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Résumé

L’objet de cette thèse est d’étudier la géométrie des immeubles à angles droits. Ces espaces,
définis par J. Tits sont des espaces singuliers qui peuvent être vus comme des généralisations
des arbres en dimension supérieure.

La thèse est divisée en deux parties. Dans la première partie, nous décrivons comment
la notion de résidus parallèles permet de comprendre l’action d’un groupe sur un immeuble.
En corollaire nous retrouvons que dans un groupe de Coxeter et dans un produit graphé
les intersections de sous-groupes paraboliques sont paraboliques.

Dans la seconde partie, nous abordons la structure quasi-conforme du bord des im-
meubles hyperboliques à angles droits. En particulier, nous trouvons des exemples d’im-
meubles de dimension 3 et 4 dont le bord vérifie la propriété combinatoire de Loewner.
Cette propriété est une version faible de la propriété de Loewner. Cette partie est motivée
par le fait que, depuis G.D. Mostow, la structure quasi-conforme au bord a mené à plu-
sieurs résultats de rigidités dans les espaces hyperboliques. Dans le cas des immeubles de
dimension 2, M. Bourdon et H. Pajot ont prouvé la rigidité des quasi-isométries en utilisant
la propriété de Loewner au bord.



Abstract

The object of this thesis is to study the geometry of right-angled buildings. These spaces,
defined by J. Tits, are singular spaces that can be seen as trees of higher dimension.

The thesis is divided in two parts. In the first part, we describe how the notion of parallel
residues allows to understand the action of a group on the building. As a corollary we
recover that in Coxeter groups and in graph products intersections of parabolic subgroups
are parabolic.

In the second part, we discuss the quasiconformal structure of boundaries of right-
angled hyperbolic buildings thanks to combinatorial tools. In particular, we exhibit some
examples of buildings of dimension 3 and 4 whose boundary satisfy the combinatorial
Loewner property.This property is a weak version of the Loewner property. This part
is motivated by the fact that the quasiconformal structure of the boundary led to many
results of rigidity in hyperbolic spaces since G.D. Mostow. In the case of buildings of
dimension 2, a lot of work has been done by M. Bourdon and H. Pajot. In particular, the
Loewner property on the boundary permitted them to prove the quasi-isometry rigidity
for some buildings of dimension 2.
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Chapitre 0

Introduction

0.0.1 Point de départ

L’étude des modules de courbes dans les espaces métriques compacts a pour origine la
théorie classique des applications quasi-conformes dans les espaces euclidiens (cf. [Väi71]
ou [Vuo88]). L’objectif de cette théorie est de décrire la régularité des applications quasi-
conformes dans Rd et de trouver des invariants pour ces applications. La notion d’espace de
Loewner a été introduite par J. Heinonen et P. Koskela (cf. [HK98] ou [Hei01]) pour décrire
les espace métriques mesurés dont les applications quasi-conformes ont un comportement
aussi régulier que les applications quasi-conformes dans les espace euclidiens.

Par ailleurs, on sait depuis G.D. Mostow que la structure quasi-conforme du bord d’un
espace hyperbolique contrôle la géométrie de l’espace. Cette idée se généralise aux espaces
hyperboliques au sens de Gromov. Quand la structure d’espace de Loewner apparaît au
bord d’un espace hyperbolique on peut montrer des résultats de rigidité dans l’espace
(cf. [Haï09b] pour un survol de ce type de résultats). Pour montrer la rigidité d’un es-
pace hyperbolique on cherche à montrer que les quasi-isométries de l’espace sont données
par les homéomorphismes quasi-symétriques du bord. Les espaces de Loewner permettent
cette identification car dans ces espaces les classes d’applications quasi-symétriques, quasi-
Moebius, et quasi-conformes sont égales.

A comparer avec un texte qui occupe toute la largeur de la page, comme celui-ci.
Cependant, il est très difficile de montrer que le bord d’un espace hyperbolique vérifie la
propriété de Loewner. Pour ce faire il est nécessaire de connaître une mesure au bord qui
soit optimale pour la dimension conforme. Cet invariant conforme a été introduit par P.
Pansu dans [Pan89]. Trouver une telle mesure et même calculer cette dimension sont des
problèmes très difficiles qui ne sont résolus que pour peu d’exemples à l’heure actuelle.

Un exemple particulièrement intéressant pour nous est le travail réalisé par M. Bourdon
et H. Pajot dans les immeubles fuchsiens. Ils ont montré que les bords de ces immeubles
étaient des espaces de Loewner et ont ensuite utilisé cette structure pour prouver la rigidité
des quasi-isométries de ces immeubles (cf. [BP00]).
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Les immeubles sont des espaces singuliers introduits par J. Tits pour étudier les groupes
de Lie exceptionnels. De nos jours, les immeubles constituent un domaine d’étude à part
entière en théorie géométrique des groupes. Parmi les immeubles, ceux à angles droits
ont été classifiés par F. Haglund et F. Paulin dans [HP03]. Ces immeubles sont munis
d’une structure de mur et d’une action de groupe simplement transitive sur les chambres,
ce qui en fait des objet singuliers très réguliers. Les immeubles fuchsiens étudiés par M.
Bourdon et H. Pajot sont les immeubles hyperboliques de dimension 2 au sens que leurs
appartements sont isométriques à H2. Au regard du résultat de M. Bourdon et H. Pajot
on peut se demander :

Question 0.0.1. Les immeubles hyperboliques à angles droits de dimension supérieure
sont-ils rigides ? Quelles-sont les propriétés quasi-conformes de leurs bords ?

La géométrie des immeubles hyperboliques à angles droits de dimension supérieure est
proche de celles des immeubles fuchsiens. Cela autorise à penser que ces questions doivent
avoir des réponses intéressantes. Cependant les méthodes utilisées au bord des immeubles
fuchsiens sont très spécifiques à la dimension 2. Ces questions ne sont donc pas simples.
Dans cette thèse on utilise les modules combinatoires pour fournir une première approche
de la structure quasi-conforme des immeubles hyperboliques à angles droits de dimension
supérieure.

Un célèbre problème de rigidité étudié à l’aide des propriétés quasi-conforme du bord
est la conjecture suivante dû à J.W. Cannon.

Conjecture 0.0.2 ([CS98, Conjecture 5.1.]). Si Γ est un groupe hyperbolique et que son
bord est homéomorphe à S2, alors Γ agit géométriquement sur H3.

Cette conjecture implique notamment la conjecture d’hyperbolisation des variétés de
dimension 3 de Thurston. Bien que la conjecture de Thurston soit devenu un théorème
de G. Perelman, la conjecture de Cannon reste une question intéressante puisqu’elle est
indépendante logiquement de celle de Thurston.

Les modules combinatoires ont été introduits par J.W. Cannon dans [Can94] et par
M. Bonk et B. Kleiner dans [BK02] au cours de l’étude de la structure quasi-conforme
des sphères de dimension 2 en vu de résoudre la conjecture et par P. Pansu dans un
contexte plus général dans [Pan89]. Les modules combinatoires conduisent à définir une
version faible de la propriété de Loewner : la propriété de Loewner combinatoire (CLP).
Ces modules combinatoires permettent aussi de caractériser la dimension conforme à l’aide
d’un exposant critique au bord.

Récemment, M. Bourdon et B. Kleiner (cf. [BK13]) ont trouvé des exemples de bords
de groupes de Coxeter qui vérifient la CLP mais dont on ne sait pas encore s’ils vérifient
la propriété de Loewner. Ils ont, de plus, utilisé la CLP pour donner une nouvelle preuve
de la conjecture de Cannon pour les groupes de Coxeter. Certaines des méthodes qu’ils
ont utilisées dans les groupes de Coxeter sont transposables dans les immeubles à angles
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droits. Cela fournit une motivation pour explorer le bord des immeubles hyperboliques à
angles droits à l’aide de modules combinatoires.

0.0.2 Principaux résultats

Dans le premier chapitre de cette thèse, on présente les immeubles dans un cadre général
et on s’intéresse en particulier à la notion de résidus parallèle dans les immeubles. Les
résidus parallèles sont les résidus obtenus par projection de deux résidus l’un sur l’autre.
Le principal résultat de ce chapitre est le suivant.

Théorème 1 (Théorème 1.2.14). Soit ∆ un immeuble et G un groupe d’automorphismes de
∆. Supposons que pour toute paire de résidus parallèles P, P ′ on ait StabG(P ) = StabG(P ′).
Alors pour toute paire de résidus R et Q on a :

StabG(R) ∩ StabG(Q) = StabG(projR(Q)) = StabG(projQ(R)).

En conséquence de ce théorème on obtient deux preuves parallèles du résultat suivant
concernant les sous-groupes paraboliques dans les groupes de Coxeter et dans les produits
graphés. Les sous-groupes paraboliques sont les conjugués des sous-groupes de générateurs.
Dans le cas des groupes de Coxeter ce résultat classique est dû à J. Tits. Dans le cas des
produits graphés il a été montré récemment dans [AM13] dans un cadre plus général par
des méthodes combinatoires.

Théorème 2 (Théorèmes 1.3.2 et 1.5.3 ). Soit G un groupe de Coxeter ou un produit
graphé. Dans G les intersections de sous-groupes paraboliques sont paraboliques.

Dans le second chapitre, on se restreint à l’étude des immeubles hyperboliques à angles
droits. On utilise les modules combinatoires pour explorer la structure quasi-conforme
au bord de ces immeubles. Grâce à des méthodes venant de [BK13], on peut contrôler
les modules combinatoires au bord par les courbes contenues dans les ensembles limites
paraboliques (cf. Partie 2.5). Ensuite, on introduit un module à poids aux bords des appar-
tements. Cela permet de contrôler les modules aux bords des immeubles par des modules
aux bords des appartements (cf. Partie 2.7). Pour des exemples bien choisis, le bord des
appartements a beaucoup de symétries, ce qui fournit un fort contrôle des modules. En
particulier, on utilise ces symétries pour trouver des exemples d’immeubles hyperboliques
de dimension 3 et 4 dont les bords vérifient la CLP.

Théorème 3 (Corolaire 2.9.3). Soit D le dodécaèdre régulier à angles droits dans H3 ou
le 120-cell régulier dans H4. Soit WD le groupe engendré par les réflexions hyperboliques
par rapport au faces de D. Pour q ≥ 3, notons ∆ l’immeuble à angles droits d’épaisseur
constante égale à q et de groupe de Coxeter WD. Alors ∂∆ vérifie la CLP.

En complément de ce résultat nous donnons aussi dans le Théorème 2.8.1 une caracté-
risation de la dimension conforme du bord de l’immeuble par un exposant critique calculé
au bord d’un appartement.
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0.0.3 Terminology and notations

All along this thesis, we will use the following conventions. The identity element in a group
will always be designated by e. For a set E, the cardinality of E is designated by #E. A
proper subset F of E is a subset F  E.

If G is a graph then G(0) is the set of vertices of G and G(1) is the set of edges of G. For
v, w ∈ G(0), we write v ∼ w if there exists an edge in G whose extremities are v and w. If
V ⊂ G(0), the full subgraph generated by V is the graph GV such that G(0)

V = V and an
edge lies between to vertices v, w if and only if there exists an edge between v and w in G.
A full subgraph is called a circuit if it is a cyclic graph Cn for n ≥ 3. A graph is called a
complete graph if for any pair of distinct vertices v,w there exists an edge between v and
w.

A curve in a compact metric space (Z, d) is a continuous map η : [0, 1] −→ Z. Usu-
ally, we identify a curve with its image. If η is a curve in Z, then Uε(η) denotes the
ε-neighborhood of η for the C0-topology. This means that a curve η′ ∈ Uε(η) if and only
if there exists s : t ∈ [0, 1] −→ [0, 1] a parametrization of η such that for any t ∈ [0, 1] one
has d(η(s(t)), η′(t)) < ε.

In a metric space Z, if A ⊂ Z then Nr(A) is the r-neighborhood of A. The closure of
A is designated by A and the interior of A by Int(A). If B = B(x,R) is an open ball and
λ ∈ R then λB is the ball of radius λR and of center x. A ball of radius R is called an
R-ball. The closed ball of center x and radius R is designated by B(x,R).

A geodesic line (resp. ray) in a metric space (Z, d) is an isometry from (R, | ·− · |) (resp.
([0,+∞), | · − · |) to (Z, d). The real hyperbolic space (resp. Euclidean space) of dimension
d is denoted Hd (resp. Ed).
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Chapter 1

Groups acting on buildings

Introduction

At the starting point of this thesis, we studied the geometry of right-angled buildings. The
geometry of these buildings can be understood thanks to a wall structure and a simply
transitive group action. Coxeter systems come also with a wall structure and a simply
transitive group action. This provides some similarities in the discussions about right-
angled buildings and Coxeter systems. Regarding these similarities, it seemed relevant to
discuss these two cases in parallel. This is what we do in this chapter.

The main tools used in this chapter are the parallel residues in the Davis complex of
the building. Along with a wall structure, the notion of parallel residues makes it possible
to recover that intersections of parabolic subgroups are parabolic in Coxeter groups and in
graph products (see Theorems 1.3.2 and 1.5.3).

The principal result about parallel residues (Theorem 1.2.14) and the geometric method
used to prove Theorems 1.3.2 and 1.5.3 are new. Yet these last two theorems were already
known. Theorem 1.3.2 is due to J. Tits and Theorem 1.5.3 has been proved recently in
a more general case thanks to combinatorial arguments (see [AM13, Proposition 3.4.]).
Besides this chapter is enriched with facts about residues. Some of these were already
proved in slightly different contexts than the one we use. For the sake of completeness we
chose to expose here the proofs in the setting of the Davis complex that we will use all
along this thesis. In particular, some of these results in right-angled buildings (Proposition
1.4.15 and Theorem 1.4.17) will find their use in Chapter 2.

Organization of the chapter

In Section 1.1, we start by reminding basic facts about chamber systems and Coxeter
groups. In particular we insist on the geometric realization of the Coxeter groups. In
Section 1.2, we remind the abstract definition of buildings and then we discuss the notion
of parallel residues in buildings. Parallel residues will help us to describe intersections of
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stabilizers of residues. In Sections 1.3 and 1.5, we follow a blue print that gives us as
corollaries that intersections of parabolic subgroups are parabolic in Coxeter groups and
in graph products. Note that essentially, the proofs of Theorems 1.3.2 and 1.5.3 including
the intermediate results are the same. In Section 1.4, we discuss the geometric structure
of right-angled buildings that will be used in Section 1.5 but also in Chapter 2.

1.1 Chamber and Coxeter systems
Chamber systems provide an abstract context in which J. Tits defined buildings. Coxeter
groups are chambers systems that are used as block pattern to construct buildings.

In this section we start by reminding basic facts about chamber and Coxeter systems.
Then we describe the geometric realization of Coxeter groups due to M.W. Davis. Even-
tually, we discuss walls and residues in the Davis complex.

For details concerning the notions reminded in this section, we refer to [Tit74], [Ron89],
or [AB08]. Concerning the Davis realization, we can refer to [Dav08, Chapter 8] or to
[Mei96] for an example of the Davis construction along with suggestive pictures.

Here S = {s1, . . . , sn} is a fixed finite set.

1.1.1 Chamber system

Following the definition of J. Tits, a chamber system X over S is a set endowed with a
family of partitions indexed by S. The elements of X are called chambers.

Hereafter X is a chamber system over S. For s ∈ S, two chambers c, c′ ∈ X are said
to be s-adjacent if they belong to the same subset of X in the partition associated with
s. Then we write c ∼s c′. Usually, omitting the type of adjacency we refer to adjacent
chambers and we write c ∼ c′. Note that any chamber is adjacent to itself.

A morphism f : X −→ X ′ between two chamber systems X,X ′ over S is a map that
preserves the adjacency relations. A bijection of X that preserves the adjacency relations
is called an automorphism and we designate by Aut(X) the group of automorphisms of
X. A subsystem of chamber Y of X is a subset Y ⊂ X such that the inclusion map is a
morphism of chamber systems.

We call gallery, a finite sequence {ck}k=1,...,` of chambers such that ck ∼ ck+1 for
k = 1, . . . , `− 1. The galleries induce a metric on X.

Definition 1.1.1. The distance between two chambers x and y is the length of the shortest
gallery connecting x to y.

We use the notation dc(·, ·) for this metric over X. A shortest gallery between two
chambers is called minimal.

Let I ⊂ S. A subset C of X is said to be I-connected if for any pair of chambers
c, c′ ∈ C there exists a gallery c = c1 ∼ · · · ∼ c` = c′ such that for any k = 1, . . . , `− 1, the
chambers ck and ck+1 are ik-adjacent for some ik ∈ I.
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Definition 1.1.2. The I-connected components are called the I-residues or the residues
of type I. The cardinality of I is called the rank of the residues of type I. The residues of
rank 1 are called panels.

The following notion of convexity is used in chamber systems.

Definition 1.1.3. A subset C of X is called convex if every minimal gallery whose ex-
tremities belong to C is entirely contained in C.

The convexity is stable by intersection and for A ⊂ X, the convex hull of A is the
smallest convex subset containing A. In particular, convex subsets of X are subsystems.
The following example is crucial because it will be used to equip Coxeter groups and graph
products with structures of chamber systems (see Definition 1.1.7 and Theorem 1.4.4).

Example 1.1.4. Let G be a group, B a subgroup and {Hi}i∈I a family of subgroups of G
containing B. The set of left cosets of Hi/B defines a partition of G/B. We denote by
C(G,B, {Hi}i∈I) this chamber system over I. This chamber system comes with a natural
action of G. The group G acts by automorphisms and transitively on the set of chambers.

1.1.2 Coxeter systems

A Coxeter matrix over S is a symmetric matrixM = {mr,s}r,s∈S whose entries are elements
of N ∪ {∞} such that ms,s = 1 for any s ∈ S and {mr,s} ≥ 2 for any r, s ∈ S distinct. Let
M be a Coxeter matrix. The Coxeter group of type M is the group given by the following
presentation

W = 〈s ∈ S|(rs)mr,s = 1 for any r, s ∈ S〉 .

We call special subgroup a subgroup of W of the form

WI = 〈s ∈ I|(rs)mr,s = 1 for any r, s ∈ I〉 with I ⊂ S.

Definition 1.1.5. We call parabolic subgroup a subgroup of W of the form wWIw
−1

where w ∈W and I ⊂ S. An involution of the form wsw−1 for w ∈W and s ∈ S is called
a reflection.

Example 1.1.6. Let Xd = Sd,Ed or Hd. A Coxeter polytope is a convex polytope of
Xd such that any dihedral angle is of the form π

k with k not necessarily constant. Let D
be a Coxeter polytope and let σ1, . . . , σn be the codimension 1 faces of D. We set M =
{mi,j}i,j=1,...,n the matrix defined by mi,i = 1, if σi and σj do not meet in a codimension
2 face mi,j = ∞, and if σi and σj meet in a codimension 2 face π

mi,j
is the dihedral angle

between σi and σj.
Then a theorem of H. Poincaré (see [GP01, Theorem 1.2.]) says that the reflection

group of Xd generated by the codimension 1 faces of D is a discrete subgroup of Isom(Xd)
and is isomorphic to the Coxeter group of type M .
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On Figure 1.1 are represented the Coxeter systems associated with the following Coxeter
matrices

M1 =

1 2 4
2 1 2
4 2 1

 ,M2 =

1 3 3
3 1 3
3 3 1

 and M3 =


1 4 ∞ ∞ 4
4 1 4 ∞ ∞
∞ 4 1 4 ∞
∞ ∞ 4 1 4
4 ∞ ∞ 4 1

.

Definition 1.1.7. With the notation introduced in Example 1.1.4, the Coxeter system
associated with W is the chamber system over S given by C(W, {e}, {W{s}}s∈S). We use
the notation (W,S) to designate this chamber system.

The chambers of (W,S) are the elements of W and two distinct chambers w,w′ ∈ W
are s-adjacent if and only if w = w′s. For I ⊂ S, notice that for any I-residue R in (W,S)
there exists w ∈ W such that, as a set R = wWI . Again W is a group of automorphisms
of (W,S) that acts transitively on the set of chambers.

Hereafter (W,S) is a fixed Coxeter system.

Example 1.1.8. In the case of Example 1.1.6, the chamber system associated with W is
realized geometrically by the tilling of Xd by copies of the polytope D (see Figure 1.1). Two
chambers are adjacent in (W,S) if and only if the corresponding copies of D in Xd share a
codimension 1 face.

1.1.3 The Davis chamber of (W, S)
The geometric realization of M.W. Davis can be seen as a generalization to all the Coxeter
groups of the Example 1.1.8. The first step to describe the geometric realization of W is
to construct its Davis chamber. We remind that S = {s1, . . . , sn} is a set of generators of
W . Let S6=S be the set of subsets of S different from S. We denote by

Sf the set of subsets F  S such that WF is finite.

Following [Dav08, Appendix A], a poset admits a geometric realization which is a
simplicial complex. This complex is such that the inclusion relations between cells represent
the partial order. We denote by D the Davis chamber which is the geometric realization
of the poset Sf . In the following we give details of this construction. An example of this
construction is given by Figure 1.2.

Let ∆n−1 be the standard (n − 1)-simplex and label the codimension 1 faces of ∆n−1

with distinct elements of S. Then σ a codimension k face of ∆n−1 is associated with a
type i.e a subset I ⊂ S of cardinality k. In this setting, we write σI for the face of type
I. Equivalently, we can say that each vertex of the barycentric subdivision of ∆n−1 is
associated with a subset of S. Adding the fact that the empty set is associated with the
barycenter of the whole simplex, we get a bijection between the vertices of the barycentric
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(a) The spherical Coxeter system of M1

(b) The Euclidean Coxeter system of M2

(c) The hyperbolic Coxeter system of M3

Figure 1.1: Examples of geometric realizations of Coxeter systems
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subdivision and S6=S . Hence a vertex in the barycentric subdivision is designated by (si)i∈K
for K ⊂ {1, . . . , n}. Using this identification, let T be the subgraph of the 1-skeleton of
the barycentric subdivision of ∆n−1 obtained as follows:

• T (0) = S 6=S ,

• the vertices (si)i∈I and (sj)j∈J , with #J ≥ #I, are adjacent if and only if I ⊂ J and
#I = #J − 1.

In the following definition, for k ≥ 1 we call a k-cube, a CW-complex that is isomorphic,
as a cellular complex, to the Euclidean k-cube [0, 1]k. In particular, it is not necessary to
equip these cubes with a metric for the purpose of this chapter.

Definition 1.1.9. The 1-skeleton of the Davis chamber D(1) is the full subgraph of T
generated by the elements of Sf . The Davis chamber is obtained from D(1) by attaching a
k-cube inside any full subgraph generated by 2k vertices that is the 1-skeleton of a k-cube.

By construction, D ⊂ ∆n−1. We call maximal faces of D the subsets of the form σ ∩D
where σ is a codimension 1 face of ∆n−1. Likewise, for I ⊂ S, the face of D of type I is
D∩σI . Note that that the faces of D are made of branching of cubes of various dimensions.

Example 1.1.10. In the case of Example 1.1.6, the Davis chamber is combinatorially
identified with the Coxeter polytope. Then if we equip D with the appropriate metric (Eu-
clidean, spherical, or hyperbolic) we recover the Coxeter polytope.

1.1.4 The Davis complex associated with W

For x ∈ D, if I is the type of the face containing x in its interior, we set Wx := WI . To
the interior points of D we associate the trivial group W∅.

Now we can define the Davis complex: Σ(W,S) = D ×W/ ∼ with

(x,w) ∼ (y, w′) if and only if x = y and w−1w′ ∈Wx.

We call chamber of Σ(W,S) a subset of Σ(W,S) of the form [D × {w}] with w ∈W . Two
chambers of Σ(W,S) are adjacent if and only if they share a maximal face in Σ(W,S). For
a subset E ⊂ Σ(W,S) we designate by Ch(E) the set of chambers contained in E.

It appears that Σ(W,S) endowed with this structure of chamber system is isomorphic
to (W,S). Thanks to this identification, it makes sense to write (W,S) for the set of the
chambers in Σ(W,S).

In particular, the left action ofW on itself induces an action on Σ(W,S). For g ∈W and
[(x,w)] ∈ W , we set g[(x,w)] := [(x, gw)]. This action is simply transitive and isometric
on (W,S) equipped with dc(·, ·).

Example 1.1.11. In the case of Example 1.1.6, if we equip D with the appropriate metric
we recover that the Davis complex is realized by the tilling of Xd by D (see Figure 1.1).
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v1

v2

v3v4
(a) An example for the graph G

{1}

{1, 2} {2} {2, 3}

{3}

{3, 4}

{4}

{2, 3, 4}

∅

(b) The graph T labelled by the elements of Sf

(c) The Davis chamber resulting from G

Figure 1.2: Example of the construction of a Davis chamber
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1.1.5 Walls and residues in the Davis complex

We call base chamber of Σ(W,S), denoted by x0, the chamber [D × {e}]. For w ∈ W , as
[D×{w}] is the image of x0 under w, we designate this chamber by wx0. Here we present
some classical tools used to describe the structure of (W,S).

Definition 1.1.12.

1. We call wall in Σ(W,S) the proper subcomplex stabilized by a reflection wsw−1 ∈W .
We denote byM(W,S) the set of walls of Σ(W,S).

2. Let M be a wall associated with a reflection r ∈ W . For a chamber c ∈ (W,S) we
say that M is along c if r(c) is adjacent to c.

