
THÈSE / UNIVERSITÉ DE BRETAGNE SUD
sous le sceau de l’Universit

´

e Europ

´

eenne de Bretagne

Pour obtenir le grade de :
DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE SUD

Mention : STIC

École Doctorale SICMA

présentée par

Youenn Corre
Laboratoire des Sciences et Techniques de l’Information,
de la Communication et de la Connaissance

Automated Generation of
Heterogeneous Multiprocessor

Architectures: Software and
Hardware Aspects

Thèse soutenue le 23 janvier 2013,
devant la commission d’examen composée de :

Pr. Smail Niar
Professeur, LAMIH - Université de Valenciennes / Président

Pr. Daniel Ménard
Professeur, INSA Rennes / Rapporteur

Pr. Frédéric Rousseau
Professeur, TIMA - UJF Grenoble / Rapporteur

Dr. Dominique Heller
Ingénieur de Recherche, Lab-STICC - UBS Lorient / Encadrant de thèse

Pr. Loı̈c Lagadec
Professeur, Lab-STICC - ENSTA Bretagne / Co-directeur de thèse

Dr. Jean-Philippe Diguet
Directeur de Recherche CNRS, Lab-STICC - UBS Lorient / Directeur de thèse

Résumé

Les systèmes embarqués sont aujourd’hui omniprésents et les
progrès d’intégration accompagnant cette évolution permettent
d’accroı̂tre leurs fonctionnalités et capacités potentielles. Cette co-
évolution a conduit à l’emergence des systèmes-sur-puce multipro-
cesseurs hétérogènes qui répondent aux contraintes des systèmes
embarqués en termes de performances et d’énergie. Cependant
cet avantage se traduit par une complexité de conception et de pro-
grammation accrue. Le niveau d’expertise requis ainsi que le temps
de développement limitent considérablement leur déploiement, il
est donc nécessaire de réaliser des outils permettant d’affranchir
les concepteurs des détails architecturaux et de programmation
afin qu’ils puissent mobiliser leurs efforts sur les étapes à forte
valeur ajoutée. L’objectif est donc d’automatiser les tâches fasti-
dieuses et chronophages propres à la conception d’architectures
multiprocesseurs hétérogènes, notamment sur FPGA, en élevant le
niveau d’abstraction selon une approche qui unifie la synthèse de
haut-niveau et la co-conception logicielle/matérielle au-delà des ap-
proches existantes qui se révèlent partielles ou inadaptées.
Les travaux de cette thèse sont une réponse à ce problème, ils
présentent un outil de conception reposant sur le principe d’une
automatisation des tâches fastidieuses et laissant la main au con-
cepteur là où celui-ci le souhaite. Pour cela, on s’appuie sur un
modèle d’architecture défini à l’aide d’un formalisme de haut-niveau
indépendant des détails d’implémentation, palliant ainsi l’absence
d’architecture multiprocesseur sous-jacente dans les FPGA. Ce
modèle de spécification permet également au concepteur de fournir
les contraintes à différents niveaux de détails en fonction de ses con-
naissances du système ou de son niveau d’implication. L’exploration
de l’espace de conception se fait grâce à un algorithme scalable

et reposant sur des estimations rapides et précises. Une méthode
d’exploration des accélérateurs matériels, utilisant la synthèse de
haut-niveau pour une estimation rapide des coûts, est introduite. En-
fin, l’intégration de méthodes d’ingénierie dirigée par les modèles
permet la génération du design final et notamment des fichiers
d’implémentation en fonction de la cible, facilitant ainsi la portabilité et
la réutilisation des designs. L’outil a été validé à travers deux études
de cas : un décodeur vidéo MJPEG et une application complexe de
détection de visage.

Mots-clés: Systèmes-sur-puce multiprocesseurs hétérogènes,
FPGA, Conception électronique assistée par ordinateur.

Abstract

Embedded systems are now ubiquitous and the increase in the in-
tegration capacity allows for more features and capabilities. This
trend has led to the emergence of Heterogeneous Multiprocessors
Systems-on-Chip (H-MPSoC) which provide a way to respect the cost
and performance constraints inherent to embedded systems. How-
ever they also make the task of designing and programming such
systems a long and arduous process. The skills required along with
the long development time are obstacles to their diffusion. It is thus
necessary to develop tools that will free designers from architectural
and programming details, so that they can focus on the tasks where
they can bring added-value. The objective is thus to automatize the
tedious tasks that burden the design of H-MPSoC, in particular on
FPGA, by providing a higher-level of abstraction following a method
that brings together High-Level Synthesis and hardware/software co-
design beyond the existing solutions which are whether incomplete
or unfit.
The presented work aims at providing an answer to these problems.
They introduce a design framework relying on the automation of te-
dious tasks and allowing designers to express their expertise where
they want to. For this, we rely on an architecture model defined with
a high-level formalism independent from implementation details, pro-
viding a solution to the lack of multiprocessor architecture in FPGAs.
This specification model also allows designers to provide design con-
straints in accordance with their level of expertise or involvement. The
design space exploration is implemented as a scalable algorithm re-
lying on fast and accurate estimation techniques. A method for the
exploration of hardware accelerators based on high-level synthesis
to provide fast cost estimations is introduced. Finally the integration
of model-driven engineering methods enables portability and reuse
by generating the final design implementation. The framework is val-
idated through two case studies: an MJPEG video decoder and a
more complex face detection application.

Keywords: Heterogeneous Multiprocessors Systems-on-Chip,
FPGA, Electronic-System Level Design.

n°d’ordre :
Université de Bretagne-Sud
Laboratoire Lab-STICC - CNRS, UMR 6285
Centre de Recherche Christiaan Huygens - rue de Saint-Maudé - BP 92116 - F-56321 Lorient Cedex - FRANCE
Tél : + 33(0)2 97 87 46 20 Fax : + 33(0)2 97 87 45 27

Atchoum!

Victor Hugo, un jour de grand froid.

Remerciements

Je remercie mon Directeur de thèse, Jean-Philippe Diguet, pour son encadrement, sa
grande disponibilité, ses nombreuses idées et ses conseils tout au long de la thèse. Merci
à Löıc Lagadec, qui a été mon encadrant principal durant la première année, pour ses
remarques parfois di�ciles à entendre mais toujours justes et pertinentes. Je remercie
Dominique Heller pour son aide et son expertise qui m’ont été très utiles durant ces
trois ans. Merci également à Koen Bertels de m’avoir accueilli pour trois mois au sein
de son équipe à TU Delft.

Je remercie M. Smail Niar d’avoir accepter de présider mon jury de thèse. Je remer-
cie également MM. Daniel Ménard et Frédéric Rousseau d’avoir réaliser les rapports du
présent mémoire malgré le peu de temps dont ils disposaient.

Je remercie les nombreuses personnes que j’ai eu l’opportunité de croiser au cours
de ces trois ans : l’équipe Architectures & Systèmes de Brest, l’équipe de Computer
Engineering à l’Université technologique de Delft et les membres du Lab-STICC Lo-
rient pour l’ambiance unique qui y règne. Merci également aux nombreux doctorants
que j’ai rencontrés, trop nombreux pour être tous cités ici, et avec qui j’ai passé de
bons moments.

Enfin, je remercie mes amis et ma famille, mon père, ma mère et Brenda, ma grande
sœur, pour leur soutien tout au long de cette thèse.

Contents

Contents 1

1 Introduction 5
1.1 Contributions . 7
1.2 Outline . 8

2 State of the Art 9
2.1 Ideal ESL Framework . 9
2.2 Existing MPSoC Design Tools . 11

2.2.1 Daedalus . 11
2.2.2 SystemCoDesigner . 13
2.2.3 Advanced Systembuilder . 15
2.2.4 hArtes . 15
2.2.5 PeaCE . 17
2.2.6 Xilinx XPS . 18
2.2.7 Space CoDesign . 18
2.2.8 Conclusion . 19

2.3 High-Level Synthesis Tools . 23
2.3.1 Gaut . 23
2.3.2 LegUp . 24
2.3.3 C2H . 24
2.3.4 CyberWorkBench (CWB) . 25
2.3.5 Bambu . 25
2.3.6 AutoESL’s AutoPilot . 26
2.3.7 Conclusion . 26

2.4 MDE-based Design of MPSoC . 26
2.4.1 Model Driven Engineering for MPSoC DSE 26
2.4.2 Multilevel MPSoC Simulation using an MDE Approach 27
2.4.3 A Co-design Approach for Embedded System Modeling and Code

Generation with UML and MARTE 28
2.4.4 Conclusion . 28

3 Flow of the Framework 29
3.1 Flow Global Overview . 29

3.1.1 Tool Implementation . 29
3.1.2 Target Architecture . 29
3.1.3 Inputs . 34
3.1.4 Flow Overview . 35
3.1.5 Automated Profiling . 37

3.2 External Tools . 38
3.2.1 HLS Tool . 39
3.2.2 Daedalus . 39

1

Contents

3.2.3 Xilinx XPS . 42
3.3 Database-based Strategy . 42

3.3.1 Template Architecture Database 42
3.3.2 Hardware Accelerators Database 43
3.3.3 FPGA Model Database . 44
3.3.4 Reuse-based Strategy . 44

3.4 Conclusion . 44

4 Design Space Exploration Methodology 45
4.1 DSE Algorithm . 45

4.1.1 Algorithm . 47
4.1.2 Explanations . 49

4.2 Performance & Cost Estimation . 51
4.3 Hardware Accelerators Exploration . 52

4.3.1 HLS-based Estimations . 53
4.3.2 Pareto-optimal Selection . 56

4.4 Data Parallelism Exploration through Task Duplication 57
4.5 Communication & Memory Model . 60

4.5.1 Congestion Detection . 61
4.6 Data-Task Mapping & Scheduling Strategy 62

4.6.1 Data Mapping . 63
4.6.2 Task Mapping . 65
4.6.3 Scheduling . 68

4.7 Conclusion . 68

5 Template-based Approach 71
5.1 Introduction to MDE . 71
5.2 Application to FPGA-based Design . 72
5.3 AADL . 72

5.3.1 Eclipse Modeling Framework . 73
5.4 Component Models . 73
5.5 Specification Template . 76

5.5.1 Template Configuration Interface 80
5.6 Code Generation . 80

5.6.1 Software Application Adaptation 80
5.6.2 Implementation Project Files . 80

5.7 Conclusion . 81

6 Results 85
6.1 Application 1: MJPEG decoder . 85

6.1.1 Presentation . 85
6.1.2 Specifications . 86
6.1.3 Results . 86

6.2 Hardware Accelerators Exploration . 91

2

Contents

6.2.1 IDCT IP Exploration . 91
6.2.2 Benchmark . 94

6.3 Application 2: Face detection with the Viola-Jones algorithm 94
6.3.1 Presentation . 95
6.3.2 Specifications . 96
6.3.3 Results . 97

6.4 Conclusion . 105

7 Conclusion 111
7.1 Summary . 111
7.2 Perspectives . 112

8 Bibliography 115

List of Publications 119

List of Figures 121

List of Tables 123

List of Algorithms 125

Glossary 127

3

Contents

4

1
Introduction

Embedded systems are now more than ever part of daily life. This ubiquity also means
diversity, as embedded systems can take many forms, from a portable camera to system
control in airplanes and include smartphones, set top boxes, cameras, GPS, etc. All
these apparels tend to grow in features and consequently their designs also grow in
complexity.

In order to be able to deal with the typical constraints of embedded systems —
performance, size and power consumption — in spite of the increasing complexity,
a new type of system was developed: System-on-Chip (SoC). SoCs gather on one
single chip all the necessary components for a complete system, i.e. processing units,
memories, communication buses, peripheral controllers, Analog/Digital converters and
so on. SoCs are thus an e�cient way to provide the required performances while
reducing the size and the power consumption of the system. Designing SoCs however
is a complex task that requires skill and knowledge in order to balance performances,
size and power consumption. When designing such systems, lots of decisions have to
be taken due to the large number of design options, leading to larger design space. Due
to the increasing complexity of SoCs, such decisions can no longer be taken manually
without being a highly error-prone process and cannot be performed within a reasonable
time.

Heterogeneity SoCs have then evolved toward multiprocessor architectures, to an-
swer the growing demand for computation power, leading to homogeneous Multipro-
cessor Systems-on-Chip. This introduced parallel programming at the software level in
the design flow, along with the problems inherent to this programming paradigm, i.e.
mapping, communication and synchronization. Then MPSoCs evolved toward Hetero-
geneous Multiprocessor Systems-on-Chip, which include specialized processing units, in
order to answer the necessity to have better system performance and energy-e�ciency.
This has also brought new design di�culties: partitioning and design of hardware ac-
celerators. These new design steps were out of scope of software engineers and thus
required new skills. This thus lead to the necessity for companies to adapt by hiring
hardware engineers, thus leading to increased development costs making development
of such systems riskier, especially for Small and Medium Enterprises (SME).

O↵-the-shelf H-MPSoCs are available, for instance the Texas Instruments OMAP
processors [1] are a family of H-MPSoC present in many smartphones. However these

5

Introduction

H-MPSoCs have fixed architectures and are usually designed for widespread application
domains. Consequently, they cannot be easily adapted to specific domain and can thus
be oversized in regards to the system requirements. Moreover, the specialized processing
units cannot be easily programmed.

H-MPSoC is a domain where innovation is still active. In 2012, Xilinx has released
the Zynq Field-Programmable Gate Array (FPGA) board [2], which associates a mul-
tiprocessor SoC with FPGA capabilities, bringing reconfigurability into SoCs. The
advantage means that it is possible to adapt the hardware accelerators accordingly
with the current needs of the system. Another advantage is the possibility to adapt
the system to evolution, which is useful especially in long-life system such as military
applications, satellites, cyber-physical systems, etc.

FPGA Design Complexity The development of systems such as SoCs usually goes
through a prototype phase, prototype which is typically implemented on a FPGA for
validation. However designing for FPGA is still a costly process, despite the design tools
provided by FPGA manufacturers. In [3], a comparison is made in the development
of a high-performance application on di↵erent targets: an x86-based General Purpose
Processor (GPP), a Graphical Processing Unit (GPU) and an FPGA. The study clearly
shows the advantages of FPGA in terms of energy-e�ciency and performances over the
other solutions. For the studied application, the speedup over GPP is of two orders
of magnitude with an energy consumption three orders of magnitude lower than the
GPP. However the study also shows that it remains a very long and very costly process,
most of the cost coming from the long development time. The development time is two
orders of magnitude greater than the one for GPP with a cost one order of magnitude
greater. The authors of the study suggest that the reasons of these flaws in FPGA
design are due to the di�culty to master FPGA design and debug processes. They also
point out the lack of standards which prevents all backward and onward compatibility,
thus prohibiting design portability and reuse.

Moreover FPGA design is a very time-consuming process due to the di↵erent stages
of the implementation: synthesis, mapping, place and route and test. This fact sup-
ports the point of view in the industry that FPGA is a risky product, which has low
productivity and is consequently associated with longer time-to-market. Hence the
necessity to have a way to reduce the implementation time by providing accurate pre-
implementation evaluations of a design both in size and performance and to provide
validated and thus bug-free systems in order to minimize the debug phase.

Design Tools Tediousness Along with chip capabilities, tools complexity has in-
creased from time to time and another di�culty encountered by designers is thus the
tediousness of the design tools that contain numerous configuration options which can
be confusing and can easily lead to make mistakes consequently very hard to debug.
For these reasons, it is necessary to find tools to simplify the design process of such
systems and thus increase the designer productivity. This can be done by automating
the tedious parts of the design process in which designers cannot bring any added-value.

6

Contributions

In embedded systems, the frontier between hardware and software domains is fuzzy
and consequently the design of one is dependent of the other. This is problematic since
typical software engineers and hardware engineers have design approaches that di↵er
greatly and they are usually not aware on how things are done in the other domain.
There are few engineers who master how both worlds work and thus it is a rare and
valuable skill. That problem can be overcome by providing on the one hand a high-level
of abstraction in which the distinction between hardware and software is not made, and
on the other hand by automating the design decisions and in particular the partitioning
between hardware and software implementations.

1.1 Contributions

All these reasons show that the design of H-MPSoC for FPGA is a tedious, error-prone
and costly process, leading to the necessity to have a tool to assist designers in order to
simplify and speedup the design process. In this thesis, we present a framework for the
automation of the design of e�cient H-MPSoC. Given an application, a basic architec-
ture template and a set of constraints, the framework explores the design space and
generates a complete system including the synthesizable hardware platform and the
adapted C code respecting the provided constraints. To achieve this goal, several di-
mensions are explored: the number and type of processors, the hardware specialization,
the data parallelism exploitation, the communication and memory models, mappings
and schedulings. However designers have the control of the flow and can introduce
design decisions according to their design skills.

The contributions of this thesis are:

A framework that automates the tedious phases of the H-MPSoC design in or-
der to let designers focus where their knowledge is most needed. Our framework
also generates a correct-by-design code for both the hardware and software im-
plementations. This avoids the error-prone design process provided by current
FPGA design tools, and since it lowers the cost of the design process to the
implementation, more designs can be further explored.

An automated and scalable Design Space Exploration (DSE) algorithm that takes
into account size and performance constraints and relies on fast and accurate
estimators. This simplifies the design by exploring the numerous design options
of H-MPSoCs and by evaluating them in order to propose a set of Pareto-optimal
options to the designer. Explored dimensions include hardware accelerator choice,
processor allocation, task mapping, memory selection and data mapping. The
scalability factor also allows the designer to balance between the time spent for
optimizing the results, consequently optimizing the designer productivity.

The integration of a fast and automated exploration of hardware accelerators in
the DSE loop by means of High-Level Synthesis (HLS). This o↵ers more design
options by providing a tradeo↵ between cost and performances and allows to fully
exploit the heterogeneity of H-MPSoC.

7

Introduction

The integration in the DSE loop of the data parallelism exploration through task
duplication in order to further speedup the designed system.

The use of Model-Driven Engineering (MDE) methods through the integration of
a template-based approach to describe the input architecture. This template let
designers configure the exploration according to their own level of expertise, while
also abstracting away target-specific implementation details. This also favors
design portability and reuse by providing a solution to the absence of FPGA
standards.

A strategy favoring reuse through the use of databases in order to speedup the
design process.

1.2 Outline

This manuscript is structured as follows:

Chapter 2 describes the state of the art in ESL design tools for MPSoC, in HLS
tools, and in the usage of MDE for DSE of MPSoC.

Chapter 3 presents an overview of the framework flow.

Chapter 4 introduces our DSE algorithm: the explorations methods are detailed
along with the used estimation techniques for cost and performance evaluation.

Chapter 5 explains how we use MDE methods to simplify, to favor reuse and to
make more reliable the design of H-MPSoC

Chapter 6 presents the evaluation and validation of our framework through the
use of two case-studies and several benchmarks.

Chapter 7 concludes this thesis by summarizing its contributions and providing
perspectives on future work.

8

2
State of the Art

In this chapter we present the current state of the research in ESL tools for MPSoC, as
well as for more specific domain related to a couple of contributions of our framework:
the integration of HLS and the usage of Model-Driven Engineering approach in MPSoC
design.

2.1 Ideal ESL Framework

In this section, we describe what we think would be the ideal framework flow, without
caring about the feasibility aspect of it.

Adaptability

This ideal framework should be adapted to several levels of expertise of designers: from
software designers who have only little knowledge in hardware design to expert system
designers. The former want to deal as little as possible with the hardware aspects
and thus the framework should hide this level, should take all the design decisions
and provides at the end a ready-to-implement system that satisfies the designer’s con-
straints. Expert designers on the other hand, would use such framework in order to be
relieved from tedious tasks that can be automated such as design cost and performance
evaluation, software adaptation, communication interfaces generation, etc. This means
that advanced-level designers should be able to express their expertise by being able to
enforce design decisions they know will yield the best results.

Inputs

So this ideal framework must allow designers to express their wishes with minimal
e↵orts. On the application side, that would mean to be able to use the application code
as input without any modifications and no limitation on the expressibility of the coding
language accepted by the tool which, ideally, should be a widespread language (C, C++,
etc.) or model formalism (UML, etc.). However that constraint is not realistic since
most frameworks constrain only accept applications expressed in one or more Models of
Computation (MoC). The architecture specifications/constraints should also be easy to
express: this can be done through the use of component library and usage of a Graphical
User Interface (GUI) that would help the designer visualize the design possibilities given

9

State of the Art

���������	�
���
����

�������

������

����������

���������

�����
����������
��������
�������

���
���

���

��

!��"���������
����

�#����������������

$�%�����
���
$�!��

$�%�&��

����!�'����"

�
�����
�
(��)�

���
���

%���*)�!��
�+�%�&���
����
�����

�
���+�
����
��

����������
����

����

!�
��
��������
�"������������"��

�
�'��

��

�����
�	��"���,
(���

�	���

����*

%��-�������������
(
�.���������

������
����

$�(-����/��
$�������������'��

���������

�������%
����$����
�
���������

����'���0���"����

Figure 2.1: Ideal design flow for an H-MPSoC.

10

Existing MPSoC Design Tools

the current specifications and constraints. The tool should also give the possibility to
advanced designers to express their expertise by letting them enforce specific design
decisions. The characterization of the inputs should also be left as little as possible to
the designers: for instance the software execution time of a task on a specific target
should be measured through an automated on-target profiling or through an Instruction
Set Simulator (ISS), the logic resource cost of hardware components should be provided
whether from manufacturers documentation or through automated methods based on
behavioral or logic synthesis, and so on.

Design Space Exploration

Once the inputs are specified, the rest of the process should be fast, entirely automated
and should return a ready-to-implement complete system that meets the designer’s
goal. Thus the DSE process:

should be able to explore as many dimensions as possible: performance, area,
power, etc. in order to o↵er designers a maximum of options;

should be fast to explore a large number of designs or at least be scalable to let
the designer choose between DSE speed and performance of the results;

should integrate available debug and test tools;

and should provide accurate estimations that faithfully reflect the characteristics
of the final design.

Outputs

The results of the DSE should be a set of Pareto optimal solutions giving a large number
of quality solutions that o↵er tradeo↵s between several criteria to the designer. The
implementation files for the selected design should then be generated: the software
code of the application is adapted, the hardware platform is synthesized and project
files for implementation are generated, so that it can be directly implemented using the
backend tool corresponding to the selected target (FPGA, ASIC, etc.).

2.2 Existing MPSoC Design Tools

Over the years, numerous tools and frameworks have been built for the design of archi-
tecture at the Electronic System-Level (ESL). This section presents a selection of such
tools, and states the di↵erences between them and our framework.

2.2.1 Daedalus

Daedalus [4] is a framework for the design of Heterogeneous MPSoC developed at the
university of Amsterdam and Leiden. It is made of several tools, each performing a

11

State of the Art

Xbar

M M

asicµP

µP Pµ

MP−SoC

FPGA

Gate−level
specification

specification
System−level

RTL
specification

V
a

lid
a

tio
n

 /
 C

a
lib

ra
tio

n

components
Library of IP

models
RTL

models
High−level

Auxiliary
files

Platform spec.
in XML in XML

code for
C/C++

in VHDL
IP cores

netlist
Platform

Mapping spec. Kahn Process
Network in XML

Application

processors

Parallelization
(KPNgen)

Automated system−level synthesis
(ESPAM)

System−level architectural exploration
(Sesame)

RTL synthesis
(commercial tool, e.g. Xilinx Platform Studio)

(C/C++)

Figure 2.2: Design flow of Daedalus. Figure coming from [4].

di↵erent part of the design. KPNGen [5] generates a parallel version of the input ap-
plication under the Kahn Process Network (KPN) formalism. Espam [6] deals with
the code generation and the implementation files. Sesame [7] is a trace-based simulator
which provides communication and performance estimations in order to evaluate the
design under exploration. Daedalus starts by transforming the input sequential appli-
cation into a Kahn Process Network version in order to exploit task-parallelism. For
this it uses a tool named KPNGen that, provided that the input fulfill the require-
ments, automatically performs a series of transformations on the application: first it
is transformed into a Single Assignment Code and from that version it produces the
Polyhedral Reduced Dependency Graph (PRDG), and then the final KPN form of the
application.

Then the KPN description is used as input for the Design Space Exploration. The
explored dimensions are the number and the types of processing units, mappings and
scheduling. The evaluation is based on traces of the application events during execution,
which are read, write and execute events. These events are then used to simulate the
execution of the application on the currently evaluated architecture. The results is a set
of statistics which will help the designer chose the system best-fitting to his needs. Then
the ESPAM tool checks some design rules constraints and generates the corresponding
synthesizable code for implementation of the corresponding MPSoC solution.

Daedalus’ design space exploration is based on an exhaustive exploration of the
solutions based on the constraints given by the designer as input. Such an approach

12

Existing MPSoC Design Tools

Figure 2.3: Design flow of SystemCoDesigner. Figure coming from [8].

can be terribly slow for loose exploration constraints leading to design spaces which
cannot be entirely explored within a reasonable time.

2.2.2 SystemCoDesigner

SystemCoDesigner [8] is an automated framework for the exploration and the gener-
ation of the hardware and software of System-on-Chip for FPGA and developed at
the university of Erlangen-Nuremberg. It uses as input an application described as
an actor-oriented model communicating through FIFO in SysteMoC [9], a subset of
the SystemC language. Then each actor undergo a behavioral synthesis with Forte
Cynthesizer [10] in order to produce the corresponding hardware accelerator. In order
to get accurate software execution times of the application, which are used for perfor-
mance estimation, they have implemented a non-intrusive on-target profiling based on
a hardware timer.

The design space exploration then begins, using a multiobjective evolutionary al-
gorithm (MOEA). During DSE, partitioning and mapping decisions are taken for each
actor and then performance of the designs, given as latency and throughput, are ac-
curately estimated using Virtual Processing Components (VPC), an event-based sim-
ulator. The area cost is estimated based on the cost of the hardware components.
Implementation of the communication are decided at this stage depending on the type
of communication (software to hardware or hardware to hardware) and the available
kinds of memory (e.g. BRAM, LUT, etc.). Since MOEA is a non-deterministic al-
gorithm, several iterations can be performed in order to maximize the resulting set of
non-dominated solutions. The final selected design is then generated for implementation

13

State of the Art

Figure 2.4: Design flow of Advanced Systembuilder. Figure coming from [11].

on the target FPGA: processors are instantiated as softcores, hardware accelerators are
added to the design, communication interfaces are derived from the application model
and are provided as a RTL description, the SysteMoC models of actors implemented
in software are automatically converted to C++ and finally a bitstream for the target
FPGA is generated.

In [8] are presented the results of an exploration with SystemCoDesigner for an
MJPEG decoder. Although scalable, the DSE took over 2 days and 17 hours to evaluate
7600 solutions resulting in a set of 366 non-dominated solutions which is relatively slow
compared to other solutions. They integrate HLS in their design flow however they do
not take advantage of it to explore the possible tradeo↵s between cost and performance
by producing a series of accelerators with di↵erent characteristics, thus limiting their
design space.

14

Existing MPSoC Design Tools

2.2.3 Advanced Systembuilder

Advanced Systembuilder [11] is a framework for automated synthesis of H-MPSoCs
developed by the universities of Nagoya and Ritsumeikan. The inputs of the tool are:

a functional description of the system using processes and channels with System
Level Communication Model (SLCM);

an architecture template which specifies the architecture with the available hard-
ware components (number of processors, number of hardware accelerators, and
the number of types of memories) and how they are assembled;

a mapping specification.

