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Chapter I

Introduction

Recent theoretical developments in astronomical aperture synthesis have revealed the exis-
tence of integer-ambiguity problems. Those problems, which appear in the self-calibration
procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP)
problems encountered in high-precision geodetic positioning, and in global navigation satel-
lite systems.

In Chapter II, we analyse the phase-calibration problem encountered in astronomy when
mapping incoherent sources with aperture-synthesis devices. More precisely, this analysis
concerns the phase-calibration operation involved in the self-calibration procedures of phase-
closure imaging. In this chapter, we revisit and complete the analysis presented in Lannes
(2005). We also take profit of subsequent developments made for solving similar problems
encountered in global navigation satellite systems. In radio-astronomy, the related optimiza-
tion problems have been stated and solved hitherto at the phasor level. We present here an
analysis conducted at the phase level, from which we derive a method for diagnosing and
solving the difficulties of the phasor approach. In the most general case, the techniques to
be implemented appeal to the algebraic graph theory and the algebraic number theory. The
minima of the objective functionals to be minimized are identified by raising phase-closure
integer ambiguities. We also show that in some configurations, to benefit from all the avail-
able information, closure phases of order greater than three are to be introduced. In summary,
this study leads to a better understanding of the difficulties related to the very principle of
phase-closure imaging. To circumvent these difficulties, we propose a strategy both simple
and robust.

In Chapter III, we analyse the theoretical aspects the NLP problem encountered both
in this phase self-calibration problem and in the calibration of global navigation satellite
systems, and we propose new resolution methods. The related optimization aspects concern
both the preconditioning stage, and the discrete-search stage in which the integer ambiguities
are finally fixed. Our algorithms, which are described in an explicit manner, can easily be
implemented. They lead to substantial gains in the processing time of both stages. Their
efficiency was shown via intensive numerical tests.

In global navigation satellite systems (GNSS), the calibration problem, consisting of re-
trieving clock-phase biases from network data, has a basic rank defect. In Chapter IV we
analyze the different ways of removing this rank defect, and define an efficient strategy for
obtaining these phase biases in a standard form. The minimum-constrained problem to be
solved in the least-squares (LS) sense depends on some integer vector which can be fixed in
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CHAPTER I. INTRODUCTION

an arbitrary manner. We propose to solve the problem via an undifferenced approach based
on the notion of closure ambiguity. We present a theoretical justification of this closure-
ambiguity approach (CAA), and the main elements for a practical implementation. The links
with other methods are also established. We analyze all those methods in a unified theoreti-
cal framework, and derive functional relations between the corresponding solutions and our
CAA solution. On the grounds of this analysis, we make some suggestions for improving the
calibration procedures currently used in GNSS. A substantial reduction of the processing time
could thus be obtained. This would be particularly interesting for many GNSS applications
like real-time kinematic precise point positioning for instance. To compare the methods pro-
viding LS estimates of clock-phase biases, we define a particular solution playing the role of
reference solution. For this solution, when a phase bias is estimated for the first time, its frac-
tional part is confined to the one-cycle width interval centred on zero; the integer-ambiguity
function is modified accordingly. Our theoretical study is illustrated with some simple and
generic examples; it could have applications in data processing of most GNSS networks,
and particularly global networks using GPS, GLONASS, Galileo, IRNSS or BeiDou/Compass
satellites.

2



I.1. LANNES’ APPROACH OF THE PROBLEM

I.1 Lannes’ approach of the problem
When processing times series of global positioning data, one is led to introduce local vari-
ables uk which depend on the successive epochs tk of the time series, and a global variable
v which remains the same all over these epochs, with however possible state transitions from
time to time. For example, state transitions occur when some satellites appear or disappear.

In the period defined by two successive transitions, the problem to be solved in the least-
square (LS) sense is governed by a system of linear equations in which the key matrix has
an angular block structure. This structure is well suited to recursive QR factorisation, which
was implemented for the first time in GNSS by Lannes & Gratton (2008) for solving the case
of continuous observations in RTK mode (Real-Time Kinematics) with a local-scale single
baseline. This technique was then applied to the more general case of GNSS networks by
Lannes & Gratton (2009). In that paper, they introduce the notion of closure delay (CD)
which generalizes that of double difference (DD) which is widely used in GNSS. The recur-
sive QR factorisation prove to be well suited for handling the state transitions induced by the
variations of the GNSS graph in an optimal manner. Furthermore, Lannes & Gratton (2009)
also implemented LLL decorrelation techniques that appeared very efficient for facilitating
the integer-ambiguity problem resolution.

Notice that the satellite-clock biases were not estimated in Lannes & Gratton (2009).
The estimation of all the clock-biases of a GNSS network, which can be considered as the
calibration of this network, was investigated in Lannes & Prieur (2013).

I.2 Observational equations
Global positioning techniques are based on carrier-phase and code measurements, Φν,k(i, j)

and Pν,k(i, j), obtained for the receiver-satellite pair (i, j)
def
= (ri, sj) (ri receiver, sj , satellite),

at the time tk and for the frequency ν. There are two frequencies ν = ν1, ν2 transmitted
by each GPS/NAVSTAR satellite of the former generation, and at least three for the latest
generation satellites. To simplify, we use here satellite as a synonym of transmitter, which is a
valid assumption when building the visibility grids and graphs. We will split the indices of the
satellites into two (or more) sub-indices of transmitters when considering receiver-transmitter
accurate distances, since the satellite antennas (or feeders) of the different frequencies are not
located at the same place.

For each epoch tk, the carrier-phase and code data are respectively of the form (Teunissen
& Kleusberg, 1998; Mercier & Laurichesse, 2008):

Φν,k(i, j) = ρk(i, j) + Tk(i, j)− κνIk;ν1(i, j) +
[
f

(r)
Φ;k(i)− f (s)

Φ;k(j)
]

−κν
[
g

(r)
Φ;k(i)− g(s)

Φ;k(j)
]

+ λν Nν(i, j) + εΦ;ν,k(i, j)

Pν,k(i, j) = ρk(i, j) + Tk(i, j) + κνIk;ν1(i, j) +
[
f

(r)
P ;k(i)− f (s)

P ;k(j)
]

+κν

[
g

(r)
P ;k(i)− g(s)

P ;k(j)
]

+ εP ;ν,k(i, j)

In these equations, that are expressed in length units, Φν,k(i, j) is carrier-phase measure-
ment, ρk(i, j) is the receiver-satellite range (distance between the satellite sj at the time tk−τ

3



CHAPTER I. INTRODUCTION

when the signal was emitted and the receiver ri at the time tk of its reception); Tk(i, j) and
κν Ik;ν1(i, j) are the tropospheric and ionospheric delays, respectively. The ionospheric delay
is proportional to ν−2, so:

κν = ν2
1/ν

2 = λ2
ν/λ

2
1 for ν = ν1, ν2 (I.1)

where λν is the wavelength of the carrier wave. Note that κν1 = 1.
The instrumental delays and clocks errors that depend only on ri (for a given epoch tk)

are lumped together in the extended receiver-clock biases f (r)
Φ;k(i), f (r)

P ;k(j). Likewise, the
instrumental delays and clocks errors that depend only on sj (for a given epoch tk) are lumped
together in the extended satellite-clock biases f (s)

Φ;k(i), f (s)
P ;k(j).

Similarly, g(s)
Φ;k(i), g(s)

P ;k(j) denote the biases induced by the time group delays.
Nν(i, j) are the integer carrier-phase ambiguities. They are constant when the electronics

of the phase loop is locked (Phase-Loop Locked, PLL).
In this model the expectation values of the noise terms εΦ;ν,k(i, j) and εP ;ν,k(i, j) are

supposed to be nought. (i.e. 〈εΦ;ν,k(i, j)〉 ≈ 0 and 〈εP ;ν,k(i, j)〉 ≈ 0).

4



Chapter II

Self-Calibration in Astronomy

The phase-calibration problems encountered in aperture synthesis may have various forms
that are linked to the physical context of the experiments. In astronomy, it mainly concerns
radio imaging and optical interferometry. There exists a wide range of situations: various
wavelength domains, snapshot or integrations over some time interval, different nature of the
calibrator (point-source, extended source), etc. The way of modelling the influence of the
atmosphere may also change the nature of the problem. Self-calibration corresponds to the
situation where the object source to be imaged plays the role of the calibrator. As shown
in the pioneering work of Cornwell & Wilkinson (1981), this problem can often be solved
by alternate phase-calibration operations and Fourier-synthesis processes. In most cases, to
ensure the reliability and the robustness of those techniques, the phase-calibration operations
must then be conducted with much care. The main objective of this chapter is to develop the
corresponding analysis, and thereby to derive a method for coping with critical situations.

Related contributions have been made in this field by our group; see, e.g., the study of
the phase-calibration problem presented in Lannes (2005). Furthermore, similar calibration
problems appear in the processing of network signals in global navigation satellite systems
(GNSS); see Lannes & Teunissen (2011). In this chapter the GNSS contributions of Lannes
et al. (2010) and Lannes & Gratton (2009) are also taken into account. The original study of
the phase-calibration problem presented in Lannes (2005) is thus revisited and completed.

In this chapter, we first recall some preliminary notions of aperture synthesis, and intro-
duce two approaches (Sect. II.1). In the first one, the ‘chord approach,’ one minimizes the
size of the chords defined by the phasor pairs involved in the functional to be minimized. The
problem is thus handled at the phasor level in a way similar to that of the traditional approach
of Cornwell & Wilkinson (1981). The second approach, the ‘arc approach,’ corresponds to
that of Lannes (2005). The problem is handled at the phase level. The quantity that is then
minimized is the size of the arcs associated with the chords of the first approach.

The arc approach gives a better insight into the problem; see Sects. II.4 and II.5. The
techniques to be implemented then appeal to the algebraic graph theory; see, e.g., Biggs
(1996). The corresponding theoretical framework is presented in Sect. II.2. The notion of
‘phase closure’ is then introduced in a context more general than that usually defined in radio
imaging and in optical interferometry. In particular, closure phases of order greater than three
may then be defined. The interest of the related approach is specified in Sect. II.2.6. Particular
attention is paid to the related algebraic structures; see Property 1 in Sect. II.2.3 together with
the algebraic aspects presented in Sect A. The phase-calibration problem can be stated in a

5



CHAPTER II. SELF-CALIBRATION IN ASTRONOMY

reduced form in which the notion of phase closure plays an important role. This key point is
presented in Sect. II.3.

Section II.4 is devoted to the study of the minima of the ‘reduced arc functional’ g. Some
notions of algebraic number theory are then taken into account (Cohen, 1996). We then show
that the minimizers of g can be identified in a systematic manner. The connection with the
usual approach via the ‘reduced chord functional’ f is presented in Sect. II.5. The minimizers
of g can be used for initializing the minimization processes of f . As shown in Sect. II.5.3,
a minimum of f may be ‘tightly linked’ to a minimum of g. To illustrate our method in a
simple and concrete manner, a few simulations concerning four-element arrays are presented
in Sect. II.6.

In Sect. II.7, we first show how our approach can be included in the self-calibration pro-
cedures of phase-closure imaging (Sect. II.7.1). On the grounds of our algebraic analysis,
we then propose a simple strategy for conducting the phase-calibration operations in a robust
manner (Sect. II.7.2). As a general rule, such an operation then reduces to solving a linear
equation.

In the concluding comments (Sect. II.8), we will recall the main points of our method
(arc and chord approaches, phase-closure aspects, nonlinear situations, conflicting secondary
minima, etc, see Sect. II.8.1), and then discuss the impact of our study on the other methods
of phase-closure imaging (see also Sect. II.8.2).

II.1 Preliminary notions
Let us consider an interferometric array observing an incoherent source of small angular size.
Relative to the tracking centre, the object source is characterized by some two-dimensional
angular brightness distribution so(ξ). Denoting byF the Fourier-transform operator, we have

(Fso)(u)
def
=

∫
so(ξ) e−2iπu·ξ dξ (II.1)

Let r(i) denote, at some epoch, the position vector of the ith pupil element (antenna
or telescope) projected onto a plane normal to the tracking axis. Each pair of these pupil
elements defines a baseline (i, j). The angular spatial frequency associated with this baseline
is given by the formula

u(i, j) = [r(i)− r(j)]/λ (II.2)

where λ is the wavelength of the electromagnetic field under consideration. According to
the theorem of Van Cittert-Zernike (Born & Wolf, 1970), we define the ‘complex visibility’
function of the object Vo(i, j) by the relation

Vo(i, j)
def
= (Fso){u(i, j)} (II.3)

The baselines of the interferometric array thereby define some discrete sampling of the Fourier
transform of so. The ‘complex-visibility data’ function Vd(i, j) is related to this discrete sam-
pling by a relation of the form

Vd(i, j) = Vo(i, j) ei[αd(i)−αd(j)] + εd(i, j) (II.4)

6



II.1. PRELIMINARY NOTIONS

The αd(i)s are unknown pupil-bias phases; εd(i, j) is an error term. Once these aberration
phases have been calibrated (somehow), the inversion of the basic relationship (II.3) yields
an estimate of so. Within well defined limits, the corresponding operation is associated with
the notion of Fourier synthesis (Lannes et al., 1997). Here, for clarity, we restrict ourselves
to the snapshot case: a single epoch is considered; see however Remark II.3.2.1.

Whenever possible, the pupil-bias phases αd(i) are calibrated by using a reference object
source: the ‘phase calibrator.’ This reference is a priori known, for example when it is a
point source. There however exist circumstances where such a calibration is impossible. A
way out may be to use the very object (source) to be imaged as calibrator. One then speaks
of ‘self-calibration.’ More precisely, an estimate sm of so is then used as calibrator: the
‘model.’ The complex visibilities of this model are then denoted by Vm(i, j) By performing
alternate (self-)phase-calibration operations and Fourier-synthesis processes, the model can
thus be progressively refined; see, e.g., Cornwell & Wilkinson (1981). In the most general
case, the phase-calibration operation is therefore performed on the grounds of a relationship
of the form [see Eq. (II.4)]

Vd(i, j) = Vm(i, j) ei[αd(i)−αd(j)] + εdm(i, j) (II.5)

Here, the error term εdm also takes into account the fact that Vm is an approximation to Vo.
Note that the pupil-bias phases appear in such equations only as differences αd(i)−αd(j). We
can therefore take the value at i = 1 as reference. This amounts to introducing the pupil-bias
phases αd(i)s

αd(i)
def
= αd(i)− αd(1) (II.6)

The guiding idea of the phase-calibration operation is to find estimates of the pupil-bias
phases αd(i) modulo 2π; clearly, αd(1) = 0. Denoting by αd?(i) such estimates, the ‘cal-
ibrated visibility function’ Vd?(i, j) is then defined by the relation [see Eqs. (II.4) and (II.5)]

Vd?(i, j)
def
= Vd(i, j) e−i[αd?(i)−αd?(j)] (II.7)

According to Eqs. (II.1) and (II.2), a (small) angular shift δξ of the source distribution
induces at the level of the phase of Vo(i, j) a phase variation of the form α(i)− α(j) where

α(i) = −2π

λ

(
r(i) · δξ)

These terms cannot be distinguished from the unknown pupil-bias phases αd(i). As a result,
the image provided by a self-calibration procedure can only be defined up to a translation.

II.1.1 Phase-calibration graph
Let E be the set of baselines (i, j), with i < j, on which the phase of Vd is well defined, i.e.,
the set of baselines on which the amplitude (i.e., the modulus) of Vd is above some threshold;
see Eqs. (II.4) and (II.3). The set of pupil elements involved in the definition of the baselines
of E is then denoted by V . The ‘phase-calibration graph’ is thus characterized by the couple
G

def
= (V ,E ); V is the set of its vertices (its antennas or telescopes), and E that of its edges

(its baselines); see for example Fig. II.1.

7



CHAPTER II. SELF-CALIBRATION IN ASTRONOMY

5 6

23

14

Figure II.1: Notion of phase-calibration graph. On the edges of this graph G
def= (V ,E ), the modulus of the

complex visibility Vd is above some threshold. In this example, V includes 6 vertices (6 antennas or telescopes):
nv = 6; E includes 10 edges (10 baselines): ne = 10.

For clarity, we now assume that G is connected (see, e.g., Biggs (1996)): given any two
vertices of V , i1 and i2, there exists a path of edges of E connecting i1 to i2; see Fig. II.1.

Let us finally note that G is not necessarily complete: two vertices of V do not necessarily
define an edge of E . Denoting by nv the number vertices of G , and by ne that of its edges,
we therefore have ne ≤ nv(nv − 1)/2.

II.1.2 Phase-calibration functionals
We now present two different ways of stating the phase-calibration problem. The guiding
idea is to minimize a functional f◦(αd) of the form [see Eqs. (II.5) and (II.7)]

f◦(αd)
def
=
∑

(i,j)∈E w◦(i, j)

× ∣∣Vd(i, j) e−i[αd(i)−αd(j)] − Vm(i, j)
∣∣2 (II.8)

Here, w◦ is a weight function strictly positive. When Vm(i, j) is supposed to be a good
approximation to Vo(i, j), w◦(i, j) is of course set equal to a relatively high value.

Let us define the baseline functions ϕd and ϕm:

Vd = ρd e
iϕd , Vm = ρm e

iϕm (II.9)

we have, from Eq. (II.8),

f◦(αd) =
∑

(i,j)∈E w◦(i, j)

× ∣∣ρd(i, j) ei{[ϕd(i,j)−ϕm(i,j)]−[αd(i)−αd(j)]} − ρm(i, j)
∣∣2

For clarity, let us define the baseline phase function ϕ as:

ϕ(i, j)
def
= ϕd(i, j)− ϕm(i, j) (modulo 2π) (II.10)

8
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arc(ϕ−Bαd)

chord(ϕ−Bαd)

ϕd ϕm

arc(Bαd)

0

Figure II.2: Illustration of the phase-calibration principle for a generic baseline (i, j) of E . By definition
ϕ(i, j) = ϕd(i, j)− ϕm(i, j) where ϕd and ϕm are the phases of the data and model visibilities, respectively;
see Eqs. (II.10) and (II.9). The phase-calibration operation consists in minimizing in αd the size of arc(ϕ−Bαd)
on E ; see Eqs. (II.19), (II.14), (II.15), and Fig. II.1 In the phasor approach, the functional to be minimized is
a measure of the size of chord(ϕ−Bαd) on E ; see Eq. (II.18). As illustrated here, on each baseline of E ,
chord(ϕ−Bαd) is less than or equal to |arc(ϕ−Bαd)|; see Eq. (II.21).

Let us now define the norm ‖ · ‖wd as follows:

‖β‖2
w◦

def
=
∑

(i,j)∈E

w◦(i, j) |β(i, j)|2

In functional terms, we therefore have

f◦(αd) =
∥∥ρd e

i(ϕ−Bαd) − ρm

∥∥2

w◦
(II.11)

where B is the baseline-bias phase operator

(Bαd)(i, j)
def
= αd(i)− αd(j) [αd(1) = 0] (II.12)

To analyze the problem on trigonometric circles (see Fig. II.2), we now introduce the variant
of f◦,

f◦(αd)
def
= ‖ei(ϕ−Bαd) − 1E‖2

w (II.13)

where 1E is the following function: 1E (i, j) = 1 on E . The norm ‖ · ‖w is defined by the
relation

‖β‖2
w

def
=
∑

(i,j)∈E

w(i, j) |β(i, j)|2 (II.14)

where

w(i, j)
def
=

w◦(i, j)
√
ρd(i, j)ρm(i, j)∑

(i,j)∈E

w◦(i, j)
√
ρd(i, j)ρm(i, j)

(II.15)

Note that, by construction, w is normalized so that∑
(i,j)∈E

w(i, j) = 1 (II.16)

9
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Introducing the ‘chord function’ chord:

chord θ
def
= |eiθ − 1| = 2|sin(θ/2)| (II.17)

we therefore have

f◦(αd) = ‖chord(ϕ−Bαd)‖2
w (II.18)

In radio-astronomy, since the pioneering work of Cornwell & Wilkinson (1981), the
phase-calibration problem is generally handled at the chord level by minimizing function-
als such as f◦. Under certain circumstances, f◦ and f◦ may have secondary minima. As a
result, the nonlinear optimization algorithms may fail in finding the global minimum. As
shown in Sect. II.5, this difficulty can be overcome by solving the problem at the arc level.
The following variant g◦(αd) of f◦ is then considered (see Fig. II.2):

g◦(αd)
def
= ‖arc(ϕ−Bαd)‖2

w (II.19)

Note that for any θ in R, the ‘arc function’ arc is defined by the relation

arc θ
def
= θ − 2π

⌊ θ
2π

⌉
(II.20)

Here, bxe denotes the integer of Z closest to x; when x = k + 1/2 for some k in Z,bxe is set
equal to k. We thus have −π < arc θ ≤ π. As chord θ ≤ |arc θ|,√
f◦ ≤ √g◦ ≤ π (II.21)

II.2 Theoretical framework
In Sect. II.2.1, we first introduce the notions of spanning tree and loops. We then define
related spaces of functions (Sect. II.2.2). The key property on which our analysis is based is
presented in Sect. II.2.3. The concept of phase closure is defined in this general framework
(Sects. II.2.4 and II.2.5). The connection with the usual notion of phase closure is specified
in Sect. II.2.6. Sections II.2.7 and II.2.8 are devoted to some technical aspects concerning
related variance-covariance matrices.

II.2.1 Spanning tree and loops

As illustrated in Fig. II.3, a spanning tree of a phase-calibration graph G
set
= G (V ,E ) is a

subgraph Gst
set
= G (V ,Est) formed by nv vertices and nv − 1 edges, with no ‘cycle’ in it.

Here, ‘cycle’ is used in the sense defined in algebraic graph theory (see, e.g., Biggs (1996)).
To avoid any confusion with the notion of wave cycle, we will substitute the term of ‘loop’
for that of ‘cycle.’ In this context, the number of loops defined through a given spanning tree
is the number of baselines of E that do not lie in Est These baselines,

e`
def
= (i`, j`) (II.22)

10
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5 6

23

14

Figure II.3: Spanning tree and loops. The graph G shown here is the same as that presented in Fig. II.1.
It includes six vertices (six pupil elements) and ten edges (ten baselines): nv = 6, ne = 10. The 5 edges
represented with thick lines are those of the selected spanning tree: nst

def= nv−1. The remaining 5 edges define
as many loops: nc = ne − nst. Here, these loops are the following: (1, 3, 2), (1, 4, 3, 2), (2, 4, 3), (3, 5, 4) and
(4, 6, 5). Note that the second loop includes four edges.

which form a set denoted by Ec, are said to be loop-entry baselines (see Figs. II.3 and II.4).
Their number is nc Denoting by

nst
def
= nv − 1 (II.23)

the number of edges of the spanning tree, we therefore have

nc = ne − nst (II.24)

As illustrated in Figs. II.3 and II.4, the loops may include more than three edges.
A spanning tree of maximal weight is a spanning tree for which the sum of the weights

of its edges is maximal. An example is shown in Fig. II.4. According to the principle of the
Kruskal algorithm (1956), such a tree can be obtained as follows:

(1) For p = 1, . . . , ne, sort the edges e(p)
set
= (i, j) of E so that their weights $(p)

set
=w(i, j)

are in non-increasing order: $(1) ≥ · · · ≥ $(ne).

(2) Set p set
= 0, q set

= 0, and Est
set
= ∅ (the empty set).

(3) If q = nst, terminate the process; otherwise, set p set
= p+ 1.

(4) When the vertices of e(p) are not connected via edges of Est, set Est
set
= Est∪{e(p)}, and

go to step (3) with q set
= q + 1.

When the weights w(i, j) are all distinct, the spanning tree is unique.

11
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1

23
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0.550.23

0.11

0.03

0.02

0.06

Figure II.4: Spanning tree of maximal weight (example). For the weights w(i, j) displayed on the edges of the
graph G shown here, the spanning tree of maximal weight is formed by the baselines (1, 2), (3, 4) and (2, 4)
plotted with thick lines. The remaining baselines are loop-entry baselines.

II.2.2 Reference spaces
In this section, we introduce several Euclidean spaces. As illustrated in Fig. II.5, our analysis
can thus be followed in a geometrical manner.

Pupil-phase space. Any real-valued function α taking its values on the pupil elements of V ,
with α(1) = 0, can be regarded of a vector of Rnv−1; see Eq. (II.6). The pupil-phase space Vb
is the space of those functions (or vectors). From Eq. (II.23), this space is isomorphic to Rnst:

Vb ∼= R
nst (II.25)

The ‘integer lattice’ Vb(Z) is the subset of Vb formed by its integer-valued functions: Vb(Z) ∼=
Z
nst .

