
HAL Id: tel-01114299
https://hal.science/tel-01114299

Submitted on 9 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

From Theory to Practice, a Tour of Image Denoising
Marc Lebrun

To cite this version:
Marc Lebrun. From Theory to Practice, a Tour of Image Denoising. Mathematics [math]. ENS
Cachan, 2014. English. �NNT : �. �tel-01114299�

https://hal.science/tel-01114299
https://hal.archives-ouvertes.fr

N◦ ENSC-2011

THÈSE DE DOCTORAT
DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Présentée par
Monsieur Marc LEBRUN

pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Domaine: MATHEMATIQUES APPLIQUÉES

Sujet de la thèse:

From Theory to Practice, a Tour of Image Denoising

Rapporteurs :

Luis Alvarez Professor Universidad de Las Palmas de Gran Canaria
Javier Portilla Director of Research Instituto de Óptica “Daza de Valdés”
Patrick Pérez Distinguished Scientist Technicolor

Thèse présentée et soutenue à Cachan le 12 juin 2014 devant le jury composé de :

Andrés Almansa Research Scientist CNRS, Telecom Paris Tech
Luis Alvarez Professor Universidad de Las Palmas de Gran Canaria
Frédéric Cao Deputy Chief Scientist DxO Labs
Frédéric Guichard Chief Scientist DxO Labs
Jean-Michel Morel Professor ENS Cachan
Patrick Pérez Distinguished Scientist Technicolor
Javier Portilla Director of Research Instituto de Óptica “Daza de Valdés”

Centre de Mathématiques et de Leurs Applications
(ENS CACHAN/CNRS/UMR 8536)

61, avenue du Président Wilson, 94235 CACHAN CEDEX (France)

ii

Résumé:
Cette thèse CIFRE se situe dans le cadre de la collaboration étroite entre DxO Labs et le CMLA
depuis de nombreuses années, comportant une veille bibliographique active sur différents sujets
du traitement d’image, ainsi que la recherche de solutions académiques aux problèmes concrets
soulevés par DxO Labs.
Le but de la thèse était la recherche et l’implémentation d’une nouvelle génération d’algorithmes
de débruitage d’images raw dans le produit phare de DxO Labs : Optics Pro.
Pendant toute la durée de la thèse, une analyse détaillée de l’état-de-l’art du débruitage et des
nouveautés a été menée, menant à l’implémentation open-source de deux méthodes emblématiques
de débruitage. Parallèlement, les besoins de DxO Labs en terme de qualité image ont été pré-
cisément définis, ce qui a mené à lélaboration d’une nouvelle méthode académique de débruitage,
surclassant celles déjà existantes, la méthode NL-Bayes. Son implémentation au cœur du code
d’Optics Pro a permis de développer une approche multi-échelle et dépendante du signal. Cette
méthode est implémentée dans la dernière version d’Optics Pro 9 de 2013 sous le nom de PRIME,
qui a reçu un accueil médiatique très positif. Finalement, en étroite collaboration avec Miguel
Colom et m’appuyant sur ses travaux d’estimation de bruit, j’ai développé un algorithme de
débruitage aveugle permettant de débruiter efficacement toute sorte d’images naturelles. Cette
dernière méthode est quasiment pionnière en la matière, puisque l’état-de-l’art antérieur dans ce
domaine se réduisait à une unique méthode.

Abstract:
This CIFRE thesis is part of a close and long-standing collaboration between DxO Labs and
CMLA. The main goal of this collaboration is to maintain a technological awareness in digital
image processing, and to bring academic solutions to concrete problems raised by DxO Labs.
The aim of my thesis was to establish the state of the art in image denoising, with in view the
development of a new generation of raw images denoising algorithms into the flagship product of
DxO Labs: Optics Pro.
I performed a detailed analysis of state of the art denoising methods leading to the open-source
implementation of two emblematic denoising algorithms. Simultaneously, the needs of DxO Labs
in term of image quality were precisely defined. This led in a second phase to the conception
of a new academic denoising method, NL-Bayes, outperforming existing ones. In a third phase,
its implementation into the code of Optics Pro allowed us to develop a multiscale and signal-
dependent approach. The result -renamed PRIME- is currently available in the last version of
Optics Pro 9, 2013, with excellent press reviews. Finally, in a close collaboration with Miguel
Colom, who developed a single image noise estimation, I developed a multiscale blind denoising
algorithm, which gives convincing results on most natural noisy images. This last method is rather
pioneering, as the state of the art in blind denoising was reduced to only one method.

Press Review of PRIME (Optics pro v9):
• Cardinal Photo (David Cardinal, 2013): “it was with great interest that I read about DxO’s new

PRIME noise reduction [. . .] it is far superior.”
• Life After Photoshop (Rod Lawton, 2013): “DxO Optics Pro has excellent high ISO noise reduction”,

“as good as DxO says it is.”
• Experts Graphistes (Daniel Barrios, 2013): DxO Optics Pro “traite le bruit très efficacement et

donne un résultat tout à fait époustouflant.”
• La Nouvelle République (Jean-Christophe Solon, 2013): “DxO Optics Pro 9 s’impose comme un

incontournable.” “L’essayer c’est l’adopter.”
• Mac 4 Ever (Arnaud, 2013): “Le module de débruitage Prime est ce que nous avons vu de meilleur

à ce jour en la matière.”
• Alpha-Numérique (Patrick Moll, 2013): “La technologie PRIME [. . .] offre une réduction du bruit

d’une qualité exceptionnelle qui laisse les logiciels concurrents bien loin derrière.”

iii

iv

Remerciements
Je remercie tout particulièrement Jean-Michel Morel pour m’avoir dirigé ces trois dernières années.
J’ai beaucoup aimé travailler avec lui, et j’ai énormément appris à ses côtés. Ses réunions de
travail qui dérivaient souvent sur des sujets de discussions philosophiques ou de culture générale
me manqueront beaucoup. Merci d’avoir été présent et disponible quand il le fallait tout en me
laissant beaucoup de latitude dans l’organisation de mon travail.
Je tiens à remercier Frédéric Cao pour son encadrement à DxO, et notamment pour toutes les
bonnes idées qu’il a su m’apporter lors du développement de PRIME. Sans son aide, PRIME ne
serait sans doute jamais sorti dans la v9 d’Optics Pro. Je remercie aussi Luis Alvarez, Patrick
Pérez et Javier Portilla d’avoir bien voulu être mes rapporteurs. Merci de plus à Andrés Almansa,
Luis Alvarez, Frédéric Cao, Frédéric Guichard, Jean-Michel Morel, Patrick Pérez et Javier Portilla
pour leur participation au jury. Je tiens à remercier tous les employés de DxO que j’ai rencontrés,
avec une pensée particulière pour Karima qui a toujours su m’écouter et m’aider pour toutes les
démarches administratives et la gestion chaotique de mes jours de congés, Benoit, Raffi, Clément
et tous ceux du 3N pour avoir su m’aider à porter mon code dans celui d’Optics Pro, et soutenu
malgré toutes les erreurs de compilations. Merci à Noémie et Guillaume pour avoir créé la pause
“Mots Croisés” et partagé avec moi toutes leurs frustrations (et joies) de stagiaires (vous serez
toujours, pour moi, les meilleurs stagiaires). Un grand merci à Wolf et Thomas pour avoir bien
voulu m’accueillir au sein de l’équipe embarquée (promis Wolf, un jour je saurai effectuer un
commit sans tout casser), et pour m’avoir toujours considéré comme l’un des vôtres malgré mes
déménagements et éloignements successifs au sein du 2N.
Je remercie toutes les personnes que j’ai eu la chance de croiser au CMLA, en particulier Virginie,
Véronique et Micheline pour leur efficacité et leur soutien moral, ainsi qu’à tous les participants
du GTTI pour m’avoir entendu présenter la Noise Clinic pour la vingtième fois, merci à Toni pour
m’avoir aidé à développer NL-Bayes, Yves et Gabriele pour m’avoir accompagné à Hong-Kong.
Merci à Enric, Nicola et Gabriele pour m’avoir dépanné avec enthousiasme lorsque mon linux
crashait pour la 4ème fois de l’année, Nicolas (Limare) pour m’avoir soutenu et conseillé lors de
ma recherche constante d’accélération de mes codes et Nicolas (Pajor) pour m’avoir fourni d’aussi
parfaits ordinateurs. Je tiens également à remercier plus particulièrement Miguel pour toute son
aide, sans qui aucune de mes démo IPOL n’aurait pu voir le jour. Merci de m’avoir soutenu et
conseillé lors de nos innombrables sessions de débuggage de mes codes, et surtout pour m’avoir
aidé à développer la Noise Clinic tout au long de ces 8 longues versions. Et merci pour toutes nos
discussions passionnante en hispano-franco-anglais.
Merci au thésard anonyme qui m’a conseillé d’utiliser dropbox: sans toi, j’aurai dû recommencer
à zéro trois fois ma thèse. Qui a dit que Linux ne crashait jamais ?
Enfin, comme la vie de thésard ne se résume pas uniquement au travail, j’aimerais remercier
la LIKA pour m’avoir offert un défouloir parfait lors de matchs et spectacles d’improvisations
déchaînées. Merci à mes amis Flavien, Allan, Warren et Timothée de m’avoir écouté parler
d’imagerie numérique à longueur de temps sans jamais vous plaindre, ainsi que Benjamin pour
avoir bien voulu être mon stagiaire et pour tout ce dont je lui suis redevable. Merci à mes parents
pour m’avoir fourni un soutien constant malgré l’éloignement, et un merci spécial à Mélissa pour
m’avoir supporté durant cette dernière année, malgré mes horaires anarchiques et mes accès de
rage de travail impromptus au beau milieu de la nuit.

v

vi

Contents

I Denoising methods 3

1 Introduction: denoising methods and noise 5
1.1 Introduction . 5
1.2 Noise . 9

2 Four Denoising Principles 11
2.1 Bayesian patch-based methods . 11
2.2 Transform thresholding . 14
2.3 Sparse coding . 16
2.4 Image self-similarity leading to pixel averaging . 16

3 Noise Reduction, Generic Tools 19
3.1 Aggregation of estimates . 19
3.2 Iteration and “oracle” filters . 20
3.3 Dealing with colour images . 21
3.4 Trying all generic tools on an example . 21

4 Detailed Analysis of Ten Methods 25
4.1 Non-local means . 25
4.2 Non-local Bayesian denoising . 30
4.3 Patch-based near-optimal image denoising (PLOW) 32
4.4 Inherent bounds in image denoising . 33
4.5 The expected patch log likelihood (EPLL) method 35
4.6 The Portilla et al. wavelet neighborhood denoising (BLS-GSM) 38
4.7 K-SVD . 42
4.8 BM3D . 45
4.9 The piecewise linear estimation (PLE) method . 48
4.10 Non-local Dual Denoising . 49

5 Comparison of Denoising Algorithms 57
5.1 “Method noise” . 57
5.2 The “noise to noise” principle . 59
5.3 Comparing visual quality . 60
5.4 Comparing by PSNR . 60

6 Conclusion about Denoising Methods 71
6.1 Synthesis . 71
6.2 The denoising principles . 72
6.3 Patches . 73
6.4 Size of patches . 73
6.5 Aggregation, Oracle, and Color Space Transform 73
6.6 Complexity and Information . 73

vii

II Noise Clinic 75

7 White Noise Estimation 77
7.1 Can noise be estimated from (just) one image? . 77
7.2 The Percentile method . 78
7.3 A crash course on all other noise estimation methods 84

8 Generic Noise Estimation 87
8.1 Introduction . 87
8.2 Noise estimation algorithm . 88
8.3 Discussion . 88
8.4 Validation of the method . 91
8.5 Conclusion . 98

9 Noise Clinic 101
9.1 Introduction . 101
9.2 A Generalized Nonlocal Bayesian Algorithm . 103
9.3 Obtaining the Covariance Matrix of Noise Patches 104
9.4 The Multiscale Algorithm . 107
9.5 Validation . 110
9.6 Results . 114
9.7 Discussion . 132

III Reproducible research contributions 133

10 A Detailed Analysis and Implementation of K-SVD 135
10.1 Introduction . 135
10.2 Theoretical Description . 136
10.3 Influence of the Parameters on the Performance . 146
10.4 A Detailed Study of Possible Variants . 159
10.5 Conclusion . 161

11 A Detailed Analysis and Implementation of BM3D 163
11.1 Introduction . 163
11.2 The Algorithm Step by Step . 164
11.3 A Study of the Optimal Parameters . 168
11.4 A Detailed Study of Possible Variants . 174
11.5 Extending BM3D to Color Images . 183

12 A Detailed Analysis and Implementation of NL-Bayes 185
12.1 Introduction . 185
12.2 Theory . 185
12.3 Implementation . 187
12.4 Influence of the Parameters on the Performance of NL-Bayes 192
12.5 A Detailed Study of the Algorithm . 197
12.6 Conclusion . 205

viii

Preface

Numerical images are nowadays everywhere in our daily life: on computers, smartphones, tablets.
Almost all images that we are confronted to, from the vacation pictures of our friends to advertising
in the subway, including instagram pictures or facebook profiles, are numerical images. Moreover,
as numerical images are now mainstream, a lot of applications are developed, such as Google
street view, pictures of Mars by the rover Curiosity, 3D cinema, face recognition, car detection,
stereo vision, enhanced reality, and so on. And all of these applications have at least one thing in
common: they need good quality images with as little noise as possible.
Denoising is one of the most crucial issue for the quality of numerical images, and it has to be done
before anything else. But if we want to denoise correctly an image, we need first to understand
where the noise comes from.

Part I: Denoising Methods
Introduction

Chapter 1 introduces some generic knowledge about the noise, how it appears and how one can
try to deal with it. It will also briefly introduce the notion of “patch based” denoising algorithm,
before being more developed in chapter 2. At the end of the chapter we will see that it is possible
to focus the research on the general case of white Gaussian noise.

Denoising Principles

After having introduced the source and the nature of the noise, we will review in chapter 2 the
main algorithmic principles which have been proposed for noise removal. All of them use of course
a model for the noise, which in part I will always be a white Gaussian noise. More interestingly,
each principle implies a model for the ideal noiseless image. The Bayesian principle is coupled
with a Gaussian (or a mixture of Gaussians) model for noiseless patches. Transform thresholding
assumes that most image coefficients are high and sparse in a given well-chosen orthogonal basis,
while noise remains white (and therefore with homoscedastic coefficients in any orthogonal basis).
Sparse coding assumes the existence of a dictionary of patches on which most image patches can
be decomposed with a sparse set of coefficients. Finally the averaging principle relies on an image
self-similarity assumption. Thus four considered denoising principles are:

• Bayesian patch-based methods (Gaussian patch model), which we illustrate by NL-Bayes
(see chapter 12);

• transform thresholding (sparsity of patches in a fixed basis), which we illustrate by BM3D
(see chapter 11);

• sparse coding (sparsity on a learned dictionary), which we illustrate by K-SVD (see chapter
10);

• pixel averaging and block averaging (image self-similarity, which is used in neighborhood
filters and NL-means, see chapter 2).

As we will see in chapter 2, the current state of the art denoising recipes are actually a smart
combination of all of these ingredients.

ix

Generic Tools

Chapter 3 describes three generic tools that permit to increase the performance of any denoising
principle. We shall illustrate them on DCT denoising. Starting from the application of a simple
DCT transform threshold, the three generic tools (uniform and weighted aggregation, iteration
and “oracle” filters, color space transform) will be applied successively. We shall observe a dramatic
improvement of the denoising performance, as shown in image 1.

Figure 1: From top to bottom and left to right: crop of the noisy input image (σ = 25), and
denoised images by sliding DCT thresholding filter and incrementally adding use of a YoUoVo
colour system, uniform aggregation, variance based aggregation and iteration with the “oracle”
given by the first step. The corresponding PSNR are 26.85, 27.33, 30.65, 30.73, 31.25.

This observation is valid for all denoising principles, as we will see in chapter 4. Those three
principles are shared by almost all state of the art algorithms (see in particular chapters 10, 11
and 12) with the notable exception of DDID which does not use the aggregation tool but only the
other two (see section 4.10).

Detailed Analysis

In the long following chapter 4, a detailed description and analysis of ten denoising methods
(K-SVD, BM3D, NL-Bayes, NL-means, BLS-GSM, NLDD, PLOW, EPLL, PLE, and Shotgun
NL-means) is provided. The first six methods in addition to the sliding DCT filter specified
in chapter 3, for which reliable faithful implementations are available, will also be compared in
chapter 5. Moreover, the first three will be more extensively studied respectively in chapters 10,
11, and 12. This analysis shows that we are probably close to understanding digital images at a
“patch” scale.
As shown in section 4.4, the mathematical and experimental evidence of two recent articles sug-
gests that we might even be close to the best attainable performance in image denoising ever.
This suspicion is supported by a remarkable convergence of all analyzed methods, as one can
see on PSNR tables shown in chapter 5. They certainly converge in performance. We intend to
demonstrate that, under different formalisms, their methods are almost equivalent. Working in
the 64-dimensional “patch space”, all recent methods estimate local “sparse models” and restore a
noisy patch by finding its likeliest interpretation knowing the noiseless patches.

x

σ NLDD NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising
2 46.06 46.80 46.34 46.02 45.09 45.46 45.92
5 41.64 42.16 41.64 41.18 41.36 40.49 41.08
10 38.19 38.29 38.10 37.48 37.60 37.05 37.45
20 35.73 34.84 34.60 33.64 34.15 33.27 33.52
30 33.28 32.76 32.56 32.04 31.79 31.21 31.09
40 32.31 31.61 31.07 30.62 30.14 29.63 29.13

Table 1: PSNR table showing averaging results on six noise-free images for different values of
standard deviation. Only the three first digits are actually significant; the last one may vary with
different white noise realizations.

Comparison

In chapter 5 we compare the following “state of the art” denoising algorithms introduced in chapters
2 and 4: the sliding DCT filter, the wavelet neighborhood Gaussian scale mixture (BLS-GSM)
algorithm, the classical vector valued NL-means, the BM3D algorithm, the K-SVD denoising
method, the Non-local Bayes algorithm and the NLDD algorithm. These algorithms have been
chosen for two reasons. First they have a public and completely transparent code available, which is
in agreement with their present description. Second, they all represent distinct denoising principles
and therefore illustrate the methodological progress and the diversity of denoising principles.

The comparison, using when possible the public IPOL algorithms http://www.ipol.im/, will be
based on four quantitative and qualitative criteria: the visualization of the method noise, namely
the part of the image that the algorithm has taken out as noise, the visual verification of the noise
to noise principle, and the mean square error or PSNR tables. Typical results may be found in
table 1.

Last but not least the visual quality of the restored images must of course be the ultimate criterion.
One typical comparison of visual results is shown on Image 2.

xi

http://www.ipol.im/

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Comparison of visual quality. The noisy image was obtained adding a Gaussian white
noise of standard deviation 30. From top to bottom and left to right: original, noisy, DCT sliding
window, BLS-GSM, NL-means, K-SVD, BM3D, Non-local Bayes and NLDD.

It is easily seen that a single criterion is not enough to judge a restoration method. A good
denoising solution must have a high performance under all mentioned criteria.

Synthesis

After having presented the vast and prolific field of denoising (chapter 1), some common generic
tools (chapter 3) shared by state of the art denoising algorithms (chapter 4) and compared them
both visually and in term of PSNR (chapter 5), it is time now to summarize our knowledge and
classify those methods according to their principles, their use of patches, the size of those patches,
the tools they used, and their complexity. Therefore chapter 6 concludes this review of denoising
methods in the case of white Gaussian noise, before starting to work in a more generic case in
part II.

xii

Part II: Noise Clinic

White Noise

As shown in part I, denoising methods require a noise model and an image model. As explained
in chapter 1, natural images have a signal-dependent noise. Therefore, the Gaussian noise model
used in part I is no longer valid when it comes to work on real images. However, it is relatively
easy to obtain a signal-dependent noise model. As will be explained in chapter 7, it is even
possible to estimate it from a single noisy image. Obtaining a convincing statistical image model
is quite another story.

Generic Noise

Whereas it is possible to estimate a signal-dependent “white” noise from a single image as presented
in chapter 7, this estimation is not accurate enough for blind denoising applications on any kind
of images, especially JPEG images.
In chapter 8 we propose a non-parametric method to estimate both intensity and frequency depen-
dent noise which obtains the noise model from the noisy image itself. Since demosaicing is the first
step of the digital camera processing chain, most of the images contain correlated noise and hence
the interest of estimating not only signal-dependent, but also frequency-dependent noise. The
method gives the noise model for patches and therefore can be used as the input to a patch-based
denoiser. In particular, this proposed method applies to cases where no access is granted to the
image noise model, in particular to scanned photographs and JPEG images.
In order to evaluate the accuracy of the method, we validate it by comparing its estimations to the
ground-truth noise curves for both raw and JPEG-encoded images and also by visual inspection of
the denoising results of real images that present correlated noise, especially at the low frequencies.
The proposed method overcomes the state-of-the-art.

Noise Clinic

Arguably several thousands papers are dedicated to image denoising. As explained in part I, most
papers assume a fixed noise model, mainly white Gaussian or Poissonian. This assumption is only
valid for raw images.
Yet in most images handled by the public and even by scientists, the noise model is imperfectly
known or unknown. End users only dispose of the result of a complex image processing chain
effectuated by uncontrolled hardware and software (and sometimes by chemical means). For such
images, we have shown in chapter 8 that recent progress in noise estimation permits to estimate
from a single image a noise model which is simultaneously signal and frequency dependent.
As most of denoising algorithms mainly focus on Gaussian Noise (chapter 4) and then only work for
signal-independent noise, they need to be adapted to be able to deal with signal-dependent noise.
The NL-Bayes algorithm described in details in chapter 12 has both advantages to give really
good results without providing any artefacts and to be simple enough to provide signal-dependent
denoising with only small modifications.
Therefore we propose in chapter 9 a multiscale denoising algorithm -based on NL-Bayes- adapted
to this broad noise model. This leads to a blind denoising algorithm which we demonstrate on
real JPEG images and on scans of old photographs for which the formation model is unknown.
The consistency of this algorithm is also verified on simulated distorted images. This algorithm
is finally compared to the unique state of the art blind denoising method: blind BLS-GSM. One
typical result of the Noise Clinic is shown in Figure 3.

xiii

Figure 3: Blind denoising on “Solvay conference, 1927”, using three scales. From left to right,
top to bottom : crop of the input noisy image, crop of the output denoised image, crop of the
difference image.

Part III: Reproducible Research Contributions
In order to make a fair comparison of denoising algorithms, as shown in chapter 5, we need reliable
open source codes of the corresponding methods compared. For some emblematic state of the art
methods, such implementations were not available. Part III regroups the detailed analysis of three
methods, for which both theoretical analysis and open-source code are now available on IPOL.

K-SVD
As described in chapter 4, K-SVD is a signal representation method which, from a set of signals,
can derive a dictionary able to approximate each signal with a sparse combination of the atoms.
As this method is emblematic of dictionary-based denoising methods, we present in chapter 10 a
detailed description of its theory and a precise analysis of its parameters which ends with a reliable
implementation.

BM3D
A brief description of the well known denoising method BM3D was presented in chapter 4. This
state of the art method is emblematic of patch-based methods. It was (and still is) the absolute
reference for comparisons to any new denoising algorithm. For those reasons, chapter 11 will focus
on a detailed description of its theory and practicable implementation. Its parameters will also
be precisely analysed. Finally, we produced a reliable and open-source implementation of this
method.

NL-Bayes
Chapter 4 has provided a brief description of the NL-Bayes algorithm by focusing on its genesis.
This method is one of the final product of this thesis, and outperforms actual state of the art
algorithms. This is why chapter 12 will present in details its implementation, as well as an
analysis of the parameters of the method. As for the other methods presented in chapters 10 and
11, an open source reliable implementation is available on line on IPOL (Image Processing On
Line).

Publications
During this PhD, I published and submitted as main author or co-author some papers, referenced
here. Starting with the detailed study of two emblematic state of the art denoising algorithms

xiv

(K-SVD in [80] with the collaboration of Arthur Leclaire and BM3D in [74]) and a review of
denoising in [77], in collaboration with Miguel Colom, Antoni Buades and Jean-Michel Morel, I
then published two articles about NL-Bayes, developed as joint work with Antoni Buades and Jean-
Michel Morel in [75] and [76]. From my collaboration with Miguel Colom about noise estimation,
that we submitted in [33] and published in [32] with Antoni Buades and Jean-Michel Morel, it
has led us to the development of the Noise Clinic, submitted in [79] and [78]. More recently,
I contributed to the development of NLDD in collaboration with Nicola Pierazzo, Martin Rais,
Jean-Michel Morel and Gabriele Facciolo, which is submitted in [108]. Finally, a very recent paper
about image denoising [31] has been submitted in the ICM conference in collaboration with Miguel
Colom, Gabriele Facciolo, Nicola Pierazzo, Martin Rais, Yi-Qing Wang and Jean-Michel Morel.

1

2

Part I

Denoising methods

Digital images are matrices of regularly spaced pixels, each containing a photon count. This
photon count is a stochastic process due to the quantic nature of light. As explained in chapter 1,
it follows that all images are noisy. Ever since digital images exist, numerical methods have been
proposed to improve the signal to noise ratio. Such “denoising” methods require a noise model
and an image model. It is relatively easy to obtain a noise model. As will be explained in part II,
it is even possible to estimate it from a single noisy image.
Obtaining a convincing statistical image model is quite another story. Images reflect the world
and are as complex as the world. Thus, any progress in image denoising signals a progress in our
understanding of image statistics. The present part contains an analysis of ten recent state of the
art methods in chapter 4. This analysis shows that we are probably close to understanding digital
images at a “patch” scale.
The mathematical and experimental evidence of two recent articles suggests that we might even
be close to the best attainable performance in image denoising ever. This suspicion is supported
by a remarkable convergence of all analyzed methods. They certainly converge in performance as
shown in chapter 5. We intend to demonstrate that, under different formalisms, their methods
are almost equivalent. Working in the 64-dimensional “patch space”, all recent methods estimate
local “sparse models” and restore a noisy patch by finding its likeliest interpretation knowing the
noiseless patches.
The story will be told in an ordinate manner. Denoising methods are complex and have several
indispensable ingredients. Chapter 2 describes the four main image models used for denoising: the
Markovian-Bayesian paradigm, the linear transform thresholding, the so-called image sparsity, and
image self-similarity hypothesis. The performance of all methods depends on three generic tools:
colour transform, aggregation, and an “oracle” step. Their recipes will also be given in chapter
3. These preparations will permit to present, in a unified terminology, the complete recipes of
ten different state of the art patch-based denoising methods. Three quality assessment recipes for
denoising methods will also be proposed in chapter 5 and applied to compare all methods. This
part presents an ephemeral state of the art in a burgeoning subject, but many of the presented
recipes will remain useful. Most denoising recipes can be tested directly on any digital image at
Image Processing On Line, http://www.ipol.im/.

3

http://www.ipol.im/

4

Chapter 1

Introduction: denoising methods and
noise

Numerical images are nowadays everywhere in our daily life: on computers, smartphones, tablets.
Almost all images that we are confronted to, from the vacation pictures of our friends to advertising
in the subway, including instagram pictures or facebook profiles, are numerical images. Moreover,
as numerical images are now mainstream, a lot of applications are developed, such as Google
street view, pictures of Mars by the rover Curiosity, 3D cinema, face recognition, car detection,
stereo vision, enhanced reality, and so on. And all of these applications have at least one thing in
common: they need good quality images with as little noise as possible.
Denoising is one of the most crucial issue for the quality of numerical images, and it has to be done
before anything else. But if we want to denoise correctly an image, we need first to understand
where the noise comes from.
This first chapter introduces some generic knowledge about the noise, how it appears and how
one can try to deal with it. It will also briefly introduce the notion of “patch based” denoising
algorithm, before being more developed in chapter 2. At the end of this chapter we will see that
it is possible to focus the research on the general case of white Gaussian noise.

1.1 Introduction

Digital images are matrices of regularly spaced pixels, each containing a photon count. This
photon count is a stochastic process due to the quantic nature of light. It follows that all images
are noisy. Ever since digital images exist, numerical methods have been proposed to improve the
signal to noise ratio.
Most digital images and movies are currently obtained by a CCD device. The value ũ(i) observed
by a sensor at each pixel i is a Poisson random variable whose mean u(i) would be the ideal image.
The difference between the observed image and the ideal image ũ(i) − u(i) = n(i) is called “shot
noise”. The standard deviation of the Poisson variable ũ(i) is equal to the square root of the number
of incoming photons ũ(i) in the pixel captor i during the exposure time. The Poisson noise n adds
up to a thermal noise and to an electronic noise which are approximately additive and white. On
a motionless scene with constant lighting, u(i) can be approached by simply accumulating photons
for a long exposure time, and by taking the temporal average of this photon count, as illustrated
in figure 1.1.
Accumulating photon impacts on a surface is therefore the essence of photography. The first
Nicéphore Niépce photograph [25] was obtained after an eight hours exposure. The problem of a
long exposure is the variation of the scene due to changes in light, camera motion, and incidental
motions of parts of the scene. The more these variations can be compensated, the longer the
exposure can be, and the more the noise can be reduced. If a camera is set to a long exposure

5

time, the photograph risks motion blur. If it is taken with short exposure, the image is dark, and
enhancing it reveals the noise.

A recently available solution is to take a burst of images, each with short-exposure time, and to
average them after registration. This technique, illustrated in Fig. 1.1, was evaluated recently in
a paper that proposes fusing bursts of images taken by cameras [19]. This paper shows that the
noise reduction by this method is almost perfect: fusing m images reduces the noise by a

√
m

factor.

It is not always possible to accumulate photons. There are obstacles to this accumulation in
astronomy, biological imaging and medical imaging. In day to day images, the scene is moving,
which limits the exposure time. The main limitations to any imaging system are therefore the
noise and the blur. In this review, experiments will be conducted on photographs of scenes taken
by normal cameras. Nevertheless, the image denoising problem is a common denominator of all
imaging systems.

A naive view of the denoising problem would be: how to estimate the ideal image, namely the
mean u(i), given only one sample ũ(i) of the Poisson variable? The best estimate of this mean is
of course this unique sample ũ(i). Getting back a better estimate of u(i) by observing only ũ(i) is
impossible. Getting a better estimate by using also the rest of the image is obviously an ill-posed
problem. Indeed, each pixel receives photons coming from different sources.

Nevertheless, a glimpse of a solution comes from image formation theory. A well-sampled image
u is band-limited [124]. Thus, it seems possible to restore the band-limited image u from its
degraded samples ũ, as was proposed in 1966 in [61]. This classic Wiener-Fourier method consists
in multiplying the Fourier transform by optimal coefficients to attenuate the noise. It results in a
convolution of the image with a low-pass kernel.

From a stochastic viewpoint, the band-limitedness of u also implies that values ũ(j) at neighboring
pixels j of a pixel i are positively correlated with ũ(i). Thus, these values can be taken into account
to obtain a better estimate of u(i). These values being nondeterministic, Bayesian approaches are
relevant and have been proposed as early as 1972 in [121].

In short, there are two complementary early approaches to denoising, the Fourier method, and
the Bayesian estimation.

The Fourier method has been extended in the past thirty years to other linear space-frequency
transforms such as the windowed DCT [135] or the many wavelet transforms [65].

Being first parametric and limited to rather restrictive Markov random field models [58], the
Bayesian method are becoming non-parametric. The idea for the recent non parametric Markovian
estimation methods is a now famous algorithm to synthesize textures from examples [52]. The
underlying Markovian assumption is that, in a textured image, the stochastic model for a given
pixel i can be predicted from a local image neighborhood P of i, which we shall call “patch”.

The assumption for recreating new textures from samples is that there are enough pixels j similar
to i in a texture image ũ to recreate a new but similar texture u. The construction of u is done
by nonparametric sampling, amounting to an iterative copy-paste process. Let us assume that
we already know the values of u on a patch P surrounding partially an unknown pixel i. The
Efros-Leung [52] algorithm looks for the patches P̃ in ũ with the same shape as P and resembling
P . Then a value u(i) is sorted among the values predicted by ũ at the pixels resembling j.
Indeed, these values form a histogram approximating the law of u(i). This algorithm goes back
to Shannon’s theory of communication [124], where it was used for the first time to synthesize a
probabilistically correct text from a sample.

As was proposed in [16], an adaptation of the above synthesis principle yields an image denoising
algorithm. The observed image is the noisy image ũ. The reconstructed image is the denoised
image û. The patch is a square centered at i, and the sorting yielding u(i) is replaced by a weighted
average of values at all pixels ũ(j) similar to i. This simple change leads to the “non-local means”
algorithm, which can therefore be sketched in a few rows.

6

Figure 1.1: From left to right: (a) one long-exposure image (time=0.4 s, ISO=100), one of 16
short-exposure images (time=1/40 s, ISO=1600) and their average after registration. The long
exposure image is blurry due to camera motion. (b) The middle short-exposure image is noisy. (c)
The third image is about four times less noisy, being the result of averaging 16 short-exposure
images. From [19].

Algorithm 1 Non-local means algorithm
Input: noisy image ũ, σ noise standard deviation.
Output: denoised image û.
Set parameter κ× κ: dimension of patches.
Set parameter λ× λ: dimension of research zone in which similar patches are searched.
Set parameter C.
for each pixel i do
Select a square reference sub-image (or “patch”) P̃ around i, of size κ× κ.
Call P̂ the denoised version of P̃ obtained as a weighted average of the patches Q̃ in a
square neighborhood of i of size λ × λ. The weights in the average are proportional to

w(P̃ , Q̃) = e−
d2(P̃ ,Q̃)

Cσ2 where d(P̃ , Q̃) is the Euclidean distance between patches P̃ and Q̃.
end for
Aggregation: recover a final denoised value û(i) at each pixel i by averaging all values at i of all
denoised patches Q̂ containing i

It was also proved in [16] that the algorithm gave the best possible mean square estimation if the
image was modeled as an infinite stationary ergodic spatial process (see sec. 4.1 in chapter 4 for
an exact statement). The algorithm was called “non-local” because it uses patches Q̃ that are far
away from P̃ , and even patches taken from other images. NL-means was not the state of the art
denoising method when it was proposed. As we shall see in the comparison section 8.4.1, the 2003
Portilla et al. [114] algorithm described in sec. 4.6 has a better PSNR performance. But quality
criteria show that NL-means creates less artifacts than wavelet based methods. This may explain
why patch-based denoising methods have flourished ever since. By now, 1500 papers have been
published on nonlocal image processing. Patch-based methods seem to achieve the best results in
denoising. Furthermore, the quality of denoised images has become excellent for moderate noise
levels. Patch-based image restoration methods are used in many commercial software.
An exciting recent paper in this exploration of nonlocal methods raises the following claim [86]:
For natural images, the recent patch-based denoising methods might well be close to optimality.
The authors use a set of 20000 images containing about 1010 patches. This paper provides a
second answer to the question of absolute limits raised in [23], “Is denoising dead?”. The Cramer-
Rao type lower bounds on the attainable RMSE performance given in [23] are actually more
optimistic: they allow for the possibility of a significant increase in denoising performance. The
two types of performance bounds considered in [86] and [23] address roughly the same class of

7

patch-based algorithms. It is interesting to see that these same authors propose denoising methods
that actually approach these bounds, as we shall see in chapter 4.
The denoising method proposed in [86] is actually based on NL-means (algorithm 1), with the ad-
equate parameter C to account for a Bayesian linear minimum mean square estimation (LMMSE)
estimation of the noisy patch given a database of known patches. The only and important dif-
ference is that the similar patches Q are found on a database of 1010 patches, instead of on the
image itself. Furthermore, by a simple mathematical argument and intensive simulations on the
patch space, the authors are able to approach the best average estimation error which will ever be
attained by any patch-based denoising algorithm (see sec. 4.4.)
These optimal bounds are nonetheless obtained on a somewhat restrictive definition of patch-
based methods. A patch-based algorithm is understood as an algorithm that denoises each pixel
by using the knowledge of: a) the patch surrounding it, and b) the probability density of all existing
patches in the world. It turns out that state of the art patch-based denoising algorithms use more
information taken in the image than just the patch. For example, most algorithms use the obvious
but powerful trick to denoise all patches, and then to aggregate the estimation of all patches
containing a given pixel to denoise it better. Conversely, these algorithms generally use much less
information than a universal empirical law for patches. Nevertheless, the observation that at least
one algorithm, BM3D [35] might be arguably very close to the best predicted estimation error is
enlightening. Furthermore, doubling the size of the patch used in the [86] paper would be enough
to cover the aggregation step. The difficulty is to get a faithful empirical law for 16× 16 patches.
The “convergence” of all algorithms to optimality will be corroborated here by the thorough com-
parison of ten recent algorithms (chapter 5). These state of the art algorithms seem to attain
a very similar qualitative and quantitative performance. Although they initially seem to rely on
different principles, our final discussion will argue that these methods are equivalent.
Image restoration theory cannot be reduced to an axiomatic system, as the statistics of images
are still a widely unexplored continent. Therefore, a complete theory, or a single final algorithm
closing the problem are not possible. The problem is not fully formalized because there is no
rigorous image model. Notwithstanding this limitation, rational recipes shared by all methods can
be given, and the methods can be shown to rely on only very few principles. More precisely, this
part will present the following recipes, and compare them whenever possible:

• the four denoising principles in competition (chapter 2);
• three techniques that improve every denoising method (chapter 3);
• ten complete and recent denoising algorithms. For these algorithms complete recipes will be

given (chapter 4);
• three complementary and simple recipes to evaluate and compare denoising algorithms (chap-

ter 5).
• several families of noise estimation techniques (chapter 7);

Using the three comparison recipes, seven emblematic or state of the art algorithms, based on
reliable and public implementations, will be compared in chapter 5. This comparison is followed
by a synthesis (chapter 6) hopefully demonstrating that, under very different names, the state of
the art algorithms share the same principles.
Nevertheless, this convergence of results and techniques leaves several crucial issues unsolved.
(This is fortunate, as no researcher likes finished problems.) With one exception, (the BLS-GSM
algorithm, sec. 4.6), state of the art denoising algorithms are not multiscale. High noises and
small noises also remain unexplored.
In a broader perspective, the success of image denoising marks the discovery and exploration of
one of the first densely sampled high dimensional probability laws ever (numerically) accessible to
mankind: the “patch space”. For 8×8 patches, by applying a local PCA to the patches surrounding
a given patch, one can deduce that this space has a dozen significant dimensions (the others being
very thin). Exploring its structure, as was initiated in [81], seems to be the first step toward the
statistical exploration of images. But, as we shall see, this local analysis of the patch space already
enables state of the art image denoising.

8

1.2 Noise

Most digital images and movies are obtained by a CCD device and the main source of noise is
the so-called shot noise. Shot noise is inherent to photon counting. The value ũ(i) observed
by a sensor at each pixel i is a Poisson random variable whose mean would be the ideal image.
The standard deviation of this Poisson distribution is equal to the square root of the number of
incoming photons ũ(i) in the pixel captor i during the exposure time. This noise adds up to a
thermal noise and to an electronic noise which are approximately additive and white.
For sufficiently large values of ũ(i), (ũ(i) > 1000), the normal distribution N (ũ(i),

√
ũ(i)) with

mean ũ(i) and standard deviation
√
ũ(i) is an excellent approximation to the Poisson distribution.

If ũ(i) is larger than 10, then the normal distribution still is a good approximation if an appropriate
continuity correction is performed, namely P(ũ(i) ≤ a) ' P(ũ(i) ≤ a + 0.5), where a is any non-
negative integer.
Nevertheless, the pixel value is signal dependent, since its mean and variance depend on ũ(i). To
get back to the classic “white additive Gaussian noise” used in most researches on image denoising,
a variance-stabilizing transformation can be applied: When a variable is Poisson distributed with
parameter ũ(i), its square root is approximately normally distributed with expected value of about√
ũ(i) and variance of about 1/4. Under this transformation, the convergence to normality is faster

than for the untransformed variable1. The most classic VST is the Anscombe transform [3] which
has the form f(u0) = b

√
u0 + c.

The denoising procedure with the standard variance stabilizing transformation (VST) procedure
follows three steps,

1. apply VST to approximate homoscedasticity;

2. denoise the transformed data;

3. apply an inverse VST.

Note that the inverse VST is not just an algebraic inverse of the VST, and must be optimized to
avoid bias [95].
Consider any additive signal dependent noisy image, obtained for example by the Gaussian ap-
proximation of a Poisson variable explained above. Under this approximation, the noisy image
satisfies ũ ' ũ + g(ũ)n where n ' N (0, 1). We can search for a function f such that f(ũ) has
uniform standard deviation,

f(ũ) ' f(ũ) + f ′(ũ)g(ũ)n.

Forcing the noise term to be constant, f ′(ũ)g(ũ) = c, we get

f ′(ũ) =
c

g(ũ)
,

and integrating

f(ũ) =

∫ ũ

0

c dt

g(t)
.

When a linear variance noise model is taken, this transformation gives back an Anscombe trans-
form. Most classical denoising algorithms can also be adapted to signal dependent noise. This
requires varying the denoising parameters at each pixel, depending on the observed value ũ(i).
Several denoising methods indeed deal directly with the Poisson noise. Wavelet-based denoising
methods [103] and [73] propose to adapt the transform threshold to the local noise level of the
Poisson process. Lefkimmiatis et al. [85] have explored a Bayesian approach without applying
a VST. Deledalle et al., [41] argue that for high noise level it is better to adapt NL-means than
to apply a VST. These authors proposed to replace the Euclidean distance between patches by
a likelihood estimation taking into account the noise model. This distance can be adapted to

1See http://en.wikipedia.org/wiki/Poisson_distribution.

9

http://en.wikipedia.org/wiki/Poisson_distribution

each noise model such as the Poisson, the Laplace or the Gamma noise [44], and to more complex
(speckle) noise occurring in radar (SAR) imagery [45].
Nonetheless, dealing with a white uniform Gaussian noise makes the discussion on denoising
algorithms far easier. The recent papers on the Anscombe transform [95] (for low count Poisson
noise) and [54] (for Rician noise) argue that, when combined with suitable forward and inverse
VST transformations, algorithms designed for homoscedastic Gaussian noise work just as well as
ad-hoc algorithms signal-dependent noise models. This explains why in the rest of this paper the
noise is assumed uniform, white and Gaussian, having previously applied, if necessary, a VST
to the noisy image. This also implies that we deal with raw images, namely images as close as
possible to the direct camera output before processing. Most reflex cameras, and many compact
cameras nowadays give access to this raw image.
But there is definitely a need to denoise current image formats, which have undergone unknown
alterations. For example, the JPEG-encoded images given by a camera contain a noise that has
been altered by a complex chain of algorithms, ending with lossy compression. Noise in such
images cannot be removed by the current state of the art denoising algorithms without a specific
adaptation. The key is to have a decent noise model. For this reason, the fundamentals to estimate
noise from a single image will be given in chapter 7.

10

Chapter 2

Four Denoising Principles

In this chapter, we will review the main algorithmic principles which have been proposed for noise
removal. All of them use of course a model for the noise, which in part I will always be a white
Gaussian noise. More interestingly, each principle implies a model for the ideal noiseless image.
The Bayesian principle is coupled with a Gaussian (or a mixture of Gaussians) model for noiseless
patches. Transform thresholding assumes that most image coefficients are high and sparse in a
given well-chosen orthogonal basis, while noise remains white (and therefore with homoscedastic
coefficients in any orthogonal basis). Sparse coding assumes the existence of a dictionary of patches
on which most image patches can be decomposed with a sparse set of coefficients. Finally the
averaging principle relies on an image self-similarity assumption. Thus four considered denoising
principles are:

• Bayesian patch-based methods (Gaussian patch model), which we illustrate by NL-Bayes
(see chapter 12 for a detailed technical description);

• transform thresholding (sparsity of patches in a fixed basis), which we illustrate by BM3D
(see chapter 11 for a detailed technical description);

• sparse coding (sparsity on a learned dictionary), which we illustrate by K-SVD (see chapter
10 for a detailed technical description);

• pixel averaging and block averaging (image self-similarity).

As we will see in chapter 4, the current state of the art denoising recipes are actually a smart
combination of all of these ingredients.
This chapter uses the results of joint work with Antoni Buades and Jean-Michel Morel.

2.1 Bayesian patch-based methods
Given u the noiseless ideal image and ũ the noisy image corrupted with Gaussian noise of standard
deviation σ so that

ũ = u+ n, (2.1)

the conditional distribution P(ũ | u) is

P(ũ | u) =
1

(2πσ2)
M
2

e−
||u−ũ||2

2σ2 , (2.2)

where M is the total number of pixels in the image.
In order to compute the probability of the original image given the degraded one, P(u | ũ), we
need to introduce a prior on u. In the first models [58], this prior was a parametric image model
describing the stochastic behavior of a patch around each pixel by a Markov random field, specified
by its Gibbs distribution. A Gibbs distribution for an image u takes the form

P(u) =
1

Z
e−E(u)/T ,

11

where Z and T are constants and E is called the energy function and writes

E(u) =
∑
C∈C

VC(u),

where C denotes the set of cliques associated to the image and VC is a potential function. The
maximization of the a posteriori distribution writes by Bayes formula

Arg max
u

P(u | ũ) = Arg max
u

P(ũ | u)P(u),

which is equivalent to the minimization of − logP(u | ũ),

Arg min
u

‖u− ũ‖2 +
2σ2

T
E(u).

This energy writes as a sum of local derivatives of pixels in the image, thus being equivalent to a
classical Tikhonoff regularization, [58] and [10].
Recent Bayesian methods have abandoned as too simplistic the global patch models formulated
by an a priori Gibbs energy. Instead, the methods build local non parametric patch models
learnt from the image itself, usually as a local Gaussian model around each given patch, or as
a Gaussian mixture. The term “patch model” is now preferred to the terms “neighborhood” or
“clique” previously used for the Markov field methods. In the nonparametric models, the patches
are larger, usually 8 × 8, while the cliques were often confined to 3 × 3 neighborhoods. Given a
noiseless patch P of u with dimension κ × κ, and P̃ an observed noisy version of P , the same
model gives by the independence of noise pixel values

P(P̃ |P) = c · e−
‖P̃−P‖2

2σ2 (2.3)

where P and P̃ are considered as vectors with κ2 components and ||P || denotes the Euclidean
norm of P . Knowing P̃ , our goal is to deduce P by maximizing P(P |P̃). Using Bayes’ rule, we
can compute this last conditional probability as

P(P |P̃) =
P(P̃ |P)P(P)

P(P̃)
. (2.4)

P̃ being observed, this formula can in principle be used to deduce the patch P maximizing the
right term, viewed as a function of P . This is only possible if we have a probability model for
P , and these models will be generally learnt from the image itself, or from a set of images. For
example [24] applies a clustering method to the set of patches of a given image, and [145] applies it
to a huge set of patches extracted from many images. Each cluster of patches is thereafter treated
as a set of Gaussian samples. This permits to associate to each observed patch its likeliest cluster,
and then to denoise it by a Bayesian estimation in this cluster. Another still more direct way to
build a model for a given patch P̃ is to group the patches similar to P̃ in the image. Assuming
that these similar patches are samples of a Gaussian vector yields a standard Bayesian restoration.
We shall now discuss this particular case, where all observed patches are noisy.
Why Gaussian? As usual when we dispose of several observations but of no particular guess on
the form of the probability density, a Gaussian model is adopted. In the case of the patches Q
similar to a given patch P , the Gaussian model has some pertinence, as it is assumed that many
contingent random factors explain the difference between Q and P : other details, texture, slight
lighting changes, shadows, etc. The Gaussian model in presence of a combination of many such
random and independent factors is heuristically justified by the central limit theorem. Thus, for
good or bad, assume that the patches Q similar to P follow a Gaussian model with (observable,
empirical) covariance matrix CP and (observable, empirical) mean P . This means that

P(Q) = c.e−
(Q−P)tC−1

P
(Q−P)

2 (2.5)

12

From (12.2) and (12.4) we obtain for each observed P̃ the following equivalence of problems:

max
P

P(P |P̃) ⇔ max
P

P(P̃ |P)P(P)

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P)tC−1

P
(P−P)

2

⇔ min
P

‖P − P̃‖2

σ2
+ (P − P)tC−1

P (P − P).

This expression does not yield an algorithm. Indeed, the noiseless patch P and the patches similar
to P are not observable. Nevertheless, we can observe the noisy version P̃ and compute the
patches Q̃ similar to P̃ . An empirical covariance matrix can therefore be obtained for the patches
Q̃ similar to P̃ . Furthermore, using (12.1) and the fact that P and the noise n are independent,

CP̃ = CP + σ2I; EQ̃ = P . (2.6)

Notice that these relations assume that we searched for patches similar to P̃ at a large enough
distance, to include all patches similar to P , but not too large either, because otherwise it can
contain outliers. Thus the safe strategy is to search similar patches in a distance slightly larger than
the expected distance caused by noise. If the above estimates are correct, our MAP (maximum a
posteriori estimation) problem finally boils down by (12.6) to the following feasible minimization
problem:

max
P

P(P |P̃)⇔ min
P

‖P − P̃‖2

σ2
+ (P − P̃)t(CP̃ − σ

2I)−1(P − P̃).

Differentiating this quadratic function with respect to P and equating to zero yields

P − P̃ + σ2(CP̃ − σ
2I)−1(P − P̃) = 0.

Taking into account that I + σ2(CP̃ − σ2I)−1 = (CP̃ − σ2I)−1CP̃ , this yields

(CP̃ − σ
2I)−1CP̃P = P̃ + σ2(CP̃ − σ

2I)−1P̃ .

and therefore

P = C−1

P̃
(CP̃ − σ

2I)P̃ + σ2C−1

P̃
P̃

= P̃ + σ2C−1

P̃
(P̃ − P̃)

= P̃ +
[
I− σ2C−1

P̃

]
(P̃ − P̃)

= P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃)

Thus we have proved that a restored patch P̂1 can be obtained from the observed patch P̃ by the
one step estimation

P̂1 = P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃), (2.7)

which resembles a local Wiener filter.

Remark 1. It is easily deduced that the expected estimation error is

E||P − P̂1||2 = Tr

[(
C−1
P +

I
σ2

)−1
]
.

In chapter 4, sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.9 will examine not less than six Bayesian algo-
rithms deriving patch-based denoising algorithms from variants of (2.7). The first question when
looking at this formula is obviously how the matrix CP̃ can be learnt from the image itself. Each
method proposes a different notion to learn the patch model.
Of course, other, non Gaussian, Bayesian models are possible, depending on the patch density
assumption. For example [120] assumes a local exponential density model for the noisy data, and
gives a convergence proof to the optimal (Bayes) least squares estimator as the amount of data
increases.

13

2.2 Transform thresholding

Classical transform coefficient thresholding algorithms like the DCT or the wavelet denoising use
the observation that images are faithfully described by keeping only their large coefficients in a
well-chosen basis. By keeping these large coefficients and setting to zero the small ones, noise
should be removed and image geometry kept. By any orthogonal transform, the coefficients of
an homoscedastic de-correlated noise remain de-correlated and homoscedastic. For example the
wavelet or the DCT coefficients of a Gaussian white noise with variance σ2 remain a Gaussian
diagonal vector with variance σ2. Thus, a threshold on the coefficients at, say, 3σ removes most
of the coefficients that are only due to noise. (The expectation of these coefficients is assumed to
be zero.) The sparsity of image coefficients in certain bases is only an empirical observation. It
is nevertheless invoked in most denoising and compression algorithms, which rely essentially on
coefficient thresholds. The established image compression algorithms are based on the DCT (in
the JPEG 1992 format) or, like the JPEG 2000 format [4], on biorthogonal wavelet transforms
[26].
Let B = {Gi}Mi=1 be an orthonormal basis of RM , where M is the number of pixels of the noisy
image Ũ (in staircase to recall that it is handled here as a vector). Then we have

〈Ũ , Gi〉 = 〈U,Gi〉+ 〈N,Gi〉 , (2.8)

where Ũ , U and N denote respectively the noisy, original and noise images. We always assume
that the noise values N(i) are uncorrelated and homoscedastic with zero mean and variance σ2.
The following calculation shows that the noise coefficients in the new basis remain uncorrelated,
with zero mean and variance σ2:

E[〈N,Gi〉 〈N,Gj〉] =

M∑
r,s=1

Gi(r)Gj(s)E[w(r)w(s)]

= 〈Gi, Gj〉σ2 = σ2δ[j − i].

Each noisy coefficient 〈Ũ , Gi〉 is modified independently and then the solution is estimated by the
inverse transform of the new coefficients. Noisy coefficients are modified by multiplying by an
attenuation factor a(i) and the inverse transform yields the estimate

DŨ =

M∑
i=1

a(i) 〈Ũ , Gi〉Gi. (2.9)

D is also called a diagonal operator. Noise reduction is achieved by attenuating or setting to
zero small coefficients of order σ, assumedly due to noise, while the original signal is preserved by
keeping the large coefficients. This intuition is corroborated by the following result.

Theorem 1. The operator Dinf minimizing the mean square error (MSE),

Dinf = argmin
D

E{‖U −DŨ‖2}

is given by the family {a(i)}i, where

a(i) =
|〈U,Gi〉|2

|〈U,Gi〉|2 + σ2
, (2.10)

and the corresponding expected mean square error (MSE) is

E{‖U −Dinf Ũ‖2} =

M∑
i=1

|〈U,Gi〉|2σ2

|〈U,Gi〉|2 + σ2
. (2.11)

14

The previous optimal operator attenuates all noisy coefficients. If one restricts a(i) to be 0 or 1,
one gets a projection operator. In that case, a subset of coefficients is kept, and the rest are set
to zero. The projection operator that minimizes the MSE under that constraint is obtained with

a(i) =

{
1 |〈U,Gi〉|2 ≥ σ2,

0 otherwise

and the corresponding MSE is

E{‖U −Dinf Ũ‖2} =
∑
i

min(|〈U,Gi〉|2, σ2). (2.12)

A transform thresholding algorithm therefore keeps the coefficients with a magnitude larger than
the noise, while setting the zero the rest. Note that both above mentioned filters are “ideal”,
or “oracular” operators. Indeed, they use the coefficients 〈U,Gi〉 of the original image, which
are not known. These algorithms are therefore usually called oracle filters. We shall discuss their
implementation in the next sections. For the moment, we shall introduce the classical thresholding
filters, which approximate the oracle coefficients by using the noisy ones.
We call, as is classical, Fourier–Wiener filter the optimal operator (2.10) when B is a Fourier
basis. By the use of the Fourier basis, global image characteristics may prevail over local ones and
create spurious periodic patterns. To avoid this effect, the bases are usually more local, of the
wavelet or block DCT type.

Sliding window DCT. The local adaptive filters were introduced by Yaroslavsky and Eden [135]
and Yaroslavsky [137]. The noisy image is analyzed in a moving window, and at each position of
the window its DCT spectrum is computed and modified by using the optimal operator (2.10).
Finally, an inverse transform is used to estimate only the signal value in the central pixel of the
window.
This method is called the empirical Wiener filter, because it approximates the unknown original
coefficients 〈u,Gi〉 by using the identity

E|〈Ũ , Gi〉|2 = |〈U,Gi〉|2 + σ2

and thus replacing the optimal attenuation coefficients a(i) by the family {α(i)}i,

α(i) = max

{
0,
|〈Ũ , Gi〉|2 − cσ2

|〈Ũ , Gi〉|2

}
.

where c is a parameter, usually larger than one.

Wavelet thresholding. Let B = {Gi}i be a wavelet orthonormal basis [96]. The so-called hard
wavelet thresholding method [47] is a (nonlinear) projection operator setting to zero all wavelet
coefficients smaller than a certain threshold. According to the expression of the MSE of a projection
operator (2.12), the performance of the method depends on the ability of the basis to approximate
the image U by a small set of large coefficients. There has been a strenuous search for wavelet
bases adapted to images [107].
Unfortunately, not only noise, but also image features can cause many small wavelet coefficients,
which are nevertheless lower than the threshold. The brutal cancelation of wavelet (or DCT)
coefficients near the image edges creates small oscillations, a Gibbs phenomenon often called
ringing. Spurious wavelets can also be seen in flat parts of the restored image, caused by the
undue cancelation of some of the small coefficients. These artifacts are sometimes called wavelet
outliers [50]. These undesirable effects can be partially avoided with the use of a soft thresholding
[48],

α(i) =

〈Ũ,Gi〉−sgn(〈Ũ,Gi〉)µ

〈Ũ,Gi〉
, |〈Ũ , Gi〉| ≥ µ,

0 otherwise,

15

The continuity of this soft thresholding operator reduces the Gibbs oscillation near image discon-
tinuities.

Several orthogonal bases adapt better to image local geometry and discontinuities than wavelets,
particularly the “bandlets” [107] and “curvelets” [126]. This tendency to adapt the transform
locally to the image is accentuated with the methods adapting a different basis to each pixel, or
selecting a few elements or “atoms” from a huge patch dictionary to linearly decompose the local
patch on these atoms. This point of view is sketched in the next section on sparse coding.

