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Preface

‘PhD’, these three letters I define this as: ‘p’erseverance, ‘h’ard-working and

‘d’etermination, which something that we need to have in our road to success. The

fact that a PhD degree is the highest education that one can grasp, I never imagine

myself being a candidate at this level, let alone survived this passage of stumbling

blocks that I had initially encountered. This was certainly a blessing in disguise and

I thank God for giving His sustenance by allowing me to pursue my PhD study here

at Université de Caen Basse-Normandie (UniCAEN) / École Nationale Supérieure

d’Ingénieurs de Caen Centre de Recherche (ENSICAEN), in France.

I perceive that going through PhD is comparable to going to a hazardous journey

on its own with no clear and in sight. Each PhD candidate may have the necessary

idea, tools, guidance etc. to conduct a research, but, certainly they will not encounter

similar predicaments or obstacles in the course of the period.

To go through PhD, entails highest patience, conscientiousness and fortitude.

I had a challenging time planning to get just about everything done within the

specified time-frame. Nevertheless, at the back of my mind, failing was never an

option. A famous quote by Alan Lakein, “Failing to plan is planning to fail”, which

is one of the things I learnt the most during my tenure as a PhD student. If you do

not plan your work well, you may find yourself in an arduous situation. Moreover,

a PhD research project is considered as a long-distance run that requires a lot of

motivation and support to get you beyond the finishing line. Having married with

two children, time management is also an essence. On the plus side, however, many

people whom close to me are excellent, supportive and inspiring, and they are the

ones that constantly ensure that I strive till the end. It is no exeggeration to say

that they also played some parts, which contributed to my success.
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Summary

At present, there are a number of usages of biometric systems for many specific

purposes such as physical access control, attendance monitoring, electronic payment

(e-payment) and others. This PhD thesis focuses on biometric authentication and we

propose to use keystroke dynamics in order to avoid password-based authentication

problems. Keystroke dynamics measures the rhythm a person exhibits while typing

on a keyboard. In this sense, keystroke dynamics is a behavioral biometric modality,

as well as signature dynamics, gait and voice. Among the advantages of keystroke

dynamics in comparison to other modalities, we can mention that it is a low cost and

usable modality: indeed, no extra sensor or device is required and users often type a

password. The counterpart to these advantages is the worse performance compared

to morphological biometric modalities such as fingerprint, face or iris. The rather

worse performances of keystroke dynamics can be explained by the high intra-class

variability of the users’ behaviour. One way to handle this variability is to take into

account additional information in the decision process. This can be done with: (i)

multibiometrics (by combining keystroke and another modality); (ii) optimising the

enrolment step (a template is stored as reference only if its quality level is sufficient);

or (iii) with a new and promising solution: soft biometrics (profiling the user). We

address in this PhD thesis these two last aspects.

We propose several contributions in order to enhance the performance of keystroke

dynamics systems. First, we created a benchmark dataset called ‘GREYC-NISLAB

Keystroke’ with biometric data collection from 110 users in France and Norway. This

new benchmark database is available to the international scientific community and

contains some profiling information on users: the way of typing (one hand or two

hands), gender, age and handedness. We then perform various studies in order to

determine the recognition accuracy of soft biometric traits given keystroke dynamics

features: (i) the way of typing (one hand or two hands); (ii) gender (male or female);



(iii) age class (below 30 or 30 and above); and (iv) handedness (right-handed or

left-handed). Subsequently, we study the biometric fusion with keystroke dynamics in

order to increase the soft biometrics recognition performance. Finally, by combining

the authentication process with soft criteria, we present an improvement of user

verification. The results of our experiments show the benefits of the proposed methods.



Résumé

Aujourd’hui, il existe de multiples usages des systèmes biométriques à de nom-

breuses fins telles que le contrôle d’accès physique, le contrôle de présence, le paiement

électronique et autres. Cette thèse de doctorat porte sur l’authentification bio-

métrique et nous proposons d’utiliser la dynamique de frappe au clavier afin d’éviter

les problèmes d’authentification par mot de passe. La dynamique de frappe au clavier

mesure les rythmes qui se dégagent lorsqu’on tape sur un clavier d’ordinateur. En ce

sens, c’est une modalité biométrique comportementale, de même que la dynamique

de signature, la démarche ou la voix. Parmi les avantages de la dynamique de frappe

au clavier par rapport à d’autres modalités, nous pouvons mentionner son faible

coût et sa facilité d’usage : en effet, aucun capteur ni dispositif supplémentaire n’est

nécessaire et les utilisateurs sont habitués à taper un mot de passe. En contrepartie,

la dynamique de frappe présente de plus faibles performances que les autres modalités

biométriques comme les empreintes digitales, le visage, l’iris. Cela peut s’expliquer

par une variabilité intra-classe élevée. Une façon de gérer cette variabilité est de

prendre en compte des informations supplémentaires dans le processus de décision.

Cela peut être fait de différentes manières : (i) en combinant la dynamique de frappe

au clavier avec une autre modalité biométrique (multibiométrie); (ii) en optimisant

l’étape d’enrôlement (une donnée biométrique est exploitée pour la génération de la

référence seulement si le niveau de qualité est suffisant); ou (iii) avec une solution

nouvelle et prometteuse: la biométrie douce (profilage de l’utilisateur). Nous abor-

dons dans cette thèse ces deux derniers aspects.

Nous proposons plusieurs contributions afin d’améliorer les performances des

systèmes de dynamique de frappe au clavier. Tout d’abord, nous avons créé notre

propre jeu de données, qui est une nouvelle base de données biométrique appelée

‘GREYC-NISLAB Keystroke’. Nous avons collecté les données de 110 utilisateurs en

France et en Norvège. Cette nouvelle base est publique et contient des informations



de profilage des utilisateurs: la façon de taper (une main ou deux mains), le genre,

l’âge et la latéralité manuelle (droiter ou gaucher). Nous avons effectué diverses

études afin de déterminer le taux de reconnaissance des critères de biométrie douce :

(i) la façon de taper (une main ou deux mains); (ii) le genre (masculin ou féminin);

(iii) la classe d’âge (moins de 30 ans ou plus de 30 ans); et (iv) la latéralité manuelle

(droitier ou gaucher) des utilisateurs en fonction de leur façon de taper au clavier.

Nous montrons qu’il est possible de reconnâıtre le profil de l’utilisateur en fonction

de ces critères. Par la suite, nous proposons une fusion de différentes acquisitions

de la dynamique de frappe afin d’accrôıtre les performances du système. Enfin, en

combinant les processus d’authentification avec les profils de biométrie douce, nous

présentons une amélioration de l’authentification. Les résultats de nos expériences

montrent les avantages des méthodes proposées.



Introduction (Français)

La sécurité informatique est une considération importante pour tout système de

technologie de l’information. Afin de lutter contre la fraude et les imposteurs, il faut

imposer une méthode d’authentification sécurisée de l’utilisateur. Il existe plusieurs

approches relatives à l’authentification d’un individu, à savoir ‘l’authentification par

mot de passe’, ‘l’authentification à base de tokens ’, ‘l’authentification de l’utilisateur

à distance’ et ‘l’authentification biométrique’ (Stallings and Brown, 2008).

La biométrie peut être considérée comme une solution attrayante pour l’authentifi-

cation de l’utilisateur : la relation entre le facteur d’authentification (donnée bio-

métrique) et l’utilisateur est très forte. Le terme biométrie est issu du grec ancien, il

est la combinaison de deux mots : bio signifie vie, -métrie la mesure. L’histoire de la

biométrie remonte à 29.000 avant JC, quand les hommes des cavernes signaient leurs

dessins avec des empreintes de mains sur la paroi de leur grotte. En 500 avant JC, les

Babyloniens signaient sur des tablettes d’argile avec leurs empreintes digitales dans le

cadre de transactions commerciales. En Argentine au XIXème sicècle, Juan Vucetich

a constitué le premier catalogue d’empreintes digitales, d’abord utilisé pour recueillir

les empreintes digitales des criminels. L’explorateur et historien portugais, Joao de

Barros mentionne également que les techniques biométriques (empreintes digitales)

sont originaires de Chine, au XIVème siècle. Il note que “les commerçants chinois

imprimaient la paume et les empreintes des enfants sur du papier avec de l’encre,

afin de distinguer les bébés” (Bhattacharyya et al., 2009). Dans les trois dernières

décennies, l’histoire de la biométrie a marqué un tournant, avec le développement de

dizaines de techniques.



Voici la définition de Jain et al. (Jain et al., 1999) :

“La biométrie est une science dont le but est de reconnâıtre de façon unique des êtres

humains, à partir d’un ou plusieurs trait(s) physique(s) ou comportemental(aux)”.

Les systèmes biométriques sont devenus des systèmes reconnus et fiables pour

l’authentification des individus, au même titre que les systèmes d’authentification par

mot de passe, voire comme un substitut. Les techniques biométriques ont été mises au

point pour vérifier de façon automatique l’identité d’une personne (Prabhakar et al.,

2003). Les modalités biométriques peuvent être divisées en trois classes principales, à

savoir : morphologique, comportementale et biologique (cf. Figure 1). En définitive,

un système biométrique est fondamentalement un système de reconnaissance de

formes, utilisant une caractéristique spécifique possédée par l’utilisateur pour établir

une authentification:

• Modalité morphologique : liée à la forme du corps (la rétine, voix, empre-

intes - doigt, pouce ou de la paume-, l’iris, la main, le visage, les oreilles, la

taille, le poids, la peau, les veines);

• Modalité comportementale : liée au comportement d’une personne (la

démarche, la dynamique de signature, la dynamique de frappe au clavier, la

voix, la conduite, la façon de jouer);

• Modalité biologique : liée à la partie intérieure d’un organisme vivant (les

battements du cœur, l’odeur, l’ADN, le sang).

Aujourd’hui, il existe un certain nombre d’usages des systèmes biométriques à des

fins spécifiques, telles que le contrôle d’accès physique, la surveillance, le paiement

électronique, etc (Jain et al., 2007). L’utilisation de techniques biométriques, tels

comme le visage, l’empreinte digitale, l’iris, l’oreille, ou une autre modalité, est une

solution pour obtenir une méthode d’authentification personnelle sécurisée (Yang

and Nanni, 2011). Cependant, un certain nombre de sujets de recherche importants

restent posés, tels que “Quelles sont les technologies les plus efficaces pour réaliser

une authentification précise et fiable des individus ?”

Afin d’éviter que des imposteurs n’aient accès à des informations sensibles,

l’authentification de l’utilisateur à distance est aujourd’hui une des techniques les

plus importantes (Liao et al., 2009). Certaines technologies ou dispositifs biométriques

sont d’ores et déjà déployés dans notre vie quotidienne, que nous en soyons con-

scients ou non. Par exemple: (a) si l’on voyage en avion, tous les grands aéroports
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Figure 1 – Exemples de modalités biométriques qui peuvent être utilisées pour
authentifier un individu.

ont imposé un système biométrique, tel que la reconnaissance de l’iris (comme au

Royaume-Uni); (b) afin d’obtenir l’accès à certains bâtiments, il suffit de présenter

son empreinte; (c) dans un véhicule, la reconnaissance vocale peut être utilisée pour

activer certaines fonctionnalités, en liaison avec une technologie Bluetooth; (d) dans

certaines banques du sang, les données des donneurs de sang sont accessibles grâce

à des systèmes biométriques, utilisant l’empreinte digitale ou l’iris; et (e) dans un

établissement scolaire (école / collège / université), en plus de l’accès aux bâtiments,

les données biométriques sont également utilisées pour pointer les présents, emprunter

les livres de la bibliothèque, voire même de payer les repas. Il existe encore beau-

coup d’autres applications des systèmes biométriques, qui ne sont pas mentionnées ici.

Si on compare la biométrie aux autres méthodes d’authentification, on considère

qu’il est difficile de copier les caractéristiques biométriques d’un individu. Cepend-

ant, les travaux de Jain et al. (1999) soulignent que “les techniques biométriques

seules ne sont pas suffisantes pour résoudre totalement les problèmes de sécurité,

ainsi les solutions résident dans la conception de solutions innovantes exploitant

les contraintes”. En outre, l’incertitude du résultat de la vérification représente un

inconvénient dans le processus d’authentification biométrique. Cette incertitude

peut être due à un mauvais positionnement du doigt sur le capteur (Wiley, 2011),

mais plus généralement, un système biométrique n’est pas en mesure de donner une

réponse binaire, contrairement à un une authentification par code PIN (Personal



Identification Number).

Les systèmes d’authentification biométriques comportent deux étapes : l’enrôlement

et la vérification. L’utilisateur fournit sa/ses données biométriques lors de l’étape

d’enrôlement. Tout d’abord, les données biométriques sont capturées et certaines

caractéristiques sont extraites. Le modèle de référence de l’utilisateur est généré

et stocké dans la base de données. Lors de la phase de vérification, le modèle de

référence stocké est comparé avec le modèle généré lors de la présentation d’une

nouvelle donnée biométrique, pour accéder au système. Si les deux modèles sont

suffisamment proches, l’accès est accordé (voir Figure 2).
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Figure 2 – Les principes et le cadre d’un système biométrique selon L’ISO (Organ-
isation internationale de normalisation) et la CEI (Commission électrotechnique
internationale) qui constituent le système spécialisé de mondial normalisation (ISO,
2006).

Objectifs de la thèse

Cette thèse de doctorat porte sur l’authentification biométrique et propose

d’utiliser la dynamique de frappe au clavier afin d’éviter des problèmes liés à

l’authentification par mot de passe, tels que le partage ou le vol. Les difficultés

concernant l’authentification par mot de passe proviennent du fait que la plupart

des utilisateurs optent pour des mots de passe trop simples. Ils préfèrent utiliser des

mots de passe similaires pour des applications distinctes (Vance, 2010). Même si les

mots de passe complexes sont plus sûrs, toutefois, ils peuvent être difficiles à retenir

(Niinuma et al., 2010). La dynamique de frappe est une solution reconnue pour pallier

ces problèmes. La dynamique de frappe mesure les rythmes présents lors de la frappe



sur un clavier d’ordinateur. En ce sens, la dynamique de frappe est une modalité bio-

métrique comportementale, de même que la dynamique de la signature, la démarche

et la voix (Klevans and Rodman, 1997; Monrose and Rubin, 2000; Impedovo and

Pirlo, 2007; Moustakas et al., 2010). Parmi les avantages de la dynamique de, on

peut mentionner sa facilité d’utilisation et son faible coût, en comparaison avec les

autres modalités biométriques : en effet, aucun capteur supplémentaire ni dispositif

n’est nécessaire (Giot et al., 2011; Bours, 2012). La contrepartie à ce faible coût et

sa facilité d’utilisation est des performances plus faibles comparées à celles obtenues

avec des modalités biométriques morphologiques telles que l’empreinte digitale, le

visage, ou l’iris (Wildes, 1997; Maio and Jain, 2009). La performance moindre de la

dynamique de frappe (par rapport à d’autres modalités) peut être expliquée par la

grande variabilité intra-classe du comportement des utilisateurs. En effet, la façon

de taper sur un clavier évolue dans le temps. Une façon de gérer cette variabilité est

de prendre en compte des informations additionnelles dans le processus de décision.

Cela peut être réalisé de plusieurs manières, en utilisant :

1. La multibiométrie (en combinant la dynamique de frappe et une autre

modalité). Il y a de nombreux articles publiés dans ce domaine (Hong et al.,

1999; Jain and Ross, 2004; Ross et al., 2006; Yang et al., 2006; Nandakumar,

2008; Sun et al., 2010; Kumar Ramachandran Nair et al., 2014). Les avantages

de la multibiométrie résident dans l’amélioration de la cohérence et la qualité

de la reconnaissance, avec une réduction du taux d’erreur FMR (False match

Rate). La multibiométrie peut également être utilisée indépendamment ou

collectivement, et aider à accélérer le processus d’authentification. Mais, si

l’un des modules de vérification biométrique échoue à cause de perturbations

intrinsèques à la biométrie, le taux d’erreur FNMR (False Non Match-Rate) sera

augmenté. C’est donc là l’un des inconvénients majeurs de la multibiométrie.

Ces méthodes utilisant la multibiométrie ne seront pas considérées dans cette

étude.

2. L’évaluation de la qualité à l’étape d’enrôlement (un modèle est stocké

comme référence uniquement si son niveau de qualité est suffisant). La qualité

des données biométriques est un challenge important, qui a été étudié dans de

nombreuses publications pour l’empreinte digitale (Chen et al., 2005; El Abed

et al., 2013), pour le visage (Nasrollahi and Moeslund, 2008; Wong et al., 2011).

Néanmoins, très peu de travaux ont été réalisés sur la dynamique de frappe

(Giot et al., 2012c).

3. La biométrie douce : cette notion a été introduite par Jain et al. (2004a).



Les auteurs définissent ‘les traits de biométrie douce’ comme les caractéristiques

qui ne sont pas suffisantes pour authentifier un individu, mais peuvent aider

à la construction d’un profil. Ils considèrent le sexe, l’origine ethnique et

la taille d’un. Par conséquent, la biométrie douce permet un raffinement

dans la recherche d’un utilisateur dans une base de données, induisant une

diminution du temps de calcul et également une amélioration des performances.

La biométrie douce est également considérée comme non invasive, sans risque

d’usurpation d’identité, avec une mise en œuvre à faible coût, et des applications

clairs et compréhensibles.

Les deux derniers aspects de la dynamique de frappe seront abordés dans le

chapitre suivant.

Contributions

Nous proposons plusieurs contributions dans cette thèse, qui illustrent comment

nous pouvons améliorer la reconnaissance de la performance des systèmes de dy-

namique de frappe par la définition d’une métrique de qualité pour la dynamique de

frappe et en utilisant des informations de biométrie douce :

1. Nous avons créé une nouvelle base de données biométriques appelée ‘GREYC-

NISLAB Keystroke’, publiée dans (Syed Idrus et al., 2013a) dans l’objectif de

cette thèse. Cette base contient les données de dynamique de frappe de 110

utilisateurs, à la fois en Français et Norvégiens, ainsi que des informations de

biométrie douce. Cette base de données a été rendue disponible à la communauté

internationale de scientifique (http://www.epaymentbiometrics.ensicaen.

fr/index.php/app/resources/91).

2. Nous avons effectué diverses expériences pour déterminer la performance de

la reconnaissance des traits de biométrie douce de dynamique de frappe : le

nombre de mains (s) utilisées, le sexe, l’âge et la latéralité (droitier/gaucher) des

utilisateurs en fonction de leur façon de taper sur un clavier. Nous montrons

qu’il est possible de reconnâıtre (devinez / prédire) : le nombre de mains

utilisées lors de la frappe; ainsi que le sexe de l’utilisateur; la catégorie d’âge;

et si l’utilisateur est droitier ou gaucher. Nous analysons ensuite la fusion de

plusieurs types de mot de passe.

http://www.epaymentbiometrics.ensicaen.fr/index.php/app/resources/91
http://www.epaymentbiometrics.ensicaen.fr/index.php/app/resources/91


3. En combinant le processus d’authentification avec des traits de biométrie douce,

nous présentons une amélioration des résultats de du système de vérification

utilisant la dynamique de frappe.

Organisation du manuscrit

Ce manuscrit de thèse est organisé en quatre grands chapitres comme suit:

Chapitre 1: Dynamique de frappe - Ce chapitre présente le contexte de la

dynamique de frappe avec des illustrations issues des travaux de recherche précédents,

jusqu’aux études les plus récentes.

Chapitre 2: Optimisation de l’enrôlement - Ce chapitre présente la création

d’une nouvelle base de données de référence. Nous définissons une nouvelle mesure

pour l’évaluation de la dynamique de frappe et nous étudions comment optimiser

l’étape d’enrôlement pour cette modalité.

Chapitre 3: Profilage par biométrie douce - Ce chapitre présente une nou-

velle approche de profilage des individus sur la base de la biométrie douce pour la

dynamique de frappe. Il consiste également à extraire des informations à partir des

modèles de dynamique de frappe, dans le but de reconnâıtre la catégorie de main

(une ou deux mains utilisées); la catégorie de sexe; la catégorie d’âge; et la catégorie

de latéralité d’un utilisateur quand il / elle tape des mots de passe connus donnés sur

un clavier. En outre, nous présentons l’impact de différents procédés de fusion sur les

quatre informations de biométrie douce précédentes sur les performances, à la fois pour

les mots de passe connus (i.e. textes statiques) et pour du texte libre (i.e. digrammes).

Chapitre 4: Évaluation de la performance de la biométrie douce - Ce

chapitre présente les différentes méthodes pour améliorer la performance de la véri-

fication par dynamique de frappe, en prenant en compte les informations existantes.

Nous illustrons comment nous pouvons améliorer les résultats en prenant en compte

les critères de biométrie douce lors de la frappe des mots de passe connus.

Conclusions et perspectives - Cette section conclut notre recherche et recense

les contributions significatives. Par conséquent, nous résumons le travail fait tout au

long de cette thèse et nous donnons quelques perspectives possibles.





Conclusions et perspectives

(Français)

Dans les chapitres précédents, nous avons mené un certain nombre d’analyses

statistiques et les résultats obtenus ont montré l’intérêt de l’utilisation de la biométrie

douce pour la dynamique de frappe. Cela a également permis de mettre en évidence le

fait qu’il s’agit de biométrie “douce”, dans le sens où les caractéristiques de biométrie

douce ne sont pas suffisantes pour authentifier un individu. Néanmoins, ces critères

se sont révélés suffisamment significatifs pour être pris en compte dans un système

d’authentification biométrique par dynamique de frappe.