Proposition 1.1.13. [Tit74, Corollary 2.8.] Let M ∈ M(W,S) and r ∈ W be the re-
flection stabilizing M . Then Σ(W,S)\M consists of two disjoint connected components.
We call half-spaces bounded by M the closure in Σ of these components. We designate by
H0(M) and H1(M) these half-spaces, with the convention that x0 ⊂ H0(M).

In this setting, H0(M) and H1(M) are such that

• Ch(H0(M)) = {x ∈ (W,S) : dc(x0, x) < dc(x0, rx)},

• Ch(H1(M)) = {x ∈ (W,S) : dc(rx0, x) < dc(rx0, rx)}.

Moreover r permutes H0(M) and H1(M).

By symmetry of the relation induced by the connected components, we obtain that for
i = 1, 2 and any y ∈ Ch(Hi(M)),

Ch(Hi(M)) = {x ∈ Ch(Σ) : dc(y, x) < dc(y, rx)}.

In the following, we write H(W,S) for the set of all the half-spaces of (W,S). In the
literature, half-spaces are also called roots.

Definition 1.1.14. Let M ∈M(W,S) and E,F ⊂ Σ(W,S).

i) We say that M crosses E if E\M has several connected components.

ii) We say that M separates E and F if their interior are entirely contained in the two
distinct connected components of Σ(W,S)\M .

As we see with the following results, walls and half-spaces can be used to describe the
metric structure of (W,S).

Theorem 1.1.15 ([Tit74, Theorem 2.19.]). A subset C ⊂ (W,S) is convex if and only if
it is the set of chambers of an intersection of half-spaces.
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Thanks to this proposition we notice that residues are convex in (W,S).

Proposition 1.1.16 ([Tit74, Proposition 2.22.]). Let x1, x2 ∈ (W,S). If dc(·, ·) denotes
the metric on the chambers, then

dc(x1, x2) = #{M ∈M(W,S) : M seperates x1 and x2}.

Now we discuss the notion of residues in the geometric realization. For I ⊂ S and w ∈
W , the subset wWIx0 ⊂ Σ(W,S) is the union of the chambers of the I-residue containing
wx0. For simplicity, in the following we also call a subset of the form wWIx0 ⊂ Σ(W,S)
a residue. Notice that a reflection relative to a wall that crosses wWIx0 is of the form
wgsg−1w−1 with s ∈ I and g ∈ WI . Along with the definitions of the action and the
residues we obtain the following fact.

Fact 1.1.17. Let R = wWIx0 be a residue. Then

• R is stabilized by the reflections relative to the walls that cross it,

• StabW (R) = wWIw
−1 is generated by these reflections,

• the type I is given by the types of the maximal faces of wx0 contained in a wall that
crosses R.

The following result gives a converse to the last fact. The proof is the same as the proof
of [BK13, Theorem 5.5.].

Theorem 1.1.18. Let R ⊂ Σ(W,S) be the union of a convex set of chambers and let
PR denote the group generated by the reflections relative to the walls that cross R. If PR
stabilizes R, then R is a residue in Σ(W,S).

Proof. Up to a translation on R and a conjugation on PR, we assume that x0 ⊂ R. Let
C = Ch(R). We start by proving that PR acts freely and transitively on C. The action of
W is free thus the action of PR is free. For x ∈ C, by convexity of C, there exists a gallery

x0 ∼ x1 ∼ · · · ∼ x` = x

of distinct chambers in C. Let Mi be the wall along xi−1 and xi. We set si ∈ S the type
of the adjacency relation between xi−1 and xi. Then

s1x0 = x1, s1s2x0 = x2, . . . , s1 . . . s`x0 = x.

We notice that s1 . . . si−1si(s1 . . . si−1)−1 is the reflection relative to Mi. Hence x may
be obtained from x0 by successive reflections relative to the walls Mi. These walls cross R,
thus the action is transitive. This proves that R = PRx0 and StabW (R) = PR. It remains
to prove that PR is of the form WI for a certain I ⊂ S.
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We set I ⊂ S the types of the maximal faces of x0 contained in a wall that crosses R
and we identify PR with WI . The inclusion WI < PR comes from the definitions of PR and
I. We proceed by induction on dc(x0, wx0) = ` to check that every element w of PR is a
product of elements ofWI . If ` = 0, there is nothing to say. If ` > 0 we choose w = s1 . . . s`
such that dc(x0, wx0) = `. By convexity, s1x0 ∈ C so s1 ∈ WI , because s1 is a reflection
relative to a wall that crosses R along x0. Then dc(x0, s

−1
1 wx0) = ` − 1 and s−1

1 w ∈ PR.
The induction assumption allows us to conclude.

Remark 1.1.19. G. Moussong proved that Σ(W,S) equipped with a natural piecewise
Euclidean metric is CAT(0) (see [Mou88] or [Dav08, Chapter 12]).

1.2 Buildings
Buildings are singular spaces defined by J. Tits. At first sight, we can understand them as
higher dimensional trees. In well chosen examples, the geometry of the residues, helps to
understand the action of a group.

First, in this section, we give basic definitions and properties about buildings. Then
we see how residues behave under projection maps. Eventually, we discuss the notion of
parallel residues. In particular, we discuss how these residues behave under the action of
an automorphism group.

Again, we refer to [Tit74], [Ron89], or [AB08] for details concerning the reminders of
this section.

Hereafter (W,S) is a fixed Coxeter system.

1.2.1 Definition and general properties

Definition 1.2.1 ([Tit74, Definition 3.1.]). A chamber system ∆ over S is a building
of type (W,S) if it admits a maximal family Ap(∆) of subsystems isomorphic to (W,S),
called apartments, such that

• any two chambers lie in a common apartment,

• for any pair of apartments A and B, there exists an isomorphism from A to B fixing
A ∩B.

For A ∈ Ap(∆) we write H(A) for the set of half-spaces andM(A) for the set of walls
of A.

A straightforward application of this definition is the existence of retraction maps of
the building over apartments.

Definition 1.2.2. Let x ∈ ∆ and A ∈ Ap(∆). Assume that x is contained in A. We call
retraction onto A centered x the map πA,x : ∆ −→ A defined by the following property.
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For c ∈ ∆, there exists a chamber πA,x(c) ∈ A such that for any apart-
ment A′ containing x and c, for any isomorphism f : A −→ A′ that fixes
A ∩A′, then f(c) = πA,x(c)

Example 1.2.3. i) Any infinite tree without leaf is a building of type (W,S) with W =
Z/2Z× Z/2Z and S = {(1, 0), (0, 1)}.

ii) The flags of subspaces in a vector space Fn+1 where F is a finite field is a building of
spherical type (see [Ron89, Chapter 1]).

iii) For n ≥ 5 a group of the form

Γ =
〈
si for i = . . . n|s3

i = 1 and sisi+1 = si+1si for i ∈ Z/nZ
〉

is acting geometrically on a right-angled Fuchsian building (see Subsection 1.4.1)

Hereafter, ∆ is a fixed building of type (W,S). The building ∆ is called a thin (resp.
thick) building if any panel contains exactly two (resp. at least three) chambers. Note
that thin buildings are Coxeter systems.

Proposition 1.2.4 ([Tit74, Proposition 3.18.]). Let x and y be two chambers of ∆. Then
the convex hull of {x, y} in ∆ is the convex hull of {x, y} in any apartment containing x
and y.

From the previous proposition, J. Tits constructs projection maps on the residues.

Proposition 1.2.5 ([Tit74, Proposition 3.19.3.]). Let R be a residue and x be a chamber
in ∆. There exists a unique chamber projR(x) ∈ R such that dc(x, projR(x)) = dist(x,R).
Moreover, for any chamber y in R there exists a minimal gallery from x to y passing
through projR(x).

The following proposition is a straightforward consequence of Proposition 1.2.5. To
prove it, we adapt word by word the proof of [Tit74, Prop 2.31.] for Coxeter systems to
the case of buildings.

Proposition 1.2.6. Let x and y be two adjacent chambers and R be a residue of ∆. Then
projR(x) and projR(y) are adjacent.

Proof. We may assume that dc(y,projR(y)) ≤ dc(x,projR(x)). Then, according to Propo-
sition 1.2.5, there exists a minimal gallery from x to projR(y) passing through projR(x).
In particular, dc(x,projR(y)) = dc(x,projR(x)) + dc(projR(x), projR(y)). Then, as x and y
are adjacent dc(x,projR(y))− dc(y,projR(y)) ≤ 1. Eventually

dc(projR(x), projR(y)) =dc(x,projR(y))− dc(x,projR(x)),
≤dc(x,projR(y))− dc(y,projR(y)) ≤ 1.
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(a) The infinite tree of constant valency 3
(see Example 1.2.3.i))

(b) The building of F3
2 (see Example

1.2.3.ii))

(c) The neighborhood of a chamber in a
Fuchsian building of constant thickness 2
(see Example 1.2.3.iii))

Figure 1.3: Examples of buildings
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Proposition 1.2.7. Let x and y be two adjacent chambers and R be a residue of ∆ such
that projR(x) and projR(y) are distinct. Then dc(x, projR(x)) = dc(y,projR(y)).

Proof. Assume for instance that dc(y,projR(y)) ≤ dc(x, projR(x)) − 1. By triangular in-
equality, it comes that dc(x, projR(y)) ≤ dc(y,projR(y))+1. Combining the two inequalities
we obtain dc(x,projR(y)) ≤ dc(x, projR(x)). Therefore projR(x) = projR(y) which contra-
dict our hypothesis.

Proposition 1.2.8. Let x and y be two adjacent chambers and R be a residue of ∆ such
that projR(x) and projR(y) are distinct. Then there exists an apartment A containing x,
y, projR(x), and projR(y). Besides, in A, the wall M that separates x and y is the wall
that separates projR(x) and projR(y).

Proof. On the one hand, according to Proposition 1.2.5, there exists a minimal gallery
from x to projR(y) passing through projR(x). This gallery is of length dc(x,projR(x)) + 1.
On the other hand, there exists a gallery of length dc(y,projR(y)) + 1 from x to projR(y)
passing through y. Thanks to Proposition 1.2.7, dc(y,projR(y)) = dc(x, projR(x)), thus
this second gallery is minimal. Hence, according to Proposition 1.2.4, an apartment A
containing x and projR(y) also contains y and projR(x).

Let M be the wall in A between projR(x) and projR(y). Assume, for instance, that x,
y, and projR(x) are in the same connected component of A\M . According to Proposition
1.2.5, there exists a minimal gallery from y to projR(x) passing through projR(y). This
gallery crosses twice M which reveals a contradiction.

1.2.2 Projections of residues

Here we prove that the image of a residue under a projection map is a residue.

Proposition 1.2.9. Let R and Q be two distinct residues in ∆. If R′ = projR(Q) and
Q′ = projQ(R), then the maps projR|Q′ : Q′ −→ R′ and projQ|R′ : R′ −→ Q′ are reciprocal
bijections. Moreover, dc(x, projQ(x)) = dc(y,projQ(y)) for any x, y ∈ R′.

Proof. Let x ∈ Q′ and set y = projR(x) ∈ R′. To prove the first statement, we must check
that x = projQ(y). Let z ∈ R be such that x = projQ(z). According to Proposition 1.2.5,
there exists a minimal gallery of length dist(z,Q) and of the form

x ∼ · · · ∼ y ∼ · · · ∼ z.

Now consider the sub gallery y ∼ · · · ∼ z and a minimal gallery projQ(y) ∼ · · · ∼ y. Then
the gallery

projQ(y) ∼ · · · ∼ y ∼ · · · ∼ z

is of length at most dist(z,Q). Eventually, x = projQ(y).
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Let x1 and x2 be two distinct adjacent chambers in R′. According to the first point,
projQ(x1) and projQ(x2) are two adjacent and distinct chambers. Then with Proposition
1.2.7, these chambers are such that dc(x1, projQ(x1)) = dc(x2, projQ(x2)). Eventually, by
Proposition 1.2.6, projR(Q) is connected and the proof is complete.

Proposition 1.2.10. Assume that ∆ is a thin building. Let R and Q be two residues in
∆. Then projR(Q) is a residue in ∆.

Proof. First we notice that, thanks to Proposition 1.2.6, projR(Q) is a non-empty connected
set of chambers. If projR(Q) is made of a single chamber, then it is a ∅-residue. Otherwise,
thanks to Theorem 1.1.18, if projR(Q) is stabilized by any reflection relative to a wall that
crosses it then it is a residue.

LetM be a wall that crosses projR(Q) and r ∈W be the reflection relative to this wall.
Let x′ and y′ be two distinct adjacent chambers in projR(Q) separated by the wall M . Let
x = projR(x′) and y = projR(y′). Then with Propositions 1.2.6 and 1.2.9, it comes that x
and y are adjacent distinct in Q and such that x′ = projR(x) and y′ = projR(y). Moreover,
according to the second statement in Proposition 1.2.8, x and y are adjacent along M . In
particular, M crosses both R and Q. Hence, according to Fact 1.1.17, r stabilizes R and
Q thus projR|Q(·) is equivariant by r. Then projR(Q) is stabilized by r and the proof is
completed.

For a I-residue R in a building ∆ and an apartment A, the subset R ∩A ⊂ A is either
a I-residue in A, or does not contain any chamber . This remark motivates the following
notations.

Notation. Let R be a residue in ∆ and A ∈ Ap(∆) such that Ch(R ∩ A) 6= ∅. Then we
write RA := R ∩ A. Naturally any residue of A is of the form RA for R a residue in ∆.
Then, if we write projRA

(·) the projection maps in A there is no confusion possible with
the projection maps in ∆ that we write projR(·).

With these notations and by convexity, the map projRA
(·) coincides with the restriction

to A of the map projR(·). Now we can extend the previous proposition from the apartments
to ∆.

Proposition 1.2.11. Let R and Q be two residues in ∆. Then projR(Q) is a residue in
∆.

Proof. For the purpose of this proof we write R′ = projR(Q) and Q′ = projQ(R). Besides
I1 and I2 are respectively the types of R and Q. Again, thanks to Proposition 1.2.6, R′ is
a non-empty connected set of chambers. Fix x ∈ Q and let A ∈ Ap(∆) be such that both
x and projR(x) are in A. The residues RA and QA are of type I1 and I2 in A. Let I be
the type of the residue projRA

(QA) given by Proposition 1.2.10 applied in A. Note that I
is a subset of I1.
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Now we verify that the type I is invariant under a change of apartment in the following
sense. Consider B ∈ Ap(∆) such that both x and projR(x) are in B. Then let f : A −→ B
be the isomorphism that fixes A ∩ B. This map preserves the types. Hence f(RA) (resp.
f(QA)) is the residue of type I1 (resp. I2) in B that contains projR(x) (resp. x). We get

f(RA) = RB and f(QA) = QB.

Likewise, f(projRA
(QA)) is the I-residue in B containing projR(x). Yet, as f is an isometry

for the metric over the chambers f(projRA
(QA)) = projf(RA)(f(QA)). Therefore we proved

that projRB
(QB) is the I-residue in B containing projR(x).

We set C the I-residue in ∆ containing projR(x) and we check that C = R′. Let y ∈ C.
As I ⊂ I1 then y ∈ R. In particular, there exists a minimal gallery from x to y passing
through projR(x). Hence there exists B ∈ Ap(∆) containing x, projR(x), and y. In B,
projRB

(QB) is the I residue containing projR(x). Thus y ∈ projRB
(QB) and there exists

z ∈ QB such that y = projRB
(z). Therefore C ⊂ R′.

Pick y ∈ R′ and let y′ ∈ Q′ be such that y′ = projQ(y) and y = projR(y′). On the one
hand, there exists a minimal gallery from x to y passing through projR(x). On the other
hand, there exists a minimal gallery from y to x passing through y′. Therefore, thanks to
Proposition 1.2.4, an apartment B that contains x and y also contains projR(x) and y′.
Then, the residue projRB

(QB) is the I-residue of B containing projR(x). As y′ ∈ QB we
obtain that there exists a gallery of type I in B from projR(x) to y. Hence y ∈ C and
R′ ⊂ C.

1.2.3 A theorem about parallel residues

In this subsection, ∆ is a building. The following definition is due to B. Mühlherr.

Definition 1.2.12. Let R and Q be two distinct residues in ∆. We say that R is parallel
to Q if

projR(Q) = R and projQ(R) = Q.

It appears that to any pair of residues is canonically associated a pair of parallel residues.

Proposition 1.2.13. For R and Q two residues in ∆, let Q′ = projQ(R) and R′ =
projR(Q). Then R′ and Q′ are parallel residues.

Proof. By symmetry, it is enough to check that projQ′(R′) = Q′. On the one hand, the
inclusion projQ′(R′) ⊂ Q′ is trivial. On the other hand, let x ∈ Q′, by Proposition 1.2.9,
there exists a unique y ∈ R′ such that x = projQ(y). As Q′ ⊂ Q we obtain dist(y,Q) ≤
dist(y,Q′). Yet on the one hand, by definition of the projection map dc(y, x) = dist(y,Q).
On the other hand, x ∈ Q′ and dist(y,Q′) ≤ dc(y, x). Hence dc(y, x) = dist(y,Q′) and
x = projQ′(y).
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In the following we see that parallel residues are convenient tools to describe intersec-
tions of stabilizers of residues under the action of an automorphism group.

Theorem 1.2.14. Let G be a group of automorphisms of ∆. Suppose that StabG(P ) =
StabG(P ′) for any pair P, P ′ of parallel residues. Then for any pair of residues R,Q one
has

StabG(R) ∩ StabG(Q) = StabG(projR(Q)) = StabG(projQ(R)).

Proof. By symmetry, it is sufficient to prove, that

StabG(R) ∩ StabG(Q) = StabG(projQ(R)).

Let g ∈ StabG(R) ∩ StabG(Q). As g is an isometry of ∆ that stabilizes both R and Q,
the map projQ|R(·) is equivariant by g. Then g(projQ(R)) = projQ(R) and

StabG(R) ∩ StabG(Q) < StabG(projQ(R)).

Let g ∈ StabG(projQ(R)). As g preserves the types, if Q is a I-residue then g(Q) is also
a I-residue. In particular, Q and g(Q) are two I-residues containing projQ(R). Therefore
g(Q) = Q. Thanks to Proposition 1.2.13, projQ(R) is a residue parallel to projR(Q). Then
by assumption g ∈ StabG(projR(Q)). Now we can use the previous argument to prove that
g(R) = R and

StabG(projQ(R)) < StabG(R) ∩ StabG(Q).

1.3 Parallel residues in Coxeter systems
In Coxeter systems, parallel residues can be used to prove that intersections of parabolic
subgroups are parabolic. In this section, Σ(W,S) is the Davis complex of a Coxeter system
(W,S).

Proposition 1.3.1. Let R and Q be two parallel residues in Σ(W,S). Then

StabW (R) = StabW (Q).

Proof. If R and Q contain only one chamber then

StabW (R) = StabW (Q) = {e}.

Otherwise, let M be a wall that crosses R. Let x and y be two distinct adjacent chambers
of R along M . According to Proposition 1.2.9, the chambers projQ(x) and projQ(y) are
distinct. Then thanks to the second statement of Proposition 1.2.8, M also separates
projQ(x) and projQ(y). In particular, M crosses Q. By symmetry of the argument, we
can also prove that any wall that crosses Q crosses R. Eventually, according to Fact 1.1.17
StabW (R) = StabW (Q).
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Now we apply Theorem 1.2.14 to the action of W on Σ(W,S). We get the following
theorem that is a classical result about parabolic subgroups in Coxeter groups (see [Dav08,
Lemma 5.3.6.]).

Theorem 1.3.2. Let w ∈W , and I, J ⊂ S. If we set P = WI ∩wWJw
−1, then there exist

wI ∈WI and wJ ∈WJ such that

P = w−1
I WKwI ,

where K = I ∩ w−1
I wwJJ(w−1

I wwJ)−1 ⊂ S.

Proof. Let R = WIx0 and Q = wWJx0. We set wI ∈WI and wJ ∈WJ such that

dist(wIx0, Q) = dist(R,Q) and dc(wIx0, wwJx0) = dist(R,Q).

Up to conjugate P by w−1
I and to change w−1

I wwJ for w we are in the situation where
P = WI ∩wWJw

−1 with dc(x0, wx0) = dist(R,Q). In this setting, K designates I∩wJw−1

i.e.
K = {s ∈ I : s = wrw−1 for some r ∈ J}.

The inclusion WK < P is obviously true and we prove now the converse.
We know that StabW (R) = WI and StabW (Q) = wWJw

−1. Then, according to Propo-
sition 1.3.1 and Theorem 1.2.14,

P = StabW (R) ∩ StabW (Q) = StabW (projR(Q)).

Thanks to Fact 1.1.17, StabW (projR(Q)) = WK where K designates the set of types of the
walls that cross projR(Q) along x0.

It is now enough to prove that K ⊂ K. Let s ∈ K and M be the wall that crosses
projR(Q) along x0 and sx0. According to Proposition 1.2.8, M crosses projQ(R) along
projQ(x0) and projQ(sx0). This situation is illustrated by Figure 1.4.

Hence s(projQ(x0)) = projQ(sx0). Besides, at the beginning of the proof we chose
w ∈W such that projQ(x0) = wx0. Moreover, projQ(x0) and projQ(sx0) are adjacent in a
J-residue. Thus, with projQ(x0) = wx0 there exists r ∈ J such that wrw−1(projQ(x0)) =
projQ(sx0). Eventually we obtain

wx0 = projQ(x0) = s−1(projQ(sx0)) = s−1wrx0.

Therefore sw = wr and K ⊂ K.
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Figure 1.4

1.4 Geometry of right-angled buildings
Right-angled buildings are convenient buildings to work with as they are equipped with a
wall structure and a simply transitive group action. This permits to apply to them several
methods coming from Coxeter systems.

In this section, we remind basic facts about right-angled buildings and graph products.
Then, we discuss the wall structure of the Davis complex as we did in Coxeter systems.
In particular, we prove Proposition 1.4.15 and Theorem 1.4.17, that is an analogous of
Theorem 1.1.18. These results will be used Chapter 2.

The geometry of right-angled buildings in general and of parallel residues in particular
are discussed in [Cap14]. Some of the result of this section are contained in this article and
appear here for the sake of completeness.

1.4.1 Graph products and right-angled buildings

Let G denote a finite simplicial graph i.e G(0) is finite, each edge has two different vertices,
and no edge is double. We denote by G(0) = {v1, . . . , vn} the vertices of G. If for i 6= j,
the corresponding vertices vi, vj are connected by an edge, we write vi ∼ vj . A cyclic
group Gi = 〈si〉 of order qi ∈ {2, 3, . . .} ∪ {∞} is associated with each vi ∈ G(0) and we set
S = {s1, . . . , sn}. In this section we assume that n ≥ 2 and that G has at least one edge.

Definition 1.4.1. The graph product given by (G, {Gi}i=1,...,n) is the group defined by the
following presentation

Γ = 〈si ∈ S|sqi
i = 1, sisj = sjsi if vi ∼ vj〉 .
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Example 1.4.2. If the graph G is fixed and the orders {qi}i=1,...,n go from 2 to +∞, graph
products are groups between right-angled Coxeter groups (see [Dav08]) and right-angled
Artin groups (see [Cha07]). If the integers {qi}i=1,...,n are fixed and we add edges to the
graph starting from a graph with no edge, those groups are groups between free products
and direct products of cyclic groups.

From nowon, Γ is a fixed graph product given by a pair (G, {Gi}i=1,...,n). By analogy
with Definition 1.1.5, we define parabolic subgroups in Γ.

Definition 1.4.3. The subgroup of Γ generated by a subset I ⊂ S is denoted by ΓI and a
subgroup of the form gΓIg−1, with g ∈ Γ, is called a parabolic subgroup.

LetW be the graph product defined by the pair (G, {Z/2Z}i=1,...,n). This graph product
is isomorphic to the right-angled Coxeter group of type M = {mi,j}i,j=1,...,n defined by :
mi,j = 2 if vi ∼ vj and mi,j =∞ if vi � vj .

All along this section, W denotes this Coxeter group canonically associated with Γ and
(W,S) is the Coxeter system associated with W .

Theorem 1.4.4 ([Dav98, Theorem 5.1.]). Let ∆ be the chamber system C(Γ, {e}, {Γ{s}}s∈S)
(see Example 1.1.4). Then ∆ is a building of type (W,S).

Hereafter, ∆ denotes the right-angled building associated with Γ by the previous the-
orem. In the following, we describe the Davis complex associated with this building. This
geometric realization will help us to prove the analogous of Proposition 1.1.16 and Theorem
1.1.18 in ∆.

1.4.2 The Davis complex associated with Γ
Now we introduce the Davis complex associated with Γ. This complex is analogous to the
Davis complex of a Coxeter system. Again we refer to [Mei96] for an example along with
suggestive pictures.

Let D be the Davis chamber associated with W as in Subsection 1.1.3. Again a face of
D is associated with a type I ⊂ S. For x ∈ D, if I is the type of the face containing x in
its interior, we set Γx := ΓI . To the interior points of D we associate the trivial group Γ∅.

Now we can define the Davis complex : Σ = D × Γ/ ∼ with

(x, g) ∼ (y, g′) if and only if x = y and g−1g′ ∈ Γx.

We study the building ∆ through it geometric realization Σ and we briefly remind what
this mean.

A chamber of Σ is a subset of the form [D × {g}] with g ∈ Γ. Two chambers are
adjacent if and only if they share a maximal face. For a subset E ⊂ Σ we designate by
Ch(E) the set of chambers contained in E. Equipped with this chamber system structure,
Σ is isomorphic to ∆. In particular, the set of apartments in Σ is designated by Ap(Σ).
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Figure 1.5: A panel of type {1, 2} and of thickness 2 given by Figure 1.2

Then the left action of Γ on itself induces an action on Σ. For γ ∈ Γ and [(x, g)] ∈ Σ we
set γ[(x, g)] := [(x, γg)]. Moreover this action induces a simply transitive action of Γ on
Ch(Σ). Naturally this action is also isometric for dc(·, ·).