2.3 Sparse coding
Sparse coding algorithms learn a redundant set D of vectors called dictionary and choose the right
atoms to describe the current patch.
For a fixed patch size, the dictionary is encoded as a matrix of size κ2 × ndic, where κ2 is the
number of pixels in the patch and ndic ≥ κ2. The dictionary patches, which are columns of the
matrix, are normalized (in Euclidean norm). This dictionary may collect usual orthogonal bases
(discrete cosine transform, wavelets, curvelets ...), but also patches extracted (or learnt) from clean
images or even from the noisy image itself.
The dictionary permits to compute a sparse representation α of each patch P , where α is a
coefficient vector of size n2

dic satisfying P ≈ Dα. This sparse representation α can be obtained
with an ORMP (orthogonal recursive matching pursuit) [34]. ORMP gives an approximate solution
to the (NP-complete) problem

Arg min
α

||α||0 such that ||P −Dα||22 ≤ κ2(Cσ)2 (2.13)

where ‖α‖0 refers to the l0 norm of α, i.e. the number of non-zero coefficients of α. This last
constraint brings in a new parameter C. This coefficient multiplying the standard deviation σ
guarantees that, with high probability, a white Gaussian noise of standard deviation σ on κ2

pixels has an l2 norm lower than κCσ. The ORMP algorithm is introduced in [34]. Details on
how this minimization can be achieved are given in the section describing the K-SVD algorithm
4.7 and in the dedicated chapter 10. (It has been argued that the l0 norm of the set of coefficients
can be replaced by the much easier l1 convex norm. This remark is the starting point of the
compressive sampling method [20].)
In K-SVD and other current sparse coding algorithms, the previous denoising strategy is used as
the first step of a two-steps algorithm. The selection step is iteratively combined with an update
of the dictionary taking into account the image and the sparse codifications already computed.
More details will be found in chapter 10 on the K-SVD algorithm.
Several of our referees have objected to considering sparse coding and transform thresholding as
two different denoising principles. As models, both indeed assume the sparsity of patches in some
well chosen basis. Nevertheless, some credit must be given to historical development. The notion
of sparsity is associated with a recent and sophisticated variational principle, where the dictionary
and the sparse decompositions are computed simultaneously. Transform thresholding methods
existed before the term sparsity was even used. They simply pick a local wavelet or DCT basis
and threshold the coefficients. In both algorithms, the sparsity is implicitly or explicitly assumed.
But transform threshold methods use orthogonal bases, while the dictionaries are redundant.
Furthermore, the algorithms are very different.

2.4 Image self-similarity leading to pixel averaging
The principle of many denoising methods is quite simple: they replace the colour of a pixel with an
average of the colours of nearby pixels. It is a powerful and basic principle, when applied directly
on noisy pixels with independent noise. If m pixels with the same colour (up to the fluctuations
due to noise) are averaged the noise is reduced by a

√
m factor.

16

The MSE between the true (unknown) value u(i) of a pixel i and the value estimated by a weighted
average of pixels j is

E‖u(i)−
∑

j

w(j)ũ(j)‖2 = E‖
∑

j

w(j)(u(i)− u(j))−
∑

j

w(j)n(j)‖2

=
∑

j

w(j)2(u(i)− u(j))2 + σ2
∑

j

w(j)2, (2.14)

where we assume that the noise, the image and the weights are independent and that the weights
{w(j)}j satisfy

∑
j w(j) = 1.

The above expression implies that the performance of the averaging depends on the ability to
find many pixels j with an original value u(j) close to u(i). Indeed, the variance term

∑
j w(j)2

is minimized by a flat distribution probability w(j) = 1/m, where m is the number of averaged
pixels. The first term measures the bias caused by the fact that pixels do not have exactly the
same deterministic value. Each method must find a tradeoff between the bias and variance terms
of equation (2.14).

Averaging of spatially close pixels A first rather trivial idea is to average the closest pixels
to a given pixel. This amounts to convolve the image with a fixed radial positive kernel. The
paradigm of such kernels is the Gaussian kernel.
The convolution of the image with a Gaussian kernel ensures a fixed noise standard deviation
reduction factor that equals the kernel standard deviation. Yet, nearby pixels do not necessarily
share their colours. Thus, the first error term in (2.14) can quickly increase. This approach is
valid only for pixels for which the nearby pixels have the same colour, that is, it only works inside
the homogeneous image regions, but not for their boundaries.

Averaging pixels with similar colours A simple solution to the above mentioned dilemma is
given by the sigma-filter [83] or neighborhood filter [136]. These filters average only nearby pixels
of i having also a similar colour value. We shall denote these filters by YNF , (for Yaroslavsky
neighborhood filter). Their formula is simply

YNFh,ρũ(i) =
1

C(i)

∑
j∈Bρ(i)

ũ(j) e−
|ũ(i)−ũ(j)|2

h2 , (2.15)

where Bρ(i) is a ball of center i and radius ρ > 0, h > 0 is the filtering parameter and C(i) =∑
j∈Bρ(i) e

− |ũ(j)−ũ(i)|
2

h2 is the normalization factor. The parameter h controls the degree of colour
similarity needed to be taken into account in the average. According to the Bayesian interpretation
of the filter we should have h = σ. The filter (2.15), due to Yaroslavsky and Lee, has been rein-
vented several times, and has received the alternative names of SUSAN filter [125] and of Bilateral
filter [127]. The relatively minor difference in these algorithms is that instead of considering a
fixed spatial neighborhood Bρ(i), they weigh the spatial distance to the reference pixel i by a
Neighborhood filters choose the “neighboring” pixels by comparing their noisy colour. The weight
distribution is therefore computed by using noisy values and is not independent of the noise.
Therefore the error formula (2.14) is not applicable. For a flat zone and for a given pixel with
colour value a, the nearby pixels with an intensity difference lower than h will be independent
and identically distributed with a probability distribution which is the restriction of the Gaussian
to the interval (a− h, a+ h). If the search zone (or spatial neighborhood) is broad enough, then
the average value will tend to the expectation of this random variable. Thus, the increase of
the search zone and therefore of the number of pixels being averaged beyond a reasonable value
will not increase the noise reduction capability of the filter. More precisely, the asymptotic noise
reduction factor is given in the next theorem, taken from [11].

17

Theorem 2. Assume that n(i) are i.i.d. with zero mean and variance σ2, then a noise n filtered
by the neighborhood filter YNFh satisfies

Var YNFh,ρ n = f

(
h

σ

)
σ2,

where
f(x) =

1

(2π)3/2

∫
R

1

β2(a, x)
(e2xa − 1)2e(a+x)2e

−a2
2 da

and

β(a, x) =
1√
2π

∫ a+x

a−x
e−t

2/2 dt .

The function f(x) is a decreasing function with f(0) = 1 and limx→∞ f(x) = 0 (see plot in Fig.
2.1). The noise reduction increases with the ratio h/σ. We see that f(x) is close to zero for values
of x over 2.5 or 3, that is, values of h over 2.5σ or 3σ. This corresponds to the values proposed
in the original papers by Lee and Yaroslavsky. However, for a Gaussian variable, the probability
of observing values at a distance to the average above 2.5 or 3 times the standard deviation is
very small. Thus, taking these large values excessively increases the probability of mismatching
pixels belonging in fact to other objects. This explains the observed decaying performance of
the neighborhood filter when the noise standard deviation or the search zone B(i, ρ) increase too
much.

Figure 2.1: Noise reduction function f(x) given by Theorem 2.

The image model underlying neighborhood filters is the image self-similarity, namely the presence
in the image of pixels j which have the same law as i. We will introduce in section 4.1 the NL-
means algorithm [16] which can be seen as an extension of the neighborhood filters attenuating
their main drawbacks. In NL-means, the “neighborhood of a pixel i” is defined as any set of pixels j
in the image such that a patch around j looks like a patch around i. In other terms NL-means
estimates the value of i as an average of the values of all the pixels j whose neighborhood looks
like the neighborhood of i.

18

Chapter 3

Noise Reduction, Generic Tools

This chapter describes three generic tools that permit to increase the performance of any denoising
principle. We shall illustrate them on DCT denoising. Starting from the application of a simple
DCT transform threshold, the three generic tools (uniform and weighted aggregation, iteration
and “oracle” filters, color space transform) will be applied successively. We shall observe a dramatic
improvement of the denoising performance. This observation is valid for all denoising principles, as
we will see in chapter 4. Those three principles are shared by almost all state of the art algorithms
(see in particular chapters 10, 11 and 12) with the notable exception of DDID which does not use
the aggregation tool but only the other two (see section 4.10).
This chapter uses the results of joint work with Antoni Buades and Jean-Michel Morel.

3.1 Aggregation of estimates

Aggregation techniques combine for any pixel a set of m possible estimates. If these estimates
were independent and had equal variance, then a uniform average would reduce this estimator
variance by a factor m. Such an aggregation strategy was the main proposition of the translation
invariant wavelet thresholding algorithm [27]. This method denoises several translations of the
image by a wavelet thresholding algorithm and averages these different estimates once the inverse
translation has been applied to the denoised images.
An interesting case is when one is able to estimate the variance of the m estimators. Statistical
arguments lead to attribute to each estimator a weight inversely proportional to its variance [102].
For most denoising methods the variance of the estimators is high near image edges. When
applied without aggregation, the denoising methods leave visible “halos” of residual noise near
edges. For example in the sliding window DCT method, patches containing edges have many large
DCT coefficients which are kept by thresholding. In flat zones instead, most DCT coefficients are
canceled and the noise is completely removed. The proposition of [60] is to use the aggregation
for DCT denoising, approximating the variance of each estimated patch by the number of non
zero coefficients after thresholding. In the online paper [139] one can test an implementation of
DCT denoising. It actually uses an aggregation with uniform weights: “translation invariant DCT
denoising is implemented by decomposing the image to sliding overlapping patches, calculating the
DCT denoising in each patch, and then aggregating the denoised patches to the image averaging the
overlapped pixels. The translation invariant DCT denoising significantly improves the denoising
performance, typically from about 2 to 5 dB, and removes the block artifact”.
The same risk of “halo” occurs with non-aggregated NL-means (section 4.1), since patches con-
taining edges have many less similar instances in the image than flat patches. Thus the non-local
averaging is made over less samples, and the final result keeps more noise near image edges. The
same phenomenon occurs with BM3D (see section 4.8 and dedicated chapter 11) if the aggrega-
tion step is not applied [35]. As a consequence, an aggregation step is applied in all patch-based
denoising algorithms. This weighted aggregation favors, at each pixel near an edge, the estimates

19

given by patches which contain the pixel but do not meet the edge.
Aggregation techniques aim at a superior noise reduction by increasing the number of values
being averaged for obtaining the final estimate or selecting those estimates with lower variance.
Kervrann et al [71] considered the whole Bias+Variance decomposition in order to also adapt the
search zone of neighborhood filters or of NL-means. Since the bias term depends on the original
image, it cannot be computed in practice, and Kervrann et al. proposed to minimize both bias
and variance by choosing the smallest spatial neighborhood attaining a stable noise reduction.
Another type of aggregation technique considers the risk estimate rather than the variance to
locally attribute more weight to the estimators with small risks. In [130], Van De Ville and
Kocher give a closed form expression of Stein’s Unbiased Estimator of the Risk (SURE) for NL-
Means. (See also generalizations of the SURE estimator to the non-Gaussian case in [119].) The
aim is to select globally the best bandwidth for a given image. In [51], Duval et al. also use the
SURE technique for minimizing the risk by selecting locally the bandwidth. Deledalle et al. [42]
apply the same technique for combining the results of NL-means with different window sizes and
shapes. A similar treatment can be found in [120], but with the assumption of a local exponential
density for the noisy patches.

3.2 Iteration and “oracle” filters
Iterative strategies to remove residual noise would drift from the initial image. Instead, a first step
denoised image can be used to improve the reapplication of the denoising method to the initial
noisy image. In a second step application of a denoising principle, the denoised DCT coefficients, or
the patch distances, can be computed in the first step denoised image. They are an approximation
to the true measurements that would be obtained from the noise-free image. Thus, the first step
denoised image is used as an “oracle” for the second step.
For averaging filters such as neighborhood filters or NL-means, the image u can be denoised in a
first step by the method under consideration. This first step denoised image denoted by û1 is used
for computing more accurate colour distances between pixels. Thus, the second step neighborhood
filter is

YNFh,ρũ(i) =
1

C(i)

∑
j∈Bρ(j)

ũ(j)e−
|û1(j)−û1(i)|2

h2 ,

where ũ is the observed noisy image and û1 the image previously denoised by (2.15).
Similarly, for linear transform Wiener-type methods, the image is first denoised by its classical
definition, which amounts to approximate the oracle coefficients of Theorem 1 using the noisy ones.
In a second iteration, the coefficients of the denoised image approximate the true coefficients of
the noise-free image. Thus, the second step filter following the first step (2.9) is

DŨ =
∑
i

a(i) 〈Ũ , Gi〉 Gi , with a(i) =
|〈Û1, Gi〉|2

|〈Û1, Gi〉|2 + σ2
,

where Û1 is the denoised image by applying a first time the thresholding algorithm to the observed
image Ũ .

Alternatives and extensions: “twicing” and Bregman iterations In the recent review
paper [100], many denoising operators are formalized in a general linear framework, noting that
they can be associated with a doubly stochastic diffusion matrix W with nonnegative coefficients.
For example in NL-means, this matrix is obtained by the symmetrization of the matrix of the
NL-means weights wP̃ ,Q̃ defined in Algorithm 1. Unless it is optimal, as is the case with an ideal
Wiener filter, the matrix W associated with the denoising filter can be iterated. A study of MSE
evolution with these iterations is proposed in [100] for several denoising operators, considering
several different patch types (texture, edge, flat). Iteration is, however, different from the oracle
iteration described above. In the oracle iteration, the matrix W is changed at each step, using

20

its better estimate given by the previously denoised image. One does not generally observe much
improvement by iterating the oracle method more than once. [100] points out another generic tool,
used at least for total variation denoising, the so-called “twicing”, term due to Tukey [128]. Instead
of repeated applications of a filter, the idea is to process the residual obtained as the difference
between the estimated image and the initial image. If the residuals contain some of the underlying
signal, filtering them should recover part of it. The author shows that the Bregman iterations [106]
used for improving total variation based denoising are a twicing and so is the matching pursuit
method used in the K-SVD filter described in section 4.7 and in the dedicated chapter 10.

3.3 Dealing with colour images

The straightforward strategy to extend denoising algorithms to colour or multivalued images is
to apply the algorithm independently to each channel. The use of this simple strategy often
introduces colour artifacts, easily detected by the eye. Two different strategies are observable in
state of the art denoising algorithms.
Depending on the algorithm formulation, a vector-valued version dealing at the same time with all
colour channels can be proposed. This solution is adopted by averaging filters like neighborhood
filters or NL-means. These algorithms compute colour differences directly in the vector valued
image, thus yielding a unified weight configuration which is applied to each channel.
The alternative option is to convert the usual RGB image to a different colour space where the
independent denoising of each channel does not create noticeable colour artifacts. Most algorithms
use the Y UV system which separates the geometric and chromatic parts of the image. This change
writes as a linear transform by multiplication of the RGB vector by the matrix

Y UV =

 0.30 0.59 0.11
−0.15 −0.29 0.44
0.61 −0.51 −0.10

 , YoUoVo =

 1
3

1
3

1
3

1
2 0 − 1

2
1
4 − 1

2
1
4

The second colour transform to the space YoUoVo is an orthogonal transform. It has the advantage
of maximizing the noise reduction of the geometric component, since this component is an average
of the three colours. The geometric component is perceptually more important than the chromatic
ones, and the presence of less noise permits a better performance of the algorithm in this part.
It also permits a higher noise reduction on the chromatic components Uo and Vo, due to their
observable regularity.
This latter strategy is adopted by transform thresholding filters for which the design of an or-
thonormal basis coupling the different colour channels is not trivial.

3.4 Trying all generic tools on an example

This section applies incrementally the previous generic denoising tools to the DCT sliding window
to illustrate how these additional tools permit to drastically improve the algorithm performance.
We start with the basic DCT “neighborhood filter” as proposed by Yaroslavsky [135]. Its principle
is to denoise a patch around each pixel, and to keep only the central denoised pixel.
Fig. 3.1 displays the denoised images obtained by incrementally applying each of the following
ingredients:

- Basic DCT thresholding algorithm by the neighborhood filter technique (keeping only the
central pixel of the window). Each colour channel is treated independently.

- Use of an orthogonal geometric and chromatic decomposition colour system YoUoVo; grey
parts are better reconstructed and colour artifacts are reduced.

- Uniform aggregation; the noise reduction is superior and isolated noise points are removed.

21

- Adaptive aggregation using the estimator variance; the noise reduction near edges is in-
creased, "halo" effects are removed.

- Additional iteration using “oracle” estimation; residual noise is totally removed and the
sharpness of details is increased.

The PSNR’s obtained by incrementally applying the previous strategies respectively are 26.85,
27.33, 30.65, 30.73, 31.25. This experiment illustrates how the use of these additional tools is
crucial to achieve competitive results. This last version of the DCT denoising algorithm, incorpo-
rating all the proposed generic tools, will be the one used in the comparison section. A complete
description of the algorithm can be found in Algorithm 2. The colour version of the algorithm
applies the denoising independently to each YoUoVo component. This version is therefore slightly
better than the version online in [139], which does not use the oracle step.

Algorithm 2 DCT denoising algorithm. DCT coefficients lower than 3σ are canceled in the first
step and a Wiener filter is applied in the “oracle” second step. The colour DCT denoising algorithm
applies the current strategy independently to each YoUoVo component.

Input: noisy image ũ, σ noise standard deviation.
Optional: prefiltered image û1 for “oracle" estimation.
Output: output denoised image.

Set parameter κ = 8: size of patches.
Set parameter h = 3σ: threshold parameter.

for each pixel i do

Select a square reference patch P̃ around i of size κ× κ.
if û1 then
Select a square reference patch P1 around i in û1.

end if
Compute the DCT transform of P̃ .
if û1 then
Compute the DCT transform of P1.

end if
if û1 then
Modify DCT coefficients of P̃ as

P̃ (i) = P̃ (i)
P1(i)2

P1(i)2 + σ2

else
Cancel coefficients of P̃ with magnitude lower than h.

end if
Compute the inverse DCT transform obtaining P̂ .
Compute the aggregation weight wP̃ = 1/#{number of non-zero DCT coefficients}.

end for

for each pixel i do
Aggregation: recover the denoised value at each pixel i by averaging all values at i of all
denoised patches Q̂ containing i, weighted by wQ̃.

end for

22

Figure 3.1: Top: original and noisy images with an additive Gaussian white noise of standard
deviation 25. Below, from top to bottom and left to right: crop of denoised images by sliding
DCT thresholding filter and incrementally adding use of a YoUoVo colour system, uniform aggre-
gation, variance based aggregation and iteration with the “oracle” given by the first step. The
corresponding PSNR are 26.85, 27.33, 30.65, 30.73, 31.25.

23

24

Chapter 4

Detailed Analysis of Ten Methods

In this long chapter, a detailed description and analysis of ten denoising methods (K-SVD, BM3D,
NL-Bayes, NL-means, BLS-GSM, NLDD, PLOW, EPLL, PLE, and Shotgun NL-means) is pro-
vided. The first six methods in addition to the sliding DCT filter specified in chapter 3, for which
reliable faithful implementations are available, will also be compared in chapter 5. Moreover, the
first three will be more extensively studied respectively in chapters 10, 11, and 12. This analysis
shows that we are probably close to understanding digital images at a “patch” scale.
As shown in section 4.4, the mathematical and experimental evidence of two recent articles sug-
gests that we might even be close to the best attainable performance in image denoising ever.
This suspicion is supported by a remarkable convergence of all analyzed methods, as one can
see on PSNR tables shown in chapter 5. They certainly converge in performance. We intend to
demonstrate that, under different formalisms, their methods are almost equivalent. Working in
the 64-dimensional “patch space”, all recent methods estimate local “sparse models” and restore a
noisy patch by finding its likeliest interpretation knowing the noiseless patches.
This chapter uses the results of joint work with Antoni Buades and Jean-Michel Morel.

4.1 Non-local means

The Non-local means (NL-means) algorithm tries to take advantage of the redundancy of most
natural images. The redundancy, or self-similarity hypothesis is that for every small patch in a
natural image one can find several similar patches in the same image, as illustrated in figures 4.1
and 4.2. This similarity is true for patches whose centers stand at a one pixel distance of the
center of the reference patch. In that case the self-similarity boils down to a local image regularity
assumption. Such a regularity is guaranteed by Shannon-Nyquist’s sampling conditions, which
require the image to be blurry. In a much more general sense inspired by neighborhood filters, one
can define as “neighborhood of a pixel i” any set of pixels j in the image such that a patch around j
looks like a patch around i. All pixels in that neighborhood can be used for predicting the value
at i, as was first shown in [52] for the synthesis of texture images. This self-similarity hypothesis
is a generalized periodicity assumption. The use of self-similarities is actually well-known in
information theory from its foundation. In his 1948 Mathematical Theory of Communication,
Shannon [124] analyzed the local self-similarity (or redundancy) of natural written language, and
gave probably the first stochastic text synthesis algorithm. The Efros-Leung texture synthesis
method adapted this algorithm to images, and NL-Means [12] seems to be first adaptation of the
same idea to denoising1

NL-means denoises a square reference patch P̃ around i of dimension κ× κ by replacing it by an

1Nevertheless, some researchers have pointed out to us the report [8] as giving an early intuition that intuition
could use signal redundancy. This very short paper describes an experiment in a few sentences. It suggests that
region redundancy on both sides of an edge can be detected, and used for image denoising. Nevertheless, no
algorithm is specified in this paper.

25

Figure 4.1: q1 and q2 have a large weight because their similarity windows are similar to that
of p. On the other side the weight w(p, q3) is much smaller because the intensity grey values in
the similarity windows are very different.

average of all similar patches Q̃ in a square neighborhood of i of size λ×λ. To do this, a normalized
Euclidean distance between P̃ and Q̃, d(P̃ , Q̃) = 1

κ2 ‖P̃ − Q̃‖2 is computed for all patches Q̃ is the
search neighborhood. Then the weighted average is

P̂ =

∑
Q̃ Q̃e

− d(P̃ ,Q̃)2

h2∑
Q̃ e
− d(P̃ ,Q̃)2

h2

.

The thing that helps NL-means over the neighborhood filters is the concentration of the noise law,
as the number of pixels increases. Because the distances are computed on many patch samples
instead of only one pixel, the fluctuations of the quadratic distance due to the noise are reduced.

Related attempts: [134] proposed a “universal denoiser" for digital images. The authors prove
that this denoiser is universal in the sense “of asymptotically achieving, without access to any
information on the statistics of the clean signal, the same performance as the best denoiser that
does have access to this information". In [105] the authors presented an implementation valid for
binary images with an impulse noise, with excellent results. Awate and Whitaker [6] also proposed
a method whose principles stand close to NL-means, since the method involves comparison between
patches to estimate a restored value. The objective of the algorithm is to denoise the image by
decreasing the randomness of the image.

A consistency theorem for NL-means. NL-means is intuitively consistent under stationarity
conditions, namely if one can find many samples of every image detail. It can be proved [16] that
if the image is a fairly general stationary and mixing random process, for every pixel i, NL-means

26

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: On the right-hand side of each pair, one can see the weight distribution used to
estimate a centered patch of the left image by NL-means. (a) In flat zones, the weights are
uniformly distributed, NL-means acts like a low pass isotropic filter. (b) On straight edges, the
weights are distributed in the direction of the edge (like for anisotropic filters). (c) On curved
edges, the weights favor pixels belonging to the same contour. (d) In a flat neighborhood, the
weights are distributed in a grey-level neighborhood (exactly like for neighborhood filters). In the
cases of (e) and (f), the weights are distributed across the more similar configurations, even though
they are far away from the observed pixel. This behavior justifies the “non local” appellation.

converges to the conditional expectation of i knowing its neighborhood, which is the best Bayesian
estimate.

NL-means as an extension of previous methods. A Gaussian convolution preserves only
flat zones, while contours and fine structure are removed or blurred. Anisotropic filters instead
preserve straight edges, but flat zones present many artifacts. One could think of combining these
two methods to improve both results. A Gaussian convolution could be applied in flat zones,
while an anisotropic filter could be applied on straight edges. Still, other types of filters should be
designed to specifically restore corners, or curved edges, or periodic texture. Figure 4.2 illustrates
how NL-means chooses the right weight configuration for each sort of image self-similarity.
NL-means is easily extended to the denoising of image sequences and video, involving indiscrimi-
nately pixels belonging to a space-time neighborhood. The algorithm favors pixels with a similar
local configuration. When the similar configuration moves, so do the weights. Thus, as shown
in [14] the algorithm is able to follow moving similar configurations without any explicit motion
computation (see Fig. 4.3).
Indeed, this fact contrasts with previous classical movie denoising algorithms, which were motion

27

compensated. The underlying idea of motion compensation is the existence of a “ground truth”
for the physical motion. Legitimate information about the colour of a given pixel should exist
only along its physical trajectory. Yet, one of the major difficulties in motion estimation is the
ambiguity of trajectories, the so-called aperture problem. The aperture problem, viewed as a
general phenomenon of movies, can be positively interpreted in the following way: There are
many pixels in the next or previous frames which resemble the current pixel. Thus, it seems sound
to use not just one trajectory, but rather all similar pixels to the current pixel across time and
space as NL-means does (see [14] for more details on this discussion).

Algorithm 3 NL-means algorithm (parameter values for κ, λ are indicative).

Input: noisy image ũ, σ noise standard deviation.
Output: output denoised image.

Set parameter κ = 3: size of patches.
Set parameter λ = 31: size of research zone for which similar patches are searched.
Set parameter h = 0.6σ: bandwidth filtering parameter.

for each pixel i do

Select a square reference patch P̃ around i of dimension κ× κ.

Set P̂ = 0 and Ĉ = 0.

for each patch Q̃ in a square neighborhood of i of size λ× λ do

Compute the normalized Euclidean distance between P̃ and Q̃, d(P̃ , Q̃) = 1
κ2 ‖P̃ − Q̃‖2.

Accumulate Q̃e−
d(P̃ ,Q̃)2

h2 to P̂ and e−
d(P̃ ,Q̃)2

h2 to Ĉ.

end for

Normalize the average patch P̂ by dividing it by the sum of weights Ĉ

end for

for each pixel x do
Aggregation: recover the denoised value at each pixel i by averaging all values at i of all
denoised patches Q̂ containing i

end for

28

a)

b)

c)

Figure 4.3: Weight distribution of NL-means applied to a movie. In a), b) and c) the first row shows a
five frames image sequence. In the second row, the weight distribution used to estimate the central pixel
(in white) of the middle frame is shown. The weights are equally distributed over the successive frames,
including the current one. They actually involve all the candidates for the motion estimation instead
of picking just one per frame. The aperture problem can be taken advantage of for a better denoising
performance by involving more pixels in the average.

29

4.2 Non-local Bayesian denoising
It is apparent that (2.7) given in section 2.1,

P̂1 = P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃),

gives by itself a denoising algorithm, provided we can compute the patch expectations and patch
covariance matrices. We shall now explain how the Non-local Bayes algorithm proposed in chapter
12 and also in [75] does it.
In order to select the set of similar patches P(P̃), the distance L2 between the reference patch P̃
and all patches Q̃ in a neighborhood around P̃ is computed. Then, only a fixed number of similar
patches is kept, obviously those with the lowest distance to the reference one. This fixed number
must be larger than the dimension of the patch to obtain an invertible covariance matrix CP̃ .
Then, the mean P̃ and covariance matrix CP̃ write

CP̃ '
1

#P(P̃)− 1

∑
Q̃∈P(P̃)

(
Q̃− P̃

)(
Q̃− P̃

)t
, P̃ ' 1

#P(P̃)

∑
Q̃∈P(P̃)

Q̃. (4.1)

The selection of similar patches can be improved in a second step by using the first estimate P̂1

as oracle. Indeed, the patch similarity is better estimated with the denoised patches and a better
approximation of P and CP can be obtained. The new set of similar patches P(P̂1) is set to
contain neighbouring denoised patches Q̂1 with L2 distance to P̂1 below a certain threshold τ0.
Then,

CP̂1
' 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̂1

)(
Q̂1 − P̂1

)t
, P̂1'

1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃1. (4.2)

respectively approximate CP and P . This approximation is different from (12.6) where CP was
approximated by using the covariance matrix of noisy patches, CP̃ ≡ CP + σ2I. Thus, we obtain
a second estimation Bayesian formula

P̂2 = P̃1 + CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃1). (4.3)

The estimates (2.7) and (4.3) may appear equivalent, but they are not in practice. CP̂1
, obtained

after a first denoising step, is a better estimation than CP̃ . Furthermore, P̃1 is a more accurate
mean than P̃ . Nevertheless, this second step cannot be considered as an iteration of the first step
algorithm. Indeed, it is still the original patch P̃ which is being denoised at the second step. Since
in Algorithm 4 the number of independent samples (the number of patches) used for computing
the covariance matrix is larger than the dimension of the vectors (size of patches) the empirical
covariance matrices of the form CP are always symmetric nonnegative. They are actually positive
with high probability on natural images. Thus, it is always possible in practice to inverse them.
Numerically, a Cholesky based symmetric matrix inversion algorithm is used. For the sake of
completeness (not happening in practice, but which could perhaps happen on a synthetic image)
if the matrix cannot be inverted, the algorithm sets P̂1 = P̃ or P̂2 = P̂1.
As pointed out in chapter 12 and also in [75], the Nonlocal Bayes algorithm only is an interpretation
(with some generic improvements like the aggregation) of the PCA based algorithm proposed in
[142]. This paper has a self-explanatory title: “Two-stage image denoising by principal component
analysis with local pixel grouping.” It is equivalent to apply a PCA on the patches similar to P̃ ,
followed by a Wiener filter on the coefficients of P̃ on this PCA, or to apply formula (2.7) with the
covariance matrix of the similar patches. Indeed the PCA computes nothing but the eigenvalues
of the empirical covariance matrix. Thus, the method in [142] gets its Bayesian interpretation. A
study on the compared performance of local PCA versus global PCA for TSID is actually proposed
in [43].

30

Algorithm 4 Non local Bayes image denoising

Input: noisy image
Output: denoised image

for all patches P̃ of the noisy image do

Find a set P(P̃) of patches Q̃ similar to P̃ .
Compute the expectation P̃ and covariance matrix CP̃ of these patches by

CP̃ '
1

#P(P̃)− 1

∑
Q̃∈P(P̃)

(
Q̃− P̃

)(
Q̃− P̃

)t
, P̃ ' 1

#P(P̃)

∑
Q̃∈P(P̃)

Q̃.

Obtain the first step estimation:

P̂1 = P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃).

end for
Obtain the pixel value of the basic estimate image û1 as an average of all values of all denoised
patches Q̂1 which contain i.
for all patches P̃ of the noisy image do

Find a new set P1(P̃) of noisy patches Q̃ similar to P̃ by comparing their denoised “oracular”
versions Q1 to P1.

Compute the new expectation P̃
1
and covariance matrix CP̂1

of these patches:

CP̂1
' 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1
)(

Q̂1 − P̃
1
)t
, P̃

1
' 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

Obtain the second step patch estimate

P̂2 = P̃
1

+ CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
).

end for
Obtain the pixel value of the denoised image û(i) as an average of all values of all denoised
patches Q̂2 which contain i.

31

4.3 Patch-based near-optimal image denoising (PLOW)
While in the Non-local Bayes method of section 4.2 a local model is estimated in a neighborhood
of each patch, in the PLOW [24] method the idea is to learn from the image a sufficient number of
patch clusters, actually 15, and to apply the LMMSE estimate to each patch after having assigned
it to one of the clusters obtained by clustering. Thus, this empirical-Bayesian algorithm starts
by clustering the patches by the classic K-means clustering algorithm. To take into account that
similar patches can actually have varying contrast, the inter-patch distance is photometrically
neutral, and the authors call it a “geometric distance”. The clustering phase is accelerated by a
dimension reduction obtained by applying a principal component analysis to the patches. The
clustering is therefore a segmentation of the set of patches, and the denoising of each patch is
then performed within its cluster. Since each cluster contains geometrically similar, but not
necessarily photometrically similar patches, the method identifies for each patch in the cluster
the photometrically similar patches as those whose quadratic distance to the reference patch are
within the bounds allowed by noise. Then a LMMSE [70] estimate is obtained for the reference
patch by a variant of (2.7). The algorithm uses a first phase, which performs a first denoising
before constituting the clusters. Thus the main phase is actually using the first phase as oracle to
get the covariance matrices of the sets of patches.

Algorithm 5 Algorithm 1: PLOW denoising

Input: image in vector form Ũ .
Output: denoised image in vector form Û .

Set parameters: patch size κ× κ = 11× 11, number of clusters K = 15;
Estimate noise standard deviation σ̂ by σ̂ = 1.4826median(|∇Ũ −median(∇Ũ)|);
Set parameter: h2 = 1.75σ̂2κ2;
Pre-filter image Ũ to obtain a pilot estimate Û1;
Extract overlapping patches of size κ× κ, Q̃ from Ũ and Q̂1 from U1;
Geometric clustering withK-Means of the patches in Û1 (using a variant of PCA for the patches).
The distance is a geometric distance, photometrically neutral.
for each patch cluster Ωk do
Estimate from the patches Q̂1 ∈ Ωk the mean patch P k '

∑
Q̂1∈Ωk

Q̂1 and the cluster
covariance Ck

P .
for each patch Q̂1,i ∈ Ωk do

Consider its associated noisy patch Q̃i. Identify photometrically similar patches Q̃j in the
cluster as those with a quadratic distance to Q̃i within the bounds allowed by noise, namely
γ2 + 2κ2σ̂2, with γ = γ(κ) a “small” threshold.

Compute similarity weights wij = e−
||Q̃i−Q̃j ||

2

h2 .
Compute the slightly more complex than usual LMMSE estimator for the noisy patch Q̃i,
(because the cluster contains patches that are geometrically similar but not necessarily
photometrically similar):

Q̂i = P +

I−
∑

j

wijCk
P + I

−1
∑

j

wij∑
j wij

(Q̃j − P).

end for
end for
At each pixel aggregate multiple estimates from all P̂ containing it, with weights given as inverses
of the variance of each estimator.

32

4.4 Inherent bounds in image denoising
By “Shotgun” patch denoising methods, we mean methods that intend to denoise patches by a
fully non-local algorithm, in which the patch is compared to a patch model obtained from a large
or very large patch set. The “sparse-land” methods intend to learn from a single image or from a
small set of images a sparse patch dictionary on which to decompose any given patch. The shotgun
methods learn instead from a very large patch set extracted from tens of thousands of images (up
to 1010 patches). Then the patch is denoised by deducing its likeliest estimate from the set of
all patches. In the case of [145], this patch space is organized as a Gaussian mixture with about
200 components. Shotgun methods have started being used in several image restoration methods.
For example in [62], for image inpainting, with an explicit enough title: “Scene completion using
millions of photographs”.
The approach of [86] is to define the simplest universal “shotgun” method, where a huge set of
patches is used to estimate the upper limits a patch-based denoising method will ever reach. The
results support the “near optimality of state of the art denoising results”, the results obtained by
the BM3D algorithm being only 0.1 decibel away from optimality for methods using small patches
(typically 8× 8.)
This experiment uses to evaluate the MMSE a set of 20, 000 images from the LabelMe dataset
[123]. The method, even if certainly not practical, is of exquisite simplicity. Given a clean patch
P the noisy patch P̃ with Gaussian noise of standard deviation σ has probability distribution

P(P̃ | P) =
1

(2πσ2)
κ2

2

e−
||P−P̃ ||2

2σ2 , (4.4)

where κ2 is the number of pixels in the patch. Then given a noisy patch P̃ its optimal estimator
for the Bayesian minimum squared error (MMSE) is by Bayes’ formula

P̂ = E[P | P̃] =

∫
P(P | P̃)PdP =

∫
P(P̃ | P)

P(P̃)
P(P)PdP. (4.5)

Using a huge set of M natural patches (with a distribution supposedly approximating the real
natural patch density), we can approximate the terms in (4.5) by P(P)dP ' 1

M and P(P̃) '
1
M

∑
i P(P̃ | Pi), which in view of (4.4) yields

P̂ '
1
M

∑
i P(P̃ | Pi)Pi

1
M

∑
i P(P̃ | Pi)

.

Thus the final MMSE estimator is nothing but the exact application of NL-means, denoising each
patch by matching it to the huge patch database. Clearly this is not just a theoretical algorithm.
Web based application could provide a way to denoise online any image by organizing a huge patch
data base. The final algorithm is summarized in Algorithm 6.
The main focus of [86] is, however, as we mentioned, elsewhere: it uses this shotgun denoising to
estimate universal upper and lower bounds of the attainable PSNR by any patch based denoising
algorithm. More precisely, the algorithm gives upper and lower bounds to the following problem:
Given a noisy patch P̃ , given the law p(P) of all patches in the world, find the best possible estimate
(in the sense of MMSE). The shotgun algorithm gives a best possible estimate for any patch based
denoising algorithm of this kind.
The upper bound obtained by the authors turns out to be very close to results obtained with BM3D
(see sec. 4.8), and the authors conclude that for small window sizes, or moderate to high noise
levels, the chase for the best denoising algorithm might be close to the finish. More precisely,
only fractions of decibels separate the current best algorithms from these demonstrated upper
bounds. The EPLL method [145] can be viewed as a first (slightly) more practical realization
of this quasi-optimality by a shotgun algorithm, and there is no doubt that other more practical
ones will follow. We now describe how the [86] lower and upper bounds can be estimated from a
sufficient set of natural images.

33

Algorithm 6 Shotgun NL-means

Input: Noisy image ũ in vectorial form.
Input: Very large set of M patches Pi extracted from a large set of noiseless natural images.
Output: Denoised image û.

for all patches P̃ extracted from ũ do
Compute the MMSE denoised estimate of P̃

P̂ '
∑M
i=1 P(P̃ | Pi)Pi∑M
i=1 P(P̃ | Pi)

where P(P̃ | Pi) is known from (4.4).
end for
At each pixel i get û(i) as P̂ (i), where the patch P is centered at i.
(optional Aggregation) : for each pixel j of u, compute the denoised version ûj as the average
of all values P̂ (j) for all patches containing j. (This step in not considered in [86].)

The MSE for a given denoising algorithm can be obtained by randomly sampling patches P , then
add noise to generate noisy patches P̃ , and measure the reconstruction error ‖P − P̂‖2. Then the
mean reconstruction error is

MSE =

∫
P(P)

∫
P(P̃ | P)‖P − P̂‖2dP̃dP. (4.6)

Conversely, one can start from a noisy patch P̃ , measure the variance of P(P | P̃) around it. This
amounts according to the authors of [86] to compute the sum of weighted distances between the
restored P̂ and all possible P explanations:

MSE =

∫
P(P̃)

∫
P(P | P̃)‖P − P̂‖2dP̃dP. (4.7)

This last equation follows from (4.6) by the Bayes rule. For each noisy P̃ one can define its MMSE

MMSE(P̃) = E[‖P̂ − P̃‖2 | P̃] =

∫
P(P | P̃)(P − P̂)2dP. (4.8)

The main interest of this formulation is that it permits to prove that the MMSE is, of all denoising
algorithms, the one that minimizes the overall MSE. Indeed, differentiating (4.7) with respect to P̂
yields back the MMSE estimator (4.5). The best overall MMSE achievable by any given denoising
algorithm therefore is

MMSE =

∫
P(P̃)E[‖P̂ − P̃‖2 | P̃] =

∫
P(P̃)P(P | P̃)(P − P̂)2dPdP̃ . (4.9)

The goal of [86] is to bound the MMSE from below, ignoring of course the probability distribution
P(P), but having enough samples of it. The main idea is to derive an upper and a lower bound
on the MMSE from the two MSE formulations (4.6)-(4.7). Given a set of M clean and noisy pairs
{(Pj , P̃j)}, j = 1 . . . ,M and another independent set of N clean patches {Pi}, i = 1 . . . , N , both
randomly sampled from natural images the proposed estimates are

MMSEU =
1

M

∑
j

‖P̂j − Pj‖2 (4.10)

and

MMSEL =
1

M

∑
j

∑
i P(P̃j | Pi)‖P̂j − Pi‖2∑

i P(P̃j | Pi)
. (4.11)

34

A striking feature of both estimates is that MMSEU uses the explicit knowledge of the original
noise-free patch Pj , while MMSEL does not involve it. Since MMSEU simply measures the error
for a given denoising algorithm, it obviously provides an upper bound for the MMSE of any other
denoising algorithm. As the authors observe, MMSEU and MMSEL are random variables that
depend on the choice of the samples. When the sample size approaches infinity, both converge to
the exact MMSE. Nevertheless, [86] gives a simple proof that, for a finite sample, in expectation,
MMSEU and MMSEL provide upper and lower bounds on the best possible MMSE. When both
MMSEU and MMSEL coincide, they provide an accurate estimate of the optimal denoising possible
with a given patch size.
For very high noise levels, the authors of [86] also tried to apply the linear minimum mean square
error (LMMSE) estimator (or Wiener filter) using only the second order statistics of the data, by
fitting a single k2 dimensional Gaussian to the set of M image k× k patches. They conclude that
even this simple approach is close to optimal for large noise.

σ = 18 σ = 55 σ = 170

Figure 4.4: Comparing [86] the PSNR (= −10 log10(MMSE)) of several denoising algorithms
(K-SVD [92], BM3D [35], Gaussian Scale Mixture [114]) compared to the PNSR predicted by
MMSEU , MMSEU . The performance of all algorithms is bounded by the MMSEU estimate,
but BM3D approaches this upper bound by fractional dB values. Nevertheless, the performance
bounds consider more restrictive patch based algorithms than the class BM3D belongs to. Thus
the actual gap to optimality may be higher.

4.5 The expected patch log likelihood (EPLL) method

The patch Gaussian mixture model This other shotgun method [145] is an almost literal
application of the piecewise linear estimator (PLE) method [141], see section 4.9). But it is
shotgun, namely applied to a huge set of patches instead of the image itself. A Gaussian mixture
model is learnt from a set of 2.106 patches, sampled from the Berkeley database with their mean
removed. The 200 mixture components with zero means and full covariance matrices are obtained
using the EM (expectation maximization) algorithm. This training took about 30 hours with
a public MATLAB code2. Thus were learnt: 200 means (actually they are all zero), 200 full
covariance matrices and 200 mixing weights which constitute the Gaussian mixture model of this
set of patches. Fig 4.5 shows some six bases extracted from the Gaussian mixture. Each one shows
the patches that are eigenvectors of some of the covariance matrices, sorted by eigenvalue.
Once the Gaussian mixture is learnt, the denoising method maximizes the Expected Patch Log
Likelihood (EPLL) while being close to the corrupted image in a way which is dependent on the
(linear) corruption model. Given an image U (in vector form) the EPLL of U under prior P is
defined by

EPLLP(U) =
∑
i

logP(PiU)

2http://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model.

35

http://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model

Figure 4.5: Eigenvectors of six randomly selected covariance matrices from the learnt Gaussian
mixture model, sorted by eigenvalue from largest to smallest, from [145]. The authors notice the
similarity of these basis elements to DCT, but also that many seem to model texture boundaries
and edges at various orientations.

where Pi is a matrix which extracts the i-th patch Pi from the image U out of all overlapping
patches, while logP(PiX) is the likelihood of the i-th patch under the prior P. Assuming a patch
location in the image is chosen uniformly at random, EPLL can be interpreted as the expected log
likelihood of a patch in the image (up to a multiplication by 1/M). Given a corrupted image Ũ
in vector form and a model of image corruption of the form ||AU − Ũ ||2, the restoration is made
by minimizing

fP(U |Ũ) =
λ

2
||AU − Ũ ||2 − EPLLP(U).

According to the authors, “This equation has the familiar form of a likelihood term and a prior
term, but note that EPLLP(U) is not the log probability of a full image. Since it sums over the
log probabilities of all overlapping patches, it “double counts” the log probability. Rather, it is the
expected log likelihood of a randomly chosen patch in the image.”
The optimization is made by “half quadratic splitting” which amounts to introduce auxiliary
patch variables Zi, i = 1, . . .M , one for each patch Pi, and to minimize alternatively the auxiliary
functional

CP,β(U, {Zi}|Ũ) :=
λ

2
||AU − Ũ ||2 +

β

2

∑
i

||PiU − Zi||2 − logP(Zi).

Solving for U given {Zi} amounts to the inversion

U =

(
λATA + β

∑
i

PTi Pi

)−1(
λAT Ũ + β

∑
i

PTi Z
i

)
.

In the case of denoising, A is simply the identity, and the above formula boils down to computing
for each pixel j a denoised value U(j) as a weighted average over all patches Pi containing this
given pixel j of the noisy pixel value Ũ(j) and of the patch denoised values Zi(j):

36

U(j) =
λŨ(j) +

∑
Pi3j Zi(j)

λ+ βk2
, (4.12)

where k2 is the patch size.
Then, solving for {Zi} given U amounts to solving a MAP (maximum a posteriori) problem of
estimating the most likely patch under the prior P, given PiU and parameter β.
The Gaussian mixture model being known, calculating the log likelihood of a given patch is trivial:

logP(Q) = log

(
K∑
k=1

πkN (Q|µk,Ck)

)
,

where πk are the mixing weights for each of the mixture component, µk and Ck are the corre-
sponding mean and covariance matrix.
Given a noisy patch Q̃, the MAP estimate is computed with the following procedure:

Algorithm 7 Patch restoration once the Patch Gaussian mixture is known

for each noisy patch Q̃ do
Compute the conditional mixture weights π′k = P(k | Q̃) (given by EM);

Pick the component k with the highest conditional mixing weight: kmax = maxk π
′
k;

The MAP estimate Q̂ is a Wiener solution for the kmax-th component:

Q̂ =
(
Ckmax + σ2I

)−1
(
CkmaxQ̃+ σ2µkmax

)
.

end for

37

The authors comment that this is one iteration of the “hard version” of the EM algorithm for
finding the modes of a Gaussian mixture [21]. The method can be used for denoising and several
experiments seems to indicate that it equals the performance of BM3D and LLSC [92].

4.6 The Portilla et al. wavelet neighborhood denoising (BLS-
GSM)

The basic idea of this algorithm is modeling a noiseless “wavelet coefficient neighborhood”, P , by
a Gaussian scale mixture (GSM) which is defined as

P =
√
zU

where U is a zero-mean Gaussian random vector and z is an independent positive scalar random
variable. The wavelet coefficient neighborhood turns out to be a patch of an oriented channel of
the image at a given scale, complemented with a coefficient of the channel at the same orientation
and the next lower scale. Thus, we adopt again the patch notation P . (Arguably, this method
is the first patch-based method.) Using a GSM model for P estimated from the image itself, the
method makes a Bayes least square (BLS) estimator. For this reason, the method will be called
here BLS-GSM (Bayes least square estimate of Gaussian scale mixture; the authors called it simply
BLS.) Without loss of generality it is assumed that Ez = 1 and therefore the random variables
U and P have similar covariances. To use the GSM model for wavelet patch denoising, the noisy
input image is first decomposed into a wavelet pyramid, and each image of the pyramid will be
separately denoised. The resulting denoised image is obtained by the reconstruction algorithm
from the wavelet coefficients. To avoid ringing artifacts in the reconstruction, a redundant version
of the wavelet transform, the so-called steerable pyramid, is used. For a n1 × n2 image, the
pyramid, P, is generated on log2(min(n1, n2)−4) scales and eight orientations using the following
procedure. First the input image is decomposed into one low-pass and eight oriented high-pass
component images using two polar filters in quadrature in the Fourier domain (the sum of their
squares is equal to 1). The Fourier domain being represented in polar coordinates (r, θ), the low
pass and high pass isotropic filters are

l(r) =

1 0 ≤ r < 0.5;

cos(π2 (− log2 r − 1)) 0.5 ≤ r < 1;

0 1 ≤ r ≤
√

2;

(4.13)

and

h(r) =

0 0 ≤ r < 0.5;

cos(π2 (log2 r)) 0.5 ≤ r < 1;

1 1 ≤ r ≤
√

2.

(4.14)

The high pass filter h is decomposed again into eight oriented components,

ak(r, θ) = h(r)gk(θ), k ∈ [0,K − 1], (4.15)

where K = 8, and

gk(θ) =
(K − 1)√
K[2(K − 1)]

[
2cos

(
θ − πk

K

)]K−1

. (4.16)

Then the steerable pyramid is generated by iteratively applying the ak filters to the result of the
low-pass filter to obtain bandpass images, and calculating the residual using the l filter followed by
sub-sampling. For example in the case of a 512×512 image we have a 5 scales pyramid consisting
of 49 sub-bands: 8 high-pass oriented sub-bands, from P1 to P8, 8 bandpass oriented sub-bands
for each scale, from P9 to P48, in addition to one lowpass non-oriented residual subband, P49.
(WLOG we shall keep this 49 number as landmark, but this number depends of course on the

38

image size). Assume now that the image has been corrupted by independent additive Gaussian
noise. Therefore, a typical neighborhood of wavelet coefficients can be represented as

P̃ = P +N =
√
zU +N, (4.17)

where noise, N , and P are considered to be independent. Define ps(i, j) as the sample at position
(i, j) of the sub-band Ps, the subbands being enumerated as (e.g.) s = 1, . . . , 49. The neighbor-
hood of the wavelet coefficient ps(i, j) is composed of its spatial neighbors for the same sub-band
s. It could have contained also coefficients from other sub-bands at the same scale as ps(i, j) but
with different orientations, and could finally also contain sub-band coefficients from the adjacent
scales, up and down. Surprisingly, the final neighborhood is quite limited: The authors sustain
that the best efficiency is reached with a 3×3 spatial block around ps(i, j), supplemented with one
coefficient at the same location and at the next coarser scale (considering its up-sampled parent
by interpolation) with the same orientation. Hence, the neighborhood size is 10 and contains
only {ps(i − 1, j − 1), . . . , ps(i + 1, j + 1), ps+8(i, j)}. There are two exceptions for this: first is
the neighborhood of coarsest scale coefficients (without any coarser scale) has necessarily only
9 surrounding coefficients. Second, the boundary coefficients are processed using special steps
described below. Using the observed noisy vector, P̃ , an estimation of P , can be obtained by

E(P | P̃) =

∫ ∞
0

P(z | P̃)E(P | P̃ , z)dz.

This estimation is the Bayesian denoised value of the reference coefficient. The integral is computed
numerically on experimentally obtained sampled intervals of z. Here, only 13 equally spaced values
of z in the interval [ln(zmin), ln(zmax)] = [−20.5, 3.5] are used. Therefore E(P | P̃) is computed
as

E(P | P̃) =

13∑
i=1

P(zi | P̃)E(P | P̃ , zi). (4.18)

The only question left is: how to compute the conditional probability and the conditional expec-
tation, P(zi | P̃) and E(P | P̃ , zi). For each sub-band, Ps except the low-pass residual, P49 which
remains unchanged, define Cs

N and Cs
P̃
, respectively the noise and the observation covariance

matrices of the wavelet neighborhood. If ns denotes the size of neighborhood at sub-band Ps (ns
therefore is 10 or 9 as explained above), Cs

N is a ns × ns matrix which can be experimentally
generated by first decomposing a delta function σδ on the steerable pyramid. Here σ is the known
noise variance and δ is an n1 × n2 image defined by

δ(i, j) =

{
1 (i, j) = (n1

2 ,
n2

2),

0 otherwise.

(This covariance matrix is equal to the covariance of the white noise defined as a band-limited
function obtained by randomizing uniformly the phase of the Fourier coefficients of the discrete
Dirac mass δ.) Using the steerable pyramid decomposition of σδ, defineNs as the matrix which has
for rows all neighborhoods of the sub-band Ps. This is a matrix with ns columns and (n1−2)(n2−2)
rows. (Subtracting 2 is for eliminating the boundary coefficients). The covariance Cs

N matrix of
the neighborhood samples for each sub-band is computed as

Cs
N =

NT
sNs

(n1 − 2)(n2 − 2)
,

where (.)T stands for matrix transposition. Since all the noise removal steps are calculated for each
sub-band separately, in the following we skip the superscript s to simplify the notation. Similarly
but using the pyramid of observed noisy samples, CP̃ can be computed. Using (4.17) and the
assumption Ez = 1, for each sub-band s we have

CU = CP̃ −CN .

39

CU can be forced to be positive semi-definite by setting to zero all of its negative eigenvalues. We
can now calculate E(P | P̃ , zi). Using the fact that P and N

¯
are Gaussian independent variables

and also that the noise is additive, E(P | P̃ , zi) is simply a local Wiener estimate:

E(P | P̃ , z) =
zCU

zCU + CN
P̃ ,

where the matrix fraction notation is understood as C
W := CW−1. Clearly it would be cumbersome

to compute as many matrix inversions as zi’s. Fortunately, with a bit of linear algebra this
computation can be rendered common to all zi. Define {Q,Λ} as the eigenvectors and eigenvalues
of S−1CUS−T , where Sns×ns is the symmetric square root of CN , CN = SST . So we have
S−1CUS−T = QΛQT . Furthermore, set M = SQ, v = M−1P̃ . Then we have

E(P | P̃ , z) =
zCU

zCU + CN
P̃

=
zCU

zCU + SST
P̃

=
zCU

S(zS−1CUS−T + I)ST
P̃

=
zCU

SQ(zΛ + I)QTST
P̃

= zCUS−TQ(zΛ + I)−1QTS−1P̃

= zSS−1CUS−TQ(zΛ + I)−1QTS−1P̃

= zSQΛ(zΛ + I)−1QTS−1P̃

= zMΛ(zΛ + I)−1v.

The interest is that one can calculate M, Λ and v once for each subband. The scalar final
formulation of the above equation is

E(P | P̃ , zi)c =

ns∑
j=1

zimc,jλj,jvj
ziλj,j + 1

, (4.19)

where mc,j , λj,j and vj are the elements of M, Λ and v respectively, and c is the index of the
reference coefficient in the neighborhood.
The second component of (4.18) is P(zi | P̃), which can be obtained using the Bayes rule (pz(z)
denotes the density function of the random variable z:

P(zi | P̃) =
P(P̃ | zi)pz(zi)∫∞

0
P(P̃ | α)pz(α)dα

or its discrete form

P(zi | P̃) =
P(P̃ | zi)pz(zi)∑13
j=1 P(P̃ | zj)pz(zj)

. (4.20)

where the density of observed noisy neighborhood vector P̃ conditioned on zi is a zero-mean
Gaussian with covariance

CP̃ |zi := ziCU + CN ,

so that

P(P̃ | zi) =
e−
−P̃T (zCU+CN)−1P̃

2√
|zCU + CN |

.

Using the above definitions of v and Λ and the same simplifications as for E(P | P̃ , zi) we obtain

40

P(P̃ | zi) =
e
− 1

2

∑ns

j=1

v2
j

zjλj,j+1√
Πns
j=1(ziλj,j + 1)

, (4.21)

The only question left is the form of pz(z). The authors, after a somewhat puzzling discussion,
adopt “a non-informative Jeffrey prior” pz(z) ' 1

z . Since this function cannot be a density, being
non integrable, the function is actually cut off to zero near z = 0.
To summarize, the Portilla et al. algorithm is:

Algorithm 8 Portilla et al. wavelet neighborhood denoising (BLS-GSM)

Input: noisy image
Output: denoised image

Parameters: n1 × n2 the image size, number of pyramid scales log2(min(n1, n2)− 4).
Parameter s, enumeration of all oriented channels at each scale (8 per scale).
Establish ns, dimension of wavelet neighborhood coefficient (10 or 9).

Apply the wavelet pyramid (4.13)-(4.16), respectively to the noise image δ and to the observed
image.
Regroup the obtained wavelet coefficients to obtain P̃ s, the wavelet coefficient neighborhoods
of rank s and Ns the noise wavelet coefficient neighborhoods of rank s.
for each filter index s do
Compute Cs

N and Cs
P̃
, noise and observation covariance matrices of Ns and P̃s. (In the sequel

the subscript s is omitted.) Deduce CU = CP̃ −CN .
Compute {Q,Λ} the eigenvectors and eigenvalues of S−1CUS−T , where S is the symmetric
square root of CN , CN = SST .

end for
for each wavelet coefficient neighborhood P̃ and i ∈ {1, . . . , 13} do
Compute M = SQ, v = M−1P̃

Using (4.19) obtain E(P | P̃ , zi)c =
∑ns

j=1
zimc,jλj,jvj
ziλj,j+1 , wheremc,j , λj,j and vj are the elements

of M, Λ and v respectively, and c is the index of the reference coefficient in the neighborhood.
Apply (4.20) to get P(zi | P̃) = P(P̃ |zi)pz(zi)∑13

j=1 P(P̃ |zj)pz(zj)
, using the value obtained by (4.21) for

P(P̃ | zi) = e
− 1

2

∑ns

j=1

v2
j

zjλj,j+1√
Πn

s
j=1(ziλj,j+1)

.