Nous avons proposé dans cette thèse de nouvelles approches pour prendre en

compte des critères de biométrie douce dans l’authentification par dynamique de

frappe. Nous avons proposé d’utiliser la dynamique de frappe pour prévenir les

problèmes d’authentification par mot de passe. Une autre partie de ce travail a

consisté en la création d’une base de données significative avec 110 utilisateurs de

France et de Norvège, avec 100 échantillons par utilisateur, détaillée dans le chapitre

2. Cette nouvelle base de données de dynamique de frappe, a été rendue publique

pour la communauté scientifique internationale. Cette base de données contient

également diverses informations de biométrie douce : la façon de taper (avec une

main ou deux mains), le sexe, l’âge et la latéralité (droitier/gaucher). En mettant

à disposition cet ensemble de données, non seulement cela peut éviter à de futurs

chercheurs de créer une base de données semblable, mais aussi motiver de nouvelles

expérimentations.

Par la suite, dans le chapitre 3, nous avons introduit quelques caractéristiques

de biométrie douce telles que: la façon de taper de l’utilisateur (avec une ou deux
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mains); le sexe (homme ou femme); l’âge (<30 ans ou de ? 30 ans); et la latéralité

(droitier ou gaucher. Ces informations ont été à la base de notre étude et publiées

dans plusieurs articles, à savoir : (Syed Idrus et al., 2013a,b, 2014). Nos analyses ont

permis d’obtenir des résultats intéressants de vérification, à la fois avec 5 mots de

passe connus et imposés (textes statiques) et avec du texte libre (digraphes). Nous

avons également démontré que nous sommes en mesure d’améliorer significativement

les taux de reconnaissance des critères de biométrie douce pour les mots de passe

connus en appliquant des processus de fusion. Les performances optimales sont

obtenues par fusion des scores : le taux de reconnaissance oscille entre 92 et 100%

(en fonction du critère de biométrie douce). Cela pourrait fournir un ‘indice de

fiabilité’ en vérifiant la concordance entre une information biométrique douce (comme

le sexe) et l’information connue a priori. En outre, nous avons fait une étude sur

la complexité (en terme de frappe au clavier) d’un mot de passe, qui examine si la

complexité influence la difficulté à taper le mot de passe. Cette étude est utilisée

pour optimiser l’étape d’enrôlement en choisissant un mot de passe approprié pour

renforcer la performance. Il est évident que la longueur d’un mot de passe conduit à

plus de sécurité. Les mots de passe plus courts avec une combinaison de certains

caractères inconnus peuvent également ajouter de la complexité.

En prenant en compte les informations de biométrie douce, une amélioration

des résultats du système de vérification par dynamique de frappe sont abordées au

chapitre 4. Plusieurs approches sont présentées dans ce chapitre pour combiner les

différents critères et les données de dynamique de frappe : (i) combinaison des ‘scores

de distance’ fournis par le système d’authentification biométrique; et (ii) processus

de fusion pour améliorer les méthodes de reconnaissance. Nous avons obtenu des

résultats intéressants à partir de différentes techniques de combinaison, cependant,

notre meilleure performance est obtenue lorsqu’on fusionne tous les mots de passe

connus : nous avons obtenu une valeur d’EER égale à 5,41%. Les résultats de ce trav-

ail pourraient être appliqués, par exemple, dans la sécurisation des réseaux sociaux,

où les caractéristiques de biométrie douce d’une personne peuvent être comparées

à celles de son profil au cours d’une conversation. Les techniques de combinaison

proposées peuvent également être appliquées à d’autres modalités biométriques.

En conclusion, les résultats obtenus figurant dans ce mémoire peuvent être utilisés

en tant que modèle générique pour aider un système biométrique à mieux recon-

nâıtre un utilisateur, notamment pour la dynamique de frappe. Cela permettra non

seulement de renforcer le processus d’authentification, en empêchant un imposteur



d’entrer dans le système, mais aussi de diminuer le temps de calcul.

Concernant les perspectives, en plus des critères de biométrie douce proposés,

d’autres critères pourraient être considérés, tels que l’état émotionnel (colère, tristesse,

anxiété...); les caractéristiques corporelles (taille ou poids); les couleurs (yeux, cheveux,

barbe, de la peau...); les marques (marque de naissance, cicatrice, tatouage...); la

forme et la taille (tête, oreille, doigt). Tous ces critères de biométrie douce peuvent

être combinés avec un système d’authentification biométrique (en fonction de la

modalité) pour améliorer les performances.

La biométrie douce pourrait être combinée dans d’autres cadres d’application de

la biométrie. Par exemple, on pourrait envisager le domaine de l’authentification

continue. Dans ce cas, le système serait en mesure de mieux reconnâıtre les individus

en temps-réel, grâce aux informations délivrées par un module de biométrie douce.

Il pourrait également être intéressant de considérer une approche bayésienne, par

exemple pour une estimation de l’âge, notamment prédire si un individu a plus ou

moins de 18 ans.

La mise à jour de modèle pour la biométrie douce est une autre piste qui pourrait

être explorée, pour compenser la grande variabilité de certains critères. Certains

évoluent sur une courte durée, comme l’humeur, d’autres peuvent évoluer en fonction

de l’environnement. En outre, en cas d’accident, certaines caractéristiques sont

définitivement altérées. Il est alors important de mettre à jour très régulièrement la

base de données pour conserver un taux de reconnaissance élevé.

Maintenant, si on revient à la dynamique de frappe classique, la question se

pose de sa transposition aux interactions avec des écrans tactiles. La biométrie

douce pourrait renforcer la sécurité des codes PIN (en cas de vol), ou du tracé de

chemin secret. En outre, des algorithmes de classification sémantique pourraient être

combinés à des algorithmes non-sémantiques pour déterminer une distance, à partir

d’une approche d’apprentissage.
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Introduction

C
omputer security is considered as an utmost important trend for any inform-

ation technology (IT) systems. In order to combat fraud and impostors, we

need to impose a secure user authentication method. There are several approaches

pertaining to human authentication namely ‘password-based authentication’, ‘token-

based authentication’, ‘remote user authentication’ and ‘biometric authentication’

(Stallings and Brown, 2008).

Biometrics can be seen as an attractive solution to user authentication as the

relationship between the authenticator and the user is very strong. Biometrics is

an ancient Greek word, it is the combination of two words bio means life, -metric

means measurement. The history of biometrics dated back as far as 29,000 BC

when cavemen signed their drawings with handprints on the cave wall. In 500 BC,

Babylonian signed in clay tablets with fingerprints to carry out their business trans-

actions. However, Juan Vucetich of Argentina had started the earliest cataloging of

fingerprints, where it was first used to collect criminals fingerprints. Nonetheless, it

is mentioned that the history of biometric techniques was first originated from China

in the 14th century, where a Portuguese explorer and also historian, Joao de Barros

had reported citing the chinese who were using it as a form of finger printing. He

recorded that “The Chinese merchants were stamping children’s palm and footprints

on paper with ink to distinguish babies” (Bhattacharyya et al., 2009). For the past

three decades, the biometric history has made its mark with extreme development,

where the technology has leaped from a single technique to more than ten at present.

“Biometrics is a science that consists of methods for uniquely recognising humans

based upon one or more intrinsic physical or behavioural traits” (Jain et al., 1999).

It has become one of the well-known and reliable user authentication systems as

substitute to password-based authentication ones. Biometric techniques have been

1
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developed for a machine-based verification of the identity of a person (Prabhakar

et al., 2003). Biometric characteristics can be divided into three main classes, namely:

Morphological, Behavioural and Biological (refer to Figure 0.3). Thus, a biometric

system is essentially a pattern recognition system, which makes a personal identific-

ation by determining the authenticity of a specific characteristic possessed by the user:

• Morphological is related to the shape of the body: retina, voice, prints

(finger, thumb or palm), iris, hand, face, ear, height, weight, skin and veins;

• Behavioural is related to the behaviour of a person: gait, signature dynamics,

keystroke dynamics, voice, driving and gaming;

• Biological is related to the inner part of a living organism: heartbeat, odour,

DNA and blood.
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Figure 0.3 – Examples of biometric modalities that can be used to authenticate an
individual.

Nowadays, there are a number of usages of biometric systems for many specific

purposes such as physical access control, attendance monitoring, electronic payment

(e-payment) and others (Jain et al., 2007). The use of biometric techniques, such

as face, fingerprint, iris, ear and others is a solution for obtaining a secure personal

authentication method (Yang and Nanni, 2011). The common problem of personal

authentication, however, raises a number of important research issues such as “which

technologies are the most effective to achieve accurate and reliable authentication of
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individuals?”

In order to prevent vital piece of information from being accessed by impostors,

remote user authentication is definitely one of the most important application that

could be applied (Liao et al., 2009). Some of the biometric technology or device are

being utilised in our everyday life whether we are aware or not. For example: (a) if we

travel to foreign countries by plane, all major airports have now imposed biometric

technology, such as iris recognition (as in United Kingdom (UK)); (b) in order to gain

access into a building, it is now equipped with biometric system on a door/entrance,

such as fingerprint technology ; (c) in a car, where it uses biometric technology with

Bluetooth or entertainment systems to unlock a vehicle, such as voice recognition; (d)

in a blood banks, data of blood donors are being stored digitally, where donors are

using biometric technology to access their essential information, such as fingerprint

or iris recognition; and (e) in an institution (school/college/university), besides

gaining entry to a building, biometric data is also used for recording attendance,

borrowing library books or even paying for meals. Nonetheless, there are many

more applications of biometric systems for other specific purposes, which are not

mentioned here.

It is difficult to copy the biometric characteristics of an individual compared to

most of other user authentication methods. Nevertheless, the downside according to

Jain et al. (1999) is that “biometric technology alone may not be sufficient in order

to solve security issues effectively, and hence the solutions to the outstanding open

problems may lie in the innovative engineering designs exploiting the constraints.

Otherwise, it would be unavailable to the applications and in harnessing the biometrics

technology in combination with other allied technologies”. Additionally, a drawback

in biometric authentication is the uncertainty of the verification result. It is not only

due to bad positioning of the finger that causes an error (Wiley, 2011), but, also a

biometric system is not able to give a binary answer as for a Personal Identification

Number (PIN) code (right/wrong).

Biometric authentication systems can be processed in two steps: enrolment and

verification. The enrolment stage is where the user provides his/her biometric data.

First, the biometric data is captured and some features are extracted. Given these

features, user’s model called reference template is computed and stored into the

database. During the verification phase, the stored reference template is compared

with the captured one presented for an access. If they are sufficiently similar, then
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an access is granted (refer to Figure 0.4).

 

Sample 
Feature  

Extraction 
Comparison 

Verification 

Decision 

Matching       

Score 

Match               

Non-Match 

Reference 

Templates 

Figure 0.4 – The principles and framework of a biometric system according to
ISO (the International Organisation for Standardisation) and IEC (the Interna-
tional Electrotechnical Commission) that constitute the specialised system for global
standardisation (ISO, 2006).

Objectives of the thesis

This PhD thesis focuses on biometric authentication and proposes to use keystroke

dynamics in order to avoid password-based authentication problems such as shared

or stolen. The difficulties concerning password-based are that most users opt for

simple passwords. They prefer using similar passwords spanning distinct applications

(Vance, 2010). Despite the fact that complex passwords are more secure, however,

they may be difficult to remember (Niinuma et al., 2010). Keystroke dynamics is

known to overcome these circumstances. Keystroke dynamics measures the rhythms

that a person exhibits while typing on a keyboard. In this sense, keystroke dynamics

is a behavioral biometric modality, as well as signature dynamics, gait and voice

(Klevans and Rodman, 1997; Monrose and Rubin, 2000; Impedovo and Pirlo, 2007;

Moustakas et al., 2010). Among the advantages of keystroke dynamics in comparison

to other modalities, it can be mention here that it is a low cost modality: indeed, no

extra sensor nor device is required (Giot et al., 2011; Bours, 2012). The counterpart

to this low cost and ease of use is the worse performances compared to those obtained

with morphological biometric modalities such as fingerprint, face and iris (Wildes,

1997; Maio and Jain, 2009). The rather worse performances of keystroke dynamics

(in comparison to other modalities) can be explained by the large intra-class variab-
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ility of the users’ behaviour. Indeed, the way of typing continuously evolves when

time elapses. One way to handle this variability is to take into account additional

information in the decision process. This can be done with:

1. Multibiometrics (by combining keystroke and another modality). There are

many articles published in this area (Hong et al., 1999; Jain and Ross, 2004;

Ross et al., 2006; Yang et al., 2006; Nandakumar, 2008; Sun et al., 2010; Kumar

Ramachandran Nair et al., 2014). Its advantages are that it can improve the

consistency and recognition quality, while reducing the FMR (False Match

Rate) error rates. It can also be used collectively or independantly and help to

speed things up in regards to identification process. But, if one of the biometric

verification fails caused by the existence of disturbance inside the biometrics,

the FNMR (False Non-Match Rate) will likely to be elevated, and hence is

considered as one of its major drawbacks. These approaches, however, are not

considered in this study.

2. Quality evaluation at the enrolment step (a template is stored as reference

only if its quality level is sufficient). Quality of biometric data is an important

challenge and has been considered in many publications for fingerprint (Chen

et al., 2005; El Abed et al., 2013) and face (Nasrollahi and Moeslund, 2008;

Wong et al., 2011). Nonetheless, very few works have been done on keystroke

dynamics (Giot et al., 2012c).

3. Soft biometrics (classifiable attributes that can be found within a human

being). It was first introduced by Jain et al. (2004a). The authors defined

‘soft biometric traits’ as characteristics that are not sufficient to authenticate

a user, but, can help building a profile. They considered gender, ethnicity

and height as contrasting information for a regular fingerprint based biometric

system. Consequently, soft biometric enables a refinement in search of genuine

individual in a database, causing a computing time lessening and can also

improve performance. Soft biometric is also considered as unobtrusive, no

threat to potential identity theft, low-cost implementation equipment, and

methods applied are clear and understandable.

The two last aspects for keystroke dynamics are addressed in the next chapter.
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Contributions

We propose several contributions in this PhD thesis that illustrate how we can

enhance the performance recognition of keystroke dynamics systems by defining a

quality metric for keystroke dynamics and by using known soft biometrics information:

1. We implemented a new biometric benchmark database called ‘GREYC-NISLAB

Keystroke’ published in (Syed Idrus et al., 2013a) to fulfill the objective of

this thesis. It contains keystroke dynamics of 110 users, both in France and

Norway with the previous soft biometrics information. This new benchmark

database (http://www.epaymentbiometrics.ensicaen.fr/index.php/app/

resources/91) is available to the international scientific community.

2. We perform various experiments to determine the recognition accuracy of

soft biometric traits from keystroke dynamics: the number of hand(s) used

(one/two), gender, age and handedness of users based on its way of typing on a

keyboard. We show that it is possible to recognise (guess/predict) the user’s

number of hands involved during typing; as well as his/her gender; the most

likely age category; and if the user is a right-handed or left-handed person. We

analyse the benefit of the fusion of multiple typings of password.

3. By combining the authentication process with soft biometric traits, we present

an improvement of user verification results with keystroke dynamics.

Organisation of the manuscript

This PhD manuscript is organised into four main chapters as follows:

Chapter 1: Keystroke Dynamics - this chapter presents the background on

keystroke dynamics with illustrations from initial/previous research to the most

recent studies made.

Chapter 2: Enrolment Optimisation - this chapter presents the creation of a

new benchmark database. We define a new evaluation metric for keystroke dynamics

and we study how to optimise the enrolment step for this modality.

http://www.epaymentbiometrics.ensicaen.fr/index.php/app/resources/91
http://www.epaymentbiometrics.ensicaen.fr/index.php/app/resources/91
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Chapter 3: Soft Biometrics Profiling - this chapter presents a new profil-

ing approach of individuals based on soft biometrics for keystroke dynamics. It

also consists of extracting information from keystroke dynamics templates with the

ability to recognise the hand category; the gender category; the age category; and

the handedness category of a user when he/she types a given known passwords or

passphrases on a keyboard. Furthermore, we present the impact of fusion schemes

on the four aforementioned soft biometric information on the overall recognition

performance for known passwords (i.e. static texts) and free text (i.e. digraphs).

Chapter 4: Soft Biometrics Performance Evaluation - this chapter presents

different methods to improve the verification performance by taking into account

existing information. We illustrate how we can improve the user verification results

with keystroke dynamics by considering soft biometrics information while typing

known passwords.

Conclusions and Perspectives - this section concludes the focal point of our

research and justify the significant contributions. Hence, we summarise the work

done throughout this thesis and give some possible perspectives.





Chapter 1

Keystroke Dynamics

This chapter presents the background on keystroke dynamics with illustrations

from initial/previous research to the most recent studies made. First, we

introduce the chapter from the evolution to the rising trend surrounding

keystroke dynamics. We discuss on the various keystroke dynamics components

with different means to evaluate its performances. We conclude with discussion

and ideas of contributions.

1.1 Introduction

I
t is accepted that the way a person types on a keyboard contains timing patterns,

which can be used to label him/her is called keystroke dynamics. The history of

keystroke dynamics dated back many centuries, when humans relied on verifying

the identity of an individual while using technology. Due to the fact that keystroke

features have the same neurophysiologic factors, they are able to uniquely defined

users (Obaidat and Sadoun, 1996). Nonetheless, in the late 19th century, the evolution

of keystroke dynamics has begun to emerge, where the telegraph revolution was at

its highest point. During its historical time period, it was considered as a major long

distance communication instrument (BioPassword, 2006). Some users were able to

recognise a telegrapher by considering its behaviour. However, the use of keystroke

dynamics for verification and identification purposes was first investigated back in

9
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the 1970’s by Spillane (1975); Forsen et al. (1977). Gaines et al. (1980) are among the

first people to a conduct preliminary study on the use of keystroke timing patterns

in 1980. Ever since, many researchers have followed in their footsteps in the same

domain (see Figure 1.1). The vast majority of publications pertaining to keystroke

dynamics arise within the last 20 years or so.

Figure 1.1 – Chart evidently illustrates a rising phenomenon of studies carried out
on keystroke dynamics (source from Google Scholar).

Keystroke dynamics is an interesting and a low cost biometric modality (Giot

et al., 2011; Bours, 2012), indeed, no additional device is required. Keystroke dy-

namics belongs to the class of behavioural biometrics, in the sense that the template

of a user reflects an aspect of his/her behaviour. Among the behavioural biometric

modalities, we can mention signature dynamics analysis, gait recognition, voice

recognition, or keystroke dynamics (Klevans and Rodman, 1997; Monrose and Rubin,

2000; Impedovo and Pirlo, 2007; Moustakas et al., 2010). In general, the global

performances of behavioural biometric modalities (and especially keystroke dynamics)

based authentication systems are worse than the popular morphologic biometric

modalities (such as fingerprints, face or iris) (Wildes, 1997; Maio and Jain, 2009).

The fact that the performances of keystroke dynamics are worse than other biometric

modalities can be explained by the intra-class variability of the users behaviour.

This intra-class variability pertaining to computer users can be accounted for by

a way of typing, which is different when they are nervous, angry or even sad (Epp

et al., 2011).

For many years, researchers are constantly looking for ways to enhance the per-

formance of keystroke biometrics recognition efficiency (Karnan et al., 2011; Banerjee
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and Woodard, 2012; Teh et al., 2013). Thus, there are many different components in

a keystroke dynamics system as shown in Figure 1.2, which can be applied. However,

further discussion on the techniques that are used by researchers, but, not limited to

feature extraction/selection and classification are described in the following sections.
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Figure 1.2 – Different components of a keystroke dynamics system.

1.2 Biometric capture

During the capture process, unprocessed (raw) biometric data is captured by

devices such as time-based measures (typing rhythm or keystroke event from the Op-

erating System (OS)); image of typing (through surveillance camera or webcam); or

sound-based measures (audio signal) (refer to Figure 1.3). In our case, we only focus

on time-based captures, which is the timing rhythm of keystroke. Once the capture

is done, the next phase is to extract the differentiating features from the unprocessed

biometric sample and transform them into a processed biometric identifier record

(often called ‘biometric sample’ or ‘biometric template’).

1.3 Feature extraction

We focus in this section on ‘feature extraction’. First, we define two terminologies:

‘keystroke latency’ and ‘keystroke duration’, which are often used as feature for

keystroke dynamics (Monrose et al., 2002; Karnan et al., 2011). A latency can be

determined by the timing delay experienced by a process. Duration or classical time
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Figure 1.3 – Biometric capture devices.

is the way of measuring continuance associated with any object or function with

time. From the definition, latency and duration are timing features (information),

which are in its raw form that can be found in keystroke dynamics. Those raw

features can be extracted and manipulated from data of either vector, time-based

or keypress activity from a pair of keys. A vector is a feature from a collection of

timing information, whereas a time-based is a feature from a total time taken to

type a set of texts. Keypress activity from a pair of keys is also known as digraph,

which is a feature from N succesive keystroke events, for example, can either be two

or even up to six. Now, we introduce some of the works done in this area.

As mentioned earlier, Gaines et al. (1980) was among the first to conduct an initial

work on keystroke dynamics based authentication by using digraph features, later,

digraphs/trigraphs/N-graphs timing information were also studied by Monrose and

Rubin (2000); Wong et al. (2001); Bergadano et al. (2002); Hu et al. (2008). Digraph

is an instant of when two consecutively keys are typed, whereas trigraph is in the

event when three consecutively keys are typed. N-graph on the other hand pertains

to the timing measurement between three or more successive keystroke activities

(Teh et al., 2013). Furthermore, Garcia (1986); Hammon and Young (1989); Lin

(1997); Robinson et al. (1998); Bartlow and Cukic (2006) had used the time-based

features (positive/negative/interval timing measures) to generate their template for

classification. Joyce and Gupta (1990), however, are able to enhance the performance

of feature by adding both user’s first name and last name into their keystroke login

sequences template.

