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Résumé

Soit f = g+, @nq" € Sk(N, €) une newform (c’est-a-dire une forme parabolique
nouvelle, propre, et normalisée) de poids k& € N*| de niveau N € N* et de nebenty-
pus €. On sait alors que le corps

Kf:Q(an, 77,2 2)

engendré par les coefficients de Fourier de f est un corps de nombres, et qu’il contient
les valeurs prises par €.

En observant la forme des congruences dites “de Ramanujan” satisfaites par les
coefficients de Fourier du discriminant modulaire

“+o00
A=q]J—q"" e Sn),
n=1

J.-P. Serre a conjecturé dans [Ser6i] que pour toute newform f de poids k£ > 2 comme
ci-dessus, et pour tout premier [ du corps de nombres K7, il existe une représentation
galoisienne [-adique

pri Gal(Q/Q) — GLy(Zk,,)

non-ramifiée hors de /N et telle que 'image de tout élément de Frobenius en p{ (N
ait pour polynome caractéristique

X2 —apX +e(p)p! € L, [X],

ce qui caractérise py; a isomorphisme pres, ou Zg,  est la complétion [-adique de
I'anneau des entiers Zg, de Ky, et £ est la caractéristique résiduelle de [. L’existence
de py fut prouvée peu de temps apres par P. Deligne dans [Del71)].

Soit [Fy le corps résiduel de [. En réduisant la représentation galoisienne [-adique
ci-dessus modulo [ et en semi-simplifiant, on obtient une représentation galoisienne
modulo [

pr: Gal(@/Q) — GLy(Fy)

bien définie a isomorphisme pres, non-ramifiée hors de /N, et telle que 'image de
tout élément de Frobenius en p 1 /N ait pour polynome caractéristique

X? —a,X +e(p)ptt e FX].

En particulier, la trace de cette image est a, mod [, ce qui, comme remarqué par
J.-M. Couveignes et B. Edixhoven inspirés par le travail précurseur de R. Schoof
(cf. [Sch9i]), rend possible le calcul rapide de a, modulo [ pour p gigantesque.
Les coefficients a, peuvent ensuite étre reconstitués par restes chinois en faisant
varier [, ce qui fournit I'unique moyen théorique connu a ce jour de calculer a, en
temps polynomial en log p, ainsi qu’expliqué dans le livre [CETT]; cependant, le cotit
prohibitif du calcul de la représentation galoisienne p,; pour ¢ grand fait que cette
approche est malheureusement irréaliste a 'heure actuelle.



L’objet de cette these est I’étude et I'implémentation d’un algorithme, basé sur
les idées contenues dans le livre [CETT] édité par J.-M. Couveignes et B. Edixhoven,
qui calcule cette représentation galoisienne modulo [, a condition que son image
contienne SLy () (ce qui est le cas générique, et aussi le plus intéressant), que k < ¢,
que N soit premier a £, et que [ soit de degré 1 de sorte que F; ~ F,. De plus, le corps
de nombres L = @Ker P11 coupé par cette représentation, qui posséde de nombreuses
propriétés intéressantes (il est notamment souvent solution au probleme inverse de
Galois pour GLy(FF), ou méme au probleme de Gross), est calculé explicitement au
cours de l'exécution de l'algorithme.

Cet algorithme, que je décris en détail dans la partie B, repose sur le fait que si
k < £, alors la représentation galoisienne p; est réalisée par 'action de Galois sur le
sous-IFi-plan vectoriel

—+00
Vio = () Kex(T,, — a, mod 0)yy, v € Ji(N')[(]
n=1

de la ¢-torsion de la jacobienne Jj(N’) de la courbe modulaire X;(N'), ou N' = N
sik =2et N = /N sik > 2. Dans le cas de poids k£ = 2, ceci découle de
la relation d’Eichler-Shimura, et le cas de poids suprieur s’en déduit grace a un
théoreme d’abaissement du poids dia a B. Gross qui entraine I'existence d’une forme

de poids 2 et de niveau /N qui est congrue a f modulo [, comme expliqué dans la
section AZIT13.

L’algorithme commence par donner une description analytique de l'espace Vi
plongé dans la jacobienne

Jy(N") = Hom (S, (T'1(N")),C) /Hy (X1 (N'), Z)

vue comme un tore complexe, en calculant numériquement le réseau des périodes de la
courbe modulaire X;(N’) a grande précision. Ceci nécessite de choisir soigneusement,
les symboles modulaires le long desquels les formes sont intégrées en vue de maximiser
la vitesse de convergence des séries en ¢, et de calculer un grand nombre de coefficients
du g-développement de ces formes.

L’algorithme transforme ensuite ce modele analytique en un modele algébrique
en représentant les points de Vi par des diviseurs sur X;(N')(C), en inversant lo-
calement I'application d’Abel-Jacobi

g: Div? (X3 (N)) — Ji(N)

S Qi — B) Zni/Qi

grace a une itération de Newton. Afin d’aider la convergence de l'itération de Newton,
I’algorithme vise en fait des points de 2™¢-torsion au lieu de points de ¢-torsion, ou
m =~ 10 est un entier, puis il double m fois la classe d’équivalence linéaire du diviseur
obtenu.



Cette nouvelle représentation algébrique étant Galois-équivariante, ceci permet

, . ~Kerpg , , .

de déterminer le corps de nombres L = Q © coupé par la représentation, en
évaluant les valeurs prises par une fonction a € Q(Jl(N ! )) en les points de Vy, puis

en formant le polynome

F(X)= ][ (X —a(@) €Qlx]

z€Vy |

x#0
dont ces valeurs sont les racines et dont le corps de décomposition est donc L. Le
choix de la fonction d’évaluation « fait I'objet d’un attention particuliere, afin de
modérer autant que possible la hauteur arithmétique du polynéme F(X). Ce méme
polynome est ensuite réduit progressivement en tirant parti de la structure du treillis
de sous-corps de L. On obtient alors une description de la représentation galoisi-
enne p, sous la forme d’un ensemble fini de nombres algébriques conjugués sur
lesquels I'action de Gal(Q/Q) est connue et correspond & son action sur les points
de Vf}[ - {0}

Enfin, I’algorithme utilise une méthode due a T. et V. Dokchitser pour calculer
I'image par p; d’un élement de Frobenius en p en fonction d’un premier rationnel
p 1 (N choisi. Comme un tel élément de Frobenius n’est défini qu’'a conjugaison
et inertie pres, le résultat est une classe de similitude dans GLy(F(), dont on peut
examiner la trace afin de déterminer la valeur du coefficient a, de f modulo [. Seule
cette derniere étape de 'algorithme doit étre renouvelée pour calculer I'image dun
¢lément de Frobenius en un autre premier p, et ainsi un autre coefficient a, mod [.

Grace a de nombreuses améliorations par rapport a la version décrite dans [CETT)],
telles que

e l'utilisation d'une nouvelle méthode permettant de calculer le g-développe-
ment a grande précision d’une base de Sy (Fl(N )) en temps quasi-linéaire en
la précision g-adique (cf. section B=3),

e l'application des méthodes de K. Khuri-Makdisi (cf. section BAT3) pour cal-
culer dans la jacobienne modulaire J; (),

e la construction d'une fonction & € Q(J;(NN)) au bon comportement arith-
métique suivant des idées nouvelles et naturellement adaptées au mode de
représentation des diviseurs utilisé par les algorithmes de K. Khuri-Makdisi

(cf. section BZ34),

e ou encore 'utilisation d’une représentation galoisienne “quotient” (cf. section
[B=35) permettant de part sa taille inférieure de réduire la taille des coefficients
du polynéme qui la définit (cf. section BZ3532) sans pour autant sacrifier
d’informations essentielles,

cet algorithme est tres rapide et permet d’atteindre des valeurs de ¢ jusqu’alors
inaccessibles tout en fournissant une description compacte du corps de nombres L
coupé par la représentation. Je 'ai ainsi utilisé pour battre des records de niveau et
de genre dans le calcul de représentations galoisiennes modulaires (jusqu'a ¢ = 31, ce
qui implique de calculer dans la jacobienne d'une courbe modulaire de genre g = 26),
ainsi qu’illustré par les tables de coefficients a, mod [ figurant a la section .



Puisque I'algorithme repose sur le calcul d’approximations complexes de points
de (-torsion dans la jacobienne modulaire, il doit & un moment donné identifier des
nombres rationnels a partir de leur approximation flottante. Pour cette raison, je
présente dans la derniere section C2 de cette these une méthode basée sur la con-
jecture de modularité de Serre pour prouver rigoureusement, dans le cas particulier
ou f est de niveau N = 1, que le corps de nombres L coupé par la représentation
galoisienne a bien été correctement identifié.

Je commence par prouver que le groupe de Galois du corps Li.; coupé par la
version projective de la représentation galoisienne calculée par 'algorithme est bien
un sous-groupe de PGLy () en vérifiant que son action sur PF; préserve le birapport;
j’en déduis que cette représentation projective est la bonne, en déterminant son poids
de Serre par I'examen de la valuation /-adique du discriminant de L.

Je vérifie ensuite que le groupe de Galois du corps Lquot coupé par la représenta-
tion quotient calculée par 'algorithme est isomorphe au quotient attendu de GLy(IF)),
en classifiant certaines extensions centrales de PGLs(F,) et en m’appuyant sur le fait
que Lguot n'est ramifié qu’en ¢ pour faire le tri parmi les cas possibles. Il est alors
facile de conclure que le corps Lo calculé par 1'algorithme est isomorphe au corps
coupé par la représentation quotient associée a f modulo [.

La premiere partie de cette these rappelle la théorie et les résultats utilisés par
la suite, du théoreme de Riemann-Roch pour les courbes algébriques a la conjecture
de modularité de Serre en passant par la définition d’une forme modulaire et d'une
représentation galoisienne, afin que la description détaillée de I'algorithme de calcul
de représentations galoisiennes modulaires soit accessible au non-spécialiste. Par
conséquent, cette partie, malgré sa longueur, ne contient aucun résultat original.
J’invite donc fortement le lecteur a survoler tres rapidement cette partie
A et a passer directement aux parties B et C qui commencent page 37,
quitte a revenir a la partie A pour compléter ses connaissances sur un
sujet qui ne lui serait pas familier. Mon travail est présenté dans les parties B
(description de l'algorithme) et C (tables de résultats de mes calculs et preuve de
ceux-ci).



Summary

Let f=q+ ) ,2,0.q" € Sk(N,¢) be a newform of weight k € N, level N € N
and nebentypus ¢. It is known that the field

Ky =Q(a,, n>2)

spanned by the Fourier coefficients of f is a number field, which contains the values
assumed by &.

As he observed the form of the so-called Ramanujan congruences satisfied by the
Fourier coefficients of the modular discriminant

+oo
A= QH(l —¢")* € S12(1),
n=1

J.-P. Serre conjectured in [Ser6Y] that for each newform f of weight k > 2 as above,
and for each prime [ of the number field K, there exists an [-adic Galois represen-
tation

Pr.L Gal(@/@) — GLz(ZKﬂ)

which is unramified outside /N and such that the characteristic polynomial of the
image of any Frobenius element at p { (N is

X2 —a,X +e(p)p € L, [X],

which characterises py; up to isomorphism, where Zg,  is the l-adic completion of
the ring of integers Zg, of Ky, and ¢ denotes the residual characteristic of [. The
existence of ps; was proved shortly after by P. Deligne in [Del7T].

Let [ be the residual field of [. Reducing the above [-adic Galois representation
modulo [ and semi-simplifying yields a modulo I Galois representation

ﬁf’[I Gal(@/@) — GLQ(F[)

which is well-defined up to isomorphism, unramified outside /N, and such that the
characteristic polynomial of the image of any Frobenius element at p { {N is

X2 —a,X +e(p)p" ! € F[X].

In particular, the trace of this image is a, mod [, which, as noticed by J.-M.
Couveignes and B. Edixhoven inspired by R. Schoof’s pioneering work (cf. [Sch95]),
makes it possible to compute a, modulo [ for huge p. The coefficients a, may then be
recovered by Chinese remainders by letting [ vary, which yields the to date only known
theoretical way to compute a, in time polynomial in log p, as explained in the book
[CETT]; however, the prohibitive cost of the computation of the Galois representation
Py for large £ unfortunately makes this approach unrealistic at present.



The goal of this thesis is to describe and implement an algorithm, based on ideas
from the book [CETI] edited by J.-M. Couveignes and B. Edixhoven, which aims
to compute this modulo [ Galois representation, provided that its image contains
SLo(F;) (which is the generic and also most interesting case), that k < ¢, and that
[ is of degree 1 so that F; ~ F,. Besides, the number field L = @Kerﬂf ' cut out by
this representation, which enjoys various interesting properties (it is a solution to the
inverse Galois problem for GLy(FF), and even to the Gross problem), is computed

explicitly along the algorithm execution.

This algorithm, which I describe in details in part B, relies on the fact that if
k < ¢, then the Galois representation p; is afforded by the Galois action on the
sub-F-vector plane

+oo
Vi = ﬂ Ker(T,, — a, mod [);5,(n1g € J1(N')[¢]
n=1

of the (-torsion of the jacobian J;(N’) of the modular curve X;(N’), where N' = N
if k =2 and N’ = /(N if k > 2. In the case of weight & = 2, this is a consequence of
the Eichler-Shimura relation, and the higher-weight case follows thanks to a weight-
lowering theorem of B. Gross’s, which implies the existence of a form of weight 2 and
level /N which is congruent to f modulo [, as explained in section B=37373.

To begin with, the algorithm gives an analytic description of the space Vy; em-
bedded in the jacobian

Ji(N') ~ Hom (S (I'1(N")),C)/H:(X1(N'), Z)

seen as a complex torus, by numerically computing the period lattice of the modular
curve X;(N’) with high accuracy. This requires a careful selection of the modular
symbols along which cuspforms are integrated so as to maximise the speed of con-
vergence of the g-series, and to compute a large number of g-expansion coefficients
of these cuspforms.

The algorithm then switches from this analytic model to an algebraic one by
representing points on Vy by divisors on X;(N')(C), through a local inversion of the
Abel-Jacobi map

7: Div’ (Xi(N)) — L(N)

> ni(Qi—P) — Zni/Qi

performed thanks to a Newton iteration scheme. In order to help the Newton it-
eration to converge, the algorithm actually aims for 2"/-torsion points instead of
(-torsion ones, with m = 10 an integer, and then doubles m times the linear equiva-
lence class of the divisor thus computed.



As this new algebraic representation is Galois-equivariant, this allows to deter-
mine the number field L = @Ker It cut out by the representation, by evaluating the
values assumed by a rational function o € Q(J;(N’)) at the points of Vj;, and then

by forming the polynomial

F(x) = ] (X -al@)) € QX]
e

whose roots are these values and whose splitting field is thus L. The evaluation
function « is constructed especially carefully, so as to curb the arithmetic height
of the polynomial F'(X) as much as possible. This polynomial is then inductively
reduced by drawing on the structure of the lattice of subfields of L. This yields
a description of the Galois representation p;( in terms of a finite set of conjugate
algebraic numbers on which the action of Gal(Q/Q) is known and corresponds to its
action on Vi — {0}.

Finally, the algorithm uses a method of T. and V. Dokchitser’s to compute the
image by p; of a Frobenius element at a chosen rational prime p { £V. Since such a
Frobenius element is defined up to conjugation and inertia, the result is a similarity
class in GLy(Fy), whose trace can be looked up so as to determine the value modulo
[ of the coefficient a, of f. Only this last step of the algorithm must be repeated in
order to compute the image of a Frobenius element at another prime p, and hence
another coefficient a, mod I.

Thanks to numerous improvements over the version described in [CETT], such as

e a new method allowing to compute the g-expansion with high accuracy of a
basis of Sy(I'1(N)) in time quasi-linear in the g-adic accuracy (cf. section

[B=3),

e the use of K. Khuri-Makdisi’s methods (cf. section AT3) to compute in the
modular jacobian J;(N),

e the construction of an arithmetically well-behaved function a € Q(J;(N))
following new ideas naturally suited to the representation mode of divisors in
K. Khuri-Makdisi’s algorithms (cf. section BZ34),

e and the introduction of a quotient Galois representation (cf. section BZ35T)
whose smaller size allows to reduce the complexity of the polynomial defining
it (cf. section BZ3'542) without discarding any essential information,

this algorithm performs very well and allows to reach values of ¢ which were so far
out of reach while giving a compact description of the number field L cut out by
the representation. I have thus used it so as to beat records of level and genus in
the computation of modular Galois representations (up to ¢ = 31, which implies
computing in the jacobian of a modular curve of genus g = 26), as illustrated by the
tables of values of coefficients a,, mod [ which appear in section CI.



Since the algorithm relies on the computation of complex approximations
of f-torsion points in the modular jacobian, it eventually has to identify rational
numbers from their floating-point approximations. In the last section 22 of this
thesis, I therefore present a method based on Serre’s modularity conjecture to rigor-
ously prove, in the case when f is of level N = 1, that the number field L cut out
by the Galois representation has been correctly identified.

I start by proving that the Galois group of the field Ly,,; cut out by the projective
version of the Galois representation computed by the algorithm is indeed a subgroup
of PGLy(FF\), by checking that its action on P'F; preserves cross-ratios. From this I
deduce that this projective representation is correct, by determining its Serre weight
out of the f-adic valuation of the discriminant of Li.;.

I then check that the Galois group of the field Lq, cut out by the quotient
representation computed by the algorithm is isomorphic to the expected quotient of
GLy(F)), by classifying certain central extensions of PGLy(FF,) and relying on the fact
that Lquor ramifies only at ¢ to exclude all possible cases but one. It is then easy to
conclude that the field Lq,or computed by the algorithm is isomorphic to the number
field cut out by the quotient representation attached to f modulo .

The first part of this thesis presents the background theory and results, from the
Riemann-Roch theorem for algebraic curves to Serre’s modularity conjecture along
with the definition of a modular form and of a mod [ Galois representation, aiming to
make the next parts accessible to the non-specialist. As a consequence, this part does
not contain any original work although it is quite long. The reader is therefore
strongly invited to skip part A and proceed directly to parts B and C
starting page 337, and come back to part A only if he or she would like
to get information about a point he or she is not familiar with. My work
is presented in parts B (description of the algorithm) and C (tables of computation
results and proof of these results).
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Part A

Theoretical prerequisites

Do Not Read Part A.

— Marc Hindry & Joseph
Silverman, Diophantine
geometry: an introduction

I shall begin by introducing some theoretical background, in order to set the
framework, fix some notation, and mainly for the sake of self-containedness. In par-
ticular, this first section contains mainly folklore, and no original work. I therefore
urge the reader to skim very lightly through this first section, or even to
proceed directly to my original work whose description begins on page
3.

In this first part, I shall first present the Riemann-Roch theorem and the notion
of the jacobian variety of an algebraic curve, including a description of K. Khuri-
Makdisi’s algorithms to perform arithmetic in a jacobian. Next, I shall introduce
notions about modular curves and modular forms which will be used in the descrip-
tion of my algorithm in section B. Finally, I shall conclude by recalling some facts
about Galois representations, and especially the connection between modular forms
and Galois representations.

A.1 Curves and their jacobians

A.1.1 The Riemann-Roch theorem

Let me begin by introducing the Riemann-Roch theory, which is the workhorse of
algebraic curve study. In what follows, I shall denote by X a projective, non-singular,
geometrically integral algebraic curve X, defined over a perfect field K. I shall often
have K = C in mind, and shall frequently use this case to give examples. However,
the statements I shall give will be, of course, valid for every perfect K.

I let K(X) be the function field of X, and I fix an algebraic closure K of K. For
each algebraic extension L of K, I denote by X (L) the set of L-rational points of X,
and whenever I mention a point P € X, I mean a point in X (K).

In the case K = C, the points of X naturally form a compact, connected Riemann

surface, as shown on figure AT T, and K (X) is the field of meromorphic functions
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16 PART A. THEORETICAL PREREQUISITES

on X. The number g of handles of this surface is called the genus of X. I shall give
a definition of the genus for general K later.

Figure A.1.1.1: A curve of genus g = 3 over C

A.1.1.1 Divisors

Definition A.1.1.2. A divisor over X is a formal finite linear combination

D= npP

pPeX

of points on X with coefficients np in Z. The support of D is the set of points P for
which np # 0.

The divisor D is defined over K if it is invariant under Galois, that is to say if
nypy = np for all P € X and for all 0 € Gal(K/K). In what follows, I shall
implicitly assume that all the divisors are defined over K.

Divisors over X (which are defined over K') form an abelian group, which I denote

by Div(X).
Definition A.1.1.3. A divisor D = . npP is said to be effective if its coeffi-
cients np all lie in Z-(, in which case I shall write D > 0. The set of effective divisors

on X will be denoted by Eff(X).

Definition A.1.1.4. The degree of a divisor is defined by

deg (Z in> = np.
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It is plain that the degree map
deg: Div(X) — Z
is a group morphism. I denote its kernel by Div’(X). More generally, I let
Div(X) = {D € X | deg(D) = d}

for each d € Z. Note that a divisor of positive degree need not be effective.
Non-zero rational functions on the curve X provide a supply of divisors:

Definition A.1.1.5. For f € K(X)*, define

div(f) = ) ordp(f)P,

where the integers ordp(f) are

n, if f has a zero of order n at P,
ordp(f) = ¢ —n, if f has a pole of order n at P,
0, if f has a neither zero nor pole at P.

A divisor is said to be principal if it is of the form div(f) for some f € K(X)*.
Notice the analogy with a fractional principal ideal in a number field.

Remark A.1.1.6. Let s, t € K(X)* be two non-zero rational functions on X. One
has div(s) = div(¢) if and only if there exists a non-zero constant A € K* such that
t = As identically.

Remark A.1.1.7. The relation div(st) = div(s)+div(¢) shows that principal divisors
form a subgroup of Div(X).

Example A.1.1.8. Take X = PL, which is made up of two copies of AL with
respective coordinates z and w, overlapping along Ak — {0} and glued by the tran-
sition map w = 1/z. For each a € K, denote by P, € P the point of coordinate
r = a, and denote by P,, € PL the point of coordinate w = 0. Consider the rational
function f = 2> — x € K(X). This function vanishes at order 1 at P, and also at
order 1 at P;, but it also has a double pole at P, since f = # — % Since f has no
other zero or pole, one concludes that

le(f) = P() + P1 — 2Poo,
and so the divisor Fy + P, — 2P, is principal.

As I shall demonstrate soon, not every divisor is principal. Actually, the following
theorem expresses a first obstruction for a divisor to be principal.

Theorem A.1.1.9. Let D € Div(X) be a divisor on X. If D is principal, then
deg(D) = 0.
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This can be reformulated this into the catchphrase “a rational function has as
many poles as zeroes”, provided of course that these are counted with multiplicity.
This common number is called the degree of f, cf. remark ATTTH below.

Proof. 1shall content myself here with giving the proof only in the case K = C, since
it is most illuminating. The proof for general K may be found in [[iu02, corollary
7.3.9].

So let K = C, so that X can be viewed as a compact, connected Riemann surface.
Let D = >""_ n;P; be a principal divisor on X, so that D = div(f) for some rational
(i.e. meromorphic) function f on X. Consider the meromorphic differential 1-form
4 on X. Its only poles are the points P;, with residue Resp, w = ordp, f = n;,
so that the following lemma concludes the proof. ]

w =

Lemma A.1.1.10. Let w be a meromorphic differential 1-form on a Riemann surface

X. Then
Z Respw = 0.

PeX

Proof. Let P;,i=1,--- ,r, denote the poles of w. For each i, let a; denote the residue
of w at P;, choose a coordinate chart containing P;, and draw in this coordinate chart
a small closed disk D; = D(P;,¢) centred at P; and of radius € > 0 chosen small
enough for the disks D; not to overlap. One then has

Z Respuw = Zal Z 21 /aD 2m wr

Pex _,0D;

where 0D; denotes the boundary of the disk D;, oriented in the standard way. Since
the D;’s do not overlap, | J;_, 0D; = dJ;_, D;, and by the Stokes theorem, the latter

integral is equal to
/ / dw.
X-Uiz1 Di

This is 0, since dw is a 2-form, which has to vanish identically on the 1-(complex)
dimensional manifold X. ]

This implies that the group of principal divisors is a subgroup of Div’(X). This
subgroup is usually strict, which means that a divisor over degree 0 on X need not
be principal. This defect is measured by the class group of X.

Definition A.1.1.11. The class group of X, denoted by C1°(X), is the quotient of
the group Div’(X) by the subgroup of principal divisors on X.

Two divisors on X having the same image in CIO(X ), that is to say, whose
difference is principal, are said to be linearly equivalent. The linear equivalence

class of a divisor D € Div?(X) is denoted by [D] € CI°(X).

This definition is summed up in the following exact sequence of abelian groups:
1 — K* — K(X)* 2% Div?(X) — C1°(X) — 0.

Notice the analogy with the ideal class group of a number field.
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Remark A.1.1.12. The terminology “linearly equivalent” hints that other equiva-
lence relations (namely, algebraic equivalence and numerical equivalence) are com-
monly considered on divisors on varieties. However, in the case of curves, linear
equivalence is the most interesting one.

Example A.1.1.13. The class group of X = P} is trivial. To see this, one must
show that every divisor of degree 0 of Pk is principal, so let D = > PepL. npP be a

divisor of degree pept 0P = 0. Consider, with the notations of example BATTH,

the polynomial
f=11 (==P)™,

PePl,

P#Po
where (by definition) z(Py) = A. The coefficients of f are invariant under Galois
since D is assumed to be defined over K, so f lies in K[z] as K is perfect, and may
thus be seen as a rational function in K(X) = K(P}). By construction, the divisor
of this rational function is

div(f) = Z npP + (ordp, f)Pe.

PePl
P#Ps

To determine ordp_ f, one expresses f in terms of the local coordinate w = 1/x at
P,. Since deg f = Zpep}( np = —np_ by hypothesis, one has
P#Po

f=a2%(1+0(1/2)) = w"™ (14 O(w)),
so that ordp_ f = np_. It follows that D = div(f) is principal.

Consider now a non-constant morphism f: X — Y between projective, non-
singular, geometrically integral algebraic curves.

Definition A.1.1.14. For each P € X, define the ramification index ep € N to be
such that if z is a local coordinate at P on X and if y is a local coordinate at f(P)
on Y, then y o f = Cx®? 4+ O(z°" ™) for some non-zero constant C.

The number
d= Z ep
f(P)=Q

does not depend on the point @) € Y, and is called the degree of the morphism f.
I shall denote it by deg f.

The degree is multiplicative (deg f1 o fo = deg fi x deg f3), and a morphism
between projective, non-singular, geometrically integral algebraic curves is of degree
1 if and only if it is an isomorphism.

Example A.1.1.15. Take X = Y = Pk, and let f: X — Y be induced by
a polynomial f(z) = az? + --- € Klz] of degree d > 1. Then for each A €
K, the ramification index ep, of f at Py is the vanishing order of f(z) — f(A)
at x = A, and the ramification index of f at Py is d since f(Py) = P and

wo f=1/f=w™+ O(w™1).
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Remark A.1.1.16. More generally, a non-constant rational function f € K(X) on
X can be seen as a non-constant morphism from X to PL., whose degree

degf= Y eq= Y e

QeX Qex
HQ)=Po f(@)=Ps

is the number of zeroes of f counted with multiplicity, which agrees with the number
of poles of f counted with multiplicity, as noted in theorem ATTJ.

Example A.1.1.17. Let X be a projective, non-singular, geometrically integral
algebraic curve such that C1°(X) is trivial. After possibly replacing the ground field
K by a finite extension, one may suppose that there exist two distinct K-rational
points A, B € X (K). Let w be a local coordinate at B. Since C1°(X) is trivial, the
divisor A — B is principal, so there exists a rational map f: X — PL such that
div(f) = A — B. After renormalising f by multiplying it by a non-zero scalar, one
may suppose that f = 1/w + O(1). One then has

degf = Z €Q =€ = 1
QeX
f(@)=Poo

since B is the only pole of f and this pole is simple. Therefore, f is an isomorphism.
In conclusion, a curve X whose class group is trivial is, possibly after a finite extension
of the ground field, isomorphic to PL (one says that X is a twist of PL); this is a
converse to example AT TT3.

One can use a morphism f: X — Y to transfer divisors between X and Y.
More precisely, one defines

f«: Div(X) — Div(Y)

ZTLPP — anf(P),

pPeX pPeX

and
f*: Div(Y) — Div(X)

ZHQQ — Z epnf(p)P.

QeYy PeX
f(P)=Q

Note that f. preserves the degree, whereas f* multiplies the degree by deg f. In
particular, f* o f, is multiplication by deg f on Div(X), and f, o f* is multiplication
by deg f on Div(Y).

Since f, and f* map degree-zero divisors to degree zero-divisors, and since
fr(div(B)) = div(B o f) for all 8 € K(Y)*, and f.(div(a)) = div(Nsa) for all
a € K(X)*, where Nya € K(Y)* is the rational function on Y defined by

N;a)(@) = [[ ap)r,
1(P)=Q

the morphisms f, and f* induce morphisms between C1°(X) and C1°(Y), which I
shall still denote by f, and f*.
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The morphism f: X — Y also defines a morphism of function fields

ffrKY) — K(X)
a — «aof

which allows one to see K(X) as an extension of K(Y') of degree deg f. If the char-
acteristic of K is p # 0, the function field K (Y') may not be perfect even though the
ground field K is, so the extension K (X)/K(Y) might not be separable. One says
that f is separable (respectively purely inseparable, etc.) if the extension K (X)/K(Y)
is separable (respectively purely inseparable, etc.). The maximal separable subex-
tension K(X)*? = K(Z) of K(X)/K(Y) corresponds to a curve Z such that the
extension K(Z)/K(Y) is separable whereas the extension K(X)/K(Z) is purely
inseparable, so that the morphism f: X — Y factors into a purely inseparable
morphism X — Z followed by a separable morphism Z — Y. One defines the
separable degree deg,,, f of f as deg(Z — Y) = [K(Z): K(Y)], and the inseparable
degree deg;,, f of f as deg(X — Z) = [K(X): K(Z)], which is necessarily a power
of p. For instance, f is separable if and only if deg; . f = 1, whereas f is purely
inseparable if and only if deg,,, f = 1. Note that deg,,, and deg;,, are multiplicative
just like deg, and that deg = deg,,, X deg;,.

Let 0, @ + 2P be the Frobenius automorphism in Gal(F,/F,). It can be extended
into a morphism o,: X — X7 which is purely inseparable of degree p, where
X denotes the curve defined by letting o, act on the coefficients of the equations
defining X. This morphism corresponds to the inclusion of K(X) = K(X)? into
K (X). Conversely, a purely inseparable morphism of degree p" factors into the r-fold
composition of o, followed by an isomorphism, so one can take Z = X above. In
particular, a purely inseparable morphism induces a bijection on the K-points. Since
the ramification indexes ep of a separable morphism are 1 for almost all P | it follows

that for almost all points @ € Y (K), the number of pre-images P € X (K) of @ by
[ is degg, [

A.1.1.2 Line bundles

In order to move on toward the Riemann-Roch theorem, it is useful to perform a
slight change of language, by reformulating linear equivalence of divisors in term of
line bundles over the curve X. By a line bundle, I mean a locally free module £ of
rank one over the structure sheaf Oy of X and which is defined over K (that is to
say 0*L = L for all 0 € Gal(K/K)). Recall that Ox is the K-vector-space-valued
sheaf on X such that

Ox(U)={f € K(X) | f has no pole on U} for every open subset U C X.

I shall denote by I' the “global sections” functor A — A(X), where A is a sheaf
on X. Since X is projective, one has the following very useful result (cf. [Har74,
theorem 11.5.19]):

Theorem A.1.1.18. For any line bundle L on X, the global sections space I'LC has
finite dimension over K.

Example A.1.1.19. Theorem BATTY implies that 'Ox is reduced to K.
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To a divisor D € Div(X) on X, I shall associate the line bundle Ox (D), defined
by

Ox(D)(U) = {f € K(X) | (div(f) + D)|U > 0} for every open subset U C X.
In particular, one has
IF'Ox(D) ={f e K(X)* | div(f)+ D >0} u{0}.
Riemann-Roch theory, as shall be seen, deals with the study of spaces of this form.

The following fact, although very basic, will be of constant use:

Lemma A.1.1.20. Let D € Div(X) be a divisor on X. Ifdeg(D) < 0, then 'Ox (D)
is reduced to {0}.

Proof. Assume on the contrary that there exists a non-zero section s € I'Ox (D).
Then one would have div(s) + D > 0 by definition, and thus, by taking the degree,
deg D > 0 since deg div(s) = 0 by theorem AT T, which contradicts the hypothesis.

O

The following theorem explains the relation between the line bundles Ox (D) and
the class group C1°(X).

Theorem A.1.1.21. Let D, D' € Div(X) be divisors on X. The associated line
bundles Ox (D) and Ox(D") are isomorphic if and only if the divisors D and D' are

linearly equivalent. Furthermore, every line bundle L on X is isomorphic to a line
bundle of the form Ox(D) for some divisor D € Div’(X).

Proof. The proof of the first statement is not difficult from the definitions. For
instance, it is easy to see that for every f € K(X)*, multiplication of the sections by
f yields an isomorphism from Ox (div(f)+ D) to Ox (D). The proof of the fact that
every line bundle is of the form Ox (D), however, is more technical, and I shall not
give it here; instead, I shall just mention that it stems from the fact that I assumed
the curve X to be absolutely integral, and refer the interested reader to [Har74,
proposition 11.6.15]. ]

In view of the previous theorem and of theorem AT T, the following definition
makes sense:

Definition A.1.1.22. Let £ be a line bundle on X. The degree of L is defined to
be the degree of any divisor D € Div(X) such that £ ~ Ox (D).

Recall that the tensor product over Ox endows the set Pic(X) of isomorphism
classes of line bundles over X with an abelian group structure, for which the inverse
of the class of a line bundle £ is the class of the dual bundle LY = Home, (£, Ox).
By the previous theorem, isomorphic line bundles have the same degree, so that one
gets a well-defined map

deg: Pic(X) — Z.
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One checks easily that Ox(D) ® Ox(D') =~ Ox(D + D’) and that
o

X
Ox (D)"Y ~ Ox(—D) for D, D" € Div(X), which implies that this map is a group mor-
phism, whose kernel I denote by Pic’(X). The above theorem can thus be rephrased
by saying that the map D — Ox(D) yields an isomorphism CI°(X) ~ Pic’(X).
In the next section, I shall give yet another description of the class group, as an
abelian variety.

A.1.1.3 Differential forms and the genus

An especially interesting line bundle is the bundle Q% of regular differential 1-forms
on X. These are simply objects which, in a chart with coordinate x, read w = f(x)dx
for some function f € K(X) which is regular (i.e. has no pole) in this chart, and
which transform through transition maps by taking the dx into account, cf. example
below.

Since the sheaf QY is a line bundle, it must be isomorphic to some Ox (D) by
theorem ATTT2T.

Definition A.1.1.23. A canonical divisor is a divisor D such that QY ~ Ox (D).
Canonical divisors on X form a single, whole linear equivalence class, called the
canonical class.

In other words, a canonical divisor is a divisor of the form

div(w) = Z ordp(w)

pPeX

for some (not necessarily regular) differential 1-form w on X, where ordp(w) means
ordp(f) if w reads f(z)dz in a chart with coordinate x and containing P.

Example A.1.1.24. Let X = Pk again, with charts * and w = 1/x as in ex-
ample ATTR. Consider the differential form w = (2? — z)dz. Then one also has
w = (% — %) d (%) = (% — ﬁ) dw, so that div(w) = Py + P, — 4P, where P,
denotes the point corresponding to x = a, and P,, denotes the point corresponding

to w = 0. Consequently, the divisor Py + P, — 4P, is a canonical divisor.

The fact that the canonical class is well defined can be checked by remarking
that the ratio of two differential 1-forms is a rational function, whose divisor is by
definition principal.

I can now define the most important invariant of the curve X.

Definition A.1.1.25. The genus of X is the dimension of the space T'Q? of regular
differential 1-forms on X, which is finite by theorem A"TTTS.

In what follows, I shall denote the genus of X by g.

Remark A.1.1.26. In the case K = C, the curve X can be seen as a compact,
connected Riemann surface, and I have already defined the genus of such a surface
as the number of its “handles”. It happens that this old definition agrees with the
new one. The proof of this is not easy, cf. for instance [Bos89, theorem B.2.5].
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Example A.1.1.27. Consider X = P} with the notations of example AT TH. Let
w € 'L be a regular differential 1-form on X. Then one can write w = f(x)dz
for some rational fraction f(z) € K(z). Since w is regular, f(x) cannot have a pole
except maybe at Py, so it lies in K[z]. To examine the behaviour of f(z) at Py, one
switches to the coordinate w = 1/x, which yields w = f(1/w)d(1/w) = —%dw.
It follows that w has a pole of order 2+4deg f > 2 at P, so that it cannot be regular
unless f = 0. The space of regular differential 1-forms I'Q?% is therefore reduced to
{0}; in particular, the genus of X is g = 0.

Example A.1.1.28. Let ¢ € N, and let X be the projective normal curve corre-
sponding to the affine equation

2942
V2= JT(X = an),
n=1
where the «; are 2g+ 2 pairwise distinct elements of K. Then the differential 1-forms
id
w; = ’ x, 1=0,---,9—1
Y

are regular. Indeed, the only suspicious points to check are the 2¢g + 2 points
(x = ap,y =0)
and the two points at infinity of X, but

e at the points (z = a,,y = 0), one has z = Cy? + O(y?®) for some non-zero
constant C', so y can be used at a local coordinate there, and
_ CiniQCy
Yy

Wi

(1+0(Y))dy
is regular there, and

e at the two points at infinity, w = 1/x can be used as a local coordinate since
1—2

1/y = w1 + O(w?), and w; = =%+ (1+ O(w))dw is regular there since
1< g.

Conversely, one sees that wy = 4 vanishes at the order ¢ — 1 at the two points at

infinity, and does not vanish anywhere else, so that a regular differential 1-form on
X can be written w = fwy where f € K(X) is a rational function which is regular
except possibly at the points at infinity. Thus f € K]|z,y| is a polynomial, which
can be written

f=P(z)+yQ(x)

in view of the equation defining X. Since

_ P(z)dx o —
w= ) + Q(z)d <:|:

—w deg(P)—2

—deg(Q)—2
el 5(Q) ) (14 O(w))dw
must be regular at the points at infinity, this forces Q = 0 and deg P < g, so that
the forms w; form a basis of the space T'QY of regular differential 1-forms on X. In
particular, the genus of X is g.

The genus is a crucial invariant of the curve, which will play a central role in the
Riemann-Roch theorem.
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A.1.1.4 The Riemann-Roch theorem

Let me begin by reviewing some sheaf cohomology. Let 2l be an abelian category.
The category of 2A-valued sheaves over X is then abelian itself, and the “global
sections” functor I' is easily seen to be left exact, but not right exact in general. It
is thus natural to introduce its right derived functors R‘I", which I shall denote by
H(X,-). In particular, H°(X,-) is merely a new notation for ', which I shall use
from now on. Furthermore, every short exact sequence of 2A-valued sheaves over X

0 A B C 0

gives rise in 2 to a long exact sequence

0——= HY(X, A) —= H°(X,B) — H°(X,C) >

L H'(X, A) —> H\(X,B) — H'(X,C)

i

Finally, since X has dimension 1, the H*(X,-) vanish identically for i > 2:

)

Lemma A.1.1.29. (Grothendieck, [Har77, theorem II1.2.7]) Let V be an algebraic
variety of dimension d. The H'(X,-) vanish identically for all i > d.

Example A.1.1.30 (A little technical). Let K% be the constant sheaf with stalk
K(X)*. It fits in the short exact sequence

1 0% K Ky /0% —=1

and H'(X,K%) = 0 since K% is constant, hence flasque. Besides, H*(X, K% /O%) is
the group of Cartier divisors on X, which agrees with Div(X) since X is non singular
and absolutely integral ([Har77, Remark 6.11.1A]). Taking cohomology thus yields
the exact sequence

l—K*—— K(X)* —=Div(X) — H(X,0%) —=0,
which proves that H'(X, O%) is isomorphic to Pic(X).

As T announced previously, the goal of Riemann-Roch theory is to study the
global section spaces H’(X,Ox(D)) for D € Div(X). For the sake of brevity, I
shall write H'(X, D) instead of H'(X,Ox (D)) from now on, or even H*(D) if no
confusion about X can arise. I shall also write h*(X, D), or even h'(D), to mean
dimy H* (X , OX(D)), and I define A’ similarly for line bundles. Finally, I define
Q% (D) to be Ox(D) @ Q) so that

X

QY (D)(U) = {w | (div(w) + D)‘U > 0} for every open subset U C X.
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Lemma A.1.1.31 (Serre duality). Let D € Div(X) be a divisor on X. Then there
exists a perfect pairing

t: H'(Ox(D)) = H(Q%(D)) — K.

In particular, h*(D) = h°(C' — D), where C' denotes a (any) canonical divisor.

In the language of line bundles, this can be rephrased as h'(L£) = h°(Q% ® £).

I shall not give the proof here, and refer instead to [Har77, section II1.7]. T would
still like to mention that the pairing ¢ can be made explicit in the case of Riemann
surfaces (K = C), cf. [Bos&Y, sections B.5 to B.8§].

I can now finally state the Riemann-Roch theorem.
Theorem A.1.1.32 (Riemann-Roch). Let L be a line bundle on X of degree d.
(i) (L) =d+1—g+h'(Qk @LY).
(11) deg Q% =29 — 2.
(1) B°(L)=d+1—gifd>2g—1.
(iv) fK =K, h°(L) = max(d+1—g,1) for L = Ox (30, B,) with generic P, € X.
(v) If K =K, h°(L) = max(d + 1 — g,0) for generic L.
I first rephrase this in terms of divisors, since I shall mostly use it in this way:

Corollary A.1.1.33 (Riemann-Roch). Let D € Div(X) be a divisor on X of degree
d, and let C' be a canonical divisor.

(i) (D) =d+1— g+ h°(C — D).

(7i) deg C =2g — 2.

(iii) WO(D)=d+1—gifd>2g—1.

(iv) If K = K, h°(D) = max(d + 1 — g, 1) for generic effective D.
(v) If K = K, h°(D) = max(d + 1 — g,0) for generic D.

Proof. 1 shall only give a sketch of the proof here, and refer the reader to [Har77,
theorem IV.1.3] for the details.

(i) Notice first that the formula is true in the case £ = Oy, since one has then
d =0, h°(Ox) =1 by example ATTTd, and h°(Q}) = g by definition.
Next, define the Euler characteristic of L by

+0o0

X(D) =) (~1)h'(L).

=0
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By lemma BATT29, the terms of this sum are actually 0 for ¢ > 2, so that
X(£) = B(L) = W' (L) = (L) — h*(Qx ® L)
by Serre duality (lemma A—TT3T). This means that part (i) rewrites as
X(£) =d+1—y, (*)

which I now prove. By theorem ATTZI one may assume without loss of
generality that £ = Ox(D). I have already pointed out that (=) holds for
D = 0. To conclude, I shall now show that (&) holds for D if and only it holds
for D+ E, where E = P, + --- + P, € Eff(X) denotes an irreducible effective
divisor on X, that is to say a whole Gal(K /K )-orbit of points on X. View
E as a subvariety of X of dimension 0, let L = K(F) ~ K(P;) denote the
field of Galois-equivariant functions (that is to say f(o(P;)) = o(f(F;)) for all
o € Gal(K/K)) on E, and let Of denote its structure sheaf, so that one has
the short exact sequence

OHOX(—E) OX OE 0.

Tensoring with Ox (D + E), one gets
0——Ox(D) —= Ox(D + E) — O —0.

Since the Euler characteristic is additive on short exact sequences, as can be
easily seen by looking at the associated long exact sequence in cohomology, this
implies that x (Ox (D + E)) = x(Ox(D)) + x(Og). But h'(Og) = 0 by lemma
ATT79 since E is O-dimensional, so that x(Og) = h°(Og) = dimg L = r,
hence x(Ox(D + P)) = x(Ox(D)) + r. On the other hand, one also has
deg(D + E) = deg(D) + r. This concludes the proof of (i).

Follows immediately from (i) by taking £ = QL.

By (ii), Q% ® £ has degree 2g —2 — d, which is negative by hypothesis. Lemma
then implies that h(Q% @ £Y) vanishes.

One sees by induction on d that h°(Q% (= S°7 | B;)) = max(g—d, 0) for generic
P, € X. The result then follows from (i).

Again, one can assume without loss of generality that £ = Ox(D). Now, if
h%(D) > 0, then h°(D — P) = h%(D) — 1 for generic P. The result then follows
from (iv).

]

I shall now give two examples illustrating the power of the Riemann-Roch theo-

rem.

Example A.1.1.34. Let X be a curve of genus 0. Then, by the Riemann-Roch
theorem BTT33(iii), h°(D) = deg(D) + 1 for every divisor D on X provided

that

deg D > —1. In particular, h°(D) = 1 for all D € Div’(X), so that for
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cach such D there exists a non-zero rational function f € K(X)* such that £ =
div(f) + D is effective. But deg(E) = deg (div(f)) + deg(D) = 0, so E = 0 and
D = —div(f) = div(1/f) is principal. It follows that the class group C1°(X) is triv-
ial, so that X is a twist of P} by example BT T T7. This is a converse to example
AT,

Example A.1.1.35 (Elliptic curves). Let X be of genus ¢ = 1, and assume that
there exists a K-rational point O € X(K). Such a curve is called an elliptic curve.
The Riemann-Roch theorem BATT33(iii) then implies that h°(D) = deg(D) for all
D € Div(X) such that deg D > 1.

In particular, h°(O) = 1 so H°(O) = K since it clearly contains K, whereas
h°(20) = 2 so that H°(20) = K ® Kz = (1,2) for some rational function z €
K (X)* which has thus a double pole at O and no other pole. Continuing, one finds
that H°(30) = (1, z,y)x for some y € K(X)* having a pole of order 3 at O and no
other pole. Next, h%(40) = 4, but z* € H°(40), so that H°(40) = (1,z,y, %) k.
Similarly, H°(50) = (1,z,y, 2% xy)x. Then, one sees that H°(60) contains the 7
functions 1, z,y, 22, xy, 2% and 3%, but since its dimension is 6, these functions must
be linearly dependent, and by looking at the order of their poles at O one sees that
the linear dependence relation must be of the form

Y2+ a1y + asy = apxr® + asx® + aux + ag (A)

for some scalars ag, - - - ,ag € K such that ag # 0. The functions z and y thus define
a morphism f from X to the plane curve A which is the projective completion of the
affine curve of equation (HA).

Let P,Q € X(K) be distinct from O. If f(P) = f(Q) but P # Q, then the
functions x — z(P) and y — y(P) both lie in H°(30 — P — Q) which is of dimension
1, so are proportional, but this is absurd since the order of their pole at O is not the
same. The morphism f is therefore injective, so it has degree 1, which proves that f
is an isomorphism from X to A.

Furthermore, for every divisor D on X of degree 0, the space H°(D + O) has di-
mension 1, so there exists a mnon-zero function f € K(X)* such that
E = D+ O + div(f) is effective. Since E has degree 1, it consists in a single
K-rational point P € X(K). Every divisor of degree 0 is therefore linearly equiva-
lent to a divisor of the form P — O, and the point P is unique since if there existed
two distinct points P, Q) € X (K) such that P ~ @, then there would exist a rational
function f € K(X) such that div(f) = P — @, which would imply that f is an
isomorphism from X to P} as in example BT T 17, which is impossible since X is of
genus 1 whereas P} is of genus 0. It follows that P+~ P — O is a bijection between
X(K) and C1I°(X). In particular, the abelian group structure of CI°(X) yields an
abelian group structure on X (K'), with neutral element O € X (K). Let B denote
the resulting group law on X (K). By construction, one has the equivalence

Z npP € Div(X) is principal <= Z np =0 in Z and HHnPP =0 in X(K).

PeX pPeX PeX

Besides, upon identification of X with the plane curve A, if one takes 3 pairwise
distinct points P, Q, R € X (K) distinct from O and which lie on a line of equation
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24k

8
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Figure A.1.1.36: The group law on an elliptic curve

ax+by+c = 0, then one sees that the divisor of the function f = ax+by+c € K(X)
is div(f) = P+Q+R—30 since b cannot be 0, so that (P—0)+(Q—0)+(R—0) ~ 0,
ie. PHQHB R = O in the group X (K). It follows that the group law H on X (K)
is defined by the famous “chord process”, as illustrated on figure AT 1-3@.

I'shall finish this first section by stating a very useful consequence of the Riemann-
Roch theorem.

Proposition A.1.1.37. Fiz a divisor Dy € Div(X) of X of degree n. If n > g,
the every divisor D € Div’(X) of degree 0 is linearly equivalent to a divisor of the
form E — Dy, where E € Eff"(X) is an effective divisor of degree n. Furthermore, if
n = g, then E is unique for generic D.

Proof. Since the degree of D 4+ Dg is n > g, the Riemann-Roch theorem ATT33(i)
implies that h°(D + Dy) > 0. In particular, H°(D + Dy) is not reduced to {0}, so
there exists a non-zero rational function f € K(X)* such that

E =div(f) + D+ Dy
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is effective. This divisor E has the same degree n by lemma BATTY, and
D ~ D +div(f) = E — Dy. Furthermore, if n = g and if D ~ E — Dy ~ E' — Dy,
then there exists a non-zero rational function @ € K(X)* such that E' — Dy =
E — Dy +div(a), hence div(a) + E = E' is effective, so « € H(E). But H(E) = K
consists only of the constant functions for generic £ by the Riemann-Roch theorem
[ATT33, so that for generic D one has a € K hence div(a) = 0 and thus £ = E'. [

Corollary A.1.1.38. Fiz a K-rational origin point O € X (K) (assuming that such
a point exists). Every divisor D € Div'(X) of degree 0 is linearly equivalent to a
divisor of the form E — gO, where E € EffY(X) is an effective divisor of degree g.
Furthermore, E is unique for generic D.

I shall conclude by stating another theorem, which is especially useful for com-
puting the genus of a curve, which is an essential information in order to be able to
use the Riemann-Roch theorem.

Theorem A.1.1.39 (Riemann-Hurwitz). Let X and Y be projective, non-singular,
geometrically integral curves of respective genera gx and gy, and let f: X — Y be
a non-constant morphism of degree d € N. If the characteristic of the ground field
K does not divide any of the ramification indices ep (or is 0), then

2gx — 2= (29y —2)d+ Y (ep—1).
Pex
This theorem is generally used to deduce the genus of X form the one of Y.
Typically, one takes Y = P that is to say f is just a non-constant rational function
on X. One can then deduce information about the genus of X from information
about the ramification of f, since gy = 0 by example AT T27.

Proof. Let wy be a (possibly not regular) differential 1-form on Y, and let
Cy = ZQey mqoQ be its divisor. Then Cy is a canonical divisor on Y, and therefore
deg Cy = 2gy — 2 according to the Riemann-Roch theorem BATT33(ii).

Let now f*wy be the pull-back of wy by f, and let Cx = > . npP be its
divisor. Then C'x is a canonical divisor on X, so that deg C'y = 2gx — 2 for the same
reason. Furthermore, let P be a point of X with local coordinate z, and let y be a
local coordinate at @@ = f(P). Then wy can be written

w = y"u(y)dy
where u € K(Y)* is a rational function which has neither a zero nor a pole at @) by
definition of mq. Since one may suppose that y o f = 2°7 by definition of ep, one
has

frwy = 2Py (2P )epr® tdr = 2P P~y (z)dx,

where the rational function v(z) = epu(x?) € K(X)* on X has neither zero nor
pole at P since ep # 0 in K by hypothesis. It follows that

CX = diV(f*(JJy) = Z(@me(}a) +ep — 1)P

PeX

:f* <ZmQQ> + Z(ep—l)P:f*Cy+ Z(ep—l)P.

QeYy Pex Pex
Since f* multiplies the degrees by deg f, the result follows by taking the degrees. [J
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A.1.2 The jacobian variety

I shall now explain the construction of the jacobian of the curve X. I shall assume
the same hypotheses on X and use the same notations as in the previous part. In
particular, X is a curve of genus g defined over the perfect field K.

The jacobian variety of X is an abelian variety (that is to say a projective variety
which, much like an elliptic curve, is endowed with an abelian® group structure
compatible with the algebraic variety structure) of dimension g which is an avatar of
the class group Pic’(X) of X. I'shall denote this jacobian by Jac(X). This realisation
of Pic’(X) as an algebraic variety is extremely fruitful, in that it gives a lot of new
structure and information on it.

