≤ C(σ)Λ(1 +
σ

2
) ≤ C(σ) Π

(σ
2

)
.

for some constant C(σ) uniformly bounded for σ ≥ σ2 > 0 (for any σ2 > 0). If the source
is weakly Λ-tame with width δ1 < 1/2, then the function $(U)(α, s) is tame at σ = 1, with
width δ ≤ 1− 2δ1 and order 0.

Proof. This proof is an easy extension of the proof which is done in [16] for the QuickMin

algorithm.

Note that the source S and its symmetric source Ŝ described in Section 2.4.2 have, for
each k, the same set {pw : w ∈ Σk} of fundamental probabilities for prefixes of length k,
and thus have the same Dirichlet series Λ and Π.

It is sufficient to deal with one of the two cases for U . Indeed, the mixed Dirichlet
series $(α, s) relative to a source S and the mixed m Dirichlet series $̂(α, s) relative to

the symmetric source Ŝ satisfy the identity

$̂
(T[0,α])(α, s) = $(T[1−α,1])(1− α, s).

Since the two sources have the same Dirichlet series Π(s) := Π̂(s), they share the same
tameness properties.

We consider the function on the upper triangle, and we study the “underlined” func-
tions, namely

$(T[α,1])(α, s) =
∑
`≥0

$
(T[α,1])

` (α, s), $
(T[α,1])

` (α, s) =
∑
w∈Σ`

∫
Tw∩T[α,1]

(t− α)s−2du dt.

For each `, we consider some real A ∈ [α, 1] (to be fixed later as a function of σ and `) and
split the sum into three sums, each of them relative to a subset of prefixes: the prefixes w
for which the right end bw belongs to [α,A[, the prefixes w for which the left end aw belongs
to [A, 1] and finally the unique prefix τ for which A ∈ [aτ , bτ ]. We omit the reference to

the real α, and the three sums are respectively denoted by $
(+)
` (σ), $

(−)
` (σ), $

(=)
` (σ).
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For bw ∈ [α,A], we use the inequality∫ bw

aw

(t− aw)(t− α)σ−2dt ≤
∫ bw

aw

(t− α)σ−1dt,

yielding

$
(−)
` (σ) ≤

∫ A

α
(t− α)σ−1dt =

1

σ
(A− α)σ.

For aw ∈ [A, 1], we observe that∫ bw

aw

(t−aw)(t−α)σ−2dt ≤ 1

2
(A− α)σ−2p2

w, so that $
(+)
` (σ) ≤ 1

2
(A− α)σ−2Λ

[α,1]
` (2).

We now choose A such that the two previous bounds are equal, namely

A− α =
(σ

2
Λ

[α,1]
` (2)

)1/2
≤ (1− α),

so that A belongs to the interval [α, 1]. Then

$
(+)
` (σ) +$

(−)
` (σ) ≤ C1(σ)

[
Λ

[α,1]
` (2)

]σ/2
,

where C1(σ) is bounded for σ ≥ σ2 (for any σ2 > 0). The middle part $
(=)
` (σ) corresponds

to the fundamental interval [aτ , bτ ] of length pτ ≤ Λ
[α,1]
` (2)1/2, and

$
(=)
` (σ) ≤

∫ bτ

aτ

(t− α)σ−1dt ≤ 1

σ
(A− α+ pτ )σ ≤ C2(σ)

[
Λ

[α,1]
` (2)

]σ/2
,

where C2(σ) is bounded for σ ≥ σ2 (for any σ2 > 0). Finally, we use the inequality

Λ
[α,1]
` (2) ≤ Λ`(2) and the log-convexity of Λ`(2), which entails the inequality for σ ≤ 2

Λ`(2)σ/2 = Λ`(2)σ/2Λ`(1)1−σ/2 ≤ Λ`(2
σ

2
+ 1− σ

2
) = Λ`(1 +

σ

2
),

and, taking the sum over integers `, we have obtained the bound for the integral over the
upper triangle,

$(T[1,α])(α, s) ≤ C(σ) Λ`(1 +
σ

2
) ≤ C(σ)Π

(σ
2

)
.

This is the same bound for the integral on the lower triangle.

7.4.6 Study of the integral over the rectangle R.

We prove the following:

Lemma 7.14. The integral $(R)(α, s) satisfies∣∣∣$(R)(α, s)
∣∣∣ ≤ C(σ)Π(σ) for any σ > 0.

If the source is Π-tame with width δ0, the mapping s 7→ $(R)(α, s) is tame at σ = 1 with
width δ ≤ 1− δ0 and order 0.
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Proof. The integral $(R)(α, s) is the sum of the integrals $
(R)
` (α, s) defined as

$
(R)
` (α, s) :=

∫
T (`)∩R

(t− u)s−2 du dt.

For each depth `, and for each α, there exists a unique word w(`) whose fundamental
interval of the form [a(`), b(`)] contains α. Then, the intersection T (`) ∩ R is the rectangle
[a(`), α]× [α, b(`)], and

$
(R)
` (α, σ) =

∫ b(`)

α
dt

∫ α

a(`)

(t−u)σ−2du =
1

σ(σ − 1)

[
(b(`) − a(`))σ − (b(`) − α)σ − (α− a(`))σ

]
.

If we let

c =
b(`) − α
b(`) − a(`)

, d =
α− a(`)

b(`) − a(`)
, with c+ d = 1,

then the integral is written as

$
(R)
` (α, σ) =

1

σ(σ − 1)
(b(`) − a(`))σ

[
c(1− cσ−1) + d(1− dσ−1)

]
.

There are two cases for σ := <s. Consider any ρ0 > 0. The (easy) first case arises for
σ ≥ 1 + ρ0 > 1, where

$
R)
` (σ) ≤ 2

ρ0(1 + ρ0)
(b(`) − a(`))σ ≤ 2

ρ0(1 + ρ0)
Π`(σ).

Consider now the case when |σ − 1| ≤ ρ0, and let ρ := σ − 1. The series expansion of
x 7→ xρ

xρ − 1 =
∑
k≥1

ρk

k!
logk x = ρ log x+ ρ2| log x|2

∑
k≥0

ρk

(k + 2)!
logk x

provides the estimate

|xρ − 1− ρ log x| ≤ ρ2 |log x|2 e|ρ log x|.

For x ∈ [0, 1], one has |log x| = − log x and e|ρ||log x| = e−|ρ| log x = x−|ρ|, so that∣∣∣∣x(1− xρ)
ρ

+ x log x

∣∣∣∣ ≤ ρ x log2 x e|ρ||log x| = ρx1−|ρ| log2 x.

If now |ρ| ≤ ρ0, with ρ0 < 1, there exists C2 (which depends on ρ0) for which the inequality
x1−|ρ| log2 x ≤ C holds for any x ∈ [0, 1] and any ρ with |ρ| ≤ ρ0. Furthermore, the entropic
sum h(x) = −x log x− (1− x) log(1− x) belongs to [0, log 2], and finally

$
(R)
` (α, σ) =

2

σ
(b(`) − a(`))σ [h(c) + |σ − 1| O(1)] .

Returning to $(α, s) itself and taking the sum over all the integers ` gives the final bound

$(R)(α, σ) ≤ C(σ)Π(σ), for any σ ≥ σ0 > 0.

Now, the source is Π-tame with width δ0, the series Π(σ) is convergent on the domain
<s > δ0.
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7.4.7 End of the proof.

With the two Lemmas, and the formula,

$(α, s) = $(T−)(α, s) +$(T+)(α, s) +$(R)(α, s),

we obtain the result for QuickValα. Observe that, in the cases α = 0 or α = 1, there is
only one triangle (either T− or T+) and no rectangle, and the weak Λ-tameness is then
sufficient to conclude.