By (4.18) finally obtain E(P | P̃) =
∑13
i=1 P(zi | P̃)E(P | P̃ , zi) where pz(z) ' 1

z and zi are
quantized uniformly on the interval [ln(zmin); ln(zmax)] = [−20.5, 3.5].

end for
Reconstruct the restored image from its restored neighborhood coefficients E(P | P̃) by the
inverse steerable pyramid.

41

As we shall see in the synthesis, in spite of its formalism, this method is actually extremely similar
to other patch-based Bayesian methods. It has received a more recent extension, reaching state
of the art performance, in [89]. This paper proposes an extension of the above method modeling
the wavelet coefficients as a global random field of Gaussian scale mixtures.

4.7 K-SVD
The K-SVD method was introduced in [1] where the whole objective was to optimize the quality
of sparse approximations of vectors in a learnt dictionary. Even if this article noticed the interest
of the technique in image processing tasks, it is in [53] that a detailed study has been led on
the denoising of grey-level images. Then, the adjustment to colour images has been treated in
[93]. Let us notice that this last article proved that the K-SVD method can also be useful in
other image processing tasks, such as non-uniform denoising, demoisaicing and inpainting. For a
detailed description of K-SVD the reader is referred to [90], [92], and the dedicated chapter 10.
The algorithm is divided in three steps. In the two first steps an optimal dictionary and a sparse
representation is built for each patch in the image, using among other tools a singular value decom-
position (SVD). In the last step, the restored image is built by aggregating the computed sparse
representations of all image patches. The algorithm requires an initialization of the dictionary
which is updated during the process. The dictionary initialization may contain usual orthogonal
basis (discrete cosine transform, wavelets...), or patches from clean images or even from the noisy
image itself.

The first step looks for sparse representations of all patches of size κ2 in the noisy image in vector
form Ũ using a fixed dictionary D. A dictionary is represented as a matrix of size κ2 × ndic, with
ndic ≥ κ2, whose columns (the “atoms of the dictionary”) are normalized (in Euclidean norm).
For each noisy patch RiŨ , (where the index i indicates that the top left corner of the patch is
the pixel i, and Ri is the matrix extracting the patch vector from Ũ) a “sparse” column vector
αi (of size ndic) is calculated by optimization. This vector of coefficients should have only a few
non-zero coefficients, the distance between RiŨ and its sparse approximation Dαi remaining as
small as possible. The dictionary allows one to compute a sparse representation αi of each patch
RiŨ . These sparse vectors are assembled in a matrix α with κ2 rows and Np columns where Np
is the number of patches of dimension κ2 of the image.
More precisely, an ORMP (Orthogonal Recursive Matching Pursuit) gives an approximate solution
of the (NP-complete) problem

Arg min
αi

||αi||0 such that ||RiŨ −Dαi||22 ≤ κ2(Cσ)2 (4.22)

where ‖αi‖0 refers to the l0 norm of αi, i.e. the number of non-zero coefficients of αi. The
additional constraint guarantees that the residual has an l2 norm lower than κCσ. C is an user
parameter.

The second step tries to update one by one the columns of the dictionary D and the representations
α to improve the overall fidelity of the patch approximation. The goal is to decrease the quantity∑

i

‖Dαi −RiŨ‖22 (4.23)

while keeping the sparsity of the vectors αi. We will denote by d̂l (1 ≤ l ≤ ndic) the columns of
the dictionary D̂. First, the quantity (4.23) is minimized without taking care of the sparsity. The
atom d̂l and the coefficients α̂i(l) are modified to make the approximations of all the patches more
efficient. For each i, introduce the residue

eli = RiŨ − D̂α̂i + d̂lα̂i(l) (4.24)

which is the error committed by deciding not to use d̂l any more in the representation of the patch
RiŨ . Thus eli is a vector of size κ2.

42

These residues are grouped together in a matrix El (whose columns are indexed by i). The values
of the coefficients α̂i(l) are also grouped in a row vector denoted by α̂l. Therefore, El is a matrix
of size κ2×Np (recall that Np is the total number of patches in the image) and α̂l is a row vector
of size Np. We must try to find a new d̂l and a new row vector α̂l minimizing∑

i

‖D̂α̂i − d̂lα̂i(l) + dlα
l −RiŨ‖22 = ||El − dlαl||2F (4.25)

where the squared Frobenius norm ‖M‖2F refers to the sum of the squared elements of M. This
Frobenius norm is also equal to the sum of the squared (Euclidean) norms of the columns, and one
can be convinced that minimizing (4.25) amounts to reduce the approximation error caused by d̂l.
It is well-known that the minimization of such a Frobenius norm consists in a rank-one approx-
imation, which always admits a solution, practically given by the singular value decomposition
(SVD). Using the SVD of El :

El = U∆VT

(where U and V are orthogonal matrices and ∆ is non-negative and decreasing), the updated
values of d̂l and α̂l are respectively the first column of U and the first column of V multiplied by
∆(1, 1).

After K iterations of these two steps, a denoised patch D̂α̂i is available for each patch position i,
where D̂ is the final updated dictionary. The third and last (aggregation) step consists in merging
the denoised versions of all patches of the image in order to obtain a global estimate. This is
achieved by solving the minimization problem

Û = Arg min
U0∈RM

λ||U0 − Ũ ||22 +
∑

i

||D̂α̂i −RiU0||22 ,

by the closed formula

Û =

(
λI +

∑
i

RT
i Ri

)−1(
λŨ +

∑
i

RT
i D̂α̂i

)
. (4.26)

This amounts for each pixel to average its initial noisy value with the average of all estimates
obtained with all patches containing it. The parameter λ controls the tradeoff between these two
values and thus measures the fidelity to the initial noisy image.

Mairal et al. [93] proposed to directly extend the algorithm to vector valued images instead of
converting the colour image to another colour system decorrelating geometry and chromaticity.
The previous algorithm is applied on column vectors which are a concatenation of the R,G,B
values. In this way, the algorithm, when updating the dictionary, takes into account the inter-
channel correlation. We shall detail the algorithm for grey level images, the colour version simply
requires an adaptation of the Euclidean norm to the colour space.

43

Algorithm 9 K-SVD algorithm for grey level images

Input: noisy image ũ, Ũ in vector form, noise standard deviation σ.
Input: κ2, dimension of patches (number of pixels).
Input ndic, dictionary size, K iteration number of the dictionary optimization.
Input: initial patch dictionary Dinit as matrix with ndic columns and κ2 rows.
Output: output image in vector form Û .

Collect all noisy patches of dimension κ2 in column vectors RiŨ
Set D̂ = Dinit.

for k=1 to K do

An ORMP is applied to the vectors RiŨ in a such way that a vector of sparse coefficients α̂i

is obtained verifying RiŨ ≈ Dα̂i.

Introduce ωl = { i | α̂i(l) 6= 0 };
For i ∈ ωl, obtain the residue

eli = RiŨ − D̂α̂i + d̂lα̂i(l) ;

Put these column vectors together in a matrix El. Values α̂i(l) are also assembled in a row
vector denoted by α̂l for i ∈ ωl;
Update d̂l and α̂l as solutions of the minimization problem :

(d̂l, α̂
l) = Arg min

dl,αl
‖El − dlαl‖2F .

A truncated SVD is applied to the matrix El. It provides partially U , V (orthogonal matrices)
and ∆ (filled in with zeroes except on its first diagonal), such that El = U∆VT . Then d̂l is
defined again as the first column of U and α̂l as the first column of V multiplied by ∆(1, 1).

end for

Aggregation: for each pixel the final result Û in vector form is obtained thanks to the weighted
aggregation:

Û =

(
λI +

∑
i

Rt
iRi

)−1(
λŨ +

∑
i

Rt
iD̂α̂i

)
.

44

4.8 BM3D
BM3D is a sliding window denoising method extending DCT denoising and NL-means. Instead
of adapting locally a basis or choosing from a large dictionary, it uses a fixed basis. The main
difference with DCT denoising is that a set of similar patches are used to form a 3D block which
is filtered by using a 3D transform, hence its name Collaborative filtering. The method has four
steps: a) finding the image patches similar to a given image patch and grouping them in a 3D
block b) 3D linear transform of the 3D block; c) shrinkage of the transform spectrum coefficients;
d) inverse 3D transformation. This 3D filter therefore filters out simultaneously all 2D image
patches in the 3D block. By attenuating the noise, collaborative filtering reveals even the finest
details shared by the grouped patches. The filtered patches are then returned to their original
positions and an adaptive aggregation procedure is applied by taking into account the number
of kept coefficients per patch during the thresholding process (see chapter 3 for more details on
aggregation).
The first collaborative filtering step is much improved in a second step using an oracle Wiener
filtering. This second step mimics the first step, with two differences. The first difference is that
it compares the filtered patches instead of the original patches like described in chapter 3. The
second difference is that the new 3D group (built with the unprocessed image samples, but using
the patch distances of the filtered image) is processed by an oracle Wiener filter using coefficients
from the denoised image obtained at the first step to approximate the true coefficients given by
Theorem 1. The final aggregation step is identical to those of the first step.
The algorithm is extended to colour images through the YoUoVo colour system. The previous
strategy is applied independently to each channel with the exception that similar patches are
always selected by computing distances in the channel Yo.

45

Algorithm 10 BM3D first iteration algorithm for grey images.

Input: noisy image ũ, σ, noise standard deviation.
Output: output basic estimation û1 of the denoised image.

Set parameter κ× κ = 8× 8: dimension of patches.
Set parameter λ× λ = 39× 39: size of search zone in which similar patches are searched.
Set parameter Nmax = 16 : maximum number of similar patches retained during the grouping
part.
Set parameter s = 3: step in both rows and columns between two reference patches.
Set parameter λ3D = 2.7: coefficient used for the hard thresholding.
Set parameter τ = 2500 (if σ > 40, τ = 5000): threshold used to determine similarity between
patches.

for each pixel i, with a step s in rows and columns do

Select a square reference patch P̃ around i of size κ× κ.

Look for square patches Q̃ in a square neighborhood of i of size λ× λ having a distance to P̃
lower than τ .

if there are more than Nmax similar patches then
keep only the Nmax closest similar patches to P̃ according to their Euclidean distance.

else
keep 2p patches, where p is the largest integer such that 2p is smaller than the number of
similar patches

end if

A 3D group P(P̃) is built with those similar patches.

A bi-orthogonal spline wavelet (Bior 1.5) is applied on every patch contained in P(P̃).

A Walsh-Hadamard transform is then applied along the third dimension of the 3D group
P(P̃).

A hard thresholding with threshold λ3Dσ is applied to P(P̃). An associated weight wP̃ is
computed :

wP̃ =

{
(NP̃)

−1
NP̃ ≥ 1

1 NP̃ = 0

where NP̃ is the number of retained (non-zero) coefficients.

The estimate ûQ̃,P̃1 for each pixel i in similar patches Q̃ of the 3D group P(P̃) is then obtained
by applying the inverse of the Walsh-Hadamard transform along the third dimension, followed
by the inverse of the bi-orthogonal spline wavelet on every patches of the 3D group.

end for

for each pixel i do
Aggregation: recover the denoised value at i by averaging all estimatesof all patches Q̃ in all
3D groups P(P̃) containing i, the weights being given by the wP̃ .

end for

46

Algorithm 11 BM3D second iteration algorithm for grey images.

Input: noisy image ũ, σ, noise standard deviation.
Input: basic estimation û1 obtained at the first step.
Output: final denoised image û.

Set parameter κ× κ = 8× 8 (up to 12 for high noise level): dimension of patches.
Set parameter λ× λ = 39× 39: size of search zone in which similar patches are searched.
Set parameter Nmax = 32: maximum number of similar patches retained during the grouping
part.
Set parameter s = 3: step in both rows and columns between two reference patches.
Set parameter τ = 400 (if σ > 40, τ = 3500): threshold used to determinate similarity between
patches.

for each pixel i, with a step s in rows and columns do

Take the square reference patches P̃ and P̂1 centered at i, of size κ×κ in the initial and basic
estimation images.

Look for square patches Q̂1 in a square neighborhood of i of size zsize × zsize having a
distance lower than τ in the basic estimate image û1.

if there are more than Nmax similar patches then
keep only the Nmax closest similar patches to P̂1 according to their Euclidean distance.

else
keep 2p patches, where p is the largest integer such that 2p is smaller than the number of
similar patches

end if

Two 3D groups P(P̃) and P(P̂1) are built with those similar patches, one from the noisy
image ũ and one from the basic estimate image û1.

A 2D DCT is applied on every patch contained in P(P̃) and P(P̂1).

A Walsh-Hadamard transform is then applied along the third dimension of P(P̃) and P(P̂1).

Denoting by τ3D the 3D transform (2D DCT followed by the Walsh-Hadamard transform)
applied on the 3D group, compute the Wiener coefficient ωP̃ = |τ3D(P(P̂1)|2

|τ3D(P(P̂1)|2+σ2
.

The Wiener collaborative filtering of P(P̃) is realized as the element-by-element multiplication
of the 3D transform of the noisy image τ3D(P(P̃)) with the Wiener coefficients ωP̃ .

An associated weight wP̃ is computed :

wP̃ =

{
(‖ωP̃ ‖2)

−2 ‖ωP̃ ‖2 > 0
1 ‖ωP̃ ‖2 = 0

The estimate ûQ̃,P̃2 for each pixel i in similar patches Q̃ of the 3D group P(P̃) is then obtained
by applying the inverse of the 1D Walsh-Hadamard transform along the third dimension,
followed by the inverse of the 2D DCT on every patch of the 3D group.

end for

for each pixel i do
Aggregation: Recover the denoised value û(i) at i by averaging all estimates of patches Q̃ in
all 3D groups P(P̃) containing i, using the weights ωP̃ .

end for

47

Here we described the basic implementation given in its seminal paper, and which will also be
used in the comparison section. Yet, BM3D has several more recent variants that improve its
performance. Like for NL-means, there is a variant with shape-adaptive patches [36]. In this
algorithm denominated BM3D-SAPCA, the sparsity of image representation is improved in two
aspects. First, it employs image patches (neighborhoods) which can have data-adaptive shape.
Second, the PCA bases are obtained by eigenvalue decomposition of empirical second-moment
matrices that are estimated from groups of similar adaptive-shape neighborhoods. This method
improves BM3D especially in preserving image details and introducing very few artifacts. The
anisotropic shape-adaptive patches are obtained using the 8-directional LPA-ICI techniques [69].
The very recent development of BM3D is presented in [68], [39], where it is generalized to become
a generic image restoration tool, including deblurring.

4.9 The piecewise linear estimation (PLE) method

The ambitious Bayesian restoration model proposed in [140] and [141] is a general framework
for restoration, including denoising, deblurring, and inpainting. An image is decomposed into
overlapping patches ni = AiPi +Ni where Ai is the degradation operator restricted to the patch
i, Pi is the original patch, ni the degraded one, and Ni the noise restricted to the patch. Since we
are studying only the denoising problem, we shall take for Ai the identity. The (straightforward)
extension including a linear perturbation operator is out of our scope.
The patch density law is modeled as a mixture of Gaussian distributions {N (µk,Ck)}1≤k≤K
parametrized by their means µk and covariance matrices Ck. Thus each patch ni is assumed
independently drawn from one of these Gaussians with an unknown index k and a density function

p(Pi) =
1

(2π)
κ2

2 |Cki |
1
2

e
− 1

2 (Pi−µk)TC−1
ki

(Pi−µk)
.

Estimating all patches Pi from their noisy observations ni amounts to solve the following problems:

• to estimate the Gaussian parameters (µk,Ck)1≤k≤K from the degraded data ni;

• to identify the index ki of the Gaussian distribution generating the patch Pi;

• to estimate Pi from its corresponding Gaussian distribution (µki ,Cki) and from its noisy
version ni.

In consequence PLE [141]) has two distinct steps in the estimation procedure. In an E-step (E
for Estimate), the Gaussian parameters (µk,Ck)k are known and for each patch the maximum a
posteriori (MAP) estimate P̂ ki is computed with each Gaussian model. Then the best Gaussian
model ki is selected to obtain the estimate P̂i = P̂ kii .

In the M-step (M for Model), the Gaussian model selection ki and the signal estimates f̂i are
assumed known for all patches i, and permit to estimate again the Gaussian models (µk,Ck)1≤k≤K .
According to the terminology of section 3.2, this section gives the oracle permitting to estimate
in the E-step the patches by a Wiener type filter.
For each image patch with index i the patch estimation and its model selection is obtained by
maximizing the log a-posteriori probability P(Pi | ni, k),

(P̂i, ki) = arg max
P,k

logP(Pi | ni,Ck) (4.27)

= arg max
P,k

(logP(ni | Pi,Ck) + logP(Pi | Ck)) (4.28)

= arg min
Pi,k

(
‖Pi − ni‖2 + σ2(Pi − µk)TC−1

k (Pi − µk) + σ2 log |Ck|
)

(4.29)

48

where the second equality follows from the Bayes rule and the third one assumes a white Gaussian
noise with diagonal matrix σ2I (of the dimension of the patch) and Pi ' N (µk,Ck). This mini-
mization can be made first over Pi, which amounts to a linear filter, and then over k, which is a
simple comparison of a small set of real values. The index k being fixed, the optimal P ki satisfies

P ki = arg min
Pi

(
‖Pi − ni‖2 + σ2(Pi − µk)TC−1

k (Pi − µi) + log |Ck|
)

and therefore
P ki = µk + (I + σ2C−1

ki
)−1(ni − µk),

which is the formula (4.3) already seen in section 4.2. Then the best Gaussian model ki is selected
as

ki = arg min
k

(
‖P ki − ni‖2 + σ2(P ki − µk)Tσ−1

k (P ki − µi) + log |Ck|
)
.

Assuming now that for each patch Pi its model ki and its estimate P̂i are known, the next question
is to give for each k the maximum likelihood estimate for (µk,Ck) knowing all the patches assigned
to the k-th cluster Ck, namely,

(µk,Ck) = arg max
µk,Ck

logP({P̂i}i∈Ck | µk,Ck).

This yields the empirical estimate

µk =
1

#Ck

∑
i∈Ck

P̂i, Ck =
1

#Ck − 1

∑
i∈Ck

(P̂i − µk)(P̂i − µk)T ,

which are the estimates (4.2) also used in section 4.2.
Finally the above MAP-EM algorithm is iterated and the authors observe that the MAP proba-
bility of the observed signals P({P̂i}i | {ni}i, {µk,Ck}k) always increases. The clusters and the
patch estimates converge. Nevertheless, this algorithm requires a good initialization. Noticing
that having the adequate Gaussians describing the patch space amounts to have a good set of
PCA bases for intuitive patch clusters, the authors create 19 orthogonal bases in the following
way: one of them, say k = 0, is the classic DCT basis and corresponds to the “texture cluster”.
The others are obtained by fixing 18 uniformly sampled directions in the plane. For each direction,
PCA is applied to a set of patches extracted from a synthetic image containing an edge in that
direction. The PCA yields an oriented orthonormal basis. In short, the initial clusters segment
the patch set in 18 classes of patches containing an edge or an oriented texture, and one class
containing the more isotropic patches.
The study in this paper gives an interpretation of the patch dictionary methods such as K-SVD and
fuses them with Bayesian methods and the Wiener method. In particular the paper shows how the
K-SVD method actually learns patches that are quite similar to oriented patches obtained by the
above procedure, as illustrated in Fig. 4.6. This analysis structures the synthetic view proposed
in chapter 6.

4.10 Non-local Dual Denoising

4.10.1 Dual Domain Image Denoising
This section presents an alternative interpretation of DDID that differs from the one originally
proposed by Knaus and Zwicker [72]. The original description of DDID splits the image into a low-
and a high-contrast layer, which are treated respectively with a spatial and a frequency domain
method. In this work instead, the spatial domain filtering is seen as a pre-processing to improve
the frequency domain denoising.
DDID consists of three almost identical steps. The output of each step is used to guide the
following one. Each step of the algorithm processes the noisy image y pixel-wise using the guide

49

Algorithm 12 Piecewise linear estimation (PLE)

Input: noisy image ũ given by the family of its noisy patches (P̃i)i, initial set of 19 Gaussian
models N (µk,Ck) obtained as: a) the 18 PCAs of the patches of 18 synthetic edge images, each
with a different orientation; b) a Gaussian model with a diagonal covariance matrix on the DCT
basis.
Output: denoised image û

E-STEP
for all patches P̃i of the noisy image do

for each k do
Estimate the MAP of Pi knowing k: P ki = µk + (I + σ2C−1

k)−1ni.
end for
Select the best Gaussian model ki for Pi as
ki = arg mink

(
‖P ki − ni‖2 + σ2(P ki − µk)TC−1

k (P ki − µi) + log |Ck|
)
.

Obtain the best estimate of Pi knowing the Gaussian models (µk,Ck), P̂i = P kii .
end for

M-STEP
for all k do
Compute the expectation µk and covariance matrix Ck of each Gaussian by
µk = 1

#Ck

∑
i∈Ck P̂i, Ck = 1

#Ck−1

∑
i∈Ck(P̂i − µk)(P̂i − µk)T .

end for
Iterate E-STEP and M-STEP
Aggregation: Obtain the pixel value of the denoised image u(i) as a weighted average of all
values of all denoised patches Pi which contain i.

(a) (b) (c)

Figure 4.6: Taken in [141], this figure shows : (a) typical dictionary atoms learnt from the classic
image Lena with K-SVD; (b)-(d) the numerical procedure to create one of the oriented PCAs; (b)
a synthetic edge image. Patches 8×8 touching the edge are used to calculate an initial PCA basis;
(c) the first 8 patches of the PCA basis (ordered by the larger eigenvalue).

50

Figure 4.7: Illustration of DDID’s preprocessing of a patch. The kernel k is computed using the
guide g. In the modified patch ym all object discontinuities have been removed, leaving only the
texture information corresponding to the object selected by the kernel k. The removed pixels are
replaced by s̃: the average of the meaningful portion of the patch.

image g. Each pixel p is denoised using the d × d neighborhood (d = 31) of both the noisy and
the guide image.
Denoising in the frequency domain often results in the appearance of artifacts. To prevent it each
patch is pre-processed to eliminate discontinuities corresponding to object’s edges and patch’s
boundaries. To that end, a kernel k is created from g identifying the pixels belonging to the same
object as its central pixel p. This kernel is the product of a spatial and range kernels, as used in
the bilateral filter [137, 127]

k(q) = ks(q) · kr(q). (4.30)

• The range kernel is used to identify the pixels belonging to the same object. The idea is
that, in g, pixels belonging to the same object as the central pixel will have similar values.
The kernel is

kr(q) = exp

(
−|g(q)− g(p)|2

γrσ2

)
, (4.31)

where γr is a parameter of the algorithm and σ is the standard deviation of the noise.

• The spatial kernel, identifies the pixels close to the central one and smooths periodization
discontinuities associated to the frequency domain processing. To achieve that a Gaussian
kernel of standard deviation σs is used, where σs is a parameter of the algorithm:

ks(q) = exp

(
−|q − p|

2

2σ2
s

)
. (4.32)

Since denoising with Fourier coefficients has problems in presence of edges (due to the Gibbs
phenomenon), the goal is to make the parts of the patch not relevant to the denoising as regular
as possible. k is used to compute the average of the “relevant” part of both the noisy and the
guide patches:

s̃ =

∑
k(q)y(q)∑
k(q)

, g̃ =

∑
k(q)g(q)∑
k(q)

, (4.33)

where the sums are computed over Np, the domain of the d × d patch centered at p. After that,
the parts of the patch not taken into account by k are set to the respective average. The resulting
modified patch is

ym(q) = k(q)y(q) + (1− k(q))s̃. (4.34)

As illustrated in Fig. fig:DDIDsketch the patch ym is similar to y in the parts belonging to the
same object as the central pixel (including the noise) and smooth in the rest. The same procedure

51

is applied to the guide patch

gm(q) = k(q)g(q) + (1− k(q))g̃. (4.35)

At this point, ym and gm are two patches, built in the same way, in which discontinuities have
been strongly reduced and only information “relevant” to denoise the central pixel has been kept.
It is therefore safe to apply the Fourier transform and to continue the process in the frequency
domain

G(f) =
∑
q∈Np

exp

(
−2iπ(q − p)f

d

)
gm(q), (4.36)

S(f) =
∑
q∈Np

exp

(
−2iπ(q − p)f

d

)
ym(q). (4.37)

Assuming that y contains an additive white Gaussian noise of variance σ2, the amount of noise
present in ym depends on k. In particular, for a pixel q, ym(q) contains a noise equal to σ2k(q). An
interesting property of the Fourier transform is that the noise in every pixel is evenly distributed
over all frequencies. Thus every frequency of S has Gaussian noise with the same variance

σ2
f = σ2

∑
q∈Np

k(q)2. (4.38)

The patch is then denoised by shrinking its Fourier coefficients S(f) by the factor

K(f) =

{
1 if f = 0,

exp
(
− γfσ

2
f

|G(f)|2

)
otherwise,

(4.39)

where γf is a parameter of the algorithm. The denoised value of the central pixel is finally recovered
by reversing the Fourier transform. Inverting equation (4.34) is unnecessary, since k(p) = 1. Since
the inverse Fourier transform evaluated in the center of the patch is the average of the frequencies,
the central pixel’s value is computed as

x(p) =
1

d2

∑
f

S(f)K(f). (4.40)

Equations (eq:fourier- eq:res) are slightly different from the ones presented in [72]. In fact, it can
be easily proved that G(f) and S(f) differ from the ones presented in the original paper only at
the zero frequency. This frequency is then restored after the shrinkage. In the presented version,
the zero frequency is left untouched by the shrinkage, by imposing K(0) = 1.
For color images, the kernel kr is computed by using the Euclidean distance in the color space,
while the Fourier thresholding is done independently on each channel in the YUV color space.

Artifacts in DDID The above description highlights that the denoising in DDID is accom-
plished in the frequency domain, while the spatial pre-processing is used to remove discontinuities
from the image. The described procedure is applied three times with different parameters. Each
time the result of the previous calculation is used as a guide, except in the first iteration where
the noisy image itself is used. It is worth noting that the image is denoised in the last iteration
only. The other two are only used to obtain a suitable guide.
Besides being slow to compute, the main drawback of DDID is that its results often present ringing
artifacts (as seen in Fig. fig:DDIDartifacts). This is surprising since removing the strong edges,
as in equation (4.34), should prevent it. Since the guide image used in the first iteration is noisy,
and the kernel in (4.30) is computed from it, “parasite” information is retained and propagated in
the following iterations (see Fig. fig:DDIDsteps). This yields a result that contains artifacts.

52

Figure 4.8: Artifacts in DDID. From left to right: the noisy image (with σ = 30), the result of the
first, second, and last iteration of the algorithm.

4.10.2 Non-Local Dual Denoising
Since, as concluded in the previous section, most of the artifacts of DDID come from the guide
image, a method to avoid them is to feed the algorithm with a cleaner image.
Non-Local Dual Denoising uses the Non-Local Bayes denoising algorithm as proposed in chapter
ch:nlbayes and also in [76] to provide a clean guide, and then applies the last step of DDID to
denoise the image (with parameters σs = 7, γr = 0.7 and γf = 0.8). NL-Bayes has been chosen
over other state-of-the-art algorithms (such as BM3D) because it generally provides a smoother
output). BM3D has been tested too as the guide. However the results, while still improving the
ones of both BM3D and DDID, were slightly worse than the ones of NLDD. A pseudo-code for
NLDD is listed in Algorithm alg:nldd.

Algorithm 13 Non-Local Dual Denoising
functionNLDD(y, σ)
g← NL-Bayes(y, σ)
for all pixels p ∈ y do
y ← ExtractPatch(y, p)
g ← ExtractPatch(g, p)
k ← ComputeK(g, p) Eq. eq:mask
ym, gm ← ModifyPatches(y, g, k) Eq. eq:tildemeans- eq:g-reg
S ← FFT(ym)
G← FFT(gm)
x(p)← Shrink(S, G, k, σ) Eq. eq:Kshrink- eq:res

end for
return x
end function

This algorithm has several advantages over DDID. Since the guide image (provided by NL-Bayes)
has less artifacts than the one computed in the first two iterations of DDID, it generally provides
better results, as shown in chapter ch:comparisons. As expected, the results contain less artifacts.
In addition, NLDD is faster than DDID since NL-Bayes is faster than DDID by an order of
magnitude. So the overall computation time is about one third of DDID’s. Moreover, since

53

Figure 4.9: Crops from the results of the images Alley, Flowers and Computer. From left to right:
the original image, the noisy image (σ = 30), the outputs of BM3D, NL-Bayes, DDID, and NLDD.
Full results are available in the article’s website.

Image BM3D NL-Bayes DDID NLDD
Alley 29.32 29.12 29.33 29.41

Computer 30.66 30.68 31.00 31.10
Dice 38.02 37.97 38.45 38.78

Flowers 33.76 33.85 34.36 34.48
Girl 36.95 36.62 37.26 37.33

Traffic 28.83 29.00 29.20 29.40
Trees 24.62 25.02 24.85 25.09

Valldemossa 27.24 27.37 27.27 27.48
Mean 31.18 31.20 31.46 31.64

Table 4.1: Values of PSNR for σ = 30.

both DDID and NL-Bayes are heavily parallelizable, NLDD can also be implemented on a GPU
architecture.

4.10.3 Experimental result
NLDD has been compared against DDID, BM3D and NL-Bayes with different amounts of noise.
For the tests an heterogeneous set of noise-free images was used. All the results are evaluated using
PSNR and SSIM [133], an alternative metric conceived to simulate the response of the Human
Visual System.
The results for σ = 30, where DDID performs best, are summarized in Table tab:1. NLDD
outperforms the other algorithms in terms of PSNR. The results for other levels of noise are
summarized in Table tab:2. NLDD provides the best results for values of σ between 20 and 60.
These coincide with the values of noise for which DDID has the best performance. Looking closely
at Fig. fig:results fewer artifacts can be noticed for NLDD. However, the values of SSIM don’t
reflect the magnitude of this improvement, but the details in Fig. fig:DDIDartifacts suggest that
the quality of the two reconstructions is significantly different.
It is worth noticing that when the guide image is inaccurate NLDD also performs relatively poorly.
For example in the image “Flowers” NL-Bayes fails to recover the texture of the leaves. As a result,
these areas of the image are not fully recovered by NLDD.

54

PSNR
σ BM3D NL-Bayes DDID NLDD
2 45.75 46.16 45.31 45.42
5 40.62 40.96 40.37 40.45
10 36.84 37.07 36.92 36.92
20 33.22 33.42 33.52 33.64
30 31.18 31.20 31.46 31.64
40 29.70 29.62 29.99 30.21
60 27.45 28.35 27.96 28.38
80 26.53 27.03 26.50 26.89
100 24.95 26.05 25.42 25.82

SSIM
σ BM3D NL-Bayes DDID NLDD
2 0.9973 0.9975 0.9971 0.9973
5 0.9872 0.9872 0.9873 0.9873
10 0.9684 0.9680 0.9699 0.9691
20 0.9303 0.9308 0.9331 0.9346
30 0.8938 0.8928 0.8957 0.8995
40 0.8614 0.8572 0.8600 0.8671
60 0.8064 0.8084 0.7994 0.8100
80 0.7592 0.7595 0.7500 0.7570
100 0.7132 0.7215 0.7096 0.7197

Table 4.2: Average values of PSNR and SSIM with different noise levels.

55

56

Chapter 5

Comparison of Denoising Algorithms

In this chapter we compare the following “state of the art” denoising algorithms introduced in
chapters 2 and 4: the sliding DCT filter as specified in Algorithm 2, the wavelet neighborhood
Gaussian scale mixture (BLS-GSM) algorithm, as specified in Algorithm 8, the classical vector
valued NL-means as specified in Algorithm 3, the BM3D algorithm as specified in Algorithms
10 and 11, the K-SVD denoising method as described in Algorithm 17, the Non-local Bayes
algorithm as specified in Algorithm 4 and the NLDD algorithm as described in Algorithm 13.
These algorithms have been chosen for two reasons. First they have a public and completely
transparent code available, which is in agreement with their present description. Second, they all
represent distinct denoising principles and therefore illustrate the methodological progress and the
diversity of denoising principles.
The comparison, using when possible the public IPOL algorithms http://www.ipol.im/, will be
based on four quantitative and qualitative criteria: the visualization of the method noise, namely
the part of the image that the algorithm has taken out as noise, the visual verification of the
noise to noise principle, and the mean square error or PSNR tables. Last but not least the visual
quality of the restored images must of course be the ultimate criterion. It is easily seen that a
single criterion is not enough to judge a restoration method. A good denoising solution must have
a high performance under all mentioned criteria.
This chapter uses the results of joint work with Antoni Buades, Gabriele Facciolo, Jean-Michel
Morel, Nicola Pierazzo and Martin Rais.

5.1 “Method noise”

The difference between the original image and its filtered version shows the “noise” removed by the
algorithm. This procedure was introduced in [13] and this difference was calledmethod noise by the
authors. The authors pointed out that the method noise should look like a noise, at least in case
of additive white noise. A visual inspection of this difference tells us which geometrical features or
details have been unduly removed from the original. Only human perception is able to detect these
unduly removed structures in the “method noise”. Furthermore for several classical algorithms
like the Gaussian convolution, anisotropic filters, neighborhood filters or wavelet thresholding
algorithms, a closed formula permits to analyse the method noise mathematically and thus gives
an explanation of observed structured image differences when applying the denoising method [16].
Such an analysis is unfortunately not available and not easy for the state of the art algorithms
which are compared in this section. The degree of complexity of each method does not allow for a
mathematical study of the method noise. Therefore the evaluation of this criterion will be based
only on visual inspection.
When the standard deviation of the added noise is higher than contrast in the original image, a

57

http://www.ipol.im/

visual exploration of the method noise is nevertheless not reliable. Image features in the method
noise may be hidden in the removed noise. For this reason, the evaluation of the method noise
should not rely on experiments where a white noise with standard deviation larger than 5 or 10
has been added to the original.
Fig. 5.1 displays the method noise for the state of the art algorithms being compared in this
chapter, when a Gaussian white noise of standard deviation σ = 5 has been added. The image
differences have been rescaled from [−4σ, 4σ] to [0, 255] for visualization purposes, and values
outside this range have been saturated. By a first visual inspection, it is noticed that all methods
have a difference similar to a white noise. This is an outstanding properties of these algorithms,
which is not shared by classical denoising techniques such as anisotropic filtering, total variation
minimization or wavelet thresholding (see [16] for a more detailed study). It is also immediately
observed that the magnitude of the method noise of NL-means and K-SVD is larger than for the
rest of the methods. This is corroborated by the standard deviation of each residual noise (see Fig.
5.1), which is around 5.7 for NL-means and K-SVD, around 4.7 for DCT denoising and around
4.25 for the other algorithms. DCT-denoising, BLS-GSM, BM3D, NL-Bayes and NLDD keep the
transform coefficients that are larger than the ones predicted by noise. This explains why they
remove little noise in textured or edge regions. This fact can be easily noticed in Fig. 5.2 where
a piece of the residual noise of Fig. 5.1 has been enlarged. The amplitude of the noise removed
by NL-means and K-SVD is uniform all over the image, while it depends on the underlying image
for the rest of the algorithms.

Figure 5.1: Display of method noise. The noisy image was obtained by adding a Gaussian white
noise of standard deviation 5. From top to bottom and left to right: slightly noisy image, DCT
sliding window (std = 4.69), BLS-GSM (std = 4.28), NL-means (std = 5.78), K-SVD (std =
5.67), BM3D (std = 4.25), Non-local Bayes (std = 4.28) and NLDD (std = 4.18). All methods
have a difference similar to a white noise even if the magnitude of the NL-means and K-SVD
differences is larger. This is corroborated by the standard deviation of each residual noise. Due
to the thresholding nature of DCT, BLS-GSM, BM3D, NL-Bayes and NLDD, which alter little
the coefficients larger than the ones predicted by noise, noise is not removed in textured and edge
zones. This can be easily noticed in Fig. 5.2 where a piece of the residual noises has been enlarged.

58

5.2 The “noise to noise” principle
The noise to noise principle, introduced in [14], requires that a denoising algorithm transforms
white noise into white noise. This paradoxical requirement seems to be the best way to characterize
artifact-free algorithms. The transformation of a white noise into any correlated signal creates
structure and artifacts. Only white noise is perceptually devoid of structure, as was pointed out
by Attneave [5].
The noise to noise of classical denoising algorithms was studied in [14], where it was shown that
neighborhood filters and, asymptotically, NL-means transform a white noise into a white noise.
The convolution with a Gauss kernel keeps the low frequencies and cancels the high ones. Thus,
the filtered noise actually shows big grains due to its prominent low frequencies. Noise filtered by
a wavelet or DCT thresholding is no more a white noise. The few coefficients with a magnitude
larger than the threshold are spread all over the image. The pixels which do not belong to the
support of one of these coefficients are set to zero. The visual result is a constant image with
superposed wavelets or cosines if the DCT is used. The mathematical analysis of the rest of
algorithms is not feasible due to its degree of complexity. Thus, only a visual inspection of this
filtered noise is possible.
The methodology adopted to process the noise to noise and to show it is the following:

• Since most recent methods process colour images (except BLS-GSM), the noise to noise is
applied on a colour flat image, i.e. an image with three channels with slightly different1
values: RGB = (127, 128, 129);

• To reduce the variations due to the random nature of the noise, the tests are performed on
relatively large noise images. The chosen size is 1024× 1024. The PSNR and RMSE results
become then fairly independent of the simulated noise;

• Noise is added on each channel independently. It therefore is a colour noise, and its standard
deviation is equal to 30 on each channel of the flat original image;

• All compared algorithms are processed on this noisy image;

• The denoised image is displayed. The mean on every channel is set to 128, and the difference
to this mean is enhanced by a factor 5. A small part with size 256 × 256 of the denoised
image is shown after zoom in in 5.3.

The results in PSNR and RMSE are summarized in the following table:

Method PSNR RMSE
NLDD 45.48 1.34

NL-Bayes 45.45 1.36
BM3D 45.03 1.43

NL-means 41.45 2.16
TV denoising 41.06 2.26
DCT denoising 40.91 2.30

K-SVD 38.44 3.05

The “order” of performance of the methods is almost respected, except for TV denoising, which
shows a really good result compared to K-SVD. Fig. 5.3 displays the filtered noise images by
several state of the art algorithms.
As expected, threshold-based methods present noticeable artifacts, in particular DCT denoising
and BM3D. The NL-means result reflects the size of the search zone, and therefore leaves behind a
low-frequency oscillation. Despite its good results, TV denoising presents a lot of artifacts which

1Values are different on each channel in order to force the algorithm to consider this image as a colour image,
and not a grey image with a single channel.

59

do not look like noise, and are uglier than the K-SVD artifacts. Only NL-Bayes has no artifacts.
Indeed, it detects flat patches and replaces them by their mean. This trick could actually be
applied to all algorithms. Last but not least, each method leaves a sizeable low-frequency noise,
which could be removed with a multi-scale approach.

5.3 Comparing visual quality
The visual quality of the restored image is obviously a necessary, if not sufficient, criterion to judge
the performance of a denoising algorithm. It permits to control the absence of artifacts and the
correct reconstruction of edges, texture and fine structure. Figures 5.5-5.7 display the noisy and
denoised images for the algorithms under comparison for noise standard deviations of 20, 30 and
40.
Figure 5.5 presents an image with straight edges and flat and fine structures with a noise of
standard deviation 20. The main artifacts are noticeable in the DCT, BLS-GSM and K-SVD
denoised images. These are the most local algorithms and therefore have more trouble in removing
the low frequencies of the noise. As a consequence, the denoised images present many low frequency
colour artifacts in flat and dark zones. These artifacts are noticeable for all these algorithms even
if all use a different strategy to deal with colour images. DCT uses the YoUoVo, K-SVD a vector
valued algorithm and BLS-GSM is applied independently to each RGB component. NL-means
does not suffer of these noise low frequency problems, but it leaves some isolated noise points on
non-repetitive structures, mainly on corners. These isolated noise points could be attenuated by
using the YoUoVo colour space instead of the vector valued algorithm. In this experience, BM3D
and Non-Local Bayes give a similar performance and superior to the rest of algorithms.
Figures 5.6 and 5.7 illustrate again the low frequency colour artifacts of DCT, BLS-GSM and
K-SVD. In these figures, DCT and BLS-GSM also suffer of a strong Gibbs effect near all image
boundaries. This Gibbs effect is nearly not noticeable in the denoised image by K-SVD, since the
use of the whole dictionary permits to better reconstruct edges when the right atoms are present
in the dictionary. The NL-means denoised image has no visual artifacts but is more blurred than
those given by BM3D and Non-Local Bayes, that have a clearly superior performance to the rest
of the algorithms. The BM3D denoised image has some Gibbs effect near edges, which sometimes
degrades the visual quality of the solution. Non-Local bayes image shows no artifacts. It preserves
often better textures than BM3D, by which the trees and vegetation can be slightly blurred by
the use of the linear transform threshold.
In short, the visual quality of DCT, BLS-GSM and K-SVD is inferior to that of NL-means, BM3D
and NL-Bayes, because of strong colour noise low frequencies in flat zones, and of a Gibbs effect.
NL-means does not show noticeable artifacts but the denoised image is more blurred than those
of BM3D and Non-Local Bayes. BM3D still has some Gibbs effect due to the use of a single basis
for all pixels and a slightly inferior noise reduction, compared to Non-Local Bayes.

5.4 Comparing by PSNR
The mean square error is the square of the Euclidean distance between the original image and its
estimate. In the denoising literature an equivalent measurement, up to a decreasing scale change,
is the PSNR,

PSNR = 10 log10

(
2552

MSE

)
.

These numerical quality measurements are the most objective, since they do not rely on any visual
interpretation. Tables 5.1 and 5.2 display the PSNR of state of the art denoising methods using
the images in Fig. 5.4 and several values of σ from 2 to 40.
Before jumping to conclusions, we would like to point out that such a PSNR comparison is just
informative, and cannot lead to an objective ranking of algorithms. Indeed, what is really needed

60

is a comparison of denoising principles. To compare them, these denoising principles must be im-
plemented in denoising recipes containing several ingredients. Since the PSNR difference between
recipes is tight, the way such or such generic tool is implemented, and the degree of sophistication
with which each principle is implemented do matter. For example, two of our readers have pointed
out to us2 that an experimental analysis carried out exclusively on color images does not permit
a comparison between the different strategies devised to take advantage of spatial redundancy.
They suggest to complement the denoising results on color images with experiments on grayscale
images. Then it would be possible to: 1) compare the degree of success of these different denoising
principles in exploiting spatial redundancy; 2) evaluate the effectiveness of the various ways in
which these grayscale algorithms are extended to color data.
In short, these authors do not share our analysis herewith, and the way conclusions can be drawn
from the experimental results, because these results are very much influenced by the way color data
is treated while much of the conclusions are applied about the relative effectiveness in exploiting
spatial redundancy.
For the same reasons, these authors also disagree with the taxonomy summarized in table 6.1,
where it seems that the extension to color is to be considered as a feature of a particular algorithm.
Some methods are applied to color data in a very simple non-adaptive way and thus cannot be
expected to fully decorrelate the color channels. This is for instance the case of BM3D, which uses
a YUV/Opp color transformation. Data-adaptive color transformations for multispectral data are
considered in [38]. This adaptive method provides substantially better results than a standard
color transformation.
Another reason for being cautious, is that all methods with some existence have actually variants,
and we are using the basic algorithms as they were announced in their seminal paper. For example,
it is shown in [63] that BM3D can be slightly improved for heavy noise > 40 by changing the
method parameters.
In short, the following PSNR comparison on color images must be taken for what it is; it gives
some hints and these hints depend on the particular implementation of the denoising principles.
We observe in the results that DCT denoising, GLS-GSM, K-SVD and NL-means have a similar
PSNR. The relative performance of the methods depends on the kind of image and on noise level
σ. On average, K-SVD and BLS-GSM are slightly superior to the other two, even if this is not the
case visually, where K-SVD and BLS-GSM have a poor visual quality compared to NL-means. In
all cases, BM3D and Non-local Bayes have a better PSNR performance than the others. Because
of a superior noise reduction in flat zones and the presence of less artifacts of Non-local Bayes, the
PSNR of BM3D is slightly inferior to Non-local Bayes. BM3D seems to retain the best conservation
of detail. Some ringing artefacts near boundaries can probably be eliminated by the same trick as
Non-local Bayes, namely detecting and giving a special treatment to flat 3D groups.

2Alessandro Foi, Vladimir Katkovnik, personal communication.

61

σ = 2

NLDD NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising
Alley 44.42 45.42 44.95 - 41.51 42.75 44.58

Computer 45.16 45.96 45.22 44.69 44.52 44.03 44.54
Dice 48.50 49.00 48.86 48.59 47.79 48.51 48.39

Flowers 46.68 47.77 47.31 47.12 47.09 46.36 47.05
Girl 47.20 47.56 47.40 47.14 47.28 46.96 46.76

Traffic 44.62 45.33 44.56 44.15 43.80 43.55 44.26
Trees 42.88 43.51 43.07 - 42.05 42.22 42.95

Valldemossa 44.23 45.17 44.68 44.41 40.08 43.33 44.50
Mean 45.46 46.22 45.76 - 44.27 44.71 45.37

σ = 5

NLDD NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising
Alley 38.54 39.24 38.95 - 38.45 37.18 38.37

Computer 40.05 40.69 39.98 39.30 39.58 38.86 39.03
Dice 45.76 46.09 45.80 45.21 45.27 45.12 45.22

Flowers 42.78 43.44 42.99 42.76 43.09 42.05 42.78
Girl 44.20 44.26 44.03 43.70 43.59 43.44 43.36

Traffic 39.22 39.70 38.67 38.10 38.75 37.50 38.21
Trees 36.08 36.70 36.10 - 35.61 34.69 35.76

Valldemossa 37.90 38.73 38.33 38.02 37.87 35.94 37.94
Mean 40.56 41.11 40.61 - 40.28 39.35 40.08

σ = 10

NLDD NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising
Alley 34.97 35.05 34.82 - 34.29 33.53 34.22

Computer 36.35 36.58 36.28 35.47 35.79 35.44 35.34
Dice 43.30 43.30 43.02 42.21 41.71 42.06 42.22

Flowers 39.48 39.52 39.49 39.10 39.31 38.49 39.03
Girl 41.86 41.69 41.45 41.14 40.29 40.42 40.55

Traffic 34.88 34.93 34.54 33.92 34.69 33.89 34.11
Trees 31.23 31.70 31.23 - 30.61 29.42 30.92

Valldemossa 33.35 33.73 33.33 33.02 32.87 32.02 32.45
Mean 36.92 37.06 36.83 - 36.31 35.66 36.23

Table 5.1: PSNR table for σ = 2, 5 and 10. Only the three first digits are actually significant; the
last one may vary with different white noise realizations.

62

σ = 20

NLDD NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising
Alley 31.49 31.36 31.23 - 30.55 29.94 30.21

Computer 33.26 33.08 32.71 31.89 31.96 31.59 31.45
Dice 40.63 40.19 39.93 39.00 37.23 38.17 38.67

Flowers 36.24 35.87 35.85 35.34 35.24 34.56 34.89
Girl 39.39 38.92 38.71 38.49 36.36 36.81 37.27

Traffic 31.40 31.14 30.83 30.14 30.70 30.12 29.98
Trees 27.15 27.22 26.92 - 26.88 26.28 26.27

Valldemossa 29.78 29.81 29.57 26.97 29.08 28.37 28.91
Mean 33.66 33.45 33.22 - 32.25 31.98 32.20

σ = 30

NLDD NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising
Alley 29.71 29.42 29.33 - 28.60 27.58 28.25

Computer 31.42 31.00 30.67 29.90 29.84 28.98 29.20
Dice 39.01 38.20 37.88 37.05 36.52 37.18 35.89

Flowers 34.30 33.67 33.73 33.19 33.54 32.66 32.46
Girl 37.83 37.12 36.97 36.91 35.38 35.54 34.67

Traffic 29.48 29.08 28.87 28.20 28.60 27.40 27.87
Trees 25.16 24.95 24.64 - 24.52 23.29 23.83

Valldemossa 27.62 27.51 27.30 26.97 26.80 25.55 26.48
Mean 31.82 31.37 31.17 - 30.48 29.77 29.83

σ = 40

NLDD NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising
Alley 28.53 28.16 28.08 - 27.29 26.30 27.14

Computer 30.13 29.55 29.15 28.52 28.25 27.31 27.44
Dice 38.01 36.91 36.28 35.50 34.49 35.31 33.06

Flowers 32.76 31.94 32.10 31.68 31.90 30.99 30.80
Girl 37.04 36.09 35.62 35.61 33.73 34.03 32.01

Traffic 28.15 27.67 27.50 26.93 27.19 26.01 26.49
Trees 23.47 23.35 23.17 - 23.06 21.91 22.46

Valldemossa 27.74 27.51 25.78 25.50 25.28 24.10 25.08
Mean 30.73 30.15 29.71 - 28.90 28.25 28.05

Table 5.2: PSNR table for σ = 20, 30 and 40.

63

Figure 5.2: Enlargement of the method noise difference of Fig. 5.1. From top to bottom and
left to right: slightly noisy image, and the method noise for DCT sliding window, BLS-GSM,
NL-means, K-SVD, BM3D, Non-local Bayes and NLDD. The amplitude of the noise removed by
NL-means and K-SVD is uniform all over the image while it is region dependent for the rest of the
algorithms. Threshold based algorithms prefer to keep noisy values nearly untouched on highly
textured or edge zones.

64

Figure 5.3: The noise to noise principle: a three-channels colour noise image filtered by the state
of the art methods. From top to bottom and left to right: the noise image (flat, with independent
homoscedastic noise added on each channel). Then, this same image denoised by DCT sliding
window, NL-means, K-SVD, BM3D, Non-local Bayes and NLDD. The more the denoised image
of a noise image looks like a noise image the better. Indeed, structured noise creates artifacts.
BSM-GSM was not compared because we lack a colour version for this algorithm. None of the
methods gives a satisfactory result: they all create a lower frequency oscillation or local artifacts
for DCT and BM3D. Only multiscale version could cope with the low frequency remaining noise.

65

(a) Alley (b) Computer (c) Dice

(d) Flowers (e) Girl (f) Traffic

(g) Trees (h) Valldemossa

Figure 5.4: A set of noiseless images used for the comparison tests.

66

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: Visual quality comparison. The noisy image was obtained adding a Gaussian white
noise of standard deviation 20. From top to bottom and left to right: original, noisy, DCT sliding
window, BLS-GSM, NL-means, K-SVD, BM3D, Non-local Bayes and NLDD.

67

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: Comparison of visual quality. The noisy image was obtained adding a Gaussian white
noise of standard deviation 30. From top to bottom and left to right: original, noisy, DCT sliding
window, BLS-GSM, NL-means, K-SVD, BM3D, Non-local Bayes and NLDD.

68

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Comparison of visual quality. The noisy image was obtained adding a Gaussian white
noise of standard deviation 40. From top to bottom and left to right: original, noisy, DCT sliding
window, BLS-GSM, NL-means, K-SVD, BM3D, Non-local Bayes and NLDD.

69

70

Chapter 6

Conclusion about Denoising
Methods

After having presented the vast and prolific field of denoising (chapter 1), some common generic
tools (chapter 3) shared by state of the art denoising algorithms (chapter 4) and compared them
both visually and in term of PSNR (chapter 5), it is time now to summarize our knowledge and
classify those methods according to their principles, their use of patches, the size of those patches,
the tools they used, and their complexity. Therefore this chapter concludes this review of denoising
methods in the case of white Gaussian noise, before starting to work in a more generic case in
part II.
This chapter uses the results of joint work with Antoni Buades and Jean-Michel Morel.

6.1 Synthesis

We have shown that all methods either already use, or should adopt the same three generic
denoising tools described in chapter 3. Since all methods denoise not just the pixel, but a whole
neighborhood, they give several evaluations for each pixel. Thus, they all use an aggregation
step. There is only one method for which the aggregation is not explicitly stated as such, the
wavelet neighborhood (BLS-GSM) algorithm. Nevertheless, a closer examination shows that it
denoises not one, but some 49 wavelet channels for a 512×512 image. The used wavelet transform
is redundant. Thus, an aggregation is implicit in its final reconstruction step from all channels.
BLS-GSM is also patch-based. Indeed, each “wavelet neighborhood” contains a 3×3 patch of a
wavelet channel, complemented with one more sample from the down-scale channel sharing the
same orientation. Thus, like the others, this algorithm builds Bayesian estimates of patches. The
difference is that the patches belong to the wavelet channels. Each one of these channels is denoised
separately, before the reconstruction of the image from its wavelet channels.
In short, even if the BLS-GSM formalization looks at first different from the other algorithms, it
relies on similar principles: it estimates patch models to denoise them, and aggregates the results.
But, it also is the only multiscale algorithm among those considered here. Indeed, it denoises the
image at all scales. Furthermore, it introduces a scale interaction. These features are neglected in
the other algorithms and might make a significant difference in future algorithms.
It may be asked why its performance is slightly inferior to that of the current state of the art
algorithms. First of all, this algorithm, like many wavelet based algorithms, has not proposed
a good solution to deal with colour. Applying the colour space tool of section 3.3 can probably
bring a PSNR improvement. The paper does not specify if there is an aggregation step, but a first
aggregation step is possible (the second aggregation being implicit in the reconstruction step from
all channels, that are redundant). Indeed, each wavelet channel patch contains ten coefficients,
and these coefficients are therefore estimated ten times. These estimates might be aggregated.

71

Table 6.1 shows a synopsis of the ten methods that have been thoroughly discussed. The classi-
fication criteria are: the denoising principles, the use of patches, the size of the patches, the
use of aggregation, oracle or color space transform, and finally their complexity.

6.2 The denoising principles
Our task here is to show that, in spite of the different language used by each method, the underlying
principles actually converge. The dominant principle is to compute a linear minimum least square
estimator (LMMSE) after building a Bayesian patch model. As a matter of fact, even if this is not
always explicit, all methods follow very closely the same LMMSE estimator principle. For example
the DCT threshold is nothing but a Wiener thresholding version of the Bayesian LMMSE. This
threshold is used because the DCT of the underlying noiseless image is actually unknown. The
same argument applies for Nonlocal Means, which was interpreted as an LMMSE in section 4.1.
A close examination of K-SVD can convince a practitioner that this algorithm is very close to
EPL, PLOW or EPLL, and conversely. Indeed, the patch clustering performed in these three
algorithms interprets the patch space as a redundant dictionary. Each cluster is treated by a
Bayesian estimator as a Gaussian vector, for which an orthogonal eigenvector basis is computed.
This basis is computed from the cluster patches by PCA. Thus, EPL, PLOW and EPLL actually
deliver a dictionary, which is the union of several orthogonal bases of patches. EPL, PLOW and
EPLL select for each noisy patch one of the bases, on which the patch will be sparse. In short, like
K-SVD, they compute for each patch a sparse representation in an over-complete dictionary. In
this argument, we follow the simple and intelligent interpretation proposed with the PLE method
in [141], [140]. Their method was summarized by the authors as follows:

An image representation framework based on structured sparse model selection is intro-
duced in this work. The corresponding modeling dictionary is comprised of a family
of learnt orthogonal bases. For an image patch, a model is first selected from this
dictionary through linear approximation in a best basis, and the signal estimation is
then calculated with the selected model. The model selection leads to a guaranteed
near optimal denoising estimator. The degree of freedom in the model selection is
equal to the number of the bases, typically about 10 for natural images, and is signifi-
cantly lower than with traditional over-complete dictionary approaches, stabilizing the
representation.

From the algorithmic viewpoint, EPLL is a variant of PLE, but used in a different setting. The
comparison of these two almost identical Gaussian mixture models is of particular interest. EPLL
is applied to a huge set of patches (of the order of 1010) united in some 200 clusters. PLE is
applied with 19 clusters learnt each from some 64 patches. Thus, the open question is: how many
clusters and how many learning patches are actually necessary to obtain the best PSNR? The
disparity between these figures is certainly too large to be realistic.
We must finally wonder if transform thresholding methods fit into the united view of all algorithms.
The Bayesian-Gaussian estimate used by most mentioned algorithms can be interpreted as a
Wiener filter on the eigenvector basis of the Gaussian. It includes sometimes a threshold (to avoid
negative eigenvalues for the covariance matrix of the Gaussian vector). Thus, the only difference
between Bayesian-Gaussian methods and the classic transform thresholding is that in the Bayesian
methods the orthogonal basis is adapted to each patch. Therefore, they appear to be a direct
extension of transform thresholding methods, and have logically replaced them. BM3D combines
several linear transform thresholds (2D-bior 1.5, 2D-DCT, 1D-Walsh-Hadamard), applied to the
3D block obtained by grouping similar patches. Clearly, it has found by a rather systematic
exploration the right 2D orthogonal bases, and therefore does not need to estimate them for each
patch group.
We shall now reunite two groups of methods that are only superficially different. Non-local Means,
Non-local Bayes, Shotgun-NL, and BM3D denoise a patch after comparing it to a group of similar
patches. The other five patch-based Bayesian methods do not perform a search for similar patches.

