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Résumé en français

Mesurer avec précision le mouvement de fluides turbulents en 3 dimensions (3D) est
l’un des problèmes fondamentaux de l’étude de la dynamique des fluides. Il est en effet
intéressant à plus d’un titre : sur le plan théorique, il reste l’un des problèmes majeurs en
physique, et sur le plan pratique, il présente de nombreuses applications prometteuses en
ingénierie.

L’accès à une information quantitative de la turbulence en 3 dimensions peut être réalisé
par des techniques dites de "simulation numérique directe" (SND). Cette approche consiste
à résoudre numériquement les équations de Navier-Stokes, gouvernant le mouvement du
fluide. Malheureusement, la SND se révèle impossible à mettre en œuvre pour des fluides
turbulents, puisque dans ce cas, la gamme des échelles physiques devant être résolues
augmente de façon significative.

Pour surmonter ce problème, de nouvelles technologies basées sur l’analyse de séquences
d’images ont été récemment proposées (cf. [56]). Leur méthodologie repose sur la conjugaison
des approches issues de la communauté Vision par Ordinateur avec des modèles issus de la
physique des fluides afin d’obtenir des estimateurs précis du champ de mouvement. Mais
voilà, la plupart de ces procédures sont formalisées dans un contexte bidimensionnel (2D)
dans le sens où elles reconstruisent un champ 2D à partir des deux images consécutives 2D.
Le cas 3D est généralement beaucoup plus complexe à traiter (cf. par exemple, [14, 74]).
Dans le travail fondateur de Elsinga et al. [74] de la mesure de Tomographie PIV (tomoPIV),
les champs de vitesse sont reconstruits à partir des distributions volumiques d’intensité
préalablement estimées. Une amélioration de ce dernier, décrite dans [134], s’inscrit dans les
efforts de la communauté d’aller vers une estimation jointe de ces deux quantités inconnues.
En effet, les auteurs rajoutent au paradigme classique de reconstruction un chemin
d’initialisation des distributions volumiques qui prend en considération les deux instants
successifs de la scène. La technique, nommée Motion Tracking Advancement (MTE), s’avère
être plus performante en terme de qualité du signal estimé tout en respectant la topologie
des particules suivies.

Motivés par ces développements, nous proposons dans cet étude une alternative aux
schéma joint déjà présent dans la littérature. A cette fin, nous nous intéressons aux
formulations qui prennent en compte les particularités notables propres au système de
TomoPIV. Cette étude est organisée comme suit : nous présentons d’abord une abstraction
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mathématique de l’application tomographique à la mécanique des fluides expérimentale.
Ensuite, nous nous penchons sur le problème de reconstruction volumique et nous proposons
des schémas de faible complexité qui prennent en compte des a priori connus sur le
système, plus particulièrement la non-négativité et la parcimonie du signal inhérents aux
applications de tomoPIV. Une nouvelle formulation du problème d’estimation de champs de
vitesses est proposée par la suite. Cette-dernière prend en compte la structure jointe des
volumes et des vitesses dans un contexte bruité.

Modélisation
Nous posons le cadre mathématique du scénario décrit ci-dessus. Pour ceci, nous nous

intéressons d’abord au modèle qui relie le signal physique continu aux observations. Ensuite,
nous présentons leur interaction dans une formulation discrète reliant les images 2D à la
densité de particules dans l’espace 3D.

Modèle continu

Soit ĩt la valeur de l’intensité volumique définie aux centres des particules passives
suspendues dans le fluide, que nous supposons constante dans le volume. Suivant [4], une
particule dans l’espace a des dimensions physiques négligeables. Toutefois, selon les propriétés
d’un système de visualisation à partir des caméras Charge Coupled Device (CCD), sa
projection sur l’image impacte un agrégat de pixels dont l’intensité varie selon une fonction de
répartition évanescente sur les deux dimensions. Afin d’approximer la formation des images,
nous modélisons la fonction d’intensité 3D comme une somme de fonctions gaussiennes
pondérées, au temps t :

wt(k) = ĩt

M∑
j=1

g
(
k− hj

)
, ∀k ∈ R3, (1)

avec :
g (k) = exp

[
−‖k‖

2
2

2σ2
psf

]
,∀k ∈ R3, (2)

où σ2
psf ∈ R?+ est un scalaire modélisant la variance des spots Gaussiens dont les centres sont

positionnés en hj avec j = {1, . . . ,M}, oùM est le nombre total des particules ensemencées.
Les particules passives vont suivre le mouvement du fluide et seront, en conséquence, portées
par une fonction de déplacement. Nous notons par u(k, t) ∈ R3 le déplacement entre l’instant
t et t+1 d’un traceur situé à la position k ∈ R3 à l’instant t. Sous l’hypothèse que la fonction
de densité est invariable selon la trajectoire de la particule, nous obtenons que :

wt+1(k + u(k, t)) = wt(k), ∀k ∈ R3. (3)

A chaque instant, le signal 3D se projette simultanément sur l’ensemble des plans 2D
correspondants à chaque caméra. Chaque pixel i à l’instant t représente l’intégration de la
densité d’intensité 3D selon le cône de vue qui a son origine dans le centre optique de la
caméra en question et passant par la surface du pixel, comme ci-dessus :

yi,t ≈
∫

Ωi
wt(k)dk, ∀i, t, (4)
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où Ωi est le cône de vue passant par le ième pixel d’une caméra.

Modèle discret

Soit V ∈ R3 un cuboïde dans l’espace tridimensionnel. Ce dernier est défini comme une
grille cartésienne composée de m voxels centrés sur de positions kj , ∀j ∈ {1, . . . ,m}. Nous
supposons que la densité continue volumique peut être numérisée sur le domaine V à l’instant
t par une fonction polynomiale par morceaux telle que :

xt(k) ≈
m∑
j=1

wt
(
kj
)
bj(k), ∀k ∈ R3, (5)

où
{
bj(k)

}
j∈{1,...,m} est un polynôme de Lagrange continu par morceau. Utilisant

l’équivalence décrite par (5) et en l’insérant dans le modèle défini par (4), il est aisé de
constater que la projection s’écrit, pour toute caméra, comme yi,t = ∑m

j wt
(
kj
)
dij , où dij

représente le poids de contribution de l’intensité du jème voxel à l’énergie mesurée dans le
cône de vue passant par ième pixel. Dans une forme matricielle, on obtient :

yt = Dwt, (6)

où yt ∈ Rn collecte les observation de toutes les caméras, wt ∈ Rm recueille, à chaque
instant, l’intensité volumique sur les points de la grille, tandis que la matrice D ∈ Rn×m

assemble les éléments dij décrits auparavant. En notant ut ,
[
u
(
k1, t

)
· · · u (km, t)

]T
et

wt+1(ut) ,
[
wt+1

(
kj + ut,j

)]T
j∈{1,...,m}

, il en découle, en utilisant des propriétés algébriques
simples, que :

wt = I(ut)wt+1, (7)

où I(·) est un opérateur d’interpolation qui dépend explicitement des polynômes utilisé.

On note que l’on peut, de manière alternative, construire une approximation de (6) qui
modélise la projection des particules appartenant à une grille fine, que l’on dénote R ∈ R3

assemblant p3m sous-voxels sur l’espace des blobs, qui est V. Le modèle résultant écrit :

wt = ĩtGst, (8)

où G ∈ Rm(p3×m) est créé tel qu’il contient sur la jème colonne les coefficients gaussiens de
convolution g

(
ki
)
définis dans (2), ∀ki ∈ R3,∀i ∈

{
1, . . . , p3m

}
et st un vecteur colonne de

taille p3×m dont le ième élément appartient à {0, 1}p
3m et prend 1 si une particule est centré

sur le sous-voxel correspondant et 0 sinon.

Particularités notables

Des méthodes standards dans la communauté tomoPIV cherchent une solution aux
systèmes (6) et (8) (nous mentionnons que, par souci de concision, on discutera plutôt du
système (6) dans la suite). Cependant, ce dernier est souvent sous-déterminé, c.à.d. n� m.
Si, de plus, D est de rang plein, (6) a une infinité de solutions. En pratique, nous devons
exploiter de l’information a priori sur le système afin de distinguer parmi ces solutions : (i)
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les éléments de w correspondent à une intensité et doivent donc être positifs ; (ii) le vecteur
recherché w est typiquement parcimonieux, c.à.d. il contient plus d’éléments nuls que de
coefficients non-nuls (fait lié à l’ensemencement physique de la scène avec des particules).

Procédures standard
Depuis l’avènement de la tomoPIV, plusieurs techniques de reconstruction volumique

ont été proposées dans la littérature. Les méthodologies les plus courantes font partie de
la classe « Row-Action Methods », cf. [45], préférées dans la communauté par leur faible
niveau de complexité et de stockage. L’idée sousjacente de ces techniques consiste dans la
recherche d’une solution de (6) (avec, éventuellement de contraintes de positivité) par la
projection itérative d’une estimée courante (selon une certaine fonction « distance ») sur
des sous-ensembles convexes qui définissent l’ensemble de solutions admissibles. Nous nous
intéressons ci-dessous à deux telles familles. Pour homogénéiser les noms des algorithmes
avec le reste du manuscrit et la littérature, nous allons référencer cer derniers selon leur
appellation anglaise.

Techniques algébriques

Une solution de (6) se trouve à l’intersection de n hyperplans définis par les lignes de D.
Ceci est réalisé en suivant l’itération :

w(k+1) = w(k) + γ
yi − di,•w(k)

‖di,•‖22
dTi,•, i = k mod n, (9)

où di,• est la ième ligne de D. Lorque γ ∈ (0, 2), l’itération (9) décrit l’algorithme
« Kaczmarz » [104], plus couramment sous le nom de Algebraic Reconstruction
Technique (ART).

Si ART projette l’estimée courante sur un hyperplan à la fois, les techniques appelées
Simultaneous Iterative Reconstruction Technique (SIRT)s exploitent tous les hyperplans à
la fois. L’itération qui les régit, formalisée de manière générale, s’écrit :

w(k+1) = w(k) + α(k)WDTΓ(y−Dw(k)), (10)

où α(k) > 0 et W, Γ sont des matrices définies positives. La formulation de (10) correspond
au cas où W and Γ sont des matrices diagonales. Les algorithmes de :« Cimmino » [53] où
« Simultaneous Algebraic Reconstruction Technique (SART) » [8] sont les exemples les plus
connus de SIRTs.

Finalement, nous mentionnons que des variantes de ART et SIRT on été proposées
pour chercher des solutions non-négatives au problème (6), [182, Chapter 9]. Ces variantes,
nommées « ART+ » et « SIRT+ » dans la suite, prennent respectivement les formes :

w(k+1) = Πm
R+

(
w(k)

(
1 + γ

yi − dTi,•w(k)

‖di,•‖22
di,•

))
, i = k mod n, (11)

w(k+1) = Πm
R+

(
w(k) + α(k)WDTΓ(y−Dw(k))

)
, (12)
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où ΠR+ (·) formalise l’opérateur de projection sur l’orthant positif et Γ et W sont des matrices
diagonales, définies positives.

Techniques algébriques multiplicatives

Les technique algébriquesmultiplicatives sont bâties sur le même principe que les ART, à
la différence qu’elles réalisent les projections selon une distance Kullback-Leibler (KL) [112].
Nous remarquons que l’usage de la distance KL impose implicitement la contrainte w ≥ 0.
La méthode la plus simple appartenant à cette famille obéit à la récursion [95] :

w
(k+1)
j = w

(k)
j

(
yi

dTi,•w(k)

)γdij
, (13)

avec γ ≤ min {d•,j}, ∀j choisi tel que les observations yi sont strictement positives, ∀j choisi
tel que la matrice D contient que des éléments positifs. Cette procédure est connue dans la
littérature comme « Multiplicative Algebraic Reconstruction Technique (MART) ».

Une variante de MART qui projette sur tous les hyperplans dans une seule itération a été
proposée dans [40] et s’écrit :

w
(k+1)
j = w

(k)
j

n∏
i=1

(
yi

dTi,•w(k)

)γdij
. (14)

Cette procédure est connue sous le nom de « Simultaneous Multiplicative Algebraic
Reconstruction Technique (SMART) » dans la littérature. Il s’agit de la technique la plus
populaire dans la littérature tomoPIV.

La tomoPIV : un problème d’optimisation convexe

Nous avons établi précédemment que, afin d’isoler une bonne solution parmi l’infinité de
solutions possibles, nous devons exploiter de l’information a priori sur le signal recherché.
Si nous avons vu dans la section antérieure que la positivité est facile à prendre en compte,
la parcimonie est moins triviale à imposer à notre solution. Pour pallier à ce problème, nous
considérons un problème d’optimisation de la forme :

(P ε) : w? = arg min
w

lr(w) sous contrainte
{
ld(Dw,y) ≤ ε,
w ≥ 0,

(15)

où ε ≥ 0, ld(·, ·) est une fonction de type « distance » qui mesure l’écart entre les
observations et le modèle (6), et lr(·) est une fonction renforçant des particularités notables
sur le signal recherché. Pour ceci, nous devons résoudre un problème qui minimise une
fonction encourageant la parcimonie. Nous observons que ce modèle nous permet de prendre
en compte des contextes bruitées (par exemple, du bruit de mesure ou d’approximation).
Lorsque ld(y,Dw) = ‖y−Dw‖22, on considère un bruit Gaussien sur les observations ;
quand ld(y,Dw) = KL(y,Dw), nous supposons que le bruit est de type Poisson. Nous nous
référons au problème (P 0) lorsque l’on considère un contexte sans bruit.
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La non-négativité et la parcimonie du signal peuvent être pris en compte par un choix
approprié de la fonction lr(·). Un choix idéal pour renforcer la parcimonie est le choix de
la norme `0, c.à.d. lr(w) = ‖w‖0, qui compte le nombre de coefficients non-nuls du signal.
Malheureusement, cette dernière fonction n’est pas convexe et le problème résultant peut
être insoluble en temps raisonnable. Dans la pratique, la norme `1

lr(w) = ‖w‖1 =
∑
j

|wj |, (16)

est souvent préférée comme substitut convexe à la norme `0. D’autre part, les contraintes
de non-négativité peuvent être prises en compte en considérant, en guise de fonction de
régularisation, la fonction indicatrice de l’orthant positif :

lr(w) = IRm+ (w). (17)

Finalement, en combinant (16) et (17) on obtient une fonction encourageant la parcimonie
et la positivité sur le signal recherché, qui s’écrit :

lr(w) = ‖w‖1 + IRm+ (w) = 1Tw + IRm+ (w). (18)

Avant de procéder à la résolution des problème, on note qu’il existe de formalisations
équivalentes à (15), notamment

(R) : w? = arg min
w

ld(Dw,y) + rlr(w),

such that w ≥ 0.
(19)

∀r > 0.
Le problème (15) peut également être écrit comme ci-dessous :

(A) : w? = arg min
w

ld(Dw,y) such that
{
lr(w) ≤ a,
w ≥ 0.

(20)

∀a > 0.

Au-delà de (M)ART avec des procédures proximales

Même si au niveau conceptuel les algorithmes algébriques standards pour la résolution
du problème tomoPIV sont intéressants, ils souffrent néanmoins de quelques inconvénients.
Entre autres, ces méthodes : (i) ne permettent pas la prise en compte de la parcimonie
du signal ; (ii) leur comportement dans un scénario bruité n’est pas toujours connu. Nous
nous proposons d’aller vers des méthodes pour l’optimisation (convexe) qui répondent aux
même pré-requis en terme de complexité et stockage que les méthodes algébriques et qui
permettent la prise en compte de la parcimonie. Pour cela, nous nous orientons vers les
méthodes de gradient projeté et leur généralisation proximale. Plus particulièrement, nous
cherchons à résoudre un problème du type minw∈W f(w), où W ⊂ Rm est un ensemble
convexe et f : Rm → R est une fonction convexe différentiable et continue. La descente de
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gradient projeté obéit à la récursion :

w(k+1) = ΠW
(
w(k) − α(k)∇f(w(k))

)
, (21)

où α(k) > 0 est un pas réglable, ∇f(w(k)) est le gradient de f(w) évalué à w(k) et ΠW(v) est
la projection Euclidienne (orthogonale) de v sur W. Quelques variantes de cet algorithme
ont été proposées dans la littérature.

La méthode du gradient projeté non-linéaire s’écrit :

w(k+1) = arg min
w∈W

{
∇f(w(k))Tw + 1

α(k) D(w,w(k))
}
, (22)

où D(u,v) : Rm×Rm → R+ est un terme « de proximité » qui peut être choisi, par exemple,
comme une distance de Bregman [36] (dans le sens de [23]).

Une autre extension de la méthode du gradient projeté s’adresse aux problèmes de
type minw f(w) + g(w), où f : Rm → R and g : Rm → R sont des fonctions fermées,
convexes et f est différentiable. La récursion des méthodes de gradient proximal [136] s’écrit :

w(k+1) = proxg(w(k) − α(k)∇f(w(k))), (23)

où proxg(·) est l’opérateur proximal de g, cf. Annexe E.

Nous mentionnons que nous pouvons accélérer les schémas de gradient proximal (cf. [24])
par la « première méthode de Nesterov » [132], comme suit :

z(k+1) = w(k) + ω(k)(w(k) −w(k−1))
w(k+1) = proxg(z(k+1) − α(k)∇f(z(k+1))) (24)

avec ω(k) ∈ [0, 1). De manière évidente, la récursion (24) est similaire à (23), à la
différence qu’un pas d’interpolation supplémentaire est effectué avant l’application du
gradient proximal. Pour la simplicité, nous allons préfixer les méthodes ainsi accélérées par
F(ast).

La méthode du gradient proximal appliquée au problème (19)

Soient f(w) = ld(y,Dw) et g(w) = rlr(w), la récursion (23) particularisée au problème
(19) s’écrit

w(k+1) = proxrlr
(
w(k) − α(k)∇ld(y,Dw(k))

)
(25)

avec ∇ld(y,Dw) = −DT (y−Dw) pour ld(y,Dw) = 1
2‖y−Dw‖22 et l’opérateur proxrlr(·)

qui dépend de la définition de lr(w). Nous rappelons que les formules analytiques pour
proxrlr(·) pour lr(w) définies par (16)-(18) sont définies dans l’Annexe E. Nous attirons
l’attention sur le fait que certains algorithmes standard de la littérature tomoPIV peuvent
être considérés comme des cas particuliers de la méthode de gradient projeté pour des choix
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particuliers de ld(·, ·) et lr(·). Par exemple, pour ld(y,Dw) = 1
2‖y −Dw‖22 et lr(w) = 1, la

récursion (25) revient à l’itération de SIRT dans laquelle W = I et Γ = I. D’une manière
similaire on obtient la même équivalentce pour SIRT+. Dans la suite, nous appellerons les
algorithmes de gradient proximal par Iterative Shrinkage-Thresholding Algoritm (ISTA),
suffixé par la contrainte un terme correspondant à la contrainte lr(·) que l’on lui impose.

Nous faisons deux remarques. Premièrement, comme le suggère l’itération (25),
ISTA/ISTA+ peuvent être étendus de manière à prendre en compte la parcimonie sur
la solution recherchée en faisant des choix judicieux pour la fonction lr(·), cf. Annexe E
pour les formes analytiques correspondantes pour les fonctions régularisant la parcimonie.
Deuxièmement, puisque ISTA/ISTA+ sont exprimés comme des méthodes de gradient
proximal, ils peuvent être accélérés par des schémas de Nesterov, cf. (24). On référera les
algorithmes qui en découle comme Fast Iterative Shrinkage-Thresholding Algoritm (FISTA),
FISTA+, FISTA`1+, . . .

Le gradient projeté non-linéaire appliqué au problème (20)

Nous nous intéressons au problème (20) - où l’on considère pas, pour de raisons de
simplicité, la contrainte « ‖w‖1 ≤ a »- que nous résolvons avec une approche basée sur
le gradient projeté non-linéaire. Pour f(w) = ld(y,Dw), W = Rm+ et la distance KL comme
opérateur de proximité (cf. (22)), nous obtenons

w(k+1) = diag(e−α(k)∇l(y,Dw(k))) w(k), (26)

où diag(v) ∈ Rm×m est une matrice carrée dont les éléments diagonaux sont collectés dans
le vecteur v ∈ Rm. De manière intéressante, si nous considérons ld(y,Dw) = KL(y,Dw), la
récursion (26) se réduit à celle de SMART, cf. (14). Nous pouvons, de manière alternative,
nous intéresser au problème (19) afin de résoudre un problème contraint par la parcimonie
du signal avec une méthode gradient projeté non-linéaire. Nous référerons à ces problèmes
comme SMART`1 . . . De plus, en accélérant ces méthodes avec les schémas de Nesterov,
nous obtenons leur correspondants rapides, cf. « Fast Simultaneous Multiplicative Algebraic
Reconstruction Technique (FSMART) », FSMART`1. Notons qu’une variante de FSMART
a déjà été proposée dans [142].

Nouvelle technique de reconstruction pour la tomoPIV basée
sur l’ADMM

Nous nous intéressons, dans cette section, à une nouvelle méthodologie innovante dans
la communauté du traitement du signal, cf. « Alternating Direction Method of Multipliers
(ADMM) ». En effet, cette procédure se focalise sur le problème suivant :

minw f(w) + g(z)
subject to Aw + z = 0 (27)

où f : Rm → R, g : Rn → R sont des fonctions fermées et convexes. Nous nous intéressons
à ce type de techniques de part leur conditions souples sur les fonctions f(·) et g(·) (qui
ne doivent pas nécessairement être différentiables) et les garanties de convergence sous des
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conditions assez générales (cf. [34]).

Dans le contexte de notre application, nous abordons le problème (15) avec ld(y,Dw) =
‖y−Dw‖2 et lr(w) définis comme dans (16), (17) et (18). Le problème (15) peut être ré-écrit
de manière équivalente :

min
w,z1,z2

lr(z1) + IB(y,ε)(z2) subject to
{

z1 = w
z2 = Dw , (28)

où B(y, ε) = {v ∈ Rn | ‖y − v‖2 ≤ ε} est la boule `2 de rayon ε centrée sur y. Pour souci
de concision, nous ne développons pas ici nos dérivations appliquées au problème tomoPIV.
Nous retenons tout de même que ces dernières ont été inspirées par l’algorithme «C-SALSA »
proposée en [7]. Nous référerons aux algorithmes qui en découlent, selon le choix de la fonction
lr(·), comme bpADMM+, bpADMM`1, bpADMM`1+, . . .

Estimation jointe des volumes et des vitesse
L’estimation du mouvement pour la tomoPIV se fait, de manière quasi-uniforme dans

la littérature, en appliquant des traitements a posteriori à deux distributions consécutives
volumiques, précédemment estimées, afin d’accéder au champ de déplacements qui les
relie [74]. Même si au niveau conceptuel l’estimation séquentielle est intéressante, elle souffre
de certaines faiblesses. De manière plus réaliste, la distribution volumique au cours de la
séquence temporelle peut être modélisée comme une entité déformée par le mouvement
du fluide. Dès lors, l’estimation indépendante des deux quantités ne respecte pas la vérité
physique du système. En outre, les imprécisions sur le modèle (qui peuvent être dues à une
calibration inexacte, au faible nombre d’observations) ne sont pas prises en compte dans les
méthodes actuelles. La netteté des champs de vitesse reconstruits peut être donc améliorée
par leur intégration dans les algorithmes d’estimation.

Récemment, Novara et al. [134] ont proposé une approche qui respecte la structure jointe
des volumes et des vitesses. En effet, les auteurs mettent en place une heuristique dans
le but d’initialiser l’algorithme MART avec une quantité prenant en compte deux vues
successives de la scène. Cette technique accélère la reconstruction et affine la précision de
la reconstruction. Nous formalisons, dans le même esprit d’estimation jointe, un critère
global qui exprime la connexion entre les densités volumiques instantanées consécutives et
les vitesses qui les rattachent. En particulier, nous nous proposons de résoudre le problème
suivant :

min
wt,wt+1,ut

fd(wt,wt+1,ut) + λ
[
‖wt −w?

t ‖
2
2 +

∥∥wt+1 −w?
t+1
∥∥2

2

]
,

sous contrainte fr(ut) = 0.
(29)

où w?
t ,w?

t+1 résolvent respectivement le problème (20) et le paramètre λ > 0 modélise
un rapport entre les bruits qui peuvent découler des imperfections sur le modèle de
transport et des reconstructions inexactes volumiques. Les fonctions fd(·) et fr(·) modélisent
respectivement le terme d’attache aux données qui prend en compte des particularités
photométriques sur la séquence temporelle d’images et un a priori sur le champ de
déplacement. Des choix particuliers de ces-dernières nous mènent à une formulation
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spécifique du problème. Plus particulièrement, la fonction fd(·) est dictée par l’hypothèse de
conservation de la luminance de la scène dans le temps décrite par l’équation (7). Quant
au terme a priori sur le champ de vitesse, en posant fr(ut,Θ) = ∑

j I{Θ}(u(k, t)), où
I est la fonction indicatrice et Θ un vecteur de paramètres, nous imposons à ce dernier
d’être localement constant sur un petit voisinage autour de k. Nous obtenons l’expression
analytique d’une nouvelle fonctionnelle à minimiser :

fj (wt(k),wt+1(k),Θ) = ‖wt(k)− I(Θ)wt+1(k)‖22 +

λ
[
‖wt(k)−w?

t (k)‖22 +
∥∥wt+1(k)−w?

t+1(k)
∥∥2

2

]
,

(30)

où wt(k),w?
t (k) collectent les densités volumiques wt,w?

t sur le voisinage considéré autour
de k. Nous accédons au minimum de (30) par une procédure itérative de descente de gradient.

Résultats

Nous avons validé nos approches dans un contexte synthétique destiné à reproduire les
particularités d’un système réel de tomoPIV. Pour ceci, nous avons considéré un cuboïde
discrétisé dans une grille cartésienne de 61 × 61 × 19 voxels, dont l’unité de voxel est
établie à 1 (adimensionnel). Nous obtenons, à partir d’un système de 4 caméras et après
la calibration de ce dernier, le dictionnaire d’encodage D ∈ R14884×70699 et le dictionnaire
de décodage B ∈ R14884×565592, pour p = 2. Nous ensemençons ce volume avec des densités
croissantes correspondantes à des ppp allant de 0.0263 à 0.4222.

Nous procédons d’abord à une étude comparative dans le cadre décrit des algorithmes
standards contre les algorithmes d’optimisation présentés ci-dessus, tout d’abord lors d’un
scénario idéal (non-bruité), ensuite en aggravant le contexte de manière incrémentale
(en y rajoutant du bruit de modèle et/ou du bruit de mesure). La Figure 1 illustre une
telle comparaison dans le cas idéal (les particules sont placées idéalement aux centres des
voxels et les observations ne sont pas perturbées). Nous remarquons en particulier que
l’omniprésent SMART est surpassé en performance de reconstruction par ses variantes
proximales (c.à.d., les FSMART) et par les autres approches pour l’optimisation convexe
(c.à.d., FISTA, ADMM). Par ailleurs, les schémas ADMM pour l’optimisation convexe
engendrent des estimations dont le facteur de qualité est proche de 1 même pour des hautes
valeurs d’ensemencement ; ceci est dû à une grande vitesse de convergence en milieu idéal.
Nos expériences en milieu bruité nous mènent à des conclusions similaires ; plus précisément,
les méthodes FSMART et les procédures ADMM pour l’optimisation convexe devancent
immuablement en terme de qualité de reconstruction les procédures plus courantes dans la
littérature (nous pensons à SMART dans la tomoPIV et à FISTA dans le communauté de
traitement de signal), pour des exigences en complexité et stockage comparables.

Nous simulons ensuite un écoulement de cisaillement dans notre cuboïde afin valider
l’intérêt de notre approche d’estimation de mouvement. Nous nous plaçons dans un scénario
plus proche de la scène tomoPIV originale en rajoutant du bruit de modèle (c.à.d., les
particules ont de positions aléatoires dans le cuboïde et les observations sont perturbées
par un bruit Gaussien de variance 0.01). La Figure 2 montre les résultats obtenus pour
une sous-grille du volume considéré, à une valeur de profondeur fixée, dans un volume
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correspondant à un ensemencement ppp = 0.2, à partir des volumes préalablement estimés
avec bpADMM+. Nous remarquons en particulier que l’utilisation de l’approche jointe
permet d’enlever les pics d’erreurs qui peuvent apparaître localement avec l’approche
séquentielle basée sur la méthode Lucas-Kanade (LK) itérative ; cependant, lorsque l’espace
est peu résolu, elle propage, de manière légère, certains imprécisions sur les solutions qui
restent néanmoins inférieures à celles résultantes par l’approche séquentielle. Nos autres
expériences nous mènent aux mêmes déductions : globalement, l’approche jointe gère
mieux les indéterminations liées à une mauvaise reconstruction volumique ou à une faible
résolution de l’espace 3D. Toutefois, une étude comparative dans un scénario expérimental
est nécessaire afin d’établir, de manière quantitative dans un milieu réaliste, l’intérêt de nos
méthodes.

0.5 1 1.5 2 2.5 3

·104

0.6

0.8

1

‖w̃‖0

Q

0.1 0.2 0.3 0.4
10−13

10−10

10−7

10−4

10−1

ppp

MSE

bpADMM+ bpADMM`0+ bpADMM`1+ bpADMM`0 bpADMM`1
FISTA+ FISTA`0+ FISTA`1+ FISTA`0 FISTA`1
FSMART FSMART`0 FSMART`1 SMART SMART`0
SMART`1 ART+

Figure 1: Performances des algorithmes de reconstruction volumique dans un scénario idéal sans
bruits par comparaison du vecteur estimé w? avec la vérité terrain w̃. A gauche :

l’évaluation de la mesure de qualité de reconstruction Q = w̃T

‖w̃‖2

w?

‖w?‖2
; à droite :

l’évaluation de l’erreur quadratique moyenne MSE = ‖w̃−w?‖2
2

‖w̃‖0
.

Organisation du document
Outre cette synthèse en français et une courte introduction, ce document est organisé

en cinq chapitres. Le Chapitre 1 présente le contexte expérimental de cette thèse. Nous
mettons l’accent sur les principales difficultés liées à la compréhension du mouvement
tridimensionnel du fluide turbulent. Nous décrivons les approches classiques de mesure dans
le contexte de la mécanique du fluide expérimentale et nous justifions notre choix de se
vouer à un système de tomoPIV. Le Chapitre 2 porte sur la formalisation du modèle de
projection de l’espace 3D sur le plan bidimensionnel des images et du modèle de transport
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Figure 2: Comparaison de l’amplitude du mouvement estimé par quatre méthodes dans un volume
ensemencé avec ppp = 0.2 lors d’un scénario bruité. (a) : Vérité terrain. (b) : Ligne
supérieure, de gauche à droite : Lucas-Kanade (LK)-discret et Corrélations 3D ; ligne
inférieure, de gauche à droite : LK itératif et notre méthode.

du fluide. Ce travail est structuré en deux parties : dans un premier temps, nous décrivons
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les particularités physiques nous ayant mené à une formalisation des modèles continus de
notre application ; ensuite, nous proposons des schémas de discrétisation de ces derniers. Le
Chapitre 3 présente le cadre général d’optimisation que nous proposons pour l’estimation
du problème de reconstruction volumiques. Plus précisément, nous faisons des connexions
intéressantes entre les procédures standards pour la tomoPIV et des méthodes proximales et
nous introduisons dans la littérature tomoPIV les méthodes innovantes ADMM. L’intérêt de
basculer vers de telles nouvelles approches est mis en évidence lors d’une étude numérique.
Le Chapitre 4 présente notre méthode d’estimation jointe des volumes et de vitesse ; en
particulier, nous montrons que contraignant le terme d’attache aux données permet d’enlever
des indéterminations liées à une reconstruction volumique médiocre. Finalement, le Chapitre
5 résume les approches proposées et présente des perspectives à considérer dans un travail
futur.
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Introduction

Measuring with precision the tridimensional velocity of the turbulent flows constitutes
one of the fundamental problems of fluid dynamics. Understanding the motion of turbulent
fluids impacts at both a practical and theoretical level: while it represents one of the
greatest conundrums in theoretical physics, the stakes of fathoming it out are high for
various engineering applications.

Accessing to a fine information on tridimensional (3D) turbulent flows is typically a
complex tasks that standard theoretical developments or numerical simulations fail in
solving. Therefore, a popular alternative to theoretical developments and numerical
simulations is Particle Image Velocity (PIV). This approach consists in resolving the motion
of fluid by coupling computer vision techniques with experimental fluid mechanics
to produce observations, further submitted to signal processing tools. Unfortunately,
classical PIV literature mainly addresses bidimensional scenarios (e.g., the fluid is assumed to
be confined in a two-dimensional (2D) layer), whereas turbulent flows typically encountered
in practice are highly tridimensional. It is not until recently that the focus of PIV community
turned to the tridimensional case, giving birth to a novel measuring technique, coined
Tomographic PIV (tomoPIV). If successful simple 3D motion estimation techniques to
solve the observations produced by a tomoPIV system are already available, there is room
for progress in terms of understanding of the visualized system, modeling it accurately and
inserting physically-sound priors into the reconstruction schemes.

Objective of this thesis

The overall objective of this thesis aims at the creation of new approaches allowing
for an effective and efficient study of the tridimensional flows from multiple synchronized
sequences of bidimensional images. The challenge of solving the inherent estimation problems
encompasses numerous bottlenecks of the current technology, yet to be overcome. We give
hereafter a description of the problems that will be addressed in the current manuscript and
the corresponding objectives.

Volumetric Image Reconstruction

Modern measurements in fluid dynamics are enabled by seeding the fluid with passive
tracers. In the current literature, state-of-the-art procedures belonging to the algebraic
family have gained a lot of interest. Although conceptually interesting and effective in
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terms of storage and computational loads, the latter suffer from a certain number of
caveats. On a theoretical level, their behavior in presence of noisy data is still an open
question. Furthermore, such procedures do not fully exploit physical knowledge of the scene
(i.e., non-negativity and sparsity). In practice, these state-of-the-art techniques can only
accurately recover a limited number of particle positions from the available observations.
The latter shortcoming directly affects the subsequent fluid motion estimation, which
depends on the density of particles of the fluid: the higher the density of the particles the
better the resolution of the fluid movement at fine scales.

The goal of the volumetric reconstruction task is to devise novel procedures robust to
noise to estimate the distribution of a moderate-to-high number of passive tracers with high
accuracy. We propose to achieve this goal by (i) fully exploiting the physical constraints on
the signal; (ii) working out faster schemes with the same or lower storage requisites.

Towards Joint Volume-Velocity Reconstruction:

Current state-of-the-art procedures for 3D fluid-motion estimation generally proceed in
two steps: (i) the 3D volume is first reconstructed at each time instant from the observations
of the corresponding 2D images; (ii) the fluid motion is then estimated from the decision
made on the volume at the first step. Although its implementation is straightforward and
it yields satisfying results, this two-step procedure is suboptimal in terms of achievable
performance. In fact, the volume reconstruction is performed separately at each instant,
disregarding the velocity field that links the two consecutive estimated quantities. Moreover,
the current schemes do not account for the possible reconstruction errors on the volumetric
reconstruction.