7.5 Return to the analysis of the QuickQuantα Algorithm.

7.5.1 Regularity of the asymptotic slope α 7→ ρ(α) of QuickVal.

Let us first recall that the function ϕα(u, t) is defined in Lemma 7.6 as

ϕα(k) =
4

k + 1
J
[
(t ∨ α− u ∧ α)k−2

]
,

with the notation x ∨ y = max(x, y) and x ∧ y = min(x, y). We note as in Eq. (7.18)

φα(u, t) := t ∨ α− u ∧ α.

The asymptotic slope ρ(α) for the mean number of symbol-comparisons is given by

ρ(α) = 2J [φ−1
α ] =

∫
T

[γ(u, t) + 1]φα(u, t)−1 du dt.

in order to compare the behaviors of the two algorithms QuickVal and QuickQuant,
we need the asymptotic slope to be regular enough.

Lemma 7.15. For a source which is Π-tame of width δ0 < 1/2, the asymptotic slope
α 7→ ρ(α) of the QuickVal algorithm is Hölder with exponent η with η < 1− 2δ0: for any
η with 0 < η < 1− 2δ0, there exists a constant Cη for which

|ρ(β)− ρ(α)| ≤ Cη |β − α|η ∀(α, β) ∈ [0, 1]2.

Proof. We assume that the inequality α ≤ β holds and begin with the inequality

|ρ(β)− ρ(α)| ≤ 2J
[∣∣∣φ−1

α − φ−1
β

∣∣∣] .
There are six domains, described in Figure 7.4 and listed in the first column of Figure 7.5.

On each domain, we obtain an upper bound for the function
∣∣∣φ−1
α − φ−1

β

∣∣∣, of the form∣∣∣φ−1
α − φ−1

β

∣∣∣ ≤ |β − α|η (φ−1−η
α + φ−1−η

β

)
, for any η ∈ [0, 1].

We do not directly obtain such an upper bound: on each domain we get a “natural” upper
bound of the form ∣∣∣φ−1

α − φ−1
β

∣∣∣ ≤ |β − α|η Fα,β, (7.19)

and on each domain the function Fα,β is related to the functions φα or φβ or both. This
approach is summarized in Figure 7.5. The exponent η will be chosen later on.
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Figure 7.4: The six domains for the study of ρ(α)− ρ(β) for any η ∈ [0, 1].

Domain D Fα,β(u, t) for (u, t) ∈ D

Triangle T[0,α] (α− u)−1−η = φ−1−η
α (u, t)

Triangle T[β,1] (t− β)−1−η = φ−1−η
β (u, t)

Triangle T[α,β] (t− α)−1−η + (β − u)−1−η = φ−1−η
α (u, t) + φ−1−η

β (u, t)

Rectangle [α, β]× [β, 1] (t− u)−1−η = φ−1−η
β (u, t)

Rectangle [0, α]× [α, β] (t− u)−1−η = φ−1−η
α (u, t)

Rectangle [0, α]× [β, 1] 0

Figure 7.5: The six domains (in the first column). The second column describes the
“natural” intermediary function Fα,β described in (7.19), that is expressed as a function of
φα and φβ.

We first explain how to obtain the results described in the tabular of Figure 7.5. Using the

symmetric source, it is enough to study the function
∣∣∣φ−1
α − φ−1

β

∣∣∣ on three domains: two

triangles T[0,α] and T[α,β] and one rectangle [α, β]× [β, 1].

On the triangle T[0,α], with the two inequalities (β − α) ≤ (β − u) and (α − u) ≤ (β − u),
we have

∣∣∣φ−1
β (u, t)− φ−1

α (u, t)
∣∣∣ =

(β − α)

(β − u)(α− u)
≤ (β − α)η

(β − u)η(α− u)
≤ (β − α)η

(α− u)1+η
.

On the rectangle [α, β] × [β, 1], using the inequalities (u − α) ≤ (β − α) ≤ (t − α) and
(t− u) ≤ (t− α), we have

∣∣∣φ−1
β (u, t)− φ−1

α (u, t)
∣∣∣ =

(u− α)

(t− α)(t− u)
≤ (β − α)η

(t− α)1−η

(t− α)(t− u)
≤ (β − α)η

(t− u)1+η
.
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On the triangle T[α,β], with the inequalities β − α ≥ t− α and β − α ≥ β − u, we obtain∣∣∣φ−1
β (u, t)− φ−1

α (u, t)
∣∣∣ ≤ 1

t− α
+

1

β − u
≤ (β − α)η

(
1

(t− α)1+η
+

1

(β − u)1+η

)
.

Now, with the results of Figure 7.5, and, on each of the six domains U described in the
first column of Figure 7.5, we use the inequality

J (U)
[∣∣∣φ−1

α − φ−1
β

∣∣∣] ≤ |β − α|η (J (U)
[
|φα|−1−η

]
+ J (U)

[
|φβ|−1−η

])
.

We take the sum over the six domains U , and we obtain

J
[
|φα|−1 − |φβ|−1

]
≤ |β − α|η ($(α, 1− η) +$(β, 1− η)) .

We now use the tameness of the function $(α, s) at s = 1 with a width δ ≤ 1− 2δ0, with
the the uniform bounds that are exhibited in Proposition 7.12. Then, choosing any η with
0 < η < δ, we obtain, with Cη := 2 sup {$(α, 1− η), α ∈ [0, 1]},

J
[∣∣∣φ−1

α − φ−1
β

∣∣∣] ≤ |β − α|η [$(α, 1− η) +$(β, 1− η)] ≤ Cη |β − α|η .

7.5.2 Return to the analysis of QuickQuant.

We return to the analysis of the QuickQuant algorithm with Eq. (7.13) and will prove the
following result that exactly entails Assertion (a) of Theorem 7.11.

Theorem 7.16. Consider a source, assumed to be Π-tame with width δ0 < 1/2. Then, for
any α ∈ [0, 1], the mean number of symbols comparisons performed by the QuickQuantα
algorithm satisfies,

QQα(n) = nρ(α) +O(n1−κ/2),

with any κ with 0 < κ < 1− 2δ0. Moreover, the constant hidden in the O-term is uniform
on any interval of the form [α1, 1− α1] with α1 > 0.

We first remark that the theorem is already proven for α = 0 or α = 1. Indeed, for
α = 0, the QuickQuantα algorithm coincides with QuickMin and for α = 1, with QuickMax.
In these cases, this is just an application of Theorem 7.11.

We now focus on the case when α belongs to the open interval ]0, 1[. The form of
Eq. (7.13) together with the estimate for QVα(n) obtained in Theorem 7.11 leads us to the
following estimate for QQα(n)

QQα(n) =

∫ 1

0
fn(α, v)QVv(n)dv =

∫ 1

0
fn(α, v)

[
nρ(v) +O(n1−δ)

]
dv.

Since the constant hidden in the O-constant is uniform with respect to v, we obtain

QQα(n) = n · In(α) +O(n1−δ) with In(α) :=

∫ 1

0
fn(α, v)ρ(v)dv. (7.20)

We wish to study the integral In(α), and compare it to the value ρ(α). As the density
fn(α, v) can be compared to a large power of a function fα, we are then led to apply the
Laplace method that is now recalled.
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7.5.3 Laplace’s method.

Laplace’s method is a method that is widely used to approximate the integral of a large
power of a given function f

In :=

∫ b

a
f(v)ndv,

where f is a function of class C2, n is a large integer, and the end points a and b are possibly
infinite. Assume that the function |f(v)| has a unique strict maximum at v0 in the interior
of the interval [a, b], with f(v0) and f ′′(v0) non zero. Then, the following estimate holds

In :=

∫ b

a
f(v)ndv ∼n→∞

1√
n
f(v0)n

√
−2πf(v0)

f ′′(v0)
.