These inputs must be manually specified by the designer. From these inputs, Advanced
Systembuilder automatically perform several synthesizes: the hardware is generated
through behavioral synthesis with the eXCite tool; the software is synthesized as a C
code targeting a Real-Time Operating System (RTOS); communication are synthesized
as Application Programming Interface (API) in the C code and as hardware compo-
nents. In addition, two implementation outputs are produced: one is the files for
cosimulation and the other one is the implementation files for typical FPGA backend
tools such as Altera Quartus or xilinx ISE. These implementations are used to validate
and evaluate the performance of the design.

To evaluate the performance of the prototype, Advanced Systembuilder seamlessly
integrates into the FPGA design non-intrusive hardware memory and process profilers.
The former measures the accesses to the memory along with the potential contention
that can occur on the bus accessing the memory, and the latter profile the execution
and idle time of the processes. With these measurements designers can decide if they
are satisfied with the current design or can identify the points that needs improvement
in his design (bottlenecks) and thus modify the design accordingly and relaunch a new
iteration of Advanced Systembuilder with it.

The biggest lack in Advanced Systembuilder is that it does not perform any au-
tomated Design Space Exploration since mapping specifications and the hardware de-
scription of the system are provided by the designer as inputs. Moreover to evaluate
the performance of a design, they whether rely on a slow Cycle-Accurate Byte-Accurate
(CABA)simulation with ModelSim or onto an implementation on FPGA which implies
a long implementation time. Consequently, exploring several designs is relatively slow:
in [11], the evaluation of 24 designs required about five hours, most of it being due to
the logic synthesis steps.

2.2.4 hArtes

hArtes [12] (Holistic Approach to Reconfigurable Real-Time Embedded Systems) is an
European project which aims at developing a framework for hardware/software code-
sign. Three input formalisms are accepted for the application specification: C code,
Scilab description (a software for numerical computation equivalent to MATLAB) or

15

State of the Art

Figure 2.5: Design flow of hArtes. Figure coming from [12].

Nu-Tech description, a tool to design application in a graphical way. If the input is one
of the latter two solutions, the equivalent C code is generated from the specifications
in order to be used as input for the DSE. This C code is annotated with three di↵erent
kinds of pragmas: pragmas that specify the possible parallelism of a section of code,
pragmas that specify the profiling information of the program functions and pragmas
that indicate tasks that can be accelerated through hardware. Those pragmas can be
inserted whether manually by the designer or automatically by the tool during DSE.
The hardware architecture specification is given as an XML file.

hArtes targets MOLEN architecture [13], which consists in the association of GPPs
and specialized processing units (Intellectual Property (IP), Digital Signal Processor
(DSP), etc.) on a reconfigurable unit. The application first starts by being parallelized
with a dedicated tool. Then the DSE performs the mapping of the tasks, and the designs
are then evaluated using the SoCLib modeling and simulation tool [14]. Then begin
the so-called System Synthesis phase during which the annotated C code is compiled
according to the mapping decision: whether with the MOLEN Compiler or with a DSP
compiler. If a task is implemented in hardware, then the Dwarv tool [15] is called
and generates an HDL version of the accelerator from the C code. So the final system
implementation is the executable of the application and the bitstream of the hardware
architecture.

The fact that hArtes allows several formalisms for the application specification
allows to target a larger audience who may not be familiar with classical program-

16

Existing MPSoC Design Tools

Figure 2.6: Design flow of the Peace framework. Figure coming from [16].

ming language or model but who are used to numerical computation tools, such as
mathematicians. However the fact that is necessary to provide an XML architecture
description in input as well, which requires a bit of design knowledge to fill, kind of
neutralize this advantage. In addition hArtes targets a specific type of architecture:
the MOLEN paradigm, which is thus limiting the design possibilities.

2.2.5 PeaCE

PeaCE [16] is a codesign tool for the design of systems for multimedia applications,
developed by the CAP laboratory at Seoul National University. It is based on the
Ptolemy framework [17], which is used for the design of real-time framework through
modeling through extensive use of several models of computation and simulation. It
starts from a model of an application using three di↵erent Model of Computation
(MoC)s: one based on Synchronous DataFlow, called Synchronous Piggybacked Data
Flow (SPDF) for the specification of computing tasks, another based on Finite State
Machine (FSM), called flexible FSM (fFSM) for the specification of control task and
another one, called task level-model that specifies high-level interactions between tasks.
It also requires a set of the available architecture components (processors and IPs) to
be used during the exploration step. The functional specification is used to generate a
C code for functional simulation. Then for each task, performance measurements are
made for each di↵erent processing unit with an ISS.

Then the first step of the DSE is launched: it explores the hardware solution,
the partitioning and the mapping. Then code is generated for a hardware/software

17

State of the Art

cosimulation in order to get memory traces of the execution. These memory traces
are then used during the second phase of the DSE where communication solutions
are explored. In [16], only buses are considered as solution, so the DSE decides the
number of buses, which bus is linked to which processing element and memory, bus
frequency, etc. Finally, when a solution that satisfies the constraints has been found,
implementation codes are generated for simulation tools and FPGA prototyping.

The advantages that PeaCE uses a model-driven approach to specify the input ap-
plication by using and extending MoCs from the Ptolemy project, is also a limitation
since designers have to learn how to model their applications with these three di↵erent
MoCs instead of simply providing a C code, which is a widespread and well-known lan-
guage among software designers. Moreover no exploration of the hardware acceleration
is performed.

2.2.6 Xilinx XPS

Xilinx Platform Studio (XPS) [18] is a commercial design tool for systems targeting
Xilinx FPGA devices. The design of the system can be made through the use of Graph-
ical User Interface in order to add, remove and configure the elements of the hardware
platform. It also provides several wizards to assist the designer in the creation of its
system. It provides a library of proprietary IPs for the available bus and communication
protocols, exploiting the board external peripherals. It also helps to integrate custom
IP, through wizards and generation of interfaces in Hardware Description Language for
integrating IP. The designed hardware can then be automatically transformed into a
bitstream for the target FPGA through syntheses, mapping and placing and routing.

Although Xilinx recommends to use Xilinx Software Development Kit (SDK), a cus-
tomization of the Eclipse framework, for managing the software aspect of the system, it
is also possible to fully handle software project from XPS. This includes the compilation
of the code as well as the specification of the drivers and the memory mapping.

While this tool, along with other Xilinx design tools, simplifies FPGA designs, it
still remains a tool di�cult to master and its numerous configuration options can often
lead to bugs that can be hard to found/traced back at a later stage. The long synthesis
times involved or the provided CABA simulation tool, ModelSim, do not allow to test
quickly several designs and thus do not provide an adapted environment for design
space exploration. So as such it should be used as a backend tool for implementation
only.

2.2.7 Space CoDesign

Space Codesign [19] is a a commercial tool developed by SpaceStudio. Starting from
an application specified in C code and split into tasks in order to express its parallelism
and ease the mapping. Then the architecture must be described through a Graphical
User Interface, this includes the number and types of processor, memories, buses along
with the partitioning and mapping. Once the architecture specified, the architecture is
estimated with the following criteria: performances, logic resources cost and power con-

18

Existing MPSoC Design Tools

sumption. This is done by generating SystemC TLM virtual platform of the hardware
components and the C/C++ code of the software elements (tasks, RTOS). The gen-
erated virtual platforms includes non-intrusive profiling component for performances.
The final design is selected based on the quality of results constraints provided by the
designer and the corresponding hardware platform can be generated by another tool of
SpaceStudio called GenX.

The limitation of Space Codesign is that, in spite of its GUI that allows to quickly
modify the architecture and the partitioning, it does not perform any automated ex-
ploration.

2.2.8 Conclusion

Table 2.1 summarizes the presented ESL design frameworks. In the studied flow for
H-MPSoC design, we can see that all of these tools failed to answer at least of the one of
the problems stated in the introduction. For instance, Advanced Systembuilder, Space
Codesign and Xilinx XPS do not perform any automated DSE, leaving to the designer
the task to specify the evaluated architecture, which might be quite complex for a
H-MPSoC. SystemCoDesigner and Daedalus are both too slow to be really e�cient
in an industrial context: the former because of its slow CABA-based performance
estimation and the latter because of its exhaustive DSE. PeaCE has too complex input
specifications and hArtes targets a specific kind of architecture, the MOLEN paradigm.
Consequently there is a need for a new tool that will answers to these problems, by
providing designers with a way to express their specifications with the level of details
they wish, while automating the tedious aspects of design in order to provide quickly
a satisfying implementation.

19

State of the Art

T
ab

le
2.
1:

C
om

p
ar
is
on

of
ex
is
ti
n
g
E
S
L
fr
am

ew
or
ks
.

In
p
u
ts

D
S
E

O
u
tp

u
ts

S
o
ft

H
a
rd

C
o
n
st
ra

in
ts

A
u
to

m
a
te

d
S
ca

l-
a
b
le

E
x
p
lo
re

d
d
i-

m
e
n
si
o
n
s

E
st
im

a
-

ti
o
n
s

C
o
d
e

g
e
n
-

e
ra

-
ti
o
n

H
a
rd

S
o
ft

S
W

& A
rc
h

H
W

IP

I
d
e
a
l

F
r
a
m
e
-

w
o
r
k

W
id
es
p
re
ad

,
w
el
l-

k
n
ow

n
in
p
u
t

la
n
gu

ag
es

/
fo
r-

m
al
is
m
s

w
it
h

n
o

re
st
ri
ct
io
n

A
rc
h
it
ec
tu
re

te
m
p
la
te

sp
ec
ifi
ed

w
it
h

h
ig
h
-

le
ve
l

fo
r-

m
al
is
m
s

P
ro
v
id
ed

b
y

th
e

d
es
ig
n
er

th
ro
u
gh

a
G
U
I

Y
es

Y
es

Y
es

P
er
fo
rm

an
ce
,

ar
ea
,
p
ow

er
F
as
t

an
d

ac
cu

ra
te

Y
es

S
y
n
th
es
iz
ab

le
A
rc
h
it
ec
-

tu
re

A
d
ap

te
d

co
d
e

U
s

C
/C

+
+

co
d
e

in
S
A
N
L
P

A
rc
h
it
ec
tu
re

te
m
p
la
te

in
A
A
D
L

A
rc
h
it
ec
tu
re

te
m
p
la
te

Y
es

Y
es

Y
es

(p
ru
n
-

in
g

an
d

co
n
-

st
ra
in
ts
)

A
rc
h
it
ec
tu
re
,

D
at
a

&
ta
sk

m
ap

p
in
g,

S
ch
ed

u
li
n
g

P
er
fo
rm

an
ce
:

T
ra
ce
-

b
as
ed

si
m
u
la
ti
on

/
C
os
t:

M
o
d
el
-

b
as
ed

es
ti
m
at
io
n

Y
es

S
y
n
th
es
iz
ab

le
A
rc
h
.+

im
p
le
-

m
en
ta
ti
on

fi
le
s

A
d
ap

te
d

co
d
e

D
a
e
d
a
l
u
s

C
/C

+
+

co
d
e

in
S
A
N
L
P

P
ea
rl

D
e-

sc
ri
p
ti
on

la
n
gu

ag
e

+
X
M
L

fi
le

X
M
L

fi
le
s

/
G
U
I

Y
es

N
o

Y
es

A
rc
h
it
ec
tu
re
,

M
ap

p
in
g,

S
ch
ed

u
li
n
g

T
ra
ce
-

b
as
ed

si
m
u
la
ti
on

Y
es

S
y
n
th
es
iz
ab

le
A
rc
h
.+

im
p
le
-

m
en
ta
ti
on

fi
le
s

A
d
ap

te
d

C
+
+

S
y
s
t
e
m
-

C
o
D
e
-

s
i
g
n
e
r

A
ct
or
-

or
ie
n
te
d

M
o
d
el

N
/A

Y
es

(M
O
E
A
)N
o

Y
es

P
ar
ti
ti
on

in
g,

m
ap

p
in
g

P
er
f.

w
it
h

V
P
C

Y
es

B
it
st
re
am

A
d
ap

te
d

C
+
+

C
on

ti
n
u
ed

on
n
ex
t
p
ag

e

20

Existing MPSoC Design Tools
T
a
b
le

2
.1

–
C
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

In
p
u
ts

D
S
E

O
u
tp

u
ts

S
o
ft

H
a
rd

C
o
n
st
ra

in
ts

A
u
to

m
a
te

d
S
ca

l-
a
b
le

E
x
p
lo
re

d
d
i-

m
e
n
si
o
n
s

E
st
im

a
-

ti
o
n
s

C
o
d
e

g
e
n
-

e
ra

-
ti
o
n

H
a
rd

S
o
ft

S
W

& A
rc
h

H
W

IP

A
d
v
a
n
c
e
d
-

S
y
s
t
e
m
-

b
u
i
l
d
e
r

F
u
n
ct
io
n
al

d
es
cr
ip
-

ti
on

(p
ro
ce
ss

+
ch
an

n
el
)

H
W

co
m
-

p
on

en
ts

+
to
p
ol
og

y

M
ap

p
in
g
co
n
-

st
ra
in
ts

N
o

N
o

N
/A

N
/A

F
P
G
A

p
ro
to
-

ty
p
in
g:

in
te
-

gr
at
io
n

of
H
W

p
ro
fi
le
r

/G
en

er
-

at
io
n

of
C
A
B
A

si
m
u
la
ti
on

fi
le
s

Y
es

H
L
S

C
co

d
e

+
A
P
I

fo
r

co
m
m
u
n
i-

ca
ti
on

h
A
r
t
e
s

C
co
d
e

/
S
ci
la
b

la
n
gu

ag
e

/
N
u
-T
ec
h

fo
rm

al
is
m

X
M
L
fi
le

N
o

Y
es

N
o

N
o

A
p
p
li
ca
ti
on

p
ar
al
le
li
sm

,
m
ap

p
in
g

S
o
cL

ib
p
er
fo
r-

m
an

ce
es
ti
m
at
io
n

Y
es

H
L
S

w
it
h

D
w
ar
v

C
om

p
il
ed

b
in
ar
y

P
e
a
C
E

S
P
D
F

/
fF
S
M

/
T
as
k

le
ve
l

m
o
d
el
s

of
co
m
p
u
ta
-

ti
on

S
et

of
av
ai
la
b
le

H
W

co
m
-

p
on

en
ts

Y
es

N
o

N
o

T
w
o

p
h
as
es
:

fi
rs
t

p
ar
ti
-

ti
on

in
g

&
m
ap

p
in
g

/
se
co
n
d
:

co
m
-

m
u
n
ic
at
io
n

C
os
im

u
la
ti
on

/
F
P
G
A

p
ro
to
ty
p
-

in
g

Y
es
,

si
m
u
-

la
ti
on

+ im
p
le
-

m
en
ta
-

ti
on

S
y
n
th
es
iz
ab

le
A
rc
h
it
ec
-

tu
re

C
co

d
e

+
co
m
m

C
on

ti
n
u
ed

on
n
ex
t
p
ag

e

21

State of the Art

T
a
b
le

2
.1

–
C
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

In
p
u
ts

D
S
E

O
u
tp

u
ts

S
o
ft

H
a
rd

C
o
n
st
ra

in
ts

A
u
to

m
a
te

d
S
ca

l-
a
b
le

E
x
p
lo
re

d
d
i-

m
e
n
si
o
n
s

E
st
im

a
-

ti
o
n
s

C
o
d
e

g
e
n
-

e
ra

-
ti
o
n

H
a
rd

S
o
ft

S
W

& A
rc
h

H
W

IP

X
i
l
i
n
x

X
P
S

C
/C

+
+

co
d
e

V
H
D
L

co
m
p
o-

n
en
t

+
li
b
ra
ry

of
IP

N
o

N
o

N
/A

N
/A

Im
p
le
m
en
ta
ti
on

co
st

/P
ro
-

fi
li
n
g

so
lu
ti
on

s
p
ro
v
id
ed

N
o

B
it
st
re
am

E
x
ec
u
ta
b
le

E
L
F

S
p
a
c
e

C
o
d
e
s
i
g
n

C
/C

+
+

co
d
e

sp
li
t

in
to

ta
sk
s

X
M
L
fi
le

Q
u
al
it
y
of

R
e-

su
lt
s

N
o

N
o

N
/A

N
/A

C
os
t,

p
er
-

fo
rm

an
ce

an
d
p
ow

er

Y
es

(w
it
h

ex
tr
a

to
ol
s)

W
it
h

ex
-

tr
a

to
ol

(S
p
ac
eS

-
tu
d
io

G
en

X
)

C
/C

+
+

ad
ap

te
d

co
d
e

22

High-Level Synthesis Tools

����������		
 ���	���������
����
����� ���	���������

�����������

�������

�������

��������

��������������������

� !!��
�����"

#��$�"

%&%'"

(

����

)���

&����!�	�

���

*

� ��

���

)��
)��

)��
)��

Figure 2.7: Architecture model of the hardware accelerator generated by GAUT.

2.3 High-Level Synthesis Tools

In H-MPSoC, hardware accelerators are used as a mean to speedup the system and it
is part of the design space exploration to decide whether or not part of an application
will be accelerated through hardware. If no o↵-the-shelf accelerator is available to the
designer, it is possible to generate an IP through the use of HLS tool. It thus can
be used as a tool in the ideal flow for H-MPSoC by providing synthesized on-the-fly
hardware IP. In this section we present a few of the existing HLS tools.

2.3.1 Gaut

GAUT [20] is a high-level synthesis tool that can generate hardware accelerators from a
behavioral C/C++ specification. It has been being developed for 15 years at ENSSAT
Lannion and the Université de Bretagne-Sud Lab-STICC laboratory. The synthesis is
performed under a time constraint according to:

a generic architecture model as illustrated by Figure 2.7;

a library of pre-characterized Functional Units (FU), i.e. basic operators such as
adders, multipliers and hierarchically designed IPs;

and a communication interface choice: FIFO or Ping-Pong memory.

The generated hardware block comes in di↵erent formalisms including VHDL and Sys-
temC. Communication interfaces can be tuned to include specific features such as the
Xilinx Fast Simplex Link (FSL) [21]. It is used in our framework to generate series
of hardware IP during the hardware accelerators design space exploration which is de-
tailed in Section 4.3. This tool is based on fast scheduling and allocation heuristics,
it produces a RTL code compliant with a register-to-register architecture model. It is

23

State of the Art

µ

Figure 2.8: Design flow of the LegUp framework. Figure coming from [22].

decoupled from Logic Synthesis tools and has a linear computational complexity that
we exploit to get fast accelerator evaluation within the whole H-MPSoC DSE loop.

2.3.2 LegUp

LegUp [22] is a research tool developed at the university of Toronto that semi auto-
matically accelerates part of an application by generating and integrating a hardware
accelerator into the design. It starts by performing an automated profiling of the appli-
cation thanks to a modified MIPS processor-based FPGA implementation. The MIPS
is modified in order to perform the profiling of its own execution. With this profiling,
the parts of the applications to be accelerated through hardware are synthesized with
LegUp behavioral synthesis tool. Then the software code of application is modified in
order to call the generated hardware accelerators. Finally the software code is com-
piled and the hardware architecture is implemented on the FPGA, resulting in the
implementation of a complete system.

LegUp is a quite complete tool for hardware acceleration of an application and is
adapted to software designers that are not familiar with hardware design. However,
LegUp does not actually performs any design space exploration: mapping and hardware
decisions are taken manually by the designer, and the rest of the hardware architecture
is determined prior to hardware synthesis.

2.3.3 C2H

The NIOS C2H compiler [23] is a tool that generates IP cores from a C specification.
This tool provides an easy way to generate accelerators but does not perform any
real high-level synthesis. Contrary to what is done by C2H, HLS means resources
allocation and scheduling according to a predefined architecture model that also makes
fast estimation possible. The synthesis from C2H or equivalent C-to-VHDL compilers
could however be considered as additional solutions to feed the IP database used during
DSE.

24

High-Level Synthesis Tools

Figure 2.9: Design flow of Bambu. Figure coming from [25].

2.3.4 CyberWorkBench (CWB)

CyberWorkBench [24] is an impressive and complete but also commercial framework
proposed by NEC, it relies on di↵erent HLS tools (data-dominated, control-dominated,
control-flow intensive, ASIP design). This framework provides simulation and area/per-
formance/power estimation tools for various FPGA technologies. The DSE tool is based
on the modification of code (C/SystemC) annotation, such as for instance loop un-
rolling. However, we also observe that DSE includes low level logic synthesis tools that
mean long synthesis time. Moreover the hardware/software mapping remains manual
as well as the function/task/instruction parallelisms and the choice of I/O parallelism
and protocols. This is a set of tools that do not exactly pursue the same objective as
we aim to do, namely a fast exploration based at the task level on hardware/software
partitioning and processor specialization and at the hardware accelerator level on the
automatic exploration of instruction and I/O parallelism.

2.3.5 Bambu

Bambu [25] is a framework developed at Polimi which aims at the automated HLS
of application. It takes as inputs the C code of an application and an XML file that
specifies constraints and options of the flow. The input is transformed in a Static Single
Assignment form through a modified version of the GCC front-end and undergoes a

25

State of the Art

series of simple optimizations, such as dead code removal, loop unrolling, constant
propagation, etc. Then data are allocated on the available memories based on the
application graph analysis and the constraints provided by the designer as inputs. Then,
for each function of the C code, an HLS creates the functional hardware equivalent
including datapath, controllers and memory interfaces. Several options are given to
the designer for the HLS, o↵ering tradeo↵ between area and performances. It supports
generation of the implementation files of the final system, for several backend tools
for FPGA (Xilinx, Altera...) as well as for ASIC. It can also generate testbenches for
simulation tools and check that the synthesized system is functionally equivalent to the
software application given as input.

Bambu is limited in the solutions it can provide as it can only generate full hardware
system. This means that it does not deal with the software aspect of the system, thus
leaving out of the exploration of data-parallelism and restricting the design possibilities
o↵ered to the designer and thus is not appropriate for the design of H-MPSoC.

2.3.6 AutoESL’s AutoPilot

AutoPilot [26] is a high-level synthesis developed by AutoESL and now belonging to
Xilinx1. Starting from high-level specifications it can provide the outputs RTL in
VHDL, Verilog and SystemVerilog. It also provides a cost estimation of the FPGA
logic resource as well performance — latency and throughput — at function and loop
granularity which allow designers to optimize their code precisely.

One of the lack of AutoPilot is the impossibility to specify timing constraints on
the input/output.

2.3.7 Conclusion

From this study of HLS tools, we can give a list that could be integrated into our
framework to be used for hardware accelerators exploration (described in Section 4.3).
The tools that can be used are: Legup, Bambu, AutoESL and Gaut. C2H cannot be
used since strictly speaking, it does not perform HLS.

2.4 MDE-based Design of MPSoC

Several attempts have already been made to introduce Model-Driven Engineering into
methodologies for MPSoC designs. We detail our usage of MDE in Chapter 5.

2.4.1 Model Driven Engineering for MPSoC DSE

In [27], a DSE methodology based on Model-Driven Engineering is proposed for MPSoC.
Models are UML-based models and are implemented with the ModES framework which
provides the necessary meta-models, as well as a transformation engine in order to

1which renamed it Vivado HLS.

26

MDE-based Design of MPSoC

translate model from one formalism to another. The models are divided into four
domains:

an application domain, which describes the tasks of the application

a platform domain, which described the hardware components of the architecture

a mapping domain, which describes the mapping between the task and the pro-
cessors

an implementation domain, which describes the info for synthesizing/implement
the system

A library of components is provided to describe the hardware architecture. DSE is
implemented as a heuristic based on simulated annealing which aims to minimize the
following system characteristics: communication, memory, performance and power con-
sumption. In order to perform evaluation of a design during DSE, it is necessary that
the designer provide measurement of the performance, cost and power. For the soft-
ware, this is done by compiling the code on the target architecture. DSE is performed
by the H-Spex tools which explores the following characteristics for each processor:
their numbers, the mapping of tasks onto them, the assignment of buses and its volt-
age. The components are stored in a repository with the characteristics necessary for
evaluation of the system during DSE such as their size, their power consumption, their
performance, etc. Once the DSE is over, a model of the final system is produced and
through model transformation the final implementation files are generated. Their DSE
is quite fast and accurate since in [27], it manages to evaluate a thousand designs in
about one hour with very few error on the estimated values.

In this framework, MDE is used for model transformation, including the final im-
plementation files, design-rules verification, and design space exploration. However
they relies on the designer to provide all the necessary measurements values such as
performance, cost, consumption for every hardware components and application task
models. These values are quite important since the accuracy of the final implemen-
tation characteristics depends on the accuracy of the provided measurements. While
they provide a technique for the software components, they are very evasive on how
they get these measurements for hardware components, relying on the assumption that
the component will be already present in the component repository.

2.4.2 Multilevel MPSoC Simulation using an MDE Approach

In [28] is presented an MDE-based DSE for MPSoC. The tool starts from description of a
system, including thee application and the architecture, in the MARTE [29] formalism,
which is an extension of UML for embedded and real-time systems. Then the DSE
process is performed through successive simulations at di↵erent granularities. The
simulation implementations are based on the SystemC language. At first a fast coarse
granularity simulation (TLM PVT) is performed, checking for functional verification
and contention detection, and allowing to quickly estimate a lot of solutions. Then,

27

State of the Art

from these estimations a selection is made which is then evaluated more accurately with
a slower finer grained simulator (CABA). MDE is here used for automated model-to-
model transformations, more specifically from the MARTE description to the di↵erent
levels of simulation in SystemC.

While this presented methodology seems quite e�cient for Design Space Explo-
ration, it could be further enhanced by adding the possibility to generate the final
implementation code of the system not just a simulation implementation. This would
allow to have a more complete framework. Also, the authors provides no method to get
the values (performance, cost, etc.) to characterize the models for evaluating a system
during DSE, leaving this task to the designer. Furthermore, they consider only perfor-
mance and power during DSE, and not logic resources cost, which can be problematic
in an embedded system environment.

2.4.3 A Co-design Approach for Embedded System Modeling and
Code Generation with UML and MARTE

In [30] and [31], a methodology is presented for the design of MPSoC. The models of
both the application and the platform must be provided as MARTE and UML models.
From this description, it possible to generate the synthesizable hardware components,
whether through synthesis or through reuse of existing components. The project im-
plementation files for Xilinx backend tools are also generated so that the project can
directly be implemented on the FPGA target. Moreover it provides a way to model the
dynamic comportment of a component thus allowing the take into account the dynamic
reconfigurability of the FPGA. This allows the generation of system that uses dynamic
reconfigurability and thus bring reconfiguration to novice designers.

The possibility to generate a complete from an abstract specification allows even
designers unfamiliar with hardware design (typically, software engineers) to implement
an hardware version of their systems. However the DSE is still a manual task that
remains under the designer responsibility.

2.4.4 Conclusion

Among the studied MPSoC flows using MDE techniques for MPSoC design, one does
not perform automated DSE, one does not generate the implementation files for the
selected design and the last one does not provide any solution to get hardware charac-
teristics values. So while there exists design tools that integrate MDE methods as part
of their design flow, none of them are fully satisfying in regards to the problems stated
in the introduction.

28

3
Flow of the Framework

In this chapter, the framework flow is introduced. First it presents the tool implemen-
tation and gives a rapid overview of the steps composing the design flow, from inputs
to outputs through design space exploration and details some parts of the flow that
do not represent major contributions of this thesis. The used formalism as well as the
target architecture are explained. External tools that were used to perform some steps
of the flow are introduced. Finally, we present how we used databases in order to favor
reuse.