Although Jac(X) exists whatever the base field K is, I shall mainly focus on the
case K = C in this section, and hence view X as a compact, connected Riemann
surface of genus g. There are two reasons for this: the first is that the construction
of Jac(X) is much more visual over C, and the second is that the algorithms which
are the core of my thesis mostly use Jac(X) over C. I shall, however, give a few
words on the general case in the end of this section.

I first show that the problem of giving a meaning to integrals of the form ff w
on X leads naturally to the notion of a period on X and to the definition of the
Abel-Jacobi map from X to Jac(X), the latter being seen as a complex torus. I then
prove the Abel-Jacobi theorem, and explain why Jac(X) can be embedded into a
projective space.

For the sake of brevity, I shall denote by Q'(X) the C-vector space I'Q% of
holomorphic differential 1-forms on X.

A.1.2.1 The period lattice

To begin with, consider the problem of assigning a value to the integral

B
A

where A, B are points on X and w € Q'(X) is a differential form. The value of this
integral is not well-defined, since it depends on the path from A to B one chooses to
integrate along.

This dependence is however “discrete”. By this, I mean that Cauchy’s theorem
implies that homologous paths will yield the same value. In attempt to get rid of
the ambiguity, it is thus natural to have a look at the homology group H;(X,Z) of
the Riemann surface X.

As shown on figure BT21 Hy(X,Z) is a free abelian group of rank 2g, with 2
generators for each handle of X. In order to remedy to the ill-definedness of integrals
of the form ff w, it is thus natural to study the integration pairing

H(X,Z)2 QY(X) — C
YR w — /w '
v

IThe fact that the group law is abelian is actually a consequence of the projectiveness of the
variety, cf. [HSOO, lemma A.7.1.3].
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Figure A.1.2.1: A Riemann surface of genus ¢ = 3 with a symplectic homology basis

Definition A.1.2.2. An integral of the form fﬂ/w for some v € H,(X,Z) and some

w € QL is called a period of X.
Fix a C-basis (w;)1<icy of Q1(X) and a Z-basis (v;)1<j<24 of H1(X,Z). The matrix

/ Wi - Matgxgg(C)
;i 1<igyg

J
1<7<2yg
is called the period matriz of X with respect to these bases.

Due to the ambiguity in the choice of bases, the period matrix for X is well-
defined only up to multiplication by GL,(C) on the left and by GLy,(Z) on the
right.

The period matrix has a nicer structure if one restricts the choice of basis of
H,(X,7Z) to bases of a special kind. In order to single out this better kind of basis,
I shall first review the intersection pairing on Hi(X,7Z).

Definition A.1.2.3. The intersection number of two oriented cycles «, [ which
intersect transversally is defined to be

alf= Z €p,

Peang

where €p is 41 if the oriented tangent vectors of o and 3, in this order, form an
oriented basis of the tangent space of X at P, whereas ep is —1 if they form an
anti-oriented basis of the tangent space.

One can show (cf. [GHT7R, first subsection of 0.4]) that every null-homologous
cycle has intersection number 0 with every cycle which it intersects transversally, so



A.1. CURVES AND THEIR JACOBIANS 33

that a A 8 depends only on the homology class of o and /3, and can thus be defined
even if a and ( fail to intersect transversely. This yields an alternating pairing

H\(X,Z)NH\(X,Z) — Z,
called the intersection pairing.
Definition A.1.2.4. A basis (v;)1<j<2y of Hi1(X,Z) is said to be symplectic if the

matrix of the intersection paring in this basis is

0 I
J, = g]eM Z),
g [_[g 0 2gx2g( )

where I, denotes the identity matrix of size g.
Example A.1.2.5. The homology basis shown in figure AT is symplectic.

I shall only consider symplectic bases of H1(X,Z) from now on. This means that
period matrices of X are all equivalent up to multiplication by GL4(C) on the left,
and by multiplication by Sp,,(Z) on the right, where

Sp?g(Z) = {A S M29X29<Z) | tAJQA = Jg}
denotes the symplectic group of degree 2g over Z.

Figure BA7TX@ below attempts to show that if one were to use scissors to cut
X along a symplectic basis of its homology, one would obtain a connected, simply
connected domain, which is actually a 4¢-gon if one identifies the scissor cuts with
boundary edges.
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Figure A.1.2.6: The canonical dissection of a Riemann surface of genus g = 3
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This means that the Riemann surface X can be constructed by gluing the edges of
a 4g-gon I is a certain way. More precisely, if one labels the vertices of II by A, By,
Ck Dy, Agyq... where the index k is understood modulo g, then X can be constructed
by gluing Dy Ayy1 to Cx By, and Cy Dy, to By Ay for each k € Z/kZ, as shown on figure
[AT277. Once this is done, the images of CoDy, C1 Dy, - -+, Cy_1Dy_1, DyAy, D1 As,
.-+, Dy_1A, form a symplectic basis of Hy(X,Z), as shown on figure AT 2.

Aps

Ak Bk

Figure A.1.2.7: Construction of X by gluing the edges of a 4g-gon

In order to study the structure of the period matrix of X, I shall now temporarily
forget the complex structure on X, and view it as an oriented surface over R. With
this point of view, I can establish the following formula:

Lemma A.1.2.8. Let (7;)1<j<2y be a symplectic basis of Hi(X,Z). For any two
closed smooth differential 1-forms wy and we on X, one has the relation

g
ﬁwlAWQ_E /wl/ CL)Q—/(.UQ/ w1 ).
X k=1 Yk Yg+k Yk Yg+k

Proof. Let p: II— X be the gluing as described above, and let 171 = p*wy,
12 = p*ws be the pull-backs of w; and wy on II. They are closed since w; and w, are,
hence exact since II is simply connected. In particular, there exists a smooth function
fi = [ m: Il — Csuch that 7, = df;. One then has d(fins) = d(f1)Ane+ fid(ne) =
11 A 1o since 1 is closed, so that the Stokes theorem yields

[fris= = f s
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Write this contour integral as
9 By, Cr Dy, Akt
(R A AT A

and study each of the g terms of the sum separately.
Let x, ' = pr(z), y and 3y’ = ¥ (y) be as on figure AT27. Then one has

fl(fv')—fl(x):/:/m: </+/+/> nz/nz—/w

because 1, = p*w; is the same on Cy Dy as on By Ay, so that the two outer integrals
cancel out. Similarly, one finds that

fl(y/)—fl(y)Z/yylmz (/qur/CYkaJr/lji/) UlZ/kaTllz/wwL

One then concludes that

(/ +/ )fﬂ]zz(/ —/ )fﬂ]zz—/ w1/ 7722—/ wl/w2
Ag Ck Ck By, Yg+k Ck Yg+k Vi

since replacing Cy Dy, with By Ay does not affect 1, = p*wy and shifts f; by —f7 L
otk
as seen above, and similarly that

Ck, Ak+1 'Ak+1 Bk, Al«:+l
(/ +/ )f1772=</ —/ >f1772=/w1/ 7722—/601/ w2,
By, Dy, Dy, Ck Yk Dy, Ve o Vg+k
]

hence the result.

Come back to viewing X as a Riemann surface. One can make some easy obser-
vations about the double integral in the above lemma:

Lemma A.1.2.9. (a) Let wy and wy € Q(X) be holomorphic differential forms
on X. Then [[,wi Awy =0.

(b) Letw be a non-zero holomorphic differential form on X. Then i [[, wAw > 0.
(c) If ffX wAw =0 for a holomorphic differential form w on X, then w = 0.

Proof.  (a) Locally, one can write w; = f1(z)dz, wy = fo(z)dz with respect to some
coordinate z. Then w; A wy = 0 since dz A dz = 0.

(b) Let w= f(2)dz, 2z =z + iy locally. Then @ = f(2)dz, so that

iwAD = |f(2)]*idz A dZ = 2|f(2)]Pdz A dy.

(¢) Follows directly from (b).

One then finds that the period matrix of X has a particular structure.
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Proposition A.1.2.10. Let P € Mat,x24(C) be a period matriz of X with respect
to a symplectic basis of Hi(X,Z) and to a basis (w;)1<icy of QY(X). Consider the
left g x g block of P. Then this block cannot be singular.

Proof. 1f this block were singular, then there would exist a non-trivial C-linear com-
bination of its lines which vanishes. Let w € Q!(X) be the C-linear combination of
the w; with the same coefficients. Then w # 0 since these coefficients are not all 0,
and yet fww = 0 for all 1 < 5 < ¢ by definition of the period matrix. But then one

also has fv,w = fvw =0 forall 1 <j < g, hence [[, wA@ =0 by lemma BTZS.
But this contradicts lemma BAT27J(c). O

This implies that, once the symplectic basis of H;(X,Z) is fixed, there exists a
dual basis of Q'(X), that is to say a basis (w;)1<i<, such that

/wi = ]li:j-
i

J

The period matrix with respect to these bases thus reads

1 0

T

pP—

for some 7 € Matgyy,(C).

Theorem A.1.2.11 (Riemann bilinear relations). The matriz T is symmetric, and
its tmaginary part is positive definite.

Proof. One computes that

g
Tj,i_Ti,j = / (.Uj—/ Ww; = E /wz/ Wj —/w]‘/ Ww; = // wi/\wj :0
Vg +i Yo+i k=1 T Y Vgtk Ve Y Vg+k X

by lemmas AT28 and AT 29(a). Hence 7 is symmetric.
Let (v;)1<i<g € RY\ {0} be a non-zero real vector, and let w = >"7 | v;w;, which
is non-zero as v is non-zero. Then

by lemmas AT2R and AT29(b). Hence Im 7 is positive-definite. O
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Corollary A.1.2.12. The 2g columns of the period matrix of X span a lattice in
C9, called the period lattice.

Actually, the above theorem has even stronger consequences, as I shall explain in
the last part of this section.

With all this material at hand, it is finally time to define the jacobian variety
Jac(X) of X.

Definition A.1.2.13. The jacobian of X is the complex torus
Jac(X) = CY/A,
where A denotes the period lattice of X.
More canonically, I should use the coordinate-free definition
Jac(X) = W (X)"/H\(X,Z),

where V'V denotes the dual space of a C-vector space V', and where the elements of
homology group H,(X,Z) are seen as linear forms on Q!'(X) by identifying a cycle
v to the linear form fw'

A.1.2.2 The Abel-Jacobi map
Now that the periods are quotiented out, there is a well defined integration map

7: X — Jac(X)

P
P — </ wi) ’
o 1<i<g

P
Pr—>/ mod Hy(X,Z),
o)

or, in more canonical terms,

where O € X is a fixed origin point. One can show that this map actually embeds
X in Jac(X), provided of course that the genus g is non-zero, cf. [HSOO, corollary
A.6.3.3]. I shall not prove this fact here, since I shall not need it.
This map may be extended by linearity to divisors on X, yielding a group mor-
phism
7. Div(X) — Jac(X)

inkPk — (ink /Pk wi)
k=1 k=1 o

This still depends on the choice of the origin point O. However, if one restricts it to
the subgroup Div’(X) of divisors of degree zero, one gets a canonical map.

1<i<g

Definition A.1.2.14. The map
7. DivV'(X) — Jac(X)

inkpk — (ink/Pkwl>
k=1 k=1 o

does not depend on O. It is called the Abel-Jacobi map.

1<i<g
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The reason to introduce this map is explained by the following fundamental
theorem.

Theorem A.1.2.15 (Abel-Jacobi). The Abel-Jacobi map 7: Div®(X) — Jac(X)
is surjective, and its kernel consists exactly of the subgroup of principal divisors.

In other words, the Abel-Jacobi map factors into a group isomorphism
Pic’(X) —~= Jac(X) .

This explains why the jacobian of X is so interesting: it is a concrete, geometric
realisation of the class group Pic’(X) of X. One can thus use the jacobian to
establish various properties of the class group. For instance, one sees that, unless
g = 0 of course, the class group is infinite, and uncountable.

More interestingly, one sees that the class group is divisible, and that for any
n € N its n-torsion subgroup is

Pic’(X)[n] ~ Jac(X)[n] = (C?/A\)[n] = %A/A ~ (Z/nZ)*.

Example A.1.2.16. If the genus of X is g = 1, then I explained in example AT 133
that X is an elliptic curve, and that Pic’(X) is in bijection with X. This means that
the jacobian of X, which is of dimension g = 1, is X itself. In particular, one recovers
the fact that the Riemann surface X is a complex torus of dimension 1. One also sees
that the subgroup X [n] of n-torsion points of X is abstractly isomorphic to (Z/nZ)?*.

Proof. e jis surjective
Consider the holomorphic map

XY — Jac(X)
(Plﬁ"' 7Pg) — ](ZZ:lPIf—gO) .
The matrix of its differential at (Py,---,P,) is [wl(P])] , which cannot be
1<i,j<yg
singular for all (P,---, P,) since the w; form a basis of Q'(X), so this map is not

constant. Its image is therefore open, and it is also closed since it is the image of
the compact X9. Hence it must be all of Jac(X) since Jac(X), which is a complex
torus, is connected.
e D principal = (D) =0

Let D = div(f) be a principal divisor on X, and consider the morphism

¢: PIC — Jac(X)
A:p] — g(div(Af + ).

Let z1,- - - , 2, be a system of coordinates on Jac(X) = C9/A near 0. Then dzy,--- ,dz,
is a basis of the space of holomorphic differential 1-forms on Jac(X). Besides, the
pull-backs ¢*dz; of these differentials to P'C are holomorphic, hence vanish identi-
cally since the space of holomorphic 1-forms on P'C has dimension genus(P'C) = 0.
This means that ¢ is constant. In particular,

J(D) = ¢([1:0]) = ¢([0: 1]) = 5(0) = 0.
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e )(D) = 0= D principal

Write D = >, _, niPp. T must construct a meromorphic function f on X such
that div(f) = D. Such an f, if it exists, is only defined up to a multiplicative
constant, so it is natural to attempt to construct the logarithmic differential of f
instead. In other words, fixing an origin O, I shall construct f as

sy =eo([ ¢

for some well-chosen meromorphic differential form & on X. Then f will be well-
defined provided that

(1) the residues of £ are integers,
(ii) the “periods” f%f all lie in 2miZ,
and f will have divisor D provided that

(iii) ¢ has simple poles at the points P, with respective residues ng, and no other
poles.

Note that (iii) = (i), so I only have to ensure that (ii) and (iii) hold. Also note that
I may assume that the cycles 7; do not meet any of the P, by deforming them a
little if necessary, which does not affect the Abel-Jacobi map .

I first claim that there exist meromorphic differential forms ¢ satisfying (iii). To
see this, take the short exact sequence

r Res
OHQ}(Hgﬁf(Zk:I Pkr) @k 1CP1@4>0

where Cp denotes the skyscraper sheaf Ox(P)/Ox standing at P, which yields

HO(Qﬁ((ZZ:lPk)) S @k 1C4)H1(Ql)

by taking cohomology. Now H'(Q)) = H°(Ox) = C by Serre duality AT T31 and
by example BT TTY, so that the image of the residue map Res in the cohomology
sequence above has codimension at most 1. But this image is contained in the trace-
zero hyperplane by lemma [A_TT 10, so that this image is actually exactly the trace-
zero hyperplane. In other words, there exists a meromorphic differential form with
only simple poles at the P, and with respective residues ay, if and only if Y, _, ax = 0.
Since in my case Y, _, ng = deg D = 0, this proves my claim.

So let & by a meromorphic differential form satisfying (iii). I shall ensure that
(ii) also holds by adding a suitable linear combination of the holomorphic differential
forms w; to &, which does not affect (iii). First, it is easy to arrange that

feos

for 1 < j < g, since fvwi = 1,—;. In order to compute ﬁ/+_£ for 1 < j < g, let
J “lg+g
p: I —= X be the construction of X by identifying edges of a 4g-gon II, and let
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n; = p*wj, M2 = p*ws be the pull-backs of w; and w2 on II. Fix an origin O in the
interior of II. Then the holomorphic function f;(P f o Nj is well-defined since II
is simply connected. Since fv_é’ =0for1 <5<y and fv ; = 1;—;, one has

J J

[es(fof e fef =)

By the same reasoning as in the proof of lemma ATT28, one sees that this sum is
the contour integral

=7

fj€7
oIl
which is

T Pk T
211 E nk/ n; = 2mt g nk/ wj
k=1 o k=1 L

by the residue theorem, where a4, denotes a path joining O to P, and staying inside
IT. Now, the hypothesis 7(D) = 0 means that there exist integers my, such that

S f =3t f

as linear forms on Q'(X), so that finally

/ &= 27‘(‘2ka/ wj = 2m1 (m] +ng+krjk>

Yo+i

by definition of the matrix 7. Replace then ¢ with
g
g =¢—-2m ng+kwk.
k=1

Then / § = —2mimgyy; € 2miZ, and

/ & =2mi (mJ + Z Myt kTj, k) — 2m Z Myt kTi; = 2mim; € 2mil

Yg+i k=1

because T is symmetric. O

A.1.2.3 The general ground field case

I shall now briefly explain how the construction of the jacobian Jac(X) generalises
over any perfect ground field K. The first thing to do is to make sure that the
construction over K = C described above is algebraic, that is to say that the jacobian
of a connected compact Riemann surface can be embedded analytically into some
complex projective space. This is not so obvious at first, since according to the
following theorem, most complex tori are not projective varieties:
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Theorem A.1.2.17. Let g € N, and let T = C9/A be a complex torus of dimension
g, where A is some full-rank lattice in CY9. There exists an analytic embedding of T
into P"C for some n € N if and only if there exists a Riemann form with respect
to A, that is to say a positive definite hermitian form on C9 whose imaginary part
assumes integral values on A x A.

Remark A.1.2.18. A compact complex manifold which can be embedded analyt-
ically into a complex projective space is automatically algebraic. This is Chow’s
theorem, cf. [GH7R, p. 167].

I refer to [HSOO, section A.5] for the details of the proof of theorem BT2T7. The
idea is that one needs sufficiently many meromorphic functions on 7' to define an
embedding into a projective space, and that the existence of a Riemann form with
respect to A makes it possible to construct such functions, called © functions. Also
note that in the case where there does exist a Riemann form, the dimension n of
the projective space the torus is embedded into tends to grow exponentially with g:
typically, n = 39 — 1 in the generic case.

Example A.1.2.19. Every complex torus of dimension g = 1 is projective. To see
this, just notice that the lattice A can be written A = Z1 & Z1, for some 7,75 € C
such that Im(7,/m) > 0, and that the form z,w — ——Zw is a Riemann form

_ m(72/71)
with respect to A.

While it is easy to normalise a hermitian form into a Riemann form in dimension
1, it becomes generically impossible to do it in higher dimension, so that “most”
complex tori of dimension at least 2 are not projective. However, the Riemann
bilinear relations A_T2TT imply that jacobians are always projective:

Theorem A.1.2.20. Let X be a connected compact Riemann surface of genus g,

with period matriz
1 0

0 1
with respect to a symplectic homology basis and to the corresponding dual basis of
differential forms. Let A= Ret and B =1ImT. Then the form

z,wr— 2B tw
15 a Riemann from on C9 with respect to the period lattice.

Proof. By the Riemann bilinear relations AT"XTT, the matrices A and B are sym-
metric real matrices, and B is positive definite. In particular, B is nonsingular, so
this hermitian form is well-defined and is positive definite. The period lattice of X
is A =79 @ 779, and an easy computation using the symmetry of A and B shows
that the matrix of this hermitian form in the canonical basis is

B~' | Bl'A+il,

AB'—il,| AB7'A
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where I, denotes the identity matrix of size g. It is then clear that this form is a
Riemann form. [

In view of this result, it is natural to attempt to generalise the construction of
the jacobian for a curve X over any ground field K. Of course, it is then no longer
possible to rely on integrals of differential forms, so that the jacobian has to be con-
structed directly as an algebraic variety representing Pic’(X). The construction in
this abstract algebraic setting is rather technical, so I shall barely scratch its surface
here, and refer the reader to [HSOU, section A.8] or to [MilT?] instead. Eventually,
one ends up with the following result:

Theorem A.1.2.21. Let X be a projective, non-singular, geometrically integral
curve of genus g defined over a perfect field K, such that there exists a K-rational
point O € X(K) on X. There ezists an abelian variety — that is to say a projective
variety endowed with a (necessarily abelian) group law defined by polynomial equa-
tions — called the jacobian of X and denoted by Jac(X), which is defined over K
and of dimension g, and an embedding 7: X — Jac(X) defined over K and which,
extended by additivity to Div(X), factors into an isomorphism

70 Pic’(X) = Jac(X).

Furthermore, for any algebraic extension K C L C f_of K, the L-rational points of
Jac(X) correspond to the divisor classes in Div® (X (K)) which are invariant® under
the action of Gal(K/L).

Recall that according to corollary I T38, every divisor D € Div’(X) is linearly
equivalent to a divisor of the form E — gO for some effective divisor £ € Eff?(X)
of degree g which is generically unique. The idea is to start with the ¢'" symmetric
power Sym?(X) = X9/&, of X, where the symmetric group &, acts by permuting
the factors of X9. The following lemma shows that this is an algebraic variety:

Lemma A.1.2.22 (Hilbert, c¢f. [HSOO, proposition A.8.3.2]). Let A be a K-algebra
of finite type, and let G C Autg(X) be a finite group of K-automorphisms of A.
Then the subalgebra of fized points AS is also of finite type over K.

The L-rational points of Sym?(X) correspond to the effective divisors on X (K)
which are defined over L, so according to part (iv) of the Riemann-Roch theorem
ATT32, there should be a morphism from Sym?(X) to Jac(X) which is generi-
cally one-to-one. One then proceeds to construct Jac(X) by identifying the points
in SymY(X) which represent linearly equivalent divisors (which is rarely the case
according to corollary ATT3R), and proceed to show that this yields an algebraic
variety which is projective over K.

2The word “invariant” here applies indifferently to the divisor or to its linear equivalence class.
Indeed, the existence of a K-rational point O € X (K) implies that a divisor class in Pic” (X (K))
is invariant under Gal(K /L) if and only if it can be represented by a divisor in Div’ (X(K)) which
is globally invariant under Gal(K/L).
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A.1.3 Computing in the jacobian

Performing arithmetic operations in the jacobian Jac(X) of a curve X of genus g is
not as easy as one might think. Of course, Jac(X) is an abelian variety, so it can be
embedded into some projective space P%, and the group law is given by polynomial
equations on the coordinates in this embedding, but these equations are insanely
complicated, even in genus g = 2 (cf. [FIy90, appendix A]) which is the smallest
non-trivial case in view of example AT T33. In fact, the best one can do in general
is to use so-called © functions to embed Jac(X), which is of dimension g, into a
projective space of dimension n = 39 — 1.

I shall now present a method, due to K. Khuri-Makdisi (cf. [KNMO4, KNMOT]),
to compute in the jacobian Jac(X), that is to say in the class group Pic’(X), of
any projective, nonsingular, absolutely integral curve X of genus g, provided only
that the perfect field K it is defined on be computational, that is to say such that
there exist algorithms to perform arithmetic in K. The advantage this method is
that it relies merely on linear algebra, which makes it very fast. Besides, it does
not requires the knowledge of a plane model for X, but merely of a certain section
space H°(X, D). Obviously, computing in Jac(X) is completely trivial if g = 0 since
Jac(X) is then reduced to a point, so I shall assume that g is non-zero from now on.

A.1.3.1 Computing with section spaces

Let me first present a few ideas informally. Begin by fixing a divisor Dy € Div(X)
of large enough degree dj, so that the Abel-Jacobi map

7: D+~ [D — Dy] (deg D = deg Dy)

be surjective. A point # € Pic’(X) can then be represented, albeit perhaps not
uniquely, by a divisor D € Div®(X) such that [D — Dy] = z. The novelty of K.
Khuri-Makdisi’s method rests on two points.

e First, dy > ¢ is chosen to be large, even though, by proposition BTT34,
dy = g would be enough to ensure that j is surjective. The benefit of this, as I
shall explain in more details, is that all the fibres of the Abel-Jacobi map are
isomorphic, and more generally that the h! cease to be a nuisance (cf. part (iii)
of the Riemann-Roch theorem ATT37). The price to pay is a loss of rigidity,
in that the divisor D representing a point = € Pic’(X) is far from unique.

e Next, a divisor D on X is no longer represented as a sum of points on X, but
by the K-subspace H’(A — D) of K(X), where A denotes a fixed divisor. The
degree of this divisor must of course be high enough for this representation to
be faithful.

I shall make all of this more precise in a moment. The advantage of this repre-
sentation way is that it brings all the computations in Pic’(X) down to mere linear
algebra computations. In order to perform these computations, one uses formulae of

the kind
H(A+B) = HA)-HB)
f-H(A) = H°(A-div(f))
H'B-A) = {seK(X)|sH(A) C HB)}
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where I used the notation
V-W={wlveV, weW}

for V' and W subspaces of K(X), and where A and B are divisors on X and
feK(X).

Of course, such formulae only stand under certain conditions (large enough de-
gree...). I shall now justify all of this rigorously.

A.1.3.2 Technical preliminaries

In order to prove the necessary technical results, I shall of course make intensive use
of the Riemann-Roch theorem BATT32.
Recall that the line bundle Ox (D), D € Div(X), is defined by

Ox(D)(U)={se K(X) | div(s)+ D>0o0n U} (U C X open).

The notion of base point allows one to examine the behaviour of the sections of
Ox (D) when the degree of D is small.

Definition A.1.3.1. Let D be a divisor on X. By definition, the divisor

B=D+ inf div(s)

s€HO(D)

is then effective. The divisor is call the base locus of D, or of Ox (D). The base
points are the points in its support.
If B =0, then D and Ox (D) are said to be base point free.

In other words, D is base point free if inf,cpopydiv(s) = —D, that is to say if
“the global sections of Ox (D) do everything they are allowed to do”.

Example A.1.3.2. Let E be an elliptic curve, P a point on F(K), and take D = P.
It is well-known (cf. ATT3H) that

H(E,D)=K

only consists of the constant functions. Thus, although the definition of the sections
H°(E, D) allows them to have a pole at P, they do not take advantage of it. The
point P is hence a base point of D; actually, it is the only one.

Intuitively, base points can only exist be because the degree of D is too small
compared to the genus g in order for the sections in H°(D) to have enough freedom.
The following proposition shows that this intuition is correct:

Proposition A.1.3.3. Let L be a line bundle of degree d on X.
1. If d > 2g, then L is base point free.

2. If L is generic and d > g + 1, then L is base point free.
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Proof. Extend the scalars to K. If £ has degree d > 2g, then for every point P € X,
L(—P) has degree d — 1 > 2g — 1, so that h°(L(—P)) = h°(L) — 1 by the Riemann-
Roch theorem BTT33(iii). Now, if P were a base point of £, one would have
H°(L(—P)) = H°(L), thus h°(L(—P)) = h°(L). Hence L is base point free.

The case of generic L is dealt with in the same way, by using the generic case (v)
of the Riemann-Roch theorem ATT33. ]

The above example shows that the condition deg £ > 2g is optimal.

A moment of thought reveals that a line bundle L is base point free if and only
if it is generated by its global sections, that is to say that the map

HYL)® Ox — L

is surjective. I shall denote its kernel by M, so that for each base point free line
bundle L, there is a short exact sequence

0— My — HL)ROx — L—0

of vector bundles on X. Thanks to this information, one can determine a sufficient
condition for the multiplication map

H(L,) ® H(Ly) — H(L; ® Ly)

to be surjective.

Lemma A.1.3.4 (Base point free pencil trick). Let £ be a generic line bundle of
degree g+1 on the curve X. Then My is also a line bundle on X, and is isomorphic

to the dual bundle LY = Hom(L, Ox) of L.
Proof. Since L is generic, the Riemann-Roch theorem AT T3%(v) implies that
dim H°(L) =degL+1—-g=g+1+1—-g=2.

One can therefore write®
HY(L) = Ks, ® Ks,

where sy, sy are elements of H(L) \ {0}. Besides, again because L is generic, it is
base point free according to proposition A1-373, hence the short exact sequence

0— My — H(L)®Ox — L — 0.

Now let U C X be an open subset of X. From the definition of M, there is an
isomorphism

Mﬁ(U) ~ {(tl,tg) - OX(U)2 Sltl + SQtQ = 0} ~ {(tl,t2> - OX(U)2 Sltg — Sgtl = 0} s

which is functorial in U, where (¢1,t2) has been replaced with (¢2, —t1) in the last
step.

3HO(L) has thus projective dimension 1, hence the term pencil.
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Define u; = 2— € K(X) for i € {1,2}. The condition sty — sot; = 0 defining M
is tantamount to the equality u; = uo; furthermore, letting u = u; = us, the t; = us;
have to be regular on U. To sum up, there is an isomorphism

M, (U) ~ {u € K(X) ‘ Vi e {1,2}, us;|y € OX(U)} ~ {u € K(X) ‘ uH(L)|y C (’)X(U)},

so that M is isomorphic to the dual bundle £V, since £ is base point free, hence
generated by its global sections. ]

Theorem A.1.3.5. Let L1 and Ly be two line bundles on X, with respective degrees
dy and dy, and let g denote the genus of X. If dy, do > 2g+1, then the multiplication
map

p: HY(L) @ HO(Ly) — H(L1 ® Ly)

1S surjective.

Proof. 1 may extend the scalars to K, and by symmetry, I can suppose without loss
of generality that d; < dy. Start by writing down the short exact sequence associated
to L1, which is base point free according to proposition AT-373:

0— Mg, — H°(L) ® Ox — L, — 0.
Since L is locally free, this sequence remains exact after tensoring by L5, so that
0 — Mg, ®@Ly — HY (L)@ Ly — L1 ® Ly — 0.
Taking the global sections, one gets the long exact sequence in cohomology
0 — Ho (M, ®Ly) — HY(L))QH (Ly) 5 HY(L1®Ly) — HY (Mg, QLy) — - -

in which the multiplication map p shows up. I shall now prove that H{(M,, ® Ly)
vanishes, which implies that p is surjective.

Define r =d; — g — 1, and let Py, --- , P, be points in generic position on X. As
r > ¢ by hypothesis on d;, proposition BT 137 ensures that the Abel-Jacobi-like
map Eff"(X) — Pic"(X) is surjective. The line bundle £;( — Y_7_, P;), which is
of degree d; —r = g + 1, is therefore generic, so it is base point free by proposition
AT33. The short exact sequences attached to £1 and to £ ( - 2221 R-) fit into the
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following commutative diagram:

([
0 Mﬂl(*ZfﬂPi)*)HO <£1<_ZB’>>®0X*>£1<_ZP@')*>O

Since, by the base point free pencil trick,

My —sr py = LY (Z Pi) ,

=1

this yields the short exact sequence

0— LY (if’,) — My, — é@x(—ﬂ) — 0.

i=1 i=1

Tensoring again by £, and taking the cohomology results in the exact sequence

i=1

To conclude, I shall prove that the middle term vanishes, by using Serre duality
[ATTT73T to show that both extreme terms vanish.
First, for the right-hand term, one has

W (La(—Py) = hO( & LY(P)),

and the line bundle ©; ® LY (FP;) has degree 29 — 2 — dy + 1 < 0 since dy > 2g + 1.
By BT T0, this proves that H'(Ly(—F;)) vanishes.
Next, for the left-hand term,

G <£Y®£2(ZB)> = h <91®£1®£5(—ZR)> :
i=1 i=1
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and this time the degree of the line bundle Q; ® £, ® Eg( - Z:Zl R-) is
20—24dy —do —7 < g—2

since I have assumed d; < dy. For generic P;’s, this line bundle is thus generic of
degree g — 2 < g, so by the Riemann-Roch theorem ATTT3%(v) it has no non-zero
global section either, which concludes the proof. O

A.1.3.3 Building blocks

Recall that a point # € Pic’(X) is to be represented by a divisor D on X such that
x = [D— Dy, where Dy is a fixed origin divisor, whose degree I denote dy. The divisor
D representing x thus also has degree dy. As I announced above, I must choose a
large value of dy instead of dy = ¢, so as to avoid nuisances such as base points or
inconclusiveness in the Riemann-Roch theorem. I shall show that dy > 29 + 1 is
enough to ensure the correctness of K. Khuri-Makdisi’s algorithm.

Besides, the divisor D is itself to be represented as H°(A — D), where A is a
fixed divisor. For this representation to be faithful, it is sufficient that A — D be
base point free, hence that deg A > deg D + 2¢g by proposition AT-33. As I shall
explain, the algorithm deals with divisors of degree dy and 2dy, so that deg A must
be at least 2dy + 2g. The choice A = 3Dy is thus natural. Consequently, I shall
denote

V = H°(3Dy),

and a divisor D will be represented by the subspace
Wp = H(3Dy— D) CV.

In practice, these spaces, which are finite-dimensional over K, will be represented
by a K-basis, hence by matrices with coefficients in K. The elements forming these
bases, which are rational functions on X, can be represented in several ways.

1. The first solution consists in picking a rational point P € X (K), and to repre-
sent a function by its truncated Taylor series at P. This means that a function
is represented by an element in a K-algebra of truncated power series.

2. Another solution consists in picking rational points P; € X(K) on the curve
Xand to represent a function by its values at these points. If it is not possible
to find sufficiently many rational points, e.g. because K is a number field, one
can use points defined on a small extension of K instead. A function is then
represented by an element in an étale K-algebra.

3. More generally, one can do a little of both, that is to say represent a function by
its truncated Taylor series at various fixed points, in other words, by evaluating
the function at an effective divisor.

Denote by Z € Eff(X) the divisor at which functions are evaluated to represent
them. It will turn out that the functions considered along the algorithms below all
lie in V = H°(3Dy) or in HY(6D,). Therefore, for this representation system to be
faithful, it is necessary and sufficient that H*(3Dy — Z) = H°(6Dy — Z) = {0}. The
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easiest (and safest) way to ensure this is to pick Z of degree at least 6dy + 1. By the
way, it is better if possible to avoid that the supports of Dy and Z intersect, since
if they do, functions will have poles where they are evaluated, and one has to shift
the valuation in power series or use Laurent series, which makes the implementation
more difficult. To sum up, a space W of functions will be represented by a matrix,
with deg Z lines, dim W columns, and coefficients in K.

Before describing the actual algorithms for computing in PicO(X ), I present three
“building blocks”, that is to say three basic operations these algorithms rely on, and
which correspond to the three formulae given in the beginning of this section.

Algorithm A.1.3.6 (Add). Knowing H°(A) and H°(B), compute H°(A + B).

Theorem [A_T31 asserts that if A and B both have degree at least 2¢g + 1, then
HY(A+ B) = H°(A) - H°(B). Provided that this condition is fulfilled, in order to
compute H°(A + B), it is thus enough to multiply every basis element of H°(A) by
every basis element of H°(B), and then to extract a basis of H°(A+ B) by performing
linear elimination. Actually, if one accepts to introduce randomness, it is much more
efficient to compute n products of a randomly chosen basis element of H°(A) by a
randomly chosen basis element of HY(B) for n a little larger than h°(A + B), and
then to ensure that these products do span H°(A + B) and to extract a basis out of
them.

Algorithm A.1.3.7 (Multiply by function). Knowing a function f and H°(A),
compute H°(A - (f)).
It is plain that

frHY(A) = {fs| div(s) > —A}
= {t = fs | div(t) = div(f) + div(s) > div(f) — A}
= H"(A —div(f))

unconditionally. Therefore, one simply multiplies each basis element of H(A) by f
to get a basis of H(A — (f)).

Algorithm A.1.3.8 (Subtract). Knowing H°(A) and H°(B), compute H°(B — A).
One has

(X) | s+ H(A) € H(B)}
= {5 € K(X) | div(a) > —A = div(s) + div(a) > —B}
(X) | div(s) — A > —B} if Ais base point free
)

Hence, provided that A is base point free (e.g. because deg A > 2g), H°(B — A) can
be computed as follows: compute a matrix Kp whose kernel is exactly H%(B); then,
for each basis element a; of H°(A), twist the matrix Kp into a matrix K,, p such that
for all s € B, K,, pr = 0 <= Kpa,x = 0 (the explicit way that Kp must be twisted
depends on how functions on X are represented). Next, stack up the matrices K,, 5
into a big matrix. One must stack up an extra equation matrix at the top of this
big matrix, so as to ensure hat its kernel only contains vectors representing actual
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functions; for instance, if A is effective one can stack up an extra copy of Kpg since
HY(B — A) C H°(B) in this case. In practice H°(B — A) is a subspace of V, so one
can stack up a precomputed matrix Ky whose kernel is exactly V' instead. It then
only remains to compute the kernel of the big matrix in order to get H°(B — A).

Remark A.1.3.9. Note that the equations encoded in the big matrix are in general
very redundant, so extra care should be taken in the computation of the kernel if the
base field K is not exact. For instance, I shall use K. Khuri-Makdisi’s algorithms
with K = C in my algorithm, so I must keep numerical stability in mind. My solu-
tion consists in using QR-decomposition by Householder reflections (cf. for instance
[Dem97, sections 3.2.2 and 3.4.1]) instead of the numerically-unstable Gaussian elim-
ination. The expected dimension d of the kernel is known beforehand thanks to the
Riemann-Roch theorem, so the kernel can be computed as the space corresponding
to the d diagonal entries of R with smallest modulus. The experiments I have run
seem to indicate that this method was a reasonable compromise between numerical
stability and speed of execution.

Remark A.1.3.10. Also note that the big matrix can be made smaller, and hence
the computation faster, by stacking up K,, g no longer for a;’s ranging over the basis
of H°(A), but for a few a;’s chosen at random in H°(A). The result is then correct
if inf; div(a;) = —A, else the dimension of the kernel of the big matrix will be larger
than expected according to the Riemann-Roch theorem, and this is easy to detect,
so one can just start again until the kernel is of the expected dimension. This yields
a probabilistic algorithm of Las Vegas type. When the ground field K is infinite, the
probability that the computation fails is zero even if one takes only two? (linearly
independent) a@;’s. On the other hand, if K is finite of small cardinal, it may be
better to take a larger number of a;’s in order to reduce the probability of failure, cf.
[KMO7, section 4] for a precise estimation.

Remark A.1.3.11. I would like to stress once again that these three building blocks
merely rely on linear algebra over K.

A.1.3.4 The actual algorithms

I can now present the two algorithms used to compute in Pic’(X). These algorithms
only rely on the three building blocks presented above. For simplicity, I shall assume
that the base divisor Dy is effective, although it is not necessary for K. Khuri-
Makdisi’s algorithms to work. Recall that a point # € Pic’(X) is represented by an
effective divisor D of degree dy such that [D — Dy| = x, and that this divisor is itself
represented by the subspace Wp = H*(3Dy — D) of V = H°(3Dy).

The spaces V and Wp, = H°(2D,), which represents 0 € Pic’(X), are assumed
to be given as an input representing X. If not also given, one also precomputes a
matrix Ky whose kernel is exactly V.

4Clearly, the computation cannot succeed if one takes only one a;, since the condition
inf; div(a;) = —A cannot be satisfied then.
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Algorithm A.1.3.12 (Chord). Given two points x; and x5 € Pic’(X), this algo-
rithm computes r3 = —x; — 25 € Pic’(X).

In other words, knowing Wp, = H®(3Dy — D;), with D; effective of degree dj
such that [D; — Dy] = x1, and Wp, = H°(3Dy — Ds), with D, effective of degree
dy such that [Dy — Dgy] = x5, compute Wp, = H°(3Dy — Dj3), with D3 effective of
degree dy such that Dy + Dy + D3 ~ 3D,.

This is achieved as follows.

1. First, use the “add” block to compute H°(6Dy — Dy — Dy) = Wp, - Wp,. This
is legitimate since 3Dy — Dy et 3Dy — Dy both have degree 4dy > 2g + 1.

2. Next, use the “subtract” block to compute
H°(3Dg— Dy — Do) ={s€V |s-VCH6Dy— Dy — Ds)},

which is possible since V = H°(3D,) is base point free according to proposition
[AT33. Here one can use the precomputed matrix Ky .

3. Then, choose a non-zero function f in H°(3Dy — Dy — D,), for instance the
first basis element thereof. The divisor of f has the form

div(f) = —3Dqy + Dy + Dy + Ds,

where Dj is effective of degree dy, and Dy + Dy + Dj is linearly equivalent to
3Dy, so Dj is exactly what is needed. To catch it, use then the block “multiply
by function” to compute f -V = H*(6Dy — D; — Dy — D3).

4. Tt only remains to use the “subtract” block to compute
Wp, = H'(3Dy—D3) = {s € V | s:H*(3Dg—D1—D,) C H°(6Dy—D1—Dy—Ds) }.

This is legitimate since H°(3Dy — Dy — Ds) is base point free by proposition
A—T33. Note that since 3Dy — Dy — Dy is not effective a priori, one must stack
up Ky instead of Ksp,—p,-p, on the top of the big matrix, since the space one
wants to compute is a subspace of V.

A few words might be in order to explain how to use the “chord” algorithm above
to compute in Pic’(X). To compute the opposite of the point represented by Wp,
apply the “chord” algorithm to Wp and Wp,. To add the points represented by Wp,
and Wp,, apply the “chord” algorithm to Wp, and Wp,, then compute the opposite
of the result. To subtract the point represented by Wp, from the point represented
by Wp,, compute the opposite of Wp,, then apply the “chord” to the result and to
Wh,.

It is also crucial to be able to determine whether two subspaces Wp, and Wp,
represent the same point of PicO(X ), since as I stressed the divisor D representing
a point is far from being unique. Now Wp, and Wp, represent the same point
in Pic’(X) if and only if D; and D, are linearly equivalent, which is tantamount to
H°(D;—D,) being a non-zero space. The idea is thus to almost compute H°(D;—D,).

5Tt is at this point that the condition dy > 2g is required.
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Algorithm A.1.3.13 (Equality test).

1. First pick a non-zero function f in Wp,, e.g. the first basis element thereof.
The divisor of f is of the form

div(f) = —3Dy+ Dy + E

where F' is effective and has degree 2dy. Next, use the “multiply by function”
block to compute H°(6Dy — Dy — Dy — E) = f - Whp,.

2. It only remains to compute
H°3Dog— Dy —E)={seV |s-Wp, CH(6Dy— Dy — Dy — E)},

and output TRUE is this space is non-zero, and FALSE else. Indeed,
H%(3Dy— Dy—E) = f-H°(D; — D), since V is base point free by proposition
AT33. Just like above, one must stack up Ky on the top of the big matrix.
However, the acceleration trick described in remark A_T-3T0 must not be used
here, since this time, the dimension of the kernel of the big matrix is not known
beforehand: on the contrary, it is what is being computed !

Remark A.1.3.14. Note that it is possible to perform many other operations on di-
visors (max, min, set-theoretic difference, ...) by using these three “building blocks”.
For further details, cf. [KMO4)].

I conclude this section by explaining how to get the input data V = H°(3Dy)
and Wp, = H°(2Dy). Tt is enough to have H°(Dy), since one can then construct
successively Wp, and V using the multiplication map A3 as dy > 29 + 1. It
thus remains to compute H°(Dy). The methods for this differ, depending on how
the curve X is given. However, the curve X one wishes to compute with is often
particular, and there is then a natural choice for Dy for which H°(Djg) is known
explicitly. For instance, the curves I shall work with are modular curves (cf. section
A2 below), and I shall arrange for H°(Dj) to be a space of modular forms.

A.1.3.5 Complexity analysis and comments

The above two algorithms make it possible to compute in Pic’(X) for any curve X
defined over any computational perfect base field K. Furthermore, it merely relies
on linear algebra, on matrices of size O(g) x O(g) (at least when the ground field K
is infinite), where g denotes the genus of the curve X. This means that one operation
in Pic’(X) requires® O(g?) operations in K.

It may seem surprising that the section space H°(Dy) alone contains enough
information about X to make it possible to compute in Pic”(X). This is due to the
fact that the assumption dy > 2¢g + 1 implies that Dgy is very ample, so that the
associated section space contains enough functions to set up a projective embedding
of X.

6This can be improved by using fast linear algebra algorithms. However, when the ground field
K is not exact (e.g. K = C in my case), such fast algorithms may be numerically instable.
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A.2 Modular curves and modular forms

I shall now proceed to the presentation of some well-known facts about modular forms
and other related modular objects, namely modular curves and modular symbols,
making the extraordinarily rich arithmetic structure of these objects apparent along
the way.

A.2.1 Modular curves

I start with modular curves, which may be naively defined as Riemann surfaces
constructed by quotienting the extended upper half plane by subgroups of SLy(Z),
although they are much better understood once one sees them as moduli spaces for
elliptic curves endowed with torsion data. This makes natural the definition of Hecke
correspondences, and explains why these curves admit models over Q (or at least,
over a cyclotomic field).

A.2.1.1 Modular curves as manifolds

Let H = {r € C |Im7 > 0} denote the Poincaré upper half-plane. The group
GL2(R)* of 2 x 2 real matrices with positive determinant acts on H by the well-
known formula

T =

ar +b _{a b

I am interested in quotients of H by discrete subgroups I' of GLy(R)*, such as
SLo(Z). More precisely, I shall focus on the case where I' is a certain kind of finite-
index subgroup of SLy(Z).

Definition A.2.1.1. Let N € N. The subgroup I'(V) of SLy(Z) is the kernel of the
projection SLy(Z) —= SLy(Z/NZ) . In other words, a matrix [ 4] € SLy(Z) lies in
['(N) if and only if b=¢=0mod N and a =d =1 mod N.

A subgroup I' of SLy(Z) is a congruence subgroup if it contains I'(N) for some
N € N. The least such N is called the level of T'.

For instance, SLo(Z) = I'(1) is the only congruence subgroup of level 1. The
terminology “congruence subgroup” comes form the fact that membership of a con-
gruence subgroup I of level N is defined by congruence conditions modulo N on the
entries of the matrix (consider the image of I in SLy(Z/NZ)). The most famous
examples of congruence subgroups, apart the I'(N) themselves, are the

To(N) = {{ ‘ Z} € SLa(2)

T (N) = {{Z Z] e Ty(N)

CEOIIIOdN} and

azdzlmod]\f}.
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Example A.2.1.2. Write N = [[,yp"™. ['(IV) is a normal subgroup of SLy(Z),
with quotient SLy(Z/NZ) =~ [], 5 SL2(Z/p*Z) by Chinese remainders. From the
short exact sequence

1 — SLy(Z/p*r Z) — GLy(Z/p*r Z) <~ (Z/pr Z)* —1 |
one sees that # SLy(Z/p**7Z) = %, and from the short exact sequence
1 ——=1+ pMatyys(Z/p»'Z) — GLy(Z/p**Z) — GlLo(Z /pZ) — 1,
one deduces that

#6128 = () 02 - 06 - = 0 (1- ) (1)),

so that the index of I'(IV) in SLy(Z) is

H#SLQ(Z/p”pZ):H(p 2 <1__> <1_’_’> :N3H(1—l).

v 1 2
pIN pIN pr (1 - 5) pIN p

Furthermore, I'(NV) is normal in I';(N) with quotient I'y(N)/I'(N) ~ Z/NZ
by [2%] + bmodN, and I'j(N) is normal in To(N) with quotient
Lo(N)/T1(N) ~ (Z/NZ)* by [¢b] — d mod N, so that
N N (1-3) Nl (143)

where the numbers under the inclusions denote the indices.

Example A.2.1.3. Let Ay be the set of vectors in (Z/NZ)? of order exactly N,
and let P*(Z/NZ) be the quotient of Ay by (Z/NZ)* acting diagonally (this agrees
with P!Fy when N is prime). By viewing the elements of Ay as column vectors,
one has a canonical action of SLy(Z) on Ay, which is transitive, and which induces
a transitive action on PY(Z/NZ). Since I';(N) is the stabiliser of (1,0) € Ay, one
sees that for all v, 4" € SLy(Z), the cosets yI'1(N) and +'I';(N) agree if and only
if the left columns of v and of 7/ agree in Ay, and in particular one gets the coset

decomposition
SLy(Z |_| V@

(ac)eAn

where 5z denotes any matrix [¢ Y] € SLy(Z) such that a = @ and ¢ = ¢mod N.
Similarly, since the stabiliser of (1:0) € PY(Z/NZ) is To(N), the cosets 7T(N) and
7' To(N) agree if and only if the left columns of v and of 4 agree in P1(Z/NZ), and
one has the coset decomposition

SLQ(Z) = |_| ’Y(E:E)F()(N)J

(a:¢)ePY(Z/NZ)

where (g7 denotes any matrix [2 4] € SLy(Z) such that (a:¢) = (a:¢) in PY(Z/NZ).
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One can also view the elements of Ay as row-vectors and let SLy(Z) act on Ay
on the right, which leads to the criteria I'1(IV)y = I'1(N)~' if and only if the bottom
rows of v and of 7 agree in Ay, To(N)y = T'o(N)v if and only if the bottom rows
of v and of 7/ agree in P*(Z/NZ), and to the coset decompositions

SLa(Z) = |_| Li(N )V
(6 d)EAN

and
SLo(Z) = ] ToW)ea

(¢:d)ePY(Z/NZ)

with the obvious notations.

Fix a congruence subgroup I' of level N, and let Y (I') = I"'\'H denote the quotient
of H by I'. One can show (cf. [DS0H, section 2.1]) that the action of SLy(Z) on H is
properly discontinuous, that is to say every 7 € H has a neighbourhood V' such that

Vy € SLo(Z), AV NV £ = y7 =T,

so that the topology Y (I') inherits from H is Hausdorff.

Defining a complex atlas on Y(I') is a little more difficult though. At each
7 € H, one would like to use the local coordinate given by the action? of the matrix
0y = H :;] which maps 7 € H to 0 € C, but this map does not descend to Y (I'),
even locally, if 7 is one of those points with non-trivial stabiliser.

Definition A.2.1.4. Let 7 be a point in H, with stabiliser I',. One says that 7 is
an elliptic point for I' if PI'; is non-trivial.

Here and in what follows, I denote by PH the image of a subgroup H of GLy(R)*
in PSLy(R). The reason for this is that scalar matrices, and in particular —1, act
trivially on H.

Since the stabilisers of two points in the same orbit are conjugate, it makes sense
to say that a point on Y'(I') is elliptic.

Example A.2.1.5. Let 7 € H be an elliptic point, so that there exists a non-scalar
matrix v = [25] € SLy(Z) such that y7 = 7. This is a quadratic equation on T,
whose discriminant is A = (d — a)? 4 4bc = (try)* — 4 since dety = 1. Since 7 € R,
A must be negative, so tr~y can only be —1, 0 or 1. In particular, Y(Fl(N)) has no

elliptic point if N > 4.

Example A.2.1.6. By looking at the famous fundamental domain for SLy(Z) shown
on figure 2177, one sees that the elliptic points on Y (SLy(Z)) are the images of i
and of p = e™/3. Their stabilisers are cyclic, generated respectively by [9 '] and by

[13'):

From this example, one deduces the following result:

"Here and in what follows, I implicitly extend the definition of the action of GLy(R)™ on H,
and rather consider the action on GL(C) on PC.
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Figure A.2.1.7: A fundamental domain for SLy(Z)
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Proposition A.2.1.8. Let 7 € H be elliptic for I'. Then PI'; is cyclic, of order 2
or 3.

Accordingly, I define the order of an elliptic point to be 2 or 3.

Let 7 € H be an elliptic point of order h € {2,3} for I'. Then the elements of its
stabiliser I'; also stabilise 7. Since ¢, also maps T to oo, the elements in 6,16 ! are
fractional linear transformations which fix 0 and oo, hence of the form 2z — az for
some a € C*. Besides, since PT'; is cyclic of order h, necessarily a € py, is a ht" root of
1. Consequently, by composing the action of d, with z — 2", one gets a well-defined
continuous map from a neighbourhood of I'r € Y (I') to a neighbourhood of 0 € C.
Taking these maps as charts for elliptic points, and simply d, for the non-elliptic
points, one proves (cf. [DS05, section 2.2]) that one gets a complex atlas on Y/(T'),
thus making Y (I') a Riemann surface.

This is still not the end of it yet though, since Y (I') is not compact. In order to
fix this, one extends the upper half plane H into

H =HUP'Q=HUQU {oo}.

The new points s € P'Q thus added are called cusps. Note that the obvious action
of SLy(Z) on them is transitive.