Figure 7.6 gives an explanation of the estimate.

Figure 7.6: Here, we consider the function fn, where f is defined on the interval [−20, 20]
and equals f(v) = exp[sin v/v]. The function f has a strict maximum at v0 = 0. On the
top, we see the function fn for n = 1/2 in blue, and, at the bottom, for n = 3. When n
becomes large, the approximation of this function by the Gaussian function (shown in red)
is getting better. This observation underlies Laplace’s method.

We now give an idea of the proof: The Taylor expansion of g := log f at v0 gives the
estimate

g(v) = g(v0) + (v − v0)g′(v0)− λ

2
(v − v0)2,

with

g′(v0) =
f ′(v0)

f(v0)
, λ := −g′′(v0) =

f ′2(v0)− f ′′(v0)f(v0)

f(v0)2
.

As v0 is a strict maximum for f , the function g satisfies at v0, the equalities g′(v0) = 0 and
λ = −f ′′(v0)/f(v0) > 0 hold and entail the following estimate

g(v) ∼ g(v0)− λ

2
(v − v0)2.
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When n becomes large, the integral can be compared to the integral of the Gaussian
function x 7→ exp[−x2/2] on the interval [−∞,+∞[,∫ b

a
exp[ng(v)]dv ∼ exp[ng(v0)]

∫ b

a
exp

[
−λn

2
(v − v0)2

]
dv

∼ exp[ng(v0)]

∫ +∞

−∞
exp

[
−λn

2
(v − v0)2

]
dv

= exp[ng(v0)]

√
2π

λn

and the final estimate holds.

7.5.4 A tailored version of the Laplace method.

Since the function ρ is certainly not of class C2, and we can only guarantee it is Hölder, we
need a version of the Laplace method suited to our need.

Theorem (Laplace method). Let ρ and f be positive functions defined over the unit in-
terval [0, 1] of the real line, and consider the integrals

Jn :=

∫ 1

0
ρ(v)f(v)ndv, Kn :=

∫ 1

0
f(v)ndv.

Assume the following:

(i) ρ is Hölder with exponent η;

(ii) f is continuous on [0, 1] and indefinitely derivable on ]0, 1[;

(iii) f attains its maximum at a unique point v0 ∈]0, 1[;

(iv) The three real numbers ρ(v0), f(v0), f ′′(v0) are non zero.

Then, the integrals Jn and Kn satisfy

Jn
Kn

= ρ(v0)
[
1 +O(n−η/2)

]
, with η′ < η.

Sketch of proof. In the Laplace method, the contribution of a small interval around v0 gives
the main asymptotic term. More precisely, one considers the two integrals

J (1)
n :=

∫
An

ρ(v)f(v)ndv, K(1)
n :=

∫
An

f(v)ndv, with An :=

[
v0 −

log n√
n
, v0 +

log n√
n

]
.

First, the integral K
(1)
n is proven to give the main term for Kn in the Laplace method, and,

moreover, the Hölder hypothesis for ρ is enough to prove that J
(1)
n gives the main term for

Jn in the Laplace method. More precisely, one has

J
(1)
n

Jn
= 1 +O

(
1

n

)
,

K
(1)
n

Kn
= 1 +O

(
1

n

)
.

Second, on the interval An, the following estimate holds for ρ,

ρ(v) = ρ(v0) +O

(
log n√
n

)η
= ρ(v0)

[
1 +O(n−η

′/2)
]
, with η′ < η,

and implies the estimates, since η′ < 1,

J (1)
n = ρ(v0) ·K(1)

n [1 +O(n−η
′/2)], and thus Jn = ρ(v0) ·Kn[1 +O(n−η

′/2)].
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7.5.5 Proof of Theorem 7.16.

We now study the integral In(α) defined in (7.20). It involves the beta density fn(α, v) of
parameters (bαn+ (1−α)c, n−bαn+ (1−α)c+ 1) and we perform two steps. In the first
step, we “forget” the integer parts in the expression of fn(α, v).

Step 1. We deal with the Beta density f̂n(α, v) of parameters (αn+ 1− α, n− αn+ α),
which is written as

f̂n(α, v) = Ĉ(α, n)fα(v)n−1,

with

Ĉ(α, n) :=
Γ(n+ 1)

Γ(αn+ 1− α)Γ(n− αn+ α)
, fα(v) := vα(1− v)(1−α).

We wish to study the integral

În(α) :=

∫ 1

0
ρ(v)f̂n(α, v)dv.

We first deal with the integrals “without” the Gamma term Ĉ(α, n), namely

Jn(α) :=

∫
I
ρ(v)fα(v)n−1dv, Kn(α) :=

∫
I
fα(v)n−1dv,

and use the Laplace method. We first check the hypotheses for the function fα. For
α ∈]0, 1[, the function fα(v) satisfies

f ′α(v) = vα−1(1− v)−α (α− v) so that f ′α(α) = 0,

f ′′α(α) = − 1

α(1− α)
fα(α) so that f ′′α(α) 6= 0,

and fα(v) attains its maximum at v = α. Then, the Laplace method can be applied for
any α ∈]0, 1[, and provides the estimate

Jn(α) = ρ(α) ·Kn(α) · [1 +O(n−κ
′/2)].

Now, the initial integral of interest is

În(α) :=

∫ 1

0
ρ(v)f̂n(α, v)dv = Ĉ(α, n)Jn(α),

whereas the product Ĉ(α, n)Kn(α) equals 1, since f̂n(α, v) is a density. This leads to the
estimate

În(α) :=

∫ 1

0
ρ(v)f̂n(α, v)dv = ρ(α) · [1 +O(n−κ

′/2)].

Step 2. We now take into account the “integer part”, and we have to estimate the
difference∣∣∣In(α)− În(α)

∣∣∣ ≤ ∫
I
ρ(v)

∣∣∣fn(α, v)− f̂n(α, v)
∣∣∣ dv ≤ KRn with Rn :=

∫
I

∣∣∣fn(α, v)− f̂n(α, v)
∣∣∣ dv,

and we compare Rn to the integrals

Kn(α) :=

∫ 1

0
fn(α, v)dv, K̂n(α) :=

∫ 1

0
f̂n(α, v)dv,
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which are both equal to 1. We will show that Rn is “negligible” with respect to these
integrals. Here, Un is said to be negligible with respect to Vn if Un/Vn is O(1/n).

The two Beta densities f̂n(α, v) and fn(α, v) have the same shape: they are both
unimodal, attain their maximum, respectively at v = α and v = bαn−αc/n, and are equal

to 0 at v = 0 and v = 1. We write the difference
∣∣∣fn(α, v)− f̂n(α, v)

∣∣∣ as

∣∣∣fn(α, v)− f̂n(α, v)
∣∣∣ =

∣∣∣f̂n(α, v)
∣∣∣ ∣∣∣∣∣1− fn(α, v)

f̂n(α, v)

∣∣∣∣∣ ,
and the ratio fn(α, v)/f̂n(α, v) is a product of two ratios, the ratio between the Gamma
terms, and the ratio between the functions. First, the ratio between the Gamma terms,
namely

C(α, n)

Ĉ(α, n)
=

Γ(αn+ 1− α)Γ(n− αn+ α)

Γ(bαn− αc+ 1)Γ(n− bαn− αc)
,

is evaluated thanks to the Stirling formula for x→∞ and a ∈ [0, 1],

Γ(x+ a)

Γ(x)
= xa

[
1 +O

(
1

x

)]
and thus

C(α, n)

Ĉ(α, n)
=

(
α

1− α

){αn−α}
+O

(
1

n

)
.