Baseline-phase space. Any real-valued function β taking its values on the baselines of E can
be regarded as a vector of Rne . The baseline-phase space E is the space of those baseline-
phase functions (or vectors):

E ∼= R
ne (II.26)

The values of β on E are then regarded as the components of β in the standard basis ofE. The
integer lattice E(Z) is the subset of E formed by its integer-valued functions: E(Z) ∼= Z

ne .
The inner product on E is defined by the relation

(β1 | β2)
def
=
∑

(i,j)∈E

β1(i, j) β2(i, j) (II.27)

i.e., in terms of matrices,

(β1 | β2) = βt
1β2 (II.28)
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Spanning-tree phase space. The functions of E that vanish on Ec form a subspace of E
denoted byEst the spanning-tree phase space. This space is of dimension nst [see Eq. (II.23)]:

dimEst = nst (II.29)

Closure-phase space. The orthogonal complement ofEst in the Euclidean spaceE is denoted
by Ec see Fig. II.5. Its functions vanish on Est. As justified in Sect. II.2.4, Ec can be referred
to as the closure-phase space. From Eq. (II.24),

dimEc = nc (II.30)

Baseline-bias phase space. Consider the operator B from Vb into E defined by Eq. (II.12).
Its range, which is denoted by Eb Eb (see Fig. II.5), is referred to as the baseline-bias phase
space. Its functions βb(i, j) are of the form α(i)− α(j) with α(1) = 0.

The operator from Vb into Est induced by B is denoted by Bst Likewise, the operator
from Vb into Ec induced by B is denoted by Bc The matrix of B is generally expressed in the
standard bases of Vb and E.

For example, let us sort the baselines of the graph shown in Fig. II.4 in the order defined
for the application of the Kruskal algorithm: (1, 2), (3, 4), (2, 4), (2, 3), (1, 3), (1, 4), We
then have

[B]α =


−1 0 0

0 1 −1
1 0 −1
1 −1 0
0 −1 0
0 0 −1


α(2)

α(3)

α(4)

 (II.31)

The columns of [B] then define the standard basis of Eb. Clearly,

[Bst] =

 −1 0 0
0 1 −1
1 0 −1

 (II.32)

and

[Bc] =

 1 −1 0
0 −1 0
0 0 −1

 (II.33)

The condition Bstα = 0, i.e., Bα = 0 on the baselines of Est, implies that α is constant
on V ; as α(1) = 0, this constant is zero. The null space of Bst is therefore reduced to {0}.
As Bα = 0 implies Bstα = 0, the null space of B is also reduced to {0}. We thus have

kerB = kerBst = {0} (II.34)

As a result, B is of full rank, hence [from Eq. (II.25)]

dimEb = dimVb = nst

13



CHAPTER II. SELF-CALIBRATION IN ASTRONOMY

II.2.3 Key property
As kerBst = {0} [Eq. (II.34)], and dimEst = dimVb [see Eqs. (II.29) and (II.25)], Bst maps
Vb onto Est; Bst is therefore invertible. As specified in this section, our analysis derives from
this property.

Let us introduce the Qst the orthogonal projection of E onto Est (see Fig. II.5). For any β
in E, Qstβ is the function of Est whose values are those of β on Est. Let us now concentrate
on the pupil-phase function

αβ
def
=B−1

st Qstβ (II.35)

The following process provides the values of αβ in a recursive manner, and thereby (if need
be) a way of computing the matrix elements of [Bst]

−1.

Recursive approach. Set αβ(1)
set
= 0; then, span the baselines of Est in a given order. For each

baseline (i, j) thus encountered, then proceed as follows:

• when αβ(i) has already been set, and αβ(j) is not set yet, then αβ(j)
set
=αβ(i)− β(i, j).

• when αβ(j) has already been set, and αβ(i) is not set yet, then αβ(i)
set
= β(i, j) +αβ(j).

To obtain all these biases, Est is to be spanned in this way as many times as required.

The only operations involved in the process are algebraic sums. As a result, when β is an
integer-valued function ν, the function

µν
def
=B−1

st Qstν (II.36)

is also integer valued: µν lies in Vb(Z). As a corollary, when β is defined modulo 2π (on each
baseline of E ), αβ is defined modulo 2π (on each pupil-element of V ).

To illustrate this recursive approach, we now follow the action of this process on the
spanning tree of Fig. II.4. As αβ(1) is zero, we then obtain successively:

αβ(2) = αβ(1)− β(1, 2) = −β(1, 2)

αβ(4) = αβ(2)− β(2, 4) = −β(1, 2)− β(2, 4)

αβ(3) = β(3, 4) + αβ(4) = β(3, 4)− β(1, 2)− β(2, 4)

We thus have αβ(2)

αβ(3)

αβ(4)

 =

 −1 0 0

−1 1 −1

−1 0 −1

 β(1, 2)

β(3, 4)

β(2, 4)


hence, here,

[Bst]
−1 =

 −1 0 0
−1 1 −1
−1 0 −1

 (II.37)

Alternative approach. In fact, as specified in A1, Bst is a particular unimodular matrix whose
inverse can be obtained via another integer-programming technique; see how Eq. (II.37) is
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Figure II.5: Canonical decompositions of the baseline-phase space E. In this geometrical representation of E,
Est is the spanning-tree phase space. This space is isomorphic to the pupil-phase space Vb. The orthogonal
complement of Est in E is the closure-phase space Ec. The baseline-bias phase space (the range of operator B)
is a subspace of E denoted by Eb. As B is of full rank [see Eq. (II.34)], this space is isomorphic to Vb and
thereby to Est. The dimensions of these main spaces are written within parentheses. As illustrated here, E is
the oblique direct sum of Eb and Ec: for any β in E, we have β = βb + βc. The phase-closure operator C is
the oblique projection of E onto Ec along Eb; for further details see Property 1 and Eq. (II.35). The orthogonal
complement of Eb in E is the range of the transpose of matrix [C]; see Eq. (II.46). As illustrated here, for any β
in E, [C]tβ − β is orthogonal to Ec in E; see text.
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obtained in Sect. A1.4 [Eq. (A.8)]. (By definition, a unimodular matrix is a square integer
matrix with determinant ±1.)

Let us now consider the following function of Eb:

βb
def
=Bαβ (II.38)

According to Eq. (II.35), the values of βb and β coincide on Est. The function βc defined by
the relation

βc
def
= β − βb (II.39)

therefore lies in Ec. We thus have the following property (see Fig. II.5):

Property 1. Any baseline-phase function β of E can be decomposed in the form β = βb +βc

with βb
def
=Bαβ , and βc in Ec. For a given spanning tree, this decomposition is unique. As a

corollary, E is the direct sum of Eb and Ec: E = Eb + Ec with Eb ∩ Ec = {0}.
In particular, any function ν of E(Z) can be decomposed in the form ν = νb + νc with

νb
def
=Bµν and νc inEc. According to our analysis, the functions µν , νb and νc are then integer

valued. The integer lattice E(Z) is therefore the direct sum of the integer lattices Eb(Z)
and Ec(Z). This point is illustrated in Fig. II.8.

II.2.4 Closure phases
According to Eqs. (II.39) and (II.38), the quantities βc(i`, j`), for ` = 1, . . . , nc, can be com-
puted via the formula

βc(i`, j`) = β(i`, j`)−
[
αβ(i`)− αβ(j`)

]
(II.40)

where αβ is determined via Eq. (II.35). As clarified in this section, these quantities can be
referred to as the ‘closure phases’ of β.

For example, let us consider the second loop of Fig. II.4, i.e., the loop associated with
loop-entry baseline (i2, j2) = (1, 3). The successive baselines of this loop are the following:
(1, 3), (3, 4), (2, 4) and (1, 2). In a telescoping manner, we then have, since βb(i, j) = αβ(i)− αβ(j),

βb(1, 3) + βb(3, 4)− βb(2, 4)− βb(1, 2) = 0

Furthermore, as βc vanishes on Est,

βc(1, 3) + βc(3, 4)− βc(2, 4)− βc(1, 2) = βc(1, 3)

Since β = βb + βc (from Property 1), it follows that

β(1, 3) + β(3, 4)− β(2, 4)− β(1, 2) = βc(1, 3)

This explicitly shows that βc(i2, j2) can be regarded as the closure phase of β on the second
loop. The generalization is straightforward. In the special case of Fig. II.4, we thus have∣∣∣∣∣∣∣
βc(2, 3) = β(2, 3) + β(3, 4)− β(2, 4)

βc(1, 3) = β(1, 3) + β(3, 4)− β(2, 4)− β(1, 2)

βc(1, 4) = β(1, 4)− β(2, 4)− β(1, 2)

(II.41)
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The closure phases βc(i`, j`) are associated with loops whose order is greater than or
equal to 3. According to Eq. (II.40), these closure phases can however be computed without
knowing the baselines of their loop. How to identify these baselines if need be is specified
in Sect. II.2.5. Subject to some condition, these closure phases can be expressed as linear
combinations of closure phases of order 3. The related matter is presented in Sect. II.2.6.

II.2.5 Phase-closure operator

From Property 1, the closure-phase function βc is the oblique projection of β on Ec along Eb;
see Fig. II.5. The corresponding operator is the ‘phase-closure operator’ C:

βc = Cβ (II.42)

Its null space (i.e., its kernel) is the range of B:

kerC = Eb (II.43)

Note that βb is the oblique projection of β on Eb along Ec.
According to the definitions of Bst and Bc (see Sect. II.2.2), the vector βb

def
=Bαβ can be

orthogonally decomposed in the form [see Eq. (II.35)]

βb = Bstαβ +Bcαβ = Qstβ +Bcαβ

Likewise,

β = Qstβ +Qcβ

where Qcβ is the orthogonal projection of β on Ec. We have thus defined Qc the orthogonal
projection of E onto Ec (see Fig. II.5). For any β in E, it then follows that

βc = β − βb = Qcβ −Bcαβ = Qcβ −BcB
−1
st Qstβ

Denoting by [C] the matrix of C expressed in the standard bases of E and Ec, we therefore
have, from Eq. (II.42),

[C]β = −[Bc][Bst]
−1[Qstβ] + [Qcβ] (II.44)

The column vectors of [C] corresponding to the spanning-tree baselines (on which Qcβ van-
ishes) are therefore those of −[Bc][Bst]

−1. It is also clear that the column vectors of [C]
corresponding to the loop-entry baselines (on which Qstβ vanishes) are those of the identity
matrix on Ec.

For example, in the special case of Fig. II.4, with the same baseline ordering, we have,
from Eqs. (II.33) and (II.37),

[Bc][Bst]
−1 =

 0 −1 1
1 −1 1
1 0 1


17
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As a result [from Eq. (II.44)],

[C] =

 0 1 −1 1 0 0
−1 1 −1 0 1 0
−1 0 −1 0 0 1

 (II.45)

Applied to β, this matrix of course yields Eq. (II.41). Clearly, the baselines of each loop can
be identified via the nonzero entries of the corresponding line of [C].

For any α in Vb, and any β in E,

([C]tβ | Bα) = (β | CBα) = 0.

The range of [C]t is therefore the orthogonal complement of Eb in E:

E⊥b = [C]tE (II.46)

Moreover, [C]tβ − β is orthogonal to Ec in E; see Fig. II.5. Indeed, ([C]tβ − β | βc) = (β |
Cβc)− (β | βc) = 0.

II.2.6 Connection with the usual notion of phase closure
Until now in astronomy, to the best of our knowledge, the closure phases have been com-
puted on loops of order three only. Given some phase-calibration graph G , the operator that
provides all these closure phases is denoted by C◦3 The rank of its matrix [C◦3 ] (the dimension
of its range), which is equal to the rank of [C◦3 ]t, is denoted by nc3

For example, let us consider the phase-calibration graph G of Fig. II.4. We then have four
triangles which can be sorted in the following order:

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

Let us then order the edges of G as follows:

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

The ‘closure matrix’ [C◦3 ] is then the following:

[C◦3 ] =


1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1
0 0 0 1 −1 1

 (II.47)

As shown in A1 (see Example 3 in that appendix), nc3 is then equal to 3. As nc3 is the rank of
[C◦3 ]t, the maximum number of independent closure phases of order three is then equal to 3.

We will call ‘usual phase-closure operator’ C3 an operator whose matrix is a closure ma-
trix that provides a ‘maximum set independent closure phases of order three.’ Such a matrix,
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denoted by [C3], therefore provides nc3 independent closure phases of order three. For exam-
ple, in the case of Fig. II.4, the matrix formed by the first three lines of [C◦3 ] is such a matrix:

[C3] =

 1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1

 (II.48)

Beyond this example, as Rank [C3] = Rank [C3]t = nc3, we have

ne = dim(ker C3) + nc3 (II.49)

Likewise, ne = dim(kerC) + nc. Consequently, since kerC = Eb [Eq. (II.43)],

ne = dimEb + nc (II.50)

As C3 annihilates the pupil phases, we have C3Eb = {0}, hence Eb ⊆ ker C3. As a result,
dimEb ≤ dim(ker C3). It then follows from Eqs. (II.49) and (II.50) that

nc3 ≤ nc (II.51)

When nc3 = nc, as this is the case in Fig. II.4 with nc3 = 3 (and in Fig. II.1 with nc3 = 5),
we have [from Eqs. (II.49) and (II.50)]: dim(ker C3) = dimEb. As Eb ⊆ ker C3, it then
follows that

ker C3 = kerC = Eb (if nc3 = nc) (II.52)

The closure phases βc(i`, j`) can then be expressed as linear combinations of independent
closure phases of order three. More precisely, the matrix involved in this relationship is
unimodular; see Example 5 in Sect. A1.4.

When nc3 is strictly less than nc the closure information provided by any maximum set of
independent closure phases of order three is incomplete. An example of such a situation is
given in Fig. II.6. In such cases, our new approach is of course more efficient.

II.2.7 Weighted baseline-phase space
The definitions of Functionals (II.18) and (II.19) refer to the norm defined by Eq. (II.14), i.e.,
the norm induced by the inner product

(β1 | β2)w
def
=
∑

(i,j)∈E

w(i, j) β1(i, j) β2(i, j) (II.53)

In terms of matrices, we thus have

(β1 | β2)w = βt
1 [V ]−1β2 (II.54)

where [V ] is a diagonal matrix whose entries are equal to 1/w(i, j); [V ] can therefore be
regarded as ‘a variance-covariance matrix’ of the baseline phase vector ϕ [see Eqs. (II.10)
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Figure II.6: The closure information provided by a maximum set of independent closure phases of order three
may be incomplete. In this example of phase-calibration graph, for the spanning tree formed by the base-
lines (1, 2), (2, 3), (2, 5) and (3, 4), plotted with thick lines, we have one loop of order three, and one loop of
order four. The information provided by the closure phase of order three is then incomplete: nc3 = 1, while
nc = 2; see Eq. (II.51).

and (II.15)]. Endowed with this inner product, E is a real Hilbert space denoted by Ew the
‘weighted baseline-phase space.’ Clearly, from Eqs. (II.54) and (II.28), we have

(β1 | β2)w = (β1 | [V ]−1β2) (II.55)

For any βb in Eb, and any β in [V ]E⊥b , we have (βb | β)w = (βb | [V ]−1β) = 0; indeed,
[V ]−1β then lies in E⊥b . This explicitly shows that [V ]E⊥b is the orthogonal complement of Eb

in Ew (see Fig. II.7):

E⊥wb = [V ]E⊥b (II.56)

Let us denote by B+ the Moore-Penrose pseudo-inverse of B, where B is regarded as an
operator from Vb into Ew. As kerB = {0} [Eq. (II.34)], we have

B+β = argmin
α∈Vb

‖β −Bα‖2
w (II.57)

This pupil phase is therefore the solution of the normal equation

B∗Bα = B∗β (II.58)

where B∗ is the adjoint of B relative to the inner product w. Note that in terms of matrices,
we have [see Eq. (II.54)],

[B∗]β = [B]t[V ]−1β

= [B]t[wβ]
(II.59)

According to the definition of B+ [Eq. (II.57)], BB+ is the orthogonal projection of Ew
onto Eb. The orthogonal projection of Ew onto E⊥wb is therefore explicitly defined by the
relation

Sβ
def
= β −BB+β (II.60)
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Figure II.7: Geometrical representation of the orthogonal complement of Eb in the weighted baseline-phase
space Ew: E⊥wb . As E⊥b is the orthogonal complement of Eb in the baseline-phase space E (see Fig. II.5),
E⊥wb is equal to [V]E⊥b ; see text. By definition, Sc is the orthogonal projection of Ec onto E⊥wb . Note that
CSc is the identity on Ec. As illustrated here, BB+ is the orthogonal projection of Ew onto Eb.

In what follows, Sc is the operator from Ec into E⊥wb induced by S [see Fig. II.7]:

Sc : Ec → E⊥wb , Scβc = Sβc (II.61)

Denoting by e` the characteristic function of the loop-entry baseline (i`, j`) [see Eq. (II.22)],
i.e., the function of Ec that is equal to unity on this baseline, and is zero on the other ones, let
us introduce the vectors (of Vb)

ζ`
def
=B+e` (` = 1, . . . , nc) (II.62)

The vectors (of E⊥wb )

η`
def
= Sce`

= e` −Bζ`
(` = 1, . . . , nc) (II.63)

are the column vectors of the matrix of Sc expressed in the standard bases of E and Ec.
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II.2.8 Inverse of the variance-covariance matrix of the closure phases of
ϕ

We now concentrate on the variance-covariance matrix [Vc] of the closure phases ϕc(i`, j`).
In matrix terms, we have

ϕc = [C]ϕ

As matrix [V ] can be regarded as the expectation value of [δϕ][δϕ]t (see Sect. 3.7), the variance-
covariance matrix [Vc] induced by [V ] is therefore given by the formula

[Vc] = [C][V ][C]t (II.64)

As illustrated in Fig. II.7, for any θ in Ec, we have

[Sc]
t [V ]−1[Sc] [C][V ] [C]tθ = [Sc]

t[C]tθ (II.65)

But, CSc is the identity on Ec: [C][Sc] = [I]nc; see Fig. II.7. As a result, [Sc]
t[C]t is also

equal to [I]nc . It then follows from Eqs. (II.65) and (II.64) that

[Vc]
−1 = [Sc]

t[V ]−1[Sc] (II.66)

We therefore have, from Eq. (II.63),(
e` | [Vc]

−1e`′
)

=
(
e` | [Sc]

t[V ]−1[Sc]e`′
)

= (η` | [V ]−1η`′)
(II.67)

In the standard basis of Ec, the matrix elements of the inverse of [Vc] are therefore the inner
products (η` | η`′)w.

For any β in E,

‖Sβ‖2
w = (Sβ | [V ]−1Sβ)

= ‖Tβ‖2
(II.68)

where

[T ]
def
= [V ]−1/2[S] (II.69)

Setting [Tc]
def
= [V ]−1/2[Sc], we have from Eq. (II.66):

[Tc]
t[Tc] = [Vc]

−1 (II.70)

As Sc and Tc are invertible, [Tc]
t[Tc] is positive definite.

II.3 Phase calibration: survey
On the grounds of the analysis developed in Sect. II.2.3, the phase-calibration problem stated
in Sect. II.1 can be reformulated in phase-closure terms (Sect. II.3.1). We then derive a useful
expression for the corresponding calibrated visibility function (Sect. II.3.2).

22



II.3. PHASE CALIBRATION: SURVEY

II.3.1 Statement of the problem in phase-closure terms
Let us consider the phase discrepancy involved in the definitions of the functionals f◦ and g◦
to be minimized [see Eqs. (II.18), (II.19), (II.10) and Fig. II.2]:

δ
def
= ϕ−Bαd (modulo 2π) (II.71)

With regard to the spanning tree of maximal weight (see for example Fig. II.4), ϕ can be
expanded in the form (see Property 1)

ϕ = Bαϕ + ϕc (II.72)

where [see Eq. (II.35)]

αϕ
def
=B−1

st Qstϕ (II.73)

According to our analysis, the pupil phase function αϕ can be determined via the recursive
process described in Sect II.2.3, or via the integer-programming technique presented in A1.4;
see Example 4 in that appendix. As ϕ is defined modulo 2π, αϕ and ϕc are also defined
modulo 2π.

From Eqs. (II.71) and (II.72), we have, modulo 2π (on each baseline of E ),

δ = ϕc −Bα
where the pupil phase function α is defined as:

α
def
= αd − αϕ (II.74)

Introducing the ‘reduced closure-phase function’ [see Eq. (II.20)]

ϕ̂c
def
= arc(ϕc) (II.75)

we therefore have

δ = ϕ̂c −Bα (modulo 2π) (II.76)

It then follows that minimizing f◦(αd) [Eq. (II.18)] amounts to minimizing the functional
f(α):

f(α)
def
= ‖chord(ϕ̂c −Bα)‖2

w (II.77)

Likewise, minimizing g◦(αd) [Eq. (II.19)] amounts to minimizing the functional g(α):

g(α)
def
= ‖arc(ϕ̂c −Bα)‖2

w (II.78)

If αf is a minimizer of f(α), the corresponding minimizer of f◦(αd) is given by the formula
[see Eq. (II.74)]

αf◦ = αf + αϕ (modulo 2π) (II.79)

Likewise, for g◦(αd),

αg◦ = αg + αϕ (modulo 2π) (II.80)
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II.3.2 Derivation of the calibrated visibility function

For clarity, let us introduce the phase-calibration residual εα:

εα
def
= arc(ϕ̂c −Bα) (II.81)

Let αg now be some minimizer of g, for example a global minimizer. Denoting by εαg the
corresponding ‘phase-calibration residual,’ we have [see Eq. (II.78)],

g(αg) = ‖εαg‖2
w (II.82)

From Eqs. (II.75), (II.80) and (II.72),

εαg = arc(ϕ−Bαg◦)

As a result [see Eq. (II.10)],

εαg = (ϕd −Bαg◦)− ϕm (modulo 2π) (II.83)

By taking into account Eqs. (II.9) and (II.12), the calibration formula (II.7) yields, for αd?
set
=αg◦

[see Eq. (II.80)],

Vd? = ρd e
i(ϕd−Bαg◦ ) (on E ) (II.84)

On the baselines of E , we thus have, from Eq. (II.83),

Vd? = ρd e
i(ϕm+εαg ) (on E ) (II.85)

As the phase calibration residual εαg is a result of the minimization process (see Sect. II.4),
this formula is often preferable; see Fig. II.10.

Remark II.3.2.1. When the signal-to-noise ratio (SNR) of the instantaneous baseline-phase
data ϕ(t)

d is low, Property 1 suggests that our approach should be modified as follows. Let
z(t) be the closure phasor of ϕ(t)

d : z(t) def
= eiCϕ

(t)
d . On each baseline of E , ϕd is then defined via

the relation eiϕd
def
= 〈z(t)〉t/|〈z(t)〉t|; ϕd is then a virtual instantaneous baseline-phase function

of Ec whose closure components ϕd(i`, j`) are the phases (modulo 2π) of the time-averaged
closure phasors 〈z(t)(i`, j`)〉t/|〈z(t)(i`, j`)〉t|. In our approach, phase-closure averaging is
simply a way of improving the SNR of the pseudo baseline-phase data to be processed.

Remark II.3.2.2. The baselines of the interferometric device defined by the pupil elements
of V form a set denoted by Ed. By construction, we have E ⊆ Ed; see Sect. II.1.1. When the
SNR has not been enhanced by phase-closure averaging, the calibration formula (II.84) can
be extended to all the baselines of Ed.

Remark II.3.2.3. In the limiting case where ϕ̂c = 0, we have from Eq. (II.78): αg = 0
(modulo 2π in Vb); indeed, kerB = {0} [Eq. (II.34)]. Then, αg◦ = αϕ (modulo 2π in Vb),
and εαg = 0; see Eqs. (II.80) and (II.81) successively. The phase-calibration residual has
then reached its lowest possible value, which is a clear indication of the convergence of the
‘self-cal’ image-restoration procedure; see Sects. II.1 and II.7.
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II.4 The arc approach
We first characterize the minimizers of the arc functional g (Sect. II.4.1), and then show how
to find them explicitly (Sect. II.4.2). We finally consider the special case where all the reduced
closure phases are less than π/2 in absolute value (Sect. II.4.3).