1.4.3 Building-walls and residues in the Davis complex

We call base chamber of Σ, denoted by x0, the chamber [D×{e}]. For g ∈ Γ, as [D×{g}]
is the image of x0 under g, we designate this chamber by gx0. Here we present some basic
tools used to describe the structure of Σ. In particular, we extend to Σ some definitions
and properties that have been used in Coxeter systems.

The notion of walls in a Coxeter system extends to right-angled buildings.

Definition 1.4.5.

1. We call building-wall in Σ the proper subcomplex M stabilized by a non-trivial isom-
etry r = gsαg−1 with g ∈ Γ, s ∈ S, α ∈ Z and sα 6= e. The isometry r is called a
rotation around M . We denote byM(Σ) the set of building-walls of Σ.

2. Let M be a building-wall associated with a rotation r ∈ Γ. For x ∈ Ch(Σ) we say
that M is along x if r(x) is adjacent to x.

In [Cap14], a building-wall is called a wall-residue. Indeed, a building-wall is isomorphic
to the residue generated by the building-walls orthogonal to it.

Note that with the notations of the definition, M is the building-wall fixed by any
rotation gsα

′
g−1 with sα

′ 6= e. Besides, because of the right-angles, a building-wall is
associated with a type. Which is not true for walls in a generic Coxeter system.
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We say that the building-wall M is non-trivial if it contains more than one point.
A non-trivial building-wall M may be equipped with a building structure. Indeed, if si
is the type of M , associated with vi ∈ G(0), we write I = {j : vj ∼ vi, vj 6= vi} and
V = {vj ∈ G(0) : j ∈ I}. Then if GV is the full subgraph generated by V , we can check
that, M is isomorphic to the geometric realization of the graph product (GV , {Z/qiZ}i∈I).
The Davis chamber of this geometric realization is the face of type si of D. Moreover
building-walls also divide Σ in isomorphic connected components. In the case of infinite
dimension 2 buildings, the building-walls are trees and thus they have been called trees-
walls by M. Bourdon and H. Pajot in [BP00]. These explain our terminology.

Example 1.4.6. Let Γ be the graph product given by Example 1.2.3.iii) and let Σ be its
Davis complex. Let Γ′ be the graph product associated with the pair (G, {Z/3Z}i=1,...,12)
where G is the dual graph of the dodecahedron and let Σ′ be its Davis complex.

Then the building-walls in Σ are infinite trees of constant valency 3. In Σ′ the building-
walls are isomorphic as chamber systems to Σ.

Figure 1.6: In Fuchsian buildings building-walls are trees.

Definition 1.4.7. Let M be a building-wall of type s and let r ∈ Γ be a rotation around
M . We call dial of building bounded by M the closure in Σ of the connected components
of Σ\M .

In [Cap14], a dial of building is called a wing. This definition is similar to Definition
1.1.12 and imply an analogous of Proposition 1.1.13.
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Fact 1.4.8. Let M be a building-wall of type s. Assume that s is of finite order q. Then
Σ\M consists of q connected components. We designate by D0(M), D1(M), . . . , Dq−1(M)
these dials of building, with the convention that x0 ⊂ D0(M). In this setting, for any
i = 1, . . . q − 1, if y ∈ Ch(Di(M)) then

Ch(Di(M)) = {x ∈ (W,S) : dc(y, x) < dc(y, rx)}.

Eventually r permutes D0(M), D1(M), . . . , Dq−1(M).
For a building-wall associated with a type s ∈ S of infinite order, the analogous property

holds.

In the following, we write D(Σ) for the set of all the dials of building of Σ. Naturally, if
we consider thin right-angled buildings, the definitions of building-wall and dial of building
coincide with the definition of wall and half-space. It is also important to notice that the
structure of building-walls in Σ comes from the wall structures in the apartments.

Fact 1.4.9. For any M ∈ M(Σ) (resp. D ∈ D(Σ)), any A ∈ Ap(Σ), and any retraction
π : Σ −→ A, there exists a wall m (resp. a half-space H) in A such that M (resp. Int(D))
is one of the connected component of π−1(m) (resp. π−1(Int(H))).

The following terminology is frequently used to describe the building-walls relatively
to the chambers.

Definition 1.4.10. Let M ∈M(Σ) and E,F ⊂ Σ.

i) We say that M crosses E if E\M has several connected components.

ii) We say that M the building-wall separates E and F if their interior are entirely
contained in two distinct connected components of Σ\M .

Now we have enough to prove the analogous of Proposition 1.1.16.

Proposition 1.4.11. Let x1 and x2 be two chambers. If we denote dc(·, ·) the metric on
the chamber system, then

dc(x1, x2) = #{M ∈M(Σ) : M seperates x1 and x2}.

Proof. This proposition is straightforward consequence of Propositions 1.1.16, 1.2.4, and
of Fact 1.4.9.

In a right-angled building it appears that two distinct building-walls are either parallel
or orthogonal. This explains the following notations.

Notation. Let M and M ′ be two distinct building-walls.

i) if M ∩M ′ 6= ∅ we write M ⊥M ′ and we say that M is orthogonal to M ′,
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ii) if M ∩M ′ = ∅ we write M ‖M ′ and we say that M is parallel to M ′.

If M ⊥ M ′, then D ∩ D′ contains a chamber for any pair D, D′ of dials of building
bounded by M and M ′. If M ‖ M ′ then there exists D bounded by M and D′ bounded
M ′ such that M ′ ⊂ D and M ⊂ D′.

In right-angled buildings, we can define projection maps not only on residues but also
on dials of building. This will be useful in Section 2.6 to understand the metric on the
boundary in the hyperbolic case.

Lemma 1.4.12. Let M and M ′ be two building-walls such that M ⊥ M ′. Let r ∈ Γ be a
rotation around M and D′ be a dial of building bounded by M ′ then r(D′) = D′.

Proof. Up to a translation on the dials and a conjugation on the rotations we can assume
that M and M ′ are along x0 and x0 ∈ D′. If s is a rotation around M ′, we can write

Ch(D′) = {x ∈ Ch(Σ) : dc(x0, x) < dc(x0, sx)}.

Hence

r(Ch(D′)) ={rx ∈ Ch(Σ) : dc(x0, x) < dc(x0, sx)}
={x ∈ Ch(Σ) : dc(x0, r

−1x) < dc(x0, sr
−1x)}.

By assumption rs = sr, thus r(Ch(D′)) = {x ∈ Ch(Σ) : dc(rx0, x) < dc(rx0, sx)}.
Besides, dc(x0, rx0) = 1 and dc(x0, srx0) = 2 so rx0 ∈ Ch(D′) and with Fact 1.4.8 we
obtain Ch(D′) = r(Ch(D′)).

Proposition 1.4.13. Let D be a residue or a dial of building and C = Ch(D). Then for
any x ∈ Ch(Σ) there exists a unique chamber projC(x) ∈ C such that

dc(x,projC(x)) = dist(x,C).

Moreover, for any chamber y ∈ C there exists a minimal gallery from x to y passing through
projC(x).

Proof. If D is a residue, then we refer to Proposition 1.2.5. If D is a dial of building, let
y ∈ C be such that dc(x, y) = dist(x,C). Then for z ∈ C we set x = x1 ∼ x2 ∼ · · · ∼ y
and y = x` ∼ · · · ∼ z = xk two minimal galleries. Assume that the gallery

x = x1 ∼ x2 ∼ · · · ∼ y = x` ∼ · · · ∼ z = xk

is not minimal. Then there exists a building-wall M and two indices i, j with 1 ≤ i < `
and ` ≤ j < k such that

• M separates xi and xi+1,
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• M separates xj and xj+1.

Now consider r ∈ Γ the rotation aroundM such that rxi+1 = xi. According to Proposition
1.4.12, r(D) = D. As a consequence, the gallery

x ∼ · · · ∼ xi ∼ rxi+2 · · · ∼ rx` = ry

connects x to C and is of length dist(x,C)− 1, which is a contradiction.

x

xi = rxi+1

xi+1

ry

y

D

M

Figure 1.7

We proved that for any z ∈ C, there exists a minimal gallery from x to z passing
through y. This proves in particular that y is unique and the proof is achieved.

For simplicity, projD(·) designate projCh(D)(·) for D ∈ D(Σ). Note that in non-right-
angled Coxeter systems, it is not possible to define a unique projection on a half-space. In
particular, half-spaces are stabilized by the reflections relative to the walls that cross it if
and only if the angles are right.

With the following lemma we can see that the projection on the dials of building are
orthogonal relatively to the building-wall structure.

Lemma 1.4.14. Let D and D′ be two dials of building such that Ch(D ∩ D′) 6= ∅. If
x ∈ Ch(D) then projD′(x) ∈ Ch(D ∩D′).

Proof. As we know that projD′(x) ⊂ D′, we check that projD′(x) ⊂ D. The assumption
Ch(D ∩ D′) 6= ∅ means that three cases are possible. First, if D′ ⊆ D then projD′(x) ⊂
D′ ⊂ D. Then if D ⊆ D′, as x ⊂ D we get projD′(x) = x and projD′(x) ⊂ D.

Let M and M ′ be the building-walls that bound D and D′. The last cases is realized
when M ⊥ M ′. In this case consider a minimal gallery x ∼ · · · ∼ projD′(x). Assume that
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projD′(x) * D. Then the previous gallery crosses M and we can write that there exists a
minimal gallery of the form

x ∼ · · · ∼ xi ∼ xi+1 = rxi ∼ xi+2 ∼ · · · ∼ projD′(x)

where r ∈ Γ is rotation around M . Then with Lemma 1.4.12 we obtain that

x ∼ · · · ∼ xi ∼ r−1xi+2 ∼ · · · ∼ r−1projD′(x)

is a gallery between x and D′ of length dc(x,projD′(x))− 1. Which is a contradiction.

Applying inductively the projection maps on dials of building, we define projection
maps on finite intersections of dials of building.

Proposition 1.4.15. Let D1, . . . , Dk ∈ D(Σ) and C = Ch(D1 ∩ · · · ∩ Dk). Assume that
C 6= ∅. Then for any x ∈ Ch(Σ) there exists a unique chamber projC(x) ∈ C such that

dc(x,projC(x)) = dist(x,C).

Moreover, for any chamber y ∈ C there exists a minimal gallery from x to y passing through
projC(x). Eventually projC(x) = projDk

◦ · · · ◦ projD1(x).

Proof. First, according to Lemma 1.4.14, we can assume, up to a subfamily that x * Di

for each i = 1, . . . , k. Now we set

• C1 = Ch(D1) and Ci = Ci−1 ∩ Ch(Di) for any i = 2, . . . , k,

• x1 = projD1(x) and xi = projDi
(xi−1) for any i = 2, . . . , k.

By induction on i we prove the following property:
xi ∈ Ci and is the unique chamber of Ci such that dc(x, xi) = dist(x,Ci).
Moreover, for any chamber y ∈ Ci there exists a minimal gallery from
x to y passing through xi.

If i = 1 the property holds by Proposition 1.4.13. Let i > 1 and assume that the
property holds at rank i. In particular, for j = 1, . . . , i one has xi ∈ Ch(Dj) and Ch(Dj)∩
Ch(Di+1) 6= ∅. Therefore, with Lemma 1.4.14, xi+1 ∈ Ch(D1)∩· · ·∩Ch(Di)∩Ch(Di+1) =
Ci+1.

Then consider y ∈ Ci. There exists a minimal gallery from x to y passing through xi.
This means also that if x ∼ · · · ∼ xi is a minimal gallery, then for any minimal gallery
xi ∼ · · · ∼ y contained in Ci the gallery

x ∼ · · · ∼ xi ∼ · · · ∼ y

39



is minimal. As a consequence, for any subset C ′ ⊂ Ci if y′ ∈ C ′ is such that dc(xi, y′) =
dist(xi, C ′) then

dc(x, y′) = dist(x,C ′).

Thanks to Proposition 1.4.13, xi+1 is the unique chamber in Ci+1 such that

dc(xi, xi+1) = dist(xi, Ci+1).

Thus xi+1 is the unique chamber in Ci+1 such that dc(x, xi+1) = dist(x,Ci+1). Moreover,
for any y ∈ Ci+1 there exists a minimal gallery from

xi ∼ · · · ∼ xi+1 ∼ · · · ∼ y

that is entirely contained in Ci. Hence if the gallery x ∼ · · · ∼ xi is minimal, the gallery

x ∼ · · · ∼ xi ∼ · · · ∼ xi+1 ∼ · · · ∼ y

is also minimal.

For simplicity, ifD1, . . . , Dk is a collection of dials of building such that C = D1∩· · ·∩Dk

contains a chamber, we write projC(·) instead of projCh(C)(·).
Notice that it is not always possible to define a projection on a convex set of chambers.

For instance, if Σ is a thick building there exist pairs of adjacent chambers x and y with
dc(x0, x) = dc(x0, y). This is because there is no analogous of Proposition 1.1.15 in Σ i.e
convex sets are not always intersections of dials of building.

1.4.4 Geometric characterization of parabolic subgroups

Now we discuss the notion of residues in Σ as it is done at the end of Subsection 1.1.2.

Notation. For I ⊂ S and g ∈ Γ, let gΣI denote the union of the chambers of the I-residue
containing gx0.

Notice that gΣI = gΓIx0 and Ch(gΣI) = gΓI . For simplicity, in the following we also
call a subset gΣI ⊂ Σ a residue. Notice that a rotation around a building-wall that crosses
gΣI is of the form gγsαγ−1g−1 with s ∈ S, sα 6= e and γ ∈ ΓI . Along with the definitions
of the action and the residues we obtain the following fact.

Fact 1.4.16. Let R = gΣI be a residue. Then

• R is stabilized by the rotations around the building-walls that cross it,

• StabΓ(R) = gΓIg−1 is generated by these rotations,

• the type I is given by the type of the building-walls that cross R along gx0.
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Figure 1.8: A residue of rank 2 in a Fuchsian building

The following result gives a converse to the previous fact. It is the analogous of Theorem
1.1.18.

Theorem 1.4.17. Let R ⊂ Σ be the union of a convex set of chambers and let PR denote
the group generated by the rotations around the building-walls that cross R. If PR stabilizes
R, then R is a residue in Σ.

Proof. Up to a translation on R and a conjugation on PR, we assume that x0 ⊂ R. Let
C = Ch(R). We start by proving that PR acts freely and transitively on C. The action of
Γ is free thus the action of PR is free. For x ∈ C, by convexity of C, there exists a gallery

x0 ∼ x1 ∼ · · · ∼ x` = x

of distinct chambers in C. Let Mi, of type si ∈ S, be the building-wall along xi−1 and xi.
Then

sα1
1 x0 = x1, s

α1
1 sα2

2 x0 = x2, . . . , s
α1
1 . . . sα`

` x0 = x,

for some exponent αi ∈ Z.
We notice that sα1

1 . . . s
αi−1
i−1 si(s

α1
1 . . . s

αi−1
i−1 )−1 is a rotation aroundMi. Therefore x may

be obtained from x0 by successive around the building-walls Mi. These building-walls
cross R, thus the action is transitive. This proves that R = PRx0 and StabΓ(R) = PR. It
remains to prove that PR is of the form ΓI for a certain I ⊂ S.

We set I ⊂ S the types of the building-walls that cross R along x0 and we identify PR
with ΓI . The inclusion ΓI < PR comes from the definitions of PR and I. We proceed by
induction on dc(x0, gx0) = ` to check that every element g of PR is a product of elements
of ΓI . If ` = 0, there is nothing to say. If ` > 0 we choose g = sα1

1 . . . sα`
` such that

dc(x0, gx0) = `. By convexity, sα1
1 x0 ∈ C so s1 ∈ ΓI , because s1 is a rotation around a

building-wall that crosses R along x0. Then dc(x0, s
−α1
1 gx0) = `− 1 and s−α1

1 g ∈ PR. The
induction assumption permits us to conclude.

In particular, this last theorem is used in Subsection 2.5.1 where we discuss the bound-
aries of the residues in the hyperbolic case.
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1.5 Parallel residues in right-angled buildings
Here we apply the same ideas as in Section 1.3. We start by proving the analogous of
Propositions 1.2.8 and 1.3.1. Then we conclude that the analogous of Theorem 1.3.2 holds.

In this section, Γ is a fixed graph product associated with the pair (G, {Gi}i=1,...n) as
in Definition 1.4.1. We designate by ∆ and Σ respectively the right-angled building and
the Davis complex associated with Γ.

Proposition 1.5.1. Let x and y be two adjacent chambers in Σ. Assume that R is a residue
such that projR(x) and projR(y) are distinct. Then the building-wall M that separates x
and y is the building-wall that separates projR(x) and projR(y).

Proof. According to Proposition 1.2.8, there exists A ∈ Ap(Σ) containing x, y, projR(x),
and projR(y). Moreover in A, x and y (resp. projR(x) and projR(y)) are separated by a
common wall m. Thanks to Fact 1.4.9, we obtain that m = M ∩ A. Thus M separates
projR(x) and projR(y).

Proposition 1.5.2. Let R and Q be two parallel residues in Σ. Then

StabΓ(R) = StabΓ(Q).

Proof. With Fact 1.4.16, to identify the stabilizers it is enough to identify the building-
walls that crosses R and Q. Let M be a building-wall that crosses R. Let x and y be two
distinct adjacent chambers of R along M . According to Proposition 1.2.9, the chambers
projQ(x) and projQ(y) are distinct. Then thanks to Proposition 1.5.1, M also separates
projQ(x) and projQ(y). In particular, M crosses Q. By symmetry of the argument, we
can also prove that any wall that crosses Q crosses R. Eventually, according to Fact 1.4.16
StabW (R) = StabW (Q).

Now we prove that intersections of parabolic subgroups are parabolic subgroups.

Theorem 1.5.3. Let g ∈ Γ, and I, J ⊂ S. If we set P = ΓI ∩ gΓJg−1, then there exist
γI ∈ ΓI and γJ ∈ ΓJ such that

P = γ−1
I WKγI ,

where K = I ∩ γ−1
I gγJJ(γ−1

I gγJ)−1 ⊂ S.

Proof. Let R = ΣI and Q = gΣI be the two residues stabilized ΓI and gΓJg−1. We set
γI ∈ ΓI and γJ ∈ ΓJ such that

dist(γIx0, Q) = dist(R,Q) and dc(γIx0, gγJx0) = dist(R,Q).

Up to conjugate P by γ−1
I and to change γ−1

I gγJ for g we are in the situation where
P = ΓI ∩ gΓJg−1 with d(x0, gx0) = dist(R,Q). In this setting K designates I ∩ gJg−1 i.e.,
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thanks to the right angles K = {s ∈ I ∩ J : sg = gs}. The inclusion ΓK < P is obviously
true and we prove now the converse.

We know that StabΓ(R) = ΓI and StabΓ(Q) = gΓJg−1. Then, according to Theorem
1.2.14,

P = StabΓ(R) ∩ StabΓ(Q) = StabΓ(projR(Q)).
According to Fact 1.4.16, StabΓ(projR(Q)) = ΓK where K designates the set of types of the
walls that cross projR(Q) along x0. It is now enough to prove that K ⊂ K. Let s ∈ K and
M be the building-wall that crosses projQ(R) along x0 and sx0. According to Proposition
1.5.1, M crosses projQ(R) along projQ(x0) and projQ(sx0). This situation is illustrated by
Figure 1.9.

Hence s(projQ(x0)) = projQ(sx0). Besides, at the beginning of the proof we chose
g ∈ Γ such that projQ(x0) = gx0. Moreover, projQ(x0) and projQ(sx0) are adjacent along
M of type s. Therefore, with projQ(x0) = gx0, we get gsg−1(projQ(x0)) = projQ(sx0).
Eventually we obtain

gx0 = projQ(x0) = s−1(projQ(sx0)) = s−1gsx0.

Hence sg = gs and K ⊂ K.

x0

sx0

gx0

grs0
M

Q

Figure 1.9

Remark 1.5.4. A classification of F. Haglund and F. Paulin states that the construction
presented in Subsection 1.4.1 describes all the right-angled buildings in the following sense.

Theorem 1.5.5 ([HP03, Proposition 5.1.]). Let Γ be the graph product given by the
pair (G, {Gi}i=1,...,n) as in Definition 1.4.1. Let ∆ be the building of type (W,S)
associated with Γ. Assume that ∆′ is a building of type (W,S) such that for any
si ∈ S the {si}-residues of ∆′ are of cardinality #Gi. Then ∆ and ∆′ are isomorphic.
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Remark 1.5.6. Equipped with a natural piecewise Euclidean polyhedral metric, the Davis
complex Σ of a graph product is CAT(0) (see [Dav98]).

Remark 1.5.7. If Γ is a graph product as in Definition 1.4.1, J. Meier gave a sufficient
and necessary condition on the pair (G, {Gi}i=1,...,n) for Γ to be Gromov hyperbolic.

To state this theorem we need to introduce two notations. For v ∈ G(0) we write Lv for
the full subgraph of G generated by the vertices adjacent to v (which does not include v).
Then FG is the full subgraph of G generated by the vertices associated with a finite group.

Theorem 1.5.8 ([Mei96, Main Theorem]). The group Γ is hyperbolic, if and only
if the three following conditions are satisfied:

i) The full subgraph generated by the vertices in G\FG has no edge.

ii) If v is a vertex in G\FG, then Lv is a complete graph.

iii) Every circuit in FG of length four contains a chord.

Remark 1.5.9. In [AM13], a proof of Theorem 1.5.3 is given in a more general case that
includes graph products associated with a graph G with infinitely many vertices.
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Chapter 2

Combinatorial modulus on
boundary of right-angled
hyperbolic buildings

Introduction

The quasiconformal structure of boundaries of dimension 2 right-angled hyperbolic build-
ings were the object of exhaustive works by M. Bourdon and H. Pajot. Their results led
them to prove the quasi-isometry rigidity for dimension 2 right-angled hyperbolic buildings.
Since then, one can ask whether such a strong rigidity result is valid for some hyperbolic
buildings of higher dimension. Yet, this is a hard question as the methods of M. Bourdon
and H. Pajot are strongly specific to the buildings of dimension 2.

Recently, M. Bourdon and B. Kleiner have investigated the quasiconformal structure
of boundaries of hyperbolic Coxeter groups thanks to combinatorial modulus of curves.
These tools are weaker than the one using the classical modulus introduced by J. Heinonen
and P. Koskela in metric measured spaces. Nevertheless, it appears that these tools can be
used for a first approach of the quasiconformal structure of boundaries of some hyperbolic
buildings of higher dimension. In particular, in this chapter we exhibit some hyperbolic
buildings of dimension 3 and 4 whose boundary satisfy the Combinatorial Loewner Property
(CLP).

Indeed, in some well chosen examples of higher dimensional hyperbolic buildings it is
possible to proceed as follow. First, we can reduce the problem of the modulus of all the
curves of the boundary to a discussion about the modulus of the curves contained in the
boundary of some parabolic subgroups. Then the combinatorial modulus allow us to see
the boundary of a building as the product of the boundary of an apartment by a discrete
set. As a result the whole discussion is projected to the boundary of an apartment. Then
if the boundary of the apartment has enough symmetry we obtain the CLP.

The main new result of this chapter is Theorem 2.9.1. This theorem provides the first
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hyperbolic buildings of higher dimension to be known for satisfying such a quasiconformal
property (see Corollary 2.9.3). Besides, some partial results (for instance Theorem 2.7.13
and Corollary 2.7.16) are valid in a larger context. Yet, a work need to be done to use them
to prove the CLP for other examples or to approach effectively the conformal dimension of
the boundary. Moreover, we add to this chapter a discussion about the topology and the
metric of the boundary. In particular, we describe how they can be understood thanks to
the wall structure of the building. The results of Section 2.5, that lead to Theorem 2.5.13,
are directly inspired by the the work of M. Bourdon and B. Kleiner. Their ideas in Coxeter
groups apply without much subtleties to the case of right-angled hyperbolic buildings.

Organization of the chapter

In Section 2.1, we introduce the combinatorial modulus of curves in the general setting
of compact metric spaces. Then in Section 2.2, we restrict to the case of boundaries of
hyperbolic spaces.

After these reminders, we give the main steps and ideas of the proof of Theorem 2.9.1
in Section 2.3. This section is essentially a summary of this chapter.

Then, in Section 2.4, we restrict the setting of Subsection 1.4.1 to the case of locally fi-
nite right-angled hyperbolic buildings. Besides, we give basic geometric properties satisfied
by the boundary of these buildings.

The key notion of parabolic limit sets is introduced in Section 2.5 where we study the
modulus of curves in parabolic limit sets. This section is based on, the ideas used in Coxeter
groups in [BK13, Section 5 and 6]. In particular, Theorem 2.5.13 is the first major step
in direction of the proof of Theorem 2.9.1. As a consequence of this theorem, we obtain a
first application to the CLP (Theorem 2.5.14).

In Section 2.6, we describe the combinatorial metric on the boundary of the group
thanks to the geometry of the building. This metric is convenient to use to compute com-
binatorial modulus. Then, in Section 2.7 we discuss how the modulus in the boundary of
an apartment, may be related to a modulus in the boundary of the building. In particular,
Theorem 2.7.9 is the second major step necessary to prove Theorem 2.9.1. We use this
theorem to prove Theorem 2.8.1 that relates the conformal dimension of the boundary of
the building to a critical exponent computed in the boundary of an apartment.