Additionally, Loy et al. (2005) extracted keystroke pressure features from the

frequency domain signal in their keystroke dynamics system. Revett (2007) proposed
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to use a motif signature in order to obtain a verification score. Motif signature is a

genetic pattern that corresponds to a biological representation. The author suggested

that the user’s login particulars namely a combination of either identification (ID) or

password can be applied into the amino acid alphabet. Thus, the verification score is

then compared to the kept template (stored motif) for that sign in ID. In addition,

Cho and Hwang (2005); Kang et al. (2008) suggested that the use of keystroke quality

features measurement as criteria are much more promising than a classifier engaged.

1.4 Feature selection

A method used in order to reduce feature space while keeping the optimal per-

formance is known as ‘feature selection’ (John et al., 1994; Yang and Honavar,

1998). The idea of this method is to avoid classification errors (Singhi and Liu, 2006;

Shiv Subramaniam et al., 2007).

Moreover, Yu and Cho (2003, 2004) implemented a randomised search with the

use of a Genetic Algorithm - Support Vector Machine (GASVM) based wrapper

technique, which is able to automatically choose an appropriate feature as well as

dismissing all noise related data without the need of human intervention for its feature

selection. Indeed, by using Standard Genetic Algorithm (GA) and Particle Swarm

Optimisation (PSO) variation developed by Azevedo et al. (2007a,b), the authors

are able to generate excellent results for the tasks of feature selection. Boechat

et al. (2007) applied weighted probability measure simply by selecting N features

from the vector templates using the least of standard deviation that would eliminate

irrelevant characteristics. Sung and Cho (2005); Villani et al. (2006); Ngugi et al.

(2011) stated that noise removal (Yu and Cho, 2003), data cleaning (Yu and Cho,

2004), or extreme outlier removal (Hosseinzadeh and Krishnan, 2008) could head

towards a betterment in performances. Nevertheless, according to a review made by

Karnan et al. (2011), only a small portion of research have been carried out with

regards to feature selection methods by using evolutionary strategies and swarm

intelligence.
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1.5 Reference generation

Concerning reference generation methods, Banerjee and Woodard (2012) had cat-

egoried them into four main classification approaches popularly used by reasearchers,

namely: (i) statistical algorithms; (ii) neural networks; (iii) pattern recognition and

learning-based algorithms; and (iv) heuristics search and combination of algorithms.

According to Teh et al. (2013), the most deployed method is statistical (61%), fol-

lowed by machine learning (37%), and others (2%), and hence they only categorised

classification into two: statistical approach and machine learning. Regarding machine

learning, Teh et al. (2013) had sub-categorised them into several main parts, but,

not limited to neural networks, decision tree, fuzzy logic, and evolutionary computing.

The first classification method is the easiest statistical approach, comprises of com-

puting the mean and standard deviation of the features in the template. Furthermore,

these computation values can later be applied in order to make a comparative study by

using, for example, hypothesis evaluations, t-tests and distance measures such as ab-

solute distance, weighted absolute long distance, Euclidean distance and many others.

The next method is the machine learning tool called neural networks or artificial

neural networks, and it is also known as adaptive non-linear statistical data modelling

tools. They are mostly influenced through biological interconnections of neurons. The

two main techniques that can be used to designate the weights (or learned) are called

supervised learning (commonly known as the ‘backpropagation’) and unsupervised

learning (commonly known as the ‘Hopfield neural network’).

Thirdly, is the pattern recognition approach, which is considered as utilising

patterns or objects, then classifying them into various groups (classes) determined by

particular algorithms (Theodoridis and Koutroumbas, 2009). By using basic machine

learning algorithms, we could apply, for example, the nearest neighbour algorithms.

For more sophisticated algorithms, we could use, for instance: data mining, Bayes

classifier, Fishers Linear Discriminant (FLD), Support Vector Machine (SVM) and

graph theory.

The final approach is the heuristics search, particularly the ‘genetic algorithms’,

which are widely used to obtain the best possible solution and mostly associated

with transformative algorithms. As an example, the genetic algorithm is used in Ant

Colony Optimisation (ACO) (Dorigo, 2006). Azevedo et al. (2007b) developed the use

of keystroke feature selection simply by using a hybrid system considering Support
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Vector Machines (SVMs) and stochastic optimisation algorithms namely Genetic

Algorithm (GA) and Particle Swarm Optimisation (PSO). Occasionally, researchers

have performed several combinations of method in order to have multi-selection of

algorithms for categorisation, which is considered as an overwhelming assignment.

1.6 Comparison

When the features have been extracted and the templates created, users classific-

ation can only then be carried out. It is to determine between two templates whether

there are any resemblances or otherwise (i.e. degree of similarity or dissimilarity)

(Uludag et al., 2004), which we define it as ‘comparison’ (matching) process. Hence,

classification is designed to seek the best class (category), which is nearest to the

classified (labelled) pattern. The following metrics are typically used in a comparison

process:

• False Match Rate (FMR) - the rate/percentage at which an impostor is allowed

access into the system i.e. when the algorithm criteria have classify an impostor

(after comparison) as a real authentic user;

• False Non-Match Rate (FNMR) - the rate/percentage at which an authorised

user is denied access from the system i.e. when the algorithm criteria have

classify a real authentic user (after comparison) as an impostor.

The rate at which the two points meet or the rate equates to the point at which

the FMR and FNMR cross is known as the Equal Error Rate (EER). It is a common

measure to utilise a third error rate of EER for comparative analysis. The values for

FMR and FNMR were aimed to be as low as possible. Ideally, the FMR and FNMR

should be 0%, however, almost all biometric applications have never produced this

value (Polemi, 1997).

From pattern recognition standpoint, a pattern, which is the keystrokes timing

is considered as useful if one or more features may be extracted and could strongly

differentiate between one user with other users (Sim and Janakiraman, 2007; Theodor-

idis and Koutroumbas, 2009). Each user will provide different keystroke features

when typing on a keyboard that can be extracted, which is known as the timing

pattern of keystrokes: “(i) code of the key; (ii) the type of event (press or release);

and (iii) the time of the event” (Giot et al., 2011). These features are stored in a
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keystroke database in its raw form. During a log in session, the user’s keystroke

characteristics are extracted, then they are compared and categorised with the ones

stored as a reference signature in the database. Two scenarios that could happen

here: (i) if the user’s keystroke patterns are inside ‘the circle of trust’, they will be

authenticated (i.e. allow access); and (ii) if they are ‘not’, then the system can make

a ‘decision’ either to terminate the session (i.e. block access) or perform other form

of measures deemed appropriate (Karnan et al., 2011).

There are several methods encircle classification as mentioned earlier such as

statistical and machine learning (neural network, fuzzy logic, genetic algorithm, and

support vector machine), which will be discussed in the subsequent subsections.

1.6.1 Statistical approach

Statistical approaches are considered to be the most popular selections of tech-

nique used since the primary phase of keystroke dynamics study (Gaines et al.,

1980; Joyce and Gupta, 1990; Song et al., 1997) up to the present time (Balagani

et al., 2011; Tey et al., 2014; Montalvão et al., 2014). This is due to the fact that

they are easy to implement with little cost to bear (Teh et al., 2013). We can

mentioned some of the typical generic statistical measures such as mean, median and

standard deviation (Revett et al., 2005b; de Magalhães et al., 2005; Modi and Elliott,

2006); statistical t-test (Gaines et al., 1980) with an accurary rate of 95%; k -nearest

neighbour (Mantyjarvi et al., 2002) with an accuracy rate of 78%-99%, (Monrose

and Rubin, 2000) with an accuracy rate of 83.22%-92.14%, and (Stewart et al., 2011)

(obtained equal error rate (EER) equals to 0.5%). The logging of successive key-

strokes and impose timing probability ditributions in order to differentiate subjects

were recommended by Gaines et al. (1980). Umphress and Williams (1985) analysed

performance comparison between keystroke latencies/digraph with their mean and

standard deviation and reference profile/test.

Another statistical approach is the probabilistic modelling and according to Mon-

rose and Rubin (1997), this method clutches the presumption that each and every

keystroke feature vector employs Gaussian distribution. The main idea here is to

determine the plausibility of a given keystroke profile owned by a certain category

(class) or a person who is registered in the database (Teh et al., 2013). There are

some broadly used modelling techniques that could be mentioned such as Bayesian

(Bleha et al., 1990; Pavaday and Soyjaudah, 2007; Giot et al., 2009c) (where, Giot
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et al. (2009c) obtained EER equals to 4.28%); Hidden Markov Model (Rodrigues

et al., 2005; Montalvao et al., 2006; Joshi et al., 2012) (where, Rodrigues et al.

(2005) obtained EER equals to 3.6%); Gaussian Density Function (Hosseinzadeh

and Krishnan, 2008; Hwang et al., 2009; Teh et al., 2010) (where, Hosseinzadeh

and Krishnan (2008); Hwang et al. (2009) obtained EER equals to 4.4% & 1%,

respectively); and weighted probability (Monrose and Rubin, 1997; Yang et al., 2006)

(where, Monrose and Rubin (1997) reported a correct identification rate of 90%).

An additional approach is the cluster analysis, which is technique used to gather

all vectors containing identical feature patterns. The main concept behind this is

to obtain information pertaining to keystroke feature data so that it can create a

reasonable homogeneous cluster (Maisuria et al., 1999), and some such as K-mean

(Kang et al., 2007; Pedernera et al., 2010; Al Solami et al., 2011) (where, Kang et al.

(2007) obtained EER equals to 3.8%); and fuzzy c-means (Mandujano and Soto,

2004) belong to this category.

By using statistical approaches, Teh et al. (2013) reported that the most prom-

inent method among researchers in the keystroke domain is the distance measure

technique. However, there are several ways to compute the distance score, some of

which can be mentioned, but, not confined to Euclidean (Hammon and Young, 1989;

Villani et al., 2006; Singh and Arya, 2011) (where, Villani et al. (2006) reported

a correct identification rate of 97.9%); Manhattan (Rybnik et al., 2008; Killourhy

and Maxion, 2009b) (where, Rybnik et al. (2008) obtained EER equals to 7.1%);

Bhattacharyya (Sim and Janakiraman, 2007; Janakiraman and Sim, 2007) (where,

Janakiraman and Sim (2007) reported a correct identification rate of 86.47%); Ma-

halanobis (Killourhy and Maxion, 2008); Degree of Disorder (Bergadano et al., 2002;

Xi et al., 2011; Rahman et al., 2011) (where, Rahman et al. (2011) obtained EER

equals to 10%); and Direction Similarity Measure (where, Teh et al. (2011) obtained

EER equals to 1.401%).

1.6.2 Neural networks

Neural Networks or Artificial Neural Networks (NN/ANN) are versatile non-

linear statistical data modelling tools and it is a method that imitates the biological

neurons for information processing (Zurada, 1992; Patterson, 1998). NN is able to

supply an approximation of the parameters without having specific understanding

of all contributing variables (Pavaday and Soyjaudah, 2007). NN is alleged has
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the capacity of generating better results than the statistical approaches (Crawford,

2010). Nevertheless, according to Teh et al. (2013), NN classifiers need both genuine

and impostors keystroke features in order to the train the network. Furthermore,

Cho and Han (2000); Wang et al. (2012) claimed that it would be an unrealistic

to stand high chance of obtaining the impostors’ samples at the initial enrolment stage.

Several commonly used neural networks are radial basis function network (Obaidat,

1995; Sulong et al., 2009) (where, Obaidat (1995) obtained EER equals to 0%); learn-

ing vector quantisation (Obaidat and Sadoun, 1997; Lee and Cho, 2007); multi-layer

perceptron (Mantyjarvi et al., 2002; Pavaday and Soyjaudah, 2007, 2008) (where,

Mantyjarvi et al. (2002) reported a correct identification rate of 78%-99%); and

self-organising map (Sinthupinyo et al., 2009; Dozono et al., 2011).

1.6.3 Fuzzy logic

Fuzzy logic works by using multi-valued logic to design problems with ambiguous

data (De Ru and Eloff, 1997). The main element here is to build decision frontier

associated to the training data with membership functions and fuzzy rules (Zahid

et al., 2009). Once the feature area has been determined, the category level that a

test template is associated with, can then be identified depending on the computation

of membership values. The use of fuzzy logic in keystroke dynamics authentication

are particularly in (De Ru and Eloff, 1997; Mandujano and Soto, 2004; Loy et al.,

2005).

1.6.4 Genetic algorithm

Heuristics search such as Genetic Algorithm (GA) (Sung and Cho, 2005; Revett

et al., 2005a) (where, Revett et al. (2005a) reported a correct identification rate of

95%), is used to compute the weights of each retrained criterion. It is based mostly

on the notion, where the natural evolution computing is investigated by researchers

in search for optimising or enhancing system’s accuracy performance (El Abed et al.,

2013). A remarkable element of GA is said that it has a very high efficiency to

remedy predicaments search and devoid from getting caught in local extremum

(El Abed et al., 2013). Besides GA, Particle Swarm Optimisation (where, Azevedo

et al. (2007a) obtained EER equals to 1.57%), and Ant Colony Optimisation (Dorigo,

2006) are methods, which have been imposed in order to choose the most optimised
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keystroke pattern for classification, and hence increase the classification accuracy

performance.

1.6.5 Support vector machine

Yet, another widely recognised classifier adopted by numerous studies (Sang et al.,

2005; Martono et al., 2007; Li et al., 2011) (where, Li et al. (2011) obtained EER

equals to 11.83%) that differentiates impostors’ characteristics simply by forming

a perimeter that would segregates normal patterns from abnormal (in this case,

considered as intruders), and this practice is known as Support Vector Machine

(SVM) (Steinwart and Christmann, 2008).

An SVM is a supervised learning algorithm (Vapnik, 1998) that demonstrates

encouraging outcomes for both authentication and identification, and Banerjee and

Woodard (2012) had considered it to be a vital algorithm towards future algorithms

that needs to be benchmarked. This technique generates the least possible area that

encompasses the greater part of feature data associated with a certain class (category)

(Teh et al., 2013). Yu and Cho (2004) used a three step approach to enhance the

performance of keystroke identification, where their SVM novelty detector attained

an identification rate of 99.19% with average error rate equals to 0.81%. Giot et al.

(2009b) suggested an approach that could recognise users by using an SVM and

attained an identification rate of 95% with average error rate equals to 13.45%.

Several other researchers had used similar approach namely Hocquet et al. (2007)

obtained EER equals to 4.5%; and Giot and Rosenberger (2012b) obtained EER

equals to 15.28%.

SVM is alleged to have a challenging performance as opposed to neural network

with fewer computational intense according to Yu and Cho (2004), however, the

question remains is to whether the performance would have an affect if the size of

the feature is very large (Lee et al., 2007). An overview of the state-of-the-art is

shown in Table 1.1.

1.7 Conclusions

Having mentioned some of the studies made, keystroke dynamics however, suffers

numerous benefits and minimal drawbacks as illustrated in Table 1.2.
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Advantages Disadvantages

Uniqueness: timing of keystroke are
measured up to milliseconds precision
by software (Senk and Dotzler, 2011);
great amount of effort given if one ought
to mimic one’s keystroke pattern.

Lower Accuracy : variations in typing
rhythm caused by injury, fatigue, or dis-
traction; other modalities suffer similar
mishap with different factors (Maisuria
et al., 1999).

Low Implementation and Deployment
Cost : keyboard device; software applic-
ation.

Lower Permanence: human typing pat-
tern continuously change overtime to-
wards a password, maturing typing pro-
ficiency, adaptation to input devices,
and other environmental factors.

Transparency and Non-invasiveness:
none or minimal user’s behaviour al-
teration due to software capture; users
are protected unknowingly by an extra
level of authentication.

Prone to Attack : it could possibly be
attacked with a special software-based
keyloggers, where these software are typ-
ically designed to focus on the prospect-
ive computer’s software by recording
(or logging) the keys hit on a keyboard,
without user’s awareness.

Increase Password Strength and
Lifespans: users can focus more on
creating password to increase strength
than given different sets of password;
password lifespan can be increased.
Replication Prevention and Additional
Security : random password guessing
attack becoming obsolete (De Ru and
Eloff, 1997); stolen credentials are in-
significant, if compromised can easily
regenerate template update.
Continuous Monitoring and Authentica-
tion: keystroke dynamics offers a way to
continuously validate (Flior and Kowal-
ski, 2010) legitimate user’s identity; key-
stroke feature can be constantly mon-
itored and reevaluated.

Table 1.2: Advantages and disadvantages of keystoke dynamics deployment (modified
from Teh et al. (2013)).

Keystroke dynamics has some deficiencies as a biometric authentication system,
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which suffers high intra-class variability. Seemingly, we can see that over the years,

researchers are striving to rectify these defects within the systems by constantly

improving their performances. Even though, this class of behavioural biometric

modality is considered as unsuitable primary method of authentication, somehow, it

can be utilised as a complementary to existing authentication systems. It may be

counted as secondary or tertiary approach (Killourhy, 2012). In Table 1.2, we noticed

that there are more benefits than drawbacks to keystroke dynamics. Therefore, it

still is beneficial to consider it as one of the security measures approach to signify

protection against impostors.

In the next chapter, the focus is on the acquisition process and reference genera-

tion in order to enhance performances.



Chapter 2

Enrolment Optimisation

This chapter describes some contributions whose aim is to optimise the enrol-

ment process of keystroke dynamics systems. We first introduce the chapter

in Section 2.1, which highlights some of the previous/existing benchmarks in

the area. In Section 2.2, we present the proposed benchmark dataset and its

application to this definition. Furthermore, we present an interrelated study in

order to review if the selection of a password has an impact on the difficulty

in typing, which we called ‘password typing complexity’ discussed in Section

2.3 and the validation of the proposed metric in Section 2.4. We illustrate

in Section 2.5 how the complexity of passwords may affect the performance

of keystroke dynamics in a comparative analysis study. We conclude with a

discussion in Section 2.6.

2.1 Introduction

I
n general, keystroke dynamics authentication systems involve a keyboard and an

application for the capture and processing of the biometric information. Users

are required to type on a keyboard running a dedicated application. Each capture

is stored in a database within the application in the form of keystroke or timing

features for all correct and incorrect entries. These features are composed of several

timing values that are extracted, which is the pattern vector that is used for the

27
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analysis.

2.1.1 Keystroke data capture

For any keystroke capture, the data are the keystrokes timing pattern. Hold

time and latency are raw features that contain in the database. Table 2.1 illus-

trates the keystroke dynamics data, consisting of information from five different

features/patterns or timing vectors of keystrokes obtained from each typing sample

i.e. PP, RR, RP, PR, V (Giot et al., 2009a). For the analysis, keystroke template V

is used for each of the soft category. Those features are the timing differences between

two events of these kinds (refer to Figure 2.1): (i) press/press, (ii) release/release,

(iii) release/press, (iv) press/release, and (v) an additional vector resulting from

concatenation of the previous ones. The total typing time of the password is also

available.

1. ppTime (PP) : the latency of when the two buttons (keys) are pressed;
2. rrTime (RR) : the latency of when the two buttons (keys) are released;
3. rpTime (RP) : the latency of when one button (key) is released and the other

is pressed;
4. prTime (PR) : the duration of when one button (key) is pressed and the other

is released;
5. vector (V) : the concatenation of the previous four timing values.

Table 2.1: Keystroke timing patterns.

Figure 2.1 – Keystroke typing features.
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2.1.2 Benchmark

Of all the present biometric modalities, authentication systems based on key-

stroke dynamics are specifically appealing for functionality factors. A vast amount

of research had been conducted in the last decades, where researchers are constantly

suggesting new algorithms to boost the productivity of this biometric modality. We

propose in this thesis a benchmark testing suite composed of a database containing

multiple data (keystroke dynamics templates, soft biometric traits . . . ), which are

available for the research community allowing them to further perform the evaluation

of keystroke dynamics based systems.

In an effort to examine the keystroke dynamics systems, it is truly essential to

create new keystroke dynamics benchmark datasets, which can help other studies.

Generally, keystroke dynamics datasets are used in an offline way, however, the

recognition performance a particular method depends on the datasets (Killourhy

and Maxion, 2011). In that paper, authors analyse that these variations can be due

to: (i) the difference in the population of the various datasets; or (ii) the way the

individuals are asked to type the required password in the acquisition tool of the

dataset. In this thesis, we are interested in the latter case.

2.1.3 Public keystroke dynamics datasets

Different datasets can be found in the literature. Listed here is an information

of the public ones. Firstly, Filho and Freire (2006) have used similar keystroke

databases in several of their articles, and hence, a total of four different databases

were created. The highest number of users in a database is 15 and they provided at

least 10 samples each. However, majority of them were constructed under 2 distinct

sessions distance by a week/month (depending on the database). Each database

contains raw data and composed of couples of ASCII codes of the pressed key and

the elapsed time since the last key down event. However, the release of a key is not

tracked. Each database is stored in raw text files. These databases are available at:

http://itabi.infonet.com.br/biochaves/en/download.htm.

Next, Killourhy and Maxion (2009a) propose a database of 51 users containing

400 samples taken in 8 sessions (50 inputs per session) with a minimum of a day

delay between each session. This dataset has the largest amount of samples for each

user, but, the counterpart is that most of them are typed within a short timeframe.

http://itabi.infonet.com.br/biochaves/en/download.htm
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Every biometric data has been taken when keying this password: “.tie5Roanl”. The

database includes the following features: hold time; interval between two pressures;

interval between the release of a key; and the pressure of the next one. The database

is available at: http://www.cs.cmu.edu/~keystroke/.

Thirdly, considering the number of users, Giot et al. (2009a) propose the most

vital public dataset from the literature containing 133 users. Out of all the users,

100 of which supplied samples with a minimum of 5 sessions. Every user typed

the password “greyc laboratory” 12 times on 2 distinct keyboards for each session

(i.e. 6 times on each keyboard). Thus, a total of 60 samples are provided for 100

users that participated to each session. Two extracted features: (i) hold time and

latencies; and (ii) raw data are available in the database. The database is available

at: http://www.ecole.ensicaen.fr/~rosenber/keystroke.html.