II.4.1 Constrained minimizers
Let us denote by τ is a positive function strictly less than 1/2 all over E :

∀(i, j) ∈ E , 0 < τ(i, j) < 1/2

Our objective is to identify the minimizers αg of g(α) for which [see Eq. (II.81)]

|εαg | ≤ 2πτ (all over E ) (II.86)

The minima for which this condition is satisfied are said to be the ‘τ -constrained minima’
of g. By setting τ equal to a constant function arbitrarily close to 1/2, our analysis can be
extended to all the minima of g; see Sect. 5.2, and the simulations presented in Sect. II.6.

Let v be a vector of Ec:

v =
nc∑
`=1

v(`)e` v(`) def
= v(i`, j`) (II.87)

For simplicity, we will denote by the same symbol v the vector of Rnc with components v(`)

for ` = 1, . . . , nc. A notation such as B+v or Sv can then still be used: B+v is a function
lying in Vb, and Sv is a function lying in E⊥wb ; see Sect. II.2.7. To make the link with similar
problems encountered in GNSS (see Lannes & Teunissen (2011)), we denote by v̂ the vector
of Rnc with components

v̂(`) def
=

1

2π
ϕ̂c(i`, j`) (for ` = 1, . . . , nc) (II.88)

For each point v̇ of the integer lattice Znc , we now introduce the pupil-phase function

α̇
def
= 2πB+(v̂ − v̇) (II.89)

The subset of points v̇ of Znc such that |S(v̇ − v̂)| is less than (or equal to) τ all over E is
denoted by Γτ :

Γτ
def
= {v̇ ∈ Znc : |S(v̇ − v̂)| ≤ τ} (II.90)

Property 2. The τ -constrained minimizers of g are associated with the points v̇ of Γτ . More
precisely, the τ -constrained minimizers αg associated with a point v̇ of Γτ are equal to α̇
modulo 2π (on each pupil element of V ). As a corollary, eiαg = eiα̇, g(αg) = g(α̇), and
εαg = εα̇ = 2πS(v̂ − v̇) with |εα̇| ≤ 2πτ .

The proof of this property is to be found in Appendix 2.
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II.4.2 Discrete search of all the minima
A systematic search of all the minima is often useful. According to Property 2, this can be
done by listing the points of Γτ for τ arbitrarily close to 1/2. In what follows, a notation such
as τ = 1/2 or Γ1/2 is to be understood in that sense.

From Eqs. (II.90) and Eq. (II.14), Γτ is contained in the set of points v of Rnc such that

‖S(v − v̂)‖2
w ≤ χτ (II.91)

where

χτ
def
=
∑

(i,j)∈E

w(i, j) τ 2(i, j) (II.92)

The weights w(i, j) being normalized according to Eq. (II.16), we thus have

χ1/2 =
1

4

Let us now consider the ellipsoid, centred on v̂, with size parameter c,

E()̧ def
= {v ∈ Rnc : ‖Tc(v − v̂)‖2 ≤ c} (II.93)

As ‖S(v − v̂)‖2
w = ‖Tc(v − v̂)‖2 [see Eq. (II.68)], Γ1/2 is contained in E(1/4).

The points v̇ of lattice Znc lying in E(1/4) can be listed by using the discrete-search algo-
rithms described in A3 (Appendix 3). For each of these points, we compute [see Eqs. (II.87)
and (II.63)]

S(v̇ − v̂) =
nc∑
`=1

(v̇(`) − v̂(`)) η` (II.94)

When |S(v̇ − v̂)| is less than 1/2 all over E , v̇ lies in Γ1/2 [see Eq. (II.90)]. According to
Property 2, α̇ is then a minimizer of g. If need be, α̇ can be determined via the formula [see
Eqs. (II.89) and (II.62)]

α̇ = 2π
nc∑
`=1

(v̂(`) − v̇(`)) ζ` (II.95)

We then compute [see Property 2 and Eqs. (II.82) & (II.68)]

g(α̇) = 4π2‖Tc(v̇ − v̂)‖2 (II.96)

This is done via Eq. (C.23) [in which ω is defined in Eq. (C.2)]. The points of Γ1/2 are finally
ordered so that

g(α̇1) < g(α̇2) < · · ·
From Eq. (II.96), the global minimizer of g, α̌ set

= α̇1, corresponds to the point v̌ set
= v̇1 of

lattice Znc for which ‖Tc(v̇ − v̂)‖2 is minimum. Clearly,

‖Tc(v̇ − v̂)‖2 =
(
v̇ − v̂ | [Tc]

t[Tc](v̇ − v̂)
)

where [Tc]
t[Tc] = [Vc]

−1 [see Eq. (II.70)]; v̌ is therefore the point of Znc closest to the ‘float
solution’ v̂, the distance being that induced by the quadratic form whose matrix [Tc]

t[Tc] is the
inverse of [Vc]. The notation ‘v̂, v̌,’ and the terminology adopted here are those used in GNSS
(see, e.g., Lannes & Teunissen (2011)).
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II.4.3 Special case of small closure phases
We now consider the special case where all the reduced closure phases are less than π/2 in
absolute value: |ϕ̂c| is less than π/2 all over Ec; from Eq. (II.88), |v̂| is then less than 1/4.
Clearly, this case corresponds to the situations where “the model is not too far from the
object,” e.g., the example of Sect. II.6.1. As a general rule, the global minimum is then
associated with the point zero of Znc:

v̇0 = 0 (v̇(`)
0 = 0 for ` = 1, . . . , nc) (II.97)

In other words, we then have v̇1 = v̇0, hence α̇1 = α̇0. From Property 2 and Eqs. (II.89) and
(II.88), α̇0 is equal to B+ϕ̂c:

α̇0 = B+ϕ̂c (II.98)

From Eqs. (II.57) and (II.58), α̇0 is therefore the solution of the equation

B∗Bα = B∗ϕ̂c (II.99)

The phase-calibration operation is then linear. Furthermore, from Eq. (II.96), we have

g(α̇0) = 4π2‖Tcv̂‖2 (II.100)

Check point. We can verify, a posteriori, in a very fast manner, whether the surmise v̇1 = v̇0

holds or not. This must be done (in particular) when some reduced closure phases are of
the order of π/2 in absolute value. Let us consider the ellipsoid E(c0) with c0

def
= ‖Tcv̂‖2; see

Eq. (II.93). In this ellipsoid, we search for the point v̌ for which the global minimum of g(α̇)
is attained. If v̌ = v̇0, the surmise holds.

Compared to the complete discrete search described in Sect. II.4.2, the process is here
much faster for two reasons. Firstly, we simply want to identify the global minimum (see
Remark A3.2.1 in A3), and secondly, the size of the ellipsoid E(c0) is much smaller than that
of E(1/4). Indeed, we have c0 = ‖Tcv̂‖2 = ‖Sv̂‖2

w with ‖Sv̂‖2
w ≤ ‖v̂‖2

w (since S is an or-
thogonal projection). Furthermore, |v̂| is here less 1/4, hence ‖v̂‖2

w < 1/16 from Eqs. (II.14)
and (II.16). As a result, c0 is less than 1/16.

II.5 Connection with the chord approach
The chord functional (II.77) is explicitly defined by the relation [see Eq. (II.17)]

f(α) =
∥∥∥2 sin

( ϕ̂c −Bα
2

)∥∥∥2

w
(II.101)

Note that f is a functional from Vb into R. To search for the minimizers of f , iterative methods
such as the trust-region method can be implemented; see A4 (Appendix 4). These techniques
are based on the Taylor quadratic approximation to f(α + h) at the current iterate α:

f(α + h) ' q(h) (II.102)
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where

q(h)
def
= f(α) +

(
f ′(α)

∣∣ h)
Vb

+
1

2

(
h
∣∣ [f ′′(α)]h

)
Vb

(II.103)

Here, (· | ·)Vb is the inner product on the Euclidean space Vb; see Eq. (II.25). The iteration of
the trust-region method is of the traditional form α

set
=α + h. The originality of this method

is to choose h (at each iteration) so that the smallest value of q is attained in the largest pos-
sible ball, the degree of confidence in the quadratic approximation (II.102) being controlled
throughout the process by means of the Armijo test. One thus goes down ‘continuously’ to a
local minimum; for further details, see A4.

We first show how to find the minimizers of f from those of g (Sect. II.5.1), and the
converse (Sect. II.5.2). We then introduce the notion of ‘linked minima’ (Sect. II.5.3). The
chord approach of the special case of small closure phases is presented in Sect. II.5.4.

II.5.1 Search for the minimizers of f from those of g
The minima of the chord functional may be obtained from those of the arc functional. More
precisely, the minimizers of g can be used as starting points of the trust-region method. We
now specify the corresponding initialization process.

Let v̇ be a point of Γ1/2; see Eq. (II.90). According to Property 2, the minimizer of g
associated with v̇ is given by the formula α̇ = 2πB+(v̂ − v̇) [Eq. (II.89)], and we then have

εα̇ = 2πS(v̂ − v̇) with |εα̇| < π

When using the pupil phase α̇ as starting point, the trust-region method yields a minimizer
of f denoted by [α̇]f . As already emphasized, this minimizer is obtained by diminishing the
value of f at α̇ in a continuous manner; see A4.

As shown in Appendix 5, the gradient and the Hessian of f at α are respectively given by
the formulae∣∣∣∣∣ f ′(α) = −2B∗ sin(ϕ̂c −Bα)

f ′′(α) = 2B∗[cos(ϕ̂c −Bα)]B
(II.104)

We thus have [see Definition (II.81)]∣∣∣∣∣ f ′(α) = −2B∗ sin εα

f ′′(α) = 2B∗[cos εα]B
(II.105)

As shown in A5 [see Eq. (E.7)], the condition

|εα| < π/2 (all over E ) (II.106)

is a sufficient condition for f ′′(α) to be positive definite.
When, for some iterate α, Condition (II.106) is satisfied, the step h of the iteration of the

trust-region method is then a simple Newton-Raphson step: h is the solution of Eq. (D.10),
i.e.,

[f ′′(α)]h = −f ′(α) (II.107)

When |εα| is greater than (or equal to) π/2 on some baseline(s), f ′′(α) may not be positive
definite. Then, to determine h, the trust-region method takes into the account the fact that the
smallest eigenvalue of f ′′(α) may be less than (or equal to) zero; see A4.
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II.5.2 Search for the minimizers of g from those of f
Let us assume that a minimizer of f has been obtained somehow, for example by using the
trust-region method from a given starting point; see A4. Denoting by αf this minimizer, let
us consider the pupil phase

αfg
def
= αf +B+εαf (II.108)

where

εαf
def
= arc(ϕ̂c −Bαf ) (II.109)

Note that from the definition of B+ [Eq. (II.57)], we have

B+εαf = argmin
α∈Vb

‖εαf −Bα‖2
w

We now show that when

|Sεαf | ≤ π (all over E ) (II.110)

then, αfg is a minimizer of g lying in a ‘small neighbourhood’ of αf . Moreover, we then have
εαfg = Sεαf .

To conduct the related analysis, we first introduce the following definition. Let ν(α) be
the function from Vb into E(Z) defined by the relation [see Eq. (II.20)]

ν(α)
def
=
⌊ ϕ̂c −Bα

2π

⌉
(II.111)

From Eq. (II.109), we thus have

εαf = (ϕ̂c −Bαf )− 2πν(αf ) (II.112)

Likewise,

εαfg = (ϕ̂c −Bαfg)− 2πν(αfg) (II.113)

According to Property 1, ν(α) can be decomposed in the form

ν(α) = νb(α) + νc(α) with νb(α) = B[µν(α)] (II.114)

where µν(α)
def
=B−1

st Qst[ν(α)]; see Eq. (II.36); νc(α) is a vector of Ec with integer compo-
nents. In what follows, for clarity, we use the same notation νc(α) for the vector of Znc

whose components are those of νc(α) in the standard basis of Ec. For ` = 1, . . . , nc, these
components are computed via the formula [see Eq. (II.114)][
νc(α)

](`)
=
[
ν(α)

]
(i`, j`)−

{[
µν(α)

]
(i`)−

[
µν(α)

]
(j`)
}

Let us now consider the discrepancy vector [see Fig. II.8]

∆
def
= (ϕ̂c −Bαfg)− 2πν(αf ) (II.115)
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Figure II.8: Main elements involved in the analysis developed in Sect. II.5.2. In this geometrical representation
of the weighted baseline-phase space Ew, the horizontal axis corresponds to the orthogonal complement of Eb

in Ew: E⊥wb ; compare with Fig. II.7. The big dots correspond to points of the integer lattice E(Z) ∼= Z
ne .

Here, αf is a minimizer of f ; εαf is the arc of the discrepancy vector ϕ̂c −Bαf ; see Eqs. (II.109) and (II.111);
∆ is the projection of εαf on E⊥wb : ∆ = Sεαf [Eq. (II.116)]; see text.

From Eq. (II.108), we have

∆ = ϕ̂c −Bαf −BB+εαf − 2πν(αf )

Taking into account Eq. (II.112), we therefore have [see Eq. (II.60) and Fig. II.8]

∆ = εαf −BB+εαf = Sεαf (II.116)

We have thus shown that ∆ is the projection of εαf on the orthogonal complement of Eb

in Ew: E⊥wb ; see Fig. II.8 and the context of Eq. (II.60). We therefore have [from Eq. (II.57)]

B+∆ = 0 (II.117)

It then follows from Eqs. (II.115) that αfg can also be obtained via the formula

αfg = B+[ϕ̂c − 2πν(αf )] (II.118)

Furthermore, taking into account Eq. (II.114), we also have, from Eq. (II.115),

∆ = ϕ̂c −Bαfg − 2π[Bµν(αf ) + νc(αf )]

= [ϕ̂c − 2πνc(αf )]−Bα◦fg
(II.119)

where

α◦fg
def
= αfg + 2πµν(αf ) (II.120)
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From Eqs. (II.117) and (II.119), we thus have

α◦fg = B+[ϕ̂c − 2πνc(αf )]

= 2πB+
[
v̂ − νc(αf )

] (II.121)

and

∆ = 2π[v̂ − νc(αf )]− 2πBB+[v̂ − νc(αf )]

= 2πS[v̂ − νc(αf )]
(II.122)

It is therefore clear from Eq. (II.116) that Condition (II.110) is equivalent to the condition∣∣S[νc(αf )− v̂]
∣∣ ≤ 1/2 (all over E ) (II.123)

i.e., νc(αf ) lies in Γ1/2; see Eq. (II.90). From Property 2, when this condition is satisfied,
α◦fg is the minimizer of g associated with νc(αf ) [see Eq. (II.121)], and we have εα◦fg = 2πS[v̂ − νc(αf )].
Hence εα◦fg = ∆ from Eq. (II.122). As αfg is equal to α◦fg modulo 2π [see Eq. (II.120)], αfg is
then a minimizer of g too, and we have εαfg = εα◦fg = ∆. It then follows from Eqs. (II.113)
and (II.115) that

ν(αfg) = ν(αf ) (II.124)

This means that ν is stable under the pupil-phase shift B+εαf ; see Eqs. (II.108), (II.111) and
Fig. II.8. As a result, αfg then lies in a small neighbourhood of αf .

In summary, given some minimizer αf of f , αfg can be obtained from Eq. (II.118), in
which ν(αf ) is defined via Eq. (II.111). When Condition (II.123) is satisfied, then αfg is a
minimizer of g lying in a small neighbourhood of αf . Otherwise, αfg is not a minimizer of g.

When αfg is a minimizer of g, the minima of g less than or equal to g(αfg), if any,
can be identified by listing the points of v̇ of Znc contained in the ellipsoid (II.93) for
c

set
= ‖T (νc(αf )− v̂‖2; see Eq. (II.96) and the procedure described in Sect. II.4.2.

II.5.3 Linked minima
Given some point v̇ in Γ1/2, the corresponding minimizer of g, α̇, is given by Eq. (II.89).
With the aid of the trust-region method, we are then able to find, in a certain neighbourhood
of α̇, a minimizer of f denoted by [α̇]f ; see Sect. II.5.1. When the minimizer of g obtained
from [α̇]f coincides with α̇, we say that f([α̇]f ) and g(α̇) are ‘linked minima.’ This is the
case when the following property is satisfied:

ν([α̇]f ) = v̇ (II.125)

Indeed, as [from Eq. (II.118)]

[α̇]fg = B+
[
ϕ̂c − 2πν([α̇]f )

]
= 2πB+

[
v̂ − ν([α̇]f )

] (II.126)

we then have [from Eqs. (II.89) and (II.125)],

[α̇]fg = α̇ (II.127)

As clarified in Sect. II.6, the situations a priori reliable are those for which there exists only
one pair of linked minima.
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with α̇0; see Eq. (II.130). As illustrated here, εα̇0 is the projection of εα0 = ϕ̂c onto E⊥wb .

II.5.4 Reference special case of small closure phases
We now consider the special case where |ϕ̂c| is less than π/2 all over Ec. This case was
already studied in the arc approach; see Sect. II.4.3.

Let us then concentrate on Eq. (II.104) for α set
=α0

def
= 0:∣∣∣∣ f ′(0) = −2B∗ sin ϕ̂c

f ′′(0) = 2B∗ cos ϕ̂cB
(II.128)

As cos ϕ̂c is positive all over E the Hessian of f at α0 is positive definite; see Condi-
tion (II.106). The point α0 is then a good starting point for the trust-region method which
then reduces to the Newton-Raphson iteration; see Eq. (II.107). The minimizer of f thus
obtained is denoted by [α0]f .

As [α0]f is a minimizer of f , f ′′([α0]f ) is positive definite. We may therefore surmise
from Eq. (II.104) that |ϕ̂c−B[α0]f | is less than π/2 all over E From Eq. (II.111), ν([α0]f ) is
then the zero vector of Znc (see Fig. II.9):

ν([α0]f ) = v̇0 (II.129)

According to Eqs. (II.118) and (II.98), we then have

[α0]fg = B+ϕ̂c = α̇0 (II.130)

From the analysis developed in Sect. II.5.2, α̇0 therefore lies in a small neighbourhood
of [α0]f ; see Fig. II.9. As f ′′([α0]f ) is positive definite, [α̇0]f is thus expected to be equal
to [α0]f . As a result [from Eq. (II.129)]

ν([α̇0]f ) = v̇0 (II.131)

From Eq. (II.125), the minima f([α0]f ) and g(α̇0) are therefore linked minima. Moreover,
as a general rule, g(α̇0) is then the global minimum of g; see Sect. II.4.3. In this case, as
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f([α0]f ) and g(α̇0) are linked minima, f([α0]f ) is likely to be the global minimum of f . The
pertinence of all these surmises can be easily verified a posteriori; see Sect. II.6.1 & the check
point of Sect. II.4.3.

In this case, the phase-calibration operation is robust. In particular, it can be done, in-
differently, with f or g. This pointed out, it is important to emphasize that α̇0 is obtained
by solving a single equation [Eq. (II.99)], while the determination of [α0]f requires solv-
ing a few equations of the same type. For example, from Eq. (II.107), the first iterate of the
Newton-Raphson algorithm is the solution of the equation [f ′′(α0)]h = −f ′(α0). This iterate
(practically) coincides with the solution of the ‘arc equation’ (II.99) only when cos ϕ̂c ' 1;
see Eq. (II.128).

II.6 Simulations
The simulations presented in this section correspond to the weighted calibration graph pre-
sented in Fig. II.4. We then have (see Sect. II.2.2)

ϕ̂
(1)
c

def
= arc{ϕc(2, 3)}, ϕ̂ (2)

c
def
= arc{ϕc(1, 3)}

ϕ̂
(3)
c

def
= arc{ϕc(1, 4)}

These ‘reduced closure phases’ correspond to the directed loops (2, 3, 4), (1, 3, 4, 2) and (1, 4, 2),
respectively; see Sect. II.2.4.

Two sets of such closure phases are examined. For clarity, all the angles (such as ϕ̂ (`)
c

and εα̌) are expressed in degrees, as well as the values of the minima of the functionals
√
f

and
√
g.

II.6.1 Set 1
In this first example, the reduced closure phases are less than 90◦ in absolute value:

ϕ̂ (1)
c = −15◦ ϕ̂ (2)

c = −70◦ ϕ̂ (3)
c = −40◦

The discrete search of all the minima then yields (see Sect. II.4.2):√
g(α̇1) ' 10.62◦√

g(α̇2) ' 69.79◦√
g(α̇3) ' 71.04◦

The corresponding minimizers are associated with the following ‘closure-ambiguity points’
of Z3:
v̇1 = v̌ = (0, 0, 0)

v̇2 = (−1,−1, 0)

v̇3 = (−1,−1,−1)

The corresponding values of
√
f are then√

f(α̇1) ' 10.43◦√
f(α̇2) ' 55.14◦√

f(α̇3) ' 55.76◦
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By using the trust-region method, the values of the chord functional f can be reduced,
continuously, from its value at α̇1; see Sect. II.5.1. One thus obtains a minimizer [α̇1]f of f .
Here,√
f([α̇1]f ) ' 10.42◦

√
g([α̇1]f ) ' 10.63◦

As expected from our analysis when |ϕ̂c| is less than π/2 (see Sect. II.4.3), we then have [see
Eq. (II.111)]

ν([α̇1]f )
def
=
⌊ ϕ̂c −B[α̇1]f

2π

⌉
= v̇0

= v̇1

Equation (II.125) is thus satisfied for α̇ set
= α̇1. As a result f([α̇1]f ) and g(α̇1) are linked

minima: [α̇1]fg = α̇1; see Fig. II.9 in Sect. II.5.3.
In the special case under consideration, we found that [α̇2]f = [α̇1]f , and modulo 2π:

[α̇3]f = [α̇1]f . This explicitly shows that f([α̇1]f ) is then the single minimum of f .
Here,

{
f([α̇1]f ), g(α̇1)

}
is therefore the only pair of linked minima. This is related to the

fact that f ′′(α̇1) is positive definite, while this is not the case for f ′′(α̇2) and f ′′(α̇3).
Let us finally note that all the surmises of Sects. II.4.3 and II.5.4 are then satisfied. As

expected, all the components of the phase-calibration residual εα̌ are then less than 90◦ in
absolute value:

εα̌(1, 2) ' 3◦ εα̌(3, 4) ' −5◦ εα̌(2, 4) ' 15◦

εα̌(2, 3) ' 5◦ εα̌(1, 3) ' −47◦ εα̌(1, 4) ' −22◦

With regard to the selected model phase ϕm, the calibrated visibility function is then defined
by Eq. (II.85) for αg

set
= α̌ = α̇1 with here α̇1 = α̇0. In summary, for this set of reduced closure

phases, the phase-calibration operation is both simple and reliable.

II.6.2 Set 2
We now examine a situation a priori critical with

ϕ̂ (1)
c = −177◦ ϕ̂ (2)

c = −171◦ ϕ̂ (3)
c = 176◦

The arc functional has then three distinct minima:√
g(α̇1) ' 38.39◦√

g(α̇2) ' 39.63◦√
g(α̇3) ' 57.47◦

The corresponding minimizers are associated with the following closure-ambiguity points

v̇1 = v̌ = (0, 0, 1)

v̇2 = (−1,−1, 0)

v̇3 = (−1, 0, 1)
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(Note that the point zero of Z3, v̇0, is no longer associated with a minimizer of g.) The
corresponding values of

√
f are then√

f(α̇1) ' 35.82◦√
f(α̇2) ' 36.99◦√

f(α̇3) ' 40.46◦

Here, f ′′(α̇1) and f ′′(α̇2) are positive definite. We then found that ν([α̇1]f ) = v̇1 and
ν([α̇2]f ) = v̇2, and thereby [α̇1]fg = α̇1 and [α̇2]fg = α̇2. We therefore have two pairs
of linked minima:

{
f([α̇1]f ), g(α̇1)

}
and

{
f([α̇2]f ), g(α̇2)

}
. Furthermore,√

f([α̇1]f ) ' 35.69◦
√
g([α̇1]f ) ' 38.55◦√

f([α̇2]f ) ' 36.82◦
√
g([α̇2]f ) ' 39.83◦

and [α̇3]f = [α̇1]f .

Concerning the phase-calibration residuals, we have

εα̇1(1, 2) ' 7◦ εα̇1(3, 4) ' −27◦ εα̇1(2, 4) ' 76◦

εα̇1(2, 3) ' −74◦ εα̇1(1, 3) ' −61◦ εα̇1(1, 4) ' −101◦

and

εα̇2(1, 2) ' −7◦ εα̇2(3, 4) ' 29◦ εα̇2(2, 4) ' −78◦

εα̇2(2, 3) ' 76◦ εα̇2(1, 3) ' 74◦ εα̇2(1, 4) ' 91◦

As expected, the phase-calibration operation is then very ill conditioned: g(α̇2) ' g(α̇1) with
εα̇2 ' −εα̇1 .