72

These other patch methods, PLE, PLOW, EPLL, BLS-GSM and K-SVD, process globally the
“patch space” and construct patch models. Nevertheless, this difference is easily reduced. Indeed,
EPL, PLOW and EPLL segment the patch space into a sufficient number of clusters, each one
endowed with a rich structure (an orthonormal basis). Thus, the patches contributing to the
denoising of a given patch estimation are not compared to each other, but they are compared to the
clusters. Similarly, the dictionary based methods like K-SVD propose over-complete dictionaries
learnt from the image or from a set of images. Finding the best elements of the dictionary to
decompose a given patch, as K-SVD does, amounts to classify this patch. This is what is suggested
by the authors of PLE in [141]: the dictionary is a list of orthogonal bases which are initiated by
sets of oriented edges. Each basis is therefore associated with an orientation (plus one associated
with the DCT). Thus PLE is very similar to BLS-GSM, which directly applies a set of oriented
filters. Another link between the Bayesian method and sparse modeling is elaborated in [143].

6.3 Patches

The second column in the classification table 6.1 indicates the number of patches used for the
denoising method, and where they are found. The trivial DCT uses only the current patch to
denoise it; Non-local Means, Non-local Bayes and BM3D compare the reference patch with a few
hundred patches in its spatial neighborhood; PLE, PLOW, BLS-GSM and K-SVD compare each
noisy patch to a learnt model of all image patches; finally Shotgun-NL and EPLL involve in the
estimation a virtually infinite number of patches. Surprisingly enough, the performance of all
methods are relatively similar. Thus, the huge numbers used to denoise in Shotgun-NL and EPLL
clearly depend on the fact that the patches were not learnt from the image itself, and their number
can arguably be considerably reduced.

6.4 Size of patches

The third column in our synoptic table compares the patch sizes. All methods without an exception
try to deduce the correct value of a given pixel i by using a neighborhood of i called patch. This
patch size goes from 3 × 3 to 8 × 8, with a strong dominance of 8 × 8 patches. Nevertheless, the
size of the patches obviously depends on the amount of noise and should be adapted to the noise
standard deviation. For very large noises, a size 8 × 8 can be insufficient, while for small noises
small patches might be better. As a matter of fact, all articles focus on noise standard deviations
around 30 (most algorithms are tested for σ between 20 and 80). There is little work on small
noise (below 10). For large noise, above 50, most algorithms do not deliver a satisfactory result
and most papers show denoising results for 20 ≤ σ ≤ 40. This may also explain the homogeneity
of the patch size.

6.5 Aggregation, Oracle, and Color Space Transform

A good sign of maturity of the methods is that the three generic improvement tools described
in chapter 3 are used by most methods. When a “no” is present in the table on these three
columns, this indicates that the method can probably be substantially improved with little effort
by using the corresponding tool. Shotgun-NL and BLS-GSM can probably gain some decibels by
aggregation and by the Oracle strategy.

6.6 Complexity and Information

Current research is focusing on getting the best ever, perhaps even the best denoising results, for
ever. We have followed this track and have completely disregarded the complexity issue in this
comparison. For example, the “shotgun” patch methods are not reproducible in acceptable time.

73

Method Denoising principle Patches size Aggr. Oracle Colour
DCT transform threshold one 8 yes yes yes
Non-local Means average neighborhood 3 yes yes no
Non-local Bayes Bayes neighborhood 3-7 yes yes yes
PLOW Bayes, 15 clusters image 11 yes yes yes
Shotgun-NL Bayes 1010 patches 3-20 yes no no
EPLL Bayes, 200 clusters 2.1010 patches 8 yes yes yes
BLS-GSM Bayes in GSM Image 3 yes no no
K-SVD sparse dictionary Image 8 yes yes yes
BM3D transform threshold neighborhood 8-12 yes yes yes
PLE Bayes, 19 clusters Image 8 yes yes yes
DDID transform threshold neighborhood 31 no yes yes

Table 6.1: Synoptic table of all considered methods.

Yet, “all is fair in love and war”. The question of how to get the best acceptable results must be
solved first, by every possible means, before fast algorithms are devised. On the other hand, the
complexity does not seem to be a serious obstacle. Indeed, several of the mentioned algorithms
are already realizable, and five of them are even functioning online at Image Processing online
http://www.ipol.im. Among them, at least two give state of the art results. Thus, we hold
the view that complexity is not a central issue in the current debate. Another question which
emerged in this study is the amount of information needed to achieve optimal denoising. Here, we
have observed that the methods do the splits. The simplest one (DCT denoising) uses only one
image patch and get results only 1dB far away from optimal results. The classic nonlocal methods
only use a larger neighborhood of a given pixel, in spite of their “nonlocal” epithet. Then, an
intermediate class of methods uses simultaneously all image patches. The shotgun methods use
virtually all existing image patches in the world. The fact that the performance gap between them
is so small seems to indicate that all obtain a decent estimate of the “patch space” around each
given image patch. This also means that, arguably, there is enough information for that in just
one image.

74

http://www.ipol.im

Part II

Noise Clinic

As seen in part I, most papers on denoising methods assume a white Gaussian noise model. Yet
in most images handled by the public or by scientific users, the noise model is unknown and is not
white, because of the various processes applied to the image before it reaches the user: scanning,
demosaicing, compression, deconvolution, etc. Therefore, the noise needs to be estimated, in order
to obtain a signal-dependent noise model. As we will see in chapter 7, it is even possible to estimate
it from the noisy image itself. However, as it is really rare to be able to work directly on raw
images, and since demosaicing is the first step of the digital camera processing chain, most of the
images contain correlated noise. Therefore, chapter 8 presents the interest of estimating not only
signal-dependent noise, but also frequency-dependent noise. The method gives the noise model
for patches and therefore it can be used as the input to a patch-based denoiser. This connection
between the noise estimation and a patch-based denoiser is done through the covariance noise
matrices in the case where the denoiser is NL-Bayes. Chapter 9 proposes a blind multiscale
denoising algorithm working for noise which is simultaneously signal and frequency dependent.
On noisy images coming from diverse sources (JPEG, scans of old photographs,. . .) we show
perceptually convincing results. This algorithm is compared to the state of the art and it is also
validated on images with white noise.

75

76

Chapter 7

White Noise Estimation

As shown in part I, denoising methods require a noise model and an image model. As explained
in chapter 1, natural images have a signal-dependent noise. Therefore, the Gaussian noise model
used in part I is no longer valid when it comes to work on real images. However, it is relatively
easy to obtain a signal-dependent noise model. As will be explained in this present chapter, it is
even possible to estimate it from a single noisy image.
This chapter uses the results of joint work with Miguel Colom and Jean-Michel Morel.

7.1 Can noise be estimated from (just) one image?

Compared to the denoising literature, research on noise estimation is a poor cousin. Few papers
are dedicated to this topic. Among the recent papers one can mention [144], which argues that
images are scale invariant and therefore noise can be estimated by a deviation from this assumption.
Unfortunately this method is not easily extendable to estimate scale dependent or signal dependent
noise, like the one observed in most digital images in compressed format. As a rule of thumb, the
noise model is relatively easy to estimate when the raw image comes directly from the imaging
system, in which case the noise model is known and only a few parameters must be estimated.
For this, efficient methods are described in [56], [55] for Poisson and Gaussian noise.
In this short review we will focus on methods that allow for local, signal and scale dependent noise.
Indeed, one cannot denoise an image without knowing its noise model. It might be argued that the
noise model comes with the knowledge of the imaging device. Nevertheless, the majority of images
dealt with by the public or by scientists have lost this information. This loss is caused by format
changes of all kinds, which may include resampling, denoising, contrast changes and compression.
All of these operations change the noise model and make it signal and scale dependent.
The question that arises is why so many researchers are working so hard on denoising models, if
their corpus of noisy images is so ill-informed.
It is common practice among image processing researchers to add the noise themselves to noise-
free images to demonstrate the performance of a method. This proceeding permits to reliably
evaluate the denoising performance, based on a controlled ground truth. Nevertheless the denoising
performance may, after all, critically depend on how well we are able to estimate the noise. Most
world images are actually encoded with lossy JPEG formats. Thus, noise is partly removed by the
compression itself. Furthermore, this removal is scale dependent. For example, the JPEG 1985
format divides the image into a disjoint set of 8× 8 pixels blocks, computes their DCT, quantizes
the coefficients and the small ones are replaced by zero. This implies that JPEG performs a
frequency dependent threshold, equivalent to a basic Wiener filter. The same is true for JPEG
2000 (based on the wavelet transform).
In addition, the Poisson noise of a raw image is signal dependent. The typical image process-
ing operations, demosaicking, white balance and tone curve (contrast change) alter this signal-
dependency in a way which depends on the image itself.

77

Figure 7.1: Two examples of the ten noise-free images used in the tests: computer (left) and traffic
(right).

In short:

• the noise model is different for each image;
• the noise is signal dependent;
• the noise is scale dependent;
• the knowledge of each dependence is crucial to denoise properly any given image which is

not raw, and for which the camera model is available.

Thus, estimating JPEG noise is a complex and risky procedure, as well explained in [87] and [88].
It is argued in [37] that noise can be estimated by involving a denoising algorithm. Again, this
procedure is probably too risky for noise and scale dependent signal.

This section, following [18], gives a concise review and a comparison of existing noise estimation
methods. The classic methods estimate white homoscedastic noise only, but they can be adapted
easily to estimate signal and scale dependent noise. To test the methods, a set of ten noise-free
images was used. These noiseless images were obtained by taking snapshots with a reflex camera
of scenes under good lighting conditions and with a low ISO level. This means that the number of
photons reaching each captor was very high, and the noise level therefore small. To reduce further
the noise level, the average of each block of 5× 5 pixels was computed, reducing the noise by a 5
factor. Since the images are RGB, taking the mean of the three channels reduces the noise by a
further

√
3 factor. The (small) initial noise was therefore reduced by a 5

√
3 ' 8.66 factor, and the

images can be considered noise-free. Two images from this noiseless set can be seen in fig. 7.1.
The size of each image is 704× 469 pixels.
For the uniform-noise tests, seven noise levels were applied to these noise-free images: σ ∈
{1, 2, 5, 10, 20, 50, 80}. Fig. 7.2 shows the result of adding white homoscedastic Gaussian noise
with σ ∈ {1, 2, 5, 10, 20, 50, 80} to the noise-free image traffic.
This study on noise estimation proceeds as follows: we review in detail in section 7.2 the method
proposed in [18]. This method has all the features of the preceding methods, so we shall be able
to make a rash review of them (section 7.3), followed by an overall comparison of all methods,
at all noise levels. It follows that the Percentile method is the most accurate. Nevertheless, the
estimation of very low noises remains slightly inaccurate, with some 20% error for noises below 2.

7.2 The Percentile method
The Percentile method, introduced in [111], is based on the fact that the histogram of the variances
of all blocks in an image is affected by the edges and textures, but this alteration appears mainly
on its rightmost part. The idea of the percentile method is to avoid the side effect of edges and
textures by taking the variance of a very low percentile of the block variance histogram, and

78

Figure 7.2: Result of adding white homoscedastic Gaussian noise with σ ∈ {2, 5, 10, 20, 50, 80} to
the noise-free image traffic. It may need a zoom in to perceive the noise for σ = 2, 5.

79

then to infer from it the real average variance of blocks containing only noise. This correction
multiplies this variance by a factor that only depends on the choice of the percentile and the block
size. As usual in all noise estimation methods, to reduce the presence of deterministic tendencies
in the blocks, due to the signal, the image is first high passed. The commonly used high pass
filters are differential operators or waveforms. The typical differential operators are directional
derivatives, the ∆ (Laplace) operator, its iterations ∆∆, ∆∆∆, . . . , the wave forms are wavelet
or DCT coefficients. All of them are implemented as discrete stencils. Filtering the image with
such a local high pass filter operator removes smooth variations inside blocks, which increases
the number of blocks where noise dominates and on which the variance estimate will be reliable.
According to the performance tests, for observed σ̂ < 75 the best operator is the wave associated
to the highest frequency coefficient of the transformed 2D DCT-II block with support 7×7 pixels.
The coefficient X̃(6, 6) of the 2D DCT-II of a 7× 7 block P of the image is:

DCT (6, 6) =

6∑
n1=0

6∑
n2=0

F7(n1)F7(n2)P (n1, n2) cos

[
π

7

(
n1 +

1

2

)
6

]
cos

[
π

7

(
n2 +

1

2

)
6

]
.

where

F7(n) =

1√
7
, if n = 0√
2
7 , if n ∈ {1, . . . , 6}

Therefore, the values of the associated discrete filter are

F7(n1)F7(n2) cos

[
π

7

(
n1 +

1

2

)
6

]
cos

[
π

7

(
n2 +

1

2

)
6

]
, n1, n2 ∈ {0, 1, . . . , 6}.

These values must of course be normalized in order to keep the standard deviation of the data, by
dividing each value by the root of the sum of the filter squared values.
The Percentile method computes the variances of overlapping w × w blocks in the high-pass
filtered image. The means of the same blocks are computed from the original image (before the
high pass). These means are classified into a disjoint union of variable intervals, in such a way
that each interval contains (at least) 42000 elements. These measurements permit to construct,
for each interval of means, a histogram of block variance of at least 42000 samples having their
means in the interval. In each such variance histogram the percentile value is computed. It was
observed that, for observed σ̂ < 75 and large images, the percentile p = 0.5%, a block size w = 21
and a 7 × 7 support for the DCT transform give the best results. If σ̂ ≥ 75, the percentile that
should be used is the median, the block is still 21 × 21, but the support of the DCT should be
3× 3.
This percentile value is of course lower than the real average block variance, and must be corrected
by a multiplicative factor. This correction only depends on the percentile, block size and on the
chosen high pass filter. Nevertheless, the constant is not easy to calculate explicitly, but can
be learnt from simulations. For the 0.5% percentile, 21 × 21 pixels blocks and the DCT pre-
filter operator with support 7 × 7, this empirical factor learnt on noise images was found to be
1.249441884. In summary, to each interval of means, a standard deviation is associated. The
association mean→standard deviation yields a “noise curve” associated with the image. This noise
curve predicts for each observed grey level value in the image its most likely underlying standard
deviation due to noise. Optionally, the noise curve obtained on real images can be filtered. Indeed,
it may present some peaks when variances measured for a given grey level interval belong to a
highly-textured region. To filter the curve, the points that are above the segment that joins the
points on the left and on the right are back-projected on that segment. In general, no more than
two filtering iterations are needed. For the comparative tests presented here, the curves were not
filtered at all.
The pseudo-code for the percentile method is given in Algo. 15 and the results for the white
homoscedastic Gaussian noise in Table 7.1. When the image is tested for white homoscedastic
Gaussian noise, only one interval for all grey level means is used, whereas in the signal-dependent
noise case, the grey level interval is divided into seven bins.

80

Image / σ̂ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 1.34 2.33 5.26 10.36 20.30 49.87 79.96
building1 1.12 2.17 5.24 10.14 20.48 50.19 80.45
computer 1.22 2.20 5.06 10.36 20.03 50.28 80.34
dice 1.11 2.00 5.01 10.03 20.02 49.95 79.79
flowers2 1.08 2.07 5.10 9.84 20.07 49.87 79.80
hose 1.15 2.13 5.10 10.15 20.06 49.99 79.99
leaves 1.51 2.43 5.38 10.29 19.82 50.07 80.04
lawn 1.57 2.50 5.57 10.48 20.42 50.05 79.92
stairs 1.42 2.27 5.19 10.15 19.96 49.92 79.93
traffic 1.25 2.35 5.33 10.61 20.64 50.10 80.29
Flat image 0.99 2.00 5.09 9.77 19.91 50.12 79.73

Table 7.1: Percentile method results on eleven noiseless images with white homoscedastic Gaussian
noise added. The last image is simply flat. The real noise variance is σ. The estimated value is σ̂.
The noise estimation error is remarkably low on medium and large noise. It is nevertheless larger
on very small noise (a σ = 2 noise is not visible with the naked eye). Indeed most photographed
objects have everywhere some micro-texture (except perhaps sometimes in the blue sky which
can be fully homogeneous). Such micro-textures are widespread and hardly distinguishable from
noise. The parameters of the method are a 0.5% percentile, a 21×21 pixels block size, and the
DCT has support 7 × 7. These parameters are valid if σ̂ < 75. If σ̂ ≥ 75, the best parameters
are: a 50% percentile, a 21×21 pixels block size and a DCT with support 3 × 3. Estimating
the best parameters therefore requires a first estimation followed by a second one with the right
parameters.

81

Algorithm 14 Percentile method algorithm.
PERCENTILE - Returns a list that relates the value of the image signal with its noise level.
Input ũ noisy image.
Input b: number of bins.
Input w × w: block dimensions.
Input p: percentile.
Input filt: filter iterations.
Output (M,S): list made of pairs (mean, noise standard deviation) for each bin of grey level
value.

h = FILTER(ũ). Apply high-pass filter to the image.
a, v =MEAN_FILTERED_VARIANCE(ũ, h, w). Obtain the list of the block averages (in the
original image ũ) and of the variances (of the filtered image h) for all w × w blocks.
Divide the block mean value list a into intervals (bins), having all the same number of elements.
Keep for each interval the corresponding values in v.

S = ∅; M = ∅.
for each bin do
v = Per(bin, p). Get the p-percentile v of the block variances whose means belong to this bin.

m = Mean[Per(bin, p)]. Get the mean of the block associated to that percentile.
S ←

√
v. Store the standard deviation σ̂.

M ← m. Store mean.
end for
Sc = ∅. Corrected values.
for s ∈ S do
Apply correction C according to p, w and filter operator used.
s = Cs. Correct direct estimate.
Sc ← s.

end for
for k = 1 . . . filt do
Sc[k] = FILTER(Sc[k], filt). Filter the noise curve filt times.

end for

82

Figure 7.3: Mosaic used to learn the correction values in the Percentile method.

The Percentile method with learning The percentile method with learning is essentially
the same algorithm explained in section 7.2, with the difference that it tries to compensate the
bias caused by edges and micro-texture in the image by learning a relationship between observed
values σ̂ and noise real values σ. The difference value f(σ) = σ̂−σ is called the correction, that is,
the value that must be subtracted from the direct estimate σ̂ without correction to get the final
estimate (which we shall still call σ̂ ≈ σ). These corrections depend on the structure of real images.
A mosaic of several noise-free images is shown in Fig. 9.4. Simulated noise of standard deviations
σ = 0, . . . , 100 was added to these noiseless images. These images were selected randomly from
a large database, to be statistically representative of the natural world, with textures, edges, flat
regions, dark and bright regions. The correction learnt with these images is intended to be an
average correction, that works for a broad range of natural images. It should of course be adapted
to any particular set of images. Furthermore, the correction depends on the size of the image, and
must be learnt for each size.

When the observed noise level is high enough (σ̂ > 10 for pixel intensities u ∈ {0, 1, . . . 255}), the
image gets dominated by the noise, that is, most of the variance measured is due to the noise and
not due to the micro-textures and edges. It is therefore convenient to avoid applying the learnt
corrections to direct estimates σ̂ when σ̂ > 10. Thus, for σ̂ > 10, only the percentile correction is
applied. Table 7.2 shows the σ̂ values estimated with the Percentile with learning method. The
correction learnt with the mosaic is only applied for σ ∈ {1, 2, 5, 10}.

83

Image / σ̂ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 1.15 2.11 5.05 10.26 20.06 49.68 80.05
building1 0.95 1.97 5.00 10.42 20.32 49.99 80.27
computer 1.04 2.00 4.88 10.39 20.13 50.29 80.16
dice 0.91 1.84 4.81 10.01 19.90 49.76 79.60
flowers2 0.92 1.88 4.87 9.47 20.00 49.48 79.67
hose 0.99 1.93 4.89 10.08 19.97 49.73 79.71
leaves 1.36 2.26 5.17 10.28 20.03 49.80 79.92
lawn 1.35 2.29 5.36 10.37 20.26 50.07 79.88
stairs 1.20 2.10 4.95 10.11 20.10 49.92 79.86
traffic 1.04 2.06 5.06 10.75 20.64 49.91 80.05
Flat image 0.84 1.82 4.84 10.02 20.13 50.13 79.44

Table 7.2: Percentile with learning method results with white homoscedastic Gaussian noise added.
The correction learnt with the mosaic is only applied for σ ∈ {1, 2, 5, 10}. This method, being
local on blocks, extends immediately to estimate signal dependent noise and the performance is
similar [18].

7.3 A crash course on all other noise estimation methods

It is easier to explain the other methods after having explained in detail, as we did above, one
method, namely the percentile method. Most noise estimation methods share the following fea-
tures:

• they start by applying some high pass filter, which concentrates the image energy on bound-
aries, while the noise remains spatially homogeneous;

• they compute the energy on many blocks extracted from this high-passed image;
• they estimate the noise standard deviation from the values of the standard deviations of the

blocks
• to avoid blocks contaminated by the underlying image, a statistics robust to (many) outliers

must be applied. The methods therefore use the flattest blocks, which belong to a (low)
percentile of the histogram of standard deviations of all blocks.

Table 7.3 shows a classification of the methods according the preceding criteria:

The first column is the choice of the high-pass filter, which can be a discrete differential operator
of order two (∂2

∂x∂y) in the Estimation of Image Noise Variance (E.I.N.V.) method [118]). It is
obtained as a composition of two forward discrete differences. Then we have a discrete Laplacian
∆ [104] obtained as the difference between the current pixel value and the average of a discrete
neighborhood, an order order three operator (a difference ∆1−∆2 of two different discretizations
of the Laplacian [66]), a wave associated to a DCT coefficient [18], and sometimes a nonlinear
discrete differential operator like in the Median method [104], which uses the difference between
the image and its median value on a 3× 3 block, thus equivalent to the curvature operator curv.
The high-pass filter is previously applied to all pixels of the image. In the case of the DCT
[110] the DCT is applied to a block centered on the reference pixel, and the highest frequency
coefficients, for exampleDCT (6, 7), DCT (7, 6), DCT (7, 7), are kept. The most primitive methods,
the Block [82, 98], the Pyramid [99] and the Scatter method [84] do not apply any high pass filter.
Nevertheless, since they compute block variances, they implicitly remove the mean from each
block, which amounts to applying a high-pass filter of Laplacian type.

The second column gives the size of the block on which the standard deviation of the high-passed
image is computed, which varies from 1 to 21. The pyramid method [99] uses standard deviations
of blocks of all sizes and is unclassifiable. Two methods, F.N.V.E. [66] and the Gradient method

84

[9, 131] do not compute any block standard deviation of the high-passed image before the final
estimation.

The last column gives the value of the (low) percentile on which the block standard deviation are
computed. When the slot contains “all”, this means that the estimator is taking into account all
the values.

The third column characterizes the estimator, for which there are several variants. The three
compared percentile methods [18] use a very low percentile 0.5% of the block standard deviations.
The Average, Median [104] and Block method [82, 98] use an 1% percentile of the gradient to
select the blocks which variance is kept, while the high pass image is a higher order differential
operator. The Pyramid [99] is instead quite complex, but uses overall all standard deviations of
all possible blocks in the image. We give up giving its detailed algorithm. The F.N.V.E. [66]
method has actually no outlier elimination, taking simply the root mean square of all samples of
the high-passed image.

Rather than using a percentile of the block variance histogram followed by a compensation factor,
several methods extract a mode, considering that the mode (peak of the histogram variance) must
correspond to the noise. The Gradient method [9, 131] takes for σ̂ the peak of the modulus of
the gradient histogram. The Scatter [84] method, which also computes a mode when estimating
white homoscedastic noise, namely the value at which the peak of the block standard deviations
histogram is attained. The E.I.N.V. [118] method does a sort of iterative deconvolution of the
histogram of block variances and also extracts its mode.

All of the values obtained by these methods are proportional to the noise standard deviation when
the image is a white noise. Thus the final step, not mentioned in the table, is to apply a correction
factor to get the final estimated noise standard deviation, as explained in the percentile method
(sec. 7.2).

The comparison of the methods which use the highest DCT coefficients, DCT-mean [110] and
DCT-MAD [49] where MAD stands for median value of absolute deviations, shows clearly the
win with a robust estimator: the estimation is obtained by averaging the three MAD (median of
absolute deviation) of the three highest frequency DCT coefficients for all blocks.

The ultimate choice for the methods is of course steered by their RMSE, namely the root mean
square error between the estimated value of σ and σ itself, taken over a representative set of
images. As Table 7.4 shows the ordering of methods by their RMSE is coherent and points to
the percentile method as the best one. This method is still improved by learning. A good point
justifying all methods is that they perform satisfactorily for all large noise values, down to σ = 20.
But, with the exception of the Percentile method with learning, no method performs acceptably
for σ < 5.

85

Method Hi-pass Block estimator percentile
Perc. learn. [18, 111] DCT 7× 7 21 block dev. at perc. 0.5%
Percentile [18, 111] DCT 7× 7 21 block dev. at perc. 0.5%
Block [82, 98] none 7 mean of block dev 1%
Average [104] ∆ 3 mean of block dev 1% of grad. hist.
Median [104] curv 3 mean of block dev 1% of grad. hist.
Scatter [84] none 8 block dev at block dev mode
Gradient [9, 131] ∇ 1 |∇| mode all
E.I.N.V. [118] ∂2

∂x∂y 3 deconv. of block dev. all
F.N.V.E. [66] ∆1−∆2 1 RMS all
DCT-MAD [49] 3-DCT 8 MAD of 3 DCT coef all
DCT-mean [110] 3-DCT 8 mean of variances all
Pyramid [99] none 2L block dev complex

Table 7.3: Table summarizing all methods. The abbreviation“block dev.” means standard devia-
tion of block, “at perc 1%” means that the chosen value is the one at which the 1% percentile is
attained. “3-DCT” means the three highest frequency coefficients, namely DCT (6, 7), DCT (7, 6),
DCT (7, 7). “DCT 7 × 7” means the DCT wave associated to the highest frequency coefficient of
the 7×7 pixels support of the DCT-II transform of the block. MAD stands for median of absolute
deviation (it is applied to the three DCT coefficients for all blocks.) The methods belong to three
classes. The first main class (rows 1 to 5) does: high pass+ standard deviation of blocks+ low
percentile. The second class (rows 6-7) replaces the percentile by a mode of the high-pass filter
histogram. The rows 8-9-10-11 are more primitive and do a simple mean of the block variances of
the high-pass filtered image. The last method is unclassifiable, and performs poorly.

Method σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

Percentile 0.309 0.276 0.265 0.315 0.293 0.130 0.229
Percentile learning 0.182 0.152 0.157 0.364 0.240 0.248 0.270
Block 1.093 0.961 0.949 1.056 0.984 0.922 0.840
Average 2.669 2.556 2.375 2.165 1.771 1.227 0.874
Median 2.841 2.762 2.640 2.460 2.110 1.684 1.502
Scatter 4.533 4.013 3.141 2.290 1.436 1.488 1.862
Gradient 1.887 1.851 1.474 1.393 1.354 1.234 2.949
E.I.N.V. 1.406 1.159 0.924 0.842 0.656 0.450 0.557
F.N.V.E. 2.738 2.231 1.357 0.767 0.397 0.196 0.225
DCT-MAD 0.858 0.721 0.533 0.356 0.239 0.296 0.583
DCT-mean 1.895 1.469 0.837 0.462 0.316 0.355 0.726

Table 7.4: White homoscedastic Gaussian noise RMSE results for all methods and for varying
σ. The Pyramid tests were omitted, being incomplete. Being obtained as an average on many
noiseless images, the differences have been checked to be statistically significant. It is also apparent
that the ranking of the compared methods may vary with the amount of noise. Nevertheless, the
ranks of methods for noises larger than 20 is irrelevant, because all of them work at an acceptable
level of precision. Thus, this ranking is mainly relevant for low noise levels, σ = 1, 2, 5, 10.

86

Chapter 8

Generic Noise Estimation

Whereas it is possible to estimate a signal-dependent “white” noise from a single image as presented
in chapter 7, this estimation is not accurate enough for blind denoising applications on any kind
of images, especially JPEG images.
In this chapter we propose a non-parametric method to estimate both intensity and frequency
dependent noise which obtains the noise model from the noisy image itself. Since demosaicing is
the first step of the digital camera processing chain, most of the images contain correlated noise
and hence the interest of estimating not only signal-dependent, but also frequency-dependent
noise. The method gives the noise model for patches and therefore can be used as the input to a
patch-based denoiser. The method applies to cases where no access is granted to the image noise
model, in particular to scanned photographs and JPEG images. In order to evaluate the accuracy
of the method, we validate it by comparing its estimations to the ground-truth noise curves for
both raw and JPEG-encoded images and also by visual inspection of the denoising results of real
images that present correlated noise, especially at the low frequencies. The proposed method
overcomes the state-of-the-art.
This chapter uses the results of joint work with Miguel Colom and Jean-Michel Morel.

8.1 Introduction

Noise in a digital image comes from several sources and it is transformed at each step of the
processing chain of the camera. When it is acquired at the focal plane in color filter array (the
raw image), it is Poisson distributed, signal-dependent (SD) and frequency-independent. The
noise at the CFA is possibly saturated and will not obey the simple linear dependency of the
noise variance with the intensity [56]. Even without saturation, the variance of the noise may
not follow the linear model, depending on the characteristics of the detector [7] At the very
first step of the camera processing chain, to get a color image from the raw mosaic acquired
at the CFA, a demosaicing algorithm is applied [67, 17], that causes the noise to be spatially
correlated and therefore frequency-dependent (FD). Estimating FD noise is thus justified, since it
is a required to get a color image from the CFA. Any noise estimation method assuming that the
noise does not depend on the frequency or the intensity is in fact unrealistic and inadequate for
denoising real images. The correlated noise after demosaicing gets saturated after white balance
and specially after gamma-correction. Finally, after JPEG-encoding [132] it becomes strongly
strongly frequency-dependent noise, since JPEG encoding applies a quantification matrix that
quantizes the coefficients of the 8× 8 blocks of the image according to their associated frequency:
the higher the frequency, the higher the quantization. Therefore, the noise at the JPEG image
is highly correlated, contains a low level is noise at the high-frequencies (since the quantization
removes both noise and signal high frequencies) and strong low and medium frequency noise
(correlated noise after demosaicing and with increased energy after gamma correction).
This profile is not only found in modern digital images, but also in scans of old photographs,

87

which contain chemical noise. Therefore, the assumption that the resulting noise is both signal
and frequency dependent is a minimal model for proper denoising of noisy images. Our purpose
here is to find a general method for estimating such complex noise, and to validate it by comparing
the estimated results to the appropriate ground truths.

8.2 Noise estimation algorithm
Little has been written on frequency and signal dependent noise estimation from a digital image.
A method estimating a “JPEG compression history” from a single image can be found in [101].
The noise estimation method for JPEG images proposed in [87] estimates a signal dependent noise
level which is not frequency dependent and therefore only gives a “noise level”. Probably the most
complete attempt to estimate a general noise model is contained in the blind denoising method
[113], which estimates multiscale noise covariances for noise wavelet coefficients. This model is
nevertheless not signal dependent. To the best of our knowledge, no method has proposed so
far to estimate a general frequency and signal dependent noise patch model. The situation is
nonetheless favorable, as most homoscedastic noise estimation algorithms are actually block based
[104, 115, 66, 118, 99], and can therefore be adapted to measure signal and frequency dependent
noise models on patches. For a complete review on noise estimation and denoising, we refer the
reader to chapter 7 and [77].
Our noise estimation method is inspired by the ideas of a paper by Ponamarenko et al. [109] to
estimate frequency-dependent noise variance. However, there are fundamental differences between
our method and the method by Ponamarenko et al:

1. The Ponomarenko et al. method is designed for the estimation of homoscedastic noise, but
since it is block-based, it is relatively easy to adapt it to deal with SD noise.

2. The Ponomarenko et al. method uses a w×w (where w = 8 is the side of the block) random
mask that determines which are the coefficients used for block selection and which are used
for noise estimation (see Sec. 8.3 for more details). In our method, there is no such a random
mask and we compute the SE (squared error) of a pair of blocks depending of the coefficients
with the greatest absolute values.

3. The Ponomarenko et al. method considers the difference between pairs of blocks with the
less MSE (mean squared error). Our method uses directly the blocks without subtraction.
In general, this improves the estimation, as shown in Sec. 8.3.

Our proposed method follows is detailed in Algorithm 15.
The correction function in Eq. (8.5) is obtained by adding simulated homoscedastic noise to a set
of noise-free images and afterwards adjusting a linear function that returns the theoretical STD
given the biased estimate σ̂[I][i, j].

σ̂[I][i, j] = MAD(Sp) = median
ñ∈Sp

(∣∣∣∣ñ[i, j]−median
m̃∈Sp

(m̃[i, j])

∣∣∣∣) . (8.6)

8.3 Discussion
As shown in previous works [77] [30], it is possible to adapt most block-based homoscedastic noise
estimation methods [104] [115] [66] [118] [28] [29] to measure SD noise, by simply splitting the list
of input blocks into sets of blocks disjoint in mean intensity (bins). In the proposed algorithm,
this is done in step 14. If step is avoided or only a single bin is used, the algorithm falls back into
a homoscedastic noise estimator.
In this paper, we propose a new function to compute the similarity between patches. Both the
proposed method and [109] rely on the fact that the list of blocks used to measure the variance
frequency-by-frequency are similar, to minimize the interference of image textures and geometry

88

Algorithm 15 Noise estimation algorithm
1: Input : Noisy image u of size Nx ×Ny pixels.
2: Input : w × w size of the block in pixels.
3: Output : Noise curve σ̃.

4: Extract from the input image u of size Nx ×Ny all possible M = (Nx − w + 1)(Ny − w + 1)

overlapping w × w blocks Bk and compute their 2D orthonormal DCT-II, B̃k, k ∈ [0,M − 1].
5: Set L = ∅ Empty set.
6: for each DCT block m̃1 ∈ B̃, do
7: Compute the absolute value of the DCT-II coefficients of m̃1:

A[i, j] := {|m̃1[i, j]| : [i, j] ∈ [0, w − 1]2}. (8.1)

8: Sort A from the highest to the lowest value and put the sorting indices in

Q = argsort(A). (8.2)

9: Compute the SE between m̃1 and m̃2 along the first w2/4 sorting indices in Q:

SEm̃1,m̃2
:=

w2/4−1∑
q=0

(m̃1[Qq]− m̃2[Qq])
2. (8.3)

10: Find the block m̃2 that minimizes SEm̃1,m̃2 (Eq. 8.3). Consider only those blocks whose
horizontal and vertical distance with respect to m̃1 belongs to the interval [r1, r2] = [4, 14].

11: Add block m̃1 and its SE, [m̃1, SEm̃1,m̃2], to list L.
12: end for
13: Extract 1 from m̃1 the mean of m1.
14: Classify the elements of list L into disjoint bins according the mean intensity of the blocks

[77, 129]. Each bin contains (with the exception of the last) 42000 DCT blocks.
15: for each bin, do
16: Obtain the set Sp made by the DCT blocks inside the current bin whose SE is below the

p-quantile, with p = 0.005.
17: Assign to the current bin the intensity I as

I = median
m̃∈Sp

(m̃[0, 0]/w) (8.4)

18: for each frequency [i, j] with [i, j] ∈ [0, w − 1]2, [i, j] 6= [0, 0], do
19: Compute the (biased2) variance of the noise at the current bin and frequency [i, j] using

the MAD estimator (Eq. 8.6).
20: Correct the biased variance and obtain the final standard deviation (STD) estimate:

σ̃[I][i, j] =

{
1.775× σ̂[I][i, j] if w = 4;

1.677× σ̂[I][i, j] if w = 8.
(8.5)

21: end for
22: end for

89

in the estimation. Indeed, in the ideal case where all w×w blocks contain exactly the same signal
contaminated with noise, the variations of the values at any coefficient [i, j] ∈ [0, w2 − 1]2 are
explained only by the noise and therefore the its sample variance is exactly that of the noise. If
the blocks are not similar the former does not hold, and therefore it is important to have a reliable
similarity function.
The idea of using the redundancy of the visual information along different blocks to estimate the
variance of the noise was already exploited by Danielyan el at. [37] in a method based on BM3D,
but applied to noise estimation. In [109], the authors use a random matrix of w×w values, where
a “1" at position [i, j] ∈ [0, w2 − 1]2 means that a coefficient must be used to compute the MSE
and a “0" that it must be used to estimate the noise at that frequency. The mask is afterwards
inverted and the noise variance is obtained for the rest of the coefficients. But this approach has
some disadvantages:

• Only 50% of the values are used to compute the MSE between two blocks. Since the selection
of the coefficients that will participate in the MSE computation is random, it may happen
that the chosen coefficients contain less energy than those which are discarded in the random
selection. If the discarded coefficients have more energy (for example, because they belong
a to an edge or to a textured area) than the coefficients that are selected for the similarity
computation, then computed MSE will not be reliable.

• In a natural image it is well known that most of the visual information is carried at the
low and medium frequencies, and a very few high-frequency coefficients due to edges. Thus,
most homoscedastic noise estimation methods [104] [28] [111] estimate the noise at the high-
frequencies.

A function that computes the MSE between two blocks with a random selection that includes
high-frequency coefficients is not reliable, since the information they bring is caused by the noise.
If the random selection mask contains more high-frequencies than low and medium, the similarity
function will be biased by the noise, since each coefficient has the same weight when computing
the MSE. On the other hand, if only coefficients at the low and medium frequencies are used to
compute the similarity, the similarity function would fail when the block contains a large number
of edges or is highly textured, since in that case most of the visual information would be located
at the high-frequencies.
Instead of using a random selection or fixing the frequencies used to compute the block similarity,
we only consider a small set of blocks made by the coefficients with the greatest energy, regardless
of their frequency. When comparing two blocksm1 andm2, and after computing their orthonormal
DCT-II, the transformed blocks m̃1 and m̃2 are evaluated with the proposed similarity function.
It sorts the coefficients in m̃1 according to the absolute value of each coefficient (see Eqs. 8.1
and 8.2), along with their associated frequencies. Our similarity function (Eq. 8.3) computes the
SE between m̃1 and m̃2 only with the w2/4 coefficients in m̃1 with the largest absolute value.
This similarity function is reliable for both smooth and high-textured areas, since the coefficient
selection is adapted to the block spectral characteristics. If on the contrary the noise is so high
that it dominates over the geometry of the blocks, the proposed similarity function will also be
reliable, since the geometry simple adds more energy at each frequency and still the coefficients
with the largest energy are expected to carry information mainly from the geometry.
About the blocks that are used to compute the variance frequency-by-frequency, in [109] once the
most similar DCT block m̃2 as been found for block m̃1, the difference block (m̃1− m̃2) and their
MSE are stored. In the proposed method, we store block m̃1 and the corresponding MSE instead
of the difference. Theoretically, when computing the variance of a set of coefficients at a fixed
frequency [i, j] ∈ [0, w2 − 1], the only difference should be a factor of 2 at the variance computed
at the difference with respect to the variance without subtraction. However, since the blocks that
are subtracted are assumed to be very similar (minimal MSE), the computation of the variance
may be less accurate numerically when computed using a finite precision. Indeed, if we compute
the variance of K coefficients ck[i, j] at frequency [i, j] with [i, j] ∈ [0, w2 − 1], k ∈ [0,K − 1] we

90

have that

Var ({ck}k=0...K−1) =
K

K − 1

 1

K

K−1∑
k=0

c2k −

(
1

K

K−1∑
k=0

ck

)2
 .

If the values of ck are small, the values of c2k might be too small to be represented accurately
with the float and double data types commonly available in programming languages, causing
numeric inaccuracy or even catastrophic cancellation. In fact, the accuracy when computing the
variance frequency-by-frequency is not improved if the blocks are subtracted. Indeed, if the blocks
considered for noise estimation are not similar enough, the effect of a slightly different underlying
geometry in the set of blocks can be seen as a perturbation that is added to the noisy signal.
But the variance of the the set of difference coefficients with the added perturbation is just the
double of the variance of the set of coefficients with the added perturbation without subtraction.
Therefore, it is always better to avoid subtracting the blocks (see step 11 of the algorithm in Sec.
8.2), since there is not any theoretical or practical improvement in doing so, but the results may
be inaccurate because the values may be too small to be represented with the data types used to
compute the variance.
Eq. 8.5 gives the correction factor for the STD depending on the size of the blocks, for percentile
p = 0.5%. A correction of the STD is needed because MAD is a biased estimator of the STD
and also because the available number of coefficients to compute the (sample) variance is finite
and thus biased. To obtain the correction factors, we added simulated homoscedastic noise of
STD σ = 5 to a synthetic image of a calibration pattern with large flat zones of several different
grayscale intensities. The biased STD σ̂ is estimated with our algorithm and compared with σ = 5.
The ratio σ/σ̂ gives the correction factor.
The size of the block depends on the application of the noise estimation. A small block, say 4× 4
(w = 4) is useful if it is already known in advance that the image is highly textured, since the
probability of capturing float zones or at least with less edges decreases with the size of the block.
However, a larger block is associated with an estimator of the STD with less standard error (since
more samples are available), but on the other hand the probability of capturing edges and highly
textured zones in a single block increases. A block smaller than 4 × 4 DCT coefficients is not
informative enough and blocks larger that 8× 8 are not robust to edges and textures. The 8× 8
size has an special interest, since it is adapted to JPEG compression, which quantizes the 8 × 8
DCT blocks of the image.

8.4 Validation of the method
The above proposed method gives an estimation of the standard deviation (STD) of the noise that
depends both on the intensity and frequency in a single image. It uses the observation of blocks at
many spatial locations and is therefore called the spatial estimation. We can validate the spatial
estimation method by taking raw and JPEG photographs with a given camera. The value of the
spatially estimated STD on a single image should match the ground-truth STD for that camera
for the configured ISO speed [56], obtained from multiple frames. Note that with JPEG images
we do not refer to simply compressing the image according to the JPEG standard, but to a raw
image that has gone throughout all the camera processing chain, from the raw image acquired at
the focal plane of the camera at the CCD o CMOS detector, including demosaicing, white balance,
gamma correction and finally JPEG encoding.
For that purpose, consider a sequence of images of the same scene taken with fixed camera position
and constant lighting. Under these conditions, any variation of the intensity in any pixel through
the sequence is only attributable to the effect of the noise. It is therefore possible to build a GT
noise curve for both raw and JPEG-encoded images, associating with each observed mean signal
value the corresponding standard deviation of its observed samples. Similarly, by frequency
noise curve we mean a numerical function associating with each value of the block mean a
standard deviation (STD) of the DCT coefficient of the noise at that frequency. Thus, there are as
many noise curves as DCT coefficients. To obtain such curves, instead of measuring the variation

91

of the intensity of the pixels in a fixed position along the sequence, we consider all M overlapping
w × w blocks in the image, compute their orthonormal DCT-II, and measure the variance at the
intensity of the bin and frequency [i, j] ∈ [0, w−1]2, [i, j] 6= [0, 0] along the coefficients of the blocks
at the same spatial position and with varying image index.
The noise curve obtained this way for each DCT frequency is called the temporal estimation and
can be used as a ground truth (GT) to compare with the spatial estimation. Even if a noise model
for JPEG images has never been proposed in the literature, it is therefore possible to obtain
reliable empirical GT curves for JPEG images. To obtain them, it suffices to JPEG-encode each
image of the snapshot with the same quality parameter, and to apply the described procedure.
Note that the fixed pattern noise (FPN) is also measured with the spatial estimation, but not at
the temporal. However, it can be neglected.
The objective of this section is to verify that the spatial standard deviation (STD) measured
at any frequency [i, j] ∈ [0, w − 1]2, [i, j] 6= [0, 0] using the algorithm in Sec. 8.2 coincides with
the STD of the temporal series measured only at that frequency for all intensities. To build the
temporal STD noise curve we used 100 snapshots of the same calibration pattern, for both raw
and JPEG-encoded images. In principle, any image might be used to get the temporal STD of the
noise, but it is preferable to use an object with large flat regions of different gray levels, in order
to avoid the effect of textures in the temporal estimation. To be robust to outliers (the edges
between the large flat zones), we consider only the 0.05-quantile [28] of the STD estimations that
is corrected afterwards to obtain an unbiased estimate.
The procedure to compute the ground-truth curve for JPEG-encoded images for frequency [i, j] ∈
[0, w − 1]2, [i, j] 6= [0, 0] from a set of H images is detailed in Algorithm 16.
In the sequel, we compare the results of the spatial estimation to the GT, for both raw and
JPEG-encoded images taken with a Canon EOS 30D camera with exposure time t = 1/30s, ISO
speed 1600, and blocks of w × w DCT coefficients with w = 4 and w = 8. Fig. 8.1 compares the
temporal and the spatial STDs for raw images and Fig. 8.3 shows the same for JPEG-encoded
images with compression factor Q = 92 for w = 4. Only coefficients [1, 1], [2, 2], and [3, 3] are
shown, but equivalent results are obtained with all 15 coefficients. Respectively, Fig. 8.2 and Fig.
8.4 for w = 8. Only coefficients [2, 2], [5, 5], and [7, 7] are shown for w = 8. The average of the
estimations along all coefficients [i, j] ∈ [0, w − 1]2, [i, j] 6= [0, 0] is also given in both cases.
Despite small oscillations in the spatial estimation, there is an accurate match between both the
spatial and temporal estimations in the case of raw and JPEG images. It can be concluded that
the method is able to estimate reliably signal-dependent noise at each frequency.
Note that this test was performed with snapshots of the calibration pattern, which is not textured
and contains large flat areas whose spatial variations are caused mainly by the noise. Thus,
the final validation must use real natural images compressed with JPEG. Since a proper noise
model for JPEG encoding has not been already described, a visual comparison of the quality of
the images before and after denoising using the frequency-by-frequency estimation given by the
proposed method is needed.
We also compared the accuracy of the proposed method by simulating colored noise and comparing
the temporal STD (GT) with the spatial estimation given by our algorithm for images of pure
noise, frequency by frequency. To obtain the temporal STD, we created a list of 210 blocks of size
8×8 pixels made of simulated Gaussian noise of mean 127 and σ = 10 after applying a convolution
with the discrete Gaussian kernel G in Eq. 8.7. Fig. 8.5 shows a crop of the convolved noise image,
where it can be seen that has some spatial structure, since the noise is correlated because of the
Gaussian convolution.

G =
1

273

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 . (8.7)

Table 8.1 compares for some frequencies (first column) the temporal STD obtained for the 210

92

Algorithm 16 Algorithm to obtain the ground-truth curve for a sequence of images
1: Input : Sequence of JPEG (or raw) images.
2: Input : H number of images in the sequence.
3: Input : Nx×Ny the size of each image in the sequence, in pixels.
4: Output : GT noise curve σ̃.

5: Set M = (Nx − w + 1)(Ny − w + 1) the number of overlapping blocks.
6: Set E1 = E2 = E3 = zeros(M).
7: for For each JPEG (or raw) image of the series of H images, do
8: Extract from the input image u of size Nx × Ny all possible M overlapping w × w blocks

Bk and compute their 2D orthonormal DCT-II, B̃k, k ∈ [0,M − 1].
9: for k ∈ [0,M − 1] do

10: E1[k] = E1[k] + (B̃k[i, j])2.
11: E2[k] = E2[k] + B̃k[i, j].
12: E3[k] = E3[k] + B̃k[0, 0]/w. The mean of Bk

13: end for
14: E1[k] = E1[k]/H; E2[k] = E2[k]/H; E3[k] = E3[k]/H. Normalization
15: end for
16: Set L = zeros(M)
17: for k ∈ [0,M − 1] do

18: Set L[k] =
[

k
k−1

(
E1[k]− (E2[k])2

)]1/2
. STD

19: end for
20: Classify the elements of list L into disjoint bins [77, 129] according the mean intensity E3[k]

of the blocks. Each bin contains (with the exception of the last) 42000 sample variance
estimations.

21: for each bin b, do
22: Set X the means of the blocks in bin b.
23: Set Y the STDs of the blocks in bin b.
24: Get the 0.05-quantile of Y and set µ̂ the mean in X associated with it.
25: Assign the 0.05-quantile of Y to σ̂[µ̂][i, j].
26: Set σ̂[µ̂][i, j] the 0.05-quantile of X. Set µ̂ the mean at the quantile position in X.
27: Correct σ̂ biased by the quantile and obtain the final control point of the GT for intensity

µ̂ and frequency [i, j]:
σ̃[µ̂][i, j] = 1.22× σ̂[µ̂][i, j].

28: end for

93

0 500 1000 1500 2000 2500
Intensity

0

10

20

30

40

50

60

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs. spatial estimations at [1, 1], ISO 1600

Spatial
Temporal

Frequency [1, 1]

0 500 1000 1500 2000 2500
Intensity

0

10

20

30

40

50

60

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs. spatial estimations at [2, 2], ISO 1600

Spatial
Temporal

Frequency [2, 2]

0 500 1000 1500 2000 2500
Intensity

0

10

20

30

40

50

60

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs. spatial estimations at [3, 3], ISO 1600

Spatial
Temporal

Frequency [3, 3]

0 500 1000 1500 2000 2500
Intensity

0

5

10

15

20

25

30

35

40

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Averaged spatial vs averaged temporal estimations, w=4, ISO 1600

Spatial
Temporal

Average comparison

Figure 8.1: Comparison of the temporal GT (in green) and spatial STD (in red) for the Canon
EOS 30D in raw images for ISO speed 1600 using blocks of 4× 4 DCT coefficients. The temporal
and spatial STD match despite some oscillation in the spatial estimation. The curve at the
bottom right is the comparison between the averaged mean temporal STDs and the averaged
mean spatial STDs (along all frequencies except DC), showing that in average both estimations
match accurately.

0 500 1000 1500 2000 2500
Intensity

0

10

20

30

40

50

60

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs. spatial estimations at [2, 2], ISO 1600

Spatial
Temporal

Frequency [2, 2]

0 500 1000 1500 2000 2500
Intensity

0

10

20

30

40

50

60

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs. spatial estimations at [5, 5], ISO 1600

Spatial
Temporal

Frequency [5, 5]

0 500 1000 1500 2000 2500
Intensity

0

10

20

30

40

50

60

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs. spatial estimations at [7, 7], ISO 1600

Spatial
Temporal

Frequency [7, 7]

0 500 1000 1500 2000 2500
Intensity

0

10

20

30

40

50

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Averaged spatial vs averaged temporal estimations, w=8, ISO 1600

Spatial
Temporal

Average comparison

Figure 8.2: Comparison of the temporal GT (in green) and spatial STD (in red) for the Canon
EOS 30D in raw images for ISO speed 1600 using blocks of 8× 8 DCT coefficients. The temporal
and spatial STD match despite some oscillation in the spatial estimation. The curve at the
bottom right is the comparison between the averaged mean temporal STDs and the averaged
mean spatial STDs (along all frequencies except DC), showing that in average both estimations
match accurately.

94

0 500 1000 1500 2000 2500 3000 3500 4000
Intensity

0

20

40

60

80

100

120

140

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs spatial estimations at [1, 1], ISO 1600

Spatial
Temporal

Frequency [1, 1]

0 500 1000 1500 2000 2500 3000 3500 4000
Intensity

0

20

40

60

80

100

120

140

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs spatial estimations at [2, 2], ISO 1600

Spatial
Temporal

Frequency [2, 2]

0 500 1000 1500 2000 2500 3000 3500 4000
Intensity

0

20

40

60

80

100

120

140

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs spatial estimations at [3, 3], ISO 1600

Spatial
Temporal

Frequency [3, 3]

0 500 1000 1500 2000 2500 3000 3500
Intensity

0

10

20

30

40

50

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Averaged spatial vs. averaged temporal estimations, w=4, ISO 1600

Spatial
Temporal

Average comparison

Figure 8.3: Comparison of the temporal GT (in green) and spatial STD (in red) for the Canon
EOS 30D in JPEG-encoded images with quality factor Q = 92 for ISO speed 1600 using blocks
of 4× 4 DCT coefficients. The curve at the bottom right is the comparison between the averaged
temporal STDs and the averaged mean spatial STDs (along all frequencies except DC), showing
that in average both estimations match.

0 500 1000 1500 2000 2500 3000 3500 4000
Intensity

0

50

100

150

200

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs spatial estimations at [2, 2], ISO 1600

Spatial
Temporal

Frequency [2, 2]

0 500 1000 1500 2000 2500 3000 3500 4000
Intensity

0

50

100

150

200

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs spatial estimations at [5, 5], ISO 1600

Spatial
Temporal

Frequency [5, 5]

0 500 1000 1500 2000 2500 3000 3500 4000
Intensity

0

50

100

150

200

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Temporal vs spatial estimations at [7, 7], ISO 1600

Spatial
Temporal

Frequency [7, 7]

0 500 1000 1500 2000 2500 3000 3500
Intensity

0

10

20

30

40

50

60

70

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Averaged spatial vs. averaged temporal estimations, w=8, ISO 1600

Spatial
Temporal

Average comparison

Figure 8.4: Comparison of the temporal GT (in green) and spatial STD (in red) for the Canon
EOS 30D in JPEG-encoded images with quality factor Q = 92 for ISO speed 1600 using blocks
of 8× 8 DCT coefficients. The curve at the bottom right is the comparison between the averaged
temporal STDs and the averaged mean spatial STDs (along all frequencies except DC), showing
that in average both estimations match.

95

Figure 8.5: Crop of the image of pure Gaussian noise with mean 127 and σ = 50 after convolution
with the kernel G in Eq. 8.7. The noise has spatial structure since it gets correlated after Gaussian
convolution.

Table 8.1: This table compares, for some frequencies (first column), the temporal STD obtained
for the 210 8× 8 blocks of Gaussian noise of σ = 50 (second column), the spatial STD estimation
obtained by our method for pure noise after convolution with the Gaussian kernel G in Eq. 8.7
(third column), and the spatial STD estimation given by our algorithm after adding homoscedastic
Gaussian noise of σ = 50 to the noise-free test image computer and then convolving it with G
(fourth column). Both STD estimation in pure noise and in a textured natural image match with
small error the temporal STD. For the image of pure noise a single bin is used and 7 bins for the
computer image.

Frequency Temporal STD Spatial (pure noise) Spatial (computer)

[1, 1] 31.45 29.20 30.72
[2, 2] 21.77 19.93 21.06
[3, 3] 10.03 11.16 10.73
[4, 4] 3.44 3.72 3.76
[5, 5] 0.73 0.62 0.61
[6, 6] 0.15 0 0
[7, 7] 0.13 0 0

8 × 8 blocks of pure noise (second column), the spatial STD estimation obtained by our method
for pure noise after convolution with the discrete Gaussian kernel G in Eq. 8.7 (third column), and
the spatial STD estimation given by our algorithm after adding homoscedastic Gaussian noise of
σ = 50 to the noise-free test image computer (in Fig. 8.7, top right) and then convolving it with
G (fourth column). Despite an small error, the proposed method is able to measure accurately
the STD of the noise for both pure noise and a textured natural image. If the STD of the noise is
below 0.4, the method is unable to estimate it accurately and in some cases the MAD estimator
gives negative values that the algorithm sets to zero afterwards.

8.4.1 Comparison
In this section we discuss the influence of in two decisions taken in the design of the algorithm:
the subtraction or not of similar blocks in the list of DCT blocks under the 0.005-quantile and
the performance of the new similarity function (Eq. 8.3) we propose in this paper. In order to
measure the influence of textures in the performance of the compared noise estimation methods,
we propose to use a synthetic noise-free calibration pattern (see Fig. 8.6, left). Since in the
calibration pattern is very easy to find flat zones where any variation of the intensity is due to
the noise and no interfering textures, most noise estimation methods are expected to perform
optimally for this image. To simulate the effect of textures, we consider an image that combines
both the calibration pattern and a noise-free image. For example, in Fig. 8.6 (right) we show
the noise-free image made by the 80% of the intensity of the calibration pattern and the 20% of
noise-free image traffic. Note that since both combined images are noise-free, the result is still

96

Noise-free calibration pattern Combined with traffic

Figure 8.6: On the left, synthetic noise-free calibration pattern. On the right, the combination of
the calibration pattern with the noise-free test image traffic (with a ponderation of the 80% of the
calibration pattern and 20% of the traffic image. Since both combined images are noise-free, the
result is still noise-free, but textured.