Finally, Allen (2010) has created a public keystroke dynamics database using a

pressure sensitive keyboard. As many as 104 users contain in database, somehow,

only 7 of them supplied a substantial amount of data (between 89 and 504 samples),

whereas the remaining users merely provided between 3 and 15 samples. Three

various passwords have been typed: “pr7q1z”, “jeffrey allen” and “drizzle”. The

database provides the following raw data: key code; pressure time; release time;

and pressure force. The database is available at: http://jdadesign.net/2010/04/

pressure-sensitive-keystroke-dynamics-dataset/.

We have seen that several databases for static password authentication with

keystroke dynamics are publicly available. Although, no public dataset has been built

with a different couple login/password for each user. Table 2.2 presents a summary

of these public datasets. From the table, we can clearly see that different datasets

have various number of users (ranging from 7 to 133) and each has its own amount

of samples collected over a period of sessions.

Although, several databases have been publicly proposed, there is no explanation

given on the way the text has been proposed to the volunteer. We can suppose that

100% of the acquisition software present a written text on the screen. We think this

is an important information to provide. In previous study such as in (Clarke and

Furnell, 2007), the authors encountered bad performances mainly because of the way

the text to type was presented by displaying a fixed string of texts and numbers on

a mobile phone screen. In this case, the users have some difficulties to remember the

http://www.cs.cmu.edu/~keystroke/
http://www.ecole.ensicaen.fr/~rosenber/keystroke.html
http://jdadesign.net/2010/04/pressure-sensitive-keystroke-dynamics-dataset/
http://jdadesign.net/2010/04/pressure-sensitive-keystroke-dynamics-dataset/
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Dataset Type of
password

Information Number
of user

Samples
per user

Session

(Filho and
Freire, 2006)

Various Press events 15 10 2

(Killourhy
and Maxion,
2009a)

1 fixed string Duration and 2
latencies

51 400 8

(Giot et al.,
2009a)

1 fixed string Press and re-
lease events.
Duration and 3
latencies

133 60 5

(Allen, 2010)
3 fixed strings Press and re-

lease events and
pressure

7/97 (89-504) /
(3-15)

few
months

Table 2.2: Summary of keystroke dynamics datasets (Giot et al., 2012c).

given password to type.

The next section presents the acquisition process of the proposed benchmark

dataset. We detail the process and protocol involved in the creation of a new biomet-

ric benchmark database called “GREYC-NISLAB Keystroke”. We use it further to

analyse the impact of the way of presenting the text on the recognition performances.

2.2 Proposed benchmark

The purpose of creating this new benchmark is primarily due to the results

presented in the reference (Giot et al., 2012c). Creating such a database allows to

facilitate and provide reproducible research. The idea here is to obtain an in case of

similarity scale (large-scale) dataset as sample population i.e. to collect data of over

100 users in order to signify the relevance of this research. But, in order to carry out

the experiment, multiple criteria or requirements have to be defined first such as:

• the minimum number of users;

• the number of sessions;

• the number of passwords/passphrases;

• the length of each password/passphrase;
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• the number of times to key-in per password/passphrase;

• the type of keyboard(s) to use (i.e. AZERTY/QWERTY);

• the environmental capture condition (i.e. lighting, supervised/unsupervised).

We define all these points in the following sections.

2.2.1 Acquisition protocol

An experiment and collection of data have been carried out in two locations:

France and Norway. Nonetheless, the subjects come from 24 different countries

(studying/residing in one of the concerned countries). A total of 110 people had

volunteered to participate in this data capture: 70 in France and 40 in Norway. They

are from various background: students, researchers, faculty members, administration

staff, and others (housewifes/non-working people). Additionally, we keep some

information on the users for soft biometric studies, such as gender, age, handedness,

number of hands involved during typing. Bertacchini et al. (2010); Giot et al. (2012a)

had also used similar approach, but, with different soft information. Having made a

video recording during the data collection session, it may be possible to later exploit

the video capture to see where users have made typing errors, or which finger does

the use to type a particular letter. However, this information is not considered in

this study.

According to Giot et al. (2012c), known words give better performances. Since

our study takes place both in France and Norway, we have chosen passphrases

(hereinafter referred to as known passwords or passwords), namely: “leonardo di-

caprio”, “the rolling stones”, “michael schumacher”, “red hot chilli peppers”, and

“united states of america”. These known passwords have been chosen because of

the fact that all people from both countries concerned know these names, there-

fore, remembering them is relatively easy. These 5 known passwords presented,

which are between 17 and 24 characters (including spaces) long, denoted P1 to P5.

All the participants are asked to type the 5 different known passwords 20 times

(10 times with one hand and 10 times with two hands). Those known passwords

are only given at the time of capturing exercise and are displayed on screen. To

capture the biometric data we used GREYC Keystroke software (refer to Figure

2.2) developed at GREYC Laboratory, downloadable from the following address:
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http://www.ecole.ensicaen.fr/~rosenber/keystroke.html.

Figure 2.2 – GREYC keystroke software (Giot et al., 2009a).

This software, described in (Giot et al., 2009a), is deemed relevant to create

a new benchmark. Hence, this downloadable application enable us to create our

own dataset and gather some information about the users, namely: (i) the way of

typing (with one or two hands); (ii) the gender; (iii) the age category (below or 30

and above); and (iv) the handedness (right-handed or left-handed). Considering

soft biometric information, we define two classes denoted C1 and C2, for each soft

category, namely: way of typing (hand), gender, age and handedness as follows:

• Way of typing : C1 = One Hand: only one hand is used (right/left depends

if the user is right/left-handed person); C2 = Two Hands: both hands are used.

• Gender : C1 = Male; C2 = Female.

• Age : C1 = < 30 years old; C2 = ≥ 30 years old.

• Handedness: C1 = Right-handed; C2 = Left-handed.

Here, for hand category, we use all the data (typing with one or two hands).

Whereas for the other soft biometric information, we only use data corresponding to

the usual way of typing, that is two hands. We used two desktop keyboards as shown

in Figure ?? (French keyboard for users in France and Norwegian keyboard for users

in Norway) i.e. AZERTY and QWERTY (this is not a classical QWERTY keyboard,

however, we do not use specific Norwegian keys), respectively. The difference between

these two keyboards is that the ‘A’ and ‘Q’ have swapped places, as well as the ‘W’

http://www.ecole.ensicaen.fr/~rosenber/keystroke.html
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and ‘Z’. Furthermore, is in the AZERTY keyboard the ‘M’ located to the right of the

‘L’ and not on the lower row to the right of the ‘N’. The known passwords used in

our experiments do not contain the letters ‘q’, ‘w’, and ‘z’. Therefore, the influence

of the 2 swaps on the keyboards seems limited, at the very least there is no influence

on the complexity. However, the location of the ‘M’ seems to result in a larger

difference. Further justification on the complexity is described in Section 2.3. Table

2.3 shows the statistics distribution of the capture process of the benchmark database.

2.2.2 Data collection process

During the data collection process, a few metadata such as gender, age and

handedness are also collected from the participants. Once all this information has

been obtained, each user has to type each passphrase Pj , j = 1..5 for each hand class

Ci (i = 1, 2, C1 = one hand, C2 = 2 hands), 10 times without errors. If there are

typing errors, the current entry has to be cancelled and the user has to resume until

10 successful entries for both classes of hand have been recorded into the system. For

one hand capture, if the user is a right-handed person, he/she only need to use the

right hand to key-in the known passwords in a normal typing pace, and similarly

for the left-handed people. At the end of the data collection, a total of 11000 data

samples (= 5 passwords x 2 classes of hand x 110 users x 10 entries) are in the

proposed biometric database. After the data collection process, the raw features are

stored in the keystroke database.

2.2.3 Keystroke typing errors

The number of mistakes is quite huge for most of the volunteers. Table 2.4

presents an overview on the number of mistakes made by users. Notice, in both

countries concerned, male users make the most mistakes with an average of 18 for

France and 17 for Norway for 5 known passwords compared to females with an

average of 15 and 10 mistakes, respectively. For the age category, however, users

below the age of 30 (< 30) have the most number of mistakes with an average of

19 for both France and Norway for 5 known passwords as opposed to users aged 30

and above (≥ 30) with an average of 16 for France and 12 for Norway, respectively.

These mistakes can be due to several reasons:

• the passphrase is quite long to type (between 17 to 24 characters), and according

to Hosseinzadeh and Krishnan (2008) typing mistakes increase when using



2.2. PROPOSED BENCHMARK 35

Information Description

Number of users 110

Users from France 70

Users from Norway 40

Users’ country of origin France, Norway, Netherlands, Germany, Denmark,
Spain, Greece, Ukraine, Iran, Czech Republic,
Serbia, Syria, Lithuania, Bulgaria, Mali, Lebanon,
India, Vietnam, Malaysia, Indonesia, China, Japan,
New Zealand and United States of America.

Gender 78 males (47 from France, 31 from Norway); and
32 females (23 from France, 9 from Norway)

Age range Between 15 and 65 years old

Age classes < 30 years old (37 males, 14 females); and
≥ 30 years old (41 males, 18 females)

Handedness 98 right-handed (70 males, 28 females); and
12 left-handed (8 males, 4 females)

Number of known passwords 5

Database sample length 17 characters (“leonardo dicaprio”)
18 characters (“the rolling stones”)
18 characters (“michael schumacher”)
22 characters (“red hot chilli peppers”)
24 characters (“united states of america”)

Database sample size 11,000 data
(= 5 passwords x 2 classes x 110 users x 10 entries)

Typing error Not allowed

Controlled acquisition Yes

User profession Students, researchers, faculty members, administration
staff, others (housewifes/non-working people)

Keyboard 2 external keyboards: AZERTY & QWERTY

Acquisition platform Windows XP & GREYC keystroke software

Table 2.3: Distribution of the benchmark database.
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more than 8 characters;

• individuals are not used to certain combination between two letters (digraph)

because he/she is from different part of the world that rarely uses those letter

combinations;

• users want to type faster than they are able to do;

• users tend to get tired/bored because they are required to type 100 successful

entries (not including the number of mistakes made) i.e. on average users

typed 117 entries in 20 minutes;

• users can be disturbed by the environment;

• users have to type a pre-defined passphrase spontaneously.

Number of mistakes
Country Gender P1 P2 P3 P4 P5 Total Average per user

France
Male 182 133 183 184 188 870 18

Female 57 59 65 86 89 356 15

Norway
Male 139 65 105 119 117 545 17

Female 13 9 26 18 25 91 10

Number of mistakes
Country Age P1 P2 P3 P4 P5 Total Average per user

France
< 30 100 93 117 124 135 569 19
≥ 30 139 99 131 146 142 657 16

Norway
< 30 104 39 80 81 96 400 19
≥ 30 48 35 51 56 46 236 12

Table 2.4: Summary of the number of typing errors made by users based on gender
and age categories for each known password P1 to P5, for the respective countries.

In our experiment, the EER results for each respective known passwords proposed

in our dataset (Syed Idrus et al., 2013a) are shown in Table 2.5. We also summarise

the results obtained in other datasets reviewed in the literature.

We further analyse by linking between the length of the known password and the

EER value obtained with the number of mistakes in Section 2.3. Hence, we illustrate

exactly how the complexity of passwords influence the overall performance results of

keystroke dynamics authentication systems.
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2.3 Password typing complexity metric

In the past, the complexity of a word has been defined based purely on the layout

of the keyboard. In particular, the physical distance between the keys related to two

consecutive characters in a password is used.

The proposed password typing complexity metric is related to the time it takes

to travel from one key on the keyboard to another. Thus, the further the two keys

are apart, the more complex the key combination is. The complexity of a full word is

the sum of the complexities of the digraphs in a word. An example of the complexity

metric given previously in Giot et al. (2012b) seems to assume that an individual is

using a single finger to type the password. Furthermore, is that the uncertainty (and

hence complexity) of moving to the next letter increases with the distance. However,

the number of 1 finger typist is low in a time when a personal computer has become a

commodity in each household. Generally, people use 2 hands to type on a keyboard,

and the number of fingers used is more often near 10 then near 2. Not everybody

use all their 10 fingers while typing, but, most people use 2 or 3 fingers per hand

(besides the thumbs), and hence it is about 6 to 8 fingers in total. For this reason, the

complexity metric in (Giot et al., 2012b) can be improved. The proposed complexity

metric depends on the following criteria:

1. The layout of the keyboard;

2. The frequency of digraphs occurring in English;

3. The number of consecutive letters to be typed with each hand;

4. The length of the word.

We elaborate on each of these in the following subsections. Note that we restrict

the typing of words that only consist of lower case letters. Therefore, we exclude the

capitals, numbers or special characters in the experiments.

2.3.1 Keyboard layout

We assume that people use 2 hands while typing. Although, not everybody use

10 fingers, however, we still assume that the actual use of trained typists are highly

similar to this. In Figure 2.3, an ordinary QWERTY keyboard is displayed. In our

complexity measure, we divided the keyboard into 7 areas as shown in Figure 2.3.
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Figure 2.3 – QWERTY keyboard layout (source from Wikipedia (2012)).

The complexity based on the layout of the keyboard (CP1 as in Equation 2.1)

represents the complexity of using the fingers to type two consecutive keys. If both

keys are typed with different hands, then the complexity is low. The complexity

increases when using the same hand, and even more if the same region of the keyboard

is used. The value of kb(k1, k2) defines the complexity of typing the digraph k1k2,

based on the layout of the keyboard. The total amount of complexity based on the

layout of the keyboard is defined in Equation 2.1.

CP1 =
∑

i=1..n−1

kb(ki, ki+1), (2.1)

The complexity of a particular digraph k1k2 is defined as a function of the areas

on the keyboard, as marked in Figure 2.3. The complexity is based on moving the

fingers within each of the areas. For k1 and k2 in different areas the complexity

kb(ki, ki+1) = 0. Also for typing the same key twice, i.e. actually not moving the

finger, the value of kb(k1, k1) = 0. For the complexity for moving a finger inside one

of the areas, the following rules apply:

1. If the keys are on the same row, then the complexity kb(ki, ki+1) equals either

a) 0 if the movement is away from the middle of the hand, or

b) 0.2 if the movement is towards the middle of the hand.

2. If the keys are on different rows, then the complexity kb(ki, ki+1) equals either

a) 0 if the movement is straight up or down, or

b) 0.5 if the movement is sideways and away from the middle of the hand, or

c) 0.8 if the movement is sideways and towards the middle of the hand.
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To clarify the above rule, the values of kb(ki, ki+1) inside area 1 (with keys ‘A’, ‘S’,

‘Q’, and ‘W’) is presented in Table 2.6. We see for example that kb(A, S) = 0.2, while

kb(S,A) = 0. This difference is a result of the fact that the fingers move towards

the middle of the hand, so for the pink and ring finger of the left hand, this means

moving to the right.

k1 ↓ k2 → A Q S W

A 0 0 0.2 0.5
Q 0 0 0.8 0.2
S 0 0.5 0 0
W 0.5 0 0 0

Table 2.6: Example of kb(., .) values in area 1.

2.3.2 Digraph frequency

People get more fluent in typing particular key combinations when they have

more practice. In this study, we assume that native English speakers, or at the very

least people who use English on a daily basis while using the keyboard. Due to more

frequent use of certain key combinations, the user gets more fluent in typing them,

hence these key combinations appear to be less complex to the user. Combinations

like ‘th’ or ‘in’ occur more frequent in the English language than combinations like

‘qi’ (as in ‘qiviut’) or ‘eh’ (as in ‘hedgehog’). From this phenomenon, we derive

that the complexity increases if the frequency decreases. Various frequency tables of

digraphs in the English language exist, all with minor differences to each other. We

have decided to use the tables from (Jones and Mewhort, 2004), where 5 different

sources are used to calculate the frequency table. The most occurring digraph in this

frequency table is ‘th’ with a frequency of 2.76%. We then normalise the frequency

table, such that the highest value is equal to 1 and the lowest value is close to 0.

We perform this by dividing all values by the highest occuring frequency, hence the

frequency of ‘th’. We then used the following formula to calculate the influence of

the digraph frequency on the complexity of a word:

CP2 =
∑

i=1..n−1

1− freqnorm(ki, ki+1), (2.2)
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where n is the length of the word, ki is the ith letter and freqnorm(ki, ki+1) repres-

ents the normalised frequency of the digraph kiki+1.

2.3.3 Consecutive letters with each hand

Typing becomes easier if we can switch between hands often. When typing for

example ‘an’, then when the left hand types ‘a’, the right hand can already “prepare”

to next type the ‘n’. On the other hand, when typing ‘ta’, then the left hand must

perform both actions. In our metric, we assume that typing a digraph with one hand

might not really pose a problem, but, if more than 2 letters need to be typed by

the same hand, then this increase the complexity of typing. For example, the word

“state” needs to be fully typed with the left hand and might be considered more

complex than for example the word “paper”. If three or more consecutive letters

have to be typed by the same hand, then the complexity increases. In fact, for each

consecutive r > 2 letters with the same hand, the additional complexity becomes

(r − 2). For example, the word “statement” has 5 consecutive letters with the left

hand, and hence the additional complexity becomes 3. For the word “stability”, it

has 4 consecutive letters with the left hand and 3 consecutive letters with the right

hand, therefore, the additional complexity becomes 2 + 1 = 3.

In general, if there are l runs of at least 3 consecutive letters with either left or

right hand and the lengths of these runs are r1, r2, . . . , rl, then the following formula

represents the additional complexity due to these consecutive letters:

CP3 =
∑
i=1..l

(ri − 2). (2.3)

2.3.4 Length of the word

It is clear that the length of the word influences the complexity. It is also clear

that a short word like “pet” is less complex than a long word like “interacting”. At

this point, we stress that we are considering only known passwords, where various

words are separated by spaces. If a password consists of k words of lengths ni for

i = 1..k, then the part of the complexity related to the length of the word is simply



42 CHAPTER 2. ENROLMENT OPTIMISATION

defined as the average length of the words as follows:

CP4 =
1

k
·
∑
i=1..k

ni (2.4)

2.3.5 Total complexity

The total complexity of a password is not defined as the sum of the average

word length (CP4) and the sum of the complexities CP1, CP2, and CP3 per digraph, or:

CP =
CP1 + CP2 + CP3

#digraph
+ CP4, (2.5)

where the number of digraphs can be calculated as #digraphs =
∑

i=1..k (ni − 1),

where the ni are as defined in Section 2.3.4.

2.4 Validation of the proposed metric

In this section, we verified the validity of the proposed password typing complexity

metric based on experiments performed at research institutes both in France and

Norway. In the experiments, the information about duration and latencies related to

the typing of the known passwords are also stored. Recall that the participants had

to type each of the 5 known passwords 10 times without errors or use of backspace.

The number of incorrect typings is also recorded (as described in Section 2.2.3). The

known passwords are given in Table 2.3. After each session, the participants are

asked to which of the known password that they felt was the most difficult to type.

Of the 110 participants, approximately 95% stated that Password 3 was the most

difficult, while remaining 5% felt that it was Password 1. Hardly any participants

felt that either of the other passwords considered hardest to type.

In Table 2.7, the entropy of the known passwords is given. The entropy is directly

proportional to the length of the password, which might make it less suitable to

measure the complexity of a password. If L denotes the length of the password and
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N denotes the number of symbols that can be used in a password, then the entropy

is equal to L · log2(N). In our case, we used N = 27 because we used the 26 lower

case letters and the space.

Nr Password Entropy

1 leonardo dicaprio 80.8
2 the rolling stones 85.6
3 michael schumacher 85.6
4 red hot chilli peppers 104.6
5 united states of america 114.1

Table 2.7: List and entropy of known passwords.

In Table 2.8, the typing complexity of the passwords are presented. In this

table, the second and fourth column represents the calculated complexity according

to new complexity metric from Equation 2.5. The complexity for the QWERTY

keyboard in column 2 and for the AZERTY keyboard in column 4 are actually

almost the same. Note that the actual values in this table are not as relevant as the

ranking of the known passwords according to the complexity metric. We can see that

Passwords 1 and 3 are more complex than three others according to the proposed

complexity metric. After we completed the experiments, the users indicated indeed

primarily that Passwords 1 and 3 are the most complex, which then complies with

the data in the table. Columns 3 and 5 represent the complexity according to the

measurement in (Giot et al., 2012b) for both the QWERTY and the AZERTY key-

board. We can see here that this complexity measure has a different ranking. In both

cases, Password 1 and 5 are considered the most complicated due to the highest values.

Password QWERTY AZERTY
nr Eq. 2.5 (Giot et al., 2012b) Eq. 2.5 (Giot et al., 2012b)

1 8.9 62.9 8.9 64.4
2 6.1 32.1 6.1 32.1
3 9.4 47.2 9.4 53.0
4 5.5 41.1 5.9 41.1
5 6.0 53.0 6.3 59.4

Table 2.8: Typing complexity of passwords.

We considered that people might be more fluent when typing with their dominant

hand, i.e. find that typing with their non-dominant hand is more slightly difficult.
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For this reason we adjusted the kb(., .) values in Equation 2.1, so that some com-

plexity is added when going from one area to another. Also in that case, typing

multiple letters consecutively with the dominant hand (as part of Equation 2.3) did

not add to the complexity anymore. In other words, the summation in Equation 2.3

is only of the runs in the non-dominant hand. In Table 2.9, the third and fourth

column (users from Norway), and sixth and seventh (users from France) represent

the complexity values for people who are either left-handed or right-handed. We

can see that although the absolute values differ slightly based on hand dominance,

it is clear that in all cases Passwords 1 and 3 are the most complicated and three

remaining ones have similar complexity.