In Section 2.8, we add the assumption of constant thickness of the buildings which
specifies the results of the preceding section. In particular, we find that the conformal
dimension of the boundary of the building is equal to a critical exponent computed in the
boundary of an apartment (see Theorem 2.8.1). Eventually in Section 2.9, we gather these
tools to obtain examples of right-angled-buildings of dimension 3 and 4 whose boundary
satisfies the CLP (see Corollary 2.9.3).
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2.1 Combinatorial modulus and the CLP
The combinatorial modulus are tools developed to compute modulus of curves in a metric
space without a natural measure. The idea is to approximate the metric space, with a
sequence of thinner and thinner approximations. Then with these approximations we can
construct discrete measures and compute combinatorial modulus. Finally, for well chosen
examples we can check that this sequence of modulus has a good asymptotic behavior.

In this first section, we present the general theory of combinatorial modulus in compact
metric spaces. We also remind basic definitions and facts about abstract Loewner spaces
as they inspired the theory of combinatorial modulus. Most of this section is a reminder
of [BK13, Section 2] to which we refer for details.

In this section (Z, d) denotes a compact metric space.

2.1.1 General properties of combinatorial modulus of curves

For k ≥ 0 and κ > 1, a κ-approximation of Z on scale k is a finite covering Gk by open
subsets such that for any v ∈ Gk there exists zv ∈ v satisfying the following properties:

• ∀v ∈ Gk one has B(zv, κ−12−k) ⊂ v ⊂ B(zv, κ2−k),

• ∀v, w ∈ Gk with v 6= w one has B(zv, κ−12−k) ∩B(zw, κ−12−k) = ∅.

A sequence {Gk}k≥0 is called a κ-approximation of Z.

Example 2.1.1. For k ≥ 0, a 2−k-separated subset of Z is a subset E such that d(z, z′) ≥
2−k for any z, z′ ∈ Ek. As Z is compact any 2−k-separated subset of Z is finite. Let Ek be a
2−k-separated subset of Z of maximal cardinality. Then Ek satisfies the following property:

for any x ∈ Z, there exists z ∈ Ek such that d(x, z) ≤ 2−k.

The set {B(z, 2−k)}z∈Ek
defines a 2-approximation at scale k of Z.

Now we fix the approximation {Gk}k≥0. We construct a discrete measure based on
each Gk for k ≥ 0. Let ρ : Gk −→ R+ be a positive function and γ be a curve in Z. The
ρ-length of γ is

Lρ(γ) =
∑

γ∩v 6=∅
ρ(v).

For p ≥ 1, the p-mass of ρ is
Mp(ρ) =

∑
v∈Gk

ρ(v)p.

Until the end of this subsection p ≥ 1 is fixed. Let F be a non-empty set of curves in Z.
We say that the function ρ is F-admissible if Lρ(γ) ≥ 1 for any curve γ ∈ F .
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Definition 2.1.2. The Gk-combinatorial p-modulus of F is

Modp(F , Gk) = inf{Mp(ρ)}

where the infimum is taken over the set of F-admissible functions and with the convention
Modp(∅, Gk) = 0.

The following equality is an alternative definition of the modulus:

Modp(F , Gk) = inf
ρ

Mp(ρ)
Lρ(F)p ,

where the infimum is taken over the set of positive functions on Gk and with Lρ(F) =
infγ∈F Lρ(γ).

The next proposition allows us to see the Gk-combinatorial p-modulus as a weak outer
measure on the set of curves of Z. Usually, for an outer measure the subadditivity must
hold over countable sets. This is useful to get intuition on these tools.

Proposition 2.1.3 ([BK13, Proposition 2.1.]).

1. Let F be a family of curves and F ′ ⊂ F . Then

Modp(F ′, Gk) ≤ Modp(F , Gk).

2. Let F1, . . . ,Fn be families of curves. Then

Modp(
n⋃
i=1
Fi, Gk) ≤

n∑
i=1

Modp(Fi, Gk).

A function ρ : Gk −→ R+ is called a minimal function for a set of curves F if
Modp(F , Gk) = Mp(ρ). As we only compute finite sums, minimal functions always ex-
ist. Along with a convexity argument, this also provides an elementary control of the
modulus as follow. For F a non-empty set of curves in Z and k ≥ 0

1
(#Gk)p−1 ≤ Modp(F , Gk) ≤ #Gk.

In the sequel of this chapter we mainly discuss the curves of Z of diameter larger than
a fixed constant. For these curves the following basic property is useful.

Proposition 2.1.4. Let F be a non-empty set of curves in Z. Assume that there exists
d > 0 such that diam γ ≥ d for any γ ∈ F . Then for any ε > 0, there exists k0 ≥ 0 such
that for any k ≥ k0, there exists a minimal function ρ : Gk −→ R+ such that ρ(v) ≤ ε for
any v ∈ Gk.
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Proof. Let γ ∈ F . We remind that κ denotes the multiplicative constant of the approxi-
mation {Gk}k≥0. For k ≥ log (κ/d)

log 2 , as diam γ > d the following inequality holds

#{v ∈ Gk : v ∩ γ 6= ∅} ≥ d

κ2−k .

Hence the constant function : v ∈ Gk −→ κ
d2−k ∈ R+ is F-admissible. This finishes

the proof.

A metric space Z is called doubling if there exists a uniform constant N , called the
doubling constant, such that each ball B of radius r is covered by N balls of radius r/2. In
doubling spaces, the Gk-combinatorial p-modulus does not depend, up to a multiplicative
constant, on the choice of the approximation.

Proposition 2.1.5 ([BK13, Proposition 2.2.]). Let (Z, d) be a compact doubling metric
space. For each p ≥ 1, if Gk and G′k are respectively κ and κ′-approximations, there exists
D = D(κ, κ′) such that for any k ≥ 0

D−1 ·Modp(F , Gk) ≤ Modp(F , G′k) ≤ D ·Modp(F , Gk).

Usually, we work with p ≥ 1 fixed and with approximately self-similar spaces (see
Section 2.2). As these spaces are doubling, now we refer to the combinatorial modulus on
scale k, omitting p and the approximation.

2.1.2 Combinatorial Loewner property

In this subsection, we assume that (Z, d) is a compact arcwise connected doubling metric
space. Let κ > 1 and let {Gk}k≥0 denote a κ-approximation of Z. Moreover we fix p ≥ 1.

A compact and connected subset A ⊂ Z is called a continuum. Moreover, if A contains
more than one point, A is called a non-degenerate continuum. The relative distance between
two disjoint non-degenerate continua A,B ⊂ Z is

∆(A,B) = dist(A,B)
min{diam A,diam B}

.

If A and B are two such continua, F(A,B) denotes the set of curves in Z joining A
and B and we write Modp(A,B,Gk) := Modp(F(A,B), Gk).

Definition 2.1.6. Let p > 1. We say that Z satisfies the Combinatorial p-Loewner Prop-
erty (CLP) if there exist two increasing functions φ and ψ on (0,+∞) with limt→0 ψ(t) = 0,
such that

i) for any pair of disjoint non-degenerate continua A and B in Z and for all k ≥ 0 with
2−k ≤ min{diam A, diam B} one has:

φ(∆(A,B)−1) ≤ Modp(A,B,Gk),
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ii) for any pair of open balls B1, B2 in Z, with same center and B1 ⊂ B2, and for all
k ≥ 0 with 2−k ≤ diam B1 one has:

Modp(B1, Z\B2, Gk) ≤ ψ(∆(B1, Z\B2)−1).

As we assume that Z is doubling, thanks to Proposition 2.1.5, the CLP is independent
of the choice of the approximation. As we noticed, the modulus on scale k is an outer
measure (in a weak sense) over the set of curves in Z. With the previous remarks we can
say intuitively that

A metric space satisfies the CLP if, the farer are the continua, the
smaller is this amount of curves joining them.

We present examples and properties about the CLP in Subsection 2.1.4.

2.1.3 Loewner spaces

Now we define the notion of Loewner space. This notion introduced in [HK98] has inspired
the definition of the CLP. Moreover, the proof of many basic properties of combinatorial
modulus are directly inspired by the classical theory of modulus (see [BK13]).

Now we consider (X, d, µ) a metric measured space. For simplicity, we assume that X
is compact and Q-Ahlfors-regular (Q-AR or AR) for Q > 1. This means that there exists
a constant C > 1 such that for any 0 < R ≤ diamX and any R-ball B ⊂ X one has

C−1 ·RQ ≤ µ(B) ≤ C ·RQ.

Note that under this assumption the measure µ is comparable to the Hausdorff measure
Hd.

Let F be a set of curves in X. A measurable function f : X −→ R+ is said to be
F-admissible if for any rectifiable curve γ ∈ F∫

γ(t)
f(γ(t))dt ≥ 1.

Note that the notion of admissibility does not use the measure on X but only the structure
of metric space.

Definition 2.1.7. The Q-modulus of F is

ModQ(F) = inf
{∫

X
fQdµ

}
where the infimum is taken over the set of F-admissible functions and with the convention
that ModQ(F) = 0 if F does not contain rectifiable curves.
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As before, if A and B are two disjoint non-degenerate continua, F(A,B) denotes the
set of curves in X joining A and B. Moreover, we write ModQ(A,B) := ModQ(F(A,B)).
In the literature about quasiconformal maps the pair (A,B) is called a condenser and the
modulus (with respect to the Lebesgue measure) ModQ(A,B) the capacity of (A,B) (see
[Vuo88]).

In X, the classical modulus are comparable to the combinatorial modulus in the fol-
lowing sense.

Proposition 2.1.8 ([Haï09a, Prop B.2]). Assume that X is equipped with an approximation
{Gk}k≥0. For d0 > 0, let F0 be the set of curves in X of diameter larger than d0. For k
large enough one has

ModQ(F0, Gk) � ModQ(F0)

if ModQ(F0) > 0 and ModQ(F0) goes to 0 when k goes to infinity otherwise. Besides for
any pair A,B of non-degenerate disjoint continua and for k large enough one has

ModQ(A,B,Gk) � ModQ(A,B)

if ModQ(A,B) > 0 and ModQ(A,B) goes to 0 when k goes to infinity otherwise.

Note that this connection between combinatorial and classical modulus is only valid for
the dimension Q.

Now we can define Loewner spaces.

Definition 2.1.9. We say that (X, d, µ) is a Q-Loewner space if there exists an increasing
function φ : (0,+∞) −→ (0,+∞) such that for any pair of non-degenerate disjoint continua
A and B in X one has:

φ(∆(A,B)−1) ≤ ModQ(F(A,B)).

We also say that X satisfies the Loewner property or the classical Loewner property to
avoid the confusion with the CLP.

The control of the modulus from above is not required in this definition because it is
automatically provided by the structure of Q-AR space.

Theorem 2.1.10 ([HK98, Lemma 3.14.]). There exists C > 0 a constant such that the
following property holds. Let A and B be two non-degenerate disjoint continua. Let 0 <
2r < R and x ∈ X be such that A ⊂ B(x, r) and B ⊂ x\B(x,R). Then

ModQ(A,B) ≤ C
(

log R
r

)1−Q
.

As a consequence there exists an increasing function ψ on (0,+∞) with limt→0 ψ(t) = 0,
such that for any pair of disjoint non-degenerate continua A and B

ModQ(A,B) ≤ ψ(∆−1(A,B)).
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More precisely, there exist some constants K,C > 0 such that ψ(t) = K
(

log(1
t + C)

)1−Q

for any t > 0.
When X is a Loewner space, the asymptotic behavior of φ is described in [HK98,

Theorem 3.6.]. For t small enough φ(t) ≈ log 1
t , for t large enough φ(t) ≈ (log t)1−Q.

As we will see in the sequel an essential difference between the combinatorial and the
classical modulus property is the importance of the dimension Q in the discussions about
classical modulus.

2.1.4 First properties and examples

In this section Z is a compact arcwise connected doubling metric space and X is a compact
Q-AR metric space (Q > 1). First we remind a theorem and a conjecture that compare
the CLP and the classical Loewner property.

Theorem 2.1.11 ([BK13, Theorem 2.6.]). If X is a compact Q-AR and Loewner metric
space, then X satisfies the combinatorial Q-Loewner property.

The next conjecture is a motivation for looking to boundaries of groups that satisfy the
CLP.

Conjecture 2.1.12 ([Kle06, Conjecture 7.5.]). Assume that Z is quasi-Moebius homeo-
morphic to the boundary of a hyperbolic group. If Z satisfies the CLP then it is quasi-
Moebius homeomorphic to a Loewner space.

As announced we want to find and use the CLP on boundaries of hyperbolic groups.
Quasi-isometries between hyperbolic spaces extends in quasi-Moebius homeomorphisms
between the boundaries, so it is fundamental to know how these properties behave under
quasi-Moebius maps. These maps have been introduced by J. Vaïsälä in [Väi85]. We
remind that in a metric space (Z, d) the cross-ratio of four distinct points a, b, c, d ∈ Z is

[a : b : c : d] = d(a, b)
d(a, c) ·

d(c, d)
d(b, d) .

For Z,Z ′ two metric spaces, an homeomorphism f : Z −→ Z ′ is quasi-Moebius if there
exists an homeomorphism φ : R+ −→ R+ such that for any quadruple of distinct points
a, b, c, d ∈ Z

[f(a) : f(b) : f(c) : f(d)] ≤ φ([a : b : c : d]).

If f is quasi-Moebius, as [a : c : b : d] = [a : b : c : d]−1, f−1 : Z ′ −→ Z is also
quasi-Moebius.

Theorem 2.1.13 ([BK13, Theorem 2.6.]). If Z ′ is quasi-Moebius homeomorphic to a com-
pact space Z satisfying the CLP, then Z ′ also satisfies the CLP (with the same exponent).
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The Loewner property does not behave so well under quasi-Moebius maps. In partic-
ular, it is perturbed by a change of dimension whereas the CLP is not.

Theorem 2.1.14 ([Tys98]). Let X and X ′ be respectively Q-Loewner and Q′-AR com-
pact metric spaces. Assume that X ′ is quasi-Moebius homeomorphic to X. Then X ′ is a
Loewner space if and only if Q = Q′.

If we apply to X a snowflake transformation fε : (X, d) −→ (X, dε), 0 < ε < 1 then
dimH(X, dε) = 1

ε dimH(Z, d). Such a transformation is a quasi-Moebius homeomorphism
and along with the previous theorem we get the following fact.

Fact 2.1.15. The Loewner property is not invariant by quasi-Moebius homeomorphisms.

Yet quasi-Moebius maps are the appropriate homeomorphisms to discuss between
Loewner spaces.

Theorem 2.1.16 ([HK98]). Let X and X ′ be two compact Q-regular Loewner spaces and
let f : X −→ X ′ be a homeomorphism. The following are equivalent

1. f is quasi-Moebius,

2. there exists C > 1 such that

C−1 ·ModQ(F) ≤ ModQ(f(F)) ≤ C ·ModQ(F)

for any set of curves F in X.

The next proposition gives examples of spaces that do not satisfy the CLP.

Proposition 2.1.17 ([HK98] or [BK13, Theorem 2.6.]). Assume that Z satisfies the CLP
then it has no local cut point, i.e no connected open subset is disconnected by removing a
point.

Along with the theorem of Bowditch (see [Bow98]) this proposition says that the bound-
ary of a one-ended hyperbolic group which splits along a two-ended subgroup does not
satisfy the CLP.

The first examples of spaces that satisfy the CLP are provided by Theorem 2.1.11 and
by the examples of formerly known Loewner spaces. The next examples are provided by
[BK13].

Example 2.1.18.

1. The following spaces are Loewner spaces

i) the Euclidean space Rd for d ≥ 2, this result is due to C. Loewner for d ≥ 3 (see
[Loe59]),
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ii) any Riemannian compact manifold modeled by Rd for d ≥ 2 (see [HK98]),
iii) boundaries of right-angled Fuchsian buildings (see [BP99]).

2. The following spaces verify the CLP (see [BK13])

i) the Sierpiński carpet and the n-dimensional Menger sponge embedded in the Eu-
clidean space,

ii) boundaries of Coxeter groups of various type: simplex groups, some prism groups,
some highly symmetric groups and some groups with planar boundary.

Figure 2.1: The Sierpiński carpet in E2 satisfies the CLP

For Examples 2.1.18.2, we do not know if they are Loewner spaces. This provides a
first kind of interesting questions.

Question 2.1.19. Is one of the Examples 2.1.18.2. quasi-Moebius homeomorphic to a
Loewner space?

Among these cases the one of the Sierpiński carpet is the first that should be discussed
as it should be the easiest one.

Note that Example 2.1.18.1.ii) provides many examples of hyperbolic groups whose
boundaries are Loewner spaces. Indeed consider a group Γ that is acting geometrically
(see Subsection 2.2.1) on the standard hyperbolic space Hd for d ≥ 3. Then ∂Γ is quasi-
Moebius equivalent to Sd−1 equipped with the standard spherical metric. Hence with
Example 2.1.18.1.ii), ∂Γ is a Loewner space.

Actually the Loewner property and the CLP have been interesting subject of discussion
on boundaries of groups to approach Cannon’s conjecture (see Conjecture 0.0.2) that is a
reverse problem. By a theorem of D. Sullivan in [Sul82], Cannon’s conjecture is equivalent
to the following in which the quasiconformal structure of the boundary is the main point.
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Conjecture 2.1.20 ([BK02, Conjecture 1.3.]). If Γ is a hyperbolic group and ∂Γ is home-
omorphic to S2, then it is quasi-Moebius homeomorphic to the standard 2-sphere.

The notion of Loewner space is then interesting to find on boundaries of groups as quasi-
Moebius maps are the good morphisms to consider between Loewner spaces. If Conjecture
2.1.12 is true, the CLP would provide many interesting examples of Loewner spaces. This
motivates this second question.

Question 2.1.21. Can we find new examples of compact metric spaces satisfying the CLP?

In this chapter, we find examples of boundaries of right-angled buildings of dimension 3
and 4 that satisfy the CLP. The discussion about these buildings is suggested by Examples
2.1.18.1.iii) and 2.1.18.2.ii). The strategy applied is to lift some tools used in [BK13]
to study the Coxeter groups thanks to some ideas used in [BP00] to study buildings of
dimension 2.

The examples of buildings that we obtain, have been studied by J. Dymara and D.
Osajda who described the topology of the boundary.

Theorem 2.1.22 ([DO07]). Let ∆ be a right-angled thick building whose associated Coxeter
group is a cocompact reflection group in Hd. Then ∂∆ is homeomorphic to the universal
(d− 1)-dimensional Menger space µd−1.

2.2 Combinatorial modulus of curves on boundaries of hy-
perbolic groups

Boundaries of hyperbolic groups are naturally endowed with metric structures that satisfy
a property of self-similarity. This permits to rescale the sets of curves of the boundary
with a controlled modulus. Which is very useful to prove the CLP.

In this section, we present how the boundary of a hyperbolic group can be seen as ap-
proximately self-similar spaces. Then, we remind the connection between the combinatorial
modulus and the conformal dimension of the boundary. Eventually, we give a sufficient
condition for the boundary to satisfy the CLP.

Most of this section is a reminder of [BK13, Section 3 and 4] to which we refer for
details.

2.2.1 Boundaries of hyperbolic groups and approximately self-similar
spaces

For details concerning hyperbolic groups and spaces, we refer to [CDP90], [GdlH90] or
[KB02]. Here (X, d) is a proper geodesic metric space. We say that a finitely generated
group Γ acts geometrically on X, if:

• Γ < Isom(X),
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• Γ acts cocompactly,

• Γ acts properly discontinuously.

We say that X is hyperbolic (in the sense of Gromov) if there exists a constant δ > 0
such that for every geodesic triangle [x, y]∪ [y, z]∪ [z, x] ⊂ X and every p ∈ [x, y], one has

dist(p, [y, z] ∪ [z, x]) ≤ δ.

A finitely generated group that acts geometrically on a hyperbolic space X is called a
hyperbolic group. In this case, the Cayley graph of a hyperbolic group is a hyperbolic
space.

From nowon, X is a hyperbolic space with a fixed base point x0 and Γ is a hyperbolic
group acting geometrically on X. Let ∂X be the quotient space defined by the set of
half-geodesics and by the equivalence relation:

γ, γ′ : [0,+∞) −→ X are equivalent if and only if there exists K > 0
such that d(γ(t), γ′(t)) ≤ K for any t ∈ [0,+∞).

Thanks to the hyperbolicity condition, we can restrict to the set of half-geodesics starting
from x0. We can equip ∂X and X ∪ ∂X with topologies which make them compact sets.
In this setting X, is dense in X ∪ ∂X and ∂X is called the boundary of X. Moreover we
can equip ∂X with a family of visual metric. A metric δ(·, ·) is visual if there exist two
constants A ≥ 1 and α > 0 such that for all ξ, ξ′ ∈ ∂X:

A−1e−α` ≤ δ(ξ, ξ′) ≤ A e−α`,

where ` is the distance from x0 to a geodesic line (ξ, ξ′). In such a situation we also write

δ(ξ, ξ′) � e−α`.

The action of Γ on X extends naturally on (∂X, δ) and elements of Γ are uniform quasi-
Moebius homeomorphisms of the boundary. Moreover, if ∂Γ is also equipped with a visual
metric, the homeomorphism ∂Γ −→ ∂X induced by the orbit map g ∈ Γ −→ gx0 ∈ X is
quasi-Moebius.

The following definition is a generalization of the classical notion of self-similar space.

Definition 2.2.1. A compact metric space (Z, d) is called approximately self-similar if
there exists a constant L ≥ 1 such that for every r-ball B with 0 < r < diamZ, there exists
an open subset U ⊂ Z which is L-bi-Lipschitz homeomorphic to the rescaled ball (B, 1

rd).

The property that follows shows that the notion of approximately self-similar space fits
with the metric structure of the boundary of a hyperbolic group and with the action of the
group on its boundary.
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Definition 2.2.2. Let Γ be a hyperbolic group. A metric d on ∂Γ is called a self-similar
metric if there exists a hyperbolic space X on which Γ acts geometrically, such that d is
the preimage of a visual metric on ∂X by the canonical quasi-Moebius homeomorphism
∂Γ −→ ∂X.

Proposition 2.2.3 ([BK13, Proposition 3.3.]). The space ∂Γ equipped with a self-similar
metric is doubling and is an approximately self-similar space, the partial bi-Lipschitz maps
being restrictions of group elements. Moreover, Γ acts on (∂Γ, d) by (non-uniformly) bi-
Lipschitz homeomorphisms.

2.2.2 Combinatorial modulus and conformal dimension

Here we present the connection between combinatorial modulus and the conformal dimen-
sion in approximately self-similar spaces.

Let Z be an arcwise connected approximately self-similar metric space. In practice Z
will be the boundary of a hyperbolic space. Let {Gk}k≥0 be a κ-approximation of Z and
d0 be a small constant compared with diam Z and with the constant of self-similarity.

Let F0 denote the family of curves in Z of diameter larger than d0. In [BK13], it is
proved that the properties of the combinatorial modulus are contained in the asymptotic
behavior of Modp(F0, Gk). This point is explained in Subsection 2.2.3. Here we write
Mk := Modp(F0, Gk).

The following proposition allows to define a critical exponent that is related to the
conformal dimension of Z.

Proposition 2.2.4. There exists p0 ≥ 1 such that for p ≥ p0 the modulus Mk goes to zero
as k goes to infinity.
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Proof. We assume that {Gk}k≥0 is a κ-approximation of Z. Then we write K > 0 the
cardinal of a covering of Z by balls of radius κ. Then, by the doubling condition, we write
N ′ the number of balls of radius κ−1 · 1

2 that cover a ball of radius κ. By induction we
obtain

#Gk ≤ K ·N ′k for any k ≥ 1.

Moreover, as we saw in the proof of Proposition 2.1.4, there exists a constant K ′ > 0
such that the constant function ρ : Gk −→ K ′ · 2−k is F0-admissible.

As a consequence

Mk ≤ C · (
N ′

2p )k,

where C is a positive constant. Thus, for p large enough, Mk goes to zero.

According to this proposition the next definition makes sense.

Definition 2.2.5. The critical exponent Q associated with the curve family F0 is defined
as follows

Q = inf{p ∈ [1,+∞) : lim
k→+∞

Modp(F0, Gk) = 0}.

We notice that for k ≥ 0 fixed the function : p 7−→ Modp(F0, Gk) is non-increasing.
Hence Modp(F0, Gk) goes to zero for p > Q.

This critical exponent is related to the conformal dimension, which provides another
motivation to study combinatorial modulus. The conformal dimension has been introduced
by P. Pansu in [Pan89]. It is a key point in the conformal structure of the boundary of a
hyperbolic group. In particular, it is invariant under quasi-Moebius maps.

In the following, Hd(·) and dimH(Z, d) respectively denote the Hausdorff measure and
the Hausdorff dimension of Z equipped with d. The Ahlfors-regular conformal gauge of
(Z, d) is defined as follow

Jc(Z, d) := {(Z ′, δ) AR and quasi-moebius homeomorphic to (Z, d)}.

Definition 2.2.6. Let (Z, d) be a compact metric space. The Ahlfors-regular conformal
dimension of (Z, d) is

Confdim(Z, d) := inf{dimH(Z ′, δ) : (Z ′, δ) ∈ Jc(Z, d)}.

For simplicity, in the rest of the chapter we will refer to the conformal dimension for
the Ahlfors-regular conformal dimension.

In [KK], S. Keith and B. Kleiner proved that the combinatorial modulus are related to
the conformal dimension. The proof of the following theorem may be found in [Car11].

