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Résumé de la thèse en français

Pour augmenter les débits de transmission, de nouvelles techniques permettant
d’améliorer l’efficacité spectrale des systèmes de télécommunication sont proposées.
Parmi les techniques prometteuses, Multiple-Input Multiple-Output (MIMO) est très
étudiée [1], [2]. La technique MIMO permet en effet de transmettre plusieurs symboles
de données différents de manière simultanée et sur la même bande de fréquence. Cette
technique a d’abord été étudiée pour des liaisons point-à-point, c’est-à-dire entre un
émetteur et un récepteur, chacun équipé de plusieurs antennes. Les travaux [3], [4] et
[5] indiquent notamment que l’efficacité spectrale obtenue pour des systèmes équipés
de plusieurs antennes peut s’avérer importante lorsque le canal offre beaucoup de di-
versité. Dans [6] et [7] les auteurs soulignent que pour un canal à bruit additif gaussien
indépendant et identiquement distribué, la capacité des systèmes MIMO peut croître
linéairement avec le nombre d’antennes de transmission ou de réception.

Depuis quelques années, une extension de MIMO nommée multi-utilisateurs MIMO
(MU-MIMO) attire de plus en plus d’attention par rapport au système MIMO clas-
sique. MU-MIMO permet en effet d’établir des communications simultanées avec
plusieurs utilisateurs répartis dans l’espace, chacun équipé d’antennes multiples. Ce
système permet donc de servir simultanément plusieurs utilisateurs avec une grande
efficacité spectrale en exploitant la diversité spatiale. Ce service est possible au prix
d’un traitement du signal plus intensif [8], [9]. Le schéma de base est celui d’une
station de base en lien avec plusieurs utilisateurs simultanément dans la même bande
de fréquence, et qui exploite les différentes signatures spatiales induites par la disper-
sion géographique des utilisateurs. Cette technique est également connue sous le nom
de Space-Division Multiple Access (SDMA) [10]. Il est montré qu’en appliquant la
technique DPC (Dirty-Paper-Coding), le système MU-MIMO a la capacité d’annuler
les interférences connues non causalement au niveau de l’émetteur. A l’aide de tech-
niques de formation de voies, il est possible de supprimer les autres interférences. La
formation de voies a été utilisée dans les systèmes MIMO [11] de manière optionnelle
pour améliorer le rapport signal-sur-bruit (RSB) au niveau du récepteur [12]. Afin
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de profiter pleinement de l’amélioration des performances apportée par le multiplex-
age spatial dans les systèmes MU-MIMO, les techniques de formation de voies sont
essentielles pour éliminer ou minimiser les interférences multi-utilisateurs (MUI).

Le chapitre 2 introduit les canaux MIMO, MU-MIMO, et les canaux d’accès mul-
tiple (MAC). La liaison descendante, de la station de base avec des antennes multiples
vers plusieurs utilisateurs, chacun étant équipé d’une ou de plusieurs antennes, est
définie comme un canal de diffusion MU-MIMO. L’objet de l’étude est de déterminer
la formation de voies optimale en termes de capacité de ce système. S’agissant ici d’un
problème d’optimisation non convexe et non-concave [13], la dualité entre le canal de-
scendant MU-MIMO de diffusion et le canal MAC de liaison montante est exploitée.
Cependant, malgré l’exploitation de cette propriété, la complexité reste élevée pour
résoudre le problème. Afin de réduire cette complexité, des méthodes sous-optimales
telles que ZF-DPC [14], SA-DPC [15] et SBD-DPC [16] ont été proposées. Pour ce
type de méthodes qualifiées de non linéaires, les signaux à transmettre sont générale-
ment encodés d’une manière séquentielle. On distingue alors à chaque étape, une
partie de l’interférence, connue au niveau de l’émetteur, et étant causée par les signaux
précédemment encodés. Cette interférence peut être éliminée simplement par la tech-
nique DPC. Ceci offre plus de degrés de liberté pour la détermination des vecteurs de
formation de voies à l’émission, puisqu’il reste à annuler uniquement la partie restante
de l’interférence. Cette stratégie conduit généralement à des performances importantes
en termes de débit pour ces méthodes non linéaires. La méthode ZF-DPC ne permet
de considérer qu’une seule antenne de réception par utilisateur, tandis que la méthode
SBD-DPC permet de considérer plusieurs antennes de réception par utilisateur. La
méthode SA-DPC proposée dans [15] détermine la formation de voies en émission et
en réception pour les flux de données d’une de manière séquentielle. Cette méthode
fonctionne même si le nombre total d’antennes en réception est supérieur au nombre
d’antennes à l’émission. Un aperçu de ces techniques d’optimisation non-linéaires
nécessitant l’algorithme DPC, est donné dans le chapitre 3.

Bien que la capacité globale fournie par ces dernières méthodes s’approche de la
capacité optimale, elles nécessitent la mise en œuvre de l’algorithme DPC qui aug-
mente la complexité. Par conséquent, des solutions de traitement linéaires, telles que
la méthode ZF [17], la méthode BD [18], la méthode RBD [4], la méthode CB [19] et
la méthode ZF-SA [20] ont été proposées. Ces méthodes permettent aussi d’annuler
complètement l’interférence par la formation de voies. Les méthodes ZF et BD con-
sistent, pour chaque utilisateur, à trouver un vecteur de formation de voies à l’émission
orthogonal à l’espace formé par les autres utilisateurs. Les méthodes ZF-SA et CB
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permettent de considérer les cas où le nombre total d’antennes en réception est plus
grand que le nombre d’antennes à l’émission. La condition de ZF est relaxée dans la
méthode MMSE [21], et les vecteurs de formation voies à l’émission sont calculés par
les valeurs propres généralisées. Toutes ces techniques sont décrites dans le chapitre 3.
La mise en œuvre de ces méthodes reste raisonnable en termes de complexité. Cepen-
dant pour toutes ces techniques, l’optimisation se fait sous une contrainte de puissance
cumulée.

Dans la pratique, chaque antenne émettrice possède un amplificateur de puissance
dont la linéarité est nécessairement limitée; en particulier dans le cas du système
OFDM qui présente de forts PAPR [22]. Ainsi, il est plus réaliste de chercher à opti-
miser le débit avec une contrainte de puissance non plus totale mais relative à chaque
antenne d’émission. Des techniques de formation voies avec une contrainte de puis-
sance par antenne ont été étudiées dans [23], [24], [25], [26] et [27]. Les travaux [23]
et [24] se placent dans le cas où chaque utilisateur est équipé d’une seule antenne et
considèrent un pré-codage de ZF. Dans [25] cette contrainte ZF est relaxée. Dans [26]
les auteurs analysent le cas où chaque utilisateur est équipé de plusieurs antennes, et
l’algorithme DPC est utilisé en considérant un ordre d’attribution prédéfini des util-
isateurs. Cette méthode [26] attribue à chaque utilisateur un certain nombre de flux
de données en fonction du rang de sa matrice de canal. Ce dernier point n’est cepen-
dant pas optimal car les canaux offrant un débit faible ou même négligeable pour un
utilisateur pourraient introduire néanmoins de fortes contraintes pour les autres utilisa-
teurs [15]. Dans [27], la solution optimale sous contrainte de puissance par antenne
est obtenue par l’exploitation de la dualité des canaux montants et descendants. Les
techniques mises en œuvre pour résoudre ce problème d’optimisation convergent mal-
heureusement assez lentement [25]. L’état de l’art des techniques de formation de voies
sous la contrainte de puissance par antenne dans les canaux de diffusion MU-MIMO
est également donné dans le chapitre 3. Dans la première partie du chapitre 4, nous
proposons une approche alternative à la méthode SA-DPC sous la contrainte de la puis-
sance totale. La manière de déterminer les vecteurs de formation de voies à l’émission
dans la méthode SA-DPC, ne permet pas d’introduire facilement la contrainte de puis-
sance par antenne. Dans la méthode proposée, le vecteur de la formation de voies à
l’émission est obtenu en déterminant d’abord le sous-espace vectoriel auquel il doit
appartenir, puis en cherchant dans cet espace le vecteur qui permet d’optimiser le débit
global. La méthode proposée se comporte de manière identique à la méthode SA-DPC
lorsque la contrainte de la puissance totale est imposée. Par contre, le procédé proposé
peut être facilement modifié pour prendre en compte la contrainte plus réaliste de puis-
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sance par antenne. Dans la deuxième partie du chapitre 4, une méthode de formation
de voies sous la contrainte de puissance par antenne est proposée. Puisque la solu-
tion optimale du problème initial est difficile à obtenir, le problème est scindé en deux
sous-problèmes classiques, l’un est un problème d’optimisation SDP (semidefinite-
programming), et l’autre se résout par la technique MRC (maximal-ratio-combining).
La comparaison avec les méthodes de la littérature montre le bénéfice apporté par cette
nouvelle méthode. De plus, la méthode proposée fonctionne même si le nombre total
d’antennes de réception est plus grand que le nombre d’antennes d’émission.

Lorsque le RSB est faible, l’interférence apparaît comme négligeable par rapport
au bruit gaussien additif. Dans ce cas, il n’est donc pas indispensable de vouloir sup-
primer l’interférence complètement. Ainsi la contrainte d’annulation de l’interférence
peut être relaxée, mais le problème de l’optimisation de l’allocation de puissance
s’avère alors être un problème NP [21]. Dans la littérature, plusieurs approches sous-
optimales qui permettent d’optimiser conjointement les vecteurs de formation de voies
à l’émission et l’allocation de puissance ont été développées. Dans [28], les auteurs
ont analysé la situation où chaque utilisateur dispose d’une seule antenne de récep-
tion. Cette technique a été généralisée dans [21] où chaque utilisateur est équipé de
plusieurs antennes de réception pour assurer plusieurs flux de données. Cependant,
la méthode d’allocation de puissance proposée dans [21] se trouve être un problème
d’optimisation GP (geometric-programming) itératif, qui présente une complexité de
calcul assez élevée. Dans [29] l’optimisation porte sur le rapport SINR (signal-to-
interference-plus-noise ratio) moyen de chaque utilisateur. Cependant ce critère n’est
pas toujours optimal, car la dégradation du TEB (taux d’erreurs binaires) apparaît prin-
cipalement lorsque le SINR d’un sous-canal est faible même si le SINR moyen de
l’utilisateur est élevé. Dans [30], la relation est établie entre le SINR par utilisateur
et les débits pondérés (weighted sum rate) dans le cas d’une seule antenne de récep-
tion par utilisateur. L’optimisation du débit est aussi étudiée pour le cas multicellulaire
MIMO dans [31] et [32], et le résultat optimal est trouvé au prix d’une complexité de
calcul exponentielle. Dans [33], [34] et [35], des solutions optimales locales ont été
proposées avec une complexité raisonnable.

Motivée par [21], au chapitre 5, une nouvelle méthode d’allocation de puissance
dans le contexte MU-MIMO est proposée. Nous adoptons la technique de formation
de voies MMSE [21], qui est une stratégie efficace pour la résolution d’un tel prob-
lème d’optimisation [29], [36]. En outre, contrairement à la technique d’allocation
de puissance GP dans [21], la méthode d’allocation de puissance proposée attribue la
puissance d’émission totale de manière itérative selon le principe du water-filling, at-
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tribuant ainsi plus de puissance aux canaux ayant les plus forts gains. Cette stratégie
réduit considérablement la complexité de calcul par rapport à la méthode GP. En outre,
la méthode proposée attribue la puissance d’émission totale de manière itérative, en
prenant en compte à chaque itération la puissance allouée lors des itérations précé-
dentes. Cette technique permet d’atteindre des débits proches de la capacité du canal.
L’algorithme proposé est intéressant sur le plan de sa mise en œuvre en pratique. Les
résultats numériques permettent de valider la technique proposée.

Le chapitre 6 donne la conclusion et quelques perspectives à ces travaux. L’objectif
des méthodes étudiées est l’augmentation du débit global, mais il serait important de
prendre en considération le RSB à chaque sous-canal. En effet, un faible RSB peut
entrainer un fort TEB, qui peut même s’avérer non envisageable en pratique.

Dans ce mémoire, afin de maximiser le débit global, certains utilisateurs pour
lesquels le sous-canal n’est pas favorable, sont négligés. Or bien souvent en pratique,
le système doit garantir un débit minimum à chaque utilisateur. Il est donc néces-
saire aussi de se pencher sur ce problème de qualité de service minimum pour chaque
utilisateur.

Parmi les méthodes que nous avons proposées, certaines nécessitent la mise en
œuvre de l’algorithme DPC, ce qui entraîne bien souvent une complexité importante
des équipements émetteurs et récepteurs. Les recherches futures pourraient porter sur
la réduction de cette complexité.

Les canaux non sélectifs en fréquence sont considérés dans cette thèse, il serait
intéressant d’étudier le cas où les canaux sont sélectifs en fréquence.

Dans cette étude, nous avons supposé que les canaux sont parfaitement connus. La
sensibilité des méthodes proposées par rapport à la connaissance imparfaite des canaux
mérite d’être étudiée.
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1
Introduction

1.1 Background

With the emerging of the fourth generation (4G) wireless systems, commercial
wireless communications such as mobile multimedia, mobile online game, and high
quality video etc. come into our daily life. Meanwhile, the requirement for radio spec-
trum also increases strongly with this fast development of wireless communication
industry and business. The radio spectrum resource being limited, it becomes more
and more expensive [37]. In order to meet the requirement of extremely high data
rates, a large number of new techniques that can improve the spectrum efficiency and
data rates are being studied, and tremendous research efforts are also undertaken to de-
velop advanced coding, modulation, signal processing and multiple-access schemes for
improving the quality and spectral efficiency of wireless links (e.g. FDMA, CDMA,
OFDM, etc.). Multiple-Input Multiple-Output (MIMO) which transmits several dif-
ferent data symbols at the same time and on the same frequency, is one key technique
among them because of its ability to enhance the channel capacity of cellular systems
at no extra cost of spectrum [1], [2]. MIMO technique is first investigated in point to
point scenario, that is, the transmitter equipped with multiple transmit antennas and the
receiver equipped with multiple receive antennas. The work in [3], [4] and [5] predicts
that remarkable spectral efficiencies for wireless systems with multiple antennas can
be obtained when the channel exhibits rich scattering. The work in [6] and [7] points
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Figure 1.1: Illustration of capacities with different antennas configurations.

out that for an independent and identically distributed Gaussian noise channel, the ca-
pacity of MIMO systems can grow linearly with the number of transmit or receive
antennas. Figure 1.1 shows the different capacities with different antennas configura-
tions over fading channel. When SNR is 10dB, the capacity for single transmit and
receive antenna system is 3 bps/Hz, approximately. A two transmit antennas and one
receive antenna system would achieve 4 bps/Hz. A four transmit antennas and four
receive antennas system can reach 12 bps/Hz. In addition, the existing 802.11n [38]
and 802.16e [39] standards also employ MIMO systems.

The benefits offered by MIMO systems are built on two underlying gains (i.e.,
spatial diversity and spatial multiplexing), which come with the increased cost of ra-
dio frequency hardware. Compared with the conventional Single-Input Single-Output
(SISO) systems, MIMO systems have more degrees of freedom regarding the signal
transmission. Generally, there are three major transmission models in MIMO system:
Diversity [40], Multiplexing [41], and Diversity mixed with Multiplexing [42].

1, MIMO Diversity

Wireless channels severely suffer from fading phenomena, which causes unrelia-
bility in data decoding. Fundamentally, the spatial diversity scheme sends multiple
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copies of the signal through multiple transmit antennas, so that the probability that all
the signal components fade simultaneously is reduced. Therefore, the reliability of the
data reception is enhanced and improved [43].

Receive diversity can be used in Single-Input Multiple-Output (SIMO) channels.
The receive antennas receive the signal with independent fading. Then the receiver
combines these signals so that the resulted signal exhibits considerably reduced fad-
ing [44]. The receive diversity order is characterized by the number of independently
fading branches, and the maximum receive diversity order is equal to the number of
receive antennas in SIMO channels. The transmit diversity is applicable to Multiple-
Input Single-Output (MISO) channels [8], [11]. The transmit diversity order corre-
sponds to the number of independently fading paths that a symbol passes through.
Therefore, the maximum transmit diversity order of MISO system is equal to the num-
ber of transmit antennas. For a general MIMO system with Nr receive antennas and
Nt transmit antennas, the maximum diversity order that can be achieved is

D = Nr ×Nt (1.1)

where the channel between each transmit-receive antenna pair is assumed to fade in-
dependently.

2, MIMO Multiplexing

In spatial multiplexing, a high rate signal is split into multiple lower rate streams
and each stream is transmitted from a different transmit antenna in the same frequency
channel. [4] has shown that in the high SNR region, the capacity of a channel with
independent and identically distributed (i.i.d.) Rayleigh fading between each transmit-
receive antenna pair is given by

C(SNR) = min{Nr, Nt} log(SNR) +O(1) (1.2)

where SNR is the signal to noise ratio. The spatial multiplexing transmission offers a
linear increase with the number of receive or transmit antennas in the transmission rate
for the same bandwidth and with no additional power expenditure [10]. Compared with
the spatial diversity transmission, the spatial multiplexing transmission aims to maxi-
mize the system capacity. One typical spatial multiplexing transmission model is Bell
Laboratory Layered Space-Time (BLAST) system [45]. The maximum multiplexing
gain of BLAST system is

r = min{Nr, Nt} (1.3)
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The spatial multiplexing configuration can also be applied in a multiuser system.

Recently, an extension of MIMO named Multiuser MIMO (MU-MIMO) system
attracts more attention compared with MIMO system since spatially distributed users
with multiple antennas can be served at the same time by using spatial diversity, at
the cost of some more signal processing [8], [9]. The base station communicates with
the multiple users simultaneously in the same frequency channel by exploiting differ-
ences in spatial signatures induced by spatially dispersed users, this technique is also
known as space-division multiple access (SDMA) [10]. It is shown that similar capac-
ity scaling to MIMO systems can be achieved by dirty paper coding (DPC) technique
in MU-MIMO systems. Some advantage of MU-MIMO systems can be obtained with
the aid of beamforming techniques. By beamforming we mean all methods applied at
the transmitter that facilitate detection at the receiver [46]. Although beamforming is
not a new concept and has been used in MIMO systems as well [11], it is optional and
used only to improve the SNR at the receiver [12]. However, in order to fully exploit
the increased performance of spatial multiplexing in MU-MIMO systems, beamform-
ing techniques are essential to eliminate or minimize multiuser interference (MUI).
Note that normally, beamforming techniques are performed with the help of the known
downlink channel state information (CSI) 1 at the base station.