QWERTY AZERTY
Nr Both Left Right Both Left Right

1 8.9 8.9 9.0 8.9 8.9 9.0
2 6.1 6.2 5.9 6.1 6.2 5.9
3 9.4 9.4 9.3 9.4 9.4 9.3
4 5.5 5.8 5.7 5.9 6.3 6.0
5 6.0 6.0 6.3 6.3 6.4 6.5

Table 2.9: Password typing complexity when considering hand dominance.

The number of incorrect typings of each of the known passwords is given in

column 2 of Table 2.10. As longer passwords have more places where a user can

make a mistake, we have divided the number of incorrect typings by the number of

characters in the password to get the third column. Although this column does not

follow the exact order as the complexities in Table 2.8, it does show that Passwords

1 and 3 again do have a higher error rate than the other three passwords.

Nr Incorrect Per character

1 391 23.0
2 266 14.8
3 379 21.1
4 407 18.5
5 419 17.5

Table 2.10: Incorrect password typings.



2.5. PERFORMANCE VERSUS COMPLEXITY 45

2.5 Performance versus complexity

In this section, we take a closer look at the data collected in the experiments.

Here, we want to see if the typing complexity of the 5 known passwords (refer to Table

2.3) influences the performance of the keystroke dynamics system. As mentioned

earlier, each participant typed each of the known passwords 10 times. We can create

a template for each user by calculating the mean and standard deviations for the

latencies related to a password. For example, the password “leonardo dicaprio” has

17 characters, therefore, we have 16 latencies. Given the 10 typings of a user, we have

10 vectors of length 16 containing these latencies. We calculate a template containing

of 16 pairs (µi, σi) containing the mean and standard deviation for each of the 16

latencies. In this section, we use this password to clarify the ideas, but, report the

findings for all 5 known passwords. As only 10 instances is not really sufficient to split

the data to create a high quality template and have sufficient data left for testing, we

adjusted our analysis slightly. In Section 2.5.1, we first calculated the performance of

the system by comparing templates, where each template is based on all 10 samples

of a user. In Section 2.5.2, we use each data sample both to create a template

for the genuine user and as a test vector for an impostor user. For completeness

sake, we also analyse the data by using 5 of the 10 instances to create a template

and the remaining for testing, but, given these numbers, the conclusions on the

performance of the system for the various known passwords cannot be extended to

a system where sufficient data is available. This analysis can be found in Section 2.5.3.

We are well aware neither of these analysis methods are perfect and the results in

the remainder of this section should not be taken as absolute values that represent

the performance of the keystroke dynamics system. However, they indicate a ranking

of the known passwords in term of performance in a case where a sufficient amount

of data is available.

2.5.1 Comparison based on templates

The methodology adopted in the performance analysis in this research is by

comparing the templates of two different users. We do assume that the latencies

approximately have a normal Gaussian distribution with the mean value µ and

standard deviation σ as in the template. Given the known 68-95-99.7 rule, we know

that 68%/95%/99.7% of the measurements of the genuine user are within 1/2/3

standard deviation σ from the mean µ. Furthermore, we use the following simple
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distance metric between a template T = ((µ1, σ1), . . . , (µ16, σ16)) and a test input

t = (t1, . . . , t16). We calculate D = dist(T, t) =
∑

i=1..16 ∆i, where

∆i =

{
0 if |ti − µi| ≤ k · σi
1 if |ti − µi| > k · σi

(2.6)

where k = 1, 2, 3. In the description below, we assume that k = 1, but, the results

are summarised for all 3 values of k. In Figure 2.4, we see that the distribution of

a single latency of the genuine user is in green and the distribution of that same

latency of the impostor user is in blue. The red lines indicate the ranges of values

that result in ∆i = 0. The size of blue area in the figure does now represent the

probability that for that given latency the impostor value is accepted (i.e. ∆i = 0).

Obviously, this probability needs to be calculated for all of the 16 latencies in the

password.

Figure 2.4 – Overlay of 2 normal distributions.

In our analysis, templates are compared with each other instead of actually

comparing a template to a test input. Given 2 normal distributions of the ith latency:

one with mean µ
(1)
i and standard deviation σ

(1)
i ; and one with mean µ

(2)
i and standard

deviation σ
(2)
i . It is easy to calculate the probability that a measurement of the

second normal distribution falls within the range of (µ
(1)
i − σ

(1)
i ..µ

(1)
i + σ

(1)
i ). If this

probability is denoted by pi, then the expected contribution to the distance metric

in Equation 2.6 is actually 1− pi. From this, it follows that the expected distance
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between the two templates are equal:

D =
∑

i=1..16

1− pi = 16−
∑

1=1..16

pi, (2.7)

where each of the pi values depends on the latency distribution in the genuine and

impostor template. From the above formula, we can derive that lower probability

values lead to a higher distance value. If we compare the template of a genuine

person to his own template, then we know that the probability approximately equals

68%, hence the expected distance is to be equal to 16 ∗ (1− 0.68) = 5.12.

We now compared each of the 110 genuine templates to all the 109 impostor

templates in the above described manner. We counted how often the expected

distance is below 5.12 for Password 1. For k = 1, there are actually 243 instances

where the expected distance is below this value, which means that the False Match

Rate (FMR) in this case would be 243/(109 · 110) = 0.0203, or 2.03%. The results

for all known passwords and for k = 1..3 is given in Table 2.11. From these results,

we can clearly see that the highest percentages correspond to passwords that are

indicated as being the most complicated in the second column of Table 2.8.

Nr k=1 k=2 k=3

1 2.03 0.26 0.11
2 1.14 0.03 0.02
3 3.30 0.71 0.34
4 0.63 0.06 0.02
5 0.36 0 0

Table 2.11: False Match Rate (FMR) based on templates only (in %).

We repeat the above analysis for k = 1 only and split the data into two parts,

according to the location of the participants. The results are given in Table 2.12.

Generally, the numbers are similar, but there are two major conclusions that we can

draw from the numbers in Table 2.12. The first is that for the French participants,

Password 3 has indeed the worse performance, but, the expected low performance

of Password 1, based on the complexity of the word on the AZERTY keyboard is

not visible. The second thing that sticks out is the major difference in performance

between the French and the Norwegian participants of the second password: “the
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rolling stones”. This is rather interesting as the characters in this password are on

the exact same location on the QWERTY and the AZERTY keyboard. Nevertheless,

no reasonable explanation has been found yet for this difference.

Nr All French Norwegian

1 2.03 1.59 2.82
2 1.14 1.80 0.19
3 3.30 3.13 3.85
4 0.63 0.70 0.96
5 0.36 0.39 0.77

Table 2.12: FMR based on templates only (in %).

2.5.2 Comparison based on reused data

As the comparison based on templates only might not give the best overview of

the real performance of the system, we further analysed the data in another manner.

In this case, the data samples are reused. Although, we know this is not a correct

way to analyse, we only use the results as an indication of which passwords would

give a better or worse performance than others. In this case, we calculate a genuine

score as follows. The 10 data samples of a user are split into a single data sample

for testing and 9 data samples to create the template. Creation of the template is

done in the same manner as in Section 2.5.1. The distance metric in this case is the

scaled Manhattan Distance. Now, the distance between the template T and the test

sample t is defined as:

d(T, t) =
∑

i=1..16

|µi − ti|
σi

(2.8)

For the genuine user, the above is repeated 10 times, where each of the data

samples once plays the role of test sample. The 10 resulting distance values are then

averaged and this is taken as the genuine score. For the impostor users, we calculate

the template of the genuine user again. Now, by using all 10 samples (as in the

previous section), we compare this template now to each of the 10 data samples of

the impostor. The final impostor score now is the average of the 10 distance values

calculated in this way. For each genuine user, we observe how many of the impostor
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scores, calculated when comparing against the template of this genuine user, are

below the genuine score for this user. That number is used to calculate the False

Match Rate for the given password. This is done by summing up these numbers for

all users and then dividing by the total number of calculated impostor scores, which

again equals 109 · 110.

The results are given in Table 2.13, where the first column represents the results

when looking at all participants, and the second and third columns analyse only the

data of the French respectively Norwegian participants. The results of all participants

again clearly show the worse performance are for the most complex passwords. Here,

it is clear that Password 5 shows the best results, which is confirmed by the data in

Tables 2.11 and 2.12. The results from the Norwegian participants again are similar

to the results of all the participants, but, we see again some discrepancies with the

results from the French participants. In the second column of Table 2.13, we see that

the first three passwords give the worse results, which do correspond to the results

in Section 2.5.1.

Nr All French Norwegian

1 5.64 6.38 4.68
2 4.77 5.84 3.01
3 5.88 5.49 6.79
4 4.36 4.45 3.53
5 2.22 2.92 0.96

Table 2.13: FMR based on reuse of data (in %).

2.5.3 Comparison based on split data

In this section, we show the authentication performance using common biometric

performance analysis methods. In our dataset, we have 10 data samples per user

for each known password. We randomly choose 5 samples of the genuine person to

create the template. Testing is done with the remaining 5 samples for the genuine

user. For testing with impostor data, 100 random data samples are selected from

all of the available data samples of the impostor users. In the analysis, we used the

Euclidean distance as distance metric. We have separately calculated the system

performance for data collected in France and Norway (refer to table 2.14).
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Nr All French Norwegian

1 31 33 30
2 27 29 25
3 36 35 38
4 25 30 20
5 25 29 18

Table 2.14: False Non-Match Rate (FNMR) in % for FMR=20%.

Here, we are interested to see the effect of the complexity on the False Non-Match

Rate (FNMR) for a fixed False Match Rate (FMR). We adjusted the threshold such

that the FMR is fixed at 20% and recorded the corresponding FNMR. Based on

observation we can again clearly see that the FNMR increases if the complexity

of the password increases (refer to Table 2.14). Subsequently, we have shown the

Detection Error Tradeoff (DET) curve of the system for the 5 known passwords (refer

to Figure 2.5). We can clearly see from the DET curve that the performance of the

system highly dependent upon the complexity of the password.

Figure 2.5 – DET curve for 5 known passwords.

Next, in Section 2.5.4, we discuss the statistical significance of the results obtained

in this section. In relation to this, we give some norms on the distinctiveness between

the obtained results in the recommended system, by computing the correlation

between these values using Pearson’s linear correlation coefficient.
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2.5.4 Pearson linear correlation coefficient

Pearson linear correlation coefficient is commonly used as a measure of the degree

of linear dependence between two variables. Thus, the Pearson linear correlation

coefficient (ρ) is a measure of the linear correlation between two random variables

X = (x1, ..., xn) and Y = (y1, ..., yn), which allows to quantify the dependency that

may exist between these variables. The definition of ρ(X, Y ) is as follows:

ρ(X, Y ) =
cov(X, Y )√

var(X)var(Y )
, (2.9)

where cov(X, Y ) represents the covariance between X and Y, and var(X) and var(Y )

represent the variation of the variables X and Y, respectively. The value of the

coefficient of linear correlation ρ lies between 1 and -1, has the following meaning:

� if ρ = 1, then the variables X and Y have an absolute positive correlation;

� if ρ = 0, then we conclude that the variables X and Y have no correlation at

all;

� if ρ = -1, then the variables X and Y have a total negative correlation.

The main point of this computation is to determine whether there is any linear

relationship between the complexity of passwords (Xi) and EER values (Yi) for 5

proposed passwords. Here, we are interested in testing H0 : ρ = 0 vs. H1 : ρ 6= 0.

In order to do this, we first need to know the distribution of the sample correlation

coefficient r under the null assumption. In our case, we already obtained both values

of passwords complexity (from Table 2.8) and EER (from Table 4.1). Therefore,

based on our correlation coefficient computations, we found that our values of (Xi)

and (Yi) are considered as correlated as shown in Table 2.15. Even though, our result

proven to be better than Giot et al. (2012b), but, it is still not optimal. Since, we

obtained a value of ρ(X1, Y ) is equal to 0.51, where according to Pearson’s rule, a

value of 0.5 simply means that 25% of the variance in variable Y is predicted by

the variance in variable X. Nonetheless, we show that our new complexity metric is

significantly relevant compared to the one introduced by Giot et al. (2012b), where

their value of ρ(X2, Y ) is equal to 0.06, thus is closer to 0 and considered as not

having any correlation between them.
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Password X1 X2 Y

Password 1 8.9 64.4 21.45

Password 2 6.1 32.1 18.38

Password 3 9.4 53.0 19.26

Password 4 5.9 41.1 19.84

Password 5 6.3 59.4 15.56

ρ(X1, Y ) 0.51

ρ(X2, Y ) 0.06

Table 2.15: Results of correlation coefficient between the complexity of passwords
and EER values.

2.6 Conclusions

Presented here is a new dataset for keystroke dynamics, which is publicly available.

This dataset is composed of several soft biometric data of users. It consists of data on

the user’s way of typing by defining the number of hands used to type (one or two),

gender, age and handedness. This work is the creation of a substantial database,

with 110 users, from France and Norway, with 100 samples per user (= 10 captures

× 2 hands × 5 passwords). We also made evaluation study to the ones created before.

In this section, we discuss the results that we found in the previous sections. In

Table 2.7 the entropy of test known passwords is given. It is normally used as a

measure for the strength of a password, but, if keystroke dynamics is included as

an extra security measure, then this measurement of strength is no longer appropriate.

In the analysis of Section 2.5, we have shown that there is a relationship between

the complexity of a password as given in Section 2.3 and the FMR/FNMR found in

the analysis of the collected data. This leads to the idea that for password systems

that use keystroke dynamics as an extra security measure, it could be wise to use

“simple” passwords (for example dictionary passwords), but, still with a reasonable

length. The length ensure a reasonable entropy, while the complexity still relatively
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be low, hence the performance of the system to be at best. More research are needed

in order to verify the correctness or in-correctness of this idea, and also to improve

the total performance of the system, but, that is beyond the scope of this thesis.

Furthermore, we performed linear relationship computations to determine if there

is a correlation between the proposed password typing complexity metric and EER

values for all 5 known passwords. The result shows that it is at 25% correlated,

which is certainly not an ideal case, but, interesting to acknowledge.

In this chapter, we intend to optimise the enrolment process to enhance the

performance of keytroke dynamic systems. In the next chapter, we show that it is

possible to profile users by analysing keytroke dynamics patterns.





Chapter 3

Soft Biometrics Profiling

This chapter presents a new profiling approach of individuals based on soft

biometrics for keystroke dynamics. Section 3.1 firstly introduces the motivations

of this work i.e. is it possible to profile an individual based on its keystroke

dynamics patterns? We present some of the published articles in the general

field of soft biometrics and their applications in Section 3.2. Section 3.3 details

one important contribution of this thesis on profiling users by using keystroke

dynamics. The obtained results are detailed in Section 3.4. We conclude with a

discussion in Section 3.5.
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3.1 Introduction

I
n the previous chapter, we introduced a new benchmark on keystroke dynamics

containing information that can be useful for future studies on soft biometrics.

The motivation of this chapter is to identify how keystroke dynamics can be exploited

to profile users.

This chapter presents new soft biometric criteria for keystroke dynamics. It

consists of extracting information from the keystroke dynamics templates with the

ability to recognise the number of hand(s) used (i.e. one/two hand(s)); the gender;

the age category; and the handedness of a user when he/she types a given password

or passphrase on a keyboard, for both known passwords and free text. Experiments

were conducted on the keystroke dynamics database ‘GREYC-NISLAB Keystroke’

detailed in the previous chapter. Here, we propose the application of Simple Majority

Voting (SMV) and Score Fusion on the output of several SVMs in order to obtain the

best performances. Experimental results show that the proposed method is prom-

ising. We also present the impact of fusion schemes on the four aforementioned soft

biometrics information and how fusion can enhance the overall recognition perform-

ance for known passwords and compared with typing rhythm of free text i.e. digraphs.

3.2 State-of-the-art on soft biometrics for keystroke

dynamics

3.2.1 Profiling users with soft biometrics

In Chapter 2, we mentioned that keystroke dynamics performances are lower

compared to other biometric modalities, because of the intra-class variability of

the users behaviour. One solution to cope with this variability is to study soft

biometrics, which was first introduced by Jain et al. (2004b). In that paper, ‘soft

biometric traits’ are defined as “characteristics that provide some information about

the individual, but lack the distinctiveness and permanence to sufficiently differentiate

any two individuals”. Jain et al. considered gender, ethnicity and height as comple-

mentary data for a usual fingerprint based biometric system. Soft biometrics allow a

refinement of the search of the genuine user in the database, resulting in a computing

time reduction. For example, if the capture corresponds to a male according to a

soft biometrics module, then, the standard biometric identification system can con-
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fine its search area to male users, without considering female ones (refer to Figure 3.1).
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Figure 3.1 – Search confinement based on known soft biometric information.

Since the work of Jain et al., several articles related to soft biometrics can be

found in the literature (Ailisto et al., 2006; Marcialis et al., 2009; Park and Jain,

2010; Tiwari et al., 2012; Koga et al., 2013; Moctezuma et al., 2013; Zhang et al.,

2013; Tome et al., 2014; Yang et al., 2014; Onifade and Bamigbade, 2014). According

to Ambalakat (2005), soft biometrics such as gender, age, hair colour, race and

others can be used to boost the performances of biometric systems. In the paper

(Ailisto et al., 2006), body weight and fat measurements are considered as soft

criteria to enhance a standard fingerprint based biometric system, which managed to

reduce their system’s error rate from 3.9% to 1.5%. Ran et al. (2008) propose a gait

signature whose features are based on length, height and gender extracted from a

video sequence, which their preliminary experiments show some promising results.

Marcialis et al. (2009) use hair colour and ethnicity as soft biometrics combined

with face modality, and hence their results show that the ethnicity is more superior

than that of hair colour information, which help to reduce the error rate from 3%

to 1.5%. Niinuma et al. (2010) suggest to use soft biometrics for continuous data

authentication, and hence to combine face and colour of clothing by considering

classical face recognition and the password of the user whilst using a computer. In

the paper (Park and Jain, 2010), Park and Jain present how gender or ethnicity and

facial marks such as scars, moles and freckles can be used to enhance face recognition.

The reference (Dong and Woodard, 2011), shape based eyebrow features are used

for biometric recognition and soft biometric classification, which show appealing
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results at 89% to 97% recognition rates with their soft criterion based on gender. In

the paper (Denman et al., 2011), the authors use soft biometrics (height and colour

model of head, torso and legs) to help identifying people in videos in surveillance

networks, and they are able to detect users by up to 76% accuracy.

An overview can be found in (Dantcheva et al., 2011) about soft biometrics, under

the form of a ‘Bag of Soft Biometrics’. In that paper, Dantcheva et al. make a

comparison with the pioneering work of Alphonse Bertillon, whose anthropometric

criteria gave rise to soft biometrics, refer to (Rhodes, 1956). The authors propose

some facial soft biometrics and also body soft biometrics, namely: weight and clothes

colour detection, which they obtained an average of 4.3% of the error rate to estimate

the weight from visual clues. Vast amount of biometric identification systems are

mainly devoted to adults, and rarely focus on newborns. However, Tiwari et al. (2012)

conducted a research on 210 subjects of newborn with the use of ear enhancement

and soft biometrics, namely: gender, blood group, height, and weight. Their results

based on ear fusion and soft biometrics had improved the recogniton rate by 5.59%,

from their initial ear biometric system.

Since soft biometric information such as height, gender, skin colour, hair colour

and others can discriminate a person with others, through visual surveillance cameras,

one can also characterise a human being from a distance. Nevertheless, this form of

identification has its downside, which can be due to poor quality images. Therefore,

instead of using soft biometric features, Koga et al. (2013); Moctezuma et al. (2013);

Tome et al. (2014) had utilised soft biometric citeria as additional information de-

rived from human physical appearences. Their results show that they are able to

enhance a person recognition on different scenarios and approaches based on hu-

man gait video, incremental learning approach, and adaptive fusion rules, respectively.

Furthermore, according to Zhang et al. (2013), “Android smartphones on the

market are increasingly popular, which are equipped with various sensors that can

be used to achieve the awareness of emotion status”. Their paper propose a method

that derived from the heartbeat rate and user’s conversation information, obtained

from smartphones’ built-in camera and microphone. Classification is done on several

aspects of emotion, namely: anger, joy, normal, and sadness based on heart rates.

The authors state that the emotional key words in a conversation are able to enhance

the performance of emotion recognition, where they achieved 84.7% accuracy results.
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A recent study made by Yang et al. (2014) using a novel soft biometric feature

such as ‘the width of phalangeal joint’. The authors described phalangeal as finger

bones (i.e. stretch of bones that meets the knuckle, which we see when we make

our fingers in a gripping shape, for instance), where with fingers 2-4 are made up

of three phalanges and the thumb has two phalanges. They extracted that feature

from a finger vein image to enhance the performance of finger vein recognition. Their

experimental results based on three frameworks: the fusion framework; the filter

framework; and the hybrid framework show that soft biometric trait can provide

some credibility to increase the performance on finger vein recognition. Their error

rates are between 5.53% and 8.08% on the open database, and between 1.35% and

1.74% on the self-built database.

We can clearly see that the performances inscrease by applying soft biometrics

into different biometric modalities. However, most materials related to soft biometrics

focus on either face, gender, fingerprint or gait recognitions. There are only a few

papers that dedicated to soft biometrics for keystroke dynamics, which is further

described in the following subsection.