As the selected spanning tree is of maximal weight, the weight of a loop-entry baseline
is less than (or equal to) that of any other baseline of its loop; see Sect. II.2.1 and Fig. II.4.
A reduced closure phase of high value, say greater than 120◦ in absolute value, therefore
reveals that the error εdm is too large on the corresponding loop-entry baseline, in particular;
see Eq. (II.5). Here, to regularize the problem, the baselines (2, 3), (1, 3) and (1, 4) must
therefore be removed from the phase-calibration graph: “the model is too far from the object.”
We are then left with the baselines of the spanning tree only. Without any information on the
closure phases of ϕ, the calibration formula (II.85) then reduces to Vd? = ρd e

iϕm .

II.7 Recommended strategy for phase-closure imaging
In this chapter we assume that the phase data were calibrated epoch by epoch, in an indepen-
dent manner. For simplicity, we therefore restrict ourselves to the snapshot case: the Fourier
data involved in the imaging process are the complex visibilities Vd(i, j) on the baselines
of the interferometric device at some given epoch; see the introduction of Sect. II.1. The
problem is then to calibrate the pupil-bias phases involved in Eq. (II.4).

We now propose a simple and robust strategy for conducting the phase-calibration op-
erations of the self-calibration procedures. We first recall the principle of these procedures
(Sect. II.7.1), and then describe our phase-calibration method step by step (Sect. II.7.2).
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II.7.1 Self-calibration principle

In the self-calibration procedures of phase-closure imaging, a model of the object-source
distribution is used as calibrator. By performing alternate phase-calibration operations and
Fourier-synthesis processes, this model is iteratively refined; see Fig. II.10.

At qth iteration of the self-calibration procedure, the phase-calibration operation uses as
input [see Eq. (II.9)]

1) the experimental complex visibility function:
Vd = ρd e

iϕd;

2) the complex visibility function of the current model:
V

(q)
m = ρm e

iϕ
(q)
m .

We then set [see Eq. (II.10)]

ϕ(q) def
= ϕd − ϕ(q)

m (modulo 2π) (II.132)

and search for the global minimizer α̌(q) of the functional [see Eq. (II.78)]

g(q)(α)
def
= ‖arc(ϕ̂(q)

c −Bα)‖2
w (II.133)

where [see Eq. (II.75)]

ϕ̂(q)
c

def
= arc(ϕ(q)

c ) (II.134)

We thus obtain as output the calibrated visibility function [see Eqs. (II.84) and (II.85)]

V
(q)

d? = ρd e
iϕ

(q)
d? (II.135)

where

ϕ
(q)
d? = ϕd −Bα(q)

d?

= ϕm + ε
(q)
?

(modulo 2π) (II.136)

in which [see Eqs. (II.80) and (II.73)]

α
(q)
d? = α̌(q) + αϕ(q) (modulo 2π) (II.137)

and [see Eq. (II.81)]

ε(q)
?

def
= arc(ϕ̂(q)

c −Bα̌(q)) (II.138)

Clearly, α(q)
d? is the estimate of the pupil-bias phase at iteration q, and ε(q)

? is the corresponding
phase-calibration residual; see Fig. II.10.
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Figure II.10: Geometrical illustration of the self-calibration principle. Here, for clarity, we assume that the
weighted baseline-phase space Ew does not change throughout the iterative self-calibration procedure; see
Remark II.7.2.1. Furthermore, the initial model is assumed to be a point source. In this schematic representation,
we consider the case where the reduced closure phases of ϕ(q) def= ϕd−ϕ(q)

m are small in absolute value for all q;
see Sects. II.5.4, II.7.2 and Fig. II.9. The phase-calibration operations correspond to the arrows parallel to E⊥wb .
The arrows from ϕ

(q)
d? to ϕ(q+1)

m correspond to the Fourier-synthesis processes. The procedure has practically
converged when the closure component of ϕ(q)

m is almost equal to that of ϕd: ϕ(q)
mc ' ϕdc modulo 2π. As

illustrated here, the calibrated phases ϕ(q)
d? have then converged to a phase point close to the projection of the

object-visibility phase ϕo on ϕd + Eb; for further details see Sect. II.7.1.

The calibrated visibility function V (q)
d? is then used as data in the Fourier-synthesis process.

A priori information on the object and related constraints are then introduced: object support,
positivity, resolution level, etc. The model visibilities for the next iteration are then computed
from the image thus obtained; see Fig. II.10.

As pointed out in Sect. II.1, the image provided by a self-calibration procedure can
only be defined up to a translation. Throughout the procedure, to stabilize the solution, the
model s(q)

m (ξ) is usually centred on the origin. For example, in the initialization stage, in the
absence of any a priori information on the object source, s(0)

m (ξ) is defined as the distribution
of a point source centred on the origin; ϕ(0)

m is then zero all over E .
As illustrated in Fig. II.10, the successive calibrated phases ϕ(q)

d? lie in the affine space
ϕd + Eb: the vertical line passing through the phase-data point ϕd. According to Eqs. (II.136)
and (II.138), ϕ(q)

d? is the projection of ϕ(q)
m on ϕd + Eb in Ew (modulo 2π). Indeed, from

Property 2, ε(q)
? lies in E⊥wb . As a result, ϕ(q)

d? can be regarded as the phase of a pseudo-model
visibility function whose closure component would be equal to that of ϕd (modulo 2π). In
general, in the first iterations of a self-calibration procedure, ϕ(q)

d? does not correspond to a
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realistic object distribution satisfying, for example, the positivity constraint. The Fourier
processes progressively correct for this anomaly, while thereby refining the Eb-component of
the phase of the visibility function of the model. The calibrated phases ϕ(q)

d? then converge to a
phase point close to the projection of the object-visibility phase ϕo on ϕd +Eb; see Fig. II.10.

II.7.2 Selected method for phase calibration

The recommended approach for the phase-calibration operation derives from the special case
examined in Sects. II.4.3 and II.5.4. At each iteration q of the self-calibration procedure, we
then proceed as follows.

Stage 1. We first define the phase-calibration graph G
def
= (V ,E ); see Fig. II.1 in Sect. II.1.1.

On each baseline (i, j) of G , we then consider, modulo 2π, the difference between the phases
of Vd and V (q)

m : ϕ set
=ϕ(q) def

= ϕd − ϕ(q)
m ; see Eqs. (II.132) and Fig. II.10.

Stage 2. As specified in Sect II.1.2, some weight w(i, j) is allocated to each baseline of G :
Eq. (II.15). The spanning tree of maximal weight, Gst, is then built; see Sect. II.2.1 and
Fig. II.4.

Stage 3. We then determine the pupil-phase function αϕ such that Bαϕ coincides with ϕ on
the baselines of Gst; see Eq. (II.73) and Sect. II.2.3. By construction, the function ϕc

def
= ϕ −

Bαϕ vanishes on those baselines. As justified in Sect. II.2.4, the values of ϕc on the other
baselines are the closure phases ϕc(i`, j`). We then consider the reduced closure-phase func-
tion ϕ̂c

def
= arc(ϕc). When ϕ̂c is negligible (see Remark II.3.2.3), the self-calibration proce-

dure has converged: the current image is the reconstructed image. The phase-calibration
operation is then interrupted; see Fig. II.10. Otherwise :

Stage 4. For the robustness of the phase-calibration operation, the loop-entry baselines (i`, j`)
on which ϕ̂c is greater than or equal to π/2 in absolute value are discarded from the phase-
calibration graph. Operator B is modified consequently. This idea, which considerably
simplifies the problem, results from the analysis presented in Sects II.4.3 and II.5.4; see
also Sect II.6.1. Clearly, we thus get rid of possible ‘conflicting secondary minima;’ see
Sect II.6.2.

Stage 5. We then determine the pupil-phase function α̇0 solution of Eq. (II.99):

B∗Bα̇0 = B∗ϕ̂c

Stage 6. Setting v̂ def
= ϕ̂c/(2π) [see Eq. (II.88)], we consider the ellipsoid E(c0) where c0

def
= ‖Tcv̂‖2.

According to the check process described at the end of Sect. II.4.3, we then search in E(c0)
for the point v̌ for which the minimum of g(α̇) is attained. We then check whether v̌ = v̇0 or
not; α̌ is defined consequently; see Sect. II.4.2. The calibrated visibilities are then computed;
see Sect. II.7.1 together with Remarks II.3.2.1 and II.3.2.2.

Remark II.7.2.1. The parameters of the phase-calibration operation strongly depend on the
reliability of the current model. This is why, in the first iterations of the self-calibration
procedure, when the model is far from the object, G , w and thereby Ew may greatly change.
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II.8 Concluding comments

In this chapter we have presented an analysis of the phase-calibration problem encountered
in astronomy when mapping incoherent sources with aperture-synthesis devices. More pre-
cisely, we concentrated on the phase-calibration operation involved in the self-calibration
procedures of phase-closure imaging. In radio-astronomy, the related optimization problems
have been stated and solved hitherto at the phasor level. By conducting our analysis at the
phase level, we derived a new method for diagnosing and solving the difficulties of the phasor
approach. In the most general case, the techniques to be implemented appeal to the algebraic
graph theory and the algebraic number theory.

II.8.1 Main points of the analysis
The key graph of our analysis is the phase-calibration graph G

def
= (V ,E ); see for example

Fig. II.1; V is the set of pupil elements of G , i.e., the set of its vertices; E is the set of baselines
of G , i.e., the set of its edges. As specified in Sect II.1.2, some weight can be allocated to
each baseline of G . The spanning tree (of G ) of maximal weight, Gst

def
= (V ,Est), is then built;

see Sect. II.2.1 and Fig. II.4. The baselines of E that do not lie in Est define as many loops.
The notion of closure is basically associated with these loops. In some configurations, to
benefit from all the available information, closure phases of order greater than three are thus
introduced; see Figs. II.4 and II.6. These closure phases can be computed without having to
identify the baselines of their loops; see Property 1 and Eq. (II.40) in Sect. II.2.3.

We have shown in Sect. II.3.1 that the phase-calibration problem can be reformulated in
phase-closure terms. The main entries of the problem are then the reduced closure phases ϕ̂c(i`, j`)
for ` = 1, . . . , nc; see Eq. (II.75), and Sects. II.2.3 to II.2.5. To make the link with similar
problems encountered in GNSS (see Lannes & Teunissen (2011)), the vector of Rnc with
components ϕ̂c(i`, j`)/(2π) is denoted by v̂ [Eq. (II.88)].

The functionals to be minimized may have several minima. The best way to overcome this
difficulty is to solve the problem at the arc level via the arc functional g [Eq. (II.78)]. Indeed,
according to Property 2, the minimizers α̇ of g(α) are associated with some particular points v̇
of lattice Znc . These points, which lie in some ellipsoid centred on v̂ in Rnc, can be easily
listed; see Sect. II.4.2. The minima of g can therefore be identified in a systematic manner.
We thus have g(α̇1) < g(α̇2) < g(α̇3), and so on.

The global minimizer of g, α̌ set
= α̇1, is associated with the point v̌ set

= v̇1 of Znc closest
to v̂, the distance being that induced by a quadratic form whose matrix is the inverse of the
variance-covariance matrix of the closure phases.

As a general rule, when all the reduced closure phases are less than π/2 (in absolute
value), α̌ is associated with the point zero of Znc: v̇0; see however the check point of
Sect. II.4.3. The calibration pupil phase α̌ is then obtained as the solution of the normal
equation (II.99). Furthermore, the global minimum and the nearest secondary minimum (if
any) are then often well distinct; see Sect. II.6.1. In this case, the phase-calibration opera-
tion is reliable; it is also very simple. The strategy proposed in Sect. II.7 derives from that
analysis.

The minima of the chord functional f [Eq. (II.77)] can be obtained from those of g.
As clarified through Sects. II.5 and II.6, all the minima of f can thus be exhibited too. A
minimum of f may be tightly linked to a minimum of g; see Sects. II.5.3 and II.6. These
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pairs of linked minima therefore play an important part in the understanding of the matter.
As specified in Sect. II.5, in the general case, the search for the global minimum of the

chord functional f can be performed via the trust-region method by using α̌ as starting point.
In the important special case where all the reduced closure phases are less than π/2 (in abso-
lute value), the pupil-phase function α0

def
= 0 proves to be a good starting point for the trust-

region method which then reduces to the Newton-Raphson algorithm. This algorithm then
yields, in a few iterations, a solution [α0]f very close to α̌ = α̇0; see Fig. II.9 and Sect. II.6.1.
The arc approach is however still preferable. Indeed, α̇0 is then obtained by solving a single
equation [Eq. (II.99)], while the determination of [α0]f requires solving a few equations of
the same type.

When some reduced closure phases are greater than or equal to π/2 in absolute value, the
phase-calibration operation must be conducted with much care. As illustrated in Sect. II.6.2,
the point zero of Znc may not even be associated with a minimizer of g. In particular, the
situations where the secondary minimum g(α̇2) is of the order of g(α̇1) with εα̇2 very different
from εα̇1 are to be discarded; see Sect. II.6.2. With the aid of the techniques presented in
this chapter, these delicate situations can be diagnosed and dealt with. To regularize these
situations, the phase-calibration graph can be truncated by removing the loop-entry baselines
for which the reduced closure phases are too large (in absolute value). It is thus possible to
find a good compromise between the coverage of the phase-calibration graph, which must be
as complete as possible, and the quality of the solution which must of course be reliable.

II.8.2 Discussion on phase-closure imaging
According to Property 1, with regard to a given spanning tree of G , any baseline-phase
function β can be decomposed in the form β = βb + βc; see Fig. II.5. Here, βb(i, j) =
αβ(i)−αβ(j), where αβ is the pupil-phase function defined from β by Eq. (II.35). The other
component is the closure-phase function βc. This function is characterized by nc components,
the closure phases βc(i`, j`). The latter are associated with loops whose order may be greater
than three; see Sects. II.2.4 through II.2.6.

Our algebraic approach thus allowed us to exhibit, in any baseline-phase function β, a
component that cannot be perturbated by pupil-bias phases: the closure component βc. We
have thus been able to formulate the phase-calibration problem at the baseline-phase level,
while benefiting from the property of insensibility of the closure phases to the pupil-bias
phases; see Sect. II.3.1, and in particular, Eq. (II.78) and Remark II.3.2.1.

This approach is particularly well suited to the image restoration methods that handle, sep-
arately, the phase-calibration and Fourier-synthesis problems; see, e.g., Cornwell & Wilkin-
son (1981). The model can thus be progressively refined; see Fig. II.10. As specified in
Sect. II.7.1, the phase-calibration operations try imposing the appropriate Ec-constraint on
the model-visibility phase, whereas the Fourier-synthesis processes adjust its Eb-component.
In our formulation of the phase-calibration problem at the phase level, those two aspects are
well disentangled. Indeed, our formulation is based on the representation of the baseline-
phase space E as the direct sum of Eb and Ec; see Fig. II.5.

Different approaches can be envisaged. For example, consider the image-reconstruction
problem in which the following information is to be processed:

– a maximum set of independent closure-phase data of order three;
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– the moduli of the visibility data;

– some object model defined a priori.

By using appropriate optimization techniques, one could try solving this problem without
separating phase calibration and Fourier synthesis. The drawback of such a global approach
is that the complexity of phase-closure imaging is then hidden. The potential instabilities of
the phase problem remain, as well as those of the Fourier-synthesis process; see, e.g., Lannes
et al. (1997). In this context, our algebraic approach could be used as a tool for analyzing the
difficulties related to the phase, and providing a diagnostic on the stability of the problem. For
example, the closure information provided by a maximum set of independent closure phases
of order three may be incomplete; see Sect. II.2.6.

In summary, our approach leads to a better understanding of phase-closure imaging. In
the case of the self-calibration approach, we have proposed a method for solving the related
problems. The usual applicability domain of the corresponding image-reconstruction meth-
ods can thereby be extended. This should therefore be particularly useful for ground-based
interferometric arrays working with severe turbulence problems encountered for instance with
sub-millimeter or optical wavelengths.
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Chapter III

Integer-ambiguity resolution in
astronomy and geodesy

Astronomical images obtained from ground-based observatories are degraded by atmospheric
turbulence. In particular, the phase of the Fourier transform of the object-source distribution
is severely perturbed which leads to a significant loss of angular resolution in the resulting
images. Thanks to the theoretical and technical developments of the last half century, large in-
terferometric arrays circumvent this difficulty in radio-astronomy, and now routinely provide
sharp-edged images with a very high angular resolution.

One of the methods used for obtaining those nice results is ‘self-calibration.’ In the most
general case, the vectorial nature of the electromagnetic field must be taken into account in the
very formulation of the problem; see Hamaker (2000) and references therein. In this chapter,
we however restrict ourselves to scalar self-calibration (i.e. we do not take polarimetry into
account). We thus refer to the same framework as that defined in Sect. II. In particular,
we show that in the scalar case, the phase-calibration problem has a close similarity with
the calibration problems encountered in high-precision geodetic positioning and in global
navigation satellite systems (GNSS).

In fact, the approach we propose for solving the phase-calibration problem in the scalar
case is a good starting point for tackling the more complex problem of full polarimetric
phase calibration. This possible extension however deserves a particular analysis which goes
beyond the scope of our present work. Some guiding ideas for the corresponding ‘matrix self-
calibration’ approach are to be found in Hamaker (2000) and Yatawatta (2012). The scalar
case presented in Sect. III.1.1 has already its own complexity. Any vectorial analysis should
therefore start from a good understanding of that analysis.

In Sect. II, we have analysed the self-calibration procedure in the scalar case. In that
special case, we have proposed a new approach to the problem: the ‘arc-approach.’ The final
step of that approach consists in solving a nearest-lattice-point (NLP) problem; for a precise
definition of this problem, see Sect. III.2.1.

In fact, NLP problems appear in many fields of applied mathematics. In particular, as al-
ready mentioned, they play a central role in high-precision geodetic positioning and in GNSS
(see Sect. IV). In this chapter, we present new methods for solving those NLP problems.
These methods can therefore be applied both in astronomy and geodesy.

The standard way of solving an NLP problem includes two stages: a preconditioning
stage, and a discrete-search stage in which the integer ambiguities are finally fixed. The prob-
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lem is usually preconditioned by implementing the algorithm introduced by Lenstra, Lenstra
& Lovász (1982): the LLL algorithm. The LAMBDA decorrelation method of Teunissen
(1995) can also be used for this purpose; for the theoretical link between LLL-reduction and
LAMBDA-decorrelation, see Lannes (2013). The NLP problem is then solved in the reduced
basis thus obtained. This is done via appropriate discrete-search techniques. In this general
context, we present our implementation of the LLL algorithm, as well as our discrete-search
techniques. In this chapter we thus revisit and complete the analysis of Sect. C, that was pre-
sented in Lannes & Prieur (2011). With regard to the current state of the art (see, e.g., Agrell
et al. (2002); Jazaeri et al. (2012)), the methods described in this chapter lead to a speed-up
of the order of two.

In Sect. III.1, we show how those problems appear in astronomy and geodesy. The main
guidelines of our study are presented in Sect. III.2. Some basic notions are then defined
among which that of LLL-reduced basis. In Sect. III.3, we then describe an LLL-type al-
gorithm allowing an LLL-reduced basis to be built. Section III.4 is devoted to the main
contribution presented here: the discrete-search techniques to be implemented for finding the
nearest lattice point in the selected reduced basis. We also describe the techniques to be used
for identifying the points lying in some neighbourhood of the nearest lattice point. Indeed,
these points are also useful for the analysis of the related problems. The computational issues
of our contribution and its main results are summarized in Sects. III.5 and V.

III.1 NLP problems in astronomy and geodesy
We here present some NLP problems encountered in astronomy (Sect. III.1.1) and geodesy
(Sect. III.1.2). The similarities between the scalar case presented in Sect. III.1.1, and the
global positioning problems of Sect. III.1.2 are thus explicitly exhibited.

III.1.1 Self-calibration procedures in phase-closure imaging

When mapping incoherent sources with aperture-synthesis devices, the pupil-phase perturba-
tions (hereafter pupil-phase biases) caused by the atmospheric turbulence degrade the angular
resolution of the restored image. A standard way for obtaining high angular-resolution images
is to estimate those pupil-phase biases from observations of a calibrator (usually a reference
star). However when the turbulence is strong and quickly varies with time, this procedure is
not possible. A way out is to use ‘self-calibration’ which corresponds to the situation where
the object source to be imaged plays the role of the calibrator. Following the pioneering work
of Cornwell & Wilkinson (1981) in the scalar case, this problem can then be solved by alter-
nate phase-calibration operations and Fourier-synthesis processes. However, this procedure
is generally rather unstable. To ensure the reliability and the robustness of those techniques,
the phase-calibration operations must then be conducted with much care.

The model of the object source is refined throughout the iterative self-calibration proce-
dure. At each iteration, the phase-calibration operation consists in estimating virtual pupil-
phase biases αd(i) so that the following equation is satisfied in a least-squares sense to be
defined:

exp iϕd(i, j) exp−i[αd(i)− αd(j)] = exp iϕm(i, j) (III.1)
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Here, exp iϕd and exp iϕm are the ‘phasors’ of the (complex) ‘visibility functions’ of the data
and the model, respectively. The pairs (i, j), which define the edges of the ‘phase-calibration
graph’ G , correspond to the baselines of the interferometric device; for further details, see
Sect. II.1. The self-calibration procedure aims at reducing the phase discrepancy

ϕ
def
= ϕd − ϕm (III.2)

From Eq. (III.1), we infer that the phase-calibration operation consists in finding a function αd

such that the following relationship be valid up to error terms:

ϕ(i, j)− [αd(i)− αd(j)] = 2πN(i, j) (III.3)

with N(i, j) in Z. In radio-astronomy, the related optimization problems are generally solved
at the phasor level: one minimizes the size of the chords associated with the phasors

exp i{ϕ(i, j)− [αd(i)− αd(j)]}

In some critical situations, the ‘chord functional’ may have several minima. As shown in
Lannes (2005), and Lannes & Prieur (2011) (see in Sect. II), the analysis of the problem must
then be conducted at the phase level. We then consider the size of the quantities

arc{ϕ(i, j)− [αd(i)− αd(j)]}

where function arc is defined as follows:

arc(θ)
def
= θ − 2π

⌊ θ
2π

⌉
Here, bxe denotes the integer of Z closest to x; when x = k+ 1/2 for some k in Z, bxe is set
equal to k. The functional to be minimized is then of the form

gd(αd)
def
= ‖ arc(ϕ−Bαd)‖w (III.4)

where

(Bαd)(i, j)
def
= αd(i)− αd(j) (III.5)

with αd(1) = 0 for instance; the norm ‖ · ‖w is defined as specified in Sect. II.1.1.
As explicitly shown in Sects. II.4, II.5 and II.6, the arc approach gives a better insight

into the problem. The corresponding theoretical framework appeals both to algebraic graph
theory (Biggs, 1996) and algebraic number theory (Cohen, 1996). We now give a survey of
the matter which shows how those two main features are tightly imbricated.

The notion of ‘phase closure,’ which underlies the concept of ‘phase-closure imaging’
(PCI), is introduced in a context more general than that usually defined in radio imaging
and optical interferometry. In particular, closure phases of order larger than three may then
be defined. According to our algebraic-graph analysis, the data-model discrepancy can be
decomposed in the form (see Sect. II.2.3):

ϕ = ϕb + ϕc
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Here, the baseline-bias function ϕb is equal to Bα(ϕ) for some α(ϕ) (depending on ϕ). The
function ϕc is the ‘closure function’ of ϕ; it takes its values on the nc ‘closure edges’ of G ,
the ‘loop-entry baselines’ of the problem; see for example Figs. II.3 and II.4.

Clearly, ϕ − Bαd = ϕc − B(αd − α(ϕ)). It then follows from Eq. (III.4) that gd(αd) is
equal to g(α) where

g(α)
def
= || arc(ϕ̂c −Bα)||w (III.6)

with

α
def
= αd − α(ϕ) and ϕ̂c

def
= arc(ϕc) (III.7)

The minimizers of gd can therefore be easily deduced from those of g.
Divided by 2π, ϕ̂c defines some point v̂ of Rnc . We have shown that the minima of the arc

functional g are determined via particular ‘integer sets’ associated with v̂. Those integer sets
correspond to some particular points v̇ of lattice Znc; see Property II.4.1. In that algebraic-
number framework, finding the global minimizer of g (and thereby that of gd) amounts to
finding the point v̌ of Znc closest to v̂ with regard to some distance; that distance is defined
via some quadratic form whose matrix Q is the inverse of the variance-covariance matrix V
of v̂. As explicitly clarified in Sect. III.2.1, finding the global minimum therefore amounts to
solving a NLP problem in which v̂ can be regarded as its ‘float solution.’ The main secondary
minima of g, if any, correspond to Z

nc-lattice points in some neighbourhood of v̌. Like
for v̂, those points can be identified, in a systematic manner, via the integer-programming
techniques presented here.