On any interval [α1, 1− α1], with α1 > 0, the ratio α/(1− α) is bounded both from above
and below, and the fractional part belongs to [0, 1] so that

C(α, n)

Ĉ(α, n)
=

(
α

1− α

){αn−α} [
1 +O

(
1

n

)]
. (7.21)

Second, it is possible to choose an interval An for which the following holds:

(i) The interval An contains the two points α and bαn− αc/n = α+O(1/n);

(ii) The two integrals of fn(α, v) and f̂n(α, v) on the two intervals which form I \An are
negligible with respect to the integral Kn(α) or K̂n(α). It is then the same for the
integral of the difference |fn(α, v)− f̂n(α; v)|;

(iii) On the interval An, the ratio (1−v)/v is uniformly bounded (with respect to n) both
from below and above, and the ratio fn/f̂n satisfies

fn(α, v)

f̂n(α, v)
=

(
1− v
v

){αn−α}
· C(α, n)

Ĉ(α, n)

=

(
1− v
v

){αn−α}( α

1− α

){αn−α} [
1 +O

(
1

n

)]
.

These three properties for the interval An, entail the estimate, for v ∈ An,∣∣∣∣∣1− fn(α, v)

f̂n(α, v)

∣∣∣∣∣ = gn(v) +O

(
1

n

)
, with gn(v) =

∣∣∣∣∣1−
(

1− v
v

α

1− α

){αn−α}∣∣∣∣∣ ,
and thus the function

∣∣∣fn(α, v)− f̂n(α, v)
∣∣∣ satisfies

∣∣∣fn(α, v)− f̂n(α, v)
∣∣∣ = f̂n(α, v) ·

∣∣∣∣∣1− fn(α, v)

f̂n(α, v)

∣∣∣∣∣
= f̂n(α, v)

(
O

(
1

n

)
+ gn(v)

)
.
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We observe the upper bound

gn(v) ≤ g(v) with g(v) =

∣∣∣∣1− (1− v
v

α

1− α

)∣∣∣∣ =

∣∣∣∣ v − α
v(1− α)

∣∣∣∣ .
As the last function is zero at v = α, the integral of |fn(α, v)− f̂n(α, v)| on the interval An
is negligible with respect to the integral K̂n(α).

Conclusion. First, we recall that, for α = 0, the QuickQuantα algorithm coincides with
QuickMin, and for α = 1, the QuickQuantα algorithm coincides with QuickMax. Then, the
theorem holds for α = 0 and α = 1. For α ∈]0, 1[, we have shown

In(α) :=

∫ 1

0
ρ(v)fn(α, v)dv

= În(α) +O(1/n)

= ρ(α)[1 +O(n−κ
′/2)] +O(1/n)

= ρ(α)[1 +O(n−κ
′/2)]

and this ends the proof of the theorem for any α ∈]0, 1[. Note that on the interval [α1, 1−
α1], with α1 > 0, the constant hidden in the O-term is uniform with respect to α.

Remark. It is probably possible to use the asymptotic normality of the α-quantile (as it
is proven by Mosteller in [52]) for comparing more directly QVα(n) and QQα(n). As we wish
to obtain the precise remainder terms, we prefer to give the proof described here.

Now, we have proven all the assertions of Theorem 7.2. We now focus on the explicit
expressions of the constants and prove Theorem 7.3.

7.6 Study of the asymptotic slope ρ(α).

7.6.1 An alternative expression for the asymptotic slope α 7→ ρ(α) of
QuickVal.

Let α ∈ [0, 1]. The asymptotic slope κ(α) for the mean number of key-comparisons, and
the asymptotic slope ρ(α) for the mean number of symbol-comparisons are given by

κ(α) = 2

∫
T
φα(u, t)−1 du dt, ρ(α) = 2J [φ−1

α ] =

∫
T

[γ(u, t) + 1]φα(u, t)−1 du dt, (7.22)

where φα is defined as φα(u, t) := t ∨ α− u ∧ α for a parameter α ∈ [0, 1].

We are interested in giving a “short” expression for the asymptotic slope ρ(α) and we
first extend the definition of φα for any α ∈ R, with

φα(u, t) = t− α (for α ≤ 0), φα(u, t) = α− u (for α ≥ 1).

This leads to an explicit expression for κ, now defined on the whole real line, which involves
an extension H of the entropy function h, usually only defined on the interval [0, 1]. More
precisely, we write κ(y) = 2[1 +H(y)] where H(y) is an extension of the entropic function
h, defined as

H(y) :=


y log

(
1− 1

y

)
if y < 0

h(y) = −y log y − (1− y) log(1− y), if y ∈ [0, 1]

(y − 1) log

(
1− 1

y

)
if y > 1.

(7.23)
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And, with such an extension of the function κ, we obtain the following “short” expression
for the asymptotic slope.

Proposition 7.17. For a source S with fundamental intervals [aw, bw], the asymptotic
slope of the QuickVal algorithm satisfies, for any α ∈ [0, 1],

ρ(α) =
∑
w∈Σ?

(bw − aw)κ

(
α− aw
bw − aw

)
.

Proof. Starting with the expression of ρ(α) := $(α, 1), namely

1

2
ρ(α) =

∑
w∈Σ?

∫
Tw

[(α ∨ t)− (α ∧ u)]−1 du dt,

we use the simple change of variables which maps Tw onto T , of the form t = aw+pwt
′, u =

aw + pwu
′, and the relations

(α ∨ t) = aw + [(α− aw) ∨ (pwt
′)] = awpw + pw

[(
α− aw
pw

)
∨ t′
]
,

(α ∧ u) = aw + [(α− aw) ∧ (pwu
′)] = awpw + pw

[(
α− aw
pw

)
∧ u′

]
,

entail the equality

1

pw
(α ∨ t)− (α ∧ u) =

[(
α− aw
pw

)
∨ t′
]
−
[(

α− aw
pw

) ∧ u′
)]

,

yielding the final result.

7.6.2 Maximality of the asymptotic slope of the QuickVal algorithm at
α = 1/2.

It is not always true that the asymptotic slope ρ(α) be maximal at ρ = 1/2, even for a sym-
metric source. A clear counter-example is shown for the simplest source, the binary source,
in Figure 7.1. The following result shows that this is true for any unbiased memoryless
source over an alphabet of odd size.

Proposition 7.18. For an unbiased memoryless source over an alphabet of odd size, the
constant ρ(α) is maximized by α = 1/2.

Proof. For an unbiased memoryless source over an alphabet of finite size r, we can express
ρ(α) in terms of κ, for any α ∈ R, as

ρ(α) =

∞∑
`=0

r−`ρ`(α) with ρ`(α) :=

r`−1∑
k=0

κ(r`α− k).

We will prove that each ρ`(α) is maximum at α = 1/2. When r is odd, we let r`− 1 = 2J ,
and we write the index k ∈ [0 . . 2J ] as k = −j + J with j ∈ [−J, J ], together with
r`α− k = (2J + 1)α− J + j. Now, for integer J ≥ 0 we define

fJ(x) :=
J∑

j=−J
κ(j + x), x ∈ R (7.24)
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so that
ρ`(α) := fJ(x) with x := (2J + 1)α− J.

It is then sufficient to study fJ on the interval [−J, J + 1] and prove that fJ is maximal at
x = 1/2. This will prove that ρ` is maximal at α = 1/2.