3.2.2 Soft biometrics for keystroke dynamics

Concerning keystroke dynamics with soft biometrics, an original approach is

presented in the work of Epp et al. (2011), which is strongly linked with the beha-

vioural feature of keystroke dynamics. The authors show that from a user’s way

of typing, they are able to identify the individual’s emotional state. Their most

encouraging results with accuracies ranging from 77% to 88% are based on classifying

confidence, hesitance, nervousness, relaxation, sadness, and tiredness. Thus, 84% of

the cases show that it is possible to detect two forms of emotion: namely anger and

excitation. We just mention that the ground truth (i.e. the real emotional state)

is given by the user. Another soft criterion for keystroke dynamics, namely gender

recognition, is considered in the work of Giot and Rosenberger (2012a): the authors

illustrate that it is possible to recognise the gender of an individual by analysing the

keystroke dynamics related to preset texts. The correct gender recognition rate is

more than 90% and the use of this information in association with the keystroke

dynamics authentication reduces the equal error rate (EER) of the biometric system

by up to 20%.

A study on stress detection over keystroke variations was performed by Gun-
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awardhane et al. (2013). They are able to analyse and detect individuals stress levels

(stress or non-stress) based on real-time specific features. Al-Jarrah (2013) proposed

a multi-factor authentication scheme in order to strengthen user authentication

based on multi-factor combination, namely: typing rhythm, user chosen password,

and system generated passcode. This consolidation involves four levels: password,

passcode, typing rhythm and re-typing rhythm show some strong authentication

results. Nahin et al. (2014) show that they are able to identify users based on their

emotions with keystroke dynamics. They classified 7 emotional classes of emotional

states (combined with keystroke features), and results illustrate that more than 80%

of emotion identification accuracies. Personal emotions on input devices, namely:

keyboard, mouse, and touch screen displays were studied by Bakhtiyari et al. (2014),

results showed that they achieved 93.2% accuracy, thus improved the classical method

performance by 5%.

From the previous state-of-the-art, we can say that several aspects of soft biomet-

rics have been studied, but, none cover the scope and objectives of this study. In the

next section, we introduce some of the soft biometric traits that we used to profile

individuals in this study.

3.3 Profiling individuals while typing passwords

This section presents a new profiling approach of individuals based on soft bio-

metrics for keystroke dynamics. Here, we consider the following soft traits: the hand

category (i.e. if the user types with one or two hands), the gender category, the age

category and the handedness category.

3.3.1 Introduction

For the proposed keystroke dynamics system, two approaches can be distinguished,

namely: known passwords and free text. These two approaches are very different.

With passwords, we analyse all the typing features for each known and static texts.

Each user is asked to type the same set of passwords. Even though, those passwords

are presented to the users during a capture process, it only took them after several

attempts to get used to the typing. For free text, the analysis is based on digraphs,

which correspond to time latencies between two successive keystrokes i.e. digraphs

transition time. The digraph is also considered as the PP latency by most researchers
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(Leggett et al., 1991). Free text is considered as more difficult to analyse due to little

information are available, however, we wanted to study to what extent can freely

typed texts are able to recognise users. Most studies resort to passwords and rarely

on free texts. In the next section, we describe the proposed method and steps taken

in the analysis process. There are two possible approaches, namely:

• Known passwords (static texts): We quantify the performance results of soft

biometrics for keystroke dynamics with known passwords.

• Free text (digraphs): With any combinations of two-key characters (digraphs)

with free text, the user can type arbitrary text as input without any specific

constraints.

Then, we report the performance results based on the above introduced tech-

niques, which show some enhancement of our classical keystroke dynamics system

after applying: (i) soft biometrics, and (ii) additionally, with majority voting and

score fusion for the typing of multiple passwords or sentences.

3.3.2 Proposed methodology

In general, keystroke dynamics authentication systems involve a keyboard and

an application for the capture and processing of the biometric information. Users

are required to type on a keyboard running a dedicated application. Each capture

is stored in a database within the application in the form of keystroke or timing

features for all correct and incorrect entries. These features are composed of several

timing values that are extracted, which is the pattern vector that is used for the

analysis. For each soft criterion, two steps are involved in recognition evaluation: (i)

a training step, and (ii) a test step, both relying on a maching learning algorithm.

Here, we have chosen one of the state-of-the-art techniques for classification tasks:

SVM (Support Vector Machine) (Vapnik, 1998), on account of its efficiency. As a

result, we compute the accuracy rate of the prediction of each soft category by the

trained SVM. In order to enhance the overall recognition performance, data fusion

is then applied. A graphical representation of the overall process is given in Figure 3.2.

3.3.3 Data description

It can be recalled that during the data acquisition, some metadata such as gender,

age and handedness were collected. Concerning the best choice for a password to
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Figure 3.2 – The overall process of the proposed system.
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type, Nonaka and Kurihara (2004) stated that some researchers have additionally

claimed that by providing texts containing a longer string as its input, considered

to be vital in order to improve the efficiency of a system. In fact, Abernethy et al.

(2004) had conducted an investigation revealing some sign of advancement as the

string length increases. Thus, their most effective overall performance was achieved

for a password that is between 13 to 15 characters. Therefore, we select known

passwords with characters size of at least 17 (refer to Table 2.3) that are well-known

in the two countries concerned as detailed in Section 2.2.1.

At the end of the data collection, a total of 11000 data samples are in the proposed

biometric benchmark database. For each user, 7 out of 10 samples are used for

training and testing data. The first three entries for each user are not taken into

account because leeway was given to the users to allow them to train themselves

for each of the given passwords. We justified why three entries have been discarded

simply by reasons as discussed in Section 2.2.3.

Subsequently, for free text, we consider it as the collection of the 5 known pass-

words. We extract different timing information between two-character sequences,

which are the digraphs. The typed passwords are considered as a whole, and only

digraph information is kept. The digraphs appear with an occurence between one

and four. To obtain significant results, we restrict to digraphs which occur at least

twice. Here, we consider three categories of digraph: (i) 11 with two occurences; (ii)

2 with three occurences; and (iii) 1 with four occurences. Consequently, there are a

total of 14 occurences that fall within this category as shown in Figure 3.3, namely

the digraph latency of ‘ca’ , ‘ic’ , ‘ed’ , ‘he’ , ‘pe’ , ‘te’ , ‘ch’ , ‘li’ , ‘ri’ , ‘ll’ , ‘on’ ,

‘er’ , ‘es’ and ‘st’ . Thus, in some instances, the digraphs appear numerous times,

and according to Davoudi and Kabir (2009) the size of the timing vector may differ

from one digraph instance to another. In a long text, there is a high possibility

of having more than one instance of a digraph. Therefore, the mean of all these

instances are used in our corresponding experiments.
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a b c d e f g h i j k l m n o p q r s t u v w x y z Passphrase:

a ¤ ¤ ¤ ¤ ¤ ¤

b 1- leonardo dicaprio

c ¤¤ ¤¤¤¤ 2- the rolling stones

d ¤ ¤ 3- michael schumacher

e ¤¤ ¤ ¤ ¤¤¤ ¤¤ 4- red hot chilli peppers

f 5- united states of america

g

h ¤ ¤¤ ¤ ¤

i ¤¤¤ ¤ ¤ ¤ ¤

j

k

l ¤ ¤¤ ¤¤

m ¤ ¤ ¤

n ¤ ¤ ¤ ¤

o ¤ ¤¤ ¤

p ¤¤ ¤ ¤

q

r ¤ ¤ ¤¤ ¤ ¤

s ¤ ¤¤

t ¤ ¤¤ ¤ ¤

u ¤ ¤

v

w

x

y

z

Figure 3.3 – Digraphs and its number of occurences.

3.3.4 Data analysis

For the data analysis, we are interested in the following soft biometrics criteria:

one or two hand(s); male or female, age < 30 or ≥ 30 years old, right-handed or

left-handed. This section presents the methodology we follow in order to analyse

keystroke data.

Classification is performed by training and test steps for each soft criterion with

a Support Vector Machine (SVM) classifier. We use a library for SVM (LibSVM)

(Chang and Lin, 2011) with the Radial Basis Function (RBF) kernel (Hsu et al.,

2003; Hearst et al., 1998). Since, this classifier is aimed at maximising the margins

between the considered classes Ci (refer to Figure 3.4), we set the following values

for the parameters: C = 128 is the penalisation coefficient of the SVM; γ = 0.125 is

the parameter of the kernel, as introduced by Hsu et al. (2003), in order to maximise

the performance. The computation of the SVM process is repeated for 100 iterations

for each percentage of the training ratio, to produce an averaged recognition rate.

For example, if the ratio for training data is given at 1%, then the ratio for test data

is 99%, and we do this for every percentage between 1% to 90% for the training step,

respectively. The results we obtained as outputs are: (i) predicted class label (1 or
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-1); and (ii) probability value (in the [0,1] range).

 

 

 

C1 = 1 

C2 = -1 

Figure 3.4 – Margins in SVM (figure from Cortes and Vapnik (1995)).

3.3.5 Data fusion process

The reason we apply data fusion in the proposed system is because we want

to perform a combination step by turning multiple values into one single common

value. By fusing, it can further enhance system’s performance. Thus, data fusion is

a process of incorporation of several data and knowledge, which represents in case of

similarity scale into constant, precise and beneficial representation (Ross and Jain,

2003). Here, we apply two techniques based on majority voting and score fusion

with binary classifications as illustrated in Figure 3.5. For the sake of clarity, we take

the example of gender category. There are more men than women in the database

(i.e. 78 males and 32 females). We select data to have the same number within each

category, so here, we randomly remove 46 males. We keep the same users sub-sample

for each password, and we train one SVM per soft category. To avoid the influence

of sample extraction, the whole process (from the extra men removal to the fusion)

is repeated 100 times, with a different random draw of 32 males each time. The

presented results are the average of these 100 classifications. We retain the same set

of users for each passphrase. Here, we use a ratio of 50%, where 50% are dedicated

for training and the remaining 50% of the data are used for testing. Now, we present

the chosen fusion processes.



66 CHAPTER 3. SOFT BIOMETRICS PROFILING

 
r 

a 

n 

d 

o 

m 

 

d 

r 

a 

w 

 

 

Female 

u1 

. 

. 

. 

. 

. 

. 

ui 

 

Male 

u1 

. 

. 

. 

. 

. 

. 

. 

. 

. 

ui 

 

decision < 0 = -1 

decision ≥ 0 = 1  

decision < 0.5 = -1 
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SVM  

SVM  

« Majority Voting » 

« Score Fusion »  

Figure 3.5 – Majority voting and score fusion techniques based on gender.

• First fusion process: Majority voting

The predicted class label (1 or -1) is exploited in the first fusion method: the

majority voting. Since there are 5 known passwords, the majority is easily obtained.

The idea here is to gain majority selection when we add all 5 passwords’ predicted

class labels, where if the values are positive, we assign 1 and -1 for negative values.

Eventually, we still use the predicted class label of (1 or -1) in this part of the process,

however, the label certainly signifies the collective value obtained based on majority

decision.

• Second fusion process: Score fusion

The predicted class label (1 or -1) and its associated probability (in the [0,1]

range) are exploited in the second fusion method: score fusion. We obtain five class

labels and probability values from 5 known passwords, and multiply the labels by the

associated probabilities and obtained a set of scores. Then, we compute the average

of five scores to decide the final class. If the average is above 0.5, then 1 is assigned,

otherwise 0. Now, for the score fusion, the final classes after computing the average

scores consist of (0 and 1), unlike in majority voting. For example, for the gender

criterion, if the final class is 0 represents a ‘female’, while final class is 1 represents a

‘male’, and similarly for the other soft biometrics information.

Therefore, by taking its majority voting or score fusion, where for majority voting,

the value is either ‘1’ or ‘-1’, and for score fusion, it is either ‘0.16’ or ‘0.84’, we now
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have the values for Class 1 (Male = 1 and 0.16) and Class 2 (Female = -1 and 0.84).

Both values of ‘0.16’ and ‘0.84’ correspond to 16% and 84%, respectively. At this

point, we can say that the SVM is 84% sure that the unknown data belongs to Class

2: Female as shown in Figure 3.6. In the interest of this argument, say, if the value

turns out to be ‘0.58’, nonetheless it may still refers to category ‘-1’. But, we cannot

be so certain which class it belongs to because it is close to the bordering line. For

example, the red spot on the dotted line (refer to Figure 3.4).

 

To classify an unknown data: 

(i) Compute distance to other training data; 

(ii) Identify its 3-Nearest Neighbour; 

(iii) Use labels/values of closest groups to 

determine the class label or the probability 

value of the unknown data e.g. by taking its 

majority voting or score fusion: 

o Majority voting: 1 / -1 

o Score fusion: 0.84 / 0.16 

 0.84 (≡ 84%) of being Class 1 (+),       

0.16 (≡ 16%) of being Class -1 (–); 

 here, we are sure at 84% that the 

unknown data belongs to Class 1 

i.e. ‘male’ because its nearest 

group is ‘+’; 

 but, say, if the value of Class 1 is 

0.58, we cannot be so certain 

which group it belongs to i.e. close 

to the bordering line (+ or –). 

unknown data 

Figure 3.6 – Majority voting and score fusion to determine its 3-Nearest Neighbour
based on gender (inspired from Goyal (2014)).

3.3.6 Performance evaluation

Once the fusion processes have been completed, we can compute the confusion

matrix to obtain the correct recognition rate denote r for each class. To compute the

recognition rate (for gender category), we apply Equation (3.1), where M correct and

F correct are respectively the total number of correctly predicted males and females.

A large value of r guarantees a large correct recognition rate for the considered

category. Subsequently, with the baseline performance, we are be able to evaluate

the effect of applying fusion performance by simple comparison.

r =
M correct+ F correct

total data
× 100% (3.1)
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In order to validate the proposed recognition system, we compute Confidence

Intervals (CI). A CI represents a confidence measure on the estimated error rate. It

is based on a re-sampling of data. For each draw, random data are selected. This is

done N =100 times in order to calculate the CI, where we perform the computation

of the recognition rate for each of the N tries. The CI can be determined based

on the percentiles of the normal distribution. Here, the CI at 95% is defined by

Equation (3.2), where E[rate] is the mean of the recognition rates over N iterations,

and σ(rate) corresponds to standard deviation. The computed rate represents the

percentage of correctly classified users. Finally, we compute the confusion matrix

(refer to Appendix A for the computation step).

CI = E[rate]± 1.96
σ(rate)√

N
(3.2)

3.4 Experimental results

In this section, we evaluate the performance results of soft biometrics for keystroke

dynamics both with known passwords and free text. For free text, the performance

is evaluated through a distance measure for different timing information between two

digraphs. Then, we compare the results from the previously introduced techniques

that can enhance the performance of soft biometrics for keystroke dynamics for

known passwords (static texts) with majority voting and score fusion, and then for

free text.

3.4.1 Known passwords: Static texts

We performed several computations by using SVM. We recall that we present

the evolution of the average (over 100 computations) recognition rate, associated to

the percentage of data retained for the training phase (from 1% to 90%) for each

soft category, and (from 10% to 90%) for handedness category due to around 10%

approximation of the data samples equality between right-handed and left-handed.
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• Hand category recognition

Figure 3.7(a) illustrates the results of the recognition rates for hands category,

with different training ratios, for the 5 known passwords P1 to P5. To compute these

results, an equal amount of data is used for both classes, more precisely 770 data

samples for each class. In this experiment, the results are good, since from a ratio

of training data over 50% of the total data of the 110 users, the recognition rate is

over 90%. Knowing that there are 110 users in the database, with more than 50% of

the total captures per user, the system’s performance is good i.e. at least 4 captures

with one hand and 4 with 2 hands, are sufficient to recognise the category with more

than 90% of efficiency. Hence, the soft biometric system is able to determine if the

user types with one or two hands.

In addition, we evaluate the recognition rate based on time taken to type the

passwords (as opposed to vector data) to see if we can obtain similar or better

performance. Practically, with two hands, it is customary that users would type

faster as compared to using with only one hand. However, the system’s performance

is slightly worse for the time-based approach, where the recognition rate is 85.03%.

This means that the system cannot determine between one hand and two hands

users based on time, as good as the initial performance evaluation.

• Gender category recognition

Figure 3.7(b) illustrates the results of the recognition rates for gender category,

with different training ratios, for the 5 known passwords P1 to P5. Only 30% of the

data samples of male users are used (but all samples belonging to female users) in

order to have equilibrated classes (i.e. 224 data samples related to male participants

and 224 data samples related to female participants). The recognition rate depends

on the particular password and ranges from 70% to 86%. For this category, the

data now becomes relatively small due to data equilibration and on top of that, the

performances are also decreased. The reason here could be that of the male user

samples are randomly selected to have the same amount as female user samples, and

hence the remaining samples are unused. Nevertheless, the system could still manage

to differentiate between males and females at reasonable accuracy rates.

• Age category recognition

Figure 3.7(c) illustrates the results of the recognition rates for age category, with

different training ratios, for the 5 known passwords P1 to P5. We remove 46% of the

data samples of class C1 to have equilibrated classes with 51 users. The recognition
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rate for a ratio over 50% is slightly less than the other soft criteria, namely between

67% and 78%, and besides lesser samples are used in the analysis. Perhaps, the

system cannot well differiantiate between two age classes, in the sense that elder

users could somewhat be having similar typing rhythms as the younger.

(a) Hand (b) Gender

(c) Age (d) Handedness

Figure 3.7 – Average values for 100 iterations of recognition rates versus training
ratios with two classes of soft biometric information for 5 known passwords by
removing the first three entries (i.e. 7 captures out of 10 are kept).

• Handedness category recognition

Figure 3.7(d) illustrates the results of the recognition rates for handedness cat-

egory, with different training ratios, for the 5 known passwords P1 to P5. We keep

only 12% of the right-handed class and all the left-handed class to have equilib-

rated classes. The obtained recognition rate tends to vary more than the other

soft categories, but stays between 76% and 88%, which can be considered as good

results. However, as mentioned, the selected database for this category contains

only 12 users in each class, therefore the performances are decreased and the con-

fidence intervals are wider compared to other soft criteria with 110 users in each class.
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• Soft categories recognition

Figures 3.8(a) to 3.8(d) illustrate the results of the recognition rates on different

training ratios on the four soft categories by removing the first five entries i.e. 5

captures out of 10 are kept, as opposed to the previous results by removing the first

three entries i.e. 7 captures out of 10 are kept, as precised earlier. Here, we are able

to see that the performance decreases by 5%, where hand recognition still remains

above 90%; gender recognition is between 70% to 84%; age category recognition is

between 65% to 78%; and handedness recognition is between 74% to 85%. This can

be explained by the size of the database (or the amount of data). It is normal to

obtain slightly worse results with 5 captures per user than with 7. However, with

7 captures out of 10 are kept used in the analysis give better overall performance.

We select one of the passwords, namely Password 5 that illustrates comparison

performance between 7 captures and 5 captures out of 10 are kept for four soft

categories as shown in Figures 3.9(a) to 3.9(d).

• Cultural categories recognition based on two soft criteria

In this part, we further analyse the two countries separately i.e. both users in

France and Norway, to see if there are any differences in term of their performances.

Here, with substantial amount of data, we only analysed two soft biometrics inform-

ation namely hand category recognition and gender category recognition as shown in

Figure 3.10.

Figure 3.10(a) and Figure 3.10(c) illustrate the results of the recognition rates for

hand category for both in France and Norway, respectively with different training

ratios, for the 5 known passwords P1 to P5. In this experiment, we discovered that the

results are quite encouraging. From the ratio of 50% of total data used for training

the SVM, the recognition rate for France is between 89% and 96%, and over 90% for

Norway. In this particular case, since the users are spread across 24 different countries,

we are not able to precisely determine the cultural way of typing the English words

as they are from various native backgrounds. However, from the results, it is evident

that the users in Norway are more familiar and certainly more comfortable with

the proposed English passwords as compared to the users in France, inspite of the

fact that each of them used the keyboard layouts of their respective countries. One

can safely conclude that the users in Norway are more profound compared to their

counterparts in France in terms of the English language usage when it comes to typing.
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Figure 3.10(b) and Figure 3.10(d) illustrate the results of the recognition rates for

gender category for both in France and Norway respectively, with different training

ratios, for the 5 known passwords P1 to P5. The recognition rate, depending on the

considered known password, is between 66.4% and 68% for France, and between

76.5% and 78.2% for Norway for a ratio over or equal to 50%. It appears that both

gender in both countries concerned have similar performances. The system is not

able to make good separation between male and female. This is so, inspite of taking

into account that users in Norway are seemingly slightly superior that those of France.

(a) Hand (b) Gender

(c) Age (d) Handedness

Figure 3.8 – Average values for 100 iterations of recognition rates versus training
ratios with two classes of soft biometric information for 5 known passwords by
removing the first five entries (i.e. 5 captures out of 10 are kept).
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(a) Hand (b) Gender

(c) Age (d) Handedness

Figure 3.9 – Performance comparison between removing the first three entries (i.e. 7
captures out 10 are kept) and removing the first five entries (i.e. 5 captures out 10
are kept) with two classes of soft biometric information for Password 5.

• Confidence intervals

Figure 3.11 illustrates the confidence intervals of the recognition rates for the

four soft categories for different percentage of training data, from 1% to 90% (refer

to Page 68). Table 3.1 shows the CI computed with a fixed ratio of 50% of data

retained for the training, for different categories (i.e. hand, gender, age, handedness).

Soft categories with the thinner spaces and lower ‘±’ values determined the lowest

approximation of errors. Thus, hand category recognition shows the best performance,

while handedness category recognition is considered the worse. Whereas, gender and

age category recognitions are almost as equal between them.