The downlink, from the base station with multiple antennas to multiple users with
one or more antennas per user, is denoted as MU-MIMO broadcast channels. Consid-
ering the optimal beamforming technique in terms of capacity for this system, duality
between the downlink MU-MIMO broadcast channels and the uplink multiple access
channels (MAC), where several transmitter send different symbols to one common
receiver, has to be used. The optimal beamforming vectors are then obtained with
an iterative and numerically complex process. To reduce the computational complex-
ity, some suboptimal near capacity methods are proposed. For example, zero forcing
beamforming, coordinated beamforming, and DPC combined with user scheduling
and zero forcing beamforming methods. Currently, there are still some challenges and
problems for MU-MIMO beamforming techniques [48].

1. The assumption that full CSI available at the transmit side is valid in Time Division Duplex (TDD)
systems because the uplink and downlink share the same frequency band. For Frequency Division
Duplex (FDD) systems, however, the CSI needs to be estimated at the receiver and fed back to the
transmitter. With beamforming techniques employed at the transmit side, the required computational
effort for each receiver can be reduced, and eventually the receiver structure can be simplified [47].
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1.2 Motivation and methodology

It is proven that DPC can achieve the sum capacity of the MU-MIMO broadcast
channels [49], [13]. However, optimizing the transmit covariance matrix in DPC di-
rectly is difficult because it is a non-concave optimization problem [13]. To avoid
the complex processing, suboptimal solutions such as ZF-DPC method [14], SA-DPC
method [15] and SBD-DPC method [16] are proposed, which divide the interference
into two parts, one part is removed by DPC and the other part is suppressed by beam-
forming techniques. ZF-DPC method only supports single receive antenna per user,
and SBD-DPC method extends it to the multiple receive antenna per user case. SA-
DPC method proposed in [15] finds the transmit beamforming and receive combining
vectors of one data stream at each step for the user who can bring the largest through-
put increase, the total number of receive antennas is further extended and can be larger
than the number of transmit antennas. We denote these DPC involved beamforming
techniques as non-linear methods. Even if the sum rates provided by these suboptimal
non-linear methods are close to the sum capacity, obviously, the implementation of
DPC increases the complexity of the transmitter and receiver design.

Therefore, linear processing solutions, such as ZF method [17], BD method [18],
RBD method [4], CB method [19] and ZF-SA method [20] that eliminate the inter-
ference completely by beamforming technique are considered. ZF and BD methods
search for the transmit beamforming vectors of each user in the null space of the space
spanned by other users. ZF-SA and CB methods adopt the receive combining tech-
niques and extend the total number of receive antennas to be larger than that of trans-
mit antennas. MMSE method proposed in [21] relaxes the zero-forcing condition, the
transmit beamforming vectors are found by generalized eigenvalue technique. It can
be seen that the sum rates offered by these methods are close to the sum capacity, and
they are easy to implement, but these transmit beamforming vectors are designed under
the assumption of a total power constraint.

In practice, the power amplifier of each antenna is limited individually by its linear-
ity. Especially in an orthogonal frequency division multiplexing (OFDM) system, the
peak-to-average power ratio (PAPR) is high [22]. Thus, a power constraint imposed
on each transmit antenna is more realistic. Per-antenna power constraint beamform-
ing techniques are studied in [23], [24], [25], [26] and [27]. [23] and [24] investigate
the scenario where each user is equipped with a single antenna under the constraint
of zero-forcing precoding. In [25], this constraint is relaxed and DPC technique is
used to further improve the performance. In [26], authors analyze the case where each
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user is equipped with multiple antennas via block diagonalization, and DPC is used
under the assumption of a preset user order. However, the method in [26] assigns to
a certain user a number of data streams depending on the rank of the relative channel
matrix. This is suboptimal if, for instance, some of the subchannels are weak. In that
case, the contribution of these subchannels to the sum rate might be negligible while
they may impose severe constraints on the subchannels of subsequent users [15]. In
[27], the optimal solution under per-antenna power constraint is exploited through the
duality of MU-MIMO broadcast channels and corresponding uplink multiple access
channels. Lagrange duality method and ellipsoid method are used to find the optimal
value, which converge unfortunately quite slowly [25].

In this thesis, we propose a successive allocation of data streams to users. Mo-
tivated by [15], one data stream is assigned at each step, the corresponding trans-
mit beamforming and receive combining vectors are designed to maximize the global
throughput. Moreover, a more practical per-antenna power constraint is imposed to the
transmit antennas compared with [15], in which only a total transmit power constraint
is considered. It is shown that the optimal solution in the original problem is difficult
to obtain. In the proposed method, this problem is first divided into two classical opti-
mization problems, which can be solved with existing standard algorithms. Then, we
alternatively solve each subproblem under the assumption that the other is fixed sim-
ilarly to [21]. The convergence can be achieved within a small number of iterations.
At each step, the data stream is allocated to the user who brings the largest increase of
the global throughput. The non-causally known interference is pre-subtracted through
DPC technique before transmission, and the remaining interference is eliminated by
the transmit beamforming and receive combining vectors. Note that the receive com-
bining technique being adopted in the proposed method, the number of total receive
antennas can be larger than that of transmit antennas.

In this thesis, we also propose an efficient power allocation method in multiuser
MIMO broadcast channels. Since the original problem is non-deterministic polynomial-
time (NP) hard when the interference is not removed completely, the optimal solution
has extremely high computational complexity. Inspired by the classical water-filling
algorithm, which assigns more power to the subchannels with large channel gains, we
iteratively use water-filling algorithm to perform the power allocation. Simulation re-
sults show that the performance is close to the optimal value, and the complexity is
substantially reduced.
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1.3 Contributions

The main contributions of this thesis are summarized as follows.

– An alternative approach to SA-DPC method is proposed. SA-DPC method cal-
culates the transmit beamforming vector directly. In the proposed method, we
first find the subspace where the transmit beamforming vector should lie in, then
the one that maximizes the global throughput is selected. It is shown that the
proposed method can be easily adapted to the scenario where the per-antenna
power constraint is imposed.

– A new greedy data stream allocation method in multiuser MIMO broadcast chan-
nels under the per-antenna power constraint is proposed. Since the spatial diver-
sity in multiuser MIMO broadcast channels is fully exploited, compared with
PBD-DPC method in [26], a better sum rate performance is achieved by the pro-
posed method. In the proposed method, receive combining technique is adopted,
and the data streams are assigned to users successively. The number of total re-
ceive antennas may be larger than that of transmit antennas.

– An efficient power allocation method is proposed. Compared with the optimal
solution, the proposed method has low computational complexity, and the per-
formance is close to the optimum value.

1.4 Publications

– L. Zhao, Y. Wang, and P. Chargé. Zero-Forcing DPC Beamforming Design for
Multiuser MIMO Broadcast Channels. Submitted to Signal Processing. Under
review.
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MIMO Broadcast Channels. Submitted to International Journal of Electronics
and Communications. Under review.

– L. Zhao, Y. Wang, and P. Chargé. Efficient Power Allocation Strategy in Mul-
tiuser MIMO Broadcast Channels. PIMRC 2013.

– L. Zhao, Y. Wang, and P. Chargé. Efficient Iterative Water-filling Power Alloca-
tion Method in MU-MIMO Broadcast Channels. MCC 2013.

– L. Zhao, Y. Wang, and P. Chargé. Joint Beamforming Design and Power Allo-
cation for Multiuser MIMO Broadcast Channels. SIFWICT 2013.

– L. Zhao, P. Chargé, and Y. Wang. A Novel Zero-Forcing Transmit Data Scheme
for Multiuser MIMO Broadcast Channels. SIFWICT 2013.
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1.5 Outline of the thesis

The remainder of this thesis is organized into five chapters as listed below.
Chapter 2 introduces the structures of MIMO channel, MU-MIMO channel, and

multiple access channels (MAC) channel. Brief capacity calculations of these channels
are also given. MIMO channel is decomposed into several parallel SISO channels, and
the well-known water-filling algorithm is used to perform the power allocation. For
MU-MIMO channel, DPC technique is used to help to find the channel capacity.

Chapter 3 overviews the state of the art of beamforming techniques in the literature.
Firstly, the non-linear methods taking advantage of DPC technique are discussed, then
the linear beamforming methods are presented. After that, we consider the practical
issues and address beamforming techniques under per-antenna power constraint. At
last, the performance of these methods in terms of global throughput is compared, and
we also give the advantages and disadvantages of each method.

Chapter 4 addresses the proposed beamforming methods. The first part introduces
the proposed beamforming method under total power constraint, and the second part
presents the proposed beamforming method under per-antenna power constraint. We
also show the simulation results of each method, and give the performance compar-
isons with other methods.

Chapter 5 introduces the proposed power allocation method when the interference
is not completely removed. The original problem is a NP hard problem, and the optimal
solution has very high computational complexity. Motivated by the classical water-
filling algorithm, we propose a suboptimal method with a very low complexity. The
performance is also quite close to the optimal value.

Chapter 6 gives the conclusions of this thesis and the possible directions in the
future works.



2
Channel model

A signal propagating through a wireless channel arrives at the destination along a
number of different paths, collectively referred to as multipath. These paths arise from
scattering, reflection and diffraction of the radiated energy by objects in the environ-
ment or refraction in the medium. The different propagation mechanisms influence
path loss and fading models differently.

The signal power changes due to three effects : mean propagation (path) lose,
macroscopic fading and microscopic fading. The mean propagation loss in macrocel-
lular environment comes from inverse square law power loss, absorption by water and
foliage and the effect of ground reflection. Mean propagation loss is range dependent.
Macroscopic fading results from a blocking effect by buildings and natural features
and is also known as long term fading or shadowing. Microscopic fading results from
the constructive and destructive combination of multipaths and is also known as short
term fading or fast fading. Multipath propagation results in the spreading of signal in
different dimensions. There are delay spread, Doppler (or) frequency spread (Time-
varying multipath channel) and angle spread. These spreads have significant effects
on the signal. Mean path loss, macroscopic fading, microscopic fading, delay spread,
Doppler spread and angle spread are the main channel effects. The details have been
covered by a number of excellent papers and books [50], [51], [52], [53], [54]. They
are beyond the scope of this dissertation. Our goal here is to optimize the capacity by
using some well investigated propagation models.

27
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2.1 MIMO channel model

We assume a complex baseband representation for the signal and channel unless
otherwise specified. Consider a MIMO system with Nt transmit antennas and Nr re-
ceive antennas (Figure 2.1). The MIMO channel is given by theNr×Nt matrixH(τ, t)

with

H(τ, t) =


h1,1(τ, t) h1,2(τ, t) · · · h1,Nt(τ, t)

h2,1(τ, t) h2,2(τ, t) · · · h2,Nt(τ, t)
...

... . . . ...
hNr,1(τ, t) hNr,2(τ, t) · · · hNr,Nt(τ, t)

 (2.1)

where hi,j(τ, t) is function of time, delay and amplitude gain between the jth transmit
antenna and the ith receive antenna. In [10], the elements ofH are shown as indepen-
dent zero mean circularly symmetric complex Gaussian random variables (Rayleigh
random variables), with suitable choices of the scatterer location, antenna element pat-
terns, and scattering model. Some properties ofH are summarized below:

E{hi,j(τ, t)} = 0 (2.2)

E{|hi,j(τ, t)|2} = 1 (2.3)

E{hi,j(τ, t)hm,n(τ, t)∗} = 0 if i 6= m or j 6= n (2.4)

If the transmitted signal vector is s(t) ∈ CNt×1, then the received signal vector is
obtained as

y(t) = H(τ, t)s(t) + n(t) (2.5)

wheren(t) ∈ CNt×1 is the Gaussian noise with independent and identically distributed
(i.i.d.) entries of zero mean and variance σ2. In the flat fading channel, since the output
at any instant of time is independent of inputs at previous times, the received signal can
be expressed as

y = Hs+ n (2.6)

2.2 MIMO capacity

We focus on the MIMO capacity in the frequency flat channel, the capacity in the
frequency selectivity channel is not in the scope of this dissertation. First the channel
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Figure 2.1: Diagram of MIMO system.

H is supposed to be known at both the transmitter and receiver, the capacity of the
MIMO channel is defined as [10]

C = max
f(s)

I(s;y) (2.7)

where f(s) is the probability distribution of the vector s, and I(s;y) is the mutual
information between vector s and y. Note that

I(s;y) = H(y)−H(y|s) (2.8)

where H(y) is the differential entropy of the vector y, and H(y|s) is the conditional
differential entropy of the vector y, given the knowledge of the vector s. Since the
vector s and n are independent. i.e.,

H(y|s) = H(s+ n|s) = H(n) (2.9)

Then we have
I(s;y) = H(y)−H(n) (2.10)

Maximizing the mutual information I(s;y) reduces to maximizing H(y). Note
that the covariance matrix of y,Ryy = E[yyH ] satisfies

Ryy = HRssH
H + σ2INr (2.11)

where Rss is the covariance matrix of s. We know that amongst all vectors y with a
given covariance matrix Ryy, the differential entropy H(y) is maximized when y is
a zero mean circularly symmetric complex Gaussian vector [55]. This in turn implies
that s must be a zero mean circularly symmetric complex Gaussian vector, and its
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distribution is completely characterized by Rss. The differential entropies of vector y
and n are given by [10]

H(y) = log2|πeRyy| bps/Hz (2.12)

H(n) = log2|πeσ2INr | bps/Hz (2.13)

therefore, I(s;y) reduces to [5]

I(s;y) = log2|INr +
1

σ2
HRssH

H | (2.14)

and it follows from (2.7) that the capacity of the MIMO channel is given by

C = max
trace(Rss)=PT

log2|INr +
1

σ2
HRssH

H | (2.15)

where PT is the total transmit power. The capacity is often referred to as the error-free
spectral efficiency or the data rate per unit bandwidth that can be sustained reliably
over the MIMO link.

In the above section, the properties ofH are presented. Now, we study the capacity
of a MIMO channel taking advantage of the properties of H . We assume that the
CSI is perfectly known to both the receiver and the transmitter. The transmitter can
benefit from this information in order to improve the MIMO channel capacity under
the constraint of a fixed transmission power PT . By using the knowledge of the CSI,
the transmit power can be allocated in an optimal way on the transmit antennas. The
idea behind this method, called water-filling, is to distribute more power to strong
channels and less power to weak channels.

Consider a MIMO channel H with rank of r, through which a normalized signal
vector x of dimension r is transmitted. Before transmission, the signal vector x is
multiplied by the allocated power and the transmit beamforming matrix, i.e.,

s = V ′
√
Px (2.16)

where the unitary matrix V ′ is obtained from the singular value decomposition (SVD)
of H (i.e., H = U ′ΣV ′H).

√
P is a diagonal matrix indicating the allocated power

for the signal vector x. At the receiver, the received signal vector y is multiplied by
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Figure 2.2: Diagram of MIMO transmission.

Figure 2.3: Diagram of the decomposed parallel SISO channels.

the matrix U ′H . The effective input-output relation for this system is given by

y = U ′HHV ′
√
Px+U ′Hn

= Σ
√
Px+ ñ

(2.17)

where ñ is the r×1 transformed noise vector with covariance matrix E{ññH} = σ2Ir.
Notice that Σ is a diagonal matrix containing the singular values of the channel matrix
H . (2.17) shows that H can be explicitly decomposed (see Fig 2.3) into r parallel
Single Input Single Output (SISO) channels satisfying

yi = λi
√
pixi + ñi, i = 1, 2, · · · , r. (2.18)

The capacity of the MIMO channel is the sum of individual parallel SISO channel
capacities and is given by

C =
r∑
i=1

log2(1 +
λ2
i pi
σ2

) (2.19)
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Figure 2.4: Scheme of the Water-filling algorithm.

pi reflects the transmit power in the ith subchannel and satisfies
∑
pi = PT .

Since the transmitter can access the spatial subchannels, it can allocate variable
power across the sub-channels to maximize the mutual information. The mutual infor-
mation maximization problem now becomes

C = max∑
pi=PT

r∑
i=1

log2(1 +
λ2
i pi
σ2

) (2.20)

The objective function for the maximization is concave with respect to the variables
pi (i = 1, · · · , r) and can be maximized using Lagrangian method. The optimal power
allocation policy p?i , satisfies

p?i = (µ− σ2

λ2
i

)+, i = 1, · · · , r (2.21)

r∑
i=1

p?i = PT . (2.22)

where µ is a constant determined by the total transmission power and (a)+ implies

(a)+ =

a if a ≥ 0

0 if a < 0
(2.23)

This optimal power allocation solution is often referred as water-filling algorithm
[56], which is pictorially described as Figure 2.4.

If the channel has no preferred direction and is completely unknown to the transmit-
ter, the vector s may be chosen to be statistically non-preferential, i.e. Rss = PT

Nt
INt .

This implies that the signals are independent and equi-powered at the transmit anten-
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Figure 2.5: Comparison between the capacities of unknown CSI and known CSI at the
transmitter, Nt = 4, Nr = 4.

nas. The capacity of the MIMO channel in the absence of channel knowledge at the
transmitter is given by [10]

C = log2|INr +
PT
Ntσ2

HHH | (2.24)

The capacity of the MIMO channel when channel is known to the transmitter is
necessarily greater than that when the channel is unknown to the transmitter. This
point can also be observed by the simulation results in Figure 2.5.

2.3 MU-MIMO channel model

When a base station with multiple antennas supports multiple users with one or
more antennas per user, we refer to this class of systems as multiuser MIMO (MU-
MIMO). The downlink (forward link) from the base station to the users is a vector
broadcast channel and the uplink (reverse link) is a vector multiple access channel.
We focus on the downlink MU-MIMO broadcast channels, where a base station is
equipped with Nt transmit antennas and serves K users, each user has Nr,k receive
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Figure 2.6: Diagram of MU-MIMO system.

antennas. The received signal yk ∈ CLk×1 by the kth user is

yk = Hk

K∑
j=1

Vjxj + nk (2.25)

where Lk is the number of data streams of the kth user; Hk ∈ CNr,k×Nt denotes
the channel between the transmitter and the kth user; xj ∈ CLj×1 is the transmit data
vector for the jth user; Vj ∈ CNt×Lj denotes the transmit beamforming matrix, and the
allocated transmit power is included. Therefore, compared with (2.16), the transmitted
signal can be represented as

s =
K∑
j=1

Vjxj (2.26)

Note that in downlink MU-MIMO broadcast channels, the transmit information
for each user is emitted simultaneously, and each user can receive the information of
all the users. Therefore, the transmit beamforming technique is essential for users to
eliminate the interference, and enhance the desired information meanwhile.

2.4 MU-MIMO capacity

Before presenting the capacity calculation, we introduce dirty paper coding (DPC)
first, which plays an important role for MU-MIMO capacity calculation.

In [57], the case where an additive white Gaussian noise channel corrupted by an
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interference known at the transmitter but unknown at the receiver is modeled as

Y = X + S + Z (2.27)

whereX and Y are the desired and received signals, respectively, S is the non-causally
known interference, andZ is the unknown Gaussian noise. [57] shows that the capacity
of this channel under the transmit power constraint is the same as if S did not exist.
This technique is also referred to DPC technique.