The objective of this joint volume-velocity task is to develop methods of 3D motion
estimation directly from 2D images. We propose to achieve this goal by designing a novel
formulation of the problem accounting for the nexus between the volume and the velocity.

What This Thesis Is Not About

The goal of this thesis is providing a theoretical understanding of the scene and at
designing tools with great physical underpinning prone to be easily applied in practice.
However, our work must not be understood as an experimental assessment of proposed
methods within the Tomographic PIV (tomoPIV) context. We aim, on the flip side, at
bridging the gap between theoretical signal processing and experimental fluid mechanics
by devising theoretical tools accounting for physical knowledge of the scene convenient
for high complexity systems and destined to be assessed on a real-world tomoPIV benchmark.

Contributions

To respond to first task, we recast the tomoPIV problem within a general optimization
framework. First, we emphasize that both physical constraints (i.e., non-negativity,
sparsity) and noisy observations can be handled by properly defining an optimization
problem. Then, we exploit the general framework of proximal methods to show that
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procedures with the same computational and storage features as standard methods can
be derived. In particular, we show that some standard algebraic methods can be seen
as particular cases of proximal methods. Assessment in a realistic synthetic scenario
show a considerable enhancement in reconstruction accuracy for moderate-to-high seeding
concentrations of regularized proximal methods versus their unconstrained counterparts.

The second task is addressed by formalizating a novel functional that accounts for noisy
settings and for the linked structure between two instantaneous volume reconstructions
and alternatively seeking for the respective quantities via a descent procedure. A similar
assessment campaign in a realistic synthetic scenario validates the interest of formally
defining the nexus between the two reconstruction problems as a joint optimization problem.

Outline and Organization

This thesis is organized as follows. Chapter 1 presents the experimental context of this
thesis. The main challenges related to the understanding of the 3D turbulent fluid motion
are delineated. Classical tools enabling the retrieval of probes of the fluid motion are
depicted, with focus on 3D techniques. Finally, the choice of relying on a tomoPIV setting
within our work is motivated.

Chapter 2 formalizes the 2D-3D projection and the fluid transport models. The first part
of the chapter unravels the physical knowledge leading to a continuous formulation of the
two problems. The second part proposes discrete counterparts of the latter. In particular,
we propose a novel projection model offering the advantages of structuring the sparsity
in the context of volume estimation problem and of backpedaling to its smoothed (denser)
counterpart for the velocity estimation problem.

Chapter 3 exposes the framework we propose to handle the issue of volume reconstruction.
In particular, we make interesting connections between state-of-the-art procedures and
proximal algorithms. In a second part of the chapter, we emphasize on the importance
of reducing the dimensionality of the initial problem by formalizing a general framework
for all state-of-the-art pruning procedure within the tomoPIV context. The performance
is assessed, for both the volume reconstruction problem and the pruning procedures, on
various realistic tomoPIV scenarios.

In chapter 4, we present our method to address the problem of velocity estimation of
the turbulent fluid. This chapter provides the technical aspects, as well as performance
assessment on various realistic tomoPIV scenarios.

Finally, chapter 5 recaps the proposed approaches and the obtained results, and some
future perspective are suggested.

With the partial support of DGA, this thesis has evolved in the Fluminance team at
INRIA Rennes, whose aim is providing in the one hand image sequence methods devoted
to the analysis and description of fluid flows and in the other hand physically consistent
models and operational tools to extract meaningful features characterizing or describing the
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Chapter 1. Experimental Fluid Mechanics

In my early adolescence, I would discover French literature by Jacques Prévert’s "Déjeuner
du matin", that I would read over and over again until visualizing each frame of the scene
in its bare simplicity. The character would pour the coffee into a mug, then add a drop of
milk to it. Then, he would abidingly stir the whole with a tea-spoon, while he lightened
a cigarette with his other hand. He would next linger in front of his mug, where small
whirlpools were spiraling, blowing smoke rings. Later on, as I persisted deeper in my science
studies, I would grow up to translate this matinal ceremony in terms of signal processing
and fluid mechanics. Moreover, I would take this example whenever someone asked me to
explain in a very simplistic way my thesis’ subject.

In fact, we all empirically know that stirring the composition with a spoon increases the
homogenization rate of the two liquids (coffee and milk). The fluids become turbulent
and streams of liquid start interacting with each other, which speeds up the mixing process
(contrary to the viscosity, which slows it down). The smoke rising from a cigarette resting
in an ashtray is an excellent descriptor of the fluid behavior based upon its velocity profile.
For the first few centimeters, the flow is smooth, regular and fluid streams are rising, parallel
and unmixed, with a moderate speed: the flow is laminar. Then, as the velocity of the
plume increases, the flow is twisted into eddies and irregular paths, transitioning from a
laminar regime to a turbulent one (see Figure 1.1 for a visualization of the three regimes).

On top of being at stake for the theoretical comprehension of common domestic habits,
the study of turbulent fluid flow represents a discipline of far-reaching interest in a large
panel of scientific domains. Indeed, a good knowledge of its behavior would be of great
contribution in myriads of engineering fields, such as aerodynamic shape design, oil recovery
from an underground reservoir, or multiphase/multicomponent flows in furnaces, heat
exchangers, and chemical reactors.

Turbulent flows are described by the Navier-Stokes equations, stemmed from Newton’s
laws of motion in an hydrodynamical context and presented here for an incompressible fluid:

∂u(h, t)
∂t

− µOu(h, t) + (u(h), t) · ∇)u(h, t) +∇p = f , (1.1)

∇ · u(h, t) = 0, (1.2)
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Chapter 1 Experimental Fluid Mechanics

Figure 1.1: Buoyant plumes of smoke. Their visualization demonstrates three types of fluid flow:
laminar, transitional, and turbulent. At the bottom of the photo, the plumes are
smooth and orderly, as is typical for laminar flow. Despite the quiescent air, tiny
perturbations sneak into the flow causing periodical vortical whorls, as we can observe
mostly on the first plume; the flow is in transition. Then, disturbances in the plume
get amplified and break down into turbulence; near the top of the image, we observe
the smoke’s movement: chaotic and intermittent, full of turbulent eddies. (Photo credit:
Gizmodo Shooting Challenge)

where u(h, t) stands for the Eulerian velocity of the fluid at time t at a position
h =

[
h1 h2 h3

]T
∈ R3 expressed in a canonical system of coordinates, p for the pressure,

f is the sum of exterior forces and µ is the viscosity of the fluid, inversely proportional to
the Reynolds number. The appearance of the convection term (u(h, t) · ∇)u(h, t), which
depicts the non-linearities in the flow, is at the origin of the difficulties encountered in the
resolution of the system. Appendix A elucidates the two main approaches to address the
fluid motion description. Despite more than a century of theoretical research, the analytical
resolution of Navier-Stokes equations remains one of the most challenging conundrums in
physics. It is thus indispensable to resort to alternative strategies in order to access to
noteworthy solutions relevant for the industries.

Computational Fluid Dynamics (CFD) uses numerical methods and algorithms to solve
and analyze the system upper-mentioned. The Reynolds number is the control parameter
of Navier-Stokes equations. A generally accepted rule-of-thumb is that Reynolds number
values less than 2000 will probably be laminar, while values in excess of 10000 will probably
be turbulent. Numerical simulations - such as Direct Numerical Simulation (DNS), Large
Eddy Simulation (LES) - of the flow are a valuable tool providing a complete description of
the flow structure in the turbulent regime. The reader should refer to [105] for a detailed
review skimming through recent developments in numerical simulation. Having said that,
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1.1 Passive Tracers

these methods are quickly restricted by the substantial number of parameters to handle
which evolves with respect to the Reynolds number and are thus confined to moderate
values of the latter.

Going back to Prévert’s example, one can notice how I was able to draw conclusions on
the 3D nature of the flow, whether it was a liquid or a gas. In fact, as the white color of
the milk clashes against the deep brown color of the coffee, we can visualize the milk’s flow
pattern as it mixes with the coffee. Had Prevert’s character not have added milk, the foam
at the surface of the coffee would have also given valuable information on the flow pattern.
The buoyant plumes rising from the cigarette are an even better visualization tool, provided
its grey color is in contrast with its environment, as the smoke uplifts unconstrained to the
ceiling. Moreover, the information we are given is 3D since our brain naturally produces
the depth perception out of the two different views given by our two eyes. This is a very
simple example of a flow visualization system.

Flow visualization techniques have emerged in parallel to CFD as an effort to
understanding flow phenomenon. They consist in employing certain techniques so that
the flow velocity is being made visible. Therefore, by observing flow patterns, one can
derive qualitative data from the obtained flow picture and deduct informations about the
flow field. Other, more conventional flow measurement techniques involving experimental
systems (Pitot tubes, hot-wire anemometers, vane anemometers) were available, but only
provided point-wise flow statistics. With the arrival of quantitative velocity measurements
(which are to be developed in Section 1.2) estimated velocity distribution became accessible
and allowed from then on the computation of global statistics within the turbulent glow.

This situation where we intend to find the nature of phenomenon based on observations
of its effects is commonly known in the Signal Processing Community as an inverse
problem. Its resolution relies on a modelling of the direct problem which is a close
representation of the actual measuring system. These steps are detailed in Chapters 3 and 4.

For now, we aim at non-exhaustively overviewing a large panel of visualization techniques
with emphasis on techniques allowing for 3D measurements. For doing so, we first describe in
section 1.1 means of rendering the transparent media of the flow visible by the use of passive
tracers. Then, we move forward to general visualization techniques used in experimental
fluid mechanics, that we briefly enumerate in section 1.2. Finally, we present in section 1.3
a PIV measurement chronicle and its historical evolution toward 3D probes.

1.1 Passive Tracers

Most fluids, gaseous or liquid, are transparent media. As a consequence, their motion
remains invisible to human eye during direct observation, unless a technique allowing for
the visualization of the flow is applied. If in the earlier example flowing fluid was visible
naturally (turbulent coffee or plumes of smoke) is because of the unscripted occurrence
of means equivalent to the experimental methods of flow visualization described in the
following section. The literature on flow visualization covers anthologies of remarkable flow
scenes picture [130,180].
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Chapter 1 Experimental Fluid Mechanics

Certain flow measurements techniques involve the use of neutrally buoyant markers
immersed in the fluid which follow its movements. The flow becomes seeded with passive
particles which, given their nature, do not perturb the flow. If one resolves the light
scattered from these tracer particles, a quantitative study is rendered possible by measuring
the velocity of the scatterers. These particles are chosen, depending on the measurement
task, based on their mean size, shape, width, surface characteristics and refractive index.
Gas is commonly seeded with smoke, whereas in liquid flows the choice lies between dye,
bubbles, ash, hollow glass spheres, polyamide, fluorescent or phosphorescent particles (Figure
1.2 shows rendition of flows depending on particle media). Other visualization techniques
register the evolution of certain passive scalar components, such as dye concentration, water
vapor concentration or sea surface temperature and allow for qualitative measurements.
However, in this thesis, we are interested in quantitativemeasurements allowing for velocity
estimation. Insights on methods for the generation and the seeding of fluids with passive
tracers can be found in [123], [107].

(a) (b) (c)

Figure 1.2: Rendition of flow pattern depending on the nature of the particle tracer. From left to
right: polyamide seeding particles, silver-coated hollow glass spheres, fluorescent polymer
particles. (Photo credit: Dantec Dynamics)

1.2 Measurements in Flows

In experimental fluid mechanics, we count for three flow visualization techniques:

Surface flow visualization : Visualization of flow patterns very close to or at the body
surface is a key element in measuring the rates of shear or pressure forces exerted by a
fluid as it approaches a solid surface. Commonly, visible information is made possible
by the application of colored oil. The information derived concerns quantities as flow
direction, mass transfer to the obstacle, the obstacle’s temperature. A literature survey
can be found in [69].

Optical methods : These category of methods, among which we mention
Shadowgraph and Interferometry, produce a natural, easily-interpretable image
of refractive-index-gradient fields. Optical methods do not require any intrusion in
the fluid and prevents any modifications of the considered flow. They can thus be
implemented to undertake full scale measurements and outdoor experiments [164].

4



1.3 From Planar to 3D Measurements

Particle tracer methods : The most common images issued by flow visualization techniques
rely on the use of particle tracers presented in the previous section. The seeded fluid
is illuminated and the scattered light is captured by numerical cameras. The goal of
this procedure is to measure the velocity of the flow and the techniques employed fall
into the fields of Particle Image Velocity (PIV) or Particle Tracking Velocity (PTV)
methodologies.

A comprehensive description of each technique can be found in Merzkirch’s classic text
[125]. Whatever the method, it is through the interpretation of images it produces that one
gains an understanding of the physics of the flow field. We are interested in the retrieval
of measurements allowing to deduct information on the velocity fields of the turbulent fluid
at any given point. While the first method enables solely for surface statistics, the second
allows for motion retrieval with the cost of having recourse to a non-trivial acquisition
model [11]. For the above considerations, particle tracer methods are the most appropriate
for the present study.

1.3 From Planar to 3D Measurements

Turbulent flows exhibit complex and highly 3D motions over a wide range of scales
and amplitudes. Given the highly tridimensional nature of fluid velocity under certain
regimes, planar measurement systems quickly evolved towards systems allowing for the
retrieval of the three components of the velocity fields. This section depicts the evolution
of planar tracer methods toward 3D probes. We intent, by the present overview, to
bring forth certain theoretical and practical tools indispensable for the comprehension of
the manuscript. For thorough descriptions of this evolution, the reader should start by
addressing the bibliography of PIV by Adrian [3] which covers exhaustive early references
on PIV starting with Meynart’s articles released during his Ph.D. thesis [126,127] - marking
the introduction of PIV- and scanning up to succeeding developments until 1995. Later
on, the same author flags the 20 years since the term was first coined by pointing out
important milestones until the early 3D developments thought stereoscopic-PIV [2].
More recently, book chapter [13] and article [155] review techniques for turning PIV into
a 3D velocimetry procedure. Likewise, in [156] a brief survey of the advancement with
respect to dimensionality is depicted, together with working principles of the 3D probes.
The reader should refer to [153] and [4] for complete theoretical comprehension of the signal
processing underpinning particle tracer velocimetry.

A PIV system is historically a quantitative measurement allowing for the retrieval of
velocity vectors in a planar domain. Figure 1.3 depicts the standard progression of steps
towards these measurements. First, light passive tracers are immersed in the flow with
respect to its nature. A camera faces the volume of interest. Then, a light sheet of the latter
is illuminated at high frequency by a laser such that the light scattered by the particles
is captured on the camera’s plane at each period. These consecutive recordings are then
post-processed by means of motion retrieval techniques, provided the particles follow the
fluid’s movements, in order to compute the velocity fields within the illuminated plane.

Highlights of PIV development have been marked by the arrival of digital cameras -
allowing for recordings at very high frequencies ( [187]) - and of high-power pulsed
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Figure 1.3: Experimental arrangement for particle image velocimetry in a wind tunnel. The flow
behind an ostacle is seeded with tracer particles. A light sheet within the flow is
periodically illuminated by means of a laser. The light scattered by the tracer particles
is recorded at each illumination by a high frequency numerical camera. (Photo credit:
taken from [25]).

lasers which enabled for more accurate measurements within larger volumes of interest.
However, along with important technological milestones, one should dwell on progress in
the understanding of the mathematical underpinning particle tracer measurements. In fact,
theoretical knowledge on the system gives the means for a pertinent model of the latter,
which dramatically improves the accuracy of reconstructed velocity fields. Moreover, a good
comprehension of the physical framework provides neat estimations of parameters fitted for
the layout of the system. These theoretical aspects will be detailed in Chapter 2.

Despite great progress in PIV, its planar limitations soon lead to a turning point in flow
visualization techniques. As pointed out earlier, the full understanding of turbulent fluids
requires the access to 3D measurements. A first step towards this direction was made by the
emergence of stereoscopic adjustments to planar PIV, enabling though epipolar geometry
for 3C measurements ( [12], [186]). Further on, stereoscopic configurations were enhanced by
the illumination of two or more parallel sheets in the volume, allowing for the computation of
the complete velocity gradient tensor over a planar domain (dual-plan stereoscopic-PIV,
multiple-plan PIV, [106]). However, extended planar techniques are limited by the
discontinuous nature of the planar snapshots captured. One cannot draw quantitative
statistics on intricate vortex interactions out of uncorrelated measurements. The study of
the 3D organization of unsteady flow must thus be extracted out of measurements acquired
in the 3D space.
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1.3 From Planar to 3D Measurements

Numerous techniques dedicated to the measurement of three-dimensional unsteady flow
in whole-field studies have emerged starting in early 1990. The latter seem to fall into four
categories:

• internal optics alteration: Scanning Light Sheet (SLS) [37];

• holography: Holographic PIV (HPIV) [100], Digital HPIV (DHPIV) [54];

• multiple viewpoints: 3D PTV [118], Digital Defocusing PIV (DDPIV) [138],
Synthetic Aperture PIV (SAPIV) [26], tomoPIV [76,77];

• plenoptic: plenoptic PIV [10,80,117,172], which can also fall into multiple viewpoints
classification [113].

Figure 1.4 shows the classification of upper-mentioned techniques with respect to the
space of measurements, to the space of solved solution and to time.

A direct extension of multiple-plan PIV is the SLS technique [37], which consists in
illuminating a set of approximately equally spaced, discrete light-sheets successive in time.
This implies that the scanning pace must be very high with respect to the variation of the
particles’ positions in time. If this procedure has raised interest by demonstrating great
assessments in fluids of low speed, it cannot be applied to flows with velocity exceeding
1m/s [39], thus being considered as a quasi-instantaneous measuring technique.

HPIV received particular attention [100], being considered the preferred approach for the
description of volumetric structures in the flow. The interference pattern of a reference light
beam with the light scattered by particles is recorded on a photographic plate or, more
recently, directly on CCD screens (DHPIV - [54]). The latter is then used to determine the
particles’ location in depth. An extensive review of both provide an extensive review both
film of digital techniques can be found in [124]. If HPIV has not become mainstream it is
because of the difficulties of extracting quantitative measurements from film photography.
A comparative study between HPIV and multiple viewpoint technique shows that the latter
outperforms the holographic procedure in terms of spatial resolution, visibility of particle
tracers and inherent measurable turbulence characteristics [160]. In contrast, DHPIV
attains higher spatial resolutions, but it is constrained to smaller volumes of interest (and
thus, to lower seeding concentrations), which corresponds to configurations where the
optical system is most accurate [124].

Plenoptic PIV has recently emerged in the PIV community [10,80,117,172]. Its inception
brings together two most up-to-date features in their respective communities by merging
methods pertaining to light field imaging with concepts that drive experimental fluid
mechanics. The developments in plenoptic cameras began with [1] and were recently
improved by [85]. The latest breakthroughs involve the establishment of the plenoptic
function, which writes a five dimensional complete description of rays of light in space
with respect to their positions and angles of propagation. The combination of both the
recorded spatial and angular information enables the three-dimensional reconstruction.
Unfortunately single camera plenoptic PIV measurements suffer from the same problems as
does HPIV due to the low angular resolution. In [113], the authors submit a novel proposal
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Figure 1.4: PIV chronicle depicting the evolution of PIV towards time-resolved (TR) tridimensional
(3D) measurements. Let {u,w, v} ⊂ R3 be the space where the three-component (3C)
velocity fields are sought and {t},∀t ∈ N the ensemble collecting the time resolution
of a TR temporal sequence. Consequently, TR-X denotes time-resolved measurement
techniques. With the exception of the SLS procedure, limited to a low velocity range due
to its technicality, every X is a TR-X. (Adapted from: [156] and [99]).

8
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which exploits the advantages of Plenoptic PIV in a nowadays standard framework for
flow visualization which involves the use of three or more cameras. Although benefits over
classical multiple cameras reconstructions have been shown under specific configurations
in a simulated scenario, an experimental assessment has not yet been performed at our
knowledge. Nevertheless, this technique deserves, in our belief, a close follow-up due to its
applicability to large volumes of interest with the use of a lower number of cameras than in
standard measurements.

Within velocimetry techniques making use of multiple viewpoints, 3D-PTV [118] and
DDPIV [138] rely on the identification of individual particles in the PIV recordings. In
3D-PTV, the coverage of the third dimension of the space field is accessed by combining the
output from (typically) four cameras stereoscopic reconstruction and exploring approaches
from photogrammetry (particle tracking, cross-correlation) to extract particle trajectories.
The reconstruction strongly relies on a good knowledge of both the intrinsic and extrinsic
parameters of the cameras and allows for low calibration errors. The DDPIV is based on the
defocused blur of the seeding particles by placing an aperture with a defined pattern (usually
pinholes arranged as an equilateral triangle) before the lens and thus forming a coded
aperture imaging. A single particle is therefore mapped to multiple areas representing its
blurred image, whose mutual distance is closely related to the distance of the plane of focus
of the camera. The position of the particles are then solved by searching in the superimposed
projections from all cameras the patterns which form equilateral triangles [90,108]. In both
techniques, extracting features from the images planes limits the seeding values to moderate
values in order to avoid overlapping of particles and implicitly, false matches between
different views around the volume of interest. This impedes measurements in volumes with
high spatial resolution, for high number of particles.

SAPIV uses methods from previously described light-field imagery in order to digitally
refocus a 3D flow field at arbitrary focal planes throughout a volume [26]. An array of
synchronized CCD cameras is placed around the volume of interest such that the fields of
view overlap. The projections are then recombined using appropriate light field imaging
algorithms to obtain different planes of focus. The 3D light field intensity is acquired
by refocusing the images throughout the entire volume. Finally, the velocity fields are
computed out of successive intensity fields by means of standards 3D cross-correlation.
Despite the fact that the technique is adapted to solve large volumes with high seeding
densities, the high order of the camera array (up to eight) currently limits the practical use.
In [10] the authors explain how this drawback can be overcome by replacing the camera
array with a single plenoptic sensor.

Tomographic PIV falls into the multiple viewpoints techniques classification and the
imaging principles are similar to that of previously described 3D-PTV. Its novelty consist
mostly in the reconstruction of the instantaneous 3D object. The working principles along
with applications were first introduced by Elsinga et al. in [76, 77] and detailed in seminal
paper [74]. Along with the innovative concept, experiments demonstrated the possibility of
working at the highest seeding levels in the literature (up to 0.05 in synthetic scenarios and
attaining values in the range of 0.02 − 0.08 ppp in experimental settings [79, 158]). Ever
since its arrival, most attention was devoted to understanding and optimizing its properties
for the retrieval of 3D instantaneous pattern of the coherent structures in the flow. In fact,
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the apprehension of tridimensional objects opened from then on the way to the possibility
of unraveling the intricate anatomy of flows in a turbulent regime. In a nutshell, theoretical
developments include work on the 3D calibration technique [184]), essential to the control
and correction of the mapping between images planes and the discrete volume of interest.
Early developments include theoretical studies on tomographic reconstruction with great
mathematical underpinning [143, 145]. Later on, initial acceleration schemes of the volume
reconstruction procedure have been proposed ( [15, 188]), while other digital techniques to
accelerate the reconstruction have been investigated [61]. Progress includes analysis of the
bias errors induced by the formation of ghost particles during the reconstruction [78] and
more recently, improvements on the enhancement of the reconstruction accuracy after their
the reduction of their number [75,165]. A step towards joint reconstruction of the volume and
the velocity fields has been achieved in [134]. This latter achievement constitutes a milestone
in the development of tomoPIV because it respects the nexus between the fluid trajectory
and the static volumetric intensity distributions. Principles, limitations and arising tomoPIV
model will be detailed in the next chapter.

1.4 Conclusion
Our present study has been motivated by the great spread of the tomoPIV technique

since its first occurrence. Its great impact on the community soon lead to myriads of
theoretical and experimental studies. Its adaptability to access 3D fields measurements
and its performance at high seeding number constitute, on one hand, technical advantages
of the measurement procedure. On the other hand, our interest was aroused by already
established achievements taking into consideration the physical anatomy of the scene. The
latter concerns the spatial distribution of the seeded particles in the scene ( [144]) and the
joint reconstruction of volume and velocity [134]. This framework motivated us to develop
the joint procedure proposed in Chapter 4, which is the main contribution of the present
manuscript.
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Chapter 2. TomoPIV: Settings and Models

We have presented, in chapter 1, a survey on flow visualization methods with emphasis
on optical methods. We have justified our choice of studying the fluid flow estimation
problem out of measurements acquired by a tomoPIV system. A thorough comprehension
of the intricacies related to the latter is of paramount importance for the development of
theoretical tools which solve for the velocity fields of the turbulent fluid visualized within
this framework. The goal of this chapter is to elucidate pivotal aspects that can provide
optimization guidelines for the inverse problems announced in chapter 1 and detailed in
chapters 3 and 4. Firstly, the general measurement principle is detailed. This gives us an
entry point to both physical and theoretical understanding of the scene. Since reconstruction
quality is impacted by diverse practical factors closely linked to the experimental setting, we
overview aspects such as volume illumination, passive tracers related properties and optical
system layout. A noteworthy entry point for the specifications of the system is available
in the literature [153]. Further on, a mathematical abstraction of the described scenario
is formulated both in continuous and discrete case with the goal of closely depicting the
physical truth of the context. This representation will subsequently be utilized throughout
the whole manuscript.

Working Principles

In a nutshell, the tomoPIV technique aims at synchronously imaging lightly seeded
particles at very high update rates from a finite number of different views. The figure 2.1
faithfully illustrates its working principle, briefly described here below:

1. A measurement volume is defined, then illuminated by a thick laser beam;

2. Passive tracer particles are immersed in the region of interest, while the latter is pulsely
illuminated by the upper-mentioned laser source;

3. The light scattered by the particles is projected onto the image planes of the cameras
disposed around the illuminated volume;

4. A volumetric discrete rendition of the region of interest is then sought. This is made
possible by defining a well-established projection model between the 3D and 2D space
based upon the results of the calibration procedure. The latter representation describes
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a direct problem and we solve for its inverse by seeking the nature of the object in the
space out of its planar projections (i.e., the images collected at each time frame from
simultaneous different views);

5. A transport model is further defined. The last-mentioned exploits constraints on the
volume intensity distributions between successive time frames. In an analogous way
as above, the velocity regime is fathomed as an inverse problem out of the transport
model by means of estimation programs;

6. Since the inception of tomoPIV, the two last-mentioned inverse problems have been
tackled separately. Recently, new techniques have emerged which treat the two latter as
a sole estimation problem and jointly solve for both volumetric intensity distributions
at successive instants and for the velocity fields that rely them.

t t+∆t

Figure 2.1: Working principle of tomoPIV.

We present, in section 2.1, the different experimental aspects closely linked to the working
principle. In fact, each one of the features briefly itemized beforehand plays a distinct
role in the rendering of the scene. Volume illumination can be determinant of the
images’ accuracy, as it will be further described in section 2.1.1, the tracer particles
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need to respond to a number of requirements in order to enable good measurements,
as depicted in section 2.2.2, and optic-related settings such as particle imaging and
camera-system calibration are of prime importance in creating the direct observation
model, as detailed in sections 2.1.4 and 2.1.5, respectively. We give, for each aspect, its
mathematical transcription. Finally, we formulate, in section 2.2, the direct models depicting
the projections of the volumetric space on the images and the transport of the particles,
respectively, by taking into account the considerations related to the experimental setting.

2.1 Experimental Setup

Although our present study does not evolve, to a large extent, in an experimental context,
we believe that a good knowledge of the implications ensued from the nature of physical
parameters corresponding to a particular assessment is at stake for a sensible representation
of the flow visualization system. In fact, an educated choice of the illumination system and
of the tracer particles, as well as a good calibration are determinant for the accuracy of the
quantitative diagnostic obtained over the corresponding measured data sets. In addition, the
reader tangentially familiarized with experimental fluid mechanics will find here references
allowing to deftly access insights into the specifics of the system settings.

Preliminaries

We mention that all the physical quantities intrinsically linked to a spatial position are
expressed, unless otherwise stated, with respect to the world reference frame; the latter is a
Cartesian system of coordinates defined by:

Fw : (o,xw,yw, zw), (2.1)

where o =
[
0 0 0

]T
, xw =

[
1 0 0

]T
, yw =

[
0 1 0

]T
and zw =

[
0 0 1

]T
.

We introduce, as a useful contrivance purposed to be employed throughout the whole
manuscript, the nomenclature defining the position of the center of a particle, that reads:

h =
[
h1 h2 h3

]T
∈ R3, (2.2)

which is 3D point expressed with respect to the world frame system Fw. If we refer to an
element belonging to a set of particle centers, the latter will be upper-scripted as follows: hj .

We recall that the velocity of the fluid is designated here by its Eulerian representation,
i.e., by a function of time as the flow passes through fixed spatial locations, defined here by
the following function:

u(h, t).

For further detail on flow specifications and visual representation, the reader should refer
to Appendix A.
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2.1.1 Volume Illumination

As pointed out earlier, the illumination of the volume is enabled by means of laser
lighting. The preceding planar PIV techniques need a thin sheet of light aligned to the
planes of the captors and parallel to the direction of the flow; there are at most two cameras
placed in a stereoscopic configuration (thus very close together); the beam is thinned out
by using an intricate system made out of cylindrical lenses and the alignment is realized
in order to avoid out-of-plane motion. Concurrently, the volumetric techniques rely on the
illumination of a bigger region, ideally uniformly spread on the three dimensions of the
space. As a result, there is no need to focus the light on a single sheet; on the contrary, the
latter is widened by the use of a beam expander. We give, in this section, the description
of the volume illumination profile in the physical scene and a mathematical model which
accounts for its behavior.

In a typical optical setup (cf. Figure 2.2 (a)) the light intensity decreases throughout
the volume inversely proportional to the square of the distance from the light source. Let
the direction of the source light be taken as the −yw =

[
0 −1 0

]T
axis as depicted by

the Figure 2.2. We can model this radial intensity profile along the region of interest as
a Gaussian function in the xw =

[
1 0 0

]T
direction. Let l : R3 → R be the function

depicting the evanescent behavior of the light in the scene at an instant t. The shading
intensity function in a point h ∈ R3 then writes:

l(h) = ĩt exp
[
−(h1)2

2σ2
f

]
, (2.3)

where σ2
f ∈ R+ is the variance accounting for the forward energy dissipation and ĩt stands

for the intensity of the laser pulsation at instant t.

(a) (b)

flow direction

Planar mirror

(c)

Figure 2.2: Sketches of different optical setups. From left to right: standard illumination setting for
TomoPIV, double-pass illumination [158], multi-pass illumination [87].
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Experimental assessment revealed that in certain TR configurations the amount of light
produced in a typical lightning configuration was not sufficient to cover the requirements
of the scene. As a further matter, recent developments in experimental tomoPIV focused
on adapting the visualization system such that the power of the intensity during the pulse
duration of the laser source is boosted. A first improvement relies on the introduction
of a mirror on the opposite side of the light source; the double-pass light amplification
system was established and exploited in [158]. Its functioning regime is portrayed in
figure 2.2(b). A more complex development - the multi-pass light amplification system
- has been proposed in [87, 163]. In the latter, the laser beam is directed with an angle
towards a couple of high reflecting mirrors placed one in front of the other. Therefore,
the laser ray is reflected back and forth within the mirrors multiple times increasing
the light amplification. One can refer to figure 2.2(c) for an illustration of the this
principle. Experiments revealed an amplification effect up to a factor of 5 in comparison
with the double-pass system and up to 7 times if compared with the single-pass configuration.

Regardless of the illumination scheme implemented experimentally, one should keep
in mind that any light recorded on the images that is outside of the region of interest
(demarcated within dashed lines on figures 2.2(a-c)) will be included in the reconstructed
object and will, therefore, contribute to a diminishment of the signal-to-noise ratio (SNR)
of the density volumetric function standing for the intensity of the particle tracers in the
volume at a given frame. This source of noise will be further taken into account in the
observation volume formalized in section 2.2.

2.1.2 Particles

Physical properties of the particles suspended in the flow are crucial to a good visualization
system. Good measurements are enabled by several fundamental properties of the tracers.
First of all, PIV probes rely on tracers following with precision the movement of the flow
without altering its properties. On top of that, accurate PIV renditions are enabled by
the ability of the particles to scatter the incident light received from the laser source
in the directions of the observing cameras. The fact that flow tracking demands small
particles and light scattering improves with increasing particle size already suggests the
need of a compromise when choosing tracer particles. Finally, factors such as the particles’
concentration and shape are to be studied when designing a tomoPIV visualization system
in order to guarantee uniformity of the probes over the measurement domain.

We will insist, in the succeeding sections, on the upper mentioned properties in order
to formalize a pertinent observation model for the passive tracers. We discuss, in section
2.1.2.1, imprecisions on the tracing abilities of a particle based on its diameter size. Next, we
describe, in section 2.1.2.2, a refinement of the lightning model depicted in section 2.1.1 with
regard to the particles’ anatomy and of their position and show further along, in section 2.2,
how this a priori information can be added to the observation model in order to account for
the light scattering angle with respect to each camera. For further reading, a comprehensive
study of the most important properties of the tracer particles related to the specifics of the
experimental scene can be found in [4, 153,174].
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2.1.2.1 Dynamics

The principle of particle tracer velocity estimation methods relies on the assumption
that the diameter of a particle is smaller than the finest scale of the fluid motion [4]. The
smallest fluid length scale is called the Kolmogorov length scale and it is related to the size of
the smallest eddy. We consider a spherical particle of diameter dp; its position is represented
at each instant t by its Langrangian specification H(h0, t), further outlined in Appendix
A by the expression (A.1); the parcel corresponding to the studied particle is labeled by
the position of its center at t = 0, that is h0 =

[
h1,0 h2,0 h3,0

]T
∈ R3. We denote by

uh(t) : R3 → R3 the velocity of this so-labeled particle in the fluid. The latter is computed
as follows:

uh(t) , ∂H

∂t
(h0, t) . (2.4)

We designate the velocity of the fluid at the center of the particle specified by its Eulerian
representation by u(h, t),∀h ∈ R3, as established in Appendix A by the expression A.2. We
point out that the term passive is inaccurately employed as it reckons on the hypothesis
that the velocity of the particles uh(t) is equated to the velocity of the fluid at the center of
the particle such that;

uh(t) = u (H (h0, t) , t) . (2.5)

The latter assumption implies that the velocity field is uniform over the diameter of the
particle.

There are however discrepancies between the particles’ and the fluid’s motion and the
most important source of such errors comes from the difference between the fluid’s and the
particles’ densities, ρf and ρp, respectively. This discrepancy induces a velocity lag which is
computed as the the difference between the velocities of the particle and of the fluid probed
in the center of the particle.