3.1 Flow Global Overview

This section presents the detailed implementation of our tool, the target architecture
of the flow, its inputs and a general description of how it works.

3.1.1 Tool Implementation

Our framework is a combination of several tools and technologies. Its core has been
written in Java language in order to benefit from its portability, its widespread use
among software developers and its object-oriented paradigm. It was developed with
the open-source IDE, Eclipse [32], which has a large and active community as well as
numerous plugins to assist programmers in the development of applications. It also
possesses several Java class libraries such as EMF which provides functionalities for the
integration of MDE techniques.

Our framework also relies on external tools, some of which were modified in order to
satisfy our needs. They are described in Section 3.2. In order to make the interfacing of
these tools with our framework seamless, we use several techniques. For data exchange,
the method used is through text files, whether formatted as plain text files, or in more
formal specifications such as XML, depending on what formalism was accepted by the
tools. Calls and control of the tools are performed through the use of Bash and C-Shell
scripts.

3.1.2 Target Architecture

The output of the framework targets FPGA-based systems. FPGA are reconfigurable
architectures, i.e. their computing functions can be modified after their conception and

29

Flow of the Framework

���������	�
���
����������

�	����	����
����	���

��������	�����
���������	���

�����������
���������

�������������
�����������

Figure 3.1: Spectrum of existing processing units types.

can even be dynamically reconfigured during execution. On the spectrum of processing
units illustrated by Figure 3.1, FPGA is an intermediate solution between GPP, which
can execute a wide variety of operations but with a low energy e�ciency and Application
Specific Integrated Circuit (ASIC) which can only perform the function they were
built for, but with a very high e�ciency and a very low energy consumption. The
disadvantages of the ASIC are its high cost as well as its long design-time. So FPGA
is an intermediate solution that provides the flexibility of the GPP while having a
much greater energy e�ciency. It is typically used for validating a design through
prototyping, before it is put in production as an integrated circuit. It can also be
used as an alternate cheaper solution to ASIC for circuits to be produced only in small
volumes.

In spite of the advantages o↵ered by FPGA, it is still not a widespread solution in
the industry, for several reasons. First, the nonexistence of standards in FPGA design:
there exists no common formalism that describes inputs and outputs with external
peripherals and therefore no standard drivers, similar as what exists for instance for
x86 architectures. This lack of standards makes di�cult the reuse of design from one
family of FPGA to another, increasing the design e↵ort and the cost of porting a design.
Second is the fact that FPGA design tools do not fully hide complexity to designers,
making FPGA-target design a tedious, error-prone and thus costly process [3]. The
presented framework aims at providing a solution to these problems, by rising the level
of abstraction of the design and automating most of the design process thus providing
a solution to the lack of standards.

In its current implementation, the framework produces project files for the Xilinx
FPGA backend tools. However it is possible to modify the generation step to provide
files for FPGA from other manufacturers. It is also possible to use the synthesizable
code of the architecture to build an ASIC.

The architectures explored by our framework are Heterogeneous Multi-Processor
Systems-on-Chip (H-MPSoC). Systems-on-Chip are systems where all the components
(processing units, memories, buses) are gathered on a single chip. Multi-processor
means that the system possesses several processing units, and thus can execute several

30

Flow Global Overview

���
���������	
�

����

�����������	
�

�����

��������������

������
�

�����������

�����������

����������������

����������

��������
�

Figure 3.2: Pros and cons of the di↵erent types of System-on-Chip architectures.

Figure 3.3: Example of a H-MPSoC: the Texas Instruments OMAP 5 architecture.
Image: Texas Instruments.

31

Flow of the Framework

operations in parallel. Heterogeneous means that these processing units do not all have
the same nature: for instance, a system can have di↵erent models of GPPs coupled with
dedicated hardware accelerators. This heterogeneity enhances the energy-e�ciency of
the system, since dedicated processing units allows for a faster execution of part of the
application. A typical example of an H-MPSoC are found in smartphones which have
on the same chip an ASIC for communication processing, an ASIC for video processing,
and a GPP for other operations. Figure 3.3 shows the architecture of Texas Instruments
OMAP 5 system-on-chip used in smartphones, which contains various processing units
(two ARM Cortex A15 as GPP, a DSP, a GPU for 2D graphics and another for 3D,
an ASIC for video encoding, etc.), memories and inputs/outputs modules that support
several protocols and external peripherals.

The advantages and disadvantages of the di↵erent types of SoC are illustrated in
Figure 3.2. For H-MPSoC, the advantages are:

energy-e�ciency thanks to the use of dedicated processing units which provide
better performance and reduce energy consumption;

multiprocessor parallelism allows to perform several operations simultaneously
thus yielding better performance;

adaptability since hardware specialization ensures the best performance possible
for a specific task.

However H-MPSoC also have several disadvantages:

They are di�cult to program due to their heterogeneous nature which requires
several skill sets to program. H-MPSoC has both hardware and software elements
which belong to two di↵erent design domains that each requires their own tools
and formalisms. Very few engineers actually have mastered both competences.
This aspect makes it also di�cult for designers from these two worlds to e�ciently
work together. Moreover their multiple processors make them also di�cult to
program since software programmers are taught to program in a sequential way
and thus are not used to think in a parallel fashion.

They are di�cult to design due to the lack of metrics models. Their inherent
complexity makes it hard to estimate the impact of a design decision on the
performance, cost and power of the global system.

They are di�cult to optimize. In particular, memory accesses can be critical in
multiprocessor systems since the number of processors increases the number of
memory accesses and thus increasing the risk of congestion and contention both
on memories and interconnect channels.

They are not easily scalable since heterogeneity is an obstacle to task migration
as a task implemented in hardware cannot easily be move back to GPP imple-
mentation.

32

Flow Global Overview

��������		
�
��������

���
�
���������

���
�����
��

������
�
����

���
�
�����
����
������

����
����

����
������

����
����

����

��		
�

��		
�

������
�
����

��		
�

��		
�

�������

�!�����������������������

�
�

�
�

��������		
�
��������

Figure 3.4: The model of architecture targeted by our framework.

All of the above reasons make absolutely necessary CAD tools to relieve designers from
these di�culties. The availability of such tools is the key to usability of heterogeneous
architectures.

Architecture Model

Our architecture model is basically a distributed heterogeneous multiprocessor archi-
tecture. It consists in a scalable H-MPSoC where each processing unit can potentially
be associated with one or more of the following: a local memory, a shared memory or
a coprocessor. The external peripherals and memories are reachable through an inter-
connect system that can be implemented as a multi-bus system or as a Network-on-
Chip (NoC) [33]. The programming models are shared memory and message-passing.
Inter-task communications are performed through a message-passing paradigm. Com-
munications between processors and hardware accelerators can be implemented either
in full FIFO, or with a mixed solution where control elements are send through FIFO
and data are send with a Ping-Pong memory1. Communications between processors are
implemented whether as software First-in, First-Out (FIFO) in a shared memory or as
a Ping-Pong memory. Communications that go through data bu↵ers are implemented
as a zero-copy mechanism, i.e. processors are not processing the data to perform the
copy from one bu↵er to another. An illustration of our architecture model is given in
Figure 3.4.

1Ping-Pong memory is a technique where two memory bu↵ers are alternatively read and written
by two communicating tasks (e.g. a producer and a consumer): while the consumer reads data in one
bu↵er, the producer writes its data in the other bu↵er and once both tasks have finished, bu↵ers roles
are reversed so that tasks do not have to wait for one another.

33

Flow of the Framework

3.1.3 Inputs

As seen in Figure 3.6, the framework has two inputs:

1. A template of the architecture;

2. An application written in C language code.

Architecture Template

It is necessary to provide the design tool with a generic description of the architecture
that can be used as a starting point for the exploration. It is also necessary to provide
the components available for design exploration as well as some objectives and con-
straints to evaluate and bound the design space. Our architecture template provides
these specifications for the DSE. The roles and structure of the template are detailed in
Chapter 5. The template contains three levels of specifications. The first level specifies
the domain-specific elements of the architecture. These specifications are static and
thus represent parts of the architecture that remain constant throughout the DSE. The
second level describes the constraints that define and bound the design space explo-
ration, such as the minimum and maximum number of processors, the available types
of processors, memories and buses, the cost constraints and performance objective, etc.
The third level provides to the designer the possibility to specify a priori some of the
parameters that would otherwise be decided by the framework during the DSE, such
as enforcing a mapping decision. Such specifications allow for the designer to express
his knowledge. In addition to guarantee good design decisions, the provided expertise
also prunes the design space.

Application

In our framework, the application specification must be provided in C language code.
Parallelism is considered at task level, instruction level parallelism is handled by proces-
sor/compiler in case of superscalar or Very Long Instruction Word (VLIW) processor or
by HLS tools in case of hardware implementation. Designers have to choose the level of
granularity for the task parallelism and accordingly manually split the application into
tasks. Those are important decisions as they will impact the performance by providing
more or less parallelism but they will also impact on the size and the frequency of the
communications, which can represent a significant part of the execution time of the
application. This action can be completed after the profiling step. Designers have to
specify for each task if it is eligible to hardware acceleration or if it can be duplicated
in order to exploit data-parallelism. These specification are given in the architecture
template.

A MoC is the modeling of application following a specific formalism. Usually a MoC
is adapted to model a specific domain of applications: real-time, DSP, multimedia, etc.
Among the advantages of using a MoC is that it facilitates the automated processing
of the application such as optimizations, simulation, synthesis, transformation, etc.

34

Flow Global Overview

f o r (t = 0 ; t < 269 ; t++) {
f o r (j = 0 ; j < 25 ; j++) {

f e t c hp r o c e s s (& iq z z d) ;
i q z z p r o c e s s (& iqzz d , &block YCbCr) ;
i d c t p r o c e s s (&block YCbCr , &Idct YCbC) ;
yuvprocess (&Idct YCbC , &pix) ;
d i spa t chp roc e s s (&pix) ;

}
}

Figure 3.5: Example of a Static A�ne Nested-Loop Program.

Since we target data stream applications, such as signal processing or audio/video
processing, we have chosen Kahn Process Network (KPN) [34] as principal model of
computation. In KPN, the application can be represented as a graph where processes
are the nodes and communication channels are the edges. Communication are assumed
to be performed through infinite FIFO channels. This means that writing on FIFO is
a non-blocking operation while reading remains a blocking operation when no data is
present in the FIFO. This property allows the execution of a KPN to be deterministic,
i.e. the same inputs will always produce the same results. The transformation of the
application into KPN is automatically performed by a tool developed at the University
of Leiden/Amsterdam (see Section 3.2.2). This tool requires that the input application
must be a Static A�ne Nested-Loop Program (SANLP), meaning that the program
must be in the form of one or more nested loops or conditional statements. The indices
of the loops must evolve following an a�ne functions and the control of these indices
must be static, i.e. they must be determined at design time and cannot evolve during
execution. An example of a static a�ne nested-loop program is given in Figure 3.5.

Since it may not be always possible to be fully compliant to KPN formalism, it is
possible to use a combination of other MoC for part of the program, as it is done in
Ptolemy [17], but in this case the transformations must thus be made manually.

3.1.4 Flow Overview

The flow of the framework is illustrated by Figure 3.6. It starts with the inputs as
described in the previous subsection, i.e. a C code as application specifications and an
XML file for constraints and specifications (part A of the Figure 3.6).

Profilings & Parallelization

Then preliminary operations have to be performed on the application before starting
the DSE (Part B of Figure 3.6). The application is first profiled with a profiler such
as Gprof [35] in order to guide the designer into the task splitting of its application
which is the next step of the flow as described in the above Subsection 3.1.3. Then

35

Flow of the Framework

���������	

	��������������	

����	����������

������

�����	���������

���������

���������	��	������

����������
����	���

��������
�������

��������������	��	����

� ��!����"��
��#!���#����

����	#���	���	�!�
������	��������

$�����	���#�	%&���������	����

�
#���

����	����������

��#!�
'����

��������

�

�

�

�

Figure 3.6: Overview of the framework flow. Our contributions are in blue, Daedalus
is in yellow and external implementation tool in green.

36

Flow Global Overview

����������	
��

����������	

���

����������	
����������
�	�������
�������	�

�
�

�
�

�
�

�
�

�
�

�����������	�

���
��	������	

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�

����

�����

�����

�����

�����

�

�

��

��

��

��

�������	� ��!���

"�	��
���������
�����	
#��$��

%����$���$�	�����	

�&������
���'#��$��

��(
�	������	

Figure 3.7: Flow of the profiling step.

the application is automatically transformed in order to perform an on-target profiling.
Details of the on-target profiling are given in Section onTargetProfiling.

Design Space Exploration

Once this operation is over, the Design Space Exploration is launched (Part C of Figure
3.6). The algorithm of the DSE is explained in Chapter 4. During the DSE, decisions
are taken about the hardware architecture of the system, the data-parallelism of the
application, the task and data-mapping and scheduling. The output of the DSE is a
selection of systems providing a tradeo↵ between area and performance to the designer.

Code Generation

Once the designer has chosen the final architecture, the code generation tool produces
a synthesizable version of the selected hardware architecture, the adapted code of the
application and the project files for the backend implementation tools (Part D of Figure
3.6). The generation implementation details are given in Section 5.6.

3.1.5 Automated Profiling

To be able to predict accurately performance during DSE, it is necessary to have ac-
curate software execution times for each task of the application. In order to get the
execution times, we perform an automated non-intrusive profiling on-target. This auto-
mated profiling step is illustrated by Figure 3.7. The application, after transformation
into KPN, is automatically profiled through the use of hardware timers on a fully-soft

37

Flow of the Framework

monoprocessor implementation. In order to perform this profiling a modified version
of ESPAM generates an adapted code of the application. The generated implementa-
tion of the application is based on the Xilinx micro-kernel, Xilkernel [36]. Each task is
transformed into a thread and calls to APIs that control the timer (start, stop, reset,
etc.) are inserted in order to measure the execution time. A main file is also generated
inside which the threads are initialized. The profiling results are then automatically
collected through the standard output. They are written in a text file that will be
parsed to be used later during DSE.

During the profiling, communication times are not measured since they are not
relevant at this stage. Indeed communication performances depend on other factors
such as data and task mappings, which are undecided at the time of the profiling.
With this profiling we get the total number of cycles taken by one task to execute.
This total is then divided by the number of times the task was executed in order to get
the average number of cycles for one iteration of the task. During this phase, it is the
responsibility of the designer to provide a set of data as input that is representative
of real-life cases. Such set of data could represent a worst case in order to set the
constraints in a way that will ensure that the output design will be able to handle all
the encountered cases. For instance in video decoder design, there exists a standard
set of videos acting as test cases to validate the decoder, which must be able to decode
by respecting quality of service and performance (24 frames per seconds) constraints.

We also need to get the sizes of the data exchanges between the tasks in order
to take into account communications in the performance estimations. This is done
through the generation of a C code which prints the size of each data type used in
communication through the use of the operator sizeof. These sizes are then written
into a text file which is parsed by our tool.

3.2 External Tools

The design process of an ESL framework covers many research aspects: performance
and cost optimization, communication, automated transformation, mapping, hardware
and software modeling, power consumption, etc. For all of these research fields, lot
of work has already been done and standards formalisms as well as tools have been
developed to deal with those problems. Since it is useless to redeveloped already proven
tools, the key issue was to select the tools that fitted best to our requirements and to
set up an e�cient tool flow that would be modular and that would seamlessly integrate
the di↵erent tools. Among these tools, one was needed for the generation of hardware
coprocessors, one for performance estimation and one for the final implementation. The
use of these tools is made seamless to the user through the use of scripts for control
and intermediate text files for data exchange.

Another important aspect is modularity, so we also try to use as much as possible
standard formalisms, such as XML, UML, etc., for exchanging data between tools.
The used formalisms for communication with external tools are illustrated in Figure
3.8. This is useful since designers might want to use other tools they are more familiar

38

External Tools

����������	
����
��

������

����	
����

��������
����

������
�����	

����������
���������	

����

������

�������
�� �

��! �"��

����
�! �"��

����
��! �"��

������
�� �

��! �"��

�""��!����	�
� �	��� �����	

#	$�� %��
� �����	%

�� �&� ���!!��� ��� �
��
"�� ����	

�� �� ��	!�
���������	

��!���
�� �

�	��� %��
" �����	%

��
��'���

���'����

���
��
�����

�������
�(���$
��)�*���

!��"�	�	��

���'����

��!���

��+
'���

�,�
!���

Figure 3.8: Technologies and formalisms used to interface with other tools.

with or that they judge more e�cient, the use of standards insure that they are able to
do so with minimal e↵orts. So in the rest of this section we present the tools we used
and why we used them.

3.2.1 HLS Tool

We have chosen Gaut (see Section 2.3.1 for a detailed description) as HLS tool, since it
fulfilled our requirements for exploring hardware accelerators. The interfacing is done
through scripts that control the exploration and get the results. It is possible to use
another HLS tool, provided that it can be controlled through command lines and that
the model of architecture of the synthesized IPs is known in order to be able to perform
cost estimations.

3.2.2 Daedalus

Since Daedalus [4] is a framework composed of several underlying tools, the following
descriptions of these tools rely on how they work inside the Daedalus framework and
explain how we adapted them to our framework. An overview of the design flow of
Daedalus is given in Subsection 2.2.1. In Daedalus, those tools are linked together
through the use of intermediate text files with di↵erent formalisms, mostly subsets of
XML, and are called in a seamless flow made of a set of Bash and Perl scripts. We
thus have modified some of the tools and scripts in order to insert our own tool and

39

Flow of the Framework

contributions.

KPNGen

KPNGen [5] is a compiling tool developed at the university of Leiden that is able to
parallelize a certain kind of application from its sequential description. Starting from
a C code of an application, it automatically transforms the application into a Kahn
Process Network. There are restrictions on the input application, which has to be a
SANLP. As mentioned before, this restriction is similar to the one of our framework
since we used KPNGen to transform the program into a Kahn Process Network.

We use KPNGen as is, with no modification, in order to transform the input ap-
plication code into a KPN representation that can then be used by the ESPAM code
generation tool that provides the corresponding C code.

ESPAM

ESPAM [6] is a co-design tool developed at the university of Leiden and is part of the
Daedalus framework. It takes as input three descriptions: a platform description de-
scribing the hardware architecture of the system in XML, an application specification
which is the application described in a Kahn process network and a mapping specifica-
tion which describes the assignment of the channels and processes onto the hardware
components. ESPAM produces as outputs: an RTL version of the platform description
and of IP cores, the adapted application code.

In Daedalus, it is used to generate the KPN version of the code. It is also used to
generate Xilinx backend tools project files, so that the design generated by Daedalus
can be implemented onto FPGA. Since we reuse the same input formalism and the
same simulation tool as the one used in the Daedalus framework, we reuse ESPAM
for the transformation of the code into KPN formalism. However we do not reuse the
generation of the implementation files for the Xilinx backend tools, although that is one
of our objectives. This is due to the fact that for the generation of these files ESPAM
uses the visitor pattern, in which the code to generate is hard-coded according to the
visited element. This is not a very flexible approach and it does not provide designers
with a convenient way to adapt a design to another target since it would require to
modify the code and recompile the ESPAM tool. We believe that the MDE approach
we have chosen is more appropriate to generate these final implementation files.

We also needed a way to automatically adapt the code for the on-target profiling,
by inserting APIs to control the profiling timers (start, stop and reset). So we modified
the visitor of the code generator in order to insert the APIs at the right places in the
application code so that the profiling would accurately measure the execution times as
describe in Section 3.1.5. It allows to fully automatize the on-target profiling and thus
have precise measurements with little to no-e↵ort from the designer.

40

External Tools

Sesame

Sesame [7] is a modeling and simulation tool developed at the university of Amsterdam
for exploration and estimation performance. The modeling of the underlying architec-
ture is based on a library of components described in the Pearl description language [37].
It described several classes of component which implement methods, and communicate
through blocking message-passing interfaces. The modeling of the input application is
done in Y-Chart Modeling Language (YML) [38], based on XML. It is used to described
the application model, the architecture model and the mapping between the former and
the latter.

The simulation is based on trace of events. So a first execution of the task-split
application is performed during which a trace of the occurring events are recorded.
These events can be of three kinds:

read, which corresponds to a task performing one data-reading on a communica-
tion channel;

write, which corresponds to a task performing one data-writing on a communica-
tion channel;

execute, which corresponds to one execution of a task.

For each task, the execution performance of the simulated processors must be pro-
vided by the designer in configuration files. Then using the trace of events, a model spec-
ifying the hardware architecture and the performance of the processing units, Sesame
simulates the execution of the application on platform applying several variations ac-
cording to the designers constrains:

the number and type of processors

the mapping

the scheduling

The result is a set of statistics for each of these variations. This set includes performance
estimation given as a number of cycles, the percentage of utilization of each component,
the number of reads and writes for each channel, etc.

In our flow, Sesame is used to evaluate scheduling and the final performance of
the system, after that the architecture exploration, and data and task mapping have
been decided. In Daedalus, the exploration performed by Sesame is exhaustive within
the constraints set by the designer. This means that the trace-based estimation per-
formance is potentially very time-consuming since there might be a great number of
solutions to test. We thus have modified the Sesame so that it can take as inputs only
the set of architectures, mappings and schedulings that were the results of our DSE
process.

41

Flow of the Framework

3.2.3 Xilinx XPS

Our framework targets Xilinx FPGA and thus is adapted for Xilinx design tools. Xilinx
Platform Studio (XPS) is the design tool for FPGA designs. It allows to describe
through a graphical user interface the hardware platform to be synthesized on the
FPGA as well as specifying the various software applications that will run on it. Our
framework generates the corresponding text files used by XPS (cf. Section 5.6). Among
those files, there are:

The .mhs (Microprocessor Hardware Specification) which describes the hardware
platform, with its components and its parameters.

The .mss (Microprocessor Software Specification) which describes the drivers,
along with the software parameters.

While this tool greatly simplifies FPGA designs, it still contains numerous parameters
and options that remain pitfalls and make di�cult the mastering of such tool by non-
expert designers or by designers that do not wish to waste their time configuring the
tools. That is why automatizing the creation of project and its parametrization through
the generations of the above-mentioned files is a condition to increase e�ciency of FPGA
design and thus reducing its cost. Our MDE approach allows to adapt to possible
evolutions of these files or to target other manufacturers tools, since it would only be
necessary to develop a new model corresponding to the new specification formalism.

3.3 Database-based Strategy

In system design, applications belonging to the same domain often use the same func-
tions: for instance a video encoder is likely to perform a Discrete Cosine Transform
(DCT) since it is a common operation in image and video compression. Consequently,
when implementing a design requiring one of those functions, they will be re-explored
at each DSE. To avoid the waste of time induced by the re-exploration, reuse is an
e�cient solution that provides already tested and validated components.

For this reason, we used a strategy that favors reuse by implementing three databases
in our framework: one for storing the architecture templates, one for the generated
hardware accelerators and another to store models of FPGA architectures. This has
two advantages: first it increases productivity by allowing the reuse of previous works.
Second, it allows to shorten the DSE time by providing metrics from previous runs thus
avoiding the need to perform an evaluation. However reuse does not always provide the
perfect solution. For instance, the available elements in a database may not have the
characteristics that would be optimal for a specific application and thus might require
modifications by the designer.

3.3.1 Template Architecture Database

The architecture template database is used to store the domain-specific designs. This
database provides designers with a choice of partially pre-designed architectures to use

42

Database-based Strategy

����������	

�����	

�
��	����	

���������������

��� ����� ���������������

��� �������	 ����� ���

�����
��

!"��
��

!"��
��	#$��	#

����� ��!
�
����������	

�
��������
����������	

%&�!'

Figure 3.9: Organization of the hardware accelerators database.

as basis for their design. This template can then be customized by providing a set of
specific constraints. Thus reuse is justified since for a system which would di↵er only
slightly from an already-existing design or that would target another architecture, the
template of the previously explored design can be taken and modified in order to fit the
constraints of the new application. For instance, for a video decoder, an architecture for
a new standard version (e.g. MJPEG AVC) can be e�ciently designed as an evolution
of a video decoder available in library.

3.3.2 Hardware Accelerators Database

The second database is the hardware accelerators database. It is used to store the result
of the hardware accelerators exploration phase (see Section 4.3) and contains the RTL
descriptions of various accelerators. For each accelerator, an XML file containing an
estimation of its cost in logic resources is also stored so that it can be used by the DSE
to estimate the area of a design solution. It is used during the hardware accelerator
exploration step, where a check is performed in the database to see if a similar IP has
already been synthesized, in order to avoid a costly exploration implying the HLS of a
series of IPs.

The hardware accelerators database is implemented as a directory tree. There are

43

Flow of the Framework

three levels of directory, illustrated by Figure 3.9 and organized as follow:

1. The first level is the general domain of application (Video, Audio, DSP, etc.).

2. The second level is the function of the IP (IDCT, Gaussian Filter, Sobel, etc.)

3. The characteristics of the IP (latency, bitwidth, etc.). These characteristics may
not be all fully specified, depending on the operations that have been performed.
For instance the cost estimations can di↵er if only the HLS estimation has been
performed, if logic synthesis has been performed or if the implementation has
been as far as place and route which would allow to specify the clock frequency.

Beside reuse of IP from previous runs of the tool, another solution to populate the
database is to use IP libraries that provide free IP and under free 2 license, such as
OpenCores [39]. This solution can be ideal for small companies that do not have the
necessary fund to buy expensive o↵-the-shelf IP.

3.3.3 FPGA Model Database

For cost estimation of generated hardware accelerators (cf. Section 4.3), it is necessary
to have models of the microarchitecture of the FPGA. The models are described in
UML based upon FPGA technical specifications such as Virtex-5 Family Overview [40]
and must be provided by the designer.

3.3.4 Reuse-based Strategy

These databases can be populated with elements from previous designs. In companies
that means putting in common the design elements as the chance of reuse is likely
to occur as a company is usually specialized in just a few design domains. It is also
possible to imagine an open database hosted on a web-server that would be populated
by designers willing to share freely their designs, in a similar fashion to free3 software.

3.4 Conclusion

In this chapter, we have given a general presentation of our framework. We have
specified the target architecture and its model, described the inputs formalisms, their
restrictions and the transformations they undergo, and given a rapid description of our
design flow steps relatively to the ideal flow presented in Chapter 2. We justified our
reuse of tools, described how we seamlessly integrated them and potentially modified
them to suit our needs. We also presented our strategy to favor reuse by relying on
databases to store previous designs.

2As explained by Richard Stallman, here free is to be understood in the sense of ”free as in free

speech, not as in free beer”. Although the former occurrence of free is to be taken in the latter sense.
3Again, as in free speech

44

4
Design Space Exploration Methodology

The Design Space Exploration (DSE) is the step where several design options are
considered in order to find a suitable solution. During this phase, the evaluated design
is modified within the boundaries specified by the designer’s constraints. Depending
on these constraints and on the DSE algorithm, several dimensions are explored. The
dimensions are the characteristics of the system that are modified during exploration.
Currently, the explored dimensions in our framework are:

The number and type of processors.

The number, type and size of memories.

The use of coprocessors, as well as their cost and performance.

The data and task mapping.