Successive encoding of transmit information was proved to be optimum in terms
of sum capacity in downlink MU-MIMO broadcast channels [14]. Given a preset user
order in MU-MIMO broadcast channels, for the first encoded user, similarly to (2.25),
the received signal can be written as

y1 = H1V1x1 +H1

K∑
j≥2

Vjxj + n1 (2.28)

At the time of encoding the first user, signals from the following users are unknown,
we receive it (i.e.,H1

∑K
j≥2 Vjxj) with Gaussian noise together at the receiver.

For the kth (k ≥ 2) user encoding, the received signal can be written as

yk = HkVkxk +Hk

k−1∑
j<k

Vjxj +Hk

K∑
j>k

Vjxj + nk (2.29)

Note that at the time of encoding the kth user, the second term at the right hand
of (2.29) (i.e., Hk

∑k−1
j<k Vjxj) is known perfectly at the transmitter, which can be

regarded as non-existing by DPC technique. In this case, the data rate of the kth user
is given by

Rk = log2

|σ2I +
∑K

j=kHkVjV
H
j H

H
k |

|σ2I +
∑K

j=k+1HkVjV H
j H

H
k |

(2.30)

Define the transmit covariance matrix as Qk = E[Vkxkxk
HV H

k ]. Note that the
transmit data vector xk satisfies [xkx

H
k ] = I . Therefore, we have Qk = VkV

H
k . The



36 CHAPTER 2. CHANNEL MODEL

sum capacity of MU-MIMO broadcast channels can be written as

max
{Qk}Kk=1

K∑
k=1

log2

|σ2I +
∑K

j=kHkQjH
H
k |

|σ2I +
∑K

j=k+1HkQjHH
k |

subject to
K∑
k=1

trace(Qk) ≤ PT

Qk ≥ 0

(2.31)

(2.31) is neither a convex nor a concave problem. Direct optimization will gen-
erally involve an exhaustive search over the entire space of covariance matrices that
satisfy the power constraint and over the set of encoding orders, which is obviously
very costly. Alternative methods to solve this problem have been proposed in [6], [49],
[27], [58], [59], [60], [61], that exploit the relationship between the capacity region
of the broadcast channels and that of its dual multiple access channels, which will be
presented in the next chapter.

2.5 MAC model and capacity

Given MU-MIMO broadcast channels as described in (2.25), the system model for
the dual multiple access channels (MAC) (Figure 2.7) is

t =
K∑
k=1

HH
k Ukx

M
k + nM (2.32)

where t ∈ CNt×1 is the received signal at the base station; HH
k ∈ CNt×Nr,k denotes

the channel between the kth user and the base station, notice that the channel matrix
of MAC is the transpose conjugate of its dual broadcast channels; Uk is the transmit
beamforming matrix of the kth user. Define QM

k = UkU
H
k as the transmit covariance

matrix of the kth user, andnM ∈ CNt×1 is the Gaussian noise. Under a sum of transmit
power constraint, i.e.

K∑
k=1

trace(QM
k ) ≤ PT (2.33)

it has been shown in [27] that the set of achievable rates in MAC by successively
decoding users, which is optimum in terms of capacity, is equal to the set of achievable
rates in the dual broadcast channels by performing a successive encoding of users.
Moreover, given a set of covariance matrices and a particular decoding order, a method
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Figure 2.7: Diagram of MAC system.

has been found to compute the covariance matrices that achieve the same rates in the
broadcast channel by encoding users in reverse order, i.e., the user decoded first in the
multiple access channel is encoded last in the broadcast channel. Note that MAC with
constraint (2.33) is merely a mathematical tool that allows the computation of optimum
operational points in broadcast channel. Obviously, a common power constraint shared
by non-cooperating users lacks practical relevance.

As a consequence of these results, the maximization of (2.31) can be indirectly
performed by first maximizing the sum of achievable rates in the dual MAC and then
computing the covariance matrices that achieve that sum rate in the broadcast channels.
Fortunately, the sum capacity optimization in MAC, given by

max
{QM

k }
K
k=1

K∑
k=1

log2

|σ2I +
∑k

j=1H
H
j Q

M
j Hj|

|σ2I +
∑k−1

j=1 H
H
j Q

M
j Hj|

subject to
K∑
k=1

trace(QM
k ) ≤ PT

QM
k ≥ 0

(2.34)

is a concave problem and therefore, can be maximized by using convex optimization
techniques. Details will be given in the next chapter. In [27] it has been shown that the
maximum value of (2.34) achieves the sum capacity of its dual MU-MIMO broadcast
channels.





3
Beamforming techniques in
MU-MIMO broadcast channels

In the past decade, a great deal of research has been directed toward the devel-
opment of transmit beamforming techniques for the downlink MU-MIMO broadcast
channels (BC).

It is shown that the optimal transmit strategy given by information theory is DPC,
which achieves the capacity region. Unfortunately, DPC does not directly lead to a
realizable transmission strategy because of the coupled structure of the transmitted
signals. The BC optimization problems are usually non-convex and thus cannot be
solved directly. The key technique used to overcome this difficulty is to transform the
non-convex BC problem into a convex MAC problem via so called BC-MAC duality
relationship. However, the computational complexity of the sum capacity optimiza-
tion is still significant. Consequently, there has been substantial interest in developing
transmission strategies that approach the performance of optimal solution and are eas-
ier to realize in practice.

Non-linear zero-forcing DPC techniques separate the interference into two parts,
one part which is non-causally known at the base station can be removed by DPC
technique and the rest part is eliminated by transmit beamforming vectors. Since these
methods have quite low computational complexities, and their performances are close
to the optimal solution, substantial research attentions have been observed in recent

39
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years.
In addition, linear beamforming techniques that avoid the non-linear DPC-like pro-

cessing is also promising since the structures of the transmitter and receiver are much
more simple and easier to implement, such as zero-forcing (ZF), block diagonalization
(BD), and coordinated beamforming (CB).

3.1 Optimal solution

As discussed in Chapter 2, owing to the special structure of the BC, the associated
capacity region computation and beamforming optimization problems are typically
non-convex, and thus cannot be solved directly. One feasible approach is to consider
the respective dual MAC problems, which are easier to deal due to their convexity
properties. In the literature, two different BC-MAC dualities are studied substantially.
One is subject to a total transmit power constraint (denoted as conventional BC-MAC
duality), and another one is based on minimax duality.

Conventional BC-MAC duality discussed in [6], [49], [13], [58], [62], [63], [28],
[29] states that, under a single transmit total power constraint, the capacity region of
the BC is identical to that of its dual MAC under the same total power constraint.
The channel matrix associated with the dual MAC is the conjugate transposed channel
matrix of the corresponding BC, and the noise covariance matrices of both the BC and
its dual MAC are identity matrices.

The conventional BC-MAC duality is first observed by [62], and is applied to solve
the sum power minimization problem for the BC with signal-to-interference-plus-noise
ratio (SINR) constraint. Several methods are developed independently to prove the
conventional BC-MAC duality. The proof in [62] is based on the equivalence between
the optimal solutions of the power minimization problems for the BC and MAC with
SINR constraint. [49] proves the conventional BC-MAC duality by presenting the
explicit transformation between the transmit covariance matrix of the BC and that of
the MAC, and applies this duality to solve the sum-capacity problem. The conventional
BC-MAC duality is widely applied to solve a number of BC problems. [28] and [29]
solve the SINR balance problem for the BC, by maximizing the minimal SINR problem
among all the users under the total power constraint, and by transforming this problem
into its dual MAC problem. The conventional BC-MAC duality is also used in [58] to
show that DPC achieves the sum capacity. Moreover, the entire capacity region for the
BC can be obtained using the conventional BC-MAC duality.

Minimax duality [59], [60], [64], under a single sum power constraint or a set
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of linear power constraints, states that any boundary point of a BC capacity region
can be obtained by solving a minimax optimization problem in its dual MAC. The
channel matrix of the dual MAC is the conjugate transposed channel matrix of the
corresponding BC, and the noise covariance matrix of the dual MAC is unknown for
the minimization step of the minimax optimization problem.

Minimax duality proposed in [59], unifies the conventional BC-MAC duality. How-
ever, only the sum capacity is considered in [59]. Furthermore, [64] extends minimax
duality to solve the capacity region computation problem and beamforming optimiza-
tion problem for the BC with a per-antenna power constraint. Using a minimax opti-
mization approach, the sum capacity of the MIMO-BC is also studied in [60].

In [27], authors propose a general BC-MAC duality that combines the conventional
BC-MAC duality and minimax duality. It can be applied to solve the capacity region
computation of the BC under the total power constraint. In addition, the optimal rate
region under per-antenna power constraint can also be obtained with multiple linear
transmit covariance constraints. In the following, we focus on the case where a total
power constraint is imposed to exploit the capacity region of the BC. The general
BC-MAC duality compares the SINR of each data stream for both the primal BC and
its dual MAC. At the BS of the auxiliary MAC, successive interference cancellation
(SIC) is deployed to decode the information of each user [65]. For this dual MAC, the
decoding order among the users as well as the data streams of each user is the reverse
of the encoding order in the primal BC. Let SINRi,j and SINRM

i,j denote the SINR
of the (i, j)th data stream in BC and its dual MAC, respectively. According to DPC
principle, encoded data streams have non-causal information about earlier encoded
data streams, and thus the interference due to the earlier encoded data streams can be
completely removed. Therefore, we have

SINRi,j =
pi,j
∣∣uHi,jHivi,j

∣∣2∑K
k=i+1

∑N
l=1 pk,l

∣∣uHi,jHivk,l
∣∣2 +

∑N
l=j+1 pi,l

∣∣uHi,jHivi,l
∣∣2 + σ2

(3.1)

and

SINRM
i,j =

qi,j
∣∣vHi,jHH

i ui,j
∣∣2

vHi,j(
∑i−1

k=1

∑N
l=1 qk,lHk

Huk,luk,lHHk +
∑j−1

l=1 qi,lHi
Hui,lui,lHHi + I)vi,j

(3.2)

where vi,j denotes both the transmit beamforming vector in the primal BC and the
receive combining vector in the dual MAC of the jth data stream of the ith user; ui,j is
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both the transmit beamforming vector in the dual MAC and receive combining vector
in the primal BC of the jth data stream of the ith user; pi,j and qi,j denote the transmit
power of the jth data stream of the ith user in the primal BC and the dual MAC,
respectively; N is the number of data streams for each user.

The general BC-MAC duality states that : For a given primal MIMO BC with
fixed transmit beamforming and receive combining vectors vi,j and ui,j , and fixed
transmit power pi,j for each data stream, which satisfy trace(

∑
i,j pi,jvi,jv

H
i,j) = PT ,

we can always find a set of transmit power qi,j for its dual MAC with fixed transmit
beamforming and receive combining vectors ui,j and vi,j , which satisfy

∑
i,j σ

2qi,j =

PT , such that the achievable SINR tuple of the primal BC is the same as that of its dual
MAC, i.e.,

SINRi,j = SINRM
i,j (3.3)

The proof is in Appendix A.

In the method proposed in [27], with a given user order, the received signal at the
kth user is

yk = HkVkxk +Hk

K∑
l>k

Vlxl + nk (3.4)

then the capacity optimization problem is written as

max
{Qk}Kk=1

K∑
k=1

log2

|σ2I +
∑K

j=kHkQjH
H
k |

|σ2I +
∑K

j=k+1HkQjHH
k |

subject to
K∑
k=1

trace(Qk) ≤ PT

Qk ≥ 0

(3.5)

where Qj = VjV
H
j is the transmit covariance matrix. Unfortunately, as discussed

in Chapter 2, (3.5) is neither a convex nor a concave problem, direct optimization is
difficult. According to the general BC-MAC duality, (3.5) can be transformed into a
dual MAC problem as

max
{QM

k }
K
k=1

K∑
k=1

log2

|I +
∑k

j=1HjQ
M
j H

H
j |

|I +
∑k−1

j=1 HjQM
j H

H
j |

subject to
K∑
k=1

trace(σ2QM
k ) ≤ PT

QM
k ≥ 0

(3.6)
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whereQM
k indicates the transmit covariance matrix in the dual MAC. The general BC-

MAC duality proved that (3.5) and (3.6) can achieve the same optimal value. From the
proof of general BC-MAC duality in Appendix A, we can see that the SINR relation-
ship between the BC and its dual MAC relies crucially on the reciprocity relationship
[5]. In [27], a MAC-BC covariance transformation algorithm between QM

k and Qk

is proposed to find Qk when QM
k is obtained (Algorithm 1). Note that the objective

function of (3.6) can be reordered as [66]

K∑
k=1

log2

|I +
∑k

j=1HjQ
M
j H

H
j |

|I +
∑k−1

j=1 HjQM
j H

H
j |

=
K∑
k=1

log2|I +
k∑
j=1

HjQ
M
j H

H
j | −

K∑
k=1

log2|I +
k−1∑
j=1

HjQ
M
j H

H
j |

=
K−1∑
k=1

log2|I +
k∑
j=1

HjQ
M
j H

H
j |+ log2|I +

K∑
j=1

HjQ
M
j H

H
j |

−
K−1∑
k=1

log2|I +
k∑
j=1

HjQ
M
j H

H
j |

= log2|I +
K∑
j=1

HjQ
M
j H

H
j |

(3.7)

Therefore, the problem (3.6) can be simplified as

max
{QM

k }
K
k=1

log2|I +
K∑
k=1

HkQ
M
k H

H
k |

subject to
K∑
k=1

trace(σ2QM
k ) ≤ PT

QM
k ≥ 0

(3.8)

This is a convex problem and the standard techniques (e.g. CVX, Yalmip) can
be used to get the optimal transmit covariance matrix QM

k
?. Then the BC transmit

covariance matrix Qk is found by the MAC-BC covariance transformation algorithm.
Note that the decoding order of the BC is the reverse of the encoding order of its dual
MAC.

The optimal solution can be found by this method. But in practice, suboptimal
methods, that are much easier to implement with no significant performance degrada-
tion, also attract substantial attentions. Next, we introduce several famous suboptimal
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Algorithm 1 MAC-BC covariance transformation algorithm
InputQM

k , 1 ≤ k ≤ K
for k = 1 : K do

Compute the eigen value decomposition ofQM
k
?

= UkΛkUk
H

for j = 1 : N do
Define uk,l as the lth column of Uk

Define qk,l as the lth diagonal element of Λk

Obtain vk,j by MMSE receiver
vk,j = (

∑k−1
i=1

∑N
l=1 qi,lHi

Hui,lui,l
HHi +

∑j−1
l=1 qk,lHk

Huk,luk,l
HHk +

I)−1Hk
Huk,j

Normalize vk,j
Compute pk,j using SINRk,j = SINRM

k,j [27]
end for
ComputeQk =

∑N
l=1 pk,lvk,lv

H
k,l

end for

methods. The DPC involved method is denoted as non-linear method and otherwise it
is denoted as linear method.

3.2 Non-linear beamforming techniques

The first non-linear beamforming technique is ZF-DPC method. In this method,
the total number of receive antennas can not be larger than that of transmit antennas,
and each user is supposed to have one receive antenna. Then, this method is extended
to SZF-DPC method, in which each user can have multiple receive antennas, but the
total number of receive antennas can not be larger than that of transmit antennas. Then,
SZF-DPC method is extended to SA-DPC method, in which the total number of receive
antennas may be larger than that of transmit antennas. In Figure 3.1, the evolution of
these non-linear beamforming techniques is given.

3.2.1 Tomlinson Harashima Precoder

Non-linear methods separate the interference into two parts, one part is removed by
zero-forcing technique, and the rest part which is non-causally known is eliminated by
DPC techniques. A practical implementation of DPC technique is the pre-equalization
Tomlinson Harashima Precoder (THP) technique, which is proposed in [67] and [68],
aiming to pre-subtract the non-causally known interference at the transmitter. THP
is initially proposed for single-input single-output channels in the presence of inter-
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Figure 3.1: Evolution of non-linear beamforming techniques

symbol interference (ISI), and it is extended to BC in [69]. Several different criteria
are proposed using THP including zero-forcing (ZF) [69], minimum mean square error
(MMSE) [70]. In [71], a robust THP is investigated with imperfect channel state infor-
mation (CSI) at the transmitter. The main idea of THP is that, the non-causally known
interference produced by the previous precoded symbols can be pre-canceled before
transmission at the transmitter, and the modulo operation can be adopted to ensure that
transmit power does not exceed the power constraint.

Now, we introduce the pre-equalization THP technique that pre-subtracts the non-
causally known interference at the base station. Suppose a base station with Nt trans-
mit antennas transmits information to K users, each user is equipped with one single
receive antenna, the received signal by the kth user is

yk = hHk vkxk + hHk

k−1∑
j=1

vjxj + hHk

K∑
j=k+1

vjxj + nk (1 ≤ k ≤ K) (3.9)

where vk is the transmit beamforming vector for the kth user. The transmit symbol xk
can be written as

xk = ak −
k−1∑
j=1

bk,jxj (1 ≤ k ≤ K) (3.10)
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Figure 3.2: Block diagram of the transmitter

Figure 3.3: Block diagram of the receiver

where ak is the information symbol and bk,j is defined as

bk,j =
hHk vj

√
pj

hHk vk
√
pk

(3.11)

Using (3.11) and (3.10) in (3.9), we have

yk = hHk vk
√
pkak + hHk

K∑
j=k+1

vjxj + nk (1 ≤ k ≤ K) (3.12)

Therefore, the non-causally known interferencehHk
∑k−1

j=1 vjxj can be pre-subtracted
completely from the base station. In next sections, we will show how to suppress the
residual interference hHk

∑K
j=k+1 vjxj .

Define bk = [bk,1, · · · , bk,k−1, 0, · · · , 0]T and x̃k = [x1, · · · , xk−1, 0, · · · , 0]T as a
measure of pre-subtracting the known interference term in (3.9), which is shown in
Figure 3.2. The transmit symbol xk are successively generated from the information
symbols ak in (3.10).

If the information symbol ak is uniformly distributed in an M -ary QAM constella-
tion, then E{aaH} = IK with a = [a1, · · · , aK ]T . The modulo device is used to en-
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sure that the transmit power does not exceed the power constraint, and E{xxH} = IK

is guaranteed [69].

At the kth user, the received signal is reformulated as

yk = hHk vk
√
pk(ak + qk) + nk (1 ≤ k ≤ K) (3.13)

where qk ∈ {2
√
M · (qI + iqQ)|qI , qQ ∈ Z} is introduced by the modulo operator at

the transmitter. yk is divided by gk = hHk vk
√
pk before passing through the modulo

operator to satisfy the same constellation boundaries as for the transmitter. After fol-
lowing the modulo device, qk is removed and the original data symbol is estimated as
ãk = ak + nk/gk as shown in Figure 3.3.