Fix J ≥ 1 and write f as shorthand for fJ . First observe that

sup
x∈R

f(x) = sup
x∈[0,1]

sup
k∈Z

f(k + x). (7.25)

We will prove the following two facts:

(i) For any x ∈ [0, 1] the expression f(j + x) is non-increasing in integer j ≥ 0.

(ii) The expression f(x) is maximized over x ∈ [0, 1] by x = 1/2.

With (i), and the symmetry of f(x) with respect to x = 1/2, it follows, for any x ∈ [0, 1],
that f(j + x) is unimodal in j ∈ Z with maximum at j = 0. The lemma then follows
from (ii) and (7.25).

To establish (i), let j ≥ 0 and observe

f(j + 1 + x)− f(j + x) = κ(j + J + 1 + x)− κ(j − J + x). (7.26)

If j − J + x ≥ 1/2, then the difference (7.26) is ≤ 0 because κ(x) is non-increasing for
x ≥ 1/2. On the other hand, if j − J + x < 1/2, then the difference (7.26) is upper-
bounded by

κ(j + J + 1)− κ(j − J) = κ(−j − J)− κ(j − J) ≤ 0.

To establish (ii), we begin by calculating f(x) explicitly when x ∈ [0, 1]. First, using
the first line of (7.23), we find

1

2

J∑
j=1

κ(j + x) = J +

J∑
j=1

(1− j − x)[log(j + x)− log(j − 1 + x)].

Using Abel’s transform, and introducing the function g(y) := (1− y) log y, we obtain

1

2

J∑
j=1

κ(j + x) = J + g(J + x) + x log x+

J−1∑
j=1

log(j + x).

Next, using the symmetry of κ(x) about x = 1/2, we observe

1

2

−1∑
k=−J

κ(j+x) =
1

2

J∑
j=1

κ(j+1−x) = J+g(J+1−x)+(1−x) log(1−x)+

J−1∑
j=1

log(j+1−x).

Summing these last two expressions together with the expression for κ(x) in the second
line of (7.23) we arrive at

1

2
f(x) = (2J + 1) + [g(J + x) + g(J + 1− x)] +

J−1∑
j=1

log[(j + x)(j + 1− x)]. (7.27)

Of the three terms here, the first is constant, the third is unimodal with maximum at
x = 1/2 (since each term in the sum has this property), and the second is maximized at
x = 1/2 because g(y) is concave for y ≥ 1. (In fact, it is concave for all y > 0.) Thus (ii)
is established, as is the proposition.
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Some experiments performed by Philippe Flajolet showed that this property does not
hold for every memoryless source, even if it is symmetric and built on an alphabet of odd
size. However, we conjecture the following:

Conjecture. Consider a symmetric memoryless source over an ordered alphabet Σ of odd
size denoted by {0, 1, . . . r − 1} and assume that the middle symbol (r − 1)/2 is the most
probable, namely p(r−1)/2 ≥ pi for all i ∈ Σ. Then the constant ρ(α) is maximized by
α = 1/2.

Conclusion of the chapter. We have conducted the analysis of the mean of the
number of symbol comparisons of QuickSelect and its variants QuickMin,QuickMax and
QuickRand. The analysis of QuickSelect is a bit different since we have to make a detour
by its dual, the Quickval algorithm and use as an auxiliary tool the Laplace method.
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Chapter 8

Conclusion and perspectives

This thesis first shows the applicability of the method of analysis, proposed in the paper[12].
We describe a new point of view on basic algorithms and their analysis which can be
partially automatized. Our dream is to revisit all algorithms that are described in a
standard textbook with this point of view and perform their realistic analysis.

This thesis offers a first step toward a double realistic analysis for the cost in the
number of comparisons of sorting and searching algorithms. First we take into account
the internal structure of the keys in the input of the algorithms (because such keys might
have complex internal structure). From that point of view, the unit measure cost is no
longer the key comparison but the symbol comparison. That helps to unify the measure of
performance between algorithms based on key comparisons and the ones based on symbol
comparisons by considering the same unit cost, i.e. the symbol comparison. Thus the
results in this thesis provide a fairer comparison between key-based algorithms such as
classical ones QuickSort, QuickSelect and symbol-based algorithms such as radix-sort
or algorithms based on digital trees. Second, most of the analyses in literature suppose
a uniform distribution of the input. In this thesis, we model the input of the algorithm
by a probabilistic source. The source is characterized by its fundamental probabilities
{pw, w ∈ Σ?} with pw the probability of generating a word with prefix w. Each infinite
word is parametrized by a real number from the interval [0, 1]. This general model of source
encompasses other important sources such as memoryless sources, Markov chain sources
and dynamical sources.

The algorithms analyzed in this thesis are QuickSort, QuickSelect, QuickMin,
InsSort, BubSort and SelMin. Robust algorithms are the ones for which the asymp-
totic estimates of both the mean number of key comparisons K(n) and symbol compar-
isons S(n) are of the same order. This is the case of InsSort, QuickMin, SelMin and

QuickSelect. The ratios S(n)
K(n) involves coincidence functions (between two words) of var-

ious types, respectively uniform coincidence, logarithmic-coincidence and min-coincidence
and what looks like a fractal variation for QuickSelect. For other algorithms, S(n)

K(n) is

equal to 1
2h(S) log n (BubSort and QuickSort). We remark that the same ratio appears

between the lower bound for the number of symbol comparisons (proved in this thesis to
be asymptotic to 1

2h(S)n log2 n) and the lower bound for the number of key comparisons.

This intriguing ratio 1
2h(S) log n is not yet totally explained.

When we mix our analyses with the point of view of Seidel, we obtain an alternative
proof of our results for QuickSort and InsSort.
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Open problems and perspectives

As a mid-term project we wish to revisit Binary-search and Minimum tournament algo-
rithms.

Binary search. This is a divide and conquer algorithm for finding a key in an sorted
array. Minimum tournament searches the minimum key by comparing each adjacent keys
and returning the relative minimum recursively. We model the input by the set of points
v0 = 0 < v1 < · · · < vn−1 < vn = 1 of [0, 1] and a real x ∈ [0, 1] \ {v0, . . . , vn}. The
algorithm returns the unique interval [vi, vi+1] containing x.

Algorithm 1: A continuous version of binary search.

Input: a partition v0 = 0 < v1 < · · · < vn−1 < vn = 1 of [0, 1]
Result: Find i ∈ [0 . . n− 1] such that x ∈ [vi, vi+1]
`← 0;
r ← n;
if `+ 1 = r then

return `
end

m←− `+r
2 ;

if x < vm then
return RankDicho(x, `,m)

end
else

return RankDicho(x,m, r)
end

As always, we begin the analysis by computing the mean number of local comparisons
between two keys. However, one of two keys is always M(x). To simplify the problem,
we suppose that both x and the points vp forming the partition are uniformly distributed.
There are difficulties: when n is not a power of two the partitioning tree is more difficult
to described (there is no “uniformity” with respect to n), even when n is a power of 2 the

v8 → (v0, v16)

v4 → (v0, v8)

v2 → (v0, v4)

v1 → (v0, v2)

(v0, v1) (v1, v2)

v3 → (v2, v4)

(v2, v3) (v3, v4)

v6 → (v4, v8)

v5 → (v4, v6)

(v4, v5) (v5, v6)

v7 → (v6, v8)

(v6, v7) (v7, v8)

v12 → (v8, v16)

v10 → (v8, v12)

v9 → (v8, v10)

(v8, v9) (v9, v10)

v11 → (v10, v12)

(v10, v11)(v11, v12)

v14 → (v12, v16)

v13 → (v12, v14)

(v12, v13)(v13, v14)

v15 → (v14, v16)

(v14, v15)(v15, v16)

Figure 8.1: Example of the dichotomic partition tree for n = 16. The notation vp → (v`, vr)
means that in the partition process splits the interval [v`, vr] in two subintervals at point
vp (called the pivot).
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problem is intricate as expressions even for local comparisons πn(i, j) may be different for
different n.