74 CHAPTER 3. SOFT BIOMETRICS PROFILING

R
e
co

g
n
itio

n
ra

te
a
n
d

C
I

fo
r

e
a
ch

p
a
ssw

o
rd

S
o
ft

ca
te

g
o
ry

N
u
m

b
e
r

o
f

d
a
ta

sa
m

p
le

s
P

1
P

2
P

3
P

4
P

5

H
an

d
770

p
er

class
96%

±
0.1%

96%
±

0.1%
95%

±
0.1%

94%
±

0.1%
94%

±
0.1%

G
en

d
er

224
p

er
class

74%
±

0.3%
69%

±
0.3%

70%
±

0.2%
78%

±
0.2%

76%
±

0.2%

A
ge

357
p

er
class

64%
±

0.2%
64%

±
0.2%

63%
±

0.2%
69%

±
0.2%

69%
±

0.2%

H
an

d
ed

n
ess

84
p

er
class

72%
±

1.2%
73%

±
1.2%

72%
±

1.2%
72%

±
1.3%

73%
±

1.2%

T
ab

le
3.1:

C
on

fi
d
en

ce
in

terval
com

p
u
tation

at
50%

train
in

g
ratio

for
5

k
n
ow

n
p
assw

ord
s

an
d

th
e

d
ata

d
istrib

u
tion

(n
u
m

b
er

of
d
ata

sam
p
les)

in
each

class.



3.4. EXPERIMENTAL RESULTS 75

(a) Hand: France (b) Gender: France

(c) Hand: Norway (d) Gender: Norway

Figure 3.10 – Performance comparison between users in France and Norway based
on two soft biometric criteria with average values for 100 iterations of recognition
rates versus training ratios with two classes of soft biometric information for 5 known
passwords by removing the first three entries (i.e. 7 captures out of 10 are kept).

3.4.2 Free text: Digraphs

We performed a similar analysis with new SVMs trained for the digraph features,

as mentioned in Section 3.4.1. The first results deal with averaging recognition rates

(100 iterations) on all four soft categories for different percentage of training data

ranging from 1% to 90%, as illustrated by Figure 3.12. The results of this experiment

are rather good. Hand category recognition clearly shows that based on its free

typed text, retained consistency at above 90% recognition rates. For a training

ratio between 50% and 90%, the two soft criteria: gender category recognition with

rates between 79% and 84%; and age category recognition with rates between 72%

and 75%, are among the lowest performances. Surprisingly, handedness category

recognition with rates between 83% and 88% did better than those two soft categories

whilst having the least amount of data samples. Nonetheless, even though the three
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(a) Hand

 

 

(b) Gender

 

 

(c) Age

 

 

(d) Handedness

Figure 3.11 – Average values for 100 iterations of recognition rates versus training
ratios with two classes of soft biometric information for 5 known passwords by
removing the first three entries (i.e. 7 captures out of 10 are kept) with confidence
intervals.

soft categories did not have similar performance consistencies as hand category

recognition, somehow, display some important results. Table 3.2 summarises the

performance comparison of recognition rates between free text and known passwords

(from Section 3.4.1) for training ratios between 50% and 90%.
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Figure 3.12 – Average values for 100 iterations of recognition rates at 1% to 90%
training ratios with two classes of soft biometric information with 14 digraphs
(occurences ≥ 2) based on free typed text.

• Hand category recognition: Known passwords versus free text

Figure 3.13(a) illustrates the results of the recognition rates in function of different

training ratios for the hand category recognition for passwords P1 to P5 and free

text. The recognition rates, from the ratio of 50% of total data used for training the

SVM, are over 90%. But, the performances are slightly better by precision for free

text than for known passwords.

• Gender category recognition: Known passwords versus free text

Figure 3.13(b) illustrates the results of the recognition rates in function of different

training ratios for the gender category recognition for passwords P1 to P5 and free

text. The recognition rates, depending on the considered password, are between 70%

and 86% for known passwords, and 80% and 84% for free text, for a ratio superior

to 50%.

• Age category recognition: Known passwords versus free text

Figure 3.13(c) illustrates the results of the recognition rates in function of different

training ratios for the age category recognition for passwords P1 to P5 and free text.

The recognition rates for a ratio over 50% are slightly less than that of other soft

criteria, namely between 67% and 78% for known passwords, and between 73% and

76% for free text.

• Handedness category recognition: Known passwords versus free text

Figure 3.13(d) illustrates the results of the recognition rates in function of different
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training ratios for the handedness category recognition for passwords P1 to P5 and

free text. The obtained recognition rates tend to vary more than other soft categories,

but stay between 76% and 88% for known passwords, which nevertheless are still

quite good results, and between 84% and 88% for free text, which is slightly better.

(a) Hand (b) Gender

(c) Age (d) Handedness

Figure 3.13 – Average values for 100 iterations of recognition rates versus training
ratios with two classes of soft biometric information: password versus free text.

3.4.3 Fusing multiple texts

In order to further enhance the performance, we perform data fusion consider-

ing the typing of different passwords or sentences. We show that there is a great

increase in the recognition accuracy rate results. The results of the obtained con-

fusion matrix have improved significantly by fusing the data on all soft categories

at 50% training ratio based on known passwords. The obtained performances are

then compared with three SVM computations: (i) without fusion; (ii) fusion based

on majority voting; and (iii) fusion based on score. For hand category recogni-



3.4. EXPERIMENTAL RESULTS 79

Soft category Number of data samples Known passwords (in %) Free text (in %)

Hand 770 per class [95,98] [97,98]

Gender 224 per class [70,86] [79,84]

Age 357 per class [67,78] [72,75]

Handedness 84 per class [78,88] [83,88]

Table 3.2: Summary of performance comparison of recognition rates for known
passwords and free text from 50% to 90% training ratios.

tion, we mentioned that we made an additional evaluation based on time (refer

to Page 68). The initial performance (without fusion) shows that the recognition

rate is 85.03% and hence by fusing, we expect the performance to produce a much

better result, nonetheless, decreased further by up to 28%. This shows that the

time-based performance provides insignificant outcome between one hand and two

hands timing information. Here, the fusion does not involve free text because all of

the digraphs data are in the known passwords. Table 3.3 summarises this information.

By fusing

Soft category Without fusion Majority voting Score fusion

Hand 94% 100% 100%

Gender 63% 86% 92%

Age 55% 87% 86%

Handedness 62% 85% 92%

Hand (time-based) 85% 79% 57%

Table 3.3: Performance comparison without and with fusion for known passwords at
50% training ratio.
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3.4.4 Performance validation

We performed a performance validation computation to ensure that the results

obtained in Section 3.4.3 are statistically significant. For argument sake, we select

only one soft biometric criterion, which is the gender category recognition. Here,

instead of testing with equilibrated data samples, we randomly select samples of indi-

viduals namely 10 males and 10 females for the SVM training. Then, we use all the

remaining individuals’ data samples for testing. In this protocol, when determining

one user’s profile, we guarantee that samples of this user has not been used during

the learning process. We ensure that the decision is only related to soft biometrics

and not classical biometrics.

We obtained an average recognition rate of 81.93%, which approximately corres-

ponds to the results of gender recognition given in Table 3.3, if we average the three

horizontal values. From this experiment, it shows that we have correctly learnt the

soft biometric information and not keytroke dynamics of users.

3.5 Conclusions

Generally, the recognition performances for all soft categories follow the same

evolution: at the initial training ratio, the recognition rates are quite low but then

gradually increase when more data are used in the training step. In the initial ana-

lysis without fusion, results show some good performances by using only 50% of the

training data and depending on the soft category, the recognition rates are between

55% and 94% (refer to Table 3.3). By applying fusion processes, the performances

increased a great deal more.

From the previous results, we are able to see that the performances differ from

one soft category to another. For known passwords, fusion processes namely majority

voting and score fusion provide some improvements toward the recognition perform-

ance rates on all soft biometrics characteristics, from its initial results. With majority

voting, all soft categories’ performances had substantially increased. Score fusion,

however, gives better results and improved slightly, compared to majority voting.

Overall, by fusing, the system’s performance can greatly be increased (depending on

the soft category).
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The results on free text analysis with soft criteria are slightly superior to those of

known passwords (without considering fusion processes) as illustrated previously in

Table 3.2. Given that free text is composed of the 5 known passwords, with only 14

distinct digraphs, with the following occurences: 11 with two occurences; 2 with three

occurences; and 1 with four occurences. Nevertheless, the results are regarded as good.

The next chapter is dedicated to the study on the impact of soft biometric criteria

in order to enhance the performances of a generic keystroke dynamics biometric

system.





Chapter 4

Keystroke Dynamics Performance

Enhancement With Soft Biometrics

This chapter presents different methods to improve the verification performance

of keystroke dynamics systems by taking into account existing information.

First, we introduce the chapter in Section 4.1 and Section 4.2 is dedicated to

the state-of-the-art. We demonstrate how we combine the results of a standard

keystroke dynamics system with three soft criteria, namely: gender, age,

and handedness. In Section 4.3, we describe several combination techniques

of the classical keystroke dynamics with the three mentioned soft biometric

information scores. With the right combination approach, not only that it can

further enhance the system performance, but, also more effective. The results

are presented in Section 4.4, which illustrate some good improvement outcomes.

We conclude with a discussion in Section 4.5.
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4.1 Introduction

S
oft biometrics play an important role that provide additional information, which

are considered as essential to the system such the gender, age, handedness of

the users (as introduced in the previous chapters). Thus, soft information can assist

and enable the system to make better decision during authentication phase in order

to permit authentic users access and prevent intruders from gaining entry. In this

chapter, we proposed to study the possibility of taking advantage of the information

contained in soft biometrics to enhance the performances of keystroke dynamics.

The fact that keystroke dynamics is one of the modalities that can be used in an

authentication system, however, the motivation of this work is to study to what

extent can soft biometrics enhance the keystroke dynamics verification performances.

In the following section, we investigate several combination approaches where one

could apply soft biometric information approach into classical keystroke dynamics

approach. By applying simple sum and multiply rules, our experiments suggest that

the combination approach performs better than the classification approach. Further-

more, we apply score fusion and majority voting techniques, which illustrate some

enhancement approaches that additionally help to increase the system’s performance.

4.2 State-of-the-art on the use of soft biometrics in

authentication systems

In the soft biometrics domain, Jain et al. (2004b) had initially started the study,

which was subsequently, other researchers had followed in their footsteps. Ailisto

et al. (2006) are able to increase the performance of their classical finger based

biometric system by considering body weight and fat measurements as soft criteria.

It decreases their system’s error rate further by 2.4%. Thus, the authors performed

their soft criteria combination based on fingerprint fusion approach. Hair colour and

ethnicity were used as soft biometric information by Marcialis et al. (2009). The

authors used those soft features to combine it with face recognition system. Results

showed that the ethnicity is more prominent compared to hair colour, where it is

able to reduce the error rate additionally by 1.5% from their classical system. They

applied a group-specific algorithm as combination method. Park and Jain (2010) are
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able to improve their system performance by introducing gender or ethnicity and

facial marks (i.e. scars, moles and freckles) as soft biometrics characteristics. The

authors used soft biometric information and combined it based on face matching score.

In the paper (Tiwari et al., 2012), results showed that the authors’ soft biometric

approaches managed to increase their classical system recognition rate by 5.59%.

As soft criteria, they used gender, blood group, height and weight on 210 newborn

subjects. Thus, their combination approach is based on ear fusion. Soft biometrics

characteristics extracted on individual physical appearences via aesthetic security

video cameras are also used as added information by Koga et al. (2013); Moctezuma

et al. (2013); Tome et al. (2014). They used various combination approaches and

scenarios with soft biometrics based on human gait video, incremental learning

approach, and adaptive fusion rules, respectively that can increase user recognition.

Zhang et al. (2013) proposed a number of emotions such as anger, joy, normal, and

sadness based on heart rates as their soft criteria, where they are able to extract and

classify users simply on smartphones’ built-in camera and microphone. The authors

performed the combination based on emotional key words in a chat and achieved

84.7% accuracy. A new soft biometric characteristic such as ‘the width of phalangeal

joint’ is also studied by Yang et al. (2014) recently. Features are derived from a

finger vein image to improve their system performance from a classical finger vein

recognition. Results showed that they obtained error rates between 5.53% and 8.08%

on the open database, and between 1.35% and 1.74% on the self-built database. Their

combinations are based on three frameworks namely fusion, filter and hybrid methods.

From the literature, we could evidently observe that by applying soft biometrics

into various biometric recognition or authentication systems show some enhancement.

Nonetheless, most articles associated with soft biometrics concentrate on either face,

gender, fingerprint or gait recognitions, but, very few on keystroke dynamics.

4.3 Proposed methodology

In this section, we illustrate several approaches on how soft biometric information

can be combined into keystroke dynamics user authentication systems. It is divided

into to two parts: (i) the development of keystroke dynamics baseline system i.e.

verification method (classical); and (ii) defining how soft criteria can be combined

with classical keystroke dynamics to obtain a better performance than the baseline

system i.e. combination method. Similarly to any other biometric authentication

applications, the performance specifications of the system is evaluated by measuring
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the number of correct and false verifications (namely: FMR and FNMR), which then

is reported in the form of EER values. For the baseline system, we perform user

authentication with computations in order to obtain the verification performance

scores from all 5 known passwords i.e. raw scores. It is considered as the foundation

of our keystroke dynamics authentication system and its performance is decided by

the EER values.

For the combination approaches, it is done on various aspects: first, with only a

single soft biometric criterion and subsequently with all soft criteria. We make several

comparison assessments in order to gain lower EER values than the values of the

classical approach. The ones with lower values are considered as good performances.

For part (i), we first define the performance measures. By using only raw key-

stroke dynamics typing features (without considering the soft criteria), we establish

a performance ‘baseline’ by calculating the (distance/comparison) scores, as the

basis of this experiment. We perform comparison analyses in order to obtain the

EER values for users’ keystroke dynamics based authentication. The computation is

done by comparing the capture template with the reference one, afterwhich a score

is obtained. The detailed description on how we conduct the keystroke dynamics

analysis is described in Section 4.3.1. At this stage, we obtained only the keystroke

dynamics verification scores. Subsequently, we combine those scores with three soft

biometric information (either gender or age or handedness).

Then, in part (ii), we define the combination approaches. First, we create the

soft biometric templates from users’ keystroke dynamics verification data. We obtain

from multiple SVM recognition algorithms a set of soft biometric scores for gender,

age and handedness. Once we have acquired both keystroke dynamics and soft

biometric scores, we then perform the combination of those scores between them,

which is described in Section 4.3.2. As an addition, we apply the data fusion, which

corresponds to an enhancement approach that can increase the system’s performance.

For the fusion processes, we apply score fusion and majority voting, which is further

explained in similar section.

A graphical representation of the overall process is illustrated in Figure 4.1. The

initial steps are quite similar as described in Page 61. However, in addtion to this

part is that we perform combination between keystroke dynamics classical approach

and soft biometric information approach.
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4.3.1 Authentication based keystroke dynamics

The data we used in the proposed analysis is the same as the one in Section 3.3.3.

The part of that dataset, which is related to typing the passwords with 2 hands is

used now, because this resembles the normal way that people type on the keyboard.

Recall that in this dataset, each user typed 5 known passwords and each password

was typed 10 times.

In general, let nr be the number of data samples that is used for creating the

template, so nt = 10 - nr is then the number of data samples that is used for testing.

In this chapter, we report the results we obtained when using nr = nt = 5. We

have also tested on different splits, but, the results were not as good. The 5 data

samples that are used to create the template are randomly selected and we used

bootstrapping with 50 iterations to obtain statistically significant results.

For the matching process, we compare a capture template with a test input

to obtain a distance score. Ideally, in case template and test input are from the

same person, the distance score is low compared to a distance score obtained when

comparing the template and test input of two different person. Let n be the number

of features in the template and let T = ((µ1, σ1), (µ2, σ2), ..., (µn, σn)) denote the tem-

plate, where µi and σi are the mean and standard deviation of the ith feature in the

template. Subsequently, let t = (t1, t2, . . . , tn) be a test input, where t corresponds

to test data of each sample. The distance metric used in this chapter is the so-called

Scaled Manhattan Distance (SMD) (Niedermeier and Sanders, 1996; Black, 2006).

SMD(T, t) =
n∑

i=1

|ti − µi|
σi

(4.1)

The distance scores are split into two: impostors scores (related to FMR) and

genuine scores (related to FNMR). These two performance values depend on the

threshold value. A threshold is a decision given to the system to determine at which

point or how near it allows a user pattern to be before can be regarded as a match

during the matching process. For example, if an individual is an impostor and

he/she obtained a distance score below the threshold, then the system considered



88
CHAPTER 4. KEYSTROKE DYNAMICS PERFORMANCE ENHANCEMENT WITH

SOFT BIOMETRICS

 

Biometric collection : 

(i) Password typing 

(ii) Sample collection 

 

Keystroke 

Template 

Data Extraction : 

(i) Keystroke/timing feature 

(ii) Pattern vector 

 

[ verification score + soft biometric score ] 

BEGIN 

STORAGE 

 

SVM Computation 1 : 

Capture template 

 

 

SVM Computation 2 : 

Trained SVM 

 

 

SVM Computation 4 : 

Soft biometric information 

 

END 

 

SVM Computation 3 : 

SVM recognition 

 

 

SVM Computation 5 : 

Matching algorithm 

 

[ 1 / -1 ] 

 

SVM Computation 6 : 

Combination approach 
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him/her as a genuine person. On the other hand, if a genuine person tries to log

on and the distance between his/her own template and the test input is above the

threshold, then this person is falsely rejected access to the system. Subsequently, the

performance of the system is reported for each password separately by introducing

the EER value. Fusion of all 5 known passwords is also performed as follows:

� 5 separate distance values are calculated;

� Each of the 5 distance values is normalised to obtain scores in the [0,1] range

i.e. by multiplying the class label with its associate probability values (because

longer passwords generally have higher distance value because summation is

over, thus more features);

� The 5 normalised distance values are then averaged into a single value, where

if the score is above 0.5 (meaning that it is over 50%, and hence closer to 1),

then the user is accepted by the system, otherwise he/she is rejected (i.e. ‘1’

for genuine and ‘0’ for impostor).

4.3.2 Combination techniques

In this section, we introduce several combination approaches. We illustrate how

we combine the distance score and the soft biometric score into a single value, which

is used for performance analysis. In order to avoid confusion with the distance score

used for normal biometric analysis, we call the new combined score “verification

score”. In the remainder of this section, we introduce 6 different combination rules.

First, we combine the distance score with only a single soft biometric score (either

gender or age or handedness). Let d denote the distance score and let sbi denote

the soft biometric score for the test input. While, cl denote the predicted class label

value and let prb denote the probability value for the soft biometric of the template

data. Finally, let vi denote the verification score related to the fusion rules Ri that

are calculated from d, sbi, cl and prb.

In Equations (4.2) and (4.3), we define the first two rules (R1 and R2) for combin-

ing the distance score with the soft biometrics score. Using rule R1, with only one soft

biometric score, we get the verification score by adding the absolute difference of the

predicted class label and the probability value (which derive the soft biometric score)

to the distance score. With rule R2, instead of adding, we multiply as an alternative.

We further extend our analysis using similar equations and approaches. We define



90
CHAPTER 4. KEYSTROKE DYNAMICS PERFORMANCE ENHANCEMENT WITH

SOFT BIOMETRICS

subsequent set of rules (R3 and R4) in Equations (4.4) and (4.5), respectively. But,

alternatively to just one, we take all 3 soft biometric scores and combine with the

distance score. Let sb1 denote the gender score, sb2 denote the age score, and sb3

denote the handedness score. Finally, we obtained the verification scores, which is

the results from the four combination rules mentioned. We discuss the results in

Section 4.4.

v1 = d+ sbi(|cl| − prb) (4.2)

v2 = d× sbi(|cl| − prb) (4.3)

v3 = d+ (|sb1 + sb2 + sb3|) (4.4)

v4 = d× (|sb1 + sb2 + sb3|) (4.5)

For the final approach, we again combine the distance score with all 3 soft

biometric scores. But, this time, we combine the soft biometric scores in a different

manner. Let gt denote the ground truth value for the soft biometric of the template

data and sbs denote the soft biometric score for the test input. While, f denote

a ‘factor’ used in the multiplication in Equations (4.6) and (4.7). We first make a

majority decision on the correctness of the soft biometric scores (sbs) when compared

to the ground truth data (gt) from the template. Here, we apply the following rules

to determine sbs value after comparison:

� if all 3 match, we set f to 1;

� if any 2 match, we set f to 0.5;

� if any 1 match or no match, we set f to 0.

In addition, we introduce two combination principles: “penalty combination” and

“reward combination”. These principles in regards to the distance metric are applied

in order to ensure that the impostor user stay above and genuine user below a given

threshold. It is done by two means: (i) take the value ‘2’ and minus it with sbs for

“penalty combination”; and (ii) take the value ‘1’ and minus it with sbs for “reward

combination”. Here, a “‘reward” implies to when the vi value is lower than SMD
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value i.e. verification score obtained better result than the distance score (or baseline

performance). Whereas, when the vi value is higher than SMD value i.e. verification

score obtained worse result than the distance score, thus is penalised with a “penalty”.

Subsequently, the verification score value is the outcome of multiplying distance

score value with soft biometric score value. It is defined as in Equations (4.6) and

(4.7) by the last two rules (R5 and R6), respectively. We mentioned in the previous

chapter that SVM provides a score in the [0,1] range. Hence, Equation (4.6) is defined

as “penalty combination” due to the value of v5 is force beyond the set threshold that

is between 1 and 2 to penalise unlikely pattern scores. Whereas, for Equation (4.7),

the value of v6 stays between 0 and 1, which is within the acceptable circle of trust,

thus a “reward combination” is defined.

v5 = d× (2− sbs) (4.6)

v6 = d× (1− sbs) (4.7)

4.4 Experimental results

In this section, we present the results obtained from the techniques presented in

the previous section. Recall that we first compute the baseline performances for each

of the 5 known passwords of the classical keystroke dynamics system i.e. without

any soft criteria. Then, in Sections 4.4.2 and 4.4.3, we show the results of combining

one or all soft biometric scores with the distance score according to rules (R1 to R4)

are defined by Equations (4.2) to (4.5). Finally, the fusion results of using majority

voting on the soft biometric scores is discussed given in Section 4.4.4 in case of rules

(R5 and R6) are defined by Equations (4.6) and (4.7).