Theorem 2.2.7 ([KK] or [Car11, Theorem 4.5.]). The critical exponent Q (see Definition
2.2.5) is equal to Confdim(Z, d).
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The definition of the conformal dimension, along with basic topology give the following
inequalities:

dimT (Z) ≤ Confdim(Z, d) ≤ dimH(Z, d),
where dimT (Z) is the topological dimension of Z.

The following theorem due to J. Tyson makes a connection between the conformal
dimension and the Loewner property.

Theorem 2.2.8 ([MT10, Corollary 4.2.2.]). If X is a Q-regular and Q-Loewner space,
then Confdim(X) = Q.

Example 2.2.9. It has been proved independently by B. Kleiner and in [KL04] that the
Euclidean metric on the Sierpiński carpet does not realize the conformal dimension. As a
consequence the Sierpiński carpet equipped with this metric does not satisfy the Loewner
property. Yet it satisfies the CLP (see Example 2.1.18).

Again, Cannon’s conjecture has been an important motivation to discuss the conformal
dimension of the boundary of a hyperbolic group. In particular in [BK05] it is proved that
Conjecture 0.0.2 is equivalent to the following.

Conjecture 2.2.10. If Γ is a hyperbolic group and ∂Γ is homeomorphic to S2, then
Confdim(∂Γ) is attained by a metric in Jc(∂Γ).

2.2.3 How to prove the CLP

Now we give the sufficient condition that will be used in this chapter to exhibit some
examples of groups with a boundary that satisfy the CLP.

Let Z be an arcwise connected approximately self-similar metric space and let {Gk}k≥0
be a κ-approximation of Z.

The approximately self-similar structure and Proposition 2.1.5, allow to deform any set
of small curves to a set of large curves with a control of the modulus. This is what we
prove in the following proposition.

Proposition 2.2.11. Let B be a ball in ∂Γ such that diam B < 1. Let g ∈ Γ be the local
L-bi-Lipschitz homeomorphism that rescales B (given by Definition 2.2.3). Let F be a set
of curves contained in λB for λ < 1. Then there exist ` ∈ N, and D > 1 depending only
on L and on the doubling constant of ∂Γ such that the following property holds.

If k ≥ 0 is large enough so that

{v ∈ Gk : γ ∩ v 6= ∅ for some γ ∈ F} ⊂ {v ∈ Gk : v ⊂ B},

then

D−1 ·Modp(gF , Gk) ≤ Modp(F , Gk+`) ≤ D ·Modp(gF , Gk),

where gF = {gγ : γ ∈ F}.
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Proof. Let k ≥ 0 be large enough so that, if γ ∩ v 6= ∅ with γ ∈ F and v ∈ Gk, then v ⊂ B.
Let d = diamB and let ` ∈ N denote the integer verifying 2−(`+1) < d ≤ 2−`. Let v ∈ Gk+`
such that v ⊂ B and assume

B(ξ, κ−12−(k+`)) ⊂ v ⊂ B(ξ, κ2−(k+`)).

Then
B(gξ, (Lκ)−12−k) ⊂ gv ⊂ B(gξ, 2Lκ2−k).

We write G′k ∩ gB = {gv : v ∈ Gk+`, v ⊂ B}. Then G′k ∩ gB is a κ′-approximation of gB
on scale k, with κ′ depending only on κ and L. As the curves of F are strictly contained
in B we obtain the following equality

Modp(F , Gk+`) = Modp(gF , G′k ∩ gB).

Thanks to Proposition 2.1.5, there exists D > 1 such that

D−1 ·Modp(gF , Gk) ≤ Modp(gF , G′k ∩ gB) ≤ D ·Modp(gF , Gk),

and the proposition follows.

Now we fix d0 > 0 a small constant compared with diam Z and with the constant of
self-similarity. More precisely it must be small enough so that any non-constant curve in Z
may be rescaled to a curve of diameter larger than d0 by self-similarity. In practice, Z will
be the boundary of a hyperbolic group and d0 will depend on the hyperbolicity constant.

Let F0 denote the family of curves in Z of diameter larger than d0. This rescaling
property explains that the properties of the combinatorial modulus are contained in the
asymptotic behavior of Modp(F0, Gk). Again, we use the letter Q to designate the critical
exponent of Definition 2.2.5.

Proposition 2.2.12 ([BK13, Proposition 4.5.]). Let Z be an arcwise connected approxi-
mately self-similar metric space. Let {Gk}k≥0 be a κ-approximation of Z and d0 be a small
constant compared with diam Z and with the constant of self-similarity. Let F0 denote the
family of curves in Z of diameter larger than d0.

For p = 1, we assume that Modp(F0, Gk) is unbounded. For p ≥ 1, we assume that for
every non-constant curve η ⊂ Z and every ε > 0, there exists C = C(p, η, ε) such that for
every k ∈ N:

Modp(F0, Gk) ≤ C ·Modp(Uε(η), Gk).

Suppose furthermore when p belongs to a compact subset of [1,+∞) the constant C may
be chosen independent of p. Then Z satisfies the combinatorial Q-Loewner property.
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2.3 Steps of the proof of Theorem 2.9.1
Before going into details about boundaries of right-angled buildings, we give a sketch of
proof of the main theorem of this chapter. In this section, D is the right-angled dodecahe-
dron in H3 or the right-angled 120-cell in H4. We write WD for the hyperbolic reflection
group generated by the faces of D. The main theorem of this chapter may be stated as
follows.

Theorem 2.3.1 (Theorem 2.9.1). Let q ≥ 3 and let Γ be the a graph product of constant
thickness q − 1 and of Coxeter group WD. Then ∂Γ equipped with a visual metric satisfies
the CLP.

As announced, we will verify that ∂Γ satisfies the hypothesis of Proposition 2.2.12.
To prove that Mod1(F0, Gk) is unbounded, it is enough to see that for every N ∈ N
there exist N disjoint curves in ∂Γ. Indeed, this implies that for k ≥ 0 large enough
Mod1(F0, Gk) > N .

To follow curves to control the modulus. For p > 1, we want to prove that the
curves of ∂Γ satisfy a property of the following form.

(P ) : For ε > 0, there exists a finite set F of bi-Lipschitz maps f :
∂Γ −→ ∂Γ such that for any curve γ ∈ F0 and any curve η in ∂Γ, the
set

⋃
f∈F f(γ) contains a curve that belongs to Uε(η).

Where Uε(η) denotes the ε-neighborhood of η for the C0 distance (see Subsection 0.0.3 for
details). Intuitively, (P ) holds if from any curve γ we can follow any other curve η thanks
to bi-Lipschitz maps. The following computation shows that the property (P ) implies the
desired inequality.

Proposition 2.3.2. If Mod1(F0, Gk) is unbounded, then property (P ) implies the CLP.

Proof. Let η be a curve in ∂Γ and ε > 0. Fix ρ a Uε(η)-admissible function. The inequality
required by the hypothesis of Proposition 2.2.12 is obtained if we find a constant K > 0
independent of the scale k and a F0-admissible function ρ′ such that Mp(ρ′) ≤ K ·Mp(ρ).

Let F be the set of bi-Lipschitz maps given by the property (P ). We assume, without
loss of generality that F contains F−1. We define the function ρ′ : Gk −→ R+ by:

(∗) ρ′(v) =
∑
f∈F

∑
fw∩v 6=∅

ρ(w).

Let γ ∈ F0 and θ ⊂
⋃
f∈F

fγ such that θ ∈ Uε(η). Then

Lρ′(γ) =
∑
f∈F

∑
v∩γ 6=∅

∑
fw∩v 6=∅

ρ(w) ≥
∑
f∈F

∑
w∩fγ 6=∅

ρ(w).
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Yet
Lρ(θ) ≤

∑
f∈F

Lρ(fγ) =
∑
f∈F

∑
w∩fγ 6=∅

ρ(w).

Hence Lρ′(γ) ≥ Lρ(θ) and ρ′ is F0-admissible.
Then the number of terms in the right-hand side of the definition (∗) is bounded by

a constant N depending on #F , the bi-Lipschitz constants of the elements of F , and the
doubling constant of ∂Γ. Therefore by convexity

Mp(ρ′) =
∑
v∈Gk

( ∑
f∈F

∑
fw∩v 6=∅

ρ(w)
)p
,

≤Np−1 ·
∑
v∈Gk

∑
f∈F

∑
w∩fv 6=∅

ρ(w)p ≤ Np ·#F ·Mp(ρ).

Note that this idea of following curves may be used to obtain an inequality between
any pair of sets of curves.

The issue of parabolic limit sets. As Γ acts on ∂Γ by bi-Lipschitz homeomorphisms, it
is natural to intend to follow curves thanks to elements of Γ. Yet, in right-angled buildings
some curves may be contained in parabolic limit sets (boundaries of residues). As we will
see in Example 2.5.9, these curves are an obstacle to prove the property (P ) with the
elements of Γ.

To solve this problem we start by showing that Modp(F0, Gk) is determined by the
combinatorial modulus of the sets of curves of the form Fδ,r(∂P ) as defined at the beginning
Subsection 2.5.2. This is what is done at the beginning of the proof of Theorem 2.7.13.
As a first approximation, it is enough to see Fδ,r(∂P ) as the set of curves contained in a
parabolic limit set ∂P .

Following curves inside parabolic limit sets. Then inside the parabolic limit set ∂P
it is possible to follow curves. An analogous of property (P ) inside the parabolic limit sets
is proved in Proposition 2.5.12. From this property we can obtain Theorem 2.5.13. This
theorem is the first major step toward the proof. Essentially it says that the combinatorial
modulus of Fδ,r(∂P ) is controlled by any curve contained in ∂P .

Controlling the modulus in ∂Γ by the modulus in the boundary of an apartment.
The second major step in the proof is to use the building structure to reduce the problem in
∂Γ to a problem in the boundary of an apartment i.e in ∂WD. This is what allows Theorem
2.7.9. Essentially, this theorem says that the modulus of a curve in ∂Γ is controlled by a
weighted modulus defined in the boundary of an apartment. The idea used to prove this
is that, from the point of view of the modulus, ∂Γ can be seen as the direct product of the
boundary of an apartment by a finite set whose cardinality depends on the scale.
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Conclusion of the proof thanks to the symmetries of D. Now, thanks to Theorems
2.5.13 and 2.7.9, we arrive at a point where the modulus of Fδ,r(∂P ), and thus of F0, is
controlled by some modulus of the parabolic limit sets of WD. The idea we use to conclude
is that the symmetries of D extends to the boundary of WD. Along with the elements
of the groups, these symmetries permit us to follow curves in ∂WD. As a consequence
we obtain a strong control of the modulus of the parabolic limit sets in ∂WD and we can
complete the proof.

2.4 Locally finite right-angled hyperbolic buildings
As we said before, the aim of this chapter is to discuss combinatorial modulus on boundaries
of hyperbolic buildings. Here we set up the context about hyperbolic buildings that will be
used until the end of this chapter. In particular, we discuss the geometry of locally finite
right-angled hyperbolic buildings. This short section prolongs naturally the discussion
about right-angled hyperbolic buildings in Section 1.4.

2.4.1 Setting and assumptions

Here we fix G a finite simplicial graph. We write G(0) = {v1, . . . , vn} and to each vertex
vi we attach a finite cyclic group 〈si〉 = Z/qiZ with qi ≥ 2. According to Definition 1.4.1,
if S = {s1, . . . , sn} the graph product Γ given by (G, {Z/qiZ}i=1,...,n) admits the following
presentation

Γ = 〈si ∈ S|sqi
i = 1, sisj = sjsi if vi ∼ vj〉 .

Now we assume first that Γ is infinite. This happens if and only if there exists two
distinct vertices vi, vj such that vi � vj . Then, we assume that Γ is hyperbolic. A criterion
of M. Gromov allows J. Meier to prove that Γ is a hyperbolic group if and only if in G
any circuit of length 4 contains a chord (see [Mei96]). Eventually, we assume that ∂Γ is
arcwise connected. In [DM02], a necessary and sufficient condition on G is given for ∂Γ to
be arcwise connected (see Theorem 2.5.17 in this chapter).

We use the same notations as in Section 1.4 to designate the geometrical objects asso-
ciated with Γ:

• (W,S) is the Coxeter system,

• ∆ is the building of type (W,S),

• Σ is the Davis realization of ∆.

Under our assumptions, ∆ equipped with the chamber distance dc(·, ·) is a hyperbolic
metric space.
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2.4.2 Geodesic metrics on Σ
A natural geodesic metric on Σ is obtained as follow. We designate by D the Davis
chamber of Γ. We remind that D is obtained from D(1) by attaching a k-cube inside any
full subgraph generated by 2k vertices that is the 1-skeleton of a k-cube. Now, for any k,
we equip each k-cube of D with the Euclidean metric of the [0, 1]k.

The polyhedral metric d(·, ·) induced on Σ by this construction is geodesic and com-
plete. Moreover, any automorphism of ∆ is an isometry of (Σ, d). In particular, Γ acts
geometrically on (Σ, d). Thus (Σ, d) is a hyperbolic metric space.

In (Σ, d) the building-walls are convex and connected subsets. More precisely, let
M ∈ M(Σ) of type s and let x ∈ Ch(Σ) such that M is along x. Then M coincides with
the geodesic extensions of all the segments contained in the maximal face of type s of x.

Yet in the case where W is a reflection group of the hyperbolic space Hd it seems more
natural to equip D with the hyperbolic metric. Then D is isometric to the Coxeter polytop
provided by W . We designate by d′(·, ·) the piecewise hyperbolic metric on Σ induced
by this construction. This metric satisfies the same properties stated above (geodesic,
complete, hyperbolic and a geometric action of Γ.

The two metrics d and d′ are quasi-isometric. As our purpose is to study ∂Γ, essentially
it makes no difference to consider (Σ, d) or (Σ, d′). Yet, the arguments presented in Sections
2.5, 2.6, 2.7, and 2.8 hold in the generic case so we consider (Σ, d) in these sections. For
Section 2.9 it will be more convenient to consider (Σ, d′).

2.4.3 Boundary of the building

Here we describe basic properties of ∂Γ. In the sequel, we use the geometric action of Γ
on (Σ, d) to identify ∂Γ and ∂Σ. Now we remind that in a hyperbolic group G if H < G
there are two possible cases:

• either ∂H ' ∂G,

• or Int(∂H) is empty in ∂G.

Now consider M a building-wall of type s. Under the identification ∂Σ ' ∂Γ we
get ∂M ' ∂StabΓ(M). Therefore, thanks to the previous reminder, to describe ∂M we
essentially need to distinguish two cases.

In the first case, s commutes with any generator r ∈ S. In the Davis complex this
means that all the other building-walls are orthogonal to M . Then StabΓ(M) = Γ. In this
case the boundary of M as well as the boundary of any dial of building bounded by M is
∂Γ.

In the second case, there exists r ∈ S that does not commute with s. In the Davis com-
plex this means that there exists a building-wallM ′ parallel toM . This implies that ∂M (
∂Γ. In this case, ∂Γ\∂M is the disjoint union Int(∂D0(M)) t · · · t Int(∂Dq−1(M)) where
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D0(M), . . . , Dq−1(M) are the dials of building bounded byM . Naturally a rotation around
M extends to the boundary as an homeomorphism that permutes ∂D0(M), . . . , ∂Dq−1(M)
and fixes ∂M . Moreover Int(∂M) = ∅, Int(∂Di(M)) 6= ∅, and the topological boundary of
∂Di(M) in ∂Γ is ∂M for any i = 1, . . . , q − 1.

We summarize the last two paragraphs by the following fact.

Fact 2.4.1. Let D be a dial of building bounded by the building-wall M . Then

• either ∂M = ∂D = ∂Γ,

• or the topological boundary of ∂D in ∂Γ is ∂M . In this case, Int(∂D) 6= ∅ and
Int(∂M) = ∅.

Besides, the hyperbolicity condition gives the following fact describing the asymptotic
position of two distinct building-walls.

Fact 2.4.2. Let M and M ′ be two distinct building-walls. If M ‖M ′ then ∂M ∩∂M ′ = ∅.

From this fact we can construct many parallel building-walls.

Lemma 2.4.3. Let M1, . . . ,Mk be a collection of building-walls such that any Mi admits a
parallel building-wall. Assume that Mi ⊥Mj for any i 6= j. Then there exists M ∈ M(Σ)
such that M ‖Mi for any i.

Proof. We prove the proposition by induction on k. For k = 1 there is nothing to prove.
For k ≥ 1, pick M1, . . . ,Mk a collection of building-walls verifying the hypothesis of the
lemma. Assume that there exists M a building-wall such that M ‖ M1, . . . ,M ‖ Mk. Let
Mk+1 ∈M(Σ) be such that Mk+1 ⊥M1, . . . ,Mk+1 ⊥Mk.

If M is parallel to Mk+1 there is nothing more to say. Now we assume M ⊥Mk+1 and
we pick a wall M ′ parallel to Mk+1. If M ′ is parallel to M1, . . . ,Mk there is nothing more
to say. Now we assume that there exists 1 ≤ i ≤ k such that, up to a reordering

M ′ ⊥M1, . . . ,M
′ ⊥Mi,M

′ ‖Mi+1, . . . ,M
′ ‖Mk,M

′ ‖Mk+1.

First we consider the case M ′ ⊥M . With

• M ⊥Mk+1, Mk+1 ⊥M1, M1 ⊥M ′,

• and M ′ ‖Mk+1, M ‖M1,

we obtain that the building-walls M ′,M,Mk+1, and M1 form a right-angled rectangle.
Which is a contradiction with the hyperbolicity of Σ.

Secondly we consider the case M ′ ‖ M . Let r′ ∈ Γ be a rotation around M ′. Then
r′(M) is such that

r′(M) ‖M1, . . . , r
′(M) ‖Mi.
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Indeed for 1 ≤ j ≤ i, as M ‖ Mj it comes that r′(M) ‖ r′(Mj). Besides M ′ ⊥ Mj and
according to Lemma 1.4.12, r′(Mj) = Mj . Then r′(M) ‖Mj .

Moreover r′(M) is such that

r′(M) ‖Mi+1, . . . , r
′(M) ‖Mk+1.

Indeed Mi+1 ∩ · · · ∩Mk+1 6= ∅. As M ′ ‖ Mj for i + 1 ≤ j ≤ k + 1, this means that the
building-walls Mi+1, . . . ,Mk+1 are entirely contained in the same connected component of
Σ\M ′. Let C be this connected component. As M ‖ M ′ and M ∩Mk+1 6= ∅ it comes
that M is also contained in C. Thus r′(M) is not contained in C and r′(M) ‖ Mj for
i+ 1 ≤ j ≤ k + 1.

In [BK13, Proposition 5.2.], it is proved that the boundary of half-spaces in a hyperbolic
Coxeter group generates that visual topology. In the case of right-angled building the
analogous statement holds.

Fact 2.4.4. The topology generated by {∂D : D ∈ D(Σ)} is equivalent to the topology
induced by a visual metric on ∂Γ.

Eventually, consider an apartment A containing the base chamber x0 and the retraction
map πA,x0 : Σ −→ A. This retraction maps any geodesic ray of Σ starting from a based
point p0 ∈ x0 to a geodesic ray in A starting from p0. Hence πA,x0 extends naturally to
the boundaries and we keep the notation πA,x0 : ∂Σ −→ ∂A for this extension.

Remark 2.4.5. In [DM02], M.W. Davis and J. Meier described how properties of con-
nectedness of ∂Γ are encoded in the combinatorial structure of G. We use a corollary of
their result in Subsection 2.5.2.

2.5 Curves in connected parabolic limit sets
As we will see with Example 2.5.9, parabolic limit sets (i.e boundaries of residues) play a
key role in the proof of the CLP in boundaries of graph product.

In this section, we use the ideas of [BK13, Section 5 and 6] to prove Theorem 2.5.13
that is a first major step to prove the main result of this chapter (Theorem 2.9.1). The
idea of this theorem is to control the modulus of the curves of a parabolic limit set by
the neighborhood of a single curve. Then we apply this theorem to recover a result about
boundaries of right-angled Fuchsian buildings.

We use the notations and the setting of Section 2.4. In particular Γ is a fixed graph
product given by the pair (G, {Z/qiZ}i=1,...,n). We identify the building ∆ with its Davis
complex Σ equipped with the piecewise Euclidean metric. The base chamber is x0. We
assume that Γ and Σ are hyperbolic and that ∂Γ is connected. The metric on Ch(Σ) is
denoted dc(·, ·). Moreover, in this section we equip ∂Γ with a self-similar metric that comes
from the action of Γ on Σ.
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2.5.1 Parabolic limit sets in ∂Γ
Here we give basic properties of boundaries of parabolic subgroups. At the end of this
subsection we will see that these subsets of the boundary are an issue to prove the CLP.

Definition 2.5.1. Let P = gΓIg−1 be a parabolic subgroup of Γ. If the limit set of P in
∂Γ is non-empty, we call it a parabolic limit set. If moreover ∂P 6= ∂Γ the parabolic limit
set is called a proper parabolic limit set.

Equivalently we could have said that a subset F ⊂ ∂Γ is a parabolic limit set if there
exists a residue gΣI such that F is equal to ∂(gΣI) under the canonical homeomorphism
between ∂Γ and ∂Σ. In the following we will frequently use this point of view about
parabolic limit sets.

The following convex hull of a subset of the boundary will be used in the sequel of this
section.

Definition 2.5.2. Let F be a subset of ∂Γ containing more than one point and such that
F 6= ∂Γ. Let

Dc(F ) = {D ∈ D(Σ) : F ⊂ ∂Γ\∂D}.

Then we call convex hull of F in Σ

Conv(F ) = Σ\ ∪D∈Dc(F ) D.

If F = ∂Γ then we set Conv(F ) = Σ.

We extend the notion of minimal gallery to infinite galleries.

Definition 2.5.3. An infinite gallery x0 ∼ x1 ∼ · · · (resp. a bi-infinite gallery · · · ∼
x−1 ∼ x0 ∼ x1 ∼ · · · ) is minimal if for any k ∈ N (resp. k ∈ Z) and ` ∈ N the gallery
xk ∼ · · · ∼ xk+` is minimal.

Naturally, Ch(Σ\D) is a convex set of chambers for any D ∈ D(Σ) in the sense of
Definition 1.1.3. Thus if F contains at least two points, Ch(Conv(F )) is a convex set
of chambers. We can see Conv(F ) as the maximal convex whose boundary is inside F .
Indeed, let C be the union of a convex set of chambers with ∂C ⊂ F , then C ⊂ Conv(F ).

In particular, Conv(F ) contains any bi-infinite minimal gallery whose end points are in
F . Besides note that ∂Conv(F ) = F .

Example 2.5.4. Let ∂P be a parabolic limit set and assume that P = ΓI . Then we can
verify that Conv(∂P ) = ΣJ where J = {sj ∈ S : sjsi = sisj for any si ∈ I}. In particular,
if M ∈M(Σ) then Conv(∂M) is the union of all the chambers along M .

In the following definition Σ = Σ ∪ ∂Σ and if M is a building-wall M = M ∪ ∂M .

Definition 2.5.5.
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i) Let F be a subset of ∂Σ. We say that a building-wall M cuts F if there exist two
distinct indices i and j such that F meets both ∂Di(M) and ∂Dj(M).

ii) If E1 ⊂ ∂Γ and E2 ⊂ Σ (resp. E2 ⊂ ∂Γ) we say that the building-wall separates E1
and E2 if they are entirely contained in two distinct connected components of Σ\M .

The proof of the following fact is identical to the proof of [BK13, Lemma 5.7].

Fact 2.5.6. Let F be a subset of ∂Σ. The building-wall M cuts F if and only if M crosses
Conv(F ) (see Definition 1.4.10).

Along with Example 2.5.4, this fact implies that the characterization of the residues
thanks to rotations (Theorem 1.4.17) extends to the boundary into a characterization of
the parabolic limit sets.

Corollary 2.5.7. Let F be a subset of ∂Σ containing at least two distinct points and PF
denotes the group generated by the rotations around the building-walls that cut F . If PF
stabilizes F , then F is a parabolic limit set.

This characterization gives the following corollary concerning the connectedness of the
parabolic limit sets.

Corollary 2.5.8. Let ∂P be a parabolic limit set. Then any connected component F of
∂P in ∂Γ is a parabolic limit set.

Proof. Let M be a building-wall that cuts F . As M cuts ∂P a rotation r ∈ Γ around M
stabilize ∂P so in particular it sends a connected component of ∂P on another connected
component of ∂P . With r(M ∩ F ) = M ∩ F we deduce that r(F ) = F and so F is a
parabolic limit set.

Eventually the next example is crucial in the sense that it illustrates the issue of the
parabolic limit sets to prove the CLP.

Example 2.5.9. Let M ∈ M(Σ) be a building-wall of type s along the base chamber
x0. Let P = StabΓ(M). The group P is the parabolic subgroup that is generated by the
generators r ∈ S\{s} such that rs = sr. Moreover, as we reminded in Subsection 2.4.3,
∂P ' ∂M . Now we assume that ∂P is a proper parabolic limit set and we pick g ∈ Γ.
Then we verify that

• either g∂P = ∂P ,

• or ∂P ∩ g∂P = ∅.
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Indeed if M ′ ⊥ M then M and M ′ are of distinct types. As M and gM are of the same
types it comes that M ∩ gM 6= ∅ implies M = gM and g∂P = ∂P . Then thanks to Fact
2.4.2, if M ∩ gM = ∅ we obtain ∂P ∩ g∂P = ∅.