Topologise H*® by keeping the complex topology on H, by declaring that the
Vy={reH|Im7 >y} U{oo} for y > 0 form a basis of neighbourhoods of oo, and
by letting a cusp s € Q have the aV,, y > 0, as a basis of neighbourhoods, where
a € SLy(Z) is such that coo = s. Note that this does not depend on the choice of «
since the stabiliser of co under SLy(7Z) is the group of horizontal translations

(£ 1] nez},

and those leave the V,, invariant. As fractional linear transformations transform lines
into lines or circles, this means that a basis of neighbourhoods of s € Q is formed
by the closed disks in H*® which are tangent at s to the real line, as shown on figure
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Figure A.2.1.9: Neighbourhoods of some cusps

A2TY. Note that since the V, form a basis of neighbourhoods of the cusp oo, this
cusp should actually be thought of as +ico.

This turns H* into a Hausdorff space on which SLy(Z) acts properly discontinu-
ously, so that the quotient space

X(T) = D\H*

is Hausdorff. It is also easy to see that it is compact. In the case I' = I'(N) (re-
spectively I'1 (N), To(NV)), one writes X (V) (respectively X;(N), Xo(NV)) for X(I').
In particular, X (1) = X (SLy(Z)). The images of the cusps in X (T') are called the
cusps of X(I).

Example A.2.1.10. X(SLy(Z)) has only one cusp since SLy(Z) acts transitively on
PLQ.

More generally, X (I') has finitely many cusps since I', being a congruence sub-
group, has finite index in SLo(Z).

Example A.2.1.11. Let £ € N be prime. By example B=2T73, one has

¢
SLy(Z) = |_| Lo(€)7i,

where v; = [} 9] for 0 < i < £ and v, = [? ']. From this, one deduces that

P'Q = SLy(Z)oo = SLy(Z)0 = | JT0(£)7,0 = Tp(£)0 U T(¢)o0.

1=0

Since an element of I'g(¢) cannot send 0 to oo, this union is disjoint, which means
that X, (¢) has two cusps, namely I'g(£)0 and I'y(€)oc.

In order to make X (I') a Riemann surface, it remains to define charts around the
cusps. Let s € P!Q be a cusp. Then s = aoco for some o € SLy(Z), so that the
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stabiliser of s in I is of the form

{001 ez} o {5 ) W] ez}

for some h € N called the width of the cusp s. It does not depend on « and is the
same on the I'-orbit of s since it is actually the index of PI'y in PSLy(Z). I then define
a chart about s by composing the action of a~! with z — €>™*/*_ This descends to
a neighbourhood of T's € X(I") by construction, and one checks (cf. [DS0O5, section
2.4]) that this yields a bona fide complex atlas on X (I').

Definition A.2.1.12. The compact Riemann surface X(I') = ['\H*® is called the
modular curve of level I

Example A.2.1.13. Let ¢ € N be a prime which is at least 5, and consider the
modular curve X (¢). Since SLy(Z) acts transitively on P!Q, every element of SLy(Z)
stabilizing a cusp is conjugate in SLy(Z) to +[§ %] for some n € N, and hence has
trace 2, so that for all s € P'Q one has T'g(¢); = +I'1(¢);. In particular, the
cusp ['g(¢)s € Xo(¢) has the same width as I'1(¢)s € X;(¢), which proves that the
projection X;(¢) — X¢(¢) is unramified at the cusps. In particular, since its degree
is [PTo(€): PI'y(¢)] = (¢—1)/2, it follows from example A2TTT that the curve X;(¢)
has ¢ — 1 cusps.

For instance, one may compute the following formula:

Theorem A.2.1.14. The genus of X (I') is

[PSLo(Z) : PT| 2 &3 €w
S, [N S/l S A ==
g=1+ 12 13 2
where €5, €3 and £ denote respectively the number of elliptic points of order 2, 3,
and the number of cusps of X (T').

Proof. Apply the Riemann-Hurwitz formula to the projection
f: X([T)—= X(1).

It is of degree d = [PSLy(Z) : PI'], and ramification can only come from elliptic
points or cusps, since a chart at a point which is neither, ¢, yields a coordinate chart
both on X (I') and X (1), so that f is the identity in local coordinates there.

Let me deal with the elliptic points first. Let yo = SLo(Z)i be the elliptic point
of order 2 of X (1), and similarly let y3 = SLy(Z)p, p = /3. Take h € {2,3}, and
consider a point z € X (I') such that f(x) = y,. The stabiliser PI'; of a 7 € H such
that = I'7 is a subgroup of PSLy(Z),. Since the latter is cyclic of prime order h,
the former is either the whole of the latter, or reduced to 1. In the first case, x is
elliptic of order h, and hence unramified since f is the identity in local coordinates,
whereas in the second case, x is not elliptic, hence is ramified of order A since f reads
z + 2" in local coordinates. This yields d = 37,1, € = &n + h(#f (yn) — en)
whence #f 1 (y,) = d*% + &, so that the contribution of the ramification of elliptic
points of order h in the Riemann-Hurwitz formula is

S e l=d—# ) = A e
f@)=yn
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Next, one finds directly that the contribution of the ramification of the cusps is
Z ey — 1 =d—éeq.
f(x)=SL2(Z)oco
Since X (1) has genus 0 as can be seen on figure A2T7, the Riemann-Hurwitz
formula then yields
1 2
29— 2= —2d—|—§(d—52)—|—§(d—63)+d—5w,

hence the result. O]

Example A.2.1.15. Let ¢ € N be a prime which is at least 5, and consider the
modular curve X (¢). It has no elliptic points by example A2TH, and it has ¢ — 1
cusps by example B2 TT3. Since [PSLy(Z): PTy(¢)] = (£*—1)/2 by example BA2ZT9,
it follows by theorem BA~XTT4 that its genus is

P—1 (-1 ((=5)(=7)
24 2 24 '

g=1+

A.2.1.2 Moduli interpretation and Hecke operators

In order to understand the rich structure of modular curves, it is essential to view
them as moduli spaces, that is to say as spaces classifying certain families of objects.

I begin by introducing the Weil pairing on an elliptic curve, since I shall soon
need it. Let E be an elliptic curve with origin O (cf. example ATT37) defined
over a perfect field K, let N € N be an integer, prime to the characteristic of K
if the latter is non-zero, and denote by E[N] the N-torsion subgroup of E(K) and
by pn the group of N' roots of 1 in K. As explained in example B ITZ2IA, if
K = C then F is a torus C/A for some lattice A € C, and so E[N] is isomorphic
to (Z/NZ)? as an abstract group, whereas uy ~ Z/NZ. By [DSUH, theorem 8.1.2],
this remains true for every K since I assumed N to be prime to the characteristic
of K. Recall from example BTT33 that a divisor ) ,.pnpP on E is principal if
and only if > p.ynp = 0 in Z and Bpep[np|P = O in E(K), where [n] denotes
the “multiplication by n” endomorphism of E for n € Z. Let now P,Q € E[N] be
N-torsion points. Then the divisor Dpg = >, c7/nz (PB[n]Q)—[n]Q) is principal,
so defines a function fpgo € K(E) up to multiplication by a constant. Besides, the
divisor of the translated function f(- B Q) is also Dpg, so the ratio ! (j;E(E'Q)
zero constant function on E which does not depend on the choice of f. Tﬁis constant
is called the Weil pairing of P and @, and is denoted by (P,Q)y € K", or even by
(P,Q) if N is clear from the context. It is not difficult to establish the following

properties (cf. [DS05, section 7.4]:

1S a non-

e the Weil pairing (-,-): E[N]x E[N] — K is bilinear (hence the term pairing)
and alternate ((Q, P)=1/(P, Q)); in particular, it takes values in uy,

e it is a perfect pairing ((P, Q)=1foral Q € E[N]— P = O),

e it is Galois-equivariant ({o(P),c(Q)) = o((P,Q)) for all o € Gal(K/K)).



A.2. MODULAR CURVES AND MODULAR FORMS 61

In particular, it is necessary that K contain uy for E(K) to contain all of E[N].

By BAT2T18, every elliptic curve over C is a torus C/A for some lattice A € C;
besides, from the fact that C is simply connected, one can prove that two elliptic
curves C/A and C/A’ are isomorphic if and only if there exists an av € C* such that
A = aA. In particular, every elliptic curve is isomorphic to the curve E. = C/A,,
A, =7Z71 ® Z for some 7 € C — R, and, possibly after dividing by 7 so as to replace
7 with 1/7, one may suppose that 7 € H. Then, for 7,7 € H, the curves E, and
E., are isomorphic if and only if 7 and 7’ lie in the same SLo(Z)-orbit, so the curve
Y (1) = SLy(Z)\H classifies elliptic curves over C up to isomorphism. Passing to
the compact curve X (1) amounts to adding the cusp oo, which may be thought as
representing an “elliptic curve with singularities” as a limit of a family of elliptic
curves as some parameters tend to oco.

From there, it is easy to see that for every N € N*, the maps

Yo(N) = Do(N)/H — {(E, ) ’ E elliptic curve over C, } / N

C C FE cyclic subgroup of order N

Lo(N)r — (E;, (1/N mod A;)),
B E elliptic curve over C,
YN =T(N)/H — {(E’ P) ’ P € E[N] of order exactly N }/ ~

I(N)r ~— (E;, 1/N mod A,),

and
Y(N)=T(N)/H — {(E, P.Q) ‘ ( E elliptic curve over C, }/ N

P, Q) symplectic basis of E[N]

I'(N)T > (B, 1/N mod A,, 7/N mod A,)

are bijections. Here, E[N] denotes the N-torsion subgroup of E, a basis (P, Q) of
E[N] ~ (Z/NZ)? is said to be symplectic if the Weil pairing (P, Q) is e>™/N € uy,
and the isomorphism sign ~ means that (F,T) ~ (E’,T") if and only if there exists
an isomorphism from E to £’ mapping the N-torsion data T to T".

This means that the modular curves Xo(N), X;(N) and X (V) classify elliptic
curves equipped with N-torsion structure (respectively: cyclic subgroup of order
N, point of order N, and symplectic basis of the N-torsion) up to isomorphism,
the cusps corresponding to “degenerate” curves. For instance, the canonical projec-
tions X(N) — X1(N) and X;(N) — Xo(N) correspond to the forgetful maps
(E,P,Q) — (E,P) and (E,P) — (E,(P)). The curious reader may find an ex-
ample of moduli interpretation of a modular curve attached to another congruence
subgroup in [RWT4]. In what follows, I shall be mainly interested in X;(N) and
Xo(N).

The subgroup I'y (V) is normal in T'o(N), with quotient isomorphic to (Z/NZ)*
by [¢%] = dmod N. Since I'1(N) acts trivially on X;(N), this yields an action of
(Z/NZ)* on X;(N) inducing the identity on Xy(/N), which is explicitly

(E.P) — (B.ap) (1€ EZ/ND)).
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The operators (d) are called the Diamond operators of level N. Note that (d) = (—d)
since [ ' %] acts trivially on #*; this reflects the fact that (E, P) ~ (E,—P) by
the automorphism [—1] of E.

Similarly, the map

Wi Xl(N) — X1<N)
(B,P) = (E/(P),Qmod (P)),

where Q € E[N] is® such that (P, Q) = e*™/V defines an involution on X; (), called
the Fricke involution.

Finally, recalling that an isogeny is a non-constant morphism ¢: £ — E’ be-
tween two elliptic curves which sends the origin O € E to the origin O € FE’,
making it automatically a group morphism, one defines for each n € N prime to N
a correspondence

(E,P) > (E',¢(P))
¢: E—FE'

isogeny of degree n

called the n'" Hecke correspondence, and similarly for Xo(V).

If n is not prime to the level N, the image by an isogeny of degree n of a point
P € E[N] of order exactly N may be of order strictly less than N. For this reason,
one defines the Hecke correspondence T;, by

T, : Xi(N) — Div (X1(N))
(E’P) — Z (Ela(b(P))a
¢: E—E'

isogeny of degree n
¢(P) of order N

the sum being restricted to the isogenies preserving the order of P. When n = p is
prime dividing N, the correspondence T, is often denoted by U, so as to stress this
difference.

More explicitly, an isogeny ¢ of degree n from E = E, to E' may be written as
C/A, — C/N’, and so corresponds to a lattice A’ containing A, = (7, 1) with index
n. Then nA’ is a sublattice of A, of index n, and the theory of Hermite reduction
(cf. [Coh93, section 2.4]) shows that it is of the form (a7 + b, d) for some uniquely
determined a,d € N such that ad =n and b € Z such that 0 < b < d. The image of

(B, P) (@/@, 1),%)

(/{50 w) = (e ) %),

8Since the Weil pairing is a perfect alternate pairing, the possible choices of @ differ by multiples
of P, so Wy is well defined.

by ¢ is then
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so that
T.Ci(N)7) = Y (a)(Tu(N) [4]- 7). (A.2.1.16)

a,deN
ged(a,N)=1

ad=n

0<b<d

Examining how a sublattice A’ can be inserted with respective indexes m and n
between a lattice A” and a sublattice A of index mn, like this:

AN"DA ~ N DN DA,
leads to the following formulae (cf. [Ser70; chapitre VII §5 proposition 10]):
Proposition A.2.1.17.

.1, =T, T, T,(d) ={(d)T,, m,neN,de (Z/NZ)"
T =TTy, ged(m,n) =1,
Ty =T, Tp—1 — p(p)Tyr—2, p1t N prime, r > 2,
Ty =U,, p|N prime,

which can be summarised by writing the formal identity

+o00 L ] X
;Tnn - g 1— Upp—S pl;]\[[ 1 — Tpp—s +p1—25 <p>

and by saying that the Hecke algebra T = Z[T,, (d)] C Endg, ( Div(X(N))) is com-
mutative and is generated by the T, p prime. For this reason, one often only deals
with the Hecke correspondences 7T}, and U, for n = p prime only.

Finally, one can show (cf. [DSO5, section 6.3]) that the Hecke correspondences T,
and the diamond operators (d), seen as endomorphisms of the groups Div® (XO(N ))
and Div’ (XI(N )), preserve the subgroup of principal divisors, and so factor into
endomorphisms of Pic? (Xo(N)) =~ Jo(N) and of Pic” (X1 (N)) = J;(N).

A.2.1.3 Modular curves as algebraic curves

Although I have defined the modular curves Xy(N), X;(N) and X (N) as Riemann
surfaces, one can prove (cf. [[DSOA, sections 7.5 to 7.7]) that the curves Xo(N) and
X1(N) can be defined over Q. On the other hand, the curve X(N) can be defined
over the cyclotomic field Q(uy) but not over Q, as its moduli space description

X(N) = {(E,P, Q) | (P,Q) basis of E[N], (P,Q) = C}

uses a fixed primitive N'*! root ¢ of 1. For any extension K of Q, the K-points
of Xo(IN) correspond to elliptic curves E defined over K and which have a cyclic
subgroup C' C E[N] of order N which is defined over K (that is to say, which is
globally invariant under Gal(K/K)), in other words, an elliptic curve E admitting
an degree N isogeny ¢: EF — E’ which is defined over K, whereas the K-points of
X7 (N) correspond to elliptic curves E defined over K and which have a K-rational
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point P C E[N](K) of order exactly N, and, if K is an extension of Q(uy), the K-
points of X () correspond to elliptic curves F defined over K and such that there
exist two K-rational points P, Q) € E[N] forming a symplectic basis of E[N].

Example A.2.1.18. For instance, if one can prove that the only QQ-rational points
on X;(11) are cusps, then one can conclude that there exists no (non-degenerate)
elliptic curve defined over Q which hasS a rational 11-torsion point.

In [Maz78|, B. Mazur was able to determine the finitely many values of N for
which Xo(N)(Q) does not only consist of cusps, from which it follows that for every
elliptic curve E defined over Q, the torsion subgroup E(Q)ios of E is isomorphic
either to Z/nZ with n < 10 or n = 12 or to Z/27Z x Z/nZ with n < 4 (note that all
these cases occur).

In [Mer96], L. Merel improved Mazur’s bounds by showing that for all d € N, the
exists a constant B(d) € N depending only on d such that for every number field K
of degree d and for every elliptic curve E defined over K, the order of a torsion point
P € E(K )i is at most B(d).

By section BAT273, the jacobians Jo(N) and J1(N) of Xo(N) and X;(N) can
thus be viewed as abelian varieties over Q. Since the multiplication-by-d map [d|
on an elliptic curve E defined over a field K is itself defined over K, the diamond
operators (d) seen as endomorphisms of J;(N) are defined over Q, and since the
Galois conjugate of an elliptic curve isogeny ¢: E — FE’ of degree n is also an
isogeny of degree n, the Hecke operators T,, seen as endomorphisms of Jy(N) or
J1(N) are also defined over Q. However, the Fricke involution Wy is only defined on
the cyclotomic field Q(juy), since it depends on the choice of a primitive N*® root of
1.

The interpretation of modular curves as moduli spaces implies that these curves
can be seen as representing functors which, to an extension K of QQ, associate the set
of elliptic curves with N-torsion data defined over K, up to isomorphism. J. Igusa
studied the problem of the representability of these functors extended to general
schemes S instead of just fields K. In particular, he proved the following in [[gubY]:

Theorem A.2.1.19 (Igusa). If N > 4, then the curve X;(N) admits a canonical
model over Z[1/N] which is smooth over Z[1/N] and whose geometric fibres are
irreducible.

This means that it makes sense to talk about the reduction modulo a prime
p 1 N of the modular curve X;(/N), and that this reduction X;(N) = X;(N)g, is
a non-singular and irreducible curve defined over [F, which, as expected, classifies
the elliptic curves over [F, having a rational point of order exactly N. Besides,
the operators (d) and T, descend to endomorphisms 7}, and (d) of the jacobian
Ji(N) = Jac (X1(N)) = Ji(N)g,. The Eichler-Shimura relation, which I am about
to introduce, describes the action of the Hecke operator T, on the reduction J;(N)
of J1(IN) modulo p. In what follows, I fix a prime p t N, and I shall denote reduction
modulo p by a bar.

Recall that for every isogeny ¢: EE — E’ between elliptic curves, there exists a
dual isogeny ¢: E' — E of the same degree as ¢ such that ¢ o ¢ = [deg ¢|r and
pod = [deg @] g/, where I denote by [n]g the multiplication-by-n endomorphism of an
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elliptic curve E; upon identification of an elliptic curve with its Pic® as in example
BTT35, ¢ may be constructed as ¢*: Pic’(E’) — Pic’(FE). Let E be an elliptic
curve defined over IET,, and let 0,: x — 2P denote the Frobenius automorphism in
Gal(F,/F,). It induces a morphism o,: £ —> E°” which is a purely inseparable
isogeny of degree p, so the dual isogeny ¢, is also of degree p. As p is prime, it is
therefore either separable, in which case [p|z has separable degree p and inseparable
degree p, or purely inseparable, in which case [p|z is purely inseparable of degree
p?. In the first case, one says that E is ordinary, and in the second case, one
says that E is supersingular. This distinction is visible on the p-torsion of E: the
cardinal of almost all the fibres of a morphism f: X — Y is deg,,, f as noted in
the end of section AT T, and for every r € N, the cardinal of the fibres of [p”|5 is

# Ker[plz = #E(F,)[p'], whence

#E(E> [pr] = degsep [pr]E = (degsep [p]E)T = (degsep O/;)T

as [pl = 0,0, and o, is purely inseparable, and so for all r € N,

1 | Z/PZ, E ordinary,
E(F,)[p"] ~ { {0}, E supersingular.

This distinction leads to the following crucial property:

Theorem A.2.1.20 (Eichler-Shimura relation). Let N € N, and let p t N be a
prime. Then the relation

holds in End (J1(N)g,).

Remark A.2.1.21. Since o0, is ramified of degree p everywhere, po,; L agrees with the
pullback o7, and so p@a; !is indeed an endomorphism of Pic” (X;(N)) =~ J;(N)g,.

Proof. If N < 4, then X;(N) has genus 0, so one may define J;(N)g, = {0} in this
case even though Igusa’s theorem B"2TTY does not apply, and the Eichler-Shimura

relation trivially holds. Assume henceforth that N > 4. Let (£, P) € X1(N)(Q) be
a Q-point of X;(V) seen as a moduli space, so that ' is an elliptic curve over Q and
P is a point of F of order exactly N, and fix a prime p of QQ lying above p. Then,

by definition,

T,(B,P)= >  (E.éP)= >  (E/C,P+C)

¢: E—E' CCElp]
isogeny of degree p subgroup of order p

by identifying an isogeny ¢ with its kernel C, and so

T(EP= >  (BE/CP+0)
CCE[p]
subgroup of order p
provided that E has good reduction at p. R
Let ¢: E —> E’ be an isogeny of degree p, let P’ = ¢(P), let v = ¢: B/ — E
be the dual isogeny, and let ¢: E — E’ and ¢: E' — E denote their reductions
modulo p. Observe that
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(i) if ¢ = 1o, is purely inseparable, hence is the Frobenius o,: £ — E°" followed
by an isomorphism ¢: E° — E’, then ¢(E, P) ~ o,(E, P) are isomorphic by
(=1, and

(ii) if » = ¢ 0 0, is purely inseparable, hence is the Frobenius o,: £/ — B
followed by an isomorphism ¢: E”* —5 E, then since ¢ maps P’ = ¢(P) to
pP, the isomorphism ¢ maps P’°* to pP, and applying o, 1 to the coefficients
of ¢ yields an isomorphism

[ Q— —=0p

v B — F

P pP"
so that (E',P') ~ (E" ,pP" ) = (p)o, ' (E, P).

Assume first that the reduction E of E modulo p is ordinary. Then E[p] ~ Z/pZ,
so the kernel Cj of the reduction modulo p map E[p] — E[p] is one of the p + 1
subgroups C' of order p of E[p|. The isomorphism class of the pair (E/C, P + C)
then only depends on whether C' = Cj or not. To see this, take a subgroup C or
order p of Elp|, let E' = E/C, PP = P+ C € FE’, and let Cj C E'[p] denote the
kernel of the reduction modulo p map E'[p] — E’[p], which is a subgroup of order
p of E'[p] as E’, being isogenous to E, is also ordinary at p. One has the following
commutative diagram with exact columns:

0 0 0

0 0 0

Besides, both ¢ and 1 are of degree p. Note that ¢(E’'[p]) is of order p since the
fibres of ¢ are of order deg ¢ = p, and ¥(E'[p]) C Ker ¢ since ¢poo(E'[p]) = pE'[p] = 0.
Since Ker ¢ is also of order p, it follows that ¢/(E'[p]) = Ker¢ = C, and similarly
¢(E[p]) = Kery = C".

Assume that C' = Cy. Then ¢ (E'[p]) = Ker ¢ = C = Cy. By looking at the right
part of the diagram above, one sees that %@[p} = 0, so that E'[p] C Kert. But on
the other hand, Kert C Ker ¢y = E'[p], so that Kerv = E’[p] is of order p as E’
is ordinary. It follows that degsepa = p, so that deg; ¢ = 1, and degsepq_b =1 and
deg;,. ¢ = p by multiplicativity of the degrees. Therefore, ¢ is purely inseparable,
hence (i) applies and so (E/C, P+ C) ~ 0,(E, P) for C' = Cy.

Assume now that that C' # Cy. In this case, ¢(Cy) = ¢(E|[p]) = Keryp = " is
of order p. Also ¢(Cy) C C} by commutativity of the diagram, so that C' = C{.
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Then, just as in the previous case, one deduces that 5@[])] = 0 and hence that
Ker¢ = E[p]. It follows that degsepa = p and deg;,. ¢ = 1, so that degsepw =1

and deg;,, ¥ = p, so this time ¢ is purely inseparable, hence (ii) applies and so
— A~ sy _0'71 _0'71 _ e
(E/C,P+C)~(E" ,pP" )~ (p)o, (E,P) for C # Cy.

Summing up, one gets

TP(Ev F) = Z (W?P—{_ C)

CCE[p]
subgroup of order p

= Y (E/C,P+0O)+ (E/C,P+0O)
c=Co C+#£Co

= 0,(E, P) +p{p)

= (0, +p(P)o, )

provided that E is ordinary.
This still holds if E is supersingular, since in this case one has

(E/C,P+C) =0,(E,P) = (p)o," (E, P).

Indeed, one then has K_era C_E[p] = 0, and also Kervy) C E'[p] = 0 since E’ is also
supersingular, so that ¢ and 1) are both purely inseparable and so both (i) and (ii)

apply.
The relation - o
T,(E, P) = (0, + p(p)o, " )(E, P)

is thus valid in all cases, and the proof is complete. O

A.2.2 Modular forms

I now proceed to a brief study of modular forms, which are the natural inhabitants
of modular curves.

A.2.2.1 Definitions and examples

Fix an integer k € Z~q, and let T" be a congruence subgroup of SLy(Z).

Definition A.2.2.1. The weight-k (right) action of the group GLy(R)" of elements
of GLy(R) with positive determinant on the space of functions f: H* — C is defined
by

a b

(Fh)r) = et er )4 10m), 9= | ¢ ) | € GLa®y
A modular form of weight k and level I" is a holomorphic function
f:H*—C
satisfying the functional equation

flir = f (A22.2)

for all v € T.
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Since SLy(Z) acts transitively on the cusps, one can rephrase the holomorphy
condition on f by demanding that f be holomorphic on H and that f|;y be bounded
at oo for  ranging over a system of coset representatives of I'\ SLy(Z).

It is clear that modular forms of weight k and level I' form a C-vector space,
which I shall denote by M (T').

Example A.2.2.3. For even k > 4, the form

1
Ge(r)= > tmr £ )

(m,n)€Z?
(m,n)#(0,0)

is a non-trivial form in Mj,(SL»(Z)).

Remark A.2.2.4. Let o € GLy(Q)". It is clear that if f € M(I') is a modular
form of weight k£ and level I, then f|yc is a modular form of weight k& and level
a™'Ta N SLy(Z) (which is also a congruence subgroup by [DSUH, lemma 5.1.1]).

In particular, take o = [§9] for some t € N. Then (f|xa)(7) is f(tT) up to a
multiplicative constant, and since

4| a b a b/t
@ { c d } “= [ tc d } ’
f(tr) € Mk(FO(tN)) if f € Mk(FO(N)), and f(t1) € Mk(Fl(tN)) if f e Mk(Fl(N)).

Let N be the level of I'. Then [} ] € I', which means that a modular form for
I' must be N-periodic, hence have a Fourier expansion

f= anfd
n=0

called the gy-expansion of f, where I let gy = e*™/N. Indeed, the fact that f is
bounded at oo forces the coefficients a,(f) to vanish for n < 0, since ¢y — 0 when
T — 100.

In practice, I shall only consider T' = T'o(N) or T';(N), so that

11
e

and the gy-expansion of modular forms will be understood to be in terms of

q=q = 6271—”7
and will be referred to as the g-expansion of the form. When it is understood that
['=T4(N) (respectively I'1(IV)), I shall say that a form has level N to mean that it
has level I'y(N) (respectively I'; (N)).

Example A.2.2.5. For the forms G} from example BAZ223 one computes (cf.
[Ser70, corollaire p.151]) that Gy = 2((k)Ex,
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where op,(n) = > o_g1, d" and the by, are the Bernoulli numbers, defined by

For instance,
+0o0

E, =1+ 240203(n)q",

n=1

+oo
Eg=1- 5042 os(n)q",
n=1

+00
Es =1+ 480 Z o7(n)q",
n=1
+oo
E10 =1- 2642 Jg(n)q“,
n=1
and so on.
In particular, one computes that
. 1728 E3 1 9 3
j = ———5 = — + 744 + 196884q¢“ 4+ O(q°).
B —E§ q )

This 7 is not holomorphic, but it is of weight 0, so it descends to a meromorphic
function of X(1). One can show that it has degree 1, so that C(X (1)) = C(j). In
particular, it is injective on X (1), so that by the moduli interpretation of X (1), two
elliptic curves defined over C are isomorphic if and only if they give rise to the same
value of j. For this reason, j is called the modular invariant.

As the above example shows, the g-expansion coefficients of modular forms often
carry interesting arithmetic information. Here are two other examples (more can be
found in [Sfe(7, section 1.5]):

Example A.2.2.6. Let © = ) ¢"°. One can prove (cf. [DS0F, section 1.2))
that for all® k € N, ©%* € M, (T¢(4)) is modular of weight k and level I'g(4). Its
g-expansion coefficients are a,, = r(n, 2k), the number of ways to write n as the sum
of 2k squares in Z.

Example A.2.2.7. Consider
+oo +oo
A=qJa-¢* =q+>_ T(n)g"
n=1 n=2

One can show that A is a modular form of weight 12 and level 1. This identity
defines Ramanugjan’s tau function T(n), which is the related to the construction of
expander graphs, which play a role in communication network theory.

9Actually, one can generalise definition BE221 to the case of half-integral weight k. It then
turns out that © is modular of level I'y(4) and weight 1/2, so one can also study odd powers of ©.
I shall not do it here.



70 PART A. THEORETICAL PREREQUISITES

Assume from now on that k is even. One computes that

b

det
d(yr) = ev2d7for’y:{z J

m ] € GLy(R)™,

so that the functional equation (A=2232) defining modularity can be rephrased by
saying that the form

wp = [(7)(dr)"/?

is invariant under the action of I', that is to say y*wy = wy for all v € I'. Thus
for instance modular forms of weight zero correspond to functions on X (I"), whereas
modular forms of weight 2 correspond to differential 1-forms on X (I'). However, in
order for these differential forms to be holomorphic on X (I'), the modular form f
must vanish at the cusps, since, at the cusp I'oo for instance, the local parameter for
X(I') is ¢, and d7 = %. This leads to the notion of cusp forms.

Definition A.2.2.8. A cusp form is a modular form which vanishes at the cusps.

In particular, ag(f) = 0 if f is a cusp form. I shall denote™ the subspace of cusp
forms of weight & for I' by Sk(T").

Example A.2.2.9. A € Si5(1) is a cuspform, since it vanishes at oo, which is the
only cusp of X(1).

The Riemann-Roch theorem BATT33 shows that M (') and Si(I') are finite-
dimensional vector spaces over C, and leads to formulae for their dimensions:

Theorem A.2.2.10. Let I' C SLy(Z) be a congruence subgroup, and let X (I") be the
associated modular curve. Denote its genus, the number of its elliptic points of order
2, 3, and the number of its cusps respectively by g, €o, €3 and €. Then, for every
even integer k € 7,

(g—1)(k=1)+ |5 o+ | 5] s+ seae if k=2,
0 if k<0,

and

G-k =1+ [4]ea+ [E]es+ (5 —Dew ifk =4,
0 if k<0,

Proof. Let m denote the projection from H® to X(I'). For each even k € N, the
pullback by 7 defines a C-linear isomorphism

™ Q2E2(X (D)) > Q2E2(H)T

mer mer

from the space Q5nl’ (X(I")) of meromorphic k/2-fold multi-differential forms on

X(I') to the space Q?ﬁ’éﬁ(?—[)r of meromorphic k/2-fold multi-differential forms &£ on

10This is the standard notation, the S comes from the German term “Spitzenform”.
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‘H which are I'-invariant, that is to say such that y*¢ = £ for all v € I'. The idea is

to describe a criterion on a non-zero w € Qg’érQ(X( ) for f =7*w/(d7)*? to lie in

Pick a point 19 € ‘H, and let h € N be 1 if 7 is not elliptic for I', 2 if 7 is elliptic
or order 2, and 3 if 7y is elliptic of order 3. Then z = (7 — 79)" is a local coordinate
about 7(7), and in a neighbourhood of 7(7), w reads

w=a(2"+---)(dz)k?
where n = ord,(-,yw € Z and a € C*. One computes that
dz = h(r — 1) tdr,
so that
W = a((T — )" - ) (h(T — 7'0)"_1d7)k/2 = b((T — )"h+(h Dk/2 4 )(dT)k/2

for some b € C*, hence
f is holomorphic at 75 <= ord () w + (1 — —) k/2 >

Let now s € P!Q be a cusp of width » € N. A local coordinate at 7(s) is ¢ = >™7/"
preceded by an fractional linear transformation from SLy(7Z), which is biholomorphic,
hence does not ramify and can be neglected. Writing again

w=alg" + ) ()"

about 7(s), where n = ord.(;)w € Z and a € C*, one computes that

dq . %627ri7'/hd7_’

so that
. AL o
T = a(€2n7rz7'/h 4. ) (%’lezﬁlT/th)k/Q _ b(€ (n+k:/2)7rw/h )(d,]_)k/Z
for some b € C*, hence

f is holomorphic at s <= f is bounded at s <= ordsw+ k/2 > 0

and

[ vanishes at s <= ord.syw +k/2—12>0.
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Besides, since (dj)*/? ¢ Q%’ér/Q(X(F)), on has w = ¢ - (dj)¥/? for some non-zero
rational map ¢ € (C(X (F))* The above then shows that

mw/(dT)¥? € M(T)

=divlw) + Y —P+ Z —P+ > —P

PeX(T) PeXx(T PeX(F)
elliptic elhptlc cusp
of order 2 of order 3

) k
<=>d1v(w)+LZJ E L J g P—I—— g P>
PeX(D) PeX(T) PEX(F
elliptic elliptic cusp
of order 2 of order 3

< div(¢)+ D > 0,

whereD—EJ > P {J > P+— Z P+

PeX(T) PeX(T) PGX
elliptic elliptic CUSP
of order 2 of order 3

and C' = div(dyj) is a canonical divisor by definition ATT23. Similarly,

Tw/(dr)? € Sp(T) <= div(¢) + D— Y P>
PeX(T)
cusp
It follows that dim M (T) = h°(D) and that dim Sy(T') = h? (D — e P>.
By the Riemann-Roch theorem ATT33(ii), the degree of C'is 2g — 2, so

k k k k
degD = {ZJ €9 + {gJ €3 + 56 + 5(29 —2)

k—2 k—2 k k
- ~(2g — 2
1 €9 + 3 83+2500+2(g )

WV

k—2 /1 2
= T §€2+§€3+500+2g—2 +€OO—|—29—2.

By the genus formula A=2TT4, the term between parentheses is [PSLy(Z): PI'|/6,
which is positive, so for £ > 2 one has deg D > 2g — 2 and the Riemann-Roch
theorem AT T33(iii) shows that

k k k
dim My(T) =degD + 1 — g = M €2 + M &+ 50 + (K= 1)(g = 1).
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Similarly, if £ > 4

k—2 (1 2
deg(D— Z P) >T(§EQ+§53+500+29—2>+2g—2>29—2

P cusp

so for k > 4,

dim Si(I') =degD —e +1—g = EJ €2 + EJ €3 (g — 1) foo +(k—1)(g—1).

For k = 2, one has D — >, cusp I = €, so the cuspforms of weight 2 corre-
spond exactly to the holomorphic differential forms on X (I") as explained above, and
dim S(T") = ¢ by definition of the genus.

For k = 0, the elements of My(I") correspond to holomorphic functions on X (I")
and are hence constant since X (I') is compact. In particular, So(I') = {0}.

Finally, if & < 0, then a form f € M(I") would satisfy f2Al¥l € So(T") = {0}, so
that M(I") = {0}. O

Example A.2.2.11. By example BA2ZTTH, if ¢ is prime which is at least 5, the

dimension of S5(I'(¢)) is %'

Example A.2.2.12. Examine the case of level 1 (I' = SLy(Z)) more closely. One
can prove that the graded ring

M (SLy(Z @ M (SLa(Z

is generated by the forms E, and Eg, which are algebraically independent (cf. [Ste(7,
theorem 2.17]), so that it is isomorphic to C[E}y, Eg], where E4 has grading 4 and Fg
has grading 6. In particular, the forms E{E?S, 4a + 6b = k, a, b € Zg, form a basis
of My (SLy(Z)) over C, so that dime Mj,(SL2(Z)) is the number of ways to write k
as 4a + 6b, a, b € Z>o. This is 0 if k is odd, |k/12] — 1 if £ =2 mod 12, and |k/12]
in the other cases, which agrees with theorem A=227T0 since X (1) has genus g = 0,
g9 = 1 elliptic point of order 2, 5 = 1 elliptic point of order 3, and £,, = 1 cusp, as
can be seen on figure A2 T

In particular, this implies that Fg and E?, which both lie in the 1-dimensional
space MS( SLQ(Z))7 are proportional, hence equal by looking at the constant term
ag, and similarly that FyFEg = E19. From this and example B2, one deduces the
surprising identities

Vn € N, o7(n) = o3(n +120203 m)os(n —m)

and
n—1

Vn € N, 11og(n) = 2105(n) — 1005(n) + 5040 ) _ a3(m)os(n).
m=1
I now have a look at the cuspform spaces Sk(SLQ(Z)). Since oo is the only cusp
of X (1), a modular form of level 1 is a cusp form if and only if it vanishes at oo,
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that is to say if and only if its coefficient ag is 0. Thus for instance the form £ — E?
is a cusp form of weight 1 and level 1, just like the form A introduced in example
A=X7 above.

Multiplication by A induces isomorphisms

Mk( SLQ(Z)) ~ Sk+12( SL2<Z))7

so that dimc S}, ( SLQ(Z)) = dime Mp_12 ( SLQ(Z)) for k > 12. In particular, Sy ( SLQ(Z))
has dimension 1 exactly when k € {12,16,18,20,22,26}, and is then respectively
spanned by A, E4A, EgA, EsA, F1gA and F14A. In the case of weight £ = 12, one
sees by looking at the coefficient of ¢' that

1
Example A.2.2.13. Come back to the forms ©%* € M, (I'y(4)) from example A2Z7H
and take k = 2. One can prove with theorem B0 that the space M, (To(4)) has

dimension 2 over C, and is spanned by the forms

1424 3 " dg" =1+ 24q+ O(q°), and

n=10<d|n
d odd

1+8) > dg" =1+48¢+ O(¢).
n=1 0<d|n
44d

Since ©* lies in this space, it must be a linear combination of these two forms.
Actually, since © = 1+ 2q + O(q?), ©* = 1 + 8¢ + O(¢?) equals the latter of these
two forms, hence the identity

rn, ) Ee{(ey s ) €2 n=a 1P+ 212 =8 Y d

0<d|n
44d

Similarly, one finds formulae for r(n,2k) for k = 3,4,5. However, for k > 6, such
formulae no longer exist. The deep reason for that is that Mj(I'g(4)) contains non-
zero cusp forms for £ > 6, and there are no simple formulae for the g-expansion
coefficients of cusp forms. Indeed, as I shall explain, the coefficients of modular
forms are related to Galois representations, and the Galois representations attached
to cusp forms have non-abelian image, which means that the coefficients of cusp
forms cannot be expressed with characters through class field theory. For instance,
since A € Si2(SL2(Z)) is a cusp form, there are no simple formulae for 7(n). These
coefficients can however be efficiently computed one by one through the attached
Galois representations, and this is the heart of this thesis. Eisenstein series, which
I introduce below in section BA—223, are the opposite case: in a sense which I will
detail later, they form the orthogonal complement to cusp forms, and the Galois rep-
resentations attached to them have abelian image, so that there are simple formulae
in terms of characters for their g-expansion coefficients. For instance, the forms FEj,
are Eisenstein series, and so are the two forms making up the basis of M, (F0(4)).
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A.2.2.2 Hecke operators and newforms

Let T be either T'y(N) or™ T'y(NN) for some fixed level N € N, and also fix some even
weight k € 2N. In view of the diamond and Hecke operators introduced in section
[A=2T, one defines the operators (d) and T, on My (T") for n € N and d € (Z/NZ)*
by

(d)f = flev, v = {CCL Z} €Ty(N), d=dmod N

and

- b
Tf=n Y (@) f)l {8 d} (cf. (EZTTm)),
a,deN
ged(a,N)=1
b

where f € M (T). The coefficient n*~! is included in the definition of 7T}, in order to
avoid denominators; it shall soon be apparent that this is the “good” normalisation.
The Fricke involution Wy is given by the matrix wy = [} '] € GL2(Q)™, that is
to say
1 -1
(W f)(r) = (Flewn)(7) = S f <m) :
The fact that Wy is an involution is reflected in the fact that w?%; is a scalar matrix.
The Hecke operators T,, and the diamond operators (d) span a subalgebra

Tin =2Z[T,,(d) | neN,de (Z/NZ)

of End¢ (Mk(F)) called the Hecke algebra of weight k and level N, and denoted by T
when the weight and level are clear from the context. In view of proposition BA=2T17,
T n is commutative and is spanned by the 7, alone, which satisfy the relations

Ton =TT, ged(m,n) =1,
Ty = TyTp—1 — p* Y (p)Tp-2, p1 N prime,r > 2,
Uy =U!, p|N prime,r > 2.

p’

The diamond operators (d) are automorphisms of M (I"), and hence yield a rep-
resentation

p: (Z/NZ)* — GL (My(T),

which is semi-simple since the characteristic of C is 0, and whose irreducible compo-
nents are of dimension 1 over C since (Z/NZ)* is abelian. In other words, one has a
decomposition

HIfT = I'y(N), then the diamond operators (d) all reduce to the identity, and so all the discussion
about them below is of course vacuous.
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M;(T1(N)) = @5 Mi(N. ),

My(N,e) = {f € My(T1(N)) | Vd € (Z/NZ)*, (d)f =¢e(d) [},

where the direct sum ranges over the Dirichlet characters e: (Z/NZ)* — C*. One
says that a form lying in My (N, e) has nebentypus (or character) €. Note that when
e = 1 is the trivial character, My (N, 1) is simply Mj,(To(N)).

Actually, since (—1) is the identity as noted in section A2 T3, the representation
p factors into a representation of (Z/NZ)*/ £ 1, so My(N,e) = {0} if € is odd
(e(=1) = —1) and only the terms My(N,¢e) with € even (¢(—1) = +1) are left.

Remark A.2.2.14. In this thesis, I only deal with modular forms of even weight.
However, one may also consider modular forms of odd weight; if k£ is odd, then one
finds that M(N,e) = {0} when ¢ is even, so only terms with € odd remain is the
decomposition of M;, (Fl(N )) by nebentypus.

Besides, it is clear from the definition of the Hecke operators that the Hecke
algebra Ty y stabilises the subspace Si(I') of cuspforms. The Hecke algebra may
thus also be seen as a commutative subalgebra of End¢ (S (T )), which is also denoted
Ty n, and one similarly has the decomposition

ST (V) = @D Sk(IV,e).

g even

Proposition A.2.2.15. The Fricke involution Wy maps My(N,e) onto My(N,)
and Si(N,e) onto Si(N,g), where € = ¢! denotes the complex conjugate of the
Dirichlet character ¢.

Proof. As Wy is an involution and hence a bijection, it is enough to show that
WNMk(N, 8) g Mk(N, §) and that WNSk(N, 6) g Sk(N,g) For all
v = [4% 5] € To(N), one has wyywy' = [_fy ], so wy normalises I'o(N) and
I['1(N), and so Wiy stabilises Mj,(I'1(N)). Furthermore, conjugating by wy exchanges
the a and d entries of «, so that Wy indeed maps My (N,e) to My(N,Z). Besides,
as wy normalises I'1(IV), its action on H® induces a well-defined action on the cusps
of X1(NN), and consequently stabilises the cusps; therefore Wy stabilises Sy (Fl(N ))

and hence maps Si(N,€) to Sg(N, ). O
The action of the Hecke operators T, on the g-expansions can be made explicit:

Proposition A.2.2.16. Let f =3 a,,¢™ € My(N,¢). Then for alln € N,

+00
T.f=> > d e d)awme | 4"
m=0 \ 0<d|ged(n,m)

with the usual convention that e(d) = 0 if ged(d, N) > 1.

The action of Wy on g-expansions shall be made explicit a little later.
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Proof. By definition,

THE = a Y bt (m'—i—w)

[
u,veEN

+oo

_ % Z ukg(u) Z ame27rim(u7—+w)/v

u,vEN m=0
Uv=n
ow<v
k +o0 v—1

U . )
_ E _€<u) § am627rzmu’r/v E €2mmw/v
n

u,vEN m=0 w=0

k—1 1 +00

u .
— E 6(11,)— E am627r7,mu7'/v]lv|mv
(% n

u,veEN m=0

“+o00
—_ !
— E uk’ 1€(U) 2 amlvqmu
m=m'v
m/=0

u,vEN
uv=n

+oo
= Z uF e (u) Z am/n/uqmlu

0<u|n m/=0

—+o00
. § m'’ § /‘ k—1
m'—m'u 1 Y €<u>am”n/1ﬂ ’

m/'=0 0<uln
ulm”’

Example A.2.2.17. In particular, if f = Z+°° a,q" is a cuspform, one has

n=1

Tnf = anq + O(q2>

In order to further study the properties of the Hecke algebra, one enriches the
structure of the space Si(I') by endowing it with the Petersson inner product

1 ——F 0~ . k "
(f1, f2) = m//x(r) filx +iy) folx + iy)y du(e, y).

Here, u is the GLy(R) ™ -invariant measure on H* defined by

dxdy
y

du(z,y) =
and [ x(r) Means integration over the fundamental domain

F = U’Vif1
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for I', where
PSLy(Z) = | |PTyi;, v € SLy(Z),

and F is the fundamental domain for SLy(Z) shown on figure BA=2T7. Since the
function 7 — f1(7)f2(7)(Im 7)* is T-invariant as f; and fo are modular of weight
k and level I', this integral does not depend on the choice of the ~;, and can be

computed as

> [ FG s ) @mo at)

as  is SLy(Z)-invariant. It converges since the cuspforms f; and f, decay exponen-

tially at the cusps. The normalisation factor m is introduced to ensure that the

inner product of f; and f; remains the same when they are seen as modular forms
of level IV C T.

Remark A.2.2.18. Actually, since a cuspform decays exponentially at a cusp and
a modular form remains bounded, this integral would still converge if only one of f;
and fo were a cuspform.

One computes (cf. [DSOA, section 5.5]) that in Ende (Sk(I')), the adjoint of the
diamond operator (d) with respect to the Petersson inner product is (d)~! = (d™1),
and that the adjoint of T}, is (p~')T}, for p{ N. This means that the anaemic Hecke
algebra

T° = Z[T,,pt N| = Z[T,,, (d) | ged(n,N) =1,d € (Z/NZ)*] C T

is a commutative algebra of normal operators on Si(I"). It follows that Si(I") admits
a (generally not unique) basis made up of eigenforms, that is to say of cuspforms
which are simultaneous eigenvectors for the anaemic Hecke algebra TP,

Remark A.2.2.19. Actually, one can show (cf. [DS05, exercise 5.5.1]) that for
every Hecke operator T € Ty, the adjoint 7™ of T"is WyTWy. In particular, Wy
is self-adjoint and unitary.

Let f = > "% a,(f)¢" € Si(I). Then T,.f = a,(f)g + O(¢?) for all n € N
by example BZ22T4, so if f is an eigenform for 7, such that a;(f) = 0, then
a,(f) = 0. Therefore, a non-zero eigenform f for the full Hecke algebra T necessarily
has a;(f) # 0, so one may divide it by ai(f) to get an eigenform ¢ + »_ ., anq".
Such an eigenform is called a normalised eigenform. Besides, if f is normalised, then
the T,-eigenvalue of f is a,(f), again by example A22T7. In view of the relations
satisfied by the T,, in T = T}, n, one deduces that the coefficients of f = g+, anq"
satisfy the relations

Amn = Ay,  ged(m,n) =1,
Ay = apayr—1 — p*e(p)ay—2, pf N prime,r > 2, (A.2.2.20)
ay = ay, p|N prime,r € N,

which can be summarised by writing that the L-series

+o0
L(f,s) = % (s € C,Res>0)
n=1
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attached to f factors into an Fuler product

L) =[———T1] !

v L@ s L= app A+ ptte(p)

where ¢ is the nebentypus of f, which exists since f is an eigenform (note that one can
prove that these converge for Res > 0, cf. for instance example BA=3-33). Besides,
it follows from remark A3 T below that there exists a number field K (that is to
say, of finite degree over Q) such that the coefficients a,, of f all lie in the ring of
integers of K.

Eigenforms are thus very friendly, but unfortunately the space Si(I') need not
have a basis of forms which are eigenforms for the full Hecke algebra T, because the
Hecke operators U, need not be semi-simple for p|N.

Example A.2.2.21. Let M € N be such that there exists a non-zero form
f= :g anq" € Sk (FI(M)) which is an eigenform for the full Hecke algebra Ty a/
of level M (this exists, see below), and let N = p3>M where p is a prime which does
not divide M. Since f is an eigenform, it has in particular a nebentypus ¢, and there
exists a scalar A € C such that Tp(M) f = Af, where T,gM) € Ty, denotes the Hecke
operator T}, in level M. Besides, f can also be seen as a cuspform of level N, and
more generally, the forms f;(7) = f(p'7) lie in Sy (I'1(N)) for i =0, , 3 by remark
A4, Let U;N) € Ty v denote the Hecke operator U, in level N. On the one hand,
since f is an eigenform for the full Hecke algebra Ty ps of level M, the forms f; are

eigenvectors for the operators Tq(M) = Tq(N), q 1 M prime, ¢ # p and Uq(M) = UéN),

q|M prime, with the same eigenvalues as f. On the other hand, the actions of Tp(M)

N .
and U1§ ) on g-expansions are

+oo +o0 +oo

TIEM) Z ang" = Z apng” + pk_lg(p) Z ang™"

n=1 n=1 n=1

and

+oo +00
UISN) Z anqn = Z apnqn
n=1 n=1

according to proposition B2 TH, so that U,SN)fi = fi_q for ¢ = 1,--- .3, and
U,gN)fO = Mo — p"te(p) fi. Therefore, the subspace V = @?:0 Cf; of Sy (Fl(N)) is
stable under UISN), and the matrix of UZSN) acting on it is

A 1 00
ple(p) 0 10

0 0 0 1f”°

0 0 0 0

which is not semi-simple. It follows that V' is stable under the full Hecke algebra
Ty n, and that the action of this algebra on it is not semi-simple. In particular,
Sk (Fl(N )) cannot have a base of cuspforms which are eigenforms for the full Hecke
algebra T}, v.
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In order to avoid this unpleasant phenomenon, one makes the following defini-
tions:

Definition A.2.2.22. Fix a weight £ € N and a level N € N. The old subspace
of Si(T1(N)) is the subspace Sy (Fl(N))Old spanned by the cuspforms f(¢7) for
f € Sp(T1(M)), MIN and ¢|&. The new subspace S(I'1(N))™" is the orthogo-

nal of Sy (I'y(N ))Old with respect to the Petersson inner product.

One makes of course the same definition with I'y instead of I'y. In what follows,
I shall consider I'y, but all the results also stand for I'.

Example A.2.2.23. If N is prime and k& < 12, then Sg(Fl(N))Old = {0} since
Sk(1) = {0} by example B2Z2T, and so S»(I'1(N))™" is the whole of S5 (I';(NV)).

Example A.2.2.24. The space S (Fo(ll)) has dimension 1, and is spanned by
fii = q—2¢* — ¢ + O(¢*), which is thus a new form of level 11. One finds that
the space S3(I'9(22)) is of dimension 2, so it is spanned by fi;(7) and fi1(27); in
particular Sy(T(22))* is the whole of S,(Ts(22)), and so S, (Tp(22))™" = {0}.

One also finds that S»(I'0(33)) is of dimension 3; since S5(I'0(3)) = {0}, it
follows that Ss (F0(33))Old = (f11(7), f11(37)) has dimension 2, and so the dimension
of S5(To(33))™" is 1.

O. L new .
The decomposition S (I'1(N)) = Si(I1(N)) 43 S, (I4(N))™" is actually more
than an orthogonal decomposition:

Proposition A.2.2.25. The old subspace and the new subspace of Sk (Fl(N)) are
both stable under the full Hecke algebra T, so that

new

Sk (T1(N)) = Sk (T1(N)) ™ @ Sy (T4 (N))
15 actually a T-module decomposition.

Proof. Cf. [DS0H, proposition 5.6.2]. The idea is to first prove that Sy (Fl(N))Old
is stable under T by examining carefully the difference between T, on level N/p
and U, in level N as in example BA=2221 for p||N prime, and then to deduce that
Sk(T1i(N ))new is stable under T by using the formulae for the adjoints of the Hecke
operators. O

The interest of the new subspace is that it always admits a basis of eigenforms,
as implied by the following theorem:

Theorem A.2.2.26. Let [ € S, (Fl(N))neW be an eigenform for the anaemic Hecke
algebra T°. Then f is also an eigenform for the full Hecke algebra T

This leads to the following definition:

Definition A.2.2.27. A newform in Sy (Fl(N)) is a cuspform f € Sy (Fl(N)) lying
in the new subspace and which is a normalised eigenform.
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One can show (cf. [DS05, theorem 5.8.3]) that one has the decomposition

SiN) =@ @ p crin, (A.2.2.28)

0<MIN o<t| 4% fESk(lgl(M))
newiorm

and similarly for S, (Io(N)) and Sk (N, ¢).