Under certain reductive hypotheses (i.e., acceleration of the fluid is constant, ρp � ρf ),
it is shown in [106] that the step response of uh(t) follows an exponential decay law which
writes:

uh(t) = u (H (h0, t) , t)
[
1− exp

(
− t

τp

)]
, (2.6)

where τp is the relaxation time approximated by ≈ d2
p

µ . We mention that the latter
generally constitutes a reliable measure which shows the ability of the particles to attain
equilibrium within the flows. Equation (2.6) demonstrates that the particles’ diameter must
be small in order to ensure the reduction of the velocity lag. The result of (2.6) is shown
in figure 2.3, where the time response of particles with different diameters is shown for a
strong deceleration in an air flow. The curve highlights the strong dependency between the
particle’s size and its quick response to the velocity of the flow. Nevertheless, as we will see
in the following section, if the particle’s diameter is not sufficiently large it will not scatter
the light properly and therefore, will bias the measurements.
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Figure 2.3: Time response of oil particles with different diameters across a planar shock wave. The
velocity profile is extracted perpendicular to the shock wave along the direction of the
flow in order to quantify the particle velocity downstream of the shock wave. Adapted
from [153,157].

2.1.2.2 Light scattering

The lightning model of the scene described in 2.1.1 can be further refined by taking into
account the light scattered model by the seeding particles. In a nutshell, we call the scattered
light the part of the incident laser light which is imaged by the particles onto the detectors.
Consequently, it is the scattered information which duly enables access to the information on
the velocity flow. A sensible choice of the nature of the particles will impact on the quality
of the measurements. In fact, the more powerful is the scattered energy, the more contrasted
are the images and thus, they will constitute more discriminant assessment. We begin our
section by making a small introduction on general notions related to the scattering of the
light; next, we present an entry point into the Mie scattering theory adapted for the tomoPIV
setting; finally, we formalize related models in order to take into account the scattering of
the light by the passive tracers into the experimental scene.

General Notions on Light Scattering

Fundamental notions about light scattering can be found in [6, 33, 179]. The study of
the phenomenon is restrained based on several a priori knowledge and assumptions. Let
us draw a list based on information compiled from previously cited publications. First of
all, the scattering is elastic: the frequency of the scattered light is the same as that of
the incident light. Secondly, particles are rarely solely represented in a scene; one particle
usually belongs to a collection populating the volume of interest. Implicitly, they are
electromagnetically coupled, thus each particle is excited by the resultant field scattered by
all the other particles and by the exterior field. The simplification in order assumes single
scattering: the number of particles is sufficiently small and their separation sufficiently
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large that, in the neighborhood of any particle, the total field scattered by all the particles
is small compared with the external field. Moreover, we assume incoherent scattering
assuming that the separation between the scatterers is random; this implies that there is
no consistency in the relation among the phases of the waves scattered by the individual
particles.

The scattering behavior of the light varies with regard to the obstacles encountered by
the latter on its way to the sensors. In [189], a review of elastic light scattering theories is
provided based on the specifications of the physical scene. The author states that the theory
to compute or approximate the scattered light power should be a function of the obstacle’s
shape, its composition and refractive index and its size relative to the wavelength of the
incident wave.

Light Scattering for Small Particles

We address the light scattering problem for our specific optical setting. As outlined in
section 2.1.1 when the scene is illuminated with a laser source, the distribution of this
energy over the light beam leads to a relatively low energy density. If enhancements to the
classical scheme have been brought, the efficiency of the particle scattering is still of utmost
importance to the intensification of their projections on the recordings. As discussed in the
previous section, we model the particles as spheres with small diameters (e.g., up to 10
microns, for air flows experiments). Given the ratio between the radius of a particle and
the wavelength λ of the illumination source, we embrace the thesis that the scattering of
light by these particles occurs in the so-called Mie regime. The latter can be characterized
by the normalized diameter dq defined as a function of the particle’s diameter dp and the
wavelength of the laser source λ such that:

dq = πdp
λ
. (2.7)

The Mie scattering model has been fully described by Bohren and Huffman [33]. The
problem has been addressed for a linear, homogeneous, isotropic particles in chapter 4 of
their book. The authors express the direct problem, which consists in the computation of
the field of intensity at any point in the scene, given the precise description of the optical
elements of the scene. Based on their breakthroughs, we are interested, in this section, in
faithfully modeling the experimental scene, with regard to physical consideration such as
dp, λ and Np, where Np is the refractive index of the particles.

The study of the light scattering of a particle within the tomoPIV context has not
received, to our knowledge, high attention when designing the observation model of the
scene. The toolbox implemented by Mätzler [121] is based on the model formalized in [33]
and computes the scattered intensity with respect to the wavelength of the laser beam λ,
to the refractive index of the particles Np and to the particle’s diameter dp. The toolbox
developed by Schäfer during his PhD thesis [159] also relies on the model proposed by [33],
but approximates the scattering of the light with respect to the same parameters as above
and with respect to the so-called scattering angle; the latter is defined as the angle between
the incoming light source and the sensor’s direction in the scattering plane of the particle.
This further development allows us to account for a smooth scaling factor in the image
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formation with regard to the position of the sensor on the scene. In [60], the Mie scattering
is accounted for by approximating an angular scattering function for typical PIV
parameters based on the first described toolbox. The authors use however an inexact mode
to determine the smoothing scale factor for all the cameras by performing a parametric
estimation out of images generated using the Phong reflection model [149]. In [51], the
authors perform a parametric study showing the behavior of the scattering function with
respect to polydispersion and scattering angles. Further developments including taking into
account the scattering behavior into the observation model are stated as future work in the
upper-mentioned article and have not been integrated, to our knowledge, at this date.

Related Light Scattering Models

We will consider two choices for approximating the scattered intensity. As noted in [153],
the average intensity over a range of observation angles roughly increases with d2

q , where dq
is the normalized diameter expressed in equation (2.7). This leads to a first estimate, which
considers the scattered light from a particle centered on h ∈ R3 as proportional to its square
normalized diameter dq; we explicit the scattered intensity that we denote by v : R3 → R+,
with respect to the expression of the intensity of the incident wave impacting the particle
and of the normalized particle diameter, such that:

v(h) ≈ d2
ql(h), ∀h ∈ R3,∀t ∈ N. (2.8)

where l(h) is formalized in section 2.1.1 by equation (2.3). This light scattering by a particle
approximated by equation (2.8) has been accounted for in the imaging of the particles
model by Cornic et al. in [55].

As observed by Silva et al. in their parametric study [60], accounting for a refined Mie
model allows to set up the camera system with respect to the scattering efficiencies and
therefore, enhance the performance of reconstruction algorithms based on more accurate
measurements. This motivates us to express a complete model for this scattering of
particles. This more refined representation relies on developments pursued by Bohren and
Huffman [33]. The authors state that the relationship between the incident and the scattered
light is proportional and expresses this equivalence bias a scattering function. The latter
is universally denoted in the literature by S11 and depends on the diameter of the particle
dp and on the scattering angle θc, expressed with regard to the cth sensor surrounding the
measurement region, where c ∈ {1 . . . Nc}, with Nc the total number of sensors around the
volume. Details of the model are provided in Appendix B. The approximated scattered
intensity of an imaged particle by taking into account the Mie scattering then writes:

v(h) ≈ S11 (θc, dp) l(h). (2.9)

As depicted by equation (2.9), the influence of the Mie scattering effect on the
measurements depends on the nature of the passive tracers and on the scattering angle.
Figure 2.4 illustrates the behavior of S11 as a function of both dp and θc. Since this
regime is rather complex and difficult to account for in the observation model, we make
the assumption that the distribution of the particles in the scene is monodisperse; this
hypothesis allows us to study the Mie effect for a fixed value of dp. Figure 2.5 draws
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the response of S11 as a function of θc. As illustrated by figure 2.5(a), one can notice
dramatic changes in the amplitude of the scattered intensity whether the camera is
placed in a backward or forward configuration. Figure 2.5(b) displays the effect of the
particle’s diameter at chosen scattering angles. The effect is reversed by the one revealed in
figure 2.3; in fact, if the particle’s diameter must be small in order to ensure good tracking
of the flow, one can observe that scattered intensity is proportional to the size of the particle.
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Figure 2.4: Scattered radiance profile S11 as a function of θc and dp The plot was obtained using the
toolbox MATSCAT extensively described in [159].

Regardless of the chosen approximation (whether to refer to (2.8) or (2.9)), the scattered
light is a function of the particle’s diameter. Experimentally, the velocity lag between the
particles and the fluid is diminished as the diameter of the particles decreases; on the other
hand, the visibility of the latter is ensured by particles with larger diameters. The choice
of the optimal diameter for the tracers is thus a compromise on their size and therefore,
a trade-off between its quick response ensured by smaller particles and a low-noise signal
guaranteed by larger ones, as it arises from the analysis pursued in sections 2.2.1 and 2.2.2.

2.1.3 Sensors

The key technologies that enable tomoPIV measurements include a high-power laser
source, as discussed in section 2.1.1, and high-frequency sensors. The sensors used to record
the measurements of the particles in an illuminated flow need to respond to a certain
number of requirements. In fact, cameras are expected to provide both high pixel count and
high frame rates with sensitivity and low background noise. If until recently the Charge
Coupled Device (CCD) sensors were mostly used for their ability to meet these demands,
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Figure 2.5: Scattering function expressed in polar spherical coordinates for a small particle of
diameter dp hit by an unpolarized incident wave of wavelength λ = 532nm in an air
experiment (left) and scattering function with respect to the particle diameter dp for
fixed scattering angles (right). The plot was obtained using the toolbox MATSCAT.

the complementary metal-oxide-semiconductor (CMOS) cameras have evolved rapidly and
grown to be the preferred technology for the tomoPIV systems.

CMOS cameras are typically characterized by their maximum recording rates (kHz)
and their maximum resolution (MPx). A trade-off must usually occur between these two
parameters, depending on the experiment (e.g., TR experiments demand higher recording
rates, which implies a reduction in the image resolution).

There are two classes of characteristics that are of prime importance and need to be
described for subsequently defining the observation model. We distinguish between:

1. the extrinsic parameters;

2. the intrinsic parameters.

First of all, we relate to the extrinsic parameters, which assume a good knowledge of the
sensors’ position around the scene. For doing so, we introduce the following nomenclature.
Let h be a 3D point expressed with respect to the world frame system Fw defined by
equation (2.1). We place Nc cameras placed around a region of interest that includes h.
The sensor-related systems of coordinates used to express the position of h in the camera’s
referential frames read:

Fc
img :

(
ocimg,xcimg,ycimg

)
(2.10)

Fc
cam : (occam,xccam,yccam, zccam) , (2.11)
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where Fc
img stands for the orthogonal axes coordinates attached to the image plane of

the cth camera and Fc
cam the Cartesian system of coordinates attached to the cth camera,

∀c ∈ {1, . . . , Nc}. As illustrated by figure 2.6, the projection of h on the image plane writes
hcimg with respect to Fc

img. We denote by hccam the coordinates vector of h expressed in
the Fc

cam referential. The latter transformations are performed based on the result of the
calibration procedure described in section 2.1.5.

The sensors can be further described by a list of intrinsic parameters, which are closely
related to the lens and to the camera objective. Each camera (indexed by c) is characterized
by the following set of parameters:

1. the dimensions of the screen
[
ñc1 ñc2

]T
∈ R?+ × R?+;

2. the number of pixels per dimension
[
nc1 nc2

]T
∈ R?+ × R?+;

3. its magnification factor Magc ∈ R?+;

4. the focal distance, f c ∈ R?+ (the distance between the optical center and the camera
screen);

5. the diameter of the effective lens aperture dca ∈ R?+;

6. the f-number f c] ∈ R?+, which is the ratio of the lens’s focal length f c to the diameter
of the entrance pupil dca.

As an informative landmark, we mention standard casted configurations in experimental
settings of Nc = 4 cameras: each sensor has a

[
1042 1024

]T
resolution on screens of size[

20.48 20.48
]T

mm for a rate of 5.4 kHz.

2.1.4 Small Particles’ Imaging

The quality of tomoPIV measurements strongly relies on the design of the imaging
system. On top of having to scatter sufficient light so that their imaged intensities can be
distinguished from the background intensity, reliable measurements of the particles also
depend on the intrinsic parameters of the sensors used to capture them. Several parameters
associated with the cameras govern the quality of the imaging process: the pixel size, the
focal distance, the optical magnification and the viewing direction. The same variables
contribute to the formation of a certain pattern of the particles on the images, whose shape
and size are of utmost importance when studying and formalizing the projection model.
We will give in this section useful tools to compute the so-called particle image diameter
that will subsequently be integrated in the design of the observation model.

We assume that the cameras placed around the measured region are diffraction limited,
meaning that their respective images’ resolution is solely limited by the instruments’
theoretical limit. Let a small tracer particle be placed midway between one of the cameras
and the laser source. When the plane light wave encounters the mentioned obstacle,

22



2.1 Experimental Setup

xc
cam

yc
cam

zccam
oc

cam

xw

yw

zw

o

h =
[
h1 h2 h3

]T

xc
img

yc
imgz

c
img

= f
c

hc
img

oc
img

principal
point

optical
axis

Figure 2.6: The 3 main systems of coordinates used to depict the projection of a point in space h
into the images plane of the cth camera.

diffraction will occur. In [93], the author writes that the image of a distant point source
formed through perfectly aberration-free converging lens appears as a diffraction pattern,
phenomenon known as the Fraunhofer diffraction. The obtained spots of light are called
Airy disks and represent the Point Spread Function (PSF) of an aberration-free lens. Small
aperture diameters correspond to large Airy disks and larger apertures to smaller disks, as
depicted in figure 2.7. Figure 2.8 depicts the image formation of a image spot from the
projection of a particle centered on a 3D point.

(a) (b)

Figure 2.7: Airy patterns for increasing aperture diameters (from left to right). From [93].

We are interested in expressing this physical phenomenon in signal processing terms and
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Figure 2.8: 2D rendition of the image formation on the cth camera from a volumic projection of a
particle centered on h.

more precisely, in computing the diameter of an Airy disk with respect to the intrinsic
parameters of a camera. For doing so, let us consider a camera, indexed by c, imaging a
small particle centered on a 3D position h, with an aperture of diameter dca. The particle
image diameter can be estimated by employing the so-called Fraunhofer approximation;
more precisely, it can be shown that the intensity of the Airy pattern represents the
Fourier transform of the aperture’s transmissivity distribution [93]. The Airy function can
mathematically be represented by the square of the first order Bessel function. The diameter
of an Airy disk ddiff represents the smallest particle image that can be obtained for a given
imaging configuration. Assuming that the particle imaged is in focus, the diameter of the
diffraction spot is given by [88]:

ddiff = 2.44λf c] (1 + Magc) , (2.12)

where f c] is the f-number defined as the ratio between the focal length of the lens f c divided
by the aperture diameter dca, as defined in section 2.1.3 and λ is the wavelength of the laser
source.

If lens aberrations can be neglected and the PSF can be approximated by the Airy function,
the following formula can be used for an estimate of the particle image diameter, as developed
in [5]:

dest =
√

(Magcdp)2 + d2
diff. (2.13)

This relation applies in the case of in-focus particles. We say that particles are in-focus when
the depth of focus of the camera is equal or larger than the size of the illuminated volume
along the viewing direction. The depth of focus writes, as expressed in [166]:

δZ = 4.88
(
f c]

)2 Magc + 1
Magc λ. (2.14)

In practice, operating within the limits of the focal depth translates by illuminating a very
thin volume. Moreover, particles outside of this range are imaged on a larger area, thus the
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diameter of their particle image increases. Following equation (2.14), in order to increase δZ
, the numerical aperture f c] has to be increased, which results in a reduction of the amount of
light collected by the sensor. In [156], the author shows a path to limit the out-of-focus effects
for a small depth of focus without degrading the quality of the reconstruction. We review,
in section 2.2, other developments in the literature coping with the physical formation of
the particles and formulate an observation model which accounts for the formation of Airy
pattern on the images.

2.1.5 System Calibration

The volumetric density reconstruction at each time frame is computed based on the
knowledge of the interaction between a 3D position in the region of interest and a pixel on
an image recorded by a camera. We recall that the three coordinates systems employed
throughout the manuscript are: Fw defined by equation (2.1) and the sensors-related
referentials Fc

img and Fc
cam defined by equations (2.12) and (2.13).

The interaction between the different coordinate systems can be represented by the
functions N c : R3 → R3 and Mc : R3 → R2. N c(·) stands for the homogeneous
transformation that expresses the coordinates of a point h in the world frame with respect
to each camera frame Fc

cam, while M(·) transcripts the projection of a point expressed in
the frame of the cth camera into the image frame Fc

img , such as:

hccam = N c (h) , (2.15)
hcimg =Mc (hccam) . (2.16)

Furthermore, we formalize, based on equations (2.15) and (2.16), the projection function
Wc : R3 → R2 defined as the composition of functions N c(·) andMc(·), as follows:

Wc
(
hcimg

)
= (Mc ◦ N c) (h) ,∀h ∈ R3, (2.17)

whereWc depicts the projection of a point h expressed in the world frame into the camera’s
image plane and is crucial to building the observation model formalized in section 2.2.

The function N c(·) (equation (2.15)) is entirely defined by the extrinsic parameters
depicted in section 2.1.3. Similarly, the functionMc(·) (equation (2.16)) is formalized with
regard to the intrinsic parameters, described here before. Implicitly, the function Wc(·)
(equation (2.17)) depends on both the extrinsic and the intrinsic parameters. Unfortunately,
these parameters are unresolved; therefore, the knowledge of functions N c(·),Mc(·) and
Wc(·) requires a learning step. This procedure is the so-called the camera calibration,
which is a necessary step in 3D computer vision applications in order to extract metric
information from 2D images. A rather extensive review of common methods can be found
in [192].

The calibration of the tomoPIV system usually relies on a 2D plane apparatus. In
fact, the image of a calibration target is recorded with each one of the cameras at several
positions in the space. The calibration target contains a number of visual tracers. Based
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on their known positions, a relation can be found between them and their projections on
the cameras’ images. The projection is represented either by a third order polynomial in
xw and yw [167] or by using a simple pinhole camera model (usually subsequently fitted
by a bundle adjustment procedure [173]). The choice of the third order polynomial is
preferred to the one of a pinhole camera model in situations where optical aberrations can
be encountered (e.g., geometric distortions or blurring).

Additionally, the technique has been recently improved by the adjunct of a
self-calibration step [184]. The self-calibration technique is based on the minimization
of the disparity between the images of the same particle onto the camera images and uses
therefore no calibration object. The procedure consists in matching the projections of
the same particle and best-fitting its 3D position by triangulation; the disparity between
the image of the particle and its reprojection is then used to correct the equation of the
line-of-sight passing through the respective pixel. The application of the self-calibration
technique has a dramatic effect on the accuracy of the measurements since the calibration
errors can be reduced from approximately 2− 3 pixels to less than 0.1 pixels.

The calibration step is primordial for the estimation of the volumetric density at each
time frame. The projection function is used to further assemble the observation model; we
will describe in section 2.2 various approximation techniques employed in the literature, as
well as our chosen methodology.

2.1.6 Summary

We have outlined the main features related to the experimental setting of the tomoPIV
system. Refined models of the scenery have been recently proposed in the literature, where
factors such as the scene illumination, polydisperse seeding [51] or a simplified model of the
Mie scattering [60] have been accounted for. These recent developments have motivated us
to study and integrate this a priori knowledge of the scene in our observation model in order
increase its physical complexity and, therefore, release the ambiguities that can be caused,
among other aspects, by the oversimplified experimental representation.

2.2 Related Model

Let us formulate a mathematical abstraction of the scenario outlined in section 2.1. For
doing so, we first list several simplifying assumptions meant to ease the modeling process,
enumerated in section 2.2.1. Based on these hypotheses, we formalize, in section 2.2.2 the
physical continuous signal and relate it to available observations. Next, we present, in section
2.2.3 the subsequent model for discretizing the 3D space and its simultaneous projection on
the 2D planes.

2.2.1 General Assumptions

We have described, in section 2.1, the physical aspects of the tomoPIV system. Faithfully
modeling such an intricate system increases however the non-linearity of the so-obtained
system and complicates subsequent estimation.
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Due to this difficulty, we must rely on a few assumptions in order to achieve a compromise
on the built model between its physical pertinence and its solvability. We distinguish
between physical hypothesis:

• the particles are of spherical shape;

• the velocity field is uniform over the diameter of the particle;

• the tracer particles response time is τp = 0, which implies that the particles attain
equilibrium instantly in the flow; this hypothesis has been previously developed in
section 2.1.2.1;

• the particles are in a monodisperse configuration, which means that all the particles
have the same diameter dp;

and numerical conventions:

• we assume that pixels have a dimension of 1×1 (expressed in arbitrary units (arb. u.));

• we assume that voxels have a dimension of 1× 1× 1 (expressed in arb. u.);

• we assume that the measured region is in-focus for all the sensors placed around the
volume;

• the diameter of a particle dp is much smaller than the voxel’s diameter, that is: dp �√
3 (expressed in arb. u.).

2.2.2 Continuous frame

We will model, in this section, the principle behind the image formation for particle
images introduced in section 2.1.4. Unlike the ubiquitous tomographic PIV paradigm
of [74], we adopt a more well-founded particle approach closer to the physical formation of
images of small particles. The latter allows for the reconstruction of particles and not blobs
(as in [74, 161]) with an image formation model accounting for the PSFs of the imaging
system.

2.2.2.1 Density Function and Transport Assumption

Let us first compile a series of information on the illumination model (described in section
2.1.1) of the scattering particles extensively described in section 2.1.2.2 and on their transport
behavior outlined in section 2.1.2.1.

Density Function

We consider a particle, indexed by j, centered on a 3D position hj at time frame t. We
express the incident intensity arriving on the surface of the jth particle as follows:

l
(
hj
)

= ĩt exp

−
(
hj1

)2

2σ2
f

 , (2.18)
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where, as stated in section 2.1.1, ĩt stands for the intensity of the laser beam at time t.

In addition, as depicted in section 2.1.2.2, we approximate the light scattered by a particle
either as proportional to the square of its normalized diameter, as reads equation (2.8), or as
a result of the Mie scattering theory which expresses it as a ratio of the incident light with
respect to the scattering angle and its diameter size, as reads equation (2.9). We denote
by vjt the volumetric intensity of a particle centered on hj . As recalled in section 2.2.1
by hypothesis 2.2.1, we assume a monodisperse distribution of passive tracers in the flow,
which makes the particle diameter dp and, therefore, the normalized particle diameter dq
(expressed by equation (2.7) in section 2.1.2.2) invariant with regard to the studied particle.
As a result, the Mie scattering function S11(·) is solely defined with respect to the scattering
angle θc. We define the scattering intensity function as follows:

scatc =
{
d2
q : diameter approximation
S11(θc) : Mie scattering approximation,

(2.19)

where c is the camera index.

Finally, we obtain two approximations for the volumetric density function arriving on the
surface on the cth, expressed for a particle centered on a 3D point at instant t and depending
on the chosen modeling for its scattering regime, which writes in its compressed form:

v
(
hj
)

= scatcl
(
hj
)
. (2.20)

As previously recalled, equation (2.19) is modeled with respect to the scattering angle θc
formed by the light source and the position of the optical center of the cth sensor in the
scene. Therefore, using the term density function is an abuse of language as the function
depicted by equation (2.18) is not invariant to the sensors around the region of measurement;
in fact, the latter depicts the intensity quantity arriving on the surface of the sensors around
the scene.

Transport Assumption

Based on the theory expounded in section 2.1.2.1 and on the considerations made in
section 2.2.1 by hypothesis 2.2.1, the seeding particles will follow the movements of the
fluid and will, consequently, be governed by a displacement function. Furthermore, as reads
hypothesis 2.2.1,we assume that the velocity of a particle is equated to the velocity of the
fluid at the center of the particle.

We relate to the Lagrangian and Eulerian specifications of the velocity, further described in
appendix A, to express the trajectory of the fluid between two instants as follows. We make
the strong assumption that the Eulerian velocity is constant in the temporal lag between
two Lagrangian probes. This latter hypothesis translates as follows:

H
(
hj , t+4t

)
= H

(
hj , t

)
+ u

(
hj , t

)
4t, (2.21)

where H(·) is the Lagrangian representation of the position at time t +4t of a particle
located at hj at time t, u(·) is the Eulerian specification standing for the velocity of a particle
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at time t located at position hj at time t and 4t is the temporal lag between two Lagrangian
probes.

2.2.2.2 Physical-Based Continuous Model

We present, in this section, the image formation model from optics described in section
2.1.4 based on quantities defined in section 2.2.2.1.

Image Formation

Recently, Champagnat et al. [49] have proposed a physical-sound approach which models
realistically the physical image formation of small particles. In a nutshell, due to intrinsic
properties of the imaging lenses, the projection of a small particle on an image impacts an
aggregation of adjacent pixels; the latter form an Airy spot whose diameter can be estimated
following the equation (2.13). The resulting image intensity on the cth camera for a seeded
particle located in hj at instant t writes:

ycj,t (k) = v
(
hj
)
Hc
(
k−Wc

(
hj
))
, (2.22)

where Hc : R2 → R2 is the so-called PSF function defined on the entire image support
for the cth camera and k =

[
k1 k2

]T
∈ R2. The latter is a separable function, thus it can

be written such as Hc (k) = Hc1 (k1)Hc2 (k2), as formalized in [55]. The model proposed by
the authors for Hci : R → R,∀i ∈ {1, 2} is written as the convolution between a Gaussian
function and a gate function:

Hci (x) =
∫ +∞

−∞
Π (t) g (x− t, σpsf) dt. (2.23)

where g(·) ∼ N (x, σ2) is a Gaussian function centered on x ∈ R with variance σ2 ∈ R+
accounting for blur and defocalisation, and Π(·) is employed for spatial integration over the
detector’s surface.

The function Hc(·) accounts for the imaged airy spot of the particle centered on hj and
affects weights to the intensities of the pixels belonging to the vicinity of its geometrical
image Wc

(
hj
)
. Experiments have revealed an average value of dest, depicted by equation

(2.13), of about 2−3 pixels and the standard deviation σpsf is chosen accordingly. Note that
the expression of equation (2.23) can change with respect to the experimental configuration;
moreover, σpsf can vary with the depth of the scene, assuming the defocalisation is not
uniform over the measured domain.

Other developments in the literature include the PSF function in the image formation
model. We mention [161], where the authors include spatially-varying projection operators
which account for the effects of optical distortion. Moreover, PSF calibration techniques
are proposed in [162], which guarantee an image formation model in relation to the sensor
configuration of the scene. Similarly, in [185], the PSF is represented by a Gaussian ellipse,
which is believed to cover most of the optical distortion effects.
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2.2.2.3 Approximated Continuous Model

We formalize, in this section, an approximation of the physical-sound model described
in section 2.2.2.2; the latter will constitute our observation model for the inverse problems
that we will solve in chapters 3 and 4, together with several seminal paper which adopted a
similar model [74]. We will motivate, at the end of this segment, our promoted choice.

Image Formation

In order to mimic the physical formation of the images described in section 2.1.4 and
formalized in section 2.2.2.2, we model the intensity of passive tracers in a fluid as a sum
of blurred spheres in the space. We will henceforth make the hypothesis that there are no
variations in the illumination of the scene, which implies that the intensity of the light on the
surface of the particle centered on hj at consecutive time frames is equated to the intensity
of the laser beam, as follows:

l
(
hj
)

= ĩt,∀t ∈ N. (2.24)

To avoid ambiguity, we will refer from now on to the incident intensity on the surface of the
particle centered on hj by ĩt.

As previously mentioned, the 3D density function of the scene at instant t can be
approximated by a sum of weighted Gaussian functions which account for the evanescent
energetic behavior of the Airy spots such as:

wt(k) = ĩt

M∑
j=1

gj
(
k− hj

)
, ∀k ∈ R3, (2.25)

with:
gj (k) = exp

[
−‖k‖

2

2σ2
psf

]
,∀σ2

psf ∈ R+,∀k ∈ R3, (2.26)

where σ2
psf is a scalar accounting for the variance of the Airy spots from the projection of

the center position of the particles located at hj with j = 1, ...,M , where M is the total
number of seeded particles.

Note that any physically-consistent density distribution wt(k) must correspond to a
finite-energy signal, i.e., wt(k) ∈ L2(V), where we assume, without further explanations,
that V indicates the measurement region under focus. In the sequel, we will moreover
assume that wt(k) belongs to a finite-dimensional subspace of L2(V).

The 3D signal simultaneously projects onto the 2D planes of the cameras. Each pixel
entry i from images at time t represents the integration of the 3D light intensity distribution
along the cone of view Ωi originating in the optical center of the camera and passing through
the surface of the pixel, as illustrated by figure 2.10. We comprise the scattering effect in
the image formation model; the latter can either register for the Mie scattering effect, or it
can be expressed by a simple approximation commonly used in the litterature, as discloses
equation (2.19). The formation of the ith pixel on the cth sensor plane at time t writes:
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yci,t = scatc
∫

Ωi
w(k)dk,∀i, t ∈ N. (2.27)

Transport Model

The tracer will follow the movements of the fluid and will, consequently, be governed by
a displacement function. As stated by equation (2.24) in section 2.2.1, we assume that the
density function is invariant along the particle’s trajectory. Moreover, we have made, in
section 2.2.2.1, the assumption that the Eulerian velocity of a particle is constant between
two temporal frames. The transport assumption expressed by equation (2.21) therefore
translates, with regard to the density constancy over the volume of interest, as follows:

wt+4t (k + u(k, t)) = wt(k), ∀k ∈ R3, (2.28)

where, for the temporal step 4t = 1, u(k, t) is the displacement at time frame t+ 1 of a
tracer located at position at position k at time t.

Promoted Choice

We will adopt, for the rest of the manuscript, the approximated model formalized
by equations (2.25) and (2.27) and the transport assumption depicted by equation
(2.28). First of all, our choice is historical. In fact, when we started working on the
estimation of the velocity in the tomoPIV context and after surveying the literature,
we found that a blob-oriented representation for the particles’ distribution was standard
in the community. To uphold the latter statement, let us cite seminal paper [74] and
further developments of the initial application carried on in [134]. Papers treating
the tomoPIV with great mathematical underpinning by Petra et al. cast a similar blob
model [143,144,148]. Among other, Worth and Nickels mention a comparable model in [188].

It is not until recently that more physical-sound image formation models have started
emerging in the literature. We recall [49, 162, 185]. Without entering in the details of the
inverse problem formalized in chapter 3, a first benefit of the particle-based model, aside
from the evident one that it respect the physical truth of the setting, is represented by the
reconstruction of particles [49,185] and not 3D blobs, as in [74,134,148] and even [162]. This
reinforces the sparsity of the sought signal, quality that we will discuss in detail in chapter 3.
On the other hand, the artificial blob representation of a particle is favorable in the context of
the inverse problem detailed in chapter 4. In fact, a more dense representation of the signal
will help avoiding the peak-locking effects in the subsequent displacement estimations [9].
Moreover, as presented in the following section, we have been able to gradually adapt our
model in order to take into account new developments in the literature and to advance a
hybrid particle-based approach which is founded on seeking the 3D density signal in a sparse
space, as in [49,55], and the 3D velocity vectors in a dense distribution, as in [185].

2.2.3 Digitized frame

We are interested in obtaining a matrix-vector counterpart of (2.27). In order to achieve
such a model, we formalize a volumetric elements (voxels) representation depicted in section
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2.2.3.1 which allows us to encode simultaneously for the particles’ location and their intensity
in the measurement region. Next, we give, in sections 2.2.3.2 and 2.2.3.3 discrete peered
versions of the continuous formulation expressed in section 2.2.2.3.

2.2.3.1 Preliminary Notations

For the sake of consistency along the following sections, let us introduce certain preliminary
notations that will be subsequently used and enriched throughout the manuscript. We
present the mathematical description of the volume of experimentation that we denote by
V ⊂ R3. We assume that V is a regular polyhedron centered on o =

[
0 0 0

]T
in a

canonical system of coordinates Fw : (o,xw,yw, zw) that we call the world frame reference
system, such that:

V = [−L1
2 ,

L1
2 ]× [−L2

2 ,
L2
2 ]× [−L3

2 ,
L3
2 ], (2.29)

where × denotes the cartesian product and Li is the dimension of the volume along the ith
coordinate of the system.

We discretize V as a cartesian grid made out of m cubic volumetric elements (voxels)
ζj ⊂ R3 centered on kj , j ∈ J = {1, ...,m}, as follows:

m⋃
j=1

ζj = V,
m⋂
j=1

ζj = ∅. (2.30)

Moreover, as stated in section 2.2.1, we assume that the volume V is in focus and we
describe, in appendix C a synthetic optimization procedure of the viewing configuration of
the cameras with respect to the region of interest. Figure 2.10 shows a top-view illustration
of the sectioned grid V.

2.2.3.2 Blob-Based Density Function

As explained in section 2.1.4, the projection of a small particle into an image plane impacts
an aggregation of adjacent pixels. To account for this image formation model, we have
modeled, in section 2.2.2.3, the incident intensity of the passive tracers in a fluid as a sum of
blurred spheres in the space, as writes equation (2.25). We denote the density function over
V at time t by xt : R3 → R. The digitized counterpart of equation (2.25) is built assuming
the following equivalence:

xt(k) ≈ wt(k), ∀k ∈ R3, (2.31)

where wt(k) defined by equation (2.25) and xt(k) is a piece-wise polynomial function. In a
more explicit form, equation (2.31) can be expressed such as:

xt(k) =
∑
j∈J

wt
(
kj
)
bj(k),∀k ∈ R3, (2.32)

where
{
bj(k)

}
j∈J are piece-wise Lagrange polynomials.
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2.2.3.3 Particle-Based Density Function

We have introduced, in the previous section, an approximated model of the 3D density
function reckoning with the physical-sound image formation model. We concentrate, in this
section, on a discretization scheme which is a compeer of equation (2.32) allowing for a
distinction between the incident intensity on the surface of the particles and their 3D blob
representation.

In order to represent solely the centers of the so-modeled blobs, we introduce a novel
discrete space R ⊂ R3. Analogically to the cuboid V defined by equation (2.29), R is
a regular polyhedron centered on o in the Fw system of coordinates and has the same
dimensions

[
L1 L2 L3

]T
. Therefore, the two polyhedrons coincide. We discretize R as

a cartesian grid made out of m̃ = p3m voxels centered on xz ∈ R3, ∀z ∈ Z = {1, ..., m̃}.
The quantity p ∈ N∗ is a discretization parameter allowing to choose the fidelity of the
so-defined new discrete space R and thus, to choose the accuracy with which we will seek
for the centers of the particles.

In the sequel, we rely on the following assumption:

Assumption 2.1. The centers of the particles located at positions hj ∈ R3,∀j ∈ {1, . . . ,M},
where M is the number of seeded particles, can solely belong to the ensemble of grid points
in R, i.e., hj ∈

{
x1, . . . ,xm̃

}
.