Eventually the set ∪g∈Γg∂M is made of countably many disjoint copies of ∂M . In the
introduction we reminded that an efficient way to prove the CLP is to follow curves thanks
to bi-Lipschitz maps (see Section 2.3). As Γ acts by bi-Lipschitz homeomorphisms on its
boundary, the first idea is to use Γ to follow curves. Yet if a non-constant curve η is
contained in ∂M we cannot hope to follow the curves of ∂Γ thanks to η and Γ.

Figure 2.3: Example 2.5.9 on the boundary of a thin building

2.5.2 Modulus of curves in connected parabolic limit set

Here we apply the ideas of [BK13, Section 5 and 6] to Γ. In this subsection, as in Subsec-
tion 2.2.2, d0 denotes a small constant compared with diam ∂Γ and with the constant of
approximate self-similarity. Then F0 is the set of curves of diameter larger than d0. Here
we prove that, from the point of view of the modulus, curves in a parabolic limit set are
all the same (see consequences of Theorem 2.5.13).

Until the end of this chapter, we use the following notations:

Notation. Let ∂P be a connected parabolic limit set in ∂Γ. For δ, r > 0, let Fδ,r(∂P )
denote the set of curves in ∂Γ such that:

• diam γ ≥ d0,

• γ ⊂ Nδ(∂P ),

• γ * Nr(∂Q) for any connected parabolic limit set ∂Q  ∂P .

As we saw in Example 2.5.9, the curves contained in a parabolic limit set ∂P are an
issue to follow other curves. Nevertheless, here we prove that these curves can be used to
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follow the curves in ∂P (Proposition 2.5.12). Then we deduce from this property a control
of the modulus of the curves in parabolic limit sets (Theorem 2.5.13). To this purpose we
use the following notion.

Definition 2.5.10. Let L ≥ 0 and I a non-empty subset of S. A curve γ in ∂Γ is called
a (L, I)-curve if

• x0 ⊂ Conv(γ),

• for all s ∈ I, there exists a panel σs of type s inside Conv(γ) with dist(x0, σs) ≤ L.

As we see, curves in parabolic limit sets are (L, I)-curves.

Proposition 2.5.11. Let I ⊂ S and P = hΓIh−1. Then for all r > 0, there exist L > 0
and δ > 0 such that if x0 ⊂ Conv(γ) and γ ∈ Fδ,r(∂P ), then γ is a (L, I)-curve.

Proof. We fix r > 0 and we assume that for every integer n ≥ 1, there exists a curve γn
such that:

• x0 ⊂ Conv(γn),

• γn ∈ F1/n,r(∂P ),

• γ is not a (n, I)-curve.

For n ≥ 1, we designate the ball of center x0 and of radius n for the distance over the
chambers by

Bc(x0, n) = {x ∈ Ch(Σ) : dc(x0, x) ≤ n}.
For simplicity we also designate by Bc(x0, n) the union of its chambers. Up to a subsequence
we can suppose that for a fixed s ∈ I, there is no panel of type s in Bc(x0, n) ∩ Conv(γn)
for n ≥ 1.

We want to reveal a contradiction thanks to the sequences γn and Conv(γn). According
to [Mun75, p. 281] the set of non-degenerate continua in a compact space is a compact set
for the Hausdorff distance. Therefore, up to a subsequence, we can suppose that γn tends
to a non-degenerate continuum L ⊂ ∂P .

As x0 ⊂ Conv(γn), using a diagonal argument we can also assume that, up to a sub-
sequence, Conv(γn+k) ∩ Bc(x0, n) is non-empty and constant for k ≥ 0. Then we denote
C :=

⋃
n≥1 Conv(γn) ∩Bc(x0, n).

With γn ⊂ ∂Conv(γn), it comes that L ⊂ ∂C. As C does not contain any panel of type
s, L is contained in the limit set of a parabolic subgroup of the form gΓJg−1 with s /∈ J .
Then, by Theorem 1.5.3, intersections of parabolic subgroups are parabolic subgroups.
Therefore L is contained in the limit set of a proper parabolic subgroup of P . Let ∂Q be
the connected component of this parabolic limit set that contains L. Thanks to Corollary
2.5.8, ∂Q is a parabolic limit set. Now we see that for n ≥ 0 large enough γn ⊂ Nr(∂Q)
which is a contradiction with γn ∈ F1/n,r(∂P ).
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An interesting feature of (L, I)-curves is that these curves are crossed by building-walls
of type in I. Which means that from a (L, I)-curve, we can follow curves using rotations
around building-walls of type in I.

Proposition 2.5.12. Let ε > 0, L > 0 and I be a non-empty subset of S. For P = hΓIh−1,
let η denote a curve contained in ∂P . Then there exists a finite subset F ⊂ Γ such that for
any (L, I)-curve γ the set

⋃
g∈F

gγ contains a curve that belongs to Uε(η).

Proof. We divide the proof in four steps. In this proof Ms denotes the building-wall of
type s ∈ S along x0.

i) First, we can suppose without loss of generality that P = ΓI . Indeed, as h ∈ Γ is
a bi-Lipschitz homeomorphism of (∂Γ, d), then if the property holds for ΓI it holds for
hΓIh−1.

ii) Now we prove that the following property holds.
The set

⋃
g∈FL

gγ contains a curve passing through ∂Ms for every s ∈ I.

Where FL = {g ∈ Γ : |g| ≤ L} and |g| = dc(x0, gx0).
As γ is a (L, I)-curve, there exist s ∈ I, α ∈ Z and g ∈ FL such that gx0 and gsαx0

belongs to Conv(γ). Let x0 ∼ g1x0 ∼ · · · ∼ g`x0 be a gallery contained in Conv(γ) with
g`−1 = gsα and g` = g. For any i = 0, . . . , `− 1, let Mi denote the building-wall separating
gix0 and gi+1x0. In particular, ∂Mi cuts γ for any i = 0, . . . , ` − 1. This means that if
Mi is of type si, then γ ∩ gisαi

i g
−1
i γ 6= ∅ for any αi ∈ Z. In particular, if αi is such that

gi+1 = gis
−αi
i then γ∩gig−1

i+1γ 6= ∅ for any i = 0, . . . , `−1. Hence the set γ∪g−1
1 γ∪· · ·∪g−1

` γ

is arcwise connected and g−1
` γ intersects ∂Ms. Thus the property is verified.

iii) Let ΣI ⊂ Σ be the residue associated with ΓI . We remind that this means ΣI =
ΓIx0. Let D1, . . . , Dk be a collection of dials of building bounded by the building-walls
M1, . . . ,Mk. Then we assume that each Di intersects ΣI properly (i.e. ΣI ∩Di 6= ∅ and
ΣI ∩ Di 6= ΣI). In particular, this means that the building-walls M1, . . . ,Mk have their
types contained in I.

Now we prove that the following property holds.
There exists a finite subset F0 ⊂ Γ such that for every (L, I)-curve γ the
set

⋃
g∈F0 gγ contains a curve passing through ∂D1, . . . , ∂Dk.

For i = 1, . . . , k pick hi ∈ ΓI such that Mi is along hix0 ∈ ΣI . In particular, for any i, we
can write Mi = hi(Ms) where s ∈ I is the type of Mi. Let g1x0 = h1x0 ∼ g2x0 ∼ · · · ∼
g`x0 = hkx0 be a gallery in ΣI passing through h1x0, . . . , hkx0 in this order.

Applying the second step of the proof, there exists a curve θ in
⋃
g∈FL

gγ such that
θ crosses every ∂Ms for s ∈ I. Therefore the set

⋃
i=1,...,` giθ meets any gi(Ms) for any

i = 1, . . . , k and any s ∈ I. In particular, it meets any hi(Ms) and intersects every
∂D1, . . . , ∂Dk.

We set F0 = {gig ∈ Γ : |g| ≤ L, 1 ≤ i ≤ `}, and it is now enough to check that⋃
g∈F0 gγ is arcwise connected. For any i = 1, . . . , `− 1 let si ∈ I and αi ∈ Z be such that
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gi+1 = gis
αi
i . Then gi+1θ = (gisαi

i g
−1
i )giθ. As θ intersects any ∂Msi then giθ∩gi(∂Msi) 6= ∅

and this intersection is fixed by gisαi
i g
−1
i . Thus giθ ∩ gi+1θ 6= ∅.

iv) With Fact 2.4.4, we can choose, D′1, . . . , D′k+1 a collection of dials of building such
that the union of their boundaries is a neighborhood of η contained in the ε/2 neighborhood
of η. We also assume that η enters in the boundaries of the D′1, . . . , D′k+1 in this order.
For any i = 1, . . . , k + 1, let ri denote the rotation around the building-wall associated
with D′i. Let D1, . . . , Dk be a collection of dials of building such that ∂Di ⊂ ∂D′i ∩ ∂D′i+1.
Applying the previous step of the proof, there exists a finite set F0 ⊂ Γ such that for every
(L, I)-curve γ the set

⋃
g∈F0 contains a curve passing through each ∂D1, . . . , ∂Dk.

If for some i = 1, . . . , k + 1 the curve η leaves ∂D′i then θ
⋃
α∈Z r

α
i θ contains a curve

that does not leave ∂D′i. Eventually we set F = {rαi g : α ∈ Z and g ∈ F0} and F satisfies
the desired property.

We use the two previous propositions to control Modp(Fδ,r(∂P )).

Theorem 2.5.13. There exists an increasing function δ0 : (0,+∞) −→ (0,+∞) verifying
the following property. Let p ≥ 1, let η ∈ F0, and let ∂P be the smallest parabolic limit set
containing η. Let r > 0 be small enough so that η * Nr(∂Q) for any connected parabolic
limit set ∂Q  ∂P . Let δ < δ0(r) and let ε > 0 be small enough so that Uε(η) ⊂ Fδ,r(∂P ).
Then there exists a constant C = C(d0, p, η, r, ε) such that

Modp(Uε(η), Gk) ≤ Modp(Fδ,r(∂P ), Gk) ≤ C ·Modp(Uε(η), Gk).

Furthermore when p belongs to a compact subset of [1,+∞) the constant C may be chosen
independent of p.

Before the proof, we need to explain the statement of the theorem. Indeed, it is not
clear that for ε > 0 small enough Uε(η) ⊂ Fδ,r(∂P ). In particular, if diamη = d0 then Uε(η)
may not be made of curves of diameter larger than d0. Nevertheless thanks to Proposition
2.2.11, we can rescale Uε(η) to a set of larger curves with a control of the modulus. Hence
we can say that, up to rescaling, for ε > 0 small enough, Uε(η) ⊂ Fδ,r(∂P ). This gives
sense to the statement of the theorem and the left-hand side inequality is now trivial by
Proposition 2.1.3 (1).

Proof of 2.5.13. Let P = hΓIh−1, let η be a curve in ∂P , r > 0 and ε > 0 as in the
hypothesis of the theorem.

To prove the right-hand side inequality, thanks to Proposition 2.2.11, we can assume
without loss of generality that if γ ∈ F0 then x0 ⊂ Conv(γ). Indeed, there exists an upper
bound N depending on d0 such that if γ ∈ F0 then dist(x0,Conv(γ)) ≤ N . So there
exists only a finite set E of elements of Γ such that if g ∈ E, there exists γ ∈ F0 with
dist(x0,Conv(γ)) = dc(x0, gx0).

With this assumption we can apply Proposition 2.5.11 and set L > 0 and δ > 0 such that
the curves of Fδ,r(∂P ) are (L, I)-curves. Let F ⊂ Γ be the finite set given by Proposition
2.5.12 and let ρ : Gk −→ R+ be a Uε(η)-admissible function. We define ρ′ : Gk −→ R+ by:
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(∗) ρ′(v) =
∑
g∈F

∑
w∩gv 6=∅

ρ(w).

Let γ ∈ Fδ,r(∂P ) and θ ⊂
⋃
g∈F

gγ such that θ ∈ Uε(η). Then

Lρ′(γ) =
∑
g∈F

∑
v∩γ 6=∅

∑
w∩gv 6=∅

ρ(w) ≥
∑
g∈F

∑
w∩gγ 6=∅

ρ(w).

Yet
Lρ(θ) ≤

∑
g∈F

Lρ(gγ) =
∑
g∈F

∑
w∩gγ 6=∅

ρ(w).

Thus Lρ′(γ) ≥ Lρ(θ) and ρ′ is Fδ,r(∂P )-admissible.
Then the number or terms in the right-hand side of the definition (∗) is bounded by

a constant N depending on #F , the bi-Lipschitz constants of the elements of F , and the
doubling constant of ∂Γ. Therefore by convexity

Mp(ρ′) =
∑
v∈Gk

(∑
g∈F

∑
w∩gv 6=∅

ρ(w)
)p
,

≤Np−1 ·
∑
v∈Gk

∑
g∈F

∑
w∩gv 6=∅

ρ(w)p ≤ Np ·#F ·
∑
w∈Gk

ρ(w)p.

Which proves the inequality.

As a straightforward application, we notice that under the assumptions of the theorem,
Modp(Uε(η), Gk) does not depend, up to multiplicative constants, on the choice of η and ε.
Indeed, for r > 0 fixed and δ < δ0(r), if η, η′ ⊂ ∂P and ε, ε′ > 0 such that the hypothesis of
the theorem are satisfied. Then there exist C = C(η, r, ε) and C ′ = C ′(η′, r, ε′) such that

C−1 ·Modp(Uε′(η′), Gk) ≤ Modp(Uε(η), Gk) ≤ C ′ ·Modp(Uε′(η′), Gk).

Of course, if η = η′ and ε′ < ε we can choose C = 1.
Another consequence of the theorem is that if the boundary of a graph product does

not contain connected parabolic limit sets, then it satisfies the CLP.

Theorem 2.5.14. Let Γ be a thick hyperbolic graph product such that ∂Γ is connected
and any proper parabolic limit set is disconnected. Then ∂Γ equipped with a visual metric
satisfies the CLP.

Proof. We check the hypothesis of Proposition 2.2.12. To prove that Mod1(F0, Gk) is
unbounded, it is enough to check that for every N ∈ N there exist N disjoint curves
of diameter larger than d0 in ∂Γ. Indeed, this implies that for k ≥ 0 large enough
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Mod1(F0, Gk) > N . Now, as we assume that the building associated with Γ is thick,
for every N ∈ N there exist N apartments with disjoint boundaries that intersects in a
compact domain inside the building. This assure the existence of N disjoint curves of
diameter larger than d0.

Let η be a non-constant curve in ∂Γ. Up to a change of scale, by Proposition 2.2.11, we
can assume η ∈ F0. Then as ∂Γ is the only parabolic limit set containing η, it is enough
to apply Theorem 2.5.13 to verify the second hypothesis of Proposition 2.2.12.

In particular, we can apply this result to the case of right-angled Fuchsian buildings.
In the following, we call right-angled Fuchsian building a building associated with a graph
product (Cn, {Z/qiZ}i=1,...,n) where Cn is the cyclic graph with n ≥ 5 vertices and q1, . . . , qn
is a family of integers larger or equal than 3.

Corollary 2.5.15. For n ≥ 5, let Cn be the cyclic graph with n vertices and let q1, . . . , qn
be a family of integers larger or equal than 3. Let Γ be the graph product given by the pair
(Cn, {Z/qiZ}i=1,...,n). Then ∂Γ equipped with a visual metric satisfies the CLP.

This result was known since boundaries of right-angled Fuchsian buildings are Loewner
spaces (see [BP00, Proposition 2.3.4.]). Yet, here we give a direct proof of this result.

Besides, we can prove that these thick graph products are the only one to satisfy the
hypothesis of Theorem 2.5.14. To verify this we need to introduce the following simplicial
complex.

Definition 2.5.16. Let Γ = (G, {Z/qiZ}i=1,...,n) be a graph product, the nerve of Γ is the
simplicial complex L = L(G) such that:

• the 1-skeleton of L is G,

• k vertices of G span a (k − 1)-simplex in L a corresponding parabolic subgroup in Γ
is finite.

The following theorem is a special case of [DM02, Corollary 5.14.].

Theorem 2.5.17. The boundary of Γ is connected if and only if L\σ is connected for any
simplex σ ⊂ L.

Now we can prove the following.

Proposition 2.5.18. Let Γ = (G, {Z/qiZ}i=1,...,n) be a hyperbolic graph product. Assume
that ∂Γ is connected and that any proper parabolic limit set ∂P is disconnected, then the
building associated with Γ is a right-angled Fuchsian building.
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Proof. Here we only need to prove that G contains a circuit of length n ≥ 5. According
to Corollary 2.5.8, if any proper parabolic limit set in ∂Γ is disconnected then any proper
parabolic limit set in ∂Γ is discrete. Moreover, ∂Γ contains at least one proper parabolic
limit set of the form ∂ΓI with #I = n− 1 otherwise ∂Γ = ∅. The subgroup ΓI is a graph
product associated with the graph GI . This graph is obtained from G to which we remove
a vertex p and all the edges adjacent to p. Then if LI is the nerve associated with ΓI , we
get LI from L to which we remove the interior of any simplex containing p.

Now, thanks to Theorem 2.5.17, we know that there exists a simplex σ ⊂ LI such
that LI\σ is disconnected. Let C1 and C2 be two connected components of LI\σ. Up
to a subsimplex, we can assume that any vertex of σ is connected to C1 or to C2 by an
edge. Yet, if we consider the simplex σ in L, it comes that L\σ is connected because ∂Γ is
connected. Therefore there exist two edges in L attaching p respectively to C1 and to C2.

We set V = {v1, . . . , vk} the vertices of σ that are not connected to p by an edge and
V ′ = {v′1, . . . , v′k′} the rest of the vertices of σ. At this point, we assume by contradiction,
that G contains no circuit of length n ≥ 4. We can check that under this assumption the
following situations does not occur

i) V ′ is empty,

ii) there exists v ∈ V such that v is adjacent to both C1 and C2,

iii) there exist v, w ∈ V such that v is adjacent to C1 and w is adjacent to C2.

C1 C2

p

σ

Figure 2.4: Forbidden situation i)

C1 C2

p

σ

Figure 2.5: Forbidden situation ii)

C1 C2

p

σ

Figure 2.6: Forbidden situation iii)

C1 C2

p

σ′

V

Figure 2.7: Resulting situation

Hence, for instance, the vertices in V are all adjacent to C1. As a consequence, if σ′
designates the simplex in L spanned by V ′ ∪{p} then L\σ′ is not connected. Which is not
possible because ∂Γ is connected.

Therefore G contains a circuit of length n ≥ 4, but as Γ is hyperbolic it contains no
circuit of length 4. This conclude the proof.
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2.6 Combinatorial metric on boundaries of right-angled hy-
perbolic buildings

As we saw in Chapter 1, the geometric structure of a right-angled building is contained
in the wall structure. Here we describe how, in the hyperbolic case, the geometry of the
boundary is determined by the boundaries of the walls.

In this section, we first start by discussing boundaries of intersections of dials of build-
ing. Afterwards, we describe a combinatorial and self-similar metric on ∂Γ in terms of
dials of building. Then, we build an approximation of ∂Γ that will be convenient to use in
Section 2.7.

Here we use the notations and the setting of Section 2.4 and 2.5. In particular, Γ is a
fixed graph product given by (G, {Z/qiZ}i=1,...,n) and acting on the building Σ. The base
chamber is x0, and W is the right-angled Coxeter group associated with Γ. We assume
that Γ is hyperbolic and ∂Γ is connected.

2.6.1 Shadows on ∂Γ
The following tools are used in the sequel of this chapter to describe the topology and
the metric on ∂Γ. We remind that the boundary of Γ is canonically identified with the
boundary of Σ.

Definition 2.6.1. Let x ∈ Ch(Σ). We call cone of chambers of base x and we denote
Cx ⊂ Σ, the union of the set of chambers y ∈ Ch(Σ) such that there exists a minimal
gallery from x0 to y passing through x.

Thanks to projection maps, we characterize the cones in terms of dials of building.

Proposition 2.6.2. Let D1, . . . , Dk ∈ D(Σ) and C = D1 ∩ · · · ∩ Dk. Assume that C
contains a chamber and that x0 * Di for i = 1, . . . , k. If we set x = projC(x0) then
Cx = C.

Proof. According to Definition 2.6.1 and to Proposition 1.4.15, C ⊂ Cx. Now let y ∈
Ch(Cx) and for i = 1, . . . , k let Mi be the building-wall that bounds Di. If x0 ∼ · · · ∼
x ∼ · · · ∼ y is a minimal gallery, then the subgallery x ∼ · · · ∼ y does not cross any
building-wall Mi and y ⊂ C.

Reciprocally cones are intersections of dials of building.

Proposition 2.6.3. Let x ∈ Ch(Σ) and let D1, . . . , Dk denote the family of dials of building
such that for any i = 1, . . . , k

x0 * Di and x ⊂ Di.

Then Cx = D1 ∩ · · · ∩Dk.
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Proof. Let C = D1 ∩ · · · ∩Dk. According to Proposition 2.6.2, it is enough to prove that
projC(x0) = x. If we write x′ = projC(x0), with Proposition 2.6.2, C = Cx′ . Hence there
exists a minimal gallery

x0 ∼ · · · ∼ x′ ∼ · · · ∼ x.
Now assume that x′ 6= x, this means that there exists a building-wall M that separates

x and x′. As the gallery is minimal, the dial of building D bounded by M that contains
x does not contain x′ and x0. Thus D is one of the D1, . . . , Dk and x′ * C which is a
contradiction.

In particular, it makes sense to consider projection maps over cones of chambers with
projCx

(x0) = x. Thanks to the previous proposition, we obtain the following fact that
describes how dials of building intersect.

Fact 2.6.4. Let D1, . . . , Dk be a family of distinct dials of building such that Di * Dj for
any i 6= j. Assume that x0 * Di for any i. For any i, set Mi the building-wall that bounds
Di and let C = D1 ∩ · · · ∩Dk. Then exactly one of these assertion holds.

• There exists i, j such that Mi ‖Mj and C = ∅.

• For any i, j, Mi ∩Mj 6= ∅ and there exists i 6= j such that Mi = Mj. In this case C
is contained in Mi.

• Mi ⊥Mj for any i 6= j. In this case C is a cone.

This fact, up to a translation and up to a subfamily, describes how a finite family of
dials intersects. The following lemma specifies the case when the intersection is a cone.

Lemma 2.6.5. Let D1, . . . , Dk be a family of distinct dials of building bounded by the
building-walls M1, . . . ,Mk. Let C = D1 ∩ · · · ∩ Dk. Assume that x0 * Di for any i and
that for any i 6= j Mi ⊥Mj. Then any Mi is along projC(x0).

Proof. First we remark that if k = 1 the property is trivial. According to Lemma 1.4.14,
projD1(x0) /∈ Ch(D2) ∪ · · · ∪ Ch(Dk). Applying this lemma k − 2 times we obtain that

projDk−1 ◦ · · · ◦ projD1(x0) /∈ Ch(Dk).

Hence projC(x0) = projDk
(projDk−1(◦) · · · ◦ projD1(x0)) is along Mk. Changing the order

of the family of building-walls, the same argument applies to M1, . . . ,Mk−1 and the prove
is finished.

Eventually we obtain the following characterization of cones.

Proposition 2.6.6. Let x ∈ Ch(Σ) and let D1, . . . , Dk be the family of dials of building
bounded by M1, . . . ,Mk such that for any i = 1, . . . , k

x0 * Di, x ⊂ Di, and Mi is along x.

Then Cx = D1 ∩ · · · ∩Dk.
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Proof. Let D′1, . . . , D′` be the family of dials of building such that x0 * Di and x ⊂ Di for
any i = 1, . . . , `. Then

{D1, . . . , Dk} ⊆ {D′1, . . . , D′`}.

According to Proposition 2.6.3, Cx = D′1∩ · · · ∩D′`, thus Cx ⊂ D1∩ · · · ∩Dk. For any i, let
M ′i be the wall that bounds D′i. Up to a subfamily, we can assume that Cx = D′1∩ · · ·∩D′`
and for any i 6= j, M ′i ⊥M ′j . In this case, according to Lemma 2.6.5, any building-wall M ′i
is along x. Indeed projCx

(x0) = x. Eventually, we get

{D′1, . . . , D′`} ⊆ {D1, . . . , Dk}

and D1 ∩ · · · ∩Dk ⊂ Cx.

In the sequel of this chapter, we use boundaries of cones as a base of the topology of
∂Γ and to construct approximations.

Proposition 2.6.7. Let x ∈ Ch(Σ) and Cx be the cone based at x. Then ∂Cx is of
non-empty interior in ∂Γ.

Proof. According to Proposition 2.6.3 and Fact 2.6.4, we can write

∂Cx = ∂D1 ∩ · · · ∩ ∂Dk,

where if D1, . . . , Dk is a collection of dials of building bounded by the building-walls
M1, . . . ,Mk then Mi ⊥ Mj for any i 6= j. By the rotations around M1, . . . ,Mk, all the
connected components of Σ\(M1 ∪ · · · ∪Mk) are isomorphic. Hence, thanks to Lemma
2.4.3, there exists M ∈M(Σ) such that

M ‖Mi for any i = 1, . . . , k and M ⊂ D1 ∩ · · · ∩Dk.

In particular, there exists D ∈ D(Σ) bounded by M such that D ⊂ D1 ∩ · · · ∩Dk. As
∂D is of non-empty interior, we obtain that ∂Cx is of non-empty interior.

Definition/Notation 2.6.8. Let x ∈ Ch(Σ) and Cx be the corresponding cone of cham-
bers. We call shadow of x the boundary of Cx in ∂Γ and we write vx = ∂Cx.