III.1.2 High-precision geodetic positioning
The techniques involved in high-precision geodetic positioning and global navigation satellite
systems (GNSS) are based on two types of data: the (carrier-)phase and code (or pseudo-
range) observations; see, e.g., Lannes & Gratton (2009), Lannes & Teunissen (2011). The
phase observational equations of GNSS networks are of the form∣∣∣∣∣ bκ(i, j)− [βrκ(i)− βsκ(j)] = N(i, j)

for κ = 1, . . . , k
(III.8)

In those problems, κ is the epoch index; k is the index of the current epoch; βrκ(i) and βsκ(j)
are clock-phase biases. Those biases, which are expressed in cycles, depend on the frequency
of the transmitted carrier wave; subscripts r and s stand for receiver and satellite,1 respec-
tively; i is the index of the receiver, and j that of the satellite; N(i, j) is the integer ambiguity
of the corresponding carrier-phase measurement. The terms bκ(i, j) include the correspond-
ing phase data and the contributions associated with the real variables of the problem other
than the clock-phase biases: position and atmospheric parameters, for instance; see, e.g.,
de Jonge (1998); Lannes & Teunissen (2011). The set of receiver-satellite pairs (i, j) in-
volved in Eq. (III.8) forms the observational graph Hκ of the GNSS scenario of epoch κ.
Owing to the particular structure of the phase equations (III.8), the problem has a basic rank

1Here, satellite should be understood as satellite transmitter.
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defect. As outlied below, the latter can be eliminated by an appropriate redefinition of its
variables.

In the system of Eqs. (III.8), the GNSS functional N takes its values on G , the union of
the graphs Hκ until the current epoch k. The similarity of Eqs. (III.3) and (III.8) was first
pointed out by Lannes & Teunissen (2011). In Lannes & Prieur (2013), we were therefore led
to propose forN a decomposition quite similar to that of ϕ in Sect. III.1.1: N = Nb+Nc with
Nb = Bµ(N). Here, µ(N) is an integer-valued function depending on N ; µ(N) takes its values
on the vertices of G other than the reference receiver r1 (for example). The corresponding
‘integer variable’ v := Nc lies in Znc where nc is the number of closure edges of G . The
redefined clock-phase biases are then of the form βrκ(i) + µ

(N)
r (i) (for i 6= 1) and βsκ(j) +

µ
(N)
s (j).

In a first stage, at each epoch k, the problem is solved in the LS sense by considering v as
a ‘float variable.’ A float solution v̂ is thus obtained and updated progressively. In practice,
this is done via recursive QR-factorization (see Sect. I). The ambiguity solution v̂ is then the
point of Znc closest to v̂ with regard to some distance. Like in PCI, that distance is defined via
some quadratic form whose matrix Q is the inverse of the variance-covariance matrix V of the
float solution v̂. In that case, the points of Znc lying in some neighbourhood of v̌ are involved
in the corresponding validation techniques; see Verhagen & Teunissen (2006). Again, like
in PCI, those points can be identified, in a systematic manner, via the integer-programming
techniques presented here. Once v̌ has been fixed and validated, the real variables, among
which the redefined clock-phase biases, are then estimated accordingly.

III.2 Guidelines
This chapter is essentially devoted to the methods to be used for solving the NLP problems
encountered in astronomy and geodesy. Setting n := nc, we first define these problems as
follows.

III.2.1 NLP problems
Given some vector v̂ of Rn, consider the (or a) vector v̌ of Zn such that

v̌ = argmin
v∈Zn

‖v − v̂‖2
Q (III.9)

The norm introduced here is that of (Rn,Q): the space Rn endowed with the inner product

(v | v′)Q
def
= (v ·Qv′) (III.10)

where Q is the inverse of the variance-covariance matrix of the ‘float solution’ v̂: Q def
= V−1.

Clearly, ( · ) is the Euclidean inner product of Rn. In matrix terms, we therefore have

(v | v′)Q = vTQ v′ (III.11)

All the quantities appearing in these equations are expressed in the standard basis

{e1, e2, · · · , en}
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of Rn and Zn. Note that this basis can be represented by the row matrix

B def
= [e1 e2 · · · en] (III.12)

whose entries are the vectors ej for j = 1, . . . , n.
The integer lattice Zn regarded as a subset of (Rn,Q) is denoted by (Zn,Q); v̌ is therefore

a nearest lattice point to v̂ in (Zn,Q). Equation (III.9) therefore defines an NLP problem.

III.2.2 Factorizations of Q
In this chapter, we write the Cholesky factorization of Q in the form

Q = RTR (III.13)

where R is an upper-triangular matrix. Denoting by ‖ · ‖ the Euclidean norm of Rn, we
therefore have, from Eqs. (III.9) and (III.11),

v̌ = argmin
v∈Zn

‖R(v − v̂)‖2 (III.14)

Let D be the diagonal matrix defined via the relation

R = D1/2U (III.15)

where U is an upper-triangular matrix whose diagonal elements uj,j are equal to unity. For
clarity, the diagonal entries of D will be denoted by dj . From Eq. (III.13), we have

Q = UTD U (III.16)

III.2.3 Q-Orthogonality defect
Any basis of Zn is characterized by a row matrix of the form

B
def
= [e1 e2 · · · en] (III.17)

In general, such a basis is far from being Q-orthogonal; see Eq. (III.10). To provide a measure
of this defect, we introduce the following notion.
DEFINITION 3.1. The parameter

δQ(B)
def
=

(∏n
j=1 e

T
j Qej

det Q

)1/(2n)

(III.18)

is the ‘dilute Q-orthogonality defect’ ofB ·
In the notation adopted in Eq. (III.18), ej denotes the column matrix whose entries are the
components of the corresponding vector in the standard basis. Those entries therefore lie
in Z. Clearly, det Q is the determinant of Q.

According to Eqs. (III.18) and (III.13),

δQ(B) =

(∏n
j=1 ‖bj‖
det R

)1/n

bj
def
= Rej (III.19)
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This relation shows that δQ(B) is the ‘dilute Euclidean-orthogonality defect’ of the basis
{b1, b2, · · · , bn}. It can be shown that det R is the volume of the n-dimensional paral-
lelepiped defined by these vectors. Clearly, δQ(B) is greater than or equal to 1, the zero
defect corresponding to the case where δQ(B) = 1.

The matrix M whose columns are the column matrices ej of Eq. (III.18) is unimodular:
M is an integer n-by-n matrix whose determinant is equal to ±1. The matrix relation

B = BM (III.20)

gathers the vector relations

ej =
n∑
i=1

mij ei (for j = 1, . . . , n)

Clearly, the integers mi,j are the entries of M . In the same way as M is associated with B,
the identity matrix In is associated with B. In terms of matrices, we have ej = Mej , hence
(from Eq. (III.18))

δQ(B) =

(∏n
j=1 eT

jQej

det Q

)1/(2n)

(III.21)

where

Q
def
=MTQM (III.22)

Note that detQ = det Q = (det R)2. To compute δQ(B), one is led to consider the factoriza-
tion

Q = UTDU (III.23)

whereU is an upper-triangular matrix whose diagonal elements uj,j are equal to unity; δQ(B)
is then obtained via the logarithmic formula

ln
(
δQ(B)

)
=

1

2n

n∑
j=2

ln
(

1 +

j−1∑
i=1

di
dj
u2
i,j

)
(III.24)

where the dj’s are the diagonal entries ofD. Note that

ln
(
δQ(B)

)
=

1

2n

n∑
j=2

ln
(

1 +

j−1∑
i=1

di

dj
u2
i,j

)
(III.25)

AsQ def
=MTQM (Eq. (III.22)), δQ(B) can also be regarded as the ‘reduction defect’ of Q in

basisB, or in a more concise manner, as the reduction defect ofQ.
In what follows, the guiding idea is to choose M so that δQ(B) be reduced somehow:

δQ(B) < δQ(B). The notion of reduced basis introduced by Lenstra, Lenstra & Lovász (1982)
was a key step in that direction.
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III.2.4 LLL-reduced basis
DEFINITION 3.2. The column vectors ej ofM define an LLL-reduced basis of (Zn,Q) if the
matrix elements of U andD in factorization (III.23) satisfy the conditions

|ui,j| ≤ 1

2
for 1 ≤ i < j ≤ n (III.26)

and

dj ≥ (ω − u2
j−1,j)dj−1 for 2 ≤ j ≤ n (III.27)

with 1/4 < ω < 1 ·
Condition (III.26) reduces δQ(B) by reducing the size of the matrix elements ui,j; see

Eqs. (III.25) and (III.24). Condition (III.27) requires the dj’s be loosely sorted in increasing
order with no distinctive discontinuity; the ratios di/dj (for i < j) are then made as small as
‘LLLω-possible.’

III.2.5 Statement of the NLP problem in the reduced basis
To complete Sect. III.2.1, we now state the NLP problem (III.9) in the selected reduced
basisB; see the context of Eq (III.20). Clearly, ‖v− v̂‖2

Q =
∥∥M [M−1(v− v̂)]

∥∥2

Q. Setting

v
def
=M−1v v̂

def
=M−1v̂ (III.28)

we therefore have

‖v − v̂‖2
Q =

∥∥M(v − v̂)
∥∥2

Q

= [v − v̂]TMTQM [v − v̂]

It then follows that

‖v − v̂‖2
Q = q(v) (III.29)

where, from Eq. (III.23),

q(v)
def
=
∥∥D1/2U

(
v − v̂)∥∥2 (III.30)

Let v̌ now be a vector of Zn minimizing q(v):

v̌ = argmin
v∈Zn

q(v) (III.31)

In the standard basis B, the corresponding nearest lattice point is then obtained via the relation
(see Eq. (III.28))

v̌ = Mv̌ (III.32)

To tackle the optimization problem (III.31), it is convenient to introduce the vector ṽ defined
via the relation

v − ṽ def
=U(v − v̂) (III.33)
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As the diagonal elements ofU are equal to unity, the components of ṽ, the ‘float conditioned
ambiguities’ ṽj , are explicitly defined by the formula

ṽj
def
=

∣∣∣∣∣ v̂n if j = n

v̂j −
∑n

k=j+1 uj,k(vk − v̂k) if 1 ≤ j < n
(III.34)

From Eqs. (III.30) and (III.33), we have

q(v) =
n∑
j=1

dj(vj − ṽj)2 (III.35)

The discrete-search methods presented in Sect. III.4 derive from this equation.

III.3 LLL reduction
In Sects. III.3.1 and III.3.2, we introduce the reduction procedures that allow an LLL-reduced
basis to be built; see Sect. III.2.4. These procedures are basically involved in the LLL algo-
rithm which provides all the related results. Our version of this algorithm, which derives from
that of Luo & Qiao (2011), is presented in Sect. III.3.3.

Throughout this section, D and U are the matrices of the factorization (III.23): Q =

UTDU forQ def
=MTQM ;M is some unimodular matrix.

III.3.1 Procedure Reduce
If |ui,j| > 1/2 for some i < j, a procedure can be applied to ensure Condition (III.26). This
procedure is referred to as REDUCE(i, j).

Procedure R: REDUCE(i, j)

Consider the n-by-n unimodular matrix

Mi,j
def
= In − bui,je eieT

j (i < j)

(Here, ei is the column matrix associated with the ith unit vector of B.) Then, apply Mi,j

to U andM from the right-hand side:

U := UMi,j M := MMi,j ·
Only the elements of the jth columns of U and M can be affected by the action of Mi,j:
ui′,j := ui′,j − ui′,ibui,je for all i′, and likewise mi′,j := mi′,j − mi′,ibui,je. Concerning U ,
as ui′, j = 0 for i′ > i, only the elements ui′, j for i′ ≤ i are affected. In particular, ui,j :=
ui,j − bui,je. In the updated version of U , we thus have |ui,j| ≤ 1/2.

III.3.2 Swap procedures
To ensure Condition (III.27), which is more subtle, some particular procedure is to be imple-
mented. The core of the problem is then governed by the 2-by-2 matrices

Dj
def
=

[
dj−1 0

0 dj

]
(III.36)
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and

Uj
def
=

[
1 u

0 1

]
u

def
= uj−1,j (III.37)

Setting (see procedure R)

M r
j

def
=

[
1 −bue
0 1

]
(III.38)

we have

UjM
r
j =

[
1 ŭ

0 1

]
ŭ

def
= u− bue (III.39)

Clearly, |ŭ| is less than or equal to 1/2.
Now, consider Condition (III.27) with uj−1,j := ŭ:

dj ≥ (ω − ŭ2)dj−1

When this condition is not satisfied, one is led to change the order of the corresponding
ambiguity variables. We then say that

Mj
def
=M r

jS where S
def
=

[
0 1

1 0

]
(III.40)

is a reduce-swap operator. From Eqs. (III.38) and (III.39), it follows that

Mj =

[
−bue 1

1 0

]
UjMj =

[
ŭ 1

1 0

]
(III.41)

Clearly, UjMj is not an upper-triangular matrix. Its original structure can be restored as
specified in the following property. (The proof of this property is given in Sect. F.)

Property RSR: REDUCESWAPRESTORE

Matrix (UjMj)
TDj (UjMj) can be factorized in the form

ŪT
j D̄j Ūj

where

D̄j
def
=

[
d̄j−1 0

0 d̄j

]
Ūj

def
=

[
1 ū

0 1

]

in which

d̄j−1
def
= dj + ŭ2dj−1 d̄j

def
= dj

dj−1

d̄j−1

ū
def
= ŭ

dj−1

d̄j−1
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As a corollary,

GjUjMj = Ūj where Gj
def
=

[
ū 1− ŭū
1 −ŭ

]

Moreover, [G−1
j ]TDjG

−1
j = D̄j ·

The following procedure in which u def
= uj−1,j results from this property.

Procedure RSR: REDUCESWAPRESTORE(j)

Compute ŭ = u− bue,

d̄j−1 = dj + ŭ2dj−1 d̄j = dj
dj−1

d̄j−1

ū = ŭ
dj−1

d̄j−1

To updateD, set dj−1 := d̄j−1 and dj := d̄j .

Then, for j ≥ 2, letMj
def
= diag([Ij−2 Mj In−j]) be the matrix obtained from the identity

matrix In by substituting

Mj =

[
−bue 1

1 0

]
for its 2-by-2 block with largest diagonal index j; see Eq. (III.41). Likewise, define
Gj

def
= diag([Ij−2 Gj In−j]) where

Gj =

[
ū 1− ŭū
1 −ŭ

]
Matrices U andM are then updated as follows:

U := GjUMj M := MMj ·

When implementing the operation GjUMj , the diagonal 2-by-2 block of U with largest
diagonal index j is updated separately. Indeed, according to the corollary of Property III.3.2,
it is equal to Ūj .

In the case where bue = 0, this procedure reduces to Procedure SR: SWAPRESTORE(j).

III.3.3 LLL-type algorithms
The original LLL algorithm provides the matrices U and D involved in the LLL-reduced
version of Q (see Eqs. (III.23) and (III.22)):

Q = UTDU for Q
def
=MTQM

It also yields the LLL-reduced basis B def
= BM ; see Sects. III.2.3 and III.2.4. Its main in-

structions are the following (see Eq. (III.16) for its initialization).

Original LLL algorithm
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1 U := U;D := D;M := In
2 j := 2

3 while j ≤ n

4 if |uj−1,j| > 1/2, REDUCE(j − 1, j)

5 if dj < (ω − u2
j−1,j)dj−1

6 SWAPRESTORE(j)

7 j := max(j − 1, 2)

8 else
9 for i := j − 2 down to 1
10 if |ui,j| > 1/2, REDUCE(i, j)

11 endfor 9
12 j := j + 1

13 endif 5
14 endwhile 3

Recently, Luo & Qiao (2011) proposed a modified LLL algorithm which can save a sig-
nificant amount of operations, and also provides a basis for a parallel implementation. In that
approach, which is justified via an example presented in Sect. 3 of their paper, the proce-
dures imposing condition (III.26) are implemented at the end of this algorithm, once the LLL
condition (III.27) has been imposed.
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LLL algorithm with delayed size-reduction

1 U := U;D := D;M := In
2 j := 2

3 while j ≤ n [to impose Condition (III.27)]
4 u := uj−1,j

5 if |u| > 1/2

6 ReduceOption := true

7 ŭ := u− bue
8 else
9 ReduceOption := false

10 ŭ := u

11 endif 5
12 if dj < (ω − ŭ2)dj−1

13 if ReduceOption = true

14 REDUCESWAPRESTORE(j)

15 else
16 SWAPRESTORE(j)

17 endif 13
18 j := max(j − 1, 2)

19 else
20 j := j + 1

21 endif 12
22 endwhile 3

23 for j := 2 : n [to impose Condition (III.26)]
24 for i := j − 1 down to 1
25 if |ui,j| > 1/2

26 REDUCE(i, j)

27 endif
28 endfor 24
29 endfor 23

Typically, this LLL algorithm with ‘delayed size-reduction’ runs twice as fast as the original
LLL algorithm. Compared to the algorithm of Luo & Qiao (2011), we made here the dis-
tinction between the procedures RSR and SR. Some CPU time can thus still be saved. Those
changes concern the instruction blocks 5-11 and 13-17.

The procedures described in Sects. III.3.1 and III.3.2 can be completed so that this algo-
rithm also provides the float solution in the LLL-reduced basis: v̂ = M−1v̂; see Eq. (III.28).
This can be done without formingM−1 explicitly.
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According to Property III.3.2, we have

d̄j−1 = dj + ŭ2dj−1

Instruction 12 can therefore be equally well written in the form
12 if d̄j−1 < ωdj−1

At level j, the procedures RSR and SR modify, in particular, the matrix element uj−2,j−1.
As a result, this algorithm has a ‘one-step up-and-down structure;’ see instructions 18 and
20. Lenstra, Lenstra and Lovász have shown that for any ω in the open interval ]1/4 1[ ,
the algorithm terminates: the number of times that the algorithm encounters the case where
d̄j−1 < ωdj−1 is bounded. In the limit case where ω = 1, the convergence can also be
guaranteed; for further details, see Akhavi (2003); Nguyen & Stehlé (2009).

The convergence of the LLL algorithm is faster when reducing the value of the relaxation
parameter ω, but below some value (for example ω = 0.70), the diluteQ-orthogonality defect
of the LLL-reduced basis B thus obtained begins to increase. The choice of ω therefore
depends on the context.

For example, in GNSS, when handling a regional network in real-time with n = 168 and
δQ(B) ' 6.62, ω may reasonably be set equal to 0.9; δQ(B) can then be reduced to 1.19 for
example. One then has a good compromise between the CPU time required for finding the
reduced basis, and that used for the discrete search; see Sect. III.4. On our old computers,
the CPU time used for that LLL-reduction was 0.075 second with our LLL-type algorithm,
against 0.141 second with the original LLL algorithm. The LLL algorithm with delayed
size-reduction effectively leads to a gain of the order of two.

For the statistical developments involved in the GNSS validation procedures, such as
those of Verhagen & Teunissen (2006), the choice ω = 1 is preferable. Indeed, as the discrete
search is performed many times in the same reduced basis, the latter must be as Q-orthogonal
as possible.

III.4 Discrete search
This section is essentially devoted to the solution of the NLP problem in the selected reduced
basis; see Sects. III.2.1, III.2.4, III.2.5, and III.3.3. The problem is therefore to minimize
q(v) for v lying in Zn; see Eqs. (III.31) and (III.35).

Once the integer ambiguities vn, vn−1, . . . , vi+1 have been conditioned somehow (see the
example given below), Eq. (III.34) provides the float conditioned ambiguity ṽj .
Example: Babai point. Let us concentrate on Eq. (III.35) where the dj’s are loosely sorted in
increasing order with no distinctive discontinuity. To find a point v for which q(v) is a priori
small, one is led to perform the ‘bootstrapping’ recursive process described below. The point
thus formed is the Babai point vB (Babai, 1986):

level n: vB
n = bṽne where ṽn = v̂

level n− 1: vB
n−1 = bṽn−1e where ṽn−1 = v̂n−1 − un−1,n(vB

n − v̂n)

...

level 1: vB
1 = bṽ1e where ṽ1 = v̂1 −

n∑
k=2

u1,k(v
B
k − v̂k)
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The Babai point is often the solution of the NLP problem, but not necessarily. In any case
however (as explicitly shown in this section), it is the ‘natural starting point’ for searching
this solution ·

III.4.1 Ambiguity conditioning at level j

In the general case, in the process of conditioning ambiguity vj , we will use the following
notation (see Eq. (III.35))

sj
def
=

n∑
i=j

di(vi − ṽi)2 (III.42)

where ṽi is given by (see Eq. (III.34))

ṽi =

∣∣∣∣∣ v̂n if i = n;

v̂i −
∑n

k=i+1 ui,k(vk − v̂k) if 1 ≤ i < n

Note that sj = tj + dj(vj − ṽj)2 where

tj
def
=

∣∣∣∣∣ 0 if j = n;

sj+1 if j < n
(III.43)

Let us now assume that the ambiguities vn, vn−1, . . . , vi+1 have already been conditioned.
Denoting by ` an integer candidate for vj , we then set

s ≡ s
(`)
j

def
= tj + dj(`− ṽj)2 (III.44)

The first ambiguity value ` to be considered at level j is then

m = bṽje (III.45)

Indeed, |` − ṽj| and thereby s are then as small as possible. In the process of minimizing
q(v), one is led to consider values of ` other thanm. These integers, `1, `2 , . . . , `p , . . ., where
`1 = m, are then sorted so that the discrepancies |`p − ṽj| form an increasing sequence. The
second integer to be considered is therefore m+1 or m−1. Two cases are thus distinguished
(see Schnorr & Euchner (1994)):

Schnorr(+): m < ṽj . Ambiguity vj may then be conditioned at the successive terms of the
Schnorr list(+)

m, m+ 1, m− 1, m+ 2, m− 2, m+ 3, . . .

Schnorr(−): m ≥ ṽj . Ambiguity vj may then be conditioned at the successive terms of the
Schnorr list(−)

m, m− 1, m+ 1, m− 2, m+ 2, m− 3, . . .
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In our implementation of the related approach, we save CPU time in the computation of the
successive values of (`p − ṽj)

2. When handling the ambiguities `, and ` + 1 or ` − 1, the
following ‘perturbation formulas’ are then used:∣∣∣∣∣ [(`+ 1)− ṽj]2 = w2 + (1 + 2w)

[(`− 1)− ṽj]2 = w2 + (1− 2w)
w

def
= `− ṽj (III.46)

The multiplication w2 := w × w is then performed only for ` := m; see Sect III.4.2. Many
multiplications can thus be avoided. Note that the calculation of 2w is then to be made in an
optimal manner (2w is not necessarily computed as the sum w + w).

In the implementation of our approach, we used object-orientated programming (OOP),
and introduced a specific object referred to as SL (for Schnorr list). More precisely, at the
beginning of our program, we instantiated an array of n such objects, one at each level j. We
then added two ‘methods’ linked to this object: INIT and NEXT. The latter are described in
the following section.

III.4.2 Methods INIT and NEXT

The actions of INIT and NEXT consist in initializing and updating a two-element FIFO vecto-
rial queue (`arm, `b), (sarm, sb) associated with the two-component vector (`, s). The table
below shows the structure of queue (`arm, `b) in the case of the Schnorr list(+):

sg `arm `b

After INIT: +1 m m

After NEXT: −1 m m+ 1

After NEXT: +1 m+ 1 m− 1

After NEXT: −1 m− 1 m+ 2

Just before the call to INIT, ṽj is computed on the grounds of Eq. (III.34); see Remark4.1
further on.