Modern systems-on-chip have grown so complex, that manual DSE is no longer possible
and has become an automated process. Another consequence of the complexity is that
exploring the design space in an exhaustive way is not possible for large boundaries.
Scalability is thus an issue. Our goal is to o↵er to designers several options ranging
from a greedy algorithm that will return the first solution that satisfies the constraints,
an exhaustive exploration that will guarantee to get the optimal solution, or any in-
termediary solutions that will o↵er a tradeo↵ between the exploration time and the
optimality of the resulting solution. Since designers are the most-knowledgeable per-
sons about the designed system, it is necessary to take advantage of this knowledge.
That is why our framework gives the possibility to designers to guide the DSE by spec-
ifying extra-constraints, and give them feedback about the evaluated design so that it
can be used to refine the design.

In the next sections, we detail the implementation of the DSE steps in our frame-
work.

4.1 DSE Algorithm

In order for the DSE to be able to operate e�ciently and fast, several conditions have
to be satisfied. We need:

45

Design Space Exploration Methodology

�����������	
���	���������������

�����������������

�����������

������������

����	����

�����

��������

��������

��������

��������

���	����

�����

����

����

 ���

��������

�������

	���������

����

����	�����

!"#�	��$��

%

&����������

������������

�
�

�'�("�����
��������������

�'�

�'�)���

	���������
��

	����

��"���*

�����������%

�����������	����

���������

��"���*

���	������

��������

��"���*

��������

����

�
�

��������

����

�
�
��������

����

�
$
�
�
�
��
�
�
�
�%
��
�
�
��
�
�

+����,��

�������
�

��������

�������
�

�������

������(

�������

��������

&��������������

�	
�������%����������������

����������	������������

Figure 4.1: Flow of the Design Space Exploration.

46

DSE Algorithm

a well-defined model of architecture to provide a baseline for the exploration.
This model is specified in the template given as input to our tool. Details of this
template approach is given in Chapter 5;

an accurate representation of the application specifications in a model of compu-
tation compliant with the application domain;

the possibility to estimate the cost of an hardware acceleration: whether through
pre-characterized IPs, or by being able to perform fast estimations through high-
level synthesis;

the ability to exploit the data parallelism of the application;

e�cient performance and cost estimator in order to be able to trim accordingly
the design space even at early design stages;

a variety of exploration options in order to cover a large area of the design space
and minimize the risk of missing e�cient solutions;

the scalability of the DSE, by providing a possibility to prune the design space
at strategic phase of the design;

a way for the DSE to take advantage of the user knowledge of the designed system,
by giving designers the possibility to express their expertise.

4.1.1 Algorithm

Figure 4.1 illustrates the flow of the Design Space Exploration strategy and a pseudo-
code of the DSE algorithm is provided in Algorithm 1. It requires as inputs the ap-
plication, the architecture template, the objectives and constraints set by the designer
and the profiling data resulting of the previous step in the framework.

In order to be able to understand Algorithm 1, some definitions must be given
beforehand:

AvailableProc is the set of available types of processors (e.g. MicroBlaze, Pow-
erPC, etc.).

PerfObjective, CostObjective are the performances and cost objectives respec-
tively.

minProc, maxProc are the minimum and maximum numbers of possible proces-
sors in the design respectively.

SortedAccel is a set of sets of hardware accelerators. Each subset contains acceler-
ators for the same function with di↵erent latencies which are sorted by increasing
area.

Solutions is the set containing the currently selected architecture solutions during
the exploration.

47

Design Space Exploration Methodology

Architecture is a representation of an architecture model with a set of hardware
components, cost and performance evaluations.

NeedAccelerator is the set of generated architectures, which do not meet the
performance objective and consequently need hardware accelerations.

CandidateTasksToHW is the set of application tasks identified as good candi-
dates to hardware implementation. In case of task duplication, a unique imple-
mentation is considered and all tasks instances are grouped (GroupedTask). Tasks
are sorted by decreasing execution time which came from the earlier profiling step.

N1, N2, N3 and N4 are values specifying the number of solutions that are kept
between DSE stages. These parameters allow to balance the algorithm search-
space/speed tradeo↵ and to favor some steps of the DSE over others. These
variables provide scalability to the algorithm. For instance, if all N

i

= 1, then it
corresponds to a greedy algorithm while if all N

i

= 1 it means the exploration
is exhaustive. N1 is the number of selected architectures after the hardware
exploration for a specific task, N2 the number of selected architectures after the
hardware exploration for all tasks, N3 is the number of architectures selected
during mapping exploration and N4 is the final number of solutions that will be
presented to the designer.

T
max

is an intermediate performance metrics for early evaluation of the architec-
ture before the acceleration and mapping stages. It represents the worst compu-
tation time, where no cache is present in the architecture and consequently all
data are read from the memory. This increases significantly the communication
time and thus the total execution time:

T
max

=
ComputingT ime

NumberOfProc
+NWrite ⇤WriteCost+NRead ⇤ CacheMissCost

Where:

– NumberOfProc is the number of processors in the current architecture.

– ComputingT ime is the total time given by the Sesame tool [7] for the mono-
processor architecture. Basically, this is a software execution time but when
a hardware accelerator is attached to the processor then the speedup is con-
sidered. This speedup estimation is first based on the profiling results that
give the number of cycles used by each task. Then, this ratio is combined
with the acceleration speedup provided by the hardware IP to compute the
new computing time of task T

i

. ComputingT ime is thus computed with the
following formula:

ComputingT ime =
X

i

ComputingT ime(T
i

)

48

DSE Algorithm

where ComputingT ime(T
i

) is the number of cycles for a software execution
if T

i

is not accelerated; otherwise:

ComputingT ime(T
i

) =
Number of cycles for a software execution

Speedup obtained with the accelerator

– NWrite is the total number of write accesses to the memory.

– WriteCost is the cycle number taken for a write operation.

– NRead is the total number of read accesses.

– CacheMissCost is the penalty for cache miss as a number of cycles.

These values have been estimated once for the target architecture model with ad
hoc profilings.

Considering that T
max

is a very pessimistic estimation, we set an ↵0 parameter as
a threshold set by the designer to bound the search space. So for each architecture,
an ↵ value is computed following the formula:

↵ =
T
max

PerfObjective

If ↵ is inferior to the ↵0 threshold, then the architecture is kept as a solution
satisfying the performance objective, otherwise it is tagged as a candidate to
hardware acceleration.

4.1.2 Explanations

The DSE algorithm, described in Algorithm 1 and illustrated in Figure 4.1, starts
by exhaustively generating all the possible hardware architectures by taking only into
account the available GPP and the minimum and maximum boundaries for the number
of GPP. All these architectures are then evaluated in terms of cost and performances.
The architectures which have a cost higher than the cost objective are discarded since
the subsequent steps of the algorithm do not improve the cost but only the performance.
Among the remaining architectures those which achieve the performance objective are
kept as solutions, and those which do not achieve it are tagged as needing acceleration,
whether through hardware acceleration or through the exploitation of data-parallelism.

Then for the most time consuming task that was tagged as accelerable, a series of
hardware accelerators is generated, resulting in a selection of accelerators that each
provides a tradeo↵ between cost and performance. These accelerators are sorted by
increasing area, which correspond to decreasing latency since we only keep Pareto-
optimal accelerators among the generated ones. The sorted accelerators are tested
in that particular order until an accelerator that achieves the performance objective is
found, which is thus the smallest accelerator satisfying the performance constraint. If no
accelerator can provide su�cient acceleration then the second most time consuming task
undergoes the hardware accelerator exploration and the process keeps going on until

49

Design Space Exploration Methodology

Algorithm 1 Algorithm of the Architecture DSE.

1: S0 = generateAllSWArch(AvailableProc,minProc,maxProc)
2: for all Architecture A in S0 do
3: evaluatePerformancesAndCost(A)
4: if A.cost > costObjective then
5: discard(A)
6: else if A.↵ < ↵0 then
7: Solutions.add(A)
8: else
9: needAccelerator.add(A)

10: end if
11: end for
12: for all GroupedTasks T in CandidateTasksToHW do
13: sortedAccel = launchHWExploration(T) //Call to HLS Estimator
14: for all Architecture A in needAccelerator do
15: for all Accelerator acc in sortedAccel do
16: A2 = A.add(acc)
17: // Pruning: test of matching between Task Instance / Accelerator Number
18: evaluatePerformancesAndCost(A2)
19: if A2.cost > costObjective then
20: discard(A2)
21: else if A2.↵ < ↵0 then
22: Solutions.add(A2)
23: else
24: needAccelerator.add(A2)
25: end if
26: end for
27: end for
28: keepNBestSolutions(needAccelerator, N1)
29: end for
30: keepNBestSolutions(Solutions, N2)
31: for all Architecture A in Solutions do
32: generatedArchitectures = ExploreMappingAndScheduling(A) //cf. Alg.2

33: for all Architecture A2 in generatedArchitectures do
34: evaluatePerformancesWithSesame(A2)
35: evaluateCost(A2)
36: end for
37: Solutions.add(keepNBestSolutions(generatedArchitectures, N3))
38: end for
39: keepNBestSolutions(Solutions, N4)
40: return Solutions

50

Performance & Cost Estimation

satisfying solutions are found or that no accelerable task remains. Another solution
explored to speed up the application is to exploit data parallelism. By duplicating
some of the most time-consuming tasks and mapping them onto di↵erent processing
units, it is possible to perform in parallel an operation on di↵erent sets of data.

Once the set of hardware components of the architecture is decided, the mapping
and scheduling of the tasks and their communications are explored. For this we imple-
mented the Hungarian method [41], a combinatorial optimization algorithm for which
the function cost takes into account the performance, communications and precedence
of the tasks (more details in Section 4.6.2).

Also, at several stages in the DSE, pruning are made to discard uninteresting solu-
tions and to keep the size of the exploration space within reasonable bounds. A first
pruning occurs during data-parallelism exploration, by not considering architectures
that have fewer processing units than the number of time tasks are duplicated. A sec-
ond pruning takes place after scheduling evaluation, where for each architecture only
the mapping/scheduling combination giving the best performance is kept.

4.2 Performance & Cost Estimation

An e�cient DSE requires accurate evaluations of performance of a given architecture,
even and especially at early stages of the design. Some preliminary measurements are
mandatory to compute these estimations:

For each task, the number of cycles necessary for the execution of one iteration is
obtained through a profiling on the target processor (MicroBlaze, PowerPC, etc.)
as previously described in Section 3.1.5.

Hardware accelerators, in our approach, are produced by HLS. The latency is
obtained directly, since it is one of the HLS constraints.

For buses and memories, their characteristics must be given by the designer as
part of the inputs. These characteristics can generally be obtained through the
manufacturer documentation and are specified in the input template.

With these values it is possible to have performance estimations that can be very
accurate for a simple monoprocessor architecture that would execute the tasks sequen-
tially. However in multiprocessor architectures, it is necessary to take into account
additional factors such as the task and data parallelisms of the application, the po-
tential resource contentions depending on communications, cache misses, mapping and
scheduling.

In the next sections, we explore how the performance estimations evolve as the
evaluated architectures become more refined as they go through the stages of the DSE
algorithm.

51

Design Space Exploration Methodology

���

��

���	
�

���
������

��
��������
�������
����

����	�
��������
����
������
�������
���

���
�������

�
��
����
��
����

��
����
����� ��

�
��

�� !
 ����

���	

"��
#

$��� 	 �
���
�����#���%

����� ��

��
����

&���
���

'�()
�������

Figure 4.2: Flow of the Hardware IP exploration.

4.3 Hardware Accelerators Exploration

Parts of the work presented in this section were developed during Van-Trinh Hoang’s
Master thesis [42] that I co-supervised.

One of the contributions of the framework is the exploration of the hardware accel-
erators. In existing ESL design tools for H-MPSoC, there are usually two methods used
to get hardware accelerators: IP libraries and on-the-fly high-level synthesis. However
none of these methods seems to be the ideal solution.

IP libraries may not be able to provide a solution adapted to the specific needs of
the designer, since the available IPs may have been designed for a di↵erent target and
thus have been designed for a specific bus or may not have the correct bitwidth, etc.
So it might be necessary to modify the IP in order to comply with the requirements of
the system under design. Another problem is that commercial IP libraries might have
a prohibitive cost in order to be used by small companies, even though there exist free
IP cores libraries such as OpenCores [39].

On-the-fly synthesis is performed by providing a functional specification to an HLS
tool that will generate a synthesizable version of the function. However when using
on-the-fly synthesis, ESL design tools only perform one synthesis, thus making no
exploration. A combination of both solutions is sometimes used: if the needed IP is
not present in the library, then a synthesis is launched and the result is then added to
library for future reuse.

In our framework, we perform a design space exploration of the hardware solutions.
Consequently, we perform on-the-fly synthesis not of only one hardware accelerator but
of a series of hardware accelerators, thus providing a tradeo↵ between performance and
area.

52

Hardware Accelerators Exploration

Flow of the Exploration

The flow of our hardware IP exploration is described in Figure 4.2. During DSE, when
a task is candidate to hardware acceleration, first the IP library is checked to see if
an equivalent IP is already available. If not, a script is called that launches a set of
behavioral syntheses. The script is called with the following parameters:

the path to the C code to be accelerated;

the minimal latency L
min

, expressed in number of cycles, which served as the
starting point of the exploration;

an increasing step �
t

for the latency;

the model of communication. Currently only FIFO and Ping-Pong memory are
available;

the input/output width which is the bitwidth of the communication channels
between the processor and the hardware accelerator.

During this generation phase, the script starts by calling the synthesis tool, GAUT [20].
The tool generates the IP corresponding to the minimal latency L

min

. The tool then
checks that the minimal cost has been reached, which means that no further gain can
be made on the logic resource consumption by decreasing latency. This minimal cost
corresponds to the state where the IP have exactly one of every necessary operators,
and thus that no parallelism is possible. If the minimal cost has not been reach, then
the latency is increased by the increasing step �

t

and the next synthesis iteration is
launched. The iterations keep going until the minimal cost is reached.

4.3.1 HLS-based Estimations

To evaluate e�ciently the cost of an accelerator means to quickly estimate the logic
resources it will consume. Our method used for resource estimations relies on high-level
synthesis of the accelerator as opposed to logic synthesis which, while more accurate
on the resource consumption estimation, is orders of magnitude slower than HLS to
be performed. So the deal here is to trade little accuracy for huge computing time
reduction. The speedup obtained with our method over logic synthesis is detailed in
the results Section 6.2.

In order to provide estimations, it is necessary to build two models: one representing
the target FPGA architecture (e.g. a Xilinx Virtex 5) and the other corresponding
to the architecture of the generated accelerators. The microarchitecture model of the
target is described in Figure 4.4. It contains the parameters necessary to perform an
evaluation of the logic resource cost. For example, for an FPGA it provides the number
of inputs of a LUT, the size of a DSP block, etc. The UML representation of the model
for the RTL accelerators generated by GAUT is given in Figure 4.5. It provides the
characteristics about the Finite State Machine (FSM), the number and size of registers,

53

Design Space Exploration Methodology

��������	
�������

�������������������

������	�	
������	�������

��
������

���
�	���� ����

�����
�	��!��	
����������

��
������	��!�	

���	

����	�
����

������	��!�	
���	

"#����
�	���� ����

�������	�	��
�$����������

��������
��	��!�	����

���
�����

#��	
�

Figure 4.3: Logic resource estimation through HLS features projection.

the width and height of the FSM controller, the number and sizes of multiplexers, the
width and size of memories, etc. Given these two models, the goal is to project the
elements of the RTL IP description to the logic resources of the FPGA. For this, it
is necessary to extract of set of analytical models that can predict accurately how the
features of the IP will be transformed into logic resources on the FPGA target. The
logic resources estimation process is illustrated by Figure 4.3. It begins by extracting
the features from the IP, then using the analytical laws, it can compute an estimation
of the consumed logic resources on the target.

For Gaut, the high-level synthesis tool we use, the architecture model of the hard-
ware components generated is described in Section 2.3.1 and illustrated in Figure 2.7.
It is made of operators coming from a library of pre-synthesized operators, character-
ized by a communication model (FIFO or ping-pong) and has a register to register
architecture.

Since functional units are synthesized by GAUT using a library of operators gen-
erated through logic synthesis, the information on the consumed logic resources by
functional units can be directly extracted from the numbers in this library. For Finite
State Machines and communication interfaces, the logic resource cost depends on the
implementation strategy (e.g. either in BRAM or in LUTs), and thus it is necessary to
find the assignment methods used by the logic synthesizer in order to be able to esti-
mate accurately the logic resources consumption. This method is thus flexible enough
to work on several HLS tools and several targets, as long as the corresponding models
can be provided.

To give an example of analytical model, we illustrate with the model of the cost of
an FSM implemented in BRAM. The cost of an FSM implemented in BRAM is given

54

Hardware Accelerators Exploration

Figure 4.4: UML representation of the target FPGA metamodel.

Figure 4.5: UML representation of the metamodel of an IP generated with GAUT.

55

Design Space Exploration Methodology

by the following formula:

ConsumedBRAM =

⇠
NbFSM

states

BRAM
depth

⇡
⇤
⇠
NbFSM

command

BRAM
width

⇡
(4.1)

The logic resource cost is then normalized in the form of slice estimation, a slice
being the basic logic block in Xilinx Virtex FPGA family. Depending on the Virtex
generation, a slice contains di↵erent elements. For example in a Virtex 5 [43], a slice
contains four LUT, four one-bit registers, three multiplexers and one arithmetic logic.
Thus we use slices as one of the units of measurement for estimating resource cost.
However the final number of slices can be hard to predict since slices can either be
used for their registers, for their LUTs or for both. It means that the use rate of slice
resources is variable and depends on place and route decisions of the logic synthesis
tool. So we compute an estimation interval with a lower bound S

L

and an upper bound
S
U

. S
L

corresponds to the ideal case where 100% of the slices are reused:

S
L

= Max(Slices
reg

, Slices
LUT

)

S
U

corresponds to a theoretical ratio of reuse (Ratio
reused

):

S
U

= S
L

+Min(Slices
reg

, Slices
LUT

) ⇤ (1�Ratio
reused

)

The reused ratio can be tuned but, based on our experience, we found that the value
giving the best results for our experiments was 0.8. With these limits, the frameworks
provides a bounded interval of the consumed slices, which according to our experiments
is quite accurate (see results in Section 6.2.1).

4.3.2 Pareto-optimal Selection

Once a series of accelerators has been synthesized and estimated, there are cases where
some accelerators have a higher latency while being more costly than others with lower
latency. This is due to the fact that when increasing latency, it is not always possible
to remove an operator but it is then necessary to add some registers to store the stalled
computed values in order to respect the latency constraint. Moreover a high latency
also requires more FSM states, meaning more resources to store the FSM as given by
the equation 4.1. Consequently the cost of the FSM ends up outgrowing the benefits
of removing operators, as illustrated in Figure 4.6. This results in less-interesting IPs
which allow us to make a selection, keeping only Pareto-optimal points. This selection
provides an even shorter DSE, since less IPs have to be tested. An example for a
small set of data is given in Figure 4.7. This Figure shows a series of IP generated
for a Gaussian filter function. It compares our fast HLS-based estimation and the
actual consumption obtained after logic synthesis. The vertical red lines indicate the
Pareto optimal IP. More complete and detailed results for larger series of IP are given
in Section 6.2.1.

The selected IPs are then added to the hardware accelerators library as described
in Section 3.3.2, with the logic resource estimation cost. Later, it is possible to update

56

Data Parallelism Exploration through Task Duplication

��� ��� ��� ��� ��� ��� ��� ��� �	� �
� ��� ��� ��� ��� ��� ��� ��� ��� �	� �
� ��� ��� ��� ��� ��� ��� ��� ��� �	�

�

����

����

����

����

����

����

������������ �������� ����������

������

�
���

�

Figure 4.6: Illustration of the FSM cost/Operators cost tradeo↵, showing that the
FSM cost becomes more important than the decreasing of the operators cost.

the costs with the results of a logic synthesis, in order to have the real cost in logic
resources if the IP is reused.

4.4 Data Parallelism Exploration through Task Duplica-
tion

Beside hardware accelerator, which is equivalent to instruction-level parallelism, an-
other way to speedup an application execution is to exploit data-parallelism. Data-
parallelism is the simultaneous processing of independent data as opposed to task par-
allelism which is performing di↵erent tasks simultaneously on di↵erent data. So when
a task of the application is very time-consuming and cannot be accelerated through
hardware, a solution is to duplicate the task, and map the duplicated task on a di↵er-
ent processor in order to execute several instances of this task in parallel. Note that
both acceleration solutions, hardware acceleration and data-parallelism, are not mutu-
ally exclusive as nothing prevents the duplication of hardware accelerators if the target
logic resource capacities allow it.

Since task granularity is expressed manually by the designer during the task splitting
phase, and is thus a result of the designer’s expertise of the application, it is possible to
automatize optimizations. The data-parallelism exploitation is made possible thanks
to the KPN Model of Computation we use. And since task iterations in KPN are
independent, data-parallelism can be exploited.

For a task that is duplicated, the potential acceleration gain depends on the number
of times the task was duplicated. With the percentage of the total execution time taken
by the duplicated task (executionT imePercentage

Ti), a rough estimation of the new
execution time for the task T

i

would be given by the formula:

NewExecutionT imePercentage
Ti =

executionT imePercentage
Ti

Number of duplications

That formula corresponds to an ideal case, since it assumes that data can be pro-
vided fast enough to all the duplicated tasks so that there is never more than one of

57

Design Space Exploration Methodology

��� ��� ��� ��� ��� ��� ���

�����

�����

�����

�����

�����

�����

�����

�

	

�

�

�

�

�

�

�

	�

		

	

	�

	�

	�

	�

	�

	�

	�

�

������������������������ ������������������������ �!������

��!������ "�#�����������

������$

�
��
�
�

�
�
!
�%
�"
�
&
��
��
�
��
'(
)

Figure 4.7: Results of a series of generated IPs for a Gaussian filter. The curves show
the cost estimation and the actual cost, and the points are the percentage of errors in
the estimates.

58

Data Parallelism Exploration through Task Duplication

������

������

������

������			

������	

������ ������������

Figure 4.8: Task graph of an application before and after duplication. The transmitted
data are also split equally between the di↵erent task, so that only the necessary are
transfered

the duplicated tasks that is idle after the initialization phase. If we assume that the
conditions for the previous formula to be true, then the global acceleration for the
application provided by task duplication would follow Amdahl’s law:

GlobalAcceleration =
100

(100� executionT imePercentageTi) +NewExecutionT imePercentageTi

The duplication of a task requires to modify the code of the application in order
to dispatch the data to the multiple tasks and collect them back in the right order.
This means that new read and write channels have to be instantiated and that the
corresponding API calls must be added in the task code. In these newly instantiated
channels only the data necessary for the task are sent, thus in best cases, there are no
extra cost in communication due to data that would be send multiple times. Figure 4.8
shows the task graph of application before and after task duplication; Figure 4.9 shows
the code di↵erences in the task dispatching data before and after the duplication of a
task four times. As can be seen, calls to other communication channels were added as
well as conditions in order to equally dispatch data between the four duplicated tasks.
Similar changes must also be made in the task collecting the data back.

Model versus Implementation

When duplicating a task, it is necessary to also duplicate the communication channels,
and so make copies of data in the FIFOs, otherwise there would be multiple reads and
writes on one channel from several tasks, which is forbidden by the KPN model of
computation. This fact shows one of the limits in this model of computation: it does
not allow shared memories which are convenient and e�cient when communications

59

Design Space Exploration Methodology

f o r (i n t c0 = 0 ; c0 <= 268 ; c0 += 1) {
f o r (i n t c1 = 0 ; c1 <= 3 ; c1 += 1) {

ports�>IG 1 . read (in 0ND 1) ;

i q z zProc e s s (in 0ND 1 , out 1ND 1) ;

ports�>OG 1 . wr i t e (out 1ND 1) ;
} // f o r c1

} // f o r c0

(a) Before duplication.

f o r (i n t c0 = 0 ; c0 <= 268 ; c0 += 1) {
f o r (i n t c1 = 0 ; c1 <= 3 ; c1 += 1) {

ports�>IG 1 . read (in 0ND 1) ;

i q z zProc e s s (in 0ND 1 , out 1ND 1) ;

if(c1 == 0)
{ports�>OG 1 . wr i t e (out 1ND 1) ; }

if(c1-1 == 0)
{ports�>OG 2 . wr i t e (out 1ND 1) ; }

if(c1-2 == 0)
{ports�>OG 3 . wr i t e (out 1ND 1) ; }

if(c1-3 == 0)
{ports�>OG 4 . wr i t e (out 1ND 1) ; }

} // f o r c1
} // f o r c0

(b) After duplication.

Figure 4.9: Code of the loop of a task which sends data to a task duplicated four times.
The code in red shows the di↵erences between before and after adaptations were made
for task duplication. Here each output channel receives data once every four iterations.

involve a large amount of data — e.g. a video frame. However it is important to make
the distinction between model of computation and implementation. For instance, in
order to avoid the extra cost in size due to the instantiation of duplicate communication
channels, a designer might want to put only one copy of the data common to all the
duplicate tasks in a shared memory. This is particularly true and possible with few
modifications of the generated code when the size of the FIFO is equal to one — e.g.
one frame. So to let designers express such an optimization decision, we have added
the possibility to annotate the C code with pragmas specifying how the data should be
mapped if a task was to be duplicated. This is part of the decisions that belong to the
scope of designers.

Below is an example of a pragma annotation:

#pragma dupl i cateTask sharedMem #data1

The keyword duplicateTask means the pragma applies if the task is duplicated, the
keyword sharedMem means the implementation of the data should be in shared memory
and #data1 is the parameter specifying the FIFO of the task that should be mapped
in shared memory.

4.5 Communication & Memory Model

A major factor that has to be taken into account while exploring design are data
exchanges. In some data-intensive applications, communication can be more time-
consuming than the execution of the program itself. It is thus important to be able
to accurately estimate the influence of task and data mappings on the overall per-
formances. In order to estimate the time taken by the communications, models of

60

Communication & Memory Model

memories and buses are build. A memory is characterized by:

its bandwidth, i.e. the maximum quantity of data that can get through in a given
period of time. It is given in bits per second.

its size which is the quantity of data it can store. It is given in Megabytes.

the read and write burst latencies which are the numbers of cycles taken by the
memory controller to prepare a burst of data for reading or writing.

the number of read/written words per burst, which is the maximal quantity of
data that can be transferred in a single burst.

With these values, it is possible to estimate the throughput capacity of both reading
and writing operation of a memory for a given period of time. These values are used
to check for potential congestion.

Similarly, to compute performance and check for congestion, buses are also described
through the following characteristics:

its bandwidth which is the maximal quantity of data that can be transferred in
the bus in a given period of time. It is given in bits per second.

the latency.

4.5.1 Congestion Detection

With the memory characteristics described in the previous section and the known
quantities of data that go from one task to another, it is possible to compute if the
buses and memories can provide enough resources so that no congestion occurs during
the execution. For a memory and a given data mapping, it is possible to compute
if memory can provide enough bandwidth. We first need to compute the number of
necessary cycles to write the data of one iteration with this formula:

numberOfCyclesForWriting = writeLatency
mem

⇤ dataSize

bytesPerBurst
mem

+ dataSize

(4.2)
where:

writeLatency
mem

is the write burst latency of the memory given in number of
cycles;

bytesPerBurst
mem

is the number of bytes that can be transferred through each
burst;

dataSize is the quantity of data given in bytes that must be transferred at each
iteration.