We proceed to building a particle-based discrete equivalent of the continuous volumetric
intensity volume of the blobs by integrating the hypothesis stated by assumption 2.1. In
an analog manner as states equation (2.31), we seek for a function w̃t(k) approximating its
continuous volumetric counterpart, such as:

w̃t(k) ≈ wt(k), ∀k ∈ R3. (2.33)

Explicitly, equation (2.33) writes:

w̃t(k) = ĩt

m̃∑
z=1

g (k− xz) st (xz) ,∀k ∈ R3, (2.34)

with g(·) defined by equation (2.26); the function st : R → {0, 1} is computed such as:

st(x) = 10
(∥∥∥x− hj

∥∥∥
∞

)
, ∃j ∈ {1, . . . ,M} such that hj = x, (2.35)

where 10(x) the indicator function.

We can express a matrix counterpart of the equation (2.34). For doing so, let st : (m̃ ×
1) be the column matrix registering for the location of the particles in R such as st =[
st(x1) . . . st(xm̃)

]T
, where st(·) defined by equation (2.35). Then, equation (2.34) writes,

in its matrix form:
w̃t = ĩtGst, (2.36)

with G : (m × m̃) collecting the coefficients of g(·). Figure 2.9 depicts the representations
of a particle expressed in both the V and the R polyhedrons.
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Figure 2.9: 2D rendition of the representation of the incident intensity at the surface of a particle
in the R polyhedron (left) and of its blob-description counterpart expressed in the V
polyhedron (right)

2.2.3.4 Image Formation

Using the equivalence expressed in equation (2.31) and plugging it into equation (2.27),
we can compute the intensity of the ith pixel on the cth sensor plane at time t as follows:

yci,t = scatc
∫

Ωci
xt(k)dk. (2.37)

In its more explicit counterpart, by inserting the definition expressed in equation (2.32),
equation (2.37) writes:

yci,t = scatc
∫

Ωci

∑
j∈J

wt
(
kj
)
bj(k)dk (2.38a)

= scatc
∑
j∈J

wt
(
kj
) ∫

Ωci
bj(k)dk︸ ︷︷ ︸
dcij

, (2.38b)

where dcij stands for the weight of the contribution of the density in voxel ζj to the energy
measured within the cone of view passing through the ith pixel, with i ∈ {1, . . . , nc}.The
integral in the right-hand side of (2.38b) represents the volume of the intersection of the ith
cone of sight Ωc

i with the jth voxel ζj , as follows:

dcij ,
∫

Ωci
bj(k)dk = 1

Vol (ζj)

∫
Ωci∩ζj

1 dk. (2.39)

We refer the reader to the appendix D for a discussion on the implementation of (2.39)
based on a subvoxel sampling scheme. Figure 2.10 illustrates the projection formalized by
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(2.37).

In its concise form, equation (2.38) writes:

yci,t = scatc
∑
j∈J

wt
(
kj
)
dcij . (2.40)

Finally, expressed in matrix formulation, equation (2.40) writes:

yt = Dwt, (2.41)

with

yt ,


y1
t
...

yNct

 ,
where yt denotes the vector collecting the intensities of the n = ∑Nc

c=1 n
c pixels at each time

frame t ∈ N and yct with c ∈ {1, . . . , Nc} collects the pixels on each sensor’s image plane
such as yct ,

[
yc1,t · · · ycnc,t

]T
,with nc = ∏

i∈{1,2} n
c
i . The vector wt represents the incident

intensity computed on the center of the voxels at instant t and writes:

wt ,
[
wt(k1) · · · wt(km)

]T
. (2.42)

Finally, the matrix D encoding the projection of the 3D discrete space into the images of
the N c cameras is the block matrix collecting the dictionaries accounting for the projection
of wt on each sensor, such as

D ,

 scat1D1

...
scatNcDNc

 , (2.43)

where Dc is build such that such that:

Dc =

 d11 · · · d1m
... . . . ...

dnc1 · · · dncm

 .
In order to take into account the errors in signal acquisition, we finally relax to latter

model to:
yt = Dwt + nt, (2.44)

where nt : (n × 1) is a noise vector accounting for calibration, measurement and
approximation errors.

Particle-Based Image Formation

We can infer a particle-based image formation model compeer of equation (2.44) based on
the model depicted by equation (2.34). Considering that matrix D allows for the projection of
the voxel space V into the images’ planes, the resulting vector collecting the pixel intensities

35



Chapter 2 TomoPIV: Settings and Models

from the particle-based representation of R writes:

yt = ĩtDGst, (2.45)

where w̃t is specified by equation (2.36). We relax the model in equation (2.45) and present
it concisely, as follows:

yt = ĩtDGst + nt. (2.46)

Figure 2.10: 2D Scheme of a 4-voxels cuboid in focus of two 4-pixel cameras; each voxel in V is
divided into 4 × 4 subvoxels; the cone-of-sight Ω1

2 passing through the 2nd pixel of the
first camera intersects subvoxels in V, comprised within the blue lines.

Ballpark Figures of the Sampling Rates

The dimension of the observation vector yt ∈ Rn is directly linked to the intrinsic
characteristics of the cameras around the scene. As specified before, its length is given
by:

n =
Nc∑
c=1

2∏
i=1

nci ,

where Nc is the number of cameras and the parameters
[
nc1 nc2

]T
∈ R?+×R?+ stand for the

number of pixels per dimension, ∀c ∈ {1, . . . , Nc}; the latter quantities have been previously
defined in the sensor-related section 2.1.3.

Common values in the literature are Nc = 4 and
[
nc1 nc2

]T
=
[
1024 1024

]T
; this gives

us a rough estimation of the magnitude of n of around 106. Despite the big amplitude of
n, the tomoPIV system is generally undersampled. In fact, the choice of Nc and, implicitly,
of the cameras’ resolutions, is made upon material and complexity considerations. The
two constraints are closely associated: as the number of cameras is limited out of cost
restrictions, only a moderate number of observations are generated. It rests upon the
volumetric discretization to define the final size of the problem to solve.
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On this note, the resolution of the 3D space V is an input parameter and does not depend
on a physical impediment. As recalled before, m and m̃ stand for the lengths of wt and
st, respectively. Manifestly, m̃ ≥ m. The resolution m must be chosen high enough so
that it resolves sufficiently the measurement space, but small enough so that the system is
still solvable. Likewise, the subvoxelic fidelity expressed as a function of p must describe a
subvoxelic space R dense enough so that the position of the center of the particle is defined
with a high precision, but coarse enough to allow an accurate reconstruction from the signal
processing perspective. In general, however, we have n� m and implicitly, n� m̃.

2.2.3.5 Transport Model

We will exploit equations (2.31) and (2.32) to build a finite model approximating equation
(2.28). We introduce the following definition, for t ∈ N:

ut ,
[
u
(
k1, t

)
· · · u (km, t)

]T
, (2.47)

where ut is the vector collecting the velocity field of the fluid at the centers kj , ∀j ∈ J of
each voxel, at each time frame t. Consequently, we define the incident intensity distribution
of the particles displaced at time t by vector ut such as:

wt+1(ut) ,
[
wt+1

(
kj + ut,j

)]T
j∈J

. (2.48)

The vector wt+1 represents the incident intensity at instant t+ 1 computed on the center of
the voxels of the discrete grid V:

wt+1 ,
[
wt+1

(
k1) · · · wt+1 (km)

]T
.

Then, by exploiting the equivalence stated by equation (2.28) and plugging it together
with newly-defined vectors wt and wt+1(ut), we can conclude that:

wt = wt+1 (ut) . (2.49)

Exploiting equation (2.49) by using simple algebra, it can be seen that:

wt = I (ut) wt+1, (2.50)

where I (ut) is a matrix which explicitly depends on the considered interpolation.

Equation (2.50) expresses the density conservation assumption over the discretized grid
between two time frame. In the sequel, in order to account for small changes in the
illumination of the scene and interpolation errors, we will slightly relax the latter model
as follows:

wt = I (ut) wt+1 + net , (2.51)

where net : (m× 1) is a vector accounting for errors due to the brightness variation between
two time frames and approximation.

Particle-Based Transport Assumption
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The transport equation relating the particle-based volumetric densities functions, depicted
by equation (2.36), between two instants can be expressed, in an analog manner as outlined
by equation (2.50), by using the interpolation operator I(ut) with regard to the displacement
field between two frames and writes:

w̃t (ut) = I (ut) w̃t+1. (2.52)

We account for the errors due to the brightness variation between two time frames and
the sub-voxel precision of the location of the particles by relaxing the model presented here
above such as:

w̃t = I (ut) w̃t+1 + ñet . (2.53)

2.2.4 Summary

We have given a mathematical transcription of the physical properties of the tomoPIV
system described in section 2.1. We have listed, in section 2.2.1, a few simplifying
assumptions upon which we based our model. Section 2.2.2 grouped the continuous
depiction of the image formation models available in the literature and presented with
a proposed approximated counterpart of the physically pertinent model, followed by
the subsequent 3D transport equation. Finally, in section 2.2.2 we have submitted a
discretization scheme for the elected representation of the studied system. As a run-down
on the current section, we retain that:

1. the state-of-the-art physically pertinent image formation model at this date is given
by equation (2.22) and allows for the detection of particles;

2. we formalize and employ henceforward in the manuscript the image formation model
depicted by equation (2.27) and its subsequent transport equation assumption given
by equation (2.28);

3. we present, in section 2.2.3, two discretization schemes allowing us to juggle between
a particle-based representation - suitable for the reconstruction of the 3D signal - and
a blob-based model - appropriate in the case of velocity fields detection out of dense
volumetric images.
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Chapter 3. Volume Reconstruction

We have introduced, in chapter 2, two models relating the unknown volumetric data
to the collected image measurements. We reproduce here below the two models, which
change whether the unknown coefficients of the 3D density distribution in the cuboid
are represented as Gaussian blobs centered on particles or particles. The blob-based
representation transcribes, at each time frame t in a temporal sequence, as follows:

yt = Dwt, (3.1)

where the column vector wt ∈ Rm collects the intensities of the Gaussian blobs in the
volume whereas the vector yt ∈ Rn collects the pixel intensities of all Nc ∈ N cameras. The
dictionary D ∈ Rn×m encodes the projection operator between the 3D and the 2D spaces.
The second model writes:

yt = Bst, (3.2)

where B = ĩtDG, as suggested by equation (2.36); the function ĩt(·) depicts the incident
laser light on the surface of the particles at each time frame t, st ∈ Rm̃ is a binary
vector accounting for the presence of a particle at a sub-voxel position and the dictionary
G ∈ Rm×m̃ encodes the interaction between a particle centered on a sub-voxel and its blob
representation in the voxel space V. As a reminder, m̃ = p3m, where p ∈ N depicts the
sub-voxelic precision of the particle representation in equation (3.2).

Both paradigms have their respective interest, as emphasized in the previous chapter.
We stress here that the procedures applied to one model can be easily extended to the
other one. For this reason and in order to ease the theoretical description throughout the
current chapter, we will single-handedly refer to the model depicted by equation (3.1), unless
explicitly mentioned otherwise. Furthermore, the temporal index has been dropped for the
sake of simplicity. The simplified version of equation (3.1) writes:

y = Dw. (3.3)

The retrieval of w, and thus, of the volumetric intensity reconstruction out of the
available information in y requires an inversion - term used here as an abuse of language -
of the operator D. The problem we are trying to solve is therefore an inversion problem
with respect to a fully discrete model, and, more particularly, a 3D image reconstruction
from projections problem.
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Chapter 3 Volume Reconstruction

Figure 3.1 illustrates the work paradigm typically employed in the tomoPIV community
when dealing with fully discrete models of the so-defined experimental fluid mechanics
phenomenon. The methodology has been extensively described in [48] and in its companion
paper [46] in the context of the Positron Emission Tomography. We follow the same
standard as depicted below.

(A) Continous
model

(B) System of
linear algebraic

equations
(C)
Discretization

(D) Reduced
system of

linear algebraic
equations

(E)
Pruning

(F) Choice
of a criterion

(G)
Optimization
algorithm

(H)
Reconstruction

(I)
Mathematical
analysis

(J)
Assessement

Figure 3.1: Generic fully discrete model adapted for the tomoPIV scenario. Block A, Block B,
Block C have been extensively described in chapter 2. The current chapter focuses on
the subsequent steps leading to an estimation of original real-world signal. The dashed
blue box emphasizes the mathematical effort underlying the classical methodology for 3D
image reconstruction out of projections. Adapted from [48].

We have begun our analysis in chapter 2, where we first formulated the original
continuous volume reconstruction problem - which corresponds to Block A in figure 3.1 -
and formalized the discrete problem - Block B, Block C - resulting in system (3.3). We
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pursue our investigation by studying the properties of the digitized model accounting for
the tomoPIV system’s physical layout. Intrinsic characteristics of the scene as well as
hallmarks arising from the employed methodologies in chapter 2 impact on the derived
model. Succinctly, the system is very large and often underdetermined with n � m;
the projection matrix D ∈ Rn×m is very sparse and in general not full rank. Analysis
of the physical signal implies non-negativity and parsimony of the volumetric intensity
distribution. Details and discussions on such features are given in section 3.1.

Classical solution in the tomoPIV literature, depicted in section 3.3, search for a solution
of (3.3) by the methods of projections into convex sets. These procedure do not, however,
account for noisy settings, nor for physical constraints on the signal. As it turns out,
noise resulting from measurement inaccuracies and discretization coarseness may corrupt
the data. Furthermore, due to a limited number of available observations, such systems
may have infinitely many solutions. To cope with this conundrum, a criterion - step
illustred in figure 3.1 by Block F - issued from the optimization theory and most often
relying on physical priors must be established in order to single out the best solution out
of all those satisfying (3.3). The study of such solution concepts is the main focus of this
chapter. We will first discuss appropriate choices for the objective function ensuring the
reconstruction pertinence with respect to the constraints imposed by the arrogated model
in and extensively depicted in section 3.4. Then, in section 3.5 and 3.6, we put to the forth
that procedures with the same computational/storage requisites as the classical algebraic
methods can be derived in the general framework of proximal methods. The underlying
idea behind these concepts is portrayed in figure 3.1 by Block G. Block I suggests the
mathematical effort invested in solving the inverse linear problem.

We note that we can otherwise exploit the sparsity structure of the matrix D, which
is due to a limited number of basis functions on the line of sight of each camera pixel.
This sparse structure impacts the observation vector y, often resulting in numerous
zero measurements. Based on the latter, it is convenient to determine a set of reduced
dimensionality (approximately) equivalent to problem (3.3). The resulting stylized problem
is obtained after a so-called pruning procedure. The last-mentioned steps are illustrated in
figure 3.1 by Block D, Block E. The different approaches in the literature will be presented
and discussed in section 3.9.

The goal of the latter steps is to output an estimation of the solution to the initial
problem - see in figure 3.1, Block H - is retrieved. We assess the performance of the
presented paradigms in a realistic synthetic setting in section 3.10 - this step is portrayed
in figure 3.1, Block J, that suggests the interpretations of quantitative comparison between
the estimated solution and the ground truth.

The main contributions of this chapter can be read in Sections 3.5 and 3.6. More
specifically, we will show, in Section 3.5, that the tomoPIV problem can be recast within
a general optimization framework and that powerful convex-optimization tools, that is
methods belonging to the general framework of proximal methods [136], can be used to
solve the resulting problem. Then, we will introduce to the tomoPIV community a new
methodology belonging to the general framework of the ADMM paradigms [34] and we will
show its appropriateness within the context of our application.
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Chapter 3 Volume Reconstruction

3.1 System Features

The discrete system (3.3) depicting a tomoPIV layout is underdetermined. In fact, this
underdetermination is closely related to the discretization fidelity of the digitized model.
The latter impacts on aspects related to the complexity of the model and to its solvability
from the mathematical point of view. The level of undersampling of a tomoPIV system is a
result of the trade-off on the choice of the volumetric space discretization: a larger number
of voxels ensures a higher precision on the particles’ centers, but, simultaneously, generates
a higher number of columns in the interaction dictionary, that increases the ill-posedness
of the problem. For instance, in practice we often choose the metric sizes of the vertices of
the squared, respectively cubic pixel and voxel as approximately equal. Furthermore, we
suppose, in this example, that V is cubic and the images are square. Then, posing that the
number of voxels per dimension equals the number of pixels by dimension, we can simply
express the ratio between the number of rows and the number of columns of D as Nc

nd
, where

Nc is the number of cameras and nd is the number of pixels per dimension, where nd � Nc.

Due to ill-conditioning, the system may have an infinite number of solutions. In practice,
we usually exploit some a priori information on the original signal in order to single out
a solution. On this note, let us distinguish between the model represented by equation
(3.3), where w is a variable, the original discretized 3D signal w̃ having generated the
observations such that y = Dw̃ and the estimated solution that we will denote by w?.
Following the description of the experimental set-up made in the previous chapter, we have
concluded that the tomoPIV signal w̃ is non-negative and sparse.

The original 3D signal that we aim to reconstruct represents intensities and it is therefore
a non-negative signal. In fact, our signal processing transcription of this phenomenon
respects this non-negativity property. The laser intensity function, introduced in section
2.1.1, ĩt : R3 → R+ defined in each 3D point in V is a non-negative signal. Furthermore,
the physically-sound shading intensity function l : R3 → R+ is defined in a positive domain,
as writes equation (2.3). We can therefore deduct that the continuous approximation of
the volumetric density function at each time frame vt : R3 → R+, explicited by equation
(2.20) where we drop the position index, also corresponds to a non-negative signal. As the
discretization schemes do not induce non-negativity in the so-obtained digitized volumetric
function, we will assume henceforward that w̃ is a non-negative vector.

By the nature of the experimental setting, there is more unresolved space in the measuring
volume V than seeded particles. The vector w̃ thus contains more zero-components
(corresponding to the empty space in the flow) than non-zero coefficients (corresponding
to the intensities of the scatterers). An example depicted in [156] gives a hint on the size of
the unresolved space with respect to particle volumetric concentration. In fact, let us denote
by Cp the particle concentration; the latter varies whether the experiments are conducted
in water (Cp ∈ [0.5, 3] #particles

mm3 ) or in air (Cp ∈ [10, 20] #particles
mm3 ).
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3.2 Notations

3.2 Notations

We define the indicator function IX (x) of a set X as

IX (x) =
{

0 if x ∈ X
+∞ otherwise. (3.4)

The projection operator of a point v on a convex set X is defined as:

ΠX (v) = arg min
x∈X
‖x− v‖2.

The logarithm or the exponential of a vector v ∈ Rn has to be understood component-wise:
if v ∈ Rn, log(v) = [log vi]1≤i≤n ∈ Rn (resp. ev = [evi ]1≤i≤n ∈ Rn). In the sequel, we assume
that log denotes the Napierian logarithm, i.e., log e = 1. Let d•,j denote the jth column of
a matrix. In an analogue manner, let the column vector dj,• denote its jth row.

3.3 Standard Procedures for tomoPIV Volume
Reconstruction

Since the advent of tomoPIV, several volume reconstruction procedures have been
studied in the literature. The most popular methodologies in the current state of the art
are undeniably the the so-called "Row-Action Methods" (the reader may refer to [45] for an
extensive review).

The main idea underlying row-action methods consists in searching for a solution of (3.3)
(with possibly non-negativity constraints) by iteratively projecting a current estimate onto
some convex subsets defining the set of feasible solutions. For a thorough depiction of their
architecture, the reader should refer to [48]. We limit here our analysis to items destined to
elucidate the main idea behind their formalism. In a nutshell, a row-action method: (i) does
not alter the original matrix; (ii) does not perform operations on the matrix as a whole;
(iii) depends, at the current iteration, solely on the value of the previous estimate. The
latter points are crucial for the tomoPIV application. In fact, the interest of the tomoPIV
community has been mainly focused on procedures exhibiting low computational and
storage requirements. The row-action methods are indeed well adapted to our application
since: (i) their complexity (per iteration) remains linear in the size of the problem; (ii) the
matrix D need not be stored explicitly. We briefly describe the most popular algorithms
belonging to this family hereafter.

Algebraic Reconstruction Technique (ART)

Let us first notice that any solution of (3.3) lies at the intersection of the n hyperplanes
defined by the rows of D. More specifically, let di,• be the ith row of D and Hi the
corresponding hyperplane, i.e.,

Hi = {h ∈ Rm|dTi,•h = yi}. (3.5)
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Chapter 3 Volume Reconstruction

Then, w is a solution of (3.3) if and only if w ∈ ∩ni=1Hi.

The philosophy behind the algebraic methods consists in looking for a solution of (3.3)
by sequentially projecting the current estimate onto the hyperplanes Hi’s. The typical step
of the algebraic family follows the following iteration update:

w(k+1) = w(k)
Hi , (3.6)

where

wHi = w + γ
yi − di,•w
‖di,•‖22

dTi,•, (3.7)

with γ denotes the (relaxed 1) projection of w onto Hi. We note that, although we did not
explicitly include it in our notations, the relaxation parameter γ in (3.7) can vary at each
iteration. The simplest algebraic reconstruction technique, the "Kaczmarz" method [104]
(sometimes simply referred to as ART) corresponds to a fixed γ ∈ (0, 2) and to a cyclic
control i = k mod n. Note that its "randomized" counterpart selects the rows i randomly
with probability proportional to ‖di,•‖22 [97].

The Kaczmarz method iteratively projects the current estimate w(k) onto one given
hyperplane Hi. Other methodologies, coined SIRT, aim at exploiting the projections on
all the hyperplanes Hi at each iteration, i.e.,

w(k+1) =
n∑
i=1

pi w(k)
Hi , (3.8)

where pi > 0 is some weighting factor. The well-known "Cimmino" [53] or "SART" [8]
correspond to particular choice of parameters γ and pi’s. More generally, SIRT can be
written under the general form:

w(k+1) = w(k) + α(k)WDTΓ(y−Dw(k)), (3.9)

where α(k) > 0 and W, Γ are some positive-definite matrices. Formulation (3.8) corresponds
to the case where W and Γ are diagonal matrices.

Finally, let us mention that variants of Kaczmarz and SIRT have also been proposed to
search for a non-negative solution of (3.3), [182, Chapter 9]. The corresponding algorithms,
referred to "Kaczmarz+" and "SIRT+" in the sequel, respectively take the form:

w(k+1) = Πm
R+

(
w(k)
Hi

)
, i = k mod n, (3.10)

w(k+1) = Πm
R+

(
w(k) + α(k)WDTΓ(y−Dw(k))

)
, (3.11)

where ΠR+ (·) denotes the projection operator onto the positive orthant and Γ and W are
diagonal matrices.

1. The standard Euclidean projection corresponds to the case γ = 1.
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The algebraic methods enjoy desirable convergence properties. If (3.3) admits one
single solution, Kaczmarz and SIRT converge to this solution; if more than one solution
exists, the convergence point depends on the initial value w(0). If (3.3) does not admit
any solution, SIRT converges to a point w(∞) minimizing the weighted least-square
(y − Dw(k))TΓ(y − Dw(k)) from any initial guess, result shown independently in [103]
and [47]; on the other hand, the Kaczmarz iteration has been shown to converge, but
not necessarily to a solution minimizing the weighted least-square seen above [96]. The
same type of conclusion holds for Kaczmarz+ and SIRT+: if (3.3) admits at least one
non-negative solution, both procedures converge to such a point. In the opposite case,
SIRT+ converges to a minimizer of minw≥0(y−Dw(k))TΓ(y−Dw(k)) whereas the sequence
{w(k)} generated by Kaczmarz+ cannot be expected to converge. The rate of convergence
of the Kaczmarz method are difficult to compute analytically; faster convergence has been
empirically observed by using the rows of D randomly [97]. The convergence rate of the
initial iterations of SIRTs depend on the choice of the relaxation parameter; in fact, while
initially the iteration vector approaches a regularized solution, continuing the recursions
often leads to iteration vectors corrupted by noise (phenomenon coined "semi-convergence"
and studied for SIRT algorithms in [73]).

Within the tomoPIV context, the solution of the problem (3.3) has been sought with a
Kaczmarz algorithm in [143, 147]. In [151], the author submits a constrained version of
Kaczmarz’s algorithm and proves its convergence, even in the perturbed case, to a least
squares solution of the reconstruction problem, under somewhat weak hypothesis. SIRT
methods have been considered to solve our inverse problem in [140] and [139], that is
Cimmino and SART, respectively. We stress that in [140], the authors submit an extended
version of Cimmino’s algorithm which converges to the least squares solution in the general
perturbed case.

Multiplicative Algebraic Reconstruction Technique (MART)

The multiplicative algebraic techniques are built on the same spirit as ART: they look for
a solution of (3.3) by iteratively projecting the current estimate onto some hyperplane(s)
Hi. A specificity of MARTs is that they carry out projections with respect to the KL
distance [112]. We note that the use of the KL distance as projection metric implicitly
imposes that the constraint w ≥ 0 is in force. Hence, the procedures described hereafter
look for a nonnegative solution of (3.3).

The simplest procedure belonging to the multiplicative family obeys the following recursion
[95]:

w
(k+1)
j = w

(k)
j

(
yi

dTi,•w(k)

)γdij
, (3.12)

with γ ≤ min {d•,j}, for ∀j chosen such that the observation entries are strictly positive, ∀j
chosen such that the observation matrix has only non-negative entries. The procedure is
simply referred to as MART in the literature.

MART only exploits one row of D at each iteration. Another procedure, taking benefit
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from all the rows of D at each iteration, has also been proposed [40]:

w
(k+1)
j = w

(k)
j

n∏
i=1

(
yi

dTi,•w(k)

)γdij
, (3.13)

with γ, i, j chosen as above. This procedure is usually referred to as SMART.

The nature of w(∞) depends on whether (3.3) admits a nonnegative solution or not. In
the former case, w(∞) depends on the initial value w(0). More specifically, it has been shown
in [40] that (S)MART converges to the unique solution of the following problem:

min
w≥0

KL(w,w(0)) subject to y = Dw. (3.14)

where KL(u,v) ,
∑
i ui log(ui/vi) + vi − ui denotes the KL distance. Interestingly, if w(0)

is constant and y = Dw has non-negative solutions, it has been shown in [115] that MART
converges to the solution that maximizes the Shannon entropy, that is:

min
w≥0

∑
i

wi logwi subject to y = Dw. (3.15)

If (3.3) does not admit a nonnegative solution, SMART converges to the unique minimizer
of KL(y,Dx), see [40]. Regarding MART, the nature of w(∞) is unknown in this case as
noted by Herman in [94]. In [72], the author demonstrates linear convergence rates for
MART. Moreover, Petra et al. empirically show sublinear convergence, see [143, Section 6].

The tomoPIV volume reconstruction problem with (S)MARTs has been considered in the
literature in a considerable number of articles. Starting with the seminal paper [74], the
algorithm has been later adopted in [15, 29, 61, 143, 161, 171] and used as an enhancement
to the subsequent velocity estimation in [134]. A very recent contribution in row-actions
methods adapted for the tomoPIV application propose constraining the upper bound on
the feasible points [142]. This operation is enabled by designing an algorithm which aims
at minimizing the generalized distance of the Fermi-Dirac entropy.

3.4 Inverse Problem

As previously stated, due to a limited number of available observations, the tomoPIV
system generically depicted by equation (3.3) may have infinitely many solutions. To tackle
this shortcoming, the preferred modus operandi in volume reconstruction from limited data
is to resort to a procedure exploiting known information on the original signal in order to
find, among the numerous solutions, the vector w̃ which has generated the measurements
y. For doing so, we capitalize on the noted features of w̃, evoked here-above, that is its
non-negativity and its sparsity. While making allowance for the non-negativity can
simply be accomplished by explicitly constraining the sough solution, enforcing its sparsity
is less trivial. In fact, the latter constraint requires the resolution of an optimization
problem minimizing a function which encourages the sparsity on the sought solution. In
the optimization approach, we usually opt for an objective function lr : Rm → R+ which
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accomplishes this task. In accordance to the previous statements, the resulting optimization
problem writes:

(P 0) : w? = arg min
w

lr(w) such that
{

Dw = y;
w ≥ 0,

(3.16)

where the 0 superscript describes the inverse problem in the consistent case, when we
suppose that the system is not perturbed by noise. The first constraint ensures that the
signal is in adequacy with the recorded measurement, while the latter guarantees the
positivity of the estimated solution.

In practice, the system is often error-prone. In fact, several factors such as the
discretization of the continuous phenomenon or some measurements inaccuracies may alter
the collected data y. In order to take into account this noise on the observations, we allow for
a small gap between the latter and the model. The resulting optimization problem writes:

(P ε) : w? = arg min
w

lr(w) such that
{
ld(Dw,y) ≤ ε;
w ≥ 0,

(3.17)

with ε ∈ R+. ld : Rn × Rn → R+ is a "distance"-like function.

The problem (P ε) yields several equivalent formulations in the context of convex
optimization. For instance, we can express (P ε) as unconstrained optimization problem
which searches for the signal as a compromise between the approximation quality quantified
by ld(·, ·) and the metric defined by lr(·):

(R) : w? = arg min
w

ld(Dw,y) + rlr(w)

such that w ≥ 0,
(3.18)

with r ∈ R?+.

Another alternative to (3.17) is achieved by seeking the vector checking the properties of
lr(·) which minimizes the approximation error:

(A) : w? = arg min
w

ld(Dw,y) such that
{
lr(w) ≤ a;
w ≥ 0,

(3.19)

with a ∈ R?+.

Let us note that, on top of their interest from an algorithmic point of view, the different
formulations stated in (3.17), (3.18), (3.19) also show some interests from a practical point
of view. On the one hand, ε and a have clear physical meanings since they respectively
correspond to a measure of the noise level affecting the data, and the level of sparsity of the
sought signal (i.e., a measure of the density of seeded particles in the fluid). On the other
hand, r has usually no particular physical meaning. Tuning the value of this parameter may
thus require some cumbersome "trial-and-error" procedure. If lr(·) and ld(·, ·) are convex,
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problems (3.17) and (3.18) are equivalent for some value of ε and r. More specifically, a
solution of (P ε), ∀ε such that the problem is feasible, is either w = 0m or a minimizer
of (R), for some r > 0. However, for a given value of ε (resp. a), finding the value of r
leading to an equivalence between (3.17)(resp. (3.19)) and (3.18) is usually not a trivial task.

Functions lr(·) and ld(·, ·) are carefully built with respect to theoretical appropriateness
and performance suitability. The choices and their respective implications of lr(·) and ld(·, ·)
will be discussed in sections 3.4.1 and 3.4.2.

3.4.1 Choices of the Cost Function on the Signal

Of paramount importance in solving (P ε) and its variations is the choice of lr(·) such
that it respects and reinforces intrinsic properties of the signal. In fact, since the positivity
constraint can be explicitly included in our optimization problem, lr(·) should ideally be a
function enforcing the sparsity of the solution. In this section, we first review some choices
of lr(·) classically adopted by the signal processing/tomoPIV community. Then, we review
some functions enforcing the sparsity.

Standard Approach

The most straightforward example of a commonly used paradigm in the signal processing
community involves searching for the solution of system (3.3) under a constant function

lr(w) = 1. (3.20)

The subsequent problem minimizing the function defined by equation (3.20) finds the
solution as the intersection point of all hyperplanes {w| 〈di,w〉 = yi} , ∀i ∈ {1, . . . , n},
when there is no noise corruption of the data or within the neighborhood of the so-defined
hyperplanes, in the perturbed scenario. A further restriction involves looking for solutions
satisfying wj ≥ 0,∀j ∈ J , imposing thus the non-negative constraint on the estimate.
Generally, the problem built with respect to a constant functional has an infinity of
solutions. In the sequel, we will concentrate on more apt functions in order to select a single
solution out of all those satisfying the geometric constraints.

An omnipresent function in the signal processing community is the squared `2-norm;
intuitively, the latter represents the physical length of a vector w in Rm. This choice
is interesting and extensively used due to its strong convexity that outputs an unique
minimizer. The subsequent optimization problem minimizes the function:

lr(w) = 1
2 ‖w‖

2
2 , with ‖w‖2 ,

√√√√√
∑

j

w2
j

. (3.21)

The most commonly employed regularization implicitly adopted by the tomoPIV
community is the entropy-based optimization criterion, first addressed within the studied
application in [74], that is:

lr(w) = −ent(w), with ent(w) ,
∑
j

wj logwj , (3.22)
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where ent(·) is also known as the Shannon entropy function which maps the non-negative
orthant Rm+ into R. The main idea behind this formalization is to interpret the signal w as
a probability distribution that allows to subsequently assign it to an entropy measure in
order to indicate its randomness or uncertainty. Adding the non-negativity constraint on
the sought solution is necessary to ensure the definition of the log(·) function on R?+. We
define 0 log 0 = 0 and continuously extend lr(w), which is strictly convex on Rm+ .

The upper-depicted choices can however be problematic within the tomoPIV context. In
fact, neither one of the standard choices enforces the sparsity of the sought solution, thus
better alternatives are preferred.

Functions Enforcing Sparsity

Recently, the volumetric estimation problem has been expressed in a sparse representation
(SR) context in order to enforce the prior that in the visualized volume there is more empty
space than seeded particles [17, 55, 147]. Thus, the problem (3.3) can be studied from the
general point of view of SR context, which is a modern research field that deals with the
study of the exact reconstruction of a signal w̃ acquired by an incomplete linear measurement
(3.3), provided the latter is sparse, i.e., it has a small number of non-zero coefficients. A
straightforward manner of quantifying the sparsity of a signal is by counting the number
of its non-zero elements; the cardinality of the support of w is obtained by computing its
`0-"norm" 2, as writes:

lr(w) = ‖w‖0 , with ‖w‖0 ,
∑
j

|wj |0. (3.23)

While a problem minimizing equation (3.23) strongly enforces the sparsity on the sought
solution, the so-defined function lr(w) is discontinuous and non-differentiable in 0; we must
thus resort to combinatorial programs in order to minimize it, that rely on an exhaustive
search of all combinations of columns possible, which is not reckonable for high dimensions.

In order facilitate the resulting optimization problem, one can consider the `p-norm
instead:

lr(w) = ‖w‖p , with ‖w‖p ,

∑
j

|wj |p
 1

p

, (3.24)

where the interesting choice of p resides in the ensemble (0, 1). The smaller we choose p,
the more we enforce the sparsity structure of the signal. Moreover, lr(w) is continuous, but
non-differentiable in 0. The subsequent program minimizing lr(w) is not convex and it may
display local minima.

The evoked difficulties have been bypassed with the introduction of a relaxed prior based

2. where the double quotes mark notation is used to give a broader sense on the classical norms, as first
conveyed by Donoho in [62]. We keep in mind that the `0-"norm" is often referred to as a pseudo-norm since
it fails to validate the homogeneity property of norms, while `p-"norm", with p ∈ (0, 1) is referred to as a
quasi-norm as it solely verifies the quasi-triangular inequality condition. In the sequel, we will make an abuse
of language and include the latter measurements in the all-embracing norm category.
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on the `1-norm, that is:

lr(w) = ‖w‖1 , with ‖w‖1 ,
∑
j

|wj |. (3.25)

Non-negativity constraints can be implicitly enforced by considering the indicator function
of the positive orthant as a regularization function, i.e.,

lr(w) = IRm+ (w). (3.26)

Finally, taking (3.25) and (3.26) into account, it is easy to see that both non-negativity
and sparsity can be enforced with the following choice for lr:

lr(w) = ‖w‖1 + IRm+ (w) = 1Tw + IRm+ (w). (3.27)

The motivation behind the choice of solving (3.25)-(3.27) instead of (3.23) or (3.24) relies
on the study of their respective convexity. In fact, both ‖w‖0 and ‖w‖p , ∀p ∈ (0, 1) are
non-convex; conversely, for p ≥ 1, the corresponding norms are convex. In contrast, for
p = 1, in the same operating regimes, the sparsity of the correspondent estimated signal
will be inferior to that of the solution output by minimizing ‖w‖0 or ‖w‖p , ∀p ∈ (0, 1). See
section 3.8 for a discussion on conditions guaranteeing that the problems built with respect
to function (3.23) and (3.25) share the same unique solution.