3.2.2 ZF-DPC method

ZF-DPC method [14] is based on LQ decomposition of the channels where each
user with only one single receive antenna is encoded successively. For each user in
a given order, the interference caused by the previously encoded users is considered
as the non-causally known interference, and it can be eliminated by DPC technique.
The interference caused by the subsequent encoded users is removed by beamforming
technique at the transmitter. As we discussed in Section 3.2.1, after pre-subtracting the
non-causally known interference hHk

∑k−1
j=1 vjxj , we have

yk = hHk vk
√
pkak + hHk

K∑
j=k+1

vjxj + nk (1 ≤ k ≤ K) (3.14)

The term hHk
∑K

j=k+1 vjxj can be removed by appropriate transmit beamforming
vectors, i.e., we force

hHk

K∑
j=k+1

vjxj = 0 (3.15)

Suppose vk = v′k
√
pk, where v′k and pk is the normalized transmit beamforming

vector and the assigned power for the kth user, respectively. If the number of users
K is less than or equal to the number of transmit antennas Nt (i.e., K ≤ Nt), and the
channel matrixH is described as

H =
[
h1, · · · ,hK

]H
∈ CK×Nt (3.16)

then the transmit beamforming vectors can be obtained by performing LQ decompo-



48CHAPTER 3. BEAMFORMING TECHNIQUES IN MU-MIMO BROADCAST CHANNELS

sition of the channel matrix H = LQ. v′k (∀k) is chosen as the kth column of the
matrixQH ∈ CNt×Nt , and after performing DPC technique, (3.14) is reformulated as

yk = lk,k
√
pkxk + nk (1 ≤ k ≤ K) (3.17)

where lk,k is the kth diagonal element of the lower triangular matrix LK×Nt . Similarly
to section 2.2, water-filling algorithm is used to find the optimal pk. In the following,
we ignore the power allocation unless it is specified. Note that water-filling algorithm
is always the optimal solution if interference is completely removed.

The pseudo code of ZF-DPC method is given in Algorithm 2.

ZF-DPC method only supports one single receive antenna for each user, and the
user permutation also has a great effect on the throughput performance. It is shown
that the optimal user order needs exhaustive search [14]. In Figure 3.4, the achievable
sum rate provided by ZF-DPC method and the sum capacity (denoted as DPC method)
is compared. It can be seen that the gap between the ZF-DPC method and DPC method
becomes small with the increase of SNR. The reason is that, the transmit beamforming
vectors are designed to remove one part of the interference while the Gaussian noise,
which plays a dominant role in low SNR region, is ignored.

Algorithm 2 Pseudo code of ZF-DPC method
Suppose a preset user order
Build the matrixH = [h1, · · · ,hK ]H as (3.16)
Do LQ decomposition ofH asH = LQ
vk (∀k) is chosen as the kth column ofQH

Perform water-filling power allocation
Use DPC pre-subtract the non-known interference

3.2.3 SZF-DPC method

Successive ZF-DPC method (denoted as SZF-DPC method) [16] is considered as a
generalization of ZF-DPC method, it extends ZF-DPC method to the case where each
user has multiple receive antennas. Suppose a base station with Nt transmit antennas
transmits information to K users, the kth user has Nr,k receive antenna. The received
signal of the kth user yk ∈ Nr,k×1 is written as

yk = HkVkxk +Hk

k−1∑
j=1

Vjxj +Hk

K∑
j=k+1

Vjxj + nk (1 ≤ k ≤ K) (3.18)
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Figure 3.4: Comparison between the achievable sum rate of ZF-DPC method and the
sum capacity.
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where Hk ∈ CNr,k×Nt denotes the channel between the transmitter and the kth user;
xk ∈ CNr,k×1 is the transmit data vector for the kth user; Vk ∈ CNt×Nr,k denotes
the transmit beamforming matrix. Similarly to ZF-DPC method, SZF-DPC method is
also a combination of DPC and zero-forcing technique. The non-causally known inter-
ference term Hk

∑k−1
j=1 Vjxj is removed according to DPC principle, and the residual

interference termHk

∑K
j=k+1 Vjxj is eliminated completely by transmit beamforming

design, i.e.,

Hk

K∑
j=k+1

Vjxj = 0 (3.19)

Define the matrix Ĥk as

Ĥk =
[
HH

1 HH
2 · · · HH

k−1

]H
∈ C(

∑k−1
j=1 Nr,j)×Nt (3.20)

If (3.19) is defined, the transmit beamforming matrix Vk must lie in the null space
of the space spanned by Ĥk. In the literature, several matrix decomposition methods
are proposed to find the transmit beamforming matrix Vk, such as SVD method in [16],
and SGO method in [72]. Here, we use SVD method to demonstrate how the transmit
beamforming matrix Vk can be obtained. The SVD of Ĥk is

Ĥk = ÛkΛ̂k[V̂
(1)
k V̂

(0)
k ]H (3.21)

where Ûk and Λ̂k denote the left singular matrix and the matrix of ordered singular
values of Ĥk, respectively. V̂ (1)

k and Ṽ (0)
k denote the right singular matrices each

consisting of the singular vectors corresponding to non-zero singular values and zero
singular values, respectively. Therefore, to satisfy (3.19), we can choose the transmit
beamforming matrix Vk from the first Nr,k columns of V̂ (0)

k , i.e.,

Vk = (V̂
(0)
k )1:Nr,k

(3.22)

where Nr,k is the number of transmit data streams for the kth user, notice that it is
also the number of receive antennas of the kth user. Then, the downlink MU-MIMO
broadcast channels can be considered as parallel and interference free, and water-filling
power allocation is performed as the optimal solution. Algorithm 3 gives the pseudo
code of SZF-DPC method.

SZF-DPC method also requires exhaustive search over all the user permutations to
find the optimal solution. Moreover, the total number of receive antennas is restricted
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Figure 3.5: Comparison between the achievable sum rate of SZF-DPC method and the
sum capacity, Nt = 4, Nr,k = 2, ∀k, and K = 2.

by the number of transmit antennas, i.e. Nt ≥
∑K

k=1Nr,k. The transmit beamforming
matrix can be found for each served user only in the case where the dimension of the
null space of the space spanned by Ĥk is larger than zero. In Figure 3.5, the simulation
results also show that the gap between SZF-DPC method and DPC method becomes
small with high SNR.

Algorithm 3 Pseudo code of the SZF-DPC method
Suppose a preset user order
for k = 1 : K do

Build the matrix Ĥk = [H1
H ,H2

H , · · · ,Hk−1
H ]H as (3.20)

Do SVD decomposition of Ĥk and find Vk as (3.22)
end for
Perform water-filling power allocation
Use DPC pre-subtract the non-known interference hH1 v1
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3.2.4 SA-DPC method

Successive allocation DPC method (denoted as SA-DPC method) proposed in [15]
assigns only one data stream at each step to the user who brings the largest throughput
increase. At the ith (1 ≤ i ≤ L) step, to avoid the ith data stream interfering the pre-
viously allocated i− 1 data streams, the channel matrix of each candidate is projected
into the subspace

H i
k = HkTi ∀k (3.23)

where the projection matrix Ti = Ti−1 − v′i−1v
′
i−1

H represents the projector of the
subspace defined by the intersection of the null space of the already established sub-
channels with T1 = INt , and v′i is denoted as the normalized transmit beamforming
vector of the ith data stream. It is clear that the largest channel gain is obtained by
selecting the normalized transmit beamforming and receive combining vectors as the
right and left singular vectors associated to the largest singular value of the projected
channel matrix H i

k, respectively. Then the ith data stream is assigned to the user who
can offer the largest channel gain among all the candidates.

Since the transmit beamforming vector of the ith data stream lies in the null space
of the space spanned by the previously allocated i − 1 data streams, the interference
caused by the ith data stream to the previously allocated i−1 ones is zero. Furthermore,
the interference caused by the previously allocated i − 1 data streams to the ith one
is non-causally known, which can be removed before transmission by DPC principle.
Algorithm 4 gives the pseudo code of SA-DPC method.

Figure 3.6 shows the achievable sum rate of SA-DPC method with two different
system configurations. It can be seen that the sum rate provided by SA-DPC method
is quite close to the sum capacity under total transmit power constraint. In the next
chapter, we will present SA-DPC method in a different way, which performs identically
as SA-DPC method, but when the practical per-antenna power constraint is considered.
This new way to demonstrate SA-DPC method can be easily extended to cope with this
more practical case.

3.3 Summary

In Figure 3.7, we summarize the interference removing techniques in non-linear
methods. We can see that the interference from the previous users is removed by DPC
technique, and only the interference that comes from the following users is canceled
by beamforming techniques.
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Figure 3.6: Comparison between the achievable sum rate of SA-DPC method and the
sum capacity.

Algorithm 4 Pseudo code of the SA-DPC method
Initialization: T1 = INt

for i = 1 : Nt do
for k = 1 : K do

Build the matrixHk
i = HkTi as (3.23)

Do SVD decomposition of Hk
i and find the temporary transmit beamforming

and receive combining vectors
Perform water-filling power allocation
Calculate the temporary sum Denoted as Rk

end for
Calculate the largest sum rate Ci = max(Rk)
if Ci−1 ≥ Ci

break
end

end for
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Figure 3.7: Interference removing techniques in non-linear methods

3.4 Linear beamforming techniques

Although THP is a practical implementation of DPC technique, the structure of
the transmitter and receiver is complex in this way. Another popular direction aims to
suppress the interference only via transmit beamforming vectors, we denote it as linear
beamforming techniques.

The first linear beamforming technique is ZF method, In this method, the total
number of receive antennas can not be larger than that of transmit antennas, and each
user is supposed to have one receive antenna. Then, it is extended to multiple receive
antennas for each user by Block Diagonalization (BD) method and Coordinated beam-
forming (CB) method. BD method works for situations with multiple antennas and
multiple data streams intended for each user, but the total number of receive antennas
is no more than that of transmit antennas. CB method extends the constraint of each
user’s receiver antennas to unconstraint, but the data stream is limited to one for each
user. In ZF-SA method, the total number of receive antennas may be larger than that
of transmit antennas, and each user can have multiple receive antennas. In MMSE
method, it is the same as ZF-SA method, but the sum rates optimization is performed
in a different way. The evolution of these linear beamforming techniques is given in
Figure 3.8.
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Figure 3.8: Evolution of linear beamforming techniques

3.4.1 ZF method

Zero-forcing (ZF) or channel inversion decomposes the channel into several paral-
lel scalar channels with only additive noise, and the interference is removed completely
by transmit beamforming techniques. Suppose a base station with Nt transmit anten-
nas transmits information to K users, each user is equipped with one single receive
antenna. The received signal by the kth user is

yk = hHk vkxk + hHk

K∑
j=1,j 6=k

vjxj + nk (1 ≤ k ≤ K) (3.24)

ZF method transmits the signals towards the intended user with nulls steered in the
direction of the other users, i.e., hHj vk = 0 ∀j 6= k. The users will receive only the
desired signal without any interference because of the perfect nulling. In this case, the
received data at the kth user can be written [17]

yk = hHk vkxk + nk (3.25)

The corresponding vector equation is

y = HHV x+ n (3.26)

Therefore, if the normalized transmit beamforming vector of the kth user is selected
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as

v′k =
h

(†)
k√

‖ hk(†) ‖2
F

(3.27)

where h(†)
k is the kth column of the pseudo inverse of H , denoted as H(†). Then it is

shown that the interference can be canceled completely. In this case, the SNR of the
kth user is

SNRk =
|hHk v′k|2pk

σ2
(3.28)

The optimal pk is given by water-filling algorithm. Finally, the achievable sum rate
of ZF is found like

C =
K∑
k=1

log2(1 +
|hHk v′k|2pk

σ2
) (3.29)

Algorithm 5 gives the pseudo code of ZF method. It can be seen that ZF beam-
forming technique is easy to implement, but this technique suffers from the noise en-
hancement problem. For example, if two or more user channels hi are close to each
other, corresponding users will receive very little power (power reduction).

Algorithm 5 Pseudo code of the ZF method
Suppose a preset user order
Build the matrixHH = [h1, · · · ,hK ]
Do pseudo inverse ofH denoted asH(†)

vk (∀k) is chosen as the kth column ofH(†)

Perform water-filling power allocation

Figure 3.9 illustrates the noise enhancement problem (also known as the power
efficiency problem). The transmit beamforming vector of the first user v1 is orthogo-
nal to h2 but delivers very little power along h1, which is the desired user direction.
The problem becomes worse as h1 and h2 become closer. Figure 3.10 illustrates the
achievable sum rate of ZF method with two different configurations, we can see that
the gap between DPC method and this simple ZF method is large, this is not only be-
cause of the noise enhancement problem, the spatial multiplexing is not fully exploited
neither.

3.4.2 BD method

To cope with the limitations of ZF method, a related strategy named BD method for
situations with multiple antennas and multiple data streams intended for each receiver
is proposed [18]. The multiuser MIMO model with BD method employs Nt transmit
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Figure 3.9: Scheme of illustrating the noise enhancement problem problem. v1 has
gain << 1 along h1
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Figure 3.10: Comparison between the achievable sum rate of ZF method and sum
capacity.
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antennas with K users, each equipped with Nr,k receive antennas and receiving their
own data streams. The received signal at the kth receiver yk ∈ CNr,k×1 is

yk = HkVkxk +Hk

K∑
l=1,l 6=k

Vlxl + nk (3.30)

where Hk ∈ CNr,k×Nt denotes the channel between the transmitter and the kth user;
Vk ∈ CNt×Nr,k denotes the transmit beamforming matrix for the kth user, which is a
cascade of two precoding matricesBk andDk i.e.,

Vk = BkDk (3.31)

where Bk ∈ CNt×Nr,k removes the interuser interference and Dk ∈ CNr,k×Nr,k is used
for parallelizing and power allocation. Bk is chosen such that the subspace spanned
by its columns lies in the null space of Hl(∀l 6= k) that is, HlBk = 0 for l =

1, ..., k − 1, k + 1, ..., K. If we define H̃k as

H̃k = [HT
1 · · ·HT

k−1H
T
k+1 · · ·HT

K ]T (3.32)

thenBk can be obtained from the null space of H̃k. Note that the SVD of H̃k is

H̃k = ŨkΛ̃k[Ṽ
(1)
k Ṽ

(0)
k ]H (3.33)

where Ũk and Λ̃k denote the left singular matrix and the matrix of ordered singular
values of H̃k, respectively. Ṽ (1)

k and Ṽ (0)
k denote the right singular matrices each

consisting of the singular vectors corresponding to non-zero singular values and zero
singular values, respectively. To cancel the interference of the other users, we choose
the precoderBk as the first Nr,k columns of Ṽ (0)

k , i.e.,

Bk = (Ṽ
(0)
k )1:Nr,k

(3.34)

where Nr,k is the number of transmit data streams for the kth user. Notice that it is also
the number of receive antennas of the kth user. The received signal yk is given by

yk = Heff,kDkxk + nk (3.35)

whereHeff,k = HkBk ∈ CNr,k×Nr,k denotes the effective channel of the kth user and
the size of xk is Nr,k × 1. Since the kth user receives its own data stream without any
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interference from other users, to achieve the highest sum rate, Water-filling algorithm
is adopted to allocate the transmit power to the data streams. Define the SVD ofHeff,k

Heff,k = Uk[Λk0][V
(1)
k V

(0)
k ]H (3.36)

where V (1)
k denotes the set of the right singular vectors corresponding to non-zero

singular values and Uk is the left singular matrix. TakingDk = V
(1)
k P

1
2
k , we have

Vk = (Ṽ
(0)
k )1:Nr,k

V
(1)
k P

1
2
k (3.37)

where Pk denotes a diagonal matrix whose elements scale the power transmitted into
each of the column of V (1)

k . At the receiver,Uk is used as the receive combining matrix
to decode the received signal. The maximum achievable sum rate of the BD method is
given by

C = max log|I +
Λ2P

σ2
n

| (3.38)

where Λ = diag(Λ1, · · · ,ΛK), P = diag(P1, · · · ,PK).

The pseudo code of BD method is presented in Algorithm 6, and Figure 3.11 gives
the simulation results of the sum rates. It is shown that even the receive antenna number
of each user is extended to multiple, the noise enhancing problem still exists. There-
fore, the gap between the achievable sum rate of BD method and DPC method is still
large.

To decode the received signal, knowledge of the decoding matrix Uk is required at
each receiver. The decoding matrixUk depends, onHeff,k, butHeff,k also consists of
the original channel matrix Hk and the nulling matrix Ṽ (0)

k . Because the nulling ma-
trix is calculated by using partial information about the CSI of other users, the receiver
needs to either calculate the decoding matrix directly from the estimated channel of
Heff,k or the transmitter can send specific information to calculate Uk at the kth re-
ceiver, which is call a coordination information [19].

3.4.3 CB method

Another approach, unlike ZF, allows a larger number of receiver antennas than the
number of data streams for each receiver. We refer this method as CB method. CB
method also enforces a zero interference property like channel inversion but requires
an iterative optimization procedure to find the transmit beamforming and receive com-
bining vectors [19].
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Algorithm 6 Pseudo code of BD method
for k = 1 : K do

Build H̃k (3.32)
Obtain Ṽ (0)

k by using the SVD operation (3.33)
CalculateHeff,k = HkṼ

(0)
k

Obtain the first Nr,k singular values λk,1, · · · , λk,Nr,k
and the corresponding sin-

gular vector V (1)
k by using the SVD operation onHeff,k

Do water-filling algorithm to determine the optimal power distribution matrices
Pk

Calculate Vk = (Ṽ
(0)
k )1:Nr,k

V
(1)
k P

1
2
k (3.37)

end for
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Figure 3.11: Comparison between the achievable sum rate of BD method and the sum
capacity.
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The system model for CB method is designed with Nt antennas at the transmitter
and Nr receiver antennas for each user. The number of users must be less or equal
to the number of transmit antennas. The received signal at the kth user after receive
combining vector is

yk = uHk Hkvkxk + uHk Hk

K∑
l=1,l 6=k

vlxl + uHk nk (3.39)

where vk and uk denotes the transmit beamforming and receive combining vectors for
the kth user, respectively. In CB method, the base station chooses vk in the null space
of the space spanned by uHl Hl(∀l 6= k), that is, uHl Hlvk = 0 for l = 1, · · · , k −
1, k + 1, · · · , K. Then vk will cause zero interference to other users. Specifically, CB
method forms an equivalent channel matrix for the kth user

H̃k = [h̃1 · · · h̃k−1h̃k+1 · · · h̃K ]H (3.40)

where h̃Hi = uHi Hi, and then finding a transmit beamforming vector vk that satisfies
H̃kvk = 0.