61

Design Space Exploration Methodology

During a burst, a word1 of data is written every cycle, however a burst requires a
few cycles latency in order to prepare data for the coming burst. So the total number
of cycles taken for one iteration is equal to dataSize cycles for writing data through
bursts (one cycle per word), plus the latency penalty for each burst times the number of
bursts necessary to transfer all the data. In a symmetrical way, the number of cycles for
reading (numberOfCyclesForReading) is also done with an equivalent formula using
the latency value for reading instead. So knowing these two values and the frequency
at which the memory operates, the congestion of memory can be computed with this
formula:

congestionRatio
mem

= frequencymem
nbIterations⇤(numberOfCyclesForWriting + numberOfCyclesForReading)

(4.3)
where:

nbIterations is the number of iterations that should be performed in one second
to reach the performance objective;

frequency
mem

is the number of clock cycles in a second, given in Hertz, which
was provided by the designer as a constraint.

The equation 4.3 divides the available cycles in one second of execution by the total
number of cycles necessary for reading and writing the mapped data in one second.
This gives the occupation ratio of the resources. If it is over one then it means that
the memory is overloaded and will not be able to provide data with a su�cient speed.
If it is under one then in theory it should be able to provide data fast enough, however
it is reasonable to have a security margin since communications on the bus may occurs
simultaneously. During data mapping exploration, this information is used to know the
degree of congestion of the memory and thus find a balanced mapping.

A similar formula can be used for communication channels:

congestionRatio
comm

=
frequency

latency
comm

⇤ (dataSize/bandwidth
comm

)
(4.4)

This gives the congestion ratio of the communication channels, thus providing an
estimation on a particular data and task mapping, and provides an indication on the
necessity to add extra communication channels to the design.

4.6 Data-Task Mapping & Scheduling Strategy

In this section we present the algorithm used to perform data and task mapping as well
as the evaluation of the scheduling strategy. The whole decision process is described in
Algorithm 2. Here is a few definitions necessary to understand the algorithm:

1The size of a word is dependent of the target architecture, thus this information must be provided
with the specifications of the target architecture.

62

Data-Task Mapping & Scheduling Strategy

TaskClusters is the set of tasks to be mapped gathered as clusters of independent
tasks.

ProcSet is the set of processors in the architecture.

DataSet is the set of data representing communication between two tasks sorted
by decreasing size.

MemorySet is the set of memories sorted in decreasing order of speed.

4.6.1 Data Mapping

Data mapping is the assignment of the communications between tasks onto the mem-
ories of the architecture. Data mapping can have a high impact on the performance of
the application: bad data mapping can lead to congestion or contention in buses and
memories, thus leading to important performance degradation.

In our framework, the implemented data-mapping strategy follows a best-fit allo-
cation which consists in assigning data to the fastest memory that has su�cient space
to store the currently assigned data. The remaining available space on a memory is
updated each time a data is assigned. Since we want to maximize the width of the
explored design space, we generate several di↵erent data mappings in order to intro-
duce diversity. To achieve this goal, we combine three strategies that insert interesting
variations:

1. The read and write latency values of each type of memory are modified with a
random coe�cient. The interval taken by the coe�cient is specified through two
variables coeff

min

and coeff
max

, which are respectively the minimum and the
maximum values that can be taken by the coe�cient (e.g. coeff

min

= 0.5 and
coeff

max

= 2 will multiply the latency with a random coe�cient that will give a
result which lies between half the original value and its double).

2. Memories that are synthesized, such as BRAM, do not have a fixed size. So
another dimension explored during data mapping is the size of such memories.
The sizes that can be taken by a memory must be given as an input by the
designer.

3. Last, the order in which data are mapped is considered in two ways: biggest
data size mapped first and smallest data size mapped first. The intuitive strat-
egy would be to map the biggest data on the fastest memory first, however the
opposite strategy can provide better performance in some cases, similarly to As
Soon As Possible (ASAP) and As Late As Possible (ALAP) schedulings.

Potential duplicate mappings are removed from the set of data mappings generated
following these rules. The pseudo-code of the implementation of the algorithm can be
seen in the data mapping part of Algorithm 2.

63

Design Space Exploration Methodology

Algorithm 2 Data and Task Mapping Algorithm.
1: Initialization:
2: All hardware accelerated Tasks T are mapped on the corresponding Acceleratori
3:

4: for all N2 architecture solutions do
5: //Data Mapping
6: //Consider several sizes for synthesized memories (e.g. BRAM)
7: //Randomize memories latencies
8: //Map biggest data on fastest memories first
9: for all Data D in DataSet do

10: for all Memory M in MemorySet do
11: while M has enough space for D do
12: mapDataOnMem(D, M)
13: end while
14: end for
15: end for
16: //Map smallest data on fastest memories first
17: for all Data D in ReverseDataSet do
18: for all Memory M in MemorySet do
19: while M has enough space for D do
20: mapDataOnMem(D, M)
21: end while
22: end for
23: end for
24: //Selection of the N2bis best data-mappings
25:

26: //Task Mapping
27: for all N2bis selected mapping solutions do
28: //Make first task mapping with less loaded processors
29: for all Task T in TC1, the first element of TaskClusters do
30: for all Processor P in ProcSet do
31: if P is the less loaded proc then
32: mapTaskOnProc(T, P)
33: end if
34: end for
35: end for
36: //Hungarian Algorithm
37: for all Task cluster TCi of TaskClusters do
38: for all Task T in TCi do
39: for all Processor P in ProcSet do
40: for all Memory M in MemorySet do
41: costMatrix = computeCostMatrix(↵⇥ execT ime(T,P), �⇥ comm(T,M), �⇥

procLoad(P), � ⇥memLoad(M))
42: end for
43: end for
44: end for
45: applyHungarianAlgorithm(TCi, costMatrix)
46: checkForCongestion()
47: end for
48: end for
49: //Selection of the N2ter best task-mappings
50: end for64

Data-Task Mapping & Scheduling Strategy

4.6.2 Task Mapping

The task mapping phase consists in determining the placement of each application
task on the available processing units. The elements to be considered for an e�cient
mapping are:

E�cient computation. Tasks should be assigned on processing units that are
e�cient to process them.

Minimal communication cost. This a very important factor since commu-
nications can be the limiting factor over the process execution times. The rule
followed to reduce communication cost is to mapped the task having the biggest
data exchanges on the same processor so that they communicate only through
the processor local memory, thus diminishing the global system communication
load.

Load Balancing. In data stream application tasks are dependent since a task
relies on one or several previous tasks to get its data. So in order to exploit
parallelism through pipelining, the load must be balanced between each processor.
Indeed if there is one processor that has a more important load than the others
then it becomes the limiting factor that drives the application global execution
time.

The decision algorithm must thus takes into account all those factors in order to make
e�cient mapping decisions.

First Mapping Strategy

A first strategy that was experimented was to generate exhaustively every possible
mappings for each di↵erent hardware architecture. This exhaustive set would then be
evaluated through the Sesame trace-based simulation. As such solution could lead to
an exponential number of mappings to be tested, we had a set of rules that trimmed
the mapping set prior to evaluation by removing ine�cient mappings and duplicates.
The rules were the following:

R1: If an architecture contains at least one accelerator, then the accelerated tasks
must be mapped on the processor with the right accelerator.

R2: If a task is duplicated then each duplicate task must be executed on a di↵erent
processor in order to ensure that the parallelism is exploited.

R3: Mappings must use all of the available processing units of the architecture,
i.e. mappings where there is no task mapped on one or more processors are not
considered.

R4: Avoid equivalent mappings, i.e. for architectures that have several processors
of the same kind (e.g. 2 MicroBlazes) then it is possible to have several mappings
that are equivalent. For example, for an application with two tasks (T1, T2) and

65

Design Space Exploration Methodology

an architecture with two similar MicroBlazes M1,M2, the mapping where T1 is
on M1 and T2 is on M2 is equivalent to the one where T1 is on M2 and T2 is on
M1.

These rules ensure that all the eliminated mappings are not optimal ones, with the
exception of mappings that are optimal and equivalent. However while this method
was providing good performance results, we have observed that even with the pruning
rules, the mapping evaluations through the Sesame trace-based simulation was still
consuming over 90% of the total DSE time. It was thus decided to use a method that
would generate only a limited number of mappings for each hardware architecture, the
challenge being that those mappings must be as e�cient as possible.

Second Mapping Strategy

The method finally chosen for task mapping is a method based on the Hungarian
algorithm [41], which can provide an optimal solution to the assignment problem in
polynomial time. The pseudo-code of the task mapping is described in the task mapping
part of Algorithm 2.

Hungarian Algorithm Example Here is a small example to illustrate how the
Hungarian algorithm works. Let’s consider the following cost matrix:

0

BB@

Proc
A

Proc
B

Proc
C

Proc
D

Task1 15 21 31 47
Task2 25 33 78 52
Task3 4 8 19 22
Task4 7 2 40 31

1

CCA

First, it is necessary to find the minimum value of each row and subtract it to all
elements in that row. It gives the following result:

0

BB@

Proc
A

Proc
B

Proc
C

Proc
D

Task1 15 21 31 47
Task2 25 33 78 52
Task3 4 8 19 22
Task4 7 2 40 31

1

CCA)

0

BB@

Proc
A

Proc
B

Proc
C

Proc
D

Task1 0 6 16 32
Task2 0 8 53 27
Task3 0 4 15 18
Task4 5 0 38 29

1

CCA

Then the same operation is repeated for each column:

0

BB@

Proc
A

Proc
B

Proc
C

Proc
D

Task1 0 6 16 32
Task2 0 8 53 27
Task3 0 4 15 18
Task4 5 0 38 29

1

CCA)

0

BB@

Proc
A

Proc
B

Proc
C

Proc
D

Task1 0 6 1 14
Task2 0 8 38 9
Task3 0 4 0 0
Task4 5 0 23 11

1

CCA

Then lines must be drawn over rows and column in order to cover all the zeros
in a minimum number of lines. Here several solutions are possible but the minimum

66

Data-Task Mapping & Scheduling Strategy

number of lines is 3:

0

BB@

Proc
A

Proc
B

Proc
C

Proc
D

Task1 0 6 1 14
Task2 0 8 38 9
Task3 0 4 0 0
Task4 5 0 23 11

1

CCA

If the number of lines is smaller than the height of the matrix then the optimal
solution has not been found yet. In such case, the minimal value of the elements that
are not covered by a line must be found, and must then be subtracted to all elements
not covered by a line and added to all values that are covered by both a vertical and
horizontal lines:

0

BB@

Proc
A

Proc
B

Proc
C

Proc
D

Task1 0 6 0 13
Task2 0 8 37 8
Task3 1 5 0 0
Task4 5 0 22 10

1

CCA

This last step is repeated until the minimum number of lines is at least equal to the
size of the matrix, which means that at least one optimal solution has been reached.
The set of optimal solutions is thus made of all the combinations of tasks and processors
that have a cost of 0, provided that each task is mapped on a di↵erent processor.

Implementation In our implementation, the cost matrix for the Hungarian algo-
rithm represents the cost of the assignment of a task of the current task cluster on one
of the available processors. Each cost is computed with the following formula:

(↵⇥ execT ime(T,P)+�⇥ comm(T,M))⇥ (�⇥procLoad(P))⇥ (�⇥memLoad(M)) (4.5)

in which ↵, �, � and � are coe�cients that can be set by designers to give more weight to
the parameter(s) they wish to favor. The execution time and the communication time
are used to determine the performance of a task mapped on that unit. execT ime(T,P)

is the number of cycles needed by the processor P to compute one iteration of the
task T . comm(T,M) is the number of cycles necessary to transfer the data between
the task T and the memory M . The other two parameters are used to prevent the
apparition of behaviors that would result in bad performance: the processor load is
used to keep the mapping balanced between the processing units; the memory load is
used to avoid memory congestions and contentions. procLoad(P) is thus the load of the
processor P , i.e. the percentage of the total computation time of the application taken
by the processor P . memLoad(M) is the load of the memory based on its data transfer
capacity, its frequency and the amount of data it should transfer in one second.

Once the task mapping is done, data that are mapped in ”dynamic” memories,
i.e. memories which are synthesized and which size is not static, such as BRAM, are

67

Design Space Exploration Methodology

assigned to a processor. Depending on the task mapping, if data that corresponds
to a communication between two tasks are mapped on the same processor, then the
BRAM is implemented as a local memory of the processor (as seen as in Figure 5.2.b).
Otherwise the BRAM is implemented as a shared memory associated with the processor
that produces the data. Once all those steps are done, a check is performed that
computes the load of the buses and other interconnects in order to detect possible
congestions.

In order to maintain the algorithm scalable, the number of generated solutions at
each step in the mapping is parametric. So, at the beginning of the data mapping there
are N2 architectures (cf. Algorithm 1, line 30), for each of which N2bis data mapping
will be generated and then for each of these N2bis data mappings, N2ter task mappings
will be generated. At each of these mapping steps, it is possible to generate duplicate
solutions which are removed at each selection step, so the total number of solutions at
the end of the mapping algorithm is N2 ⇥N2bis ⇥N2ter.

4.6.3 Scheduling

Scheduling is the process that determines the order in which each task is executed.
Several strategies exist, like round-robin which gives an equal share of execution time
to each task, first-come first-served which gives access to the processing unit in the order
the processes made their requests. In the current implementation of our framework,
only the latter is available.

The performance estimation is then performed using the Sesame simulation tool [7]
(cf. Section 3.2.2 for a description of Sesame and of the modifications we made). Our
modified version of Sesame takes as inputs a list of architectures and their associated
mappings, and, using an execution trace of the application, performs a performance
estimation of the architectures. So the speed of this evaluation phase depends on two
parameters. The first one is the number of iterations of the SANLP program that
is used to generate the trace. The bigger the number of iterations, then the bigger
the size of the trace and thus the bigger the time taken to simulate one architecture.
It is thus necessary to choose wisely the size of application that will be used for the
performance estimation. The second parameter is the number of mappings that needs
to be evaluated.

The output is a performance evaluation of the candidate architectures which can be
used by the designer to select the solution best-fitting his objective. For each evaluated
architecture, only the mapping providing the best performance is selected. Alongside
the performance, the cost in logic resources is provided as well so that the designer is
given all the information needed to take the best decision.

4.7 Conclusion

In this chapter we have presented the decision algorithm for DSE. It provides an ef-
ficient and scalable way to explore several design dimensions and thus find a system

68

Conclusion

architecture satisfying the designers’ constraints. This algorithm relies on fast and ac-
curate estimation techniques for cost and performances at all the levels of the design
process, from the early hardware architecture to the fully-mapped system in order to
ensure that the best choices are made at each design step. We have also described
how we widen the explored design space with the integration of a fast HLS-based ex-
ploration of hardware accelerators in the DSE loop. Another presented technique to
increase the performances of the designed system is the exploration of data-parallelism
through task duplication.

69

Design Space Exploration Methodology

70

5
Template-based Approach

In this chapter, we introduce a template-based approach that simplifies design speci-
fications and provides designer with a way to express design constraints that are the
results of their skills and knowledge of the system. We also explain why and how we
introduced MDE methods into our framework flow. These methods, coupled with the
template approach, provides us with a way to enable design portability, to favor reuse,
and to generate code.

5.1 Introduction to MDE

Model Driven Engineering comes from the software industry where it is used to pro-
vide specifications of an application system. It typically uses an abstract description
of the system using a standard formalism, the most common being the Unified Mod-
eling Language (UML). This abstract description can also be provided with a Domain
Specific Language (DSL), which is a language specialized to describe a specific type of
application.

The usual coupling in software industry is an association of UML and an object-
oriented language such as Java since the object-oriented paradigm through its class and
subclass representation fits well with modeling techniques. The UML representation
can then be used to express properties and constraints in the program, as well as
describing relations between the di↵erent entities of the program. From this UML
representation it is possible to check that a design instantiating this model does not
violate any of the specified constraints, thus ensuring the validity of a design.

Another possibility provided through modeling approach is the ability to generate
an equivalent of the model in another formalism through code generation or model
transformation. This transformation however requires that transformation rules must
be defined. Once these transformation rules are defined, any correct instantiation of
the model can have its equivalent generated in the targeted formalism. The advantage
is that, if the transformation rules are correct, then the generated code is correct-by-
design, and thus bug-free. This provides a huge gain in productivity, since it allows
to skip costly tests and tedious debug steps. That is why we believe application of
MDE methods should also be used in global system design including both software and
hardware.

71

Template-based Approach

5.2 Application to FPGA-based Design

While FPGA is now a technology that has been around for over two decades, it is still
not much used for embedded systems. This is in part due to the absence of standards in
FPGA [3]. The lack of standards for the input/output of external peripherals of FPGA
boards limits the design portability. So, to adapt a design from one FPGA board
to another, it might be necessary to modify the communications with the external
peripherals, implying the possibility of introducing new bugs in the system. The other
barrier is the lack of standard processors and IP architectures including API that
would facilitate the programming and the debugging of FPGA designs. Consequently,
products based on FPGA require designers with high-level of expertise, which can be
problematic for small companies which may not be willing to invest in such a risky and
costly solution.

Thus using modeling techniques for FPGA designs is a solution to the lack of
standards. By elevating the level of abstraction for specifications, it provides a repre-
sentation that is independent from hardware specific details of the FPGA board and
thus requires less specific knowledge from the designer. This independent model can
then be used to generate the implementation files specific to the target FPGA through
model transformation. This allows to greatly simplify the porting of a design from one
FPGA to another, since the only requirement is to create just once the model for the
new target in order to be able to generate the corresponding code, as opposed to the
necessity to modify each design that needs to be ported.

Moreover it is also possible to exploit MDE verification and validation capacities,
using model checking techniques to verify the correctness of a design. This is done by
specifying a set of constraints in the model, that will be check by the tool to see if
the modeled design meets the constraints. For instance it can be used to detect design
error such as two communicating peripherals that do not have the same bitwidth. This
can avoid errors that might otherwise have been di�cult to find as design tools usually
provides numerous options that can incompatible with each other [44].

5.3 AADL

Architecture Analysis & Design Language (AADL) [45] is a domain model language
originally used in the avionics industry1. It has since evolved to a more global domain,
to describe embedded systems, including the representation of both hardware (proces-
sors, memories, buses, devices) and software components (threads, processes, thread
groups, data, subprograms). It has been used as the pivot language in the European
project SPICES, which aimed at the development of methods and tools for the design
of mission-critical embedded systems. It is also used in the Open-PEOPLE project [46]
for the development of models for power consumption analysis of embedded system
designs [47].

1AADL used to stand for Avionics Architecture Description Language.

72

Component Models

We use AADL to model only the hardware parts of the system architecture, and
thus only hardware components are considered. We do not need to model software,
since its representation is given as a C code from which we perform all analyses and
transformations. Each hardware component is described with two distinct types of
declaration:

a type that declares the external interfaces of the component through which can
be connected to other components using input/output event and data ports, data
and bus access, etc.;

an implementation that represents the internal composition of the component. It
can include one or several subcomponents.

A set of properties are predefined in the AADL standard to specify various com-
ponent parameters. For example, for a generic memory component, the predefined
properties are the size, the access rights, the word size, read and write times, etc.
These predefined property sets can be extended by the addition of other property sets
to model properties of specific components such as MicroBlaze processor [48]. An
example of such properties is given in Figure 5.1, where an excerpt of the AADL rep-
resentation of a MicroBlaze processor is presented. AADL component and property
set declarations are used to populate a library of components to be used in FPGA-
based designs. Declarations for Xilinx-specific components such as MicroBlaze, buses,
controllers, etc. have been added to the library.

5.3.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [49] [50] is an implementation of the Eclipse
IDE [32] dedicated to modeling. EMF thus provides several features:

A metamodel for class modeling called Ecore, that provides a metamodel which
can be used for modeling other models;

A user interface that allows to display and edit the meta-models;

Code generation capacities with factories that are able to generate and instantiate
Java classes from a model instantiation. It can also perform transformation to
others formalism as long as the metamodels and the transformation rules are
provided. These transformation rules can be provided in several formalisms such
as ATL Transformation Language (ATL) or Query/View/Transformation (QVT).

AADL metamodel relies on the EMF Ecore implementation, which is the generic meta-
model used to describe all other metamodels.

5.4 Component Models

We developed component models for each type of component that can be found in
embedded systems such as processors, memories, buses, etc. They were described as

73

Template-based Approach

Package x i l inx components
pub l i c
with mic roBlazeProper t i e s ;

p r o c e s s o r microb laze
f e a t u r e s

r e s e t : in event port ;
i n t e r r up t : in data port ;
data p lb : r e qu i r e s bus a c c e s s ;
i n s t p l b : r e qu i r e s bus a c c e s s ;
da ta xc l : r e qu i r e s bus a c c e s s ;

i n s t x c l : r e q u i r e s bus a c c e s s ;
data lmb : r e qu i r e s bus a c c e s s ;
i n s t lmb : r e qu i r e s bus a c c e s s ;
debug : r e qu i r e s bus a c c e s s ;
ma s t e r f s l : r e q u i r e s bus a c c e s s ;
s l a v e f s l : r e q u i r e s bus a c c e s s ;

p r op e r t i e s
��de f au l t va lue s

m i c rob l a z ePrope r t i e s : : FSL l inks => 0 ;
end microb laze ;

end x i l inx components ;

Figure 5.1: Excerpt of the AADL model of the MicroBlaze.

74

Component Models

Java objects with the parameters necessary in order to be used for performances and
cost evaluation during DSE along with the necessary element to show their interaction
in a design. We also developed more refined AADL models that contain in addition
parameters necessary to configure the components in the final design and thus generate
the corresponding implementation files.

Since the current framework implementation targets only Xilinx FPGAs, we have
developed models for IPs provided with the Xilinx XPS tool (cf. Section 3.2.3 for
a description of XPS). This includes the MicroBlaze softcore [48], the memories, the
communication and synchronization protocols, the IP to control external peripherals,
etc. Each of them were modeled with the necessary parameters so that they could be
instantiated in the Xilinx .mhs configuration file.

In addition to the descriptions below, all the components are characterized in terms
of logic resource costs, in order to be able to estimate the total cost of a system.
These values must be provided by the designer. Power consumption models from the
Open-PEOPLE project can be added as well. The components can be of four kinds:
processing unit, memory, interconnect and external peripheral.

Processing Unit Model

Processing units (PU) are defined in terms of:

Type: MicroBlaze, PowerPC, dedicated IP, etc.

Performances: for each of the task of the application the number of cycles it
takes to perform one iteration. These can be automatically filled with the results
obtained through the on-target profiling described in Section 3.1.5. In case the
PU is a hardware accelerator, then these performances are obtained from the IP
characteristics.

Memories: the available memories it can be connected to are defined below. In
addition, each memory is characterized by its accessibility: shared memory, local
memory, etc.

Interconnections: the available buses the PU and IP can be connected to.

Interconnect Model

Interconnect are characterized with these parameters:

Type: Local Memory Bus (LMB), FSL, Processor Local Bus (PLB), NoC, etc.

Bandwidth: the bandwidth capacity of the link.

Latency: the associated latency of the link.

75

Template-based Approach

Memory Model

Memories are modeled with the following characteristics:

Type: DDR, SRAM, BRAM, Flash, etc.

Communication interface: the available communication interfaces to reach
the memory (e.g. PLB bus).

Bandwidth: the transfer capacity of the memory in MByte/s.

Maximum size: the maximum size a memory can have. This is necessary for
instance to evaluate the cost of synthesized memories such as BRAM.

Read & write latency values: the number of cycles necessary to prepare data
before a burst.

External Peripherals

The external peripherals must simply specify what are their requirements in terms of
communications: how they can be connected and how much bandwidth they require.

5.5 Specification Template

Architecture templates are used to specify a generic description of the architecture that
can be used by our tool as a starting point for the exploration. It also provides the
available components for design exploration as well as objectives and constraints to
evaluate and bound the design space. This section describes the role and the structure
of the template. Figure 5.2 shows an example of an architecture template for a video
decoder design. Our template contains three levels of specifications according to the
level of expertise or the involvement of designers. The level of specification decides
what parts of the design flow our tool deal with, whether it will only take care of the
tedious aspects — implementation of the final designs, exploration of the less important
system parts, cost and performance evaluations — or if it will have to perform the full
design flow with the given minimal constraints.

Static Level The first level, called the static level, defines the domain-specific ele-
ments of the architecture. These specifications are static parts of the architecture that
are specific to the current design and that thus remain constant throughout the DSE.
It defines the basic architecture upon which the DSE will rely to perform its explo-
ration. For instance in a video decoder, the bandwidth requirements for data are quite
important especially for a decoded raw video stream. Thus some elements of the design
are mandatory and are thus decided before the DSE: in the video decoder, it will be
a dedicated bus to transfer the decoded video stream to the framebu↵er. It is also
used to define external peripherals that will be used in the design, such as an output
to a screen in a video decoder design. In the Figure 5.2.a), the constant elements are
represented with solid lines.

76

Specification Template

���������	
��
���������
�

���������������
�

���

�������

�	
����
	
�������

�	
����
	
�������

�	
����
	
�������

�����
���
	�

����
�������

�������

�	��������	

�	
�

�
��	
�

����	���
���
	�

����	���
���
	�

�
����
���
	�

�������

�������

���

���	�
���
	�

���

���

�
����
���
	�

��

��

�!������
�
��	
���	

Figure 5.2: Example representation of a template for a video decoder a) of the full
architecture; b) detail of the processor template. Solid-lines indicate static elements
that remains constant during DSE while dotted-lines represent the possibilities of the
architecture according to the constraints set in the DSE-bound level of the template.

77

Template-based Approach

DSE-bound Level The second level, called the DSE-bound level, specifies the avail-
able hardware components, the constraints that define and bound the design space
exploration and the performance and cost objective. These specifications are:

the available types of processors, memories and buses for the DSE;

the minimum and maximum number of processors in the design;

the cost constraints in terms of logic resources on the target architecture (e.g.
slices, flip-flop, Look-Up Tables (LUT), etc.);

the performance objective specified in number of cycles. This objective is set
for the particular instance of the input application used to evaluate performance
with the Sesame tool;

the specification of the tasks that can be accelerated in hardware and/or that can
be duplicated to exploit data-parallelism.

All these specifications define the boundaries of the design space. It is provided to the
framework in the form of an XML file.

Expert Level The third level, called the expert level, provides to the designer the
possibility to specify a priori some of the design decisions that would otherwise be taken
by the framework during the DSE. This gives the opportunity to advanced designers
to guide the design by relying on their expertise. The possibilities include:

enforcing the mapping of tasks to specific processing units (GPP or hardware
accelerator);

enforcing the mapping of data on specific memories or channels;

bypassing the hardware accelerators exploration by specifying the choice of a
specific hardware accelerator.

In addition to ensure good design decisions, these enforced decisions have the advantage
of reducing the design space. These prunings can then be used to shorten the time of
the DSE or to widen the design space by relaxing some of the other constraints. This
level is optional, and thus can be ignored by designers less knowledgeable about system
design.

Once defined, the templates can be stored in a library so that they can be used as
a basis for future designs. By allowing reusability, our template-based approach avoids
some tedious design steps and thus relieves designers from repetitive and potentially
error-prone tasks.

The template are hierarchical since components themselves be configured following
the same decisions: an example for the processor component is given in Figure 5.2.b.

78

Specification Template

���
����
���

�	
����
	
�������

�	
����
	
�������

�	
����
	
�������

�����
���
	�

����

����
���

����
���

�	��������	

��������
�
��	
���	

Figure 5.3: Illustration of the template configuration GUI.