2.6.2 Combinatorial metric on ∂Γ
Until now we have been considering on ∂Γ the visual metric coming from the geometric
action of Γ on Σ. Now we use infinite minimal galleries to describe a combinatorial metric
on ∂Γ that will be more convenient to use in the sequel.

Let DG(Σ) denote the dual graph of Σ. This graph is defined by:

• The set of vertices DG(Σ)(0) is given by Ch(Σ) the set of chambers in Σ. If v ∈
DG(Σ)(0) then cv denotes the corresponding chamber in Ch(Σ).
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• There exists an edge between two vertices v1 and v2 if and only if cv1 is adjacent to
cv2 in Σ.

• Each edge is isometric to the segment [0, 1].

Naturally, DG(Σ) is a proper geodesic and hyperbolic space. It is quasi-isometric to Σ
and the action of Γ on DG(Σ) is geometric. Therefore we identify

∂DG(Σ) ' ∂Γ.

Example 2.6.9. If for any i = 1, . . . , n, qi = 2 or 3 then DG(Σ) is identified with Cay(Γ)
the Cayley graph of Γ. Otherwise, if you consider a generator s ∈ S of Γ of order q ≥ 4
then in DG(Σ) the full sub-graph generated by the vertices associated with e, s, . . . , sq−1 is
a complete graph. In Cay(Γ) the full sub-graph generated by the vertices associated with
e, s, . . . , sq−1 is a cyclic graph of length q. Nevertheless DG(Σ) and Cay(Γ) are always
quasi-isometric.

With Definition 2.5.3, infinite minimal galleries are identified with geodesic rays in
DG(Σ) starting from a vertex. Therefore we can write ∂Γ as a quotient of the set of
infinite minimal galleries as follow

∂Γ ' {x0 ∼ x1 ∼ · · · ∼ xi ∼ . . . : xi ∈ Ch(Σ)}/R

where the equivalence relation R is defined by

[x0 ∼ x1 ∼ · · · ] = [y0 = x0 ∼ y1 ∼ · · · ] if and only if there exists K > 0
such that dc(xi, yi) < K for all i ∈ N.

Example 2.6.10. Here again we consider only minimal galleries. Let x ∈ Ch(Σ) with
dc(x0, x) = k ≥ 1. Then we can describe the shadow vx as follow

vx ' {x0 ∼ x1 ∼ · · · ∼ xi ∼ . . . : xi ∈ Ch(Σ) and xk = x}/R.

Likewise, if ∂P is a parabolic limit set associated with the residue gΣI . Let x := projgΣI
(x0)

and assume that dc(x0, x) = k ≥ 1. Then we can describe ∂P as follow

∂P ' {x0 ∼ x1 ∼ · · · :xk = x and xk+i ∼si xk+i+1

with si ∈ I for any i ≥ 0}/R.

Now we use the following notation.

Notation. If x0 ∼ x1 ∼ · · · is a minimal infinite gallery that goes asymptotically to
ξ ∈ ∂Γ, then we write

ξ = [x0 ∼ x1 ∼ · · · ].

79



Definition 2.6.11. Let ξ, ξ′ be two distinct points in ∂Γ, let {ξ|ξ′}x0 denote the largest
integer ` such that there exist two infinite minimal galleries representing ξ and ξ′

ξ = [x0 ∼ x1 ∼ · · · ∼ xi ∼ · · · ] and ξ′ = [x0 ∼ x′1 ∼ · · · ∼ x′i ∼ · · · ]

with
xi = x′i for i ≤ ` and x`+1 6= x′`+1.

In terms of shadows, {ξ|ξ′}x0 is the largest integer such that there exists a shadow vx,
with dc(x0, x) = {ξ|ξ′}x0 , that contains both ξ and ξ′. The following proposition gives
a characterization of this quantity in terms of building-walls. We remind that D0(M)
designates the dial of building bounded by M and containing x0.

Proposition 2.6.12. Let ξ, ξ′ be two distinct points in ∂Γ. Then

{ξ|ξ′}x0 = #{M ∈M(Σ) : there exists α 6= 0 s.t. {ξ, ξ′} ⊂ ∂Dα(M)}.

Proof. Let M1, . . . ,Mk be the set of building-walls such that there exists α 6= 0 with
{ξ, ξ′} ⊂ ∂Dα(M). Let ` = {ξ|ξ′}x0 . We prove that k = `.

For each Mi, pick Di such that {ξ, ξ′} ⊂ ∂Di and x0 * Di. We set C = D1 ∩ · · · ∩Dk.
As the building-walls are distinct and ∂C 6= ∅ it follows from Fact 2.6.4 that C is a cone.
Let x = projC(x0). As {ξ, ξ′} ⊂ ∂C, there exists an infinite minimal gallery starting
from x0 going asymptotically to ξ (resp. ξ′) passing through x. Eventually we obtain
` ≥ dc(x0, x) ≥ k.

Consider x0 ∼ x1 ∼ · · · ∼ xi ∼ · · · (resp. x0 ∼ x′1 ∼ · · · ∼ x′i ∼ · · · ) a minimal infinite
gallery representing ξ (resp. ξ′) in ∂Γ. Assume that

xi = x′i for i ≤ ` and x`+1 6= x′`+1.

For any i = 1, . . . , ` let D′i be the dial of building such that xi−1 * D′i and xi ⊂ D′i. By
minimality of the galleries, we get that {ξ, ξ′} ⊂ ∂D′i for any index i. Therefore ` ≤ k and
the proof is finished.

In the following, we prove that {·|·}x0 coincides with a Gromov product in ∂Γ and thus
controls a visual metric on ∂Γ.

Proposition 2.6.13. Let ξ, ξ′ be two distinct points in ∂Γ. Then there exists a bi-infinite
minimal gallery between ξ and ξ′ that lies at a distance smaller than {ξ|ξ′}x0 + 1 of x0.

Proof. Let ` = {ξ|ξ′}x0 and assume that ξ = [x0 ∼ x1 ∼ · · · ∼ xi ∼ · · · ] and ξ′ = [x0 ∼
x′1 ∼ · · · ∼ x′i ∼ · · · ] with

xi = x′i for i ≤ ` and x`+1 6= x′`+1.
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We consider two cases. Either x`+1 is adjacent to x′`+1, or x`+1 is not adjacent to x′`+1. In
the first case, the bi-infinite gallery

· · · ∼ x`+2 ∼ x`+1 ∼ x′`+1 ∼ x′`+2 ∼ · · ·

is minimal. Indeed, thanks to Proposition 2.6.12, it only crosses once the building-walls
that separate ξ and ξ′. In the second case, we apply the same reasoning to the bi-infinite
gallery

· · · ∼ x`+2 ∼ x`+1 ∼ x` ∼ x′`+1 ∼ x′`+2 ∼ · · · .

Eventually {ξ|ξ′}x0 or {ξ|ξ′}x0 + 1 is the distance between x0 and a bi-infinite minimal
gallery between ξ and ξ′.

Notation. Let d(·, ·) be the self-similar metric on ∂Γ coming from the geometric action of
Γ on DG(Σ)(see Definition 2.2.2).

With Proposition 2.6.13, there exist two constants A ≥ 1 and α > 0 such that for any
ξ, ξ′ ∈ ∂Γ:

A−1e−α{ξ|ξ
′}x0 ≤ d(ξ, ξ′) ≤ A e−α{ξ|ξ

′}x0 .

In the sequel we also write
d(ξ, ξ′) � e−α{ξ|ξ′}x0 .

Which means that, d(ξ, ξ′) is, up to a multiplicative constant, equal to e−α{ξ|ξ′}x0 . An
application of this description of this visual metric on ∂Γ is the following proposition.

Proposition 2.6.14. For every ε > 0, there exists only a finite set of parabolic limit sets
of diameter larger than ε.

Proof. Let ∂P be a parabolic limit set. Let g′ΣI be a residue in Σ such that ∂P ' ∂(g′ΣI).
According to Proposition 1.2.5, there exists a unique chamber x ⊂ g′ΣI such that for every
chamber y ⊂ g′ΣI there exists a minimal gallery from x0 to y passing through x. Let g ∈ Γ
such that x = gx0. Then the diameter of ∂P is controlled by e−α|g| with |g| = dc(x0, gx0).
As there exists only a finite number of g ∈ Γ such that |g| is smaller than a fixed constant,
the proposition is proved.

2.6.3 Shadows and balls of the boundary

Here we discuss how shadows control the balls of ∂Γ.

Lemma 2.6.15. Let x ∈ Ch(Σ) and Cx be the cone of chambers in Σ based at x. Then
there exist g ∈ Γ and C ⊂ Σ of the form C = D0(M1) ∩ · · · ∩D0(Mk) with

• for any i, j distinct: Mi ⊥Mj,
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• for any i: Mi is along x0,

such that g(C) = Cx.

Proof. Let D1, . . . , Dk designate the family of dials of building bounded by M1, . . . ,Mk

such that for any i = 1, . . . , k

x0 * Di, x ⊂ Di, and Mi is along x.

According to Proposition 2.6.6, Cx = D1 ∩ · · · ∩ Dk. Now if we choose g ∈ Γ such that
gx0 = x and set C = g−1(Cx), we obtain the desired property.

Proposition 2.6.16. There exists λ > 1 such that for any x ∈ Ch(Σ) with dc(x0, x) = k
there exists z ∈ vx with

B(z, λ−1e−αk) ⊂ vx ⊂ B(z, λe−αk).

Proof. To prove the right-hand side inclusion it is enough to notice that diam vx ≤ Ae−αk
where A and α are the visual constants. Let Cx be the cone based at x. Let C =
D0(M1) ∩ · · · ∩ D0(Mk) and g ∈ Γ such that g(C) = Cx, provided by Lemma 2.6.15.
Now we remind that g−1 is a bi-Lipschitz homeomorphism. Restricted to vx, it essentially
rescales the metric by a factor eαk. Now, according to Proposition 2.6.7, there exist r > 0
and z ∈ ∂C such that B(z, r) ⊂ ∂C. As there is only a finite number of possible C, this
achieves the proof.

Adapting the proof of [BK13, Proposition 5.2.], to the case of right-angled hyperbolic
buildings, we obtain the following proposition.

Proposition 2.6.17. There exists λ ≥ 1 depending only on the geometry of Σ, such that
for every ξ ∈ ∂Γ and every 0 < r ≤ diam ∂Γ there exists D ∈ D(Σ) associated with such
that:

B(ξ, λ−1r) ⊂ ∂D ⊂ B(ξ, λr).

2.6.4 Approximation of ∂Γ with shadows

Let x ∈ Ch(Σ) and vx be the associated shadow as in Definition 2.6.8. Thanks to Propo-
sition 2.6.13, if dc(x0, x) = k then diam vx � e−αk. We use this property to build an
approximation of ∂Γ made of shadows.

For an integer k ≥ 0 we set

Sk = {x ∈ Ch(Σ) : dc(x0, x) = k}.
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The set {vx : x ∈ Sk} is a finite covering of ∂Γ. Now let S′k be a subset of Sk such that
{vx : x ∈ S′k} defines a minimal covering of ∂Γ. This means that for every x ∈ S′k there
exists z ∈ vx such that z /∈ vy for any y ∈ S′k\{x}. Finally we set

Gk = {vx : x ∈ S′k}

and, in the following, we prove that the sequence {Gk}k≥0 defines an approximation of ∂Γ.

Proposition 2.6.18. For k ≥ 0, let S′k be the set of chambers previously defined and Gk
be the minimal covering of ∂Γ associated with S′k. There exists κ > 1 such that for any
x ∈ S′k, there exists ξx ∈ vx such that:

• ∀x ∈ S′k: B(ξx, κ−1e−αk) ⊂ vx ⊂ B(ξx, κe−αk),

• ∀x, y ∈ S′k with x 6= y: B(ξx, κ−1e−αk) ∩B(ξy, κ−1e−αk) = ∅.

This property is enough to construct an approximation of ∂Γ. Indeed the visual con-
stant α can be chosen such that 1/2 ≤ e−α < 1. In this case we can extract from {Gk}k≥0
a subsequence that is an approximation of ∂Γ as defined in Subsection 2.1.1.

Proof of Proposition 2.6.18. Let x ∈ S′k, and let ξx ∈ vx. Up to multiplicative constant,
diam vx is e−αk, hence there exists κ > 1 such that for all x ∈ S′k: vx ⊂ B(ξx, κe−αk).

We remind that the hyperbolicity, provides a constant N ≥ 1, depending only on
the hyperbolicity parameter, such that for x, x′ ∈ Ch(Σ) with dc(x0x) = dc(x0, x

′) if
dc(x, x′) ≥ N then vx ∩ vx′ = ∅.

For any x ∈ S′k, we pick zx ∈ vx such that zx /∈ vy for any y ∈ S′k\{x}. Let x, y ∈ S′k,
x 6= y and let c ∈ Ch(Σ) be such that dc(x0, c) = {zx|zy}x0 and {zx, zy} ⊂ vc. In this
setting we can write that zx and zy are represented by infinite minimal galleries of the
form:

• zx = [x0 ∼ x1 ∼ · · · ∼ xi ∼ · · · ∼ xk ∼ xk+1 ∼ · · · ]

• zy = [x0 ∼ y1 ∼ · · · ∼ yi ∼ · · · ∼ yk ∼ yk+1 ∼ · · · ]

with

• xi = c and yi = c for one i ∈ {1, . . . , k − 1},

• xk = x and yk = y.

Then, as we saw in the proof of Proposition 2.6.13, one of the following galleries:

• · · · ∼ xk+1 ∼ xk ∼ · · · ∼ xi+1 ∼ c ∼ yi+1 ∼ · · · ∼ yk ∼ yk+1 ∼ · · ·

• · · · ∼ xk+1 ∼ xk ∼ · · · ∼ xi+1 ∼ yi+1 ∼ · · · ∼ yk ∼ yk+1 ∼ · · ·
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is a bi-infinite minimal gallery from zx to zy. In particular

dc(xk+N , yk+N ) > N

and the corresponding shadows do not intersect:

vxk+N
∩ vyk+N

= ∅.

Now according to Proposition 2.6.16 there exist ξx ∈ vxk+N
and ξy ∈ vyk+N

such that

B(ξx, λ−1e−α(k+N)) ⊂ vxk+N
and B(ξy, λ−1e−α(k+N)) ⊂ vyk+N

.

With vxk+N
∩ vyk+N

= ∅, vxk+N
⊂ vx, and vyk+N

⊂ vy we obtain the desired property.

2.7 Modulus in the boundary of a building and in the bound-
ary of an apartment

The boundary of an apartment is, in a well chosen case, much easier to understand than the
boundary of the building. This is why we want to compare the modulus in the boundary
of the building with some modulus in the boundary of an apartment.

In this section, we start by defining a convenient approximations on ∂Γ and on the
boundaries of the apartments thanks to shadows and retraction maps. Afterwards, we in-
troduce the weighted modulus on the boundary of an apartment. Then, we prove Theorem
2.7.9. This theorem is, after Theorem 2.5.13, the second major step to prove the main
result of this chapter (Theorem 2.9.1). Theorem 2.7.9 states that weighted modulus are
comparable to the modulus in ∂Γ. Eventually, using the ideas of Subsection 2.2.2, we reveal
a connection between the conformal dimension of ∂Γ and a critical exponent computed in
the boundary of an apartment.

We use the notations and the setting of Section 2.4, 2.5 and 2.6. In particular p ≥ 1 is
fixed constant. We fix Γ the graph product associated with the pair (G, {Z/qiZ}i=1,...,n).
The self-similar metric d(·, ·) on ∂Γ is defined as in Subsection 2.6.2. The visual exponent
of d(·, ·) is α. As in Section 2.2, d0 denotes a small constant compared with diam ∂Γ and
with the constant of approximate self-similarity. Then F0 is the set of curves of diameter
larger than d0.

2.7.1 Notations and conventions in ∂A and in ∂Γ
In the sequel of this chapter we fix an apartment A containing the base chamber x0. Then
we try to connect the geometry and the modulus in ∂A and in ∂Γ. Naturally we will use
in ∂A and in ∂Γ the same concepts, this is why we summarize some of the notations used
in the following to avoid confusion. Fist we write

Ap0(Σ) = {B ∈ Ap(Σ) : x0 ⊂ B}.
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For simplicity, π denotes the retraction πA,x0 : Σ −→ A. We also denote by π the extension
of the retraction on the boundary. The notations d(·, ·) and α are also used to describe the
metric on ∂B for any B ∈ Ap0(Σ).

An apartment is a thin building, so we can use in ∂A the tools presented in Subsections
2.6.1 and 2.6.2. First, we define on ∂A a combinatorial self-similar metric as in Subsection
2.6.2. Yet x0 ⊂ A, so for ξ, ξ′ ∈ ∂A, the quantity {ξ|ξ′}x0 is the same if we compute it in
A or in Σ. Hence, if we choose the same visual exponents for the visual metric in ∂Γ and
the visual metric in ∂A, then the metrics coincide up to a multiplicative constant. For this
reason we use the same notation in ∂A and in ∂Γ for the metric d(·, ·) and for the visual
constants α and A.

Eventually, it makes sense to talk about cones of chambers in A and shadows ∂A. In
∂A the results of 2.6.1 holds.

Notation.

• D(Σ) (resp. H(A)) designates the set of dials of building in Σ (resp. half-spaces in
A),

• M(Σ) (resp. M(A)) designates the set of building-walls in Σ (resp. walls in A),

• for ξ ∈ ∂A and r > 0 we write B(ξ, r) ⊂ ∂Γ (resp. BA(ξ, r) ⊂ ∂A) for the open ball
of radius r and center ξ),

• for x ∈ Ch(A) we write Cx (resp. CAx ) for the cone of chambers based at x in Σ
(resp. in A),

• for x ∈ Ch(A) we write vx (resp. wx) for the shadow of x in ∂Γ (resp. ∂A).

Usually we will use the following conventions.

• v (resp. w) designates an open subset of ∂Γ (resp. of ∂A),

• ∂P (resp. ∂Q ) designates a parabolic limit set in ∂Γ (resp. in ∂A),

• D (resp. H) designates a dial of building in Σ (resp. a half-space in A).

2.7.2 Choice of approximations

The following lemma says that shadows have a nice behavior under retraction maps.

Lemma 2.7.1. Let A ∈ Ap0(Σ) and let x ∈ Ch(Σ) and vx be the associated shadow in ∂Γ
as defined in Definition 2.6.8. Then

• either x /∈ Ch(A) and Int(vx) ∩ ∂A = ∅,

• or x ∈ Ch(A) and vx ∩ ∂A is a shadow in ∂A.
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In the second case vx ∩ ∂A = π(vx).

Proof. Let Cx be the cone based at x. If Int(vx) ∩ ∂A 6= ∅ then there exists a chamber c
in A ∩Cx. By convexity, a minimal gallery from x0 to c that passes through x is included
in A and x ⊂ A. Therefore vx ∩ ∂A is the shadow in ∂A associated with x.

We fix {GAk }k≥0 an approximation of ∂A based on shadows as constructed in Subsection
2.6.4.

Notation. For k ≥ 0 we set

Gk := {vy ⊂ ∂Γ : π(vy) ∈ GAk }.

We remind that we chose the same visual exponents for the metrics in ∂Γ and ∂A.
Moreover for v, v′ ∈ Gk, we observe that Int(v ∩ v′) 6= ∅ if and only if π(v)∩ π(v′) 6= ∅ and
π(v) 6= π(v′). As a consequence and with Lemma 2.7.1 we get the following fact.

Fact 2.7.2. There exists κ > 1 such that {GAk }k≥0 and {Gk}k≥0 are κ-approximations.
Moreover, for any w ∈ GAk there exists a unique w̃ ∈ Gk such that w̃ ∩ ∂A 6= ∅ and
π(w̃) = w.

Hereafter, {Gk}k≥0 designates the approximation of ∂Γ obtained from {GAk }k≥0 thanks
to the previous fact. This approximation of ∂Γ is canonically associated with {GAk }k≥0 in
the following sense: from {Gk}k≥0 we can equip any B ∈ Ap0(Σ) with an approximation
isometric to {GAk }k≥0. Indeed if B ∈ Ap0(Σ), for k ≥ 0 we set

GBk := {w = ∂B ∩ v : v ∈ Gk}.

Now let B ∈ Ap0(Σ) and f : B −→ A be the type preserving isometry that fixes x0. The
map f is realized by the restriction to B of the retraction π and we get the following fact.

Fact 2.7.3. GAk = {f(v)}v∈GB
k
.

Now that an approximation {Gk}k≥0 is fixed the results we will obtain on the combi-
natorial modulus in ∂Γ will be valid, up to multiplicative constants, for any approximation
thanks to Proposition 2.1.5.

2.7.3 Weighted modulus in ∂A

On scale k ≥ 0, to compare the modulus in the building with the modulus in the apartment
means to compare the cardinality of Gk with the cardinality of GAk . If the building is thick
these quantities differ by an exponential factor in k. This is the reason why we attach a
weight to the elements of GAk .

Definition 2.7.4. Let w ∈ GAk , we set q(w) = #{v ∈ Gk : π(v) = w}.

86



Let k ≥ 0 and let FA be a set of curves contained in ∂A. As in Subsection 2.1.1, a
positive function ρ : GAk −→ R+ is said to be FA-admissible if for any γ ∈ FA∑

γ∩w 6=∅
ρ(w) ≥ 1.

The weighted p-mass of ρ in ∂A is

WMA
p (ρ) =

∑
w∈GA

k

q(w)ρ(w)p.

Definition 2.7.5. Let k ≥ 0 and let FA be a set of curves contained in ∂A, we define the
weighted GAk -combinatorial p-modulus of FA by

ModAp (FA, GAk ) := inf{WMA
p (ρ)}.

Where the infimum is taken over the set of FA-admissible functions and with the convention
ModAp (∅, GAk ) = 0. For simplicity, we usually use the terminology weighted modulus.

We can check that, Proposition 2.1.3 holds for weighted modulus as well and the proof
is identical to the one for the usual combinatorial modulus.

Yet, this definition of the weighted modulus is strongly depending on the choice we have
made for the approximation. In particular, it does not permit to compute the weighted
modulus relatively to a generic approximation of ∂A. As a consequence, an analogous to
Proposition 2.1.5 would make no sense here. This is a huge restriction on the use we can do
of the weighted modulus. Indeed, this proposition is essential to prove Proposition 2.2.11
or Theorem 2.5.13 for the usual combinatorial modulus.

Moreover, as we are interested in the modulus in ∂Γ we can use weighted modulus
computed in a precise approximation and deduce, up to multiplicative constant, generalities
about modulus in ∂Γ.

The weights are given by the types of the building-walls crossed by a minimal galleries.

Proposition 2.7.6. Let w ∈ GAk be such that w is a shadow w = wx for x ∈ Ch(A). Let
x0 ∼s1 x1 ∼s2 · · · ∼sk−1 xk−1 ∼sk

x be a minimal gallery where s1, . . . , sk is the family of
types of the walls crossed by this gallery. If q1, . . . , qk are the orders of these generators of
Γ, then

q(w) =
∏

i=1,...,k
qi − 1.

Proof. Let w ∈ GAk and x ∈ Ch(A) be such that w = wx in ∂A. Then we observe
that {v ⊂ ∂Γ : π(v) = w} = {vy ⊂ ∂Γ : π(y) = x}. As a consequence, we obtain
q(w) = #π−1(x).

Now consider the gallery x0 ∼s1 x1 ∼s2 · · · ∼sk−1 xk−1 ∼sk
x given in the statement of

proposition. As π preserves the types, y ∈ Ch(Σ) is in π−1(x) if and only if there exists
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a minimal gallery from x0 to y in Σ of the form x0 ∼s1 y1 ∼s2 · · · ∼sk−1 yk−1 ∼sk
y.

Eventually, we obtain q(w) =
∏
i=1,...,k qi − 1.

Thanks to the choices we have made, the weighted modulus is invariant up to a change
of apartment in the following sense. For B ∈ Ap0(Σ) consider the approximation GBk
given by Fact 2.7.3. To any element w ∈ GBk we attach a weight and define a weighted
GBk -combinatorial p-modulus as it is done in ∂A. Now let f : B −→ A be a type preserving
isometry that fixes x0 and denote f : ∂B −→ ∂A the extension of this map to the boundary.
The map f is realized by the restriction of the retraction π to B. Thus f preserves the
weights. Then the following fact is a straightforward consequence of Fact 2.7.3.

Fact 2.7.7. Let B ∈ Ap0(Σ). Then for any k ≥ 0 and any set of curves FB contained in
∂B one has

ModBp (FB, GBk ) = ModAp (f(FB), GAk ).

Note that, for any k ≥ 0 and any w ∈ GAk one has

1 ≤ q(w) ≤ (q − 1)k with q := max{q1, . . . , qn}.

Therefore for any set of curves FA contained in ∂A, the following inequalities come directly
from the definition

modAp (FA, GAk ) ≤ ModAp (FA, GAk ) ≤ (q − 1)kmodAp (FA, GAk ).

Where the modulus in small letters designates the usual modulus computed in ∂A. In
particular if Γ is of constant thickness q − 1 ≥ 2 then

ModAp (FA, GAk ) = (q − 1)kmodAp (FA, GAk ).

As a consequence, at fixed scale k ≥ 0, the weighted modulus depends only on the boundary
of an apartment. We will discuss this particular case in Sections 2.8 and 2.9.

The following proposition is a major motivation of the definition of the weighted mod-
ulus.

Proposition 2.7.8. Let F be a set of curves in ∂Γ and let FA be a set of curves in ∂A
such that π(F) ⊂ FA. Then

Modp(F , Gk) ≤ ModAp (FA, GAk ).