Assuming that K = Nt and that the channels are sufficiently rich, H̃k will be full-
rank and of dimension (K − 1) × K, the null-space has dimension one and there is
only one zero singular value. Define the SVD of H̃k as

H̃k = ŨkΛ̃k[Ṽ
(1)
k ṽ

(0)
k ]H (3.41)

where Ũk and Λ̃k denote the left singular matrix and the matrix of singular values
of H̃k, respectively, and Ṽ (1)

k and ṽ(0)
k are the right singular matrix and vector each

corresponding to non-zero singular values and zero singular value, respectively. The
transmit beamforming vector of the kth user should lie in the space spanned by ṽ(0)

k ,
consequently, we take vk = ṽ

(0)
k . If maximum ratio combining is used at the receiver,

the receive combining vector is taken as uk = Hkvk, then vk (or uk) is optimized
iteratively under the assumption that uk (or vk) is fixed.

Algorithm 7 gives the pseudo code of CB method, and the simulation results are
given in Figure 3.12. We can see that with the number of transmit antennas increasing,
the sum rate gap between CB method and DPC method becomes larger. This is mainly
because only one data stream is assigned to each user, and the spatial multiplexing is
not fully exploited.
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Algorithm 7 Pseudo code of CB method
Initialize the receive combining vector uk ∀k as random unitary vector
i = 0
Repeat i← i+ 1
for k = 1 : K do
H̃k = [h̃1 · · · h̃k−1h̃k+1 · · · h̃K ]H

H̃k = ŨkΛ̃k[Ṽ
(1)
k ṽ

(0)
k ]H

vk(i) = v
(0)
k

uk(i) = Hkvk(i)
end for
Until ‖ vk(i)− vk(i− 1) ‖< ε
vk = vk(i)
uk = uk(i)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

SNR [dB]

S
um

 r
at

e 
[b

ps
/H

z]

 

 

CB method, Nt=2, Nr=2, K=2
DPC method, Nt=2, Nr=2, K=2
CB method, Nt=4, Nr=4, K=4
DPC method, Nt=4, Nr=4, K=4

Figure 3.12: Comparison between the achievable sum rate of CB method and the sum
capacity.
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3.4.4 ZF-SA method

ZF-SA method proposed in [20] also uses receive combining technique, and ex-
tends MU-MIMO broadcast channels to a more general case. This method allocates
data streams successively to the users, at each step one data stream is assigned to the
user who brings the largest increase of the global throughput. For presentation con-
venience and without loss of generality, we consider each data stream separately. The
lth (1 ≤ l ≤ L) data stream after MU-MIMO broadcast channels and the receive
combining vector is [64]

yl = uHl Hπ(l)vlxl + uHl Hπ(l)

K∑
j=1

j 6=l

vjxj + uHl nπ(l) (3.42)

where π(l) indicates that the lth data stream is allocated to the π(l)th user. The first
data stream is assigned to the user who has the largest data rate. For the lth (2 ≤ l ≤ L)
data stream allocation, we assume that the receive beamforming vectors of the previ-
ously allocated data streams are fixed, the original sum rate optimization problem is
approximated to a concave generalized eigenvalue problem, and each possible receive
beamforming vector u(l)(k) for the lth data stream is calculated over all the K users
[73], i.e.,

Cl(k) ≥ log2


1 +

PT∥∥∥∥∥∥
[

H l−1

ul(k)HHk

](†)
∥∥∥∥∥∥

2


(3.43)

where Cl(k) is the temporary sum rate if the lth data stream is allocated to the kth user;
andH l−1 is defined as

H l−1 =


uH1 Hπ(1)

...
uHl−1Hπ(l−1)

 (3.44)

In order to suppress the interference, the transmit beamforming vectors are selected
from the pseudo inverse of H l−1. By using the lower bound (3.43), the sum rate
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optimization can be rewritten as

min
ul(k)

∥∥∥∥∥∥
[

H l−1

ul(k)HHk

](†)
∥∥∥∥∥∥

2

subject to ul(k)Hul(k) = 1

uj
Hul(k) = 0,∀j < l for π(j) = k

(3.45)

Using the successive update of the pseudo inverse with LQ decomposition of matrix
H l−1 = Ll−1Q

H
l−1, we have [74]∥∥∥∥∥∥

[
H l−1

ul(k)HHk

](†)
∥∥∥∥∥∥

2

= trace((L−1
l−1)HL−1

l−1)

+
1 + ul(k)HHkQl−1L

−1
l−1(L−1

l−1)HQH
l−1H

H
k ul(k)

ul(k)HHk(I −Ql−1QH
l−1)HH

k ul(k)

(3.46)

As the matrix Ll−1 is independent of the index k and the receive combining vector
ul(k), the optimization of the receive combining vector for the kth user reduces to

max
ul(k)

ul(k)HHk(I −Ql−1Q
H
l−1)HH

k ul(k)

ul(k)H(I +HkQl−1L
−1
l−1(L−1

l−1)HQH
l−1H

H
k )ul(k)

subject to ul(k)Hul(k) = 1

uj
Hul(k) = 0,∀j < l for π(j) = k

(3.47)

The objective function in (3.47) is maximized by choosing ul(k) to be the gener-
alized eigenvector belonging to the principal generalized eigenvalue of the matrix pair
Hk(I −Ql−1Q

H
l−1)HH

k and I +HkQl−1L
−1
l−1(L−1

l−1)HQH
l−1H

H
k . In order to suppress

the interference, each transmit beamforming vector vj (1 ≤ j ≤ l) should be orthogo-
nal to row vectors uHi Hπ(i) (∀i 6= j). Therefore, the transmit beamforming vectors of
the already allocated data streams can be obtained via the pseudo inverse of

H l(k) =

[
H l−1

ul(k)HHk

]
(3.48)

Finally, the lth data stream is assigned to the user who contributes the largest in-
crease of the total throughput with the previously selected users. The pseudo code of
ZF-SA method is given in Algorithm 8.



3.4. LINEAR BEAMFORMING TECHNIQUES 65

ZF-SA method can remove the entire interference without any constraint on the
number of receive antennas. As far as we know, ZF-SA method has the best perfor-
mance in terms of sum rate in the literature (Figure 3.13). However, compared with
other methods (e.g. BD method and CB method) under zero-forcing constraint, the
computational complexity of ZF-SA is significant.

Algorithm 8 Pseudo code of ZF-SA method
Initialization: l = 0
while l ≤ Nt do
l← l + 1
for k = 1 : K do

Solve (3.47) to find the receive combining vector
Do the pseudo inverse ofH l(k) to find the transmit beamforming vectors
Perform water-filling power allocation
Calculate the temporary sum, denoted as Rk

end for
Calculate the largest sum rate [Cl, π(l)] = max(Rk)
if Cl−1 ≥ Cl then

π(l) = 0
break

end if
end while

3.4.5 MMSE method

Note that the aforementioned methods (ZF, BD, CB and ZF-SA) aim to cancel all
the interference, meanwhile, the global throughput is optimized. But sometimes inter-
ference is not vital to remove, especially at low SNR region. In this case, Gaussian
noise plays a more important role. In this subsection, MMSE method is introduced,
which seeks to maximize the SINR of each data stream instead of removing the inter-
ference. Consider the downlink transmission, the received signal yk ∈ CNr,k×1 at the
kth user after receive combining matrix can be written as [21], [29]

yk = UH
k HkVk

√
Pkxk +UH

k Hk(
K∑

i=1,i 6=k

Vi
√
Pixi) +UH

k nk (3.49)

where Hk ∈ CNr,k×Nt denotes the channel between the transmitter and the kth user;
Vk ∈ CNt×Nr,k and Uk ∈ CNr,k×Nr,k are the normalized transmit beamforming and
the receive combining matrices of the kth user, respectively; the diagonal matrix PM

k
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Figure 3.13: Comparison between the achievable sum rate of ZF-SA method and the
sum capacity.
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denotes the corresponding transmit power. For presentation convenience and without
loss of generality, we consider each data stream separately. The lth (1 ≤ l ≤ L) data
stream after MU-MIMO broadcast channels and the receive combining vector is [64]

yl = uHl Hπ(l)vl
√
plxl + uHl Hπ(l)

L∑
j=1

j 6=l

vj
√
pjxj + uHl nπ(l) (3.50)

where π(l) and pl indicate that the lth data stream is allocated to the π(l)th user and the
allocated power for the π(l)th user, respectively. Note that the interference is not can-
celed completely, water-filling power allocation method does not work here. Similarly
to [21] and [30], the sum rate optimization problem is given by

max
{ul,vl,pl}Ll=1

L∑
l=1

log2(1 +
pl|uHl Hπ(l)vl|2∑L

j=1,j 6=l pj|uHl Hπ(l)vj|2 + σ2
)

subject to ‖ vl ‖= 1, ‖ ul ‖= 1, 1 ≤ l ≤ L

L∑
l=1

pl ≤ PT , pl ≥ 0, 1 ≤ l ≤ L

(3.51)

It can be observed from (3.51) that for the lth data stream, the transmit beamform-
ing vector vl and power pl are difficult to optimize, since vl and pl are coupled with
vj and pj respectively, these are non-convex problems. However, the optimization
problem with respect to receive combining vector ul can be solved efficiently if the
transmit beamforming vectors and transmit power allocation are fixed. In this case, the
optimization problem with respect to the receive combining vector ul is

max
{ul}Ll=1

L∑
l=1

log2(1 +
uHl S(l)ul
uHl T (l)ul

)

subject to ‖ ul ‖= 1, 1 ≤ l ≤ L.

(3.52)

where S(l) = plHπ(l)vlv
H
l H

H
π(l), and T (l) =

∑L
j=1

j 6=l
pjHπ(l)vjv

H
j H

H
π(l) + σ2Iπ(l). In

(3.52), the log function is monotone increasing, the optimization problem is equivalent
to maximizing each SINR term separately, which is a standard generalized eigenvalue
problem, that is

SINRl =
uHl S(l)ul
uHl T (l)ul

(3.53)

Clearly, the SINR value of the lth data stream SINRl is maximized by choosing ul as
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the generalized eigenvector of (S(l), T (l)) corresponding to the dominant generalized
eigenvalue, i.e.,

ûl =

 L∑
j=1

j 6=l

pjHπ(l)vjv
H
j H

H
π(l) + σ2Iπ(l)


−1

Hπ(l)vl (3.54)

with ul = ûl/ ‖ûl‖F . This beamforming technique is also known as the minimum
mean square error (MMSE) receiver [21], [30].

Next we calculate the transmit beamforming matrix in the dual MAC. According
to BC-MAC duality, the received signal after receiving combining matrix in dual MAC
is

yMk = V H
k H

H
k Uk

√
PM
k x

M
k + V H

k (
K∑

j=1,j 6=k

HH
j Uj

√
PM
j x

M
j ) + V H

k n
M (3.55)

where Hk
H ∈ CNt×Nr,k denotes the channel between the kth user and the base sta-

tion; Uk ∈ CNt×Nr,k and Vk ∈ CNr,k×Nr,k are the normalized transmit beamforming
and the receive combining matrices, respectively; the diagonal matrix PM

k is the corre-
sponding power allocation in the dual MAC similarly to Pk. We consider the transmit
beamforming vector design while receive combining vectors and allocated power are
fixed. As it can be observed in (3.51), the transmit beamforming vector design problem
is non-convex and the solution is difficult to find. However, it can be transformed into a
generalized eigenvalue problem taking advantage of the uplink-downlink duality. Ac-
cording to (3.49) and (3.55), the transmit beamforming matrix Vk of the kth user in the
downlink corresponds to the receive combining matrix Vk in the dual MAC, then the
sum rate optimization of the dual MAC is

max
{ul,vl,plM}Ll=1

L∑
l=1

log2(1 +
pl
M |vHl HH

π(l)ul|2∑L
j=1,j 6=l pj

M |vHl HH
π(j)uj|2 + σ2

)

subject to ‖ ul ‖= 1, ‖ vl ‖= 1, 1 ≤ l ≤ L

L∑
l=1

pl
M ≤ PT , ql ≥ 0, 1 ≤ l ≤ L

(3.56)

In the dual MAC, similarly to (3.51), we suppose that the transmit beamforming
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vectors and transmit power allocation are fixed. Then (3.56) is reformulated as

max
{vl}Ll=1

L∑
l=1

log2(1 +
vHl S

M(l)vl
vHl T

M(l)vl
)

subject to ‖ vl ‖= 1, 1 ≤ l ≤ L

(3.57)

where SM(l) = qlH
H
π(l)ulu

H
l Hπ(l), and TM(l) =

∑L
j=1,j 6=l qjH

H
π(j)uju

H
j Hπ(j) +

σ2INt . Similarly to (3.52), the optimal transmit beamforming vector vl is the gen-
eralized eigenvector of (SM(l), TM(l)) corresponding to the dominant generalized
eigenvalue, i.e.,

v̂l =

(
L∑

j=1,j 6=l

qjH
H
π(j)uju

H
j Hπ(j) + σ2INt

)−1

HH
π(l)ul (3.58)

with normalization vl = v̂l/ ‖v̂l‖F .

If the transmit and receive beamforming vectors obtained as described above are
supposed to be fixed, the power allocation optimization problem can be written as

max
{pl}

L∑
l=1

log2(1 +
plGll∑L

j=1,j 6=l pjGlj + σ2
)

subject to
L∑
l=1

pl ≤ PT , pl ≥ 0, 1 ≤ l ≤ L

(3.59)

where Glj = |uHl Hπ(l)vj|2 and Gll = |uHl Hπ(l)vl|2 represent the coefficient of the
interference to the lth subchannel caused by the jth subchannel and the channel gain
of the lth subchannel, respectively. This optimization problem is a NP hard problem
and the optimal solution needs solving geometric programming (GP) iteratively [21],
[75]. The pretty high computational complexity makes it hard to implement in practice.
In chapter 5, we will introduce the proposed suboptimal method to solve (3.59), which
has a much low computational complexity with a negligible performance degradation.

Algorithm 9 gives the pseudo code of MMSE method, and Figure 3.14 shows the
sum rate performance. We can see that the achievable sum rate provided by MMSE
method is very close to the sum capacity in low SNR region, while with SNR increase,
the performance degrades significantly. The reason is that, in high SNR region, the
interuser interference is stronger than Gaussian noise, while MMSE method does not
take it into account, which results in performance degradation.
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Figure 3.14: Comparison between the achievable sum rate of MMSE method and the
sum capacity,

Algorithm 9 Pseudo code of MMSE method
Initialization: [Uk,Σk,Vk] = svd(Hk), ∀k
Repeat i← i+ 1
1, Downlink power allocation (3.59).

Suppose Vk and Uk are fixed, ∀k.
2, Downlink receive beamforming design (3.52).

Suppose power allocation and Vk are fixed, ∀k.
3, Uplink power allocation (3.59).

Suppose Vk and Uk are fixed, ∀k.
4, Uplink receive beamforming design (3.57).

Suppose power allocation and Uk are fixed, ∀k.
Until the sum rate convergence, i.e. |CDL

i − CDL
i−1| ≤ ε, or i > imax.
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Figure 3.15: Interference removing techniques in linear methods

3.5 Summary

In Figure 3.15, we summarize the interference removing techniques in linear meth-
ods. Compared with non-linear methods, we can see that all the interference from
other users is canceled by beamforming techniques.

3.6 Performance comparisons

In this section, we briefly give a summary of transmit beamforming techniques
in the literature, and some simulation results show the performance comparison of
different methods.

First, ZF method is the most simple method, one single receive antenna for each
user is supported, and the transmit beamforming vector is obtained by the pseudo in-
verse of the build channel matrix. Since the goal of transmit beamforming vectors are
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Figure 3.16: Sum rate comparison of ZF-DPC method, ZF method and the sum capac-
ity.

to remove the entire interference, the number of degrees of freedom of transmit beam-
forming design is very limited. ZF-DPC extends this situation to the case where only
one part of the interference is removed by transmit beamforming vectors, and the rest
of the interference which is known non-causally to the transmitter can be eliminated by
DPC technique. Thus, the number of degrees of freedom for choosing transmit beam-
forming vectors becomes larger, and the performance is improved. In Figure 3.16, the
sum rate provided by ZF method and ZF-DPC method is given.

BD method and SZF-DPC method are extensions of ZF method and ZF-DPC
method, respectively, both of them support the multiple receive antenna case. The
beamforming vectors in BD method are used to remove the entire interference while in
SZF-DPC method, only one part of interference is removed by transmit beamforming
vectors. Similarly to Figure 3.16, in Figure 3.17, the simulation results show that SZF-
DPC method outperforms BD method in terms of sum rate because of the extended
number of degrees of freedom available for choosing transmit beamforming vector.
Both ZF-SA method and SA-DPC method allocate the data streams successively. At
each step, only one data stream is assigned to the user who can bring the largest sum
rate increase. In addition, the total receive antenna number can be larger than transmit
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Figure 3.17: Sum rate comparison of SZF-DPC method, BD method and the sum
capacity.
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Figure 3.18: Sum rate comparison of SA-DPC method, ZF-SA method and the sum
capacity.

antenna number. ZF-SA works for the zero-forcing case while SA-DPC works with
DPC technique. In the Figure 3.18, we can also find that SA-DPC method has better
performance in terms of sum rate compared with ZF-SA method. This comes from
the larger number of degrees of freedom available for transmit beamforming design in
SA-DPC method.

In Figure 3.19, the simulation results of all the methods in the literature with the
configuration of Nt = 4 transmit antenna and K = 2 users with Nr = 2 receive an-
tennas each are given. Generally, DPC based methods have better performance than
zero-forcing methods, since the transmit beamforming vector has larger number of de-
grees of freedom if DPC technique is used. But to implement this DPC technique, the
complexity of the structures of transmitter and receiver is also increased. We can also
find that MMSE method has a pretty good performance at very low SNR region. The
reason is that, the interference at this region is negligible. MMSE method considers
it together with Gaussian noise, while in other methods, the transmit beamforming
vectors are designed only to remove this interference.
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Figure 3.19: Sum rate comparison of SZF-DPC method, SA-DPC method, ZF-SA
method, BD method, MMSE method and the sum capacity.
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3.7 Beamforming techniques under per-antenna power
constraint

As discussed in the introduction, in practice, the power amplifier of each antenna
is limited individually by its linearity. A power constraint imposed on each transmit
antenna is more realistic. In this section, we first introduce the optimal solution of
transmit beamforming design under per-antenna power constraint, then a suboptimal
solution is presented.

3.7.1 Per-OPT method

Similarly to the optimal solution under total power constraint in Section 3.1, Per-
OPT method proposed in [27] also transforms the original non-convex sum rate op-
timization problem into a convex one. Taking advantage of the duality between BC
and the corresponding MAC, using the existing standard optimization packages (e.g.
CVX) and Lagrange duality method alternatively, the original problem converges to
the optimal value eventually.