79

Template-based Approach

5.5.1 Template Configuration Interface

A graphical user interface is under development in order to simplify the template con-
figuration. It shows to the designer a graphical representation of the architecture tem-
plate. That representation reflects the constraints set by the designer by displaying the
current design possibilities: constant elements are shown as solid lines while elements
depending on DSE decisions are shown as dotted lines. It allows the designer to define
the architecture template graphically by providing a list of the available components
that can be instantiated and giving the possibility to place them through drag & drop.
It also provides the possibility to make constant some elements of the design. Once the
template is defined, the corresponding AADL and XML files are generated to be used
as inputs for DSE. An example of what the GUI could look like is shown in Figure 5.3.

5.6 Code Generation

In order to implement the final design selected by the designer at the end of the DSE,
we take advantage of the code generation and model transformation capacities o↵ered
by the use of MDE.

5.6.1 Software Application Adaptation

In order to adapt the application to the selected architecture design, several modifi-
cations have to be made in the C code. These modifications are essentially to adapt
the communications accordingly to the data mapping decisions made during the DSE.
Depending on the memory where data has to be fetched, it requires to insert the appro-
priate API parametrized with the appropriate memory address. If a task is implemented
as an hardware accelerator, then it is necessary to add to the source code of the tasks
communicating with the IP the API implementing the communication protocol used
by the bus connecting the IP.

5.6.2 Implementation Project Files

The developed model is used to generate the implementation files for the FPGA backend
tools (Xilinx XPS, Altera Quartus). Since we target Xilinx tools, the generated files
are:

The Microprocessor Hardware Specifications (.mhs), which describes all the hard-
ware elements used in the design as well as their parameters. An example of
instantiation of a MicroBlaze is shown in Figure 5.5.

The Microprocessor Software Specifications (.mss), which describes the drivers for
controlling the components from software.

So each component has an AADL model with the properties found in the .mhs and .mss
files of Xilinx projects. In the AADL model, these properties are filled with default
values, and the properties which need to be changed to reflect the characteristics of the

80

Conclusion

���������

��	
����
�������

���������

��	
����
����

�������
�����������

����
������

��������	
	���

���
�������

	�
������
	���

Figure 5.4: The model transformation process.

generated design are updated at the end of the DSE. In the Xilinx .mhs formalism [51],
the instantiated components are described through three kind of characteristics:

Bus interface which specifies the connecting bus protocols used by the compo-
nent and the instance of the bus to which it is connected.

Port which specifies the component connection ports and the system port to
which it is assigned.

Parameter which specifies the options to configure the component (e.g. the size
of a MicroBlaze data cache).

Figure 5.5 shows the instanciation of a MicroBlaze in an .mhs file.
From the AADL description of the selected architecture, it is possible to perform

a model transformation to generate the .mhs and .mss implementation files. For this,
metamodels for both the input and output models are needed, and a set of transfor-
mation rules — for example in ATL— must be provided. The transformation process
is illustrated in Figure 5.4. The result is a nearly-ready-to-implement project, that
can be opened and edited with Xilinx XPS and which can be used to synthesize and
implement the project on the target FPGA.

5.7 Conclusion

In this chapter, a template-based approach for design of H-MPSoC was introduced.
This template is used to describe the generic architecture used as basis for the DSE. Its
multiple levels of specifications allows designers to provide their specifications according

81

Template-based Approach

BEGIN microb laze
PARAMETER INSTANCE = microb laze 1
PARAMETER C USE FPU = 2
PARAMETER C DEBUG ENABLED = 1
PARAMETER C ICACHE BASEADDR = 0x90000000
PARAMETER C ICACHE HIGHADDR = 0 x 9 f f f f f f f
PARAMETER C CACHE BYTE SIZE = 8192
PARAMETER C ICACHE ALWAYS USED = 1
PARAMETER CDCACHEBASEADDR = 0x90000000
PARAMETER CDCACHEHIGHADDR = 0 x 9 f f f f f f f
PARAMETER C DCACHE BYTE SIZE = 8192
PARAMETER C DCACHE ALWAYS USED = 1
PARAMETER HWVER = 7 . 3 0 . b
PARAMETER C USE ICACHE = 1
PARAMETER C USE DCACHE = 1
PARAMETER C USE BARREL = 1
PARAMETER C USE DIV = 1
PARAMETER C NUMBER OF PC BRK = 1
PARAMETER C NUMBER OF RD ADDR BRK = 0
PARAMETER CNUMBEROFWRADDR BRK = 0
BUS INTERFACE DPLB = mb plb 1
BUS INTERFACE IPLB = mb plb 1
BUS INTERFACE DXCL = microblaze 1 DXCL
BUS INTERFACE DEBUG = microblaze 1 mdm bus
BUS INTERFACE IXCL = microblaze 1 IXCL
BUS INTERFACE DLMB = dlmb 1
BUS INTERFACE ILMB = ilmb 1
PORT MB RESET = mb reset
PORT INTERRUPT = mic r ob l a z e 1 In t e r rup t

END

Figure 5.5: Example of the instantiation of a MicroBlaze in a Xilinx MHS files. It
specifies the instantiation options, the bus and port connections.

82

Conclusion

to their level of expertise. This template, coupled with MDE methods favors design
reuse and portability thus reducing the cost of H-MPSoC designs. The use of the
AADL DSL to describe the specifications eases the conception by abstracting many
implementation details and also enables model transformation and code generation in
order to automatize the implementation of the final design.

83

Template-based Approach

84

6
Results

The framework has been tested with two real applications: an MJPEG decoder and
a face-detection application. These applications are used to check the accuracy of the
estimations, the performance of the framework and the quality of the final produced
results. These applications have di↵erent characteristics and consequently each was
used to validate di↵erent parts of the exploration. In addition, we also run several
benchmarks in order to validate more specific points of the framework. All the results
presented in this chapter were performed on a desktop computer equipped with a
quadcore Intel Xeon W3520 @ 2.67GHz, 8 Gb of RAM and the 64-bit version of Debian
Squeeze operating system.

6.1 Application 1: MJPEG decoder

The first application is a Motion JPEG decoder [52]. Motion JPEG is a video format
that encodes video streams as a succession of pictures independently encoded in the
JPEG format.

6.1.1 Presentation

The decoding of an MJPEG encoded video stream consists in performing a series of
operations:

It first starts by decoding the picture by analyzing the elements of the video
stream, seeking for specific markers which provide information such as the end of
a frame, the size of the frame, etc.

Then the Hu↵man decoding is performed. Hu↵man coding consists in reducing
the size of the data by encoding the most frequent elements with shorter symbols,
i.e. the most common elements will take less place in memory. Hu↵man decoding
is thus the inverse operation.

Next the Inverse Discrete Cosine Transform (IDCT) transforms back the encoded
data into the spatial domain.

Finally, the colors which were coded with chrominance and luminance (YUV) are
converted back to red, green and blue color-values (RGB). This is done through a

85

Results

������ ���� ��	
 �� �������

Figure 6.1: Representation of the Kahn Process Network of the implementation of the
MJPEG decoder split in 5 tasks.

series of three vector multiplications (one by color). The result is a frame of pixels
each encoded on 24 bits (8 bits per color) that can be copied into a framebu↵er
for display.

6.1.2 Specifications

The implementation that was made for the case study consists of five C code tasks, as
illustrated by the graph in Figure 6.1:

Decode is the task that reads data from the file and performs the video decoding
as well as the Hu↵man decoding. The output is

IQZZ is the task that performs the inverse quantization.

IDCT is the task that performs the IDCT.

YUV is the task that converts the colors from the YUV format to the RGB
format.

Display which copies the decoded video data in the framebu↵er.

The movie used as example for the implementation is a video in VGA format, i.e.
frames have a resolution of 256 ⇥ 144 pixels. The target for the design is the Xilinx
XUPV5 FPGA board [53].

6.1.3 Results

We will now present the results by following the design flow step by step.

Application Parallelization

First a profiling of the application is performed in order to guide designers in the
splitting of the application into tasks. They must specified the application in the form
of a SANLP, so that it can then be automatically transformed into KPN formalism.
This is performed by the couple of tools KPNGen and ESPAM: the former transforms
the application graph while the latter generates the corresponding C code.

86

Application 1: MJPEG decoder

Table 6.1: Results of the profiling on target.

Task Percentage Cycles count Number of cycles for
one iteration

Decoding 19.4 % 1297871068 242140
Quantification 9.3 % 623876806 116395
IDCT 47.2 % 3152960456 588335
YUV 18.4 % 1221882386 227963
Display 5.7 % 377403958 70411

���

�������

�	
����
	
�������

�	
����
	
�������

�	
����
	
�������

�����
���
	�

����
�������

�������
�	��������	

��������
�
��	
���	

�	
����
	
�������

Figure 6.2: Architecture template for the MJPEG decoder

On-Target Profiling

The transformed code then undergoes a profiling on-target, which is a MicroBlaze [48]
in this case. The code is adapted for MicroBlaze by a modified version we made of the
ESPAM code generator. Profiling results are shown in Table 6.1. With these values,
we can sort the tasks according to their computation resource requirements and we
can compute the number of cycles necessary for one iteration of the task which is a
requirement for performance estimations later in the DSE.

DSE Settings

The settings for the DSE were given in the template. The generic architecture is shown
in Figure 6.2. In this figure, elements specific to this application are solid lines: so
the architecture will contain a Flash memory that will be used to provide the input
video file, a SRAM memory — both memories are linked to the processor through
a PLB bus — and a framebu↵er implemented in the DDR memory that is linked
through a dedicated PLB bus to the display controller. The dotted lines elements show
components that can be instantiated. So we can see here that there can be up to four

87

Results

���������

�������

	
�����
������

	
�����
������

������
������

�������

�������

���

����
������

���

���

�����
������

Figure 6.3: Processor template for the MJPEG decoder

processors instantiated. Figure 6.3 shows the detail of the processor template. It shows
that processors can be linked to a local memory or a shared memory through a LMB
bus. It can also be linked to one or more external memories through a PLB bus and
can also be linked through a FSL to a coprocessor which can itself has a dedicated local
memory. These architectural elements represent the static level of the template. The
rest of the settings for the DSE-bound level are:

The number of processors is between one and four and all of them are of MicroB-
laze type.

Tasks IDCT and YUV can be accelerated through hardware.

The IDCT can also be duplicated to exploit data-parallelism.

The target board is a Xilinx XUPV5 FPGA board [53].

Possible memory implementations were: DDR, BRAM and SRAM.

The performance objective is to reach 24 frames per second (FPS).

The N
X

variables that set the scalability of the DSE were all set to -1, meaning
that no pruning was performed.

No expert level constraint is specified in this case.

DSE Results

With these inputs, the actual DSE begins. During DSE, exploration is performed for
hardware accelerators for the IDCT task. The results of the exploration are given in
Section 6.2.1.

88

Application 1: MJPEG decoder

The output of the DSE is a set of Pareto Optimal solutions with the estimated
performance obtained through the Sesame simulation tool and the estimation of logic
resources cost. The results are given in Table 6.2 and in Figure 6.4.

In Table 6.2, the Architecture column is the description of the architecture: MB
YUV IDCT X means an architecture with three processors where MB means MicroB-
laze, YUV is a MicroBlaze with YUV hardware accelerators and IDCT X is a MicroB-
laze with one the version IDCT hardware accelerator — the lower the number X, the
faster the IP, according to the HLS-based exploration. The second column specifies the
task mapping: there as many numbers as there are tasks, and each number represents
a processing unit, in the same order as they are described in the first column. For
instance, for the architecture MB IDCT 5 YUV, MB is the processor 0, IDCT 2 is the
processor 1 and YUV is the processor 3. Thus the mapping 0 1 1 2 2, means that the
first task (Decode) is mapped on MB, the second and third tasks (IQZZ and IDCT)
are mapped on IDCT 5 and that the last two tasks (Display and YUV) are mapped
on YUV. The next column, Sesame estimation, is the number of cycles estimated by
Sesame for the execution of the application. FPS is the number of decoded Frames per
Second, based on the assumption that the architecture will run at 125 MHz. The last
three columns shows the logic resource cost estimations, in terms of Slices, BRAM and
DSP.

If we excludes the time for the hardware accelerators exploration — by supposing
for instance that the IPs were already present in the database — , the total time taken
to produce these results was of 21 seconds, about 13 of which were taken by the Sesame
trace-based performance simulation. We can see that seven architectures were found
that reach our objective of 24 FPS.

Hungarian Method E�ciency Evaluation

In order to evaluate the e�ciency of the Hungarian algorithm method (cf. Section
4.6.2), we compared the best mappings found with the Hungarian method and the
optimal mappings found with an exhaustive mapping exploration. The results are given
in Table 6.3 where they are sorted in increasing order of the Sesame estimation of the
exhaustive mappings. We can see that in 11 cases out of 37, there are no or very little
di↵erence in performances, meaning that our Hungarian method has found the optimal
solution or a near-optimal one. In average the di↵erence in performances is 12%.
This di↵erence is relatively small especially given that, if the mapping generation was
exhaustive, then over 200 000 architectures and mappings would have been generated
which would have taken over a day to evaluate with the Sesame tool. This is to be
put against the 37 architectures and mappings generated with the Hungarian method,
which were evaluated in about 13 seconds. This corresponds to a speedup over 6600,
meaning that a loss of one percent of performance, lead to a speedup of 550. Our
method thus provides a huge speedup over an exhaustive exploration for the mapping
as performed in the Daedalus framework [4].

Moreover the Hungarian method find a solution in polynomial time, which means
that for larger applications — i.e. with more tasks — or larger architectures — i.e.

89

Results

Table 6.2: Results of the exploration by our framework for the MJPEG decoder.

Architecture Mapping Sesame Est. FPS Slices BRAM DSP
MB 0 0 0 0 0 718915412 5 2103 0 0
MB MB 0 1 1 0 0 422931756 8 4206 0 0
MB YUV 0 0 1 1 0 393331640 9 2643 1 4
MB MB MB 2 2 1 0 0 334121151 10 6309 0 0
MB MB YUV 1 1 0 2 2 333971982 10 4746 1 4
MB MB MB MB 3 0 2 1 1 333798895 10 8412 0 0
MB MB MB YUV 1 0 2 3 0 333650802 10 6849 1 4
MB IDCT 5 1 1 1 0 0 276949605 13 8286 8 6
MB IDCT 4 1 1 1 0 0 273862245 13 9519 9 9
MB IDCT 3 1 1 1 0 0 272704485 13 9913 9 9
MB IDCT 2 1 1 1 0 0 270388965 13 10525 10 12
MB IDCT 1 1 1 1 0 0 269231205 13 11931 11 15
MB IDCT 0 1 1 1 0 0 268459365 13 12573 11 18
MB MB IDCT 5 2 1 2 0 0 209843700 17 10389 8 6
MB MB IDCT 0 YUV 3 0 2 3 0 203276335 17 15216 12 22
MB MB IDCT 1 YUV 3 0 2 3 0 203276335 17 14574 12 19
MB MB IDCT 2 YUV 3 0 2 3 0 203276335 17 13168 11 16
MB IDCT 3 YUV 2 1 1 2 0 203274183 17 10453 10 13
MB IDCT 4 YUV 1 0 1 2 0 183189421 19 10059 10 13
MB MB MB IDCT 5 1 2 3 3 2 176360236 20 12492 8 6
MB MB MB IDCT 4 1 2 3 3 2 172228403 21 13725 9 9
MB MB IDCT 4 1 0 2 2 0 172226236 21 11622 9 9
MB MB MB IDCT 3 1 2 3 3 2 170678956 21 14119 9 9
MB MB IDCT 3 1 0 2 2 0 170676796 21 12016 9 9
MB MB MB IDCT 2 1 2 3 3 2 167580076 21 14731 10 12
MB MB IDCT 2 1 0 2 2 0 167577916 21 12628 10 12
MB MB MB IDCT 1 1 2 3 3 2 166030636 21 16137 11 15
MB MB IDCT 1 1 0 2 2 0 166028476 21 14034 11 15
MB MB MB IDCT 0 1 2 3 3 2 164997676 21 16779 11 18
MB MB IDCT 0 1 0 2 2 0 164995516 21 14676 11 18
MB MB IDCT 5 YUV 0 2 2 3 1 144090410 25 10929 9 10
MB IDCT 5 YUV 0 1 1 2 2 144090406 25 8826 9 10
MB MB IDCT 4 YUV 1 2 2 3 0 144083804 25 12162 10 13
MB MB IDCT 3 YUV 0 2 2 3 1 144079850 25 12556 10 13
MB IDCT 2 YUV 0 1 1 2 2 144074086 25 11065 11 16
MB IDCT 1 YUV 0 1 1 2 2 144071206 25 12471 12 19
MB IDCT 0 YUV 0 1 1 2 2 144069286 25 13113 12 22

90

Hardware Accelerators Exploration

with more processing units —, the computation time will remain reasonable.

Comparison with FPGA Implementations

Finally we implemented the design on the FPGA in order to check the accuracy of our
estimations. The results are given in Table 6.4. Architectures with more processors
could not be implemented, as they do not fit on the XUPV5 board. These architectures
were not rejected during the DSE, due to the fact that our logic resource estimation
does not take into account the cost due to placing and routing. That could be solved in
future version by specifying a percentage of the FPGA resources that can be used, in
order to let a safety margin for placing and routing. A threshold of 80% is for instance
a reasonable value based on experiments.

The average error is 7.32% which is quite reasonable considering the speedup ob-
tained over the implementation time on FPGA. While our evaluations took a couple
of seconds to be computed, the implementation of the simplest architecture — i.e.
monoprocessor — took around half an hour.

Conclusion

Through this case-study we have validated our exploration algorithm, including our fast
task-mapping method. We have also shown the accuracy of our performance estimations
by comparing them with real on-target implementations.

6.2 Hardware Accelerators Exploration

In this section we evaluate the accuracy of our logic resource estimation as well as the
speedup obtained over logic synthesis-based estimation.

6.2.1 IDCT IP Exploration

During the exploration for the MJPEG decoder application, two tasks were tagged
as candidates to hardware acceleration: IDCT and YUV. As a result, series of the
corresponding IPs were generated by our tool, following the process described in Section
4.3. The chosen model of communication was FIFO channels implemented in BRAM.
Figure 6.5 shows the results for the series of IPs generated for the IDCT. We can see
that our estimations of the consumed resources are quite accurate for the slices since
the actual number of consumed slices obtained after logic synthesis is bounded by our
upper and lower estimations. The BRAM consumption is almost accurately predicted
in all cases with only one value not correctly estimated. The vertical red lines show
the six Pareto optimal solutions that are kept for the DSE. These IPs are presented in
detail in Table 6.5. The exploration of these 56 IPs took about five minutes. This time
includes the cost estimations which are almost instantaneous since it consists in a set
of simple arithmetic and logic rules, most of the time being consumed by the HLS.

91

Results

Table 6.3: Comparison between the mappings found with the Hungarian algorithm
method and the exhaustive mapping exploration.

Hungarian Method Exhaustive Mappings Di↵erence Di↵erence %
Architecture Mapping Sesame Est. Mapping Sesame Est.
MB 0 0 0 0 0 718915412 0 0 0 0 0 718915412
MB MB 0 1 1 0 0 422931756 0 0 1 0 1 402288504 20643252 4,88
MB YUV 0 0 1 1 0 393331640 1 1 0 1 0 347565402 45766238 11,64
MB MB MB MB 3 0 2 1 1 333798895 0 1 2 3 0 333798893 2 0
MB MB MB 2 2 1 0 0 334121151 0 1 2 0 0 333798887 322264 0,1
MB MB MB YUV 1 0 2 3 0 333650802 3 0 1 3 2 333649734 1068 0
MB MB YUV 1 1 0 2 2 333971982 2 0 1 2 0 333649726 322256 0,1
MB IDCT 5 1 1 1 0 0 276949605 1 0 1 0 1 229034147 47915458 17,3
MB IDCT 4 1 1 1 0 0 273862245 1 0 1 0 1 229026467 44835778 16,37
MB IDCT 3 1 1 1 0 0 272704485 1 0 1 0 1 229023587 43680898 16,02
MB IDCT 2 1 1 1 0 0 270388965 1 0 1 0 1 229017827 41371138 15,3
MB IDCT 1 1 1 1 0 0 269231205 1 0 1 0 1 229014947 40216258 14,94
MB IDCT 0 1 1 1 0 0 268459365 1 0 1 0 1 229013027 39446338 14,69
MB MB IDCT 5 2 1 2 0 0 209843700 0 2 2 1 2 144263085 65580615 31,25
MB MB IDCT 4 1 0 2 2 0 172226236 0 2 2 1 2 144255405 27970831 16,24
MB MB IDCT 3 1 0 2 2 0 170676796 0 2 2 1 2 144252525 26424271 15,48
MB MB IDCT 2 1 0 2 2 0 167577916 0 2 2 1 2 144246765 23331151 13,92
MB MB IDCT 1 1 0 2 2 0 166028476 0 2 2 1 2 144243885 21784591 13,12
MB MB IDCT 0 1 0 2 2 0 164995516 0 2 2 1 2 144241965 20753551 12,58
MB MB MB IDCT 5 1 2 3 3 2 176360236 0 1 3 2 1 144238499 32121737 18,21
MB MB MB IDCT 4 1 2 3 3 2 172228403 0 1 3 2 1 144230819 27997584 16,26
MB MB MB IDCT 3 1 2 3 3 2 170678956 0 1 3 2 1 144227939 26451017 15,5
MB MB MB IDCT 2 1 2 3 3 2 167580076 0 1 3 2 1 144222179 23357897 13,94
MB MB MB IDCT 1 1 2 3 3 2 166030636 0 1 3 2 1 144219299 21811337 13,14
MB MB MB IDCT 0 1 2 3 3 2 164997676 0 1 3 2 1 144217379 20780297 12,59
MB MB IDCT 5 YUV 0 2 2 3 1 144090410 0 2 2 3 1 144090410 0 0
MB IDCT 5 YUV 0 1 1 2 2 144090406 0 1 1 2 2 144090406 0 0
MB MB IDCT 4 YUV 1 2 2 3 0 144083804 0 2 2 3 1 144082730 1074 0
MB IDCT 4 YUV 1 0 1 2 0 183189421 0 1 1 2 2 144082726 39106695 21,35
MB MB IDCT 3 YUV 0 2 2 3 1 144079850 0 2 2 3 1 144079850 0 0
MB IDCT 3 YUV 2 1 1 2 0 203274183 0 1 1 2 2 144079846 59194337 29,12
MB MB IDCT 2 YUV 3 0 2 3 0 203276335 0 2 2 3 1 144074090 59202245 29,12
MB IDCT 2 YUV 0 1 1 2 2 144074086 0 1 1 2 2 144074086 0 0
MB MB IDCT 1 YUV 3 0 2 3 0 203276335 0 2 2 3 1 144071210 59205125 29,13
MB IDCT 1 YUV 0 1 1 2 2 144071206 0 1 1 2 2 144071206 0 0
MB MB IDCT 0 YUV 3 0 2 3 0 203276335 0 2 2 3 1 144069290 59207045 29,13
MB IDCT 0 YUV 0 1 1 2 2 144069286 0 1 1 2 2 144069286 0 0

92

H
ardw

are
A
ccelerators

E
xploration

�
�

�
�

��
�

�
�

��
�

�

�
�

��
�

��
�

�
�

��
�

��
�

�

�
�

��
�

��
�

��
�

�
�

��
�

��
�

��
�

�

�
�

��
�

	

�
�

�
�

��
�

	

�

�
�

��
�

	

�
�

�
�

��
�

	

�
�

�
�

��
�

	

�
�

�
�

��
�

	

�
�

�
�

��
�

��
�

	

�
�

�
�

��
�

��
�

	

�
�

��
�

�

�
�

��
�

��
�

	

�
�

��
�

�

�
�

��
�

��
�

	

�
�

��
�

�

�
�

��
�

	

�
�

��
�

�

�
�

��
�

	

�

��
�

�

�
�

��
�

��
�

��
�

	

�
�

�
�

��
�

��
�

��
�

	

�

�
�

��
�

��
�

	

�

�
�

��
�

��
�

��
�

	

�
�

�
�

��
�

��
�

	

�
�

�
�

��
�

��
�

��
�

	

�
�

�
�

��
�

��
�

	

�
�

�
�

��
�

��
�

��
�

	

�
�

�
�

��
�

��
�

	

�
�

�
�

��
�

��
�

��
�

	

�
�

�
�

��
�

��
�

	

�
�

�
�

��
�

��
�

	

�
�

��
�

�

�
�

��
�

	

�
�

��
�

�

�
�

��
�

��
�

	

�

��
�

�

�
�

��
�

��
�

	

�
�

��
�

�

�
�

��
�

	

�
�

��
�

�

�
�

��
�

	

�
�

��
�

�

�
�

��
�

	

�
�

��
�

�

�

����

���

����

����

�����

�����

����

�����

�����

�

�

��

��

��

��

������� ����� ���� ����

����� �� !���

�
���

�
�

�
�

�
�

"�
�

�
�

"�
�

�
�

Figure 6.4: Results of the exploration of the MJPEG by our framework sorted by increasing FPS.

��� 	�� 	��

�

����

����

����

����

�����

�����

�����

�����

�

�

��

��

��

��

��

��

��

������������������������ ������������������������ ��������������!""������� ��������#$%
��&����������������#$%

������

�
���
�
�

�
#
$
%

Figure 6.5: Comparison of the number of consumed slices and BRAM in our estimation and the actual number obtained
after logic synthesis. The vertical lines indicate the IDCT IPs corresponding to Pareto points which are the IPs that were
finally selected.

93

Results

Table 6.4: Comparison of the implementations on FPGA of di↵erent MJPEG archi-
tectures and the performance evaluations given by our tool.

Architecture FPS Est. FPS Cycles count Est. Cycles count % Error
Monoprocessor – Full Software 5.32 5 681059750 718915412 5.56
Monoprocessor – Hardware YUV 5.71 5 634948450 639242454 0.7
Monoprocessor – Hardware IDCT 0 9.48 8 382378299 412204302 7.8
Dual Processor – Full Software 9.95 8 364346144 422931756 16.08
Dual Processor – Hardware YUV 10.43 9 347540716 393331640 13.18
Dual Processor – Hardware IDCT 0 13.42 13 270104971 268459365 0.61

Table 6.5: Characteristics of the chosen IDCT IPs: latency, post logic synthesis re-
sources cost, the error in our estimation of the slices cost and the time speedup between
our estimation and logic synthesis

IP Version IDCT1 IDCT2 IDCT3 IDCT4 IDCT5 IDCT6
Latency 170 190 220 280 310 390
Slices 11707 11115 9767 9019 8551 7410
Slices Cost Error 3,9% 2,36% 4,18% 3,17% 2,73% 2,52%
BRAM 12 11 10 9 9 8
Speedup 50 57 44 41 64 43

6.2.2 Benchmark

In order to validate the accuracy of our cost estimation, we launched series of hardware
exploration for ten functions: FFT, IDCT, IDCT2D, IIR filter, FIR filter, CORDIC (ar-
cos), Sobel filter, Gaussian filter, Walsh-Hadamard transform and YUV conversion. For
each of these functions, several implementations were considered: with communications
whether in FIFO and as Ping-Pong memory and with the FSM whether implemented
in BRAM or in LUT. Results are given in Table 6.6 in the form of triplets: minimum,
average and maximum values respectively. For all the implementations the average
error is at most of 10% which proves that our estimation technique is pretty accurate.
The speedup over logic synthesis is on average of two orders of magnitude.