Method INIT: instruction (`, s) := SLj–INIT(ṽj, tj)
Set

` := bṽje
w := `− ṽj
s := tj + djw

2

`arm := `b := `
sarm := sb := s

if w < 0
set sg := (+1)

else
set sg := (−1)
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Method NEXT: instruction (`, s) := SLj–NEXT

Set
w := `arm− ṽj
` := `arm+ sg

if sg = 1
s := sarm+ dj(1 + 2w)

else
s := sarm+ dj(1− 2w)

Set
`arm := `b; `b := `
sarm := sb; sb := s
sg := (−sg)

Remark.4.1: According to Eq. (III.34), the float conditioned ambiguity ṽj is given by the
formula

ṽj =

∣∣∣∣∣ v̂n if j = n

ũj,j+1 if 1 ≤ j < n
(III.47)

where

ũj,k
def
= v̂j −

n∑
κ=k

uj,κ(vκ − v̂κ) (III.48)

Now, consider the general case when ṽj is to be computed, when it has already been
computed, and when in the meanwhile, for some jr > j, the integer ambiguities
vjr+1, vjr+2, . . . , vn−1, vn have not changed. In our conditioning process, to reduce the cor-
responding CPU cost, ṽj is then computed as follows (see Eqs. (III.47) and (III.48)):

If jr = n (even if ṽj has not been computed yet)
u := v̂j

else
u := ũj,jr+1

for k := jr down to k := j + 1

u := u− uj,k(vk − v̂k)
ũj,k := u

endfor
ṽj := u

An auxiliary upper-triangular matrix Ũ is thus built and updated through the process. For
further details, see Sect. III.4.3 and Remark4.3 ·

III.4.3 Discrete-search algorithms
On the grounds of the notions introduced in Sects. III.4.1 and III.4.2, we have designed three
discrete-search algorithms referred to as DS, DNS and DSC:

59



CHAPTER III. INTEGER-AMBIGUITY RESOLUTION IN ASTRONOMY AND
GEODESY

1) algorithm DS yields a nearest lattice point v̌ and q̌ def
= q(v̌);

2) algorithm DNS provides the first ns NLP solutions
v̌1 ≡ v̌, v̌2, . . ., v̌ns with q̌ ≡ q̌1 ≤ q̌2 ≤ · · · ≤ q̌ns;

3) given some parameter c > 0, algorithm DSC identifies all the points v of Zn contained
in the ellipsoid

E(c)
def
= {v ∈ Rn : q(v) ≤ c} (III.49)

Clearly, E(c) is centred on the float solution v̂; c defines the size of this ellipsoid.

Algorithm DS. The objective is to condition the integer ambiguities vj so that q(v) is mini-
mum. We first note that from Eqs. (III.35) and (III.42),

q(v) = s1 = rj + sj (III.50)

where

rj
def
=

j−1∑
i=1

di(vi − ṽi)2 (III.51)

As rj is non-negative, we therefore have:
Property 5.1 If sj ≥ a for some a > 0, then q(v) = s1 ≥ a.

We first form the Babai point, here v := vB; see the bootstrapping stage 2-8 of the
algorithm displayed in the next page. All the Schnorr lists from j := n down to j := 1, as
well as Ũ , are thus initialized; see Remark4.1 with jr = n. As the Babai point is the first
NLP candidate, we then set

v̌ := v, q(v̌) ≡ q̌ := s1

The NLP search starts from the Babai point, but in the opposite sense, with a Boolean
variable Forwards equal to true. We therefore move to level j = 2. Indeed, if v1 was set
equal to the next integer of SL1, q(v) would then be greater than q̌.

To understand the principle of the algorithm in the general case, let us assume that we
are at some level j ≥ 2 with Forwards = true. We then consider the integer ` provided by
SLj–NEXT; this method also yields s: the new value of sj that would be obtained if vj was
set equal to `. Clearly, s is greater than the current value of sj (and this would be worse with
the remaining terms of the Schnorr list at this level). Two cases are then to be considered.
Case 1: s ≥ q̌. If we then set vj := `, whatever the conditioning of the integer ambigui-
ties vj−1, . . . , v1, we would then have s1 ≥ q̌ from Property III.4.3. Furthermore, another
NEXT-type instruction would increase sj . In this case, we are therefore left to move forwards
to level j := j + 1.
Case 2: s < q̌. As there is still a hope of reducing s1 by conditioning vj−1, . . . , v1 in an
appropriate manner, we then set

(vj, sj) := (`, s), tj−1 := sj, Forwards := false
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and move backwards to level j := j − 1; ṽj is then updated; note that (bṽje − ṽj)2 may then
be smaller than previously at that level.

When the algorithm moves forwards to level j := j + 1, SLj–NEXT is then called. When
it moves backwards to level j := j − 1, a new Schnorr list is initialized via SLj–INIT. In both
cases, the situation is then analysed to define what is to be done; see Cases 1 and 2.

Via Case 2, the algorithm may progressively reach level j = 1 (several times). If s is less
than q̌, v̌ and q̌ are then updated; see instructions 32 to 36.

Via Case 1, the algorithm reaches level n, at least once. When SLn–NEXT yields an s
greater than or equal to q̌, the algorithm then stops; see instructions 14 to 25. We then have
the following property (see Eq. (III.24)):

Property 5.2 At the end of the algorithm, no point of Zn lies in the interior of ellipsoid E(q̌);
v̌ is on its boundary.

Proof. Let us assume that there exists some v◦ in Z
n such that q◦ def

= q(v◦) < q̌. From
Eqs. (III.35) and (III.34),

q◦ = dn(v◦n − v̂n)2 + dn−1(v◦n−1 − ṽ◦n−1)2 + · · ·+ d1(v◦1 − ṽ◦1)2

The quantities

s◦n
def
= dn(v◦n − v̂n)2

and

s◦j
def
= s◦n + dn−1(v◦n−1 − ṽ◦n−1)2 + · · ·+ dj(v

◦
j − ṽ◦j )2 (1 ≤ j < n)

are then less than q̌. The algorithm starts by setting vn equal to the first term of the Schnorr
list SLn. In the NLP search, it then comes back to level n via instruction 18, at least once,
until vn is conditioned at v◦n; indeed, s◦n is less than q̌ (see instructions 19 to 21). The
algorithm then starts moving backwards (via instruction 22), and reaches instruction 31 with
j = n− 1. The Schnorr list SLn−1 is then systematically explored, with possible excursions
at levels j < n−1, and this until vn−1 is set equal to v◦n−1, since s◦n−1 < q̌. The algorithm then
proceeds to level n− 2. It then behaves similarly for that level, and so on, until level j = 1
where v1 is set equal to the first term of SL1. The condition s < q̌ of instruction 33 then holds,
hence via instructions 34 and 35, q̌ := s ≤ q◦, which contradicts the initial assumption.

Remark.4.2: The pathological situations where v̌ is not the only point of Zn on the boundary
of E(q̌) can be detected at level of instruction 33. The integer-ambiguity solution v̌ cannot
then be validated. As it is presented, the algorithm selects as solution the first v for which
q(v) = q̌; the other ones (if any) are discarded. A subsequent statistical analysis can be used
to diagnose such pathological cases. In practice, as expected, such situations never occur ·
Remark.4.3: In the NLP search (instructions 13 to 48), the integers j1 and j2 keep track of the
successive levels j at which the value of the Boolean variable Forwards changes. Note that
j?2 is the current largest index j2 at which the algorithm started moving backwards. According
to instructions 11 and 38, whenever j = 1, j1 and j?2 are set equal to 1. By computing the
float conditioned ambiguities in the framework of Remark4.1 in which jr is defined (from
j1, j2 and j?2) via instructions 28-29, the global CPU time of algorithm DS can be reduced
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Table III.1: Algorithm DS
1 tn := 0; jr := n
2 for j := n down to j := 1 [Babai loop]
3 Compute ṽj
4 (`, s) := SLj–INIT (ṽj , tj)
5 (vj , sj) := (`, s)
6 if j > 1 set tj−1 := sj
7 endfor 2
8 (v̌, q̌) := (v, s1) [Babai point]
9 NLPfound := false
10 Forwards := true
11 j1 := 1; j?2 := 1
12 j := 1
13 while NLPfound = false [NLP search]
14 if Forwards = true [move forwards]
15 if j = n
16 NLPfound := true
17 else
18 j := j + 1
19 (`, s) := SLj–NEXT
20 if s < q̌
21 (vj , sj) := (`, s); tj−1 := sj
22 Forwards := false
23 j2 := j; j?2 := max(j2, j

?
2 )

24 endif 20
25 endif 15
26 else [move backwards]
27 j := j − 1
28 if j < j1 set jr := j?2
29 else set jr := j2
30 Compute ṽj
31 (`, s) := SLj–INIT (ṽj , tj)
32 if j = 1 [case j = 1]
33 if s < q̌
34 (v1, s1) := (`, s)
35 (v̌, q̌) := (v, s1) [new v̌]
36 endif 33
37 Forwards := true
38 j1 := 1; j?2 := 1
39 else [case j > 1]
40 if s < q̌
41 (vj , sj) := (`, s); tj−1 := sj
42 else
43 Forwards := true
44 j1 := j
45 endif 40
46 endif 32
47 endif 14
48 endwhile 13
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by a factor of the order of two. In this context, the following technical point is also to be
mentioned.

First of all, at the beginning of algorithm DS, the values of v̂j are placed on the diagonal
of Ũ :

ũj,j := v̂j (for j := 1, . . . , n)

Instructions 5, 21 and 41 are then completed by setting

v∗j := `− v̂j
The instructions u := v̂j and u := u− uj,k(vk − v̂k) of Remark4.1 are then changed into
u := ũj,j and u := u− uj,kv∗k, respectively. The input variables of the function that computes
ṽj are then j, jr, n, U , Ũ and v∗ ·
Remark.4.4: At the beginning of the NLP search, the size parameter c of the search ellip-
soid (III.49) is defined by the value of q(v) for the Babai point. When the latter is not the
NLP solution, c ≡ q̌ is reduced via instruction 35 ·
Algorithm DNS. The process is similar to that of algorithm DS; but, once the Babai point
has been formed, instead of moving forwards to level j = 2, SL1–NEXT is set in motion
ns−1 times. We thus get a ‘working set’ including ns ‘candidate optimal lattice points’ v̌[ns]
together with their q-values q̌[ns]. The last q-value thus obtained, which (by construction) is
larger than the previous ones, is denoted by q̌ns. In algorithm DNS, q̌ns is going to play the
same role as q̌ in algorithm DS.

We then move forwards to level j = 2; SL2–NEXT then provides the next term ` of
the Schnorr list at level 2 together with the value of s for that `. If s is less than q̌ns, we
then set (v2, s2) := (`, s), t1 := s2, and move backwards to level 1; SL1–INIT then defines
(via `) some lattice point v with its q-value q(v) := s1 := s. If s is less than q̌ns, as v
does not lie in the current set v̌[ns], s and v have to be inserted at their right places in the
sets q̌[ns] and v̌[ns]; the previous q̌ns and v̌ns are then removed. Instruction SLj–NEXT is
then performed until s is larger than the current value of q̌ns. After each of these instructions,
q̌[ns] and v̌[ns] are of course updated and sorted. In any case, we then finally move forwards
to level j = 2; SL2–NEXT is then performed, and so on. Clearly, the principle is the same.

Algorithm DSC. The process is again similar to that of algorithm DS. As all the points
of ellipsoid E(c) are to be identified, the tests s < q̌ (the instructions 20, 33 and 40 of
algorithm DS) are replaced by s < c. When SLj–NEXT is called, we move forwards to level
j + 1, only when the value of s thus obtained is larger than (or equal to) c; see Eq. (III.49)
and Property III.4.3. Otherwise, we set (vj, sj) := (`, s), tj−1 := sj and move backwards:
j := j − 1; then SLj–INIT, and so on. Instruction 35 of algorithm DS is replaced by other
instructions which depend on what is to be done with the vector v thus identified; see, e.g.,
Verhagen & Teunissen (2006); Lannes & Prieur (2011).

III.5 On some computational issues
The serial algorithms presented in Sects. III.3.3 and III.4.3 were implemented in C++ pro-
grams, and tested on old PC’s working with Windows XP and Linux operating systems.
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Intensive testing was performed with real data on a regional GNSS network. As already
mentioned at the end of Sect. III.3.3, for n = 168, the CPU time for the execution of our
LLL-type algorithm with ω = 0.9 was negligible: about 0.075 second. Compared to the
original LLL algorithm, as implemented for instance by Agrell et al. (2002) or Jazaeri et al.
(2012), the gain was of the order of two. In fact, the parallel approach begins to be of interest
for n larger than (say) 200; see the reduction-list implementation of Luo & Qiao (2011).

Concerning the discrete-search algorithms presented here, our method was compared to
that of Jazaeri et al. (2012) which corresponds to the present state of the art for the discrete
search. Our statistical study on 3× 105 Gaussian v̂-samples was conducted for n = 168 in the
LLL-reduced basis obtained as already specified. The Gaussian v̂-samples were of mean 0
and variance-covariance matrix V = Q−1in that basis. For each sample, v̌1 ≡ v̌ and v̌2

were determined via our DNS algorithm; see Sect. III.4.3. The CPU times for those discrete
searches were 236 seconds with the algorithm of Jazaeri et al. (2012), and 129 seconds with
our DNS algorithm. This gain, which is of the order of two, is essentially due to the way of
computing the float conditioned ambiguities; see Remarks 4.1 and 4.3.

With regard to the self-calibration problems presented in Sect. III.1.1, the previous statis-
tical study gives and idea of the efficiency of our methods for finding the global and secondary
minima of the arc functional g; see Sect III.1.1.

For handling the Schnorr lists at best, some object-oriented programming tools have
been introduced; see Sect. III.4.2. Our discrete-search algorithms were thereby written in
an ‘almost-electronic form.’ Shortly, they were designed for DSP (digital signal processor)
implementation at the ‘speed of light.’ In GNSS, for example, the integer ambiguities of re-
gional networks can thus be fixed in real time. Let us finally note that for large n, the only
discrete-search operations that can be performed in a parallel manner are those associated
with the successive terms of the Schnorr lists at levels n and 1.
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Chapter IV

Calibration of the clock-phase biases of
GNSS networks

IV.1 Determination of clock-phase biases: introduction
In Global Navigation Satellite Systems (GNSS), the calibration of the clock-phase biases of
global networks is a challenging problem. In particular, the knowledge of the satellite clock-
phase biases is needed for Precise Point Positioning (PPP); see, e.g., Zumberge et al. (1997);
Ge et al. (2008); Bertiger et al. (2010); Geng et al. (2010); Zou et al. (2012); Ge et al. (2012).
In the general context defined below, the equations governing this GNSS calibration problem
have a basic rank defect. In this chapter we analyze the different ways of removing this rank
defect, and define an efficient strategy for obtaining the clock-phase biases in a standard form.
The link with other related approaches, such as those proposed by Blewitt (1989); de Jonge
(1998); Ge et al. (2005); Loyer et al. (2012), is established in that framework.

When modelling the multi-frequency (code and phase) observations of GNSS networks,
the system to be considered include phase structures of the form∣∣∣∣∣ [ϕrκ(i)− ϕsκ(j)] +N(i, j) = bκ(i, j)

for κ = 1, . . . , k
(IV.1)

Here, κ is the epoch index; k is the index of the current epoch; ϕrκ(i) and ϕsκ(j) are clock (or
pseudo-clock) phase biases. (The notion of pseudo-clock phase bias is explicitly defined in
Lannes & Teunissen (2011).) These terms are also called ‘uncalibrated phase delays’ (UPD).
They are expressed in cycles, and depend on the frequency of the transmitted carrier wave;
subscripts r and s stand for receiver and satellite,1 respectively; i is the index of the receiver,
and j that of the satellite; N(i, j) is the integer ambiguity of the corresponding carrier-phase
measurement. The terms bκ(i, j) include the corresponding phase data and all the other con-
tributions of such equations; see, e.g., Lannes & Teunissen (2011); Loyer et al. (2012). The
set of receiver-satellite pairs (i, j) involved in Eq. (IV.1) forms the observational graph Hκ of
the GNSS scenario of epoch κ. This graph is assumed to be connected; see G. Note that the
wide-lane (WL) equation of the ionosphere-free mode is typically of form (IV.1); N is then a
wide-lane integer ambiguity; see, e.g., Eq. (4) of Loyer et al. (2012).

1In this chapter, satellite should be understood as satellite transmitter.
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As explicitly clarified further on, whenever phase structures such as (IV.1) appear in
GNSS-network problems, a related rank defect is to be removed. In this chapter, we restrict
ourselves to the case where the rank defects induced by the phase structures of type (IV.1)
can be dealt with in an independent manner. This does not mean of course that those basic
rank defects are the only ones to be handled in practice; see, in particular, Teunissen & Odijk
(2003). A standard approach for tackling the rank defects is known as the S-system approach;
see, e.g., Baarda (1973); Teunissen (1984); de Jonge (1998). Examples of such S-system so-
lutions are to be found in de Jonge (1998); Teunissen et al. (2010); Zhang et al. (2011); Odijk
et al. (2012).

In the geodetic and GNSS literature, there exist several ways of removing this basic rank
defect. The most general approach is based on the S-system theory already mentioned. Other
strategies derive from the pioneering contribution of Blewitt (1989): the relationship between
the undifferenced (UD) ambiguities and the double differenced (DD) ambiguities is com-

pleted so that the operator D thus defined is invertible. Let us also mention the approach of
Collins et al. (2010) which is based on the concept of ‘ambiguity datum fixing.’ The impor-
tant developments of those approaches, both at a conceptual and technical level, were often
conducted with different physical objectives. They have thus progressively and insidiously
masked the fundamental links between the related methods.

Briefly, the Blewitt procedure can be divided in three steps. In the first step, with regard
to Eq. (IV.1) for example, the UD data are processed by considering the term on the left-
hand side of that equation as a ‘constant functional variable;’ a float estimate of this ‘biased
ambiguity function’ is thus obtained. In the second step, the values of the corresponding
DD ambiguity function are computed, and then fixed. In the third step, the clock-phase
biases ϕκ are estimated by using as data the UD ambiguities provided by the action of D−1

on those fixed ambiguities. The theoretical analysis developed in the present paper provides
in particular an answer to the following question that has never been answered yet: what
is the link between the UD ambiguities thus fixed and the fixed ‘closure-delay’ or ‘closure-
difference’ (CD) ambiguities of the UD approach of Lannes & Teunissen (2011) ? A similar
question arises for the UD approach of Collins et al. (2010); an answer is also provided.

In this general GNSS context, the main objective of the paper is to propose a unified
theoretical framework in which the various contributions in the related fields of research can
be understood and compared more easily. This can lead to some improvement of the imple-
mentation of the related methods. For example, we show that removing the rank defect via
the D-matrix of Blewitt (1989) can be analyzed in a theoretical framework tightly linked to
the S-system approach of Teunissen (1984). We thus show that the intermediate differencing
stage of the Blewitt approach can be avoided, without any counterpart, via the approach of
Teunissen (1984) as it is formulated for example in Lannes & Teunissen (2011): the closure
ambiguities to be fixed then appear, from the outset, in the very formulation of the UD prob-
lem to be solved; compare with what is done in Sect. 4 of Ge et al. (2005) for instance.

The theoretical guidelines of this chapter are presented in Sect. IV.2. We first identify the
rank defect in question. The minimum-constrained problem to be solved in the least-squares
(LS) sense depends on some integer vector which can be fixed in an arbitrary manner. To
compare the methods providing LS estimates of the clock-phase biases, we then introduce
a particular solution playing the role of reference solution. For this solution, when a clock-
phase bias is estimated for the first time, its fractional part is confined to the one-cycle width
interval centred on zero; the integer-ambiguity function is modified accordingly. Section IV.3
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is devoted to the algebraic framework of our analysis. This framework mainly derives from
the original contributions of Lannes & Gratton (2009), and Lannes & Teunissen (2011). As
a similar problem arises in phase-closure imaging in astronomy, we also took profit of the
analysis presented in Sect. II. An efficient way for finding the reference solution is to adopt
an approach based on the notion of closure ambiguity. The principle of the corresponding
‘closure-ambiguity approach’ (CAA) is defined in that framework (Sect. IV.4). The bulk of
our contribution follows the main theoretical guidelines presented in Sect. IV.2. In a related
option which is presented in Sect. IV.5, the CAA principle is directly introduced via the
S-system approach of Baarda (1973); Teunissen (1984); de Jonge (1998). The corresponding
development is performed in the S-system framework defined in H. The study developed in
Sects. 3.3, 3.4 and 3.15 of de Jonge (1998) is thus extended to the cases where the union of
the graphs Hκ is taken into account progressively. Section IV.6 is devoted to the QR imple-
mentation of the CAA principle; related information is to be found in I. In many methods,
the rank defect in question is removed in an implicit manner or intuitively. In Sect. IV.7, on
the grounds of some results established in Sects. IV.3.5 and IV.3.6, we identify the related
constraints explicitly, and thus establish the link between the solutions provided by those
methods and the CAA-(S-system) solutions; see Fig. IV.6 in particular. Our analysis is illus-
trated with some simple and generic examples. It could have applications in data processing
of most GNSS networks, and particularly global networks using GPS, GLONASS, Galileo,
IRNSS or BeiDou/Compass satellites. The new results provided by this study are commented
upon in Sect. V; some conclusions are also presented with possible applications to software
packages used for processing GNSS networks.

IV.2 Theoretical guidelines
The problem is formulated in Sect. IV.2.1; the related rank defect is identified in Sect. IV.2.2.
This rank defect can be removed by imposing some constraints without affecting the GNSS
results such as the estimates of the station-position parameters, for example. The particular
LS solutions thus obtained are defined in Sect. IV.2.3. We then define the family of those
solutions (Sect. IV.2.4). To compare the particular solutions given by the various GNSS
methods providing LS estimates of clock-phase biases, we then introduce a particular solution
playing the role of reference solution (Sect. IV.2.5).

IV.2.1 Formulation of the problem
In our formulation of the problem, the ambiguity function N ‘includes’ all the integer am-
biguities N(i, j) involved in the phase measurements until the current epoch. This function
therefore takes its values on the edges of

Gk
def
=

k⋃
κ=1

Hκ (IV.2)

where Hκ is the observational graph of epoch κ. In what follows,Hκ denotes the ‘character-
istic function’ of Hk with regard to Gk:

for all (i, j) ∈ Gk, Hk(i, j)
def
=

∣∣∣∣∣ 1 if (i, j) ∈Hk;

0 otherwise.
(IV.3)
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The number of edges (ri, sj) of Hκ is denoted by neκ; neκ is less than or equal to the number
of edges of Gk.

To illustrate our analysis, we consider a ‘simulated network’ including four receivers and
five to eight satellites; see Fig. IV.1. The scenarios of the first three epochs are defined by the
characteristic functionsH1,H2 andH3 displayed in that figure. While looking simple at first
sight, this example is rather elaborate. Indeed, it includes the case of the appearance of new
satellites in the field of view of the network (s6 and s7 at epoch 2, s8 at epoch 3), and also the
case of the disappearance of one satellite (s3 at epoch 3).

Remark.2.5: When a satellite comes back in the field of view of the network, it is dealt
with as a new satellite. In the case of global networks, if need be, the successive passes are
thus dealt with in a simple and efficient manner ·

At epoch κ ≤ k, only some components of N may be active; see Fig. IV.1. To formalize
this point, we introduce the operatorRe

κ that restricts N (which is defined on the edges of Gk)
to the edges of Hκ:

for all (i, j) ∈Hκ, (Re
κN)(i, j)

def
=N(i, j) (IV.4)

Equation (IV.1) can then be written in the form∣∣∣∣∣Bκϕκ +Re
κN = bκ

for κ = 1, . . . , k
(IV.5)

where Bκ is the following bias operator:

(Bκϕκ)(i, j)
def
= ϕrκ(i)− ϕsκ(j) (for all (i, j) ∈Hκ) (IV.6)

In what follows, we will assume that Receiver 1 defines the reference for the receiver and
satellite biases:

ϕrκ(1) = 0 (κ = 1, . . . , k) (IV.7)

This is commonly used by the GNSS investigators for removing the rank defect of operators
such as Bκ. The number nbκ of phase biases of epoch κ to be estimated is therefore equal to
nvκ − 1 where nvκ is the number of vertices of Hκ:

nbκ = nvκ − 1 (nvκ = nrκ + nsκ) (IV.8)

With regard to its functional variables ϕ1, . . . , ϕk and N , Eq. (IV.5) proves to have a basic
rank defect. We now specify this point.

IV.2.2 Identification of the rank defect
For clarity, let us set

G
def
= Gk (IV.9)

At epoch k, the number of ambiguitiesN(i, j) involved in the problem is equal to the number
of edges of G (for example twenty in Fig. IV.1 for k = 3). Again, for clarity, this number is
simply denoted by ne. We then set

nst = nv − 1 (nv = nr + ns) (IV.10)
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where nv is the number of vertices of G ; nr and ns are the number of receivers and satellites
(respectively) involved in that graph (four and eight in Fig. IV.1 for k = 3). As specified
in Sect. G.2, nst is the number of edges of any spanning tree Gst of G . The total number of
phase biases to be estimated at epoch k,

∑k
κ=1 nbκ, is generally much larger than nst; see

Eqs. (IV.8) and (IV.10). The part played by the vertices of G is not obvious. We now show
that nst defines the ‘size’ of the rank defect in question.