For convenience, we discuss the case in which the base station is equipped with
Nt = 2 transmit antennas, and each antenna has a power constraint. Suppose K users
are served, and each user has Nr receive antennas. If the per-antenna power constraint
is considered and DPC technique is used, the sum rate optimization problem can be
written as

max
{Qk}Kk=1

K∑
k=1

log2

|σ2I +
∑K

j=kHkQjH
H
k |

|σ2I +
∑K

j=k+1HkQjHH
k |

subject to
K∑
k=1

trace(QkA1) ≤ P1

K∑
k=1

trace(QkA2) ≤ P2

(3.60)

where Qk = VkV
H
k ∈ C2×2 is the transmit covariance matrix of the kth user, and Ai

(1 ≤ i ≤ 2) is a diagonal matrix with only a 1 in the ith diagonal element and zeros
elsewhere.

In order to use the duality between MU-MIMO broadcast channels and MAC chan-
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nels, the auxiliary function g(λ1, λ2) is introduced and (3.60) is reformed as

g(λ1, λ2) := max
{Qk}Kk=1

K∑
k=1

log2

|σ2I +
∑K

j=kHkQjH
H
k |

|σ2I +
∑K

j=k+1HkQjHH
k |

subject to

λ1

K∑
k=1

trace(QkA1) + λ2

K∑
k=1

trace(QkA2) ≤ λ1P1 + λ2P2

(3.61)

In [27] it is proven that the optimal value of (3.61) for any given pair of λ1 and λ2

(λ1 ≥ 0, λ2 ≥ 0) is an upper bound on the optimal value of (3.60) and the upper bound
is tight. Therefore, we can solve (3.61) and the following minimization problem

min
λ1≥0,λ2≥0

g(λ1, λ2) (3.62)

alternatively, until the optimal value is achieved.

Note that according to the general BC-MAC duality, (3.61) is equivalent to the
following dual MAC problem

max
{QM

k }
K
k=1

K∑
k=1

log2

|λ1A1 + λ2A2 +
∑k

j=1HjQ
M
j H

H
j |

|λ1A1 + λ2A2 +
∑k−1

j=1 HjQM
j H

H
j |

subject to
K∑
k=1

trace(σ2QM
k ) ≤ λ1P1 + λ2P2

QM
k ≥ 0

(3.63)

where QM
k indicates the transmit covariance matrix of the kth user in MAC. This is a

convex problem and it can be solved via standard techniques. After obtaining the opti-
malQM

k , the optimal solution of (3.61) can then be found via the MAC-BC covariance
transformation algorithm discussed in Section 3.1.

Next, we introduce the ellipsoid method to solve (3.62). The Lagrangian function
of (3.61) can be written as

L({Qk}Kk=1, {λ1, λ2}) = max
{Qk}Kk=1

K∑
k=1

log2

|σ2I +
∑K

j=kHkQjH
H
k |

|σ2I +
∑K

j=k+1HkQjHH
k |

+ λ1P1 + λ2P2 − λ1

K∑
k=1

trace(QkA1)− λ2

K∑
k=1

trace(QkA2)

(3.64)
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If λ = [λ1, λ2]T is defined with random initialized positive value, and s = [s1, s2]T

is the subgradient of the Lagrangian function (3.64) at a set of fixed {λ1, λ2}, i.e.,

sn =
∂L({Qk}Kk=1, {λ1, λ2})

∂λn

= Pn −
K∑
k=1

trace(QkAn), 1 ≤ n ≤ 2

(3.65)

then λ is updated as follows:

λ+ = λ− 1

(Nt + 1)
√
sTMs

Ms (3.66)

andM is upgraded as

M+ =
N2
t

N2
t − 1

(
M − 2

(Nt + 1)sTMs
MssTM

)
(3.67)

Note that M is initialized as unit matrix and Nt = 2 according to the assumption.
(3.66) and (3.67) are optimized alternatively with each other fixed, and it is proven that
the optimal value will be achieved eventually when it converges [76]. Algorithm 10
gives the pseudo code of Per-OPT method.

In Figure 3.20, simulation results are given to show the achievable sum rate of Per-
OPT method. We can see that the sum rate is a little lower than the sum capacity due to
the practical per antenna power constraint. With the increase of SNR, the gap becomes
smaller since the equal power allocation is optimal in the high SNR region.

Algorithm 10 Pseudo code of Per-OPT method
Initialize λ as random vector
i = 0
Repeat i← i+ 1
Solve (3.63) by toolbox such as CVX
Update λ (3.66), denoted as λ(i)
Until ‖ λ(i)− λ(i− 1) ‖< ε

3.7.2 PBD-DPC method

Instead of optimizing the sum rate in the dual MAC as Per-OPT method, PBD-DPC
method proposed in [26] takes advantage of SZF-DPC method, and tries to optimize
the sum rate in BC directly under the per-antenna power constraint. The sum rate
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Figure 3.20: Sum rate comparison of DPC method, Per-OPT method, Nt = 4, Nr,k =
2, ∀k, and K = 2.
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optimization of MU-MIMO broadcast channels is formulated to

max
{Vk}Kk=1

K∑
k=1

log2

|σ2I +
∑K

j=kHkVjV
H
j H

H
k |

|σ2I +
∑K

j=k+1HkVjV H
j H

H
k |

subject to [
K∑
k=1

VkV
H
k ](n,n) ≤ Pn, 1 ≤ n ≤ Nt

(3.68)

Similarly to SZF-DPC method, if the transmit beamforming matrices Vk (1 ≤ k ≤ K)

are designed successively, and Vk (∀k) is denoted by Vk = BkDk, then to remove the
residual interference,Bk should lie in the null space of the space spanned by

H̄k =
[
HT

1 H
T
2 · · · HT

k−1

]T
(3.69)

Dk is designed to maximize the throughput under the per-antenna power constraint.
The residual interference which is non-causally known to the transmitter can be re-
moved by DPC technique. Since the interference is suppressed completely in this way,
(3.68) can be rewritten as

max
{Ωk}Kk=1

K∑
k=1

log2 |I +
1

σ2
HkBkΩkB

H
k H

H
k |

subject to [
K∑
k=1

BkΩkB
H
k ](n,n) ≤ Pn, 1 ≤ n ≤ Nt

rank(Ωk) ≤ Nr,k, 1 ≤ k ≤ K

(3.70)

where Ωk = DkD
H
k . Problem (3.70) is a convex program when the constraint rank(Ωk) ≤

Nr,k is omitted, and numerical optimization tools can be used to solve it. Here we in-
troduce how to solve this problem by Lagrange duality method, which is also used in
Per-OPT method. Note that other more efficient methods can also be found in [26].

Consider the Lagrangian function of (3.70) is given as

L({Ωk}, {λn}) =
K∑
k=1

log2 |I +
1

σ2
HkBkΩkB

H
k H

H
k |

−
Nt∑
n=1

λn([
K∑
k=1

BkΩkB
H
k ](n,n) − Pn)

(3.71)

Since strong duality holds for (3.70), its optimal solution can be found via the following
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Lagrange duality method
min
λn≥0

max
Ωk≥0

L({Ωk}, {λn}) (3.72)

Similarly to (3.63), the two-stage iterative algorithm works as follows. For fixed
λn, the set of covariance matrix that maximizes L({Ωk}, {λn}) can be obtained by
water-filling algorithm. Next, for a set of given {Ωk}, the ellipsoid method can be
used to update {λn}. However, the ellipsoid method converges slowly to the optimum
in this form. In [26], it is proven that the optimal solution always satisfies the constraint
rank(Ωk) ≤ Nr,k. Algorithm 11 gives the pseudo code of PBD-DPC method. It can be

Algorithm 11 Pseudo code of PBD-DPC algorithm
Suppose a preset user order
for k = 1 : K do

Build the matrix H̄k =
[
HT

1 H
T
2 · · · HT

k−1

]T as (3.69)
Do SVD decomposition of Ĥk and findBk

end for
Solve (3.70) to get Ωk

Do eigenvalue decomposition to getDk

Use DPC pre-subtract the non-known interference

observed that PBD-DPC method finds the transmit beamforming matrix for each user
without considering its individual channel gain, which means that, when the channel
gain of the kth user is weak, it will contribute a negligible throughput to the sum rate
but impose severe constraint on the subsequent users. Figure 3.21 illustrates the sum
rate provided by Per-OPT method, PBD-DPC method, and the sum capacity of the
channels. We can see that a large gap exists between the optimal Per-OPT method and
PBD-DPC method.

3.8 Conclusion

In this chapter, the state of the art of beamforming techniques in MU-MIMO broad-
cast channels is overviewed. First, we present the optimal solution in terms of sum ca-
pacity. Then, the non-linear and linear suboptimal methods that have low complexities
are introduced. After that, beamforming techniques under per-antenna power con-
straint are presented. At last, we give some simulation results and the performance
comparisons between different methods. Based on the observations of the beamform-
ing techniques in the literature, we propose two new beamforming methods in MU-
MIMO broadcast channels, which will be introduced in the next chapter.
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Figure 3.21: Sum rate comparison of DPC method, Per-OPT method, PBD-DPC
method, Nt = 4, Nr,k = 2, ∀k, and K = 2.



4
Proposed beamforming methods

In the first part of this chapter, we propose an alternative approach to SA-DPC
method under the total power constraint. In SA-DPC method, the transmit beamform-
ing vector is selected as the right singular vector corresponding to the largest singular
value of the projected channel matrix, the per-antenna power constraint is hard to be
imposed in this way. In the proposed method, instead of obtaining the transmit beam-
forming vector directly, we first find the subspace where the transmit beamforming
vector should lie in, then the transmit beamforming vector is selected in the above sub-
space to optimize the global throughput. The proposed method performs identically
as SA-DPC method when the total power constraint is imposed, even though they are
derived from different ways. Moreover, it is shown that the proposed method can be
easily modified to the more realistic per-antenna power constraint. In the second part
of this chapter, a beamforming method under the per-antenna power constraint is pro-
posed. Since the optimal solution to the original problem is difficult to obtain, in the
proposed method, this problem is divided into two classical optimization problems,
which can be solved with existing standard algorithms. We alternatively solve each
subproblem under the assumption that another one is fixed, the convergence can be
achieved within a small number of iterations. Similarly to SA-DPC method and the
first proposed method, one data stream is allocated to the user who brings the largest
global throughput increase at each step. The non-causally known interference is pre-
subtracted through DPC technique before transmission, and the remaining interference

83
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is eliminated by the transmit beamforming and receive combining vectors.

4.1 Under total transmit power constraint

Consider downlink MU-MIMO broadcast channels with K users, where a base
station is equipped with Nt transmit antennas and transmits

∑
k Lk = L data streams

to the users, each user has Nr,k receive antennas and receives Lk data streams. The
channel state information (CSI) is supposed to be perfectly known at the base station.
Since the channel gains vary with different users [20], [29], an optimal Lk (0 ≤ Lk ≤
Nr,k) for the kth (∀k) user should be found to maximize the global throughput. In this
section, for presentation convenience and without loss of generality, we consider each
data stream separately. The lth (1 ≤ l ≤ L) data stream after MU-MIMO broadcast
channels and the receive combining vector is [64]

yl = uHl Hπ(l)vlxl+u
H
l Hπ(l)

l−1∑
j=1

vjxj + uHl Hπ(l)

L∑
j=l+1

vjxj + uHl nπ(l) (4.1)

where π(l) indicates that the lth data stream is allocated to the π(l)th user. If the data
streams are allocated in a successive way and DPC technique is used, the non-causally
known interference in (4.1) (i.e., uHl Hπ(l)

∑l−1
j=1 vjxj) coming from the previously

allocated data stream can be pre-canceled before transmission. In this case, the op-
timization of the sum rate under the total transmit power constraint can be rewritten
as

max
{ul,vl}Ll=1

L∑
l=1

log2(1 +
|uHl Hπ(l)vl|2∑L

j=l+1|uHl Hπ(l)vj|2 + σ2
)

subject to uHl ul = 1, 1 ≤ l ≤ L

trace(
L∑
l=1

vlv
H
l ) ≤ PT

(4.2)

The maximum value of (4.2) is difficult to obtain. Instead of maximizing (4.2)
directly, we try to cancel the residual interference

∑L
j=l+1|uHl Hπ(l)vj|2 in (4.2) com-

pletely, meanwhile, the sum rate is maximized.

It can be seen that the optimal user order and data stream allocation need to search
all the possibilities [14]. The computational complexity of this pure global exhaustive
search is pretty high when the number of users is large. In the proposed method, data
streams are allocated successively to the K users. At each step, we search firstly over
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all users, then one data stream is assigned to the user who brings the largest throughput
increase. This greedy strategy reduces the computational complexity since not all the
possibilities are explored. To simplify the presentation, we focus on beamforming
design by ignoring power allocation. Note that with zero-forcing constraint, water-
filling power allocation principle is the optimal solution.

Specifically, the lth (1 ≤ l ≤ L) data stream is supposed to be allocated to
the π(l)th user (1 ≤ π(l) ≤ K) at the lth step. The non-causally known interfer-
ence produced by the previously allocated l − 1 data streams

∑l−1
j=1|uHl Hπ(l)vj|2 can

be removed completely through DPC technique. Additionally, we force that the lth
data stream does not interfere with the previously allocated l − 1 data streams (i.e.,
uHj Hπ(j)vl = 0 (1 ≤ j ≤ l − 1)). Under these two constraints, the rate optimization
of the lth data stream is performed with

max
{ul,vl}

log2(1 +
|uHl Hπ(l)vl|2

σ2
)

subject to ‖ul‖ = 1, ‖vl‖ = 1

uHj Hπ(j)vl = 0, 1 ≤ j ≤ l − 1

(4.3)

In (4.3), the constraints uHj Hπ(j)vl = 0 (1 ≤ j ≤ l − 1) imply that vl must lie in
the null space of the space spanned by

Nl =


uH1 Hπ(1)

...
uHl−1Hπ(l−1)

 ∈ C(l−1)×Nt (4.4)

As a result of LQ decomposition ofNl, it comes that

Nl =
[
L(l−1)×(l−1) 0(l−1)×(Nt−l+1)

] [AH
(1)

AH
l

]
(4.5)

where L(l−1)×(l−1) is a lower triangular matrix, and the columns ofAl ∈ CNt×(Nt−l+1)

form an orthonormal basis of the null space of Nl, i.e., NlAl = 0, and AH
l Al = I .

Thus, the columns ofAl span the space where the transmit beamforming vector of the
lth data stream vl must lie in (i.e., vl = Alfl). The optimization problem (4.3) can
then be rewritten as

max
{ul,fl}

log2(1 +
|uHl Hπ(l)Alfl|2

σ2
)

subject to ‖ul‖ = 1, ‖fl‖ = 1

(4.6)
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The data rate of the lth data stream is maximized by choosing ul and fl as the left and
right singular vectors corresponding to the dominant singular value of matrixHπ(l)Al,
respectively. Then the transmit beamforming vector is calculated as vl = Alfl. Since
Al and fl are unitary matrix and unitary vector, respectively, we can see that vl and
ul are also unitary vectors. Finally, the water-filling algorithm is performed to allocate
the transmit power over the allocated data streams.

The lth data stream is allocated to the user (among all the candidates) who brings
the largest global throughput increase. The algorithm stops when there is no global
throughput increase. Note that in order to obtain the null space of Nl, the number
of total allocated transmit data streams L should be less or equal to that of transmit
antennas (i.e.

∑K
k=1 Lk = L ≤ Nt).

We can see that the interference term uHl Hπ(l)

∑L
j=l+1 vjxj in (4.1) can be sup-

pressed completely by the above beamforming method. Note that the non-causally
known interference uHl Hπ(l)

∑l−1
j=1 vjxj is pre-canceled at the base station, the sum

rate of the proposed beamforming method can be calculated as

L∑
l=1

log(1 +
|uHl Hπ(l)vl|2

σ2
) (4.7)

Compared with SA-DPC method, which finds the transmit beamforming vector
as the right singular vector associated to the largest singular value of the projected
channel matrix, in the proposed method, the subspace that the transmit beamforming
vector should lie in is found first, then the one that maximizes the channel gain is
selected. It is another way to find exactly the same performance as SA-DPC method.
Algorithm 12 gives the pseudo code of the proposed beamforming method under total
power constraint (Prop-T method). In Figure 4.1, we can see that the sum rate of
Prop-T method is very close to DPC method, which is the maximum sum capacity.

Considering the computational complexity, an approximate measurement is the
number of floating point operations (flops) [77], [78]. A real addition, multiplica-
tion or division operation is counted as one flop. A complex addition and multiplica-
tion have two flops and six flops, respectively [79]. In the proposed method (Prop-T
method), LQ decomposition is performed once at the lth (0 ≤ l ≤ L) step, which
needs 4(l−1)2(3Nt− l+ 1) flops [78], then SVD is used to find the dominant singular
vectors, the number of flops is 4N2

rNt + 8Nr + N2
t + 9N3

t [79]. While in SA-DPC
method, the projection matrix is calculated at each step, which needs 8N3

t − 10N2
t

flops, then SVD is also performed to find the dominant singular vectors. Figure 4.2
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Figure 4.1: Sum rate comparison of DPC method and Prop-T method method, Nt = 4,
Nr,k = 2, ∀k, and K = 2.

Algorithm 12 Pseudo code of Prop-T method.
Initialization: A1 = INt , l = 0
while l ≤ Nt do
l← l + 1
for k = 1 : K do

Maximize (4.6) denoted as Rk

end for
Calculate the largest sum rate [Cl, π(l)] = max(Rk)
if Cl−1 ≥ Cl then

π(l) = 0
break

end if
end while
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Figure 4.2: Complexity comparison of SA-DPC and Prop-T methods. Nt = 4, and
Nr,k = 2, ∀k.

illustrates the number of needed flops of SA-DPC and Prop-T methods in terms of
transmit antenna number. We can see that the complexity of Prop-T method is rela-
tively higher than that of SA-DPC method, but Prop-T method can be easily modified
to take the per-antenna power constraint into account by designing the vector fi, which
will be presented in the following section.

4.2 Under per-antenna power constraint

Similarly to the development in Section 4.1, if the per-antenna constraint is im-
posed, the optimization problem at the lth step can be formulated as

max
{uj ,fj}lj=1

l∑
j=1

log2(1 +
uHj Hπ(j)Ajfjf

H
j A

H
j H

H
π(j)uj

σ2
)

subject to uHj uj = 1, 1 ≤ j ≤ l

[
l∑

j=1

Ajfjf
H
j A

H
j ](n,n) ≤ Pn, 1 ≤ n ≤ Nt

(4.8)

Compared with (4.6), we consider the sum of all the allocated data streams instead
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of only the lth one under the per-antenna power constraint.

The objective function in (4.8) is difficult to maximize under these constraints.
Even with fixed receive combining vector uj , the objective function is still neither
convex nor concave with respect to fj . However, we can observe that the maximum
value of the objective function can be achieved by maximal-ratio combining (MRC)
when fj is assumed to be fixed, i.e.,

u+
j =

Hπ(j)vj
‖Hπ(j)vj‖F

=
Hπ(j)Ajfj
‖Hπ(j)Ajfj‖F

, 1 ≤ j ≤ l (4.9)

where uj+ indicates the upgraded uj after each iteration. In this paper, an iterative
process is proposed to solve (4.8). The variable uj (or fj) is optimized by assuming
the other fj (or uj) fixed.