The speed and the accuracy of our technique shown by these results prove that it
is possible to integrate the exploration of hardware accelerators as a new step of the
DSE loop of a MPSoC.

6.3 Application 2: Face detection with the Viola-Jones
algorithm

As a second benchmark for our framework, we used a face-detection application based
on the Viola-Jones algorithm [54]. This application is directly inspired from the imple-
mentation available under free license at OpenCV [55].

94

Application 2: Face detection with the Viola-Jones algorithm

Table 6.6: Accuracy of cost estimation and measured accuracy for series of IPs gener-
ated for 10 di↵erent functions.

[min, avg, max] errors DSP REG (%) LUT (%) Slices (%) BRAM (%) Speedup
(XST/HLS)

LUT/FIFO 0 [0,0.5,5] [5,8,16] [2,10,16] — [82,150,556]
LUT/Ping-Pong 0 [1,5,9] [1,8,10] [2,8,19] — [20,120,756]
BRAM/FIFO 0 <1 [1,8,16] [4,9,17] [0,⇠0,100] [50,150,520]
BRAM/Ping-Pong 0 [2,4,10] [1,7,19] [1,10,19] [0, 2, 10] [51,110,1160]

Figure 6.6: Examples of Haar-like features.

6.3.1 Presentation

The face-detection is based on the Viola-Jones techniques for object-recognition in pic-
tures. This technique is based on the computation of patterns in an image to check
the presence of characteristics of the object that needs to be detected. These charac-
teristics are computed using so-called Haar-like features, which are simple rectangular
patterns that are used to characterized parts of a pictures. An example of the patterns
used as Haar-like features is given in Figure 6.6. So to detect a specific object, it is
necessary to train a set of classifiers for this specific object, e.g. a human face. This
results in a set of classifiers that are e�cient to detect the object (i.e. that yields few
false negatives) and to reject parts of the picture that do not contains the object (i.e.
that yields few false positives). In our case, the learning algorithm used to train the
classifiers for human face detection was AdaBoost [56].

Haar-like features are made of patterns containing between two to four rectangles
of the image pixels. For instance in Figure 6.6, the value of a feature is computed by
subtracting the sums of the pixels of the white rectangle(s) to the sum of the pixels in
the black rectangle(s). In order to speedup the computation of the Haar-like features,
we used the integral image method, which accelerates the computation of rectangular
areas of an image.

The integral image consists in calculating for each pixel of the image, the sum of
all the pixels which have their (x, y) coordinates smaller than the current pixel. This
sum represents the value of the rectangular area formed by the origin of the image and
the pixel, as illustrated by Figure 6.7.a. This accelerates greatly the computation of
Haar-like features since it enables the computation of the sum of a rectangle of pixels
to be performed in constant time. Once the integral image computed, the sum of a
rectangle of pixels for which the corners would be the pixels A, B, C, and D can be
computed with the formula: ((II

D

�II
B

)�II
C

)+II
A

, where II
K

is the integral image

95

Results

������
�

� �

�	

�� ��

����������
������

Figure 6.7: a) In integral image, the value of the pixel A is the sum of all the pixels
in the colored rectangle. b) The computation of the rectangle defined by the pixels
ABCD is given by the formula ((D �B)� C) +A.

value of the pixel K. The computation of a rectangular value, illustrated by Figure
6.7.b, thus consists in one addition and two subtractions.

The face detection itself is then performed on the picture, by scanning it with a
search window specifying the area where face detection is performed. This window is
moved in order to performed the detection on every part of the image. For each zone
specified by the window, the computation of the Haar-like features is performed. In
order to optimize the process, the Haar-like features are split into stages, the first stages
being less computation-intensive and discarding more quickly a zone where there is no
face. So if at a stage the detection is negative, the application moves to the next zone of
the picture, otherwise it goes to the next stage of classifiers. If for a zone, no classifier
provides a negative result, then it is assumed that the zone contains a face. Once the
whole picture has been scanned, the search window is resized according to a scaling
factor, in order to perform the search at a higher scale. The scaling goes on until the
window becomes bigger than the picture. The final result is a set of coordinates of
areas containing faces. Since a face might have been detected multiple times, it might
be necessary to merge the overlapping areas so that each face is detected only once.

6.3.2 Specifications

In our implementation of the face-detection algorithm, we first perform an initialization
phase to process the image in order to optimize and accelerate detections. This initial
image processing is used to enhance the image so that the detection will be faster and
yield better results. The processing operations we perform are:

converting the image from colors to shades of gray: this reduces the size
of the processed data since a color pixel is usually encoded on 24 bits (8 bits per
color — red, green and blue) while a gray pixel is encoded on 8 bits.

reducing the size of the image by four, from 640 ⇥ 480 to 320 ⇥ 240: this

96

Application 2: Face detection with the Viola-Jones algorithm

����������	
������� ������
��	������

�	��	����	�
������	

�������		
�	������
�����

����������	

�����
��������	

��������
��������	
�������

 ������

�����!
����	��
������!����

"�������
!����

$ % & '

()*#+##

,

������!���
�����	�

,

Figure 6.8: The face detection application split in eleven tasks with the di↵erent links
between communicating tasks.

operation also reduces the size of data to work on without degrading the results
on images where faces are not too small.

enhancing the contrast: this is done through the histogram equalization tech-
nique which stretches the values of the pixel in shades of gray to the full range of
possible values on 8 bits (i.e. from 0 to 255).

applying a Gaussian blur: this blur is a preliminary operation that allows a
better edge detection.

Sobel processing: this is an edge detection method used to prune the area
where face detection is applied: parts of the picture that contain no edge are very
likely to contain no face, so detecting these areas allows to avoid to waste time
computing classifiers for these areas.

Canny edge detection: a technique used after Sobel to put even more in
evidence the edges in the picture.

All these steps are illustrated in Figure 6.9. Once these treatments are done, the
integral image is computed and the actual face detection phase is launched.

6.3.3 Results

Our implementation of the face-detection application is composed of 11 tasks as il-
lustrated by Figure 6.8. There is one task for each of the six operations described
above (Grayscale, Resize, Contrast enhancement, Gaussian, Sobel, Canny); two tasks

97

Results

���������	�
��� ������
�� ���������������
���

�������������

��������
��
����

���������
��
����

������

Figure 6.9: Illustration of the operations performed on the picture and of the final
result showing the detected faces.

for the acquisition: one for the image data, one for the classifiers (Image acquisition
and Classifier loading); one task for the computation of the integral image (Integral
image computation), one task for the actual face detection (Face detection) and finally
one task for the removal of the multiple detections (Multiple detection removal).

Since the whole set of classifiers is quite large and since the first stages are called
more often than the others — and are also smaller in size —, we split the classifier into
six sets of stages. The splitting is made so that the first four stages have their own
communication channel, and the rest of the 25 stages are split in two, each having their
own communication channel. This splitting allows us to have a more refined control
over the data mapping. The di↵erent types of data and their sizes are given in Table
6.7.

On-Target Profiling

Similarly to what was done for the MJPEG decoder, the application is parallelized
with KPNGen, before undergoing the on-target profiling. The results of the profiling
are shown in Table 6.8. We can see from this profiling that three tasks consume 90%
of the execution time: Face Detection, Classifier Loading and Contrast Enhancement.
E↵orts for optimization should consequently be focused on those tasks. In this example,
each task is called only once, except for the task performing the face detection, which
iterates as many times as the number of scales of the searching window.

98

Application 2: Face detection with the Viola-Jones algorithm

Table 6.7: List of the communication channels between tasks with the type and size
of data exchanged

Link Type Size (bytes)
1-3 IMG COLOR 921600
2-10 CLASSIFIER 1 3504
2-10 CLASSIFIER 2 6220
2-10 CLASSIFIER 3 10848
2-10 CLASSIFIER 4 13328
2-10 CLASSIFIER 5 12 261012
2-10 CLASSIFIER 13 25 935892
3-4 IMG GRAY 311964
4-5 IMG RESIZE GRAY 65416
5-6 IMG RESIZE GRAY 65416
6-7 IMG RESIZE GRAY 65416
7-8 IMG RESIZE GRAY 65416
7-8 IMG RESIZE GRAY 65416
8-9 IMG RESIZE GRAY 65416
9-10 IMG INTEGRAL 279056
9-10 IMG INTEGRAL 279056
9-10 SQUAREIMG INTEGRAL 558080
10-11 RESULTS 2400

Table 6.8: Results of the profiling on target for the face detection algorithm.

Task Percentage Cycles count
Image acquisition 7.32 % 174116541
Classifier loading 18.29 % 435077247
Grayscale 0.29 % 6908604
Resize 1.71 % 40583696
Contrast enhancement 9.09 % 216229518
Gaussian 1.85 % 44089594
Sobel 0.71 % 16768814
Canny 0.57 % 13565736
Integral image computation 0.38 % 9065774
Face detection 59.68 % 1419321643
Multiple detection removal 0.1 % 2496220

99

Results

���

�������

�	
����
	
�������

�	
����
	
�������

�	
����
	
�������

�����
���
	�

�������

�������
�	��������	

��������
�
��	
���	

�	
����
	
�������

Figure 6.10: Architecture template for the face detection application

���������

�������

	
�����
������

	
�����
������

������
������

�������

�������

���

����
������

���

���

�����
������

Figure 6.11: Processor template for the MJPEG decoder

100

Application 2: Face detection with the Viola-Jones algorithm

DSE Settings

Figure 6.10 shows the generic architecture for the face detection application. It is very
similar to the one for the MJPEG decoder, however there is no SRAM since it is not
present on the target ML605 FPGA board [57]. The display is here used to print the
di↵erent transformations of the image as well as the final result as illustrated by Figure
6.9. The processor template is also similar however there can be several instances of the
following associated to the processors: shared memory, local memory and co-processor.
The DSE-bound settings given as parameters for the exploration were:

There can be between one to four MicroBlazes;

There are two di↵erent memory types available: DDR and BRAM.

The Face detection task can also be duplicated to exploit data-parallelism;

The target is a Xilinx ML605 FPGA board [57].

The N
X

variables that set the scalability of the DSE were all set to -1, meaning
that no pruning was performed.

Again, no expert level constraint is specified in this case.

Data mapping exploration

In order to show the influence of the data mapping on the performance, an exploration
was performed where the task mappings remained constant. In this exploration, no
exploration for hardware acceleration is performed and data mappings were specified
manually, so that they remain constant between the di↵erent tested architectures. Also
the hypothesis was made that all the data can be mapped onto one single memory, thus
no constraint was put on the size of the memories.

The results are shown in Table 6.9 and in Figure 6.12. The task mapping notation is
similar to the one explained for the MJPEG. Tasks are in the order of the numbers given
in Figure 6.8. The memory mapping is specified as follows: there are as many numbers
as there are communication channels in application — the order is the same that in
Table 6.7 — and the number specifies the memory, in the same order as specified in
the previous column, i.e. in this case 0 means DDR and 1 means BRAM. The speedup
of each solution is computed from the worst solution, in this case the monoprocessor
solution where all the data are mapped in DDR.

The results clearly show the influence of the data mapping on the global performance
of the application. For instance in the monoprocessor architecture, the di↵erence in
performance between the full-BRAM mapping and the full-DDR mapping is of a factor
3. Hence the importance of having a good data-mapping algorithm. We can also
observe that the links corresponding to the classifier — the numbers from the second
position up to the seventh — have the most influence. This due to the fact that they
are accessed many times — especially the first stages — and thus it represents a huge
amount of data. According to one of our profilings, the data from the first stage are

101

Results

accessed 39327 times for a complete detection of one image. This represents over 130
MBytes of data for the first stage alone. Consequently, when the classifiers are mapped
on BRAM, the application is much faster.

We can also notice in the results that the number of processors has little influence in
the results. As said before, in our experiments there is only one iteration of the applica-
tion — i.e. we are only processing one picture —, consequently no task-parallelism can
be exploited with the exception of the Classifier loading task which can be performed
in parallel with the image preprocessing. This is why we have a gain in performance
when adding a second processor, but then the execution times remain more or less the
same when adding a third or a fourth processor. This shows the need to explore het-
erogeneous architectures and task-mapping in the domain of embedded systems when
no parallelism is available.

102

A
pplication

2:
F
ace

detection
w
ith

the
V
iola-Jon

es
algorithm

Table 6.9: Results of data mapping exploration for the face detection application. It shows the impact of data mapping on
the final performances.

Architecture Task Mapping Sesame Estimation Memories Memory Mapping Speedup
MB 0 0 0 0 0 0 0 0 0 0 0 3572076416 DDR BRAM 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,69
MB 0 0 0 0 0 0 0 0 0 0 0 4037332416 DDR BRAM 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,49
MB 0 0 0 0 0 0 0 0 0 0 0 4525249535 DDR BRAM 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,33
MB 0 0 0 0 0 0 0 0 0 0 0 2116825535 DDR BRAM 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 2,85
MB 0 0 0 0 0 0 0 0 0 0 0 3952468416 DDR BRAM 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,53
MB 0 0 0 0 0 0 0 0 0 0 0 6025465535 DDR BRAM 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1
MB 0 0 0 0 0 0 0 0 0 0 0 2058617535 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2,93
MB 0 0 0 0 0 0 0 0 0 0 0 6031585535 DDR BRAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
MB MB 0 1 1 0 1 0 0 0 1 0 0 3326095018 DDR BRAM 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,81
MB MB 0 1 1 0 1 0 0 0 1 0 0 3704023550 DDR BRAM 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,63
MB MB 0 1 1 0 1 0 0 0 1 0 0 4142594514 DDR BRAM 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,46
MB MB 0 1 1 0 1 0 0 0 1 0 0 1781351353 DDR BRAM 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 3,39
MB MB 0 1 1 0 1 0 0 0 1 0 0 3698600727 DDR BRAM 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,63
MB MB 0 1 1 0 1 0 0 0 1 0 0 5618087075 DDR BRAM 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1,07
MB MB 0 1 1 0 1 0 0 0 1 0 0 1806071993 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3,34
MB MB 0 1 1 0 1 0 0 0 1 0 0 5624207075 DDR BRAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,07
MB MB MB 0 1 1 2 2 2 1 2 2 0 2 2084067280 DDR BRAM 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 2,89
MB MB MB 0 1 1 2 2 2 1 2 2 0 2 3670913536 DDR BRAM 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,64
MB MB MB 0 1 1 2 2 2 1 2 2 0 2 4109484500 DDR BRAM 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,47
MB MB MB 0 1 1 2 2 2 1 2 2 0 2 1658972496 DDR BRAM 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 3,64
MB MB MB 0 1 1 2 2 2 1 2 2 0 2 3698584613 DDR BRAM 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,63
MB MB MB 0 1 1 2 2 2 1 2 2 0 2 5619524107 DDR BRAM 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1,07
MB MB MB 0 1 1 2 2 2 1 2 2 0 2 1675077145 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3,6
MB MB MB 0 1 1 2 2 2 1 2 2 0 2 5625644107 DDR BRAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,07
MB MB MB MB 0 2 3 1 0 2 1 2 3 1 1 3225915241 DDR BRAM 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,87
MB MB MB MB 0 2 3 1 0 2 1 2 3 1 1 3683237804 DDR BRAM 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,64
MB MB MB MB 0 2 3 1 0 2 1 2 3 1 1 4121808768 DDR BRAM 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1,46
MB MB MB MB 0 2 3 1 0 2 1 2 3 1 1 1647617440 DDR BRAM 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 3,66
MB MB MB MB 0 2 3 1 0 2 1 2 3 1 1 3666889069 DDR BRAM 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,64
MB MB MB MB 0 2 3 1 0 2 1 2 3 1 1 5547342464 DDR BRAM 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1,09
MB MB MB MB 0 2 3 1 0 2 1 2 3 1 1 1607916444 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3,75
MB MB MB MB 0 2 3 1 0 2 1 2 3 1 1 5562252966 DDR BRAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,08

103

Results

Automated Data Mapping Exploration & HW Accelerators.

In order to evaluate the e�ciency of our algorithm, we have launched another ex-
ploration, this time with fully-automatized memory mapping decisions, and with the
possibility for hardware acceleration. Here the tasks specified by the designer as accel-
erable through hardware are Contrast enhancement and Face detection, noted HEQ and
DET in Table 6.10 respectively. The accelerators were already present in the database
and thus no exploration was performed. Also the accelerator for the Face detection
task does not accelerate the whole task but simply a part of the classifier computation.
In this experiment, we performed several iterations of the program by executing it on
several images, in a fashion similar to frames coming from the video stream of a cam-
era. A consequence of having multiple iterations is that it reduce the importance of
the loading of the classifiers (the Classifier loading task), since this operation has only
to be performed once for all the images.

Table 6.10 and Figure 6.13 show the best results based on performances for a given
hardware architecture. The speedup is computed from the worst case found in this
given selected results, which is the full software monoprocessor solution. We can see
that it provides results with good performances and that our data-mapping algorithm
makes decisions that minimize the communication cost.

During this exploration, we generated 122 architectures in about 4 seconds which
were then evaluated with Sesame in 230 seconds, resulting in a total time of explo-
ration of 234 seconds. For an application that size, exhaustive mapping exploration
is no longer possible: for two processors the task mapping would give 2048 solutions,
with two memories and 18 communication channels there would be 262144 data map-
ping possibilities resulting in a total of over 536 millions solutions to evaluate, if the
exploration for both data and task mappings were exhaustive.

Parallelism Exploration

Hypotheses Another series of results were launched in order to study the influence
of the exploitation of the parallelism. For that we explored two di↵erent kinds of
parallelisms: data-parallelism and task-parallelism. For the data-parallelism this was
done by duplicating the task Face detection three times, since it is the most resource-
consuming task. To explore the pipelining, we perform several iterations of the program,
in a similar fashion of the previous experiment. The accelerators are the same than in
the previous exploration. In these results, some architectures have a processor that has
two coprocessors, one for the Face detection task and one for the Contrast enhancement.
These processors are noted HEQDET in the results. In this exploration, we took as
hypothesis that all communications would fit on BRAM memories which have a latency
of one cycle.

Results A selection of results of the exploration are shown in Table 6.11 and in Figure
6.14. We can see that this time the number of processors have an impact over the final
performances, as the architectures with more processors provides better performances.

104

Conclusion

When there is more than one processor, we can observe that duplication of the Face
detection task provide better performances. however we can see in some cases that
the version with duplicated tasks is slower than the version with no duplicated tasks:
this happens when the architecture contains at least one processor that do not have
a coprocessor for Face detection task. This is because our tool favors the mapping of
duplicated tasks on di↵erent processors instead of the most e�cient ones, otherwise
the benefits of duplication would disappear. These results were kept only for this
exploration experiment but in a real-case, our tool would check that there are enough
coprocessors given the number of times a task was duplicated, and would discard results
that do not fit this hypothesis. If we left out these cases, the speedups obtained over
similar architectures with no duplication is between 1.42 and 2.85, which is satisfying
since these speedups were obtained with no additional resources costs.

The best architecture obtained yields a speedup of 10.15 over the worst case, the full
software monoprocessor solution. This best solution corresponds to the architecture
with the maximum number of processors and where there is an accelerator for the
Contrast enhancement task and one accelerator for each of the duplicated Face detection
tasks. Given a frequency of 100 MHz for the target architecture, that would correspond
to the processing of 0.59 images per second.

Those results were obtained in four runs of the tools, one for each di↵erent config-
urations. In total there were 112 architectures generated — 4 ⇥ 28 — in 742 seconds.
The generation times were similar for each of the four runs, only the simulation times
di↵er as the implementations with iterations were taking the most time, since their
execution traces were bigger and consequently took longer to simulate.

Conclusion

This case study showed the e�ciency of our data-mapping algorithm. It also shows
that the exploitation of data parallelism is useful and can provide good performances
without increasing the cost.

6.4 Conclusion

With these results, we have shown that our framework is capable of providing e�cient
solutions very quickly. With the two studied applications, we have validated all the
exploration methods we used: task mapping with the Hungarian algorithm, hardware
exploration through HLS-based method, data-parallelism exploration through task du-
plication and successfully taken into account the data mapping. We have also compared
our performance with the Daedalus framework, which accepts the same application
types as us — i.e. SANLP — and shown that we were much faster in spite of the loss
in optimality of the results. Finally we have also shown that our performance estima-
tion are close to the ones of on-target implementation, thus proving the accuracy of
our estimators.

Besides the e�ciency of the solutions it provides, our framework also gives a set
of methods and tools — even though some of them still need to be finalized — that

105

Results

could simplify greatly the design by providing solutions that are far from obvious in a
domain as complex as the H-MPSoC one.

106

C
on

clu
sion

Table 6.10: Results of the automated mapping exploration.

Architecture Mapping Sesame Est. Memories Memory Mapping Speedup Slices BRAM DSP
MB 0 0 0 0 0 0 0 0 0 0 0 23892860176 DDR BRAM 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2103 0 0
MB MB 1 1 1 0 0 1 0 1 1 0 1 19957798877 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1,2 4206 0 0
MB MB MB 0 0 2 2 2 0 1 0 1 1 0 14503782376 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,65 6309 0 0
MB MB MB MB 1 3 2 2 3 2 0 1 0 0 3 14129193167 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1,69 8412 0 0
HEQ 0 0 0 0 0 0 0 0 0 0 0 17770105070 DDR BRAM 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1,34 9308 0 256
MB HEQ 1 1 1 0 1 1 0 0 1 0 1 14684103028 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1,63 11411 0 256
MB MB HEQ 1 1 2 0 2 2 2 1 2 0 1 13708065693 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,74 13514 0 256
MB MB MB HEQ 0 2 1 1 3 3 2 0 3 2 2 14955415396 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,6 15617 0 256
DET 0 0 0 0 0 0 0 0 0 0 0 13197892720 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,81 2103 0 0
MB DET 0 0 0 1 0 0 1 1 0 1 0 10711195459 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2,23 4206 0 0
MB MB DET 0 0 1 1 0 1 2 1 2 2 0 10191504361 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2,34 6309 0 0
MB MB MB DET 1 3 0 0 2 0 2 1 2 3 3 8661824052 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2,76 8412 0 0
DET HEQ 1 1 1 0 1 1 0 0 1 0 1 9482325330 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 2,52 11411 0 256
MB DET HEQ 2 2 0 1 2 0 0 0 0 1 2 8916949321 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2,68 13514 0 256
MB MB DET HEQ 3 0 1 1 3 0 2 0 2 2 0 12554660131 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,9 15617 0 256

107

R
es
u
lt
s

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
��

�

�
�
��

�

�
�
��

�

�
�
��

�

�
�
��

�

�
�
��

�

�
�
��

�

�
�
��

�

�
�
��

�
��

�

�
�
��

�
��

�

�
�
��

�
��

�

�
�
��

�
��

�

�
�
��

�
��

�

�
�
��

�
��

�

�
�
��

�
��

�

�
�
��

�
��

�

�
�
��

�
��

�
��

�

�
�
��

�
��

�
��

�

�
�
��

�
��

�
��

�

�
�
��

�
��

�
��

�

�
�
��

�
��

�
��

�

�
�
��

�
��

�
��

�

�
�
��

�
��

�
��

�

�
�
��

�
��

�
��

�

�

����������

����������

����������

����������

	���������

���������

����������

�

�

�

�

�

	

��������������� �����

�����������

�
�
�
�

��
�
��
�

�
!
�

�
�

�
�
�

Figure 6.12: Results of data mapping exploration.

�
�

�
�
��

�

�
�
��

�
��

�

�
�
��

�
��

�
��

�

�
�
�

�
�
��

�
�

�
�
��

�
��

�
�

�
�
��

�
��

�
��

�
�

�
�
�

�
�
��

�
�

�
�
��

�
��

�
�

�
�
��

�
��

�
��

�
�

�
�
�
��

�
�

�
�
��

�
�
��

�
�

�
�
��

�
��

�
�
��

�
�

	

									

�										

�
									

�										

�
									

										

�

���

���

���

���

�

���

���

���

���

����������������� �������

�� !��� �����

"
�
�
#
�
��
�
$�
%
&

'�
�

�
�
�
�
�
�
�

Figure 6.13: Results of the automated exploration.

10
8

C
on

clu
sion

�
�
�

�
�
�
��

�
�

�
�
�
��

�
�
��

�
�

�
�
�
��

�
�
��

�
�
��

�
�

�
�
�
��

�
�
��

�
�
��

�
�

�
�
�
��

�
�
��

�
�
��

�
�

�
�
�

�
�
�
��

�
�
��

�
�

�
�
�
��

�
�
��

�
�

�
�
�

�
�
�
��

�
�

�
�
�
��

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
��

�
�

�
�
��

�
�
��

�
�

�
�
��

�
�
��

�
�
��

�
�

�
�
��

�
�
��

�
�
��

�
�

�
�
��

�
�
��

�
�

�
�
��

�
�

�
�
��

�

�
�
��

�
��

�
�

�
�
��

�
��

�
�
��

�
�

�
�
��

�
��

�
�
��

�
�

�
�
��

�
��

�
�

�
�
��

�
��

�

�
�
��

�
��

�
��

�
�

�
�
��

�
��

�
��

�
�

�
�
��

�
��

�
��

�

	

								

�								

�								

								

�									

�
								

��								

�

�

�

�

�

�

�

�	

��

���������������������� �����! ��!"�#�������������������������������� �����! �����������������		���� �����!

��!"�#���������������������������		���� �����! ��!��!���������$��%��

& �$������ �!

�
�
'

(
�
 �
�
#�
)

*
�
��

!

+
�
�
�
�
�
�

Figure 6.14: Results of parallelism exploration.