As a consequence, remark A~273T0 shows that there exists a number field Kj n
such that the space Sy (T'1(V)) admits a basis made up of cuspforms whose coeffi-
cients a,, all lie in the ring of integers of Ky, y.

Remark A.2.2.29. In the next section, I shall prove by explicit g-expansion com-
putations (cf. corollary A~227AT)) that this fact still holds on the whole space of
modular forms Mj,(I';(N)).

One can use Hilbert’s theorem 90 (cf. [Ser62, proposition X.1.2]) to deduce from
this that there exists a free Z-submodule Sy(I'1(N), Z) of the power series ring Z[[q]]
such that

Sk(Ti(N)) = Sk (T1(N), Z) ®C.

In other words, S}, (Fl (N )) admits an “integral structure”. This allows to see S}, (Fl (N), Z)
and the Hecke algebra Ty y as the Z-dual of each other:

Lemma A.2.2.30. For eachn € N, let a,, denote the linear form Zm21 Amq™ — ay,
on S,(T'1(N)). Then the pairing
Tk,N (%) Sk(Fl(N),Z) — 7
Tef — a(Tf)
15 perfect.

Proof. If T' € T}, v is in the left kernel of this pairing, then as the Hecke algebra is
commutative, one has

0=a)(TT.f) = ar(T,Tf) = an(Tf)

for all f € Sk (Fl(N )) and n € N, where the last equality comes from example
A22T7, so that T'f = 0 for all f, which means that T"= 0 as an operator.
Similarly, if f € S}, (Fl(N )) is on the right kernel of this pairing, then

0=ay(Tnf) = an(f)
for all n € N, so that f = 0. ]

In [Stuf7], J. Sturm proved a useful result concerning the congruence properties
of the coefficients a,,:

Theorem A.2.2.31 (Sturm bound). Let f = 7% a,q™ € My(I'1(N)) be a mod-
ular forms whose coefficients a,, lie in the ring of integers Zy of a number field K,
and let a be an ideal of Zy. If a, = 0mod a for all n < £[SLy(Z) : T1(N)] =

£ N2 [T~ (1 — I%), then a,, = 0 mod a for all n.
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This leads to a bound on the number of Hecke operators T}, required to span
Tk7 N-

N 12

image of the Hecke algebra Ty n in Endc (Sk(Fl(N))) as a Z-module.

Proof. Let p € N be a prime number. The above Sturm bound shows that the Hecke
operators T, n < #[SLy(Z) : '], span the space Homg (Si(I'1(N)),Z) ® F,, hence
zZ

span Ty ® F, by lemma A~22730. Since p is arbitrary, the result follows. ]
zZ

Proposition A.2.2.32. The Hecke operators T,,, n < £ N? HP‘N (1 — #), span the

The action of the Fricke involution on the ¢g-expansion of a newform can be made
explicit if the level N is squarefree (cf. [Asa7f, theorem 2]). In particular, in the
case where N is prime (which will be of interest for me later), one has the following
formula:

Theorem A.2.2.33. Let f = q+ > -,a,q" € Sk(N,€) be a newform of weight k,
level N and nebentypus €. If N is prime, then Wy f is the cuspform of weight k,
level N and character € defined by

Wy f=An(f) <q + Z%q"> ,

n=2
where Ay (f) € Q is the pseudo-eigenvalue of f, which is given by
w(f) = { —N'F2ay  if e is trivial,

N=Fg(e)an if e is non-trivial.
Besides, A\n(f) # 0, and ﬁ(f)f =G+ D 20 @nq" 18 also a newform.
I also state a formula giving the action of the Fricke involution on a twisted
newform, since I shall need it later. Recall (cf. [AL7R proposition 3.1]) that if

f=37""a,q" € Sp(N, e) is a cuspform of weight k, level N and nebentypus ¢ and

n=1

X: (Z/MZ)* — C* is a Dirichlet character modulo M, then the twisted form
+oo
FOXED " an(n)g" € Se(MN, x%)
n=1

is a cuspform of weight k, level M?N and nebentypus y*e. The following result may
be found in [AT7R, p. 228]:

Theorem A.2.2.34. Let f € Si(N,¢) be a newform of weight k, level N and neben-
typus €, and let x be a Dirichlet character of conductor M prime to N. Then
[ ®x € SL(M?N, x%) is a newform of weight k, level M*N and nebentypus x’c,
and
_9(x) _
Wirn(f ® x) = ﬁé(M)X(—N) -(Wnf)®X,

that is to say

Waren (q +) anx(n)(J"> = I A (=N () <q + Za_ni(n)ff> ,

s 9(x) =

where g(-) denotes the Gauss sum of a Dirichlet character.
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A.2.2.3 Eisenstein series

Although I defined the Petersson inner product on cuspforms, I noted in remark
A2TR that it is still well-defined on couples of modular forms, provided that at
least one of them is a cuspform. This makes the following definition possible:

Definition A.2.2.35. Let I' C SLy(Z) be a congruence subgroup, and let k£ € N be
even. The Eisenstein subspace Ej(I") is the orthogonal subspace of Sg(I") in M (T).

The dimension formulae A—272T0 yield

€00 if k>4,
dim £ (I") = dim M (") — dim Si(I") = ioo - i z z g’
0 if £ <0.

Besides, the formulae (d)* = (d™'), T = (p~')T, giving the adjoints of the Hecke
operators in the anaemic Hecke algebra T show that these operators preserve the
Eisenstein subspace. In particular, for I' = I';(/N), the diamond operators (d) split
Ey(N) = E(I'1(N)) into a T-direct sum Ej(N) = @D, Ex(N, x), and the orthogonal
decomposition

is also a T’-module decomposition.
Because of the different convergence behaviour of the series of weight £k = 2, 1
shall study the Eisenstein subspace in weight £ > 4 and in weight k£ = 2 separately.

The case of weight k£ > 4

Let v € (Z/NZ)? be a line-vector of order exactly N. Consider, for k > 4, the
locally normally convergent series

1
Gir)= > E=wn

(c,d)ez?
(¢,d)=v mod N

Rewriting G}, as

:kz

vl TH%y d’U
chZ CT+ +CT+d)

where ¢, and d,, are lifts to Z of the coordinates of v, one can interpret G (7) as
being, up to the multiplicative constant N*, the evaluation of the elliptic function

1
o7 (2) = Z m

WELTHL

at the N-torsion point z = %. In the case of level N = 1, there is only one

possible choice of v, and one recovers the series Gy € M(1) defined in example

A3
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I have shown that this series GG, can be normalised as

Gilr)= > (cr+d Z > —2C( )Ek,

(c,d)ez? n=1 (c,d)eZ?
(c,d);é(0,0) ng(C d)—n
1 1
F = — - -
k (7—) 9 Z (CT + d)k 5
(c,d)€Z?
ged(e,d)=1

the factor 1/2 ensuring that Ej, evaluates to 1 at the cusp oo owing to the symmetry
in +(c, d). Define similarly

1
El(T) =en Z CEviE

where ey = % for N=1or 2 and ey =1 for N > 2. One then has

. 1 1 1 T
Gi= 2 % 2 a2 > R | BT

€
n>1 (¢,d)=v mod N N ne(Z/NZ)* m=>1

ged(n,N)=1 ged(e,d)=n m=n mod N

and conversely

Ej=ev Y. 3 “751”,:’) ap

n€(Z/NZ)* m=1
m=n mod N

by Mobius inversion, so that the E} span the same subspace of Mj (F(N )) as the
G, which will turn out to be exactly the Eisenstein subspace Ejy(I'(N)).
It is immediately checked that

1, ifv=4(0,1
lim Ey(r) = {0 else .

Im 7—400

and that

Elvy = E
for any v € SLy(Z), v being understood to act on the right on v seen as a line-vector.
Consequently, for all v = (¢,,d,) € (Z/NZ)*, E; € My(I'(N)) — Sg(L(N)) is a
modular form which evaluates to 1 at the cusp I'(N)(—d,/c,) but vanishes at all of
the other cusps of X(N).

Proposition A.2.2.36. The G}, and the E} € Ej,(I'(N)) lie in the Eisenstein sub-
space of My(T'(N)).

Proof. One must show that
(B, f) =0
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for all cuspforms f € Sy, (I'(N)). Now if f is a cuspform, one has ao(f) = 0 whence

N
Yy > 0, / flz+iy)de =0
0

and so
+o0 N
= k=2 T +wy)dr = (Im7)* T
0_/0 y dy/o f(o+iy)d /DNf()(I Vedp(r),

where
Dy={re€H |T=ocor0<Rer < N}

is a fundamental domain for the action of the group Py (N) made up of the matrices
[§™NV], n € Z. Writing

N):|_|P+( (673 and SL2 |_|F Bza

one has

SLa(Z) = |_| Py (N)a;5y and Dy = |_| By T,

0,4’ 4,3/

where F; is the usual fundamental domain for SLy(Z) depicted on figure AT277 and
| | means that the union is disjoint up to the boundaries, which have measure 0, so
that

0= Z/ (i Byr-7)(Im a; Byr-7)*dpu (T Z/ﬂf By-7)(Im By-7)* 1/](042, T)du(T)

since Im~y-7 = UI(‘f/l—;)', J(v, 1) =er+d, v =[24] € SLa(Z), and f(y-7) = f(1)i(y, 7))k
for v € T'(N) by modularity of f. Now,

Z/E¢f7du =[], otz

by definition, and

](aia 7_) EN

> o = B

for vg = (0,1) € (Z/NZ)?, so this proves that (E£,°, f) = 0. One concludes by writing
any v € (Z/NZ)? of order N as v, - v for some v = SLy(Z) and by computing that

<E11c}7f> = <EI:O‘I€77 f> = <Elgoaf|k77l> =0

as f|ry~! is a cuspform of level y['(N)y~! = T'(N) since I'(N) is normal in SLy(Z).
[

One may construct Eisenstein series in Eji (N, x) by symmetrising over the E}.
Let 9 and ¢ be two Dirichlet characters with respective conductors v and v such
that uv = N, and define

Gp¥ = D (r)p(s)Gy .
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It is straightforward to check that G}f’“" € Ex(N,vp). In particular, GZ"p vanishes
identically if ¢ is odd, so I shall assume that ¥ is even from now on.

I shall now compute the g-expansion of G}f’“’. To begin with, it is natural to
determine what the g-expansion of the G}’s is made up of. To clarify notations,
define
(—2mi)*

(k—1)

I start with the following classical formula (cf. [Ser70, formula (32) p. 150]:

Cr =

Lemma A.2.2.37.

Z +d _(szm ¢" (T EH).
Z

Using this, I may compute the g-expansion of GJ, :

Proposition A.2.2.38. Let v = (¢,,d,) be of order evactly N in (Z/NZ)*. Then

) 1 Cr ~~ o
Gk(T) = 1@:6 Z ﬁ + m Z sgn( )mk 1u§l\}’ N

d=d, mod N n=1 mln
n/m=c, mod N

=15 Z d_ NF Z sgn(m)m* b,

d=d, mod N mn>0
n=cy, mod N

Here and in what follows, the symbol 1o means 1 if the condition C' is satisfied
and 0 else. Observe that this is an expansion with respect to gy = exp(2miT/N)
instead of the usual ¢ = ¢y, since the width of the cusp oo of X(N) is N and not 1.

Proof. First observe that

1 1
Gin=" D Grar- v 2 Zm@

(c,d)eZZ c=c, mod N deZ + d)
(¢,d)=v mod N

I shall now treat separately the terms corresponding to ¢ = 0 (if any), ¢ > 0 and
¢ < 0. First, for ¢ = 0, one clearly gets

1
I Y =
d=d, mod N
Next, for ¢ > 0, one has
1 Ck k—1 dvm cm
N2 Ximm T 2 Zm

> aen (TE 4 d >0
c c c
c¢=cy, mod N c=cy mod N
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And similarly, for ¢ < 0, one has

b _ (=P
NFE Z Z CT+dU +d) NFE Z Z CT —ct—dy —|—d)

c<0 deZ c<0 deZ
c=cy mod N c=cy mod N
e —em
= Nk m* MN i,
c<0 m=1
c=cy mod N
—+00
— % § /k ludvm qn

n=—cm NFk N N
m'=—m n=1 m’'<0

m/|n
no—
T =Cv mod N

Summing up™

. 1 G S m | n
Gi=lzs D, Z+& > sen(m)ym* k™ | an,
d=d, mod N n=1 mln
n/m=c, mod N

which I shall soon use under the slightly different form

d=dy mod N nZCngo% N

I can now achieve the computation of the g-expansion of G}f’w :

Theorem A.2.2.39. G}f’“’(T) = C%;@E;f’@(ﬂ;

+o0
EP?(1) = Ly wivia L(1 — k, ) + 2 Z Z w(n/m)p(m)mF | ¢
n=1

m>0
mln

Here, g(x) denotes the Gauss sum of a Dirichlet character y, and L(x, 2) is the
L-function attached to x.

2pun intended.
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Proof. Compute that

G(r) = Y(r)B(s)Gy T (7)

¥ L C stHtv)m mn
— Y(r)P(8) | Lrv=0mod N Z o + NG Z sgn(m )m NS\/H ) o

r=0 s=0 t=0 d=s+tv mod N mn>0
n=rv mod N
v—1 u—1 v—1
— 1 Ck — k-1, sm _mn’
= ¥(0) ) _»(s) -t r)B(s) Y sen(m)m* g E T
n=n'v dk Nk
s=0 d=s mod v r=0 s=0 mn’>0
n'=r mod u ?f-’
u|mU

But when u = 1, ® is trivial and thus ¢ and hence  are even, so that

v—1

s=0 d s mod v

Consequently, setting also m = m’u, one gets

Gy ?(r) = Tu=r2L(k, @) + Y(r)p(s) Y seu(mym Tk gy

r=0 s=0 m/n’>0
n'=r mod u

_ C G / tk—1 _m'n’ — sm/
= Luma2L(k,P) + 0 D w(r) Y sen(m)m g™ Y p(s)
r=0

m/'n/>0 s=0

n/=r mod u —
g(@m")=g(@)p(m’)
C %) I
= 1,-12L(k,P) + @ Z sgn(m’)m™Lo(m ) (n)g™ ™"
v m/n’>0
2Cr9(9) /

=y 2L )+ > m o yun)g

m/,n'>0

= 1,90k + 2D S ) m)g”

n=1 m|n

It now remains to factor C%k@ out of the constant term, so as to make E;f"p

appear. For even ¢, the functional equation (cf. [DSO5, section 4.4]) of L(z,%) reads

1
7 (2) Lz ) = w0790 ( . ) 9@ L1 - 2,0).
Setting z = k, one consequently gets that the constant term of GZ’”, if any, is

()L =k, )
JoF '

27Tk_1/2F(Tk)

1y—12L(k, @) = 1,—
1 ( 80) 1 F(

ISTES Q
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In order to simplify out the I"’s, one first invokes Euler’s reflection formula

T
T'(T(1 —2) =
() ?) sinmz’
which shows that
1—k k+1 T T
() () s
2 2 sin W%l cos o
and therefore
I(5E) 7T

and then the duplication formula
D()(z +1/2) = 21722/ (22),

which yields

T k=1 /1

cos ZT()r (&) B cos 2T (k)

In the end, it appears that the constant term of Gf’“” is

@I — k) 2 ayEr V@)L~ k)
et L&)k - cos 2T (k)v*
2t g(@)L(1 — k, p) Cry(@)
— 1, LA L(1 -k, ).
()R (k — 1)k - U ?)
The proof is now complete. [

In order to make the term L(1 — k,p) more explicit, introduce the twisted
Bernoulli numbers By, ,, defined by

n—1 +oo
teat tk
;X(n)ent_ 1 :;B’ﬁxﬂ'

where y is a Dirichlet character modulo n.

Proposition A.2.2.40. (i) Let Bx(X) denote the Bernoulli polynomials, defined
by the generating function

Then the twisted Bernoulli numbers By, can be computed using the formula

By, =nF! i: x(a)Bg(a/n).
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(ii) The values of the L-function attached to x at non-positive integers is related to
the twisted Bernoulli numbers by the formula

Bk7x

For a proof, cf. [DS0H, section 4.7].

Corollary A.2.2.41.

EZ’SO(T) = —1, tr1v1al 242 Z Z w(n/m)(‘p(m)mk—l 7"

mln

For each pair of Dirichlet characters 1) and ¢ of respective conductors u and v, the
Eisenstein series E?(7) lies in Ej(uv, ), so the series £/ (t7) lies in Ej(N,¥¢)
for all ¢ € N such that tuv|N. One can show (cf. [[DSOH, theorem 4.5.2]) that the
number of triplets (¢, ¢, t) such that ¢ is even and tf,f,|N, where f, denotes the
conductor of a character x, agrees with the number of cusps of X;(/NV), which is the
dimension of E}, (F1 (N )) given by formula BA—22T0, and that the corresponding series

E}#(tr) form a basis of Ej (T'1(N)). This can be summarised into the decomposition

N)) = @ Ey(N, x)

X even

N,x) = @ @ CE#(tr) (x even).

o tiyfelN
=X v

The case of weight k£ = 2

For k£ = 2, the above definition of the series GG}, no longer makes sense due to
convergence issues. However, this problem may be overcome by forming null-sum
linear combinations of such series:

Proposition A.2.2.42. Let (\,) be a family of complex numbers indexed by vectors
of (Z/NZ)? of order exactly N. If > A\, =0, it makes sense to define >, N\, E3 as

XU:A”E;] _N2 ZZ

c7‘+d
c,d€EZ v v U+CT+d)

where again ¢, and d, stand for lifts to Z of the coordinates of v. This is a locally
normally convergent series of T.

Proof. A Taylor expansion computation reveals that the fact that ) A, = 0 kills

the first term of the Taylor expansion of ) (”A—vd)’“ as (¢,d) — oo. The order
e

of magnitude of this first term was W, hence this sum becomes O <W>,

ensuring local normal convergence of the double series even for k = 2. [



A.2. MODULAR CURVES AND MODULAR FORMS 91

Remark A.2.2.43. For the same reason, one could even define Eisenstein series of
weight k = 1 by also requiring that ) A,v = 0, which results in killing the second

term of the Taylor expansion of ), = Ay ) . 1 shall however not need this fact,
TG fer+

but I refer the reader to [DS0F, section 4.8] for more comments on this question.

One shows just as in the higher weight case that the series > A, E3 are modular
of weight 2 and level ['(/V) and that they are orthogonal to the cuspforms.

Say that a vector v = (¢,,d,) € (Z/NZ)? represents the cusp s = I'(N)(—d,/c,)
of X(N), and let vy, ,v. represent the e, cusps of X(N). Then for each 0 <
i < o0, the series Ey* — E5° evaluates to 1 on the cusp corresponding to v;, to —1
on the cusp corresponding to v._, and vanishes at the other cusps. These e, — 1
series are thus linearly independent, hence form a basis of Ey (F(N )) since this space
has dimension €., — 1 by the formulae A=2Z2T0, and therefore

= {Z)\E2 ;szo}.

The series
u—1 v—1 u—1

G =" w(n)@(s)G T (r)

r=0 s=0 t=0
is well defined and lies in Ey(N, 1), unless ¥ and ¢ are both trivial. The g-expansion
computations carried out in the case k > 4 remain valid for these series, and since
the second Bernoulli polynomial is By(X) = X2 — X + &, one has

L(-1,¢) = Bz(p = Z@ (( > %—é) :_% p(a)a <%+1)

if ¢ is non-trivial, so that

E;%(T)z—ﬂwmwal ng a5+ )+2Z S w(n/m)e( .

= m>0
mln

since 1 and ¢ are forbidden to be both trivial.

Recall the series Fy =1 —24% ., o1(n)g". This series is not modular, but one
can prove that Es n(7) = E5(7) — NEy(NT) lies in E5(I'g(NN)). For ¢ and ¢ Dirichlet
characters and t € N, define

Ez/),go,t(T) _ E;D’So(tT) if 1 and ¢ are not both trivial,
2 Esy if 1 and ¢ are both trivial.

Then, as is the higher weight case, one has the decomposition

N)) = 5 Ex(N

X even

@ @ CEy#! (x even)

tftl)fﬂN
vy (W t)#(L,1,1)
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for x even.
Note that the case 1 and ¢ both trivial and ¢ = 1 is excluded, since E;ﬁ"p’t =0
then. This translates the fact that

dim E5(I'1(N)) = oo — 1 =dim E, (T (N)) =1 (k > 4).
No matter whether £ > 4 or kK = 2, the action of Wy on the Eisenstein series

E}f’d’ is given by the following formula:

Proposition A.2.2.44. Let k € 2N, and let 1) and ¢ be Dirichlet characters modulo
respectively u and v, such that wv = N. Then

WNE;f’d) _ % <%>k/21/1(—1)Elf’¢'

Proof. 1t is easier to work with the GZ”“’. First compute that

u—1 v—1 u—1 u—1 v—1 u—1
GVP () — Gros+t) - P(r)p(s)
k (T) - w(r)(lp(‘S) k (7—) - Z Z (C/T+d)k
r=0 s=0 t=0 r=0 s=0 t=0 (!, d)eZ?

c¢’=rv mod N
d=s+tv mod N

P)p(s) o Y(c)p(d)
= DY e 2D D) D) DI DR

c= r mod u c=r mod u
d=s+tv mod N d=s+tv mod N

c)o(d
|y wEe)

o (ver + d)F

Using this identity, I can compute WNGI,f"p:

9 c)o(d
(WNG‘Z’“’)( Nk/2 - Z — Nk Z (_W )e(d)

e k
(c,d)eZ? ( + d) (c,d)€Z? ve+ NdT)
LN B (upt s B
vk (udr — c)* v (udT + d')k
(c,d)ez? (¢ d")ez?

= (1) ey X EM - () w6,

v uwlt +d )
(¢! d')ez? )

whence the identity
k/2 .
WGP = (5) w(-1)GE".

It then only remains to use on both sides the formula G}*¥ = C%,@E;f"p defining
E,Z’"p to complete the proof. O
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A.2.3 Modular symbols

Let I' C SLy(Z) be a congruence subgroup, and view the corresponding modular
curve X (I') as a Riemann surface. Modular symbols, which I shall now introduce,
are an explicit realisation of the homology group H, (X (F),Z) as a Hecke-module.
This is very useful, since this explicitness can be spread by duality to spaces of
modular forms, which allows to compute these spaces, that is to say, given B € N,
to compute the g-expansion to precision O(q”) of the elements of a basis of Sy(T').
As an illustration, I shall compute the space S, (Fo(ll)) in example A3 T2. Note
that the ideas presented here can be generalised to higher weights £ € 2N without

A.2.3.1 Computing with modular symbols

Let My be the group of modular symbols, that is to say the free abelian group on the
set of couples {a, 8} of cusps «, 3 € P!Q modulo the relation

{8y + {87} +{r,a} =0

and modulo any torsion. The couple {«, $} is meant to be thought of as an oriented
path joining « to 8 in ‘H® and defined up to homotopy, as shown on figure BA2-3Tl.

i H
{00, 0}
Y
{a, B}
o 0 ) K

Figure A.2.3.1: Two modular symbols

Remark A.2.3.2. Beware that {«, 5} really denotes the class of the couple (a, )
and not the set containing o and [, so that the order between a and ( matters
(modular symbols represent oriented paths). The notation {a, 8} is deceptive, but
it is standard.

One extends the action of GLy(Q)" on P'Q by defining

v-A{a, By ={y-a,v B} (y€SLZ), 0, € P'Q).

Lemma A.2.3.3. The group M, is generated by the elements v-{00,0}, v € SLy(Z).



94 PART A. THEORETICAL PREREQUISITES

Proof. 1 shall actually prove that every modular symbol of the form {a, 0} is a sum
of symbols of the form +v - {o0,0}, v € SLy(Z). This is enough since every modular
symbol {a, 5} can be written as {a,0} — {3,0}.

If & = 00, then one can take v = 1 and the proof is over, so assume that a € Q.
Let |a] = %, %, cee Z—: = « be the convergents of the continued fraction expansion
of a. Then the theory of continued fractions (cf. for instance [HWOS, ch. X, theorem
150]) indicates that p;11q; — pigis1 = (—=1)" for all i < n, and so

qn’ Gn-1
== f)/nfl{oo7 0} + -+ 70{007 0} + 7/{007 O} + {007 0}7

where ~; = [pi“ (_1)2'_;),} and o/ = [/ 1] lie in SLy(Z). O

di+v1 (-1)'q
I now fix a level N € N, and a congruence subgroup I' = I'o(V) or I'; (N).

Definition A.2.3.4. The group My (T") of modular symbols of level T" is the quotient
of M, by the action of I' and modulo any resulting torsion.

Example A.2.3.5. As v =[{1] €T, one has

{0,1} = {00, 1} — {00,0} =~ - {00,0} — {00,0} =0
n Mg(F)

One defines an action of the Hecke algebra T = Ty y of weight 2 and level N (cf.
section A=2T2) on M (I") by the formulae

<E){a,ﬁ}:7-{a,ﬁ}, v = [CCL Z} € I'o(N), d=dmod N

and

AR S A R (A236)
gcdczfy%l\;:l
A

By the identification of S>(I") with the space Q' (X(I')) of holomorphic differential
1-forms on X (T"), one gets an integration pairing

My(I') ® So(I') — C
“ 6 (A.2.3.7)
{a.Byo f — ({o B}, f) = / f(r)dr.

Note that the integral converges since it corresponds to the integration of f, seen as
a holomorphic differential 1-form on X (I'), along the projection on X (I") of a path in
H?* joining « to B (cf. figure A=23T). Furthermore, this pairing is well-defined, since
the differential f(7)dr is [-invariant as f € Sa(I') and since H* is simply connected.
Finally, and this is the key point, this paring is Hecke-equivariant, that is to say

(T's, f) = (s, Tf)
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for all s € My(T"), f € So(I") and T € T.
Fix a coset decomposition

SLy(Z) =| | T
iel
According to example BA=ZT3, if I' = I'; (V) one can take I = Ay, the set of vectors
in (Z/NZ)?* of order exactly N, whereas if I' = I'y(V), one can take [ = P*(Z/NZ).
Lemma [A™2733 shows that the group My(I") is spanned by the modular symbols
[i] = 7i{00,0}, i € I. The symbols [i] are called the Manin symbols attached to the

coset, decomposition above.
One lets SLy(Z) act on the right on the set of Manin symbols by the rule

[i] -7 =[] where Iyiy =T;.
Let R=[2 1] and S =[{ '] € SL2(Z). Then one sees that for all i € I,
[i] +[1] - 5 =i - {00,0} + %5 - {00,0} = {7i - 00,7 - 0} + {7 - 0,7 - 00} = 0,
and
[i] +[i] - R+ [i] - B® = {5 - 00,7 - 0} + {7: - 0,% - 1} + {7 - L7 - 00} = 0.

J. Manin proved in [Man7?] that these are actually the “only” relations satisfied by
the Manin symbols:

Theorem A.2.3.8 (Manin). The kernel of the natural surjective morphism

@Z[Z] — M (')

i€l
is generated over Z by the elements [i] + [i] - S and [i] + [i] - R+ [i] - R*, i € I.

The proof of this theorem requires some work, cf. [Man72, section 1.7].

From this, one can find a Z-basis of My(I') (which exists as Z is principal) in
terms on Manin symbols, by performing linear algebra over Z (cf. [Coh93, section
2.4.3]). The interest of this is that it makes effective computations in My(I") easy
(cf. example A=223T2 below for a fully worked-out case).

In order to compute the matrix of a Hecke operator T,, € T acting on M(I") with
respect to this basis, it is natural to use formula (A=Z38) directly, and to convert the
resulting terms into Manin symbols by the process explained in the proof of lemma
[A2733. One may, however, compute for each n € N a finite set H,, C Matay2(Z) of
matrices, called the Heilbronn matrices, such as the action of 7},, on Manin symbols
is given directly by

and 8.3.2] for details).

The modular symbols are meant to represent the homology H; (X (I'), Z) of X (T'),
but {a, f} represents a path from « to 3, which projects to a closed loop on X(I")
if and only if the cusps a and ( are equivalent under I'. This justifies the following
definition:
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Definition A.2.3.9. The subgroup Sy(I") of cuspidal modular symbols is the kernel
of the boundary morphism

9: My(I) — Z[[\P'Q]
{Oé,ﬁ} — Fﬁ—FOé,

where Z[['\P'Q] denotes the free abelian group on the set I'\P'Q of cusps of X (T).

It is clear that the Hecke algebra T stabilises So(I"). One can prove (cf. [Man72,
theorem 1.9]) that Sy(T") and H;(X(T),Z) are isomorphic T-modules as expected;
in particular, the Z-rank of Sy(I") is twice the genus g of X (I').

Remark A.2.3.10. As mentioned in the beginning of this section, one can also
define the group Si(I') of modular symbols of higher weight £ € 2N (cf. [Ste07,
chapter 8]), which is also free of finite Z-rank and which comes with a natural dual
action of the Hecke algebra of weight k. As a consequence, for each congruence
subgroup I' and for each weight k& € 2N, there exists a number field K} such that
for all Hecke operator T' € Ty, the eigenvalues of T' lie in the ring of integers of
Kk’,F-

In order to compute Sy(I"), one needs a practical criterion for the I'-equivalence
of cusps. J. Cremona gave such a criterion:

Proposition A.2.3.11. Let p/q and p'/q¢ € P'Q be two cusps written in lowest
terms (in particular, oo must be written 1/0, and q,q¢' > 0 in any case), and let

N e N.

(i) These cusps are equivalent under I't(N) if and only if ¢ = ¢ mod N and
p = p' mod ged(q, N).

(ii) Letr, r" € Z be such that pr =1 mod q and p'r’ =1 mod ¢'. Then these cusps
are equivalent under To(N) if and only if gr' = ¢'r mod ged(qq’, N).

I refer the reader to [Cre92, lemma 3.2] for the proof of the I'y(N) case, and to
[Cred7, proposition 2.2.3] for the proof of the I'g(V) case.

These criteria allow one to write down the matrix of the boundary morphism 0
with respect to a basis of Manin symbols (computed by applying theorem A23)
of My(T") and to a set of representatives of I'\P'Q. Note that in practice, one can
construct this set along with the computation of 9, by testing for equivalence the
cusp which is handled with an initially empty list of pairwise inequivalent cusps.
From there, one can compute a Z-basis of So(I') by performing linear algebra over
Z, and deduce the genus of X (I") as half the Z-rank of Sy(I") (cf. example A273TH
below).

In what follows, I shall denote by a,, the linear form on Sy(I")

“+oo

m
E Amq " > Qp.,
m=1
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and by T¢ = T(};C C Endc (52 (F)) denotes the Hecke algebra with scalars extended
to C. By lemma BA=22730, the pairing
Tc % S,y — C
T®f — a(Tf)
is perfect, so that the map

U: So(I) — TY
/ — (T'—>6L1(Tf));

where T/, = Hom¢ (T, C) denotes the linear dual of T, is a C-linear isomorphism.
Furthermore, example A=227T7 shows that the image of a linear form ¢ € T{ by its

mverse 1s
Z o(T,)q" € So(T).

Now, the computation of the matrices of the Hecke operators 7T,, acting on Sy(I)
above yields an explicit embedding

M:T— Matggxgg(Z).

Let a;;: Matggxoy(Z) — Z, 1 < 4,5 < 2g, be the “(4, j)-matrix coeflicient” linear
form. By composing with M, one gets linear forms a; ; o M € Homy(T,Z) which
span T over C, and so the forms

+oo
=Y ai; (M(T))q
n=1
form an explicit generating family of Sy(I").

Example A.2.3.12. In order to illustrate all of this, I shall now compute a basis of
S5(To(11)) to precision O(g*) explicitly.
By example BAZXT3, one has the coset decomposition

SLy(Z) = | ] To(11)7a,

z€PIF1

with vy, = [19] for z € Fy; and 7 the lift to Z between 0 and 10 of z, and v, = [{ ']
One finds by looking at the bottom row of the matrices v, R and 7,5 that the matrices
R and S act on the corresponding Manin symbols [z] by

[z] - § = [-1/2],
whence the relations
[0] + [00] =0, [1] + [10] = 0, [2] + [5] =0,
B+ [7]=0 [4+[8=0, [6]+[9]=0

and by
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whence the relations
[0] + [10] + [00] =0,  [2] +[7
A+ [B]+9=0,  [B]+[8
from which it follows that the Manin symbols [0], [2], [4] form a Z-basis of M (T's(11)),
the other Manin symbols being given by

[1] =0, Bl =2l +4,  [B=-2
6] =—[2], [MJ=—[2]-[4, [8=-[4,
9] = [2], [10] =0, [o0] = —[0].
Next, one has [0] = {00,0}, [2] = {1/2,0} and [4] = {1/4,0}, and the cusps 1/2

and 1/4 are equivalent to 0 under I'g(11) by the criterion BA=23T1(ii) whereas oo is
not equivalent to 0, so Sy(I'g(11)) is the subgroup of M(I'g(11)) generated by [2]
and [4]. In particular, its Z-rank is 2, so the genus of X(11) is g = 1. Tt follows that
the space Sy (Fo(ll)) is of dimension 1, so it is generated by a form f. By example
[A7273, one may suppose that f is a newform f = g+ O(¢?).

In order to compute the g-expansion of f, one must compute the matrices of the
Hecke operators acting on S, (I'g(11)), for instance with respect to the basis ([2], [4]).
I shall do it here by using formula (A=2236) directly. One has 77 = Id by definition,
so the matrix of 717} is

10
T, = [0 1] |

Next,

by formula (A=2-38)

~{pop+ {31} - {Gohmm ] 0 -
as {1,0} = 0 by example A=23F
=4+ =D = [2] = 4]+ [7] - [2] = 4] - [2] - [4] - [2] = —2[2],

sa=n{bo}= (o) (1o} 4= (o) o)
2} o (o)

) 1
using the convergents 0, 1/2, 2/3, 5/8 of 3= 0+

= [8 73] {00, 0} +[34] - {00,0} + [2] + [§]
=+ 7+ 2+ 8] =0—[2] - [4] +[2] - [4

.—|
._.
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so the matrix of T3 acting on Sy (T'o(11)) is

Similarly,

—_ 2 _|_ —_
—31+10+10 10+51 21
12 6’ 2’ 3’ 6’ 3’

1 5
1 6

J {00, 0} +[6] + [2] — [3] + [§ 1] {00, 0} = [§ 1] - {00, 0}

and
=i}~ (o} (o}« (3 (33)
e () )+ (i o) oo 23)

using the convergents 0, 1/2, 2/5, 5/12 of % =0+ ! N
24 ——
1
2+§
=[153] {00, 0} + [12] + [ 2] - {00,0} + [§ 53] - {00, 0} + [2] — [3] + [§3] - {00, 0}
= [ =D+ 2]+ [ 5]+ (5 =2)] + [2] = [3] + [(4: 3)]
= [T+ 1+ 9+ 381+ 21 = Bl + 5] = =[2] = 4] + 0+ [2] + [2] - [2] = —[4],

so the matrix of T3 acting on S (Fo(ll)) is

-1 0
T, = [ ) _1} |
The upper-left and lower-right matrix entries both give the form ¢ — 2¢* — ¢* + O(¢?)

whereas the upper-right and lower-left entries both give the 0 form, so finally one
concludes that S5 (I'g(11)) is generated by the newform

f=q-2¢—¢+0(d").

Of course, one may push this computation further so as to get more coefficients of
the g-expansion of f.

ters 3 and §].
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Remark A.2.3.13. One can show (cf. [Cred7, sections 2.1.3 and 2.5]) that the
symmetry 7 — —7 around the vertical axis iR of H® induces an involution on
So(T"), and that the corresponding eigenspaces So(I")* and So(I")~ are isomorphic
T-modules, which explains why I obtained “twice” the same form in example A=2-3 T
just above. It is therefore possible to work in one of these eigenspaces so as to speed
up the computation.

However, even with this trick and the use of Heilbronn matrices, the cost of the
computation of the action of the Hecke operator 7, on Sy(I') for p prime is more

of a basis of Sy(T") to precision O(¢?) with this method is more than quadratic in B.
I shall present a practical trick of mine to bring down this complexity to 5(3) for
fixed I' in section BZ3T1. Moreover, the goal of this thesis is to describe an algorithm
(unfortunately currently impractical) which computes the coefficient a, of a newform
in complexity polynomial in log p, cf. part B.

A.2.3.2 The Manin-Drinfeld theorem

In the discussions above, the non-cuspidal modular symbols (that is to say, the ones
corresponding to non-closed paths on X (I")) have been left aside. I shall now examine
then more in detail.

Thanks to the integration pairing (A=2237), a modular symbol {a, f} may be
seen as a linear form ff on Sy(I') ~ QY(X(T)). Let Sp(I)Y = Homg (S2(T'),C)
denote the space of linear forms on Sy(I"). The subgroup Sy(I') C My(I") of cuspidal
modular symbols corresponds to the homology H; (X (F),Z) of the modular curve
X(T'), and so forms a full-rank lattice in S3(I")¥ by corollary BAT2T9. It follows that

Sy(T)Y = Hy (X (T),Z) ® R,

so in particular every modular symbol lies in H; (X (I'), Z) ® R. In other words, if
z

(Vi)1<i<og denotes a Z-basis of H;(X(T'),Z), then for every modular symbol
{a, B} € My(T), there exists a unique family (\;)i<ico, € R? of real coefficients

such that
B 2
f=xn
@ i=1 i
as linear forms on Sy(T").

The Manin-Drinfeld theorem, which I now present, asserts that these coefficients
A; are actually rational.

Theorem A.2.3.14 (Manin-Drinfeld). Let I' be a congruence subgroup of SLa(Z).
Then for all cusps o and 3, the modular symbol {«, 5}, seen as a linear form on
Sy(T) = QY (X(D)), lies in Hy(X(T),Z) ® Q.

In view of the Abel-Jacobi theorem A_T2TH, this can be reformulated as follows:

Corollary A.2.3.15. If D € Div° (X(F)) 15 a null-degree divisor supported by the
cusps of X(I'), then the class of D is torsion in Pic’ (X(F))
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The proof for general I' may be found in [Lan93, section IV.2]. 1 shall give a
proof here for the case I' O I'1 (V). This proof is effective, in that given o and f3, it
explains how to compute the coefficients A\; € Q such that

R
[-51].
a i=1 i

I shall use this in my main algorithm so as to accelerate the computation of the
period lattice of X;(N), cf. section BZ32.

Proof. In this proof, I assume that I' O T';(N) for some N € N. Let r € N be a
prime such that » = 1 mod N. Then the diamond operator (r) is the identity, so the
Hecke operator T, on Sy(I") is given by

T.f=Y flaov=Y_7/

yeGr veGr

1 b r 0
o {[1 ] vemozver}of s )

and the right-hand side uses the identification of cuspforms in Sy(I") with differential
forms on X(T'). Since clearly [|f]| = [[a*f]| for all f € Sy(T) and o € GLy(Q)",
where || -|| denotes the hermitian norm attached to the Petersson inner product with
respect to the congruence subgroup I'Na~'T«, the operator T, — #G, = T, — (r+1)
is invertible on Sy(I") since an equality 7, f = (r + 1) f would imply

2 o'

yeGr

where

LAl =10+Df =D Iy fl

‘ vEG

which by euclidian triangle equality means that the vectors v*f are all equal, so
agree with f, so in particular (taking v = [§ {] € G,) one would have f(7) = f(r7),
hence by induction r"| ord, f for all n € N, whence f = 0. By duality, one deduces
that the endomorphism ¢ =T, — (r + 1) on Sy(I) % Q is invertible.

Besides, since r = 1 mod N, the criterion BA2-3 11 shows that for all a € P'Q,
the cusps «, ra and «o/r are equivalent under I'y(N) and hence under I'. Since
[§%] € T1(N) for all b € Z, it follows that for all a € P'Q, the cusps a and ya are
equivalent under I' for all v € G,., whence

a(TT - (T—Fl)){&,ﬁ} =0 (Z({7a77ﬁ} - {avﬁ})> :Ou

YEG,

that is to say that the image of the morphism ¢ =T, — (r + 1): My(T") — M(T)
lies in Sy(T"). One thus gets a morphism ¢ !o1): My(T') — Sy(I') ® Q which induces
z

the identity on Sy(I"). O
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A.3 (alois representations

To conclude this introductory part, I shall now describe the relation between mod-
ular forms and Galois representations, and exhibit some of the consequences of this
relation on modular forms.

A.3.1 Definitions and first examples
A.3.1.1 Number fields, Galois groups, and representations

To begin with, let me fix some notation. Let L/K be a Galois extension with Galois
group G of number fields with integer rings respectively Zy and Zp, let p be a prime
of K, and let P be a prime of L lying above p. Denote the corresponding residue
fields by Fp = ZK/p and ]Fsp = ZL/‘*B

The Galois group G acts transitively on the primes of L lying above p. The
stabiliser of P is called the decomposition group of B and is denoted by Dg. It
identifies with the Galois group of the local extension Ly/K,. Reduction modulo
yields a surjective group morphism from Dy to the residual Galois group Gal(Fy /Fy),
which is cyclic of order fy, = [Fy : F,], generated by the Frobenius automorphism
x + 2% where Np = #F, is the numerical norm of p. The kernel of this morphism
is the inertia subgroup Iy. It has order eq/, = ordy p, and identifies with the inertia
subgroup of Gal(Ly/K,). Consequently, the extension L/K is said to be ramified at
B if Iy is non-trivial, that is to say if eq/, > 1.

More generally, the so-called higher inertia subgroups Ig) made up of the elements
of Dy which induce the identity on Zy, /B! form a finite decreasing filtration

Ip=1 21 217 2

of Iy. The normal subgroup Lg ) of Iy is called the wild inertia subgroup. I shall

denote it by Wy = Lg ), and the corresponding quotient by I%ame = I/ Ws. Picking
a uniformiser II € Zj, (that is to say ordy I = 1) yields injections

Itame NN IE**

Ry B
o (11) , and

o +— ——mod*P
IT
i) /(41
I/ Fo |
o(Il) — 11 (i =1),
o — 1 mod B

so that [&?me is abelian and Wy is actually the p-Sylow subgroup of Iy, where p € N
is the prime number below B. In particular, Wy is non-trivial if and only if p| eq/y,
in which case the extension L/K is said to be wildly ramified at B, and tamely
ramified (if ramified) else.

An element 0 € Dy reducing modulo ‘B to the Frobenius automorphism of the
residual extension Fy /F, is called a Frobenius element at ‘P and is denoted by ( L/TK> .

Since G acts transitively on the primes 3 above p, replacing the prime 3 used in
the constructions above by another one amounts to conjugating everything by some
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element of GG. In particular, the ramlﬁcatlon behaviour depends only on p, and not
on *P. I shall write D,, I,, W,, I,3 , and so on to mean Dy, Iy, Wi, L§3 , and so on
for some 3 when the choice of this P does not matter. In particular, an element
o € G which is a Frobenius element at some PB|p is called a Frobenius element at
p, and in what follows, I shall denote such an element, which is defined only up to
conjugacy and inertia, by Frob,, or by (L/ K) if the field extension in consideration

is not clear.

Example A.3.1.1. Let K = Q, and let L = Q(u») be the " cyclotomic extension,
where £ is a prime. Let ¢ be a primitive £"* root of 1 in L. The extension L/K
is Galois of degree d = ("(1 — 1), with Galois group G canonically isomorphic to
(Z)0"Z)* by letting a € (Z/¢"Z)* correspond to ¢ +— (°.

The ring of integers of L is well-known to be Zj, = Z|[(]. The element

¢ -1
(—1
is clearly integral for all a € Z/¢"7Z; furthermore, if a is invertible in Z/¢"Z, then

1/e, can similarly be expressed as a polynomial in (* and hence in ¢, so that ¢, is a
unit in Zj in this case. Since

(= I a-¢m=0-0" [ «

a€(Z/"Z)* a€(Z/nZ)*

=14+(+---+¢1

€q =

the ideal I = (Z factors as £¢, where £ = (1 — ¢)Z[¢]. In particular, the extension
L/K is totally ramified at ¢, hence G = I, and A = 1 — ( is a uniformiser at /.
Since Zj, = Z|(], it suffices to look at the Galois action on ¢ to determine the

higher ramification filtration: an element ¢ € G = I, lies in Iéi) if and only if
ordy (0(¢() —¢) =i+ 1. Let a € (Z/{"Z)* correspond to o, and let m = ord,(a — 1),
so that a = 1 4 (™u for some u € (Z/("Z)* and

Clmu -1
-1
has the same A-adic valuation as ¢! — 1. Now, by the same reasoning as above,

¢" — 1 is a uniformiser at ¢ for the field £ = Q(¢*") = Q(pgm-m). Since L/K is
totally ramified at ¢, so is L/E, which implies

o(() = ¢=¢(C" =1)=¢ (¢ -1)

[L:K] _ "(1-7)

[E:K]  (m(1—1) o

ordy(¢("" = 1) =[L: E] =

This means that upon identification of I, = G with (Z/¢"Z)*, the higher inertia
filtration is

G=1" 20" = =1V o) = = 1"V 5 )
~ WV - WV
(#2)° 4 B

Finally, the extension L/K is unramified at other primes p # ¢ since Fp contains
¢ distinct €% roots of 1. Since L/K is also abelian, the Frobenius element at p # ¢
is well-defined, and clearly corresponds to p mod (" € (Z/("Z)*.
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Let Q be a fixed algebraic closure of Q containing K, and consider a now possibly
infinite extension L of K contained in Q = K. The extension L/K is Galois if it is
a compositum of finite Galois extensions, in which case the group

Gal(L/K) = Jim Gal(E/K)
LOE/K
finite Galois
is endowed with the Krull topology, that is to say the profinite topology, which
makes G a compact topological group. In other words, a basis of this topology is
made up by the subsets U of Gal(L/K) of the form 7' (A) for some finite Galois
subextension £/ K and some subset A of Gal(E/K), where mg denotes the projection
Gal(L/K)—= Gal(F/K) . In particular, the subgroups Gal(L/FE) for finite Galois

subextensions £/ K form a basis of compact open neighbourhoods of Id € Gal(L/K).
The usual Galois theory extends into a correspondence between subextensions of
L/K and closed subgroups of Gal(L/K), for which finite subextensions correspond
to finite index subgroups. Moreover, the Cebotarev density theorem implies that
Frobenius elements are dense in G.

The above generalises to infinite extensions L/K by seeing them as the com-
positum of their finite subextensions. In particular, in the case L = Q, the group
Gk = Gal(Q/K) is called the absolute Galois group of K, and the decomposition
subgroup of a prime lying above p identifies to Gal(@p /K,), which can hence be seen
as a subgroup of the absolute Galois group of K.

Definition A.3.1.2. Let R be a topological ring, and let n € N. A Galois represen-
tation of degree n is a continuous group morphism

p: Gg — GL,(R),

where G = Gal(K /K) denotes the absolute Galois group of K.
In the case n = 1, a representation

p: GK — GLl(R) =R

is called a Galois character.

Note that I only consider continuous Galois representations. In particular, the
kernel of such a representation p is a closed normal subgroup of G, which corre-
sponds to a Galois extension L of K, which I call the field cut out by p. Its Galois
group is Im p.

The Galois representation p is said to be unramified at a finite prime p of K
if p is trivial on the inertia subgroup of a prime 9B of Q lying above p. This does
not depend on ‘B, since all the P’s are conjugate, and the kernel of p is a normal
subgroup. Actually, it is clear that p is unramified at p if and only if the number
field L it cuts out is unramified at p.

Remark A.3.1.3. Although the Frobenius element Frob, is defined only up to con-
jugacy and inertia, its image p(Frob,) € GL,(R) lies in a well-defined conjugacy
(i.e. similarity) class if p is unramified at p. In particular, it makes sense to refer to
the trace, determinant, and characteristic polynomial of p(Frob,). I shall even write
tr Frob,, det Froby, and Xprop, When p is clear from the context.
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In practice, I shall consider K = Q, n =1 or 2, and three kinds of rings R:

e R = C endowed with the usual topology, in which case I shall refer to p as
a complex Galois representation, also known as an Artin representation. This
case turns out to be rather uninteresting, since GL,(C), unlike Gg, does not
have arbitrarily small subgroups™, so that the image of a complex Galois rep-
resentation is always finite. In particular, the field cut out by such a represen-
tation p is a Galois number field, and p ramifies at finitely many primes.

e R=Q (or a finite extension K| thereof) endowed with the l-adic topology, in
which case I shall refer to p as an [-adic Galois representation. Unlike in the
complex case, the profinite topologies of Gg and G L, (K) are “compatible”, so
that there do exist [-adic Galois representations with infinite image as I shall
demonstrate shortly, making this case much more interesting. By compacity
of G, an [-adic representation is always conjugate to a representation with
values in GL,(Z). In particular, it is tempting to reduce it modulo [, which
leads to the last case.

e R =T, (or a finite extension F| thereof) endowed with the discrete topology,
in which case I shall refer to p as a mod [ Galois representation. The image
of such a complex Galois representation is obviously finite. In particular, the
field cut out by such a representation p is a Galois number field, and p ramifies
at finitely many primes. This kind of representation is especially well suited
for computational purposes.

Remark A.3.1.4. As mentioned above, every [-adic Galois representation

is conjugate to a representation p’ with values in GL, (%), which one can reduce
modulo [ to get a mod [ Galois representation p with values in GL,, (F;). This repre-
sentation p may not not uniquely defined since p’ may not be not uniquely defined.
However, by the Brauer-Nesbitt theorem below, the semi-simplification p* of p over
F, is well-defined.

Theorem A.3.1.5 (Brauer-Nesbitt, cf. [Weill3, theorem 7.2.4] ). Let G be a finite
group, and let
p1,p2: G — GL,(F)

be two semi-simple representations of G of degree n with coefficients in an alge-
braically closed field F' (of any characteristic). These representations are isomorphic
if and only if p1(o) has the same characteristic polynomial as p(o) for all o € G.

Although G is infinite, this theorem does apply, since both p; and p, factor
through the finite quotient Gal(L;Ly/Q) of G, where Ly Ly denotes the compositum
of the Galois number fields L; and Ly cut out respectively by p; and ps.

In particular, if 7* is irreducible over Fy, then p = p* is well-defined.

13This comes from the fact that the exponential map exp: gl,,(C) = Mat,, x,,(C) — GL,(C) is
locally invertible at 0, so that a small enough subgroup of GL,,(C) would be linearisable, and hence
could not stay near 0.
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A.3.1.2 Examples

Here are some classical examples of Galois representations.

Example A.3.1.6. Let x: (Z/NZ)* — C* be a Dirichlet character. Then the
canonical identification of (Z/NZ)* with the Galois group Gal (Q(un)/Q) of the
N cyclotomic extension allows to see Y as a complex Galois character

x: Gg—= Gal (Q(un)/Q) —> (Z/NZ)* 2~ C*

The number field it cuts out is Q(uy) if x is a primitive Dirichlet character, and a
subfield thereof in general. In particular, y is unramified outside N. For p{ N, the
image of the Frobenius element Frob, by x is x(p).

Let now ¢ € N denote a prime number.

Example A.3.1.7. The action of Gg on the ¢*! roots of unity in Q yields a mod ¢
Galois character

Xo: Gg — Gal (Q(1)/Q) — (Z/(Z)*

called the mod ¢ cyclotomic character. It cuts out the number field Q(u), and it is
ramified only at ¢. The image of the Frobenius element Frob, for p # ¢ is p mod /.

Example A.3.1.8. More generally, the action of Gg on group pue of {-power roots
of unity in Q yields an ¢-adic Galois character

Xe: Gg— Gal (Q(ue=)/Q) —=Z;

called the f-adic cyclotomic character, whose reduction modulo ¢ is the mod ¢ cy-
clotomic character defined just above. It cuts out the number field Q (g~ ), and it is
ramified only at ¢. The image of the Frobenius element Frob,, for p # ¢ is p € Zj. In
particular, x, has infinite image.

The following lemma shows the omnipresence of the cyclotomic characters.

Lemma A.3.1.9. Let ¢¥: Gog — F; be a Galois character which is unramified
outside L. Then 1 is a power of the mod ¢ cyclotomic character X,.