Figure 3.2 provides a visual depiction of the `p-balls for the aforementioned p values
- figures 3.2(a-c), respectively - and of the −ent(·)ball - figure 3.2(d). We consider a
1-dimensional signal y and the projection dictionary D ∈ Rn×m with n = 1,m = 2. We
have y = Dw̃ with w̃ =

[
w̃1 0

]T
. For each considered norm, we draw the level lines

(cyan, green) to which we superimpose the line defined by y = Dw (purple). As rendered
in the image, for p < 1, the level lines are non-convex, whereas for p ≥ 1 and for −ent(·),
the latter are convex (which enables the use of efficient algorithms to solve the subsequent
optimization programs). The solutions of problems minimizing the `p-norm and maximizing
the entropy are located at the intersection of the line y = Dw with the lowest level line
(drawn here in green) and it is depicted by w?. For p ≤ 1, the latter will be sparse
(w?1 6= 0, w?2 = 0), but for p > 1 and −ent(·), w? will have more non-zero atoms than the
original sought signal (w?j 6= 0,∀j ∈ {0, 1}).

3.4.2 Choices on the Function Penalizing the Prediction-Observation
Discrepancy

The received observations are noisy due to the discretization and physical phenomena
which have been overlooked in our modelization, such as:

Measurement inaccuracies : First of all, as previously described in section 2.1.1, any
intensity levels recorded on the images that is outside of our region of interest depicted
by V (see equation (2.29)) will contribute to a decrease of the SNR of the density
volumetric function. Next, the measurements may be corrupted by calibration-induced
errors (see section 2.1.5);
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w?

w?
1

w?
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w2

(a) p > 1
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(b) p = 1
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(c) p < 1

w?
1

w?
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w?

w1

w2

(d) −ent-ball

Figure 3.2: (a)-(c): `p-balls of radius ‖w‖p, with w =
[
w1 w2

]T centered at the origin; (d):
−ent(w)-ball. The purple line is dictated by the model y = Dw. The solutions of
subsequent problems are given by w?, located at the intersection of the observations
equation with the lowest level curve, emphasized here in green.

Simplifying assumptions : As specified throughout the section 2.1, and summed-up in
section 2.2.1, we have built our continuous paradigm based upon several simplifications
of intricate physical phenomena;

An oversimplified discretization scheme : The discretization scheme formalized in section
2.2.3 resulting in the digital counterpart of the continuous model and expressed by
the equations (3.1) and (3.2), induces a further approximation in the model. In fact,
as explained in section 2.2.3.4, not only do we have to impose a certain coarseness in
the 3D discretization scheme, but the integration of the volumetric intensity along the
line-of-sight of the cameras’ pixels imposes the choice of approximating basis function.

The noise induced by the latter phenomena is difficult to accurately take into consideration
into our model. Therefore, we consider, in this section, two choices for the loss functions
penalizing the discrepancy between the the observations and the model.

Euclidean Distance
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The ubiquitous Euclidean distance writes:

ld(Dw,y) = 1
2 ‖Dw− y‖22 , (3.28)

with the particularity that ld(·, ·), known as the half-squared Euclidean norm of the
prediction-observation discrepancy, has the symmetry property in Dw and y, otherwise
not present in other generalized distances. Minimizing ld(Dw,y) over all w ∈ Rm for some
fixed y leads us to the usual metric projection. The resultant regularization approach is the
least-squares fit. Additionally, we can constraint the solution to be positive or upper and
lower bounded.

Kullback-Leibler Distance

The Kullback-Leibler (KL) distance writes:

ld(Dw,y) =
n∑
j=1

(
(djw) log (dj,•w)

yj
+ yj − (dj,•w)

)
, (3.29)

which is the Kullback-Leibler cross-entropy function from statistics. Adding the
non-negativity constraint on the sought solution is necessary to ensure the definition of
the log(·) function on R?+.

3.5 Beyond (M)ART with Proximal Methods

Row-action methods have been at the core of the tomoPIV application since its inception,
extensively used for their: (i) fast initial convergence towards a satisfying solution (ii)
row-oriented architecture enabling parallelism for modern grid computations. The standard
schemes of ART and MART come however with some limitations: (i) the solution is
most often a function of the initialization point w(0) (ii) the study of the convergence in
a perturbed setting is still an open question (iii) the methods do not exploit the sparse
structure of the sought solution. Our goal is to go towards methods for smooth optimization
robust for noisy settings and allowing to incorporate different priors on the signal via
regularization.

Our section is organized as follows. In section 3.5.1 we discuss gradient projection methods
and variants for smooth optimization. In section 3.5.2 we focus on the application of such
schemes to our application and we make some interesting connections between the former
and standard algebraic schemes.

3.5.1 The Gradient Project Method (GPM) and Variants

The GPM is a well-known procedure, looking for a solution of

min
w∈W

f(w), (3.30)
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3.5 Beyond (M)ART with Proximal Methods

where W ⊂ Rm is a convex set and f : Rm → R is a continuously differentiable convex
function. GPM is defined by the following recursion:

w(k+1) = ΠW
(
w(k) − α(k)∇f(w(k))

)
, (3.31)

where α(k) > 0 is some step factor, ∇f(w(k)) denotes the gradient of f(w) evaluated at
w(k) and ΠW(v) is the Euclidean (orthogonal) projection of v onto W (see section 3.2).

Several variants and extensions of GPM have been proposed in the literature. We present
two of them hereafter: the "nonlinear gradient projected method" [23] and the "proximal
gradient method" [136].

The Nonlinear GPM

The nonlinear GPM is motivated by the fact that the standard GPM step (3.31) can also
be expressed as

w(k+1) = arg min
w∈W

{
∇f(w(k))Tw + 1

2α(k) ‖w−w(k)‖22
}
.

The argument in the right-hand side can be understood as a linear approximation of f(w)
around w(k), penalized by a "proximity term" 1

2α(k) ‖w−w(k)‖22. Based on this observation,
Beck and Teboulle proposed a "nonlinear GPM" in [23], relying on different proximity terms.
More specifically, the recursion of the nonlinear GPM reads

w(k+1) = arg min
w∈W

{
∇f(w(k))Tw + 1

α(k) D(w,w(k))
}
, (3.32)

where D(u,v) : Rm×Rm → R+ is a Bregman distance [36]. The use of a different proximity
distance can lead to easier update steps, with possibly closed-form solutions.

The Proximal Gradient Method (PGM)

Another extension of GPM is the so-called PGM [136]. This type of methodology focuses
on optimization problems of the form:

min
w

f(w) + g(w), (3.33)

where f : Rm → R and g : Rm → R are closed, proper, convex and f is differentiable. The
recursion defined by the proximal gradient algorithm reads as

w(k+1) = proxg(w(k) − α(k)∇f(w(k))), (3.34)

where proxg(·) is the proximal operator of g, see Appendix E. The proximal operator can
be evaluated very efficiently in a number of situations, depending on the nature of g(w).
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The PGMs have recently sparked a surge of interest, mainly because these procedures
enable to efficiently handle non-smooth optimization problems. In particular, we can easily
constraint the solution to be sparse and/or non-negative by making appropriate choices
of non-differentiable functions. To this effect, we provide the closed-form expressions
of proxg for the choices g(w) = ‖w‖1, g(w) = IRm+ (w) and g(w) = 1Tw + IRm+ (w) in
Appendix E. It can also be noticed that the proximal gradient algorithm encompasses the
(standard) GPM as a particular case. More specifically, (3.34) reduces to (3.31) as soon as
g(w) = IW(w).

In this next section, we will apply this type of methodologies to problem of the form
(3.18) and (3.19).

On Some Convergence Tactics

The standard GPM, nonlinear GPM and PGM enjoy the same type of convergence
properties. They all converge to a minimizer of the considered problem provided that the
step factors α(k) are properly chosen. We refer the reader to [23, 27, 136] for a discussion
on this topic. The three procedures also exhibit a speed of convergence scaling as 3 O(k−1)
provided that f obeys some mild regularity conditions (more precisely, f should have a
Lipschitz-continuous gradient) [177].

In a series of works (see, for a compiled review [177] and reference therein), Nesterov
showed that this rate of convergence can be improved up to O(k−2) by combining the
standard updates (3.31), (3.32) or (3.34), with proper interpolation steps. The latter steps
being of negligeable complexity, the resulting procedures keep the same computational
burden per iteration while improving significatively the number of iterations required to
reach a given accuracy. As an example, we provide below the acceleration scheme of the
PGM employed in [24], which corresponds to Nesterov’s ’first method’ [132]:

z(k+1) = w(k) + ω(k)(w(k) −w(k−1))
w(k+1) = proxg(z(k+1) − α(k)∇f(z(k+1))) (3.35)

with ω(k) ∈ [0, 1). Clearly, the accelerated update (3.35) is similar to (3.34), with a simple
interpolation step (i.e., the evaluation of z(k+1) ) carried out before applying the proximal
operator. We note that interpolation only involves additions and scalar multiplications,
leading to a negligible computational overhead.

It was shown in [132] that the resulting gradient method with convergence rate O(k−2) is
an "optimal" first order method for smooth problems. Strictly speaking, these methodologies
can also be applied to non-convex problems. In this case, however, the general convergence
properties mentioned above do not necessarily hold.

A similar tactic combined with the classic PGM has been developed by Birgin et al.
in [30]. The algorithm, coined "Spectral Projected Gradient", accelerates the descent rates

3. More precisely, the sequences {w(k)} generated by these procedures are such that(
f(w(k))−minw f(w)

)
≤ Cfk−1, where Cf is some constant depending on the regularity of f .
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by a spectral gradient choice of steplength, method proposed by Barzalai et Borwein in [21].

3.5.2 PGM Applied to Tomo-PIV Problem (3.18)

In this section, we focus on the application of PGMs on problem (3.18). We emphasize
some connections existing between this framework and some standard algorithms. From
these observations, we point out that their speed of convergence can be improved by using
Nesterov’s acceleration schemes (see section 3.5.1).

Letting f(w) = ld(y,Dw) and g(w) = rlr(w), PGM recursion (3.34) particularized to
problem (3.18) takes the form:

w(k+1) = proxrlr
(
w(k) − α(k)∇ld(y,Dw(k))

)
(3.36)

with ∇ld(y,Dw) = −DT (y−Dw) for ld(y,Dw) = 1
2‖y−Dw‖22 and the operator proxrlr(·)

depends on the definition of lr(w). We remind the reader that the closed-form expressions
of proxrlr(·) for lr(w) defined in (3.25)-(3.27) are provided in Appendix E.

Several standard tomoPIV algorithms can be regarded as particular instances of PGM for
some choice of ld(y,Dw) and lr(w). Let us first consider the case where ld(y,Dw) = 1

2‖y−
Dw‖22 and lr(w) = 1. This choice corresponds to searching for a solution of minw ‖y−Dw‖22
without imposing any constraint of w. In this case, the PGM recursion reduces to

w(k+1) = w(k) + α(k)DT (y−Dw(k)). (3.37)

Recursion (3.37) corresponds to a gradient step for minimizing f(w) = 1
2‖y−Dw‖2 and is

equivalent to SIRT with W = I and Γ = I. In the same way, setting l(y,Dw) = 1
2‖y−Dw‖22

and r(w) = IR+(w), that is imposing positivity constraints on w, we obtain

w(k+1) = ΠRn+

(
w(k) + α(k)DT (y−Dw(k))

)
, (3.38)

which is equivalent to SIRT+ for W = I and Γ = I. Equivalence between SIRT/SIRT+
and PGM is also valid for W 6= I and Γ 6= I under some conditions; we do however not
elaborate on this subject hereafter to keep the discussion as simple as possible.

Let us make two remarks. First, we see from (3.36) that SIRT/SIRT+ can be extended
to account for the sparsity of the sought signal, without increasing the overall complexity
of the procedure. Indeed, as shown in Appendix E, proxrlr(·) takes the form of a simple
thresholding operator irrespective of the choice of lr(w) in (3.25), (3.26) or (3.27) (see
(E.2), (E.3) and (E.4) respectively). The complexity of (3.36) is therefore dominated by the
evaluation of the gradient ∇ld(y,Dw) and scales as O(mn). Hence, exploiting the sparsity
of the sought signal does come at no extra cost.

Second, since SIRT and SIRT+ can be understood as PGM algorithms, they can be
accelerated by using Nesterov’s scheme, see section 3.5.1. More generally, the standard
PGM recursion (3.36) can be accelerated as in (3.35) by using a interpolation step. We thus
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obtain

z(k+1) = w(k) + ω(k)(w(k) −w(k−1)) (3.39)

w(k+1) = proxrlr
(
z(k+1) − α(k)∇ld(y,Dz(k+1))

)
(3.40)

with ω(k) ∈ [0, 1). The acceleration depends on a proper choice of ω(k). In our simulation,
we set ω(k) = k

k+3 as suggested in [136, Section 4.3].

In [139], a SIRT method subject to sparsity constraints combined with stepsize selection
of Barzalai-Borwein [21] was proposed and tested for a tomoPIV-"like" setting.

3.5.3 Nonlinear GPM Applied to Tomo-PIV Problem (3.19)

In this section we focus on problem (3.19). We consider an approach based on nonlinear
GPMs. We thus consider the simpler problem: minw∈Rm+ ld(y,Dw), that is the sparsity
constraint "‖w‖1 ≤ a" is not taken into account. Setting f(w) = ld(y,Dw), W = Rm+ and
considering the KL distance as a proximity operator in (3.32), the nonlinear GPM then
reads:

w(k+1) = arg min
w∈Rm+

{(∇ld(y,Dw(k)))Tw + 1
α(k) KL(w,w(k))}.

Using standard optimality conditions, the solution of this problem can also be expressed as

w(k+1) = diag(e−α(k)∇l(y,Dw(k))) w(k), (3.41)

where diag(v) ∈ Rm×m is a square diagonal matrix with diagonal elements v ∈ Rm.

Update (3.41) can be seen as a general multiplicative rule where each element of the
previous estimate w(k) is multiplied by a factor depending on the gradient of the cost function
∇ld(y,Dw(k)). Interestingly, if one considers the particular case ld(y,Dw) = KL(y,Dw),
(3.41) reduces to the SMART recursion defined in (3.13). SMART can therefore be
understood as a particular instance of nonlinear GPM algorithm.

We make the remark that we can optionally consider problem (3.18) and apply a nonlinear
GPM to access to its solution. For instance, by adding the sparsity constraints lr = ‖w‖1,
the update rule simply writes:

w(k+1) = diag(e−α(k)(1+r)∇l(y,Dw(k))) w(k). (3.42)

Finally, solving (3.18) with lr = ‖w‖0 reduces to solving iteration (3.41), combined with
"hard thresholding", see equation (E.5) in Appendix E.

To conclude this section, let us emphasize that, because they belong to the families of
nonlinear PGMs or PGMs, all the algorithms proposed above can also be accelerated by
using Nesterov’s methodology described at the end of section 3.5.1. We mention that,
following this approach, an accelerated version of SMART has been proposed in [142].
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3.6 Tomo-PIV Reconstruction based on the Alternating
Direction Method of Multipliers

This section addresses the Alternating Direction Method of Multipliers (ADMM) theory,
a modern signal processing tool to tackle convex optimization which relies on coordinated
subproblems to solve the larger encompassing problem [34]. In particular, we depict, in
section 3.6.1, that general ADMM framework. In section 3.6.2, we focus on a variant of
the ADMM iterates to address the problem (3.17) and show its pertinence within for the
tomoPIV problem.

3.6.1 Alternating Direction Method of Multipliers (ADMM)

The ADMM focuses on the following type of optimization problem:

minw f(w) + g(z)
subject to Aw + z = 0 (3.43)

where f : Rm → R, g : Rn → R are closed, proper and convex functions. The difference
from the general equality constrained problem (3.17) is that variable w has been split into
two part, here w and z with the objective function separable across the splitting. We note
that the conditions on f(·) and g(·) are pretty mild; in particular, f(·) and g(·) are not
required to be differentiable and can take on infinite values. For example, considering f(·)
to be the indicator function of some convex set W, that is f(w) = IW(w), is a valid choice
in the optimization framework presented hereafter.

ADMM is an iterative procedure searching for a minimizer of (3.43) via the following
recursion:

w(k+1) = arg minw f(w) + ρ
2‖Aw + z(k) + u(k)‖22

z(k+1) = arg minz g(z) + ρ
2‖Aw(k+1) + z + u(k)‖22

u(k+1) = u(k) + Aw(k+1) + z(k+1),

(3.44)

where ρ > 0 is a penalty parameter associated to the distance-like squared `2-norm and
u ∈ Rn is the dual variable of the augmented Lagrangian for problem (3.43). We refer the
reader to the very good tutorial on ADMM [34] for an explanation of the rationale behind
this type of methodology.

ADMM has recently sparked a surge of interest in the signal-processing community for
several reasons. First, the conditions on f(·) and g(·) in (3.43) (i.e., closed, proper and
convex) are mild and (3.43) therefore encompasses a large number of optimization problems
as particular cases. Second, the ADMM recursion (3.44) convergences to a solution of (3.43)
under very general conditions, see [34, section 3.2]. Third, although ADMM is known to be
slow to converge to a solution with high accuracy, it has been shown empirically that ADMM
converges to modest accuracy in a few tens of iterations. Finally, the optimization problems
involved in the updates of w(k+1) and z(k+1) in (3.43) admit very fast implementation or even
closed-form solution in many setups; moreover ADMM is still ensured to converge if inexact
minimizations are carried out in the w and z updates, see [68]. These two last features make
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ADMM very appealing in large-scale problems where modest accuracy is often sufficient but
computational load is of utmost importance.

3.6.2 Application to Tomo-PIV Problem (3.17)

In this section, we apply ADMM to the tomoPIV reconstruction problem. We focus on
(3.17) with ld(y,Dw) = ‖y −Dw‖2 and lr(w) defined as in (3.25), (3.26) or (3.27). Our
derivations are inspired from the "C-SALSA" algorithm proposed in [7].

First, notice that (3.17) can equivalently be rewritten as

min
w,z1,z2

lr(z1) + IB(y,ε)(z2) subject to
{

z1 = w
z2 = Dw , (3.45)

where B(y, ε) = {v ∈ Rn | ‖y − v‖2 ≤ ε} is the `2 ball of radius ε centered on y. Letting
z = [zT1 zT2 ]T ∈ Rn+m, one can then easily re-expressed (3.45) in the standard ADMM form
(3.43) by considering the following substitutions:

f(w) = 1,
g(z) = lr(z1) + IB(y,ε)(z2),

A = −
(

In
D

)
.

(3.46)

Particularizing the ADMM update rules (3.44) to this particular setup, we obtain

w(k+1) = arg min
w
‖w− z(k)

1 − u(k)
1 ‖

2
2 + ‖Dw− z(k)

2 − u(k)
2 ‖

2
2{

z(k+1)
1 = proxρ−1lr(w(k+1) − u(k)

1 )
z(k+1)

2 = ΠB(y,ε)(Dw(k+1) − u(k)
2 ){

u(k+1)
1 = u(k)

1 −w(k+1) + z(k+1)
1

u(k+1)
2 = u(k)

2 −Dw(k+1) + z(k+1)
2 .

Let us briefly comment on the different steps of this recursion. The w-update is equivalent
to solving a least-square problem, whose closed-form solution is given by

(In + DTD)−1(z(k)
1 + u(k)

1 + DT (z(k)
2 + u(k)

2 )). (3.47)

We note that the inverse of In + DTD ∈ Rm×m can also be expressed as

(In + DTD)−1 = In −D(In + DDT )−1DT , (3.48)

which only requires the inversion of an n × n matrix. Moreover, the matrix to invert
does not vary from iteration to iteration; one can therefore take benefit from a Cholesky
factorization of (In + DDT )−1 to evaluate (3.47) with a complexity scaling as O(nm+ n2),
see [136, Section 6.1.1]. We note that this approach requires the storage of the (dense)
n × n matrix of the Choleski decomposition. If such a storage resource is not available,
the minimization appearing in the w-update can also be approximated by a few steps
of a conjugate-gradient method. This resulting procedure only requires the storage of
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vectors of size n and has a complexity scaling as O(nm). This approach is valid because,
as mentioned previously, ADMM with inexact minimization steps is ensured to converge [68].

The z-update requires to apply some simple proximal and projection operators. The
update of z1 rely on the proximal operators of (3.25), (3.26) or (3.27) (depending on the
definition of lr(w)). The implementation of these operators, defined in (E.2), (E.3) and
(E.4), resorts to very simple element-wise thresholding operations. Their complexity thus
scales as O(m).

The update of z2 requires the projection of Dw(k+1) − u(k)
2 onto the `2 ball B(y, ε). This

projection operator has a simple closed-form expression, see [7, section 3]:

ΠB(y,ε)(v) = y +
{
ε v−y
‖v−y‖2

if ‖v− y‖2 > ε

v− y if ‖v− y‖2 ≤ ε
(3.49)

This operation can thus be performed with a complexity scaling as O(m).

Finally, the updates of u1 and u2 only involve simple vector additions. As a consequence,
the overall complexity of the ADMM recursion is dominated by the w-update and scales
therefore as O(nm+ n2) (or O(nm) if a conjugate-gradient method is considered).

3.7 Other Computational Methods for Sparse Linear
Solutions

In retrospect, we have addressed, in Section 3.3, the tomoPIV problem from the general
viewpoint of standard (multiplicative) algebraic methods. In Section 3.5, we have migrated
towards an optimization framework and shown how standard methods can be recast
with proximal gradient methodology and constrained such that they enforce physical a
priori (i.e., non-negativity, sparsity) on the signal. Alongside these developments, we
have introduced in the tomoPIV community the ADMM methods for smooth (sparsity
constrained) optimization. We have mainly focused on the latter two categories to address
problem (3.17) (and variants) with lr(·) a function enforcing the sparsity of the signal. Due
to their attractive computational/storage properties, convergence rates and "trendiness";
there are nevertheless myriads of other (precursor) algorithms to solve this problem.

The goal of this section is to survey some of the existing methods for the sake of
completeness. Well encompassing reviews of algorithms seeking a sparse solution to a linear
inverse problem can be found in [81, 176, 191]. To give a foretaste of the remainder of the
section, Greedy Pursuit methods iteratively build up the sparse vector w by making a
succession of locally-optimal decisions, Convex Relaxation methods, which encompass
most of the methods depicted in the previous chapters, approximate a problem founded
on the `0 norm by its corespondent expressed by `1 norm, Nonconvex Optimization
methodologies relax the nonconvex `0 problem with another related nonconvex functional
(typically a `p−norm, with p < 1, or smoothed counterparts of the `p−norms), and
Bayesian Algorithms express the sparse representation problem as the solution of a
Bayesian inference problem and apply statistical tools to solve it (see [98] for a review of
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the state of the art techniques and novel contributions). We will insist, in the sequel, on
the former three categories. Note that this classification does not entail disjoint sets of
algorithms.

Greedy Pursuit

The pursuit algorithms, also known as greedy procedures, aim at solving problems of type
P 0 with lr(w) = ‖w‖0 (and variants - see section 3.4) by (i) updating the support vector of
the sparse decomposition by selecting or deselecting elements of the support vector of the
sought signal; (ii) making their decision with respect to local metrics, i.e., leading to the
highest decrease of their respective objective function. In a nutshell, one can distinguish
between several approaches based on the update of the support vector: the forward, the
backward and the forward-backward paradigms.

The first category updates the SR support by adding new atoms to the sparse basis.
If classical Orthogonal Least Squares (OLS) [52], Matching Pursuit (MP) [120] and
Orthogonal MP (OMP) [137] schemes select one atom per iteration, an enhancement has
been brought to the latter procedures which enables the selections of more than one atom at
once, see Stagewise Orthogonal MP (StOMP) [66]. Contrary to this method, the backward
family (see [57]), submits an iterative procedure which starts from a support containing all
the atoms and successively deselects the less pertinent ones. Its poor performance in the
context of an under-determined dictionary makes it unsuitable within our application. The
latter class, i.e., the forward-backward family allows the selection and the deselection of new
atoms. The implementation of these steps in an alternating rhythm allows the correction
of possible errors: once we have selected (respectively, deselected) a false (respectively,
correct) atom, it will still be possible to deselect (respectively, select) it. We mention the
Subspace Pursuit (SP) [59], Compressed Sensing Matching Pursuit (CoSaMP) [131] and
Single Best Replacement (SBR) [168] algorithms among the most notable.

With regard to their heuristic architecture, the guarantees of greedy algorithms to obtain
a global optimum for a dictionary D are rather restrictive [175]. These procedures are
however interesting for their simplicity and low complexity for relatively high performances
in term of various quantifying metrics (energy recovery, detection rate, . . .).

The performance of several greedy algorithms with respect to the algebraic state-of-the-art
procedure have already been analyzed with regard to our application in [17, 55]. Moreover,
proximal algorithms combined with hard-thresholding depicted in Section 3.5 joins the
Iterative Hard Thresholding (IHT) procedure introduced in [32]. Numerical simulations
for tomoPIV have showed that the sparsity maximization approach outperforms classical
algebraic schemes with respect to accuracy in certain operating regimes of interest, that
is for low-to-moderate seeding densities [18]. This empirical study joins the statements of the
Compressed Sensing (CS) literature. In fact, as Tropp et Wright state in [176], the frontier
between the performance of greedy versus more sophisticated optimization schemes is blurry.

Convex Relaxation
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Another family of such algorithms approximates the `0-norm by the `1-norm in order to
transform the initial problem, non-convex into a convex one, such that classical optimization
schemes. Among other, proximal gradient method (and variants) constrained by a `1-norm
(depicted in Section 3.5 ) can be cast to solve the convex relaxation problem. Let us briefly
depict two of them.

A classical solution and one of the first considered to solve the `1 constrained problem
is the "Interior Point Method". We refer the reader to tutorials that review the literature
up to that point on the variations of the discussed paradigm [83, 152, 190] and to the early
inception papers [109,111,122,129]. In [154], the author applies a primal-dual interior-point
scheme where the subproblems are formulated as linear least squares that can be solved
simultaneously (see [35]) with iterative procedures. This methodology is somewhat
reminiscent of the dual decomposition of the ADMM methodology. Implementations
are available in SparseLab toolbox [64]. This first approach does not account for
the non-negativity of the signal. To cope with this shortcoming, so-called barrier-log
approaches have been developed. A generic formulation of the said procedure can be
read in [191, Algorithm 1]. A barrier-log implementation of the primal-dual interior-point
algorithm is available in the `1-magic package [42]. The algorithm requires O(

√
m)

iterations and each iteration can be executed in O(n3) operations. In general, interior point
methods are not competitive with upper-coming gradient methods.

Homotopy, also known as active set or pivoting have been proposed in [67,70,119,135,178].
This class of method exploit the fact that the objective function ld(Dw,y)+rlr(w) undergoes
an homotopy from the `2-ball to the `1-ball as r decreases. We define

Xpath , {w?
r |r ∈ [0,∞)} , (3.50)

the solution path that follows the changes in r: when r → ∞, w?
r = 0m; when r → 0,

w?
r converges to the solution of P 0 with lr(w) = ‖w‖1. It was shown ( [67, 70, 135]) that

the solution path Xpath is piece-wise constant as a function of r. The algorithmic scheme
operates such that it identifies "breakpoints" leading to changes in the support set of w?

r , i.e.,
the nearest value of r at which the derivative of the piece-wise linear function changes. Thus,
the homotopy method starts out at w?

r = 0, and successively builds a sparse solution by
adding or removing elements from its active set. Clearly, in a sparse setting, this approach
is much more favorable than in a dense one, since, as long as the solution has few nonzeros,
homotopy will reach the solution in a few steps. An implementation developed for the Least
Absolute Shrinkage and Selection Operator (LASSO) problem is available in the SparseLab
toolbox [64]. The latter requires, for a k-sparse vector, 2k matrix-vector multiplications to
identify the k non-zeros in w?

r together with O(nk2) for other algebraic operations. The
cost is comparable with OMP. For sparse-enough solutions, the active set method is efficient.

The convex relaxation problem has been considered in a tomographic scenario
in [19, 142, 145], displaying convincing results in terms of accuracy of approximation versus
sparsity.

Nonconvex Optimization
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Procedures addressing the nonconvex roblem P 0 with lr(w) = ‖w‖0 require an often
untractable combinatorial search. It is possible to replace the original `0-norm with its convex
counterpart, that is, for example, the `1-norm, which renders equivalent solutions, under well
defined conditions, see section 3.8. However, the `1-norm penalizes more heavily the larger
coefficients than the smaller ones [44]. A "weighted" counterpart of the `0 minimization
problem has been advanced in [44] to cope with this imbalance. This ploy is meant to mimic
minimizing the `p-norm on the signal, where p < 1. We seek to solve the following problem:

min
w
‖Pw‖1 such that Dw = y, (3.51)

where P is the diagonal matrix with weights pj ∈ R?+,∀j ∈ {1, . . . ,m} on the diagonal. The
algorithm proposed in [44] casts the so-formalized problem as a linear program, where the
weights are computed, for each iteration l, as follows:

pl+1
j = 1

|w(l)
j |+ εw

,∀j ∈ {1, . . . ,m}, (3.52)

where εw should be slightly smaller than the expected non-zero magnitude of w(0)
j .

We mention that we have paired the above technique with the proximal gradient methods
previously described and extensively tested it in our assessment campaign. The results
have not been satisfactory enough to make it to the manuscript, as no real gain came out
ahead of the `1 constrained algorithms. We believe this unsoundness may be caused by the
high dependency of the computation of the weights on the tuning parameter εw (refer to
equation (3.52)). As it turns out, in the context of our application, this procedure is not
robust to the choice of εw.

3.8 Guarantees Related to the `0- and `1-norms

Since the solution of (P 0) with lr(w) = ‖w‖1 is sparse and thanks to the the convexity
of the minimized `1-norm, it turns out that the optimization problem minimizing (3.25) is
much easier to solve than the problem minimizing (3.23) and it represents an interesting
counterpart for problems minimizing the `p-norm, ∀p > 1, which minimize a convex norm,
but result in denser estimations.

Recent studies focused on the theoretical study of conditions ensuring that problems
(P 0) with lr(w) = ‖w‖p, with p ∈ [0, 1] have the same unique solution. Such theoretical
recovery guarantees revolve around thresholds on critical parameters of problems, which
relate the sparsity of the solution to the number of measurements and their properties. We
will review, in this section, recent results from CS and their respective applications within
the tomoPIV context.

First of all, let us distinguish between the two case studies approached in the related
literature:

1. worst-case analysis: the deterministic study of conditions under which the unique
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solution of (P 0) is recovered [71,89]; this is also known as the strong recovery scenario
;

2. average-case analysis: the study of conditions for unique recovery which hold, on
average, with high probability; also known as the weak recovery case [65,66].

Analysis in CS recently shifted from 1. to 2. Following the same pattern, recovery analysis
in tomoPIV followed the same track, trending from strong recovery analysis [144, 148] to
the study of weak recovery conditions [141,146]. We summarize in this section these results.

Conditions for the recovery of a sparse signal depend both on its sparsity and on
the design of the dictionary. The signal retrieval performance can be decomposed in 3
sub-problems: (i) w? must be the unique minimum of (3.23); (ii) w? must be the unique
minimum of (3.25), for p = 1; (iii) the equivalence of problems minimizing the `0- and
`1-norms for D must hold. Conditions on D within the CS literature involve a high spark
of the matrix, a small mutual coherence and a small Restricted Isometry Property (RIP)
constant, as it will be detailed next.

Definition 3.1 ( [63, Definition 1]). Given an arbitrary matrix D ∈ Rn×m, spark(D) is the
smallest possible number of linearly depended columns of D.

A k−sparse vector is defined such that ‖w‖0 = k. As stated in [63, Theorem 8],
any k−sparse solution of Dw = y with ‖w‖0 < spark(D)

2 is the unique solution of (P0).
Unfortunately, spark(D) is Non-deterministic Polynomial-time hard (NP-hard) to compute.

The next result is based on a measure quantifying the similarities between the columns of
a matrix.
Theorem 3.1 ( [63, Theorem 7]). Given an arbitrary matrix D ∈ Rn×m, its mutual
coherence writes: µ(D) = maxj 6=l

|〈d•,l,d•,j〉|
‖d•,l‖‖d•,j‖ . If

‖w‖0 <
1
2

(
1 + 1

µ(D)

)
,

then w? is the unique solution of (P 0) with lr(w) = ‖w‖p.
If D is an orthogonal dictionary (i.e., ‖d•,j‖2 = 1, ∀j ∈ J , 〈d•,j ,d•,l〉 = 0 if j 6= l and

n = m), then µ(D) = 0. For n < m, we necessarily have µ(D) > 0. If two columns of the
dictionary are alike, provided ‖d•,j‖2 = 1,∀j ∈ J , we obtain µ(D) = 1. Such an occurrence
induces confusion in the construction of a sparse representation of the measurement vector
y. In [38, Theorem 2], the non-negativity of the matrix entries is taken into account to
study the bounds on the mutual coherence of D.

The most popular condition for enabling stable recovery to date has been introduced by
Candés in [43].
Definition 3.2 ( [43, Definition 1.1]). A matrix D has the Restricted Isometry Property
RIP ι,k if, for any k−sparse vector the relation

(1− ι) ‖w‖22 ≤ ‖Dw‖22 ≤ (1 + ι) ‖w‖22 , ∀w, (3.53)
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holds, for some ι ∈ [0, 1).

Equation (3.53) implies that a matrix D cannot satisfy RIP ι,k is k > spark(D).

In [41], RIP ι,k with ι <
√

2 − 1, then all k−sparse solutions w? of Dw = y are unique
and solve (P 0) with lr(w) = ‖w‖p. See [41, Theorem 1.2] for the noisy counterpart of (3.1).
It has been proved in [50] that bounds on binary matrices are even more restrictive. The
latter proposition encourages us to compute matrix elements dij following (D.5) by using
the largest number of subvoxels, within computational limits.