109

R
esu

lts

Table 6.11: Results of the parallelism exploration. For each implementation the speedpus are given in comparison with the
implementation where no duplication and no iteration are performed. The last column gives the best speedup obtained in
comparison with the worst case i.e. the software monoprocessor implementation

Architecture No dupli-
cation, no
iterations

Task face de-
tection dupli-
cated, no iter-
ations

Speedup No dupli-
cation, 100
iterations

Speedup Task face de-
tection, 100
iterations

Speedup Speedup
over Soft-
ware
Mono-
processor

DET 648692376 571498564 1,14 619924068 1,05 500610435 1,3 2,57
DET DET 630080341 445049486 1,42 347841120 1,81 330792161 1,9 3,9
DET DET DET 617066053 426843467 1,45 332039773 1,86 282534817 2,18 4,56
DET DET DET DET 627894602 402234242 1,56 296154442 2,12 228586432 2,75 5,64
DET DET DET HEQ 434287452 375510221 1,16 293102088 1,48 255455410 1,7 5,04
DET DET DET HEQDET 434287466 211484481 2,05 293102088 1,48 126950800 3,42 10,15
DET DET HEQ 451978349 362717459 1,25 295787442 1,53 253308240 1,78 5,09
DET DET HEQDET 451978191 254479220 1,78 295787447 1,53 169990807 2,66 7,58
DET HEQ 434287474 607391886 0,72 337997768 1,28 469893461 0,92 3,81
DET HEQDET 434287374 262266344 1,66 337997768 1,28 200439287 2,17 6,43
HEQ 1105913611 1028719799 1,08 1077145303 1,03 914881997 1,21 1,41
HEQDET 465913595 388719783 1,2 437145287 1,07 274881981 1,69 4,69
MB 1288692392 1211498580 1,06 1259924084 1,02 1140610451 1,13 1,13
MB DET 617066001 761165310 0,81 404311812 1,53 470692108 1,31 3,19
MB DET DET 624472333 726862859 0,86 378465102 1,65 468232920 1,33 3,41
MB DET DET DET 627894620 541386624 1,16 296154442 2,12 287515040 2,18 4,48
MB DET DET HEQ 445188017 367223546 1,21 242491246 1,84 252955577 1,76 5,31
MB DET HEQ 442422871 574138512 0,77 295787447 1,5 451815377 0,98 4,36
MB HEQ 1074359536 580446531 1,85 899322368 1,19 477489550 2,25 2,7
MB MB 1257138247 723549718 1,74 897642973 1,4 620307541 2,03 2,08
MB MB DET 617138139 755276464 0,82 364606042 1,69 456425125 1,35 3,53
MB MB DET DET 645061104 528162395 1,22 258998202 2,49 288775126 2,23 4,98
MB MB DET HEQ 434287416 405103199 1,07 242491246 1,79 219445789 1,98 5,87
MB MB HEQ 1085117147 574138432 1,89 881987256 1,23 407709321 2,66 3,16
MB MB MB 1264472209 742959675 1,7 858087399 1,47 610185510 2,07 2,11
MB MB MB DET 627895808 528521909 1,19 296154455 2,12 267211289 2,35 4,82
MB MB MB HEQ 1085188035 380156441 2,85 855817133 1,27 286710851 3,78 4,49
MB MB MB MB 1267894636 540089421 2,35 849519052 1,49 407087132 3,11 3,17

110

7
Conclusion

7.1 Summary

In this thesis, we have presented a framework to make possible the design of Heteroge-
neous Multiprocessor Systems-on-Chip on FPGA, which are far from current practices
in embedded system industry. Indeed designing such systems is still a challenge due
to the complexity of H-MPSoC architecture which combines parallelism and heteroge-
neous programming, paradigms that remain major obstacles to e�cient designs. Few
designers have both these expertises and consequently a new generation of tools is
needed at an even higher-level of specifications in order to abstract the lower-level de-
sign complexity. In addition to the programming di�culties, the growing complexity
of those systems is also a problem for their design as the number of design options
explodes and can no longer be evaluated manually. Moreover the optimization of such
architectures lies on design choices, which are usually not straightforward. As a matter
of fact, the e�ciency of the final design is strongly dependent on memory mapping,
number of processors, interconnect scheme and hardware accelerator choices.

In this work, we have proposed a solution to these problems, by providing designers
with a design flow that allows them to choose their involvement in the design: they
can provide a few basic constraints and let the tool explore the solutions or can provide
extra-constraints, resulting from their skills and their knowledge of the system under
design, letting the tool deals only with the most tedious and time-consuming tasks. We
have presented in this thesis, several contributions to achieve this goal.

First, the use of a template based approach provides a simple way to specify design
constraints. It can specify a generic architecture description to cope with the lack of
underlying processor architecture model, contrary to standard in fixed architectures
— e.g. ARM-based — for embedded systems. This architecture contains domain
specific constraints and is used as a basis for the DSE. The template’s multiple levels of
specifications allow designers to express the design constraints according to their levels
of expertise and on how much they want to get involve in the design. Based on this
level of constraints, the tool will adapt its design flow, whether dealing with only the
tedious steps or going further by taking most of the design decisions.

An automated and scalable design space exploration method, that relies on fast and
accurate estimators for cost and performance. This method allows to quickly evaluate
a great number of design options and accordingly take the best decisions. It brings an

111

Conclusion

answer to the increasing size of the design space due to the complexity H-MPSoC. The
DSE flow explores the following dimensions: the number and types of processors, buses,
memories, task mappings, data mappings, data-parallelism and hardware accelerators.

In order to perform the latter, our work also introduces a methodology for exploring
tradeo↵ between cost and performances in hardware accelerators through HLS. Based
on the IP characteristics and the use of analytical models, it can provide accurate
estimations of the logic resource cost thus avoiding a time-consuming logic synthesis.
This time-saving technique allows the integration of hardware accelerators exploration
inside the main DSE loop. We also provide a way to speed up the system with a
minimal cost, by exploiting data parallelism through task duplication.

Finally, the use of MDE approaches enables model transformation, code generation
and model checking in the design. It brings a solution to the problem of lack of standard
API for FPGA designs by abstracting the design specifications from specific hardware
implementation details. As a consequence, designs becomes more easily portable from
one target to another. We also implemented databases populated from previous designs
and that contain several design elements that can be reused in future designs. This
can greatly speed-up the design phase as it provides already-tested and consequently
bug-free solutions.

In this thesis, we have proposed a tool flow that simplifies the design through the
automation of cumbersome design tasks, enables reusability and portability through
MDE approaches and takes into account the designer expertise to provide better solu-
tions. This approach has been successfully validated with real case applications. Our
approach is a first step towards an environment for embedded system design based
on FPGA. This kind of tool is particularly required by SME that expect development
time and complexity close to existing solutions for processor-based platform. In this
work, we have demonstrated that the proposed framework enables the exploration of
hundreds of configurations in a few seconds. Short exploration time is important but
more than anything it means that incremental design methods are possible. So it opens
new perspectives since the choice of the architecture template including memory orga-
nization, di↵erent task splitting or task decomposition can be tested by designers who
can have fast feedbacks to evaluate their choices.

7.2 Perspectives

If we take the description of the ideal framework flow described in Section 2.1, we
observe that some steps still need to be considered. So to extend further our work, we
propose the followings:

Take into account power consumption during DSE. This include the development
of a model for power consumption that can evaluate the energy cost of compo-
nents. These estimations can be based on the power consumption models of the
Open-PEOPLE project [46] which are also based on AADL thus facilitating their
integrations into our framework. Another way to enhance power saving, would be

112

Jean-Philippe Diguet

Perspectives

to take into account dynamic reconfigurabition, thus allowing the use of smaller,
less power-consuming FPGA.

Extend the scalability of the designed architectures in order to enable the support
of manycore architectures. Such support requires, among other things, to include
the possibility to use a NoC. Our template-based approach can be adapted to the
support of manycore by using it to define the basic repeatable pattern used to
set the scalability.

Implement the graphical user interface for configuring the inputs of the framework
described in Section 5.5.1. This GUI could also be used to display the results of
the exploration and allows designers to select the architecture they want.

Populate the databases by providing more templates and components to support
other architectures. This also includes the specification of more analytical models
for HLS-based cost estimation during hardware accelerators exploration in order
to extend the supported targets.

To adapt the flow of our framework to other MoCs. This would allows to broaden
the range of applications that can be accepted as input in our tool. However that
would also require a substantial amount of additional development, as the KPN
MoC strongly constrains the application and consequently resolve a consequent
number of problems, especially for communication and synchronization.

Exploit the proposed framework as an opportunity for a technology transfer. That
would requires additional software development to go from the proof of concept
framework we proposed to an industrial Computer-Aided Design (CAD) tool.

113

Jean-Philippe Diguet

Conclusion

114

8
Bibliography

[1] TI OMAP Processors presentation webpage. http://www.ti.com/general/docs/

gencontent.tsp?contentId=46946. Last accessed: 03/12/2012. 5

[2] Xilinx Zynq Platform documentation webpage. http://www.xilinx.com/support/

documentation/zynq-7000.htm. Last accessed: 03/12/2012. 6

[3] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian. High Performance Biological
Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP. International
Journal of Reconfigurable Computing, 2012, 2012. 6, 30, 72

[4] M. Thompson, H. Nikolov, T. Stefanov, A.D. Pimentel, C. Erbas, S. Polstra, and E.F.
Deprettere. A framework for rapid system-level exploration, synthesis, and programming
of multimedia mp-socs. In Proceedings of the 5th IEEE/ACM international conference on
Hardware/software codesign and system synthesis, pages 9–14. ACM, 2007. 11, 12, 39, 89

[5] S. Verdoolaege, H. Nikolov, and T. Stefanov. PN: A tool for improved derivation of process
networks. EURASIP Journal on Embedded Systems, 2007(1):19–19, 2007. 12, 40

[6] H. Nikolov, T. Stefanov, and E. Deprettere. Multi-processor system design with ESPAM.
In CODES+ ISSS’06, pages 211–216, 2006. 12, 40

[7] A.D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring embedded
system architectures at multiple abstraction levels. Computers, IEEE Transactions on,
55(2):99–112, 2006. 12, 41, 48, 68

[8] J. Keinert, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, M. Meredith, et al.
SystemCoDesigner—an automatic ESL synthesis approach by design space exploration and
behavioral synthesis for streaming applications. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 14(1):1–23, 2009. 13, 14

[9] J. Falk, C. Haubelt, and J. Teich. E�cient representation and simulation of model-based
designs in systemc. In Proceedings of the International Forum on Specification & Design
Languages (FDL’06), pages 129–134, 2006. 13

[10] Forte Cynthesizer. http://www.forteds.com/products/cynthesizer.asp. 13

[11] S. Shibata, S. Honda, H. Tomiyama, and H. Takada. Advanced SystemBuilder: A tool
set for multiprocessor design space exploration. SoC Design Conference (ISOCC), 2010
International, pages 79 – 82, 2010. 14, 15

[12] M. Rashid, F. Ferrandi, and K. Bertels. hArtes design flow for heterogeneous platforms. In
Quality of Electronic Design, 2009. ISQED 2009. Quality Electronic Design, pages 330–338.
IEEE, 2009. 15, 16

115

http://www.ti.com/general/docs/gencontent.tsp?contentId=46946
http://www.ti.com/general/docs/gencontent.tsp?contentId=46946
http://www.xilinx.com/support/documentation/zynq-7000.htm
http://www.xilinx.com/support/documentation/zynq-7000.htm
http://www.forteds.com/products/cynthesizer.asp

Bibliography

[13] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E.M. Panainte.
The MOLEN Polymorphic Processor. Computers, IEEE Transactions on, 53(11):1363–
1375, 2004. 16

[14] A. Fraboulet, T. Risset, and A. Scherrer. Cycle Accurate Simulation Model Generation
for SoC Prototyping. Computer Systems: Architectures, Modeling, and Simulation, pages
255–269, 2004. 16

[15] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and S. Vassiliadis. DWARV:
Delftworkbench Automated Reconfigurable VHDL Generator. In Field Programmable Logic
and Applications, 2007. FPL 2007. International Conference on, pages 697–701. IEEE,
2007. 16

[16] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y. Joo. Peace: A hardware-software codesign
environment for multimedia embedded systems. ACM Transactions on Design Automation
of Electronic Systems, 12(3), 2007. 17, 18

[17] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. International Journal of Computer Simulation,
4:155–182, 1994. 17, 35

[18] Xilinx Platform Studio website. http://www.xilinx.com/tools/xps.htm. Last accessed:
26/11/2012. 18

[19] L. Moss, H. Guérard, G. Dare, and G. Bois. Rapid Design Exploration on an ESL Frame-
work featuring Hardware-Software Codesign for ARM Processor-based FPGA’s. Space, 1,
2012. 18

[20] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Martin. GAUT: A High-Level
Synthesis Tool for DSP applications. Springer, 2008. 23, 53

[21] Xilinx Fast Simplex Link documentation. http://www.xilinx.com/products/ipcenter/
FSL.htm. 23

[22] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.H. Anderson, S. Brown, and
T. Czajkowski. LegUp: high-level synthesis for FPGA-based processor/accelerator systems.
In Proceedings of the 19th ACM/SIGDA international symposium on Field programmable
gate arrays, pages 33–36. ACM, 2011. 24

[23] NIOS C2H Compiler’s presentation webpage. http://www.altera.com/products/ip/

processors/nios2/tools/c2h/ni2-c2h.html. 24

[24] CyberWorkBench webpage. http://www.nec.com/en/global/prod/cwb/. Last accessed:
05/12/2012. 25

[25] C. Pilato and F. Ferrandi. Bambu: A Free Framework for the High Level Synthesis of
Complex Applications. University Booth of DATE 2012. DATE’12., 2012. 25

[26] Berkeley Design Technology. An independent evaluation of the autoesl autopilot high-level
synthesis tool., 2010. 26

[27] Marcio F. S. Oliveira, Eduardo W. Brião, Francisco A. Nascimento, and Flávio R. Wagner.
Model driven engineering for MPSOC design space exploration. In Proceedings of the 20th
annual conference on Integrated circuits and systems design, SBCCI ’07, pages 81–86. ACM,
2007. 26, 27

116

http://www.xilinx.com/tools/xps.htm
http://www.xilinx.com/products/ipcenter/FSL.htm
http://www.xilinx.com/products/ipcenter/FSL.htm
http://www.nec.com/en/global/prod/cwb/

[28] R.B. Atitallah, E. Piel, S. Niar, P. Marquet, and J.L. Dekeyser. Multilevel MPSoC Sim-
ulation using an MDE Approach. In SOC Conference, 2007 IEEE International, pages
197–200. IEEE, 2007. 27

[29] Object Management Group Management Group. A UML Profile for MARTE, Beta 1,
2007. 27

[30] J. Vidal, F. De Lamotte, G. Gogniat, P. Soulard, and J.P. Diguet. A co-design approach
for embedded system modeling and code generation with UML and MARTE. In Design,
Automation & Test in Europe Conference & Exhibition, 2009. DATE’09., pages 226–231.
IEEE, 2009. 28

[31] J. Vidal. Dynamic and Partial Reconfigurable Embedded Systems Design with UML. PhD
thesis, Université de Bretagne Sud, 2010. 28

[32] Eclipse framework website. http://www.eclipse.org. 29, 73

[33] R. Dafali. Conception des réseaux sur puce reconfigurables dynamiquement. PhD thesis,
Université de Bretagne Sud, 2011. 33

[34] G. Kahn. The semantics of a simple language for parallel programming. Information
processing, 74:471–475, 1974. 35

[35] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call graph execution profiler.
ACM Sigplan Notices, 17(6):120–126, 1982. 35

[36] Xilinx, OS and Libraries Document Collection (UG 643). http://www.xilinx.com/

support/documentation/sw_manuals/xilinx12_3/oslib_rm.pdf. 38

[37] H.L. Muller. Simulating computer architectures. PhD thesis, Universiteit van Amsterdam,
1993. 41

[38] J.E. Co✏and and A.D. Pimentel. A software framework for e�cient system-level perfor-
mance evaluation of embedded systems. In Proceedings of the 2003 ACM symposium on
Applied computing, pages 666–671. ACM, 2003. 41

[39] Online OpenCores library. http://opencores.org/. 44, 52

[40] Xilinx. Virtex-5 Family Overview (DS100). 2006. 44

[41] H.W. Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955. 51, 66

[42] Van-Trinh Hoang. CAO pour la synthèse d’architectures multiprocesseurs: Interface
d’exploration de l’espace de conception, la synthèse d’architecture et une librairie d’IP
pré-caractérisées. Master’s thesis, Université de Bretagne-Sud, 2011. 52

[43] Xilinx. Virtex-5 FPGA User Guide. UG190, 5, 2009. 56

[44] S. Rouxel, G. Gogniat, J-Ph. Diguet, J-L Philippe, and C. Moy. Models Driven Engineering
for Distributed Real-Time Embedded Systems. In From MDD Concepts to Experiments and
Illustrations, pages 111–130 (Chap. 7). Lavoisier, 2006. 72

[45] P.H. Feiler. The architecture analysis & design language (AADL): An introduction. Tech-
nical report, DTIC Document, 2006. 72

[46] Open-PEOPLE project descritption. http://raweb.inria.fr/rapportsactivite/

RA2010/dart/uid111.html. Last accessed: 10/12/2012. 72, 112

117

http://www.eclipse.org
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/oslib_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/oslib_rm.pdf
http://opencores.org/
http://raweb.inria.fr/rapportsactivite/RA2010/dart/uid111.html
http://raweb.inria.fr/rapportsactivite/RA2010/dart/uid111.html

Bibliography

[47] R. Ben Atitallah, E. Senn, D. Chillet, M. Lanoe, and D. Blouin. An e�cient Framework
for Power-Aware Design of Heterogeneous MPSoC. 2011. 72

[48] MicroBlaze Processor Reference Guide. http://www.xilinx.com/support/

documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf. 73, 75, 87

[49] Eclipse Modeling Framework Project website. http://www.eclipse.org/modeling/emf/.
73

[50] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Modeling Frame-
work. Addison-Wesley Professional, 2008. 73

[51] Platform Format Specification Reference Manual - Xilinx (UG 642). http://www.xilinx.
com/support/documentation/sw_manuals/xilinx13_2/psf_rm.pdf, 2011. 81

[52] I. Augé, F. Pétrot, F. Donnet, and P. Gomez. Platform-based design from parallel C spec-
ifications. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 24(12):1811–1826, 2005. 85

[53] Xilinx XUPV5-LX110T FPGA Board Documentation. http://www.xilinx.com/univ/

xupv5-lx110t.htm. Last accessed: 21/08/2012. 86, 88

[54] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on, volume 1, pages I–511. IEEE, 2001. 94

[55] Face Detection using OpenCV (Open-Source Computer Vision) webpage. http://opencv.
willowgarage.com/wiki/FaceDetection. Last accessed: 21/11/2012. 94

[56] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. In Computational learning theory, pages 23–37. Springer, 1995. 95

[57] Xilinx ML605 FPGA Board Documentation. http://www.xilinx.com/products/

boards/ml605/reference_designs.htm. Last accessed: 22/11/2012. 101

118

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf
http://www.eclipse.org/modeling/emf/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/psf_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/psf_rm.pdf
http://www.xilinx.com/univ/xupv5-lx110t.htm
http://www.xilinx.com/univ/xupv5-lx110t.htm
http://opencv.willowgarage.com/wiki/FaceDetection
http://opencv.willowgarage.com/wiki/FaceDetection

List of Publications

International Conferences

1. Y. Corre, J.P. Diguet, D. Heller, and L. Lagadec. A Framework for High-Level
Synthesis of Heterogeneous MPSoC. In Proceedings of the Great Lakes Symposium
on VLSI (GLSVLSI 2012), Salt Lake City (USA), pages 283–286. ACM, 2012.

2. Y. Corre, V.T. Hoang, J.P. Diguet, D. Heller, and L. Lagadec. HLS-based Fast
Design Space Exploration of ad hoc Hardware Accelerators: a Key Tool for MP-
SoC Synthesis on FPGA. In International Conference on Design and Architectures
for Signal and Image Processing (DASIP), Karlsruhe (Germany), 2012.

3. Y. Corre, J.P. Diguet, L. Lagadec, D. Heller and D. Blouin. Fast Template-based
Heterogeneous MPSoC Synthesis on FPGA. In Applied Reconfigurable Computing
2013 (ARC 2013), Los Angeles (USA), 2013.

Journal

1. L. Lagadec, D. Picard, Y. Corre, and P.Y. Lucas. Experiment Centric Teaching
for Reconfigurable Processors. International Journal of Reconfigurable Comput-
ing, 2011, 2011.

Conferences with no selection

1. Y. Corre, J.P. Diguet, L. Lagadec, and D. Heller. A Framework for Automated
Design Space Exploration and Synthesis of Heterogeneous MPSoC, Demonstra-
tion at the University Booth at the Design, Automation & Test in Europe 2012
(UBOOTH DATE 2012), Dresden (Germany), 2012.

2. Y. Corre, J.P. Diguet, D. Heller, L. Lagadec, and V.T. Hoang. Complete Hetero-
geneous MPSoC Synthesis, GDR SoCSIP, Lyon (France), 2011.

119

List of Publications

120

List of Figures

2.1 Ideal design flow for an H-MPSoC. 10
2.2 Design flow of Daedalus . 12
2.3 Design flow of SystemCoDesigner . 13
2.4 Design flow of Advanced Systembuilder 14
2.5 Design flow of hArtes . 16
2.6 Design flow of the PeaCE framework . 17
2.7 Architecture model of the hardware accelerator generated by GAUT. . . 23
2.8 Design flow of the LegUp framework . 24
2.9 Design flow of Bambu . 25

3.1 Spectrum of existing processing units types. 30
3.2 Pros and cons of the di↵erent types of System-on-Chip architectures. . . 31
3.3 Example of a H-MPSoC . 31
3.4 The model of architecture targeted by our framework. 33
3.5 Example of a Static A�ne Nested-Loop Program. 35
3.6 Overview of the framework flow . 36
3.7 Flow of the profiling step. 37
3.8 Technologies and formalisms used to interface with other tools. 39
3.9 Organization of the hardware accelerators database. 43

4.1 Flow of the Design Space Exploration. 46
4.2 Flow of the Hardware IP exploration. 52
4.3 Logic resource estimation through HLS features projection. 54
4.4 UML representation of the target FPGA metamodel. 55
4.5 UML representation of the metamodel of an IP generated with GAUT. . 55
4.6 Illustration of the FSM cost/Operators cost ratio 57
4.7 Results of a series of generated IPs for a Gaussian filter. 58
4.8 Task graph of an application before and after duplication. The trans-

mitted data are also split equally between the di↵erent task, so that only
the necessary are transfered . 59

4.9 Illustration of the modified code of a duplicated task 60

5.1 Excerpt of the AADL model of the MicroBlaze. 74
5.2 Example representation of a template a) of the full architecture; b) detail

of the processor template. 77
5.3 Illustration of the template configuration GUI. 79
5.4 The model transformation process. 81
5.5 Example of the instantiation of a MicroBlaze in a Xilinx MHS files . . . 82

6.1 Representation of the Kahn Process Network of the implementation of
the MJPEG decoder split in 5 tasks. 86

6.2 Architecture template for the MJPEG decoder 87
6.3 Processor template for the MJPEG decoder 88

121

List of Figures

6.4 Results of the exploration of the MJPEG by our framework sorted by
increasing FPS. 93

6.5 Comparison between our cost estimation and post-logic synthesis re-
source occupation . 93

6.6 Examples of Haar-like features. 95
6.7 Illustration of the computation of an integral image 96
6.8 The face detection application split in eleven tasks with the di↵erent

links between communicating tasks. 97
6.9 Illustration of the face detection flow. 98
6.10 Architecture template for the face detection application 100
6.11 Processor template for the MJPEG decoder 100
6.12 Results of data mapping exploration. 108
6.13 Results of the automated exploration. 108
6.14 Results of parallelism exploration. 109

122

List of Tables

2.1 Comparison of existing ESL frameworks. 20

6.1 Results of the profiling on target. 87
6.2 Results of the exploration by our framework for the MJPEG decoder. . 90
6.3 Comparison between the mappings found with the Hungarian algorithm

method and the exhaustive mapping exploration. 92
6.4 Comparison of the implementations on FPGA of di↵erent MJPEG ar-

chitectures and the performance evaluations given by our tool. 94
6.5 Detailed characteristics of the chosen IDCT IP 94
6.6 Accuracy of cost estimation and measured accuracy for series of IPs

generated for 10 di↵erent functions. 95
6.7 List of the communication channels between tasks with the type and size

of data exchanged . 99
6.8 Results of the profiling on target for the face detection algorithm. 99
6.9 Results of data mapping exploration for the face detection application. . 103
6.10 Results of the automated mapping exploration. 107
6.11 Results of the parallelism exploration. 110

123

List of Tables

124

List of Algorithms

1 Algorithm of the Architecture DSE. 50
2 Data and Task Mapping Algorithm. 64

125

List of Algorithms

126

Glossary

AADL Architecture Analysis & Design Language. 70, 78, 79, 81, 108

ALAP As Late As Possible. 64

API Application Programming Interface. 15, 108

ASAP As Soon As Possible. 64

ASIC Application Specific Integrated Circuit. 30

ATL ATL Transformation Language. 71, 79

CABA Cycle-Accurate Byte-Accurate. 15, 18, 19, 21, 28

CAD Computer-Aided Design. 109

DSE Design Space Exploration. 7, 19, 24, 28, 74, 76, 78

DSL Domain Specific Language. 69, 81

DSP Digital Signal Processor. 16

ESL Electronic System-Level. 11

FIFO First-in, First-Out. 33, 35

FPGA Field-Programmable Gate Array. 6, 29, 70

FSL Fast Simplex Link. 73, 86

GPP General Purpose Processor. 6, 16, 30

GPU Grapical Processing Unit. 6

GUI Graphical User Interface. 9

H-MPSoC Heterogeneous Multiprocessor System-on-Chip. 5, 7, 8, 19, 79, 108

HLS High-Level Synthesis. 7, 26, 39, 108

IDCT Inverse Discrete Cosine Transform. 83, 84

IP Intellectual Property. 16, 18, 87

ISS Instruction Set Simulator. 11, 17

KPN Kahn Process Network. 35, 84

127

Glossary

LMB Local Memory Bus. 73, 86

LUT Look-Up Tables. 76

MDE Model-Driven Engineering. 8, 28, 69, 70, 81, 108

MoC Model of Computation. 17, 18, 34, 35

MPSoC Multiprocessor System-on-Chip. 5, 28

NoC Network-on-Chip. 33, 73, 109

PLB Processor Local Bus. 73, 85

QVT Query/View/Transformation. 71

SANLP Static A�ne Nested-Loop Program. 35, 84, 102

SME Small and Medium Enterprises. 5, 108

SoC System-on-Chip. 5

UML Unified Modeling Language. 69

VLIW Very Long Instruction Word. 34

128

	Contents
	Introduction
	Contributions
	Outline

	State of the Art
	Ideal ESL Framework
	Existing MPSoC Design Tools
	Daedalus
	SystemCoDesigner
	Advanced Systembuilder
	hArtes
	PeaCE
	Xilinx XPS
	Space CoDesign
	Conclusion

	High-Level Synthesis Tools
	Gaut
	LegUp
	C2H
	CyberWorkBench (CWB)
	Bambu
	AutoESL's AutoPilot
	Conclusion

	MDE-based Design of MPSoC
	Model Driven Engineering for MPSoC DSE
	Multilevel MPSoC Simulation using an MDE Approach
	A Co-design Approach for Embedded System Modeling and Code Generation with UML and MARTE
	Conclusion

	Flow of the Framework
	Flow Global Overview
	Tool Implementation
	Target Architecture
	Inputs
	Flow Overview
	Automated Profiling

	External Tools
	HLS Tool
	Daedalus
	Xilinx XPS

	Database-based Strategy
	Template Architecture Database
	Hardware Accelerators Database
	FPGA Model Database
	Reuse-based Strategy

	Conclusion

	Design Space Exploration Methodology
	DSE Algorithm
	Algorithm
	Explanations

	Performance & Cost Estimation
	Hardware Accelerators Exploration
	HLS-based Estimations
	Pareto-optimal Selection

	Data Parallelism Exploration through Task Duplication
	Communication & Memory Model
	Congestion Detection

	Data-Task Mapping & Scheduling Strategy
	Data Mapping
	Task Mapping
	Scheduling

	Conclusion

	Template-based Approach
	Introduction to MDE
	Application to FPGA-based Design
	AADL
	Eclipse Modeling Framework

	Component Models
	Specification Template
	Template Configuration Interface

	Code Generation
	Software Application Adaptation
	Implementation Project Files

	Conclusion

	Results
	Application 1: MJPEG decoder
	Presentation
	Specifications
	Results

	Hardware Accelerators Exploration
	IDCT IP Exploration
	Benchmark

	Application 2: Face detection with the Viola-Jones algorithm
	Presentation
	Specifications
	Results

	Conclusion

	Conclusion
	Summary
	Perspectives

	Bibliography
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms
	Glossary