Bag Computer

Flowers Traffic

Figure 8.7: Noise-free images used to measure the robustness of the methods to the presence of
textures. Each image is 704× 469 pixels.

noise-free, but textured.
To show the influence of the textures in the noise estimation depending on the method, we added
simulated signal-dependent noise of variance σ2 = 100 + 7u to the combination of the calibration
pattern image with several noise-free images and then estimated the RMSE along all frequencies
and intensity bins (u is the pixel intensity of the combined image). The level of texture of the
image analyzed is controlled by parameter α, since the combination is done as αP + (1 − α)T ,
where P is the calibration pattern and T the noise-free image that has the role of the texture. We
used the four noise-free images show in Fig. 8.7.
Fig. 8.8 shows the RMSEs obtained for the test images in Fig. 8.7. In the horizontal axis, the
value of α ∈ [0, 1] (the texture level) and in the vertical axis, the RMSE along all frequencies and
intensity bins.
We compare the adaptation to SD noise of the Ponomarenko et al. method [109] (which can be
considered the state-of-the-art in FD-noise estimation) and our method, with two variants for each
method: subtracting the blocks under the MSE quantile and not subtracting them (look at the
discussion in Sec. 8.3). It can be observed that with independence of the texture level, in general
it is better not to subtract similar blocks before estimation. Compare the Ponomarenko method
(labeled Ponomarenko sub) with the variant which does not subtract similar blocks (labeled Pono-
marenko no-sub): the estimation obtained with subtraction has less RMSE than when performing

97

0.0 0.2 0.4 0.6 0.8 1.0
Texture level

2

3

4

5

6

7

R
M

S
E

RMSE according to texture level (bag)

Ponomarenko no-sub
Ponomarenko sub
Proposed no-sub
Proposed sub

Bag

0.0 0.2 0.4 0.6 0.8 1.0
Texture level

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

R
M

S
E

RMSE according to texture level (computer)

Ponomarenko no-sub
Ponomarenko sub
Proposed no-sub
Proposed sub

Computer

0.0 0.2 0.4 0.6 0.8 1.0
Texture level

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

R
M

S
E

RMSE according to texture level (flowers2)

Ponomarenko no-sub
Ponomarenko sub
Proposed no-sub
Proposed sub

Flowers

0.0 0.2 0.4 0.6 0.8 1.0
Texture level

2.0

2.5

3.0

3.5

4.0

4.5

R
M

S
E

RMSE according to texture level (traffic)

Ponomarenko no-sub
Ponomarenko sub
Proposed no-sub
Proposed sub

Traffic

Figure 8.8: RMSEs obtained for the test images in Fig. 8.7. In the horizontal axis, the value of
α ∈ [0, 1] (the texture level) and in the vertical axis, the RMSE along all frequencies and intensity
bins. We compare the adaptation to SD noise of the Ponomarenko et al. method [109] and our
method, and two variants for each method: subtracting the blocks under the MSE quantile and
not subtracting them (look at the discussion in Sec. 8.3). In general, avoiding the subtraction is
the best option and it is what we propose in the presented method.

subtraction. However, only in the case of extremely highly-textured images (as in the case of
the bag image), the subtraction brings to a lower RMSE. The plots also compare the proposed
method (labeled Proposed no-sub) with the variant that subtracts the blocks (labeled Proposed
sub). It can be seen clearly that the proposed method gives a lower RMSE thanks to the use of
a better similarity function (Eq. 8.3). The new similarity function is less affected by textures,
since it measures the difference between blocks using only the coefficients with most energy. This
coefficients are related to the geometry of the image and are not biased by other coefficients that
carry information from the noise (as it happens in [109]). In the plot of the Bag image it can
be seen that for high values of α, the RMSE of the variant that does not subtract the blocks is
similar to the variant subtracting the blocks.
Depending on the image (computer, flowers), the variant subtracting the blocks is slightly better
than the variant with subtraction, for high values of α, but only for highly-textured images, as
shown. Nevertheless, the proposed method has a better RMSE that [109]. In general, avoiding
the subtraction is the best option and it is what we propose in the presented method.

8.5 Conclusion

We presented a non-parametric noise estimation method for intensity-frequency dependent noise.
It can be applied to images where the noise model is not available [7], as in the case of JPEG
images. In general, a non-parametric estimation of intensity-dependent and frequency-dependent
noise is needed for almost any kind of image, since the very first step in the camera processing
chain is demosaicing the raw image, which correlates the noise. The exact algorithm used to
demosaick the image is not made available by camera makers. However, the goal of blind noise
estimation and denoising is to retrieve the noise model from the image itself, without relying at
additional information such as metadata in the file format. Of course, for old photographs the
metadata information might not exist at all (analogic photography) or may have been lost after

98

image manipulation and reencoding.
Instead of assuming a prefixed noise model and then obtaining the parameters that control it (as
parametric models do), our non-parametric method obtains at the same time both the noise model
for the patches and its characteristics, that is, the noise estimation according to the discovered
model. The method was validated by showing that the STD obtained at the temporal series (the
GT) coincides with the spatial STD given by the proposed algorithm, for both raw and JPEG
images. The denoising results show that indeed the noise estimator is able to give an accurate
estimation, since low frequency noise is removed and most of the fine details are kept. Our next
endeavor would be to include an impulse noise estimator to the non-parametric noise estimation
model. Old photographs can indeed present this sort of noise. Nevertheless our estimation algo-
rithm cannot be applied to any noisy image. For example, it does not apply if the noise is space
dependent (and not only signal dependent), as can be observed in some synthetic images.

99

100

Chapter 9

Noise Clinic

Arguably several thousands papers are dedicated to image denoising. As explained in part I, most
papers assume a fixed noise model, mainly white Gaussian or Poissonian. This assumption is only
valid for raw images.
Yet in most images handled by the public and even by scientists, the noise model is imperfectly
known or unknown. End users only dispose of the result of a complex image processing chain
effectuated by uncontrolled hardware and software (and sometimes by chemical means). For such
images, we have shown in chapter 8 that recent progress in noise estimation permits to estimate
from a single image a noise model which is simultaneously signal and frequency dependent.
As most of denoising algorithms mainly focus on Gaussian Noise (chapter 4) and then only work for
signal-independent noise, they need to be adapted to be able to deal with signal-dependent noise.
The NL-Bayes algorithm described in details in chapter 12 has both advantages to give really
good results without providing any artefacts and to be simple enough to provide signal-dependent
denoising with only small modifications.
Therefore we propose in this chapter a multiscale denoising algorithm -based on NL-Bayes- adapted
to this broad noise model. This leads to a blind denoising algorithm which we demonstrate on
real JPEG images and on scans of old photographs for which the formation model is unknown.
The consistency of this algorithm is also verified on simulated distorted images. This algorithm is
finally compared to the unique state of the art blind denoising method.
This chapter uses the results of joint work with Miguel Colom and Jean-Michel Morel.

9.1 Introduction

9.1.1 Motivations
Blind denoising is the conjunction of a thorough noise estimation method followed by the applica-
tion of an adapted denoising method. To cope with the broad variety of observed noises imaging,
the noise model must be far more comprehensive than the usual white Gaussian noise. Our lead
example will be JPEG images from digital CCD or CMOS cameras, where the initial signal de-
pendent white Poisson noise has undergone nonlinear transforms, linear filters and a quantization
of its DCT coefficients. After such alterations, a signal, frequency and scale dependency is a min-
imal assumption for the remaining noise. This requires dealing with a noise model depending on
hundreds of parameters, in contrast with the usual one-parameter Gaussian white noise and the
two-parameter Poisson noise. A flexible denoising method must also be conceived to cope with
this signal, scale and frequency dependent noise model.
To be useful to all image users, who generally have only access to the end result of a complex
processing chain, blind denoising must be able to cope with both raw and preprocessed images
of all sorts. The archives of the online executions at the IPOL journal of six classic denoising
methods, namely DCT denoising [139], TV denoising [59], K-SVD [80], NL-means [15], BM3D
[74] and NL-Bayes [76] are replete with such puzzling noisy images. IPOL users are in principle

101

requested to upload noiseless images, to which the noise is added on line to test the performance of
each algorithm. Yet, as one can observe in this public archive, the demand for a blind denoiser is so
strong that more than 10000 noisy images have been unduly uploaded. This shows how necessary
“blind” methods are, for diffusing image processing techniques in science and technology.

9.1.2 Antecedents

We found only a few references on blind denoising approaches: Portilla [113], [112], Rabie [116]
and Liu, Freeman, Szeliski and Kang [87]. Portilla’s method is an adaptation of the famous BLS-
GSM algorithm, which models wavelet patches at each scale by a Gaussian scale mixture (GSM),
followed by a Bayesian least square (BLS) estimation for wavelet patches. This method is in
principle adapted to homogeneous, Gaussian or mesokurtotic noise. Yet, according to the author,
the GSM model provides an automatic way to separate noise from signal. Indeed, for natural
images, a GSM captures for the wavelet coefficients both high kurtosis marginals and a positive
covariance between neighbor coefficient amplitudes. These coefficients are not shared by Gaussian
or lower kurtosis noise sources. Then, for each wavelet subband a correlated Gaussian model can
be used to estimate the noise and a correlated GSM is used for the signal. This algorithm is fully
automatic, and will be compared to our results in Section 9.6.3. Our proposed solution shares
many features with Portilla’s method. Our noise model is nonetheless more general, being signal
dependent, and our patch model is local, while the GSM wavelet patch model is global. (A recent
local version of BLS-GSM [117] obtains a better performance than BLS-GSM.)
Liu, Freeman, Szeliski and Kang [87] proposed a unified denoising framework for JPEG images with
two tasks in view: 1) automatic estimation and 2) removal of colored noise from a single image.
These steps are performed by involving a piecewise smooth image model and a segmentation.
The authors introduce the so called “noise level functions” (NLF) to estimate the noise level as a
function of the image grey level. The obtained noise curve by their algorithm is an estimate of
an upper bound of the real NLF, done by fitting a lower envelope to the standard deviations of
per-segment image variances. In their denoising procedure, the chrominance of the colored noise
is significantly removed by projecting pixel values onto a line fitted to the RGB values in each
segment. Then, a Gaussian conditional random field is constructed to obtain the underlying clean
image from the noisy input. Unfortunately no code is available for this complex procedure.
The method proposed by Rabie [116] seems less effective and works only for Gaussian noise. Here
the blind denoising filter is based on the theory of robust statistics. The denoising part is done by
minimizing a stationary cost function. For an adaptive window around the pixel of interest, noise
pixels are seen as outlier pixels and rejected according to the Lorentzian robust estimator. The
noise is basically estimated over a flat area of the noisy image. “Optimal-size” adaptive window
are used to obtain the largest area containing relatively uniform structures around each pixel
of interest. The uniformity is based on local signal variance estimate. This method seems less
general than Portilla’s method, since it can only deal with a signal-independent Gaussian noise.
Observing the results shown in [116], indicates that this method mainly works on images with
large homogeneous areas. An entropy-based noise level estimator has been proposed in [57], which
may work for any sort of noise. Unfortunately it delivers a noise level but not a noise model. So
we could not use it for noise estimation. Our denoising method will be based on a noise signal and
frequency noise estimator as explained in chapter 8 and proposed by Colom et al. [32], relying
on a Ponomarenko et al. general principle [109] to build a noise patch model. This method is
proved in the aforementioned reference to estimate accurately the variances of DCT coefficients of
noise patches in a JPEG image. We shall see that it can be easily extended to cope with a scale
dependency.
Section 9.2 gives a brief account of the original NL-Bayes algorithm and details why and how
it can be adapted to the current general noise framework. Section 9.3 gives the noise model
and details the computation of the noise covariance matrix at each scale. Section 9.4 gives the
multiscale denoising procedure and details the up-and down-sampling operations. Section 9.5
validates the method on simulated noisy JPEG images and filtered images. This section ends with
a final synthetic description of the whole blind denoising method. Section 9.6 is the experimental

102

section, with experiments on real noisy images with unknown history. A thorough comparison is
also performed with the reproducible method [113].

9.2 A Generalized Nonlocal Bayesian Algorithm
Most denoising methods in the literature focus on Gaussian white noise, which is a reasonable
simplification of the problem, since for example Poisson noise can be transformed into approxi-
mately white Gaussian noise by the Anscombe transform [3]. In this section we show that one
of them, the NL-Bayes method, designed for Gaussian white noise, can be extended to deal with
a signal, scale and frequency dependent noise. NL-Bayes only requires the knowledge of a local
Gaussian patch model and of a Gaussian noise model. It is therefore possible to extend the noise
model to make obtain a denoising method compatible with a scale and signal dependent.
Like other patch based denoising methods, NL-Bayes denoises all noisy square patches extracted
from the noisy image ũ and then obtains the final denoised image û by replacing every image
pixel value by an average of the denoised values obtained for this pixel in all denoised patches
containing it. We shall denote by P̃ a reference patch extracted from the image, and by P(P̃) a
set of patches Q̃ similar to the reference patch P̃ . Assuming that Q̃ follows a Gaussian model, a
first basic estimation of the denoised patch P can be obtained (see chapter 12 and [75]) by

Pbasic = P̃ + [CP̃ −Cn]C−1

P̃

(
P̃ − P̃

)
(9.1)

where

• P̃ is the empirical average of the patches similar to P̃ :

P̃ ' 1

#P(P̃)

∑
Q̃∈P(P̃)

Q̃ (9.2)

• Cn is the covariance matrix of the noise;

• CP̃ is the empirical covariance matrix of the patches similar to P̃ , which may be obtained
by

CP̃ '
1

#P(P̃)− 1

∑
Q̃∈P(P̃)

(
Q̃− P̃

)(
Q̃− P̃

)t
. (9.3)

For pure Gaussian signal-independent noise with variance σ2, we simply haveCn = σ2I. The above
estimate would the optimal Bayesian estimate, if CP̃ and P̃ were the true covariance matrix and
expectation of the patches similar to P̃ . In a second step, all the denoised patches obtained after
the previous first step estimation can be reused by a classic Wiener argument to obtain a better
unbiased estimation Cbasic

P̃
for the covariance of the 3D group containing P . Similarly, a new

estimation P̃
basic

of the average of patches similar to P can be obtained. This leads to a second
Wiener-Bayes estimate

Pfinal = P̃
basic

+ Cbasic
P̃

[
Cbasic
P̃

−Cn

]−1
(
P̃ − P̃

basic
)
. (9.4)

Adaptation to Signal-Dependent Noise As formulas (9.1) and (9.4) show, the above Bayesian
principle is compatible with a patch noise model Cn depending on each patch P̃ . The above for-
mulas only require a good estimate of the covariance matrix of the noise associated with each
group of similar patches. The algorithm computing this matrix is given in Section 9.3. The noise
model being signal dependent, for each intensity i in the range intensity [0, 255] of the image a
noise covariance matrix Cni will be available. The noise model for each group of patches similar
to P̃ will depend on P̃ through their mean i. The reference intensity for the current 3D group

103

P(P̃) must therefore be estimated to apply formulas (9.1) and (9.4) with the appropriate noise
covariance matrix. This intensity is simply estimated as the average of all pixels contained in
P(P̃).

Local Correction of the Covariance Matrix The denoising performance strongly depends
on the noise covariance matrices estimation. If the matrices {Cni}i∈[0,255] are not accurate enough,
denoising can cause ugly artifacts, particularly in the first step. The noise estimation procedure
from the image is always at risk of an overestimation, particularly when the image is small or
when it contains a uniform texture which becomes undistinguishable from colored noise. If Cn is
overestimated, then (9.1) risks adding “negative noise” to the image, because of the −Cn term in
this equation. Thus, a conservative estimation strategy must be applied on the first Bayesian step
to avoid noise overestimation artifacts. This strategy ensures that the noise variances are always
smaller than the noisy patch variances. This sanity check based on the diagonal values of both
CP̃ and Cn covariance matrices leads to the following more conservative estimate of the diagonal
elements of the patch covariance matrix used in (9.1):

∀p ∈ [[0, κ2 − 1]],CP̃ (p, p) = max (CP̃ (p, p) ,Cn (p, p)). (9.5)

Homogeneous Area Detection The original NL-Bayes algorithm presented in chapter 12 and
also in [75] has a statistical test to determine if a 3D group belongs to a homogeneous area, and
in this case the estimation of all patches is replaced by the global mean over all pixels contained
in the 3D group. This criterion is merely based on the comparison of the empirical standard
deviation of all pixels of P(P̃) with σ2.
In our generalization of this algorithm, σ doesn’t exist since Cn 6= σ2I. So this criterion must be
adapted to better take into account Cn in the following way:

• First, compute the difference of the traces of both covariance matrices for each channel c,

δc = Tr(CP̃)− Tr(Cn). (9.6)

• Denote by ˆ̃Q a first estimation of Q̃ obtained by (9.1). Then the basic estimate is ∀Q̃ ∈ P(P̃),

Qbasic =

P̃ if δc < αTr(Cn)
ˆ̃Q if δc > βTr(Cn)

t ˆ̃Q+ (1− t)P̃ otherwise.

(9.7)

where
t =

δc − αTr(Cn)

βTr(Cn)− αTr(Cn)

and

P̃ =
1

#P(P̃)κ2

∑
Q̃∈P(P̃)

κ∑
p=1

κ∑
q=1

Q̃(p, q)

The thresholds (α, β) are chosen equal to
(
−1

3
,

1

3

)
. This (optional) correction which generally

increases the PSNR is only used for the first step of the finest scale of the multiscale algorithm.

9.3 Obtaining the Covariance Matrix of Noise Patches
As seen in chapter 8 and also [32], an adaptation of the Ponomarenko et al. [109] method estimating
a frequency dependent noise is proposed to estimate noise in JPEG images. Given a patch size
κ×κ, the method extracts from the image a set with fixed cardinality of sample blocks with minimal

104

variance, which are therefore likely to contain only noise. These noise blocks are transformed by
a DCT, and an empirical standard deviation of their DCT coefficients is computed. This gives
a noise model that is proved in chapter 8 and also in [32] to be accurately consistent with noise
observed in JPEG images. This algorithm computes for every intensity i with a multi-frequency
noise estimate given by a κ2 × κ2 matrix

Mi := E
(
DNi (DNi)

t
)

(9.8)

where:

• D is the κ2 × κ2 matrix of the discrete cosine transform (DCT) ;

• Ni denotes the κ× κ stochastic noise patch model at intensity i.

9.3.1 Are Noise Covariances Negligible in the Block DCT Space?
The method of the preceding section only estimates the variances of the DCT coefficients of noise
blocks and not their covariances. The covariance matrices are therefore assumed to be diagonal,
which amounts to assume that the DCT decorrelates the noise. A formal argument can be given
in favour of this assumption. Assume that the initial image noise was white Gaussian, and that
the image has undergone a symmetric, real, periodic linear filter H. Then this filter corresponds
to applying a diagonal operator to the image in the DCT frequency domain. Thus the noise
covariance of the filtered noise remains diagonal in the DCT domain. Yet, this argument is
only valid for a global image DCT. Here, because we need a signal dependent noise model, we are
estimating it on local DCTs applied to each block. It is therefore no more true that the blocks have
undergone a periodic convolution filter. Thus, it cannot be exactly true that after the application
of a global linear filter, the noise block DCTs have a diagonal covariance. To check nonetheless the
quantitative validity of this assumption, we tested three different filters applied to a white noise:

• H1 with coefficients 1
4

(
1 1
1 1

)
supported by the pixels (− 1

2 ,−
1
2), (1

2 ,
1
2), (1

2 ,−
1
2), (− 1

2 ,
1
2);

• H2 the centered filter with coefficients 1
16

 1 2 1
2 4 2
1 2 1

;

• H3 the centered filter with coefficients 1
88

 1 2 4 8 4 2 1
2 4 8 16 8 4 2
1 2 4 8 4 2 1

.

The noise image ũ was a 256× 256 Gaussian white noise with mean 128, and standard deviation
σ = 20. After convolution, we extracted N distinct κ× κ patches {Pn}n∈N from the image and a
2D normalized DCT was applied on them. Finally, their empirical κ2 × κ2 covariance matrix C
was computed as

∀(p, q), (i, j) ∈ [[0, κ− 1]]2,

C(p, q, i, j) =
1

N

N∑
n=1

P̂ (p, q)P̂ (i, j)

− 1

N2

(
N∑
n=1

P̂ (p, q)

)(
N∑
n=1

P̂ (i, j)

) (9.9)

These covariances matrices can be visualized by the absolute value of their coefficients |Ci,j |,
normalized in [0, 1] so that the largest coefficient is set equal to 1, and the smallest equal to 0.
The following colour code is used in the visualization: a coefficient appears in blue if it is near 0;
in green if it is near 0.5 and in red if it is near 1. The results for various patch sizes are shown
in Figure 9.1. This illustration and the quantitative tables 9.1, 9.2 and 9.3 confirm that the block
DCT noise covariance matrices are nearly diagonal.
So from now one, only variance coefficients will be considered in DCT space.

105

κ 4 6 8 16
mean {|Ci,j |}i6=j 0.83 0.48 0.31 0.10
mean {|Ci,j |}i=j 24.89 25.31 24.95 24.73
median {|Ci,j |}i 6=j 0.04 0.03 0.02 0.01
median {|Ci,j |}i=j 19.42 17.14 16.28 14.41

Table 9.1: Statistics of the estimated DCT covariance matrix of noise filtered by H1.

κ 4 6 8 16
mean {|Ci,j |}i6=j 0.48 0.28 0.19 0.06
mean {|Ci,j |}i=j 14.59 13.95 14.45 14.23
median {|Ci,j |}i 6=j 0.010 0.008 0.005 0.002
median {|Ci,j |}i=j 6.75 4.50 3.77 2.35

Table 9.2: Statistics of the estimated DCT covariance matrix of noise filtered by H2.

κ 4 6 8 16
mean {|Ci,j |}i6=j 0.22 0.15 0.10 0.04
mean {|Ci,j |}i=j 9.28 8.94 9.04 8.51
median {|Ci,j |}i 6=j 0.020 0.016 0.010 0.003
median {|Ci,j |}i=j 3.32 2.86 2.44 1.73

Table 9.3: Statistics of the estimated DCT covariance matrix of noise filtered by H3.

Figure 9.1: Visualization of the noise covariance matrices in DCT space after applying the filter
H1 to illustrate that it is almost diagonal. From left to right, top to bottom patch size κ = 4, 6, 8.

106

9.3.2 Covariance Matrix Filtering
Since the noise covariance matrices can only be estimated for sparse bins in the intensity range,
an interpolation must be applied to obtain a noise covariance matrix of the noise for each given
intensity. The covariance matrices must be smoothed before such an interpolation. This can be
obtained by a regularization of the covariance matrices in DCT space before applying the inverse
DCT to get back a covariance matrix in the image domain. We found that a robust regularization
could be performed in the following two steps:

1. For each frequency independently, perform a linear interpolation between the bin values to
obtain a noise curve for this frequency, giving the variance as a function of the signal i.
Smooth this curve by applying a sliding average;

2. For every bin, replace each matrix coefficient by the median of its four neighbours and itself.

Since the filtering is channel independent, the pseudo-code only describes the filtering for one
channel.

Getting Back to the Space Domain For a given intensity i, the covariance matrix of the
noise is by definition

Cov(Ni) = E
(
NiN

t
i

)
which leads to

DCov(Ni)Dt = DE
(
NiN

t
i

)
Dt

= E
(
DNiN

t
iDt

)
= E

(
DNi (DNi)

t
)

= Mi

(9.10)

thanks to equation (9.8). Since D−1 = Dt , then from equation (9.10) we get

cov(Ni) = DtMiD. (9.11)

9.4 The Multiscale Algorithm

9.4.1 Why a multiscale algorithm?
Classic denoising algorithms such as BM3D (Dabov et al. [35]), NL-means (Buades et al. [13]),
K-SVD (Mairal et al. [93], [94]), Wiener filters applied on DCT (Yaroslavsky et al. [138], [137])
or on wavelet transform (Donoho et al. [126]) and the total variation minimization (Rudin et al.
[122]) achieve good results for moderate noise (σ ≤ 20). Yet for larger noise artifacts inherent
to each method (and different for each method) start appearing. In particular all keep an often
disturbing low frequency noise. A natural idea to deal with low frequency noise is to involve a
coarse to fine multiscale procedure, which promises three improvements:

1. in the patch-based methods, it favors a better patch comparison, because the patch low
frequencies are denoised before grouping them by similarity for denoising their higher fre-
quencies;

2. at coarse scales the noise decreases by zoom out, and state-of-the-art algorithms work better;

3. subsampling the image before denoising amounts to enlarge the size of the neighborhood on
which the denoising is performed, thus permitting to grab and remove low frequency noise
on larger regions.

A still stronger argument in favour of a multiscale procedure is that in most images submitted
by users, the main bulk of the noise is contained in the low frequencies. This is explainable by
several factors. In accurately scanned old photographs, the chemical noise is over-sampled and its

107

Figure 9.2: A multiscale process is required to remove the low frequency noise. This is particularly
apparent in the flat image regions. From left to right: Noisy image (σ = 30), result of the “Classic
NL-Bayes”, result of the multiscale (three scales) NL-Bayes.

grain has low frequency components. In JPEG images, compression has strongly attenuated high
frequency noise components, but the low frequency components after the third octave are intact.
To define a coarse to fine multiscale structure, we proceed by a classic oversampled wavelet de-
noising strategy [27]. The image is convolved by a Haar “mother wavelet”, which is nothing but
a box-filter F where each lower scale pixel is the mean of four samples in the higher scale. This
cumulates the advantage of dividing the noise standard deviation by two and of maintaining the
independence of the samples after down-sampling. By this process a white noise remains white
after subsampling. A classic objection to this wavelet method is that the sub-sampled image is
aliased and cannot be up-sampled after denoising. The classic wavelet method avoid this obstacle
by denoising simultaneously the three wavelet components obtained by convolving the image with
the three Haar wavelets, before reconstructing the finer scale. Yet when dealing with patch based
methods, it is better to keep all frequency components together to perform a better nonlocal patch
comparison. For this reason the proposed multiscale algorithm keeps and processes four channels
that are partly redundant. The four channels are obtained by moving the sub-sampling grid by
respectively (0, 0), (1, 0), (0, 1), (1, 1). In that way there is enough information for up-sampling
after denoising the denoised images at the lower scale.
The above method is multiscale but does not take advantage of the sub-sampling in the lower
scales to increase the algorithm speed. A normal multiscale algorithm is only 1 + 1

4 + 1
16 + · · · = 4

3
more complex than the single scale algorithm. Instead a multiscale algorithm keeping all sub-
images when sub-sampling will be twice to five times slower, depending on the number of scales
involved, (by default two). Yet, the redundancy of this denoising at lower scales notably increases
the restoration quality. This is particularly important, as any denoising error on a down-sampled
image is amplified by a four-factor after upsampling.

9.4.2 The Mean Sub-Sampling Method

We shall denote by s the current dyadic scale of the multiscale algorithm. For the particular case
of white noise, the aim of the sub-sampling is to obtain from ũs an image ũs+1 where the standard
deviation of the noise has been divided by two compared to the noise contained in ũs. To get this
result, one can use a filter f(i, j) satisfying

∑
i,j

f(i, j) = 1 and
∑
i,j

f(i, j)2 =
1

4
.

108

The simplest filter coping with these conditions is the average filter F, defined by

F(i, j) =

{
1
4 if (i, j) ∈ [(0, 0), (0, 1), (1, 0), (1, 1)] ,

0 otherwise.

which averages each group of four adjacent neighboring pixels. There are four different filter+sub-
sample results, as shown in figure 9.3. Moreover if the image ũs is well-sampled, so is ũs ∗ F.
Thus, the difference image is not aliased. Since all sub-sampled images are available, the noise

Figure 9.3: Four different ways to average red neighbors of the yellow reference pixel.

estimation can work with the same amount of samples at every scale, which favours a good precision
on the noise estimation at lower scales. All sub-sampled images must also be denoised. To avoid
handling them separately, we introduce here a new procedure to process them jointly in a single
image, while avoiding creating artificial borders. The four sub-sampled images are regrouped in
one mosaic image, as shown in figure 9.4. The boundaries of the sub-images are in that way better
denoised, because they are included in a smooth larger image.

Figure 9.4: Left: mosaic of the scale 1 sub-images. Right: mosaic of the scale 2 sub-images, The
input image has scale 0.

9.4.3 The Mean Up-Sampling Method

The aim of the up-sampling is to go back to the upper scale, after denoising the four sub-images
obtained by sub-sampling as seen in Section 9.4.2. The four sub-images ũ1, ũ2, ũ3 and ũ4 have
their pixel center (resp. in red, purple, green and blue in figure 9.5) located at the center of four
pixels of ũ (in black in figure 9.5). Thus they are shifted by ± 1

2 in both coordinate directions.

109

Figure 9.5: Position of the center of pixels in the original image ũ in black, in the four sub-images
ũ1 in red, ũ2 in purple, ũ3 in green and ũ4 in blue. The yellow pixel will be reconstructed by
averaging the top left red pixel, the top right purple pixel, the bottom left green pixel and the
bottom right blue pixel of its four pixel neighborhood.

The reconstruction of the pixels of ũ (see the example of the pixel in yellow in figure 9.5) will be
done by averaging their four neighbors, each one belonging to each sub-image.
Fig. 9.6 illustrates a multiscale denoising result, where it is apparent that noise remains mainly
at lower scales.

9.4.4 Noise Estimation

If the input noisy image had pure Gaussian noise, then after each sub-sampling the noise should
be divided by two and remain white. For raw images it is the case, since (almost) no alteration
nor transformations are applied to the original noisy pixels. Then the noise is a Poisson random
process, which can be approximated by a signal-dependent Gaussian noise.
However, the proposed algorithm must deal with all kinds of noisy images. A large majority of
them are JPEG images where JPEG has killed most high-frequency coefficients. In such images
the noise increases at lower scales, as illustrated in Figure 9.7, which are the noise curves of the
image shown in Figure 9.20. This figure displays average noise curves for high and low frequencies
respectively, in the three scales noise estimation from a JPEG image. The low-frequency noise is
not altered by JPEG and becomes a high-frequency noise after three1 subsampling operations.
In our redundant noise estimation, the noise covariance matrices are estimated at each dyadic
scale. Section 9.4.2 explains how the noise estimation is applied on the mosaic image composed
of all sub-images. Then for every scale the same number of samples is available, which allows
the noise estimation to retain a decent accuracy even at coarse scales. At each given scale, all
sub-images of the mosaic are denoised with the same set of noise covariance matrices.

9.5 Validation

Blind denoising is designed mainly for images where the image history is unknown and no ground
truth available. But we can test the denoising performance of the Noise Clinic after simulating a
whole image processing chain on a Poisson noisy image for which the ground truth is available.
One of the worst possible noise distortion is provided by the image processing chain applied in
the camera hardware and generally ending with JPEG compression. This chain includes nonlinear
corrections on the raw image, followed by some denoising, demosaicking, gamma-correction, white
balance and JPEG compression, namely the quantization of local block DCT coefficients. To see
to which extent the method works, we started with perturbations consistent with our noise model
and then simulated a typical camera image processing chain ending with JPEG compression. We

1JPEG transform is based on 8 × 8 DCT transform, then after three subsampling, when 8 × 8 pixels squares
becomes a single pixel. Then at the third scale, the noise is only high-frequency and independent.

110

Figure 9.6: Result of the Noise Clinic at each scale. From top to bottom: scale 2, scale 1 and scale
0. From left to right: noisy image, denoised image, difference image. The noise in a JPEG image
is mainly present in low scales.

first obtained a noise-free raw image uraw by subsampling a high quality outdoor image. Then a
Poisson noisy ũraw was simulated from it. Four validation experiments were performed.
First, we computed a reference denoised version of the image:

• the Noise Clinic was directly applied on ũraw to get ûraw;

• a white balance and a gamma correction were applied on uraw, ũraw and ûraw to get urgb,
ũrgb and ûrgb.

Those images will be used as reference, to see how other parts of the image processing chain (such
as the demosaicking and the JPEG compression) impact the result of the denoising. Table 9.4
shows RMSEs between the noisy and denoised images and the reference one. One can also remark
that the best result of the denoising (both in term of RMSEs and visual aspects) is obtained when
the Noise Clinic is applied directly before any transformation.
Second, a demosaicking algorithm was added to the image processing chain before calling the
denoising part:

111

0 50 100 150 200 250
Intensity

0

2

4

6

8

10

12

St
an

da
rd

 d
ev

ia
tio

n

Noise curve

0 50 100 150 200 250
Intensity

0

5

10

15

20

25

St
an

da
rd

 d
ev

ia
tio

n

Noise curve

0 50 100 150 200 250
Intensity

0

2

4

6

8

10

12

St
an

da
rd

 d
ev

ia
tio

n

Noise curve

0 50 100 150 200 250
Intensity

0

5

10

15

20

25

St
an

da
rd

 d
ev

ia
tio

n

Noise curve

0 50 100 150 200 250
Intensity

0

2

4

6

8

10

12

St
an

da
rd

 d
ev

ia
tio

n

Noise curve

0 50 100 150 200 250
Intensity

0

5

10

15

20

25

St
an

da
rd

 d
ev

ia
tio

n

Noise curve

Figure 9.7: Average noise curves for a typical JPEG-encoded image (shown in Figure 9.20). From
left to right: low frequencies, high frequencies. From top to bottom: scale 2, scale 1, scale 0.
Instead of being divided by two at each scale (as it should happen with white noise), the noise
grows in lower scales, where JPEG has not removed it.

ũrgb ûrgb|s2 ûrgb|s3 v̂rgb
8.62 3.63 3.65 6.46

Table 9.4: RMSE between noisy/denoised images and corresponding reference image (uraw) when
two and three scales are used. v̂rgb denotes the result of Blind BLS-GSM for this experiment.

112

ũd ûd|s2 ûd|s3 v̂d
8.64 4.84 4.84 6.43

Table 9.5: RMSE between noisy/denoised images and corresponding reference image (ud) when
two and three scales are used for the demosaicking experiment. v̂d denotes the result of Blind
BLS-GSM for this experiment.

ũjpeg ûjpeg|s2 ûjpeg|s3 v̂jpeg
8.70 5.34 5.53 6.30

Table 9.6: RMSE between noisy/denoised images and corresponding reference image (ujpeg) for
the JPEG experiment, with compression quality of 92. v̂jpeg denotes the result of Blind BLS-GSM
for this experiment.

• extract the mosaic2 of the noise-free image: um = Mosaic(uraw);

• do the same for the noisy image: ũm = Mosaic(ũraw);

• apply a classic demosaicking method3 on both images, followed by a white balance and a
gamma correction to get ud and ũd;

• finally apply the Noise Clinic on ũd to get ûd.

Table 9.5 shows RMSEs for this experiment. One may notice that after a demosaicking the noise
is no more white, and some structures appears in the noise. These structures are preserved and
sometimes enhanced by the denoising algorithm, since it is seen as structure and not as noise.
This explains why RMSEs are less favourable than when the denoising is directly applied on the
raw images.
Third, a complete image processing chain was simulated to obtain a final JPEG compressed image:

• apply a JPEG compression of quality 92 over both ud and ũd to get ujpeg and ũjpeg;

• apply the Noise Clinic to get ûjpeg.

Table 9.6 shows RMSEs for this experiment. Of course, as JPEG compression creates more
artifacts and structured noise, results are worse than with the first two experiments. This only
means that the denoising should be applied as soon as possible in the whole image processing
chain. However, results are not very far from the ideal case, which confirms the interest and the
strength of the Noise Clinic.
Fourth, the filter H2 seen in section 9.3.1 was used to get:

• a reference filtered image: uf = H2 ∗ uraw;

• a noisy filtered image: ũf = H2 ∗ ũraw;

• the result of the Noise Clinic of the noisy filtered image: ûf1 = NC(H2 ∗ ũraw);

• the filtered result of the Noise Clinic of the noisy image: ûf2 = H2 ∗NC(ũraw).

Table 9.7 shows RMSEs associated to this experiment. Of course after this filtering, there only
remains low frequency noise, which explains why RMSEs values are better than in the ideal case.
However, the Noise Clinic is still able to give good results.

2The mosaic image is obtain by keeping only the bayer (R Gr Gb B) over a group of four pixels instead of all
RGB values.

3The demosaicking algorithm used in this experiment was Self-similarity Driven Demosaicking algorithm [17],
available on IPOL.

113

ũf ûf1 |s2 ûf1 |s3 ûf2 |s2 ûf2 |s3 v̂f1 v̂f2

1.58 0.75 0.82 0.75 0.75 1.24 1.28

Table 9.7: RMSE between noisy/denoised images and corresponding reference image (uf) for the
filtered experiment. v̂f1 and v̂f2 denote results of Blind BLS-GSM for this experiment.

Figure 9.8 (resp. 9.9 and 9.10) shows results associated of the raw experiment (resp. demosaicking
and JPEG).
Figure 9.11 (resp. 9.12 and 9.13) shows a comparison between the Noise Clinic and Blind BLS-
GSM for the raw experiment (resp. demosaicking and JPEG).

9.6 Results

9.6.1 Detailed Results

In this section we applied the blind denoising to real noisy images for which no noise model was
available. To illustrate the algorithm structure and its action at each scale, we present for each
experiment the noisy input image and for each scale:

• the noisy image where noise has already been removed at coarser scales;

• the denoised image at this scale;

• the difference image = noisy - denoised at this scale;

• the average noise curve over high frequencies;

• the average noise curve over low frequencies.

For each scale larger than 1, the subsampled images are up-sampled to keep the original image
size. Similarly, the noisy image shown at each scale is the sum of the upsampled version of the
denoised sub-images of the previous scale and of the still noisy difference image kept in reserve.
In other terms this image contains the remaining noise at the current scale; the noise at coarser
scales has in principle already been removed. Visual results are shown in Figure 9.14 and 9.16.
The corresponding noise curves are presented in Figure 9.15 and Figure 9.17.
The experiments made on JPEG photographs from unknown sources are obviously noisy but, as
the noise curves illustrate, the noise is not white and is signal dependent. This is easily detected
by the fact that the noise curves are not flat and that they are not divided by two from a scale to
the next, as they should if the noise were white.
A typical fact of JPEG images is that the noise increases at the lower scales. This confirms the
necessity of a multiscale algorithm.

9.6.2 Influence of the Number of Scales

Theoretically any number of scales could be used. Indeed at a very coarse scale the noise should
be almost null and estimated as such, so that no denoising eventually would occur at very coarse
scales. In practice however, some structure of the image may be confused with noise in the noise
estimation step. Indeed the noise estimation method is tight on very large images on which pure
noise samples in large numbers can be found [109]. After several subsamplings, the image becomes
too small, and the risk of confusing texture with noise increases. In consequence applying a blind
denoising on a small image is increasingly at risk of removing detail when the scale increases. Thus,
it is almost always better to use a minimal number of scales, in most cases not more than two.
However, we found that for some images with large low frequency noise it is sometimes better to
use up to five scales. From that point of view our “blind denoising” is not fully blind and requires

114

Figure 9.8: Visual results of the reference (first) experiment. From top to bottom, and left to
right: full noise-free image, crop of the noise-free image urgb, crop of the noisy image ũrgb, crop
of the result of the Noise Clinic using two scales ûrgb|s2 and crop of the result of the Noise Clinic
using three scales ûrgb|s3.

115

Figure 9.9: Visual results of the demosaicking (second) experiment. From top to bottom, and left
to right: crop of the noise-free image ud, crop of the noisy image ũd, crop of the result of the Noise
Clinic using two scales ûd|s2 and crop of the result of the Noise Clinic using three scales ûd|s3.

116

Figure 9.10: Visual results of the JPEG (third) experiment. From top to bottom, and left to
right: crop of the noise-free image ujpeg, crop of the noisy image ũjpeg, crop of the result of the
Noise Clinic using two scales ûjpeg|s2 and crop of the result of the Noise Clinic using three scales
ûjpeg|s3.

117

Figure 9.11: Visual comparison of the reference (first) experiment. From left to right: crop of the
result of the Noise Clinic using three scales ûrgb|s3 and crop of the result of the Blind BLS-GSM
algorithm v̂rgb.

Figure 9.12: Visual comparison of the demosaicking (second) experiment. From left to right:
crop of the result of the Noise Clinic using three scales ûd|s3 and crop of the result of the Blind
BLS-GSM algorithm v̂d.

118

Figure 9.13: Visual comparison of the JPEG (third) experiment. From left to right: crop of the
result of the Noise Clinic using three scales ûjpeg|s3 and crop of the result of the Blind BLS-GSM
algorithm v̂jpeg.

an user evaluation of the number of scales involved. Nevertheless our default value is two, and
works on a large majority of the images. Illustrations of the use of the “right” number of scales
are presented in Figures 9.18 and 9.19 .
For the “Palace” image in Figure 9.18, five scales are needed to obtain a noise-free result because
of the huge low-frequency noise. In the difference image using five scales one can see that some
image structure has been included in the noise. Yet, this low frequency loss is harmless, being
undetectable in the resulting denoised image.
For the “Postcard” image in Figure 9.19, one can see that although tiny details still remain when
the number of scales increases, some large details such as the clouds are removed if too many
scales are used. Those details are interpreted as noise by the algorithm. However, if only two
scales are used, a slight low-frequency noise still remains. Despite these considerations, all results
are independently visually pleasant.

Result on typical low-light JPEG image The amount of noise is directly related to the
amount of light during the acquisition. Images as shown in Figure 9.20, taken in a bar with
low light conditions are typically very difficult to denoise, even if we had directly access to the
RAW image, due to the huge amount of noise. One can observe big coloured spots caused by the
demosaicking. JPEG compression ends up creating structured noise. The big coloured spots are
well attenuated by blind denoising, but the structure created by JPEG is partly left. This is easily
explained. These artifacts present sharp recurrent structures which are necessarily confused with
signal in an algorithm based on image self-similarity.

Results on Old Photographs Scanned old photographs form a vast image corpus for which
the noise model can’t be anticipated. The noise is chemical, generally with big grain and further
altered by the scanning and JPEG encoding. Figures 9.21, 9.22 and 9.23 show results obtained
by the Noise Clinic over this kind of noisy images.

119

Noisy image Denoised image Diff. image

Noisy (scale 2) Denoised (scale 2) Diff. (scale 2)

Noisy (scale 1) Denoised (scale 1) Diff. (scale 1)

Noisy (scale 0) Denoised (scale 0) Diff. (scale 0)

Figure 9.14: Illustration of blind denoising of a JPEG image, the “Frog” image. It is advised to
zoom in the high quality .pdf to see detail.

120

Low freq. av. curve (s. 2) High freq. av. curve (s. 2)

Low freq. av. curve (s. 1) High freq. av. curve (s. 1)

Low freq. av. curve (s. 0) High freq. av. curve (s. 0)

Figure 9.15: Noise estimation of the “Frog” image: The noise in this image is clearly colored: it
increases with descending octaves instead of being divided by two, as it should if it were white.

121

Noisy input image Denoised output image Difference image

Noisy (scale 2) Denoised (scale 2) Difference (scale 2)

Noisy (scale 1) Denoised (scale 1) Difference (scale 1)

Noisy (scale 0) Denoised (scale 0) Difference (scale 0)

Figure 9.16: Blind denoising of the “Movie2” image.

122

Low freq. av. curve (s. 2) High freq. av. curve (s. 2)

Low freq. av. curve (s. 1) High freq. av. curve (s. 1)

Low freq. av. curve (s. 0) High freq. av. curve (s. 0)

Figure 9.17: Noise estimation of the “Movie2” image, with typical concave shapes for the noise
curves probably caused by the gamma-correction applied previous to compression.

123

Noisy image

Denoised image (2 scales) Difference image

Denoised image (3 scales) Difference image

Denoised image (4 scales) Difference image

Denoised image (5 scales) Difference image

Figure 9.18: Blind denoising when varying the number of scales on “Palace”.

124

Noisy image

Denoised image (2 scales) Difference image

Denoised image (3 scales) Difference image

Denoised image (4 scales) Difference image

Figure 9.19: Blind denoising when varying the number of scales on the “Postcard” image.

125

Figure 9.20: Blind denoising on “Bar”, using three scales. From left to right, top to bottom : input
noisy image, crop of the noisy image, crop of the output denoised image, crop of the difference
image.

Noisy image Denoised image Difference image

Figure 9.21: Blind denoising on “Chopin”, by using 3 scales.

126

Figure 9.22: Blind denoising on “Marilyn”, using two scales. From left to right, top to bottom
: input noisy image, crop of the noisy image, crop of the output denoised image, crop of the
difference image.

127

Figure 9.23: Blind denoising on “Solvay conference, 1927”, using three scales. From left to right,
top to bottom : input noisy image, crop of the noisy image, crop of the output denoised image,
crop of the difference image.

128

9.6.3 Comparison to one of the very few available blind denoising algo-
rithms

We end this experimental section with a comparison of the noise clinic with blind BLS-GSM
introduced in [113] and [112], a state-of-the-art blind denoising algorithm. The comparison was
performed on several images with various noise models. BLS-GSM also is a multiscale algorithm
modeling wavelet coefficient patches at each scale and making a global sophisticated Bayesian
estimation of them as a Gaussian mixture. NL-Bayes instead has a simpler, but local patch
Gaussian model. The global patch model in BLS-GSM has to be more complex to cope with the
global patch variability.
In Figure 9.24 noisy images present strongly structured periodic noise, which is remarkably re-
moved by the blind BLS-GSM algorithm, whereas our blind denoising keeps it and even re-enforces
it. However one can argue that this structured noise may be seen as a repetitive texture belonging
to the image and therefore must be treated as detail and not as noise.

Figure 9.24: Results of our blind denoising and of Blind BLS-GSM on several images from [112].
From left to right: Noisy image, result of the Noise Clinic, result of the Blind BLS-GSM algorithm.
It is advised to zoom in by a 300% factor the digital document to examine details.

In Figure 9.25 the noise is more “normal” and closer to what can be expected from a natural image,
and our blind denoising performs better. Blind BLS-GSM manages to remove some noise, but a
slightly structured noise still remains, appearing in horizontal strips.
Figures 9.26, 9.27 and 9.28 show comparisons for low-light JPEG image and old Photographs
presented in section 9.6.2 and 9.6.2

129

Figure 9.25: Comparing our blind denoising with Blind BLS-GSM on several images. It is advised
to zoom in by a 400% factor the digital document to examine details. From left to right: Noisy
image, result of the Noise Clinic, result of the Blind BLS-GSM algorithm.

130

Figure 9.26: Blind denoising on “Bar”. From left to right: crop of the result of the Noise Clinic by
using three scales and crop of the result of the Blind BLS-GSM algorithm.

Figure 9.27: Blind denoising on Marilyn”. From left to right: crop of the result of the Noise Clinic
by using two scales and crop of the result of the Blind BLS-GSM algorithm.

131

Figure 9.28: Blind denoising on “Solvay conference, 1927”. From left to right: crop of the result
of the Noise Clinic by using three scales and crop of the result of the Blind BLS-GSM algorithm.

9.7 Discussion
Blind denoising can be performed with minimal assumptions on the nature of the noise. We
observed good results on almost any natural image, even if it had been modified by destructive
applications such as JPEG compression or chemical processes. Particularly in old photographs,
noise can acquire a thick grain which is only efficiently denoised at low scales. This method does
not apply to impulse or multiplicative noise and should be extended to such alterations. Also our
local noise estimation procedure did not detect the strength of the fully structured noise present
in the third infrared image of Fig. 9.24. The case of a globally frequency dependent noise is
of course better treated by Portilla’s method which assumes a global noise model. We wrote
that the proposed method was “signal, scale and frequency” dependent. In fact as indicated by the
preceding caveat, the method estimates and processes noise frequencies in the DCT of small blocks.
So these frequency coefficient are far less precise than global image frequencies. Furthermore they
are scale dependent, since we applied a dyadic subsampling procedure. Since at each dyadic scale,
frequencies are estimated for blocks with at least 4× 4 size, it follows that these scale dependent
frequencies overlap. This leads to a redundant denoising since left-over noise at a coarse scale can
be estimated again, and removed again at the overlapping finer dyadic scale. This redundancy of
estimators is particularly necessary for such a complex noise model. The fact that JPEG images
can be denoised in that way was far from granted. Indeed, it is impossible to really model noise
in JPEG images, which are the result of a chain of nonlinear operators. It can be argued that
our noise signal, frequency and scale dependent noise estimation is not yet general enough to cope
with such alterations. This objection is definitely valid for block artifacts apparent in strong JPEG
compression. Thus, strongly compressed images where blocking effects dominate remain beyond
our scope.

132

Part III

Reproducible research contributions

To be able to fairly compare denoising algorithms in both term of PSNR and visual quality is a
really important issue. In order to make this kind of comparison, we need to apply algorithms on
the same noisy images, which implies that the code source of the method is available. Moreover,
we need to check that the used code perfectly corresponds to the method described in the original
paper describing the method. Furthermore, if one want to understand well a method, to know
how and why it works, some tests need to be done, and the best way to do it is to play with the
parameters and the code.
For all these reasons, a detailed analysis of some emblematic methods is presented in this part,
and reliable open source codes of the corresponding methods are available on IPOL. Chapter 10
presents an analysis of K-SVD, one of the best known sparse coding-based denoising methods.
BM3D, the reference of transform thresholding, is analysed in chapter 11. Finally this part ends
in chapter 12 with the analysis of NL-Bayes, the state of the art of Bayesian-based methods.

133

134

Chapter 10

A Detailed Analysis and
Implementation of K-SVD

As described in chapter 4, K-SVD is a signal representation method which, from a set of signals,
can derive a dictionary able to approximate each signal with a sparse combination of the atoms.
As this method is emblematic of dictionary-based denoising methods, we present in this chapter a
detailed description of its theory and a precise analysis of its parameters which ends with a reliable
implementation.
This chapter uses the results of joint work with Arthur Leclaire.

10.1 Introduction
One class of such algorithms contains those which take profit of the analysis of the image in
a (redundant) frame. For example, in this subset, we can mention the threshold of the image
coefficients in an orthonormal basis, like the cosine basis [138, 137], a wavelet basis [47], or a
curvelet basis [126]. In this category can also be included the methods which try to recover the
main structures of the signal by using a dictionary (which basically consists of a possibly redundant
set of generators). The matching pursuit algorithm [97] and the orthogonal matching pursuit [40]
are of this type. The efficiency of these methods comes from the fact that natural images can be
sparsely approximated in these dictionaries.
The variational methods form a second class of denoising algorithms. Among them let us mention
the total variation (TV) denoising [122, 22] where the chosen regularity model is the set of functions
of bounded variations.
In another class, one could include methods that take advantage of the non-local similarity of
patches in the image. Among the most famous, we can name NL-means [13], BM3D [35], and
NL-Bayes [76].
The K-SVD-based denoising algorithm merges some concepts coming from these three classes,
paving the way of dictionary learning. Indeed, the efficiency of the dictionary is encoded through
a functional which is optimized taking profit of the non-local similarities of the image. It is divided
into three steps : a) sparse coding step, where, using the initial dictionary, we compute sparse
approximations of all patches (with a fixed size) of the image; b) dictionary update, where we
try to update the dictionary in such a manner that the quality of the sparse approximations is
increased; and next, c) reconstruction step which recovers the denoised image from the collection
of denoised patches. Actually, before getting to c), the algorithm carries out K iterations of steps
a and b.
There is by now a thriving literature about dictionary learning. Here we will only quote the main
articles that led to the design of the K-SVD algorithm for color images. The K-SVD method was
introduced in [1] where the whole objective was to optimize the quality of sparse approximations of
vectors in a learned dictionary. Even if this article noticed the interest of the technique in image

135

processing tasks, it is in [53] that a detailed study has been led on the denoising of gray-level
images. Then, the adjustment to color images has been treated in [93]. Let us notice that this last
article proved that the K-SVD method can also be useful in other image processing tasks, such as
non-uniform denoising, demosaicing and inpainting.
Following these articles, dictionary learning has become a very active research topic. To go beyond
the scope of this article, see [92] or [90].

10.2 Theoretical Description

To get a maximal coherence between the different documents about K-SVD, we use the same
notations as in the article [93].

10.2.1 Algorithm for Grayscale Images

This paragraph explains the algorithm described in [53]. We work with images written in column
vectors. In practice, in our C++ code, images are scanned one row at a time, these rows being
next concatenated to make a single column vector. The same is done for patches.
Hence, let us denote by x0 a size N column vector containing the unknown clean grayscale image.
Starting from x0, we assume that the noisy image is obtained as

y = x0 + w

where w is a white Gaussian noise vector of zero mean and known standard deviation σ. Con-
sequently, we look for an image x̂ that is close to the initial image, such that each of its patches
admits a sparse representation in terms of a learned dictionary.
For every possible position (i, j) of a pixel in the image x, we denote by Rijx the size n column
vector formed by the grayscale levels of the squared

√
n ×
√
n patch of the image x and whose

top-left corner has coordinates (i, j). One can notice that, with the column notation, Rijx is
precisely the multiplication of x (column vector of size N) by a matrix Rij of size n ×N whose
columns are indexed by the image pixels. Each of the rows of Rij allows to extract the value of
one pixel of the image x and thus is zero except for the coefficient of index p, which is equal to 1.
In the following, the notation D refers to a dictionary. It is a matrix of size n × k, with k ≥ n
whose columns are normalized (in Euclidean norm). We take k ≥ n because otherwise, there is
no chance that the columns of D can span Rn. The algorithm will require an initialization of
the dictionary : to this end, we may choose an usual orthogonal basis (discrete cosine transform,
wavelets. . .), or we may collect patches from clean images or even from the noisy image itself
(without forgetting the normalization). We give two examples of dictionaries in figure 10.1.
The dictionary allows to compute a sparse representation αij of each patch Rijx. The represen-
tations αij will thus be column vectors of size k satisfying Rijx ≈ Dαij . We put them together
in a matrix α with k rows and Np columns where Np is the number of patches of size

√
n ×
√
n

of the image.
With the above notation it is easy to detail each part of the algorithm. At first, D̂ is initialized
with an initial dictionary denoted by Dinit. The initialization alternatives will be discussed later
on.
The first step looks for sparse representations of the patches Rijy of y in the dictionary D̂. In
other words, for each patch Rijy, a column vector α̂ij (of size k) is built such that it has only a
few non-zero coefficients and such that the distance between Rijy and its sparse approximation
D̂α̂ij is small.
The second step updates one by one the columns of the dictionary D̂ and the representations α̂ij
in such a way that all patches in the image y become more efficient. Therefore, the goal is to
decrease the quantity ∑

i,j

‖D̂α̂ij −Rijy‖22

136

Figure 10.1: Left, a dictionary formed with random patches from the image “Castle” (converted
in grayscale levels) after addition of a white Gaussian noise. Right, the dictionary obtained at the
end of the K-SVD algorithm. For each atom, the contrast is enhanced differently.

while keeping the sparsity of the vectors α̂ij .
K iterations of these two first steps are performed. Once finished, to each patch Rijy of the
image y corresponds the denoised version D̂α̂ij . The third and last step consists in merging the
denoised versions of all patches of the image in order to obtain the final denoised image. A new
parameter λ is introduced in this part, which blends a portion of the initial noisy image into the
final result. To obtain a pixel p of the denoised image, a simple average is done on the values of p
in the denoised patches to which it belongs (weighted by 1), and the value of p in the noisy image
y (weighted by λ).
We will now take a closer look at each one of the three parts of the method.

Sparse Coding

This step allows, with a fixed dictionary D̂, to compute sparse representations α̂ of the patches
Rijy of the image in D̂. More precisely, an ORMP (Orthogonal Recursive Matching Pursuit)
gives an approximate solution of the (NP-complete) problem

Arg min
αij

||αij ||0 such that ||Rijy − D̂αij ||22 ≤ n(Cσ)2 . (10.1)

where ‖αij‖0 refers to the l0 norm of αij , i.e. the number of non-zero coefficients of αij . We
remind the reader that D̂ is a matrix whose size is n × k, that αij is a size k column vector and
that Rijy is a size n column vector. If it were perfect, this ORMP would find a patch with the
sparsest representation in D̂ and which distance to Rijy is less than n(Cσ)2. This last constraint
brings in a new parameter C. This coefficient multiplying the standard deviation σ guarantees
that, with high probability, a white Gaussian noise of standard deviation σ on n pixels has an l2
norm lower than

√
nCσ. We give details on the choice of C in Section 10.3. In fact, the ORMP

is not perfect : indeed, it only allows one to find a patch having one sparse (not necessarily the
sparsest) representation in D̂ and which distance to Rijy is lower than n(Cσ)2.
Let us give more details about how the ORMP can compute a sparse representation of a patch.
A good reference to learn about ORMP is [34]. Nevertheless, we shall give here a complete
explanation using the notation of our C++ code. In order to use lighter notations, we will rather
explain how the ORMP finds a sparse representation a ∈ Rk of a vector x ∈ Rn in a dictionary
formed by the normalized vectors d1, . . . , dk which span Rn.
Let x be a vector of Rn. We wand to find a sparse representation α of x in the dictionary D
formed by the normalized vectors d0, . . . , dk−1. Precisely, we are going to give an approximate

137

solution of the following optimization problem :

Arg min
α∈Rk

||α||0 such that ||x−Dα||22 ≤ ε . (10.2)

We will detail the choice of the atoms in order to stick to our C++ code.
We denote by lj the index of the element of the dictionary that we choose at the step j ≥ 0. We
also set Lj = {l0, . . . , lj}.
Let us assume that we are at the beginning of the j-th loop (j ≥ 0) (and thus l0, . . . , lj−1 are
already chosen).
We start by introducing the residue

r = x− ProjVect(dl0 ,...,dlj−1
)(x)

where ProjF refers to the subspace F , and where Vect(dl0 , . . . , dlj−1) refers to the space spanned by
the vectors dl0 , . . . , dlj−1

. If ‖r‖2 < ε then we stop and α is the representation of ProjVect(dl0 ,...,dlj−1
)(x)

in (dl0 , . . . , dlj−1
) already obtained at the previous step, cf. its computation at the end of the loop

1. We choose lj in order to minimize the norm of the new potential residue :

lj = Arg min
i/∈Lj−1

‖x− ProjVect(dl0 ,...,dlj−1
,di)(x)‖2 .