Proof. If ¢ = 2, then 1 is trivial and the statement is vacuous. Assume now that
¢ > 3, and let L be the field cut out by 1. Since F} is abelian, so is the image of 1, so
that L is a subfield of the maximal abelian extension of @@, which is the cyclotomic
extension Q(ieo) by the Kronecker-Weber theorem. Next, since ¢ only ramifies at ¢,
the same is true for L, which is thus a subfield of Q(u) since for all m € N, Q(p,,,)
is ramified exactly at the primes dividing m. Finally, the order of the image of
divides the order £ — 1 of [F}, hence is prime to ¢, so that L is a subfield of the field
Q(pe) fixed by the (-Sylow subgroup of Gal (Q(p=)/Q) > Zj; ~ (Z/(Z)* x Zy. O

In order to give a less obvious example of Galois representation, I shall need the
following result (cf. [HSOUO, theorem C.1.4 and section C.2)):
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Theorem A.3.1.10. Let A be an abelian variety defined over a number field K, let
p be a prime of K at which A has good reduction, and let p € N be the prime number
lying below p. Then for all n € N such that p 1 n, the reduction modulo p map

A(K) — A(F,)
is injective on the n-torsion An|(K) of A(K).

Example A.3.1.11. Let E be an elliptic curve defined over Q. The action of Gg on

E(Q) commutes with the group law on E since the latter is defined over Q, so that
G leaves the (-torsion subgroup E[¢] of E(Q) invariant. Since E[{] is isomorphic to
ZJVZ x ZJUZ as a group by AT2TE, the action of Gg on E[{] yields a mod ¢ Galois

representation

which clearly cuts out the number field Q(P, P € E[l]) generated by the coordinates
of the points of E|[/].

The conductor N € N of E is an integer which measures the properties of bad
reduction of E. In particular, if p + N, then E can be reduced modulo p into an
elliptic curve E defined over F,. Let o, € End(E) be the Frobenius endomorphism
on E, and define

a,=p+1—#E(F,) € Z.

If the endomorphism o, — 1 of E were not separable, then it would factor as f o Op

for some f € End(E), but then one would have 1 = (f — 1) o 0,, which is absurd
since 0, is not an automorphism (it is of degree p # 1). Therefore,

#Ean) =# Ker(ap - 1) = degsep(ap - 1) = deg<o-l’ - 1)7
and on the other hand one has
[deg(op,—1)|5 = (0 — 1)(0p—1) = (6,—1)(0p—1) = 6p0,—0p—0p+1 = [plg—0,—0p+1

in End(E), so [a,]5 = 0, + 7, and thus 02 — a,0,+p = 0 on E. If furthermore p # ¢,
then the right morphism on the commutative diagram

D, Aut(f“[ﬂ]) (A.3.1.12)
Gal(F, /F,) — Aut(E[()

is injective by theorem A3 T, so the image of an element o € D, in Aut(E[(])
depends only on its image in Gal(FF,/F,), which proves that Pp, is unramified at p;
moreover, the identity Frobf, —a, Frob, +p = 0 stands on E[(]. Besides, if P,Q € E[/(]
form an Fy-basis of E[¢] with Weil pairing (P, Q) = ¢ € g, then

(? = Frob,(¢) = (Frob,(P), Frob,(Q)) = (P, Q) P.c(Frobr)

as the Weil pairing on E[(], being defined over Q, commutes with the Galois action
and as it is an alternate pairing, so that det pg ,(Frob,) = p mod ¢, and thus the
characteristic polynomial of pp ,(Frob,) is

X% —a,X +p € FX].
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In particular, the trace of pp ,(Frob,) is a, mod £, so the Galois representations
P can be used to compute the coefficients a,, by letting ¢ vary and using Chinese
remainders. This is the central idea of Schoof’s algorithm [Sch95], and also of the
algorithm presented in this dissertation.

More generally, one can consider the action of Gg on the ¢-adic Tate module

Tay £ = lim E[("]
of E, where the transition maps are multiplication by ¢. Since Ta, E is isomorphic
to Zy X Zy as a group, this yields an f-adic Galois representation

PE.: GQ — GLQ(ZE)

which is clearly continuous. The same reasoning as above shows that it is unramified
at p { (N and that the Frobenius element Frob, at any unramified p has characteristic
polynomial

X% —a,X +p € ZX].

J.-P. Serre proved in [Ser7?] that if E is not a CM elliptic curve, that is to say
if End(E) is reduced to Z, then the image of pg, is open in GLy(Z,) (i.e. contains
1+ 0" Matoya(Zy) for some n € N) for all ¢, and is the whole of GLy(Zy) for almost
all ¢. In particular, the Galois representations pg, all have infinite image.

A.3.2 The Dokchitsers’ resolvents

Let p: Gg — GL(V) be a mod ¢ Galois representation, where V' is a 2-dimensional
vector space over the prime field Fy, (¢ € N prime). In this section, I address the
problem of computing the image by p of the Frobenius elements Frob, € Gg, for the
primes p € N at which p is unramified. Of course, this image p(Frob,) is only defined
up to conjugation, so I actually only characterise it in terms of its conjugacy class
in GL(V) ~ GLy(TFy).

Let me first explain how I assumed p to be given. Let L = @Kerp be the number
field cut out by p, so that p embeds G = Gal(L/Q) into GL(V). This yields an
action of G on V, and I shall assume that this action is transitive on V' — {0}, which
means [ exclude the degenerate cases of Galois representations with “small” image.
Pick then a point z; € V, let H = Stabgx; C G be the stabiliser of x, and let
a € L be a primitive element for the subfield K = L of L corresponding to H. The
following diagram illustrates the situation:

/\H
/
o e

\

Then the stabiliser of a in G is exactly H, so that a has [G: H| = #(V —{0}) = (*—
conjugates. Moreover, since G acts transitively on V' — {0}, the formula

GLa(F,)2

Ap(o)(z1) = J(CL), oce(d
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yields a well-defined, natural indexation of these conjugates by V' — {0}, for which
a = a,, in particular. Consider now the polynomial

F(X)=]](X - a,) € QX].
%

This polynomial lies in Q[X] and is irreducible over Q since G acts transitively on
V —{0}, and L is the splitting field of F/(X) in Q since the action of GL(V') on V —{0}
is faithful. Furthermore, the action of G on the roots a, of F'(X) corresponds to the
natural action of GL(V') on the points x of V' — {0}. I may (and shall) thus assume
that the Galois representation p is given as the following data:

e An irreducible polynomial F(X) € Q[X],
e its roots in C (or in Q, for some prime p € N),

e an indexation of these roots by V' — {0}, such that the action on Gg on them
corresponds to the p-action of Gg on V' — {0}.

In this framework, Tim and Vladimir Dokchitser’s work [[DokT(] can be adapted,
yielding the following result:

Theorem A.3.2.1. Let h(X) € Z[X] be a polynomial with integer coefficients. For
each similarity class C C GLo(Fy), the resolvent

Te(X) =[] | X =D has)agu
geC zeV
T#£0
lies in Q[X]. Furthermore, these resolvents T'c(X) are pairwise coprime over Q
for a generic choice of h(X) amongst the polynomials of degree at most £*> — 2 with
coefficients in Z. Letp € N be a prime such that F' is p-integral and squarefree modulo

p, so that in particular, p is unramified at p. Define u = tre,x) I h(a)a? € F,, where
F(x)/p

a denotes the class of X in the quotient algebra F,[X]/(F(X)). Then the resolvents
I'c are also p-integral, and one has the implication

pri(Frob,) € C = TI'c(u) = 0 mod p.

Proof. 1f Tm p is the whole of GL(V), then this is a direct application of [DokI0,
theorem 5.3]. The idea is that if C' is the similarity class of p(Frob,), then each

g € C is the image of a Frobenius element <L9/TQ> for some ideal 3 of L lying above

p, so that
Z h(az)age) = Z h(a;)a? mod B.
zeV zeV
z#0 x#0

If ITm p is a strict subgroup of GL(V'), then the method still applies since the
similarity classes in Im p are unions of conjugacy classes of Im p, so that the resolvents
I'¢(X) are products of resolvents as defined in [DokT10, theorem 5.3]. O
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The point of this is that if the resolvents I'¢ are indeed pairwise coprime over Q,
and if p is very large, then it is likely that they remain pairwise coprime modulo p,
so that I'c(u) vanishes in F, for only one C', which must then be the similarity class
of p(Frob,).

If, however, the resolvents fail to be pairwise coprime modulo p (which can occur
only for finitely many p), then I'c(u) may vanish for several C, so that one cannot
tell in which class pys(Frob,) lies. But at least this is easy to detect, so one is sure
never to get a wrong answer, although one may not be able to conclude for certain
values of p. Finally, the criterion is

Fo(u) =0 and Per(u) # 0 for all C' # C = p(Frob,) € C.

To compute the resolvents I'c(X), one starts by computing the roots a,, which
are already known to some mild accuracy which is enough to tell them apart, to
a very high accuracy in C (or in @p) by using Newton iteration on the equation
F(a) = 0. Then, one computes complex (or p-adic) approximations of the resolvents
I'c(X), and finally, one recognises their coefficients as rational numbers by using
continued fractions (or rational reconstruction). This is amenable since an a priori
multiple of their denominators in known beforehand, namely d#¢)(+degh) where d
is a common denominator for the coefficients of F'(X).

The practical computation of the resolvents I'c(X) requires making explicit the
partition of GLg(Fy) into similarity classes. This is easily done:

Type Scalar Spl it Nop—.spht Nqn—
semisimple semisimple semisimple
Class A0 A0 0 —n Al
representative 0 A 0 u 1t 0 A
Minimal z” — iz + 1
. r—XA | (z—A)(x—p)| irreducible (x — \)?
polynomial
over [y
Number of (C—1)(¢—2) (e —1)
(-1 —_ T (-1
such classes 2 2
Size of
class 1 ((0+1) (-1 |(+1(—-1)
(1w ] - -
) 10
I 0 1 0 v |
) u 1 :| [u+2 t:_m;] , B -
Centraltlser 10 1w o]
o 0 1 u,v € Fy, woel, | [1 0]
representatives wv £1, det £ 0
w 0 :| ’ u € Iy,
|11 vely
w € [}

Remark A.3.2.2. Note for future reference that the similarity classes of GLy(F)
are represented unambiguously by their minimal polynomial. Giving this minimal
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polynomial in factored form over FF, is a clear and compact representation of the
similarity classes, which I shall use to present tables of results of my computations,
cf. section .

A.3.3 Modular Galois representations
A.3.3.1 Ramanujan congruences and Serre’s insight

Recall that Ramanujan’s 7 function is the multiplicative function defined by

+o0o +oo
A=qJa-g¢)*=q+> 7(n
n=1 n=2

where A € Sj5(1) is the normalised cuspform of level 1 and weight 12. Ramanujan
conjectured that this function satisfies congruences modulo certain prime numbers,
namely

e Vn € N prime to 2, 7(n) = o(n) mod 2,

e Vn € N prime to 3, 7(n) = ¢(n) mod 3,

e Vn € N prime to 5, 7(n) = no(n) mod 5,

e Vn € N prime to 7, 7(n) = noz(n) mod 7,

e Vn € N, 7(n) = 0 mod 23 if n is not a square modulo 23,

e Vn € N, 7(n) = 011(n) mod 691,

where ox(n) = > o 4, d* and o0 = o,. These congruences were proved, but, as P.
Swinnerton-Dyer points out in [Swi72], the proofs “do little to explain why such
congruences occur”’. Besides, 7 does not seem to satisfy any simple congruence
modulo other primes.

J.-P. Serre then realised in 1967 (cf. [Ser6Y]) that this phenomenon would be
beautifully explained by the existence, for each prime ¢ € N, of a mod ¢ Galois
representation

Pae: Go — GLa(Fe),

ramified only at ¢, and such that the Frobenius element at p # ¢ has trace
7(p) mod £. Indeed, the determinant of p, , would then be a Galois character, hence
a power Y7 of the mod ¢ cyclotomic character according to lemma B3 T9Y. Be-
sides, the representations pa, would be likely to be surjective, or at least to have
a big image, for all but finitely many ¢. For these exceptional ¢, the image would
happen to be a small subgroup of GLy(IF,), so that there would be relations be-
tween the trace and the determinant of the matrices in this image. Therefore, for
each p # ¢, from information about p mod ¢, one could deduce information about
the determinant det pa ((Frob,) = X% (Frob,) = p* mod ¢, hence about the trace
tr pa ¢(Frob,) = a, mod ¢; in other words, one would get a congruence relation mod-
ulo ¢ on the 7(p) for p # ¢, which would spread to the 7(n) for n prime to ¢ by
mutiplicativity of 7. However, for almost all ¢ it would be impossible to get informa-
tion on 7(p) mod ¢ from p mod ¢ since the image of pa ¢, would be (almost) the whole
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of GLy(Fy), where it is impossible to get information on the trace from information
on the determinant. Similar Galois representations should exist for other newforms,
not only for A.

Example A.3.3.1. For example, the congruence for 7(n) modulo 7 would stem from
the fact that the Galois representation p, ; is of the form

~b
_ X
pA,? |: 0 X? }
with @ = 1 and b = 4 or vice versa, since then for all p # 7,
7(p) = trpa 7(Frob,) = X7 (Frob,)* + X+ (Frob,)” = p® +p” = p + p" = poy(p) mod 7,
whence 7(n) = nos(n) mod 7 for all n prime to 7 by multiplicativity of both sides.

Example A.3.3.2. Similarly, the congruence for 7(n) modulo 23 would stem from
the fact that the matrices in the image of the Galois representation pa o5 are all
either diagonal or anti-diagonal in a fixed well-chosen basis. Indeed, this would yield
a Galois character
1/} : G@ — *1

such that for all 0 € Gg, ¥(0) = +1 when pu »3(0) is diagonal, and (o) = —1
when P o3(0) is anti-diagonal. The field K cut out by 1 would then be a quadratic
number field (since Im ) is of order 2), ramified only at 23 (since it is the case for

Pass), whence K = Q(v/—23). Identifying Gal (Q(v/—23)/Q) with +1, this means
that the Galois character v would actually be

Go —2> Gal (Q(v=23)/Q) ~ +1 .

Therefore, 1(Frob,) = <_T23> = (2%) for all p # 23 by quadratic reciprocity. In

particular, if p is not a square modulo 23, then ¥ (Frob,) = —1, so that pp »3(Frob,)
is anti-diagonal and hence has trace 7(p) mod 23 = 0.

J.-P. Serre’s insight was proved true four years later by P. Deligne, who con-
structed the following Galois representations (cf. [Del71)]):

Theorem A.3.3.3 (Deligne). Let
f=q+ Zanq” € Si(N,e)
n=2

be a newform of weight k, level N, and nebentypus . Let Ky = Q(a,, n > 2) be the
number field generated by the q-expansion coefficients of f. For each prime [ of Ky,
there exists an [-adic Galois representation

PrI: GQ — GLQ(Z[)7

which is unramified outside of N (where Zy denotes the l-adic completion of the
integer ring on Ky, and ¢ € N is the prime number below ), and by which the
Frobenius element Frob, has characteristic polynomial

X —a,X +e(p)p" ™t € Z[X]
for all unramified prime p{ (N .
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A.3.3.2 Arithmetic consequences

The existence of Galois representations attached to newforms as described above has
tremendous consequences on the arithmetic properties on the g-expansion coefficients
of cuspforms.

Example A.3.3.4 ([Ser74]). For instance, it is not too difficult to prove that for
every cuspform f = 2@1 a,q" whose coefficients a,, lie in the integer ring Zx of some
number field K, and for any ideal a of K, the set of n € N such that a,, # 0 mod a
has density zero, and actually that

#{n<x|a,#0moda} =0(x/log"z)

for some o > 0 when x — +o0.

To see this, suppose first that f is a newform, so that the coefficients a,, are
multiplicative. Then, for every prime [ of K and every v € N, the Cebotarev density
theorem applied to the Galois representation

Go % GLy(Z) —= GLy(Z,/ 1V Zy)

indicates that the set P, of primes p € N such that a, = 0 mod [" has positive density
dp > 0. Since the coefficients a,, are multiplicative, one then has a,, = 0 mod [V for
all n such that p||n for some p € F,. A little analysis then shows that then number
of n < x for which this is not the case is O(z/log® z).

This extends to cuspforms since every cuspform is a linear combination of new-
forms up to finitely many coefficients by (A=2228).

Example A.3.3.5. P. Deligne’s construction A=37373 also shows that the Weil con-
jectures (cf. [Weidd]) imply the Ramanugjan-Petersson conjecture, which says that

if

+oo
f=q+) a.q" € S (T1(N))
n=2
is a newform of weight k, then
lo(a,)| < 2p°7 (A.3.3.6)

for all p € N prime and every embedding o of K; = Q(a,,n > 2) into C. For
instance, in the case of f = A, this would say that 7(p) < 2p''/2. P. Deligne again
proved the Weil conjectures a few years later (cf. [Del74, Del80]), and hence the
Ramanujan-Petersson conjecture too. Note that the multiplicativity (A=22720) of
the a,, imply that

lo0(an)| < go(n)n' T (A.3.3.7)

for all n € N and all o, where oy(n) denotes the number of positive divisors of n.
One has d(n) = O(n°) for all § > 0 (cf. for instance [HWUOR, ch. XVIII, theorem
315]), so by (AZ222R) one concludes that for all cuspform f of weight k,

an(f) = O(n'z *%)

for all § > 0 when n — +o00. Note that one can prove by elementary means (cf.
[DS05, proof of proposition 5.9.1]) that a,(f) = O(n*/?).
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Finally, P. Swinnerton-Dyer proved (cf. [Swi72] or [Ser73]) that for each newform
f whose g-expansion coefficients are rational (i.e. lie in Z), there are only finitely
many primes ¢ € N such that the image of the associated mod ¢ Galois representation
Pt does not contain SLy(F,), which implies that there exist only finitely many ¢ such
that the coefficients of f satisfy Ramanujan-style congruence relations modulo /.

Remark A.3.3.8. According to Maeda’s conjecture, for all k, the newforms in Sy (1)
form a single Galois orbit, so that in particular a newform has rational coefficients
only if the space Si(1) it lies in has dimension 1. By the dimension formulae given in
theorem BAZXTQ, there are only six such newforms: A, EF,A, EgA, EsA, EipA and
E14 A, of respective weights k = 12, 16, 18, 20, 22 and 26. Maeda’s conjecture has
been tested successfully for all £ up to 2000 by D. Farmer and K. James in [FW02].

I now present a sketch of P. Swinnerton-Dyer’s proof, following the presentation
of [Swi72]. To simplify matters, I assume henceforth that ¢ > 5. I shall denote
reduction modulo ¢ by a bar, and the weight of f by ky.

Definition A.3.3.9. A prime ¢ € N is exceptional for f if the image of the associated
mod ¢ Galois representation p;, does not contain SLy(IFy).

To begin with, it is natural to wonder what the possible images of a mod ¢ Galois
representations are. Define a Borel subgroup of GLy(IFy) to be a subgroup conjugate
to the subgroup of upper triangular matrices, and a Cartan subgroup to be a subgroup
which is either conjugate to the subgroup of diagonal matrices, in which case it is said
to be split and is isomorphic to F; x ), or conjugate in GLo(Fy2) to the subgroup
of GLy(Fp2) made of matrices of the form [¢ %] where @/ = a® is the conjugate of
a by the Frobenius automorphism x +— z°, in which case it is said to be non-split
and is isomorphic to Fj,. The normaliser of a Cartan subgroup C' either swaps the
two eigenlines of C' or leaves them invariant, so C' has index 2 in it, whereas a Borel
subgroup is its own normaliser.

Example A.3.3.10. For instance, the representation p, ; studied in example B=3731
has values in a Borel subgroup, whereas the representation p, ,3 studied in example
A=33 has values in the normaliser of a split Cartan subgroup.

One then has the following classification of subgroups of GLy(F,), due to Dixon:

Proposition A.3.3.11. Let G be a subgroup of GLo(Fy). If its order is divisible by
l, then G either contains SLy(F,) or is contained in a Borel subgroup. FElse, letting
PG denote the image of G in PGLy(F), then either

(i) PG is cyclic, and G is contained in a Cartan subgroup, or

(i) PG is dihedral, and G is contained in the normaliser of a Cartan subgroup but
not in the Cartan subgroup itself, or

(11i) PG is isomorphic to the symmetric group Sy, or to the alternating group 24
or As.

The proof is fairly standard, cf. [Swi72, lemma 2].
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However, some of these subgroups cannot be the image of a p; .

Lemma A.3.3.12. Let G be the image of ps,. Then G cannot be contained in a
non-split Cartan subgroup, and PG cannot be isomorphic to Ay nor 2As.

Pro_of. Let ¢ € Gg be the complex conjugation corresponding to some embedding
of Q in C. Then p;,(c) € G is an involutory matrix of GLy(IFy), of determinant
det ps4(c) = Yo' (e) = (=1)k1 = —1 since k; is even, so its eigenvalues are 1 and
—1. In particular, it cannot lie in a non-split Cartan subgroup.

Consider next the following Galois character

Pt

Go G - Ty Fy/(F5)2 ~ +1 .

~_ 7

kr—1
X’

It is non-trivial again because ky is even, so G has a subgroup of index 2. But neither
2, nor A5 do. O

Corollary A.3.3.13. Let G be the image of ps,. If L is an exceptional prime for f,
then either

(i) G is contained in a Borel subgroup, or

(i) G is contained in the normaliser of a Cartan subgroup but not in the Cartan
subgroup itself, or

(i1i) the image PG of G in PGLy(F)) is isomorphic to the symmetric group Sy.
Indeed, a split Cartan subgroup can be seen as a subgroup of a Borel subgroup.

At this point, it is already apparent that if ¢ is an exceptional prime for f, then
the image of p;, will be small enough for non-trivial relations to exist between the
trace and the norm of elements of its image G, whence Ramanujan-like congruences
for the coefficients a,, of f. In other words, the subgroups of GLy(F,) which do not
contain SLy(F,) all turn out to be sufficiently small for Ramanujan-like congruences
to exist, which explains Serre’s insight [Ser6Y]. Note that this also limits the kind of
congruences which may occur:

Corollary A.3.3.14. Let { be an exceptional prime for f. Then the three cases
listed in the above corollary respectively imply

(i) There exists an integer a such that 0 < a < kf — 1 — a and that
an = N0y, _1-24(n) for alln € N prime to £.

(ii) an, =0 for all n € N which are not a square modulo €.

(iii) For all prime numbers p # ¢, p,caf—?il =0, 1, or4mod ¢ if p is a square modulo

¢, and pkaf—?’,l =0 or2mod / else.
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Proof. (i) This is a generalisation of example AZ33: by hypothesis, after conju-

(i)

(iii)

gation by a fixed matrix, the image of p;, is made up of upper triangular matri-
ces, so that in particular the diagonal entries are Galois characters, hence of the
form ¥¢ and Y4 by lemma B=3T9d. Besides, their product is det Pro= X];f _1, SO
that a +b = ky — 1 mod £ — 1. One can assume without loss of generality that
a+b=ks—1, and that a < b (@ and b cannot be equal since their sum ky — 1

is odd). Then for all p # ¢,

ap mod ¢ = trp; ,(Frob,) = Xj (Frob,) + X];f_l_a(Frobp)

— pa + pkfflfa = paO']gf7172a<p)7

and this congruence spreads to all n € N prime to ¢ by multiplicativity.

This is a generalisation of example A=33: by hypothesis, after conjugation
by a fixed matrix, the image of p;, is made up of matrices which are either
diagonal or anti-diagonal, which yields a Galois character

¢SG@—>:|:1

such that for all 0 € Gq, (o) = +1 when p;,(0) is diagonal, and o € Gy,
Y(0) = —1 when p; (o) is anti-diagonal. Since ¢ factors through p;,, the
number field K it cuts out is contained in the number field cut out by p;, and
so ramifies only at ¢, and it is a quadratic number field since Im ¢ is of order 2.
But there is only one quadratic number field ramified only at ¢, namely Q(v/¢*)

where (* = (—1)%f, so 1 is actually
Gg = Gal (Q(v")/Q) =~ +1 .

Therefore, 1(Frob,) = (%) = () for all p # ¢ by quadratic reciprocity.

In particular, if p is not a square modulo ¢, then ¢ (Frob,) = —1, so that
pre(Frob,) is anti-diagonal and hence has trace a, mod ¢ = 0. Since the a,, are
multiplicative, one therefore also has a, = 0 mod /¢ if there exists a prime pl||n
which is not a square modulo ¢, and thus a fortior: if n is not a square mod /.

First observe that the map

GLQ(Fg) — ]Fg

(tr M)?
M det M

Q:

factors through PGLy(F,). Now, the elements of &, are of order n = 1,2,3 or
4, and a matrix M whose image in PGLy(F,) has such order n is killed by a
polynomial of the form (X — a)” € Fy[X] for some a € F}, which is separable
since I assumed ¢ > 5. This implies that such a matrix M is semi-simple, hence
its image in PGLy(IF;) can be represented by [(1) 2] for some root of unity ¢ € F,
of exact order n. One then finds that ¢(M) = 4,0, 1,2, respectively. Besides,
a reasoning similar to case (ii) shows that the image of Frob, lies in 24 if and
only if p is a square modulo ¢. In this case, it has order 1, 2 or 3, else, it has
order 2 or 4.

]
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I shall now effectively prove that each of these cases can happen for only finitely
many /. Let

be the Eisenstein series from example B—22H, which can also be normalised as

Zak 1(n)q" € M(1),

and also let

“+oo
Ey=1-24) o1(n)g
n=1

This is NOT a modular form, and actually M,(1) = {0}. However,
Proposition A.3.3.15 (cf. [Swi72, lemma 3]). Let § = qdiq be the operator

+oo +o0
>_and" — ) nang"
n=0 n=0
on g-series, and let 0 = 120 — kFEy be the operator
f——120f — kESf
for f € My(1). Then for all k > 4, 0 maps My(1) to Myo(1).

Unfortunately, the operator 6 does not necessarily transform modular forms into
modular forms since F» is not modular. However, the situation is much more pleasant
modulo . To see that, let M,gz)(l) denote the subset of M (1) made up of forms
whose g-expansion coefficients are all /- integral, in other words, the Z-span of

localisation of Z at £. The Von-Staudt congruences on Bernoulli numbers (cf. [Lan93,

theorem X.2.1]) imply that Ej € M '(1) for all k, and that F, € M,ge)(l) except
if (¢ — 1)|2k; furthermore, one has E,g,l = 1lmod ¢ and Eyy1 = Fy mod {, so Fy
becomes a modular form mod ¢. The graded algebra

M =P M (1) = Z)| B4, E]

k>0

comes with the injective morphism ¢ : M — Z [[q]] provided by g-expansion,
which allows to identify M with a Z)-subalgebra of Zy|[g]]. Letting

+oo +oo
= {ZW” > ang" € Mé”(l)},
n=0

n=0
one gets a morphism of F, algebras

¢: M = MjtM =S M (1) — Fy[[q]
k>0

which is no longer injective since Ey,_; = 1 mod ¢. Actually, to quote J.-P. Serre, this
is “the only relation” between modular forms modulo /:
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Theorem A.3.3.16 (cf. [Swi72, theorem 2(iv)]). The kernel of ¢ is the ideal of M
generated by Fy_1 — 1.

In particular, M inherits a Z/(¢ — 1)Z-graduation from M. Besides, since
Ey 1 = F> mod /, one has

120f = Of + kEof = By 10f +kEoei f (A.3.3.17)

for all f € M(1), so that # now preserves modular forms modulo ¢, and is actually
a homogeneous operator of degree 2 on M.

A graded element f of M is the sum of reductions modulo ¢ of forms whose
weights all agree modulo ¢ — 1. Multiplying these forms with powers of E, i, I can
arrange for all of their Wei%hts to be equal, so that f is the reduction modulo ¢
of a modular form f € M’ge (1) whose weight k& € N reduces modulo ¢ — 1 to the
graduation of f. The minimal such k is called the filtration of f, and is denoted

by w(f) € N. Equation (AZ3Z3T7) above hints at how the operator # changes the
filtration:

Lemma A.3.3.18. For every graded element f of M, one has w(0f) < w(f)+L+1,
with equality unless €| w(f).

Proof. The first part is clear form equation (A=323T1). The second part comes from
the fact that the filtration can drop only by getting rid of the Fy -part in (AZ323T1),
which can only happen if £ = 0 mod ¢; cf. [Swi72, lemma 5 (ii)] for the details. [

Using this, one can bound effectively the possible exceptional values of ¢ for each
of the three cases listed above in corollary A=3"3T4.

Theorem A.3.3.19. The cases listed in corollary can only occur, respec-
tively, if

(i) £ < ks or £ divides the numerator of the Bernoulli number by,

(ZZ) (< 2]€f,

1 2

(iii) for all primes p # ¢, { divides either a%, ag —phr 1 a, — 2phs—1

or az — 4phr—1,
Proof. (i) Possibly after swapping a and b = ky — 1 — a, one is in the situation
where there exist integers @ and b such that 0 <a <b<{—1,a+b= ky, and

the g-expansion coefficients a,, of f satisfy
Vn € N prime to ¢, a, = nc,_,(n) mod /.

This can be rewritten as _
0f = 0“+1Fb_a+1,

where an extra # has been applied on both sides in order to kill the terms
whose rank is divisible by ¢; however, the case a = 0, b = £ — 2 must be treated
separately since Fy_; is not f-integral. Now the left hand side has filtration
at most ky 4+ ¢ + 1 by lemma AZ33TH; on the other hand, F,_,4; clearly has
filtration b —a + 1, and if b—a > 1 one sees by induction on ¢ < a + 1 that the
filtration of 0°Fy,_, 1 is exactly b —a+ 1+ 4(£ + 1) because one is in the case of
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equality in lemma AZ373TR every time. Therefore, leaving the case b —a = 1
aside,
kf+l+1>2b—a+1+(a+1)(l+1),

hence b + al +1 < ky. Assume now that ¢ > k; on the top of that. Then this
forces a = 0, whence

oF = 0T,
If f and F_kf did not agree, then f — F_kf would have filtration k¢, whence
0= w(0) = w(O(f — Fy,)) = k++1

by lemma A=373TR, which is impossible. So f and Fj, agree modulo £, and in
particular Fj, has no constant term modulo ¢, so that ¢ divides the numerator
of by,. The special cases b —a = —2 and b — a = 1 are dealt with similarly.

(ii) In this case, one has similarly

41—

6f =6 > f.

If ¢ > 2ky, then w(f) = ky and hence w(#'f) = ky +i(¢ + 1) for i < &L by
induction since one is every time in the case of equality of lemma AZI3TR.
Comparing weights on both sides then yields

{41
kf+€+1:k}f+T<€+1),

which is impossible.

(iii) is immediate.
[

This yields a decision process to determine and test all possible exceptional primes
¢ of kind (i) and (ii) for each newform f of level 1 with rational coefficients: test the
finitely many possible exceptional values of £, and use the Sturm bound B—22731 to
prove an exceptional congruence §f = ' F,_, ; or 0f = QHTlf whenever suspected.
On the other hand, exceptional primes of type (iii) are not harder to detect but are
harder to prove, since they cannot be translated in terms of the 6 operator, so that
the Sturm bound does not apply.

Example A.3.3.20. Let me apply this to f = A for instance. Since k; = 12,

(i) can only occur for £ < 12 or ¢ = 691 since by = —%. The Ramanujan

congruences for 7(n) show that the values ¢ = 2,3,5,7 and 691 are indeed
exceptional of this type. On the other hand, ¢ = 11 is not exceptional of type
(i), since 7(2) = —24 and there exists no 0 < a < 6 such that 2¢ 4 2177 is
congruent to —24 mod 11.

(ii) can only occur for ¢ < 24. It actually does not for ¢ = 2,3,5,7 since these are
exceptional of type (i) as shown just above, which is incompatible with type
(ii). On the other hand, the Ramanujan congruence for 7(n) modulo 23 shows
that ¢ = 23 is indeed exceptional of type (ii). In order to rule out ¢ = 13,17
or 19, it suffices to find for each of those £ a prime p such that () = —1 and
1 7(p). One can take p =2 for £ = 11 and 19, and p = 3 for ¢ = 13.
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f I Exceptional Exceptional Exceptional
! primes of type (i) primes of type (ii) primes of type (iii)
A |12 2,3,5,7,691 23 -
E,A | 16 , 3,5, 7,11, 3617 31 59

2

EsA | 18| 2,35, 7, 11, 13, 43867 . -
ExA | 20| 23,5, 7,11, 13, 283, 617 - -
EwA | 22| 2,3 5, 7, 13, 17, 131, 593 _ -
EuA | 262,35 7, 11, 17, 19, 657931 : -

Table A.3.3.21: The exceptional primes for the rational newforms of level 1

(iii) Taking p = 2 and examining the prime divisors of 7(p)?, 7(p)*>—p', 7(p)? —2p'!

and 7(p)? — 4p"!, one sees that this case can only occur for £ = 2,3,5,7,11,17,
or 23. Similarly, taking p = 3 reveals that this case can only occur for
¢ =2,3,57,11,23,61,181, or 359. Taking the intersection, the only possi-
bilities left are ¢ = 2,3,5,7,11, or 23, which have already been seen to be of
kind (i) or (ii).

Applying this process to all the newforms of level 1 with rational coefficients leads
to table AZ3Z372T1

Remark A.3.3.22. Fortunately, it turns out that there is only one exceptional prime
of type (iii), namely ¢ = 59 for E4A. P. Swinnerton-Dyer detected it and conjectured
that it was exceptional of type (iii) in [Swi72], and this was proved a few years later
by K. Haberland (cf. [Hab&3, Kapitel 3]).

I can now explain what I meant when I claimed that, unlike for Eisenstein series,
there is no simple formula for the coefficients a,, of cuspforms: the Galois represen-
tations attached to them generally have non-abelian images, so that the coefficients
a, cannot be computed by using class field theory in the number fields cut out
by these representations. On the contrary, it is possible to construct Galois repre-
sentations attached to Eisenstein series as direct sums of Galois characters. These
representations are then reducible and have abelian image, so that class field theory
should be able to express the coefficients of Eisenstein series with characters, and
indeed the formulae for coefficients of Eisenstein series are based on characters, as I
demonstrated in section BA2773.

A.3.3.3 Geometric realisation

Even though there are no such closed formulae for the coefficients a,, of cuspforms, it
is still possible to compute these coefficients. One possible approach consists in using
modular symbols, as demonstrated in section BA23 (cf. example A23TA). Another
approach, originally due to J.-M. Couveignes and B. Edixhoven (cf. [CEII]) and
which is the central topic of this thesis, is to use the Galois representations attached
to newforms, and especially the fact that they allow to recover the coefficient a, of a
newform for p prime as the trace of the image of the Frobenius element Frob,. One
can then deduce the coefficients a,, of this newform thanks to the multiplicativity
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relations (A=22720), and hence compute the coefficients a,, of any cuspform by ex-
pressing it as a linear combination of forms directly related to newforms of possibly
lower level as in (A272728).

In order to compute such Galois representations, I need to describe them more
explicitly so as to get a computational grasp on them, and this is what I shall now do.
More precisely, I shall sketch a construction of G. Shimura’s (cf. [Shi7l, chapter 7))
which corresponds to the case of weight k = 2 of theorem BA=3=373. This construction
was later generalised to higher weights by P. Deligne as he proved theorem AZ37373,
but this generalisation uses advanced algebraic geometry techniques which are not
well-suited for computational purposes. On the other hand, the case k = 2 is easier
to handle thanks to the relationship between the space So(I") of cuspforms of weight
2 and the modular jacobian Jac (X(I')) = S5(I')V/H,(X(I'),Z). As a consequence,
I shall first sketch Shimura’s construction in weight £ = 2 in elementary terms, and
then show how to adapt it to higher weights. The price of this is that I shall only
show how to construct the mod ¢ Galois representations attached to higher-weight
newforms, instead of the ¢-adic ones.

The case of weight k£ = 2

To be precise, I shall now sketch the proof of the following theorem:

Theorem A.3.3.23. Let f = q+ ), ., a,q" € 55 (T1(N)) be a newform of weight
2, let Ky = Q(an,n > 2) be the number field spanned by its q-expansion coefficients,
and let | be a prime of degree 1 of Ky lying over a prime ¢ € N which is prime to
the level N and such that the mod | Galois representation py attached to f mod [ is
not exceptional (that is to say such that its image contains SLy(F)). Denote by

A T L F~ T,

f

the mod | eigenvalue system of f, that is to say the ring morphism mapping the Hecke
operator T,, to a, mod [ for alln € N, where T = Tq x is the Hecke algebra of weight
2 and level T'1(N). Then the Fy-subspace

Vi = ﬂ Ker (T — Xf,I(T))ul(N)[f}

TeT

of the (-torsion Ji(N)[{] of the jacobian Ji(N) of the modular curve X;(N) is of
dimension 2 over Fy, is stable under Galois, and the Galois action on its points
yields a mod £ Galois representation

p: GQ — GL(VL[) ~ GLz(IFZ)
which is isomorphic to py .

The proof follows the same lines as the study B=3TTT of the Galois representation

sections 1.6 and 1.7]).
Let A = H;(X1(N),Z). As explained in remark A223T3, the involution 7 — —7
of H* induces an involution on A and hence splits A into two eigen sublattices AT
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and A~ (note that A™ & A~ will not in general be the whole of A, but merely a
sublattice of finite index). Then the Q-vector spaces AT @ Q are both isomorphic as
Z

T-modules to Homg (S2(I'1(N), Q), Q), which is a free T @ Q-module of rank one by
z
lemma A2230, where S5 (I'1(N), Q) = S3(T'1(N),Z) ® Q. Therefore A® Q is a free
z z
T ® Q-module of rank 2.
z

Let now
neN
be the Tate module of J;(N), where the transition maps are the multiplication by ¢,
and let VyJ;(N) = (Tas Ji(N)) © Q = (Ta¢ Ji(N)) ®© Q. Since Ji(N)[("] = =A/A
14

by the analytic construction of the jacobian (cf. section AT3), the above shows that
ViJi(N) is a free T @ Q,-module of rank 2. Since J; (V) is an abelian variety over Q
Z

and since the action of the Hecke operators 7' € T on J;(N) is also defined over Q,
the Galois action commutes with the group law of J;(/N) and with the Hecke action,
and thus yields a Galois representation

PN GQ — Autjr%(@e (WJl(N)) ~ GL, (T (% Qg)

Let p{ (N be a prime number, and let Frob, € Gg be a Frobenius element at p.
I shall now prove that py, is unramified at p and that the characteristic polynomial
of pn¢(Frob,) is
X? - T,X +p(p) € (T ® Qo) [X).

For all n € N; the right morphism on the commutative diagram

D, Aut (Ji(N)["]) (A.3.3.24)

| |

Gal(F,/F,) — Aut (J;(N)g, [])

is injective by theorem BAZ3TT0, so the image of an element o € D, in Aut(E[(])
depends only on its image in Gal(F,/F,), which proves that py, is unramified at
p. Besides, the Eichler-Shimura relation says that T, = o, + p(]T)ap_ ! holds
in End (J1(N)g,[¢"]), where o, denotes the Frobenius automorphism z +— P in
characteristic p. Multiplying by o, one finds that o, satisfies the relation

05 —Tyo, + p@ =0
on Ji(N)g,[¢"], so Frob,, satisfies the relation
Frobi —T, Frob, +p(p) =0

on Ji(N)[¢"] since the right morphism on (AZ3324) is injective, and hence on
ViJi(N) since n € N is arbitrary.

In order to prove that this is the characteristic polynomial of py,(Frob,), it
suffices to show that the trace of py ¢(Frob,) is 7). In the beginning of section A"2ZT2,
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I constructed the Weil pairing on an elliptic curve, but a similar construction exists
on any jacobian, yielding in the present case a Galois-equivariant non-degenerate
alternate Z/mZ-pairing

(-, JI(N)[m] A J1(N)[m] — i,

for all m € N. Taking m = ¢, n € N, and passing to the limit yields a non-degenerate
alternate Z,-pairing

(-,): Tag JI(N) A Tay J1(N) — Hn fugn > I'&nZ/ﬁnZ =7y

neN neN

which one extends into a non-degenerate alternate Q-pairing
(«,): Vii (N) AV Ji(N) — Q.

I mentioned in remark B—22T9 that the adjoint of a Hecke operator T" € T with
respect to the Petersson inner product is WxTWy, and one can show by a proof
following the same lines that WyT W)y is also the adjoint of T" with respect to the
Weil pairing. Therefore, the pairing

[ ] = (W) s Vii(N) AVl (N) — Qg

is a perfect T ® Q-bilinear pairing, so that one has a T ® Q,-linear isomorphism
Z Z

Veli(N) — (Vei(N))" = Homg, (Ve (N), Q)
x — [z, ]

It is a general property of the Weil pairing that the adjoint of an isogeny ¢ is the
dual isogeny ¢. In particular, the adjoint of o, on J1(N)g, is G, = po, ', so by theorem
[A=3TT0 the adjoint of Frob, with respect to the Weil pairing (-,-) on Vi Ji(N) is
pFrob, ' and hence the adjoint of Frob, with respect to the modified pairing [-, -]
is pWy Frob, ' Wy. Since Wy acts on X;(N) by (E, P) — (E/(P),Q + (P)) where
Q) € E[N] is such that the Weil pairing of P and Q on E is a fixed primitive N*® root
of 1, and since Frob, raises roots of 1 to the p, one sees that W Flrob;1 Wn(E, P) =

(EFYOb?l,pFrob;l(P)), that is to say Wy Frob;1 Wy = (p) Frob;l. It follows that
the trace of Frob, on V;J1(N) is the same as the trace of ¢ — ¢ o (p(p) Frobgl) on
(Vng(N))v, whence

2tr Frob, = tr Frob, + tr(p(p) Frobgl) =trT, = 2T,

where the middle equality stems again from the Eichler-Shimura relation B=2T20.
This proves that the characteristic polynomial of py ,(Frob,) is

X2 = T,X +p(p) € (T®Q)[X]
as announced.

Consider now the annihilator I of f in T,

Iy ={TeT|Tf=0}
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and let Ay = Jy(N)/Iy. This is an abelian veriety over Q of dimension d = [K; : Q),
which can be described analytically as

Af = S}//Afv

where

Sp= @ Cf7 CS(Ii(N)

U:Kf‘—>@

is the subspace of S(I'1(N)) spanned over C by the Galois conjugates of f, and
Ay = A/I;A is the lattice of S} = Homg(Sy, C) formed by the periods

/, \ € Hy(X.(N),Z).

Remark A.3.3.25. By using the decomposition (E2Z2Z8) of S5(I';(N)), one can
show that Jy(N) is isogenous to the product

ao(N/Ny)
[TA77,
(]

where the product ranges over the Gg-orbits [f] of newforms f of level N¢|N, and
where o¢(n) denotes the number of positive divisors of n.

By construction, End(A;) ® Q contains Ky, and a, acts on Ay as T,; in particular
Z

e(d) acts on Ay as (d), where € denotes the nebentypus of f. In other words, the
action of T on Ay factors exactly through I, so it follows from the above that

VA, % (Ta, A 4 [ im A, [
WAp = (Tay f)%(@f %\1] NG %@z

is free of rank 2 over Ky ®Q ~ Hf‘l o K¢, where Ky, denotes the [;-adic completion
Q 1

of Ky and the [; are the primes of Ky lying above £. Therefore, the Galois action on
ViAy yields a Galois representation

Plf).L: GQ — GLQ (Kf %) Qg) ~ HGLQ(Kﬁ[i)
Y.

which is unramified at p { ¢N and such that the characteristic polynomial of the
image of Frob, is
X? — a,X + pe(p) € (K % Qo) [X].

In particular, by considering the /-torsion instead of the Tate module, one sees
that the Galois action yields a Galois representation

ﬁ[f],é: GQ — H GLQ(F[Z)
[;|¢



A.3. GALOIS REPRESENTATIONS 125

which is unramified at p { ¢N and such that the characteristic polynomial of the
image of Frob, is

X? — a,X +pe(p) € (] Fo)X].

;| e

Taking the s eigen subspace of Jj(N)[{] amounts to selecting the factor of
Prs1,¢ corresponding to f and [. As the level N was assumed to be prime to ¢ (note
that this is the only place where I use this hypothesis in this whole construction of
Pry), and since p; is irreducible over F, as [ is not an exceptional prime for f by
assumption, [Edi92, theorem 9.2 ensures that Vy; is of dimension 2 over F; ~ F,.
As a consequence, the Galois action on it yields a mod ¢ Galois representation p
whose semi-simplification over Fy is, by the Brauer-Nesbitt theorem B3 11 and the
Cebotarev density theorem, isomorphic to the one of p; (. But since p; is irreducible
over [y, it is equal to its own semi-simplification, and so p is irreducible and is
isomorphic to pg as claimed.

The case of higher weight

I shall now explain how the above construction of the mod [ representation at-
tached to a newform of weight 2 can be extended to newforms of higher weight. More
precisely, I shall prove the following result:

Theorem A.3.3.26. Let f = q+)_ ., a,q" € Sp(N,€) be a newform of even weight
k >4 and of level N # 3,4, let K; = Q(a,,n > 2) be the number field spanned by
its g-expansion coefficients, and let | be prime of degree 1 of Ky such that the mod [
Galois representation p;, attached to f mod [ is not exceptional (that is to say such
that its image contains SLo(IFy) ), that k < £, and that N is prime to £, where { € N
is the prime lying below I. Denote by

A T Zx F, ~ F,

f

the mod [ eigenvalue system of f, that is to say the ring morphism mapping the Hecke
operator T,, to a, mod [ for alln € N, where T = T}, n is the Hecke algebra of weight
k and level I'1(N). Consider the Fy-subspace

+oo
Vie =) Ker (T — )\f,[(Ték’N))%Jl(eN)[z]
n=1

of the (-torsion J1((N)[€] of the jacobian J,(¢N) of the modular curve X1(¢N), where

M denotes the Hecke operator T,, in weight w and level M. Then Vi is of
dimension 2 over Fy, is stable under Galois, and the Galois action on its points
yields a mod £ Galois representation

p: GQ — GL(VL[) ~ GLQ(]F[)

which is isomorphic to py .
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Note that this time I am looking for p,, in the (-torsion of J;({N) instead of

9.3.2]), which roughly says that I can find a newform f5 of weight 2 but of higher
level /N which is congruent to f modulo ¢:

Proposition A.3.3.27. Let f be a newform of even weight k > 4 and level N # 3,4,
let 1 be a prime of the number field Ky = Q(an,n > 2) spanned by its q-expansion
coefficients, and fix an embedding o: Fy — F, of F| into a fized algebraic closure F,
of Fp. If k < £ and if N is prime to the prime number { € N lying below |, then
there exists a newform fo of weight 2, level {N and nebentypus €2, a prime ly of
K;, = Q(an,n > 2), and an embedding oy: F, — Fy such that

o(a,(f) mod [) = o5 (an(f2) mod )
for alln € N and that
o2 (g2(n) mod ) = o(n*?2(n) mod )
for alln € 7Z.

Let (fs,l2) be such data corresponding to f and [ (there is no choice for the
embeddings o as [ is of degree 1), so that Xﬂ[(TTSk’N)) = a,(f) mod [ = a,(f;) mod
b= (T,&“’V)) for all n € N, whence

+oo
_ (24N) _ N, (TkN)
Vi = Ol Ker (T} (T, ))|J1(€N)[€]

PAGHIl Vst

+o00
_ ﬂ Ker (TT§2,€N) _ sz,lz (T7(12,£N)>)
n=1
Although the level /N is obviously no longer prime to ¢, [Edi92, theorem 9.2] still
applies thanks to the hypothesis £ < ¢, and ensures that V} is of dimension 2 over
F,. By the very same reasoning as in the case of weight £ = 2, one then sees that
V. is invariant under Galois, and moreover that the Galois action on it affords the
mod [, Galois representation py, |, attached to f; mod l;. In particular, for all p f¢N,
this representation is unramified at p, and the characteristic polynomial of the image
of Frob, is
X? = ay(f2)X + pea(p) € Fy,[X].

The relation between €9 and e implies that it may be rewritten as
X2 —ay(/)X +p*le(p) € FX],

which is the characteristic polynomial of the image of Frob, by p; . The Cebotarev
density theorem and the Brauer-Nesbitt theorem A=3T3 then imply that p;, which
is irreducible and a fortiori semi-simple over F, by hypothesis on [, is isomorphic
to the semi-simplification of py, ,,. Therefore, py, |, is irreducible, hence semi-simple,

and so py, , and pg are isomorphic and the proof of theorem is complete.

Remark A.3.3.28. There is no need to actually compute the newform f, of weight 2
at any point; its mere existence is enough to justify the above construction BAZ3=378.
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A.3.4 The Serre conjecture

As T have illustrated in section AZ339, the mod ¢ Galois representation p, attached
to a newform f € Si(N,¢) is usually™ irreducible. It is moreover odd, which means
that detp;((c) = —1 for all ¢ € Gg corresponding to the complex conjugation for
some embedding of Q@ in C. Indeed, detpy((c) = X,(c)*'e(c) = —1 since k and ¢
must have the same parity (cf. remark BA22T4).

In a famous 1987 article [Ser87], J.-P. Serre conversely conjectured that every
irreducible and odd mod ¢ Galois representation

p: GQ — GLQ(F[)

is modular, that is to say is isomorphic to p;; for some newform f and some prime

[ of Q above £. Even better, he gave recipes to compute from p a weight k,, a level
N, and a nebentypus ¢, such that there should exist a newform f € Sy, (N,,¢,) such
that p ~ p; for some [. T describe these recipes in detail below.

In 2009, C. Khare and J.-P. Wintenberger managed to prove Serre’s conjecture,
cf. [KW0Y].

A.3.4.1 The level and the nebentypus

I first introduce the Artin conductor of a Galois representation p, which is a measure
of the ramification of this representation. The level N, attached to p by Serre will
be a slight modification of the Artin conductor N(p) of p.

Definition A.3.4.1. Let V be a finite-dimensional vector space over a field F', and
p: Gog — GL(V)

be a Galois representation with finite image. For each prime p € N, consider the
higher ramification subgroups

Go2D,21,=1"21VD>IPD...

corresponding to some prime of the number field cut out by p and lying above p,
and for each ¢ > 0 let V},(Z) — Vo) denote the subspace on which the higher inertia
subgroup I;(,’) acts trivially, so that there is an increasing filtration

yell) — O cy cyb ..oy

P =

with Vp(i) = V for large i. The Artin conductor of the Galois representation p is then

N(p) =] p"",
P

where the integers n(p, p) are defined by

+o0
o) = — L
iz Uy Iy’
4 More precisely, one can show that if f is not CM, that is to say if f # f®y for every non-trivial

Dirichlet character x, then p; | is exceptional for finitely many I. Note that a newform of level 1 is
never CM by theorem B34

codimy Vp(i).
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This sum is actually finite, and it is a deep result of Artin’s that its value is an
integer. As a consequence, N(p) is an integer divisible only by the ramified primes.

Example A.3.4.2. Let x: (Z/NZ)* — F* be a Dirichlet-like character. It can be
seen as a Galois character, by composing it with the canonical morphism

Glg —= Gal (Q(uw)/Q) =~ (Z/NZ)"

Assume furthermore that y is primitive, that is to say that it does not factor through

(Z/N'Z)* for any strict divisor N” of N. Then the Artin conductor N(x) of x seen

as a Galois character is equal to N. In other words, the conductor of a Dirichlet

character is the same as the Artin conductor of the corresponding Galois character.
To see this, write N = Hp p™ and see x as a character on

Gal (Q(tie)/Q) IIZ

Then, since y is primitive, for each p, x is tr1v1al on 1+ p"Z, C Zp if and only
if n > n,, which by example BZ3XTT means that x is trivial on I’ 2
i > p™~1. Therefore, one finds that

=<1

1
n(x,p) = chodlmpFP = Z m»

0<i<p™» !

if and only if

which is 0 if n, = 0, and which is
np—2 1 np—2
I M TRAD DI
T3 i (0= 1p

else. Thus n(x,p) = n, in each case, whence N(x) = N.

Back to the case of a Galois representation
p: Gg — GLy(Fy),
the level N, is defined to be the Artin conductor N(p) of p stripped from its ¢-part,

in other words
N, = Hpn(p,p).
p#L

Example A.3.4.3. In particular, a representation p which is ramified only at ¢
comes from a form of level N, = 1.