4.4.1 Baseline system performances

Figure 4.2 illustrates the DET curves, that shows the performance of the baseline

biometric system. The curves are generated after computing the intra-class and

inter-class scores to obtain the FMR and FNMR values for the 5 known passwords.

Table 4.1 shows the baseline EER results based on classical keystroke dynamics: the

obtained values are between 15.56% and 21.45% for equal splits of template and test

data samples (where, nr = nt = 5). According to Abernethy et al. (2004), longer
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passwords provide better results. Unsurprisingly, fusing information had substantially

improves the performance of the proposed system, since the new EER is equal to

10.63%. This might not hold for small differences, where complexity also plays a

role, but, it certainly holds when comparing a password of length 20 to a password

of length 100.

Figure 4.2 – DET curve for 5 known passwords with fusion.

Password EER value

Password 1 21.45%

Password 2 18.38%

Password 3 19.26%

Password 4 19.84%

Password 5 15.56%

Fusion of 5 passwords 10.63%

Table 4.1: Performance of the baseline keystroke dynamics system.
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4.4.2 Fusion process 1

Tables 4.2 shows the performance results of combining keystroke dynamics with

soft biometric information when using the combination rule of Equation (4.2). The

table shows the results for each combination of a password and a single soft biometric

feature. Besides that, the last row shows the results of combining all 5 known

passwords with each of the soft biometric features and the last column shows the

performances of combining a password with all 3 soft biometrics. The results for

the combination of one soft biometric score with the single password distance score

are between 13.10% and 21.67% (depending on password and soft criterion). In all

except 2 cases, the performance is improved. In the 2 cases where the performance

does not improve (i.e. Password 1 in combination with the age soft biometric and

Password 3 with the gender soft biometric), the EER value only slightly increases

compared to the baseline performance.

Next, we tested the combination of the three soft criteria with the distance score

by Equation (4.4) and found that the results are of the same order i.e. between

14.88% and 19.05%. When repeating this with the combination of all 5 known

passwords and either 1 or 3 soft biometric scores, the resulting EER values were

found to be between 8.33% and 12.50%. In this case, we noted that combining with

only one soft biometric score did not significantly improve the performance compared

to the baseline performance.

4.4.3 Fusion process 2

We then applied the same analysis, but, only using Equations (4.3) and (4.5)

to find the verification score vi instead of Equations (4.2) and (4.4). Experimental

results can be found in Table 4.3.

4.4.4 Fusion processes 3 and 4 with majority voting

In our final analysis, we choose to combine the 3 soft biometric scores using

majority voting. Table 4.4 shows that when we apply Equation (4.6) with rule (R5),

the results are quite bad, since the EER values are between 29.14% and 39.07% for

the single known password, and the EER value is 28.52% with the fusion of the 5

known passwords. Using rule (R6) with Equation (4.7), we obtained EER values

between 7.34% and 14.09%. By fusing the 5 known passwords, the performance
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significantly improves with a value of 5.41% for the EER.

The EER values in all cases are worse than what is found in Table 4.2 under the

same conditions. The only exception being the fusion of the distance score related

to Password 2 with the combination of all 3 soft biometric features. In that case,

Equations (4.3) and (4.5) gave in fact slightly better results compared to Equations

(4.2) and (4.4). But, overall did we find much worse result, e.g. for the combination

of Password 5 with the age soft biometric, the EER using Equations (4.2) and (4.4)

are less than 15%, while Equations (4.3) and (4.5) would give an EER of 40%.

As a conclusion to this part, the best performance is an EER of 5.41%, obtained

with the majority voting with the Equation (4.7). When we analyse this rule more

precisely, we notice that the baseline distance score d from Equation (4.7) is multiplied

either:

� by 0: if all three soft criteria are correct, which means that the new distance

between the stored template and the presented template is zero, i.e. the system

is 100% sure it is the claimed identity;

� by 0.5: if only two soft criteria are correct, which means the new distance

between the stored template and the presented template is divided by two,

and the system has taken into account the information brought by the soft

biometrics, compared to the baseline system;

� by 1: if at most one soft criterion is correct: the new distance is similar to

the baseline system. In this case, the soft criteria does not bring trustworthy

information.

Observe that, this rule acts as a “reward combination” rule: the verification score

is better than that of the baseline one only when the soft criteria bring interesting

information. The same analysis with the rule based on Equation (4.6) would show

that it is a “penalty combination” rule, which may explain the worst performances:

indeed, the verification score is increased only when the soft criteria are false. It

means that a greater importance is given to non-corresponding soft criteria (whereas

when all soft criteria are correct, the distance does not change).
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Password Baseline Penalty Eq.(4.6) Reward Eq.(4.7)

Password 1 21.45% 30.04% 10.27%

Password 2 18.38% 29.14% 7.45%

Password 3 19.26% 31.62% 9.59%

Password 4 19.84% 31.09% 7.34%

Password 5 15.56% 39.07% 14.09%

Fusion of 5 passwords 10.63% 28.52% 5.41%

Table 4.4: EER values of baseline performance combined with soft biometric inform-
ation by using penalty and reward combinations.

4.5 Conclusions

In this chapter, we proposed an improvement of user verification scores (new

combined results) with keystroke dynamics by considering soft biometric information.

We presented several techniques such as majority voting and score fusion with a

number of combination approaches that can enhance the keystroke dynamics authen-

tication systems.

Multiple results were obtained as illustrated in the previous section, which offers

some enhancement for the baseline system performances i.e. initial results of the

classical keystroke dynamics. For example, the results of our baseline performances

for 5 known passwords show that we managed to obtain EER values between 15.56%

and 21.45%, and by fusing is further reduced to 10.63%. With the correct combina-

tion approach, we are able to reduced the EER value to up to 12.50%, and 5.22%

with fusion. Nonetheless, there are also some results with poor outcomes depending

on the combination techniques.

In conclusion, the results presented in this chapter can be used to improve user

verification based on keystroke dynamics by combining soft biometric information

with: (i) ‘distance score’ provided by the biometric authentication system when

comparing the reference to a stored template; and (ii) fusion to further enhance the
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recognition systems, which may be considered as an added value for the system’s

performance improvement.

We conclude the thesis in the next part by listing the main contributions and

recommendations as well as perspectives in this research.



Conclusions and Perspectives

I
n the previous chapters, we conducted a number of statistical analyses and reported

results showed positive evidences of using ‘soft biometrics’ for keystroke dynamics.

It also uncovered their downsides as a consequence of its inborn nature of “soft”

features, in the sense that soft biometric data are not absolutely dependable, where

individual verification is made according to a number of data. Nonetheless, those

criteria are significantly informative and could be considered for keystroke dynamics

biometric authentication systems.

Proposed in this thesis is the keystroke dynamics with novel approaches of using

soft biometric information. We suggested to use keystroke dynamics in order to

prevent password-based authentication issues. An additional part of this work is the

creation of a significant benchmark database with 110 users from France and Norway,

with 100 samples per user reported in Chapter 2. It is a new dataset for keystroke

dynamics, which is made public to the international scientific community. This

dataset contains various soft biometric data of users. It consists of data on the way of

typing (one hand or two hands), gender, age and handedness. By making this dataset

available as a new benchmark, not only it may avoid future researchers to create

again similar database, but, also motivate them to perform future experimentations

without further delay.

Subsequently, in Chapter 3, we introduced some soft biometric characteristics

such as: the user’s way of typing by defining the number of hands used to type

(one or two); gender (male or female); age (< 30 years old or ≥ 30 years old);

and handedness (right-handed or left-handed), as our soft biometric criteria. Those

information have been the basis of our study and published in several articles, namely:

(Syed Idrus et al., 2013a,b, 2014). The outcomes from our analyses have also shown

some interesting and optimistic recognition results for 5 known passwords (with
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static texts) and free text (with digraphs). We also demonstrated how we are able

to significantly enhance the soft biometric recognition rates for known passwords

by applying fusion processes and achieved higher performance accuracies. Results

showed that the optimal performance is by fusing with score fusion, where the pro-

posed system achieved between 92% and 100% recognition rates (depending on the

soft category). This could provide a ‘reliability index’ by verifying the concordance

between one extracted soft biometric information (such as gender) and the known

information. In addition, we made a study on the complexity of a password typing,

which review if a password selection influences the typing difficulty. It is used to

optimise the enrolment step while choosing an appropriate password to enhance

performance. Obviously, the length of a password leads to more complex in password

security. Shorter passwords with an unknown combination of certain characters may

also added to a higher value to the complexity.

Furthermore, by considering soft information, an improvement of user verification

results with keystroke dynamics is discussed in Chapter 4. Reported in this chapter

several approaches to perform the combination between soft criteria and keystroke

dynamics. Thus, the presented results can be used to improve the user authentication

system based on keystroke dynamics by combining soft biometric criteria with: (i)

‘distance score’ supplied by the biometric authentication system when comparing with

the reference template to a kept template in the database; and (ii) fusion processes

to further improve the recognition methods that could contribute to the favourable

effects in the system’s overall performance. We obtained interesting results from

different combination techniques, however, our best performance is with the fusion of

all known passwords, where we obtained an EER value that is equal to 5.41%. The

results in this work could also be applied, for example, in securing social networks,

where the soft biometric characteristics of a person in a chat can be checked against

his/her claimed profile. The suggested combination techniques may also be applied

for other biometric modalities.

In conclusion, the obtained results illustrated in this thesis could be used as a

generic model to assist the biometric system to better recognise a user, especially by

the way while typing on a keyboard. This will not only strengthen the authentication

process by hindering an impostor trying to enter into the system, but also cut down

on the computation time.
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For perspectives, besides our proposed soft biometric criteria, other soft biometric

information such as emotional states (anger, sad, anxiety. . . ); body attributes (height

or weight); colours (eye, hair, beard, skin. . . ); marks (birth mark, scar, tattoo. . . );

shape and size (head, ear, finger. . . ), are some of the common soft criteria. All those

traits are acknowledged towards the description, but, are not limited to morphological,

behavioural or adhered human characteristics. They may be explored and possibly

be applied (combined) into an authentication system depending on the biometric

modality for performance enhancement.

There are several frameworks that can be combined with biometric authentica-

tion systems. For example, soft biometrics for continuous authentication is an area

that one could possibly be investigated. Here, perhaps the system is able to better

recognise or authenticate users in a real-time mode based of their soft biometric

characteristics as opposed to static ones. It would also be interesting to use the

Bayesian approach with a possibility to perform age estimation, say, if an individual’s

age is above 18 or else.

Template update for soft biometrics is also another aspect that can be looked into

due to some criteria contain higher variability than others. Some characteristics are

subjective such as the mood or situation may change depending on an environment

ones at. Additionally, for instance, if someone had an accident, some of their features

will definitely take effects. These could be an important aspects to ensure that the

system constantly revise its database for reliability purposes.

Now, with classical keystroke dynamics, the questions remain whether touch-

screens or multi-touch gestures on a screen by itself are sufficient. It would still be

the case if PIN codes are stolen or one could mimic hand/finger movement based

on secret path/pattern. Potentially, we could quantify the performance based on

soft criteria. In addition, semantic clustering could probably be combined with

non-semantic clustering algorithms by the means of using, say, any unsupervised

machine learning approach to determine its distance metric.
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Johannes Peltola. Soft biometrics–combining body weight and fat measurements

with fingerprint biometrics. Pattern Recognition Letters, 27(5):p. 325 – 334, 2006.

[cited p. 57, 84]

Mudhafar M Al-Jarrah. A multi-factor authentication scheme using keystroke

dynamics and two-part passwords. International Journal of Academic Research, 5

(3), 2013. [cited p. 60]

Eesa Al Solami, Colin Boyd, Andrew Clark, and Irfan Ahmed. User-representative

feature selection for keystroke dynamics. In Network and System Security (NSS),

2011 5th International Conference on, pages 229–233. IEEE, 2011. [cited p. 17]

Jeffrey D. Allen. An analysis of pressure-based keystroke dynamics algorithms.

Master’s thesis, Southern Methodist University, Dallas, TX, May 2010. [cited p. 30,

31]

Parvathi Ambalakat. Security of biometric authentication systems. In Computer

Science Seminar, Rensselaer at Hartford, 2005. [cited p. 57]

GLF Azevedo, George DC Cavalcanti, and Edson CB Carvalho Filho. An approach

to feature selection for keystroke dynamics systems based on pso and feature

weighting. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on,

pages 3577–3584. IEEE, 2007a. [cited p. 13, 18, 22]

107



108 BIBLIOGRAPHY

GLF Azevedo, George DC Cavalcanti, and Edson CB Carvalho Filho. Hybrid solution

for the feature selection in personal identification problems through keystroke

dynamics. In Neural Networks, 2007. IJCNN 2007. International Joint Conference

on, pages 1947–1952. IEEE, 2007b. [cited p. 13, 14, 22]

Kaveh Bakhtiyari, Mona Taghavi, and Hafizah Husain. Implementation of emotional-

aware computer systems using typical input devices. In Intelligent Information

and Database Systems, pages 364–374. Springer, 2014. [cited p. 60]

Kiran S Balagani, Vir V Phoha, Asok Ray, and Shashi Phoha. On the discriminability

of keystroke feature vectors used in fixed text keystroke authentication. Pattern

Recognition Letters, 32(7):1070–1080, 2011. [cited p. 16]

Salil P Banerjee and Damon L Woodard. Biometric authentication and identification

using keystroke dynamics: A survey. Journal of Pattern Recognition Research, 7

(1):116–139, 2012. [cited p. 10, 14, 19]

Nick Bartlow and Bojan Cukic. Evaluating the reliability of credential hardening

through keystroke dynamics. In Software Reliability Engineering, 2006. ISSRE’06.

17th International Symposium on, pages 117–126. IEEE, 2006. [cited p. 12, 22]

Francesco Bergadano, Daniele Gunetti, and Claudia Picardi. User authentication

through keystroke dynamics. ACM Transactions on Information and System

Security (TISSEC), 5(4):367–397, 2002. [cited p. 12, 17, 21]

Maximiliano Bertacchini, Carlos Benitez, and Pablo Fierens. User clustering based on

keystroke dynamics. In XVI Congreso Argentino de Ciencias de la Computacion

(CACIC 2010), 2010. [cited p. 32]

D. Bhattacharyya, R. Ranjan, Farkhod Alisherov A., and M. Choi. Biometric

authentication: A review. International Journal of u- and e- Service, Science and

Technology, 2(3):13–27, September 2009. [cited p. xiii, 1]

I. BioPassword. Authentication Solutions Through Keystroke Dynamics, 2006.

BioPassword, Issaquah, Wash, USA, 2006. [cited p. 9]

Paul E Black. Manhattan distance. Dictionary of Algorithms and Data Structures,

18:2012, 2006. [cited p. 88]

Saleh Bleha, Charles Slivinsky, and Bassam Hussien. Computer-access security

systems using keystroke dynamics. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 12(12):1217–1222, 1990. [cited p. 16]



BIBLIOGRAPHY 109

Glaucya C Boechat, Jeneffer C Ferreira, et al. Authentication personal. In Intelligent

and Advanced Systems, 2007. ICIAS 2007. International Conference on, pages

254–256. IEEE, 2007. [cited p. 13, 22]

Patrick Bours. Continuous keystroke dynamics: A different perspective towards

biometric evaluation. Information Security Technical Report, 17(1-2):p. 36–43,

February 2012. ISSN 1363-4127. doi: 10.1016/j.istr.2012.02.001. [cited p. xvii, 4, 10]

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):p. 27, 2011.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. [cited p. 64]

Yi Chen, Sarat C Dass, and Anil K Jain. Fingerprint quality indices for predict-

ing authentication performance. In Audio-and Video-Based Biometric Person

Authentication, pages 160–170. Springer, 2005. [cited p. xvii, 5]

Sung-Zoon Cho and Dae-Hee Han. Apparatus for authenticating an individual based

on a typing pattern by using a neural network system, November, 21 2000. US

Patent 6,151,593. [cited p. 18]

Sungzoon Cho and Seongseob Hwang. Artificial rhythms and cues for keystroke

dynamics based authentication. In Advances in Biometrics, pages 626–632. Springer,

2005. [cited p. 13, 21]

Nathan L Clarke and SM Furnell. Authenticating mobile phone users using keystroke

analysis. International Journal of Information Security, 6(1):1–14, 2007. [cited p. 30]

Corinna Cortes and Vladimir Vapnik. Support vector machine. Machine learning, 20

(3):273–297, 1995. [cited p. 65, 133]

Heather Crawford. Keystroke dynamics: Characteristics and opportunities. In

Privacy Security and Trust (PST), 2010 Eighth Annual International Conference

on, pages 205–212. IEEE, 2010. [cited p. 18]

Antitza Dantcheva, Carmelo Velardo, Angela D’angelo, and Jean-Luc Dugelay. Bag

of soft biometrics for person identification. Multimedia Tools and Applications, 51

(2):739–777, 2011. [cited p. 58]

H Davoudi and E Kabir. A new distance measure for free text keystroke authentication.

In Computer Conference, 2009. CSICC 2009. 14th International CSI, pages 570–

575. IEEE, 2009. [cited p. 63]

http://www.csie.ntu.edu.tw/~cjlin/libsvm


110 BIBLIOGRAPHY
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Appendix A

Confusion Matrix Computation

Below, we show an example of how we compute the confusion matrix for gender,

and similarly for the other soft biometrics information. We define our soft biometrics

information as shown in Table A.1.

One hand = 1 Two hands = -1
Male = 1 Female = -1
< 30 years old = 1 ≥ 30 years old = -1
Right-handed = 1 Left-handed = -1

Table A.1: Soft biometric information class labels.

A simple way of comparing the ground truth (real data) with the predicted data

is defined as illustrated in Table A.2. The following is the basic performance measure

of how the matching comparison is computed:

a = (1/1);

where, ‘real data’ = M and ‘predicted data’ = M , hence correctly pre-

dicted M by SVM i.e. True Positive (TP).

b = (-1/1);

where, ‘real data’ = F and ‘predicted data’ = M , hence wrongly predicted

F as M by SVM i.e. False Positive (FP).
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c = (1/-1);

where, ‘real data’ = M and ‘predicted data’ = F , hence wrongly predicted

M as F by SVM i.e. False Negative (FN).

d = (-1/-1);

where, ‘real data’ = F and ‘predicted data’ = F , hence correctly predicted

F by SVM i.e. True Negative (TN).

hhhhhhhhhhhhhhhhhhPredicted data
Real data

Male (M): [1] Female (F ): [-1]

Male (M): [1]
a

(1/1)
b

(-1/1)

Female (F ): [-1]
c

(1/-1)
d

(-1/-1)

Table A.2: Confusion matrix comparison computation between real data and predicted
data.
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technique internationale) qui constituent le système spécialisé de mondial
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At present, there are a variety of usages of biometric techniques for a lot of distinct purposes

including physical access control, attendance monitoring, e-payment and others. In order to avoid

password-based authentication problems, this research focuses on biometric authentication and

we propose to use keystroke dynamics. The reduced performances of keystroke dynamics could

be revealed by the higher intra-class variability in the users’ habits. One way to take care of this

variability is to take into consideration additional information in the determination process.

We propose several contributions in order to enhance the performance recognition of keystroke

dynamics systems with our novel methods. For starters, we made our personal dataset, which is

a new biometric benchmark database known as ‘GREYC-NISLAB Keystroke’ to satisfy the goal

of the thesis, where we had made our own data collection of 110 users, both France and Norway.

This new benchmark database is accessible to the international scientific community and features

some profiling information about end users: the way of typing (one hand or two hands), gender,

age and handedness. In order to increase the system performance, subsequently, we study the

biometric fusion with keystroke dynamics. Finally, we present an improvement of user recognition,

by combining the authentication process with soft criteria. The outcomes of the experiments display

the benefits of the proposed approaches.

Keywords

Biometrics, keystroke dynamics, information fusion

Biométrie douce pour la dynamique de frappe au clavier

À l’heure actuelle, il ya une grande variété d’usages des techniques biométriques pour plusieurs

fins, y compris le contrôle d’accès physique, contrôle de présence, paiement électronique et autres.

Afin d’éviter des problèmes d’authentification par mot de passe, cette recherche se concentre sur

l’authentification biométrique et nous proposons d’utiliser la dynamique de frappe au clavier. Les

performances limitiées de la dynamique de frappe au clavier pourraient sont liées à par la variabilité

intra-classe supérieure associées aux habitudes des utilisateurs. Une façon de prendre soin de cette

variabilité est de prendre en considération des informations supplémentaires dans le processus de

décision.

Nous vous proposons plusieurs contributions dans cette thèse afin d’améliorer la reconnaissance

des performances des systèmes de dynamique de frappe au clavier avec de nouvelles méthodes. Pour

commencer, nous avons créé un jeu de données personnelles, qui est une nouvelle base de données

de référence biométrique connu comme ‘GREYC-NISLAB Keystroke’ pour répondre aux objectifs

de la thèse, où nous avions à notre disposition des données de 110 utilisateurs en France et en

Norvège. Cette nouvelle base de données de référence est accessible à la communauté scientifique

internationale et propose des informations de profilage sur les utilisateurs finaux: la façon de taper

(une ou deux mains), le sexe, l’âge et l’impartialité. Afin d’augmenter les performances du système,

par la suite, nous étudions la fusion biométrique avec la dynamique de frappe au clavier. Enfin,

nous présentons une amélioration de la reconnaissance de l’utilisateur, en combinant le processus

d’authentification avec les critères mous. Les résultats de ces expériences montrent les avantages

des approches proposées.

Mots-clés

Biométrie, dynamique de frappe au clavier, fusion d’information
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