Proof. Let ρA be a FA-admissible function. We set ρ : Gk −→ R+ defined by

ρ(v) = ρA ◦ π(v).
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If γ ∈ F , let γA := π ◦ γ. Then, as γA ∈ FA

Lρ(γ) =
∑

v∩γ 6=∅
ρA ◦ π(v) ≥

∑
w∩γA 6=∅

ρA(w) ≥ 1,

thus ρ is F-admissible. Furthermore, one has:

Mp(ρ) =
∑
v∈Gk

ρA ◦ π(v)p =
∑
w∈GA

k

q(w) · ρA(w)p = WMA
p (ρA).

With the first point it follows that Modp(F , Gk) ≤ ModAp (FA, GAk ).

2.7.4 Modulus in ∂Γ compared with weighted modulus in ∂A

We remind that the apartment A ∈ Ap0(Σ) is fixed. Yet, thanks to Fact 2.7.7 the following
result holds for any apartment containing x0.

Here we keep considering the approximations Gk and GAk defined in the begin of Subsec-
tion 2.7.2. We remind that if η is a non-constant curve of ∂Γ, the notation Uε(η) designates
the ε-neighborhood of η relative to the C0 topology. If η is a non-constant curve contained
in ∂A, we use the notation

UAε (η) := {γ ∈ Uε(η) : γ ⊂ ∂A}.

The next theorem proves that in this case, the modulus of Uε(η) in the boundary of the
building is controlled by the weighted modulus of UAε (η) in the boundary of the apartment.
It is a key point to prove the main results of this chapter (Theorem 2.9.1).

Theorem 2.7.9. Let p ≥ 1, let η ∈ F0 and assume η ⊂ ∂A. For ε > 0 small enough
so that the hypothesis of Theorem 2.5.13 hold in ∂Γ, there exists a positive constant C =
C(d0, p, η, ε) independent of k such that for k ≥ 0 large enough

Modp(Uε(η), Gk) ≤ ModAp (UAε (η), GAk ) ≤ C ·Modp(Uε(η), Gk).

Furthermore, when p belongs to a compact subset of [1,+∞) the constant C may be chosen
independent of p.

For the rest of the subsection, we fix η ∈ F0 and ε > 0 as in the hypothesis of Theorem
2.5.13. Moreover, we assume η ⊂ ∂A. To prove the theorem we need to introduce the
following notations:

• AutΣ is the full group of type preserving isometries of Σ.

• For K < AutΣ, if x ⊂ Σ (resp. v ⊂ ∂Γ) then K.x (resp. K.v) designate the orbit of
x (resp. v) under K.
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• For n ≥ 0, Bn ⊂ Ch(Σ) is the ball of center x0 and of radius n for the distance over
the chambers dc(·, ·).

• For n ≥ 0, Kn < AutΣ is the fixed point stabilizer of Bn under the action of AutΣ.

• Fn := {gγ ⊂ ∂Γ : g ∈ Kn and γ ∈ UAε (η)}.

The main step to prove the theorem is to show that Fn is an intermediate set of curves
between UAε (η) and Uε(η). This is what is done in Lemma 2.7.11. Before proving this, we
need to discuss the action of Kn on the chambers. The next lemma makes use of the ideas
of [Cap14, Lemma 3.5 and Proposition 8.1].

Lemma 2.7.10. There exists an integer N > 0 depending on n and verifying the following
property. Let x ∈ Ch(Σ), set dc(x0, x) = k and assume k > n. Let

x0 ∼s1 x1 ∼s2 · · · ∼sn xn ∼sn+1 · · · ∼sk−1 xk−1 ∼sk
x

be a minimal gallery where s1, . . . , sk is the family of types of the building-walls crossed by
this gallery. Then

1
(q − 1)N ·

k∏
i=n+1

qi − 1 ≤ #Kn.x ≤
k∏

i=n+1
qi − 1,

where q := max{q1, . . . , qn}.

Proof. As Kn preserves the types and fixes x0, . . . , xn it comes that

#Kn.x ≤
k∏

i=n+1
qi − 1.

Now for D ∈ D(Σ) we write U(D) the fix point stabilizer of D under the action of AutΣ
and we set

U(n) = 〈U(D)|Bn ⊂ Ch(D)〉 .

Naturally U(n) < Kn and
#Kn.x ≥ #U(n).x.

Now if we write Mi the building-wall between xi and xi+1, we observe that the orbit
of xi+1 under U(D0(Mi)) has qi− 1 elements. Indeed, U(D0(Mi)) acts as the full group of
permutations on the set {D1(Mi), . . . , Dqi−1(Mi)}.

Yet U(D0(Mi)) < U(n) if and only if Bn ⊂ Ch(D0(Mi)). Otherwise Mi crosses Bn,
because x0 ∈ Ch(D0(Mi)). As a consequence, if we set N the number of building-walls
that cross Bn we obtain

#U(n).x ≥ 1
(q − 1)N ·

k∏
i=n+1

qi − 1.
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This achieves the proof.

Now we can prove the main lemma.

Lemma 2.7.11. Let p ≥ 1. For n ≥ 0 large enough, there exist two positive constants C1,
C2 depending on d0, p, η, ε, n, and independent of k such that for k > n:

ModAp (UAε (η), GAk ) ≤ C1 ·Modp(Fn, Gk) ≤ C2 ·Modp(Uε(η), Gk).

Furthermore, when p belongs to a compact subset of [1,+∞) the constants may be chosen
independent of p.

Proof. First we prove the right-hand side inequality. According to Proposition 2.6.13, for
any g ∈ Kn and any ξ ∈ ∂Γ, d(ξ, gξ) � e−αn. Then for n ≥ 0 large enough, by triangular
inequality, Fn ⊂ U2ε(η). As a consequence of Theorem 2.5.13, Modp(Uε(η), Gk) does not
depend up to a multiplicative constant on ε. Hence, with Proposition 2.1.3 (1), there exists
C = C(p, d0, ε, η) such that

Modp(Fn, Gk) ≤ C ·Modp(Uε(η), Gk).

Now we fix an integer n ≥ 0 large enough so that the first point of the proof holds.
We use the notation K := Kn for simplicity. Moreover we assume that k > n. Let
ρ : Gk −→ R+ be a minimal Fn-admissible function and set ρA : GAk −→ R+ the function
defined by:

ρA(w) =
∫
K
ρ(gw̃)dµ(g),

where µ denotes the Haar probability measure overK and where the function : w ∈ GAk −→
w̃ ∈ Gk is given by Fact 2.7.2. Let w ∈ GAk and let x ∈ Ch(Σ) be such that vx = w̃, then
dc(x0, x) = k. As in Proposition 2.7.6, let

x0 ∼s1 x1 ∼s2 · · · ∼sn xn ∼sn+1 · · · ∼sk−1 xk−1 ∼sk
x

be a minimal gallery where s1, . . . , sk is the family of types of the building-walls crossed
by this gallery. Then we set

q(w, n) =
∏

i=n+1,...,k
qi − 1.

We notice that for any g ∈ K the translated gw̃ = gvx is the shadow vgx. In particular,
this means that #K.w̃ = #K.x. Then according to Lemma 2.7.10

(∗) q(w, n)
(q − 1)N ≤ #K.w̃ ≤ q(w, n),
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where q := max{q1, . . . , qn} and N is the number of building-walls crossing Bn.
As a consequence we can write

ρA(w) = 1
#K.w̃ ·

∑
v∈K.w̃

ρ(v),

and we prove the second inequality of the proposition.
Let γ ∈ UAε (η):

LρA(γ) =
∑

w∩γ 6=∅

∫
K
ρ(gw̃)dµ(g),

=
∫
K

∑
w∩γ 6=∅

ρ(gw̃)dµ(g) =
∫
K

∑
v∩g(γ) 6=∅

ρ(v)dµ(g).

Yet g(γ) ∈ Fn, thus
∑

v∩g(γ)6=∅
ρ(v) ≥ 1 and ρA is FA-admissible.

Then, thanks to Jensen’s inequality, for p ≥ 1 one has:

WMA
p (ρA) ≤

∑
w∈GA

k

q(w)
∫
K
ρ(gw̃)pdµ(g) =

∑
w∈GA

k

q(w)
#K.w̃ ·

∑
v∈K.w̃

ρ(v)p.

Hence with (∗) we obtain

WMA
p (ρA) ≤

∑
w∈GA

k

(q − 1)N · q(w)
q(w, n) ·

∑
v∈K.w̃

ρ(v)p ≤ (q − 1)n+NMp(ρ).

Eventually we get:

ModAp (UAε (η), GAk ) ≤ (q − 1)n+NModp(Fn, Gk).

Proof of Theorem 2.7.9. As π(Uε(η)) ⊂ UAε (η), Proposition 2.7.8 and Lemma 2.7.11 prove
the theorem.

2.7.5 Consequences

Here we keep considering the approximations Gk and GAk defined in Subsection 2.7.2. For
η a non-constant curve in ∂A, ∂Q a parabolic limit set in ∂A, and δ, r, ε > 0, we use the
following notations:

• FA0 = {γ ∈ F0 : γ ⊂ ∂A},
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• FAδ,r(∂Q) is the subset of FA0 of the curves γ such that:

– γ ⊂ Nδ(∂Q),
– γ * Nr(∂Q′) for any connected parabolic limit set ∂Q′  ∂Q,

• δ0(·) refers to the increasing function define in Theorem 2.5.13.

We remind that the apartment A ∈ Ap0(Σ) is fixed. Yet, thanks to Fact 2.7.7, the
following results holds for any apartment containing x0.

Lemma 2.7.12. Let p ≥ 1 and A ∈ Ap0(Σ). Let ∂P be a parabolic limit set in ∂Γ and
assume that x0 ⊂ Conv(∂P ). Let γ be a non-constant curve in ∂Q = ∂P ∩ ∂A such that
∂Q is the smallest parabolic limit set of ∂A containing γ. Let r > 0 be small enough so that
γ * Nr(∂Q′) for any connected parabolic limit set ∂Q′  ∂Q. Let δ < δ0(r) and ε > 0 be
small enough so that UAε (γ) ⊂ FAδ,r(∂Q). Then there exists a constant C = C(d0, p, γ, r, ε)
such that

Modp(Fδ,r(∂P ), Gk) ≤ C ·Modp(Uε(γ), Gk) ≤ C ·ModAp (FAδ,r(∂Q), GAk ).

In particular
Modp(Fδ,r(∂P ), Gk) ≤ C ·ModAp (FA0 , GAk ).

Furthermore, when p belongs to a compact subset of [1,+∞) the constant C may be chosen
independent of p.

Before the proof, we do the same remark as we did at Theorem 2.5.13. Up to rescaling,
the assumption for ε > 0 small enough UAε (γ) ⊂ FAδ,r(∂Q) makes sense.

Proof. With the assumption on ε and Proposition 2.1.3(1) we obtain:

ModAp (UAε (γ), GAk ) ≤ ModAp (FAδ,r(∂Q), GAk ) ≤ ModAp (FA0 , GAk ).

As π( Uε(γ)) ⊂ UAε (γ), with Proposition 2.7.8 one has

Modp(Uε(γ), Gk) ≤ ModAp (UAε (γ), GAk ).

Finally thanks to Theorem 2.5.13 there exists C = C(d0, p, γ, ε, r) such that:

Modp(Fδ,r(∂P ), Gk) ≤ C ·Modp(Uε(γ), Gk).

Now we have enough to prove the following theorem that is used in the proof of Theorem
2.9.1.
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Theorem 2.7.13. For any p ≥ 1, there exists a constant D = D(p, d0) such that for k ≥ 0

Modp(F0, Gk) ≤ D ·ModAp (FA0 , GAk ).

Proof. First, as it is done in [BK13, as a remark of Corollary 6.2.] in boundaries of Coxeter
groups, we observe that F0 splits in a finite disjoint union

F0 = Fδ1,r1(∂P1) t · · · t FδN ,rN
(∂PN )

with δi < δ0(ri). To see this we remind that for δ > 0 small enough compared with d0,
according to Proposition 2.6.14, there exists only a finite number of parabolic limit sets ∂P
such that Fδ,r(∂P ) 6= ∅. Then we call the height of a parabolic limit set ∂P the maximal
length of a sequence of parabolic limit sets included in ∂P of the form:

∂Q0  ∂Q1  · · ·  ∂Qk = ∂P.

If the parameters δk and rk are given for the parabolic limit sets of height k, then we
set rk+1 = δk and δk+1 < δ0(δk). Starting with δ0 small enough, we obtain the desired
decomposition by induction on the height.

Let ∂P be one of the parabolic limit sets involved in the previous decomposition of F0
and δ, r > 0 be the corresponding constants. Applying the same argument as in the begin
of the proof of Theorem 2.5.13, we can assume that x0 ⊂ Conv(∂P ). Pick B ∈ Ap0(Σ)
such that ∂B ∩ ∂P 6= ∅. With C the constant provided by the Lemma 2.7.12 we get

Modp(Fδ,r(∂P ), Gk) ≤ C ·ModAp (FA0 , GAk ).

Moreover, with Fact 2.7.7, the weighted modulus on the right-hand side of the inequality
is independent of ∂P . Eventually, with the Proposition 2.1.3 (2), there exists a constant
D = D(p, d0) such that

Modp(F0, Gk) ≤ D ·ModAp (FA0 , GAk ).

Note that for the moment we cannot prove a converse inequality between the modulus.
Indeed, in the proof of the Lemma 2.7.12 the use of Theorem 2.5.13 in ∂Γ is a key point. As
we said before, we cannot prove an analogous of Theorem 2.5.13 for the weighted modulus.

Nevertheless, we can define a critical exponent in connection with the weighted modulus
as it is done in the reminders of Subsection 2.2.2. Then Theorem 2.7.13 helps us to
understand this new critical exponent.

Proposition 2.7.14. There exists p0 ≥ 1 such that for p ≥ p0 the weighted modulus
ModAp (FA0 , GAk ) goes to zero as k goes to infinity.
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Proof. This proof is the same as the proof of Proposition 2.2.4. We remind that κ is the
constant of the approximations {Gk}k≥0 and {GAk }k≥0. Then we write K > 0 the cardinal
of a covering of ∂A by balls of radius κ. Then, by the doubling condition, we write N ′ the
number of balls of radius κ−1 · 1

2 that cover a ball of radius κ. By induction we obtain

#GAk ≤ K ·N ′k for any k ≥ 1.

Moreover, as we saw in the proof of Proposition 2.1.4, there exists a constant K ′ > 0
such that the constant function ρ : Gk −→ K ′ · 2−k is FA0 -admissible.

As a consequence

modAp (FA0 , GAk ) ≤ C ·
(N ′

2p
)k
,

where C is a positive constant. Then we obtain

ModAp (FA0 , GAk ) ≤ (q − 1)k ·modAp (FA0 , GAk ) ≤ C ·
((q − 1)N ′

2p
)k
,

Thus, for p large enough, ModAp (FA0 , GAk ) goes to zero.

It is now natural to define a critical exponent for the weighted modulus in the apart-
ment.

Definition 2.7.15. The critical exponent QW of the weighted modulus in ∂A is defined
as follow

QW = inf{p ∈ [1,+∞) : lim
k→+∞

ModAp (FA0 , GAk ) = 0}.

To avoid confusion, we use the following notations

• Q for the critical exponent associated with the usual modulus Modp(·, Gk) in ∂Γ,

• QA for the critical exponent associated with the usual modulus modAp (·, GAk ) in ∂A,

• QW for the critical exponent associated with the weighted modulus ModAp (·, GAk ) in
∂A.

We remind that Q and QA are respectively the conformal dimension of ∂Γ and of
∂A ' ∂W (see Theorem 2.2.7). The inequalities between the different modulus provide
the next corollary.

Corollary 2.7.16. The following inequalities hold

QA ≤ Q ≤ QW .

Proof. With Proposition 2.1.3 (1) and Theorem 2.7.13, one has

modAp (FA0 , GAk ) ≤ Modp(F0, Gk) ≤ D ·ModAp (FA0 , GAk ).

The inequalities between the critical exponents follow.
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2.8 Application to buildings of constant thickness
Here we use the notations and the setting of the previous section. In particular, the self-
similar metric on ∂Γ is d(·, ·). We fix d0 a small constant compared with diam∂Γ and with
the constant of approximate self-similarity. Then F0 is the set of curves of diameter larger
than d0. The notation δ0(·) still refers to the increasing function define in Theorem 2.5.13.

As before we fix an apartment A ∈ Ap0(Σ) and FA0 is the set of curves in ∂A of diameter
larger than d0.

We assume that Γ is of constant thickness q − 1 ≥ 2. This means that Γ is the graph
product given by the pair (G, {Z/qZ}i=1,...,n). As before {GAk }k≥0 and {Gk}k≥0 are the
approximations of ∂A and ∂Γ provided by Fact 2.7.2. We already noticed that, with the
constant thickness assumption, we obtain for k ≥ 0 and FA a set of curves contained in
∂A

ModAp (FA, GAk ) = qkmodAp (FA, GAk ),

where the modulus in small letters designates the usual modulus computed in ∂A. In par-
ticular, this means that from Theorem 2.5.13 applied to modAp (·, GAk ) we obtain analogous
inequalities for ModAp (·, GAk ).

Along with the results of Subsection 2.7.5, this leads to control Modp(F0, Gk) by
ModAp (FA0 , GAk ).

Theorem 2.8.1. For any p ≥ 1, there exists a constant D = D(p, d0) such that for k ≥ 0

D−1 ·ModAp (FA0 , GAk ) ≤ Modp(F0, Gk) ≤ D ·ModAp (FA0 , GAk ).

In particular QW = Q.

Proof. The right-hand side inequality is given by Theorem 2.7.13. The proof is almost
the same for the left-hand side inequality. Indeed, FA0 admits a decomposition analogous
to the decomposition used in the beginning of the proof of Theorem 2.7.13. Hence, with
Proposition 2.1.3 (2), it is sufficient to prove that for any parabolic limit set ∂Q ⊂ ∂A and
any δ, r > 0 with δ < δ0(r), there exists a constant C = C(p, d0, ∂Q, δ, r) such that

ModAp (FAδ,r(∂Q), GAk ) ≤ C ·Modp(F0, Gk).

To this purpose, pick η a non-constant curve in ∂Q and ε > 0 such that the hypothesis of
Theorem 2.5.13 in ∂A and of Theorem 2.7.9 are satisfied. Then there exist two constants
K and K ′ independent of k such that

ModAp (FAδ,r(∂Q), GAk ) ≤ K ·ModAp (UAε (η), GAk ) ≤ K ′ ·Modp(Uε(η), Gk).

Eventually, with the hypothesis on η and ε, one has, up to rescaling, Uε(η) ⊂ F0. This
achieves the proof.

The equality of the critical exponents is a straightforward consequence of the inequali-
ties between the modulus.
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Remark 2.8.2. In the case where Σ is a right-angled Fuchsian building of constant thick-
ness, M. Bourdon gave the explicit value of the conformal dimension of ∂Γ.

Theorem 2.8.3 ([Bou97]). Let Γ be the graph product associated with a pair
(Cn, {Z/qZ}i=1,...,n) where Cn is a cyclic graph of length n ≥ 5 and q ≥ 2, then

Confdim(∂Γ) = 1 + log(q − 1)
Arg cosh n−2

2
.

2.9 Dimension 3 and 4 right-angled buildings with boundary
satisfying the CLP

In a well chosen case, the symmetries of the Davis chamber, that extend to the boundary
of an apartment, provide a strong control of the weighted modulus. This lead to the proof
of the main theorem of this chapter.

Here we still assume that Γ is of constant thickness q−1 ≥ 2. As usual,W is the Coxeter
group, associated with Γ. As before {GAk }k≥0 and {Gk}k≥0 are the approximations of ∂A
and ∂Γ provided by Fact 2.7.2.

In this subsection, we assume that W is the group generated by the reflections along
the faces of a compact right-angled polytope D ⊂ Hd. Now, under some assumptions on
the regularity of D, we prove that ∂Γ satisfies the CLP.

Theorem 2.9.1. Let Γ be a graph product of constant thickness q−1 ≥ 2. Assume that W
is the group generated by the reflections along the faces of a compact right-angled polytope
D ⊂ Hd and let Ref (D) be the finite group of the hyperbolic reflections that preserve D.
Moreover, assume that the quotient of D by Ref (D) is a simplex in Hd. Then ∂Γ verifies
the CLP.

Now we assume that the hypotheses of the previous theorem hold and we use the
following notations.

Notation.

• T is the hyperbolic simplex in Hd isometric to D/Ref (D).

• WT is the hyperbolic reflection group generated by the reflections along the codimen-
sion 1 faces of T .

We notice that W is a finite index subgroup of WT . Indeed, W is a subgroup of WT

and both are acting discretely on Hd with finite co-volume. Then WT acts by polyhedral
isometries on an apartment of Σ. Indeed, a reflection along a face of T either preserves D,
or is a reflection along a face of D. In particular, it preserves the tilling of Hd by D.

Thanks to the results of the previous section and of the constant thickness, we essentially
need to study the usual combinatorial modulus in the apartment to prove the theorem.

97



Lemma 2.9.2. Let p ≥ 1 and let A ∈ Ap0(Σ). Let η be a non-constant curve in ∂A.
There exists a constant C = C(p, η, ε) such that

modAp (FA0 , GAk ) ≤ C ·modAp (UAε (η), GAk ).

Furthermore, when p belongs to a compact subset of [1,+∞) the constant C may be chosen
independent of p.

α
β

γ

δ
θ

ω

Figure 2.8: If D is a dodecahedron, T is the hyperbolic tetrahedron with dihedral angles
α = π/5, β = π/3, γ = δ = ω = π/2 and θ = π/4,

Proof. To prove this lemma, we use the fact that ∂WT is identified with ∂A and that
∂WT contains no proper parabolic limit set. The group WT acts geometrically on A, so
the combinatorial visual metric on ∂A defines a self-similar metric dWT

on ∂WT . Then, a
κ-approximation {GAk }k≥0 induces a κ-approximation on ∂WT with same modulus.

Now, a proper parabolic limit set ∂P in ∂A, is not a parabolic limit set in ∂WT . Indeed,
in WT all the proper parabolic subgroups are finite. In particular, for any non-constant
curve η ⊂ ∂WT , the smallest parabolic subset containing η is ∂WT . Thus, according to
[BK13, Corollary 6.2.] in ∂WT (which is the equivalent on boundaries of Coxeter groups
of Theorem 2.5.13), we get that for every ε > 0, there exists C = C(p, η, ε) such that

modAp (FA0 , GAk ) ≤ C ·modAp (UAε (η), GAk ).

Proof of Theorem 2.9.1. We check that the hypothesis of Proposition 2.2.12 are satisfied.
To prove that Mod1(F0, Gk) we do the same as at the beginning of the proof of Theorem
2.5.14.

Now we set p ≥ 1, η a non-constant curve in ∂Γ, and ε > 0. Thanks to Proposition
2.2.11, we can assume that η ∈ F0.

Then we can assume that there exists an apartment A containing η. Indeed, let ∂P be
the smallest parabolic limit set containing η and let η′ be a non-constant curve in ∂A∩∂P
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such that ∂P is the smallest parabolic limit set of ∂A containing η′. Then, as a consequence
of Theorem 2.5.13, the modulus of Uε(η) and Uε′(η′) are essentially the same.

Using the same argument as in the beginning of the proof of Theorem 2.5.13, we can
also assume that x0 ∈ Ch(A).

Then, because of the constant thickness, the inequality of the Lemma 2.9.2 becomes

ModAp (FA0 , GAk ) ≤ C ·ModAp (UAε (η), GAk ).

Eventually, it is enough to apply Theorem 2.7.13 to the left-hand term and Theorem
2.7.9 to the right-hand term to complete the proof.

Corollary 2.9.3. Let q be a positive integer q ≥ 3. Let Σ be a building of constant
thickness q. Assume that the Coxeter group of Σ is the reflection group of the right-angled
dodecahedron in H3 or the reflection group of the right-angled 120-cells in H4, then ∂Σ
verifies the CLP.

Remark 2.9.4. The hyperbolic 120-cell has been described by H.S.M. Coxeter in [Cox73]
(see also [Dav08, Appendix B.2.]). It has been used by M.W. Davis to build a compact
hyperbolic 4-manifold in [Dav85].
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Ahlfors-regular space, 50
Approximately self-similarity, 56
Approximation on scale k, 47

Building of type (W,S), 24
Building-wall, 34

Chamber system, 16
Circuit, 14
Combinatorial Loewner Property (CLP), 49
Combinatorial modulus, 48
Complete graph, 14
Cone of chambers, 76
Conformal dimension

(Ahlfors-regular), 58
Continuum, 49
Convex hull, 17
Convex hull of F ⊂ ∂Γ, 67
Coxeter group, 17
Coxeter polytope, 17
Coxeter system, 18
Critical exponent, 58, 95
Curve, 14

Davis chamber, 18
Davis complex, 20, 33
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Dial of building, 35
Doubling metric space, 49
Doucling constant, 49
Dual graph, 78

Follow curve, 61
Fuchsian building, 74
Full subgraph, 14

Gallery, 16
Graph product, 32

Half-space, 22

Infinite (bi-infinite) minimal gallery, 67

Loewner space, 51

Modulus in the apartment, 88
Morphism of chamber system, 16

Panels, 17
Parabolic limit set of type I, 67
Parabolic subgroup, 17, 33
Parallel residues, 29
Proper subset, 14

Reflection, 17
Residue, 23, 40
Residues, 17
Retraction, 24
Rotation around a building-wall, 34

Self-similar metric, 57
Shadow, 78

Thick building, 25
Thin building, 25
Type, 18

Wall, 22
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