In [144], the latter properties of D have been analytically computed for a classic scenario
of the tomoPIV application. Recovery bounds on spark(D), on µ(D) and on RIP ι,k are
extremely pessimistic. A weaker form of equivalence has been studied by Petra et al (see
[144, Section 5]), by exploiting the fact that the reduced feasible (to be formalized in a
following section) might result in an overdetermined linear system whose underlying solution
is obviously unique. The authors obtain a critical sparsity parameter k, which, for a binary
matrix D, writes:

k(N) ≈ 4N0.342+0.011 logN , (3.54)

where N is a size parameters, assuming the voxel space (respectively, the images) are
cubic (respectively square) with Nd, d ∈ {2, 3}. Moreover, they prove that the expected
performance equals the low particle densities used as a rule-of-thumb by engineers in
tomoPIV.

3.9 Pruning

As seen throughout the chapter 3, the depicted algorithmic schemes have a complexity
depending on the dimensions of the system y = Dw. Unfortunately, a common tomoPIV
system casts around 106 measurements for at least 4 times more voxels, see section 2.2.3.4.
An efficient technique to reduce these dimensions is to resort to a pruning procedure. As
previously seen, the original 3D signal accounts for a limited number of scattering passive
tracers with regard to the physical dimensions of the experimental volume. Therefore, we
only need to reconstruct the non-zeros coefficients of the unknown vector. To do so, one
can exploit the sparsity of y and D in order to determine a priori which coefficients in the
sought vector are non-zeros. As a reminder, the sparsity of D is due to the nature of the
discretization scheme; the latter has only a few non-zero coefficients as a result of a small
number of basis function present to the cone-of-view corresponding to each pixel in the
camera’s image. This pattern engenders numerous zero-measurements yi, ∀i ∈ {1, . . . , n}.
The problem has been already tackled in the literature. We overview below the main
pruning techniques.

The standard procedure is common to all the state-of-the-art pruning. Let G define the
feasible set of the solution to problem (3.3), that is:

G , {w|Dw = y, wj ≥ 0} . (3.55)

We denote by J = {1, . . . ,m} the set containing the indexes of the voxels in V.
Analogically, we define by I = {1, . . . , n} the set containing the indexes of the pixels. The
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here-reviewed pruning procedures aim at partitioning the sets I and J into complementary
subsets in the goal of discerning the lines and the columns that could be containing
information. Let us introduce the nomenclature utilized in the sequel. For given sets
I,J , matrix DIJ denotes the submatrix D with rows and columns indexed by I and J ,
respectively. Analogically, yI denotes the subvector indexed by elements in I. IC stands
for the complement of I. Formally, we define the following partitions:

YC , {i ∈ I|c1} and Y , I \ YC ; (3.56)
DC , {j ∈ J |c2} and D , J \ DC , (3.57)

where the constraints c1, c2 are crucial to the pruning procedure and characteristic of each
one of the following methods.

The reduced feasible set finally writes:

Gred , {wD|DYDwD = yY , wj ≥ 0} . (3.58)

Feasible Reduced Set (FRS)

The following developments have been introduced in [143] and enriched in [144]. Petra
et al. exploit the sparsity of measurement vector y and that of the dictionary D in order
to build up the reduced feasible set Gred. In fact, they remove the equations with zero
right-hand side by the setting the constraints c1 and c2 as follows:

c1 : yi = 0; (3.59)
c2 : ∃i ∈ YC such that dij > 0. (3.60)

We reproduce here-below a very important remark:

Proposition 3.1. [see [143, Prop. 1]] Let D ∈ Rn×m,y ∈ Rn have all non-negative entries
and G,Gred defined as in (3.55) and (3.58) respectively, where we plug in the constraints
defined by equations defined by (3.59) and (3.60). Then

G = {w ∈ Rm|wDC = 0 and wD ∈ Gred} . (3.61)

The FRS approach implies that a particular measurement vector y induces the partitions
D,DC ,Y,YC and the correspondent, possibly overdetermined dictionary DYD. Then,
proposition 3.1 entails that the original feasible set is equivalent to the reduced set, provided
the vector wD is padded by zeros, for all j ∈ DC .

Remark

For the following procedures, the constraint c1 remains unchanged, thus the sets Y,YC .
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Multiplicative Line of Sight (MLOS)

In [15], the authors arrive at a similar reduced set by redefining c2 as follows:

c2 :
Nc∏
c=1

ŷc
(
Wc

(
kj
))

= 0, (3.62)

where Wc : R3 → R2, ∀c ∈ {1, . . . , Nc} is the projection function defined in section 2.1.5 by
equation (2.17), kj is the center of a voxel ζj ∈ V,∀j ∈ J and ŷc : R2 → R is a interpolation
operator defined as follows:

ŷc(x) =
nc1n

c
2∑

i=1
yci pi (x) ,∀x ∈ R2, (3.63)

where pi : R2 → R is an interpolation polynomial.

Additionally, Atkinson et Soria [15] propose an initialization scheme for the solution of
the so-simplified system DYDwD = yY , that writes:

winit,j =
[
Nc∏
c=1

ŷc
(
Wc

(
kj
))] 1

Nc

,∀j ∈ D. (3.64)

Multiplicative First Guess (MFG)

In [188], the authors compute a novel reduced set based on the redefinition of the constraint
c2 as follows:

c2 :
Nc∏
c=1

(
dc•,j

)T
yc = 0. (3.65)

The proposed initialization scheme for the solution of the so-simplified system DYDwD =
yY is obtained by plugging the constraint (3.65) in equation (3.57) and writes:

winit,j =
[
Nc∏
c=1

(
dc•,j

)T
yc
] 1
Nc

, ∀j ∈ D. (3.66)

The MLOS Local Maxima (LocM) Approach

More recently, Cornic et al. proposed a novel pruning scheme specific to the particle-based
projection scheme formalized in [55] and in its companion paper [49]. In fact, they formalize
a so-called MLOS function closely related to the MLOS pruning technique described
here-above. The latter writes:

MLOS(k) =
[
Nc∏
c=1

ŷc (Wc (k))
] 1
Nc

, (3.67)
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∀k ∈ R3. We recall that Wc(·) is the projection function (see (2.17)) and ŷc : R2 → R is a
interpolation operator defined by equation (3.63).

Under the strong hypothesis that particles in V do not interact with each other, the
authors show that the function MLOS(k) yields local maxima if k belongs to the vicinity
of a particle. Based on the latter hypothesis, the authors redefine the feasible reduced set
by setting the constraint c2 by estimating the local maxima of the MLOS(·) function with
morphological operators. Said otherwise, the set D is defined by the local maxima of the
MLOS function. We mention that, in practice, the authors search for local maxima of a
thresholded MLOS function.

Summary

We have presented, in the current section, procedures to reduce the dimension of the
original system stated by (3.3). Among the cited paradigms, only the FRS approach
guarantees a reduced feasible set equivalent to the initial problem (see the proof in [143]). As
for the remaining procedures, there are not any theoretical guarantees that the corresponding
reduced feasible sets contain all the columns in the D dictionary that have generated the
original signal. We will assess the performance of these procedure in a comparative synthetic
study in the experimental report and empirically show which one of the latter respects the
original feasible set.

3.10 Assessement

This section aims of depicting our assessment campaign in order to validate the depicted
procedures throughout the current chapter. First of all, we describe the settings of the
visualizing system. Then, we define some functions quantifying the reconstruction quality.
Finally, competitive results in sections 3.10.4 and 3.10.5 illustrate our previous claims. All
our experiments are reproducible.

3.10.1 Synthetic Setting

Let us remind here that we have designed two models to depict the 3D-2D projection
within a tomoPIV setting. The first one, i.e., y = Dw, mimics the occurrence when the
vector w ∈ Rm collects the intensities of the Gaussian blobs present in the cuboid. The
second model writes y = Bs, with B = ĩDG, where the function ĩ(·) depicts the incident
laser light on the surface of the particles at each time frame and s ∈ Rm̃ is a binary vector
accounting for the presence of a particle at a sub-voxel position in the refined cuboid.
Naturally, the dictionary G ∈ Rn×m̃, where m̃ = p3m , encodes the interaction between a
particle centered on a sub-voxel and its blob representation in the voxel space V. Let w̃,
respectively s̃ be the actual blob, respectively particle distributions, i.e., the ground-truth.
Let y be the actual observation vector. We can then estimate the blob densities, that we
denote by w? or seek for the intensity distribution of the particles, that we denote by s?.
In the latter case, the blob distribution is obtained by w? = ĩGs?. Let us note that, in
the following experiments, the intensity scattered by the particles’ centers is ĩ = 1 and the
Gaussian blobs have a variance σ2

psf = 0.8. In the sequel, all of our results are averaged on

67



Chapter 3 Volume Reconstruction

50 different experiments.

We consider an ill-posed problem inspired by the real-world application [74]. For doing so,
we designate a cuboid partitioned into a cartesian grid of 61×61×31 voxels, with voxel unit
set at 1 arbitrary units (arb. u.). The origin of the scene frame is chosen in the center of
the cuboid. We place 4 cameras around the scene of interest such that the volume’s shape is
visible on each sensor (see Appendix C); each camera has a CCD sensor of size 3×3 arb. u.,
for a 61 × 61 resolution and a 3.1098 arb. u. focal distance. The latter considerations
give D ∈ R14884×70699 (which gives a ratio between the number of observations and the
number of unknowns of n

m = 0.2105, which is close to the case depicted in [142], where
the ratio was 0.25) and B ∈ R14884×565592, for p = 2 in the latter case (which generates
the ratio n

m̃ = 0.0263, close to the case study depicted in [55], where the ratio was of 0.0141).

The seeding density of the volume varies from 0.02365 to 0.4222 ppp, which corresponds
to a maximal sparsity of ‖w̃‖0 = 42417 and of maximal ‖s̃‖0 = 1571, for the structured
version of the model.

The test scenarios generated distinguish then by: (i) how we generate the volumetric
distribution of the particles; (ii) how we decode; (iii) the noise level on the observation.
That being said, we create three test cases, as follows:

Test Case 1 : The particles have been generated randomly at ideal positions in R, i.e., at
the center of the subvoxels xj ,∀j ∈ Z (see section 2.2.3.3); we refer to Test Case
1(a) for p = 1 and to Test Case 1(b) for p = 2.

Test Case 2 : The particles have been generated randomly in V. This means that the center
of the particles are not longer (necessarily) located at the center of a (sub-)voxel, as
considered by model y = Bs; as a consequence, there is modeling noise on our data.
We refer to Test Case 2(a) for p = 1 and to Test Case 2(b) for p = 2.

Test Case 3 : The particles have been generated randomly in V and a Gaussian noise of
variance 0.01 has been added to the observation vector y; as a consequence, our system
is corrupted by modeling and measuring noise. We refer to Test Case 3(a) for p = 1
and to Test Case 3(b) for p = 2.

All the tests presented in this article have been performed using a Matlab implementation
of the algorithms. We have adapted our programs for grid computations and ran extensive
tests on the IGRIDA computing grid nested at INRIA Rennes-Bretagne Atlantique.

3.10.2 Description of Evaluation Criteria

The quality of the pruning procedure and of the volume reconstruction is assessed by
several means with respect to, usually, quantities describing the seeding concentrations in
the volume.

On the Abscissa

68



3.10 Assessement

One way of estimating the ppp inherent to the visualizing system has been described
in [133]. Let y̆c be the filtered vector which is the output of a hard thresholding computation
on the measurements collected by the camera image plane indexed by c, yc such as:

y̆c .=
[
y̆ci

]T
i∈{1,...,nc}

=
[
yci1{|yci | > thr}

]T
i∈{1,...,nc}

,

where thr ∈ R?+ is chosen with respect to the (guessed) actual seeding concentration. The
ppp for the cth camera is then estimated as:

pppc = ‖y̆
c‖0
nc

, (3.68)

where ‖y̆c‖0 counts the number of non-zero elements in y̆c. In a synthetic setting, we can
alternatively compute the ppp value as the ratio between the sparsity of the blob vector and
the number of pixels in one image, provided all the sensors have the same intrinsic features.

From the signal processing viewpoint, we quantify the reconstruction accuracy with respect
to the sparsity of the signal, i.e., ‖w̃‖0 or ‖s̃‖0.

On the Ordinate

The quality of the reconstruction is classically assessed in the tomoPIV by means of the
so-called quality factor. As it turns out, the latter operator simply computes the normalized
correlation factor as writes:

Q = w̃T

‖w̃‖2
w?

‖w?‖2
(3.69)

Alternatively, we quantify the estimation quality in terms of the mean squared error,
namely:

MSE = ‖w̃−w?‖22
‖w̃‖0

. (3.70)

Pattern Recognition Tools

We propose to introduce some known measures in pattern recognition and information
retrieval. In fact, a "detection" is a True Positive (TP) if it coincides with the center of a
true particle; a correct rejection of such a particle is a True Negative (TN). A detection is a
False Positive (FP), i.e., a ghost particle, if it does not coincide with the position of a true
particle. A particle is considered as a False Negative (FN) if it is not detected. Furthermore,
the True Positive Rate (TPR) quantifies the "sensitivity" of a system and writes:

TPR = ]TP
]TP + ]FN , (3.71)

where ] stands for "number of".

The "miss rate" is assessed by the False Positive Rate (FPR) measure, that is:

FPR = ]FP
]FP + ]TN . (3.72)
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The "precision" is assessed by the Positive Predictive Value (PPV) measure as writes:

PPV = ]TP
]TP + ]FP . (3.73)

In signal detection theory, a Receiver Operating Characteristic (ROC) curve, is a graphical
plot which illustrates the performance of a binary classifier system as its discrimination
threshold is varied. It is created by plotting the fraction of true positives out of the total
actual positives (quantified by the TPR) versus the fraction of false positives out of the total
actual negatives (measured by the FPR), at various threshold settings.

3.10.3 Nomenclature

Let us recap here the algorithms depicted throughout the current chapter and associate
them with simple nomenclature.

The standard algebraic methods have been described in section 3.3. We will call ART the
procedure that iterates following (3.6). The SIRT procedures are represented by Cimmino
and SART (described under their general form by equation (3.8)). Their positivity
constrained counterparts (see equation (3.10)) are coined ART+, Cimmino+ and SART+.

In the same section, we describe the multiplicative algebraic techniques which follow the
same algorithmic scheme with the difference that they carry out projections with respect
to the KL. We call MART the standard procedure, see equation (3.12), and SMART its
simultaneous counterpart, see equation (3.13).

We present, in section 3.5, gradient projected methods (and variants) and show
connections to the standard methods discussed here-above. In particular, in section 3.5.2,
we focus on proximal variants of the algebraic methods. The proximal variant of SIRT is
coined ISTA, see equation (3.37), in this manuscript to align our nomenclature with the
current signal processing literature. Its positivity constrained counterpart is denoted by
ISTA+ and described by equation (3.38). We can extend ISTA to account for the sparsity
of the signal (see (3.36)); the proximal operator enabling this regularization are given, in
Appedix E, for ISTA`1 by (E.2), for ISTA`1+ by (E.4), for ISTA`0 by (E.5) (otherwise
known in the signal processing community as the Iterative Hard-Thresholding technique)
and for ISTA`0+ by (E.6).

The ISTA algorithms can be accelerated by using Nesterov’s scheme, see section 3.5.1.
More generally, the standard PGM recursion (3.36) can be accelerated as in (3.35) by using
a interpolation step. Then, the accelerated variants write: FISTA, FISTA+, FISTA`1,
FISTA`1+, FISTA`0, FISTA`0+.

In section 3.5.3, the SMART iteration is expressed as a Nonlinear GPM iteration, see
(3.41). Combined with thresholding, see Appendix E, we obtain SMART`0, SMART`1. We
can accelerate the SMART scheme by Nesterov’s methodology, resulting in the FSMART
iteration. Equation (3.42) expresses its `1 regularized variant, coined FSMART`1, whereas
FSMART combined with hard-thresholding gives us FSMART`0.
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Finally, section 3.6 introduces us to the ADMM theory. We focus, in section 3.6.2,
on applying the latter scheme to the the problem (3.17), otherwise known in the
signal processing community as the Basis Pursuit Denoising (without non-negativity
constraints). Depending on the definition of the regularizing function lr(·), we denote the
algorithmic schemes respectively by bpADMM+, bpADMM`1, bpADMM`1+, bpADMM`0,
bpADMM`0+.

3.10.4 Pruning Assessement

Among the pruning procedures depicted in section 3.9, we can distinguish between two
categories. On one hand, there are the binary classifiers which discriminate based upon a
null threshold, i.e., the FRS and the LocM techniques. On the other hand, the remaining
techniques, i.e., MLOS and MFG, usually build their respective reduced sets with a varying
discriminating threshold. The values of the latter are however chosen empirically in the
literature. The ROC curve depicted in Figure 3.3 traces the TPR with respect to the FPR
computed at a varying thresholds for the MLOS and MFG procedures. We have computed,
for comparison, the TPR against the FPR for the remaining procedures, namely the FRS
and the LocM techniques. The curves depicted by Figure 3.3 repeat this process for values
of ppp of 0.02365, 0.18973 and 0.4222.

The purpose of a good pruning technique is to eliminate as many as possible (ideally, all)
columns that do not contribute to the image formation while retaining as many as possible
(ideally, all) columns which have participated into building the observations. Only the FRS
guarantees that no such "good column" will be excluded out of the reduced set. Figure
3.3 empirically proves this claim; indeed, regardless of the scenario, the FRS techniques
always output a TPR equal to 1, while the FPR decreases with regard to the ppp value.
Nevertheless, its FPR value is always inferior to those of the remaining techniques, when
the latter have reached, for a given threshold, a TPR equal to 1. This implies that the FRS
technique is the preferred choice in order to guarantee the lowest FPR rate for a reduced
feasible set equivalent to the original one.

Figure 3.4 reveals, for varying ppp values, the PPV and TPR measures. For non-binary
techniques (i.e., MLOS and MFG), the measurements have been computed for the
threshold minimizing the distance to the point (TPR = 1,FPR = 0). The PPV curve,
closer to 0 than to 1, gives a hint on the number of false detections. We remark the
outstanding precision of the FRS technique for low to moderate values of ppp. The
TPR curve is very close to 1, for the FRS and the LocM techniques (we disregard here
the performance of the LocM technique for blob reconstruction because the procedure
was not designed to perform well in the latter case). This translates into a very high hit rate.

Finally, Figures 3.5 and 3.6 give a visual flavor of the initial volume distributions estimated
with the pruning techniques, computed for a ppp = 0.1 in a scenario corresponding to
Test Case 1(b). In fact, we have shown, in section 3.9, that initial intensity values are
suggested by the authors for the elements belonging to the feasible reduced set. We refer
to equation (3.64) for the MLOS procedure and to equation (3.66) for the MFG technique.
Similarly, the initializing scheme given by (3.64) is employed for the LocM technique,
but on a (generally) more restrained set than that corresponding to MLOS. We act in a
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similar manner for the FRS technique and suggest to initialize its corresponding feasible
reduced set by the values suggested by the MLOS scheme, that is by equation (3.64). The
so-obtained volumetric distributions are depicted by Figure 3.6. Figures 3.6(a-d) depict the
blob reconstruction, i.e., we reconstruct directly w?. We notice in particular that, while
the FRS, MFG and MLOS output similar results, the LocM tends to prune less spurious
particles; this result is in coherence with the procedure’s architecture, which is meant
to detect the peaks of the volumetric distribution and not blobs of aggregated particles.
Figures 3.6(e-f) illustrate the blob formation through w? = ĩGs?; this implies that we seek
to estimate the particle distribution corresponding to s?. We notice especially that the FRS
approach is notably adapted to this context, whose visual depiction is very similar to that
of the original signal, see Figure 3.5.

Based on our analysis and bolstered by the visual depiction of Figure 3.6, we will focus
in the sequel of our study on the pruning of our system with the FRS technique. Moreover,
as the latter seems to be very effective when we seek to reconstruct the intensity of the
particles (i.e., we decode following the model y = ĩDGs), see Figure 3.6(e), we will focus
our attention on the reconstruction of the particles rather than the blob distribution.

We have addressed, in our pruning assessment section, mainly the Test Case 1. Note
that we have conducted experiments for the other two test cases. Since the results inherent
to Test Case 2-3 are similar to those shown above (which lead us to the same conclusions),
we have not shown them here to avoid redundancy.

3.10.5 Volume Reconstruction Assessement

We proceed to an extensive assessment campaign, for all test cases depicted above and
for all the algorithms described throughout the chapter. We remind the reader that the
nomenclature used to refer these algorithms in provided in section 3.10.3.

Let us first observe the behavior of our system in an ideal case. For doing so, we compute
the Oracle curve against the seeding concentration of the volume. In a nutshell, the
Oracle curve assumes that the vector support of the original tomoPIV signal is known and
computes the least-square solution on the elements corresponding to this support. Figure
(3.7) shows the performance of such a procedure, in the sense of the quality factor and of
the mean-squared error, for the ideal Test Case 1(a). In this case, we known there exist a
solution to our system (3.1) and the latter technique obviously finds it, for each value of the
ppp metric ranging from 0.02365 to 0.4222. We mention that, within this range, we always
obtain an overdetermined dictionary, i.e., the number of its columns (corresponding to the
support of w̃) is always smaller than the number of observations. Running the algorithms
depicted throughout the current chapter on the same ideal scenario will give us an idea of
how our methods behave when dealing with an underdetermined dictionary, as we will see
in the sequel.

First, let us analyse the features of our pruned system for the same range of ppp.
We seek for the estimated volumetric distribution in the feasible reduced set defined by
equations (3.59) and (3.60). This corresponds to the FRS technique, that we have chosen
for its better performance compared to other state-of-the-art techniques (refer to previous
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section for details). Figure 3.8 is destined to give an intuition on the reduced corresponding
dictionaries, for all test cases. Notice how the problem is overly overdetermined for Test
Case 1-3(a) for values of ‖w̃‖0 going up until ≈ 7000 and for Test Case 1-3(b) for values
of ‖w̃‖0 reaching up to ≈ 3000.

We point out the the images have been generated using the scenarios described by the
tests cases introduced in Section 3.10.1. As we mentioned before, regardless of the approach
employed to generate the images, we always seek to reconstruct the particles’ intensity
distribution, meaning that we decode following the model y = ĩDGs̃. As a general rule,
Test Case ·(a) implies that we seek the particles in a less refined space (for p = 1), whereas
Test Case ·(b) entails that we seek for the particle distribution at a sub-voxelic accuracy
(with p = 2). Concerning the image generation, Test Case 1(·) generates the images using
the model y = ĩDGs̃, meaning that the particles are ideally placed in the center of the
voxels (when p = 1, leading to Test Case 1(a)) or sub-voxels (when p = 2, leading to Test
Case 1(b)). Test Case 2(·) generates the observations following the model y = Dw̃,
implying that we will have modeling noise on our system when decoding with model
y = Bs. Test Case 3(·) produces the observation following y = Dw̃ + n, where n is a
Gaussian noise of variance 0.01 corrupting the images (due to calibration, approximation
errors, measurements). We mention in advance that all of the following methods have been
stopped after 120 iterations, for all test cases.

Let us now focus on Test Case 1(a) and give comparative results by classes of
algorithms. Figure 3.9 reveals performance report for the algebraic algorithms (i.e., ART,
SART, Cimmino and their positivity-constrained variants). First of all, we observe that the
positivity-constrained methods perform overly better than their unregulated counterparts in
terms of quality of reconstruction and MSE. Secondly, we notice an undeniable superiority
of ART against its compeers. Also, we notice a correlation between the moment when the
dictionary becomes underdetermined (see Figure 3.8 (top row, left) ) and the moment when
the performance of all the algorithms start to degrade, at around ppp = 0.1. Let us point
out that, in this ideal scenario where a solution to (3.2) exists, the latter methods converge
to this solution. If the Cimmino and SART do not have the same end-point after the same
number of iterations as ART, it is because the former have a slower convergence speed. We
have not compared the converge behavior of the algebraic methods together, but Figure
3.19 (left) does give an order of contrast between ART and other methods belonging to
different algorithm class. Finally, Figure 3.13 (top row) shows the computational burden
of each algebraic algorithm against each other. Cimmino/Cimmino+ methods perform
considerably faster; this is due to their Matlab implementation, see [91]. We will, from now
on, retain ART for our future experiments, due to its better overall performance.

Figure 3.10 depicts the behavior of MART, SMART, SMART`0 and SMART`1 against
their accelerated variants, that is FSMART, FSMART`0 and FSMART`1. First, we notice
that the MART, SMART, SMART`0 and SMART`1 superimpose. As it turns out, MART
and SMART solve the same problem, so they converge to the same end-point after 120
iterations. SMART`l solves w? = arg minw KL(Dw,y) + r ‖w‖l, with l ∈ {0, 1} and r a
tuning parameter chosen with respect to each ppp value. Here, r ranges between 0.7 and
0.01: the higher the seeding concentration, the less we threshold. SMART`0 applies a
hard-thresholding at each iteration on the coefficients computed by SMART; since SMART
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and SMART`0 attain the same solution, it results that the latter does not eliminate
coefficients belonging to the feasible set of the solution. SMART`1 solves a `1-constrained
KL minimization problem, but it does converge to a similar solution as its unconstrained
variants (with small differences at very low seeding values). Concerning the accelerated
versions of SMART, we notice that the FSMART, FSMART`0 and FSMART`1 have a
similar behavior. FSMART solves the same problem as SMART; the fact that it yields
better reconstruction accuracy is due to the Nesterov’s first method, which considerably
enhances the convergence speed towards the solution. Figure 3.19(a), which depicts
(among others) SMARTs and FSMARTs convergence rates, backs up our theoretical claims.
Moreover, notice how the behavior of (S)MARTs is affected by the underdetermination of
the decoding dictionary (around ppp = 0.8, see Figure 3.8 (top row, left), while FSMARTs’
performance starts to decay for higher seeding values. As for the constrained variants of
FSMART, we recall that the former solve the same problems as the constrained SMARTs,
i.e., w? = arg minw KL(Dw,y) + r ‖w‖l, combined with the acceleration scheme, with
r is chosen as here-above. We notice slight enhancement of FSMART combined with
hard-thresholding (i.e., FSMART`0). This implies that, at low seeding concentration,
FSMART`0 successfully zeroes out spurious coefficients. FSMART`1 follows the path of
its unconstrained variant, except for low-densities, where it seems to slightly degrade the
accuracy of the reconstruction compared to FSMART; this is simply due to a poor choice of
the r parameter, which is rather difficult to tune because it does not hold a clear physical
underpinning. Computationally, all (F)SMARTs perform similarly, with the exception of
MART, which attains prohibitive time, as expected, see Figure 3.13 (middle). As a sum-up,
we retain that (i) Nesterov’s first problem combined with the KL minimization problem
yields significantly better reconstruction quality due to faster rates of convergence for the
same computational burden; (ii) the `0 constrained (F)SMARTs reveal their interest in a
low-seeding context; (iii) MART attains the same solution as its simultaneous compeers,
but within a dramatically higher computational time; we can henceforth eliminate it for
future experiments.

Figure 3.11 depicts the demeanor of proximal variants of the algebraic methods - (F)ISTA
and counterparts - and that of the ADMM techniques. We recall that (F)ISTA algorithms
solve problem (3.18) with r chosen varying between 0.7 and 0.01, inversely proportional
to the sparsity of the signal, and functions ld(y,Dw) = 1

2‖y − Dw‖22 and lr(w) = 1 (for
ISTA/FISTA) or a function enforcing the sparsity for (ISTA`l/FISTA`l, with l ∈ {0, 1}).
We can optionally encourage the latter schemes to constrain the positivity on the sought
signal (i.e., ISTA+(`l)/FISTA+(`l)). Let us also recall that FISTAs are an accelerated
variant of ISTAs. Looking back at Figure 3.11, we first notice that ISTA+, ISTA`1 and
ISTA`1+ are superimposed. This implies that, for this algorithmic scheme, constraining the
original problem with positivity or sparsity does record a noticeable gain in performance. A
similar behaviour can be observed for FISTA+, FISTA`1 and FISTA`1+. Notice that the
threesome is generally superimposed, with slight differences observable for high densities
on the Q curve and for low densities on the MSE curve, where FISTA+ outperforms
its `1 constrained compeers. We recall that FISTAs are accelerated variants of ISTAs,
which explains the performance enhancement in the same number of iterations. The `0
constrained variants of ISTAs have a rather heretical behavior; first of all, the corresponding
problems are not convex and yield more restrictive guarantees of convergence toward
a unique solution. Equivalently, accelerating ISTA`0(+) with Nesterov’s first scheme
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does not uphold guarantees towards convergence. In practice, we average our results
over 50 experiments. One or several bad recoveries can thus easily alter the averaged
metric in a point, generating thus a wavering overall behavior for ISTA`0, ISTA`0+ and
FISTA`0, FISTA`0+ (where the two latter are superimposed). The ADMMs solve the
problem w? = arg minw lr(w) such that ld(Dw,y) ≤ ε with ld(·) and lr(·) defined as
for ISTAs/FISTAs and ε = σ2

e ‖w̃‖0, where σ2
e is the variance of the noise reigning the

data. Notice, on Figure 3.11, how bpADMM+, bpADMM`1 and bpADMM`1+ (which
are superimposed) attain close-to-perfection performance. Although they solve a problem
equivalent to that solved by the (F)ISTAs (in the convex case), notice on Figure 3.19 (left)
that the ADMMs convergence rates are considerably faster than those of FISTAs (which
are, theoretically faster than those of ISTAs). As for the `0(+) constrained ADMM, notice
how the performance is competitive for moderate seeding values and only starts to degrade
around ppp ≈ 1.2 for bpADMM`0 and around ppp ≈ 1.65 for bpADMM`0+. The latter
observation also shows the gain of constraining the positivity on the signal for ADMMs,
where bpADMM`0+ convergences considerably faster than bpADMM`0, see Figure 3.19
(left). As a recap, we retain that the performance of ISTAs are dramatically enhanced by
the accelerating scheme leading to a more accurate reconstruction for a same number of
observations (see procedures FISTAs on Figure 3.11). The ADMMs schemes for convex
problems act almost flawlessly in this ideal scenario as they converge faster than proximal
gradient methods. Computationally, we refer to Figure 3.13 which classifies between the
ISTA/FISTA and the ADMM schemes. As we can see, the former are up to 6 times
faster than the latter. This is in part due to the fact the our implementation uses a LU
decomposition to solve a set of linear equations. Additionally, this step necessitates the
storage of an n × n matrix. We point out that ADMMs complexity could be decreased by
using a conjugate-gradient step instead.

Figure 3.12 recaps our previous comments. For the sake of conciseness, we have
excluded from the said-figure solely the algorithms that do not hold much interest. For
example, Cimmino and SART perform slightly worse than ART and the ISTAs is always
out-performed by FISTAs. Going back to Figure 3.12, we notice that the `0 constrained
algorithms generally behave poorly for moderate to high seeding densities. The SMARTs are
outperformed by methods for convex optimization, i.e., FISTAs, FSMARTs, and ADMMs.
The order we mentioned them in is not chosen randomly, but to rank their performance
from worse to best. We can see that the bpADMM class for convex optimization (i.e.,
bpADMM+, bpADMM`1 and bpADMM`1+) preserves its competitive performance even
for high seeding densities, whereas the runners-up, i.e., the FSMART and FISTA, "break" at
high-to-moderate ppp, that is around 0.15. For these last classes of methods, unsurprisingly,
the convergence speed acts similarity, making the ADMMs for convex optimization the
faster-decay convergence rate algorithm within unperturbed settings.

In the sequel of our study, we will henceforth focus on the algorithms which have
performed best in the previous scenario and will restrain the values of the ppp to 0.12,
which is closer to real-world applications. Figure 3.14 reiterates the former study with
the difference that the particles are sought in a more refined volumetric space (refer to
the description of Test Case 1(b) for details). We notice in particular how the ADMM
methods for convex optimization predominantly outperform the FSMARTs class. As in the
first case scenario, the `0 constrained algorithms act rather poorly for moderate-to-high
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seeding density. Standard state-of-the-art algorithms ART+ and SMART are surpassed by
their proximal variants, i.e., FISTA+ and FSMART, respectively. Figure 3.12 (right) shows
the convergence rates of the chosen algorithms. As it turns out, the ADMMs for convex
optimization decay faster than their concurrent, i.e., the FSMARTs.

We mention that, for the sequel of our study, we have excluded the ART, as it performs
similarly to (F)ISTA, but at a very elevated computational price. Similar remarks as those
made for Test Case 1(a-b) stand for figures depicting the behavior of the algorithms
in remaining test cases. As a reminder, Test Case 2(a-b) adds noise to the particles’
positions. In fact, in contrast to Test Case 1(a-b), where the particles have been
ideally placed at the center of the (sub-)voxels, in Test Case 2(a-b) we generate the
particles’ positions randomly in the cuboid. This generates modeling noise in our
system. This perturbation reflects strongly in Test Case 2(a) - see Figure 3.15. In fact,
none of the algorithms reach a perfect quality reconstruction, in contrast to Figure 3.12,
where bpADMM+, for example, maintained a very small gap to Q = 1, even for high
seeding densities. Here, FSMARTs tend to slightly outperform the bpADMMs for convex
optimization. Figure 3.20 (left) shows the convergence rate for the chosen algorithms, for
ppp = 0.0758. Apart from the behavior of algorithms for convex optimization which act
in accordance to the theory (and to the previous scenario) and sustain the performance
in terms of MSE seen on Figure 3.15, we observe peculiar demeanor of `0 constrained
algorithms, which are either stagnate or increasing the MSE between the iterates and the
ground truth. This conduct reflects on their performance in Figure 3.15. We notice an
effect of semi-convergence for bpADMM`1; in contrast, bpADMM`1+’s convergence decays
normally. This implies that constraining the positivity on bpADMM`1 improves to a certain
degree the reconstruction. This modeling noise reflects less in Test Case 2(b) - see Figure
3.16. This is explained by the fact the placing randomly the particles in a much more
refined grid decreases the standard deviation of the latter with respect to the voxel centers
and thus diminishes the overal modeling noise. Thus, the performance of the algorithms
in Test Case 2(b) is closely related to that of the algorithms in Test Case 1(b). We
notice thought that bpADMM for convex optimization tends to degrade in comparison to
its behavior in the ideal Test Case 1(b). This lets us to believe that the latter is less
robust to noisy schemes than the FSMARTs. We can refer to Figure 3.20(right) in order
to observe their respective convergence rates. We notice that even if bpADMM for convex
optimization and FSMARTs attain the same solution, the former seems to decay faster.
Thus, we can stop the computations after only 40 iterations.

Test Case 3(a-b) appends, in addition to the volumetric noise, some perturbing artefacts
on the observations (refer to the description of Test Case 3(a-b) for details). The latter
case scenarios are meant to give a flavor of the behavior of the algorithms in a real-world
setting. We remark that the observation noise does not alter in particular the behavior of
the algorithms in comparison to Test Case 2(a-b). That being said, observations made
about Test Case 2(a-b) can be transferred when dealing with Test Case 3(a-b): differing
performance of the `0 constrained algorithms, overall very good performance of bpADMM for
convex optimization and FSMARTs, which routinely outperform state-of-the-art SMARTs
and FISTAs, the modeling noise - more important Test Case 3(a) - alters more severely
the performance of algorithms in contrast to that in Test Case 3(b), which barely
affects them. Same observations stand for the convergence study, see Figure 3.21. In this
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study, it turns out that the modeling noise may alter more seriously the accuracy of the
estimations than noise corrupting the 2D images (coming from measuring, approximations
errors, calibration). This latter remark strongly suggests that a refined volumetric grid is
suitable for the tomoPIV setting. However, we keep in mind that the noise variance on the
observation chosen for out setting might be slightly lower than that on the noise affecting
real 2D observations from a tomoPIV setting.