Thanks to the Pythagorean theorem, this amounts to

lj = Arg max
i/∈Lj−1

‖ProjVect(dl0 ,...,dlj−1
,di)(x)‖2 .

Then we set Lj = Lj−1 ∪ {lj}.
In order to compute the orthogonal projections

ProjVect(dl0 ,...,dlj−1
,di)(x) , (i /∈ Lj−1)

we use the Gram-Schmidt process. We denote by (tl0 , . . . , tlj−1) the orthogonal family obtained
after Gram-Schmidt orthogonalization of (dl0 , . . . , dlj−1), and by (el0 , . . . , elj−1) the orthonor-
mal family obtained after Gram-Schmidt orthonormalization of (tl0 , . . . , tlj−1

). For i /∈ Lj−1,
we denote by (tl0 , . . . , tlj−1

, t
(j)
i) the family obtained after Gram-Schmidt orthogonalization of

(dl0 , . . . , dlj−1 , di), and (el0 , . . . , elj−1 , e
(j)
i) the (orthonormal) family obtained by normalizing of

(tl0 , . . . , tlj−1 , t
(j)
i). The reader have to be aware that this orthonormalization can be progressively

computed : at the j-th step, the vectors (tl0 , . . . , tlj−1
) and (el0 , . . . , elj−1

) are already computed.
It is thus sufficient to detail, at the j-th step, the computation of di and t

(j)
i for i /∈ Lj−1 :

t
(j)
i = di −

j−1∑
p=0

〈di, elp〉elp ,

‖t(j)i ‖
2 = 1−

j−1∑
p=0

〈di, elp〉2 ,

e
(j)
i =

t
(j)
i

‖t(j)i ‖
.

We notice that

Proj
Vect(dl0 ,...,dlj−1

,d
(j)
i)

(x) = 〈x, el0〉el0 + . . .+ 〈x, elj−1〉elj−1 + 〈x, e(j)
i 〉e

(j)
i

1if we break when j = 0, then α = 0

138

(where ProjF refers to the orthogonal projection onto the subspace F) and, consequently,

‖ProjVect(dl0 ,...,dlj−1
,di)(x)‖2 = 〈x, el0〉2 + . . .+ 〈x, elj−1

〉2 + 〈x, e(j)
i 〉

2 .

Therefore, maximizing the norm of the projection is equivalent to maximize 〈x, e(j)
i 〉. This is why

we choose
lj = Arg max

i/∈Lj−1

〈x, e(j)
i 〉

2

and with this index comes the vector tlj = t
(j)
lj

and the normalized vector elj = e
(j)
lj

. The

computation of 〈x, e(j)
i 〉 is done by replacing e(j)

i by its above given definition :

〈x, e(j)
i 〉 =

〈x, di〉 −
∑j−1
p=0〈di, elp〉〈x, elp〉√

1−
∑j−1
p=0〈di, elp〉2

. (10.3)

To implement this computation efficiently, we notice that the denominator and the square of the
numerator are nothing but the subtraction of those used at the previous step by respectively
〈di, elj−1

〉〈x, elj−1
〉 and 〈di, elj−1

〉. Hence, at each step, we need 〈di, elj−1
〉 and 〈x, elj−1

〉 which
correspond in the code to the variables D_ELj[i][j] and x_elj, which are updated at each loop.
The computation of 〈x, elj−1

〉 is not a problem (it is only the formula 10.3 of the previous step !).
However, we have to explain the update of 〈di, elj−1〉. We will see thereafter that the computation
of α requires the coordinates of (el0 , . . . , elj−1) on the basis (dl0 , . . . , dlj−1) and we will explain
how we can obtain them progressively. Once these coordinates are computed, the scalar product
〈di, elj−1

〉 can be obtained by a linear combination of the scalar products 〈di, dls〉, (0 ≤ s < j).
The numerator (〈x, t(j)i 〉) is then saved in the variable x_T[i], and the square of the denominator
in the variable scores[i].
Once we have chosen lj , we can go back to the beginning of the loop to stop or choose the next
atom. Clearly, the algorithm terminates because the atoms d1, . . . , dk span Rn.
At this point let us assume that we are at the end of the j-th loop (and thus, we have chosen
l0, . . . , lj). We still have to explain how the sparse representation α of x in D is computed.
As (el0 , . . . , elj) is orthonormal and span Vect(dl0 , . . . , dlj), we have

x ≈ ProjVect(dl0 ,...,dlj) =

j∑
p=0

〈x, elp〉elp .

The coefficients 〈x, ep〉, (p < j) have already been computed in the preceding step. The last
coefficient is given by the equality (10.3) for i = lj .
Finally, we have to go back to the representation in terms of dl1 , . . . , dlj . To this aim, we introduce
the coordinates of the (el0 , . . . , elj−1

) on the basis (dl0 , . . . , dlj−1
). Let us denote them by apq,

(p ≤ q) :

∀p < j, elp =

p∑
q=0

apqdlq .

At the j − 1th-step, the apq are computed for p < j (and again p ≤ q). It suffices to explain how
we compute ajq for q ≥ j. From the definition elj , replacing the elp , (p < j), we obtain

elj =
1

‖tlj‖

(
dlj −

j−1∑
p=0

p∑
q=0

〈dlj , elp〉apqdlq

)
,

from which we get (after inverting the sums)

ajj =
1

‖tlj‖
, (10.4)

139

∀q < j, ajq = − 1

‖tlj‖

(
j−1∑
p=q

〈dlj , elp〉apq

)
. (10.5)

Finally, we have

x ≈
j∑
p=0

〈x, elp〉elp =

j∑
q=0

(
j∑
p=q

〈x, elp〉apq

)
dlq ,

and thus we set
αs = 0 , if s /∈ Lj , and

αs =

j∑
p=q

〈x, elp〉apq , if s = lq .

We insist on the fact that the coordinates of (el0 , . . . , elj−1
) on the basis (dl0 , . . . , dlj−1

) are also
required for the choice of the index lj , as explained above. Subsequently, it is natural to compute
these coordinates at each loop.

Correspondence with the Notations Used in the Code Now we link the notations used
in the explanation above with the notations used in the code. First, in the code, let us warn the
reader that we have used indexation in column order, that is, D[i] refers to the i-th column of
the matrix D.
We have also used a convention : whenever a variable contains the matrix multiplication of the
transpose of B by A, then the result is saved in the variable A_B. Therefore, A_B = T B A, and
A_B[p][q] is the scalar product between A[p] and B[q].
Let us add that elj (even if it is not a proper variable) will of course refer to elj . Similarly, DLj
(resp. ELj) will refer to the matrix whose columns are (in order) dl0 , . . . , dlj (resp. el0 , . . . , elj).
Last, T will refer to the matrix whose columns are t(j)0 , . . . , t

(j)
k−1.

· Np = Np
· n = n

· k = k

· epsilon = ε

· L : maximal sparsity allowed for the representations (here we do not use this constraint, i.e.
in our code, L = min(n, k))
· norm[i] = ‖t(j)i ‖2 = 1−

∑j−1
p=0〈di, elp〉2

· x_T[i] = 〈x, t(j)i 〉 = 〈x, di〉 −
∑j−1
p=0〈di, elp〉〈x, elp〉

· scores[i] = 〈x, e(j)
i 〉2 = Rdn[i]2

norm[i]

· lj = lj
· invNorm = 1/sqrt(norm[lj]) = 1

‖tlj ‖

· x_elj = x_T[lj]*invNorm = 〈x, elj 〉
· x_el[p] = 〈x, elp〉
· delta = x_elj*x_elj = 〈x, elj 〉2

· normr = ‖x‖2 −
∑j
p=0〈x, elp〉2

· D_DLj[i][s] = 〈di, dls〉
· A[p][q] = apq, (p ≥ q)
· D_ELj[i][j] is equal to 〈di, elj 〉 at the end of the j-th loop.
· val temporarily saves the variable 〈di, elj 〉
· coord[q] = αlq =

∑j
p=q〈x, elp〉apq : “coordinate” of x on dlq

· s : summing index

140

Some Remarks on the Implementation

update of A equations (10.4) and (10.5) suggest the update :

A[j][j] = invNorm

∀i < j, A[j][i] =

(
−
j−1∑
k=i

D_ELj[lj][k] * A[k][i]

)
· invNorm .

numerical stability an artificial break is added in the code. It happens if ‖tj‖ < 10−6. Thus
the ORMP is stopped in order to avoid the division by ‖tj‖.

Dictionary Update

In this step, we will see that we will be able to update the columns of the dictionary one by one,
to make the quantity ∑

i,j

‖D̂α̂ij −Rijy‖22 (10.6)

decrease, without increasing the sparsity penalty ‖αij‖0. We will denote by d̂l (1 ≤ l ≤ k) the
columns of the dictionary D̂.
First, let us try to minimize the quantity (10.6) without taking care of the sparsity. As explained
above, we go through the columns of the dictionary, and the index of the current column will be
denoted by l, (1 ≤ l ≤ k). We are going to modify the atom d̂l and the coefficients α̂ij(l) in order
to improve the approximations in an L2 distortion sense. In order to translate this objective into
an optimization problem, for each (i, j), we introduce the residue

elij = Rijy − D̂α̂ij + d̂lα̂ij(l) (10.7)

which is the error committed by deciding not to use d̂l any more in the representation of the patch
Rijy : elij is thus a size n vector.

These residues are grouped together in a matrix El (whose columns are indexed by (i, j)). The
values of the coefficients α̂ij(l) are also grouped in a row vector denoted by α̂l. Therefore, El is a
matrix of size n×Np and α̂l is a row vector of size Np. We need to find a new d̂l and a new row
vector α̂l which minimize∑

i,j

‖D̂α̂ij − d̂lα̂ij(l) + dlα
l −Rijy‖22 = ||El − dlαl||2F (10.8)

where the squared Frobenius norm ||M ||2F refers to the sum of the squared elements of M . This
Frobenius norm is also equal to the sum of the squared (Euclidean) norm of the columns, and it is
easy to check that minimizing (10.8) amounts to reduce the approximation error caused by d̂l. It is
well-known that the minimization of such a Frobenius norm consists in a rank-one approximation,
which always admits a solution, practically given by the singular value decomposition (SVD).
Using the SVD of El :

El = U∆V T (10.9)

(where U and V are orthogonal matrices and where ∆ is the null matrix except from its first
diagonal, where it is non-negative and decreasing), the updated values of d̂l and α̂l are respectively
the first column of U and the first column of V multiplied by ∆(1, 1). By the way, we will notice
that the rank-one approximation does not require the computation of the whole matrices U , V ,
and ∆. In our implementation, it is sufficient to use a truncated SVD, which is much faster
(especially if El is large). Let us explain the method we used to compute the truncated SVD.

141

To use lighter notations, we use, as in the code, the notation X = El. Starting from the SVD
(10.9), one can write

XXT = U∆∆TUT ,

XTX = V∆T∆V T .

As a result, ∆(1, 1) is the square of the greatest eigenvalue of the symmetrical positive-definite
matrix XXT , and the first column of U is the corresponding eigenvector. The same observation
is valid for V . Therefore, we can find these eigenvectors and ∆(1, 1) thanks to the power method
applied to the matrices XXT and XTX. Concerning the convergence of the power method, one
could refer to [2]. One could notice that in the pseudo-code that we present below, the power
method can be applied to the two matrices simultaneously.
The SVD function takes as arguments a matrix X of which we want the SVD, a maximal number
of iterations max_iter (set to 100 in the code) and a tolerance threshold ε (set to 10−6 in the
code). It gives back an approximation s of the greatest singular value of X, an approximation u
of the first column of U , and an approximation v of the first column of V .
Here is the pseudo-code.
Initialization : we arbitrarily initialize v (in the code, we set v = d̂l); we also set i = 0, s = 1 and
sold = 0.
While (i < max_iter and

∣∣ s−sold
s

∣∣ > ε), we proceed to the following affectations :

u← Xv, u← u

‖u‖
, v ← XTu, sold ← s, s← ‖v‖, v ← v

s

The values of s, u, and v obtained at the end of this loop are the return values of the truncated
SVD.

Remark : At the end of this algorithm, we thus have

XXTu ≈ λu

where λ is the greatest eigenvalue of XXT . Taking the scalar product with u, and since u is
normalized, we have

‖XTu‖2 = 〈XXTu, u〉 ≈ λ ,

which yields
s ≈
√
λ .

This explains why s is an approximation of the largest singular value of X.
This way, for each l = 1, · · · , k, the energy (10.6) never increases. But for now, the sparsity of
the coefficients is not under control. In order to do that, a slight modification is brought in to the
preceding process : for each l,the operations involved in the update of d̂l and α̂l is restricted to
the patches which already used the atom d̂l before the update.
Setting

ωl = { (i, j) | α̂ij(l) 6= 0 } ,

the values that we will group together in El and α̂l will be only the values of elij and α̂ij(l) for
indices (i, j) ∈ ωl. Hence, the indices (i, j) of the sum of the LHS of (10.8) will be restricted to
(i, j) ∈ ωl; the matrix El is now of size n×Card(ωl) and α̂l is now a row vector of size Card(ωl).
Also, in (10.6), note that the terms of indices (i, j) /∈ ωl are not affected by this update. This
proves that this modification decreases (10.6) without increasing ‖αij‖0. This modification also
implies a reduction of the matrix El which SVD is being computed.
Recall that the sparse coding computes sparse representations α̂ and that the dictionary updates
make D̂ change but also modify α̂. After K iterations of these steps, we are in possession of a
learned dictionary D̂ and of sparse representations α̂ij of the patches of the image.

142

Reconstruction

Now that the first two parts of the algorithm built a dictionary D̂ and sparse representations α̂ij
which are well-adapted to our image, we can build the globally denoised image by solving the
minimization problem

x̂ = Arg min
x∈RN

λ||x− y||22 +
∑
i,j

||D̂α̂ij −Rijx||22 . (10.10)

The first term controls the global proximity to our reconstruction x̂ with the noisy image y. It is
thus a fidelity term that is weighted by the parameter λ. The second term controls the proximity
of the patch Rijx̂ of our reconstruction to the denoised patch Dαij . This functional is quadratic,
coercive, and differentiable. Subsequently, this problem admits a unique solution that we can
compute explicitly :

x̂ =

λI +
∑
i,j

RT
ijRij

−1λy +
∑
i,j

RT
ijD̂α̂ij

 . (10.11)

This formula can appear a little bit complicated, but it is in fact very simple. The only thing to
notice is that the matrix that has to be inverted is diagonal. In consequence, this formula only
means that the value of a pixel in the denoised image is computed by averaging the value of this
pixel in the noisy image (weighted by λ) and the values of this pixel on the patches to which he
belongs (weighted by 1). We obtain the values of the pixels of x̂, one by one, without requiring
any matrix inversion that (10.11) would perhaps suggest.

Comments

In the articles [53] and [93] the following minimization problem is mentioned :

(x̂, D̂, α̂) = Arg min
D,x,α

λ||x− y||22 +
∑
i,j

µij ||αij ||0 +
∑
i,j

||Dαij −Rijx||22 (10.12)

which groups all the quantities that we have tried to minimize in the preceding paragraphs.
Let us briefly analyze this formula, even though the forthcoming comments are slightly redundant
with the previous explanation :

• the first term controls the global proximity of x̂ to the noisy image y (fidelity term);

• the second term controls the sparsity of the representations of the patches;

• last, the third term controls for each (i, j), the proximity of the patch Rijx̂ of our recon-
struction to the denoised patch Dαij .

The coefficients λ and µij set the balance between the importance given to the fidelity term and
to the sparsity constraints of the representations of the patches.
This non-convex problem is too difficult to be addressed in this form. This explains why the
article [53] suggests to break it down into parts, and to try to minimize separately the different
terms of (10.12). This way, we are led to the K-SVD algorithm. Notice also a serious difference:
the values of µij are not required in the above implementation.
Without specifying values for µij , we cannot really address the problems of linking the minimiza-
tion of (10.12) and the suggested iterative method. Moreover, we do not understand why the
authors did not set only one weight µ rather than weights µij depending on the patches. We
would have to explain why the sparsity of certain patches are more important than others. If the
µij are not equal, then their determination is still a crucial point of the method that remains to
be analyzed.
The alternation of sparse coding step and dictionary update step makes difficult the analysis of
the aforementioned energies. On the one hand, the ORMP is only an approximate solution. On

143

the other hand, in the sparse coding step, the constraints are formed by parts of the Frobenius
norm that is minimized in the dictionary update. For this reason, we want to insist on the fact
that the minimization of (10.12) is nothing but a possible interpretation of the K-SVD method.
Of course, solving directly the problem (10.12) is appealing but seems for now out of reach.
The reader could notice that, at each of the K iterations of the first two steps, the algorithm uses
a SVD, thus explaining the name K-SVD. As stated in [1], the reference to K-means is not just
formal : in K-means, we do not allow sparse combinations of the atoms, but we try to optimize
the dictionary in such a way that the error committed by representing each observation with a
single atom in the dictionary is minimal.

10.2.2 Extending K-SVD to Color Images
It is now time to present the method proposed in [93] to adapt the grayscale algorithm to color
images. To address this problem, a first suggestion would be to apply the K-SVD algorithm to
each channel R, G and B separately. This naive solution gives color artifacts that are shown
on the left image of the figure 10.2. They are due to the fact that in natural images there is
an important correlation between channels. Another suggestion would be to apply a principal
component analysis on channels RGB, which would uncorrelate them, and then to apply the first
suggestion in this more appropriate environment. This solution has not been tried because the
new proposition of [93] seems even more promising.

Figure 10.2: Denoised images with separated channels (left), and then concatenated channels
(right). (σ = 25). The reader will notice that the denoising is better on the sky and the water
surfaces.

In order to obtain the colors correctly, the algorithm previously described will be applied on column
vectors which are the concatenation of the R,G,B values. In this way, the algorithm will better
update the dictionary, because it is able to learn correlations which exist between color channels.
An example of color dictionary is shown in figure 10.3.
One can see the difference in figure 10.2. We remind the reader that from now on the size of
columns which represent images is 3N , and the size of columns which represent patches is 3n.
Unfortunately, even with this adaptation, non-negligible color artifacts are still present.
The authors of [93] justify these artifacts with the following statement : the previously described
algorithm tries to adapt the dictionary to all patches contained in the image. This need of

144

Figure 10.3: Left : dictionary composed by patches extracted randomly from the “Castle” image,
on whom a white gaussian noise has been added. Right : dictionary obtained at the end of the
color version of K-SVD. The contrast is enhanced independently for each atom.

universality implies that the atoms of the dictionary tend to look like grayscale atoms. To correct
these color artifacts, [93] suggests to modify the metric used in the break condition of the ORMP.
From now on we use the scalar product inferred metric

〈y, x〉γ = ytx+
γ

n2
ytJ tJx (10.13)

instead of the Euclidean metric, where we denote by J the matrix whose size is 3n×3n built from
three diagonal blocks of size n × n, full of 1, and where γ ≥ 0 is parameter which needs to be
fixed. In other words, the new norm can be written as

||x||2γ = ||x||2 + γ(mR(x)2 +mG(x)2 +mB(x)2) (10.14)

where we denote by mC(x) the average of x on the channel C (and where the Euclidean norm is
denoted by || · ||).
Thus, the new metric, under the parameter γ, put more importance of the proximity of the mean
value of the patches.
This color correction can be easily integrated in the ORMP thanks to the following equality :

I +
γ

n
J =

(
I +

a

n
J
)t (

I +
a

n
J
)

(10.15)

where a > 0 is chosen so that γ = 2a+ a2. Thus we can write for all vectors x,

||x||γ =
∥∥∥(I +

a

n
J)x

∥∥∥ . (10.16)

Consequently, to work with the new metric, all columns have to be multiplied by (I+ a
nJ) and we

can work again with the Euclidean norm. Nevertheless we remind the reader that in the ORMP
all columns of the dictionary are normalized, which is why a diagonal matrix D is introduced.
Its elements are the inverses of the norm of the columns of (I + a

nJ)D. Its size is k × k. Then
(I + a

nJ)DD has normalized columns. Now the ORMP can be applied to obtain the β̂ij such that(
I +

a

n
J
)

Rijy ≈
(
I +

a

n
J
)

DDβ̂ij

for the Euclidean norm. In the next session, if we denote

α̂ij = Dβ̂ij ,

we get

145

Rijy ≈ Dα̂ij

for the norm ‖ · ‖γ .
One can notice the contribution of this color version in the figure 10.4. Here again has appeared
a new parameter γ which will be briefly discussed in the following part.

Original Noisy image

γ = 0 γ = 5.25

Figure 10.4: Denoising for σ = 30 with γ = 0 and γ = 5.25. Some color artifacts still remain, but
the denoising is slightly better in some areas when γ = 5.25, cf figure 10.5.

10.2.3 Summary of the Algorithm
In this section all steps of the algorithm 17 are summarized in their right order.

10.3 Influence of the Parameters on the Performance
One can notice that the algorithm as described previously has plenty of parameters that can be
tuned. Here is the exhaustive list :

• C : multiplier coefficient;

• λ : weight of the noisy image;

• K : number of iterations;

• k : size of the dictionary;

• γ : color correction parameter;

•
√
n : size of patches.

The question is to pick the right values for the various parameters listed above, and to evaluate
their influence on the final result.

146

Algorithm 17 K-SVD algorithm
Input : noisy image y, initial dictionary Dinit and parameters listed in the next part
Output : denoised image x̂
All patches of the noisy image are collected in column vectors Rijy (channels R, G and B are
concatenated).
Set initially D̂ = Dinit.
for k = 1, · · ·K do
Sparse coding
The inverses of the norms of the columns of (I + a

nJ)D̂ are put in a diagonal matrix D
An ORMP is applied to the vectors (I + a

nJ)Rijy with the dictionary (I + a
nJ)DD in a such

way that sparse coefficients β̂ij for Euclidean norm are obtained, such that:(
I +

a

n
J
)

Rijy ≈
(
I +

a

n
J
)

DDβ̂ij .

Deduce α̂ij = Dβ̂ij (sparse too) which then verify Rijy ≈ Dα̂ij for the norm ‖ · ‖γ .
Dictionary update
for l = 1, · · · , k do
Introduce ωl = { (i, j) | α̂ij(l) 6= 0 }.
for (i, j) ∈ ωl do
Obtain the residue elij = Rijy − D̂α̂ij + d̂lα̂ij(l).

end for
Put these column vectors together in a matrix El. Values α̂ij(l) are also assembled in a
row vector denoted by α̂l for (i, j) ∈ ωl.
Update d̂l and α̂l as solutions of the minimization problem:

(dl, α̂
l) = Arg min

dl,αl
‖El − dlαl‖2F .

In practice a truncated SVD is applied to the matrix El. It provides partially U , V
(orthogonal matrices) and ∆ (filled in with zeroes except on its first diagonal), such that
El = U∆V T . Then d̂l is defined again as the first column of U and α̂l as the first column
of V multiplied by ∆(1, 1).

end for
end for
Then the final result x̂ is obtained thanks to a weighting aggregation (the formula has already
been explained):

x̂ =

λI +
∑
i,j

Rt
ijRij

−1λy +
∑
i,j

Rt
ijD̂α̂ij

 .

147

Original Noisy image

γ = 0 γ = 5.25

Figure 10.5: Denoising for σ = 30 with γ = 0 and γ = 5.25. Zooms.

10.3.1 Influence of C
This parameter is used in the stopping condition of the ORMP. In order to understand the chosen
value, let us get started with a clean patch x0 (where the length of the column is denoted by ñ = n
(resp. ñ = 3n) for grayscale (resp. color) images), on which a white Gaussian noise w is added to
obtain a noisy patch x. Then the ORMP tries to find a vector α as sparse as possible such that

||x−Dα||2 ≤
√
ñCσ .

If the noise has norm lower than
√
ñCσ, then x will be in the x0-centered sphere, which radius is√

ñCσ. If we assume that x0 is the only element of this sphere to have a sparse representation in
the dictionary D, then one can suppose that the ORMP will be able to find this x0. Then we will
ensure that the noise has a large probability to belong to this sphere.
Thus the idea of [93] is to force

P(||w||2 ≤
√
ñCσ) = 0.93 . (10.17)

Practically, the corresponding value is obtained by using the inverse of the distribution function
of χ2(ñ).

10.3.2 Influence of the Weighting parameter λ

The weighting parameter λ is used during the final reconstruction of the denoised image.
If for all λ ≥ 0 we denote by x̂λ the final result of the algorithm as described previously using the
parameter λ, then according to the definition of x̂λ (cf. formula (10.11)), one can notice that

x̂λ =
1

λ+ 1
(λy + x̂0) .

If we want to remove from the noisy image the same quantity of energy than the one that was
added by the noise, then it is natural to choose the parameter λ so that

‖x̂λ − y‖ =
√
Ñσ (10.18)

148

where Ñ is equal to N (resp. 3N) for grayscale (resp. color) images. In other words the distance
between x̂λ and y is forced to be exactly equal to

√
Ñσ. As x̂λ belongs to the segment [x̂0,y], a

such λ exists if and only if
d := ‖x̂0 − y‖ ≥

√
Ñσ .

In this case one can easily see that the only λ leading to the equality (10.18) is

λ =
d√
Ñσ
− 1 .

Despite this theoretical value, the algorithm has been tested with plenty of choices for λ. If λ
is taken too large, then the contribution of the noisy image is too important and adds too much
noise, which consequently reduces the PSNR, as one can see in the table 10.1.

σ λ = 0 λ = 0.05 λ = 0.1 λ = 0.15 λ = 0.2 λ = 0.25 λ = 0.3
2 44.43 44.77 44.70 44.52 44.32 44.13 43.97
5 39.03 39.08 38.97 38.78 38.57 38.34 38.12
10 34.55 34.58 34.53 34.42 34.28 34.13 33.96
20 30.47 30.47 30.44 30.38 30.30 30.20 30.08
30 28.18 28.18 28.15 28.10 28.03 27.96 27.86
40 26.60 26.58 26.55 26.50 26.45 26.38 26.30
60 24.36 24.33 24.29 24.25 24.20 24.14 24.07
80 22.76 22.73 22.69 22.64 22.59 22.54 22.48
100 21.47 21.43 21.38 21.34 21.28 21.23 21.17

Table 10.1: In bold the best result for a given σ. Other parameters are fixed to : K = 15;
√
n = 5;

γ = 5.25; k = 256.

Some visual results are shown in figures 10.6, 10.7 and 10.8.
Table 10.2 shows the comparison between the empirically obtained parameter (λe) and the theo-
retically obtained parameter (λt).

λt λe
σ PSNR RMSE value PSNR RMSE value
5 38.83 2.92 0.0050 38.64 2.98 0.05
10 34.24 4.95 0.0078 34.10 5.03 0.05
20 29.85 8.20 0.012 29.84 8.21 0.05
30 27.64 10.58 0.013 27.68 10.54 0.05
40 26.08 12.66 0.014 26.10 12.63 0.0
60 24.05 16.00 0.018 24.00 16.08 0.0
80 22.78 18.52 0.017 22.80 18.46 0.0
100 21.88 20.54 0.019 21.84 20.63 0.0

Table 10.2: In bold the best result for a given σ. Other parameters are fixed to : K = 15;
√
n = 5;

γ = 5.25; k = 256.

In the end the final kept value for λ is the one given by (10.18).

10.3.3 Influence of the Number of Iterations K
The iterative aspect of the method is important, because it allows the dictionary to be updated
and then to obtain a better sparse representation of the patches of the image. Moreover it allows
to show empirically the convergence of the method. Indeed when K is large enough further

149

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

Figure 10.6: σ = 10

iterations should improve the dictionary only marginally. Depending on the convergence of the
method (which can change according to σ), a huge number of iterations is assumed to be needed
in order to assure the best possible estimate. On an other side, each iteration is really expensive in
terms of processing time. Thus avoiding spurious iterations allows one to obtain a faster algorithm.
In consequence the main goal is to obtain a good compromise between having enough iterations
to obtain a good result close to the optimum and having a correct processing time.
Table 10.3 shows the PSNR and RMSE evolutions depending on the number of iterations.
One can notice that for σ ≥ 5 the PSNR converges, and the higher σ, the faster the convergence
of the PSNR. Thus it is possible to keep few iterations for high values of noise.
In order to better illustrate the speed of the PSNR convergence in function of K and σ, figure 10.9
shows f(PSNR(i)) according to the number of iterations i, where f is defined by

f(xi) =
xi − x0

xm

with xm = max(xi − x0).
In the following, the number of iterations will therefore be fixed to K = 15, no matter what σ.

10.3.4 Influence of the Size of the Dictionary k

The only constraint on the size of the dictionary is to generate Rn. As we want some redundancy,
we set k ≥ n. Table 10.4 contains a study about this parameter.
According to this table one can see that it might be interesting to choose larger sizes for the
dictionary for relatively small noise (σ ≤ 30), and smaller sizes for high noise (σ ≥ 60). Although
this parameter has an influence on the processing time, it remains relatively flexible according to
PSNR results. In the following, this parameter will therefore be fixed to k = 256.

150

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

Figure 10.7: σ = 30

K\σ 2 5 10 20 30 40 60 80 100
1 44.26 38.13 33.78 29.57 27.19 25.67 23.24 21.61 20.32
2 44.38 38.41 34.18 30.09 27.80 26.26 23.92 22.38 21.11
3 44.47 38.56 34.34 30.24 27.96 26.39 24.06 22.51 21.24
4 44.49 38.63 34.39 30.29 28.00 26.44 24.11 22.55 21.28
5 44.53 38.65 34.41 30.30 28.02 26.47 24.14 22.58 21.31
6 44.54 38.67 34.42 30.32 28.04 26.48 24.15 22.58 21.32
7 44.54 38.69 34.42 30.33 28.04 26.49 24.16 22.59 21.34
8 44.53 38.70 34.44 30.33 28.06 26.50 24.18 22.60 21.34
9 44.57 38.71 34.45 30.35 28.07 26.51 24.19 22.61 21.35
10 44.59 38.72 34.45 30.36 28.08 26.52 24.19 22.61 21.35
11 44.39 38.73 34.46 30.37 28.08 26.53 24.19 22.61 21.35
12 44.41 38.73 34.47 30.38 28.09 26.53 24.20 22.61 21.35
13 44.65 38.73 34.48 30.39 28.10 26.54 24.20 22.62 21.35
14 44.57 38.75 34.48 30.40 28.10 26.54 24.21 22.62 21.35
15 44.40 38.75 34.49 30.40 28.11 26.55 24.21 22.63 21.35
16 44.45 38.75 34.50 30.41 28.12 26.55 24.21 22.63 21.35
17 44.35 38.75 34.51 30.42 28.12 26.55 24.21 22.64 21.35
18 44.36 38.76 34.51 30.42 28.13 26.56 24.22 22.64 21.36
19 44.55 38.77 34.52 30.42 28.13 26.56 24.22 22.64 21.36
20 44.59 38.77 34.53 30.43 28.13 26.56 24.22 22.64 21.36

Table 10.3: Other parameters are fixed to :
√
n = 5; γ = 5.25; λ = 0.15; k = 256.

151

λ = 0 λ = 0.05

λ = 0.15 λ = 0.25

Figure 10.8: σ = 80

σ\k 128 196 k=256 320
2 44.13 44.40 44.66 44.70
5 38.44 38.69 38.73 38.76
10 34.32 34.41 34.45 34.50
20 30.32 30.37 30.42 30.44
30 28.07 28.08 28.10 28.10
40 26.54 26.55 26.53 26.54
60 24.37 24.32 24.30 24.26
80 22.73 22.66 22.61 22.57
100 21.48 21.48 21.32 21.27

Table 10.4: In bold the best result for a given σ. Other parameters are fixed to : K = 15;
√
n = 5;

γ = 5.25; λ = 0.15.

152

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
S

N
R

Nb Iterations

PSNR vs Nb Iterations

sigma = 2
sigma = 5

sigma = 10
sigma = 20
sigma = 30
sigma = 40
sigma = 60
sigma = 80

sigma = 100

Figure 10.9: PSNR vs number of iterations

153

10.3.5 Influence of the Correction Parameter γ

The parameter γ is only used in the case of color images. We will see that this empirical parameter
is quite flexible, because some low variations on its value have almost no consequences on the final
result.

σ\γ 3.5 4.5 4.75 5 5.25 5.5 5.75 6 7
2 44.24 44.67 44.66 44.64 44.66 44.58 44.67 44.64 44.66
5 38.75 38.77 38.75 38.75 38.77 38.76 38.77 38.77 38.74
10 34.48 34.50 34.47 34.49 34.50 34.49 34.49 34.49 34.51
20 30.39 30.39 30.39 30.37 30.35 30.37 30.36 30.37 30.36
30 28.10 28.08 28.09 28.10 28.09 28.07 28.08 28.09 28.07
40 26.53 26.52 26.51 26.52 26.50 26.54 26.50 26.51 26.51
60 24.29 24.27 24.28 24.27 24.26 24.24 24.27 24.29 24.26
80 22.68 22.70 22.68 22.64 22.69 22.67 22.69 22.66 22.68
100 21.40 21.36 21.37 21.38 21.37 21.38 21.37 21.37 21.36

Table 10.5: In bold the best result for a given σ. Other parameters are fixed to : K = 15;
√
n = 5;

λ = 0.15; k = 256.

In the following and according to the original article the correction parameter will therefore be
fixed to γ = 5.25.

10.3.6 Influence of the Size of the Patches
√
n

The size of the patches has a huge influence on the final result, and we can win several decibels
in PSNR by choosing an appropriate n. As for most of the patch-based denoising method, best
results are obtained by working with relatively big patches, as seen in table 10.6.

σ\
√
n 3 5 7 9 11 13 15

5 38.52 39.07 38.87 38.55 38.42 38.12 36.80
10 33.87 34.65 34.45 34.18 33.89 33.62 33.37
20 29.27 30.52 30.32 30.04 29.74 29.48 29.26
30 26.46 28.19 28.11 27.78 27.48 27.20 26.99
40 24.40 26.56 26.55 26.24 25.90 25.60 25.35
60 21.51 24.42 24.66 24.37 24.06 23.69 23.41
80 19.30 22.72 23.33 23.15 22.87 22.59 22.28
100 17.56 21.47 22.39 22.38 22.13 21.84 21.56

Table 10.6: In bold the best result for a given σ. Other parameters are fixed to : K = 15; k = 256;
γ = 5.25; λ = 0 if σ > 0, 0.05 otherwise.

Similarly to other patch-based denoising method (for example BM3D), it is necessary to increase
the size of the patches when the noise increases.
Despite the fact that according to PSNR/RMSE results it seems better to take relatively small
patches (

√
n = 5 or 7) for small values of noise, we have to take into consideration the visual

result.
Visual results for several values of the noise and for all studied patch sizes are shown in figures
10.10, 10.11, 10.12, and 10.13.
One can notice that visually the choice is not so easy. Too small patches give huge artifacts, and
leads to many low frequency fluctuations, but with big patches almost all details are lost. We get
a visually nicer image, but completely blurred.

154

Noisy image
√
n = 3

√
n = 5

√
n = 7

√
n = 9

√
n = 11

√
n = 13

√
n = 15

Figure 10.10: σ = 10

155

Noisy image
√
n = 3

√
n = 5

√
n = 7

√
n = 9

√
n = 11

√
n = 13

√
n = 15

Figure 10.11: σ = 30

156

Noisy image
√
n = 3

√
n = 5

√
n = 7

√
n = 9

√
n = 11

√
n = 13

√
n = 15

Figure 10.12: σ = 60

157

Noisy image
√
n = 3

√
n = 5

√
n = 7

√
n = 9

√
n = 11

√
n = 13

√
n = 15

Figure 10.13: σ = 100

158

In conclusion a compromise has to be found, which cannot only be chosen according to the
PSNR/RMSE results, but also taken into account the visual aspect. The values of n which
will therefore be kept are

σ 0 < σ ≤ 20 20 < σ ≤ 60 60 < σ√
n 5 7 9

10.4 A Detailed Study of Possible Variants

10.4.1 Origin of the Initial Dictionary

In the original article, and in the previously described algorithm, the dictionary is initialized by
taking randomly k patches in the noisy image.
Despite the fact that the method works well in this way, one can wonder whether there would be
a better way to initialize the dictionary. For example by taking random patches from a noise-free
image.
Let us denote by Init0 the dictionary initialized on the original noiseless image; by Init1 the
dictionary initialized on the original noisy image, by Init2 the dictionary initialized on a noise-
free reference image.

σ Init0 Init1 Init2

5 38.80 38.76 38.65
10 34.47 34.42 34.29
20 30.40 30.35 30.28
30 28.05 28.09 27.87
40 26.44 26.51 26.27
60 24.21 24.25 24.21
80 22.64 22.65 22.61
100 21.29 21.31 21.28

Table 10.7: In bold the best result for a given σ. Other parameters are fixed to : K = 15;
√
n = 5;

γ = 5.25; k = 256; λ = 0.15.

One can think that the initialization of the dictionary is quite important (because we run the
algorithm with few number iterations, so the maximum is not reached), because depending on
the initialization we have variations of more than 0.1dB. But when σ increases, one observes less
variation in the results. An explanation might be that the number of iterations K is then more
appropriate, so we are close to optimality, and the initialization is not really crucial.
In conclusion the initialization of the dictionary is not crucial, and the initialization by taking
random patches from the noisy image is quite good.

10.4.2 Training of the Dictionary

Because the algorithm can hardly take into account parallel instructions (at least the update of the
dictionary), the algorithm as previously described in this article is extremely slow. Its processing
time is directly proportional to the size of the dictionary2 as well as to the number of patches
containing in the image (then to the size of the image itself) and to the size of the patches.
If obviously we cannot reduce the size of the image and if we cannot modify the size of the patches
without highly damaging the final result, it is still possible to reduce the number of patches used
during the training part of the dictionary, by applying the following principle :

1. The set of patches is built on the whole image;
2Although the study shows that the size of the dictionary can be reduced without affecting the result too much.

159

σ\T 1 2 4 8 12 16 20
5 38.84 38.86 38.89 38.90 38.89 38.91 38.92
10 34.47 34.49 34.51 34.49 34.52 34.55 34.50
20 30.28 30.31 30.28 30.31 30.29 30.29 30.31
30 28.05 28.05 28.04 28.04 28.04 28.01 28.01
40 26.61 26.63 26.63 26.59 26.59 26.56 26.58
60 24.69 24.65 24.65 24.60 24.56 24.56 24.52
80 23.28 23.23 23.22 23.14 23.07 23.00 23.03
100 22.28 22.25 22.18 22.12 22.07 22.04 22.00

Table 10.8: In bold the best result for a given σ. Parameters are fixed to : K = 15;
√
n = 7;

γ = 5.25; k = 256; λ = 0.05.

2. Keep one patch out of T to build a T times smaller patch set;

3. Apply the loop on the ORMP and the update of the dictionary by SVD K times on this
sub-set, in order to obtain a final dictionary Df ;

4. Then apply with only one iteration the whole algorithm on the initial full set of patches, but
with Df as previously obtained.

With this simple trick it is then possible to divide the processing time by slightly less3 than T .
Before applying this trick, we have to determinate its impact on the final result, in order to find
the more appropriate value of T for each σ.
We have seen during the study of the parameters that the result in PSNR for σ = 2 is highly
chaotic depending on the number of iterations K. For that reason we do not present results for
this particular value of noise.
Table 10.8 shows a summary for some values4 of T .
This study shows that it is possible to highly reduce the processing time of this method whilst
keeping a result close to the original method.
According to the obtained results, it seems reasonable to take T = 16 for σ ≤ 40 and T = 8 for
σ > 40.
In order to help the readers to make up their own idea concerning the gain in term of processing
time with this trick, table 10.9 shows the processing time in seconds for a 512× 512× 3 image on
a i5 processor with 8Go of Ram5.

σ 5 10 20 30 40 60 80 100
T = 1 1306 446 213 165 152 141 138 137

T tabulated 140 53 28 23 22 29 29 28

Table 10.9: Processing time.

Thanks to this trick, we obtain reasonable processing time for σ ≥ 10. Moreover we can decrease
this time to 112 seconds (resp. 42s.) for σ = 5 (resp. σ = 10) by taking T = 32, without decreasing
the PSNR. But we cannot decrease the processing time more, because we have to process a single
iteration of the full set of patches, which is mainly responsible for the processing time.
One can be surprised by the fact that the processing time is decreasing with respect to σ. But it
can be easily explained :

3We have to apply at the end a single iteration on the whole set of patches, which can be slower than the previous
15 ones on the sub-set.

4T = 1 represents the initial algorithm as described in this article without any modifications.
5Moreover the process of the ORMP is fully parallelized.

160

• For very small values of noise, it is quite complex to get a sparse representation of the patches
since they are very different from one another. Then at the end of the ORMP we have to
process a large matrix;

• On the contrary for very high noise the signal is covered by the noise, then patches are very
similar. Thus it is easier to get a sparse representation of them, and then at the end of the
ORMP the matrix is even smaller.

10.5 Conclusion
In this chapter, we have proposed a detailed analysis of the K-SVD algorithm, already introduced
in the articles [53] and [93]. Through this explanation, we showed why we could expect remarkable
denoising results from this algorithm. But we also noticed immediately the difficulty of the related
optimization problems.
In a numerical way, we have observed the stability of this method, but we also brought up its
heavy computational cost. In spite of these drawbacks, our experiments have clarified the impact
of the different parameters on the result, and thus we have proposed reliable values to tune some
of them. Moreover, we showed some denoising experiments which prove that the K-SVD method
leads to good results, both in terms of PSNR values and of visual quality. The skeptical reader
can pursue our experiments by applying the proposed demonstration to the images of her choice.
Finally, the suggested modification (taking into account only a subset of the patches of the image)
seems to get similar results with an interesting reduction of the execution time.
In conclusion, the K-SVD method can be considered to be part of the state of the art. But,
above all it has to be seen as a first successful use of dictionary learning to address an image
processing task. The more recent algorithms of this field, in particular those which replace the
l0-sparsity constraint by a l1 constraint (cf. [91]), seem very promising. They lead to a great gain
in computational time, and therefore allow one to handle bigger images.

161

162

Chapter 11

A Detailed Analysis and
Implementation of BM3D

A brief description of the well known denoising method BM3D was presented in chapter 4. This
state of the art method is emblematic of patch-based methods. It was (and still is) the absolute
reference for comparisons to any new denoising algorithm. For those reasons, this chapter will
focus on a detailed description of its theory and practicable implementation. Its parameters will
also be precisely analysed. Finally, we produced a reliable and open-source implementation of this
method.

11.1 Introduction
BM3D is a recent denoising method based on the fact that an image has a locally sparse represen-
tation in transform domain [35]. This sparsity is enhanced by grouping similar 2D image patches
into 3D groups. In this chapter, we discuss the choice of all parameter methods and confirm their
actual optimality. The description of the method is rewritten with a a more transparent notation
that in the original paper.
Collaborative filtering is the name of the BM3D grouping and filtering procedure. It is realized in
four parts or substeps: a) finding the image patches similar to a given image patch and grouping
them in a 3D block b) 3D linear transform of the 3D block; c) shrinkage of the transform spectrum
coefficients; d) inverse 3D transformation. This 3D filter therefore filters out simultaneously all
2D image patches in the 3D block.
By attenuating the noise, collaborative filtering reveals even the finest details shared by the
grouped patches. The filtered patches are then returned to their original positions. Since these
patches overlap, many estimates are obtained which need to be combined for each pixel. Aggrega-
tion is a particular averaging procedure used to take advantage of this redundancy.
The first collaborative filtering sub-step is much improved by a a second step using Wiener filtering.
This second step mimics the first step, with two differences. The first difference is that it compares
the filtered patches instead of the original patches. The second difference is that the new 3D group
(built with the unprocessed image samples, but using the patch distances of the filtered image)
is processed by Wiener filtering instead of a mere threshold. The final aggregation sub-step is
identical to those of the first step.
The proposed method improved on the NL-means [13] method which denoises jointly similar
patches, but only by performing a patch average, which amounts to a 1D filter in the 3D block.
The 3D filter in BM3D is performed on the three dimensions simultaneously.
The BM3D algorithm detailed here directly comes from the original article [35]. It is generally
considered to achieve the best performance bounds in color image denoising. Nevertheless, the
authors have pointed out to us more recent and sophisticated versions. Like for NL-means, there
is a variant with shape-adaptive patches [36]. In this algorithm denominated BM3D-SAPCA,

163

the sparsity of image representation is improved in two aspects. First, it employs image patches
(neighbourhoods) which can have data-adaptive shape. Second, the PCA bases are obtained by
eigenvalue decomposition of empirical second-moment matrices that are estimated from group of
similar adaptive-shape neighbourhoods. This method improves BM3D especially in preserving
image details and introducing very few artifacts. The anisotropic shape-adaptive patches are
obtained using the 8-directional LPA-ICI techniques [69]. The very recent development of BM3D
is presented in [68], [39], where it is generalized to become a generic image restoration tool,
including deblurring.
A previous analysis on BM3D has been made in [64], in order to resolve the problem that the
denoising performance has a sharp drop when noise standard deviation reaches 40. On the contrary
of this present study, only few parameters have been studied, and only for large value of noise.
Moreover [64] presents a less detailed study of BM3D than the one of the present article. For large
value of noise, we reach the same conclusions: the threshold value during the first step needs to be
increased, and the best results are achieved by using a 2D bi-orthogonal spline wavelet (denoted
by 2D-Bior 1.5 in the following) during the second step and by keeping a 8×8 size for patches in
both steps.
It is furthermore interesting to notice that recent papers like [23] and [86] which try to evaluate
the inherent bounds of patch-based denoising methods claims that BM3D is really close to those
optimality bounds.

11.2 The Algorithm Step by Step

11.2.1 Architecture of the Algorithm
We shall first describe how to process grey level images. The extension to color images will be
explained later on. In all the following we work in the case of white Gaussian noise where the
variance is denoted by σ2.
The algorithm is divided in two major steps:

1. The first step estimates the denoised image using hard thresholding during the collaborative
filtering. Parameters in this step are denoted by the exponent hard;

2. The second step is based both on the original noisy image, and on the basic estimate obtained
in the first step. It uses Wiener filtering. The second step is therefore denoted by the
exponent wiener.

The algorithm is summarized in the two next figures 11.1 and 11.2.

Figure 11.1: Scheme of the BM3D algorithm. [35]

Figure 11.3 shows the patches, a search window centered on reference patch P and illustrates the
patch overlapping leading to multiple estimates.

164

u
threshold

//

wiener

''
uhard

aggregation
// ubasic

wiener
// uwien

aggregation
// ufinal

Figure 11.2: Notations in BM3D

Figure 11.3: Patches, search window and overlapping.

11.2.2 The First Denoising Step
We denote by P the reference current patch whose size is khard × khard of the image loop.

1. Grouping:
The first substep is grouping. The original noisy image u is searched in a P -centered nhard×
nhard neighbourhood for patches Q similar to the reference patch P . The set of similar
patches is simply defined by

P (P) = {Q : d (P,Q) ≤ τhard} (11.1)

where:

• τhard is the distance threshold for d under which two patches are assumed similar;

• d(P,Q) =
‖γ′ (P)− γ′ (Q) ‖22

(khard)
2 is the normalized quadratic distance between patches;

• γ′ is a hard thresholding operator with threshold λhard
2D σ. For σ ≤ 40 one has λhard

2D σ =
0 (see detailed explanation). It simply puts to zero the coefficients of the patch with an
absolute value below the threshold λhard

2D σ. The other coefficients are unchanged. For
σ ≤ 40 all coefficients are unchanged;

• σ2 is the variance of the zero-mean Gaussian noise.

The 3D group, denoted P (P), is then built by stacking up the matched patches P (P). In
order to speed up the process, only1 the Nhard patches in P (P) that are closest to the

1Moreover, when the applied 1D transform τhard
1D is a Walsh-Hadamard transform it is necessary to have a

power of 2 for the number of similar patches. Then Nhard is always chosen as a power of 2, and if there are less
similar patches than Nhard for a given reference patch, only a power of 2 inferior or equal to this number of similar
patches will be kept.

165

reference patch are kept in the 3D group. Patches in P (P) will be sorted according to their
distance to P , in order to take the best Nhard similar patches easily. Thus naturally the
first patch will be P because its distance to itself is zero. The order of the patches in the
3D group is not important : the results are similar no matter whether they are ordered
according to their distance to the reference patch, or just randomly.

2. Collaborative Filtering:
Once the 3D-block P (P) is built the collaborative filtering is applied. A 3D isometric linear
transform is applied to the group, followed by a shrinkage of the transform spectrum. Finally
the inverse linear transform is applied to estimate for each patch

P(P)hard = τhard
3D

−1
(γ(τhard

3D (P(P)))) (11.2)

where γ is a hard thresholding operator with threshold λhard
3D σ:

γ(x) =

{
0 if |x| ≤ λhard

3D σ
x otherwise

For practical purposes, the 3D transform τhard
3D of the 3D group P(P) is made up of two

transforms : a 2D transform denoted by τhard
2D applied on each patch of P(P), and a 1D

transform denoted by τhard
1D applied along the third dimension of the 3D group. The choice

of these transforms will be carefully discussed later.

3. Aggregation:
When the collaborative filtering is done, we get an estimate for each used patch and then a
variable number of estimates for every pixel. These estimates are saved in a buffer :

∀Q ∈ P(P),∀x ∈ Q,
{

ν(x) = ν(x) + whard
P uhard

Q,P (x)

δ(x) = δ(x) + whard
P

(11.3)

where:

• ν (resp. δ) designates the numerator (resp. denominator) part of the basic estimate of
the image obtained at the end of the step 1;
• uhard

Q,P (x) is the estimate of the value of the pixel x belonging to the patch Q obtained
during collaborative filtering of the reference patch P ;

• whard
P =

{ (
Nhard
P

)−1
if Nhard

P ≥ 1
1 otherwise

• Nhard
P is the number of retained (non-zero) coefficients in the 3D block after hard-

thresholding: γ
(
τhard
3D (P(P))

)
.

The interest of this weighting is that it gives a priority to homogeneous patches (where there
are many canceled coefficients). Patches containing an edge will be less taken into account
than homogeneous ones on the border of the edge. Figure 11.4 illustrates this fact: priority
is given to the green patches during the aggregation. The result is an artefact reduction
around the edges. This results in an avoidance of the classic ringing effects observable with
transform threshold methods. In order to reduce more the border effects which can appear,
a khard×khard Kaiser window is used as part of the weights. It is simply done as a element-
by-element multiplication between the Kaiser window and the estimated patch after the
inverse 3D transformation. How the Kaiser window can be obtained will be discussed in the
section 11.4.4.
The basic estimate after this first step is given by

ubasic (x) =

∑
P

whard
P

∑
Q∈P(P)

χQ(x)uhard
Q,P (x)

∑
P

whard
P

∑
Q∈P(P)

χQ(x)
(11.4)

166

Figure 11.4: Green patches will have a weight superior to the red patch, because they are more
sparse (have less nonzero transform coefficients).

which is simply obtained by dividing the two buffers (numerator and denominator) element-
by-element, with χQ(x) = 1 if and only if x ∈ Q, 0 otherwise.

11.2.3 The Second Denoising Step
In this second part of the algorithm a basic estimate ubasic of the denoised image is available. The
second step performs a Wiener filter of the original image u, but uses as oracle the basic estimate
ubasic. It is observed in the experiments that this second step restores more details and improves
the denoising performance, as will be clear in the experiments and tables below.

1. Grouping:
The patch-matching is only processed on the basic estimate. When a set of similar patches

Pbasic(P) = {Q : d (P,Q) ≤ τwien} (11.5)

has been obtained two 3D groups are formed:

• Pbasic(P) by stacking up patches together from the basic estimation ubasic and;
• P(P) by stacking up patches in the same order together from the original noisy image
u.

Once again, for optimization a maximum number of Nwien patches is kept in the two 3D
groups. They have been chosen exactly as described in the first denoising step.

2. Collaborative Filtering:
When the two 3D groups are obtained the collaborative filtering can be launched. To do so
empirical Wiener coefficients are defined by

ωP (ξ) =

∣∣τwien
3D

(
Pbasic(P)

)
(ξ)
∣∣2∣∣τwien

3D (Pbasic(P)) (ξ)
∣∣2 + σ2

(11.6)

The Wiener collaborative filtering of P(P) is realized as the element-by-element multiplica-
tion of the 3D transform of the noisy image τwien

3D (P(P)) with the Wiener coefficients ωP .
(We denote this element-wise matrix multiplication by a dot.) Through this sub-step an
estimate of the 3D group is obtained as

Pwien(P) = τwien
3D

−1 (
ωP . τwien

3D (P(P))
)

(11.7)

3. Aggregation:
When collaborative filtering is achieved, the estimates for every pixel are stored in a buffer:

∀Q ∈ P(P),∀x ∈ Q,
{

ν(x) = ν(x) + wwien
P uwien

Q,P (x)

δ(x) = δ(x) + wwien
P

(11.8)

where:

167

• ν (resp. δ) designates the numerator (resp. denominator) part of the final estimation
of the image obtained at the end of step 2;

• uwien
Q,P (x) is the estimation of the value of the pixel x belonging to the patch Q obtained

during the collaborative filtering of the reference patch P ;

• wwien
P = ‖ωP ‖−2

2 .

As for the first step, a kwien × kwien Kaiser window is applied to reduce border effects.

The final estimate obtained after the second step is given by

ufinal (x) =

∑
P

wwien
P

∑
Q∈P(P)

χQ(x)uwien
Q,P (x)

∑
P

wwien
P

∑
Q∈P(P)

χQ(x)
(11.9)

which is simply obtained by dividing both buffers (numerator and denominator) element-
by-element. Here χQ(x) = 1 if and only if x ∈ Q, 0 otherwise.

In the original article, during the patch aggregation sub-step, a Kaiser window is applied to each
patch in order to slightly attenuate the patch borders. Nevertheless, experimental results show that
the Kaiser windows do not improve the PSNR, and are visually less efficient than the weighting.
For a sake of simplicity, these windows are not mentioned in this algorithmic description. For a
sake of fidelity to the original article, they are nevertheless implemented in the provided code.

11.3 A Study of the Optimal Parameters

11.3.1 Comparison Criteria and Parameters Under Study
The results shown hereunder will be the result of the previously described algorithm applied to
noiseless images to which a simulated white noise has been added. Many images have been tested,
but for a sake of simplicity only one result by σ will be shown. All shown results has been obtained
on the noise-free image shown in figure 11.5.
To describe quantitatively denoising results, two classic measures will be used :

• The Root Mean Square Error (RMSE) between the reference image (noiseless) uR and the
denoised image uD. The RMSE is computed as:

RMSE =

√√√√√
∑
x∈X

(uR(x)− uD(x))
2

|X|
(11.10)

The smaller the RMSE, the better the denoising.

• The Peak Signal to Noise Ratio (PSNR) is evaluated in decibels (dB):

PSNR = 20 log10

(
255

RMSE

)
(11.11)

The larger the PSNR, the better the denoising.

Choosing the right values for the different parameters in the algorithm and their influence has to
be discussed. The set of the parameters is:

• khard and kwien: size of patches;

• Nhard and Nwien: maximum number of similar patches kept;

168

Figure 11.5: Right half of the Valldemossa noiseless image.

• phard and pwien: In order to speed up the processing, the loop over the pixels of the image
is done with a (integer) step p in row and column. For example if p = 3 the algorithm is
accelerated by a 9 factor;

• nhard and nwien: search window size;

• τhard and τwien: maximum thresholds for the distance between two similar patches;

• λhard
2D and λhard

3D .

Several of these parameters have actually little influence on the final result, namely nhard and
nwien. Therefore the following values will be fixed and used throughout the study :

• nhard = 39;

• nwien = 39.

Moreover, when value of parameters are not explicitly given, the algorithm uses the default values
shown in section 11.3.7.

11.3.2 Influence of Nhard and Nwien

Parameters used for this study:

• τhard = 2500 if σ < 40, and 5000 otherwise. Moreover, if Nhard ≥ 32, this threshold is
multiply by a 5 factor.

• τhard
2D is a Bior1.5 transform whatever the value of σ;

• τwien
2D is a 2D DCT transform, whatever the value of σ.