Let us denote by B the operator from R
nst into Rne defined by the relation

(Bφ)(i, j)
def
= φr(i)− φs(j) (for all (i, j) ∈ G ) (IV.11)

Denoting by µ any integer-valued function taking its values on the vertices of G other than
the reference receiver, we have

Re
κBµ = BκRv

κµ (IV.12)

where Rv
κµ is the restriction of µ to the vertices of Hκ (other than the reference receiver).

Note that µ can be regarded as a vector of Znst . It then follows from Eq. (IV.5) that for any µ
in Znst ,∣∣∣∣∣Bκ(ϕκ +Rv

κµ) +Re
κ(N −Bµ) = bκ

for κ = 1, . . . , k
(IV.13)

Via the operators Bκ, Rv
κ and Re

κ, any variation of the ‘vertex-ambiguity’ vector µ can thus
be compensated by a variation of the ‘edge-ambiguity’ function N . As a result, with regard
to the bias and ambiguity variables, Eq. (IV.5) is not of full rank. The dimension of the rank
defect is equal to that of vector µ, i.e., nst.

IV.2.3 Particular LS solutions
In GNSS, for the reasons specified in 2.6 (at the end of this section), each clock-phase bias is
to be estimated up to a constant integer. As a result, the choice of µ in Znst does not affect
the significant part of the values of the bias functions

wκ
def
= ϕκ +Rv

κµ (κ = 1, . . . , k) (IV.14)

to be estimated; see Eq. (IV.13). The ambiguity function to be retrieved

v
def
=N −Bµ (IV.15)

is of course affected by this choice, but this has no actual GNSS impact. As a result, the
GNSS methods providing estimates of the clock-phase biases must remove the rank defect of
Eq. (IV.5) by choosing µ in Znst somehow, implicitly or explicitly.

In practice, as clarified in the remainder of the paper, removing this rank defect amounts to
imposing nst constraints on some values of the biases or ambiguities to be retrieved. In other
words µ is defined via these constraints. The minimum-constrained problem to be solved in
the LS sense is therefore of the form∣∣∣∣∣Bκwκ +Re

κv = bκ (κ = 1, . . . , k)

subject to nst constraints on wκ or v
(IV.16)
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With regard to a particular set of such constraints, where v is an integer-valued function from
Eq. (IV.15), the LS solution of Eq. (IV.16),

(w̌κ, v̌) (κ = 1, . . . , k) (IV.17)

is then unique. For example, the solution provided by the CAA method defined in Sect. IV.4
is the particular LS solution obtained by imposing the a priori constraint v = 0 on a spanning
tree of G (chosen arbitrarily). The particular LS solution introduced in Sect. IV.2.5 is defined
by imposing, a posteriori, nst constraints on some bias values. In our analysis, this particular
solution plays the role of reference solution; it is denoted by (w̄κ, v̄).

Remark.2.6: The satellite components of the biases thus obtained (for example those of
the reference solution) can be broadcasted to the network users for PPP applications. The
fact that w̌sκ(j) is an LS estimate of ϕsκ(j) up to some unknown constant integer does not
raise any difficulty. One is then simply led to redefine the integer ambiguities involved in the
PPP problem to be solved; see, e.g., Sect. 9 in Lannes & Teunissen (2011) ·

IV.2.4 Equivalent LS solutions
Given some particular LS solution such as (IV.17), we have

Bκw̌κ +Re
κv̌

LS
= bκ

Like for Eq. (IV.13), it then follows from Eq. (IV.12) that

Bκ(w̌κ +Rv
κµ) +Re

κ(v̌ −Bµ)
LS
= bκ

The LS solutions of Eq. (IV.5) are therefore of the form

(w̌(µ)
κ , v̌(µ)) (κ = 1, . . . , k) (IV.18)

with

w̌(µ)
κ

def
= w̌κ +Rv

κµ, v̌(µ) def
= v̌ −Bµ (IV.19)

where µ is any vector of Znst .
The methods providing LS estimates of the phase biases generally differ by the choice of

the imposed constraints. To compare their results, it is convenient to represent the equivalent
solutions (IV.18)-(IV.19) by a reference particular solution. This is done in Sect. IV.2.5.

Remark.2.7: For any fixed µ in Znst , the temporal variations of the estimated phase biases
make sense. For example, if satellite sj remains in the field of view of the network from
epoch 1 to κ, we have

(Rv
κµ)s(j) = (Rv

1µ)s(j) = µs(j)

hence from Eqs. (IV.19) and (IV.14) ,

w̌(µ)
sκ (j)− w̌(µ)

s1 (j) = w̌sκ(j)− w̌s1(j) ' ϕsκ(j)− ϕs1(j)

A similar result of course holds for the receiver clock-phase biases ·
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IV.2.5 Reference solution
We here concentrate on the family of equivalent LS solutions (IV.18)-(IV.19) generated by
a particular solution (w̌κ, v̌) such as (IV.17). In our analysis, the reference solution of this
family is the particular solution

(w̄κ, v̄) (κ = 1, . . . , k) (IV.20)

defined as follows: w̄κ and v̄ are of the form (IV.19)

w̄κ
def
= w̌κ +Rv

κµ̌, v̄
def
= v̌ −Bµ̌ (IV.21)

in which µ̌ is defined by imposing specific constraints on nst bias values; note that here, these
constraints are imposed a posteriori on the solution (w̌κ, v̌) found by any method. We first
require the phase bias w̄ to be small at epoch 1. More precisely, we impose the condition
|w̄1| ≤ 1/2, i.e. explicitly,∣∣∣∣∣ |w̄r1(i)| ≤ 1/2 for i = 2, . . . , nr1

|w̄s1(j)| ≤ 1/2 for j = 1, . . . , ns1

(IV.22)

The following values of µ̌ are defined accordingly:∣∣∣∣∣ µ̌r1(i) := − bw̌r1(i)e for i = 2, . . . , nr1

µ̌s1(j) := − bw̌s1(j)e for j = 1, . . . , ns1

(IV.23)

Here, bxe denotes the integer closest to x. Likewise, at each epoch κwhen some satellite(s) sj
appear(s) in the field of view of the network (see Fig. IV.1), we then impose the condition(s)

|w̄sκ(j)| ≤ 1/2 (IV.24)

by setting

µ̌sκ(j) := − bw̌sκ(j)e (IV.25)

(In the case where new receivers would be activated, similar conditions would be imposed.)
At epoch k, we have thus completely defined some vector µ̌ of Znst; v̄ is then obtained via
the relation v̄ := v̌ −Bµ̌; see Eq. (IV.21).

Remark.2.8: When some LS solution (w̌1, . . . , w̌k, v̌) has been found, for instance that
provided by the CAA method defined in Sects. IV.3 to IV.6, the reference solution of its
equivalent solutions is obtained as described in this section. Clearly, this can also be done
for the LS solution of any method providing estimates of the phase biases; see, e.g., Blewitt
(1989); Ge et al. (2005); Laurichesse & Mercier (2007); Collins et al. (2010); Loyer et al.
(2012). To compare and validate the results provided by all these methods (and many others),
one may inspect the ambiguity functions of their reference solutions. These functions should
be identical on all the edges of G for all methods; otherwise, this would be an indication that
the methods are in disagreement, and that some of those results are wrong. The comparison
of the reference solutions is therefore a good diagnosis for testing the compatibility of these
methods ·

Remark.2.9: From a technical point of view, one might try to solve Eq. (IV.16) in the
LS sense by imposing the nonlinear bias constraints (IV.22) and (IV.24) on w1 and some wκ,
from the outset. It is not easy at all to solve the problem that way. Moreover, the number of
edge ambiguities to be fixed would then be equal to ne, whereas the number of ambiguities
to be fixed in the CAA approach (for example) is equal to ne − nst; see the next section ·
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IV.3 Algebraic framework

The preliminary analysis developed in Sect. IV.2 shows that Znst , Zne , graph G and opera-
tor B play a key role in the formulation of the problem and the definition of its solutions;
see, in particular, Eqs. (IV.13) and (IV.18)-(IV.19). The aim of this section is to define the
corresponding algebraic framework.

We first define related spaces of functions (Sect. IV.3.1). The key property on which
our analysis is based is presented in Sect. IV.3.2. The related notions of closure differ-
ence, CD ambiguity (also called closure ambiguity), and closure matrix are specified in
Sects. IV.3.3 and IV.3.4. Sections IV.3.5 and IV.3.6 are devoted to some generalized in-
verses of the UD-CD and UD-DD relationships. The analysis concerning the operator D
introduced in the appendix B of Blewitt (1989) is thus completed. We now draw freely from
the elementary notions introduced in G.

IV.3.1 Reference spaces

Given some graph G ≡ G (V ,E ), with vertex set V and edge set E (see Sect. G.1), we
introduce some functionals spaces which play a key role in the algebraic analysis of the
problem. In what follows, the GNSS grid associated with G is denoted by G; see Fig. G.1.

Vertex-bias space

Let Vb be the space of real-valued functions

φ
def
= (φr, φs) (IV.26)

taking their values on the vertices of G with φr(1) = 0. This space, which is referred to as the
vertex-bias space, is associated with the definition of (virtual) phase biases φ on the vertices
of G (other than the reference receiver). From Eq. (IV.10),

Vb ∼= R
nst (IV.27)

Here, the symbol ∼= means ‘isomorphic to.’ Note that Znst is the ‘integer lattice’ of Vb:
Vb(Z) ∼= Z

nst . The integer vector µ def
= (µr, µs) is a point of this lattice.

Edge-delay space

A real-valued function ϑ taking its values on G, and thereby on E , can be regarded as a vector
of

E ∼= R
ne (IV.28)

The values of ϑ on G are then regarded as the components of ϑ in the standard basis of E;
Z
ne is the ‘integer lattice’ of E: E(Z) ∼= Z

ne . The integer-ambiguity function N is a point of
this lattice.
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Spanning-tree delay space. Closure-delay space

Given some spanning tree Gst of G , grid G can be decomposed into two subgrids: Gst and Gc;
see Sect. G.2. These grids include nst and nc points, respectively (see Fig. G.2):

nc = ne − nst (IV.29)

The functions of E that vanish on Gc form a subspace of E denoted by Est: the spanning-tree
delay space. Likewise, the functions ofE that vanish on Gst form a subspace ofE denoted by
Ec: the closure-delay space; this terminology is justified in Sect. IV.3.3. The corresponding
integer lattices are denoted by Est(Z) and Ec(Z), respectively. As illustrated in Fig. IV.2, E
is the orthogonal sum of Est and Ec, and we thus have

dimEst = nst, dimEc = nc (IV.30)

The projections of ϑ on Est and Ec are respectively denoted by Qstϑ and Qcϑ.

Edge-bias space

By definition, the bias operator is the operator from Vb into E defined by Eq. (IV.11). The
range of B, which is denoted by Eb (see Fig. IV.2), can be referred to as the edge-bias space.
Its functions are of the form φr(i)− φs(j).

The operator from Vb into Est induced by B is denoted by Bst. Likewise, the operator
from Vb into Ec induced by B is denoted by Bc.

The matrix of B is generally expressed in the standard bases of Vb and E. For example,
let us sort the edges of the graph shown in Fig. G.1 in the order obtained via the application
of the Kruskal algorithm; see Sect. G.2. The points of G are then ordered as follows:

(1, 1), (1, 3), (1, 4), (2, 1), (2, 2), (3, 2), (2, 4), (3, 3), (3, 4)

We then have

[B][φ] =



0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 −1 0 0 0
1 0 0 −1 0 0
0 1 0 −1 0 0
1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1





φr(2)

φr(3)

φs(1)

φs(2)

φs(3)

φs(4)



The columns of [B] then define the standard basis of Eb. Clearly,

[Bst] =


0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 −1 0 0 0
1 0 0 −1 0 0
0 1 0 −1 0 0

 (IV.31)
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and

[Bc] =

 1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1

 (IV.32)

The condition Bstφ = 0, i.e., Bφ = 0 on the edges of Gst, implies that φ is constant on V ;
as φr(1) = 0, this constant is zero. The null space of Bst is therefore reduced to {0}. As
Bφ = 0 implies Bstφ = 0, the null space of B is also reduced to {0}. We thus have

kerB = kerBst = {0} (IV.33)

As a result, B is of full rank, hence from Eq. (IV.27),

dimEb = nst (IV.34)

The edge-bias space Eb and its ambiguity lattice Eb(Z) are isomorphic to the (vertex-bias
space) Vb and (its integer lattice) Vb(Z), respectively; see Sect. IV.3.1.

IV.3.2 Key property
As kerBst = {0} (Eq. (IV.33)), and dimEst = dimVb (see Eqs. (IV.30) and (IV.27)),
Bst maps Vb onto Est; Bst is therefore invertible. As specified in this section, our analy-
sis derives from this property.

Let us concentrate on the vertex-bias function

φ
(ϑ)
st

def
=B−1

st Qstϑ (φ(ϑ) ≡ φ
(ϑ)
st ) (IV.35)

When no confusion may arise, subscript st is omitted. According to its definition (which is
illustrated in Fig. IV.2),Qstϑ is the function ofEst whose values are those of ϑ on subgrid Gst.

The values of φ(ϑ) can be obtained from those of Qstϑ in a very simple manner; the corre-
sponding recursive process is described in Sect. 5 of Lannes & Teunissen (2011). The column
vectors of [Bst]

−1 can thus be easily obtained. In fact, [Bst] is a particular unimodular matrix2

whose inverse can be obtained via another integer-programming technique; see Sect. A1.4 in
Lannes & Teunissen (2011). For example, the inverse of matrix (IV.31) is

[Bst]
−1 =


−1 0 0 1 0 0
−1 0 0 1 −1 1
−1 0 0 0 0 0
−1 0 0 1 −1 0

0 −1 0 0 0 0
0 0 −1 0 0 0

 (IV.36)

Let us now consider the following function of Eb:

ϑb
def
=Bφ(ϑ) (IV.37)

2By definition, a unimodular matrix is a square integer matrix with determinant ±1.
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According to Eq. (IV.35), the values of ϑb and ϑ coincide on Gst. The function ϑc defined by
the relation

ϑc
def
= ϑ− ϑb (IV.38)

therefore lies in Ec. We thus have the following property (see Fig. IV.2):
Property P1. Any edge function ϑ of E can be decomposed in the form ϑ = ϑb + ϑc

with ϑb
def
=Bφ(ϑ) and ϑc in Ec. For a given spanning tree, this decomposition is unique. As a

corollary, E is the oblique direct sum of Eb and Ec: E = Eb + Ec with Eb ∩ Ec = {0}.
As illustrated in Fig. IV.2, ϑc is the oblique projection of ϑ on Ec along Eb. The corre-

sponding operator is the ‘closure operator’ C:

ϑc = Cϑ (IV.39)

Its null space (i.e., its kernel) is the range of B:

kerC = Eb (IV.40)

with dimEb = nst (Eq. (IV.34)).
According to Property P1, any function N of the ‘ambiguity lattice’ E(Z) ∼= Z

ne can be
decomposed in the form

N = Nb +Nc (IV.41)

with Nb
def
=Bµ

(N)
st where (from Eq. (IV.35))

µ
(N)
st

def
=B−1

st QstN (µ(N) ≡ µ
(N)
st ) (IV.42)

As Bst is unimodular, µ(N) is an integer-valued function; Nb
def
=Bµ(N) and Nc

def
=CN are

therefore points of the integer lattices Eb(Z) ∼= Z
nst and Ec(Z) ∼= Z

nc , respectively. As a re-
sult, the integer latticeE(Z) is the oblique direct sum of the integer latticesEb(Z) andEc(Z):

E(Z) = Eb(Z) + Ec(Z) Eb(Z) ∩ Ec(Z) = {0} (IV.43)

IV.3.3 Closure delays (closure differences) and closure ambiguities
According to Eqs. (IV.38) and (IV.37), the quantities ϑc(i`, j`), for ` = 1, . . . , nc, can be
computed via the formula

ϑc(i`, j`) = ϑ(i`, j`)−
[
φ(ϑ)(i`)− φ(ϑ)(j`)

]
(IV.44)

where φ(ϑ) is determined via Eq. (IV.35). As clarified in this section, these quantities can
be referred to as the ‘closure delays’ or the ‘closure differences’ of ϑ; the Nc(i`, j`)’s are
therefore ‘CD ambiguities,’ also simply called ‘closure ambiguities.’

In the example of Fig. G.2, let us consider the second loop, i.e., the loop associated with
the closure point (i2, j2) = (3, 3). In G, the successive points of this loop are the following:

75



CHAPTER IV. CALIBRATION OF THE CLOCK-PHASE BIASES OF GNSS
NETWORKS

(3, 3), (3, 2), (2, 2), (2, 1), (1, 1), and (1, 3). Since ϑb(i, j) = φ
(ϑ)
r (i)− φ(ϑ)

r (j), we then have,
in a telescoping manner,

ϑb(3, 3)− ϑb(3, 2) + ϑb(2, 2)− ϑb(2, 1)

+ ϑb(1, 1)− ϑb(1, 3) = 0.

Furthermore, as ϑc vanishes on Gst,

ϑc(3, 3)− ϑc(3, 2) + ϑc(2, 2)− ϑc(2, 1)

+ ϑc(1, 1)− ϑc(1, 3) = ϑc(3, 3)

Since ϑ = ϑb + ϑc from Property P1, it follows that

ϑ(3, 3)− ϑ(3, 2) + ϑ(2, 2)− ϑ(2, 1)

+ ϑ(1, 1)− ϑ(1, 3) = ϑc(3, 3)

This explicitly shows that ϑc(i2, j2) can be regarded as the closure difference of ϑ on the
second loop. The generalization is straightforward. In the example of Fig. G.2, we thus have∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϑc(2, 4) = ϑ(2, 4)− ϑ(2, 1) + ϑ(1, 1)− ϑ(1, 4)

ϑc(3, 3) = ϑ(3, 3)− ϑ(3, 2) + ϑ(2, 2)− ϑ(2, 1)

+ ϑ(1, 1)− ϑ(1, 3)

ϑc(3, 4) = ϑ(3, 4)− ϑ(3, 2) + ϑ(2, 2)− ϑ(2, 1)

+ ϑ(1, 1)− ϑ(1, 4)

(IV.45)

More generally, owing to the telescoping structure of their construction, the closure dif-
ferences ϑc(i`, j`) are associated with loops whose order is even, and greater than or equal
to 4. In this limit case, the notion of closure difference (CD) reduces to that of double dif-
ference (DD). According to Eq. (IV.44), the ϑc(i`, j`)’s can however be computed without
knowing the edges of their loop. How to identify these edges, if need be, is specified in
Sect. IV.3.4. Subject to some condition, these CD’s can be expressed as linear combinations
of DD’s. The related matter is analyzed in Sect. 10 of Lannes & Teunissen (2011).

IV.3.4 Closure matrix
According to the definitions ofBst andBc (introduced in Sect. IV.3.1), the vector ϑb

def
=Bφ(ϑ)

can be orthogonally decomposed in the form

ϑb = Bstφ
(ϑ) +Bcφ

(ϑ) = Qstϑ+Bcφ
(ϑ)

Likewise,

ϑ = Qstϑ+Qcϑ

where Qcϑ is the orthogonal projection of ϑ on Ec; see Fig. IV.2. It then follows from
Eq. (IV.35) that

ϑc = ϑ− ϑb = Qcϑ−Bcφ
(ϑ) = Qcϑ−BcB

−1
st Qstϑ
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Denoting by [C] the matrix of C expressed in the standard bases of E and Ec, we thus have,
from Eq. (IV.39),

[C][ϑ] = −[Bc][Bst]
−1[Qstϑ] + [Qcϑ].

The column vectors of [C] corresponding to the spanning-tree edges (on which Qcϑ van-
ishes) are therefore those of −[Bc][Bst]

−1. It is also clear that the column vectors of [C]
corresponding to the closure edges (on which Qstϑ vanishes) are those of the identity matrix
on Ec. Consequently, with regard to the orthogonal direct sum Est ⊕ Ec,

[C] =
[ −[Bc][Bst]

−1 [Ic,c]
]

(IV.46)

In the example of Fig. G.2, we thus have, from Eqs. (IV.31), (IV.36), and (IV.32), with the
same edge ordering,

[Bc][Bst]
−1 =

 1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1

×

−1 0 0 1 0 0
−1 0 0 1 −1 1
−1 0 0 0 0 0
−1 0 0 1 −1 0

0 −1 0 0 0 0
0 0 −1 0 0 0


As a result,

[C] =

 1 0 −1 −1 0 0 1 0 0
1 −1 0 −1 1 −1 0 1 0
1 0 −1 −1 1 −1 0 0 1


Applied to [ϑ], this matrix of course yields Eq. (IV.45). More generally, the edges of a ‘clo-
sure loop’ are identified via the nonzero entries of the corresponding row of [C]. In fact,
this is the most efficient way of identifying the loops in question. Note however that in the
CAA method presented through Sects. IV.4 to IV.6, the action of this matrix is never explicitly
performed.

IV.3.5 On some generalized inverse of the UD-CD relationship
The closure operator C, which is an oblique projection, is not of full rank. The simplest way
of removing its rank defect is to introduce the operator C� from E into Est × Ec

C�ϑ
def
= (Qstϑ, Cϑ) (IV.47)

According to Property P1, C� is invertible; this can be immediately understood from Fig. IV.2
for example; C−1

� can then be regarded as some generalized inverse of C. We now specify
this point, explicitly, in matrix terms. The corresponding development is aimed at analysing
the approaches of Blewitt (1989) and Collins et al. (2010) in our algebraic framework; see
Sects. IV.3.6 and IV.7 further on.

In the standard bases of E = Est ⊕ Ec and Est × Ec, the matrix of C� can be written in
the form (see Eq. (IV.46))

[C�]
def
=

[
[Qst]

[C]

]
=

[
[Ist,st] [0st,c]

−[Bc][Bst]
−1 [Ic,c]

]
(IV.48)

77



CHAPTER IV. CALIBRATION OF THE CLOCK-PHASE BIASES OF GNSS
NETWORKS

It is readily verified that

[C�]
−1 =

[
[Ist [0st,c]

[Bc][Bst]
−1 [Ic]

]
(IV.49)

Given some point N̆st arbitrarily fixed in Est(Z), let us now consider the ambiguity point N̆
of E(Z) defined by the relation

[N̆ ]
def
= [C�]

−1

[
[N̆st]

[Nc]

]
(Nc

def
=CN) (IV.50)

In the following property,

E
(N)
b (Z)

def
=N + Eb(Z) (IV.51)

is the ‘affine lattice’ passing through N and parallel to the integer lattice Eb(Z) of the edge-
bias space Eb; see Sect. IV.3.1 and Fig. IV.3.

Property P2. The ambiguity point N̆ is the point of the affine lattice E(N)
b (Z) whose

projection on Est is equal to N̆st. More precisely, N̆ = Nc + Bµ(N̆st). As a corollary, in the
special case where N̆st is set equal to 0, N̆ is nothing else than Nc.

Proof. From Eqs. (IV.50) and (IV.49), we have

[N̆ ] =

[
[N̆st]

[Bc][Bst]
−1[N̆st] + [Nc]

]

hence, from Eq. (IV.46),

[N̆ ] =

[
[N̆st]

−[CN̆st] + [Nc]

]

Clearly, QstN̆ = N̆st. As from Property P1,

N̆st = Bµ(N̆st) + CN̆st

where µ(N̆st) = B−1
st N̆st from Eq. (IV.42), we have[

[N̆st]

−[CN̆st]

]
= [Bµ(N̆st)]

As a result,

N̆ = Bµ(N̆st) +Nc

When N̆st := 0, N̆ therefore reduces to Nc.
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IV.3.6 On the Blewitt generalized inverse of the UD-DD relationship
We now apply the results of the previous section to the UD-DD relationship, and thus make
the link with the approach of Blewitt (1989).