Clearly, the Artin conductor of the Galois character det p divides the one of p.
Besides, det p is at most tamely ramified at ¢, since its image, being a finite subgroup
of FZ, is of order prime to ¢, so that it cuts out a Galois number field of degree prime
to €. As a consequence, n(det p, £) < 1, so that the Artin conductor N (det p) divides
(N,. Now det p, having an finite abelian image, factors through a finite quotient of
Gal (Q(1s0)/Q) =~ Z, hence can be seen as a (not necessarily primitive) character
modulo ¢N, according to example AZ349. Since £ and N, are coprime, det p can be
factored into a product ye, where Y is a character modulo ¢, thus of the form z + 2"
for some h € Z/(¢ — 1)Z upon identification of (Z/¢Z)* with [F;, and ¢ is a character
modulo N,. The nebentypus ¢, is then defined to be this e.
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A.3.4.2 The weight

While the level N, is defined by the ramification of p away from ¢, the weight k, is
defined by the ramification behaviour of p at ¢. So let D, C Gg be the decomposition
subgroup corresponding to some place of Q lying above ¢, and let p, = p|p, be the
restriction of p to D,. Since D, is canonically isomorphic to the absolute Galois
group Gq, of Qp, I shall identify D, with Gg, and regard p, as a representation of
Go,-

Let I, be the inertia subgroup of D,, and W, the wild inertia subgroup. Since
Wy is a normal pro-f-group of Dy, the following lemma indicates that the semi-
simplification of py;, factors through the tame inertia quotient I;*"¢ = I,/W,.

Lemma A.3.4.4. Let p: G — GL,(F,) be a semi-simple continuous representa-
tion of a compact group G, and let H < G be a normal pro-C-subgroup of G. Then p
15 trivial on H.

Proof. 1 can assume without loss of generality that p is simple. Since G is compact,
there exists a finite subextension F C F, of F,; such that the image of p is contained
in GL,(F). Let V¥ be the subspace of V' = F" on which H acts trivially. This
subspace is stable under G since H is normal in G, so it is either {0} or all V' since
V' is simple. Now

#V {0} = D #o=#VT—{0}) + > #(G/Stabg ;)

QeG\(V—-{0}) el

where (z;)ies is a system of representatives of G\(V — V), so #(VH# —{0}) # 0
since ¢ divides )", ; #(G/ Stabg x;) but not #(V — {0}). Therefore V¥ =V. O

Actually, since I;*™ is abelian, the semi-simplification of pyz, is the direct sum
0@ ¢ of two tamely ramified characters ¢ and ¢’ of I,. Therefore, up to equivalence,
the restriction of p, to the inertia is

é }
4’0/

6

Per, ~ [

for some function &: I, — F,. Besides,

P£|W,,N[(1) §}

since ¢ and ¢’ are tamely ramified, so that &y, is an additive character.

In order to proceed further, one must examine what ¢ and ¢’ look like. Fix
an algebraic closure Q, of Qy, and let Q}* and Q™ be respectively the maximal

unramified and the maximal tamely ramified subextension of Q; in Q,. One has the
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following diagram of Galois groups:

Dy Ilfam;

Q

In particular I;*™ identifies canonically with Gal(Q{*™°/Q}"). Now

e @,
neN
ged(n,f)=1
and since F,; contains the n'® roots of 1 for all n € N* prime to ¢, Kummer theory
yields a canonical isomorphism

0, ¢ Gal (@(VD/QF) =
a(Ve) »
o — ]

whence an isomorphism
0: I;*° —  lLim  py,,
o
ged(n,0)=1
where the transition morphism from gy, to p, consists in raising to the m'™ power.
Again since F, contains the n™ roots of 1 for all n € N prime to ¢, one has

canonically
n T = 1
Hom ( Gal( ?r(\/Z)/Q?r),FK) ~ Hom(pu,,F,) ~ Z/nZ ~ (EZ> /Z

for such n, whence a canonical isomorphism

n

o~ 1
6": Hom(I;*° F,) — U (—Z) /7 = Ty Z
neN
ged(n,f)=1
called the invariant, where Z) denotes the localisation of Z at the prime ideal (Z.

Example A.3.4.5. The morphisms 6, defined above for n € N prime to ¢ can be
seen as IFZ—Valued characters on I/, of respective invariants % mod Z.

Besides, since the integers of the form ¢ — 1, n € N are cofinal amongst the
integers prime to ¢ ordered by divisibility, one actually has

]game ~ I&Tlﬂ?zn,

neN

where the transition maps are the relative norms.
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Definition A.3.4.6. A character x: I;*™¢ ~ l&nF}fn — I} is said to be of level
neN
n € N if it factors through F}. but not through F},. for any m < n. In other words,

X is of level n if its invariant 6" (x) is of the form 5 and n is the minimal integer
with this property.
For each m € N, the composition of the projection

;e ~ G I, —= T,

neN

with the m field embeddings of Fem into F, yield m characters
2 m—1
Hﬁm—la egmfla 957"717 T %mq
from It to F,, called the fundamental characters of level m. Their respective
Invariants are
2 m—1

l
Z, —— Ly -, —— 7.
1 gm_lmod 7gm_1mOd , >gm_1m0d
Example A.3.4.7. The fundamental character 6,_; of level 1 is none other than the
restriction to I, of the mod ¢ cyclotomic character ,. Indeed, letting A\ = V0 be a
uniformiser for K = Q*( “v/¢), one has

mod Z,

1+ AT =1 (AT)* 1
Y i Z

-1 /
+ —( )AHTi =T"+ T mod \,

— [ \1
=1

so that by the Hensel lemma K contains the ¢ roots of 1, which are of the form
¢ = 1+aX+0(A\?) where a is a root of T*+T in Q}*. Then, for each o € Gal(K/Q}"),
one has

0(¢) = (7 = 1+ X (0)ar + O(N?)

by definition of %, on the one hand, and
o) =1+ac(\) +O0(\) =14 ab,_1(c)\+ O(N\?)

by definition of §,_; on the other hand.
In particular, the invariant of the mod ¢ cyclotomic character (or rather of its
1

Totd tame) ;
restriction to [;*™°) is 7=5.

Lemma A.3.4.8. Let ¢ € Dy be a Frobenius element at {. Then, for all o € I;*™,
one has pog~t = o* in If*™e,

Proof. Since 6 is an isomorphism, it suffices to check that 6,,(pop~1) = 6,,(c)* for all
n € N prime to £. Solet n € N be prime to £, let ¢ € u, be such that ¢~ (V/¢) = ¢3¢,
and let

Then, since ¢ € Q}",

_ 9o (VO _ ¢o(¢VD) (V) o)Vl

Qn(gbagb_l) 7 = i 7 = i =n.
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By this lemma, the two representations ¢’ @ ¢ and 0 @ ¢’ are conjugate, so that
the pair {(p, ¢’} is stable under the £** power map. This means that either ¢ and ¢’
are both of level 1, or that ¢ is of level 2 and ¢’ = ¢’ is its conjugate.

In the level 2 case, the representation py, is semisimple: if it were not, then
pe would not be semisimple either since the proindex of I, in D, is prime to ¢, so
that D, would act on a stable line of F? by a character ® € Hom(Dy,F}). Such a
character ® cuts out a subextension of a cyclotomic extension of Q, by the local
Kronecker-Weber theorem, so must be a power of the mod ¢ cyclotomic character
¢, so that its restriction to I, is of level at most 1 by example BA=37277; on the other
hand, this restriction is either ¢ or ¢’, a contradiction. The function £ is thus trivial,
and

0
pe1, ~ [g w’} =p®¢

is tamely ramified. Let 6Y(¢) = % be the invariant of ¢ where 0 < a,b < { are
integers, so that ¢ = G%fi’ . and that ¢’ = ¢’ has invariant b¢ + a. The integers a
al+a

and b cannot be equal since 0, = 07 | = X7 is of level 1, so that I may assume
that a < b since ¢ and ¢’ play symmetric roles. The weight &, is then defined to be

k,=1+al+b

in this case.

In the level 1 case, the characters ¢ and ¢’ are powers of the restriction to I, of
the mod ¢ cyclotomic character by example A=3471, so that
Xi ¢
0 X
for some integers 0 < a,b < € —2. If a # b+ 1 mod ¢ — 1, then the weight k, is
defined to be

per, ~ {

k, =1+ min(a, b)¢ + max(a,b).
If a = b+ 1mod/? — 1, the definition of £k, is more delicate: let K = Qp* be
the maximal unramified extension of Q,, so that py,, seen as a representation of
I, = Gal(Q/K), cuts out a finite Galois extension L of K, and let L,y denote the
maximal tamely ramified subextension of L. Since py;, takes values in the group of
upper triangular matrices, one may compose it with the morphism

vl /
0 vy vy
to get the representation ¥%/X% = X, of Iy, which proves that L contains K (u,), a

tamely ramified extension of K. Besides, the restriction of p, to Gal (L/K (1)) is

[+ 4] and so is given by the additive character &, so L/K (u) is totally wild and so

K (1t¢) = Liame- The extension L/Liame is thus a Kummer extension, so that

L = Ltame(yla o 7yr)

for some 7 such that [L : Liume] = ¢" and some y; € L such that x; = y¢ € L}, .., and
one has an isomorphism

®: Gal(L/Liame) %) For >~ 11
o — (U(yz')

Yi Ji<i<r
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Let 0 € Gal(L/Liame), and let 7 € Gal(L/K) restrict to a generator of Gal(Lame/ K ).

The identity
ot 1 vy gt ] 1wy
0 af 0 1 0 af 10 1

shows that ®(7o77!) = 7(®(0)) where the right-hand-side means the Galois action
of 7 on py, so
=1, =1 ‘
. (U(Tl yz)> _TOT Wi _ (0(@/1))
T Y Yi Yi

and hence T_ylyi is fixed by o whence lies in Li,me, SO that the x; may actually be cho-

sen in K. Assuming that they are, one says that p, is peu ramifie if
ordyz; = 0mod ¢ for all i (in other words, if the z; may be chosen to be units
of K), and one defines

k, =14 min(a, b)! + max(a,b),
else, one says that p, is trés ramifiée, and one defines

I 1+ min(a, b)f + max(a,b) + ¢ —1 if £ > 3,
P 4 it ¢ =2.

Remark A.3.4.9. One can check that det p;, = Y?”fl in each case, which is neces-
sary since the mod ¢ Galois representation p;, attached to a newform f € Si(NV,¢)
has determinant det p;, = X’g_ls, and ¢ is unramified at ¢ if N is prime to ¢.

For instance, in the case where ¢ and ¢ are of level 2, one has

det p = ' = Q%ff@%ﬁ _ gégirllv)(ul) — 9?+f - Y}Hb,

and k, —1=1+al+b—-1=a+bmod ¢ —1.

A.3.4.3 Statement of the Serre conjecture

Now that I have explained the definition of the level, nebentypus and weight, I can
finally state the Serre conjecture in detail:

Theorem A.3.4.10 (Serre, Khare, Wintenberger). Let
p: Go — GLy(Fy)

be a mod ¢ Galois representation. If p is wrreducible and odd, then there exists an
eigenform
VS Skp(Np’gp)’

where k,, N, and ¢, are defined as above, and a prime [ of Q lying above ¢, such that
p 1s isomorphic to the Galois representation py attached to f modulo 1.
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The Serre conjecture will be an invaluable tool to prove the results of my com-
putations, cf. the section CZ. In order to demonstrate its power, I shall conclude
by sketching how it implies Fermat’s last theorem for ¢ > 5:

Example A.3.4.11 (Fermat’s last theorem). Let a, b, ¢ € Z be integers such that
at+ b+ =0.

Then abc = 0. Indeed, assume that abc # 0. Up to permutation and renormali-
sation, one can then assume that a, b and ¢ are coprime, that b is even, and that
a = —1 mod 4.
Let A =a’, B =1V and C = ¢’, and consider the elliptic curve E defined over Q
by the equation
y* = x(x — A)(x + B).

For each odd prime p, this curve has bad reduction if and only if p|]ABC, in which
case it has multiplicative reduction. The change of variables

v =4X, y=8Y +4X

transforms the equation of E into

B-1—-A AB
Y24+ XY = X° X? -
* + 4 16
whose coefficients are integral since A = —1 mod 4 and B = 0 mod 32. Reduction

modulo p = 2 yields
Y2+ XY =X+ X* or X°

depending whether A = —1 or 3 mod 8, so that F has multiplicative reduction at
p = 2. Finally E has everywhere either good or multiplicative reduction, so that it
is semi-stable, of conductor

Ng = H b= Hp-

p|2ABC p|ABC

Furthermore, the first equation is minimal at every p # 2, whereas the second one is
minimal at p = 2, so that the discriminant of E is

(ABC)?
Consider now the mod ¢ Galois representation
PE: GQ — GLQ(F[)

afforded by the Galois action on E[¢], as in example AZ3TTI. Its determinant is
the mod ¢ cyclotomic character %,, so that this representation is odd. It is also
irreducible. Indeed, if it were not, the curve £ would have a subgroup X of order ¢
which is stable under G, so that one would have

S
PE,@N{SS 90/}'
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The action of Gg on X would be given by the mod ¢ Galois character ¢, and since £
is semi-stable, by [Ser72 p. 307, lemme 6], one of the Galois characters ¢, ¢ would
be trivial whereas the other one would be a power of ,. Since ¢’ = det pg, = X,
the character ¢ would be either trivial or equal to X,. After possibly replacing F
with its quotient £/X, one may assume that ¢ is trivial. Then the points in X
would be Q-rational, so that E(Q)s would be of order at least 22¢ > 20 since the
4 points in F[2] are Q-rational, which would contradict Mazur’s bounds B~ TTS.

The Galois representation pg, is thus odd and irreducible, so that the Serre
conjecture AZ3AT0 applies. J.-P. Serre then shows (cf. [Ser87, §4.1 and 4.2]) that as
E is semi-stable, the Artin conductor of pgy is

N(pE,f) = H p= 27

so that its level is also N, , = 2; besides, he computes that its weight is also k,, , = 2.

But S>(I'1(2)) = {0}, a contradiction.

PE,¢

J.-P. Serre also notes in [Ser87, théoreme 4] that his conjecture also implies the
modularity conjecture for elliptic curves over Q, a.k.a the Taniyama-Shimura-Weil
conjecture.






Part B

Computing modular Galois
representations

Computers are like Old
Testament gods; lots of rules
and no mercy.

— Joseph Campbell, The
Hero’s Journey

I now present the heart of my thesis: an algorithm, based on original ideas from
J.-M. Couveignes and B. Edixhoven (cf. [CETII]), to compute the mod I Galois
representation”p attached to a newform f € Sp(N) of even weight modulo a prime
[ of degree 1. By this, I mean that the algorithm which I describe here first computes
an irreducible polynomial F(X) € Q[X] of degree ¢* — 1 whose decomposition field
in Q is the number field L cut out by p ¢ and such that the Galois action on its roots
mimics the pyi-action on F? — {0}, and then it gives an efficient recipe to compute
the similarity class of the image in GLy(IFy) of the Frobenius element at almost every
prime p € N.

Apart from making ps explicit, the main interest of this algorithm is that it allows
to compute the coefficients a, of f modulo [ as the trace of the image of the Frobenius
element at p. For fixed f and [, this yields a method to compute a, mod [ using only
5(log2 p) bit operations. In theory, one can then use Chinese remainders to compute
a, from its reduction modulo sufficiently many primes [, yielding an algorithm to
compute a, in time polynomial in log p, whereas the algorithm based on modular
symbols (cf. example BZZ3T9) requires at least O(p) bit operations. Unfortunately,
the complexity of my algorithm with respect to ¢, although polynomial, is too bad
for this to be practical.

The idea consists in catching py in the ¢-torsion of J;(¢N), as explained in the-
orem A—3328. In order to simplify the exposition, I shall assume that the newform
fisoflevel N =1, so that I am working in prime level £ and I do not have to worry
about the old part in Q' (X(£)) = S5(¢) (cf. example A2273). The algorithm pre-
sented here can however be easily extended to newforms of higher level N, provided

IThis representation was denoted by Py in the previous part, but I shall drop the bar from
now on, for the sake of readability.

137
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that N is square-free and is prime to £. In order not to have to deal with degenerate
cases, I shall also assume that the prime [ is not exceptional in the sense of definition
[A~3739, so that the image of ps; contains SLy(FFy) and is thus

Im PfL = {g € GLQ(F[) | detg S Fi(k_l)}

since the determinant of py is the (k—1)™ power of the mod ¢ cyclotomic character
Xe-

Finally, I shall assume that ¢ > k, so that theorem applies. In particular,
the genus g = % of X;(¥¢) is then non-zero.

B.1 Overview of the algorithm

It is immediate to compute the ¢-torsion of J;(¢) in the analytic model C9/A (cf.
section A1), whereas it is easier to write down a Galois-equivariant function to Q
on the algebraic model Pic" (X 1(6)@), as shown on figure BTT. Therefore, I shall
start by computing the analytic model, and switch to the algebraic model at some

point.

Algebraic model 1o gaconi  Analytic model
Pic’ (X1(0)c) __ _ _ __ C9/A
Easy to evaluate points Fasy torsion

Figure B.1.0.1: Switching between two models of J; ()

The first task consists in computing a high-precision complex approximation of
the period lattice A of X;(¢), which I do by integrating term-by-term the g-expansions
of a basis (w;)1<i<y of cuspforms of weight 2 along modular symbols. In order to get a
very accurate result, this requires g-expanding the w; to high precision, which I show
how to do quickly belawi. Then, since the action of the Hecke algebra on modular
symbols is known, I deduce an analytic representation of the /-torsion subspace

V= m Ker (Tn — a,(f) mod [)

n=1

_ o= (L )
oy € 008 = @) = () /4
which affords py by theorem [AZ37326, where T), denotes the Hecke operator in weight
2 and level /.

Next, by locally inverting the Abel-Jacobi map j, I find divisors Dy, Dy in
Div® (X1 (5)) such that j(D;) = x1 and j(Ds) = x4, where x1 and x5 are two (-torsion
points on J;(¢) forming a basis of the two-dimensional F,-subspace Vi C Ji(€)[/].
This is done as follows:

I pick g points (P})1<j<4 on X1 (), and, using Newton iteration, I compute another
g points (Pj)1<j<, With P/ close to P; such that

g P7’_ ~
Z(/'wi(ﬂdﬂ :;—;,
Fi 1<i<g

Jj=1
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where z7 is a lift of z; to C9, m € N is large enough for Newton iteration to converge,
and the integrals are taken along paths joining P; to P; and staying inside some
coordinate disk. Thus, I get the divisor

g
D™ = (P - F))

j=1

which satisfies ](Qngm)) = 1. Then, using K. Khuri-Makdisi’s algorithms (cf.
section AT3) to compute in Pic” (X1 (f)), I double m times the divisor class of
D%m), which yields an /-torsion divisor D representing z1. I apply the same process
another time so as to get another ¢-torsion divisor Dy representing xs.

This way, I find ¢-torsion divisors using only integrals along short paths which
stay well inside the convergence disks. Therefore, I have far fewer precision problems
than with J. Bosman’s method [Bos(7].

I now have two (-torsion divisors D; and Dy whose images by the Abel-Jacobi
map form a basis of the /-torsion subspace Vy . I then compute all the divisors

Da,b ~aDy+bDy, a,bel,

up to equivalence, yielding a collection of £? divisors corresponding to the ¢? points of
Vi1 Finally, I evaluate a well-chosen Galois-equivariant map a: Vi — Q in these
points. The polynomial

F(X)= J] (X-a(Da)
a,beF,
(a,0)#(0,0)

then lies in Q[X], and I can identify its coefficients by using continued fractions.
This polynomial encodes the Galois representation py, in that its splitting field L
over Q is the number field cut out by the representation py, and Gal(L/Q) acts on
its roots (D, ) just like GLy(F,) acts on (a,b) € F?.

My final task is to describe the image of Frobenius elements by this representation.
For this, I adapt T. and V. Dokchitser’s work [DokT0] (cf. section BAZ33) to get
resolvents

Fo(X) € Q[X], C similarity class of GLo(F)

such that for almost all rational primes p,
pri(Froby) € C <= T¢(tra,/m, a” h(a)) =0 mod p,

where a denotes the class of X in A, = F,[X]/(F (X)) and h € Z[X] is a polynomial.
I furthermore present two tricks to reduce the amount of computations required at
this step.
I can then use these resolvents to compute the coefficients a, of the g-expansion
of f modulo [, as
a, mod [ = tr ps (Frob,) .

I shall now explain how to use K. Khuri-Makdisi’s algorithms on X;(¢), after
what I shall give a detailed description of all the steps of my algorithm.
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B.2 Computing in J;(¢)

B.2.1 Arithmetic in the jacobian J;(¢)

In order to efficiently compute in the jacobian Ji(¢), T adapt K. Khuri-Makdisi’s
algorithms (cf. section AT3). This requires choosing an effective divisor Dqy of
degree dy > 2g + 1 for which I know how to compute the associated Riemann-Roch
space

V= HO(XI(K),EBDO).

I then represent a divisor class z € J;(¢) by the subspace
Wp = H°(X,((),3Dy — D) C V

where D is an effective divisor of degree dy such that the class of D — Dy is z. In
particular, 0 € J;(¢) can be represented by

W() - HO(X1(6)72D0) C V.

I shall also want Dy to be defined over Q, so that (Wp)? represents D7 for all
o€ Aut C.

Let me first give an overview of how to find such a divisor Dy. My strategy
consists in choosing Dy = K + ¢; 4 ¢2 + ¢3, where K is an effective canonical divisor
defined over Q and the ¢; are QQ-rational cusps. In particular I set dy = 2g+ 1 exactly,
the minimum to ensure the correctness of K. Khuri-Makdisi’s method.

First, I compute the (g + 2)-dimensional space

‘/2 = HO(X1(€)791(01 +co + Cg)).

This space is the direct sum of all the cusp forms of weight 2 and of the scalar
multiples of the Eisenstein series e;o and e; 3 of weight 2 vanishing at all cusps
except respectively ¢; and ¢, for e; 5 and except ¢; and c3 for e 3, so that

‘/2 = SQ (Fl(g), C) D CELQ @D (C€173 C M2 (F1<€), C) <B211)

The point of this is that by picking a cusp form f; € S, (Fo(f), Q) defined over Q,
one obtains a Galois-equivariant isomorphism

Vo — HYXi(0),K +c¢1+ca+c3)
f

f —

fo
where K is the divisor of the differential 1-form over X; () associated to the cuspform
fo, which is indeed an effective canonical divisor. Now, by theorem BA—T231, the map

‘/2®3 — HO(X1<€),3(K+01+02+C3))

H®fa®fs — f1f§f3
o

is surjective. I may thus choose V' to be the image of the multiplication map

|7 — Mg(I'1(0),C)
1®L®fs — Jifaf3 '
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In this framework, the subspace W, representing 0 € J;(¢) is the image of the map

‘/2®2 — M6 (F1(£>, C)
H®f — Jif2fo '

From now on, I shall identify weight-6 modular form spaces with the corresponding
modular function spaces obtained by dividing by f3, without explicitly mentioning
it.

I represent weight-6 forms by their g-expansions at each cusp. To compute these
g-expansions, I start from the g-expansion at co, and apply the Fricke involution and
diamond operators in order to reach all the other cusps, as explained below. I could
also have represented forms by their g-expansions at co only, but I surmise that using
g-expansions at various cusps ensures better numerical stability. Also I shall later
need to be able to evaluate the forms at various points of the modular curve, so it is
better to know the g-expansions at various places.

The modular curve X(¢) has exactly two cusps, namely I'g(¢) - oo and 'y(¢) - 0,
whereas the modular curve I am interested in, X;(¢), has exactly ¢ — 1 cusps, half
of which lie above I'g(¢) - oo while the other half lie above I'y(¢) - 0 (cf. example
A=2TT3). I call the former “cusps above 0o” and the latter “cusps above 0”. The
cusps above 0 are all rational, whereas the cusps above co make up a single Galois
orbit. Now, the diamond operators (d), d € (Z/¢Z)*, which correspond to the action
of the quotient group I'g(¢)/T'1(¢) ~ (Z/¢Z)*, map the cusp I'1(f) - oo onto the cusps
above oo, and the cusp I'y (¢) -0 onto the cusps above 0. Moreover, the Fricke operator
Wy swaps I'1(£) - oo and I'y(€) - 0. I know how the Fricke operator acts on newforms
of weight 2 by theorem A=Z2"X33, and on Eisenstein series by proposition B4,
Besides, all the forms I am dealing with have a nebentypus, so that the action of a
diamond operator (d) on their g-expansions is very easy to compute: it boils down
to multiplying by the value £(d) of their nebentypus at d. Using these two kinds of
operators, I thus get the g-expansions of the newforms and of the Eisenstein series
at all cusps from their g-expansions at oo.

B.2.2 Finding the appropriate Eisenstein series

I shall now explain how to construct Eisenstein series e; o and e; 3 such that (BZ211)
holds. As explained in section B2273, the Eisenstein subspace E5 (I'y(N)) of M (I'1(N))
has a basis formed by the Eisenstein series

|
—

I
—

u—1

1
Y(r va

t=0 (c,d)eZ?
c=rv mod N
d=s+tv mod N

u v

G?"p(h

Il
=)
Il
=)

T S

where ¢ € N and ¢ and ¢ are Dirichlet characters not both trivial, of the same parity,
and of respective conductors v and v such that tuv|N, along with the

Go(T) — tGo(tT), where Go(T Z Z 5 and 1 < ¢[N.

CcEZ deZ CT +
(c.d)#(0,0)
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Their g-expansions at oo are given by

1 v—1 400
ByP(r) = —Lumg Y p(@a (S +1) +2 3 | 3 vn/m)p(mm | ¢
a=0 n=1 \ m>0
mln

where 1,— is 1 if u = 1 and 0 else, EY*# is the normalisation of G%*¥ defined by the
relation 20(%)
—4r“g(p
s P

and where g(-) denotes the Gauss sum of a Dirichlet character, and

+o0o 2
™
EQ(T) =1-24 E E m qn’ G2 = ?EQ
n=1 \ m>0

mln

Also, GY%(t1) € B, (T'1(N), ¥¢) has nebentypus ¢, where ¢y is seen as a Dirichlet
character modulo N, whereas G5(7)—tG2(t7) has trivial nebentypus. In what follows,
I shall not use the Gy(7) — tG2(t7) at all.

In the case when N = [ is prime, one is left with only two cases, namely G§’1
and G5, where x is a non-trivial even Dirichlet character modulo ¢. Both have
nebentypus y, and G%"l vanishes at oo while G;X does not (cf. section A=223).

I construct the Eisenstein series e; 2 and ey 3 as linear combinations of the E;"l
and of the E21’X, because they have nicer g-expansions than their G-counterparts.
First, I choose the cusps c¢;, ¢ and ¢z to be ¢ = I'1(€) - 0, ca = (2)¢q, and
c3 = (3)c1, which are all Q-rational. They are also all distinct since ¢ > 13. The
form fy € 95 (FO(E), @) is defined over Q because its g-expansion at the Q-rational
cusp I'1(¢) - 0 has rational coefficients, so its divisor K is defined over @Q, and so is
my divisor Dy = K + ¢ + ¢2 + ¢3. Next, according to formula B2 44; one has

_ / B
WgEg(vl - ME’;X and WZEQLX _ __E%(,l’

4 9(x)

from which one reads that E%"l vanishes at the cusps above co but not at the cusps
above 0, whereas E21’X has the opposite behaviour. Consequently, I can construct
e12 and e; 3 as linear combinations of the Eg"l only. It then follows easily from the
orthogonality relations between Dirichlet characters that the Eisenstein series

1 —v(2
aam Y — My
X even - a
x# g(x) ) X(a)a (z + 1)
a=0
and | 3)
s = D -1 : By




B.3. DETAILED DESCRIPTION OF THE ALGORITHM 143

are the ones which I am looking for, that is to say that e; o vanishes at all cusps
except ¢; and cg, and e; 3 vanishes at all cusps except ¢; and c3.

Finally, I need to compute the g-expansions of e; » and of e; 3 at each of the cusps
of X;(¢), so as to be able to use them in K. Khuri-Makdisi’s algorithms. Although
these series are probably not eigenseries, this is not a problem, as it is still easy to
compute the action of the Fricke involution and of the diamond operators on them
simply by linearity, and thus to deduce their g-expansions at each of the cusps.

B.3 Detailed description of the algorithm

I first show in subsection BZ31 how to quickly compute a huge number of terms of the
g-expansion at infinity of the cuspforms of weight 2 and level ¢, and next, in BZ37,
how to efficiently compute the period lattice of X;(¢) to high precision using these
g-expansions. After this, I show in BZ333 how to compute a basis of the eigenplane
Vi C J1(€)[¢]. Finally, I explain in BZ34 how to construct a well-behaved function
on the jacobian J;(¢) and how to evaluate it at the (-torsion divisors, and I conclude
by describing in BZ3H an efficient recipe to computing the image of the Frobenius
elements by the Galois representation py.

B.3.1 Expanding the cuspforms of weight 2 to high
precision

I need to compute the g-expansion of the newforms of weight 2 in order to compute
the period lattice of the modular curve. Classical methods based on modular symbols
(cf. example A273TA) can be used to compute a moderate number of terms of these
g-expansions. However, I shall need to compute the periods with very high accuracy,
which requires knowing a very large number of coefficients in these g-expansions.
As using classical methods for this, although possible, would be too slow, I present
a new method to quickly compute a huge number of such coefficients. It proceeds
roughly as follows:

e First, I compute a moderate number of coefficients of the g-expansion of each
cuspform w by using the classical method based on modular symbols.

e Then, I use these coefficients to determine a polynomial equation relating a
modular function depending on w to the modular invariant j (cf. example
A7), whose g-expansion is easy to compute, even to very high accuracy.

e Finally, I use Newton iteration on this equation between g-series to compute a
huge number of coefficients of the modular function depending on w, and from
this I deduce the ones of w.

Moreover, I perform all of these computations modulo some prime p, so as to
prevent intermediate coefficient growth from slowing down the process.
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More precisely, to compute these g-expansions to the precision O(¢?), T first
compute a generator of the Hecke algebra Ty, ®z Q, by picking a Hecke operator
and testing whether it is a Q-algebra generator. This is easy as it amounts to check
whether its eigenvalues on S (Fl(f)) are all distinct. One can for instance proceed
as follows: starting with n = 2, first check whether T, is a generator, if not then try
a few combinations of small integers \,, and check whether T}, + 22;12 Al 1S &
generator, and if still not, increase n by 1 and start again. In practise, it appears
that for 11 < ¢ < 31, at least one of T; and T3 is a QQ-algebra generator.

Let B = ||, B. be a basis of S, (Fl(ﬁ)) corresponding to the decomposition

0) =P S (rae

where € ranges over the even characters modulo ¢, and B. is a basis of Sy(¢) consisting
in forms which are not necessarily eigenforms?, but which are normalised, and whose
g-expansion coefficients lie among the integers Zg of the common cyclotomic field
K=Q (C -1 /2) To make it easier to reduce mod p and lift back to K, I require p to
split completely in K. Also, p should be chosen large enough for reduction mod p of
the coefficients to be faithful. Deligne’s bounds (A=3=37) state that if ¢+ -, a,q"
is a newform of weight 2, then |o(a,)| < oo(n)y/n for all n € N and for every
embedding ¢ of Q into C, where oy(n) denotes the number of positive divisors of
n. These bounds may not apply to the forms in the bases B. since they are not
eigenforms, but using the Q-generator of the Hecke algebra computed above, I can
compute for each ¢ a change of basis matrix from the basis B, to a basis of eigenforms,
then deduce from Deligne’s bound a bound on the complex embeddings of the B first
coefficients of the forms of B., and finally compute a bound on the coefficients of these
coefficients seen as polynomials in (—1)/2. I then choose p # £ to be the smallest
rational prime greater than twice this bound and such that p = 1 mod (¢ — 1)/2.
Then the (¢ — 1)/2-th cyclotomic polynomial splits completely over F,, and, letting
a; denote lifts to Z of its roots in [, the prime p splits completely in K into [[, p;,
where p; = (p, {—1)2 — @i)-
Next, I compute the forms

1 E}-E2
E4_1+240203 q,E6—1—54OZ“5 Q’and“_j:1728E§

n=1 n=1

in F,[[q]], as well as dj in ¢~2F,[[q]]dg, to precision O(q¢?).

I can then compute the g-expansions of the forms w with trivial nebentypus
¢ = 1 in B; as follows. Such a form w has g¢-coefficients in Z. Consider the form
v o= ‘;’gjq € Z[[q]]- It has weight 0, so it is a rational function on X;(¢), which
actually descends to a rational function on Xy(¢) because ¢ = 1. I claim that its
degree there is at most 2¢gy + ¢ + 1, where gy denotes the genus of Xy(¢). Indeed,

its degree is at most the number of zeroes of the 1-form w% plus the number of

poles of the 1-form dj. On the one hand, w% has exactly 2gp — 2 zeroes as it is
regular. On the other hand, as dj has a double pole at the cusp on X(1), it has a

2If T used a basis made up of eigenforms, the common number field containing the Fourier
coefficients of all these forms could be much larger.
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pole of order e, + 1 at each cusp ¢ of X((¢), where e, is the ramification index of c.
Summing over the two cusps of X(¢), one thus sees that dj has £+ 3 poles on X (¢),
hence my claim on the degree of v. Besides, u has degree exactly ¢ + 1 on Xy().
Consequently, there exists an irreducible polynomial ®(U, V') € F,[U, V] of degree at
most 2go+ ¢+ 1 in U and exactly £+ 1 in V such that ®(u,v) = 0 mod p. I compute
such a polynomial by coefficient identification in F,[[¢]], using a moderately precise
g-expansion of w computed by classical algorithms, along with linear algebra over
F,. Then, by Newton iteration, I can compute v mod p, and hence w mod p, to the
precision O(¢?), and finally lift the coefficients of w back to Z.

Now that the forms with trivial nebentypus are dealt with, I can compute the
g-expansions of the forms w with nontrivial nebentypus ¢ as follows. Let wy € By be
one of the gy forms® with trivial nebentypus whose g-expansion I have just computed.
Then 2 is a rational function on X;(¢) with nebentypus €. I could thus proceed to
find an equation ® as previously by reasoning on X;(¢) instead of Xy(¢), but this
would lead to very high degrees and hence would be too slow. Instead, notice that

T
if r denotes the order of ¢, then v = (ﬁ) has trivial nebentypus, so descends to

(291 =2)r
(e-1)/2>

X;(£), because it has degree at most (2g; — 2)r over X;(¢). I can thus compute as

previously for each p; an irreducible polynomial ®(U, V') € F,[U, V] of degree at most
8352/); in U and exactly £+ 1 in V' such that ®(u,v) = 0 mod p;. Next, I use Newton
iteration as before to compute v mod p;, then take the r*® root to recover w mod p;,
and finally lift back to K by Chinese remainders.

Finally, I apply the change of basis matrices from B, to the basis of eigenforms
which I computed in the beginning to the g-expansions of the forms which I have

just computed, so as to get the g-expansions of the newforms.

a function on Xy(¢), of degree at most where g = ¢ denotes the genus of

For large B, this method is faster than the one based one modular symbols:

Theorem B.3.1.1. For fized prime level £, the number of bit operations required to
compute the q-expansion of the newforms in Sy (Fl(f)) to precision O(qP) with the
algorithm described above is quasi-linear in B.

In comparison, the bit complexity of the classical algorithm based on modular
symbols is at least quadratic in B, cf. remark B—2Z3T3.

Proof. First notice that for fixed level ¢, the change of basis matrices from the bases
B. to the eigenforms are fixed, and so is the common field K = Q (C(g_l) /2). Con-
sequently, there exists some C' > 0 not depending on B such that the coefficients
of (g—1)/2 in the coefficients up to qP of the forms in the bases B. are bounded by
M = Csup,_50oo(n)y/n. One has M = O(B), because ay(n) = O(n°) for every
o > 0, cf. for instance [HWOR, ch. XVIII, theorem 315]. If B is large enough,
then M will be large too, so that by the prime number theorem for arithmetic

3Here, the method breaks down for ¢ = 13. Indeed, this is the only case in which gy = 0
(remember that I supposed ¢ > 11), so that there is no such form in this case. So, in this special
case ¢ = 13, classical methods to expand the forms should be used instead. This is not a big
problem, as this is a “small” case (g is only 2), so little accuracy in the g-expansions is needed to
compute the Galois representation, and classical methods based on modular symbols can be used
in this case.
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progressions (cf. for instance [Sopl0]), I can assume that there exists a prime num-
ber p = 1 mod (¢ — 1)/2 lying between 2M and, say, 3M. I can find such a p in
O(B log Bloglog B) bit operations thanks to the sieve of Eratosthenes (cf. the proof
of [GGYY, theorem 18.10 part ii]). Then arithmetic operations in the residue field
F, will require O(log B) bit operations. Next, £, and Eg can be computed mod p
to precision O(¢?) in O(Blog Bloglog B) bit operations by using again the sieve
of Eratosthenes, and u and dj can be computed in F,[[g]] to accuracy O(¢”) in
O(Blog B) operations in [F, by using fast series arithmetic. As / is fixed, comput-
ing the short g-expansions and finding the equations ®, which are of fixed degree,
takes fixed time. Then, each Newton iteration takes O(Blog B) operations in F,
thanks to fast arithmetic, and reaching precision O(q?) requires O(log B) such it-
erations. Finally, the coefficients can be lifted back to K since p > 2M, and each
such lift requires O(log B) bit operations, so lifting the forms requires O(B log B) bit
operations, hence the result. [

B.3.2 Computing the periods of X;(¢)

Computing the period lattice A amounts, by the Manin-Drinfeld theorem B—23T4,
to compute integrals of newforms w of weight 2 along modular symbols, such as

/: w(T)dr.

These integrals can be computed by integrating g-expansions term by term. However,
the integration path must be split so that the resulting series converges. Further-
more, to increase the convergence speed, I need the path ends to lie well-inside the
convergence disks.

To reduce the number of integrals which I compute, I use the adjointness property
of the Hecke operators with respect to the integration pairing between modular
symbols and cuspforms, so that it is enough for me to compute the periods along
a Ty -generating family of cycles, where Ty, denotes the Hecke algebra of weight 2
and level £. In general, the modular symbol {oo, 0} alone does not span the rational
homology of the modular curve, even over the Hecke algebra, so I introduce other
modular symbols, the twisted winding elements w,, defined (cf. [CEIT, section 6.3])
for p # ¢ prime or p =1 as

w= Y a0 {x}em(ro)

a mod p

where €, = (1—)) denotes the Legendre symbol at p, which I define to be 1 if p =1

for convenience.
By the Manin-Drinfeld theorem A223T4, each basis element v; of Hy (X;(¢)(C), Z),
seen as a linear form on S (F 1(6)), may be written as a Ty, ® Q-linear combination

Vi = ZTj,pwpv Tip € T2y ® Q.
p
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I can then compute the periods by using the adjointness property of the integration
pairing with respect to Hecke operators as follows:

/ w(T)dr :/ w(r)dr = Z/ (T pw)(T)dT = Z)\m/ w(T)dr,
Vi 30 Tjpwp p Jwp p wr
where )\;, € C denotes the eigenvalue of the newform w for the Hecke operator Tj .
Consequently, all I need is to compute the integrals pr w(r)dr.

The Fricke involution W, transforms the form w(r) into 725w (72). It is useful for
my purpose because it can be used to map a point 7 with small imaginary part to

e_rlv which may have a much larger imaginary part and hence significantly accelerae

the convergence of ¢-series. Formula asserts that if
w=q + Zanq” € SQ(Fl(f),S)
n=2

is a newform of weight 2, level ¢ and nebentypus ¢, then Wyw is the eigenform of
weight 2, level £ and conjugate nebentypus € defined by

Wuw = A(w) (q + Za_nq”> ;

n=2

where \(w) is given by

—ay if € is trivial,
A = ap
(W) @ if £ is nontrivial,

where g(-) denotes the Gauss sum of a Dirichlet character. Moreover, according to
theorem B=X2734 if x is a Dirichlet character modulo p # ¢, then

wRx =Y ayx(n)g"
n>1

is a cuspform of level ¢p?, and

Wipe(w ® v) = %s(p)x(—ﬁ) (W) ® %

An easy computation shows that

Y X(@)w(r +a/p) = 9(X)(w & X)(7)-

a mod p

This yields the formula

[ st =gte) | wee)r)dr

oo
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which allows me to compute the integral of a newform along a twisted winding

element, and thus to finally compute the period lattice of the modular curve X;(¢).
2m

I sum power series at ¢ = e »vZ for primes p, and such a ¢ has small enough
modulus to achieve fast convergence. I have indeed checked that p < 3 is very often
sufficient for the w, to span the rational homology of the modular curve over T,
and p < 7 is enough for all levels ¢ < 61, except for £ = 37 in which case I had to go
up to p = 19.

B.3.3 Computing an /-torsion basis

My goal is to find null-degree divisors D; and D, representing a basis of the eigen-
plane

Vie= () Ker (T = [us(T)]) € L(O)[1],

T€T27g
where 7 ((7,) = a, mod [ (cf. section A=3733). The period lattice A which I have just
computed yields an analytic model

J1(€)(C) ~ C9/A, and in particular the ¢-torsion subgroup J; (¢)[¢](C) is represented
by %A/ A. The action of the Hecke algebra Ty on S, (F1(€)), and hence on A and on
%A/ A, is known explicitly (cf. section A=273). As a consequence, I can compute the

subspace of %A/ A representing V; as

ﬂ Ker (T - [r“fv[(T)]) ‘%A/A (%)

TeT

by starting with 7 = () and successively adjoining T, T3, etc. to T until the
dimension of the intersection (&) drops to 2. Proposition BA=2273% implies that the
Hecke operators T, for n < ZQT_I span Ty, as a Z-module, so that should not take
too long (it is enough that 7 span Ty, as a Zy-algebra). Actually, in practice, it
turns out that it is enough to consider T3 and T3, so this is very fast.

I can thus express the vectors x;, xo making up an Fy-basis of V¢ as points in
C9/A. 1 fix g points P[,---, P, € Xi(¢)(C), and for each k € {1,2}, I lift x;, to
7 € C9, then I use Newton iteration to compute g points P/,---, P/ € X;(£)(C),
with each P} close to P;, such that

j=1
Here m € N is an integer, and I introduced the 2™ factor so as to help the Newton
iteration scheme to converge by ensuring that for each j, P/ stays well-inside the
coordinate disk containing P; (see below). The integral from P; to P} is understood
to be along a path which stays inside this disk, so that the left-hand side of (&=) is
well-defined in CY.

If the effective divisor P, + - - + P, € EffY (X1 (6)) is not special, then the map

(Pl Pl) Z (/P'jwi(T)dT>

1<igyg



B.3. DETAILED DESCRIPTION OF THE ALGORITHM 149

is a local diffeomorphism at (P[,---, P)) = (P, , F), so for m large enough, the
equation (&=) in (P, - -+ , P) has a unique solution in a neighourhood of (P, - - - , F,),
which will lie in the convergence domain of the Newton iteration scheme if m is large
enough. In practice I use m = 10.

More precisely, I first pick g (not necessarily distinct) cusps ¢y, - - -, ¢,. For each
of these cusps, there is an analytic map, the “g-coordinate” around c;

Kt E — X,(0)(C)

where E stands for the open unit disk in C, which maps 0 to the cusp ¢; and which
is a local diffeomorphism. Next, I choose g complex numbers ¢, ---, g, of small
moduli, and I let P; = x;(g;), which is thus close to the cusp ¢;. Consider another
vector of g small complex numbers 4y, ---, d,. The goal is to adjust this vector so
that (=) be satisfied with P} = r;(g; + J;). In a nutshell, the overall map I apply
Newton iteration to is

v I oxir — DX — Co
g P7{
(Gihgjcg — (Pigjzg — Z(P]{_Pj> — Z(/ Wz'(T)dT> 5
i=1 i=1 \"1 1<j<g

where U is a neighbourhood of 0 € E? such that (g; + d;)1<j<, remains in E? for all
(0j)1<j<g € U. The differential of this map is given by the newforms w; themselves
evaluated at the Pj’ , so using this map for Newton iteration presents no difficulty.

Once this is done, I need to double the divisor class of

g
D =>"(P - P)

j=1
m times by using K. Khuri-Makdisi’s algorithms, so as to get a divisor representing
xx. This is however not so immediate, since these algorithms only deal with divisors
of the form D — Dy, where D is an effective divisor of degree dy, Dy and dy being
defined in the beginning of the section B=271. To work around this, I fix what I call
a padding divisor, that is to say an effective divisor C' of degree dy — g = g + 1, then
I feed the divisors ) 7_, P/+C — Dy and »7_| P;+C — Dy (which are indeed of the
form D — Dy) to K. Khuri-Makdisi’s algorithms, and finally T use these algorithms
to subtract these two divisor classes. Feeding a divisor D — Dy to K. Khuri-Makdis’s
algorithms is easy: it amounts to computing the subspace Wp = H° (X 1(£),3Dq —D)
of V.= H° (X1 (0), 3D0) consisting of functions of V' which vanish at D. I do so by
evaluating the g-series in the basis of V' at the points of D and by doing linear
algebra. Since I shall thus have to evaluate g-series at C, it proves convenient to
choose a divisor C' supported by cusps, hence the notation C.

Finally, once the divisor D,(j”) is processed, I apply Khuri-Makdisi’s chord algo-
rithm BATT3T2A on it, yielding (—Z)m[D,im)] = +ux4. The + sign is not a problem,
because I get a basis (£, x2) for Vy no matter what the signs are, and this is all
I actually need.
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B.3.4 Evaluating the torsion divisors

I must construct a Galois-equivariant function o € Q(Jl(ﬁ)) which can be efficiently
evaluated at every point x € V} given in Khuri-Makdisi form. I shall then evaluate
a in each non-zero point of Vy, and form the polynomial

F(X)= [ (X - oa(x)) € QLx]
o<

which encodes the Galois representation py. In order to recognise its coefficients as
rational numbers, I compute the continued fraction expansion of each of them until
I find a huge term. Clearly, the lower the height of F'(X) the better, as it requires
performing all the computations described above with less precision in C in order
to be able to identify the coefficients. This means that I should use an evaluation
function o which is arithmetically well-behaved. In order to try to quantify this, I
may look at the class of its divisor of poles (or zeroes) in the Néron-Severi group of
J1(€); T expect that the “smaller” this class is, the better the arithmetic behaviour
of a will be.

The approach used in [CETT], [Bos07] and [ZJT3] consists in selecting a rational
function ¢ on X;(¢) which is defined over Q, and extending it to J;(¢) by

=: Jl(ﬁ) - C

g g

Y P—gO| — > &Py,
i=1 1=1

where ¢ denotes the genus of X;(¢) and O € X;(¢)(Q) is an origin for the Abel-
Jacobi map. Indeed, by the Riemann-Roch theorem ATTT33(v), each divisor class
z € Pic” (X1(£)) can be written as [E, — (2], where ) is a fixed divisor of degree g
and F, is an effective divisor of degree g which is unique for generic x, so this does
define a rational function on Ji(¢), which is defined over Q since O and ¢ are. The
divisor of the poles of this function is

Ee= > 7o 00

Q@ pole of &

where 7, denotes the translation by x map on J;(¢) and © is the theta divisor on
J1(¢) attached to the Abel-Jacobi map with origin O. Thus (Z). is the sum of deg ¢
translates of ©. If I am to let this function = play the role of o, then I want it to
be be arithmetically well-behaved, so that I should take a & with degree as low as
possible. However, this degree is by definition at least the gonality of X (¢), which
is roughly proportional to g (cf. [Abr96, remark 0.2]), so this method becomes less
and less effective as the genus grows.

For this reason, I introduce a radically different method, which can be used to
construct a function o € @( Jac(X )) on the jacobian of any algebraic curve X. Let
g be the genus of X. As previously, every point z € Jac(X) can be written as
[E, — gO], where E, is an effective divisor of degree g on X which is generically
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unique, and O € X is a fixed point. Let Il be a fixed divisor on X of degree 2g.
Then, again by the Riemann-Roch theorem BT T33(v), the space H*(X,II — E,) is
generically 1-dimensional over C, say spanned by ¢, € C(X). The divisor of ¢, is of
the form (t,) = —II + E, + R,, where R, is a residual effective divisor of degree g
on X, which is the image of E, by the reflection

Rp: Pic?/(X) — Pic/(X)
[E]  +~— [I-E].

Let A and B be two points on X disjoint from the support of II. I can then define

a: Jac(X) --» C

ta(A)
This map is well-defined only on a Zariski-dense subset of Jac(X) because of the
genericity assumptions, and it is defined over Q if X, I, A, B and O are. Moreover,

it is much better-behaved than the function = used in the classical approach:

Theorem B.3.4.1. The divisor of poles of v is the sum of only two translates of the
© divisor.

Proof. The function « has a pole at « € Jac(X) if and only if [E, — ¢gO] or [R, — gO]
are on the support of 7 ;0. But [R, — gO] is the image of [E, — gO] by the
involution Ry = T_g40] © [—1] defined above, and [-1]*© = 70 is the translate of
© by the image K of the canonical class, cf. [HSO0, theorem A.8.2.1.i]. ]

This is even in some sense optimal, since by the Riemann-Roch theorem for
abelian varieties (cf. [HSOU, theorem A.5.3.3]), no non-constant function on Jac(X)
has a single translate of © as divisor of poles, whereas the Néron-Severi group of the
jacobian of a generic curve is infinite cyclic and spanned by ©.

In order to make this practical on the modular curve X;(¢), there is a diffi-
culty which must be overcome: In K. Khuri-Makdisi’s algorithms, a divisor class
x € Ji({) is represented by a subspace Wp = H°(X,((),3Dy — D) C V, where D is
an effective divisor of degree dy = 2g + 1 such that [D — Dy] = x, but such a D is
far from being unique — by the Riemann-Roch theorem BATT33(i), there is a whole
(g9+1)-dimensional projective space of them ! Thus, the first thing to do is to rigidify
the representation Wp of x into a representation which depends on x only. To do
this, I compute the sub-subspace

Wprea = H(X1(0), 3Dy — D — C) C Wp,

where C) is a fixed effective divisor of degree d; = 2dy — ¢, so that Wp eq will
generically be 1-dimensional by the Riemann-Roch theorem BT T33(v). Let sp € V
be such that Wp ;eqa = Csp. Its divisor is of the form

div(sp) = =3Dg+ D + Cy + Ep,

where Ep is some effective divisor of degree ¢g. Again by the Riemann-Roch theorem
[ATT33(iv), Ep is generically alone in its linear equivalence class. But on the other
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hand, if Wp and Wy, both represent the same point x € J;(¢)(C), then D ~ D’; so
that Ep ~ Epr as Dy and C are fixed. Consequently, one generically has Ep = Epy,
which shows that Fp only depends on x and not on D, so that the process Wp — Ep
is the rigidification which I am looking for. I then use a trick ¢ la Khuri-Makdisi: 1
first compute

sp-V ={spv, ve V} =H"(X,((),6Dy — D — Cy — Ep)
by using the “multiply-by-function” block BTT2377, after which I compute
HO<X1(€),3D0 - C) - ED) = {U eV | vWp C sp - V}

by using the “subtract” block AT-3W. Next, I fix another effective divisor Cy of
degree dy = dy + 1 — g, so that the subspace H° (Xl(ﬂ), 3Dy — C, — Cy — ED) of the
previously computed space H° (X 1(0),3Dy—C1— E D) is generically one-dimensional.
Letting II = 3Dy — C — (Y, I thus have computed a function tp € C(Xl(ﬁ)) such
that

Ctp = H(X1(0),11 — Ep),

as wanted. This allows me to compute the map «, which is defined over QQ as long as
C1, Cy, A and B are. As in the previous section, it proves convenient to choose the
divisors C and C5 to be supported by cusps, so that the g-series can be evaluated
effortlessly, hence the notation C; and Cs.

Evaluating o on V7, I may thus hope to get a defining polynomial F'(X) of loga-
rithmic height g/2 times less than if I had used the classical approach. A numerical
comparison of these two methods may be found in [DvHZT4, table 2 p.8].

Table BZ3"42 below, which compares the genus g = % of the modular
curves X1 () to the rough number h of decimal digits in the common denominator of
the polynomials F'(X) associated to newforms of level N =1 (cf. the Tables section
belowl) which I computed using the algorithm currently being described, seems to

indicate that the heuristic performance of my method is h ~ ¢g*°.

14 g h
11 1 0
13 2 )
17 ) 50
19 7 150
23 12 500
29 22 1800
31 26 2500

Table B.3.4.2: Comparison of the size h of coefficients of F(X) (computed with my
method) with the genus g of X;(¥)
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B.3.5 Finding the Frobenius elements

After evaluating a suitable function in the torsion divisors representing the points
of Vi \ {0}, T have thus got a polynomial F(X) € Q[X] of degree £> — 1 whose
decomposition field is the field L fixed by the kernel of the Galois representation.
It is thus a Galois number field, and its Galois group over Q is embedded by the
representation py into GLy(FFy). I would now like to know the image of the Frobenius
elements Frob, in GLy(FF|), especially so as to get the value of the coefficients a, of
f modulo [ by looking at the trace.