3.11 Summary
In this chapter, we have gone beyond standard procedures used in tomoPIV by recasting

the tomoPIV problem within a general optimization framework. In particular, we have shown
that physical constraints can be properly handled by defining an adequate optimization
problem. Then, we have made some interesting connections between standard methods and
the proximal methods by showing that the former are particular cases of the latter. Finally,
we have introduced to the tomoPIV community the ADMM methods that outperform in
most cases state-of-the-art procedures.
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blobs: MLOS PSF: MLOS/p = 1 PSF: MLOS/p = 2
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blobs: FRS PSF: FRS/p = 1 PSF: FRS/p = 2
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Figure 3.3: Roc curve for the pruning procedures for Test Case 1(a-b). When the name of the
procedure is prefixed by "blobs", we estimate the initial blob distribution w?; alternatively,
when the name of the procedure is prefixed by "PSF", we estimate s? and compute
w? = ĩGs?. From up downwards, the ppp value is 0.02365, 0.18973 and 0.4222.
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Figure 3.4: PPV/TPR curves for the pruning procedures for Test Case 1(a-b). The same
nomenclature conventions as for those used in Figure 3.3 stand. Here, the ppp values
evolve from 0.02365 to 0.4222.

Figure 3.5: Original ideal distribution; the particles have been generated at ideal positions in R, i.e.,
at the center of the subvoxels xj ,∀j ∈ Z.
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(a) blobs FRS (b) blobs MLOS (c) blobs: MFG (d) blobs LocM

(e) PSF FRS, p = 2 (f) PSF MLOS, p = 2 (g) PSF MFG, p = 2 (h) PSF LocM, p = 2

Figure 3.6: Estimated ideal distribution. The pruned volumetric densities (a)-(d) have been estimated
following the model stated by equation (3.1), while the pruned volumetric densities (e)-(h)
have been decoded following the model in equation (3.2), with the R-space discretization
parameter p = 2.
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Figure 3.12: Assessement for Test Case 1(a)
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Figure 3.14: Assessement for Test Case 1(b)

0.4 0.6 0.8 1

·104

0.4

0.6

0.8

1

‖w̃‖0

Q

4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12

10−3

10−2

ppp

MSE

bpADMM+ bpADMM`0+ bpADMM`1+ bpADMM`0 bpADMM`1
FISTA+ FISTA`0+ FISTA`1+ FISTA`0 FISTA`1
FSMART FSMART`0 FSMART`1 SMART SMART`0
SMART`1

Figure 3.15: Assessement for Test Case 2(a)
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Figure 3.16: Assessement for Test Case 2(b)
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Figure 3.17: Assessement for Test Case 3(a).
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Figure 3.18: Assessement for Test Case 3(b).
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Figure 3.19: Convergence for Test Case 1 for ppp = 0.0758. Left : Test Case 1(a); right: Test
Case 1(b).
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Figure 3.20: Convergence for Test Case 2 for ppp = 0.0758. Left : Test Case 2(a); right: Test
Case 2(b).
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Figure 3.21: Convergence for Test Case 3 for ppp = 0.0758. Left : Test Case 3(a); right: Test
Case 3(b).
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Chapter 4. Velocity Estimation

We have presented, in the first chapter, techniques for enabling vision-based observations
and analysis of fluid dynamics. Moreover, we have motivated our choice for focusing on the
tomoPIV system in our effort to estimate the 3D velocity of the turbulent fluids. If classical
optical flow computes the 2D motion directly out of the planar measurements, more recent
scene flow usually relies on the previously estimated 3D volumetric intensity distributions.
The procedures depicted in chapter 3 are thus of paramount importance for the current
study. The next step, exposed throughout the current chapter, is to exploit the volumetric
images in order to retrieve the velocity of the turbulent fluids.

A classical estimation scheme in tomoPIV consists in reconstructing two successive 3D
intensity distributions of seeded particles and then sequentially applying a post-processing
procedure for the retrieval of the 3D velocity field [74]. Recently, a novel procedure has been
advanced which estimates the fluid motion out of consecutive volumetric frames by taking
into account their linked structure [134]. Motivated by the advancement in the computer
vision field and the tomoPIV community, we propose alternative procedures to both of the
already established paradigms. With the aim of going towards a joint procedure, we focus
on formulating the optimization problems by taking in regard the physical anatomy of the
scene. For doing so, we introduce a formulation which accounts for the nexus between
structure and motion. The current chapter is organized as follows. We present, in section
4.1, image-related features leading to the formulation of an a priori information for the
model design. We review the optical flow literature in Section 4.2, with focus on terms
related to the photometric constraints and on terms modeling constraints on the velocity
field. Section 4.3 presents our contributions which are twofold: (i) transitioning from a
classic 2D setting to a 3D setting (ii) estimating jointly the 3D volumetric distribution of
the particles and the velocity fields that propels them. Finally, Section 4.4 presents results
to defend our proposed approach.

4.1 Features

The optical flow recovers the apparent 2D displacement of a 3D scene depicted by a
sequence of images, usually retrieved by a camera. Historically, the retrieval of physical
motion out of a sequence of images is performed by analyzing the optical flow [101, 116].
Optical flow surveys can be read in [22,82,128] and references therein. The relation between
the latter and the physical motion is however not straightforward. In fact, common visual
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sensors project the 3D scene onto a 2D plane. This inevitably results in loss of information,
some of which might be of paramount importance for the interpretation of the physical
motion. Moreover, other conundrums might enhance the ambiguities (e.g., occlusions -
when an object passes behind another one).

A way of compensating loss of data is trough simultaneous imaging from multiple viewing
angles. This is achieved by arranging multiple cameras around the scene of interest and
capturing video of the activity with respect to a (usually) known calibration of the visual
system. The correspondent motion quantity, coined scenic flow [181], estimates the 3D
displacement of points in a volumetric region of interest out of sequences of images and
and calibration.

The estimation of both scenic and optical flow rely on the same features depicted by the
image system. We present, in sequel, an unified framework for the 2D/3D setups. In order to
do that, we consider a cartesian grid V ⊂ Ra with a ∈ [2, 3], centered on positions kj ∈ Ra,
where j ∈ {1, . . . ,m} and m ∈ N? is the number of resolved points. The grid follows the
constraints made in section 2.2.3, i.e., equations (2.29) and (2.30). Our observable image
quantity at a position kj writes wt(kj). The quantity u(kj , t) ∈ Ra is the velocity field of the
fluid at the position kj at time t. The vector wt collects the intensities at the center of the
grid positions, at time t, as writes wt ,

[
wt(k1) . . . wt(km)

]T
. Analogically, the matrix ut

collects the instantaneous velocity in V such as ut ,
[
uT
(
k1, t

)
. . . uT (km, t)

]
∈ Rma.

Brightness Constancy

As previously stated in chapter 2, we rely on the assumption of brightness consistency
scattered by a point in V along its trajectory. A linear differential formulation of this
assumption is known as the Optical Flow Constraint (OFC) and writes:

dwt

dx = ∂wt

∂t
+
[
u(kj , t)T∇kwt(kj)

]
j∈{1,...,m}

= 0m, (4.1)

We note that the equation (4.1) is linear with respect to ut, which considerably facilitates
the subsequent computation build on the OFC.

We recall that I (ut) wt+1 =
[
wt+1(kj + u(kj , t))

]
j∈{1,...,m}

stands for the displaced
image between time t and t + 1, as it has been initially introduced in Chapter 2. The
operator I (ut) ∈ Rm×m corresponds to the warping process; the latter depends explicitly
on the motion field ut and on the chosen polynomial image interpolation. Let us note that
I (0ma) wt+1 = wt+1.

A non-linear formulation of OFC leads to the cancellation of the Displacement Frame
Difference (DFD). Following the upper-defined nomenclature, we have the transport
equation:

I (ut) wt+1 −wt = 0m, (4.2)

We refer the reader to chapter 2 for an extensive reading of computations and assumptions
leading towards equation (4.2) for tomoPIV scene flow context. Throughout this chapter,
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we make an abuse of notation and consider, for the temporal step δt = 1, that the matrix ut
collects the displacement vectors at time frame t of a tracers located grid positions for the
DFD formulation (4.2), while ut keeps its original interpretation for the OFC formulation
(4.1).

We notice that by linearizing equation (4.2) around ut = 0ma, we obtain an approximation
of the OFC, where the temporal derivative ∂wt

∂t has been replaced by a finite difference, that
is:

wt+1 −wt +
[
u(kj , t)T∇(ITj,•(0ma))wt

]
j∈{1,...,m}

= 0m, (4.3)

where Ij,•(ut) : Rma → Rm stands for the jth line of the warping matrix I(·) and
∇(ITj,•(0ma)) ∈ Ra×m is the Jacobian matrix of Ij,•.

4.2 Classical Motion Estimation Methods

The main idea underlying classical motion estimation methods is to search for a solution
of problems (4.1) or (4.2) in terms of motion quantity, assuming the image domain wt is
completely known ∀t. Equation (4.1) defines a local constraint on the (apparent) image
motion, i.e., the normal velocity vector perpendicular to the constraint line (refer to figure
4.1 for a visual representation). Writing, for a point kj ∈ V, u(kj , t) = u⊥(kj , t) + u‖(kj , t),
where u⊥(kj , t) ∈ Ra and u‖(kj , t) ∈ Ra are the components perpendicular and tangential
to the brightness isosurface, respectively, we obtain that:

u⊥(kj , t) = −∂wt(k
j)

∂t

∇(ITj,•(0ma))wt∥∥∥∇(ITj,•(0ma))wt

∥∥∥2

2

(4.4)

Constant line

u⊥,t

u2,t

u
1
,t

Figure 4.1: The optical flow constraint defines a line in the velocity space.

This constraint only allows us to compute the normal component. Therefore, the
optical/scene flow constraint is inherently ill-posed. This occurrence is known as the
aperture problem; a 2D visual rendition of the phenomenon can be observed on figure 4.2.
In order to close the subsequent gradient-based estimation problem, it is necessary to resort
to regularization schemes applied to the estimated motion in order to compensate the lack
of information from images and transform the initial problem into a well-posed one.

The common approach to solve a motion estimation problem is to minimize a global
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Actual motion

Observable motion

w̃t

w̃t+1

Brightness gradient

Figure 4.2: An illustration of the aperture problem. The observation window does not capture the
vertical component of the displacement between two frames of a rectangular object.

functional exploiting some a priori information we may have on the signal. Such a functional
usually contains two main terms: (i) the data term, which englobes a photometric constraint
with respect to the scene motion; (ii) the regularization term, which stands for regularization
enforcing regularity constraints on the motion field. Most estimation schemes rely on the
so-described paradigm. Therefore, we can distinguish between the schemes endorsing this
method depending on the construction of the functional. We present here below a general
formulation of the motion estimation problem, that is:

min
ut

fd (ut) subject to fr(ut) ≤ ε, (4.5)

where, as evoked earlier, the term fr(·) is designed to ensure some property on the solution,
while the term fd(·) usually guarantees the respect of the brightness constraint. This
constrained minimization problem can alternatively be written as an augmented Lagrangian
formulation, that is:

min
ut

fd (ut) + λfr(ut). (4.6)

The literature is abundant in choices of these terms, which can be adapted depending on
the nature of the images, on the application and its subsequent specificities [128]. A brief
classification can be read in the remainder of this section.

Choices of fr(·)

The choice of the so-called regularization term is of utmost importance as it implicitly
defines the solution we are looking for. For example, the most common paradigm is to
consider the original motion as rigid. This prior enables the design of local parametric
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formulation on the motion fields, leading to the following regularization term :

u(k, t) = P (k) Θ, (4.7)

where P (k) ∈ Ra×sp is the matrix depending on the chosen parametrization and Θ ∈ Rsp is
the parameter vector. The subsequent regularization term naturally writes:

fr(ut,Θ) =
∑
j

∥∥∥u(kj , t)− P
(
kj
)

Θ
∥∥∥2

2
, (4.8)

An affine, quadratic, linear or constant parametrization can be chosen. In the latter case, we
constrain the velocity fields to be constant over V by choosing P (kj) = Ia, where Ia ∈ Ra×a
is the eye matrix. Moreover, if we refer to problem (4.5) constrained by fr(ut,Θ) (where
fr(·) is defined by (4.8) with ε = 0), we notice that the former is equivalent to addressing
problem (4.6) with the velocity prior defined as follows:

fr(ut,Θ) =
∑
j

I{Θ}(u(kj , t)) (4.9)

where we recall that the indicator function has been defined in Chapter 4.

When dealing with observation outliers (e.g., some discontinuities in the image domain)
the use of the `2-norm may lead towards erroneous estimations in the vicinity of the
boundaries. In this case, a robust cost function may be considered in order to penalize
model discrepancies, see [31,86,102]. Whatever the cost function, the retrieval of the optical
flow, coined image registration in the computer vision community, then resumes to finding
the set of points which best aligns model and data. Within this framework, we cite seminal
paper [28] and ongoing ensuing research [20,84]. In practice, the so-defined prior leads to a
re-formalized brightness constancy assumption accounting for the parameter model, as we
will see in the next paragraph.

In the context of systems for fluid visualization, the recorded images capture the non-rigid
motion of the seeded particles (see chapter 2). Thus, classical regularization schemes as
stated based on (4.8) are not well-suited for turbulent fluid estimation. In fact, as suggested
by the high non-linearity of the Navier-Stokes equation (see (1.1), chapter 1), turbulence
is described mathematically by chaotic fluctuations of flow variables of the velocity field
as well as a high sensitivity to initial and boundary conditions over a wide range of 3D
scales and amplitudes. In order to best mimic the behavior of the flow, one can rely on
its physical kinematics properties to account for its salient features, i.e., numerous vortical
structures characterizing the turbulent regime of the fluid. We refer the reader to [92] for
a regularization inspired by Kolmogorov’s work on turbulent flow self-similarity and recent
results in the study of turbulent flows. Although modeling the strong spatio-temporal
dependency of the flow motion is ideal, the resolution of a such global functional implies
high computational means.

A first attempt at fluid-dedicated motion estimators was give in [58], where a parametric
formulation of the velocity vector with a small number of vortex and source particles was
phrased. In [16], the authors opted for a piece-wise linear formulation.
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In practice, we resort to locally smoothing priors which mimic qualitative regularity
properties of the fluid motion, i.e., coherent blobs of vorticity and divergence. In fact, the
volume-preserving constrain on the flow divergence operator div(u(k, t)) = ∇ · u(k, t) = 0 is
derived from the mass conservation principle with incomprehensibility hypothesis. The curl
operator curl(u(k, t)) = ∇× u(k, t) describes the vortical structures in the turbulent flows.
Methods preserving these quantities have been introduced in a motion estimation context
in [169] and further enriched in [56]. The corresponding regularization term which penalizes
strong curl and divergence gradients writes:

fr(ut) =
∑
j

∥∥∥∇k curl(u(kj , t))
∥∥∥2

2
+ β

∥∥∥∇k div(u(kj , t))
∥∥∥2

2
, (4.10)

with β > 0 some tuning parameter.

Finally, the most common smoothing prior choice for fr is:

fr(ut) =
∑
j

∥∥∥∇u(kj , t)
∥∥∥2

2
. (4.11)

The upper-defined functional, introduced by Horn et Schunck [101] penalizes strong
gradients of the velocity vector. The subsequent minimization problem can be approximated
using calculus of variations and the solution can be sought using an iterative descent method.

Let us note that in practice, the data term aims at coping with the aperture problem
and/or inserting some a priori information on the application.

We keep in mind that most of the literature referring to such global optimization schemes,
including the references cited here-above, has been placed in the context of optical flow
estimation, i.e., in the 2D domain. The chosen discretization scheme implies that, for a
square image of L2 pixels, the sought velocity fields has 2L2 components. As an example, for
a typical 1024×1024 pixels image, the number of unknowns rises to 2097152, for a two-frame
sequence. If the regularization term copes at some extent to this under-determination, in the
tridimensional case the latter is even more drastic, along with the dimensions of the problem.
This represents part of the explanation why such priors have not yet been tackled in the
tomoPIV context. Even so, global regularization terms for motion retrieval of turbulent
fluids is of utmost interest for the detection and metrology of the coherent tridimensional
structures that come into play in flows. Applying such tools within this context is however
to be treated with great caution due to the subsequent computational effort. The challenge
is to design a low-complexity Navier-Stokes-inspired global regularization term and opens
up interesting perspectives for future research.

Choices of fd(·)

Formalizing the choice of the so-called data term allows the complete depiction of the
optimization problem (4.5) in terms of the transported image quantity. The data prior is
usually derived from brightness constancy assumption (there are nevertheless myriads of
other model in the literature). For instance, if we refer to the DFD term defined by equation
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(4.2), we have that:

fd (ut) = ‖wt − I(ut)wt+1‖22 . (4.12)

In an analogue manner, a counterpart to (4.11) linear in ut can be obtained from equation
(4.3). As stated in the previous paragraph, the choice of the squared `2-norm can be
replaced by more sophisticated robust cost function in order to avoid discontinuities in the
image domain. We will briefly review in the sequel such methods.

The most intuitive local technique models the brightness consistency under a similarity
function, as follows:

fd (ut) = C (wt, I(ut)wt+1) , (4.13)

with C(·) is defined with respect to, e.g., the DFD expressed by equation (4.2) or the
correlation function between the elements of the consecutive considered neighborhoods, that
is:

C (wt, I(ut)wt+1) = −wt+1I
T (ut)wt, (4.14)

or, alternatively, its counterpart centered on the mean value of the respective windows and
normalized by their variance. The digital image correlation technique has been broadly
adopted due to their implementation in the Fourier domain, which is however theoretically
defined uniquely for periodical signals. Enhancement to the regular correlation schemes
have been proposed in the literature, both in 2D [25] and 3D [133] context in order to adapt
locally the shape and the orientation of the window.

Fluid dedicated data terms have been proposed in the literature. In [56], the data term
derived from the continuity equation writes:

fd (ut) =
∥∥∥I(ut)wt+1 −wte

− div(ut)
∥∥∥2

2
.

In practice, the optimization problem depicted by equation (4.5) can be solved locally
around each grid position, enabling thus parallelism. This worthwhile scheme results in
a dramatic complexity alleviation which facilitates the problem of tridimensional motion
estimation. In fact, as mentioned before, we would ideally resort to a Navier-Stokes global
prior to model the flow displacement. As it turns out, such an optimization problem
engenders prohibitive computational time, even in a bidimensional framework. The trade-off
is to have recourse to a local technique formalized in the 3D space. Thus, a multiviewing
framework compensates the loss of data that cannot be retrieved by solely relying on the
brightness constancy assumption.

An Algorithmic Example

Let us give an illustration of the minimization of problem (4.6), for particular choices of
the function fd(·) and fr(·), respectively. In particular, let fr(ut,Θ) = ∑

j I{Θ}(u(kj , t)).
Constraining the velocity field to be constant over the volume leads us to the following
functional:

min
ut

fd(Θ,ut) + λ
∑
j

I{Θ}(u(kj , t)). (4.15)
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When the data term constrains the DFD, i.e., fd (ut) = ‖wt − I(ut)wt+1‖22, problem
(4.16) becomes:

fd(Θ) = ‖wt − I(uΘ)wt+1‖22, (4.16)

where uΘ concatenates m times the vector Θ.

This leads to the ubiquitous LK estimator [116]. Within the tomoPIV context, the LK
problem has already been tackled in [110, 114, 183]. In practice, we appeal to an iterative
gradient-based descent procedure in order to access to the solution of the (4.15). Thus,
starting from an initial velocity guess Θ(0), the iterates write:

Θ(l+1) = Θ(l) − α(l)S(l)OΘfd(Θ), (4.17)

where α(l) the step-size parameter can optionally be optimized at each iteration (e.g., by
the Armijo rule). The positive definite matrix S(l) allows profiling the descent direction;
a simple choice would be the identity matrix, which leads however to slow convergence.
Analogically to the step-size, the descent direction can be estimated at each iteration (e.g.,
as the Hessian matrix of the objective function with respect to the current estimate). For
solid theoretical background, see [27].

4.3 Joint Local Method
Several algorithms have been proposed in the field of computer vision, and, later, adapted

for the tomoPIV application, to associate the information from multiple views in order to
output a single 3D representation of the scene. Although conceptually interesting, these
procedures suffer from some possible drawbacks, when applied to a 3D problem:

1. the reconstruction of the 3D density function is performed independently of the
temporal sequence. In reality, the instantaneous volumetric distributions can be
modeled like a 3D entity deformed by a displacement (i.e., the fluid flow). Therefore,
any information on the displacement field could be taken into account in the
reconstruction of the density function;

2. The estimation of the displacement field is computed between pairs of reconstructed
3D intensity distributions at consecutive time frames. In practice, the quality of
these reconstructed volumetric distributions can be affected by the low number of
observations and measurement imprecisions. The noise affecting these estimations is
not taken into account in the current literature. The velocity estimation algorithms can
therefore be improved by accounting for the imprecisions governing the reconstruction
of 3D density distributions and of the displacement field between them.

In the previous section, we have assumed that the volumetric images wt,∀t are known.
In a 3D framework, however, the latter quantities are accessed by "inversing" the linear
system (3.3), which models the projection of a discrete 3D space into the planar images (as
a reminder, the subsequent estimation problem is addressed by (3.16) and counterparts).
The ideal formulation of the joint problem expressing the nexus between instantaneous
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volumetric reconstruction and velocity retrieval accounts thus for possible perturbations on
the initial estimated 3D images w?

t and aims at optimizing the actual volumetric quantity
with respect to the velocity fields that propels it, that is:

min
wt,wt+1,ut

ld(yt,Dwt) + ld(yt+1,Dwt+1) + fd(wt,wt+1,ut)

such that lr(wt) ≤ a, lr(wt+1) ≤ a, fr(ut) ≤ ε,
(4.18)

with a and ε some tuning parameter; priors ld(·), lr(·) and fd(·), fr(·) have been extensively
described in section 3.4 and 4.2, respectively. This general formulation of the joint volume
velocity reconstruction has not been, to our knowledge, yet tackled in the literature.
Nevertheless, solving (4.18) is to be approached with caution. In practice, we aim at solving
the problem locally around each particle. However, the volume reconstruction problem
is hard to break into local sub-problem, which complicates the general formulation of
(4.18). For complexity reasons, we resort to similar local joint volume velocity estimation
functionals.

Our initial research is motivated by [74], where the authors introduced the tomoPIV
measurement technique. Their work set the grounds for the estimation of 3D motion fields
of lightly seeded particles in a turbulent fluid from the images captured by a finite number of
cameras disposed around the illuminated volume. The challenge is to accurately reconstruct
the 3D intensity distribution of a sufficiently large number of seeded particles and their
respective velocity fields. The idea is thus to go towards a joint estimation of volume
and velocity framework. In the tomoPIV context, Novara et al. have recently proposed
an enhancement to the classical scheme through an iterative procedure whose aim is to
initialize the algebraic procedure by a first guess accounting for both successive views of the
scene [134]. We give here below a personal interpretation of their problem within a general
optimization context, as opposed to the original paper, where a more heuristic scheme has
been phrased. Their unconstrained joint optimization problem writes:

min
wt,wt+1,ut∈Ut

ld(yt,Dwt) + ld(yt+1Dwt+1) + fd(wt,wt+1,ut) (4.19)

where the velocity vector ut is sought in the discrete state spaces along the temporal frame
collected by the set Ut. More explicitly, Novara et al. choose the data term fd(·) as a
correlation function (see equation (4.14)) and penalize the discrepancy between the 3D
volumetric signal and the projection model by a KL distance (see equation (3.29)). The
authors access to the minimum of (4.19) by solving the 3 optimization problems nested in
the upper-defined functional, as follows:

w(l+1)
t = arg min

wt
ld(yt,Dwt), (4.20)

w(l+1)
t+1 = arg min

wt+1
ld(yt,Dwt+1), (4.21)

u(l+1)
t = arg min

ut∈Ut
fd
(
w(l+1)
t ,w(l+1)

t+1 ,ut
)
. (4.22)
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where problems (4.20) and (4.21) are solved by SMART initialized with
1
2

(
w(l)
t + I(u(l)

t )wt+1
)

and 1
2

(
w(l)
t+1 + I(−u(l)

t )wt

)
, respectively. This initialization

aims at reducing the intensity of ghost particles; moreover, as the function ld(·) is convex,
setting a righteous initialization point considerably speeds up the convergence to the solution
of the volume reconstruction problem. The so-called Motion enhancement technique (MTE)
yields better performance than classically employed 3D digital correlations with respect to
the geometric topology of the sought particles.

Joint Volume Velocity Estimation (JVVE)

In the same spirit as the refined estimation paradigm in (4.19), we aim in this work
at proposing a novel continuous global formulation of the nexus between instantaneous
volumetric reconstruction and velocity retrieval. More specifically, we consider the following
optimization problem:

min
wt,wt+1,ut

fd(wt,wt+1,ut) + λ
[
‖wt −w?

t ‖
2
2 +

∥∥wt+1 −w?
t+1
∥∥2

2

]
such that fr(ut) = 0,

(4.23)

where λt is a tuning parameter modeling the trade-off between the data term fd(·) and the
priors on the volumetric image given by the second term. The data term fd(·) enforces
the brightness constancy assumption and is chosen here as the squared `2-norm of the
DFD, function previously defined by (4.12). The second term of the functional penalizes
the discrepancies discrepancies between wt and the volume estimated during the volume
reconstruction step w?

t , ∀t in the temporal sequence, where w?
t solves the optimization

problem:
min
wt

ld(yt,Dwt) such that lr(wt) ≤ τ. (4.24)

Finally, we make the choice of a local constant parametric formulation for the velocity
field, that is fr(ut,Θ) = ∑

j I{Θ}(u(kj , t))(refer to equation (4.8) for further depiction).
Let us then express our problem for these particular choices of functions, over a small
neighborhood around a grid position k ∈ V of size ms. Let wt(k),w?

t (k) collect the
intensities of the volumetric densities wt,w?

t on the considered neighborhood. The vector
uΘ concatenatesms times the elements of Θ. By plugging the latter considerations in (4.23),
we obtain the following local joint volume-velocity functional:

fj (wt(k),wt+1(k),Θ) = ‖wt(k)− I(uΘ)wt+1(k)‖22 +

λ
[
‖wt(k)−w?

t (k)‖22 +
∥∥wt+1(k)−w?

t+1(k)
∥∥2

2

]
,

(4.25)

where λ can be understood a the ratio between the noise variances of the brightness
constancy and that of the volumetric density discrepancy. We stress that, for wt = w?

t ,
the expression in (4.25) is equivalent to (4.16). Thus, the problem reduces to solving the
iterations Θ(l+1) by computing the expression in (4.17), where l denotes the iteration
number.
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Similar to the iterative LK descent scheme, we will resort to a gradient descent technique to
look for the minimum of problem (4.25). Therefore, to solve for both the density distributions
and displacement fields at the same time, we inject the sought vectors in an iterative descent
procedure in the aim of coherently optimizing the 3D intensity consecutive topologies and
their related flow field with regard to their joint structure. The sequence of minimizations
writes, starting from initial guesses w(0)

t (k),w(0)
t+1(k),Θ(0):w(l+1)

t (k)
w(l+1)
t+1 (k)
Θ(l+1)

 =

w(l)
t (k)

w(l)
t+1(k)
Θ(l)

− α(l)S(l)Owt,wt+1,Θfj (wt(k),wt+1(k),Θ) (4.26)

We note that partial derivative of fj (wt(k),wt+1(k),Θ) with respect to Θ(k) is equivalent
to that of the problem (4.17) since only the correspondent term in (4.25) depends on Θ. The
partial derivatives of fj

(
wt(k),wt+1(k),Θ(l)

)
can be efficiently evaluated via the following

formula:

Owtfj (wt(k),wt+1(k),Θ) = 2λ
[
(wt(k)−w?

t (k)) +
(
wt(k)− I(uΘ(k))wt(k)

)]
(4.27)

Owt+1fj (wt(k),wt+1(k),Θ) = 2λ
[(

wt+1(k)−w?
t+1(k)

)]
+ 2λ

[(
−IT (uΘ)wt(k) + IT (uΘ)I(uΘ)wt+1(k)

)] (4.28)

4.4 Assessement
We have proposed in this chapter an alternative to state-of-the-art methods for velocity

estimation in a tomoPIV setting. The purpose of this section is to characterize our methods
with emphasis on its response in different synthetic scenarios, compared to more classical
methodologies employed in tomoPIV. This section is organized as follows. First of all,
we bring some additional information on the synthetic setting described in Section 3.10.1.
We then proceed to describing the metrics used to quantify our results and associate some
intuitive nomenclature to employed methods. Finally, Section 4.4.4 provides our assessment
outcome.

4.4.1 Synthetic Setting

The volumetric density estimation of the particles is a crucial step towards the accurate
reconstruction of the velocity fields. The output of the former has a knock-on effect on the
subsequent/joint velocity estimation. For this reason, we will briefly recall here the test
settings we have considered in Section 3.10 for the volume retrieval. Then, we will give
details on our displacement test.

Recall on Image Models

We have established in the previous chapter that we decoded the tomoPIV signal
following the model y = Bs, with B = ĩDG. As it turns out, the corresponding estimated
signal, i.e., s? is the sparse intensity distribution of the particles in the 3D scene. We take
advantage of our structured-sparsity model to recompute the denser blob distribution,
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Chapter 4 Velocity Estimation

that is w? = Gs?, which is more advantageous for the subsequent velocity estimation than
the sparse distribution. Notice that this computation acts as a smoothing of the image
sequences. We indicate that the volumetric densities w?

t , ∀t are estimated with bpADMM+,
refer to the previous chapter for details.

We remind the reader that we have distinguished between three test cases for the image
generation, refer to Section 3.10.1 for details. In a nutshell, Test Case 1(·) considers an
ideal scenario where the images are computed following y = Bs̃; Test Case 2(·) considers
a perturbed setting where y = Dw̃, meaning that we add some model noise on the particle
positions; Test Case 3(·) estimated the volumetric densities out of perturbed images, that
is y = Dw̃ + nt. In Test Case ·(a), we compute these estimations in a rough grid, whereas
in Test Case ·(b), we consider a refined grid. Based on the conclusions brought out by
the assessment report in Chapter 3, working in the latter case increases the accuracy of the
estimated volumetric intensities, as the modeling vector decreases as the refinement of the
grid increases. We will thus estimate the velocity field in Test Case ·(b) and we will keep
this notation for coherence purposes.

We will work in the same synthetic scenario as the one depicted in Section 3.10.1. We call
to mind that we have estimated the volumetric intensities on a cuboid partitioned into a
cartesian grid of 61×61×19 voxels, with voxel unit set at 1 arb. u. In order to avoid border
discontinuities, we reconstruct the velocity fields out of the initially estimated densities on
a smaller grid of of 47 × 47 × 7 voxels, with voxel unit set at 1 arb. u.. Moreover, as all of
the tested methods can be divided in local problem, we thus estimated local velocity fields
on windows of size ms = mw ×mw ×mw.

Precision on the Transport Model

We compute the sequence of volumetric densities with respect to the velocity field
following:

I (ũt) w̃t+1 − w̃t = 0m, (4.29)

where ũt =
[
ũT
(
k1, t

)
. . . ũT (km, t)

]
is the actual fluid velocity, w̃t, w̃t+1 are the ground

truth volumetric intensities and I(·) is the warping operator. The velocity field ũt is
computed as a shear displacement. The displacement at each grid point writes:

ũ
(
kj , t

)
=
[
auk

j
3 0 0

]T
, (4.30)

where au = 0.05 arb. u.

4.4.2 Description of Evaluation Criteria

The quality of the velocity estimation can be addressed with respect to the average norm
of the error between estimated and ground truth displacement in each point, that is:

MSE =
∥∥ũ (kj , t)−Θ?

∥∥2
2

a
, (4.31)

where Θ? is the jth estimated velocity field and a the dimension of the space. We specify
that for our experiment we have chosen a = 3.
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The Angular Displacement Error (ASE) computes the angular deviation between
estimated and ground truth displacement and writes:

ASE = arccos
(
ũT
(
kj , t

)
‖ũ (kj , t)‖2

Θ?

‖Θ?‖2

)
. (4.32)

4.4.3 Nomenclature

We will compare our method with two other techniques, extensively employed in the
literature. The latter address the problem (4.6) with fr(ut,Θ) = ∑

j I{Θ}(u(kj , t)), same
as our method. For fd(Θ) = ‖wt − I(uΘ)wt+1‖22, we will refer to the Iterative LK method.
When the velocity is sought on a discrete state space, we will call it LK-Discrete. For
fd (uΘ) = C (wt, I(uΘ)wt+1), see equation (4.13), where we seek the displacement vector
on a discrete state space, we will refer to 3D-Cross Correlations. Our method has been
coined JVVE.

4.4.4 Velocity Reconstruction Assessement

We are interested in how our method responds to different tomoPIV settings, compared
to state-of-the-art procedures. To alleviate the complexity of the calculations, we have
computed our quantifying metrics on a slice of the cuboid corresponding to kj3 = 0,
∀j ∈ {1, . . . ,m}. Let us first observe the magnitude of the ground truth displacement on
Figure 4.3; the magnitude of the fields is of sub-voxelic order and varies rather slowly. The
latter represents a shear layer displacement field and follows the formula (4.30), where the
linear displacement gradient au = 0.05 is chosen small. According to [78], such a choice
tends to encourage the coherent displacement of ghost particles and thus, to aggravate the
corresponding velocity estimation.