169

Nhard = 8
Nwien = 8 Nwien = 16 Nwien = 32 Nwien = 64

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.54 1.35 45.56 1.34 45.56 1.34 45.55 1.35
5 39.41 2.73 39.44 2.72 39.45 2.72 39.44 2.72
10 35.03 4.52 35.07 4.50 35.08 4.49 35.07 4.50
20 30.90 7.27 30.94 7.24 30.96 7.22 30.95 7.23
30 28.70 9.37 28.76 9.30 28.78 9.28 28.78 9.28
40 27.18 11.16 27.22 11.11 27.25 11.07 27.26 11.05
60 25.28 13.88 25.35 13.77 25.39 13.71 25.42 13.66
80 24.05 16.00 24.14 15.83 24.22 15.69 24.24 15.65
100 22.90 18.26 23.04 17.97 23.14 17.76 23.20 17.64

Nhard = 16
Nwien = 8 Nwien = 16 Nwien = 32 Nwien = 64

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.53 1.35 45.55 1.35 45.55 1.35 45.54 1.35
5 39.41 2.73 39.44 2.72 39.44 2.72 39.42 2.73
10 35.04 4.51 35.07 4.50 35.07 4.50 35.06 4.50
20 30.92 7.25 30.96 7.22 30.96 7.22 30.95 7.23
30 28.72 9.34 28.76 9.30 28.78 9.28 28.77 9.29
40 27.20 11.13 27.23 11.09 27.24 11.08 27.24 11.08
60 23.30 17.44 25.35 13.77 25.39 13.71 25.41 13.68
80 24.06 15.98 24.15 15.81 24.21 15.71 24.23 15.67
100 22.93 18.20 23.07 17.91 23.17 17.70 23.22 17.60

Nhard = 32
Nwien = 8 Nwien = 16 Nwien = 32 Nwien = 64

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.50 1.35 45.51 1.35 45.51 1.35 45.50 1.35
5 39.37 2.74 39.39 2.74 39.39 2.74 39.37 2.74
10 35.01 4.53 35.03 4.52 35.01 4.53 35.01 4.53
20 30.91 7.26 30.93 7.25 30.92 7.25 30.90 7.27
30 28.72 9.34 28.75 9.31 28.75 9.31 28.73 9.33
40 27.19 11.14 27.21 11.12 27.22 11.11 27.20 11.13
60 25.34 13.79 25.39 13.71 25.41 13.68 25.42 13.66
80 24.07 15.96 24.13 15.85 24.17 15.78 24.16 15.80
100 23.14 17.76 23.21 17.62 23.27 17.50 23.28 17.48

Nhard = 64
Nwien = 8 Nwien = 16 Nwien = 32 Nwien = 64

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.47 1.36 45.48 1.36 45.47 1.36 45.46 1.36
5 39.33 2.75 39.35 2.75 39.34 2.75 39.32 2.76
10 34.97 4.55 34.99 4.54 34.98 4.55 34.95 4.56
20 30.88 7.29 30.90 7.27 30.88 7.29 30.85 7.31
30 28.70 9.37 28.73 9.33 28.72 9.34 28.69 9.38
40 27.15 11.20 27.18 11.16 27.17 11.17 27.15 11.20
60 25.32 13.82 25.36 13.76 25.38 13.73 25.38 13.73
80 24.06 15.98 24.11 15.89 24.13 15.85 24.12 15.87
100 23.12 17.80 23.19 17.66 23.23 17.58 23.23 17.58

In bold the best result for a given σ.

One can see that those parameters have a very small influence on the result, and values given in
the original paper (Nhard = 16 and Nwien = 32) are very close to the best result, whatever the

170

value of the noise. Then, according to this study, the final algorithm will kept original parameters,
i.e.:

• Nhard = 16;

• Nwien = 32.

11.3.3 Influence of λhard3D

This parameter is important because it defines the coefficient thresholding level of the 3D group
in the transform domain during the first filtering substep. The chosen value in the original article
is 2.7 and it turns out to be the best choice. Here is a table evaluating its influence (the error
results are given after application of the entire algorithm), in the case where τhard

2D = Bior1.5 and
τwien
2D = DCT whatever the value of the noise:

λhard
3D 2.5 2.7 3.0 3.2
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.51 1.35 45.55 1.34 45.55 1.34 45.55 1.34
5 39.39 2.73 39.45 2.72 39.45 2.72 39.41 2.73
10 34.96 4.55 35.04 4.51 35.02 4.52 34.96 4.55
20 30.88 7.29 30.97 7.21 30.93 7.25 30.82 7.34
30 28.63 9.44 28.74 9.32 28.65 9.41 28.52 9.56
40 27.12 11.23 27.26 11.06 27.19 11.14 27.07 11.30
60 25.15 14.10 25.33 13.80 25.26 13.92 25.07 14.23
80 24.00 16.09 24.26 15.61 24.24 15.64 24.08 15.95
100 23.00 18.05 23.21 17.62 23.00 18.05 22.77 18.53

In bold are the best results for a given σ.

One can see that small variations on this parameter have strong influence on the result. Then this
parameter needs to be carefully chosen, and according to the original article, the final algorithm
will kept original parameter, i.e. λhard

3D = 2.7.

11.3.4 Influence of the Thresholds τhard and τwien

The thresholds τhard and τwien are highly dependent on σ and very influential. One can lose
many dBs in PSNR by choosing wrong values for these thresholds. Thus, their correct evaluation
are crucial.
However, by picking them large enough, it is possible to keep a constant value for these thresholds
for a wide range of σ’s. In the original article a value of (2500, 400) is proposed for the thresholds
pair (τhard, τwien) for σ ∈ [0, 40]. These values give good results.

τhard PSNR RMSE
100 37.02 3.59
200 37.43 3.43
300 37.59 3.36
400 37.61 3.35
600 37.63 3.35
1200 37.63 3.35
2500 37.63 3.35

τwien PSNR RMSE
5 37.31 3.47
10 37.50 3.40
15 37.58 3.37
20 37.63 3.35
30 37.68 3.33
45 37.71 3.32
60 37.73 3.31

τwien = 20 τhard = 600

Taking low values for the thresholds allows us to keep a limited number of similar patches during
the patch-matching. But if this number is too limited, not enough denoising is being done. As
it is preferable to work with few similar patches, for some values of the threshold this limit on
the number of similar patches is reached for many reference patches. This explains the PSNR
stagnation when the thresholds are increased. On the other hand, if these values increase too

171

much, patches significantly different from the reference patch will bring spurious details to the
final result. Then, there will be a fall in the PSNR. A good balance must be found. Yet, the
breathing space is quite substantial, and it is possible to get generic thresholds for a wide range
of σ’s.
In the original article, a distinction is done for high value of noise, i.e. σ > 40. For high noise,
τhard is increased to a value of 5000. Here is a study of this parameter for high value of noise,
with τhard

2D = Bior1.5 and τwien
2D = 2D DCT:

τhard 2500 5000 10000 25000
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

40 27.27 11.03 27.27 11.03 27.27 11.03 27.27 11.03
50 26.27 12.38 26.30 12.35 26.30 12.35 26.29 12.35
60 25.40 13.69 25.43 13.64 25.44 13.63 25.44 13.63
70 24.61 15.00 24.74 14.77 24.73 14.79 24.73 14.79
80 23.77 16.52 24.21 15.70 24.19 15.73 24.19 15.73
90 23.18 17.67 23.68 16.69 23.71 16.64 23.72 16.62
100 22.81 18.45 23.26 17.51 23.34 17.35 23.35 17.34

In bold are the best results for a given σ.

One can see that an increasing of τhard is necessary for a very high noise. But increasing a lot
is useless because there is a stagnation of the enhancement of the result, due to the maximum
number of of similar patches kept Nhard. Then once again the value of the original article will be
kept for high noise.

11.3.5 Influence of the Size of the Patches: khard and kwien

The window size of the patches influences the result and must be adapted to σ. Indeed, for low
values of σ the window size must be relatively small to be well adapted to the details, whereas
for large values of σ larger window sizes are better, because most of the details of the image are
anyway lost in noise. Since much of the noise is canceled in the first step, smaller patches can now
be worked with in the second step.
In the original article, a patch size of khard = kwien = 8 (resp. khard = kwien = 12, but only if
the 2D DCT is chosen as τ2D) is proposed for σ ≤ 40 (resp. σ > 40).
As Bior1.5 can not be applied if the patch size is not a power of 2, τ2D is always chosen equal to
2D DCT for this study.

khard = 4
kwien = 4 kwien = 6 kwien = 8 kwien = 10 kwien = 12

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.58 1.34 45.59 1.34 45.59 1.34 45.54 1.35 45.51 1.35
5 39.42 2.73 39.46 2.71 39.45 2.72 39.40 2.73 39.36 2.74
10 34.97 4.55 35.05 4.51 35.05 4.51 35.00 4.53 34.96 4.56
20 30.65 7.48 30.83 7.33 30.86 7.30 30.82 7.34 30.80 7.35
30 28.25 9.86 28.52 9.56 28.58 9.50 28.55 9.53 28.54 9.54
40 26.67 11.83 27.05 11.33 27.13 11.22 27.12 11.23 27.10 11.26
60 24.32 15.51 24.81 14.66 24.96 14.41 24.97 14.39 24.97 14.39
80 22.79 18.49 23.47 17.10 23.60 16.85 23.61 16.83 23.59 16.87
100 21.51 21.43 22.31 19.55 22.51 19.10 22.52 19.08 22.53 19.06

172

khard = 8
kwien = 4 kwien = 6 kwien = 8 kwien = 10 kwien = 12

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.54 1.35 45.56 1.34 45.55 1.35 45.51 1.35 45.48 1.36
5 39.47 2.71 39.45 2.72 39.43 2.72 39.39 2.74 39.35 2.75
10 35.10 4.48 35.09 4.49 35.06 4.50 35.01 4.53 34.98 4.55
20 31.01 7.18 31.00 7.19 30.96 7.22 30.93 7.25 30.89 7.28
30 28.78 9.28 28.79 9.27 28.77 9.29 28.74 9.32 28.72 9.34
40 27.32 10.98 27.36 10.93 27.34 10.95 27.34 10.95 27.31 10.99
60 25.19 14.03 25.31 13.84 25.36 13.76 25.38 13.73 25.37 13.74
80 24.11 15.89 24.27 15.60 24.27 15.60 24.27 15.60 24.24 15.65
100 22.67 18.75 23.06 17.93 23.17 17.71 23.21 17.62 23.23 17.58

khard = 12
kwien = 4 kwien = 6 kwien = 8 kwien = 10 kwien = 12

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.45 1.36 45.50 1.35 45.50 1.35 45.46 1.36 45.43 1.36
5 39.38 2.74 39.39 2.74 39.36 2.74 39.31 2.76 39.28 2.77
10 35.01 4.53 35.00 4.53 34.97 4.55 34.91 4.58 34.87 4.60
20 30.90 7.27 30.87 7.30 30.83 7.33 30.78 7.37 30.74 7.41
30 28.65 9.42 28.64 9.43 28.60 9.47 28.56 9.52 28.52 9.56
40 27.14 11.21 27.16 11.18 27.11 11.25 27.09 11.27 27.04 11.34
60 25.05 14.26 25.19 14.03 25.24 13.95 25.24 13.95 25.22 13.98
80 23.92 16.24 24.07 15.96 24.05 16.00 24.01 16.07 23.95 17.93
100 22.51 19.10 22.92 18.22 23.02 18.01 23.05 17.95 23.06 17.93

In bold are the best results for a given σ.

An other influence of the size of the patch is on the processing time. Indeed smaller patches give
faster algorithm. Then, as results for σ > 40 for kwien = 8 or kwien = 12 are really close, we will
prefer to kept kwien = 8 because of the processing time.

11.3.6 Influence of phard and pwien

In order to speed up the algorithm, it is possible to use a step p in both rows and columns to
go from one reference patch to the next. For example, a step of 3 theoretically divides by 9 the
processing time. In the original article a step of 3 is proposed. The PSNR loss due to this step
use is negligible for large values of noise. Nevertheless, for low noise, it is better to keep a step of
1 or 2. Moreover, since the second step works on a first basic estimate (which is assumed to be
noiseless, or at least with lower noise) a bigger step for the first step than for the second can be
used.

phard = 1
pwien = 1 pwien = 3 pwien = 5

σ PSNR RMSE PSNR RMSE PSNR RMSE

2 45.59 1.34 45.56 1.34 45.50 1.35
5 39.53 2.69 39.49 2.70 39.41 2.73
10 35.10 4.48 35.07 4.50 34.89 4.59
20 31.01 7.18 30.97 7.21 30.88 7.29
30 28.79 9.27 28.76 9.30 28.66 9.41
40 27.32 10.98 27.31 10.99 27.26 11.05
60 25.37 13.74 25.35 13.77 25.31 13.84
80 24.23 15.67 24.23 15.67 24.21 15.71
100 22.87 18.32 22.87 18.32 22.86 18.35

173

phard = 3
pwien = 1 pwien = 3 pwien = 5

σ PSNR RMSE PSNR RMSE PSNR RMSE

2 45.58 1.34 45.55 1.35 45.49 1.36
5 39.51 2.70 39.47 2.71 39.39 2.74
10 35.09 4.49 35.05 4.51 34.96 4.56
20 30.99 7.20 30.92 7.25 30.85 7.31
30 28.76 9.30 28.73 9.33 28.64 9.43
40 27.31 10.99 28.29 9.82 27.24 11.08
60 25.44 13.63 25.42 13.66 25.36 13.76
80 24.19 15.74 24.19 15.74 24.17 15.78
100 23.20 17.64 23.19 17.66 23.19 17.66

phard = 5
pwien = 1 pwien = 3 pwien = 5

σ PSNR RMSE PSNR RMSE PSNR RMSE

2 45.54 1.35 45.51 1.35 45.44 1.36
5 39.47 2.71 39.43 2.72 39.34 2.75
10 35.04 4.51 35.00 4.53 34.90 4.59
20 30.93 7.25 30.89 7.28 30.78 7.37
30 28.70 9.37 28.67 9.40 28.55 9.53
40 27.22 11.11 27.20 11.13 27.15 11.20
60 25.31 13.84 25.29 13.87 25.22 13.98
80 24.09 15.92 24.08 15.94 24.07 15.96
100 23.03 17.99 23.02 18.01 23.01 18.03

As the loss in PSNR is negligible comparing to the gain in speed, and for a sake of fidelity to the
original article, we keep p = 3 for both steps in the provided code.

11.3.7 Summary Table

Here is the summary table with the final chosen values for all parameters, depending on the value
of the noise:

Parameter σ ≤ 40 σ > 40
Nhard 16 16
Nwien 32 32
λhard

3D 2.7 2.7
τhard 2500 5000
τwien 400 3500
khard 8 8
kwien 8 8
phard 3 3
pwien 3 3

11.4 A Detailed Study of Possible Variants

This part examines some ambiguous choices of the original method and experimentally decides for
the best choice in terms of PSNR. Unless otherwise specified, in the following τhard

2D = τwien
2D refer

to transform thresholds with the 2D DCT, and τhard
1D = τwien

1D to the 1D DCT. Moreover shown
results have been obtained on the image shown on figure 11.5, and when it is not explicitly said,
default parameter values shown in section 11.3.7 have been used.

174

11.4.1 Variants of the First Denoising Step

1. Grouping:

• Distance: To calculate the distance, we can choose between doing it on the patches
obtained after τ3D or directly on the patches of the image. If the 3D transform is an
isometry, the distances are equal, so the distance will be calculated directly on the
image;

• Normalization: Several classic DCT definitions do not normalize the first coefficient.
For the 1D case, the first coefficient is for example not divided by

√
2. If we do not take

into account this fact during the hard-thresholding, the same threshold will be applied,
whatever the coefficient. The table below shows that this makes a significant difference.
Thus, some care must be taken to use a normalized DCT.

non-normalized DCT normalized DCT
σ PSNR RMSE PSNR RMSE
2 41.70 2.10 41.53 2.14
5 38.02 3.20 38.00 3.21
10 35.10 4.48 35.21 4.42
20 31.65 6.67 32.36 6.14
30 29.13 8.91 30.29 7.80
40 27.21 11.11 28.70 9.36

Fixed parameters : Distance : image Aggregation : with weighting Step : 3
Patches : 8× 8 Collaborative Filtering : DCT

• Thresholding τhard
2D : In the original article, this threshold only appears from σ > 40

since we initialized λ2D = 0 for σ ≤ 40. Applying a threshold to the 2D transform
coefficients for low values of σ is useless since there is no improvement after the second
step. Moreover for a noise lower than 5 the results are degraded.

2. Collaborative Filtering:
For the 3D group, a choice must be done between :

• Simply averaging image patches along the third dimension, which would be a primitive
version of NL-means (In NL-means there also is a weighting of the patches according
to their distance). This simple average solution is denoted by basic NL-means;

• Applying a hard-thresholding on a 1D transform along the third dimension (in other
terms apply τ3D as described before), which is denoted Hard Thresholding.

The next table shows the considerable amelioration obtained by adding a thresholded 3D
transform along patches compared to a simple average of the patches in the case where
τhard
3D = τwien

3D = DCT :

Collaborative Filtering
basic NL-Means Hard Thresholding

σ PSNR RMSE PSNR RMSE
2 40.96 2.28 41.36 2.18
5 36.40 3.86 37.80 3.28
10 33.54 5.36 34.72 4.68
20 29.54 8.50 31.41 6.86
30 27.01 11.36 28.96 9.09
40 25.04 14.26 27.14 11.21

Fixed parameters : Distance : image Aggregation : with weighting Step : 3
Normalized DCT Patches : 8× 8

175

3. Aggregation:
During the aggregation the weighting is based on the number of coefficients cancelled during
the hard thresholding. However, as shown by the next table, this weighting works, but does
not play such an important part in the PSNR improvement. Nevertheless, artifacts on edges
are visually attenuated by using a weighted aggregation (see figure 11.6).

Without weighting With weighting
σ PSNR RMSE PSNR RMSE
2 41.26 2.20 41.53 2.14
5 37.83 3.27 38.00 3.21
10 34.83 4.62 35.21 4.42
20 32.09 6.33 32.36 6.14
30 30.04 8.02 30.29 7.80
40 28.60 9.47 28.70 9.36

Fixed Parameters : Distance : image Normalized DCT Step : 3
Collaborative Filtering : DCT Patches : 8× 8

Because they have many coefficients that are thresholded, the aggregation weighting enforces
the role of homogeneous patches compared to patches containing edges. The issue with this
weighting is: how to choose the right homogeneity indicator?

Another natural indicator would be the standard deviation of the patches. Indeed, for
homogeneous patches, the standard deviation would be very small, whereas for patches
containing edges, the standard deviation would be much bigger. Then the weighting would
be the inverse of the standard deviation, which would mean for a 3D group

whard,wien
P =

(
1

N − 1

N∑
k=1

M∑
i=1

(P(P)(xi,k))
2

)− 1
2

(11.12)

where:

• N is the number of similar patches to P ;

• M = khard × khard or M = kwien × kwien.

Then homogeneous patches would have more weights than patches containing edges.
One can also wonder if it would not be better to calculate this standard deviation on the 3D
group rather than on its estimate. In the following we denote :

• H.T. the original weighting in step 1 (i.e., the inverse of the number of coefficients
different from zero during the hard thresholding);

• STD the weighting using the standard deviation processed on the original image;

• STD C.F. the weighting using the standard deviation processed on the estimate of the
3D group.

The following table compares the new weighting results and shows that H.T. wins:

Without weighting H.T. STD STD C.F.
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
2 45.13 1.41 45.13 1.41 45.14 1.41 45.13 1.41
5 40.68 2.36 40.71 2.35 40.71 2.35 40.69 2.35
10 37.26 3.50 37.31 3.47 37.29 3.48 37.27 3.49
20 33.58 5.34 33.65 5.30 33.58 5.34 33.57 5.35
30 31.10 7.10 31.17 7.04 31.10 7.11 31.08 7.12
40 29.35 8.68 29.41 8.62 29.35 8.69 29.32 8.71

In bold the best result for a given σ

176

Step 1 ,without weighting Step 1 with weighting

Step 2, without weighting Step 2 with weighting

Figure 11.6: Difference between with and without weighting in both steps.

Another question is: why is the weight computed for the whole 3D group when a priori
every 2D patch of the 3D group could be given a different weight? This would yield more
differentiated estimates for each pixel.

The answer is experimental. The next table shows that giving a single weight to the whole
3D group is better than giving a weight to each patch:

2D weighting 3D weighting
σ PSNR RMSE PSNR RMSE
2 45.08 1.42 45.13 1.41
5 40.44 2.42 40.71 2.35
10 36.94 3.63 37.31 3.47
20 33.16 5.61 33.65 5.30
30 30.64 7.49 31.17 7.04
40 28.86 9.19 29.41 8.62

Weighting results for each step of the algorithm:

11.4.2 Variants of the Second Denoising Step
1. Wiener Filtering:

The second step adds details for large σ values, as illustrated in the experiments below.

177

Using a Wiener filter in this second step rather than a hard thresholding avoids losing
details. Nevertheless the weighting does not visually improve much the image near edges,
and the gain in PSNR is negligible.

Step 1 only Step 1 (Fixed) + Step 2 (differents sorts of Collaborative Filtering)
H. T. + weight. Wiener Filtering W. F. + weighting

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
2 45.13 1.41 43.18 1.77 45.21 1.40 45.22 1.40
5 40.70 2.35 39.12 2.82 40.86 2.31 40.90 2.29
10 37.31 3.47 35.97 4.06 37.61 3.36 37.66 3.34
20 33.65 5.30 32.75 5.87 34.23 4.96 34.27 4.92
30 31.17 7.04 30.64 7.49 32.01 6.40 32.03 6.38
40 29.41 8.62 29.08 8.96 30.44 7.66 30.47 7.64

Fixed Parameters :
Step 1 : Distance : image Aggregation : With weighting

Collaborative Filtering : DCT Patches : 8× 8
Step : 3

Step 2 : Distance : image Patches : 8× 8
Step : 3

This table shows that the second step is worthwhile and important, especially for large noise
values. However, the weighting in the second step is much less useful than the weighting in
the first step. Using a Wiener filter during the second step and not having to repeat the
hard thresholding shows the importance of this improvement. The gain is important both
in PSNR and visually since it attenuates the noise again and improves/adds details at the
same time.

2. Ideal Wiener Filtering:
It is also possible to compare the ordinary Wiener filter with an ideal Wiener filter, which is
obtained when the original noise-free image is taken as oracle reference. This ideal Wiener
filter is the best possible estimate for the second step of this algorithm. It is therefore
interesting to see how far we stand from this ideal estimate with the current one :

Step 1 + Step 2 Ideal Wiener
σ PSNR RMSE PSNR RMSE
2 45.24 1.39 47.81 1.04
5 40.87 2.31 43.19 1.77
10 37.64 3.34 39.98 2.56
20 34.25 4.94 36.99 3.60
30 32.07 6.35 35.21 4.43
40 30.40 7.70 33.71 5.26

Fixed Parameters :
Step 1 : Distance : image Aggregation : With weighting

Collaborative Filtering : DCT Patches : 8× 8
Step : 3

Step 2 : Distance : image Patches : 8× 8
Step : 3

As expected, the ideal Wiener filter gives a better result. A Wiener filter in the second step
seems to be some 3 dB away from the ideal result.

3. Aggregation:
Wien denotes the original weighting in the second step (i.e., the inverse of the empirical
Wiener coefficients norm). As for the first step, would it be possible to improve the weighting
by using the standard deviation instead of the norm of the empirical Wiener coefficients?

178

H.T. | Wien STD | STD STD C.F. | STD C.F.
σ PSNR RMSE PSNR RMSE PSNR RMSE
2 45.22 1.40 45.12 1.41 45.22 1.40
5 40.89 2.30 40.71 2.35 40.88 2.30
10 37.66 3.34 37.45 3.42 37.64 3.35
20 34.27 4.93 34.10 5.03 34.26 4.94
30 32.03 6.38 31.92 6.46 32.03 6.38
40 30.47 7.64 30.36 7.73 30.48 7.63

In bold the best result for a given σ

Moreover it is possible to switch the weightings:

H.T. | STD H.T. | STD C.F. STD | Wien STD C.F. | Wien
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
2 45.18 1.40 45.23 1.40 45.18 1.40 45.22 1.40
5 40.82 2.32 40.89 2.30 40.81 2.32 40.88 2.30
10 37.57 3.37 37.66 3.34 37.55 3.38 37.64 3.44
20 34.20 4.97 34.28 4.93 34.18 4.98 34.26 4.94
30 32.00 6.40 32.06 6.36 31.96 6.43 32.02 6.39
40 30.43 7.67 30.50 7.61 30.42 7.68 30.47 7.64

In bold the best result for a given σ

Even though the improvement is minor, it is still possible to improve the result a little bit
by working on the aggregation weighting. The weighting in this second step seems useless.
Yet, better results are obtained by modifying the weighting in the second step. Thus, this
study underlines that it is still possible to gain a bit by working on the weighting in the
aggregation sub-step.

11.4.3 Influence of the 3D Transform

The choice of the 3D transform (τ2D and τ1D) is crucial. Here are some choices:

• τ2D : This 2D transform is applied on each patch of the 3D group. We have the choice
between a normalized 2D DCT and a bi-orthogonal spline wavelet, where the vanishing
moments of the decomposing and reconstructing wavelet functions are 1 and 5 respectively.
We shall denote by Bior1.5 this bi-orthogonal spline wavelet;

• τ1D : This 1D transform is applied along the third dimension of the 3D group, after the
2D transform has been applied. We have the choice between a normalized 1D DCT and a
Walsh-Hadamard transform.

In order to clarify the use of those transforms, here is a brief explanation of the practical implemen-
tation of the bior1.5 and the Walsh-Hadamard transforms, as they are used in this implementation
of BM3D.

Walsh-Hadamard Transform

This 1D transform is very simple. Since it recursively processes the sums and differences between
pair of values of the vector it is applied to, the size of this vector must be a power of 2. This forces
the number of similar patches in a 3D group to be a power of 2 itself. Let us denote for instance
the first four coordinates of the processed vector by V0 = [a b c d]. The first step computes the
sums and the differences of the pairs of values and regroups them, which leads to

V1 = [(a+ b) (c+ d) (a− b) (c− d)]

179

The process is iterated on each pair: V h1 = [(a+ b) (c+ d)] and V l1 = [(a− b) (c− d)], which yields
the final vector

Vf = [(a+ b+ c+ d) (a+ b− c− d) (a− b+ c− d) (a− b− c+ d)].

Moreover, in order to keep the norm of the initial vector, it is necessary to normalize Vf by
√
N ,

where N is the vector dimension. In that case, the inverse Walsh-Hadamard transform is exactly
the same as the forward transform.

Bior 1.5

To obtain this transform, it is necessary to have four filters, which values can be found in [46]:

1. The one of low frequencies for the forward transform :

lpd =

√
2

256
[3; −3; −22; 22; 128; 128; 22; −22; −3; 3]

2. The one of high frequencies for the forward transform :

hpd =

√
2

2
[0; 0; 0; 0; −1; 1; 0; 0; 0; 0]

3. The one of low frequencies for the backward transform :

lpr =

√
2

2
[0; 0; 0; 0; 1; 1; 0; 0; 0; 0]

4. And the one of high frequencies for the backward transform :

hpr =

√
2

256
[3; 3; −22; −22; 128; −128; 22; 22; −3; −3]

The 2D transform is separable, first done in column, then in row (or vice-versa). Thus it is enough
to explain the 1D transform only. Let us denote by V0 a size N = 2n vector. Then V l1 and V h1
-which size is 2n−1- are obtained by the following steps.

1. First of all, V is periodically extended beyond its boundaries. Denote for instance V0 =
[a b c d e f g h], of size N = 8. Then the extension is

Ṽ0 = [d e f g h a b c d e f g h a b c d e]

The periodization is done symmetrically in order to have at any position from M/2 to
M/2 + N all values of V0 and only them for the discrete convolution of V0 with lpd or hpd
(where M is the size of the transform, lpd or hpd). For example, at the first position M/2,
the vector with which the discrete convolution is done has for values : [d e f g h a b c]. If
the periodization was done anti-symmetrically, this same vector would be [f e d c b a b c]
and then the value g is not represented and the values b and c are over-represented.

2. The discrete convolution of Ṽ0 with lpd and hpd is computed:

∀i ∈ [0, 2n−1 − 1], V l1 [i] =

9∑
k=0

Ṽ0[2i+ k]lpd[k]

∀i ∈ [0, 2n−1 − 1], V h1 [i] =

9∑
k=0

Ṽ0[2i+ k]hpd[k]

180

Then we get V1 = [V h1 V l1]. The process is only iterated on high frequencies part of the sub-vector
V1: V h1 , which size is 2n−1.
The backward transform is done in a similar way :

1. Let it be started for instance from V2 = [V h2 V l2V
l
1]. For a sake of clarity, we remind that the

size of V h2 and V l2 is 2n−2 and the size of V l1 is 2n−1 if the size of V2 = 2n.

2. V h2 and V l2 are periodically extended;

3. V h1 is obtained by the following convolutions :

∀i ∈ [0, 2n−2 − 1], V h1 [i] =

4∑
k=0

(
hpr[2k]V h2 [k + i] + hpr[2k + 1]V l2 [k + i]

)

∀i ∈ [0, 2n−2 − 1], V h1 [i+ 2n−2] =

4∑
k=0

(
lpr[2k]V h2 [k + i] + lpr[2k + 1]V l2 [k + i]

)
4. The iteration is done on V1 = [V h1 V l1].

In order to show the importance of the choice of the transforms τ2D and τ1D, here is the result of
a comparative study led on the different possible choices :

τhard
2D | τhard

1D | τwien
2D | τwien

1D

DCT|DCT|DCT|DCT DCT|Hadamard|DCT|Hadamard DCT|Hadamard|Bior|Hadamard

σ PSNR RMSE PSNR RMSE PSNR RMSE

2 45.11 1.41 45.49 1.35 38.76 2.94
5 38.79 2.93 39.29 2.77 36.68 3.74
10 34.21 4.97 34.83 4.62 33.94 5.12
20 29.89 8.17 30.69 7.44 30.59 7.53
30 27.78 10.41 28.44 9.65 28.57 9.51
40 26.27 12.39 26.57 11.96 26.96 11.45
60 24.52 15.15 24.75 14.75 25.09 14.19
80 23.46 17.12 23.67 16.71 24.03 16.02
100 22.45 19.22 22.61 18.88 22.74 18.60

τhard
2D | τhard

1D | τwien
2D | τwien

1D

Bior|Hadamard|DCT|Hadamard Bior|Hadamard|Bior|Hadamard

σ PSNR RMSE PSNR RMSE

2 45.59 1.33 38.58 3.00
5 39.35 2.75 36.48 3.82
10 35.00 4.53 33.80 5.21
20 30.94 7.24 30.51 7.61
30 28.73 9.34 28.50 9.58
40 27.23 11.10 27.06 11.31
60 25.28 13.88 24.91 14.49
80 24.21 15.70 24.20 15.71
100 23.11 17.83 22.96 18.14

In bold the best PSNR for a given σ.

In all cases the size of patches is 8× 8, except when we use a 2D DCT for σ ≥ 40: in this case the
size is 12× 12. One reason which could explain the utility of not using the same 2D transform for
both steps is that the artifacts created by the chosen transform in the first step are not enhanced
during the second step, which is the case if the same transform is used twice.
According to those results, the best combination of transforms is :

• Step 1: τhard
2D = Bior1.5 and τhard

1D = Hadamard;

• Step 2: τwien
2D = 2D DCT and τwien

1D = Hadamard;

181

11.4.4 Influence of the Kaiser Window
According to the original article, a Kaiser window (with parameter α = 2.0) is applied during
the weighting aggregation in order to reduce border effects which can appear when certain 2D
transforms (typically 2D DCT) are used. Then an element-by-element multiplication is done
between the Kaiser window and the estimated patch during the aggregation of block-wise estimates.
Of course, the weight of each coefficient of the Kaiser window is taken into account.
The Kaiser window of length k is defined in 1-D by the formula:

Kn =

I0

(
πα

√
1−

(
2n
k−1 − 1

)2
)

I0 (πα)
if 0 ≤ n ≤ k − 1

0 otherwise

where I0 is the zeroth order modified Bessel function of the first kind:

I0(x) =

∞∑
m=0

1

m!Γ(m+ 1)

(x
2

)2m

where Γ is the gamma function, a generalization of the factorial function to non-integer values.
Practically k × k Kaiser windows are hard-coded for k = 8 and k = 12. If the size of patches is
different from those values, Kaiser windows are not used (i.e. they are set to 1). Here an example
of a 2-D Kaiser window for k = 8 and α = 2.0 used in our algorithm:

0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989
0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924

One can see that borders of the patch are smoothly decreased and then allow to reduce border
effects during the aggregation part.
Here is a study of the influence of the use of a Kaiser window, by using 8 × 8 patches and
phard = pwien = 3:

With Without
σ PSNR RMSE PSNR RMSE

2 45.61 1.34 45.59 1.34
5 39.44 2.72 39.42 2.72
10 35.05 4.51 35.04 4.52
20 30.97 7.21 30.96 7.22
30 28.76 9.30 28.75 9.32
40 27.27 11.04 27.28 11.03
60 25.43 13.65 25.43 13.64
80 24.23 15.66 24.24 15.64
100 23.13 17.78 23.14 17.77

One can see that the use of the Kaiser window has no influence of the PSNR result. Visually,
there is no difference between using the Kaiser window or not for all values of noise, even near
edges. However, according to original authors of [35], the use of the Kaiser window is useful for
large values of phard and pwien. But as we are working with size of patches 8×8 this step between
two references patches can not be greater than 4. Then a step greater than 3 has not been tested
for studying the influence of the Kaiser window.
However, for a sake of fidelity with the original method, we keep the use of a Kaiser window in
the provided code.

182

11.5 Extending BM3D to Color Images
Adapting the algorithm to color images is easy and can be done in the following steps:

1. First a transformation to a luminance-chrominance space from the RGB noisy image is
applied. Denote by Y the luminance channel and by U and V the chrominance channels;

2. For each step :

• Grouping is only performed with the Y channel;

• The 3D block built on Y is used for all three channels;

• Collaborative filtering is applied to each channel separately as well as the weighted
aggregation.

3. Return to the RGB space by applying the inverse transformation.

Three classic transformations were tested : the YUV transform denoted by the matrix AY UV , the
YCbCr space transform denoted by AY CbCr and, last but not least, a more intuitive transform
introduced in the original article, Aopp: 0.30 0.59 0.11

−0.15 −0.29 0.44
0.61 −0.51 −0.10

 0.30 0.59 0.11
−0.17 −0.33 0.50
0.50 −0.42 −0.08

 1
3

1
3

1
3

1
2 0 − 1

2
1
4 − 1

2
1
4

As those matrix are not normalized, the value of σ in each channel must be carefully adapted
according to these transforms. The compared denoising performance with these different color
transforms is shown in the table below:

AY UV AY CbCr Aopp
σ PSNR RMSE PSNR RMSE PSNR RMSE
2 43.43 1.72 43.58 1.69 43.73 1.66
5 36.63 3.76 36.84 3.67 37.14 3.54
10 31.81 6.54 32.03 6.38 32.44 6.09

The choice of the color space transform is therefore important and causes important variations.
In conclusion, also verified on the experiments below, for JPEG images the Aopp transform is the
best choice.

183

184

Chapter 12

A Detailed Analysis and
Implementation of NL-Bayes

Chapter 4 has provided a brief description of the NL-Bayes algorithm by focusing on its genesis.
This method is one of the final product of this thesis, and outperforms actual state of the art
algorithms. This is why this chapter will present in details its implementation, as well as an
analysis of the parameters of the method. As for the other methods presented in chapters 10 and
11, an open source reliable implementation is available on line on IPOL (Image Processing On
Line).
This chapter uses the results of joint work with Antoni Buades and Jean-Michel Morel.

12.1 Introduction
As we will see in this chapter, the Bayesian approach can be merged with Fourier methods like
BM3D, in a new method called NL-Bayes. A natural extension of this method, called NL-PCA
in the following, can be seen as we described it as a fusion of BM3D and TSID (Two-Step Image
Denoising), where NL-PCA begins and ends like BM3D, the only change being the use of the PCA
instead of the DCT or Bi-orthogonal spline wavelet.
We shall take advantage of the similarity of the steps of the method with BM3D, and follow
closely the description used for BM3D in chapter 11 and also in [74]. Like in BM3D, each step
of the NL-Bayes algorithm is realized in three parts: a) finding the image patches similar to a
given image patch and grouping then in a 3D block; b) collaborative filtering; c) aggregation.
The collaborative filtering is realized in two parts: a) applying Bayes’ formula on the 3D block;
and b) repositioning the 3D block. This 3D filtering is applied simultaneously on a group of 2D
image blocks. Since these filtered patches overlap, many estimates are obtained, which need to be
combined for each pixel. Aggregation is a particular averaging procedure used to take advantage
of this redundancy.

12.2 Theory
This section presents a short derivation of the main formulas used in the algorithm. For a detailed
analysis, see [75]. Given u the noiseless ideal image and ũ the noisy image corrupted with additive
white Gaussian noise of standard deviation σ so that

ũ = u+ n, (12.1)

the conditional distribution P(ũ | u) reads

P(ũ | u) =
1

(2πσ2)
N
2

e−
||u−ũ||2

2σ2 , (12.2)

185

where N is the total number of pixels in the image. Given a noiseless patch P of u with dimension
κ×κ and P̃ an observed noisy version of P , the independence of noise realizations for the different
pixels implies that

P(P̃ | P) = c.e−
‖P̃−P‖2

2σ2 , (12.3)

where P and P̃ are considered as vectors with κ2 components and ‖P‖ denotes the Euclidean
norm of P . Knowing P̃ , our goal is to deduce P by maximizing P(P | P̃). Using Bayes’ rule, we
can compute this last conditional probability as

P(P | P̃) =
P(P̃ | P)P(P)

P(P̃)
. (12.4)

P̃ being observed, this formula could be used to deduce the patch P maximizing the right term,
viewed as a function of P . This is unfortunately not possible, unless we have a probability model
for P . We shall now discuss how to proceed when all observed patches are noisy. Assume that the
patches Q similar to P follow a Gaussian model where CP denotes the covariance matrix of the
patches similar to P and P the expectation of the patches similar to P . This means that

P(Q) = c.e−
(Q−P)tC−1

P
(Q−P)

2 (12.5)

From (12.3) and (12.4) we obtain for each observed P̃ the following equivalence of problems:

Arg max
P

P(P | P̃) ⇔ Arg max
P

P(P̃ | P)P(P)

⇔ Arg max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P)tC−1

P
(P−P)

2

⇔ Arg min
P

‖P − P̃‖2

σ2
+ (P − P)tC−1

P (P − P).

This expression is not satisfactory, because the noiseless patch P and the patches similar to P
cannot be observed directly. Yet, since we are observing the noisy version P̃ , we can at least
compute the patches Q̃ similar to P̃ . An empirical covariance matrix can therefore be obtained
with enough such observable samples Q̃. P and n being independent, we deduce from (12.1),
under the assumption that CP̃ is a Gaussian vector that

CP̃ = CP + σ2I; EQ̃ = P . (12.6)

These relations assume that patches similar to P̃ have been searched in a neighbourhood large
enough to include all patches similar to P , but not too large either, to avoid containing outliers. A
safe strategy for that is to search for similar patches in a distance slightly larger than the plausible
distance caused by noise. If the above estimates are correct, the MAP (maximum a posteriori
estimation) problem boils down by (12.6) to the feasible minimization problem:

Arg max
P

P(P | P̃)⇔ Arg min
P

‖P − P̃‖2

σ2
+ (P − P̃)t(CP̃ − σ

2I)−1(P − P̃).

Differentiating this quadratic function with respect to P and equating to zero yields

P − P̃ + σ2(CP̃ − σ
2I)−1(P − P̃) = 0

and therefore
P = P̃ +

[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃) (12.7)

Thus a restored patch Pbasic can be obtained from the observed patch P̃ by the one step estimation

Pbasic = P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃). (12.8)

186

In a second step, where all patches have been denoised at the first step, all the denoised patches
can be used again to obtain a better unbiased estimation Cbasic

P̃
for CP , the covariance of the

cluster containing P , and P̃
basic

a new estimation of P̃ , the average of patches similar to P̃ .
Indeed, the patch similarity is better estimated with the denoised patches, then sets of similar
patches are more accurate. Then it follows from (12.6) and (12.8) that we can obtain a second
better denoised patch,

Pfinal = P̃
basic

+ Cbasic
P̃

[
Cbasic
P̃

+ σ2I
]−1

(P̃ − P̃
basic

) (12.9)

The computation of CP̃ and P̃ will be discussed in section 12.3.

12.3 Implementation

12.3.1 BM3D

The algorithm developed in this paper is very similar to BM3D and also has two successive steps.
In order to use this similarity as much as possible our notation and exposition order will be as
close as possible to those used in chapter 11 and in [74]. Here is a brief overview of BM3D:

1. Step 1: first denoising
Loop on the image. We denote by P̃ the reference current noisy patch.

(a) Grouping: Stacking up similar patches to the reference one, using a similarity threshold
applied to the distance between patches in order to build the 3D block P(P̃)(P̃);

(b) Collaborative Filtering: A 3D linear transform is applied to the 3D block, then a hard
thresholding is applied to the coefficients, and finally the inverse 3D transform is applied.
A weight is associated with the whole 3D block, depending on its sparsity;

(c) Aggregation: A first basic estimate of the denoised image is obtained by doing a weighted
aggregation of every estimate obtained in the preceding step for each pixel. This basic
estimate will be denoted by ubasic.

2. Step 2: second denoising step using the result of the first as “oracle”

(a) Grouping: The distance between patches is computed on the basic estimate. Two 3D
blocks are formed :

• P(P̃)basic(Pbasic) by stacking up patches from the basic estimation ubasic and,
• P(P̃)basic(P̃) by stacking up patches in the same order from the original noisy

image ũ.

(b) Collaborative Filtering: A 3D transform is applied on both 3D blocks, followed by a
Wiener filtering of the group P(P̃)basic(P̃) using the empirical oracular coefficients
obtained from the group P(P̃)basic(Pbasic), and finally by the inverse 3D transform.
A weight is computed for the whole 3D block. It depends on the norm of the empirical
Wiener coefficients;

(c) Aggregation: A final estimate of the denoised image is obtained by using a weighted
aggregation of every estimate obtained for each pixel. This final estimate will be denoted
by ufinal.

187

12.3.2 Comparison of the Structure of NL-Bayes with BM3D
Both algorithms will be described for color images. They can also be applied on grey level images;
the changes in that case will be indicated. Like BM3D, NL-Bayes is applied in two successive
steps, the result of the first one serving as oracle for the second one:

1. the first step provides a basic estimate ubasic by using (12.8) during the collaborative filtering.
Parameters in this step are denoted by the exponent 1;

2. the second step is based both on the original noisy image ũ and on the basic estimate
obtained during the first step ubasic in order to apply (12.9) during the collaborative filtering.
Parameters in this step are denoted by the exponent 2.

The following table permits to compare steps between BM3D and NL-Bayes for color images.

Step 1
BM3D NL-Bayes

Preprocessing Transformation to the Y0U0V0 Transformation to the Y0U0V0
color space color space

Scanning step between p1 = 3 p1 = 1
two patches

Processing already used Yes No
patches

Grouping
Distance between patches Channel Y0 Channel Y0

Normalized quadratic distance Normalized quadratic distance
Similarity threshold Fixed, tabulated according to σ -

Patches kept N1 best N1 best
Patches ordered No No
3D groups formed One for each channel Y0, U0 et V0 one for each channel Y0, U0 et V0

Collaborative Filtering
3D transform 2D Bior1.5 on each patch followed by -

1D Hadamard transform along the
third dimension

Filter Hard thresholding on the coefficients Bayesian, based on (12.12)
of the DCT

Weighting Depending on the number of non-zero -
coefficients after Hard thresholding

Aggregation Identical part
Post processing - Transform to the RGB color space

Step 2
BM3D NL-Bayes

Step between two p2 = 3 p2 = 1
patches

Process of an already Yes No
used patch
Grouping
Distance Channel Y0 of ubasic All channels of ubasic

Normalized quadratic distance Normalized quadratic distance
Similarity threshold fixed, tabulated according to the σ Adaptive according to the distance

of the N2-th best patch
Patches kept N1 best All

Patches ordered No No
3D groups formed Two for each channel Two

Collaborative Filtering
3D transform 2D DCT then 1D Hadamard -

transform on both groups
Filter Wiener filter using ubasic as oracle Bayesian, based on (12.15)

Weighting Depending on the norm of the -
empirical Wiener coefficients

Aggregation Identical part
Post processing Transformation to the RGB color space -

12.3.3 The First Step of NL-Bayes
Only for the first step, the noisy image ũ in the usual RGB color space is converted in a different
color space where an independent denoising of each channel will not create noticeable color arti-

188

facts. Most algorithms use the Y UV system which separates the luminance and chromatic parts
of the image. BM3D, uses a linear transform multiplying the RGB vector by the matrix

YoUoVo =

 1
3

1
3

1
3

1
2 0 − 1

2
1
4 − 1

2
1
4

We wrote the matrix above without normalization for readability, but the matrix is normalized
to become orthonormal. In that way, σ still is the value of the standard deviation of the noise on
each channel Y0, U0 and V0. The transform increases the SNR of the geometric component, the Y0

component being an average of the three colors. The geometric component is perceptually more
important than the chromatic ones, and the presence of less noise permits a better performance
of the algorithm in this component. The components U0 and V0 are differences of channels, which
cancel or attenuate the signal. Thus a higher noise reduction on the chromatic components U0

and V0 is possible, due to their observable regularity.
We denote by P̃ the current reference patch with size κ1 × κ1 (seen as a column vector) of the
noisy image ũ.

1. Grouping:
The original noisy image ũ is explored in a P̃ -centered λ1 × λ1 neighbourhood for patches
Q̃ similar to the reference patch P̃ . The normalized quadratic distance between each patch
Q̃ of the neighbourhood and the reference patch P̃ is computed as

d2
(
P̃ , Q̃

)
=
‖P̃ − Q̃‖22

(κ1)
2 .

This distance is computed on the luminance channel Y0 only. All patches Q̃ of the neigh-
bourhood are sorted according to their distance to the reference patch P̃ , and the N1 closest
patches to P̃ are kept. Then three sets of similar patches -one for each channel- are built:
PY0

(P̃), PU0
(P̃) and PV0

(P̃). But the sets of similar patches for the chromatic channels are
built with patches whose index are the same as for Q̃ ∈ PY0

(P̃), and in the same order.
After this step, the same procedure is applied on each channel, but separately. For a sake
of simplicity, we will describe the procedure for a generic channel.

2. Collaborative Filtering:
Let P(P̃)(P̃) be the set of patches Q̃ similar to the reference patch P̃ obtained at the
grouping step. We start by detecting if P̃ belongs to a homogeneous1 area by processing the
square of the standard deviation of P(P̃):

σ2
P̃

=
M1

M1 − 1

 1

M1

∑
Q̃∈P(P̃)

∑
x∈Q̃

(
Q̃(x)

)2

−

 1

M1

∑
Q̃∈P(P̃)

∑
x∈Q̃

Q̃(x)

2
 (12.10)

where M1 = N1(κ1)2. Since a huge number (M1) of realizations of the variable u(i) is taken
into account, in a homogeneous area this random variable should be very concentrated
around its mean. Thus, fixing a threshold γ close to 1,
• if σP̃ ≤ γσ, we can assume that with high probability P̃ belongs to a homogeneous

area. In this case, the better result that can be obtained for the group is the average.
Therefore, the estimate of all patches in the set of similar patches P(P̃) is

∀Q̃ ∈ P(P̃),∀x ∈ Qbasic, Qbasic(x) =
1

M1

∑
Q̃∈P(P̃)

∑
y∈Q̃

Q̃(y)

1By homogeneous we mean a flat area, where there is no geometric detail.

189

• else, P̃ is assumed to contain some signal, for which a Gaussian model is built. By the
law of large numbers we have

CP̃ '
1

#P(P̃)− 1

∑
Q̃∈P(P̃)

(
Q̃− P̃

)(
Q̃− P̃

)t
, P̃ ' 1

#P(P̃)

∑
Q̃∈P(P̃)

Q̃. (12.11)

Once CP̃ and P̃ have been computed, (12.8) yields an estimate for every patch in the
set of similar patches,

∀Q̃ ∈ P(P̃), Qbasic = P̃ +
[
CP̃ − β1σ

2I
]
C−1

P̃

(
Q̃− P̃

)
. (12.12)

where β1 is a parameter of conservative attenuation close to 1.

Remark: As CP̃ is in principle real and symmetric positive definite, it should be invertible.
Nevertheless it may sometimes (but seldom) be ill-conditioned. If the computation of the
inverse does not end well, the algorithm simply sets ∀Q̃ ∈ P(P̃), Qbasic = Q.

3. Aggregation:
When the collaborative filtering is achieved, an estimate is associated with every used patch.
This yields a variable number of estimates for each pixel. To take advantage of these multiple
estimates an aggregation must be done. Contrary to BM3D, this aggregation is not weighted.
The final estimate after this first step is given by

ubasic(x) =

∑
P̃

∑
Q̃∈P(P̃)

χQ̃(x)Qbasic(x)

∑
P̃

∑
Q̃∈P(P̃)

χQ̃(x)

with χQ̃(x) = 1 if and only if x ∈ Q̃, 0 otherwise.

Remark: For practical purposes, this computation is simplified by using two buffers ν and
δ, where respectively the numerator and the denominator are kept in memory

∀Q̃ ∈ P(P̃),∀x ∈ Q̃,
{

ν(x) = ν(x) +Qbasic(x)
δ(x) = δ(x) + 1

Thus the final estimate is simply obtained by dividing both buffers element-by-element.

4. Acceleration: To speed up the algorithm, each patch that has been used (and therefore de-
noised at least once) in a 3D group is no more considered as reference patch P̃ . Nevertheless,
it may be denoised several times, being potentially chosen in other groups.

Once ubasic
Y0

, ubasic
U0

and ubasic
V0

have been obtained, inverting the color transform yields back ubasic,
the first estimate of the image in the RGB color space.

12.3.4 Second Step of NL-Bayes
In this second step of the algorithm a basic estimate ubasic of the denoised image is available.
The second step follows exactly the same scheme as the first, but performs a Wiener filter of the
original noisy image ũ, using as oracle the basic estimate ubasic.

1. Grouping:
The patch matching is processed on the basic estimate only. But this time the distance
involves all channels, which are assumedly denoised by the first step:

∀Qbasic, d2(Pbasic, Qbasic) =
1

Nc

Nc∑
c=1

‖Pbasic
c −Qbasic

c ‖22
(k2)2

(12.13)

190

where Nc denotes the number of channels in the image. As a difference with the first step
where only N1 patches were kept, here a threshold τ is used to obtain a set of similar patches

P(P̃)basic(Pbasic) = {Qbasic : d2(Pbasic, Qbasic) ≤ τ},

with
• τ = max (τ0, dN2);
• τ0 is a fixed parameter;
• dN2 is the distance between the reference patch and its N2-th best similar patches,

sorted by their distance to Pbasic.

Thus, using τ , many more similar patches can be picked in homogeneous areas. A second
set of similar patches from the noisy image ũ is built

P(P̃)basic(P̃) = {Q̃ : d2(Pbasic, Qbasic) ≤ τ},

by stacking up patches together in the same order as P(P̃)basic(Pbasic).

2. Collaborative Filtering:
Once 3D-blocks are built the collaborative filtering is applied. Then by the law of large
numbers,

Cbasic
P ' 1

#P(P̃)basic(Pbasic)− 1

∑
Qbasic∈P(P̃)basic(Pbasic)

(
Qbasic − P̃

basic
)(

Qbasic − P̃
basic

)t
,

P̃
basic

' 1

#P(P̃)basic(P̃)

∑
Q̃∈P(P̃)basic(P̃)

Q̃.

(12.14)

Once Cbasic
P̃

and P̃
basic

are computed, (12.9) yields an estimate for every patch in the set
of similar patches

∀Q̃ ∈ P(P̃)basic(P̃), Qfinal = P̃
basic

+ Cbasic
P̃

[
Cbasic
P̃

+ β2σ
2I
]−1

(
Q̃− P̃

basic
)

(12.15)

3. Aggregation:
When the collaborative filtering is achieved, an estimate is associated with every used patch
and therefore a variable number of estimates for every pixel. Once again, contrarily to
BM3D, this aggregation is not weighted. The final estimate after this second step is given
by

ufinal(x) =

∑
P̃

∑
Q̃∈P(P̃)basic(P̃)

χQ̃(x)Qfinal(x)

∑
P̃

∑
Q̃∈P(P̃)basic(P̃)

χQ̃(x)

with χQ̃(x) = 1 if and only if x ∈ Q̃, 0 otherwise.
Remark: For practical purposes, this computation is simplified by using two buffers ν and
δ, where respectively the numerator and the denominator are kept in memory

∀Q̃ ∈ P(P̃)basic(P̃),∀x ∈ Q̃,
{

ν(x) = ν(x) +Qfinal(x)
δ(x) = δ(x) + 1

Thus the final estimate is simply obtained by dividing both buffers element-by-element.
Once again, in order to speed up the algorithm, each patch used once in a 3D group is no
more processed as reference patch. It can be used anyway several times as secondary patch
in other 3D blocks.

191

12.3.5 NL-PCA: a Particular Case of NL-Bayes

The Bayesian approach on which NL-Bayes is based can lead to formulate another algorithm,
which we shall call NL-PCA. Its idea is to perform a Principal Component Analysis (PCA) on
the 3D group P(P̃)(P̃). This idea was first proposed in [142] and is also studied in detail in [43].
NL-PCA is obtained by replacing in BM3D the fixed linear transform (DCT, bi-orthogonal spline
wavelet) by a learnt basis for each patch, obtained by PCA on the patches of the 3D block. Indeed,
applying a PCA to the 3D group amounts to diagonalize its covariance matrix, and the eigenvectors
give the adaptive basis. In continuation, the collaborative filtering and the aggregation parts can
be applied exactly like in BM3D.The algorithm developed in [43] is very close to the first step of
the NL-PCA algorithm described hereafter.
Diagonalizing the covariance matrix CP̃ , denoting the associated isometry by R1 and denoting
by S1(j) the squares of the associated eigenvalues, the restoration formula (12.8) becomes on the
eigenfunction basis: (

R1(Pbasic − P̃)
)
j

=
S1(j)− σ2

S1(j)

(
R1(P̃ − P̃)

)
j
.

The only (classic) variation with respect to this estimate is that CP̃ should be positive semi-
definite. Thus S1(j)− σ2 is replaced in the above formula by

(
S1(j)− σ2

)+ and, instead of −σ2,
a more conservative attenuation is applied, −β2σ2 where an empirical β slightly larger than 1
accounts for the error of model. A still more conservative estimate is applied for large noises
(typically if σ ≤ 40), where the estimate becomes

(
R1(Pbasic − P̃)

)
j

=

(
R1(P̃ − P̃)

)
j

if S1(j) ≥ β2σ2

0 otherwise.

In the same way, in the second step, diagonalizing Cbasic
P̃

and denoting the associated isometry by
R2 and the squares of the associated eigenvalues by S2(j), the restoration formula (12.9) becomes,
without any alteration to the model,(

R2(Pfinal − P̃
basic

)

)
j

=
S2(j)

S2(j) + σ2

(
R2(P̃ − P̃

basic
)
j

which retrieves exactly a classical Wiener filter based on the PCA of P(P̃)basic(P̃).

12.4 Influence of the Parameters on the Performance of NL-
Bayes

We applied the previously described algorithm to noiseless images to which a simulated white noise
had been added. Many images have been tested, but for the sake of simplicity only one result for
each σ will be shown. To evaluate quantitatively the denoising results, two classic measurements
have been used :

• The Root Mean Square Error (RMSE) between the reference image (noiseless) uR and the
denoised image uD. The RMSE is

RMSE =

√√√√√
∑
x∈X

(uR(x)− uD(x))
2

|X|
;

the smaller it is, the better the denoising.

192

• the Peak Signal to Noise Ratio (PSNR) evaluated in decibels (dB) by

PSNR = 20 log10

(
255

RMSE

)
;

the larger it is, the better the denoising.

The question is: how to select the right values for the various parameters in the algorithm as
described previously, and to evaluate their influence on the final result? The parameters of the
method are:

• κ1, κ2: size of patches;

• N1, N2: maximum number of similar patches kept;

• λ1, λ2: search window size;

• γ: used to determine if a patch belongs to an homogeneous area;

• β1, β2: coefficient used during the collaborative filtering;

• τ0: minimum threshold to determine similar patches during the second step.

It would be impossible to try all combinations of all parameters. Thus, the principle of the study
is to assign to all parameters an optimal or robust value, while only one is varied. The parameters
will therefore fixed in the following way:

• κ1 and κ2 as explained in Section 12.4.1;

• N1 and N2 as explained in Section 12.4.6;

• the homogeneous area trick is always used on the first step;

• λ1 = 5 ∗ κ1;

• λ2 = 5 ∗ κ2;

• γ = 1.05;

• β1 = 1.0;

• β2 =

{
1.2 if σ < 50
1.0 otherwise. ;

• τ0 = 4.