Minimum Tournament algorithm. This algorithm for selecting the minimum is mod-
eled in the following way. We consider a set of n infinite words Xi = M(ui) (with
0 ≤ i ≤ n − 1) uniformly and independently drawn from the same source. Again we
have the problem that the shape of the tournament tree has leaves which may be on two
different levels, and even when n is a power of 2, expressions are complicated.

These two algorithms are interesting since they do not enter strictly in our framework,
and may give ideas or directions in order to extend it.
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Appendix A

Generating functions

We define here the generating function which plays an important role in our analysis. For
example, the Dirichlet series of the source Λ(s) 2.1 is a generating function. The mean
number of symbol comparisons of the algorithms in the Poisson model is also a generating
function.

A.1 Generating function

According to the book [29], combinatorics is the study of finite structures built according
to a finite set of rules. They are called discrete objects. Examples are graphs, words, trees,
permutations, etc. One of the main problems in combinatorics is the enumeration of these
objects and generating function is a central object in the symbolic enumeration methods.

A.1.1 Definitions

A combinatoric class is a finite or denumerable set of objects on which a size function is
defined, satisfying the conditions: the size of an element is a non negative integer and the
number of elements of any given size is finite. If A is a class, one denotes by An the set of
objects in A that have the size n. The cardinal of the set An is denoted by An that is the
number of objects in A that have the size n. For example, we consider the set W of words
that are constructed from the alphabet {0, 1}:

W = {0, 1, 00, 01, 10, 11, . . . , 101001, . . . }

The set of words of size n in W is Wn of cardinal Wn. We have

Wn = 2n

because for each symbol of the word, there are two possibilities, 0 or 1. From these
notations, we define the ordinary generating function related to a combinatoric class A
which is the formal power series:

A(z) =
∑
n

Anz
n.

The ordinary generating function (OGF) of a combinatoric class A is the generating func-
tion of the numbers An = Card(An). Equivalently, the OGF of the classA the combinatoric
form

A(z) =
∑
α∈A

z|α|.
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This combinatoric form results from the fact that there are exactly An objects of size n in
the class A. In the previous example, the OGF of the class W of binary words is

W (z) =
∞∑
n=0

2nzn =
1

1− 2z
.

Some varieties of OGF is the exponential generating function (EGF) defined as

Â(z) =
∑
n

An
zn

n!
,

and the Poisson generating function is defined by

Ã(z) = e−z
∑
n

An
zn

n!
= e−zÂ(z).

As an example, we saw in Equation (5.17) of Chapter 5 that the exact mean number of
symbol comparisons SZ of sorting and searching algorithms has the form of a Poisson
generating function:

S̃Z = e−z
∑
n

S(n)
zn

n!
,

where Sn is the mean number of symbol comparisons over all permutations of size n.

A.1.2 Symbolic approach

The symbolic approach to combinatorial enumeration is a translation from general set-
theoretic constructions to operations via generating functions. This admits a dictionary
that includes a collection of core constructions: operation of union, cartesian product,
sequence, set, multiset, and cycle. In the following, one denotes A,B, C three combinatorial
classes.

Combinatorial sum The combinatorial sum An of two classes B and C is the disjoint
union of these two classes, i.e, the standard union of two classes that are supposed to be
disjoint:

An = Bn ∪ Cn.

Because of the disjointness of two sets, one has

Card(An) = Card(Bn) + Card(Cn), or, An = Bn + Cn.

This gives the results:

A(z) = B(z) + C(z).

Cartesian product The construction A = B × C forms all possible ordered pairs of
elements of two classes B and C. From the combinatoric form of generating function, one
has

A(z) =
∑
α∈A

z|α| =
∑

(β,γ)∈(B×C)

z|β|+|γ| =
(∑
β∈B

z|β|
)
×
(∑
γ∈C

z|γ|
)

= B(z) · C(z).
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Sequence construction If B is a class, the sequence of B, denoted by SEQ(B) is defined
as

SEQ(B) = {ε}+ B + B × B + B × B × B + . . .

with ε a neutral structure of size 0. The generating function of SEQ(B) is deduced directly
from the union and product relations above. Let A = SEQ(B), then:

A(z) = 1 +B(z) +B2(z) + · · · = 1

1−B(z)
.

where the geometric sum converges in the sense of formal power series since [z0]B(z) = 0
assuming B(z) does not contain elements of size 0.

Multiset construction Multisets are like finite sets but arbitrary repetitions of elements
are allowed. The generating function notion of a multiset A = MSET(B) when A is
obtained by forming all finite multisets of elements from B. We can define MSET(B) as a
quotient:

MSET(B) := SEQ(B)/R,

with R, the equivalent relation of sequences:

(α1, α2, . . . , αr)R(β1, β2, . . . , βr)

iff there exists some arbitrary permutation σ of [1, 2, . . . , r] such that for all j, βj = ασ(j).

Powerset construction The powerset class of a class B, denoted by

A = PSET(B).

is defined as the class consisting of all finite subsets of class B. The powerset class is
equivalently the multisets that involve no repetitions.

Cycle construction The equivalence relation S between sequences defined by

(β1, β2, . . . , βr) S (β′1, β
′
2, . . . , β

′
r)

iff there exists a circular shift τ of [1, . . . , r] such that for all j, β′j = βτ(j).
Cycles are sequences taken up to a circular shift of their components, the notation being
CYC(B):

CYC(B) := ((SEQ(B) \ {ε}) /S.

Sequences are grouped into equivalence classes according to the relation S. For example,
there are 4 cycles formed from sequences of length 3 over two types of objects {0, 1}:

• 000

• 001, 010, 100

• 110, 101, 011

• 111

This dictionary of OGF is represented in Figure A.1.
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Sum A = B + C A(z) = B(z) + C(z)

Cartesian product A = B × C A(z) = B(z)Ċ(z)

Sequence A = SEQ(B) A(z) = 1
1−B(z)

Powerset A = PSET(B) A(z) = Πn≥1(1 + zn)Bn = exp
( ∞∑
k=1

(−1)k−1

k
B(zk)

)
Multiset A = MSET(B) A(z) = Πn≥1(1− zn)−Bz = exp

( ∞∑
k=1

1

k
B(zk)

)
Cycle A = CYC(B) A(z) =

∞∑
k=1

φ(k)

k
log

1

1−B(zk)

Figure A.1: Dictionary of OGF



Appendix B

Complex analysis

We will define basic notions in complex analysis such as complex number, analytic and
meromorphic function, singularities and residue theorem (see also [68]).

B.1 Holomorphic function and Cauchy theorem

A complex is a number that has the form z = x + iy where x is the real part, y the
imaginary part of z: x, y ∈ R and i is the imaginary number that satisfies i2 = −1. The
set of complex numbers is noted C and we note:

x = <(z), y = =(z).

For z 6= 0, z admit a polar form z = reiθ where r is the radius and θ the argument of z.
We have

r = |z| =
√
x2 + y2, θ = arctan(

y

x
).

Figure B.1: The polar form of a complex number

Definition B.1 (Holomorphic function). A function f is holomorphic at the point z ∈ C
if the limit

lim
h→0

f(z + h)− f(z)

h
, (h ∈ C)

exists. f is holomorphic in a open set if it is holomorphic at every point in the interior of
this set.