Inspired by [25], we define Fj = fjf
H
j , then (4.8) can be reformulated as

max
{uj ,Fj}lj=1

l∑
j=1

log2(1 +
uHj Hπ(j)AjFjA

H
j H

H
π(j)uj

σ2
)

subject to uHj uj = 1, rank(Fj) ≤ 1, and Fj ≥ 0, 1 ≤ j ≤ l

[
l∑

j=1

AjFjA
H
j ](n,n) ≤ Pn, 1 ≤ n ≤ Nt

(4.10)

Note that the optimal solution of (4.10) is still difficult to find. However, if the
receive combining vector uj is assumed to be fixed, the constraint rank(Fj) ≤ 1 is
supposed to be omitted, and denoting hHj = uHj Hπ(j), it comes then that (4.10) can be
reformulated to

max
{Fj}lj=1

l∑
j=1

log2(1 +
hHj AjFjA

H
j hj

σ2
)

subject to [
l∑

j=1

AjFjA
H
j ](n,n) ≤ Pn, 1 ≤ n ≤ Nt

Fj ≥ 0, 1 ≤ j ≤ l

(4.11)

This is a convex optimization problem, which can be solved by optimization tool-
box such as CVX [80] or YALMIP [81]. The more efficient interior-point method [25]
can also be applied, which uses the barrier method in [82] to solve this problem. In
[25], it is also shown that the optimal F ?

j in (4.11) always satisfies the rank-1 constraint
(i.e., rank(F ?

j ) ≤ 1).
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The closed-form of F ?
j using Lagrange duality method similarly to [24] can be

written as

F ?
j =

λj
δ2
j

(AH
j BµAj)

−1AH
j hjh

H
j Aj(A

H
j BµAj)

−1, 1 ≤ j ≤ l (4.12)

where Bµ =
∑Nt

n=1 µnBn, and Bn(Nt×Nt) = diag(0, · · · 0, 1, 0, · · · , 0) is a diagonal
matrix with only the nth diagonal element being 1. Details are given in the appendix
B. It can be observed from (4.12) that F ?

j indeed satisfies the rank-1 constraint. From
Fj = fjf

H
j , f ?j can be written as

f ?j =

√
λj

δj
(AH

j BµAj)
−1AH

j hj, 1 ≤ j ≤ l (4.13)

and the corresponding transmit beamforming vector is

vj = Ajf
?
j =

√
λj

δj
Aj(A

H
j BµAj)

−1AH
j hj, 1 ≤ j ≤ l (4.14)

Thenuj is upgraded according to (4.9). We alternatively calculate (4.9) and (4.14) until
the increase of maximum value of the objective function is below a preset threshold.

Finally, the lth data stream is allocated to the user (among all the candidates),
who brings the largest throughput increase with the previously selected users. The
algorithm stops when there is no global throughput increase.

Similarly to section 4.1, in order to obtain the null space ofNl, the number of total
allocated transmit data streams L should be less or equal to that of transmit antennas
(i.e.

∑K
k=1 Lk = L ≤ Nt). As defined in Section 2, Lk is the number of allocated data

streams for the kth user, so we have Lk ≤ Nr,k. In addition, since receive combining
technique is adopted, the number of total receive antennas can be larger than that of
transmit antennas, in this case, we can have

∑K
k=1 Nr,k ≥ Nt.

Note that the proposed method under total power constraint is a suboptimal method
to solve the optimization problem (4.2). Moreover, if the stronger per-antenna power
constraint is imposed, the sum rate is lower than that obtained under the total power
constraint. Let CDPC , CT and CP denote the maximum value of (4.2), (4.7) and (4.8),
respectively, it follows that

CP ≤ CT ≤ CDPC (4.15)

The algorithm of the whole process is summarized in Algorithm 13.
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Algorithm 13 Proposed beamforming and data allocation method under per-antenna
power constraint.

Initialization: A1 = INt , l = 0
while l ≤ Nt do
l← l + 1
for k = 1 : K do
i = 0, r0 = 0
Repeat i← i+ 1

Find the optimal f ?1 , · · · ,f ?l (4.13)
Update u1, · · · ,ul (4.9)
UpdateA1, · · · ,Al (4.5)
Calculate the temporary sum rate as ri

Until |ri − ri−1| < ε
Define Rk = ri

end for
Calculate the largest sum rate [Cl, π(l)] = max(Rk)
if Cl−1 ≥ Cl then

π(l) = 0
break

end if
end while

4.3 Simulation results

In this section, the performance of the discussed methods is evaluated by simula-
tions. For simplification, each user is assumed to have the same number of receive
antennas, and the entries of channel matrix are i.i.d. Gaussian random variables with
zero-mean, independent real and imaginary parts with equal variance (i.e., uncorre-
lated Rayleigh-fading channels). We first consider MU-MIMO broadcast channels
with Nt = 8 transmit antennas at the base station, and K = 4 users under a natural or-
der, each user is equipped with two receive antennas (i.e., Nr,k = 2, ∀k). The power of
each transmit antenna is limited to Pn = PT/Nt, with PT the total transmit power. The
threshold ε is preset as 10−3. Note that the same transmit beamforming and receive
combining vectors are obtained by both Prop-T method and SA-DPC method, their
performance is therefore identical. In Figure 4.3, we show the sum capacity provided
by DPC method, the average sum rates provided by Per-OPT method [27], PBD-DPC
method [26], Prop-T method, and the proposed method under per-antenna power con-
straint (denoted as Prop-P method), respectively. We can see that the performance of
Prop-P method is slightly lower than that of Prop-T method. This comes from the more
severe per-antenna power constraint. On the other hand, Prop-P method outperforms
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Figure 4.3: Sum rate comparison of DPC method, Per-OPT method, PBD-DPC
method, Prop-T method and Prop-P method, Nt = 8, Nr,k = 2, ∀k, K = 4, and
Pn = PT

Nt
.

PBD-DPC method, this comes from the fact that PBD-DPC method allocates a num-
ber of data streams to one user without considering each individual subchannel gain.
But in Prop-P method, only one data stream is allocated to the user who can contribute
the largest increase of the throughout. Moreover, it can also be observed in Figure 4.3
that Prop-P method provides almost the same sum rate as Per-OPT method, while the
computational complexity, which will be shown later, is lower.

In Figure 4.4, the required iteration number is presented with a random realization,
the configuration is the same as Figure 4.3, and the tolerant error in Per-OPT method
is preset as 10−3. Note that the total needed iterations over the whole data stream al-
location procedure is recorded in Prop-P method. As shown in Figure 4.4, Per-OPT
method requires more iterations to converge compared with Prop-P method. This is
due to that the subgradient in Per-OPT method needs not be a descent function, an it-
eration can even decrease the objective function [26]. Moreover, the convergence rate
in Per-OPT method relies strongly on the problem scale. As seen in Figure 4.5, the
entire processing time of a random realization by Matlab is recorded. Not only the re-
quired number of iterations in Per-OPT method increases, but also the processing time
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Figure 4.4: Iteration number comparison of Per-OPT method and Prop-P method,
Nt = 8, Nr,k = 2, ∀k, and K = 4.

needed for each iteration increases rapidly with the number of transmit antenna grow-
ing. Therefore, the proposed method is more promising for practical implementation
compared with Per-OPT method.

Second, We consider MU-MIMO broadcast channels with Nt = 4 transmit anten-
nas at the base station, and K = 2 users under a natural order, each user is equipped
with two receive antennas (i.e., Nr,k = 2,∀k). The power of each transmit antenna
is limited to Pn = PT/Nt. The threshold ε is preset as 10−3. Figure 4.6 illustrates
the sum capacity provided by DPC method, the average sum rates provided by Prop-
T method, Prop-P method and PBD-DPC method [26]. Similar observations can be
found as that in Figure 4.3. In Figure 4.7, the power of the nth transmit antenna is
limited to Pn = PT∑Nt

l=1 l
n similarly to [25], we can see that Prop-P method also has a

significant global throughput improvement compared with PBD-DPC method.

Next, we consider another MU-MIMO broadcast channels configuration to evalu-
ate the performance of the related methods. The base station with Nt = 4 transmit
antennas serves K = 4 users, each user is equipped with Nr,k = 4 receive antennas.
The power of each transmit antenna is limited to Pn = PT/Nt. Since the number of
total receive antennas is greater than that of transmit antennas, PBD-DPC does not
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Figure 4.5: Processing time comparison of Per-OPT method and Prop-P method, Nt =
8, Nr,k = 2, ∀k, and K = 4.
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Figure 4.6: Sum rate comparison of DPC method, PBD-DPC method, Prop-T method,
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Figure 4.7: Sum rate comparison of DPC method, PBD-DPC method, Prop-T method,
and Prop-P method, Nt = 4, Nr,k = 2, ∀k, K = 2, and Pn = PT∑Nt
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n.
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Figure 4.8: Sum rate comparison of DPC method, Prop-T method, and Prop-P method,
Nt = 4, Nr,k = 4, ∀k, K = 4, and Pn = PT

Nt
.

work in this case. In Figure 4.8, we show the sum capacity provided by DPC method,
the average sum rates provided by Prop-T and Prop-P methods. It can be observed in
this figure that Prop-P method provides almost the same sum rate as that with Prop-T
method, especially as SNR increases, since the equal power allocation is optimal at
high SNR region. In Figure 4.9, we illustrate the power allocation over the transmit
antennas by a random channel realization. The system is configured as that in the pre-
vious simulation. Moreover, SNR is zero, the total transmit power PT is one, and the
power of each transmit antenna is limited to Pn = PT

Nt
. We can observe from Figure 4.9

that the power of each transmit antenna varies widely under the total power constraint,
while under the per-antenna power constraint, the power is the same for each transmit
antenna, which shows that Prop-P method is attractive in practical implementation.

Considering the computational complexity of PBD-DPC and Prop-T methods, the
average processing time of Matlab program of these two methods is calculated over
100 realizations, which is given in Table 4.1. We assume that every user has the same
number of receive antennas in each configuration, and four different system configu-
rations are simulated. Generally, we can see that the complexity of Prop-P method is
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Figure 4.9: Illustration of the power allocation over the transmit antennas under the
total power constraint and the per-antenna power constraint, Nt = 4, Nr,k = 4, ∀k,
K = 4, PT = 1, and Pn = 0.25, ∀n.
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higher than that of PBD-DPC method, and the complexity ratio between PBD-DPC
and Prop-P methods becomes larger with the increase of the number of transmit anten-
nas.

Table 4.1: Average processing time of Prop-P and PBD-DPC methods (second).

Nt, Nr, K 2, 1, 2 4, 2, 2 6, 3, 2 8, 4, 2
PBD-DPC method 0.1656 0.2481 0.2950 0.4126

Prop-P method 0.3402 1.0913 2.0825 3.2930

4.4 Conclusion

In this chapter, a new beamforming design method is proposed under the total
power constraint. Compared with SA-DPC method, the same transmit beamforming
and receive combining vectors are obtained, but the proposed method can be easily
adapted to the more realistic per-antenna power constraint when practical issues are
considered. Then, a new data allocation and transmit beamforming design method un-
der the per-antenna power constraint is proposed. Since the computational complexity
of the optimal solution in the literature is high, we transform the original problem
into two classical subproblems, which can be efficiently solved with current available
techniques. The transmit beamforming vectors are designed to remove one part of
interference, and the residual interference which is non-causally known at the base
station is pre-subtracted through DPC technique. Compared with PBD-DPC method
in the literature, significant improvement of sum rate is achieved. The number of to-
tal receive antennas may be larger than that of transmit antennas. Simulation results
validate the benefits of the two proposed methods.





5
Proposed power allocation method

As described in Section 3.4, interference is negligible compared with the addi-
tive Gaussian noise at low SNR region, it is not crucial to suppress the interference
thoroughly. So, zero interference condition can be relaxed, but the beamforming opti-
mization and the power allocation problems become non-convex problems in this case
[21]. In the literature, several suboptimal approaches that jointly optimize transmit
beamforming vectors and power allocation are developed. In [28], authors analyze
the situation where each user has a single receive antenna. This scheme is general-
ized in [21] where each user is equipped with multiple receive antennas and multiple
data streams. However, the power allocation method in [21] requires formulating and
solving a geometric programming (GP) iteratively, which exhibits a pretty high compu-
tational complexity. In [29] the average signal-to-interference-plus-noise ratio (SINR)
of each user is adopted as the performance measurement instead of the SINR of ev-
ery single data stream. This criterion is not applicable in some cases. For instance,
the degradation of bit error rate (BER) performance is caused mainly by the lower
subchannel SINR value, even in the case of a higher average SINR. In [30], the con-
nection between the individual SINR and the weighted sum rate is established under
the assumption of a single receive antenna per user. The weighted sum rate optimiza-
tion in multicell MIMO scenarios is investigated. In [31] and [32], it is shown that the
power allocation problem is NP hard, and the optimal result is found at the expense
of the exponential computational complexity. In [33], [34] and [35], local optimum

101
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solutions are studied with appropriate complexity.

Motivated by [21], a new power allocation method in MU-MIMO broadcast inter-
ference channels is proposed. We adopt the MMSE beamforming technique in [21],
which is an efficient strategy for such optimization problem [21], [29] and [36]. In
addition, unlike GP power allocation in [21], the proposed power allocation method
allocates the total transmit power iteratively through the very simple water-filling prin-
ciple, by which more power is allocated to the subchannels with large channel gains.
This strategy substantially reduces the computational complexity compared with GP
method. Also, since the proposed method allocates the total transmit power iteratively
taking the interference from the previous allocated power into account, it also results
in a near-capacity sum rate. Therefore, the proposed algorithm is attractive for practi-
cal implementation. Additionally, notice that the beamforming vectors are determined
separately for each data stream, the number of receive antennas can be larger than that
of transmit antennas.

5.1 Proposed power allocation

Consider the downlink MU-MIMO broadcast channels with K users, where a base
station is equipped with Nt transmit antennas and transmits

∑
k Lk = L data streams

to the users, each user has Nr,k receive antennas and receives Lk data streams. The
channel state information (CSI) is supposed to be perfectly known at the base station.

In Section 3.4.5, we know that the transmit and receive beamforming vectors can
be obtained by MMSE receive beamforming method when the zero forcing condition
is relaxed. In this section, we focus on investigating the power allocation optimization
problem in (3.59) that is described as

max
{pl}

L∑
l=1

log2(1 +
plGll∑L

j=1,j 6=l pjGlj + σ2
)

subject to
L∑
l=1

pl ≤ PT , pl ≥ 0, 1 ≤ l ≤ L

(5.1)

where Glj and Gll represent the coefficient of the interference to the lth subchannel
caused by the jth subchannel and the channel gain of the lth subchannel, respectively,
which are determined by MMSE receiver, they are supposed to be known in this sec-
tion.

Since this problem is non-convex, the methods proposed to find optimal solutions
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in [32], [83] and [84] have exponential computational complexity, which are hard to
implement in practice. In [85], a low complexity suboptimal method is proposed,
which approximates the original non-convex problem as a geometric programming
(GP) optimization one in high SNR region. However, high SNR region can not be
always guaranteed in practice, and the method in [85] results in serious distortion in
low SNR region. In [21], authors try to solve this problem for general SNR region
using GP iteratively, but the computational complexity is still significantly high.

In parallel and interference free subchannels (PIFS), it is well-known that the com-
putationally efficient water-filling power allocation algorithm achieves the optimal
solution [86]. Motivated by this, we propose an effective iterative power allocation
method (Algorithm 14) which not only reduces substantially the computational com-
plexity but provides high global throughput as well. The proposed method works in
both low and high SNR region.

It is known that the power allocation problem in PIFS can be optimally solved
through the water-filling principle, which allocates more power to the subchannels
who have larger SNR. It also means that the subchannels with weaker channel gain or
stronger AWGN will be excluded by this principle. As it will be shown later in this
thesis, this principle is also useful to fight against the interference. Particularly, in low
SNR region, for the lth (1 ≤ l ≤ L) subchannel in (5.1), the objective function shows
that AWGN plays a dominant role compared with interference (i.e.,

∑L
j 6=l pjGlj <<

σ2). Thus, in this case, we can approximately consider the subchannels as PIFS-like
ones by neglecting the interference. In other words, the PIFS-like hypothesis can be
used to approximate the subchannels if the transmit power is small. Inspired by these
observations, we propose the following iterative method. The total transmit power
constraint PT is divided into N equal portions (i.e., ∆P = PT

N
, with ∆P << σ2).

Then at each iteration n (1 ≤ n ≤ N), we only distribute one small power portion
∆P over the approximated PIFS-like subchannels. Notice that even the interference of
the current iteration is omitted, the interference that comes from the previous iterations
must be taken into account. For the lth (1 ≤ l ≤ L) subchannel, we denote both the
interference coming from the previous iterations and AWGN as β(n−1)

l , that is

β
(n−1)
l =

L∑
j 6=l

∆p
(n−1)
j Glj + σ2 (5.2)

where ∆p
(n−1)
j is the already allocated power to the jth subchannel at the previous
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Algorithm 14 The proposed iterative power allocation algorithm

∆P = PT

N
, ∆p

(0)
l = 0, 1 ≤ l ≤ L.

for iteration n = 1 : N
for the lth subchannel

Calculate the term β
(n−1)
l (5.2).

end
Allocate power ∆P by the water-filling algorithm (5.3).
Calculate ∆p

(n)
l = ∆p

(n−1)
l + ∆pl, ∀l.

end

n− 1 iterations. Then the approximated power allocation problem is

max
{∆pl}

L∑
l=1

log2(1 +
∆plGll

β
(n−1)
l

)

subject to
L∑
l=1

∆pl = ∆P, ∆pl ≥ 0, 1 ≤ l ≤ L

(5.3)

This PIFS-like approximation is tight since the interference has minor effect com-
pared with AWGN, it is quite close to PIFS, especially in low SNR region. In high
SNR region, it is also approximately true at the beginning of this approach. With the
iteration moving on, the performance degrades a little since ∆p

(n−1)
j Glj plays a more

important role in (5.2). It is easy to show that (5.3) is a convex optimization problem,
which can be optimally solved by the water-filling algorithm. The total transmit power
is allocated after N iterations.

In the proposed method, according to (5.2), since we consider the interference and
AWGN together as β(n−1)

l at each iteration, the water-filling principle will exclude the
subchannel if β(n−1)

l is too strong, which is equivalent to omit the subchannels who
have strong interference. So, this approach suppresses the strong interference as well.
Therefore, the more portions the total transmit power is divided into, the larger global
throughput we can expect. These observations are validated by the simulation results
in the next section.