The roots a(z), © € Vi —{0} of FI(X) come by construction with an indexing by
Vi1 —{0} such that the Galois action of Gg on them corresponds to its py-action on
the indices, so that I am perfectly poised to use the Dokchitsers’ method described
in section A=37.

This allows me to determine the similarity class of p(Frob,) for almost all primes
p € N. It fails only if F'(X) is not integral or not squarefree modulo p, or if two
resolvents I'c(X) (defined in section B=32) do not remain coprime when reduced
modulo p. However, the primary goal of my computations is to find the coefficients
a, of the g-expansion of f modulo [, and as naive methods compute a, for small p in
almost no time, the only case I am really interested in is the case of extremely large
(if not titanic) p, for which failure is extremely unlikely. The only thing to do is to
find a polynomial h(X) € Z[X] such that the resolvents I'c(X) are pairwise coprime
over Q, and in practise either A(X) = X2 or h(X) = X3 works.

Once the resolvents are computed, it is easy to deduce what ps ((Frob,) is similar
to, and hence to compute the coefficients a, of f modulo [.

B.3.5.1 The quotient representation trick

Unfortunately, these computations, although simple, can be rather slow because
they require performing operations on very high precision approximations of certain
complex numbers, due to the large height of the coefficients of F'(X). For instance,
for ¢ = 29, about 5 million decimal digits after the decimal point are required to
compute the resolvents, so that the computation is almost intractable.

For this reason, I present a simple trick, which in most cases allows to sharply
reduce the amount of computations needed. The key is that I have not yet used
the fact that I know in advance what the determinant of the image of the Frobenius
element Frob, is, namely (p)p*~! mod [, where k and e denote respectively the
weight and the nebentypus of the newform f.

The idea is then to compute a quotient representation, that is to say the repre-
sentation ps( composed with the projection map from GLy(F|) onto one its quotient
groups. The coarser the quotient, the smaller the computation, so one should use
a quotient just fine enough to be able to lift correctly an element back to GLo(TF)
provided that the determinant of the lift is known. For instance, PGLy(FF)) is slightly
too coarse, because the knowledge of the image of a matrix in PGLy(F() and of its
determinant only determines this matrix up to sign. This is the very reason why J.
Bosman, for computing only the projective Galois representation in [Bos(7], deter-

mined the coefficients a, of f only up to sign. However, some intermediate quotients
between GL, and PGLy will do:
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Lemma B.3.5.1. Embed F; into GLy(Fy) by A — [} $]. Let S be a subgroup of
F;, and let m: GLo(Fy) — GLo(Fy)/S be the projection morphism. Then the group
morphism
¢: GLo(F,) — GLy(F,)/S x F
g  +—  (n(g),det(g))

is injective if and only if —1 &€ S.

Proof. Let g € GLy(Fy). If g € Ker ¢, then in particular g € Ker, so that there
exists a scalar s € S such that g = [§2]. Since also det g = 1, one has s* = 1, hence
s = #£1. The result follows. O]

In the light of this result, I let S to be the largest subgroup of F; such that
—1 ¢ S. This is the subgroup made up of the elements of odd order in F}, that is
to say, the 2’-subgroup of F;. If £ — 1 = 2"m with », m € N and m odd, its order is
#S =m.

Let the associated quotient Galois representation be

Pf,1

p?,l: GQ ——— GLQ(F[) — GLQ(F[)/S

Then the image of the morphism p]Scy[ X Xﬂf—l is contained in the image of ¢, so the
map

—k—1
p?[XXg

GLy(F,) /S x T — 2 GLy(Fy)
is well-defined, and agrees with py .

To compute the linear representation py, it is therefore enough to compute the
quotient representation p;f,[. This amounts to describing the Galois action on the
quotient space V;;/S. 1 thus begin by computing a polynomial F¥(X) € Q[X]
corresponding to the action of Gg on Vy /S, by tracing the roots a(z), 0 # x € Vy,
of FI(X) along their orbits under S:

Fx)= 1] (X—Za(sx)).

SxeVy /S ses
x#0

0: Go

This new polynomial has roughly the same height as the original F'(X), but its degree
is #S times smaller.

Next, I compute a resolvent I's(X) for each conjugacy class C of GLy(F,)/S. As
the subgroup S of GLy(IFy) is central, these conjugacy classes are easy to describe:

Lemma B.3.5.2. Let 7: GLy(F;) — GL2(F,)/S denote the projection map, let
g € GLy(F,)/S, and let g € GLy(F,) such that 7(g) =g. Then 7 induces a bijection

7y Conjugacy class of g — Conjugacy class of g
hgh™! — m(hgh™1).

Proof. 1t is clear that the image of the conjugacy class of g by 7 is exactly the
conjugacy class of g, so that m, is well-defined and surjective. To show that 7, is
also injective, let hy, hy € GLo(F,) such that 7(high;') = m(haghy '), that is to say
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such that high;' = shogh; ' for some s € S. 1 must prove that high;* = haoghsy .
By taking determinants, one sees that det s = 1. As s is scalar, this implies s = £1.
Since —1 & S, one concludes that s = 1, and therefore high;* = hogh; . ]

A resolvent I'5(X) has therefore exactly the same degree as (each of) the corre-
sponding I'c(X), so I still have to use the same very high precision in C to compute
it. However, I now have #.S times less such resolvents to compute. Furthermore, the
roots Y i h(a;)o(a;) of these resolvents actually take (#S)? less time to compute,
since they are defined by sums #S times shorter and there are #S times less of
them.

Using these resolvents I'=(X), I can then determine the conjugacy class of the
image of the Frobenius element Frob,, in GLy(IFy)/S as above, and since —1 ¢ S, I can
deduce the similarity class of the image of the Frobenius element in GLy(F,) using
the fact that its determinant is p*~! mod ¢. Consequently, with this trick, I can still
compute the linear representation py;, saving a factor (#S5)? in the computation of
the roots of the resolvents, and a factor #5S in their expansion and in the identification
of their coefficients as rational numbers.

Since
B {—1
o 9orda(¢—1)’

#S=m

this prevents this final step of the Galois representation computation from being the
slowest one, as explained in section B4,

B.3.5.2 Reducing the polynomials

The biggest problem is that the coefficients of the polynomial F'(X) tend to have
larger and larger height as ¢ grows. More precisely, table BZ3742 seems to indicate
that this logarithmic height grows as ¢*5. While this is rather harmless for [ < 17
(that is to say g < 5), it makes the Dokchitsers’ method intractable as soon as
¢ > 29, even with the quotient representation trick. It is thus necessary to reduce
this polynomial, that is to say to compute another polynomial whose rupture field is
isomorphic to the rupture field of F(X) but whose coefficients are much nicer. An
algorithm to perform this task based on LLL lattice reduction is described in [Coh93,
section 4.4.2] and implemented in [Pari/GP] under the name polred. Unfortunately,
the polynomial F'(X) has degree ¢ — 1 and tends to have ugly coefficients, and this
is too much for polred to be practical, even for small values of /.

On the other hand, it would be possible to apply the polred algorithm to the
polynomial

reix)= I [X-D al) | eQx]
WePVy, ;;e;%/

whose splitting field is the number field LP™ cut out by the projective Galois repre-
sentation

P G —% GLy(Fy) —= PGLa(Fy) |

but this representation does not contain enough information to recover the values of
a, mod [.
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However, T have just explained above that working with FP™(X) is not enough
to recover the values of a, mod [, whereas working with F(X) is. If the degree
and height of F¥(X) are not too large, then I can apply the polred algorithm to it
directly. Write £ — 1 = 2"m. Since #S = m, the degree of F'¥(X) is 2"(¢ + 1), so 1
can polred it directly in the cases ¢ = 19 or 23, but the cases £ = 29 or 31 remain
impractical.

For these remaining cases, Bill Allombert suggested to me that one can still reduce
F3(X) in several steps, as I now explain. Since F} is cyclic, there is a filtration

F; =5%2>252---285 =5
2 2 2

with [S; : S;11] = 2 for all ¢, namely

IF* *
r — T

For each i, let

Ex)= I <X—Za<sx>> € QIX),

Sierf,[/Si SES;
x#0

K; = Q[X]/Fi(X),

and let L; be the Galois closure of K, that is to say the number field cut out by the
quotient representation

Pf

p: Gg—* GLay(Fy) — GLa(F,)/S; .

In particular, one has ,Oi[ = p?f[o 1 Ly = LP™i, and I am looking for a nice model of

K,.
The fields K; fit in an extension tower

K,

2

2 am

and the trick is to polred the polynomials F;(X) along this tower recursively from
bottom up, as I now explain.

First, I apply directly the polred algorithm to Fy(X) = FP™I(X). Since the
degree of this polynomial is only ¢ 4 1, this is amenable, as mentioned above.



B.4. COMPLEXITY ANALYSIS 157

I then proceed by induction. Assuming that I have managed to reduce F;(X), I
have a nice model for K; = Q[X]|/F;(X), so I can factor F;,1(X) in K;[X]. Since
the extension K;,; = Q[X]/F;;1(X) is quadratic over K;, there must be at least one
factor of degree 2. Let G;11(X) be one of those, and let A; € K; be its discriminant,
so that

K =~ Ki[X]/Gi(X) =~ K;(VA,).

In order to complete the induction, all I have to do is to strip A; from the largest
square factor I can find, say A; = A?§; with A;,d; € K; and §; as small as possible.
Indeed, I then have K, = Ki(\/é_i), and actually even K; | = Q(\/E) unless I am
very unlucky?, so that if x;(X) € Q[X] is the characteristic polynomial of §;, then
one has

K~ Q[X]/Xi(X2)7

and so x;(X?) is a reduced version of Fj,;. If its degree and coefficients are not too
big, I can even apply the polred algorithm to this polynomial in order to further
reduce it, which is what I do in practice since it makes the next step of the induction
faster.

In order to decompose A; into A%§;, I would like to factor A; in Kj, but even if K;
were principal, this would not be amenable whatsoever. I can however consider the
ideal generated by A; in K;, and remove its ¢-part. The fractional ideal 23; which
I obtain must then be a perfect square, since K, is unramified outside ¢ (since L
is), and the very efficient idealsqrt script from [BST4] can explicitly factor it into
B, = A2, If A; denotes an element in 2l; close to being a generator of 2; (that is to
say of norm not much bigger than the norm of A;), or even an actual generator if
amenable, then §; = A;/A? must be small, so this does the trick.

B.4 Complexity analysis

The most time-consuming part of the computation of the polynomial F'(X) € Q[X]
defining the representation is the arithmetic in the jacobian J;(¢). To perform these
operations, K. Khuri-Makdisi’s algorithms rely on linear algebra on matrices of size
O(g) x O(g); as g = % = O(f?), and since my algorithm computes O(¢?)
(-torsion points in the jacobian, this implies a complexity of O(¢%) operations in C
to compute the Galois representation.

Let h be the logarithmic height of F(X), so that computing F(X) with my
algorithm requires a precision of O(h) bits in C. Then the complexity of my method
to find F(X) is O(¢8h) bit operations. The experiments which I have run (cf. table
B342) seem to indicate that h is O(g*%) = O(£°), but I do not try to refine this

estimate, because I do not know a proven sharp® bound on h.

“The case K;+1 2 Q(v/9;) has never happened to me in practice. Should it happen, it can be
corrected by multiplying §; by the square of an (hopefully small) element in K.

5B. Edixhoven and R. de Jong proved the bound h = O(¢16) in [CETL, theorem 11.7.6], but that
seems really pessimistic compared to table BZ322, and it is completely impractical to use £6 bits
of precision in C, even in the small genus cases: even all the hard drives in Bordeaux university put
together would barely be enough to store just one complex number with such an insane accuracy.



158 PART B. COMPUTING MODULAR GALOIS REPRESENTATIONS

Next, if T did not use the fuofient representation tricK (cf. section BZ3H),
computing a root Y h(as)agm) of a Dokchitsers’ resolvent I'c(X) would require
O(deg F) = O((?) operations in C. As there is one such root for each g € GLy(F,),
computing all these roots would require O(£°) operations in C. Then, computing a

resolvent I'c(X) from its roots would require O(degT'¢(X)) = O(£?) operations in
C using a fast Fourier transform. As there are O(f?) similarity classes in GLo(IF,),
computing all the resolvents I'c (X)) from their roots would require 9] (¢*) operations in
C. Thus the overall computation of all the resolvents would require O(¢%) operations
in C, the slow part being the computation of their roots. The precision in C I would
have to work at for this is O(¢*h), so that the total complexity of the computation
of the resolvents I'e:(X) would be O(£8h) bit operations, which is the same as the
rest of the computation.

However, with the guofient represenfafion trick, computing the resolvent roots
>, h(az)agem) requires only O(£°/|S|?) = O(¢*(3) operations in C, where ¢y = 2" is
the 2-primary part of ¢/ — 1, and then computing the resolvents I'z(X) from these
roots takes only O(£*/|S|) = O(£3(,) operations in C. Therefore, computing the
resolvents I'w(X) overall requires O(£5¢2h) bit operations, since the precision in C I
have to work at is still O(¢2h). So, for instance, the use of this trick allows me to
reduce the complexity of the computation of the resolvents I'5(X) by a factor ¢2 if T
restrict to the primes £ = —1 mod 4. Note that restricting to such ¢ does not worsen
the complexity of the computation of coefficients a, of f by Chinese remainders. On
the other hand, in the worst cases £ = 2* +1 for some \ € N, this trick unfortunately
does not help at all.

Although its use sharply reduces the computational effort for large ¢, I shall not
try to quantify here the impact of the quadratic tower reduction trick presented in
section BZ237h 9, as I do not know the complexity of the idealsqrt script from [BST4].

Finally, once the polynomial F'(X) and the resolvents I'5(X) are computed for
some fixed f and [, then the element h(a)a? can be computed in the FF,-algebra
F,la] = F,[X]/F(X) in O(log p) operations in F, by a square-and-multiply approach,
and computing its trace u to F, and evaluating the resolvents I'w(X) at u requires
O(1) operations in F,. Since each arithmetic operation in F, can be performed

in O(log p) bit operations thanks to fast arithmetic, the coefficient a, of f can be
determined modulo [ in only 6(log2 p) bit operations. It is therefore possible to
compute a, mod [ for titanic primes p having thousands of decimal digits, cf. the
tables in section .

The practical computation times achieved by my algorithm are indicated in table

T below.
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C.1 Tables

I have computed all the Galois representations py; attached to the newforms
f € Sp(1) of level N = 1 and of weight & modulo the non-exceptional® primes [
of degree 1 and lying above the rational primes ¢ ranging from k + 1 to 31, along
with the much easier case of the Galois representation pa 11 attached to A mod 11
and which is afforded by the 11-torsion of the elliptic curve X;(11) as a warm-up.

According to Maeda’s conjecture, for each weight k& there is only one newform in
Sk(1) up to Gg-conjugation. This conjecture has been verified in [FW02] for £ up to
2000, and since I work with newforms of level 1 and weight k& up to only 30 (because
of the condition k£ < ¢), I may denote without ambiguity one of the newforms in Sy (1)
by fr, and the coefficients of its g-expansion at infinity by 7(n). Then, for each k,
the newform f; and the sequence (m(n))n}2 are well-defined up to Gg-action, and
the newforms in Si(1) are the Gg-conjugates of

+oo
fe=q+> m(n)g"
n=2
Thus for instance fio = A, 715 = 7 is Ramanujan’s 7-function,

“+o0
fie = EsA = q + Zﬁﬁ(n)q"

n=2

is the only newform of level 1 and weight 16, and so on. Although I would have
liked to treat other similar cases, the only newform with non-rational coefficients for

n the sense of definition B339

159
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which I have computed the attached Galois representation was foy, for which I have
computed the Galois representations only modulo the primes lying above ¢ = 31,
due to the conditions that [ be of degree 1 and that k < /.

For each Galois representation p¢, I denote by L the number field it cuts out, and
I give the image of the Frobenius element <L1/T@> at p for the 40 first primes p above

10199 Since these p are unramified, these Frobenius elements are well-defined up to
conjugacy, so their images are well-defined up to similarity. I represent a similarity
class in GLy(IF() by its minimal polynomial in factored form over Iy, as explained in
remark A3,

I carried out my computations on the PlaFRIM experimental testbed of the
Bordeaux university. The softwares used were [SAGH]| for the main part of the
computation, and [Pari/GP] for the polynomial reduction.

For each ¢, I indicate in table T below the precision in C (in bits) at which
I chose to perform the computations (it had to be at least twice the height of the
coefficients of the output polynomial F'(X) describing the field cut out by the repre-
sentation), as well as the typical execution times of the various steps of the algorithm:

e the human time taken by the computation of the period lattice of X;(¢) (cf.
section BZ33), including the g-expansion of the cuspforms of weight 2 (cf.
section BZ3X)), along with the necessary precision of the g-series so as to achieve
the required accuracy in C (this depends strongly on the largest p for which I
need to consider the twisted winding element wy,,),

e the human time needed to initialise K. Khuri-Makdisi’s algorithm to compute
in Ji(¢), that is to say to compute the g-expansion of the Eisenstein series e o
and ey 3 (cf. section BZ3) and the multiplication of the weight 2 modular
forms into weight 4 and weight 6 (cf. section B=2T),

e the CPU time required to perform one group operation in J; (),

e the CPU time spent in Newton iterations in order to approximate an ¢-torsion
divisor (cf. section B=33),

e the CPU time required to evaluate my Galois-equivariant function

a: Jy(0) —-» Q (cf. section BZ34) at one point of Ji(¢),

e the CPU time required to reduce the polynomial describing the number field
cut out by the Galois representation (cf. section BZ37h2),

e the human time required to compute one of the Dokchitsers’ resolvent I'e(X)
(cf. sections A=32 and BZ35T),

e and finally the total human time taken to compute the Galois representation,
from scratch to the Dokchitsers’ resolvents (note that in practise, the period

then re-used for each newform f of weight £ < ¢ and each prime [ lying above

0.

By CPU time, I mean the human time that would be required if I did not use
any parallelisation.
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Level ¢ 11 13 17 19 23 29 31
Genus ¢ 1 9 5 7 12 22 2
Prief(séon 700b 800b 1.2kb 1.5kb 5kb 15kb  30kb
g-precision 736 959 1.6k 5k 8k 26k 129k
of series
Periods
of X,(0) 6s 83 83 6m 22m 2d  6d
. Makdisi 135 13s  16s  45m 10m 11h  10h®
initialisation
One operation | o o0 g0 15m 6h  1d
in Jy(¢)
Newton s 92 145 1m 7m 31h 2d
1terations
Evaluation

in Jy(0)[(] Is 2s 15s 36s 6m  3h 12h
polred” 10s  30s - Sm 3h 1d 5d

Resolvents

6s 34s 1m 34s 26s 3m 1m
I'z(X)
Total <lm 3m 30m 40m 10h 6d 12d
time

Table C.1.0.1: Parameters and times of the computations

Once the resolvents I'(X) are computed, the time required to compute the trace
of the Frobenius element at p is essentially independent of ¢ for large p; it is about
30 minutes for p ~ 10190,

The results are the following:

2The case ¢ = 17 is somehow special since it is the case where the quotient representation trick
does not help. I have not tried to reduce the polynomials computed by my algorithm in this case,
and I have proceeded directly to the computation of the resolvents, so the algorithm I use is slightly
different.

3Due to an exaggerated memory usage to store the Fourier coefficients of the series, I split my
code to initialise K. Khuri-Makidisi’s algorithms into several substeps, and I used the occasion the
partly-rewrite it and parallelise it, whence the better time than for ¢ = 29.

4For ¢ < 23, the coefficents of the polynomial F(X) computed by my algorithm were not
too ugly, so I applied [Pari/GP]’s polred algorithm directly on the polynomial F°(X) defining
the quotient representation. It is only for £ = 29 and 31 that I deemed it necessary to used the
step-by-step reduction process described in section BZ352.
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n)q" = q — 24¢* + 252¢° + O(q*)

p

101990 4 453
101090 4 1357
101000 4 2713
101090 44351
101090 4 5733
101000 4 7383
101990 + 10401
10109 4 11979
101090 4 17557
101090 4 21567
10005599973
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 4+ 46227
101090 1 46339
101090 4 52423
101990 + 55831
101090 4 57867
101900 + 59743
10199 1 61053
10109 1 61353
101999 + 63729
101090 4 64047
101090 4 64749
101090 1 68139
101090 1 68367
10199 4 70897
101090 4 72237
101990 + 77611
101090 178199
101090 479237
101990 4 79767
10109 4 82767
101090 4 93559
10109 4 95107
101999 1100003

(v - 9)(z — 4
(x —8)(x —2)
r’+1+8
(x —6)(x — 3)
2 +3x+3
22 +3x+3
(x — 8)(x — )
2+ 1
(x —10)(z —9)
2 + 10z + 8
(z —9)(z —6)
(x —8)(x — 1)
(x —9)(z — 6)
22 +4r+9
(x —9)(z — 3)
2+ 9
22 + 6z + 10
(= 7)(x —4)
(x —8)(x —1)
(v —3)?

22 +10c+7
(x —=8)(x—1)
(o 3)(z—1)
(z —9)?
24+z+7
?+x+7
(x—=3)(x—2)
(x —10)(x = T7)

x? +4x+7
2+ 2x+4
(v —4)?
(x —10)(z —9)
(x —9)(x —4)

Similarity class of (L}/TQ) 7(p) mod 11

2
10
10
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¢ =13

—+o0
fla=A= Z 7(n)q" = q — 24¢* + 252¢° + O(q*)
n=1

p

101990 4 453
101090 4 1357
101000 4 2713
101090 44351
101090 4 5733
101000 4 7383
101990 + 10401
10109 4 11979
101090 4 17557
101090 4 21567
10005599973
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 4+ 46227
101090 1 46339
101090 4 52423
101990 + 55831
101090 4 57867
101900 + 59743
10199 1 61053
10109 1 61353
101999 + 63729
101090 4 64047
101090 4 64749
101090 1 68139
101090 1 68367
10199 4 70897
101090 4 72237
101990 + 77611
101090 178199
101090 479237
101990 4 79767
10109 4 82767
101090 4 93559
10109 4 95107

10109 1100003

Similarity class of (L}/TQ) 7(p) mod 13

22 +3z+1 10
(x —10)(z —7)
2+ 122 + 12

2+ 1+ 12
(x —12)(z — 4)

224+ 6z +7
(z—5)(x —2)

(v —9)?

12 + 62 + 4

2+ 5z + 9
(x —10)(x — 8)
22 4 8z + 10
2?2+ 102 +7
(= T7)(z —4)

r’+z+3
(x —11)(z — 3)
(x —10)(x = T7)

224+ 10z + 7
(=8)(xz—T)
(x —10)(z — 3)
(z — 4)(z - 3)
(z—2)(x — 1)

z2 + 6
>+ 1+5
(x —11)(z — 5)
(x —11)(x — 1)
(x —10)(x — 9)
(z —4)(z —3)

2 + 6243
(z —7)(z —5)
(x —12)(z = T7)
22+ 11z + 12
22 + 5z + 10
( —T7)(x —4)
(z—4)(z-2)

2+ T+ 7
22+ 9z + 12

x?2 +8x 41
22+ 102 +7

2246z +4

— — = — — = —
N WO OO L0 (T TOD (WP O WTONDWHE 5 WOt N0t W o
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(=17

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
fz=A=) 7(n)q" = q—24¢" + 252¢° + O(q*)
n=1

p

101990 4 453
101090 4 1357
101000 4 2713
101090 14351
101090 4 5733
101000 4 7383
101999 + 10401
10109 4 11979
101090 4 17557
101090 4 21567
101000 4 22273
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 1 52423
101990 + 55831
101090 4 57867
101900 4 59743
101990 1+ 61053
101090 1 61353
101999 + 63729
1010%0 4 64047
101090 4 64749
10109 1 68139
101090 1 68367
101090 4 70897
101090 4 72237
101990 4 77611
101090 1 78199
101090 4 79237
101090 4+ 79767
101090 4 82767
101090 4 93559
10109 4 95107

10199 + 100003

Similarity class of (Lj/TQ) 7(p) mod 17

2+ 3 0

(x —15)? 13
(x — 14)(z — 12) 9
(x —10)(z — 6) 16
(x —6)(z —4) 10
(x —15)(z — 2) 0
(x —T)(x —3) 10
22 4+ 62+ 3 11
224+ 11z +6 6
22 + 162 + 3 1
x? + 16z + 8 1
2?2 +8x 46 9
x? 4+ 22 + 13 15
(x —16)(z —2) 1
w2 +5x+7 12
%+ 6x + 16 11
(x —11)(x — b) 16
22+ 4o+ 7 13
(x — 14)(z — 10) 7
(x —16)(z — 5) 4
22+ 14z + 8 3
2+ 8z + 9 9
(x —14)(z—T7) 4
x4+ 152 + 11 2
z% 4+ 6z + 16 11
22 +6 0
22+ 7+ 14 10
(x—6)(x—1) 7
(x — 11)(z — 10) 4
(x —16)(z —2) 1
2+ 52 +5 12
2+ 7 0

z? + 152 + 11 2
(x —16)(z — 8) 7
(z — 10)(z — 5) 15
(x —8)(z —1) 9
22+ 16z + 3 1
2%+ 5x + 14 12
(z —11)? 5
(x —14)(z —5) 2




C.1.

TABLES

+o00
fie = EsA =) " mig(n)q" = q + 216¢° — 3348¢° + O(q*)
n=1

p

101900 4 453
101090 41357
1010%0 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
10109 4 11979
101090 4 17557
101990 4 21567
(0005595973
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
1010% 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 4 52423
101990 + 55831
101090 4 57867
101990 + 59743
101990 1 61053
10109 1 61353
101999 + 63729
101000 4 64047
101090 4 64749
101090 1 68139
101990 1 68367
101999 4 70897
101000 4 72237
101990 + 77611
101090 178199
101090 479237
101990 + 79767
101090 4 82767
101090 4 93559
101990 495107

10199 1+ 100003

Similarity class of (L]/TQ) T16(p) mod 17

z% 4+ 5z + 12 12
2243z +4 14
2+ 8x + 2 9
2?2 4 14z + 8 3
22+ 11z +6 6
(x —8)? 16
(x — 16)(z — 13) 12
(x—=9)(xz—T7) 16
(x —5)(z —2) 7
22+ 122 + 12 5
22+ 13z +9 4
22 + 10 0
(x —16)(z — 4) 3
(x —10)(z —T7) 0
2+ 9z + 6 8
2 +4x + 16 13
(x—4)(x—1) 5
(x —12)(z —9) 4
r? + 15z + 4 2
(x —11)(z —9) 3
2+ 92+ 9 8
2?2 + 122 + 8 5
(z — 8)? 16

(x — 15)(z — b) 3
2?2 + 162 + 16 1
x? + 14z + 10 3
2+ 122 +5 5
22 + 10 0
(x —10)(z — 6) 16
2?2 + 8z + 2 9
(x — 16)(z — 14) 13
(x —13)(z —T7) 3
(x —6)(z —4) 10
(x —8)(z—1) 9
2?2+ 13z + 16 4
22 +4x+9 13
2% + 5z + 12 12
22 +5 0

(x —7)? 14

(x —10)? 3
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(=19

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
fz=A=) 7(n)q" = q—24¢" + 252¢° + O(q*)
n=1

p

101990 4 453
101090 4 1357
101000 4 2713
101090 14351
101090 4 5733
101000 4 7383
101999 + 10401
10109 4 11979
101090 4 17557
101090 4 21567
101000 4 22273
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 1 52423
101990 + 55831
101090 4 57867
101900 4 59743
101990 1+ 61053
101090 1 61353
101999 + 63729
1010%0 4 64047
101090 4 64749
10109 1 68139
101090 1 68367
101090 4 70897
101090 4 72237
101990 4 77611
101090 1 78199
101090 4 79237
101090 4+ 79767
101090 4 82767
101090 4 93559
10109 4 95107
10199 1100003

Similarity class of (Lj/TQ) 7(p) mod 19

(x — 15)(z — 10) 6
(x —17)2 15

(x —11)(z — 4) 15
(x —6)(z —4) 10
(x —16)(z — 1) 17
(r —1)2 2
2+ 11z + 4 8
(x —16)(z — 13) 10
2 + 8z + 14 11
(z —11)? 3

(x —13)(z — 1) 14
(z — 14)(z — 10) 5
z? + 14z + 15 5
(x —10)(z —9) 0
22+ 120+7 7
(x — 18)(z — 15) 14
(x — 13)(x — 11) 5
2 +5 0
2+ x+11 18
a? + T+ 7 12
(x —16)(z — 13) 10
(x —17)(z — 2) 0
r? + 5z + 9 14
2+ 9z + 3 10
(x — 14)(z — 10) 5
x® 4 152 4+ 8 4
(z — 6)(z — 5) 11
(x — 13)? 7

r? 4+ 15z + 13 4
(x — 14)(z = 5) 0
(x — 18)(z — 15) 14
(x —10)(z — b) 15
2?2+ 13z + 6 6
(z —15)? 11
22+ 120+ 9 7
x* 4+ 13z + 13 6
12+ 3z + 8 16
12 +4x + 8 15
2+ 13z + 15 6

22+ 543 14




C.1.

TABLES

+o00
fie = EsA =) " mig(n)q" = q + 216¢° — 3348¢° + O(q*)
n=1

p

101900 4 453
101090 41357
1010%0 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
10109 4 11979
101090 4 17557
101990 4 21567
(0005595973
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
1010% 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 4 52423
101990 + 55831
101090 4 57867
101990 + 59743
101990 1 61053
10109 1 61353
101999 + 63729
101000 4 64047
101090 4 64749
101090 1 68139
101990 1 68367
101999 4 70897
101000 4 72237
101990 + 77611
101090 178199
101090 479237
101990 + 79767
101090 4 82767
101090 4 93559
101990 495107

10199 1+ 100003

Similarity class of (L]/TQ) T16(p) mod 19

(x —15)(x — 2) 17
(x — 18)(z — 12) 11
24+ 61+ 7 13
2?4+ 9z + 11 10
(x = 17)(z — 4) 2
22+ 5z +1 14
2+ 13z +7 6
(x —16)(z — 13) 10
(z—9)(z — 3) 12
x® 4 5r + 1 14
(x —17)(z — 13) 11
(x —=17)(x —9) 7
(x —18)(z —T7) 6
x® + 5 4 8 14
(x —13)(z — 3) 16
a?+ T+ 7 12
r? 4+ 9z + 12 10
2?4+ 162 + 11 3
(x = 17)(z —9) 7
(x — 15)(z — 14) 10
(x — 14)(z — 4) 18
2% + 187 + 12 1
2+ 7 0

(x —17)(z — 15) 13
(x —10)(z — 2) 12
2% + 162 + 18 3
(x —10)(z — 2) 12
2?4+ 10z + 11 9
(x —10)(z — b) 15
(x —18)(z —T) 6
2?2+ 6x +7 13
r? + 6z + 18 13
2+ 13z +7 6
(x —7)? 14

(x — 14)(z — 10) 5
(x —12)(z — 1) 13
(x —16)(z — 13) 10
r? + 2z + 18 17
2?4+ 18z + 12 1

(x — 14)(z — 6) 1
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168

¢ =23

f16 = ELLA =

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

“+o0o
> 7i6(n)q" = g+ 216¢° — 3348¢° + O(¢")

n=1

p

101900 4 453
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 22273
101990 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 1 52423
101990 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
101090 4 82767
10199 4 93559
10199 495107

Similarity class of (L}/TQ) T16(p) mod 23

(x — 15)(z — b) 20
(x —19)(z — 15) 11
z2 + 11z + 21 12
x® + Tr+ 11 16
(x — 18)(z — 14) 9
(x —13)(z — 6) 19
24+ 4r+7 19
(x —15)(z —T7) 22
z?+8r+1 15
2® +8x 46 15
(x —17)(z — b) 22
(xr —8)(x —b) 13
(z — 21)(z — 13) 11
(x —8)(z —2) 10
z? 4+ 122 + 17 11
(x —20)(z —T7) 4
(x — 15)2 7

(x —9)(z —2) 11
(x — 22)(z — 18) 17
(x —19)(z — 6) 2
z? + 4z + 12 19
% + 16z + 21 7
(x = T7)(z —6) 13
22+ 21x +3 2
(x —11)(z —8) 19
x? + 5z + 13 18
(z — 22)(z — 21) 20
z? + 162 + 11 7
(x — 18)(z — 3) 21
22+ 22+ 3 21
2+ 21z + 3 %
r? + 1dx +5 9
z? + 14z + 16 9
r? + 62 + 21 17
12+ 9x +4 14
2?4+ 15z + 20 8
(x —8)(z—1) 9
2+ 2+ 10 22
(x — 15)(z — 11) 3

101990 + 100003 (x — 14)(z — 13) 4




C.1.

TABLES

+oo
fis = EeA =) " rmis(n)q" = q — 528¢° — 4284¢” + O(q")

p

101900 4 453
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 22273
101990 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 1 52423
101990 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
101090 4 82767
10199 4 93559
10199 495107

10199 + 100003

Similarity class of (

(x — 18)(z —4)
22+ 10x + 4
22+ 13z + 10
(z —6)(x —5)
2+ x+22
(x —20)(z — 14)
(z—=7)(z —4)
(x —11)(z — b)
A |
(x — 15)(z — 14)
2+ 222 + 18
(x —15)(x —9)
(z = 7)(z —3)
x? + 5x + 18
z? + 5z + 20
(x —13)(z — 1)
22+ 8x+6
22+ 42 +6
(x — 18)(z — 15)
2% 4+ 152 4 22
(x = 17)(z — )
22+ 222 + 10
2+ 13z + 15
(x —20)(z —T7)
(x —15)(z — 1)
22+ 9
(x —17)2
22+ 220+ 7
R
% +8x 4 2
(z =2)(z—1)
(x —17)(z — 1)
(x —19)(z —T7)
(x —17)(z — 6)
22 +4x+8
2+ 11z + 21
24+ x+12
(x —10)(x — 6)
22 +13x + 8
(x —14)(z — 4)

L/Q

) 715(p) mod 23

22
13
10
11
22
11
11
16
16
6
1
1
10
18
18
14
15
19
10
8
22
1
10
4
16
0
11
1
18
15
3
18
3
0
19
12
22
16
10
18
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170

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
fao = EsA = " mn(n)q" = q + 4564 + 50652¢" + O(q")

n=1

p

101900 4 453
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 22273
101990 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 4+ 46227
101090 1 46339
101090 1 52423
101990 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
101090 4 82767
10199 4 93559
10199 495107

10199 1100003

Similarity class of (L}/TQ) To0(p) mod 23

x? + 5z + 13 18
%+ 222 + 12 1
2+ 11z + 19 12
(x —22)(z — 6) 5
x? + 221 + 22 1
(x — 15)(z — 10) 2
z? + 13z + 20 10
22+ 10x + 8 13
(x —16)(z — 13) 6
(x —18)(z —2) 20
(x —22)(z — 20) 19
(x —11)(z — 3) 14
z? + 18z + 14 5
r? + 162 + 3 7
x? + 222 + 10 1
(x —22)(z — 19) 18
r? 42 0

(x — 14)(z — 10) 1
(x — 18)(z — b) 0
(x — 21)(z — 12) 10
(x —21)(z — 20) 18
(x —22)(z —4) 3
(x —11)(z —9) 20
2+ 92+ 9 14
(x — 22)(z — 16) 15
x® 4192 48 4
(x — 18)(z — 13) 8
(x —21)(z — 3) 1
(x —18)(z — 1) 19
> +x+9 22

2 +21x +9 %
(x —11)(z —4) 15
(x — 15)(x — 14) 6
(x —17)(z — 16) 10
r? + 5z + 16 18
x* 4+ 18z + 14 5
(z — 11)(z — 10) 21
r? + 6x + 15 17
(x —19)? 15

x? + 152 + 19 8




C.1.

TABLES

+oo
f22 = EloA = Zng(n)q" =(q — 288(]2 — 128844q3 + O(q4)
n=1

p

101900 4 453
101090 41357
1010%0 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
10109 4 11979
101090 4 17557
101990 4 21567
(0005595973
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
1010% 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 4 52423
101990 + 55831
101090 4 57867
101990 + 59743
101990 1 61053
10109 1 61353
101999 + 63729
101000 4 64047
101090 4 64749
101090 1 68139
101990 1 68367
101999 4 70897
101000 4 72237
101990 + 77611
101090 178199
101090 479237
101990 + 79767
101090 4 82767
101090 4 93559
101990 495107

10199 1100003

Similarity class of (

(x —19)(x = T7)
% +13
2% 4+ 8z + 20
(x —16)(z — 11)
22+ 19z + 22
(x —19)(z — 14)
(x —16)(z — b)
(x —17)(z — 15)
(x —19)(z — 17)
(x —19)(z —T7)
x? + 14z + 12
(. —7)(z —4)
% + 4z + 17
2?2 + 31 + 12
2+ 52 +5
(& — 72
z? + 18z + 16
x? 4+ 192 + 16
2+ 222+ 7
(x —22)(z — 1)
x? + 12z + 8
(x —17)(x — 12)
(x —21)(z — 16)
22+ 42 +6
(x —19)(z — 8)
(& — 5)?

(x —12)(x — 6)
(x — 13)(x — 10)
(z — 21)?

(x —19)(z — 10)
22+ 14z +6
(x —20)(z — 13)
(z —4)(z - 3)
(x — 14)(z — 8)
r? 420z + 9
r? + 8x + 17
z? + 16z + 4
(x — 14)(z — 13)
(v —3)?

(x —19)(z — 18)

L/Q

) To2(p) mod 23

3
0
15
4
4
10
21
9
13
3
9
11
19
20
18
14
5

o o
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172

¢ =29

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
fz=A=) 7(n)q" = q—24¢" + 252¢° + O(q*)
n=1

p

101990 4 453
101090 4 1357
101000 4 2713
101090 14351
101090 4 5733
101000 4 7383
101999 + 10401
10109 4 11979
101090 4 17557
101090 4 21567
101000 4 22273
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 1 52423
101990 + 55831
101090 4 57867
101900 4 59743
101990 1+ 61053
101090 1 61353
101999 + 63729
1010%0 4 64047
101090 4 64749
10109 1 68139
101090 1 68367
101090 4 70897
101090 4 72237
101990 4 77611
101090 1 78199
101090 4 79237
101090 4+ 79767
101090 4 82767
101090 4 93559
10109 4 95107
10199 1100003

Similarity class of (Lj/TQ) 7(p) mod 29

x2 + 8z + 24 21
22421z + 1 8
x? + 187 + 20 11
2+ 3 0

(x —20)(z —2) 22
(x —19)(z — 10) 0
(x = T)(x —2) 9
x? + 222 4 22 7
z? + 27 0

(x —23)(z —3) 26
22+ 15z +3 14
% + 252 + 16 4
(x —27)(z — 15) 13
%+ 222 + 23 7
(x —23)(z — 10) 4
(x —13)(z — ) 18
(x — 18)(x — 15) 4
22+ Te+3 22
(x —26)(z — 8) 5
(x —17)(z — 16) 4
22+ 21z +4 8
(x —13)(z — 11) 24
% + 24z + 2 5)
x? + 18z + 21 11
(x —24)(z —1) 25
(x —20)(z —1) 21
22+ 14z +6 15
% + 142 + 28 15
(z —12)(z — 2) 14
1? + 267 + 26 3
% + 122 + 28 17
22+ 27 + 13 2
(x — 14)(z — 13) 27
(x —17)(z — 14) 2
2?2 + 28z + 25 1
2?2+ 13z + 16 16
(x —27)(z — 13) 11
22+ 13z + 17 16
(x — 25)(z — 24) 20

(x —26)(z — 13) 10




C.1.

TABLES

+oo
fie = EsA =) " mig(n)q" = q + 216¢° — 3348¢° + O(q*)
n=1

p

Y AEg
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 99973
101000 1 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 1 52423
101090 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
10109 4 82767
10199 4 93559
10199 495107

10199 1100003

2% + 16z + 25
249z + 1
(x —23)(z — 1)
z? 4 18z + 21
(x —22)(z —8)
22+ 1+ 24
(x = 17)(z —T7)
2?2 + 262 + 9
(x —27)(z — 24)
(x — 16)(z — 11)
(x —27)(z —4)
(x —25)(x — 23)
(x —17)2
2+ 220+ 7
2+ 10
22 + 22 + 20
2+ 192 + 6
(x —24)(z — 19)
2+ 17z + 4
(x —26)(z —9)
(x —17)(z — 11)
(x —27)(z — 24)
x? + 28z + 19
(x —21)(z — 20)
2%+ 13z + 25
(x — 28)(z — 6)
(x —23)(z — 6)
(x —24)(x — 6)
(z — 24)2
(x —26)(z—T)
2% + 15z + 28
(x —28)(z — 24)
2?2+ 19z + 15
(x —10)(z — 8)
(z — 25)?
2?4+ 17z + 24
z? + 6z + 21
(x —24)(x — 14)
r? + 62 + 23
(x —26)(z — 6)

Similarity class of (L}/TQ) T16(p) mod 29

13
20
24
11
1
28
24
3
22
27
2
19
5
7
0
27
10
14
12
6
28
22
1
12
16
5
0
1
19
4
14
23
10
18
21
12
23
9
23
3
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174

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
fis = EeA =) " rmis(n)q" = q — 528¢° — 4284¢” + O(q")

n=1

p

101900 4 453
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 22273
101990 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 4+ 46227
101090 1 46339
101090 1 52423
101990 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
101090 4 82767
10199 4 93559
10199 495107

10199 1100003

Similarity class of (L}/TQ) 715(p) mod 29

x? + 13z + 23 16
(x —22)(z —4) 26
2?2 + 162 + 16 13
(x —23)(z —8) 2
(x — 16)(z — 15) 2
(x —13)(z — 6) 19
x? + 27z + 27 2
2? +10x +4 19
2+ 19z + 14 10
(x —27)(z — 25) 23
(x —27)(z — 24) 22
r? + 62 + 20 23
(x —21)(z — 11) 3
2?2 4 23z + 24 6
(x —23)(z — 17) 11
(x —18)(z — 3) 21
z® + 8z + 13 21
(x —14)(z —9) 23
(x — 18)(z — 10) 28
(x — 16)(z — 15) 2
x? + 22x + 22 7
22+ 13z + 14 16
(z — 22)(z — 2) 24
x® + 8z + 18 21
(z — 11)(z — 10) 21
(z — 12)(z — 11) 23
(x —23)(z —4) 27
(x —19)(x — 3) 22
r? + 4z + 23 25
(x —15)(z —9) 24
(x — 25)(z — 22) 18
(x — 18)(z — 15) 4
(x —25)(x — 19) 15
(x —19)(z — 14) 4
(z — 19)(z — 8) 27
(x = 17)(z —8) 25
(x —27)(z — 24) 22
(x —11)(z —9) 20
z? + 247 + 16 5
x® + Tz + 26 22




C.1.

TABLES

+oo
fao = EsA = " mn(n)q" = q + 4564 + 50652¢" + O(q")

n=1

p

Y AEg
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 99973
101000 1 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 1 52423
101090 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
10109 4 82767
10199 4 93559
10199 495107

10199 1100003

Similarity class of (L}/TQ) To0(p) mod 29

z? + 23z + 20 6
r? 4+ 25z + 1 4
x? + 25z + 25 4
(x — 25)(z — 14) 10
2?4 27z + 3 2
1?4+ 287 + 7 1
(x — 22)(z — 15) 8
(x—=9)(xz—T7) 16
x® 4 28z + 8 1
(x =17)(z = T7) 24
z? + 14z + 2 15
(x —18)(x — 2) 20
x? + 27 + 28 27
(x —19)(z — 10) 0
x® +8x 48 21
22+ 1+ 24 28
(x —13)(x = T7) 20
(x —10)(z — 6) 16
(x —22)(z—T7) 0
z* 4 152 + 3 14
(x —19)(z — 11) 1
(x —11)(z — 6) 17
(x — 18)(z — 6) 24
2?2+ 27 + 19 27
(x —28)(z —9) 8
2% + 162 + 25 13
x? + 5z + 13 24
2% + 15z + 28 14
(x — 25)(z — 24) 20
(x —22)(z —21) 14
(x —7)(z—4) 11
(x —27)(z — 18) 16
(x —17)(z — 4) 21
x® + 8z + 13 21
(x —17)(z — 15) 3
(x —24)(z — 16) 11
12 + 151 + 2 14
(x —23)(z —2) 25
2+ 5z + 25 24

24+ 13z + 14 16
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foa = E1gA = 27'22

n=1

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

n)q" = q — 288¢ — 128844¢° + O(g*)

p

101900 4 453
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 22273
101990 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 4+ 46227
101090 1 46339
101090 1 52423
101990 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
101090 4 82767
10199 4 93559
10199 495107

10199 1100003

Similarity class of (L}/TQ)

(x —17)(x — 12)
2?2 +8x + 1
(x —6)(z —b)
(x —20)(z — 18)
(z —4)(z —3)
(x —17)(z — 12)
z? 4+ 4z + 12
(x —19)(z — 3)
2?2 + 15z + 17
22+ 1+ 12
(x —28)(x — 17)
(x —27)(x — 14)
(x — 18)(z — 8)
2?2+ 92 + 1
(x —13)(z — 8
(x — 10)
(z — 21)(z — 11
(x —20)( 8
(x —24)(z — 6
2%+ 142 + 12
(x —16)(z — 9)
(x —20)(x — 11)
(x —4)(z —3)
22+ 11z + 12
(x —22)(z —4)
(v —1)°
(x —21)(x — 11)
(x —19)(x — 3)
22420z + 1
(x —18)(z —9)
(x = T)(z —4)
x? + 27 + 28
(x — 15)(z — b)
(z —12)?
22+ 24z + 1
(x —11)(z — 8)
2 + 26z + 12
(x —20)(x — 18)
22 +8z+1
(x —10)(z —7)

)

)

3)
1
18)
)

(z —
(x

T22(p) mod 29

0
21
11

9

7

0
25
22
14
28
16
12
26
20
21
13

3

9

1
15
25

2

7
18
26

2

3
22

9
27
11
27
20
24

5
19

3

9
21
17




C.1.

TABLES

+oo
f26 = E14A = Z TQG(n)q” =q — 48(]2 — 195804(]3 + O(q4)
n=1

p

101900 4 453
101090 41357
101090 1 2713
101000 14351
101090 4 5733
101090 4 7383
101990 + 10401
10109 4 11979
101090 4 17557
101090 4 21567
(0005595973
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
1010% 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 4 52423
101990 + 55831
101090 4 57867
101990 + 59743
101990 1 61053
10109 1 61353
101999 + 63729
101000 4 64047
101090 4 64749
101°% 4 68139
101990 1 68367
1009 + 70897
101000 4 72237
101990 + 77611
101090 178199
101090 479237
101990 4 79767
101090 4 82767
101090 4 93559
101990 495107

10199 1100003

Similarity class of (L]/TQ) To6(p) mod 29

(z — 16)? 3
2+ 24x + 1 5
z? 4+ 27z + 20 2
z? + 8z + 26 21
z? + 14z + 18 15
(x —9)(xz —5) 14
2 +4x + 15 25
(x — 15)? 1

(z — 16)(z — 11) 97
(x —27)(z — 20) 18
(z — 27)(z — 16) 14
2% + 9z + 16 20
2?2 + 20z + 28 9
(x —9)? 18

(x —2)(z—1) 3
(x — 25)(z — 20) 16
(x—=9)(x—1) 10
(x —21)(z —4) 25
(z — 28)(z — 24) 23
2?4 27z + 18 2
2+ 11z + 4 18
(x —23)(x — 19) 13
x? + 16z + 27 13
r? + 8z + 8 21
(x —24)(z —1) 25
2% + 27z + 20 2
(x —25)(x — 13) 9
(x —23)(z — ) 28
(x — 18)(z — 11) 0
(x —24)(z — 11) 6
x? + 27x + 28 2
(x — 28)(z — 16) 15
2+ 4z + 21 25
(z — 21)2 13

(x —27)(z —2) 0
2% + 241 + 16 5
(x —13)(z — 2) 15
(x —16)(x — 8) 24
x® + Tz + 20 22

(x —26)(z — 16) 13
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¢ =31

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
fz=A=) 7(n)q" = q—24¢" + 252¢° + O(q*)
n=1

p

101990 4 453
101090 4 1357
101000 4 2713
101090 14351
101090 4 5733
101000 4 7383
101999 + 10401
10109 4 11979
101090 4 17557
101090 4 21567
101000 4 22273
101900 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 4+ 46227
101090 1 46339
101090 1 52423
101990 + 55831
101090 4 57867
101900 4 59743
101990 1+ 61053
101090 1 61353
101999 + 63729
1010%0 4 64047
101090 4 64749
10109 1 68139
101090 1 68367
101090 4 70897
101090 4 72237
101990 4 77611
101090 1 78199
101090 4 79237
101090 4+ 79767
101090 4 82767
101090 4 93559
10109 4 95107
10199 1100003

Similarity class of (Lj/TQ) 7(p) mod 31

(x —30)(x — 20) 19
2% + 18z + 29 13
x? + 27z + 12 4

(x —4)? 8

(x —21)(z —8) 29

(x —13)(z — 11) 24
(z — 22)(z — 9) 0
(x = T)(x —4) 11

(z — 27)2 23
2?4 20z + 27 11
2+ 9z + 7 22
22 +27x + 8 4
2?2+ 192 + 25 12
22 + 8z + 30 23
(x = 17)(z —2) 19
2+ 7z + 2 30

(x —12)(z — 4) 16
(x —13)(x —9) 22
x? + 28z + 30 3
(x —24)(z — 6) 30

(z — 30)(z — 6) 5

(x —23)(x—T) 30

(x —26)(z — 20) 15
22 + 10z + 10 21

(x —30)(z — 17) 16

(x —20)(z — 3) 23
z2 + 2z + 26 49
2?2+ 132 +6 18
z? + 21z + 26 10
2?2 + 227 + 22 9
22+ 81 + 25 23

(x —29)(z —5) 3
x? + 20z + 23 11
2?2 + 24z + 17 7

(z — 21)(z — 16) 6

(x —21)(z — 11) 1

(x —8)? 16
1?2 + 8x + 26 23
249z + 4 22

22+ 30x + 2 1




C.1.

TABLES

+oo
fis = BsA = mis(n)q" = q — 528¢” — 4284¢° + O(q")
n=1

p

Y AEg
1009 + 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1009 4 11979
101090 4 17557
101090 421567
101000 4 99973
101000 1 24493
101000 4 25947
101090 4 27057
101090 4 29737
1009 4 41599
101090 4 43789
101000 4 46227
101090 1 46339
101090 1 52423
101090 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
10109 4 64047
1009 4 64749
1009 + 68139
101090 1 68367
101090 4 70897
101090 4 72237
101990 + 77611
10109 + 78199
101090 479237
101990 4 79767
10109 4 82767
10199 4 93559
1009 + 95107

10199 1100003

z? + 10z + 13
(x —25)(x — 11)
24+ +24
(x —20)(z — 19)
x? + 17z + 22
22+ 24 + 7
%+ 24x + 24
(x —13)?

(x —22)(z — 6)
(z —5)(z —3)
z? + 5z + 28
(x —22)(x — 17)
% + 252 + 25
(x —19)(z — 13)
x? + 292 + 17
(z—7)(x - 5)
z? + 10z + 12
(x —22)(z — 10)
r? + 8z + 30
(x —17)(z — 12)
22+ 9z + 25
22 4 252 + 6
(x —26)(z — 18)
2% + 232 + 20
(x —16)(z —7)
22+ 21z + 27
x?2 + 20z + 26
(x —11)(x —9)
(x —30)(z — b)
(x —20)(z — 15)

2242z +19
(x — 18)(x — 14)
(x — 15)(z — 10)
(x —8)(z —2)
(v —2)?