Lemma B.2. A holomorphic function in an open disc has a primitive in that disc.
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Figure B.2: The polygonal line γz

Proof. In the open disc C where f is holomorphic we draw a polygonal line Γz (Figure B.2)
that joins 0 to z by moving horizontally from 0 to <(z) (the real part of z), then vertically
from <(z) to z. We pose

F (z) =

∫
Γz

f(ω)dω.

We will prove that F (z) is the primitive of f , i.e

lim
h→0

F (z + h)− F (z)

h
= f(z).

We have:

F (z + h)− F (z)

h
=

1

h
(

∫
γz+h

f(ω)dω −
∫
γz

f(ω)dω) =
1

h

∫
ηh

f(ω)dω,

where ηh is the straight line that link z to z + h. As f is continuous at z,

∃ψ(ω), lim
ω→z

ψ(ω) = 0, such that f(ω) = f(z) + ψ(ω).∫
ηh

f(ω)dω =

∫
ηh

(f(z) + ψ(ω))dω = f(z)h+

∫
ηh

ψ(ω)dω.

Divide terms in both side by h and calculate the limit when h goes to 0, we have

lim
h→0

F (z + h)− F (z)

h
= f(z) + lim

h→0

1

h

∫
ηh

ψ(ω).

However, we have the following estimates:

|
∫
ηh

ψ(ω)dω| < sup
ω∈ηh

|ψ(ω)||h| and sup
ω→z

ψ(ω) = 0.

We deduce that

lim
h→0

1

h

∫
η
ψ(ω) = 0 and lim

h→0

F (z + h)− F (z)

h
= f(z).

We conclude that if f is holomorphic in C, f has a primitive in C.
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Sometimes the terms regular or complex differential are used instead of holomorphic.
Holomorphic functions have some general properties:

• Contour integration: If f is holomorphic in Ω, for any closed path γ ∈ Ω,∫
γ
f(z)dz = 0.

• Regularity: If f is holomorphic, f is indefinitely differentiable.

• Analytic continuation: If f and g are holomorphic in Ω and f = g in an arbitrarily
disc in Ω, then f = g everywhere in Ω.

The first property is exactly the Cauchy theorem.

Theorem B.3. (Cauchy theorem) If f is holomorphic in a open set Ω then for any closed
curve γ in Ω ∫

Γ
f(z)dz = 0.

Proof. We already proved that if f(z) is holomorphic in an open set Ω, it has a primitive
F (z) in Ω (Lemma B.2). Thus, it is obvious that the integral of f(z) in any closed curve
γ ∈ Ω is null.

Theorem B.4. (Cauchy integral formula) Suppose f is holomorphic in an open set that
contains the closure of a disc D. If C denotes the boundary circle of this disc with the
positive orientation, then:

f(z) =
1

2iπ

∫
C

f(ζ)

z − ζ
dζ,

for any point z ∈ D.

Figure B.3: Closed curve Γ and the keyhole Γδ,ε.

Proof Fix z ∈ D and consider the keyhole Γδ,ε (δ is the width of the corridor, ε is the
radius of the small circle) that omits the point z.

Pose F (ζ) = f(ζ)
z−ζ . As F is holomorphic away from z,

∫
Γδ,ε

F (ζ) = 0 by Cauchy’s

theorem. The integrals of F (ζ) over two sides of the corridor cancel out when δ → 0. The
remaining part of the keyhole is the big circle C and the small circle Cε centered at z and
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of radius ε. Note C+ the circle C in positive orientation and C−ε the circle Cε in negative
orientation.

F (ζ) =
f(ζ)− f(z)

z − ζ
+
f(z)

z − ζ
As f is holomorphic in C, the first term on the right hand is bounded when ε→ 0 and the
integral over Cε goes to 0 when ε→ 0. We have:∫

Γζ,ε

F (ζ) =

∫
C+

F (ζ)dζ +

∫
C−ε

f(z)

z − ζ
dζ = 0

It is left to examine the integral over C−ε .∫
C−ε

f(z)

z − ζ
dζ = f(z)

∫
C−ε

dζ

z − ζ
= f(z)

∫ 2π

0

−iεe−iθ

εe−iθ
dθ = −2iπf(z)

So it is clear that ∫
C+

f(ζ)

z − ζ
dζ = 2iπf(z).

Definition B.5 (Analytic function). A function f(z) defined over a region Ω is analytic
at a point z0 ∈ Ω if, for z in some open disc centered at z0 and contained in Ω, it is
representable by a convergent power series expansion

f(z) =
∑
n≥0

an(z − z0)n.

A function is analytic in a region Ω iff it is analytic at every point of Ω.

Furthermore, analyticity, holomorphic and complex differentiability are equivalent no-
tions.

B.2 Meromorphic functions, poles and residue theorem

Given two analytic functions f(z) and g(z), the quotient f(z)
g(z) ceases to be analytic at a

point a where g(a) = 0. We now introduce meromorphic functions that are mild extensions
of the concept of analyticity.

Definition B.6 (Meromorphic function). A function h(z) is meromorphic at z0 iff, for z

in a neighborhood of z0 with z 6= z0, it can be represented as f(z)
g(z) , with f(z) and g(z) being

analytic at z0. In that case, it admits near z0 an expansion of the form

h(z) =
∑

n≥−M
hn(z − z0)n.

If h−M 6= 0 and M ≥ 1, then h(z) is said to have a pole of order M at z = z0. The
coefficient h−1 is called the residue of h(z) at z = z0 and is written as

Res[h(z); z = z0].

A function is meromorphic in a region iff it is meromorphic at every point of the region.

Let f1(z) be analytical function defined over the interior region Ω1 determined by a
simple closed curve γ, and let z0 be a point of the bounding curve γ. If there exists an
analytic function f2(z) defined over some open set Ω2 containing z0 and such that f1(z) =
f2(z) in Ω1 ∩Ω2, one say that f1(z) is analytically continuable at z0 and f1(z) = f2(z) and
f2 is an immediate analytic continuation of f1.
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Figure B.4: Analytic continuation of f1.

Definition B.7. Given a function defined in the region interior to the simple interior to
the simple closed curve γ, a point z0 on the boundary of (γ) of the region is a singular point
or a singularity if f is not analytically continuable at z0.

The two functions f(z) = 1
1−z and f(z) =

√
1− z are analytically continuable respec-

tively in the regions Ω = C\1 and (1,+∞). They both have a singularity at s = 1 because

lim
z→1

f(z) =∞.

and due to the branching character of the square root for g. Singularities often appear
because the denominator of a function vanishes. A function f(z) that is analytic at the
origin, whose expansion at the origin has a finite radius of convergence R, necessarily has
a singularity on the boundary of its disc of convergence, |z| = R. In particular, if the series
expansion of f(z) at the origin has non-negative coefficients and radius of convergence R,
the point z = R is a singularity of f(z).
We define two types of singularities: removable singularity and poles.

Removable singularities A removable singularity of a function is a point singularity z0

such that by defining f(z0) = 0, the resulting extension becomes holomorphic in a full
neighborhood of z0. For example, the function f defined as f(z) = z for z 6= 0 is not
defined at 0. Then, z0 = 0 is a point singularity of f . By setting f(0) = 0, the function
becomes continuous and entire. In this case, this is a removable singularity.

Poles A pole of a function f is a point singularity z0 such that 1
f is holomorphic in a

neighborhood of z0, except at z0 its self. By defining 1
f(z0) = 0, f(z) becomes holomorphic

in a full neighborhood of z0. Given the function g(z) = 1
z , g goes to ∞ as z approaches 0.

z0 = 0 is not a removable singularity but a pole of g. If f has a pole at z0, there exists a
unique integer n and a non vanishing holomorphic function h such that:

f(z) = (z − z0)−nh(z)

As z0 is a pole of f , it is a zero of 1
f . There exists a non vanishing holomorphic function g

such that 1
f(z) = (z − z0)ng(z). The result follows with h(z) = 1

g(z) . The order of the pole

is n. If n = 1, this is a simple pole. The function h(z) has a power series expansion:

h(z) = A0 +A1(z − z0) + . . .

so that
f(z) = (z − z0)−n (A0 +A1(z − z0) + . . . ) .