12.4.1 Influence of the Size of the Patches κ1 and κ2

The size of the patches influences the result, but unlike BM3D, NL-Bayes gives its best results for
significantly smaller patch sizes. This fact may be the most surprising result of this comparison.

193

σ = 2 σ = 5
κ2 3 5 7 3 5 7
κ1 PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
3 46.03 1.27 45.96 1.28 45.88 1.30 39.89 2.58 39.83 2.60 39.75 2.62
5 46.03 1.27 45.92 1.29 45.83 1.30 39.89 2.58 39.77 2.62 39.68 2.65
7 46.00 1.28 45.89 1.29 45.78 1.31 39.87 2.59 39.73 2.63 39.61 2.67

σ = 10 σ = 20
κ2 3 5 7 3 5 7
κ1 PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
3 35.38 4.34 35.34 4.36 35.27 4.40 31.16 7.06 31.20 7.02 31.15 7.06
5 35.39 4.34 35.29 4.39 35.20 4.43 31.20 7.02 31.14 7.07 31.08 7.12
7 35.36 4.35 35.24 4.41 35.11 4.48 31.16 7.06 31.10 7.10 30.99 7.20

σ = 30 σ = 40
κ2 3 5 7 3 5 7
κ1 PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
3 28.81 9.25 28.92 9.13 28.90 9.15 27.18 11.16 27.33 10.97 27.34 10.95
5 28.90 9.15 28.89 9.16 28.85 9.21 27.33 10.97 27.36 10.93 27.34 10.95
7 28.85 9.21 28.85 9.21 28.76 9.30 27.31 10.99 27.35 10.94 27.28 11.03

σ = 60 σ = 80
κ2 3 5 7 3 5 7
κ1 PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
3 24.90 14.51 25.30 13.85 25.38 13.73 23.15 17.74 23.74 16.58 23.94 16.20
5 25.27 13.90 25.46 13.60 25.47 13.58 23.78 16.50 24.02 16.05 24.08 15.94
7 25.26 13.92 25.45 13.62 25.44 13.63 23.83 16.41 24.09 15.92 24.10 15.91

σ = 100
κ2 3 5 7
κ1 PSNR RMSE PSNR RMSE PSNR RMSE
3 21.79 20.75 22.62 18.86 22.88 18.30
5 22.65 18.79 22.98 18.09 23.06 17.93
7 22.75 18.58 23.06 17.93 23.11 17.83

In bold the best result for a given σ.

Unsurprisingly, from the examination of the above set of tables follows that the size of patches
must increase with the noise value. According to these results, the following optimal values will
be chosen for the size of patches:

σ 0 ≤ σ < 20 20 ≤ σ < 50 50 ≤ σ < 70 70 ≤ σ
κ1 3 5 7 7
κ2 3 3 5 7

12.4.2 Influence of γ

The parameter γ is used to determine if a set of similar patches belongs to a homogeneous area
as defined in (12.10). This parameter must be fixed carefully. If its value is too big, small details
in the image may be lost. If instead its value is too small, homogeneous area will not be denoised
enough and artifacts can become conspicuous in these regions. Thus, although the PSNR gain is
moderate, the visual impact of this step is important. The comparison table follows.

γ = 0.95 γ = 1.0 γ = 1.05 γ = 1.1
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.00 1.28 45.99 1.28 46.00 1.28 46.00 1.28
5 39.88 2.58 39.89 2.58 39.89 2.58 39.89 2.58
10 35.38 4.34 35.38 4.34 35.38 4.34 35.37 4.35
20 31.20 7.02 31.23 7.00 31.24 6.99 31.23 7.00
30 28.83 9.22 28.90 9.15 28.91 9.14 28.92 9.13
40 27.25 11.07 27.35 10.94 27.38 10.90 27.37 10.91
60 25.33 13.80 25.44 13.68 25.45 13.61 25.40 13.69
80 24.12 15.86 24.20 15.72 24.16 15.79 24.04 16.01
100 23.15 17.75 23.23 17.58 23.19 17.65 22.99 18.08

In bold best result for a given σ.

194

One can deduce from the above table that small variations on γ lead to significant variations for
high noise. According to this study, γ can be fixed to 1.05, whatever the value of noise.

12.4.3 Influence of β1
This parameter is used in (12.12) and influences the filtering during the first step. The theoretical
value is β1 = 1.0, but a study of its influence needs to be done to learn its best empirical value.

β1 = 0.8 β1 = 0.9 β1 = 1.0 β1 = 1.1 β1 = 1.2
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.92 1.29 45.98 1.28 46.01 1.28 46.02 1.27 46.03 1.27
5 39.71 2.64 39.80 2.61 39.85 2.59 39.88 2.59 39.86 2.59
10 35.22 4.42 35.34 4.36 35.39 4.33 35.40 4.33 35.37 4.35
20 30.96 7.22 31.12 7.08 31.20 7.02 31.18 7.03 31.09 7.11
30 28.64 9.43 28.85 9.21 28.92 9.13 28.89 9.16 28.75 9.31
40 27.07 11.30 27.27 11.05 27.34 10.95 27.30 11.01 27.13 11.22
60 25.07 14.23 25.38 13.72 25.46 13.59 25.36 13.75 25.08 14.21
80 23.80 16.45 24.13 15.94 24.19 15.73 24.08 15.93 23.78 16.50
100 22.85 18.37 23.09 17.86 23.12 17.80 23.00 18.06 22.70 18.67

In bold best result for a given σ.

The theoretical value is confirmed by this study. Thus β1 is fixed to 1.0, whatever the value of
the noise.

12.4.4 Influence of β2
This parameter is used in (12.15) influences the filtering during the first step. The theoretical
value is β2 = 1.0, but a study of its influence needs to be done to learn its best empirical value.

β2 = 0.8 β2 = 0.9 β2 = 1.0 β2 = 1.1 β2 = 1.2
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.91 1.29 45.95 1.28 45.98 1.28 46.00 1.28 46.01 1.27
5 39.75 2.62 39.79 2.61 39.82 2.60 39.84 2.60 39.86 2.59
10 35.30 4.38 35.34 4.36 35.36 4.35 35.38 4.34 35.39 4.33
20 31.13 7.08 31.17 7.05 31.19 7.03 31.19 7.03 31.20 7.02
30 28.85 9.20 28.87 9.18 28.89 9.16 28.90 9.15 28.89 9.16
40 27.27 11.04 27.28 11.02 27.31 10.99 27.30 11.00 27.30 11.00
60 25.48 13.57 25.49 13.56 25.47 13.58 25.46 13.59 25.45 13.61
80 24.16 15.79 24.17 15.77 24.16 15.79 24.15 15.82 24.12 15.86
100 23.12 17.80 23.12 17.81 23.10 17.84 23.09 17.87 23.07 17.91

In bold best result for a given σ.

Here again the theoretical value seems to work well, but a slight gain can be obtained if β2 is
tabulated according to σ. The chosen value for β2 will be 1.2 if σ > 50, 1.0 otherwise.

12.4.5 Influence of the Size of the Search Window λ1 and λ2

The size of the search window influences the grouping part of the algorithm. Since the total
number of patches Q̃ contained in the neighbourhood which needs to be sorted is proportional
to the size of the search window, the computational time of the algorithm increases with λ1 and
λ2. We would therefore like to minimize these numbers. Nevertheless, if the size of the search
window is too small, the “similar” patches will not be that similar to the reference patch P̃ . Thus
it is necessary to find a good compromise between a good PSNR and a relatively small size for
the search window. Moreover, the size of the search window is intuitively dependant on the size
of patches κ1 and κ2. This is why λ1 and λ2 will be determined as a factor of κ1 and κ2, i.e.
λ1 = ακ1 and λ2 = ακ2. For this comparison, the others parameters are fixed as usual.

195

α = 3 α = 4 α = 5 α = 6 α = 7
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.95 1.28 46.00 1.28 46.01 1.28 46.02 1.27 46.01 1.28
5 39.74 2.63 39.82 2.60 39.84 2.59 39.86 2.59 39.86 2.59
10 35.19 4.43 35.33 4.37 35.36 4.35 35.40 4.33 35.41 5.32
20 30.98 7.20 31.17 7.05 31.23 6.99 31.30 6.94 31.32 6.93
30 28.63 9.44 28.85 9.20 28.92 9.13 28.99 9.06 29.02 9.02
40 27.05 11.33 27.30 11.00 27.38 10.90 27.46 10.80 27.50 10.75
60 25.13 14.12 25.34 13.79 25.42 13.66 25.52 13.51 25.55 13.46
80 23.85 16.37 24.09 15.93 24.18 15.77 24.25 15.63 24.28 15.57
100 22.85 18.35 23.04 17.97 23.13 17.79 23.19 17.67 23.23 17.57

In bold best result for a given σ.

It follows from the comparison table that increasing the size of the search window improves the
result by finding more similar patches. Accordingly the parameters are fixed to:
• λ1 = 7κ1;
• λ2 = 7κ2.

12.4.6 Influence of the Minimal Number of Closest Neighbours, N1 and
N2

As we have to invert a matrix in (12.12) and (12.15), a minimal number of similar patches is
needed. Otherwise this matrix will not been invertible. Thus, N1 and N2 have to be determined
empirically. Moreover, they depend on the noisy image. For this reason, only the final chosen
values are given here

N1 =

 30 if κ1 = 3
60 if κ1 = 5
90 if κ1 = 7

; N2 =

 30 if κ2 = 3
60 if κ2 = 5
90 if κ2 = 7

.

12.4.7 Influence of τ0
This parameter is used only in the second step, to fix the minimum threshold between two similar
patches. Indeed in the second step we got an estimate ubasic and the distances between patches
are better estimated on ubasic than on ũ. Thus, in homogeneous areas we can allow for many more
similar patches than λ2. The parameter τ0 is voluntarily kept small, because otherwise patches
which differ significantly from the reference patch would be considered similar.

τ0 = 0 τ0 = 2 τ0 = 4 τ0 = 8 τ0 = 16
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.99 1.28 46.01 1.27 46.00 1.28 45.94 1.29 45.81 1.30
5 39.88 2.58 39.93 2.57 39.91 2.58 39.85 2.59 39.68 2.64
10 35.36 4.35 35.44 4.31 35.45 4.30 35.39 4.34 35.21 4.42
20 31.17 7.05 31.28 6.96 31.29 6.95 31.25 6.99 31.08 7.12
30 28.82 9.23 29.01 9.03 29.02 9.02 29.03 9.02 28.89 9.16
40 27.18 11.16 27.40 10.87 27.44 10.82 27.46 10.80 27.34 10.95
60 25.43 13.64 25.55 13.46 25.58 13.42 25.54 13.47 25.44 13.64
80 24.08 15.94 24.18 15.75 24.21 15.71 24.17 15.78 24.00 16.10
100 23.16 17.72 23.28 17.48 23.33 17.37 23.31 17.42 23.08 17.88

In bold best result for a given σ.

Using the minimum threshold with a small value (τ0 = 2 or 4) is always better than (τ0 = 0).
Moreover, as expected, a too large value (τ0 = 16) gives really worse results. According to this
comparison, we shall set τ0 = 4.

196

12.4.8 Summary Table of the Best Parameters

Here is the summary table with the final chosen values for all parameters, depending on the value
of the noise:

σ 0 ≤ σ < 20 20 ≤ σ < 50 50 ≤ σ < 70 70 ≤ σ
κ1 3 5 7 7
κ2 3 3 5 7
γ 1.05 1.05 1.05 1.05
β1 1.0 1.0 1.0 1.0
β2 1.2 1.2 1.0 1.0
λ1 21 35 49 49
λ2 21 21 35 49
N1 30 60 90 90
N2 30 30 60 90
τ0 4 4 4 4

12.5 A Detailed Study of the Algorithm

This part discusses several sound variants for each step of the algorithm. It gives experimental
evidence that the choices taken in the algorithm are the best in terms of PSNR.

12.5.1 Grouping

Color Space Transform

The Y0U0V0 space will be compared toRGB, for both steps. WhenRGB is chosen in the algorithm,
• the distance is computed on all channels like in (12.13);
• the collaborative filtering is done on each channel separately;
• N1 is increased to avoid having a non-invertible matrix.

Step 1 / Step 2 RGB / RGB Y0U0V0 / RGB RGB / Y0U0V0 Y0U0V0 / Y0U0V0

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.10 1.26 46.04 1.27 45.83 1.30 45.80 1.31
5 39.89 2.58 39.86 2.59 39.66 2.65 39.64 2.66
10 35.39 4.33 35.42 4.32 35.22 4.42 35.25 4.41
20 31.10 7.10 31.30 6.94 31.00 7.19 31.18 7.03
30 28.73 9.33 28.93 9.11 28.65 9.41 28.85 9.20
40 27.23 11.08 27.47 10.78 27.18 11.15 27.43 10.84
60 23.87 16.34 25.54 13.48 23.82 16.43 25.52 13.50
80 22.96 18.13 24.24 15.66 22.92 18.23 24.24 15.65
100 22.14 19.93 23.24 17.56 22.10 20.02 23.25 17.54

In bold the best PSNR for a given σ. In italic results with many observed non-invertible matrices in the first step.

Despite the fact that N1 has been increased in the case where RGB is chosen for the first step, in
practice the matrix CP̃ is often not invertible. This explains why the result is that bad for high
values of the noise when RGB is chosen for the first step.

12.5.2 Collaborative Filtering

The Homogeneous Area Criterion

One of the innovations in NL-Bayes is the detection of the homogeneous areas in the first step. In
order to show its relevance, here are some results with and without this criterion, in both steps:

197

Step 1 / Step 2 No / No Yes / No No / Yes Yes / Yes
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 46.04 1.27 46.04 1.27 46.04 1.27 46.04 1.27
5 39.89 2.58 39.90 2.57 39.88 2.58 39.89 2.58
10 35.36 4.35 35.39 4.33 35.37 4.34 35.35 4.35
20 31.05 7.14 31.27 6.96 31.29 6.95 31.26 6.98
30 28.68 9.38 29.01 9.04 29.01 9.04 28.97 9.08
40 27.05 11.32 27.48 10.78 27.47 10.79 27.42 10.85
60 25.39 13.70 25.58 13.41 25.55 13.45 25.45 13.62
80 24.14 15.83 24.26 15.62 24.16 15.80 23.98 16.12
100 23.09 17.86 23.27 17.49 23.15 17.73 22.93 18.20

In bold the best PSNR for a given σ.

One can see that the homogeneity detection is useful for medium and high values of the noise
variance. On an image with many homogeneous areas, the application of this detection avoids
artifacts, as one can see on the following image for a noise standard deviation equal to 20.

198

Original image Noisy image σ = 30

No / No | PSNR = 33.93 / RMSE = 5.13 Yes / No | PSNR = 38.82 / RMSE = 2.92

No / Yes | PSNR = 38.69 / RMSE = 2.96 Yes / Yes | PSNR = 38.36 / RMSE = 3.08

Diagonalizing the Covariance Matrix

As presented in section 12.3.5, CP̃ and Cbasic
P̃

can be diagonalized with the use of a PCA on
the 3D block P(P̃)(P̃) and P(P̃)basic(P̃), which leads to an algorithm which we called NL-PCA.
The principal difference between NL-PCA and NL-Bayes is in the collaborative filtering part, as
detailed in 12.3.5. All the rest is exactly the same. We compare here the results of NL-PCA to
NL-Bayes on three (noiseless) images, to which noise was added. The images are displayed below.

199

Dice Flowers

Traffic

Dice Flowers Traffic
NL-PCA NL-Bayes NL-PCA NL-Bayes NL-PCA NL-Bayes

σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
2 48.85 0.92 49.08 0.90 47.59 1.06 47.77 1.04 45.00 1.43 45.25 1.39
5 45.84 1.30 45.92 1.29 43.35 1.73 43.41 1.72 39.42 2.73 39.59 2.67
10 43.17 1.77 43.31 1.74 39.66 2.65 39.83 2.60 35.40 4.33 35.49 4.29
20 40.68 2.36 40.56 2.39 36.33 3.89 36.42 3.85 31.28 6.96 31.48 6.80
30 38.83 2.92 38.81 2.92 34.16 5.00 34.20 4.97 29.20 8.84 29.34 8.70
40 37.35 3.46 37.35 3.46 32.52 6.03 32.59 5.98 27.80 10.39 27.87 10.30
60 35.60 4.23 35.62 4.22 30.72 7.42 30.84 7.32 25.77 13.12 26.01 12.77
80 34.53 4.79 34.60 4.75 29.28 8.76 29.47 8.57 24.62 14.98 24.75 14.76
100 33.46 5.41 33.48 5.40 28.15 9.98 28.26 9.85 23.76 16.54 23.85 16.37

In bold the best PSNR for a given σ.

The table shows that NL-Bayes is slightly better than NL-PCA. Nevertheless, the results of NL-
PCA could be improved by adapting the parameters, and adding a weight to the aggregation part,
like BM3D does. Indeed, the values of N1 and N2 are not adapted to NL-PCA: this parameter has
large values to avoid non-invertible matrices, but the PCA can be hedged if patches in P(P̃)(P̃)
are not that similar. Moreover, β1 and β2 need to be adapted too. NL-Bayes is faster than NL-
PCA by an average factor of 50%, due to the fact that there is only one matrix inversion, and not
a PCA.

Ideal Wiener and Upper Bounds for the Performance

There is a significantly PSNR improvement by using the second step, because the covariance
matrix is better estimated. To judge the contribution of this second step better, it is possible to
compare it with an ideal Wiener filter, which is obtained when the original noise-free image is
taken as oracle reference, i.e. as the output of the first step. This ideal Wiener filter is the best
possible estimate for the second step of this algorithm. It is therefore interesting to see how far
we stand from this ideal estimate with the current one:

200

Algorithm Ideal Wiener
σ PSNR RMSE PSNR RMSE

2 45.98 1.28 47.40 1.09
5 39.89 2.58 41.50 2.15
10 35.45 4.30 37.28 3.49
20 31.26 6.97 33.42 5.44
30 28.96 9.09 31.42 6.85
40 27.46 10.81 30.13 7.95
60 25.58 13.41 27.97 10.19
80 24.29 15.57 26.66 11.85
100 23.25 17.55 25.80 13.08

In bold the best PSNR for a given σ.

Of course, the Wiener filter using the noise-free image as oracle is better than the filter using the
basic estimate obtained after the first step. One can see that there is a large room for improvement
for this first step, of 2 to 3 dBs. The images below compare the visual performance for different
values of the noise.

201

Original image Noisy image (σ = 10)

NL-Bayes (σ = 10) Ideal Wiener (σ = 10)

202

Original image Noisy image (σ = 30)

NL-Bayes (σ = 30) Ideal Wiener (σ = 30)

203

Original image Noisy image (σ = 80)

NL-Bayes (σ = 80) Ideal Wiener (σ = 80)

12.5.3 The “Paste” Option

To speed up the algorithm, a paste trick has been used. Whenever a patch Q̃ ∈ P(P̃)(P̃) has an
estimate, it is no more processed as a reference patch. One could think that this trick produces
artifacts and has an impact on the PSNR. To check that, we will compare for both steps this paste
option, denoted by “paste” in the following, and another trick used in BM3D. This other trick,
denoted by “step” divides approximately the number of processed reference patches by nine, by
taking a 3 pixels scanning step row and column.

204

Step 1 / Step 2 Step / Step Paste / Step Step / Paste Paste / Paste
σ PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

2 45.99 1.28 46.00 1.28 46.03 1.27 46.03 1.27
5 39.81 2.61 39.84 2.59 39.87 2.59 39.87 2.59
10 35.33 4.36 35.40 4.33 35.41 4.32 35.43 4.31
20 31.25 6.98 31.27 6.96 31.30 6.94 31.31 6.93
30 28.97 9.08 28.98 9.06 29.01 9.03 29.02 9.02
40 27.35 10.94 27.39 10.89 27.40 10.87 27.43 10.84
60 25.47 13.58 25.52 13.51 25.51 13.53 25.53 13.48
80 24.16 15.79 24.22 15.68 24.20 15.73 24.24 15.66
100 23.24 17.55 23.28 17.47 23.26 17.52 23.27 17.50

In bold the best PSNR for a given σ.

There is no significant PSNR loss by using both acceleration tricks. The fact that the use of the
“paste” option improves things could be explained by the fact that in a area with many details,
patches are very different in a very small area. Then almost every patch will be treated as a
reference patch, while with the “step” trick only 1 patch out of 9 will be treated, and then very
small details will be processed worse. The use of this “paste” trick speeds up a bit more the
algorithm than the “step” trick, by almost 30%, depending on the percentage of homogeneous
areas in the noisy image.

12.5.4 Influence of the Second Step
Using a second step to obtain a better covariance matrix improves a lot the final result, as we can
see in the following table:

First step Second step
σ PSNR RMSE PSNR RMSE

2 45.65 1.33 46.03 1.27
5 39.41 2.73 39.88 2.58
10 34.84 4.62 35.45 4.30
20 30.47 7.64 31.24 6.99
30 28.15 9.97 28.99 9.06
40 26.58 11.95 27.46 10.80
60 24.15 15.80 25.50 13.53
80 22.87 18.32 24.25 15.64
100 21.92 20.43 23.27 17.51

12.6 Conclusion
This detailed study carried out on NL-Bayes had led us to the following conclusions:
• working on very small size of patches, this method is really fast for small and medium noise,

even more thanks to the acceleration trick that used patches are no more processed again as
reference patches;

• The main elements which allow for real improvements of the results are:
– working in the Y0U0V0 space color for the first step;
– making a second step with the result of the first step as “oracle”;
– aggregating the estimates. This aggregation is improved significantly by working with

a 3D group and by keeping all estimates obtained of the similar 2D-patches like BM3D;

– using the homogeneous area criteria to remove almost all artifacts in homogeneous area.

• Nevertheless, there is still room for improvement, by, perhaps:
– using a multi-scale approach to remove low frequency noise;
– using a more complex model than the Gaussian patch model.

205

206

Conclusion

This tour of image denoising has shown us that this field is a “hot topic”, really vast, extensively
studied in the case of white Gaussian noise, and that some main principles start to arise. But
surprisingly, when it comes to blind denoising, which is the direct application of denoising to real
images, images on which each and every one daily works on, research comes up to be extremely
rare. Moreover, even if the theory has seemed several times to converge to a final solution and
performance, it appears that denoising results are still improving, despite the fact that at each
major novelty in patch-based methods (BM3D, NL-Bayes, NLDD) one could think that it will be
impossible (or really difficult) to achieve better results. However, in the light of the gap between
methods that work only on the noisy image itself, and “shotgun” or neural network denoiser (that
demands a lot of computational time), I think that the future of denoising will be “cloud denoising”,
where images will be denoised thanks to connected computers and huge image databases.
On the same spirit, whereas most articles and papers about denoising show PSNR (or SSIM or
equivalent measures) table values, real results are rarely presented, are too often small images
and most of the time in gray level. As far as we know, those measures are only indicative, and
unfortunately do not reflect perfectly the visual result of the method. Therefore there is a real
need to develop an objective measure which better fits the subjective (human) visual comparison.
This is why an on line web-demo, such as the ones IPOL provides, and available open source codes
are so important for the impact of a method. To be able to run an algorithm on a common set of
images or on its own favourite images is crucial for a researcher to make its (fair) own idea about
a method. Moreover, having an open source code allows everyone (researcher, engineer, . . .) to
save considerable time by avoiding to re-code entirely a method, and to be sure that everybody
works on the same trustworthy algorithm. However, this kind of web demo is still not perfect
yet: if we can test one particularly method on any image, it is still difficult when it comes to
compare a bunch of algorithms.This has still to be done manually, but a web demo might play
this benchmark role when the number of online algorithms is sufficient.
One can observe how IPOL’s demonstration and publication style is far from a standard. Users
even need to be educated: on IPOL archives about denoising algorithms, one can find many noisy
input images. This is non-sense, since in these online demos noise has to be added by the demo
itself to the input image before denoising. This fact clearly shows that blind denoising methods
have a brilliant interest and future. Publishing blind algorithms will enable users to test on already
noisy images, without having to first obtain noise-free image by their own. The best of both worlds
is then very close, but has to be done: we should couple a white noise estimation to any white
Gaussian noise denoiser algorithm. It will allow users to test and compare any method on any
image. The only remaining problem would be to develop a reliable variance stabilizing transform,
to transform the signal-dependent noise estimated by the noise estimater into a signal-independent
noise that the denoiser could work on without any modifications of its algorithms.
As part of future work, adapting the Noise Clinic to movies should be relatively easy, as for any
patch-based denoising algorithm: the considered neighborhood is then not only the current image,
but the neighborhood of all neighboring frames. However, the best achievable result that can
be obtained temporally still is a temporal aggregation applied before any denoising. This has to
be done carefully, to avoid “ghosts” to appear due to movement in the scene. The HDR (High
Dynamic Range) format is currently addressing this challenge. This also means that denoising
will have to be adapted to video produced by HDR cameras.
Another enhancements can still be done in pure denoising: as we have seen in this thesis, it is
really easy to deal with homogeneous areas, but the real problem is to detect those areas and
to apply a different and intelligent treatment to areas with details. And as details become more
difficult to retrieve in the noisy image itself, particularly when they are unique in the scene, we
will be forced at the end to use “cloud” images and perform global denoising.

207

208

Bibliography

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Overcomplete
Dictionaries for Sparse Representation. IEEE Transactions on image processing, pages 9–12,
2005. http://dx.doi.org/10.1109/TSP.2006.881199.

[2] G. Allaire and S. M. Kaber. Algèbre Linéaire Numérique. Ellipses, Paris, 2002.
ISBN:2729810013.

[3] F. J. Anscombe. The transformation of Poisson, binomial and negative-binomial data.
Biometrika, 35(3):246–254, 1948.

[4] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using wavelet
transform. Image Processing, IEEE Transactions on, 1(2):205–220, 1992.

[5] F. Attneave. Some informational aspects of visual perception. Psychological review,
61(3):183–193, 1954.

[6] S.P. Awate and R.T. Whitaker. Unsupervised, information-theoretic, adaptive image filtering
for image restoration. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
28(3):364–376, 2006.

[7] R. A. Boie and I. J. Cox. An analysis of camera noise. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(6):671–674, 1992.

[8] J.S. De Bonet. Noise reduction through detection of signal redundancy. Rethinking artificial
intelligence, 1997.

[9] R. Bracho and A.C. Sanderson. Segmentation of images based on intensity gradient infor-
mation. In Proc. IEEE Computer Soc. Conf. on Computer Vision and Pattern Recognition,
pages 19–23, 1985.

[10] P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31.
Springer Verlag, 1999.

[11] A. Buades. Image and film denoising by non-local means. PhD thesis, 2006.

[12] A. Buades, B. Coll, and J.M. Morel. Image data process by image noise reduction and
camera integrating the means for implementing this process. French Patent 0404837.

[13] A. Buades, B. Coll, and J.M. Morel. A non local algorithm for image denoising. IEEE
Computer Vision and Pattern Recognition, 2:60–65, 2005. DOI: http://dx.doi.org/10.
1109/CVPR.2005.38.

[14] A. Buades, B. Coll, and J.M. Morel. Nonlocal image and movie denoising. Interna-
tional Journal of Computer Vision, 76:123–139, 2008. DOI: http://dx.doi.org/10.1007/
s11263-007-0052-1.

[15] A. Buades, B. Coll, and J.M. Morel. Non-Local Means Denoising. Image Processing On
Line, 2011, 2011. http://dx.doi.org/10.5201/ipol.2011.bcm_nlm.

209

http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1007/s11263-007-0052-1
http://dx.doi.org/10.1007/s11263-007-0052-1
http://dx.doi.org/10.5201/ipol.2011.bcm_nlm

[16] A. Buades, B. Coll, J.M. Morel, et al. A review of image denoising algorithms, with a new
one. Multiscale Modeling and Simulation, 4(2):490–530, 2006. DOI: http://dx.doi.org/
10.1137/040616024.

[17] A. Buades, B. Coll, J.M. Morel, and C. Sbert. Self-similarity Driven Demosaicking. Image
Processing On Line, 1, 2011. http://dx.doi.org/10.5201/ipol.2011.bcms-ssdd.

[18] A. Buades, M. Colom, and J.M. Morel. Multiscale signal dependent noise estimation. Image
Processing On Line.

[19] A. Buades, Y. Lou, J.M. Morel, and Z. Tang. A note on multi-image denoising. In Local and
Non-Local Approximation in Image Processing, 2009. LNLA 2009. International Workshop
on, pages 1–15. IEEE, 2009.

[20] E.J. Candès and M.B. Wakin. An introduction to compressive sampling. Signal Processing
Magazine, IEEE, 25(2):21–30, 2008.

[21] M.A. Carreira-Perpinan. Mode-finding for mixtures of gaussian distributions. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 22(11):1318–1323, 2000.

[22] A. Chambolle. An algorithm for total variation minimization and applications. Journal
of Mathematical Imaging and Vision, 20:89–97, 2004. http://dx.doi.org/10.1023/B:
JMIV.OOOOO11325.36760.1e.

[23] P. Chatterjee and P. Milanfar. Is denoising dead? Image Processing, IEEE Transactions
on, 19(4):895–911, 2010. DOI: http://dx.doi.org/10.1109/TIP.2009.2037087.

[24] P. Chatterjee and P. Milanfar. Patch-based near-optimal image denoising. IEEE Transac-
tions on Image Processing, 2012.

[25] C. Chevalier, G. Roman, and J.N. Niepce. Guide du photographe. C. Chevalier, 1854.

[26] A. Cohen, I. Daubechies, and J.C. Feauveau. Biorthogonal bases of compactly supported
wavelets. Communications on pure and applied mathematics, 45(5):485–560, 1992.

[27] R. R. Coifman and D. L. Donoho. Translation-invariant de-noising, volume 103. Springer
New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2544-7_9.

[28] M. Colom and A. Buades. Analysis and extension of the percentile method, estimating
a noise curve from a single image. Image Processing On Line, 2013:322–349, 2013. DOI:
http://dx.doi.org/10.5201/ipol.2013.90.

[29] M. Colom and A. Buades. Analysis and Extension of the Ponomarenko et al. Method,
Estimating a Noise Curve from a Single Image. Image Processing On Line, 3:173–197, 2013.
DOI: http://dx.doi.org/10.5201/ipol.2013.45.

[30] M. Colom, A. Buades, and J.M. Morel. Nonparametric noise estimation method for raw
images. Journal of the Optical Society of America A, 31, 2014.

[31] M. Colom, G. Facciolo, M. Lebrun, N. Pierazzo, M. Rais, Y.Q. Wang, and J.M. Morel. A
mathematical perspective of image denoising. ICM conference, 2014, 2014. Submitted.

[32] M. Colom, M. Lebrun, A. Buades, and J.M. Morel. A non-parametric approach for the
estimation of intensity-frequency dependent noise. IEEE International Conference on Image
Processing, 2014. Submitted.

[33] M. Colom, M. Lebrun, A. Buades, and J.M. Morel. A non-parametric approach for the
estimation of intensity-frequency dependent noise. ICIP, 2014. Submitted.

210

http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.5201/ipol.2011.bcms-ssdd
http://dx.doi.org/10.1023/B:JMIV.OOOOO11325.36760.1e
http://dx.doi.org/10.1023/B:JMIV.OOOOO11325.36760.1e
http://dx.doi.org/10.1109/TIP.2009.2037087
http://dx.doi.org/10.1007/978-1-4612-2544-7_9
http://dx.doi.org/10.5201/ipol.2013.90
http://dx.doi.org/10.5201/ipol.2013.45

[34] S.F. Cotter, R. Adler, R.D. Rao, and K. Kreutz-Delgado. Forward sequential algorithms for
best basis selection. In Vision, Image and Signal Processing, IEE Proceedings, volume 146,
pages 235–244, 1999. http://dx.doi.org/10.1049/ip-vis:19990445.

[35] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3D transform-
domain collaborative filtering. IEEE Transactions on image processing, 16(82):3736–3745,
2007. DOI: http://dx.doi.org/10.1109/TIP.2007.901238.

[36] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, et al. BM3D image denoising with shape-
adaptive principal component analysis. Proc. of the Workshop on Signal Processing with
Adaptive Sparse Structured Representations, Saint-Malo, France, April 2009.

[37] A. Danielyan and A. Foi. Noise variance estimation in nonlocal transform domain. In
Proceedings of International Workshop on Local and Non-Local Approximation in Image
Processing, LNLA 2009.

[38] A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian. Denoising of multispectral images
via nonlocal groupwise spectrum-pca. Proc. of The fifth European Conference on Colour in
Graphics, Imaging, and Vision and of the 12th International Symposium on Multispectral
Colour Science held at University of Eastern Finland, Joensuu, Finland, June 2010.

[39] A. Danielyan, V. Katkovnik, and K. Egiazarian. BM3D frames and variational image de-
blurring. IEEE Transactions on Image Processing, 2012. DOI: http://dx.doi.org/10.
1109/TIP.2011.2176954.

[40] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Journal of
constructive Approximation, 13:57–98, 1997. http://dx.doi.org/10.1007/BF02678430.

[41] C.A. Deledalle, L. Denis, and F. Tupin. Nl-insar: Nonlocal interferogram estimation. Geo-
science and Remote Sensing, IEEE Transactions on, 49(4):1441–1452, 2011.

[42] C.A. Deledalle, V. Duval, and J. Salmon. Non-local methods with shape-adaptive patches
(nlm-sap). Journal of Mathematical Imaging and Vision, pages 1–18, 2010.

[43] C.A. Deledalle, J. Salmon, and A. Dalalyan. Image denoising with patch based PCA: local
versus global. In Proceedings of the British Machine Vision Conference, pages 25.1–25.10.
BMVA Press, 2011. DOI: http://dx.doi.org/10.5244/C.25.25.

[44] C.A. Deledalle, F. Tupin, and L. Denis. Poisson nl means: Unsupervised non local means
for poisson noise. In Image Processing (ICIP), 2010 17th IEEE International Conference
on, pages 801–804. IEEE, 2010.

[45] C.A. Deledalle, F. Tupin, and L. Denis. Polarimetric sar estimation based on non-local
means. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International,
pages 2515–2518. IEEE, 2010.

[46] Donoho. Smooth wavelet decompositions with blocky coefficient kernels. L. L. Schumaker
and G. Webb Eds. Recent Advances in Wavelet Analysis. Academic Press, New York, pages
259–308, 1993.

[47] D. Donoho and I. Johnstone. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika,
81:425–455, 1993. http://dx.doi.org/10.1093/biomet/81.3.425.

[48] D.L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information Theory,
41(3):613–627, 1995.

[49] D.L. Donoho and I.M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage.
Journal of the american statistical association, pages 1200–1224, 1995.

211

http://dx.doi.org/10.1049/ip-vis:19990445
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1109/TIP.2011.2176954
http://dx.doi.org/10.1109/TIP.2011.2176954
http://dx.doi.org/10.1007/BF02678430
http://dx.doi.org/10.5244/C.25.25
http://dx.doi.org/10.1093/biomet/81.3.425

[50] S. Durand and M. Nikolova. Restoration of wavelet coefficients by minimizing a specially
designed objective function. In Proc. IEEE Workshop on Variational, Geometric and Level
Set Methods in Computer Vision, pages 145–152, 2003.

[51] V. Duval, J.F. Aujol, and Y. Gousseau. A bias-variance approach for the nonlocal means.
SIAM Journal on Imaging Sciences, 4:760, 2011.

[52] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In International
Conference on Computer Vision, volume 2, pages 1033–1038. Corfu, Greece, 1999. DOI:
http://dx.doi.org/10.1109/ICCV.1999.790383.

[53] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Transactions on image processing, 15(12):3736–3745, 2006. http:
//dx.doi.org/10.1109/TIP.2006.881969.

[54] A. Foi. Noise estimation and removal in mr imaging: The variance-stabilization approach. In
Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, pages
1809–1814. IEEE, 2011.

[55] A. Foi, S. Alenius, V. Katkovnik, and K. Egiazarian. Noise measurement for raw-data of
digital imaging sensors by automatic segmentation of non-uniform targets. IEEE Sensors
Journal, 7(10):1456–1461, 2007.

[56] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. Practical Poissonian-Gaussian Noise
Modeling and Fitting for Single-Image Raw-Data. IEEE TRANSACTIONS ON IMAGE
PROCESSING, 17(10):1737–1754, 2008.

[57] S. Gabarda and G. Cristóbal. The generalized Rényi image entropy as a noise indicator.
Noise and Fluctuations in Photonics, Quantum Optics, and Communications, 6603, 2007.
http://dx.doi.org/10.1117/12.725086.

[58] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6:721–
741, 1984.

[59] P. Getreuer. Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman. Image
Processing On Line, 2012, 2012. http://dx.doi.org/10.5201/ipol.2012.g-tvd.

[60] O.G. Guleryuz. Weighted averaging for denoising with overcomplete dictionaries. Transac-
tions on Image Processing, 16(12):3020–3034, 2007.

[61] J.L. Harris. Image evaluation and restoration. Journal of the Optical Society of America,
56(5):569–570, 1966.

[62] J. Hays and A.A. Efros. Scene completion using millions of photographs. In ACM Transac-
tions on Graphics (TOG), volume 26, page 4. ACM, 2007.

[63] Y. Hou, C. Zhao, D. Yang, and Y. Cheng. Comments on image denoising by sparse
3-d transform-domain collaborative filtering. Image Processing, IEEE Transactions on,
20(1):268–270, 2011.

[64] Yingkun Hou, Chunxia Zhao, Deyun Yang, and Yong Cheng. Comments on “Image Denoising
by Sparse 3-D Transform-Domain Collaborative Filtering”. IEEE Transactions on Image
Processing, 20(1), January 2011. DOI: http://dx.doi.org/10.1109/TIP.2010.2052281.

[65] S.B. Howell. Wavelets-Algorithms and applications. Society for Industrial and Applied
Mathematics, 1993.

[66] J. Immerkaer. Fast noise variance estimation. Computer Vision and Image Understanding,
64(2):300–302, 1996.

212

http://dx.doi.org/10.1109/ICCV.1999.790383
http://dx.doi.org/10.1109/TIP.2006.881969
http://dx.doi.org/10.1109/TIP.2006.881969
http://dx.doi.org/10.1117/12.725086
http://dx.doi.org/10.5201/ipol.2012.g-tvd
http://dx.doi.org/10.1109/TIP.2010.2052281

[67] J.F Hamilton Jr. and J.E. Adams Jr. Adaptive color plan interpolation in single sensor color
electronic camera, may 1997. US Patent 5,629,734.

[68] V. Katkovnik, A. Danielyan, and K. Egiazarian. Decoupled inverse and denoising for im-
age deblurring: variational BM3D-frame technique. In Proceedings of IEEE International
Conference on Image Processing (ICIP, 2011), 2011. DOI: http://dx.doi.org/10.1109/
ICIP.2011.6116455.

[69] V. Katkovnik, K. Egiazarian, and J. Astola. Local approximation techniques in signal and
image processing, volume PM157. Society of Photo Optical, 2006. DOI: http://dx.doi.
org/10.1117/3.660178.

[70] S.M. Kay. Fundamentals of statistical signal processing: Estimation theory, 1993.

[71] C. Kervrann and J. Boulanger. Local Adaptivity to Variable Smoothness for Exemplar-
Based Image Regularization and Representation. International Journal of Computer Vision,
79(1):45–69, 2008.

[72] C. Knaus and M. Zwicker. Dual-Domain Image Denoising. IEEE ICIP, 2013.

[73] E.D. Kolaczyk. Wavelet shrinkage estimation of certain Poisson intensity signals using cor-
rected thresholds. Statist. Sin., 9:119–135, 1999.

[74] M. Lebrun. An Analysis and Implementation of the BM3D Image Denoising Method. Image
Processing On Line, 2012, 2012. http://dx.doi.org/10.5201/ipol.2012.l-bm3d.

[75] M. Lebrun, A. Buades, and J.M. Morel. A Nonlocal Bayesian Image Denoising Algo-
rithm. SIAM Journal Image Science, 6(3):1665–1688, 2013. http://dx.doi.org/10.1137/
120874989.

[76] M. Lebrun, A. Buades, and J.M. Morel. Implementation of the "Non-Local Bayes" (NL-
Bayes) Image Denoising Algorithm. Image Processing On Line, 2013:1–42, 2013. http:
//dx.doi.org/10.5201/ipol.2013.16.

[77] M. Lebrun, M. Colom, A. Buades, and J.M. Morel. Secrets of image denoising cuisine. Acta
Numerica, 21:475–576, 2012. http://dx.doi.org/10.1017/S0962492912000062.

[78] M. Lebrun, M. Colom, and J.M. Morel. Multiscale Image Blind Denoising. Transaction on
Image Processing, 2014. Submitted.

[79] M. Lebrun, M. Colom, and J.M. Morel. The Noise Clinic, a Universal Blind Denoising
Algorithm. ICIP, 2014. Submitted.

[80] M. Lebrun and A. Leclaire. An Implementation and Detailed Analysis of the K-SVD Image
Denoising Algorithm. Image Processing On Line, 2012, 2012. http://dx.doi.org/10.
5201/ipol.2012.llm-ksvd.

[81] A.B. Lee, K.S. Pedersen, and D. Mumford. The nonlinear statistics of high-contrast patches
in natural images. International Journal of Computer Vision, 54(1):83–103, 2003.

[82] J.S. Lee. Refined filtering of image noise using local statistics. Computer graphics and image
processing, 15(4):380–389, 1981.

[83] J.S. Lee. Digital image smoothing and the sigma filter. Computer Vision, Graphics, and
Image Processing, 24(2):255–269, 1983.

[84] J.S. Lee and K. Hoppel. Noise modelling and estimation of remotely-sensed images. Proceed-
ings of the International Geoscience and Remote Sensing Symposium, 2:1005–1008, 1989.

213

http://dx.doi.org/10.1109/ICIP.2011.6116455
http://dx.doi.org/10.1109/ICIP.2011.6116455
http://dx.doi.org/10.1117/3.660178
http://dx.doi.org/10.1117/3.660178
http://dx.doi.org/10.5201/ipol.2012.l-bm3d
http://dx.doi.org/10.1137/120874989
http://dx.doi.org/10.1137/120874989
http://dx.doi.org/10.5201/ipol.2013.16
http://dx.doi.org/10.5201/ipol.2013.16
http://dx.doi.org/10.1017/S0962492912000062
http://dx.doi.org/10.5201/ipol.2012.llm-ksvd
http://dx.doi.org/10.5201/ipol.2012.llm-ksvd

[85] S. Lefkimmiatis, P. Maragos, and G. Papandreou. Bayesian inference on multiscale mod-
els for poisson intensity estimation: Application to photo-limited image denoising. IEEE
Transactions on Image Processing, 18(8):1724–1741, 2009.

[86] A. Levin and B. Nadler. Natural image denoising: Optimality and inherent bounds. In
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 2833–
2840. IEEE, 2011. DOI: http://dx.doi.org/10.1109/CVPR.2011.5995309.

[87] C. Liu, W. Freeman, R. Szeliski, and S. Kang. Automatic estimation and removal of noise
from a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(2):299–314, February 2008. DOI: http://dx.doi.org/10.1109/TPAMI.2007.1176.

[88] C. Liu, W.T. Freeman, R. Szeliski, and S.B. Kang. Noise estimation from a single image.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,
volume 1, pages 901–908. IEEE, 2006.

[89] S. Lyu and E.P. Simoncelli. Modeling multiscale subbands of photographic images with fields
of Gaussian scale mixtures. Transactions on Pattern Analysis and Machine Intelligence,
31(4):693–706, 2009.

[90] J. Mairal. Représentations parcimonieuses en apprentissage statistique, traitement d’image
et vision par ordinateur. PhD thesis, 2010.

[91] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and
sparse coding. Journal of Machine Learning Research, 11:19–60, 2010.

[92] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for
image restoration. In ICCV’09, pages 2272–2279, 2009. http://dx.doi.org/10.1109/
ICCV.2009.5459452.

[93] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE
Transactions on image processing, 17(1):53–69, 2008. DOI: http://dx.doi.org/10.1109/
TIP.2007.911828.

[94] J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image
and video restoration. SIAM Multiscale Modeling and Simulation, 7(1):214–241, 2008. DOI:
http://dx.doi.org/10.1137/070697653.

[95] M. Makitalo and A. Foi. Optimal inversion of the Anscombe transformation in low-count
Poisson image denoising. Image Processing, IEEE Transactions on, 20(1):99–109, 2011.

[96] S. Mallat. A Wavelet Tour of Signal Processing. Academic press, 1999.

[97] S. Mallat and Z. Zhang. Matching Pursuits with Time-Frequency Dictionaries. IEEE Trans-
actions on signal processing, 41(12), December 1992. http://dx.doi.org/10.1109/78.
258082.

[98] G.A. Mastin. Adaptive filters for digital image noise smoothing: An evaluation. Computer
Vision, Graphics, and Image Processing, 31(1):103–121, 1985.

[99] P. Meer, J.M. Jolion, and A. Rosenfeld. A fast parallel algorithm for blind estimation of noise
variance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 12(2):216–223,
1990.

[100] P. Milanfar. A tour of modern image filtering. IEEE Signal Processing Magazine, 2, 2011.

[101] R. Neelamani, R. De Queiroz, Z. Fan, S. Dash, and R.G. Baraniuk. JPEG compression
history estimation for color images. Image Processing, IEEE Transactions on, 15(6):1365–
1378, 2006.

214

http://dx.doi.org/10.1109/CVPR.2011.5995309
http://dx.doi.org/10.1109/TPAMI.2007.1176
http://dx.doi.org/10.1109/ICCV.2009.5459452
http://dx.doi.org/10.1109/ICCV.2009.5459452
http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1137/070697653
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1109/78.258082

[102] A. Nemirovski. Topics in non-parametric statistics. Lectures on probability theory and
statistics (Saint-Flour, 1998), 1738:85–277, 2000.

[103] D.R. Nowak and R.G. Baraniuk. Wavelet-domain filtering for photon imaging systems. IEEE
Transactions on Image Processing, 8(5):666–678, 1997.

[104] S.I. Olsen. Estimation of noise in images: An evaluation. CVGIP: Graphical Models and
Image Processing, 55(4):319–323, 1993.

[105] E. Ordentlich, G. Seroussi, S. Verdu, M. Weinberger, and T. Weissman. A discrete uni-
versal denoiser and its application to binary images. In International Conference on Image
Processing, volume 1, 2003.

[106] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. Using geometry and iterated re-
finement for inverse problems (1): Total variation based image restoration. Department of
Mathematics, UCLA, LA, CA, 90095:04–13, 2004.

[107] E. Le Pennec and S. Mallat. Geometrical image compression with bandelets. In Proceedings
of the SPIE 2003, volume 5150, pages 1273–1286, 2003.

[108] N. Pierazzo, M. Lebrun, M.E. Rais, J.M. Morel, and G. Facciolo. Non-Local Dual image
Denoising. ICIP, 2014. Submitted.

[109] N. Ponomarenko, V. Lukin, K. Egiazarian, and J. Astola. A method for blind estimation of
spatially correlated noise characteristics. In IS&T/SPIE Electronic Imaging, pages 753208–
753208. International Society for Optics and Photonics, 2010. http://dx.doi.org/10.
1117/12.847986.

[110] N.N. Ponomarenko, V.V. Lukin, S.K. Abramov, K.O. Egiazarian, and J.T. Astola. Blind
evaluation of additive noise variance in textured images by nonlinear processing of block dct
coefficients. In Proceedings of SPIE, volume 5014, page 178, 2003.

[111] N.N. Ponomarenko, V.V. Lukin, M.S. Zriakhov, A. Kaarna, and J.T. Astola. An auto-
matic approach to lossy compression of AVIRIS images. IEEE International Geoscience and
Remote Sensing Symposium, 2007.

[112] J. Portilla. Blind non-white noise removal in images using gaussian scale mixtures in the
wavelet domain. Benelux Signal Processing Symposium, 2004.

[113] J. Portilla. Full blind denoising through noise covariance estimation using gaussian scale
mixtures in the wavelet domain. Image Processing, 2004. ICIP’04. 2004 International Con-
ference on, 2:1217–1220, 2004. DOI: http://dx.doi.org/10.1109/ICIP.2004.1419524.

[114] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli. Image denoising using scale
mixtures of Gaussians in the wavelet domain. Image Processing, IEEE Transactions on,
12(11):1338–1351, 2003. DOI: http://dx.doi.org/10.1109/TIP.2003.818640.

[115] S. Pyatykh, J. Hesser, and L. Zheng. Image noise level estimation by principal component
analysis. IEEE Transactions on Image Processing, 2012.

[116] T. Rabie. Robust estimation approach for blind denoising. IEEE Transactions on Image
Processing, 14(11):1755–1765, November 2005. DOI: http://dx.doi.org/10.1109/TIP.
2005.857276.

[117] B. Rajaei. An analysis and improvement of the BLS-GSM denoising method. Image Pro-
cessing On Line, 2013, 2013. Preprint.

[118] K. Rank, M. Lendl, and R. Unbehauen. Estimation of image noise variance. In Vision,
Image and Signal Processing, IEE Proceedings-, volume 146, pages 80–84. IET, 1999.

215

http://dx.doi.org/10.1117/12.847986
http://dx.doi.org/10.1117/12.847986
http://dx.doi.org/10.1109/ICIP.2004.1419524
http://dx.doi.org/10.1109/TIP.2003.818640
http://dx.doi.org/10.1109/TIP.2005.857276
http://dx.doi.org/10.1109/TIP.2005.857276

[119] M. Raphan and E.P. Simoncelli. Learning to be bayesian without supervision. Advances in
neural information processing systems, 19:1145, 2007.

[120] M. Raphan and E.P. Simoncelli. An empirical bayesian interpretation and generalization
of nl-means. Technical report, Technical Report TR2010-934, Computer Science Technical
Report, Courant Inst. of Mathematical Sciences, New York University, 2010.

[121] W.H. Richardson. Bayesian-based iterative method of image restoration. Journal of the
Optical Society of America, 62(1):55–59, 1972. DOI: http://dx.doi.org/10.1364/JOSA.
62.000055.

[122] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algo-
rithms. Phys. D, 60:259–268, 1992. DOI: http://dx.doi.org/10.1016/0167-2789(92)
90242-F.

[123] B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman. Labelme: a database and web-
based tool for image annotation. International Journal of Computer Vision, 77(1):157–173,
2008.

[124] C.E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Com-
puting and Communications Review, 5(1):3–55, 2001.

[125] S.M. Smith and J.M. Brady. SUSAN-A new approach to low level image processing. Inter-
national Journal of Computer Vision, 23(1):45–78, 1997.

[126] J.L. Starck, E.J. Candès, and D.L. Donoho. The curvelet transform for image denoising.
IEEE Transactions on image processing, 11:670–684, 2002. DOI: http://dx.doi.org/10.
1109/TIP.2002.1014998.

[127] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. IEEE ICCV,
1998.

[128] J.W. Tukey. Exploratory data analysis. 1977. Massachusetts: Addison-Wesley, 1976.

[129] M.L. Uss, B. Vozel, V.V. Lukin, and K. Chehdi. Image informative maps for component-
wise estimating parameters of signal-dependent noise. Journal of Electronic Imaging,
22(1):013019–013019, 2013.

[130] D. Van De Ville and M. Kocher. Sure-based non-local means. Signal Processing Letters,
IEEE, 16(11):973–976, 2009.

[131] H. Voorhees and T. Poggio. Detecting textons and texture boundaries in natural image.
In Proceedings of the First International Conference on Computer Vision London, pages
250–258. IEEE, Washington, DC, 1987.

[132] G.K. Wallace. The JPEG still picture compression standard. Communications of the ACM,
34(4):30–44, 1991.

[133] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: From
error visibility to structural similarity. IEEE TIP, 13(4), 2004.

[134] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M.J. Weinberger. Universal discrete
denoising: Known channel. IEEE Transactions on Information Theory, 51(1):5–28, 2005.

[135] L. Yaroslavsky and M. Eden. Fundamentals of Digital Optics, 2003.

[136] L.P. Yaroslavsky. Digital Picture Processing. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1985.

216

http://dx.doi.org/10.1364/JOSA.62.000055
http://dx.doi.org/10.1364/JOSA.62.000055
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1109/TIP.2002.1014998
http://dx.doi.org/10.1109/TIP.2002.1014998

[137] L.P. Yaroslavsky. Local adaptive image restoration and enhancement with the use of DFT
and DCT in a running window. In Proceedings of SPIE, volume 2825, pages 2–13, 1996.
DOI: http://dx.doi.org/10.1117/12.255218.

[138] L.P. Yaroslavsky, K.O. Egiazarian, and J.T. Astola. Transform domain image restoration
methods: review, comparison, and interpretation. In Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series, volume 4304, pages 155–169, May 2001. DOI:
http://dx.doi.org/10.1117/12.424970.

[139] G. Yu and G. Sapiro. DCT image denoising: a simple and effective image denoising algo-
rithm. Image Processing On Line, 2011, 2011. http://dx.doi.org/10.5201/ipol.2011.
ys-dct.

[140] G. Yu, G. Sapiro, and S. Mallat. Image modeling and enhancement via structured sparse
model selection. In 2010 17th IEEE International Conference on Image Processing (ICIP),
pages 1641–1644, 2010. DOI: http://dx.doi.org/10.1109/ICIP.2010.5653853.

[141] G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estimators:
from Gaussian mixture models to structured sparsity. Transactions on Image Processing,
21(5):2481–2499, 2012.

[142] L. Zhang, W. Dong, D. Zhang, and G. Shi. Two-stage image denoising by principal compo-
nent analysis with local pixel grouping. Pattern Recognition, 43(4):1531–1549, 2010. DOI:
http://dx.doi.org/10.1016/j.patcog.2009.09.023.

[143] M. Zhou, H. Yang, G. Sapiro, D. Dunson, and L. Carin. Dependent hierarchical beta process
for image interpolation and denoising. In International Conference on Artificial Intelligence
and Statistics, 2011.

[144] D. Zoran and Y. Weiss. Scale invariance and noise in natural images. In Computer Vision,
2009 IEEE 12th International Conference on, pages 2209–2216. IEEE, 2009.

[145] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image
restoration. International Conference on Computer Vision, 2011.

217

http://dx.doi.org/10.1117/12.255218
http://dx.doi.org/10.1117/12.424970
http://dx.doi.org/10.5201/ipol.2011.ys-dct
http://dx.doi.org/10.5201/ipol.2011.ys-dct
http://dx.doi.org/10.1109/ICIP.2010.5653853
http://dx.doi.org/10.1016/j.patcog.2009.09.023

	I Denoising methods
	Introduction: denoising methods and noise
	Introduction
	Noise

	Four Denoising Principles
	Bayesian patch-based methods
	Transform thresholding
	Sparse coding
	Image self-similarity leading to pixel averaging

	Noise Reduction, Generic Tools
	Aggregation of estimates
	Iteration and ``oracle'' filters
	Dealing with colour images
	Trying all generic tools on an example

	Detailed Analysis of Ten Methods
	Non-local means
	Non-local Bayesian denoising
	Patch-based near-optimal image denoising (PLOW)
	Inherent bounds in image denoising
	The expected patch log likelihood (EPLL) method
	The Portilla et al. wavelet neighborhood denoising (BLS-GSM)
	K-SVD
	BM3D
	The piecewise linear estimation (PLE) method
	Non-local Dual Denoising

	Comparison of Denoising Algorithms
	``Method noise''
	The ``noise to noise'' principle
	Comparing visual quality
	Comparing by PSNR

	Conclusion about Denoising Methods
	Synthesis
	The denoising principles
	Patches
	Size of patches
	Aggregation, Oracle, and Color Space Transform
	Complexity and Information

	II Noise Clinic
	White Noise Estimation
	Can noise be estimated from (just) one image?
	The Percentile method
	A crash course on all other noise estimation methods

	Generic Noise Estimation
	Introduction
	Noise estimation algorithm
	Discussion
	Validation of the method
	Conclusion

	Noise Clinic
	Introduction
	A Generalized Nonlocal Bayesian Algorithm
	Obtaining the Covariance Matrix of Noise Patches
	The Multiscale Algorithm
	Validation
	Results
	Discussion

	III Reproducible research contributions
	A Detailed Analysis and Implementation of K-SVD
	Introduction
	Theoretical Description
	Influence of the Parameters on the Performance
	A Detailed Study of Possible Variants
	Conclusion

	A Detailed Analysis and Implementation of BM3D
	Introduction
	The Algorithm Step by Step
	A Study of the Optimal Parameters
	A Detailed Study of Possible Variants
	Extending BM3D to Color Images

	A Detailed Analysis and Implementation of NL-Bayes
	Introduction
	Theory
	Implementation
	Influence of the Parameters on the Performance of NL-Bayes
	A Detailed Study of the Algorithm
	Conclusion