Let us now consider a scenario characterized by a very high seeding density, i.e.,
ppp = 0.34. As mentioned before, the volumetric densities are estimated with bpADMM+
in a setting depicted by Test Case 1(b). We obtain a volumetric reconstruction quality
factor of Q = 0.8954 for w?

t and of Q = 0.9156 for w?
t+1. Figure 4.5 offers an illustration

of w̃t versus w?
t for consecutive frames. We notice in particular the low quality of the

reconstruction, translated here by missed detections and ghost particles. Starting from
these volumetric estimations, the velocity fields are computed locally on 5× 5× 5 windows.
Figure 4.4 portrays such a scenario, for Test Case 1(b); more specifically, it illustrates
the magnitude of the reconstructed velocity fields for our chosen methods. While the
profile of the ground truth velocity field is respected, we notice some debris which suggest
that the methods have failed to accurately reconstruct the motion in a few isolated areas.
Our method copes to a higher degree than the Iterative LK procedure with spurious
reconstructions; we acknowledge the fact that it outputs a lower number of heretical
estimations than its compeer, managing thus to correct some underdeterminations on the
reconstructed volumetric space. We address however the fact that due to its architecture, in
the context on a low-resolved space, JVVE zeroes out the subsequent velocity estimation.
The discrete methods output similar results. More precisely, both the LK-Discrete and the
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3D-Cross Correlations techniques roughly respect the velocity profile illustrated by Figure
4.4. The former fail nevertheless to reconstruct finer scales of the displacement fields,
contrary to the their continuous counterparts and despite seeking for the velocity values
on a generous discrete grid Ut ∈ R3,Card(Ut) = 13456 centered around the ground truth
value. Figures 4.6 and 4.7 portray respectively the MSE and ASE in each space position.
The latter are easy to read in companionship to Figure 4.4 and support our previous
claims. The MSE chart is in adequacy with the magnitude chart: whenever the velocity
is biased, the MSE increases. As observed in the magnitude profiling, the performance of
the continuous methods are somewhat mirrored in that of their discrete compeers, which
output less resolved estimations. As for the ASE figure, we notice higher angular deviations
from the ground truth when the latter approaches zero; the associated reconstruction have
however a very low magnitude. We retain from this test case that (i) the space needs
to be sufficiently resolved in order to enable an accurate velocity reconstruction (ii) the
volumetric reconstruction needs to yield a high quality factor, which otherwise impacts
negatively the subsequent motion estimation.

The conclusion to the latter case study is nevertheless antagonistic; as we have seen in
Chapter 3, the quality factor of the reconstruction diminishes inversely proportional to
the seeding density. There is a need for a trade-off. We evolve thus towards Test Case
1(b), where we choose a lower, more tractable seeding density, i.e., ppp = 0.2. bpADMM+
outputs reconstructions of quality factors of Q : 0.9533 for w?

t and of Q = 0.9713 for w?
t+1.

The original volumetric densities and the correspondent reconstructions are visible on
Figure 4.9, where we can see that the latter are more faithful to their original rendition than
in the previous test case. Figure 4.8 shows slightly less accurate reconstructed magnitude
of the velocity signal than the ones output in the previous case study. While the magnitude
of the velocity output by JVVE transitions (almost) smoothly from left to right, some
detritus are still visible on the magnitude charts retrieved with the Iterative LK method
and the discrete techniques. The discrete methods seem to output more debris in the case
of a less-resolved volumetric space, contrary to the previous study case, where the ppp
number was considerably higher. The same observations translate to Figures 4.10 and 4.11
illustrating respectively, the MSE and the ASE in each grid point, which show that our
method copes with some indeterminations there where its compeers have failed.

Finally, we simulate a scenario closer to the real-world application, for ppp = 0.2. To
recall, in i.e., Test Case 3(b) model noise is added on the particle position and the 2D
observations are perturbed with a Gaussian noise of variance 0.01. Here, bpADMM+
retrieves the volume with a quality factor of Q = 0.8411 for w?

t and of Q = 0.8555 for
w?
t+1. Figure 4.13 renders these reconstructions (bottom row) with respect to their original

counterparts (top row); more specifically, the low quality factors are explained by the
ghost particles and the missed detections, phenomena clearly noticeable on the said charts.
Figure 4.12 illustrates the magnitude of the subsequent velocity reconstructions. Overall,
the performance is slightly deteriorated compared to the ideal previous scenario. Moreover,
figures 4.14 and 4.14 lead to the same conclusion. Whatever the scenario, JVVE deals
better than its unregularized companion with some underdeterminations related to poorly
reconstructed volumes.

In practice, the problem is more complex and there are myriads experimental factors to
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4.5 Summary

account for. Our assessment study gives us an intuition of the benefits of minimization an
appropriately formalized regularized functional in a tomoPIV scenario. In fact, we have seen
in the current report that constraining the data term may help adjusting some of the errors
on the previously estimated 3D intensities. We believe that further constraining the velocity
field may considerably enhance the accuracy of the motion estimation.
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Figure 4.3: Magnitude of the ground truth velocity.

4.5 Summary
In an analogue way as for the volume reconstruction problem, we have shown in the current

chapter that the tomoPIV velocity problem can be recast within a general optimization
framework. More specifically, we have evolved towards a joint volume-velocity reconstruction
problem by properly formalizing the nexus between these unknown quantities. Results have
shown that our so defined method copes better than its unregularized counterpart with some
imprecisions on the initially estimated volumetric distribution, making it more suitable for
real-world application.
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Figure 4.4: Magnitude of the reconstructed velocity fields, for ppp = 0.34 in Test Case 1(b). Top
row, from left to right: LK-Discrete and 3D-Cross Correlations. Bottom row, from left
to right: Iterative LK and JVVE.
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Figure 4.5: Ground truth (top row) and estimated volumetric densities (bottom row) at consecutive
time frames (from left to right) for ppp = 0.34 in Test Case 1(b).
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Figure 4.6: MSE for ppp = 0.34 in Test Case 1(b). Top row, from left to right: LK-Discrete and
3D-Cross Correlations. Bottom row, from left to right: Iterative LK and JVVE.
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Figure 4.7: ASE for ppp = 0.34 in Test Case 1(b). Top row, from left to right: LK-Discrete and
3D-Cross Correlations. Bottom row, from left to right: Iterative LK and JVVE.
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Figure 4.8: Magnitude of the reconstructed velocity fields, for ppp = 0.2 in Test Case 1(b). Top
row, from left to right: LK-Discrete and 3D-Cross Correlations. Bottom row, from left
to right: Iterative LK and JVVE.
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Figure 4.9: Ground truth (top row) and estimated volumetric densities (bottom row) at consecutive
time frames (from left to right) for ppp = 0.2 in Test Case 1(b).
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Figure 4.10: MSE for ppp = 0.2 in Test Case 1(b). Top row, from left to right: LK-Discrete and
3D-Cross Correlations. Bottom row, from left to right: Iterative LK and JVVE.
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Figure 4.11: ASE for ppp = 0.2 in Test Case 1(b). Top row, from left to right: LK-Discrete and
3D-Cross Correlations. Bottom row, from left to right: Iterative LK and JVVE.
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Figure 4.12: Magnitude of the reconstructed velocity fields, for ppp = 0.2 in Test Case 3(b). Top
row, from left to right: LK-Discrete and 3D-Cross Correlations. Bottom row, from left
to right: Iterative LK and JVVE.
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Figure 4.13: Ground truth (top row) and estimated volumetric densities (bottom row) at consecutive
time frames (from left to right) for ppp = 0.2 in Test Case 3(b).
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Figure 4.14: MSE for ppp = 0.2 in Test Case 3(b). Top row, from left to right: LK-Discrete and
3D-Cross Correlations. Bottom row, from left to right: Iterative LK and JVVE.
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Figure 4.15: ASE for ppp = 0.2 in Test Case 3(b). Top row, from left to right: LK-Discrete and
3D-Cross Correlations. Bottom row, from left to right: Iterative LK and JVVE.
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Chapter 5. Conclusion and Perspectives

The challenge of the modern understanding of the 3D turbulent flows involves the need
for (i). a reliable sensing technology (ii). the design of low-complexity estimation tools
(iii). physically-sound priors. Classical approaches in computational fluid mechanics - such
as Direct Numerical Simulation (DNS) of Large Eddy Simulation (LES) - to access to a
quantitative information of the turbulence are confined to a limited range of physical scales
that cannot fully describe the high non-linearities of the turbulent flow. To cope with this
impediment, novel techniques relying on processing image sequences have been advanced
(e.g., [56]). Their methodology relies on conjugating approaches issued from the computer
vision community with physical knowledge on fluid dynamics with the intent of designing an
accurate motion estimator. Most of these procedures are formalized within a bidimensional
framework, i.e., they reconstruct a 2D motion field out of two consecutive 2D images,
making them unsuitable for several fluid regimes with high 3D structures. Estimating
the fluid motion within a 3D framework seems more pertinent. In seminal work [74], the
velocity fields are retrieved from previously estimated volumetric densities. More recent
contributions have opened the way towards a joint estimation approach [134]. These
latter-day convincing results lead to predict that estimating the volumetric distribution
with regard to the motion field that links them is the appropriate modus operandi towards
rigorous retrieval of turbulent fluid flow.

In this thesis we have proposed a novel joint solution to address the task of 3D fluid
motion estimation out of multiple sequences of synchronized 2D images. The theoretically
frame has been presented with connections to the computer vision and signal processing
fields, as well as to the tomoPIV community. Our work can be divided into three main tasks:
(i). the design of a physically sound model with respect to the nature of the visualized scene
(ii). the devise of volume reconstruction algorithmic schemes with low complexity that
take into account known priors on the physical signal and output a satisfying estimation
within a few iterations (iii). the formalization of a velocity reconstruction scheme that
accounts for noisy settings and for the linked structure between two instantaneous volume
reconstructions.

We have presented in chapter 2 the image formation and transport models with physical
underpinning. In particular, we have advanced an alternative to the image formation models
employed for the tomoPIV application. In fact, classical models within the community
account for the Point Spread Function (PSF) inherent to the projection of a point into
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a planar image by modeling the physical seeders as particle blobs, i.e., voxel aggregates
of several voxels width centered of the particle center, see [74]. However, their model is
such that is does not allow the reconstruction of particle positions solely. More recently,
Champagnat et al. have issued a physically sound projector that allows to recover the
particle vision [49]. Their sparse reconstruction does not guarantee a good subpixel
accuracy in the subsequent displacement estimation. Our hybrid contribution in terms of
the projection model allows us to recover a sparse volumetric distribution and to estimate
the velocity on its smoothed counterpart.

The row-action methods for volume reconstruction have gained a lot of interest in the
tomoPIV community, despite suffering of a certain number of caveats. We have addressed
this problem in chapter 3. More specifically, we have shown that the tomoPIV problem can
be recast within a general optimization framework and that powerful convex-optimization
tools can be used to solve the resulting problem. Firstly, we have put to forth that
both physical constraints (sparsity/nonnegativity) and noisy observations can be properly
handled by defining an adequate optimization problem. Then, we have emphasized that
procedures with the same computational/storage features as the algebraic methods can
be derived by exploiting the general framework of proximal methods [136]. In particular,
we have shown that some standard algebraic methods can be seen as particular cases of
proximal algorithms applied to a cost function not enforcing sparsity.

For the tomoPIV application, the velocity fields are usually computed out of consecutive
3D intensity volumetric distributions previously computed [74]. It is not until recently
that the optimization framework has been formalized jointly in terms of volume and
velocity [134]. In chapter 4, we have formulated an innovative penalty criterion as an
intensity conservation function with respect to both the fluid trajectory and the static
volumetric intensity distributions, which allows us to coherently optimize the 3D intensity
consecutive topologies and their related flow field with regard to their shared structure .

The performance of our methods has been assessed by means of 3D simulations. A
comparative study with state of the art paradigms acknowledged, for a random average case
scenario of the tomographic application, its enhancement towards more accurate estimations
for both the volume and the velocity reconstructions. Besides its relevance regarding
tomoPIV, our methods are also suitable for any other complex scenes (medical imaging,
crowd tracking, . . .).

Discussions and Perspectives

The conclusions on our methodologies forecast several enhancements to (i). current
procedures designed with regard to the tomoPIV application (ii). already established signal
processing paradigms applicable to different set-ups.

Towards a Refined Model

The projection model depicted in chapter 3 are based upon several simplifying
assumptions, depicted in section 2.2.1. More precisely, we have approximated the realistic
image formation model which accounts for the PSF. The idea would be to rephrase our
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volume reconstruction model by benefiting from recent developments, such as accounting
optical distortion effects [185] or integrating the parameters of the PSF in the calibration
procedure.

Another refinement in the projection model is relative to the light scattering of the seeded
particles. In fact, we have made the simplifying assumption that all the particles have the
same diameter. In experimental scene, we are often confronted with a polydisperse seeding.
Integrating a partial modeling of Mie scattering and of the particle diameter should be very
effective for real-world experiments.

Sparse Pruning

We have led, in chapter 3, an all-encompassing comparison of the state of the art pruning
procedures designed for the tomoPIV application which implicitly incorporate sparsity
priors. A recent contribution [55] shows that tracer particles are quasi-systematically
in the direct vicinity of local maxima of reconstructions obtained with a more classical
approach [15]. This recent procedure relies on a heuristic scheme and is prone to degrade the
feasible set of the solutions to the volumetric estimation problem. Our input would be to use
signal processing tools to estimate the local maxima of the volumetric initial reconstruction
by explicitly incorporating sparsity priors. On long term, we would theoretically investigate
under which constraints the correspondent reduced feasible set is equivalent to its original
counterpart.

Proximal Methods for Noisy Settings

Synthetic assessment of the volume reconstruction problem leads to think that proximal
gradient algorithms penalized by a "proximity term" α(k)D(•, •(k)), where D(·, ·) is a
Bregman distance, are more robust within a noisy setting. More precisely, we have
considered the case when the proximity term is defined by the KL divergence. Our
interest is to tackle the volume reconstruction problem with an entropic ADMM, i.e., by
penalizing its correspondent proximity term by means of the KL divergence. Moreover, our
enthusiasm for this class of algorithms is enhanced by its variants which can address the
discrepancy-distance constrained model, see equation (3.6). This enables us to tune the
associated regularizing parameter based on some physical intuition of the noise governing
the observations, contrary to the proximal gradient methods (and variants) which solve
problems (3.18) and (3.19) (with affiliated regularizing parameters less obvious to calibrate
based on physical apprehension).

On long term, we would be interested in studying the convergence properties of such a
algorithm, question which is still open in the signal processing community.

Low-complexity Velocity Estimators with Physical Priors

The state-of-the-art review in chapter 4 has revealed some fluid dedicated estimator,
addressed until not solely in a 2D framework. On short term, it would be interesting
to integrate to our joint functional operators mimicking regularity properties of the fluid
motion, i.e., coherent blobs of vorticity and divergence.
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Chapter 5 Conclusion and Perspectives

Such priors remain locally smoothing regularization terms and do not account for the
global behavior of the chaotic fluctuations of turbulent flows. A recent contribution in
the bidimensional context [92] suggested such a powerful scheme by accounting for the
temporal relationship between the velocity fields (namely the Navier-Stokes equations).
Since in a 3D context such estimation problems are far out of reach for current computational
ressources, approximations of large-scale dynamical systems can be investigated to obtain a
reduced-order counterpart of the original model.

Experimental Assessment

The robustness of our methods with respect to different characterizations of a real
scene (i.e., change in illumination, large displacement fields) is to be verified by intensive
experiments on real data. Furthermore, such parameters can be accounted for in future work
and open the way for the design of a problem formulation closer to the physical anatomy of
the scene.
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Appendix A. Lagrangian and Eulerian
Specification of the Flow Field

In the study of fluid motion there are two main approaches to describing the velocity
profile through time and space. The first, known as the Lagrangian viewpoint, involves
watching the trajectory of each individual fluid parcel as it travels from an initial location
throughout the measurement domain. Plotting the position of such an individual parcel
through time gives the pathline of the parcel. The alternative is the Eulerian description.
The Eulerian specification of the flow field is a way of studying its properties as functions
of time as the flow passes through fixed spatial locations.

In the sequel we will express, without further depiction, both the Lagrangian and Eulerian
specifications of the flow field in the frame reference defined by Fw : (o,xw,yw, zw).

Description

In the Lagrangian specification, we mentioned the fact that the fluid motion may be viewed
as the motion of small identifiable fluid parcels. Accordingly, we can consider the positions
H(·) of these fluid parcels as a function of the time. If we label the fluid elements with their
Cartesian coordinates hj =

[
hj1 hj2 hj3

]T
∈ R3, ∀j ∈ N expressed with respect to Fw at an

initial time t = 0, the positions H(·) thus become functions of hj and t. Therefore, in the
Lagrangian depiction giving the position of the parcel labeled by hj at time t, the flow is
described as follows:

H(hj , t). (A.1)

As a convention, we will write in the sequel the position of the parcel labeled by hj at time
t as Hj

t . Figure A.1(a) shows two different fluid particles and their particle paths for a
short period of time.

In the Eulerian specification of the flow field, the flow quantities are depicted as functions
of time as the flow passes through fixed spatial locations. Figure A.1(b) is a simple
representation of this scenario. Specifically, the flow is described by a function

u(h, t), (A.2)
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Appendix A Lagrangian and Eulerian Specification of the Flow Field

giving the flow velocity at position h ∈ R3 at time t.

The two specifications are related as follows:

u(H(h, t), t) = ∂H

∂t
(h, t), (A.3)

because both sides describe the velocity of the parcel labeled a at time t.

xw

yw

zw

o

H1
0

H1
1 H1

2
H1

3

Particle path ] 1

H2
0

H2
1 H2

2

H2
3

Particle path ] 2

(a) Fluid particles and trajectories in Lagrangian
view of fluid motion. The notation Hj

t represents
particle ]j at time t.

xw

yw

zw

o

Flow direction

Measurement locations

(b) Eulerian view of fluid motion.

Figure A.1: Eulerian and Lagrangian specifications of the fluid flow
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Appendix B. Mie Scattering Coefficients

Our goal is to express an angle-dependent scattering model, where the scattering angle
is defined as the angle between the light source direction and the detector direction in the
scattering plane of the particle. The current appendix compiles essential definitions and
developments destined to the comprehension of the light scattering theory by small particles
and provides tools for accounting for local illumination for isotropic homogeneous spheres
in the illumination model in the context of the tomoPIV application.

The light scattering behavior of a homogeneous and isotropic sphere is a subject highly
documented and can be described either by geometrical optics [179] or using field wave
theory [33]. We relate to the latter approach and reproduce results from the literature
which assume a plane wave and solve it with respect to the boundary conditions between
the medium and the surface of the particle.

Preliminaries

The nomenclature adopted in this appendix adheres to that given by figure B.1, which
depicts the coordinates systems used to express the wave and the scattering planes. The
incident wave is defined in the (m,xi,yi, zi) system originating in the center of the particle
positioned in m ∈ V and it propagates in the zi direction.The orthonormal basis vectors
(ex, ey, ez) are in the directions of the positive xi,yi and zi axes. (er, eθ, eφ) are the
orthonormal basis vectors associated with the spherical polar coordinate system (r, θ, φ),
where θ is the scattering angle. The scattering plane is defined by the wave vector of the
incident plane wave that we denote by qi and the scattering vector qs (defined with respect
to the particle’s center and the optical center of the sensor); it is convenient to resolve both
the incident and the scattered light into components parallel (e‖·) and perpendicular to
the scattering plane (e⊥·), with · ∈ {i, s}, where i holds for incident and s for scattered.
The polarization of the wave in the e⊥s direction is associated with the S1(θ, dp) scattering
function and the parallel polarization in the e‖s direction is associated with the S2(θ, dp)
scattering function, where dp is the diameter of the particles, supposed much smaller than
the wavelength of the medium.
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m

xi

yi

zi

ex
ey

ez qs

φ

θ

e⊥i e‖i

eθ, e‖s

eφ

e⊥s

er

Figure B.1: Definition of the incident coordinates system and of the scattering plane.

Mie Scattering

This section is destined to give shallow theoretical insight for the computation of a set of
Mie coefficients an, bn, responsible for describing the efficiencies of extinction and scattering
and two angular scattering function S1(θ, dp), S2(θ, dp), responsible for the approximation
of the propagation of the incident wave Ei with respect to the scattered wave Es.

The projection of the electric vector field of the incident wave onto the two polarization
directions (i.e., perpendicular and parallel to the scattering plane), expressed with regard
to the scattering functions S1(θ, dp), S2(θ, dp) writes:

Es =
[
Esθ
Esφ

]
= exp(−jqTi qs)

qTi qs

[
S1(θ, dp) 0

0 S2(θ, dp)

] [
− sin θ cos θ
cos θ sin θ

]
Ei (B.1)

Assuming the near field effects are negligible with respect to the far field scattering, the
resulting components of the scattered electric field then follow the form of a simple spherical
wave. In the effort of giving a straightforward mathematical solution to the poorly intuitive
problem of how a sphere of given size and optical properties absorbs and scatters light,
Bohren and Huffman show that both the incident and the scattered field may be expanded
in a infinite series of vector spherical harmonic ( [33], eq. 4.45). Moreover, assuming that
the scattered field is uniformly convergent such that the infinite series can be truncated at
nc terms, a small approximation error is guaranteed for nc sufficiently big. The expressions
of the scattering functions then write:

S1(θ, dp) = ∑nc
n=1

2n+1
n(n+1)(anπn + bnτn)

S2(θ, dp) = ∑nc
n=1

2n+1
n(n+1)(anτn + bnπn),

(B.2)
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where τn and πn are angle-dependent functions computed following the recurrence formulas: πn = 2n+1
n(n+1) cos θπn−1 − n

n−1πn−2,

τn = n cos θπn − (n+ 1)πn−1,
(B.3)

stating with:
π0 = 0;π1 = 1.

and an and bn are scattering coefficients obtained from the boundary conditions. In order to
explicit the latter, we define the relative refractive index m and the size parameter xp such
as:

m = Np

Nm
, xp = 2πNmdp

λ
, (B.4)

where Nm and is the refractive index the medium. We further introduce the following
functions used in the Mie theory:

ψn($) = $jn($) (B.5)
ξni($) = $h(1)

n ($), (B.6)

which are linear combinations of the spherical Bessel function jn and of the spherical Bessel
function of third kind h

(1)
n (also known as the Hankel function). For completeness, the

relationship between Bessel and spherical Bessel functions Jv, Yv, with v = n+ 1
2 is given:

jn($) = 2

√
π

2$Jv($) (B.7)

yn($) = 2

√
π

2$Yv($), (B.8)

and the Hankel function writes:

h(1)
n ($) = jn($) + jyn($). (B.9)

Provided the permeability of the particle and the surrounding medium are equal, the
scattering coefficients write:

an = mψn(mxp)ψ′n(xp)−ψn(xp)ψ′n(mxp)
mψn(mxp)ξ′n(xp)−ξn(xp)ψ′n(mxp) ,

bn = ψn(mxp)ψ′n(xp)−mψn(xp)ψ′n(mxp)
ψn(mxp)ξ′n(xp)−mξn(xp)ψ′n(mxp) .

(B.10)

We express the fields into components parallel (E‖·) and perpendicular (E⊥·) to the
scattering plane:  E‖· = cosφEx· + sinφEy·,

E⊥· = sinφEx· − cosφEy·,
(B.11)

where Ex· and Ex· are the component of the incident wave along the Xi and Yi axis,
respectively. We can now express the relation between incident and scattered light such
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that: [
E‖s
E⊥s

]
= exp[jqi(qs − z)]

−jqiqs
)
[
S2(θ, dp) 0

0 S1(θ, dp)

] [
E‖i
E⊥i

]
(B.12)

In order to represent the polarization state of a light ray traveling through space, we relate
to the Stokes parameter I· which is a measurement of the irradiance of the light:

I· =< E‖·E
∗
‖· + E⊥·E

∗
⊥· >, (B.13)

∗ ∈ {ext, sca, abs}, where the latter notations hold for the extinction, the scattering and
the absorption of the incident beam, according to three regimes of an electromagnetic wave
hitting a particle in a non-absorbing medium. For an incident beam hitting a small particle
in a non-absorbing medium, assuming the light is non-polarized, Is writes:

Is = S11(θ, dp)Ii, (B.14)

where
S11(θ, dp) = 1

2(|S2(θ, dp)|2 + |S1(θ, dp)|2). (B.15)
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Appendix C. Synthetic Configuration of the
Imaging System

In our effort to closely depict the tomoPIV system, we synthesize the projection of the
3D space into the images. Note that Mc(·) is entirely defined by the set of parameters
(f c, dc1, dc2, nc1, nc2) characterizing the cth camera, whereas N c(·) is defined with respect to
the homogeneous matrix expressing the world coordinates with respect to the camera’s
coordinates.

Let Pc ⊂ R2 be the image screen of the cth camera. Then, Pc has its origin oc =
[
0 0

]T
in the middle of the screen of the cth camera’s canonical reference system of coordinates such
that:

Pc = [−d
c
1

2 ,
dc1
2 ]× [−d

c
2

2 ,
dc2
2 ], (C.1)

where × denotes the cartesian product and dci ∈ R is the dimension of the image plane
along the ith coordinate of the image system.

Let H = {h1, . . . ,h8} ∈ R3 be the ensemble of the vertices of the cuboid V. We suppose
that the parameters of the cameras are completely known, which allows us to express the
projections of the vertices into each one of the camera’s planes following the model of a
pinhole camera, such that:{

hc,v = N c(hv),
hc,vimg =Mc(hc,v),∀v ∈ {1, . . . , 8},∀c ∈ {1, . . . , Nc},

(C.2)

where the ensemble Hcimg = {hc,1img, . . . ,h
c,8
img} collecting the projections of the vertices into

the image plane is expressed in camera pixel coordinates and Hc = {hc,1, . . . ,hc,8} is
expressed with respect to the camera coordinates system. Moreover, let hc,v3 designate the
coordinates of the elements Hcimg along the zccam axis.

We are interested in strategically placing the optical center occam of each camera such that
all the vertices project within the boundaries of the their respective image planes. Firstly,
we choose an initial position of the camera optical center expressed in world frame reference
system. Then, we resort to an iterative dichotomous procedure which gradually advances
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Appendix C Synthetic Configuration of the Imaging System

or withdraws occam with respect to the vertices’ projections within the predefined limits
[mc,M c],mc,M c ∈ R3

+,M
c > mc which write:
mc = 0;
M c = L

∥∥∥∥[L1 L2 L3
]T ∥∥∥∥ ,∀L ∈ N?;

dc = o−occam
‖occam‖

.

(C.3)

Algorithm 1 illustrates this optimization procedure.

for c← 1 to Nc do
0. Initialization occam = Mc, ∀c ∈ {1, . . . , Nc};
εc = 0, ε0 = 10 exp−5;
Compute Hcimg,(0), h

c,v
3,(0) at the 0th iteration;

1. Choose L such that: {
Hcimg,(0) ⊂ Pc;
hc,v3,(0) ≥ f

c,∀v ∈ {1, . . . , 8}.

2. repeat
l← l + 1;
ac = mc+Mc

2 ;
occam = acdc;
Compute Hcimg,(l), h

c,v
3,(l) at the lth iteration;

if {
Hcimg,(l) ⊂ Pc;
hc,v3,(l) ≥ f

c,∀v ∈ {1, . . . , 8}.

then
mc = ac;

else
Mc = ac;

end
εc = Mc −mc;

until εc > ε0;
end

Algorithm 1: Optimization of the Imaging System

Figure C.1 illustrates the result of algorithm 1 for a 4-cameras configuration placed around
a small volume of

[
L1 L2 L3

]T
=
[
11 11 11

]T
images by cameras of

[
dc1 dc2

]T
=[

21 21
]T

, for c ∈ {1, · · · , 4}.
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Figure C.1: Synthetic system calibration for a 4-cameras configuration with ~dOc ∈
{
[
0 0 1

]T
,
[
0.7071 0 0.7071

]T
,
[
0 0.7071 0.7071

]T
,[

−0.7071 0 0.7071
]T }. The circles represent the pixel coordinates and the squares

depict the projection in the cameras’ planes of the voxel centers.
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Appendix D. Implementation of (2.39)

We assume hereafter that the bj(k)’s, expressed in (2.39), are defined as rectangular-pulse
functions, that is:

bj(k) ,
{

1/Vol(ζj), if k ∈ ζj ,
0, otherwise, (D.1)

where Vol(ζj) ,
∫
ζj

1 dk denotes the volume of the voxel.

The practical implementation of (2.37) requires the numerical evaluation of (D.1) . We
adopt a "subvoxel" approach inspired by [170]. The latter considers the subdivision of a
voxel ζj in a set of cubic subvoxels χl,j ⊂ ζj with l = 1, . . . , nsv such that

nsv⋃
l=1

χl,j = ζj ,
nsv⋂
l=1

χl,j = ∅. (D.2)

Using this definition, (2.39) can be rewritten as

dcij = 1
Vol(ζj)

nsv∑
l=1

∫
Ωci∩χl,j

1dk. (D.3)

We then use the following approximation∫
Ωci∩χl,j

1dk ' Vol(ζj)
nsv

, (D.4)

if the line of sight joining the center of χl,j to the optical center occam crosses the ith pixel
and set

∫
Ωci∩χl,j

1dk = 0 otherwise. Note that this approximation is equivalent to assuming
that subvoxel χl,j is either is totally included or excluded from cone of sight Ωc

i . Letting ncij
be the number of subvoxels satisfying (D.4), we finally obtain:

dcij =
ncij
nsv

. (D.5)
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Appendix E. The Proximal Operator

In this section we elaborate on the proximal operator, which appears as building block in
proximal gradient and ADMM methods. Formally, the proximal operator of a convex proper
function f(x) : Rm → R ∪ {+∞} is defined as follows:

proxf (v) = arg min
x
f(x) + 1

2‖x− v‖22. (E.1)

We note that the proximal operator is always well-defined since f(x) + 1
2‖x− v‖2 is strictly

convex and proper, and therefore there exists one unique point minimizing this function.
Interestingly, proxf (v) can be seen as a generalization of the orthogonal projection operator
onto a convex set. Indeed, letting f(x) = IX (x) be the indicator function of a convex set X ,
the proximal operator of f(x) reduces to

proxf (v) = arg min
x∈X
‖x− v‖22,

= ΠX (v),

that is, proxf (v) is equivalent to the orthogonal projection of v onto X .

Proximal operators admit a closed-form solution for many choices of f(x). Hereafter, we
provide the expressions of the proximal operators corresponding to some of the functions f(x)
encountered in the main body of the paper. These expressions are derived from standard
convex optimality conditions. We refer the reader to [136, Section 6] for detailed derivations.

If f(x) = λ‖x‖1, λ > 0, the proximal operator takes the form:

(
proxλ‖x‖1(v)

)
i

=


vi − λ vi ≥ λ
0 |vi| ≤ λ
vi + λ vi ≤ −λ

. (E.2)

This operator is often referred to as "soft thresholding" because it zeroes all the components
of v whose amplitude is below λ and slightly decreases the amplitude of the other coefficients.

When f(x) = IRm+ (x), proxIRm+
(v) is equivalent to the orthogonal projection of v onto the

133



Appendix E The Proximal Operator

positive orthant, that is(
proxIRm+

(v)
)
i

=
(
ΠRm+ (v)

)
i

=
{
vi if vi ≥ 0
0 otherwise. (E.3)

The proximal operator corresponding to λ‖x‖1 + IRm+ (x) reads as

(
proxλ‖x‖1+IRm+

(v)
)
i

=
{
vi − λ vi ≥ λ
0 otherwise. (E.4)

Finally, let us mention that the proximal operator can also be well-defined (i.e., the
solution of (E.1) exists and is unique) for some functions f(x) which are non-convex. For
example, f(x) = λ‖x‖0 leads to

(
proxλ‖x‖0(v)

)
i

=
{
vi |vi| ≥

√
λ

0 otherwise. (E.5)

This operator is often referred to as "hard thresholding" since it zeroes all the components
of v below a given threshold and leaves unchanged the other ones. The proximal operator
corresponding to λ‖x‖0 + IRm+ (x) reads

(
proxλ‖x‖0+IRm+

(v)
)
i

=
{
vi vi ≥

√
λ

0 otherwise. (E.6)
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Abstract
The challenge of the modern understanding of the 3D turbulent flows involves the need for (i). a
reliable sensing technology (ii). the design of low-complexity estimation tools (iii). physically-sound
priors. Novel techniques relying on processing image sequences have been advanced. Their
methodology relies on conjugating approaches issued from the computer vision community with
physical knowledge on fluid dynamics with the intent of designing an accurate motion estimator.
Most of these procedures are formalized within a bidimensional framework, i.e., they reconstruct a
2D motion field out of two consecutive 2D images, making them unsuitable for several fluid regimes
with high 3D structures. Estimating the fluid motion within a 3D framework seems more pertinent.
In related work, the velocity fields are most often retrieved from previously estimated volumetric
densities. Recent contributions estimating the volumetric distribution with regard to the motion
field that links them suggest a joint optimization approach as the appropriate modus operandi
towards rigorous retrieval of turbulent fluid flow. In this thesis, we have proposed a novel joint
solution to address the task of 3D fluid motion estimation out of multiple sequences of synchronized
2D images. The theoretical frame has been presented with connections to the computer vision and
signal processing fields, as well as to the Tomographic PIV (tomoPIV) community. Our work can
be divided into three main tasks: (i). the design of a physically sound model with respect to the
nature of the visualized scene (ii). the devise of volume reconstruction algorithmic schemes with
low complexity that take into account known priors on the physical signal and output a satisfying
estimation within a few iterations (iii). the formalization of a velocity reconstruction scheme
that accounts for noisy settings and for the linked structure between two instantaneous volume
reconstructions. We evaluate the agility of our methods and highlight their performance throughout
realistic numerical experiments mimicking the real-world tomoPIV signal.

Keywords: PIV Tomography, inverse problems, non-linear optimization, algorithms for sparse
reconstruction, computer vision, 3D motion estimation

Résumé
L’analyse du mouvement en 3 dimensions (3D) des fluides turbulents à évolué vers un cadre

nécessitant (i). un système de capteurs puissants (ii). le développement d’outils d’estimation de basse
complexité (iii). des connaissances a priori issues de la physique du fluide. Des nouvelles techniques
formulées dans ce contexte et s’appuyant sur le traitement d’images ont été proposées. Leur
méthodologie repose sur la conjugaison du savoir propre à la communauté Vision par Ordinateur
avec des modèles physiques de la dynamiques du fluide. Mais voilà, la plupart de ces procédures sont
exprimées dans un cadre bidimensionnel (2D), dans le sens où elles reconstruisent un champ 2D à
partir des deux images consécutives 2D ; dès lors, ces-dernières ne sont pas adaptées pour certains
régimes du fluide. Récemment, des nouvelles contributions ont proposé l’estimation du champ 3D des
fluides à partir des densités volumiques préalablement reconstruites. De plus, une amélioration de ces
schémas classiques suggère un apport signifiant en netteté de la reconstruction dans un cadre joint
d’estimation volume-mouvement. Motivés par ces développements, nous proposons dans cette étude
une alternative au schéma joint déjà présent dans la littérature afin d’estimer la vitesse 3D des fluides
à partir de plusieurs séquences synchronisées d’images 2D. Le cadre théorique de cette thèse a été
présenté en connexion avec les communautés de la Vision par Ordianteur, du Traitement du Signal
et de la Tomographie PIV. Notre travail peut être divisé en trois tâches majeures : (i). la formulation
d’un modèle proche de la physique du système observé (ii). la conception des algorithmes
de reconstruction volumique de basse complexité qui prennent en compte des particularités
notables sur le système (iii). l’élaboration d’un schéma de reconstruction des champs de vitesse qui
considère des scénarios bruités et la structure cohérente volumique entre deux instants. Nous évaluons
les performances de nos méthodes sur des scènes réalistes représentant le signal de Tomographie PIV.

Mots-clés : Tomographie PIV, problèmes inverses, optimization non-linéaire, algorithmes pour la
reconstruction parcimonieuse, estimation de la vitesse 3D
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