This results in the following proposition:
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Proposition B.8. If a function f has a pole of order n at z0, then f can be expressed as:

f(z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+

a−n+2

(z − z0)n−2
+ · · ·+ a−1

(z − z0)
+G(z)

where G(z) is a holomorphic function in a neighborhood of z0.

The sum
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+

a−n+2

(z − z0)n−2
+ · · ·+ a−1

(z − z0)

is called the principal part of f at the pole z0. The coefficient a−1 is the residue of f at
that pole. We write Resz0 f = a−1.

We remark that all terms of order strictly greater than 1 in the principal part have a
primitive in a deleted neighborhood of z0. Therefore if P (z) denoted the sum above and
C any circle centered at z0:

1

2iπ

∫
C
P (z)dz = a−1 = Resz0 f

Proposition B.9. If f has a pole of order n at z0 then

Resz0 f = lim
z→z0

1

(n− 1)!

( d
dz

)n−1
(z − z0)nf(z)

This is an immediate consequence of the formula above of f(z):

(z − z0)nf(z) = a−n + a−n+1(z − z0) + · · ·+ a−1(z − z0)n−1 +G(z)(z − z0)n.

Theorem B.10 (The residue formula). Suppose that f is holomorphic in a open set con-
taining a circle C and its interior, except for a pole at z0 inside C. Then∫

C
f(z)dz = 2iπResz0 f

Proof We can choose a keyhole contour that avoids the pole:
∫
C f(z)dz =

∫
Cε
f(z)dz.

The Cauchy’s integral formula applies to a constant function shows that

a−1 =
1

2iπ

∫
Cε

a−1

z − z0
dz.

Similarly, by using the corresponding formula for the derivatives,
∫
Cε

a−1

(z−z0)k
dz = 0, ∀k >

1.
This implies the desired result. The following proposition is a generalization of the residue
formula when f has more than one pole inside the open set.

Proposition B.11. Suppose that f is holomorphic in an open set containing a toy contour
γ and its interior, except for poles at the points z1, . . . , zN inside γ. Then∫

γ
f(z)dz = 2πi

N∑
k=1

Reszk f.



Appendix C

Upper and lower bounds

Analysis of algorithms is a large part of computational complexity theory. In theoretical
analysis of algorithms, it is common to determine the asymptotic estimates of the complex-
ity of algorithms. Therefore, the notations of Big O, Little o, Big Theta (Θ), Big Gamma
(Ω) are used to the end. O, Ω, Θ -notations express respectively the lower bound, upper
bound, both the lower and upper bounds since sometimes these two bounds are coincided.

• g(x) = O(f(x)), x → ∞ if there exists a constant A > 0 and a real x0 such that for
∀x > x0, |g(x)| < A|f(x)|.

• g(x) = o(f(x)), x → ∞ if for any constant A > 0, exists a real x0 such that for
∀x > x0, |g(x)| < A|f(x)|.

• g(x) = Ω(f(x)) if there exists a constant A > 0 and a real x0 such that for ∀x > x0,
g(x) > Af(x).

• g(x) = Θ(f(x)) if there exists two constants A > 0, B > 0 and a real x0 such that
for ∀x > x0, Af(x) < g(x) < Bf(x).

From the definition above, we define

• O(f(n)) the set of functions g(n) such that | g(n)
f(n) | is bounded from above as n→∞.

• Ω(f(x)), the set of functions g(n) such that | g(n)
f(n) | is bounded from below as n→∞.

• Θ(f(x)), the set of functions g(n) such that | g(n)
f(n) | is bounded from both below and

above as n→∞.

For complexity studies, these notations allow implementation details to be hidden by ig-
noring constant factors. Since constant factors are ignored, the results are expressed in
a simpler form than if more precise answer is sought. In the analysis of algorithms, O-
notation and o-notation are used more widely than the others to express the asymptotic
approximation, particularly to express small relative error terms. For example, the binary
logarithm lg n and natural logarithm log n which are related by a constant can be both
expressed as O(log n) in a complexity analysis.
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Abstract We revisit classical textbook sorting or selecting algorithms under a complexity
model that fully takes into account the elementary comparisons between symbols compos-
ing the records to be processed. Our probabilistic models belong to a broad category of
information sources that encompasses memoryless (i.e., independent-symbols) and Markov
sources, as well as many unbounded-correlation sources. Under this perspective, com-
monly accepted assertions, such as “the complexity of Quicksort is O(n log n)”, are to be
challenged, and the relative merits of sorting and searching methods relying on different
principles (e.g., radix-based versus comparison-based) can be precisely assessed. For in-
stance we establish that, under our conditions, the average-case complexity of QuickSort is
O(n log2 n) (rather than O(n log n), classically),whereas that of QuickSelect remains O(n).
In fact we propose a framework which allows to revisiting three sorting algorithms (Quick-
Sort, Insertion Sort, Bubble Sort) and two selection algorithms (QuickSelect and Minimum
Selection). For each algorithm a precise asymptotic estimate for the dominant term of the
mean number of symbol comparisons is given where the constants involve various notions
of coincidence depending on the algorithm. Explicit expressions for the implied constants
are provided by methods from analytic combinatorics. As an aside, in our setting, we are
able to derive a lower bound for the average number of symbol comparisons for algorithms
solving the sorting problem and using usual comparisons between strings.
Keys words: Analysis of algorithms, Information theory, analytic combinatorics, dynam-
ical source, transfer operator, sorting and searching algorithms, probabilistic distribution,
generating function.

Résumé: On revisite les algorithmes de tri et de recherche classiques en considérant que
les entrées de lalgorithme sont des mots infinis et en prenant compte de comparaisons de
symboles entre des mots. Nous travaillons sous des modèles probabilistes différents pour
lesquels les symboles sont générés par une source générale qui comprend, par exemple,
la source sans mémoire, la châıne de Markov ou même des sources avec les corrélations
non bornées. De ce point de vue, une assertion telle que “la complexité de QuickSort est
O(n log n)” nest plus vérifiée et il nest pas aisé de comparer entre eux des algorithmes
reposant sur des principes différents de comparaison. Dans ce cadre, nous trouvons que
la complexité en moyenne pour le nombre de comparaisons de symboles de QuickSort
devient O(n log2 n) alors que celle de QuickSelect reste en O(n). Nous proposons une
méthode générale qui permet de revisiter trois algorithmes de tri QuickSort, Tri Insertion
et Tri Bulles et deux algorithmes de sélection QuickSelect et Sélection du Minimum. Pour
chaque algorithme, nous calculons les asymptotiques du nombre moyen de comparaisons de
symboles. Les constantes pour les termes dominants sont reliées à des notions différentes
de cöıncidence et dépendantes des algorithmes. Nous empruntons des méthodes de la
combinatoire analytique. Dans notre cadre, nous obtenons de plus une borne inférieure
pour le nombre moyen de comparaisons de symboles effectuées par des algorithmes de tri
utilisant la comparaison usuelle entre des châınes de caractères.
Mots clés: Analyse des algorithmes, Théorie de l’information, Combinatoire analytique,
source dynamique, opérateur de transfert, Algorithmes de tri et de recherche, distribution
probabiliste, fonction génératrice.
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