Similarity class of (L}/TQ) 715(p) mod 31

21
5
30
8
14
7
7
26
28
8
26

N — O 00

179



180

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
fao = EsA = " mn(n)q" = q + 4564 + 50652¢" + O(q")

n=1

p

101900 4 453
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 22273
101990 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 4+ 46227
101090 1 46339
101090 1 52423
101990 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
101090 4 82767
10199 4 93559
10199 495107

10199 1100003

Similarity class of (L}/TQ) T0(p) mod 31

(x —21)(z — 20) 10
x? + 292 4+ 15 2
(x —25)(z — 3) 28
24+ x+2 30
22+ 21z + 12 10
22+ 30z + 18 1
z2 + 10z + 13 21
(x —=5)(z —2) 7
(z — 23)2 15

(x — 16)(z — 15) 0
(x — 8)(z —b) i
(x —28)(x —9) 6
(x —9)(z —4) 13
(x —6)(z —b) 11
2?2 + 162 + 21 15
(z — 27)? 23

z% 4 6z + 11 25
22+ 21z + 22 10
% + 242 + 30 7
22+ 122+ 14 19
2+ Tz +5 24
(x —28)(z — 12) 9
(x —29)(z — 20) 18
% + 262 + 28 5)
(z — 29)(z — 21) 19
%+ 297 + 15 2
x? + 16x + 6 15
(x —23)(z — 20) 12
(x —11)(z —9) 20
2%+ 24x 4+ 24 7
T2+ Tx+5 24
(x —16)(z — 6) 22
2+ +27 30
x? + 162 + 11 15
(x —17)(x —4) 21
2?2 + 23z + 20 8
(z — 25)(z — 18) 12
22 +18x +6 13
% 4 26z + 8 5
22 + 9z + 16 22




C.1.

TABLES

+oo
for = EipA =Y 7(n)q" = q — 288¢” — 128844¢° + O(q*)

n=1

p

101900 4 453
101090 4 1357
1010%° 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
1010% 4 11979
101090 4 17557
101090 421567
101000 4 22273
101990 4+ 24493
101000 4 25947
101090 4 27057
101090 4 29737
10109 4 41599
101090 4 43789
101990 + 46227
101090 1 46339
101090 1 52423
101990 4 55831
101990 4 57867
101990 + 59743
101990 1 61053
101990 4 61353
101999 + 63729
101090 4 64047
1010% 4 64749
101090 1 68139
101090 1 68367
101090 4 70897
101000 4 72237
101990 + 77611
101090 4 78199
101090 479237
101990 4 79767
101090 4 82767
10199 4 93559
10199 495107

10199 1100003

Similarity class of (

L/Q

P

(x —27)(z — 1)
(x —30)(x —2)
% 4+ 4z + 29
(x —22)(z — 12)
22+ 28z + 15
22+ 12z + 2
(x —22)(x — 14)
x4+ 132 + 16
1?2 + 6z + 16
(x —=27)(z —1)
(x —21)(x — 12)
(xr —22)(x — 6)
22423z +1
(x —20)(z — 17)
(x —11)(z —T7)
(x —18)(x —T7)
(x —17)(x — b)
x? + 162 4 27
(z — 14)(z — 11)
2?2 + 15z + 4
2+ 22z +1
(x —20)(z — 17)
% + 252 + 27
(v~ 2 — 1)
(z — 16)?

r? + 62 + 29
(x —24)(z —9)
22 4 5z + 30
(x —29)(z — 16)
%+ 122 + 23
(x — 13)(z — 12)
(x —10)(x — 6)
(x —17)(z — b)
22+ 172 + 23
(x — 18)(z — 12)
(x —25)(z —9)
(x —18)(z —T)
x? + Tz + 30
RS
2% 4+ 18z + 2

) To2(p) mod 31

28
1
27
3
3
19
5
18
25
28
2
28
8
6
18
25
22
15
25
16
9

6
6
3
1
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182 PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
14+ +/144169
far =Y ma(n)q" = q+24(22+a)¢’ +36(4731 - 320)¢° + O(¢*), a = —
n=1
Here I use slightly different notations: fo, is the newform of level 1 and of lowest
weight to have irrational coefficients, that is to say for which K; # Q. Indeed in
this case Kp,, = Q(v/144169) is the quadratic field with integer ring Zr, = Zlal,

o = AU 5 and (prime) discriminant 144169. The prime 29 is inert in this
field, so I could not compute the representation modulo 29 attached to this form;
on the contrary, the prime 31 splits into (31) = [5ly7, where [; = (31, — 5) and
by = (31,0 — 27). Instead of presenting the results for the Galois representations
attached to fo4 modulo [5 and [y separately, it is more interesting to present them
together, since I can then compute the coefficients 754(p) mod 31Z[«] by putting to-
gether the information coming from both representations and using Chinese remain-
ders. This is what I do in the table below, where I denote by Lj (respectively Lo7)
the number field cut out by the representation modulo I5 (respectively l7) attached

to fas.
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p Similarity class of (L“"p/ Q) Similarity class of (L%/Q) To4(p) mod 31Z[a]
101000 4 453 22 + 26z + 21 (x — 20)(z — 15) 1 +7a
1019 1 1357 (x — 18)(z — 3) (x — 25)(z — 22) 1+do
1000 4+ 2713 (z — 24)(z — 2) (z —29)(z = 7) 4+ 230
101000 4 4351 (x —17)(z — 13) (x —11)(z — 6) 9+ 29«
1019 + 5733 (z — 19)(z — 12) (z = 15)(z = 9) SR
10190 4 7383 2+ dz + 14 (z —T)(x—2) 17+ 2
10199 + 10401 (x — 22)(z —5) 2?2 + 24x + 17 9 + 16«
1019% + 11979 2+ 17z + 7 v? + 192 47 6+ lda
1019 4 17557 (z — 26)(x — 24) (z —17)(z — 13) L b
101990 4 21567 z® + 62 + 29 2% + 2z + 29 10 + 3a
101000 4 22273 2% + 10z + 19 (z = 16)(z = 7) 20 Lia:
10109 4 24493 (z — 22)(z — 12) ( — 25)(z — 18) 8 + 30a
101000 4 25947 (z — 15)(z — 12) (x — 24) (2 — 23) 14 + 15
10109 4 27057 2% + 10z + 30 (z —26) (2 — 25) 17+ 7o
10100 4 29737 2% + 3z + 24 2% 4 13z + 24 19 + 8«
1019% 4 41599 2+ 1o +8 a? + 27z + 8 18 + 190
101000 4 43789 z2 4 142 + 3 2+ Tx + 3 14 + 13«
1019% 4 46227 2% + 153 + 12 a? + 4z + 12 29 + 16a
101000 4 46339 (23 . 24)($ _ 9) 22 4+ 5x + 30 5+ 18«
101000 + 524923 ($ _ 10)(1. _ 1) 72 + 162 + 10 27 4+ 3«
1019 + 55831 ? + Tz + 25 ( —28)(z - 2) L -2l
101090 + 57867 x* 4 122 + 6 z? + 62 4 6 12 + 20c
10100 4 59743 % + 16z + 12 (z —21)(z —5) 285m0
101000 + 61053 (Zlf o 18)(33 o 16) [E2 + 152 +9 24 4+ 2«
101000 + 61353 (iL' . 26)(3} . 13) 12 + 30x + 28 11 + 18«
1010 1 63729 2?4 4z + 23 (x —18)(x —3) 3+ 1o
1019% 4 64047 (z —19)(z — 3) (z - 13)(z - 2) 2ok b
101999 4- 64749 (z —13)(z — 10) (z —17)(z — 4) 15 4 l4a
10109 4 68139 % + 2z + 26 (z —19)(x = 3) 1+ 18a
10199 4 68367 (x —22)(z — 2) a? + 21z 4 13 30 + 5o
101090 + 70897 x® + 8z + 25 (z — 26)* 15 + 1o
101000 4 79937 (x _ 11)(x — 2) (x — 12)(:(: — 7) 6 + 20«
1019% 4 77611 z? + 5z + 15 z? + 28z +15 27 + 6o
10199 4- 78199 (z —30)(z — 28) (z —25)(z — 15) 17+ 2a
101000 4 79237 2% 4 10z + 26 (z —27)(z - 9) 19 + 19a
10100 4 79767 (z — 15)(z — 6) (x = 7)(x—4) 12 + 8a
1010 4 82767 (z —13)(z — 3) (z —24)(z = 21) - laa
10109 4 95107 (x — 28)(z — 20) (z —18)(z —7) LS | b
10'9% 1100003 2% + 21z + 8 (z —10)(z = 7) 7+ 13a




184

PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

+oo
f26 = E14A = Z TQG(n)q” =q — 48(]2 — 195804(]3 + O(q4)
n=1

p

Y A5g
101090 41357
1010%0 4 2713
101000 14351
101090 4 5733
101000 4 7383
101990 + 10401
10109 4 11979
101090 4 17557
101090 4 21567
(0005595973
101900 4+ 24493
101000 4 95947
101090 4 27057
101090 4 29737
1010% 4 41599
101090 4 43789
101990 4+ 46227
101090 1 46339
101090 4 52423
101990 + 55831
101090 4 57867
101990 + 59743
101990 1 61053
10109 1 61353
101999 + 63729
101000 4 64047
101090 4 64749
101090 1 68139
101990 1 68367
101999 4 70897
101000 4 72237
101990 + 77611
101090 178199
101090 479237
101990 4 79767
101090 4 82767
101090 4 93559
101990 495107
10199 1100003

Similarity class of (L]/TQ) To6(p) mod 31

(x—3)(x—2) 5
(x —23)(z —4) 27
2?2 + 13z + 26 18
(x —13)(z — 12) 25
(x —6)(z—1) 7
2+ 27 +5 4
2% + 21z + 26 10
(x —27)(z — 22) 18
(z — 17)(z — 11) 28
(x —27)(z — 8) 4
2+ 2z +5 29
(x—=9)(x—=T7) 16
(x —20)(z — 8) 28
(x — 18)(z — 12) 30
(x — 25)(z — 6) 0
2+ 237 + 1 8
r? + 8z + 26 23
z? + 10z + 26 21
2?2 + 22z + 30 9
(x —22)(z — 11) 2
T2+ 17z +5 14
(x —28)(x — 12) 9
2 + 1 + 26 30
(z — 5)2 10
22+ 22 +5 29
(x —29)(z — 16) 14
(x—3)(x—2) 5
(x —29)(x — 18) 16
2+ 272+ 6 4
(x —6)(z—1) 7
2+ 24x +5 7
(x —23)(x —T) 30
2?2 + 8z + 30 23
(x —30)(z — b) 4
(x —11)(z —9) 20
2 +24x +5 7
r? +20x + 1 11
2? + 192 4 6 12
(x —29)(z — 15) 13

(x —19)(z — 18) 6
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C.2 Certifying the polynomials

The results presented above rely on the identification by continued fractions of ratio-
nal numbers given in approximate form as floating-point numbers. In order to certify
these results, it is thus necessary to make sure that the number fields cut out by the
representations as well as the Galois action on them have been correctly identified.

For this, a first possibility consists in proving bounds on the height of the rational
numbers the algorithm will have to identify, and then to certify that the continued
fraction identification process is correct, for instance by running the computation
with high enough precision in C and controlling the round-off errors all along. Al-
though it is indeed possible to bound the height of the rational numbers which will
have to be identified by using Arakelov theory (cf. [CEIT, theorem 11.7.6]), this
approach (especially the round-off error control in the linear algebra steps in K.
Khuri-Makdisi’s algorithms) seems ominously tedious, and I have not attempted to
follow it.

I deemed it much better to first run the computations in order to obtain unproven
results, and then to prove these results. I explain in this section how this can be
done in the case of a newform f of level N = 1.

C.2.1 Sanity checks

Before attempting to prove the results, it is comforting to perform a few easy checks
so as to ensure that these results seem correct beyond reasonable doubt. Namely,

e By theorem A=333, the number field L cut out by the Galois representation
pr attached to a newform f € Si(1) is ramified only at ¢. Therefore, one can
check that the discriminant of the polynomial F'(X) € Q[X] is of the form

+0mM?

for some M € Q*. Better, one can compute the maximal order of the field
K = Q[X]/F(X) whose Galois closure is L and check that its discriminant is,
up to sign, a power of £. Since a number field ramifies at the same primes as its
Galois closure, this proves that the decomposition field L of F(X) is ramified
only at /.

e Since Galois representations py attached to modular forms are odd, the im-
age of complex conjugation by these representations is an involutive matrix in
GLy () of determinant —1, hence similar to [§ %] if £ > 2. This means that
the polynomial F/(X) of degree ¢ — 1 computed by the algorithm should have
exactly ¢ — 1 roots in R, which can be checked numerically, and that the sign
of its discriminant should be (—1)““~1/2  which can be checked exactly.

e The fact that the resolvents I'c(X) computed by the Dokchitsers’ method
seem to have integer (and not just complex) coefficients as expected hints that
Gal(L/Q) is indeed isomorphic to a subgroup of GLy(F;), so that the number
field L is indeed a number field cut out by a Galois representation.
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e The fact that the polynomials F*¥(X) computed by regrouping the roots of
F(X) along their S-orbits for the various subgroups S C F; considered during
the polynomial reduction process (cf. section BZ3532) seem to have rational
coefficients with common denominator dividing the one of F'(X) also hints that
the coefficients of these polynomials have been correctly identified as rational
numbers, that Gal(L/Q) is indeed isomorphic to a subgroup of GLy(F,), and
that the Galois action on the root of F'(X) is the expected one.

e [inally, one can check that the values a, mod [ obtained by the algorithm for
a few small primes p are correct, by comparing them with the ones computed
by “classical” methods based on modular symbols (cf. example A=23T9).

C.2.2 Proving the polynomials

I shall now present a method to formally prove that the polynomials computed by
my algorithm define the number fields cut out by the corresponding Galois repre-
sentations. It proceeds from the bottom up, in that it consists in first proving the
correctness of the projective Galois representation p}'(”’, then the correctness of the
quotient Galois representation p?[ where S gradually shifts from the whole of F} to
the maximal subgroup of F not containing —1. In each case, I first prove that I am
actually dealing with a Galois representation of the correct kind, which amounts to
proving that the Galois group of the polynomial defining the representation is the
correct one, and then I prove that the representation is the correct one, that is to
say that it is modular and comes from the correct newform.

[ shall assume that it has been checked that the polynomials FP*(X) and F¥(X)
computed by my algorithm and reduced as in section BZ3752 are irreducible over QQ.

C.2.2.1 Proving the projective representation

I begin with the projective Galois representation p}’ I which ought to be defined
by the monic polynomial FP™(X) € Z[X] of degree £ + 1 obtained by the polred
algorithm (cf. section BZ359). Recall that I denote its splitting field in C by LPTJ.

Proving the Galois group

The first thing to do is to make sure that this polynomial does define a projective
Galois representation, by proving that Gal(LP™ /Q) is isomorphic to either PGLy ()
or PSLy(FFy). Since I am dealing with forms of level N = 1, hence of trivial nebentypus
e, and of even weight, the determinant of the associated mod [ Galois representations
pr are odd powers of the cyclotomic character mod ¢, and so there are matrices
with non-square determinant in the image of each of these representations, so that
Gal(LP™/Q) should actually be the whole of PGLy(TFy).

The roots a,, © € P'F, of FP(X) in C computed by my algorithm are by
construction indexed by P'F,. Consider the resolvent polynomial

RY(X) = 11 (X — (Mg, + Aoy, + A3az, + Miay,)) € Z[X],

x1,22,23,04E€P'F,
pairwise distinct
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where Ay, -+ , A € Z are fixed integer parameters chosen so that R (X) is square-
free.
Recall that the composed sum of two polynomials f and g € Q[X] is

f(e)=g(8)=0

where the product runs over the roots o of f and /3 of g in Q counted with multiplicity.
As explained in [BESS06], it can be computed with quasilinear complexity as follows:
Define, for monic f € Q[X], the exponential Newton sum generating series of f

by
1(p =3 "D e gy,

n=0
where the v, (f) are the Newton sums of f,

-3 o
fla)=0

the sum running over the roots o of f in Q counted with multiplicity. T hen for
B > deg f, the conversion between f and H(f) mod T? can be performed in O(B)
bit operations, by using fast power series arithmetic and the formulae

= L rev(f)
E v ()T = E =
— (£) for 1—aT rev(f)

( _Tn)

in the other way, where rev(f) = X4/ f(1/X) denotes the reverse of a polynomial
f. Since furthermore

in the one way, and

H(f®g)=H(f)H(g)

for any two polynomials f and g in Q[X], this yields a quasilinear method to sym-
bolically compute composed sums, and hence the resolvent R} (X).

Once I have computed the resolvent R} ™ (X) symbolically, I compute numerically
a complex approximation of the factor

R, (X) = 1T (X — (Mag, + Aoag, + A3y, + Maay,)) € C[X]

x1,x2,13,54€PLF,
pairwise distinct
[z1,22,23,24]=2

for each x € P'F, — {00, 0,1}, where [z, To, T3, 14] = ooyl P'F, denotes the
cross-ratio (a.k.a. anharmonic ratio) of the z;, and check that this approximation
seems to lie in Z[X]. T then check that the polynomials R,(X) all divide R} (X)
in Z[X].

This proves that the action of Gal(LP™ /Q) on the ordered quadruplets of roots of
FProi( X)) preserves the cross-ratio, which implies that Gal(LP™ /Q) is a subgroup of
PGLy(F,) acting on the roots a,, z € P'F, of FP/(X) in the same way as PGLy(F)

acts on P'TF,.
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Correctness of the projective representation

Now that I have made sure that the Galois action on the roots of FP™(X) does
define a projective representation

Pl G —= Gal(LP™ /Q)— PGLy(Fy) ,

I prove that this representation is isomorphic to p?rlo I as expected. For this, I use the
following theorem from [Bos07]:

Theorem C.2.2.1. Let m: Gg — PGLy(IFy) be an projective mod £ Galois represen-

a1
tation. Let H C PGLy(F,) be the stabiliser of a point of P'Fy, and let K = Q (H)
be the corresponding number field. If the number field L cut out by w is not totally
real and if there exists an integer k such that

Disc K = k2,

then there exists a newform f € Si(1) and a prime | of Q above { such that

7~ o,
Proof. This is [Bos(7]. The idea is that the projective representation = can be lifted
to a linear representation

p: Gg — GLy(Fy)

which, just like 7, is irreducible and ramifies only at ¢. Furthermore, the image of
the complex conjugation (corresponding to some embedding of L into C) by p has
order at most 2, so is similar to either [§9], [ ' %] or [§ %], but the first two are
impossible since they reduce to the identity in PGLy(F,) and L is not totally real,
which proves that p is odd. Serre’s conjecture BA=3Z4T0 then applies and shows that
p ~ pys, for some newform f € Sy (N,,e,) and some prime [ of Q above ¢. Then
N, =1 by example B=3273, so that ¢, is trivial. Next, if the lift p is chosen so that
k, is minimal, then [MT03, theorem 3] gives a formula for the {-adic valuation of the
discriminant of the Galois number field cut out by p, which by J. Bosman’s work
boils down to
Disc K = (ko +=2,

O

Thus, in order to prove that pP™ ~ ,0?? I all T have to do is check that not
all the roots of FP©J(X) are real, which can be done by using Sturm’s method (cf.
[Lan02, chapter XI, theorem 2.7]), and that the discriminant of the rupture field
KProl = Q[X]/FProi(X) is £0F+72 which is a piece of cake for [Pari/GP].

Except in the case ¢ = 31, k = 24, this concludes in all the cases I have computed
since dim Sk (1) = 1 so that there is only one possibility for f, and its coefficients are
rational so that the choice of [ does not matter. In the special case ¢ = 31,k =24, 1
still know that pP™) is equivalent to either pl;;z’j[f) or its conjugate p?;;f[w. I order to tell
which, T pick a small prime p € N which does not divide Disc FP*(X) (in particular
p # {), and such that 794(p) = 0 mod [5 but 794(p) # 0 mod ly; (the opposite would
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do too). Since an element of PGLy(F,) is of order 2 if and only if it has trace 0,
looking at the factorisation of FP™(X) mod p allows me to tell I5 and ly; apart: if
FPri(X) splits into linear and quadratic factors in F,[X], then it is associated to
p?ﬁjﬂf), else it is associated to p?;f[w.

In particular, this implies that the Galois group Gal(Ly/Q) is isomorphic to
PGLy(F,) (whereas I had only proved that it was isomorphic to a transitive subgroup

thereof until now).

C.2.2.2 Proof of the polynomial F'°(X)

I now move on to the polynomial F¥(X) defining the quotient representation. Write
¢ —1 = 2"m with m odd, and recall from section BZ3732 that I considered the
filtration

F; =5%2>252>---285. =8
2 2 2

with [S; : S;11] = 2 for all ¢, so that

F, — I}
Si:Im( ¢ 2Zz ),
r — X

and I computed polynomials F;(X) € Z[X] such that the Galois action on the roots
of F;(X) is supposed to yield the quotient Galois representation

Pf

pi: Gg—> GLay(F;) — GLa(F,)/S; .

Let K; = Q[X]/F;(X) be the rupture field of F;(X), and L; be its Galois closure,
which is thus supposed to be the number field cut out by p%. I have just proved
above that it is the case for ¢ = 0.

For each i < r, the extension K;,;/K; is quadratic by construction, generated
by the square root of some primitive element 9; of K;, so that the fields K; fit in an
extension tower

KT

2

2 am

Let £* = (—1)(=1/2¢ 5o that Q(v/¢*) is the unique quadratic number field which
ramifies only at ¢, and consider the following assertions:
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(A1) The polynomials F;(X) are irreducible in Q[X], and their decomposition fields
L; ramify only at £.

(A2) For each i, let A;(X) € Z[X] be the monic minimal polynomial of ¢; over Q,
and let R (A ). (XY))
eS8y (2 » B2
Qi(X) = 2i(011
(X — 1)+
Then Q;(X) is irreducible over Q and even over Q(v/£*), but Q;(X?) splits into
two factors of equal degrees over Q(v/¢*).

€ Z[X].

These assertions can be proved easily with [Pari/GP]. For (Al), it suffices to
check that the discriminant of the rupture field K; of F;(X) is of the form +¢" for
some n € N. For (A2), note that if f =[], (X — «;), then

Resy (Ai(Y), A(XY)) = (=1)"f(0) ]| (X — %) ,

- Q;
0. J

so that
ReSy (AZ(Y), AZ<XY)) n a;
e = oo T (v - 2)

i#]

is indeed a polynomial.

I shall now prove that if these assertions hold, then for all ¢ < r, L; is the number

field cut out by p?f[.
To begin with, I shall prove that Gal(L;/Q) is isomorphic to GLy(F,)/S; for all
i. Since K;y1 = K;(1/0;), one has

Li+1 = Li(\/ (53,0 S Gal(LZ/Q))
I first claim that actually L;y1 = L;(v/9;), that is to say that ‘;—; is a square in

L; for all ¢ € Gal(L;/Q). To see this, note that since PGLy(F,) has a quotient
PGLy(F,)/ PSLy(F,) of order 2, the field L; D Ly has a quadratic subfield, which can

only be Q(v/¢*) since L; ramifies only at ¢ by (Al). Consider the extension diagram

@(51,6;’, i—) Q (8,07, VF)
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Assume for now that the extensions marked with a 2 are indeed quadratic and
not trivial. If L; were the number field cut out by p?"[, then the corresponding Galois
subgroup diagram would be

/ S'ES;
? [82’]/517 jst%FEQ
\ /

square det

/

GLy(F,)/S

and since the group

5 0 A
{|:O 8,:|/SZ', S, S ESz}_IFé/SZ

is cyclic, it has only one subgroup of index 2, so that these two quadratic extensions
should agree.

Now, back to the proof, letting n = 2°(¢ 4+ 1) = [K;: Q], then
[Q(6:,07) : Q] = [Q(6s,67) = Q(6:)][Q(6) : Q] < (n— 1)m,
whereas

[@ (i—) : @} — deg Q:(X) = (n — 1)n

since Q;(X) is irreducible over Q by (A2), so that Q(6;,07) = Q (f;—a) Further-
more, the extension Q (Z—i(_], \/E_*) /Q (‘;—0) is not trivial since Q;(X) is irreducible

o
3

over Q(v/¢*) by (A2). I may also assume that the extension Q (\ / Z—) /Q (i—j) is

i

not trivial, since the proof that 4/ (;—g_f € L; is over if it is. The two extensions marked
with a 2 in the extension tower above are thus non-trivial, hence quadratic, so that
one has the extension diagram



192 PART C. TABLES AND PROOF OF THE COMPUTATION RESULTS

n(n—1) @(\/f_*)

Q

where the labels denote the degrees. By looking at the bottom parallelogram, one
sees that z = n(n — 1), so that x = y by looking at the top parallelogram. Now since
Qi(X?) splits into two factors of degrees n(n — 1) over Q(+v/¢*) by (A2), one has

0
[@ ( 5 Vf*) : @W*)] = n(n—1),
so that y = 1, whence x = 1. Therefore

o \ oF o\ 0F 4
@( 57) @( E’ﬁ>@(5i’ﬁ)d“

so that \/(;—3 € L; as I claimed.

As a consequence, L; 1 = L;(v/5;) and Gal(L;,,/Q) is an extension of Gal(L;/Q)
by Z/2Z, which is necessarily central since Aut(Z/27Z) is trivial.
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Recall now that given a group G and a G-module M, the extensions of G by
M such that the conjugation action of lifts of elements of G on M corresponds to
the G-module structure on M are classified by the cohomology group H*(G, M), the
class of the cocycle §: G x G — M corresponding to the set M x G endowed with
the group law

(m,g) - (m',¢') = (m+g-m'+B(g,9), 99")-
Example C.2.2.2. Consider an extension
0—7Z/22 — G — G — 1

of a group G by Z/27Z. The G-action on Z/2Z is necessarily trivial since Aut(Z/27)
is trivial, so this extension is necessarily central. Let 5: Gx G — Z /27 be a cocycle
representing the corresponding cohomology class, and let g € G be an element of G
of order 2. Then the lifts of g in G are the (x,g), © € Z/2Z, and one computes that

(z,9) (2,9) = (z+ 2+ B(g.9).9°) = (B(9,9).1)

in G. Therefore, the lifts of g have order 2 if (g,g) = 0, but have order 4 if
Blg,9) = 1.

Furthermore (cf. [Kar87, theorem 2.1.19)), if M is a trivial G-module, there is a
split exact sequence of abelian groups

0 —= ExtL (G, M)~ HX(G, M) === Hom (M, H*(G,C*)) —=0 (C.2.2.3)

where Exty,(G?, M) classifies the abelian extensions of the abelianised G* of G by
M, M = Hom(M, C*) is the group of complex-valued characters on M, H?(G,C*)
(with trivial G-action on C*) is the so-called Schur multiplier of G, and ¢ maps the
class of the cocycle 8 € H?(G, M) to the transgression map (not to be confused with
a trace)

Trag: M — H?*(G,C*)
X >  xof

associated to the class of 3. Besides, the Schur multiplier H?*(G,C*) is trivial if
G is cyclic (cf. [Kar87, proposition 2.1.1.(ii)]), and for each central extension G of
G by M, the subgroup M N DG of G is isomorphic to the image of Trag, where
B € H*(G, M) is the cohomology class corresponding to G and DG denotes the
commutator subgroup of G (cf. [Kar&7, proposition 2.1.7]).

Applying this to the group G = PGLy(F,) and the trivial G-module M = Z/2'Z
yields the following result (cf. [Que99)):
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Theorem

C.2.2.4. Leti € N.

(i) H*(PGLy(F,),Z/2'Z) ~ 7/2Z X L|2Z, so that there are four central extensions
of PGLy(Fy) by Z/2'Z.

(i) Thes

e extensions are
the trivial extension Z)2'7 x PGLy(F,), corresponding to the trivial coho-
mology class By € H*(PGLy(F,),Z/2'Z),

the group 24,PGLao(F,), whose associated —cohomology  class
Baet € H2(PGL2(F3),Z/2iZ) is the inflation of the non-trivial element
of

H?(PGLy(F)*,Z/2'Z) ~ Z/2Z
(in other words, Bae(g,q’) is non-zero if and only if neither g nor ¢ lie

in PSLy(F,)),

the  group  2° PGLo(IFy), with  associated — cohomology  class
B_ € H*(PGLy(F,),Z/2'Z), defined fori=1 as

92_PGLy(Fy) = SLy(Fy) U [\Of » A SLy(Iy) C SLy(Fee)

where € denotes a generator of F}, and which i > 2 corresponds the image
of the cohomology class of 2_PGLy(F,) by the map

H?*(PGLy(F,),Z/2Z) — H*(PGLy(F,), Z/2'Z)

induced by the embedding of Z/27 into 7./2'Z,

and the group 23_PGL2(F[), whose associated cohomology class P is the
sum in HQ(PGLQ(IFg),Z/ZiZ) of Baer and of B_.

(iii) Let g € PGLy(Fy) be an element of order 2, and let By, Paet, B— and [y be
normalised cocycles (that is to say B(1,h) = B(h,1) =0 for all h € PGLy(Fy))

repre
their

(iv) Fori >

senting the cohomology classes of these four extensions. If i = 1, then
value at (g,g) does not depend on the choice of these cocycles, and are

Bolg,g9) =0 Vg,

B 0, g € PSLQ(FZ)a
Bdet(gag) - { 1’ q Q PSLQ(]FE)a

B-(g,9) =1Vy,

[ 1, g e PSLy(F,),
5+(g,g) - { 0, g € PSLi(Fﬁ)

2, the abelianisations of these extensions are
(2/2'Z x PGLQ(FZ)) ~ 7)27 x 7.2,
( i PGLo(Fy) ) ~ 7./2Z,
(22 PGLy(Fy) ) ~ 7/2"717 x 7./27,
(21 PGL,y(Fy))™ ~ Z/2/Z.
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Proof. 1 shall only give the idea of the proof here, and refer the reader to [Que93,
proposition 2.4 and lemma 3.2].

(i)

(iii)

(iv)

On the one hand, the abelianised of PGLy(Fy) is PGLy(F)/ PSLy(F,) ~ Z/2Z,
so that

Exts (PGLy(F,)™, Z/2'Z) ~ Exty(Z/27,7.)2'7) ~ 7./ 2.

On the other hand, the Schur multiplier H?( PGLy(IF,),C*) is isomorphic to
Z7.)27 (cf. [Que9d, proposition 2.3]). The result then follows from the split
exact sequence (C223).

Consider again the exact sequence (C223). Then Sye lies in the image of ¢
since it is inflated from PGLy(F,)*®. On the other hand, for i = 1, S_ does
not lie in Im ¢, for if it did, then the associated transgression map would be
trivial, so that the commutator subgroup of 2_PGLy(FF,) would meet the kernel
4[4 9] of the extension trivially, which is clearly not the case since [ o' ° ] is

a commutator in SLy(Fy) C 2_PGLy(F,). For ¢ > 2, the commutative diagram

0—=7/27 —= 2_PGLy(F,) —> PGLy(F,) —~ 1

L |

0 —>7/27 —= 21 PGLy(F;) —> PGLy(F,) —= 1

shows that Z/2'Z still intersects the commutator subgroup of 2 PGLsy(FF;) non-
trivially, so that 3_ does not lie in Im ¢ either. The extensions 2, PGLy(F,) and

2! PGLy(Fy) thus represent different mnon-trivial cohomology classes in
H?(PGLy(F,),Z/2'Z) ~ Z/2Z x Z/2Z, hence the result.

It is a general fact (cf. [Que9d, lemma 3.1] that the image at (g, g) of a nor-
malised cocycle representing an extension of a group G by Z/27Z only depends
on the cohomology class of this cocycle in H*(G,Z/2Z).

e The case of the trivial extension is obvious since the zero cohomology class
is represented by the zero cocycle.
e The case of B4e follows from its very definition.

e Since it is a subgroup of SLy(F2), the group 2_PGLy(FF,) has only one
element of order 2, namely the central element [_01 _01}. In particular,
no element g € PGLy(Fy) of order 2 remains of order 2 when lifted to
2_PGLy(F,), and the result follows by example C2272.

e The case of 3, follows since one may take Sy = Baet + [—.

Again, the case of the trivial extension is clear. In the other cases, the re-
sult follows from the fact that the intersection of Z/2'Z with the commutator
subgroup of the extension is isomorphic to the image of transgression map

Trag: Z/27 — H?(PGLy(F,),C") ~ Z/2Z,

which is trivial in the case of S4¢ and non-trivial in the case of f_ and [,.
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I shall now prove that Gal(L,/Q) is isomorphic to GLy(F,)/S,. I first deal with
the first extension Ly/Ly in the quadratic tower L,/---/L,. The Galois group
Gal(L,/Q) is a (necessarily central) extension of Gal(Ly/Q), which is isomorphic by
p?’rlo J t0 PGL (Fy) since Ly is the number field cut out by py;. Let 5 be a normalised
cocycle representing the cohomology class corresponding to this extension. Accord-
ing to theorem C22A(ii), Gal(L;/Q) is isomorphic either to Z/2Z x PGLy(F,),
246t PGLo(Fy), 2_PGLy(Fy) or 2, PGLy(Fy), and S is correspondingly cohomologous
to So, Baet, B or By

If Gal(L,/Q) were the trivial extension Z/27 x PGLy(FF,), then L; would have a
subextension L with Galois group isomorphic to

(Z/2Z x PGLy(F)))™ ~ Z/2Z x Z./2Z,

and hence three distinct quadratic subfields, which is impossible since L; is ramified
only at ¢ by (A1), yet there is only one quadratic number field which ramifies only
at £, namely Q(v/(*).

Let now 71 € Gal(L;/Q) be the complex conjugation relative to some embedding
of Ly into C. It induces an element 7y € Gal(Lo/Q), which is not the identity since its
image by p?ﬂoj is conjugate to g = [§ % ] € PGLy(F,). In particular, 7; is not trivial
either, so it has order 2. Therefore 7y has a lift to Gal(L;/Q) of order 2, so that
B(g,9) = 0 by example C222. Theorem C224(iii) then only leaves one possibility:
if £ = 1 mod 4, then g € PSLy(F,), so that S cannot be cohomologous to S_ nor
to ., so Gal(L;/Q) is isomorphic to 24 PGLy(F,), whereas if £ = —1 mod 4, then
g & PSLy(Fy), so that  cannot be cohomologous to S_ nor to Byet, so Gal(L,/Q) is
isomorphic to 2, PGLy(Fy).

Now let L) be the number field cut out by p?}[, which is supposed to be isomorphic
to L;. Then L] is also a quadratic extension of Ly and is also only ramified at
¢, so that the same reasoning applies and shows that Gal(L}/Q) is isomorphic to
24t PGL2(Fy) if £ =1 mod 4 and to 2, PGLy(Fy) if £ = 1 mod 4. On the other hand,
it is isomorphic to Im p?}[ ~ GLy(F,) /S since the determinant of ps is an odd power
of the mod ¢ cyclotomic character, so that in each case

Gal(L,/Q) ~ Gal(L,/Q) ~ GLy(F,)/S,.

If £ = —1mod 4, then r = 1, so that the proof that Gal(L,/Q) ~ GLy(F,)/S,
is over. [ shall therefore concentrate on the case ¢/ = 1 mod 4 from now on. I
shall first prove by induction on i that Gal(L;/Q) is an extension of PGLy(F,) by
F;/S; ~ Z/2'Z. Note that I have just proved above that this is the case for i = 1.
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Let 1 <7 < r. By induction hypothesis, there is a commutative diagram

1 1 1
1 7)27 — ¢ (Z/27) — - 7/2Z 1
1 7)27 —— Gal(Lis, /Q) -~ Gal(L;/Q) 1
poq P
PGL,(F,)
1 1

whose middle row and right column are exact. A diagram chase then reveals that
the top row and the diagonal short sequence

1 — ¢ YZ/2'7) - Gal(Liy,/Q) &% PCLy(Fy) — 1

are exact, so that Gal(L;;;/Q) is an extension of PGLy(F,) by ¢ *(Z/2'Z), which
itself is an extension of Z/2'Z by 7 /27, which is necessarily central since Aut(Z/27Z)
is trivial.

Now H*(Z/2'Z,C*) = {0} since Z/2'Z is cyclic, so the extensions of of Z/2'Z by
Z/27Z are all abelian by the exact sequence (C223), so that
q Y(Z/2'Z) = Gal(L;y1/Lo) is isomorphic either to Z/2"7'Z or to Z/2'Z x 7/27.
I shall now prove that the latter is impossible.

Since ¢ = 1 mod 4, S = F}* is a strict subgroup of S; = F}?. The determinant
induces a surjective morphism

Pk
Gal(L1/Q) —2> GLy(F)/S1 = TF;/S? = F}/F;* ~ Z/4Z,
so that Ly has a quartic subfield. This subfield is abelian, hence is a subfield of the

cyclotomic extension Q(us), and ramifies only at ¢ since L; ramifies only at ¢ by
(A1), so is a subfield of Q(pe=~). Since

Gal (Q(uu=)/Q) ~ Zf =T} x (14 1Zy) ~ Z)({ — 1)Z x Z,
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has only one quotient isomorphic to Z/4Z (it does exist since £ = 1 mod 4), this
quartic subfield is unique, and I shall denote a primitive element of it by A. This
A thus lies in Ly, but it cannot lie in Ly since the maximal abelian subextension of
Lo has Galois group PGLy(F,)? ~ Z/27Z (and hence is Q(v/¢*)). Since Q()) is a
quadratic extension of @(\/f_*) C Lo and L; is a quadratic extension of Ly, one has
Ly = Lo(N\). Now if Gal(L;11/Lg) were isomorphic to Z/2'Z x 727, then, letting F
be the subfield of L;,; fixed by Z/2'Z x {0}, one would have the extension tower

Li
27/ X L)L {W
2
\ L;
7./2°7.x{0} .
Ly = Lo(N) E “
2/ Z)2LXTL/2T
Lq
Q)
e
Q(VE)
2

Q

The extensions E/Lg and L;/Lgy are both quadratic subextensions of L;,1/Lg, but
they are distinct since they correspond respectively to the distinct subgroups
Z)2Z x {0} and 2Z/27Z x 7./2Z of Gal(L;y1/Lo) = Z/2'Z x Z/2Z. On the other
hand, the field E is a quadratic extension of Ly which is ramified only at ¢ since
Lii1 is by (Al), so the same reasoning as above shows that its Galois group is
Gal(E/Q) ~ 24utPGLy(F,) ~ GLy(F,)/S; since £ = 1 mod 4, so that it has a quar-
tic subfield, which can only be Q(\). But then £ O Lo(\) = Ly, hence £ = L,
since they are both quadratic extensions of Ly, a contradiction. This shows that
Gal(L;y1/Lo) cannot be isomorphic to Z/2'Z x Z/27Z, so must be isomorphic to
Z/27VZ. Tt follows that Gal(L;,1/Q) is an extension of Gal(Lo/Q) ~ PGLy(F,) by
Gal(L;11/Lo) ~ Z/2"'7Z, and the induction is complete.

I shall now prove by induction on i that this extension is central. Note that it is
true for i = 1, since every extension by Z/2Z is central since Aut(Z/2Z) is trivial.
Let © > 2, and assume on the contrary that the extension

0 — Z/2'7 — Gal(L;/Q) — PGLy(F;) — 1
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is not central.  Since Aut(Z/2'Z) =~ (Z/2'Z)* is abelian, the morphism
PGLy(F,) — Aut(Z/2'Z) expressing the conjugation action of PGLy(Fy) on Z/2'Z
factors through PGLy(IFy)*® = PGLy(F,)/ PSLy(F,) ~ Z/27Z, so that PSLy(F,) acts
trivially whereas there exists an involution ¢ of Z/2'Z such that g - x = ¢(x) for all
g & PSLy(F,) and = € Z/2'Z. By induction hypothesis, this involution induces the
identity on Z/2"'Z, so it must be x — (1 4 271)z.

There is thus only one possible non-trivial action of PGLy(F,). In order to com-
pute H?( PGLy(Fy), Z/2'Z) for this non-trivial action, I use the inflation-restriction
exact sequence:

Lemma C.2.2.5. Let ¢ € N, let G be a group, let H<{G be a normal subgroup of G,
and let M be a G-module. If H(H, A) =0 for all 1 < j < q— 1, then the sequence

Infl Res

0 — HYG/H,M") 2= HY(G, M) =5 HY(H, M)
1S exact.

For a proof, see for instance [Ser62, chapter VII §6 proposition 5]. As PSLy(FF,)
acts trivially, one has

H'(PSLy(Fy), Z/2'Z) = Hom ( PSLy(Fy), Z/2'Z) = 0

since PSLy(TFy) is simple, so that lemma C22F applies and yields the exact sequence

Infl

0 — H*(Z/2Z,7.)2'7) — HQ(PGLQ(IFE),Z/QZZ) fes, HQ(PSLQ(FZ),Z/QiZ).
(C.2.2.6)
On the one hand, since Z/27Z = {1,¢} is cyclic, the groups HY(Z/2Z, M) are the
cohomology groups of the complex

—1 1 —1 1
0— M5 M M= 25

for any Z/2Z-module M (cf. [Lan02, chapter XX exercise 16]). In particular,

Y

=2
0, i> 3.

H*(7.)27.,7./2'7) = —

Ker(e — 1) Z/)2z)[27" { 7.)27., i
Im(e +1)  (2+2-)(Z/27Z) ~

On the other hand, as PSLy(F,) acts trivially, the group H?(PSLy(F,),Z/2'Z)
can be computed by using the split exact sequence (CCZZ3). As PSLy(F,)*® = {1}
since PSLy(IF,) is simple, and as the Schur multiplier is

H?(PSLy(F,),C*) ~ Z/2Z
(Steinberg, cf. [Kar87, theorem 7.1.1.(ii)]), it results that
H?*(PSLy(F,), Z/2'Z) ~ Z./2Z.
Let 2'PSLy(FF) denote the non-trivial extension. One has

2PSLy(Fy) ~ SLy(IFy),
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and the non-trivial element of H?(PSLy(F,),Z/2'Z) is the image of the non-trivial
element g1, € H?( PSLy(F,), Z/2Z) corresponding to SLa(Fy) by the map

H?(PSLy(F,),Z/2Z) — H?(PSLy(F,), Z/2'Z)

induced by the embedding of Z/27Z into Z/2'Z.
Consider the inflation-restriction exact sequence (CZZ26), and let

g e H2(PGL2(FE),Z/2’Z)
be the cohomology class corresponding to the extension
0 — Z/2'Z — Gal(L;/Q) — PGLy(F,) — 1.

If v = Resf € H?(PSLy(F,),Z/2'Z) were trivial, then 3 = Infla would be the

inflation of some a € H?*(Z/2Z,7/2'Z), so that Gal(L;/Q) would be isomorphic

to the fibred product (a.k.a. pullback) G, x PGLy(F,), where G, is the group
z/2%

extension '
0 —Z/2'72 — Gy — Z/27Z — 0

corresponding to «. Actually, if ¢ > 3, then § = Infla would be trivial since
H?*(Z/27,7./2'7) = 0, so that Gal(L;/Q) would be isomorphic to the semi-direct
product

7.)2'7 x PGLy(F,),

whereas if ¢ = 2, then H?(Z/2Z,7/2'Z) ~ Z/2Z, so that Gal(L,/Q) would be iso-
morphic either to Z/4ZxPGLy(Fy) or to Qs x PGLy(FF,), where Qs, the quaternionic
7)2L

group {+£1, 4, +j, £k}, is the extension
0 —Z/AZ — Qs — Z/2Z — 0

corresponding to the non-trivial element of H?(Z/2Z,7/4Z). However, since the
abelianisations

. ab .
(Z/ZlZ x PGLQ(F€)> ~ 7277 % 7,)2Z

and

(Qs o PGLy(F,))™ ~ Z/2Z x 7./

have 2-rank 2, this is impossible, since L; ramifies only at ¢ by (A1) and there is only
one quadratic number field which ramifies only at ¢, namely Q(\/F)

It follows that v = Res 8 € H?( PSLy(F,),Z/2'Z) cannot be trivial, so it must
be ys1, € H*( PSLy(Fy), Z/2Z) followed by the embedding of Z/2Z into Z/2'Z. Let
g = [§2Y] € PGLy(F,). As £ = 1mod 4, g lies in PSLy(F,), and since the only
element of order 2 of SLy(Fy) is [_01 9 ], g cannot be lifted to an element of order 2
of SLy(FFy), so that vsr,,(g,9) # 0 by example C2232. On the other hand, since g is
the image of the complex conjugation (with respect to some embedding of L, into
C) by the projective Galois representation pi'(”, it must lift to an element of order
2 of Gal(L;/Q), which is contradictory: in the extension Gal(L;/Q), seen as the set

7.)2'7 x PGLy(F,;) endowed with the group law

(xlagl) ’ (1’2,92) = (:Ul + g1 T2+ 5(91792)?9192)7
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one computes that

(z,9) (z,9) = (z+ g -2+ B(g.9),9°) = (B(g,9),1)

as g € PSLy(FFy) acts trivially, so (g, g) must be zero, but 3(g,9) = Ys,(g9,9) # 0
since g € PSLy(Fy).
It is therefore impossible that the extension

0 — Z/2'Z — Gal(L;/Q) — PGLy(F,) — 1
be not central, which completes the induction.

In particular, Gal(L,/Q) is a central extension of Gal(Ly/Q) ~ PGLy(F,) by
Gal(L,/Ly) ~ Z/2"Z, so that it is isomorphic either to Z/2"Z x PGLy(F,),
20 PGLy(Fy), 2" PGLy(F,) or 27, PGLy(F,) by theorem CZZA(ii). Let L2 be the
maximal subfield of L, which is abelian over Q. Then its Galois group is the
abelianised of Gal(L,/Q), which is thus respectively isomorphic to Z/2"Z x 7. /27,
Z)277, 7)27 72 x 727 or Z./2"7 by theorem CZZ2A(iv). This allows to exclude
Z]2"7 x PGLy(F,) and 2" PGLy(F,) since L,, which ramifies only at ¢ by (Al), can
only have one quadratic subfield, namely Q(\/E_*) Furthermore, since L2" is abelian
and ramifies only at /, it is a subfield of Q(p ), so that its Galois group Gal(L,/Q)*"
is a quotient of

Gal (Q(pe=)/Q) = Z; ~Z/(€ — 1)Z X Zy.

In particular, this quotient cannot be isomorphic to Z/2"1Z since £ — 1 = 2"m, m
odd, so Gal(L,/Q) cannot be isomorphic to 2, PGLs(F;) either. It must therefore be
isomorphic to 27, PGLy(F,). Besides, the same reasoning applies to the number field
cut out by the quotient Galois representation pi’“[, whose Galois group is isomorphic
to the image of p?:”[, which is the whole of GLy(IFy)/S, since the determinant of py is

an odd power of the mod ¢ cyclotomic character. Therefore, Gal(L,/Q) is isomorphic
to GLQ(F@)/ST

Remark C.2.2.7. From there, one can go back down the quadratic tower L,/ - - - /Lg
and see that Gal(L;/Q) ~ GLo(F)/S; for all i. Besides, it is easy to see that the
abelianised of GLy(F,)/S; is Fj /S?, the projection being induced by the determinant.
Since S? = S;y1 © S; for i < r whereas S? = S, as —1 ¢ S, theorem TZZ4(iv)
leads to the unified formula

PGLy(F,),  i=0,
Gal(L;/Q) ~ GLa(F,)/S; =~ { 2 PGLy(F,), 0<i<r,
2 PGLy(F,), i=r,

which is valid for £ = 1 mod 4 and for / = —1 mod 4 as well, and which allows to
identify for each i the extension GLy(F,)/S; of PGLy(FF,) amongst the ones listed in
theorem C2727A(ii).

It follows that there exists a quotient Galois representation

P Go — Gal(L, /Q) —= GLy(F,)/S,
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which cuts out the field L, and whose projectivisation
Sr
Go ~— GLy(F,)/S, —= PGLy(F,)

is isomorphic to p?r[O I This representation p® is therefore a twist ,0?1 ® 1Y of ,0?”[ by
a Galois character
w: GQ — Fz / S,

The number field cut out by v is abelian and, since it is contained in L, it ramifies
only at ¢ by (A1), so it is a subfield of Q (s~ ). Besides, its Galois group is isomorphic
to the image of 1, whose order is prime to ¢, so that this field is a subfield of Q(zu,),
which is also contained L2". Since Gal (Q(¢)/Q) ~ Z/({—1)Z is cyclic and since the
order of Im¢) C F} /S, divides the order of Gal(L**/Q) ~ F}/S,, the number field cut
out by 1 is contained in L2". The kernel of the quotient representation p ~ p]‘?ﬁ X Y
therefore agrees with the kernel of p?f[, which completes the proof of the fact that
the decomposition field of the polynomial F,.(X) computed by my algorithm is the
number field cut out by p]SJ[

Remark C.2.2.8. Since the linear Galois representation ps can be recovered from
the quotient Galois representation p?r[ and the mod ¢ cyclotomic character X, as
—k—1

S.
Pf,T[XXg

GLy(Fy) /S, x Fi — 2 GLy(F,)

pri: Go

where

¢: GLyo(F,) — GLy(F,)/S x F
g  +— (7(g),det(g))

(cf. section BZ35T), the number field L cut out by the linear representation py,
is the compositum of the number field L, cut out by ,0;?7”[ and of the number field
E C Q(ue) cut out by X'Z_l. This yields an easy method to compute a nice monic
polynomial in Z[X] whose decomposition field is L: using [Pari/GP], first compute
a polynomial defining the subcyclotomic field £ by using the polsubcyclo function,
then apply the polcompositum function to F,.(X) and to this polynomial.

This is useful since the polynomial F/(X) computed by my algorithm is usually
too big to be reduced, even by the methods presented in section BZ3757.
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Résumé

J.-P. Serre a conjecturé a la fin des années 60 et P. Deligne a prouvé au début des
années 70 que pour toute newform f = ¢+ > -,a,q" € Sk(N,e), k > 2, et tout
premier [ du corps de nombres Ky = Q(a,, n > 2), il existe une représentation galoi-
sienne [-adique py: Gal(Q/Q) — GLa(Zg,,) qui est non-ramifiée en dehors de ¢N et
telle que le polynéme caractéristique du Frobenius en p { N est X2 — apX + a(p)pkfl.
Apres réduction modulo [ et semi-simplification, on obtient une représentation galoisienne

P Gal(Q/Q) — GLz(F() modulo [, non-ramifiée en dehors de ¢N et telle que le

k=1 mod [, d’ou

polynéome caractéristique du Frobenius en p { £N est X2 — ap,X +e(p)p
un moyen de calcul rapide de a, mod [ pour p gigantesque.

L’objet de cette these est I’'étude et I'implémentation d’un algorithme reposant sur cette
idée (initialement due & J.-M. Couveignes and B. Edixhoven), qui calcule les coefficients a,,
modulo [ en calculant d’abord cette représentation modulo [, en s’appuyant sur le fait que
pour k < £, cette représentation est réalisée dans la f-torsion de la jacobienne de la courbe
modulaire X;(¢/N).

Grace a plusieurs améliorations, telles que l'utilisation des méthodes de K. Khuri-
Makdisi pour calculer dans la jacobienne modulaire J;(¢N) ou la construction d’une fonc-
tion o € Q(J1 (N )) au bon comportement arithmétique, cet algorithme est tres efficace,
ainsi qu’illustré par des tables de coefficients. Cette these se conclut par la présentation
d’une méthode permettant de prouver formellement que les résultats de ces calculs sont
corrects.

Mots clés: Formes modulaires, représentations galoisiennes, conjecture de modularité
de Serre, jacobiennes modulaires, algorithme rapide.

Summary

It was conjectured in the late 60’s by J.-P. Serre and proved in the early 70’s by P.
Deligne that to each newform f = ¢+ > -,ang" € Sk(N,¢), k > 2, and each prime
[ of the number field Ky = Q(a,, n > 2), is attached an l-adic Galois representation
pri: Gal(Q/Q) — GLy(Zk,,), which is unramified outside £N and such the characteristic
polynomial of the Frobenius element at p { N is X2 —a,X +¢(p)p* . Reducing modulo [
and semi-simplifying, one gets a mod [ Galois representation p;: Gal(Q/Q) — GLao(F)),
which is unramified outside /N and such that the characteristic polynomial of the Frobenius
element at p{ /N is X? —a, X + e(p)p*~! mod [. In particular, its trace is a, mod [, which
gives a quick way to compute a, mod [ for huge p.

The goal of this thesis is to study and implement an algorithm based on this idea
(originally due to J.-M. Couveignes and B. Edixhoven) which computes the coefficients a,,
modulo [ by computing the mod [ Galois representation first, relying on the fact that if
k < £, this representation shows up in the /-torsion of the jacobian of the modular curve
X1(¢N).

Thanks to several improvements, such as the use of K. Khuri-Makdisi’s methods to
compute in the modular Jacobian Ji(¢N) or the construction of an arithmetically well-
behaved function o € Q(Jl (LN )), this algorithm performs very well, as illustrated by
tables of coefficients. This thesis ends by the presentation of a method to formally prove
that the output of the algorithm is correct.

Key words: Modular forms, Galois representations, Serre’s modularity conjecture,
modular jacobians, fast algorithm.
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