Algorithm 14 summarizes the above proposed iterative water-filling power alloca-
tion algorithm. This method can also be easily extended to weighted sum rate opti-
mization problems. Similarly to [21], the transmit beamforming and receive combin-
ing vectors are optimized alternatively in virtual uplink multiuser access channels and
downlink MU-MIMO broadcast channels, respectively.
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Figure 5.1: The ratio of the processing time between GP method over the proposed
method.

5.2 Simulation results

This section presents the simulation results of the proposed iterative power alloca-
tion method. In Figure 5.1 the ratio of processing time of GP method in [21] to the
proposed method is presented. The base station has Nt = 4 transmit antennas, each
user is equipped with Nr = Nr,k = 2 (∀k) receive antennas, and the number of users
is K = 2, 4, 6, or 8. Similarly to [21], the number of served subchannels is L = KNr.
The processing time is recorded for 8 iterations for GP method, which is a moderate
number of iterations in [21]. In the proposed method, the total transmit power PT is
divided into 5 equal portions (i.e. N = 5). Note that the water-filling algorithm is used
N times, and the computational complexity of the classical water-filling algorithm is
O(Llog2L) [86]. It can be concluded that the computational complexity of the pro-
posed method is O(NLlog2L). In Figure 5.1 we observe that the proposed method
performs much faster than GP method, and the ratio increases when the number of
users becomes larger.

Figure 5.2 illustrates the sum capacity provided by DPC algorithm [13], the achiev-
able sum rates of GP algorithm and the proposed algorithm, respectively. We can
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Figure 5.2: Sum rate comparison of DPC method, GP method, and the proposed
method. Nt = 8, Nr = 2, and K = 4.

observe that GP algorithm performs only slightly better than the proposed method.
Therefore, the proposed method is more practical due to the greatly reduced computa-
tional complexity.

To show that the sum rate of the proposed method is close to the sum capacity, in
Figure 5.3, we show the simulation results with respect to the power division number
N , where we consider a MU-MIMO broadcast channels system with Nt = 4, Nr = 4,
and K = 4. Note that N = 1 is the classical water-filling algorithm, the subchannels
are considered as PIFS, so it does not work here. The proposed method (N ≥ 2) as-
signs transmit power iteratively by taking the interference that comes from the previous
iterations into account, and then follows the water-filling principle. Figure 5.3 illus-
trates that the gap between the sum rate provided by the proposed method and sum
capacity is reduced when the power division number is increased. Notice that even
with a quite small power division number N , most of the throughput can be achieved.
Therefore, the proposed technique is promising for practical implementation.
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Figure 5.3: Illustration of the sum rate approaching the sum capacity with power divi-
sion number N = 1, 2 and 5, respectively.

5.3 Conclusion

We propose an efficient power allocation method taking advantage of the water-
filling principle. In order to minimize the influence of interference, the total transmit
power is first divided into small equal portions, then each portion is allocated by ap-
proximating the original problem as a convex solvable one and the simple water-filling
algorithm is adopted to obtain the quasi-optimal solution. The computational com-
plexity is substantially reduced compared with GP method in the literature, with only
a slight performance degradation. This new method is very attractive in practice, some
numerical results validate the proposed technique.





6
Conclusion and future work

Generally, for algorithm design, there is always a trade off between the perfor-
mance and the computational complexity. A better performance often requires a higher
computational complexity, whereas a simple implementation usually results in a loss
in performance. After investigating these two aspects of state of the art methods in the
field of MU-MIMO capacity optimization, this dissertation proposes two compromised
and promising algorithms with comparable performance as the optimal one but requir-
ing much less computational complexity. This final chapter summarizes the thesis and
a brief discussion on possibilities for future work is provided.

6.1 Conclusion

In this thesis, we explored the transmit beamforming techniques for multiuser
MIMO broadcast channels in terms of capacity optimization. Because of the lack
of radio spectrum, the benefits of MIMO system make itself a very promising way to
improve the spectrum efficiency. We know that the capacity can grow linearly with the
number of transmit or receive antennas. An extension of MIMO named MU-MIMO is
also very interesting because the spatial signatures induced by the spatially dispersed
users can be exploited. However, due to the coupled structure of the transmit signals,
the optimization problems in this system are usually non-convex and thus are difficult
to solve.

109
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Due to the high computational complexity of the optimal transmit beamforming
design in multiuser MIMO broadcast channel, a great effort is made to explore subopti-
mal methods that have appropriate performance and are easy to implement. Generally,
there are two directions for the transmit beamforming design considering the subop-
timal methods, we denote them as non-linear methods and linear methods. For the
non-linear method, the transmit signals are usually encoded in a successive way, then
the interference is separated into two different parts. The part caused by the previously
encoded signals is known non-causally, and thus can be removed by DPC techniques.
This gives more degrees of freedom for transmit beamforming design, since only the
second part of interference caused by the subsequently encoded signals is need to sup-
press. This strategy usually leads the performance of the non-linear methods to be
very close to the sum capacity. But notice that DPC has to be adopted in these meth-
ods, the structures of the transmitter and receiver become more complex. Considering
the linear methods, most of them aims to suppress the entire interference via transmit
beamforming vectors, which means that a more strict constraint on the transmit beam-
forming design is imposed compared with non-linear method. This strategy results in
simple structures of the transmitter and receiver, at the expense of some more signal
processing.

In practice, the transmit power of each antenna is usually limited by the power am-
plifier. So, transmit beamforming techniques are often performed under per-antenna
power constraint. In the literature, this kind of optimization problem is usually trans-
formed into a semidefinite programming, then the existing standard optimization pack-
ages can be used to solve it. However, the optimal transmit beamforming design has
very high computational complexity. Considering the suboptimal method with low
computational complexity, BD method and DPC technique are often adopted. It is
commonly known that BD strategy has limited performance, since this method calcu-
lates a number of transmit beamforming vectors simultaneously, which is obviously
suboptimal because the channel gain of each individual data stream may vary widely,
and the contribution of those weak subchannels might be negligible but severe con-
straints are imposed on the subsequent subchannels. Consequently, there is still a
large room for improvement in the transmit beamforming design under the per-antenna
power constraint.

According to the above issues and motivated by the idea of successive allocation
strategy, we propose a new transmit beamforming method under the per-antenna power
constraint. At each step, one subchannel that has largest channel gain among the can-
didates is found for transmitting the signal, since this optimization problem is still
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difficult to solve, we cope with it in an iterative way. At each iteration, one transmit
beamforming (or receive combining) vector is optimized with the receive combining
(or transmit beamforming) vector fixed, and it is shown that it converges within a small
number of iterations. The computational complexity is significantly reduced compared
with the optimal solution and the gap of the performance between them is very small.

When the interference is not removed completely (e.g. MMSE method), power
allocation becomes a NP hard problem. The optimal result can be found at the expense
of the exponential computational complexity, which prohibits its implementation in
practice. Motivated by the classical water-filling algorithm, more power should be
assigned to the channels with larger channel gains. We propose an iterative water-
filling power allocation method with low complexity. Simulation results show that the
performance of this proposed method is close to the optimal value.

6.2 Future work

Base on this work, some suggestions for future works are given as follows:
– Complexity is a very essential aspect to evaluate an algorithm. In this thesis, we

give a rough complexity analysis of the proposed methods via simulation results.
The analytical theoretical complexity analysis is very important direction in the
future.

– In this thesis, the perfect channel state information (CSI) is assumed to be known
at the base station. However, perfect CSI is not realistic in practice. How the
methods behave when CSI is imperfect is a promising direction. In addition,
most of the existing methods only consider frequency flat-fading channels. The
extension to frequency selective channels also should be studied.

– In the proposed methods, THP technique is used to pre-subtract the non-causally
known interference, and modulo device has to be used for the implementation
of THP technique, which increases the complexity of the transmitter and the
receiver. In the future work, other techniques that are easier to implement DPC
technique should be investigated.

– In this dissertation, only global throughput is optimized, SNR of each subchan-
nel is not considered. However, SNR has a strong effect on the bit error rate
(BER), low SNR often leads to a high BER, which is not permitted in practice.
In addition, fairness should be also considered in practice. In order to maxi-
mize the global throughput, some weak users are neglected in this work. While
in practice, the system sometimes has to guarantee that every registered user is
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served. In the future work, these parameters should be taken into account for
system design.

– Multi-cellular MU-MIMO broadcast channels which consider multiple cellulars
simultaneously attract a great attention recently. Not only the interference from
one cellular is removed, the interference that comes from other cellulars also
should be taken into account. In the future work, a promising direction is to
adopt the proposed methods in these more general multi-cellular MU-MIMO
broadcast channels.



7
Appendixes

7.1 Appendix A : Proof of the general BC-MAC duality

We prove the general BC-MAC duality by formulating a set of {qi,j} for the dual
MAC that satisfy the following two constraints : the transmit power constraint,∑

i,j σ
2qi,j = PT , and the SINR constrains, SINRi,j = SINRM

i,j , ∀i, j.

To meet the SINR constraints, we choose the transmit power for each data stream
as

qi,j =

SINRi,jv
H
i,j

(∑i−1
k=1

∑N
l=1 qk,lHk

Huk,luk,l
HHk +

∑j−1
l=1 qi,lHi

Hui,lui,l
HHi + I

)
vi,j∣∣vHi,jHH

i ui,j
∣∣2

(7.1)

It is evident that the resulting SINRM
i,j satisfies the condition SINRi,j = SINRM

i,j ,
∀i, j.

We next show that the selected {qi,j} given by (7.1) satisfy the transmit power
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constraint. According to the definition of SINRi,j and SINRM
i,j , it follows that

qi,j
∣∣vHi,jHH

i ui,j
∣∣2

vHi,j

(∑i−1
k=1

∑N
l=1 qk,lHk

Huk,luk,lHHk +
∑j−1

l=1 qi,lHi
Hui,lui,lHHi + I

)
vi,j

=
pi,j
∣∣uHi,jHivi,j

∣∣2∑K
k=i+1

∑N
l=1 pk,l

∣∣uHi,jHivk,l
∣∣2 +

∑N
l=j+1 pi,l

∣∣uHi,jHivi,l
∣∣2 + σ2

(7.2)

By rearranging the terms in (7.2), we can list the equations related to all the data
streams as follows :

p1,1v
H
1,1v1,1 =

q1,1

(
K∑
k=2

N∑
l=1

pk,l
∣∣uH1,1H1vk,l

∣∣2 +
N∑
l=2

p1,l

∣∣uH1,1H1v1,l

∣∣2 + σ2

)
(7.3)

p1,2

(
vH1,2(q1,1H1

Hu1,1u1,1
HH1 + I)vi,2

)
=

q1,1

(
K∑
k=2

N∑
l=1

pk,l
∣∣uH1,2H1vk,l

∣∣2 +
N∑
l=3

p1,l

∣∣uH1,2H1v1,l

∣∣2 + σ2

)
(7.4)

pK,N

(
vHK,N(

K−1∑
k=1

N∑
l=1

qk,lHk
Huk,luk,l

HHk +
N−1∑
l=1

qK,lHK
HuK,luK,l

HHK + I)vK,N

)
= qK,Nσ

2

(7.5)

By adding the above equations together, we obtain

K∑
i=1

N∑
j=1

pi,jv
H
i,jvi,j =

K∑
i=1

N∑
j=1

σ2qi,j (7.6)

therefore, we have

trace(
K∑
i=1

N∑
j=1

pi,jvi,jv
H
i,j) =

K∑
i=1

N∑
j=1

σ2qi,j = PT (7.7)
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7.2 Appendix B : Use Lagrange duality method to solve
(4.11)

The Lagrangian of (4.11) can be written as [24]

L({Fj}, {µn}) =

l∑
j=1

log2(1 +
hHj AjFjA

H
j hj

σ2
)−

Nt∑
n=1

µn

(
trace(

l∑
j=1

BnAjFjA
H
j )− Pn

)

=
l∑

j=1

log2(1 +
hHj AjFjA

H
j hj

σ2
)−

l∑
j=1

trace(
Nt∑
n=1

µnBnAjFjA
H
j ) +

Nt∑
n=1

µnPn

=
l∑

j=1

(
log2(1 +

hHj AjFjA
H
j hj

σ2
)− trace(

Nt∑
n=1

µnBnAjFjA
H
j )

)
+

Nt∑
n=1

µnPn

(7.8)
where Bn(Nt×Nt) = diag(0, · · · 0, 1, 0, · · · , 0) is a diagonal matrix with only the nth
diagonal element being 1. Then the Lagrange dual function can be written as

g({µn}) = max
Fj≥0

L({Fj}, {µn}) (7.9)

and the Lagrange dual problem is [82]

min
µn≥0,∀n

g({µn}) (7.10)

Since the problem (4.11) is convex and satisfies the Slater’s condition, the duality
gap between (4.11) and (7.10) is zero. Thus, (4.11) can be solved equivalently by
solving (7.10). Moreover, (7.10) is convex and can be solved by the ellipsoid method
in [76] when the optimal {F ?

j } in (7.9) is found. Specifically, g is defined as g =

[g1, · · · , gNt ]
T with

gn =
∂L({Fj}, {µn})

∂µn
= Pn −

l∑
j=1

trace(BnAjFjA
H
j ), 1 ≤ n ≤ Nt (7.11)

and µ is defined as µ = [µ1, · · · , µNt ]
T with random initialized value. If µ+ and

M+ are denoted as the upgraded µ and the upgraded M after each iteration, respec-
tively, and M is initialized as M = INt , then according to the ellipsoid method, µ is
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upgraded as

µ+ = µ− 1

(Nt + 1)
√
gTMg

Mg (7.12)

andM is upgraded as

M+ =
N2
t

N2
t − 1

(
M − 2

(n+ 1)gTMg
MggTM

)
(7.13)

We alternatively calculate (7.12) and solve problem (7.9) until all µ′ns converge to a
preset threshold. Here, we focus on solving (7.9) for {F ?

j }with fixed {µn}. Notice that
the maximization problem in (7.8) can be separated into l independent subproblems
each involving only one Fj . By discarding the irrelevant terms, the corresponding
subproblem for a given j can be expressed as

max
Fj>0

log2(1 +
hHj AjFjA

H
j hj

σ2
)− trace(

Nt∑
n=1

µnBnAjFjA
H
j ) (7.14)

If Bµ =
∑Nt

n=1 µnBn is defined, since trace(XY ) = trace(Y X), and AH
j BµAj

of the dimension (Nt − j + 1)× (Nt − j + 1) is an invertible matrix, then

trace(BµAjFjA
H
j ) = trace((AH

j BµAj)
1
2Fj(A

H
j BµAj)

1
2 ) (7.15)

We define
F̂j = (AH

j BµAj)
1
2Fj(A

H
j BµAj)

1
2 (7.16)

therefore
Fj = (AH

j BµAj)
− 1

2 F̂j(A
H
j BµAj)

− 1
2 (7.17)

(7.14) can be reformulated to

max
F̂j>0

log2(1 +
hHj Aj(A

H
j BµAj)

− 1
2 F̂j(A

H
j BµAj)

− 1
2AH

j hj

σ2
)− trace(F̂j) (7.18)

Note that the SVD of hHj Aj(A
H
j BµAj)

− 1
2 is

hHj Aj(A
H
j BµAj)

− 1
2 = δjv̂

H
j (7.19)

therefore, (7.18) is maximized by choosing F̂j = λjv̂jv̂
H
j and λj is decided by water-

filling algorithm, i.e.,

λj =

[
η − 1

δj

]+

(7.20)
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where [x]+ = max(0, x), and η is the water level. Finally, we find Fj according to
(7.17)

Fj = λj(A
H
j BµAj)

− 1
2 v̂jv̂

H
j (AH

j BµAj)
− 1

2

= λj/δ
2
j (A

H
j BµAj)

−1AH
j hjh

H
j Aj(A

H
j BµAj)

−1
(7.21)

(7.21) and (7.12) are alternatively calculated until {µn} converges. Note that the
closed-form of {F ?

j } is found by (7.21) when {µn} converges.
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Résumé 
La maximisation du débit des transmissions en 
canaux de diffusion multi-utilisateurs MIMO est 
étudiée dans cette thèse. Tout d'abord, nous 
donnons un aperçu de l'état de l'art des 
techniques de la littérature, et proposons une 
nouvelle méthode de formation de voies sous 
contrainte de puissance totale. Ensuite, 
considérant que la puissance de chaque antenne 
à l’émission est limitée par la linéarité de son 
amplificateur de puissance, nous imposons une 
contrainte plus réaliste et formulons une 
optimisation du débit avec une contrainte de 
puissance par antenne. Dans cette thèse, ce 
problème initial difficile à résoudre est alors divisé 
en deux sous-problèmes classiques, dont l'un est 
un problème d’optimisation SDP (semidefinite 
programming), et l’autre se résout par la technique 
MRC (maximal-ratio-combining). Par comparaison 
avec les méthodes de la littérature, la technique 
proposée permet une augmentation du débit 
global. De plus, la méthode proposée s’applique 
aussi dans le cas où le nombre total d'antennes de 
réception est plus grand que le nombre 
d’antennes à l'émission. Enfin, si l'interférence 
n'est pas complètement supprimée entre les 
canaux de diffusion multi-utilisateurs MIMO, 
l’allocation de la puissance parmi les canaux 
devient un problème NP difficile. Dans ce 
contexte, une nouvelle technique d’allocation de 
puissance efficace en temps de calcul pour 
l’optimisation du débit global est proposée. En 
comparaison avec les méthodes de la littérature, 
la complexité de calcul est significativement 
réduite, et le débit obtenu reste proche de la 
valeur optimale. 
 
Mots clés 
MU-MIMO, Optimisation de débit, Allocation de 
puissance, Formation de voies. 

Abstract 
The sum rate maximization in multiuser MIMO 
broadcast channels is investigated in this thesis. 
Firstly, we give an overview of the state of the art 
of the different beamforming techniques in the 
literature, and a new beamforming method under 
total power constraint is proposed. Secondly, 
considering that the power of each antenna is 
limited individually by the linearity of its power 
amplifier in practice, we impose a more realistic 
per-antenna power constraint to optimize the sum 
rate. It can be seen that the original problem is 
difficult to solve. Then in this thesis, this problem is 
divided into two classical subproblems, one of 
which becomes a semidefinite programming 
(SDP) problem, and the other one can be solved 
by the maximal-ratio combining (MRC) technique. 
Compared with the methods in the literature, a 
better sum rate performance is achieved. 
Moreover, the proposed method works even if the 
number of total receive antennas is larger than 
that of the transmit antennas. Thirdly, if the 
interference is not removed completely in 
multiuser MIMO broadcast channels, power 
allocation becomes a NP hard problem. In this 
thesis, an efficient suboptimal power allocation 
method is proposed to maximize the sum rate. 
Compared with the methods in the literature, the 
computational complexity is substantially reduced, 
and the performance is close to the optimal value. 
 
 
 
 
 
 
 
Key Words  
MU-MIMO, Sum rate optimization, Power 
allocation, Beamforming. 
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