According to Eq. (68) of Lannes & Teunissen (2011), the maximum number of indepen-
dent DD’s is less than or equal to nc: nm

d ≤ nc. For clarity, let us now set nd := nm
d . In the

important special case where

nc = nd (IV.52)

the information contained in the DD data is equivalent to that contained in the closure data.
Let us then denote by Dd,e the operator providing a maximum set of nd DD’s. By definition,
Dd,e is an operator from E into Rnd , i.e. then, Rnc . By sorting the edges of G as specified in
Sect. IV.3.1, the matrix of Dd,e has then the following block structure:

[Dd,e] =
[

[Dd,st] [Dd,c]
]

(IV.53)

Here, matrix [Dd,e] is expressed in the standard bases ofE = Est ⊕ Ec and Rnd . The columns
of [Dd,st] and [Dd,c] therefore correspond to the edges of Gst and to the closure edges, respec-
tively. Provided that Condition (IV.52) is satisfied, [Dd,c] is invertible; moreover, the entries
of [Dd,c]

−1 are then equal to ±1 or 0; see Lannes & Teunissen (2011).
Like for C (see Eq. (IV.48)), we then introduce the operator

[D�]
def
=

[
[Qst]

[Dd,e]

]
(IV.54)

As N = Nb + CN from Property P1, and [Dd,e][Nb] = 0, we have, from Eq. (IV.53),

[Nd]
def
= [Dd,e][N ] = [Dd,c][CN ] (IV.55)

It then follows from Eq. (IV.48) that

[D�] =

[
[Ist] [0st,c]

[0c,st] [Dd,c]

]
[C�] (IV.56)

We then have

[D�]
−1

[
[N̆st]

[Nd]

]
= [C�]

−1

[
[Ist] [0st,c]

[0c,st] [Dd,c]
−1

][
[N̆st]

[Nd]

]

= [C�]
−1

[
[N̆st]

[Dd,c]
−1[Nd]

]

where [Dd,c]
−1[Nd] = [CN ] from Eq. (IV.55). It then follows from Eq. (IV.50) that

[D�]
−1

[
[N̆st]

[Nd]

]
= [N̆ ] (IV.57)
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Given some DD ambiguity set (IV.55), and some point N̆st arbitrarily fixed in Est(Z), the
UD ambiguity thus obtained is equal to Nc +Bµ(N̆st); see Property P2 and Fig. IV.3. Via the
action of [D�]

−1, we thus retrieve the closure-ambiguity point Nc up to the vector Bµ(N̆st)

of Eb(Z).
In fact, [D�] is a version of the D-matrix of Blewitt (1989). In the appendix B of that

paper, the spanning tree Gst is implicitly defined by arbitrarily selecting a set of ‘n −m un-
differenced biases which pass the Gram-Schmidt test’ of that appendix, i.e., in our algebraic
framework, by arbitrarily selecting a set of ‘nst edges whose characteristic functions pass the
Gram-Schmidt test.’ Property P2 therefore completes the analysis of the UD-DD relation-
ship of Blewitt (1989) by specifying how the ambiguity solution is determined by the choice
of N̆st.

IV.4 CAA principle

As already emphasized, with regard to the variables introduced in Eqs. (IV.14) and (IV.15),
the choice of µ in Znst is defined via appropriate constraints. As a matter of fact, the most
natural way of removing the rank defect is to select µ via a priori constraints on the ambiguity
variable v. Indeed, these constraints can then be integrated in the very definition of v. The
CAA principle presented in this section results from the following preliminary analysis. (A
possible introduction of this principle via the S-system approach is presented in Sect. IV.5; it
should however be noted that the other classes of possible choices for µ do not then appear.)

Let Gst be a spanning tree of G chosen arbitrarily; see Sect. G.2 and Fig. IV.1. In the
algebraic framework defined in Sect. IV.3, the ambiguity function N can be decomposed in
the form N = Nb +Nc where

Nb
def
=Bµ(N), Nc = N −Bµ(N) (IV.58)

in which µ(N) def
=B−1

st QstN ; see Eq. (IV.42). In these equations, Nb and Nc have an im-
plicit subscript: st for Gst. Note that µ(N) is defined from the values of N on the edges
of Gst in a unique manner. (As N is unknown, this definition is virtual.) By construction,
µ(N) lies in Vb(Z) ∼= Z

nst , and Nc vanishes on the edges of Gst. As specified in Sect. IV.3.3,
Nc

def
=CN is the closure ambiguity of N with regard to Gst.
The spanning tree Gst is built progressively from epoch 1 to k. More precisely, when

new satellites are to be taken into account, it is completed as specified in Sect. IV.6.3 (see
Figs. IV.1 and IV.5); nst is thus equal to n1

¯
plus the number of satellites having appeared in

the field of view of the network from epoch 2 until k included. The number of values of Nc

that are not equal to zero by definition is equal to nc = ne − nst (Eq. (IV.29)). For example,
in Fig. IV.1, for k = 3, we have ne = 20, nst = n1

¯
+ 2 + 1 with n1

¯
= 8, hence nc = 9.

With regard to Eqs. (IV.14) to (IV.16), the CAA solution corresponds to the following
choice of µ:

µ := µ(N) (IV.59)

From Eq. (IV.58), we then have v = N − Bµ = Nc. This solution thus corresponds to the
case where the ambiguities to be fixed are null on the edges of the spanning tree. According
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to Eqs. (IV.14) and (IV.15), the functional variable of the corresponding LS approach is then
(w1, . . . , wk, v) where∣∣∣∣∣wκ

def
= ϕκ +Rv

κµ, v
def
=Nc

with µ := µ(N)
(IV.60)

The choice of µ defined in Eq. (IV.59) therefore defines the closure-ambiguity approach
(CAA). Clearly, this choice depends on the selected spanning tree Gst; the definition of the
integer-valued function v therefore also depends on this choice. Note that all these spanning
trees have the same number of edges: nst = nv − 1; see Sect. G.2. As a result, whatever the
choice of Gst, the number of ambiguities to be fixed is the same: nc = ne − nst (Eq. (IV.29)).

Let us now denote by (w̌1, . . . , w̌k, v̌) the LS solution resulting from such a choice.
The reference solution of its equivalent solutions, which can be obtained as specified in
Sect. IV.2.5, does not depend on the choice of Gst. Indeed, a change in Gst amounts to
selecting another µ in Vb(Z); see Eq. (IV.42) and Fig. IV.6 further on.

Remark.4.1: Although the ambiguity variables of the closure ambiguity approach are
closure ambiguities, it is an UD approach. Indeed, the action of the closure operator C
(induced by the selected spanning tree Gst) is never performed explicitly ·

IV.5 Derivation of the CAA principle via the S-system ap-
proach

The S-system approach (Baarda, 1973) was used by some investigators to remove various
GNSS rank defects; see, e.g., Teunissen (1984); de Jonge (1998); Teunissen & Odijk (2003).
In the previous section, the CAA principle was introduced in a concise manner in the theoret-
ical framework defined through Sects. IV.2 and IV.3; the aim of the present section is to show
that this principle can be introduced via the S-system approach directly.

In the general framework of the S-system approach presented in H, the Euclidean space E

to be considered is then the space of the functional variable

ξ
def
= (ϕ1, . . . , ϕk; ϑ) (IV.61)

of Eq. (IV.5); ϑ is then the float version of the integer-valued functional variableN . Denoting
by

Vϕ
def
= Vϕ1 ⊕ Vϕ2 ⊕ · · · ⊕ Vϕk (IV.62)

the direct sum of the vertex-bias spaces Vϕκ with generic vector ϕκ, we have

E = Vϕ ⊕ E (IV.63)

where E is the edge-delay space with generic vector ϑ; see Sect. IV.3.1. As illustrated in
Figs. IV.2 and IV.4, given some spanning tree Gst of G ,E can be decomposed in the Euclidean
orthogonal form

E = Est ⊕ Ec (IV.64)
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From Eqs. (IV.8) and (IV.30), we have∣∣∣∣∣∣∣∣
dimVϕ =

k∑
κ=1

nbκ

dimEst = nst dimEc = nc

(IV.65)

The function bκ of Eq. (IV.5) lies in some space isomorphic to Rneκ; see the context of
Eq. (IV.3), and Fig. IV.1. Setting

m :=
k∑

κ=1

neκ (IV.66)

we then define the operator A of the S-system approach as the operator from E into Rm:

Aξ def
=

B1ϕ1 +Re
1ϑ

...
Bkϕk +Re

kϑ

 (IV.67)

Clearly, Eq. (IV.5) can then be explicitly written in the form

A


ϕ1
...
ϕk

N

 =

 b1
...
bk

 (IV.68)

Let K now be the operator from Vb ∼= R
nst into E (see Sect. IV.3.1):

Kφ def
=


−Rv

1φ
...

−Rv
kφ

Bφ

 (IV.69)

The float version of Eq. (IV.12) yields

−BκRv
κφ+Re

κBφ = 0 (for κ = 1, . . . , k) (IV.70)

The null space of A is therefore the range of K; see Eqs. (IV.67) and (IV.69). We thus have

kerA = Ran K (IV.71)

with

dim(kerA) = nst (IV.72)

The dimension of the null space of A is therefore equal to that of Est; see Eq. (IV.65) and
Fig. IV.4.

82



IV.5. DERIVATION OF THE CAA PRINCIPLE VIA THE S-SYSTEM APPROACH

In the framework of the S-system approach, we now remove the rank defect of Eq. (IV.5)
by imposing the following constraint: the functional variable to be estimated lies in the or-
thogonal complement of Est in E; see H. We thus define F via the relation F := E⊥st . Clearly,
that constraint is the same as that introduced in Sect. IV.4; see Fig. IV.2. The corresponding
estimable functional variable is then obtained as follows.

From Eqs. (IV.63) and (IV.64), F is the direct sum of Vϕ and Ec:

F = Vϕ ⊕ Ec (IV.73)

We now show that E is the direct sum of F and kerA (see Fig. IV.4):

E = F⊕ kerA (IV.74)

Proof. Let ξ be a function lying in F ∩ kerA. As ξ lies in F, its component ϑ vanishes
on Gst. As ξ also lies in Ran K from Eq. (IV.71), ϑ is in the range of B from Eq. (IV.69). We
then have ϑ = Bstφ = 0, hence φ = 0 from Eq. (IV.33), and therefore ξ = 0 from Eq. (IV.69).
As a result, F ∩ kerA = {0}. As dim(kerA) = dimEst and dim E = dim F + dim(kerA),
Eq. (IV.74) is thus established

The oblique projection § of E onto F along kerA plays a key role in the S-system ap-
proach (see H). It is defined by the relation §ξ = ξ − η with η ∈ kerA and ξ − η ∈ F; see
Eq. (H.4) and Fig. H.1. We now specify its definition explicitly.

Let Qst be the orthogonal projection of E onto Est. We then have (see Fig. IV.4):

Qstη = Qstξ = Qstϑ (IV.75)

From Eqs. (IV.71) and (IV.69),

η = Kφ
for some φ in Vb ∼= R

nst . From Eq. (IV.75), that bias function φ satisfies the condition

QstKφ = Qstϑ

According to Eq. (IV.69), we have QstKφ = QstBφ, i.e., QstKφ = Bstφ, where Bst is the
operator defined in Sect. IV.3.1. We thus have φ = φ(ϑ) where φ(ϑ) is defined by Eq. (IV.35):

φ(ϑ) def
=B−1

st Qstϑ

It then follows from Eq. (H.4) that

§ξ = ξ − η where η = Kφ(ϑ) (IV.76)

Here, the matrices [S⊥] and [W ] of Eq. (H.7) have been implicitly defined by the standard
bases of Est and Ran K, respectively. From Eq. (IV.69), we thus have

§ξ =


ϕ1 +Rv

1φ
(ϑ)

...
ϕk +Rv

kφ
(ϑ)

ϑ−Bφ(ϑ)

 (IV.77)
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hence, in particular (when ϑ is set equal to N ),

§


ϕ1
...
ϕk
N

 =


ϕ1 +Rv

1µ
(N)

...
ϕk +Rv

kµ
(N)

N −Bµ(N)

 (IV.78)

where µ(N) = B−1
st QstN (Eq. (IV.42)). We thus retrieve the ‘estimable functional variables’

of Eq. (IV.60):

wκ
def
= ϕκ +Rv

κµ
(N) v = Nc (IV.79)

The estimable functional variable of the CAA method is therefore the oblique projection of
(ϕ1, . . . , ϕk; N) on F along kerA; see Fig. IV.4.

This introduction of the CAA principle gives another in-
sight into the analysis presented in Sect. IV.3. Furthermore,

it completes the study developed in Sects. 3.3, 3.4 and 3.15 of de Jonge (1998) on two
points:

(i) operator A is defined with regard to the union of the observational graphs until the
current epoch; see Sect. IV.2.1, and Eqs. (IV.67) and (IV.68);

(ii) a related geometrical representation is proposed: Fig. IV.4; in that representation, Cϑ is
the CD point of ϑ; when ϑ := N , Cϑ is therefore the closure-ambiguity point of N .

IV.6 CAA implementation
In the closure-ambiguity approach, the rank defect of Eq. (IV.5) is removed via the choice of
the variables wκ and v defined in Eq. (IV.60). The equation to be solved in the LS sense is
then Eq. (IV.16) with the constraint v = 0 on the edges of Gst. The CAA problem is therefore:
solve in the LS sense the equation∣∣∣∣∣Bκwκ +Re

κv = bκ (κ = 1, . . . , k)

subject to the constraint ‘v = 0 on Gst’
(IV.80)

In what follows, the noise is taken into account by using the variance-covariance matrix Vκ
of bκ in the definition of the ‘Euclidean forms’Bκ,Aκ and bκ ofBκ,Re

κ and bκ, respectively;
see the context of Eq. (I.12) in Sect. I.3. The system (IV.80) to be solved in the Euclidean
LS sense is then the following:

Bκwκ +Aκv = bκ (κ = 1, . . . , k) (IV.81)

i.e.,
B1 0 0 0 A1

0 B2 0 0 A2

0 0
. . . 0

...
0 0 0 Bk Ak



w1

w2...
wk

 =


b1

b2...
bk

[
v
] (IV.82)
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The angular block structure of matrix [B A] is well suited to recursive QR factorization. (A
complete implementation of the corresponding LS procedure is presented in I.) The advantage
of this procedure is to provide some gain in numerical accuracy when dealing with large-scale
problems; see Björck (1996). More interestingly, the corresponding techniques prove to be
very efficient for GNSS quality control; see, e.g., Blewitt (1989); Tiberius (1998); Loehnert
et al. (2000) Sect. 9 in Lannes & Gratton (2009).

In this section, we first give a survey of the QR implementation of the CAA principle
(Sect. IV.6.1). We then specify the definitions of the column matriceswk and v of Eq. (IV.82);
this is done in Sects. IV.6.2 and IV.6.3, respectively. More information about the technical
aspects of this implementation, like for instance the construction of matricesAk,Bk and bk,
is to be found in I.

Remark.6.1: In most situations encountered in practice, the second member of equations
such as (IV.80) includes a large number of additional variables; see, e.g., Ge et al. (2005);
Loyer et al. (2012). In the remainder of the paper, we assume that the related models have
been well selected so that we can concentrate on the first members of these equations only ·

Remark.6.2: The method presented in this section can be applied as such for solving the
WL equation (4) of Loyer et al. (2012); NWL and τWL are then to be substituted for N and ϕ,
respectively; b is then the term on the left-hand side of that equation. In our approach, the
WL ambiguity point v̌WL would then be the closure-ambiguity point of NWL: v̌WL = CNWL;
NWL would thus be retrieved up to a vector of BZnst ·

IV.6.1 Survey
In a first stage, at each epoch k, the ‘float solution’ v̂ is computed or updated. This is done
by solving the float version of Eq. (IV.82) in the Euclidean LS sense via recursive QR factor-
ization; see Sect. I.2 and Eq. (I.7). The integer least-squares (ILS) solution v̌, and thereby v̌,
is then defined as the solution of the nearest-lattice-point (NLP) problem (I.9). This solution
is obtained in a second stage via appropriate integer-programming techniques; see Lannes
& Prieur (2013) and Lannes (2013) for the parallelization of the related LLL3/LAMBDA re-
duction/decorrelation algorithms. The ambiguities are thus fixed. Once at some epoch kval,
these ambiguities can be validated (see Verhagen & Teunissen (2006), the bias matrices w̌k,
and thereby the phase biases w̌k, are obtained via the relations (I.10) for k ≤ kval. The
variance-covariance matrix of w̌κ, which is required for implementing the PPP mode prop-
erly (see Sect. 9 in Lannes & Teunissen (2011), is obtained in that framework; see the end of
Sect. I.2.

Remark.6.3: Once at some epoch kval, all the closure ambiguities have been validated,
the QR recursive process only needs to focus on the few closure ambiguities associated with
the new closure edges. At the epochs k > kval, the new closure ambiguities can therefore
be determined very quickly. Indeed, the dimension of the matrix v handled by the QR pro-
cess is then much smaller than previously. This shows that this approach is well suited to
integer-ambiguity resolution in real time. For instance, the satellite-clock biases could then
be broadcasted to the network users in real time; see Sect. IV.2.3 ·

3Here LLL stands for Lenstra, Lenstra, Lovász, the authors of the famous LLL algorithm (Lenstra, Lenstra
& Lovász, 1982).
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IV.6.2 Definition of wk
If we assume for instance that all the receivers of the network are active (see Fig. IV.1), the
receiver phase bias wrk(i) is then the entry of wk with index i− 1. The indices are shifted
by −1 since we used the convention ϕrk(1) = 0 (Eq. (IV.7)).

The satellite phase bias wsk(j) is then the entry of wk with index (nr − 1 + j); see for
example the first two epochs of Fig. IV.1. To handle the cases of disappearance of one or more
satellite(s), we introduce an index function $sk defined so that wsk(j) is the entry ofwk with
index (nr − 1 + $sk(j)). For example, at epoch k = 3 of Fig. IV.1, for j > 3, we have
$sk(j) = j − 1.

Difficulties with some receivers would be handled in a similar manner by introducing
index functions $rk(i).

IV.6.3 Definition of v
The entries of v in Eq. (IV.82) are the closure ambiguities to be taken into account from
epochs 1 to k included. The corresponding closure-edge list c,k is defined in this section; see
for example the lower grid of Fig. IV.5. In the implementation of the QR method, those entries
are to be put at the top of the column matrix v at the epoch κ ≤ k where they appear; see
Sect. C3. This means that for all κ′ < κ, the matrices Aκ′ have then (on their left-hand side)
implicit additional columns whose entries are zero. We now concentrate on the closure-edge
lists c,κ for κ = 1, . . . , k.

At epoch k = 1, the spanning tree Gst,1 of G1 = H1 is built as specified in Sect. G.2. For
example, for the scenario defined in Fig. IV.1, the edges of Gst,1 then correspond to the large
dots of the upper grid of Fig. IV.5; c,1 then includes three closure edges ordered as they are
encountered when scanning that grid line by line:

c,1 = {(r3, s3), (r3, s4), (r4, s4)} (k = 1)

At epoch k = 2, the spanning tree Gst,2 of G2 = H1 ∪H2 is completed by adding the edges
corresponding to the first active edges involving the new satellites, for example (r1, s7), and
(r2, s6) in Fig. IV.5. When implementing the QR method, the new closure edges must then be
the first terms of c,2; see Fig. I.5 in Sect. I.2.1. The previous terms of that list are then shifted
rightwards. In the example of Fig. IV.1, we then have

c,2 = {(r2, s7), (r3, s2), (r3, s6), (r4, s5), (r3, s3), (r3, s4), (r4, s4)} (k = 2)

We proceed similarly for the next epochs; see the lower grid of Fig. IV.5.
By construction, the number of closure edges nc is a non-decreasing function of k; see

Eq. (IV.29) and Fig. IV.5. In fact, this number defines the dimension of the NLP problem (I.9)
to be solved at epoch k.

IV.7 Equivalent ambiguity solutions: related methodologi-
cal aspects

In this section, we analyse some other methods which are used for solving the GNSS cali-
bration problem, and compare the corresponding solutions with the CAA solution. This done
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for Blewitt (1989) in Sect. IV.7.1, for Collins et al. (2010) in Sect. IV.7.2, and for Loyer
et al. (2012) in Sect. IV.7.3. Finally, we suggest some possible improvements of the existing
methods in Sect. IV.7.4.

IV.7.1 Blewitt’s approach

In his original contribution published in 1989, Blewitt proposes a resolution of the problem
in three stages. In the first one, the float solution is obtained in UD mode. In the second one,
double differencing of the float biased ambiguities thus obtained provides DD ambiguities.
The latter are then fixed via some sequential adjustment algorithm. In the third and final
stage, the UD ambiguities are derived from those fixed DD ambiguities. This is done via the
inverse of the operator D defined in the appendix B of that paper. The estimates of station-
receiver locations, orbital parameters, etc., are then updated. Briefly, one may therefore say
that the Blewitt approach is hybrid: it is a ‘UD-DD-UD approach.’

The D-matrix of our analysis is the matrix [D�] introduced in Sect. IV.3.6: Eq. (IV.54).
Given some DD ambiguity set Nd (such as that defined in Eq. (IV.55)), some spanning
tree Gst, and some ambiguity point N̆st arbitrarily chosen in Est(Z), it is possible to re-
trieve N up to a vector of Eb(Z). More precisely (see Fig. IV.6 together with Fig. IV.3), the
UD ambiguity obtained via Eq. (IV.57),

N̆ := [D�]
−1

[
[N̆st]

[Nd]

]

is equal to Nc +Bµ(N̆st). Removing the rank defect via the inverse of [D�] therefore amounts
to imposing the constraint Qstv = N̆st where N̆st can be chosen in an arbitrary manner.

IV.7.2 Collins’s approach

In the last statement of Sect. IV.7.1, one recognizes the concept of ambiguity datum fixing of
the UD approach of Collins et al. (2010); the latter is thus closely linked to that of Blewitt.
However, with regard to Eq. (IV.16), the ‘direct problem’ to be solved in the LS sense is then

∣∣∣∣∣Bκwκ +Re
κv = bκ (κ = 1, . . . , k)

subject to the constraint Qstv = N̆st

(IV.83)

Let us denote by (w̆1, . . . , w̆k, v̆) the solution of this problem, i.e., the Blewitt/Collins solu-
tion. Let (w̌1, . . . , w̌k, v̌) now be the CAA solution obtained with the same spanning tree Gst.
As shown below, we then have

w̆κ = ϕ̌κ −Rv
κ µ

(N̆st), v̆ = v̌ +Bµ(N̆st) (IV.84)

Proof. The LS solutions of Eq. (IV.5) are of the form (IV.18)-(IV.19). Equation (IV.84) then
follows from the fact that by construction v̌ + Bµ(N̆st) satisfies the constraint of Eq. (IV.83).
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Indeed, as Qstv̌ = 0, we have

Qst

(
v̌ +Bµ(N̆st)

)
= QstBµ

(N̆st)

= Bstµ
(N̆st)

= Bst(B
−1
st QstN̆st) = QstN̆st

= N̆st

Remark.7.4: In the special case where N̆st is set equal to zero on all the edges of Gst,
the Blewitt/Collins solution coincides with the CAA solution; see Eq. (IV.84) and Fig. IV.6.
This explicitly shows that the Blewitt and Collins approaches can lead to the same results as
the CAA method. However, even in that case, Blewitt’s approach is not equivalent in terms
of efficiency. The direct implementation of the Collins/CAA principle is a priori preferable:
the results are then obtained without any differencing operation, and without any generalized
inversion of the fixed ambiguity set; see Sects. IV.4 and IV.6. As illustrated in Fig. IV.6, the
reference ambiguity solutions v̄ obtained with the Blewitt, Collins and CAA methods must
of course be identical on every edge of G , and this for any choice of Gst and N̆st; see 2.8 ·

IV.7.3 Related approach

With regard to the way the narrow-lane (NL) ambiguity N1 is fixed, the zero-difference ap-
proach of Loyer et al. (2012) can be considered as a variant of Collins’ approach. We now
clarify this point.

In that particular approach, the rank defect is removed after having obtained the ‘float am-
biguity solution’ N̂1 via the introduction of some additional constraints; see Sect. 2.6 of that
paper. These authors then implicitly choose some spanning tree Gst, and set the ambiguities
to bN̂1(i, j)e on the edges (ri, sj) of Gst. The remaining UD ambiguities (i.e., the nc ambi-
guities associated with the closure edges) are fixed via some ‘bootstrapping operation.’ This
operation provides the ‘Babai point’ of the discrete-search algorithms presented in Jazaeri
et al. (2012), and Lannes & Prieur (2013).

Setting N := N1 and N̆st := bQstN̂1e, we thus have N − Bµ = N̆st on Gst, hence
µ := B−1

st Qst(N − N̆st). It then follows from Eqs. (IV.42) and (IV.58) that the ambiguity
solution of the Loyer et al. is

N −Bµ = (N −Bµ(N)) +Bµ(N̆st) = Nc +Bµ(N̆st)

Provided that the solution provided by the bootstrapping process is the right NLP solution v̆,
we then have (like for the Blewitt and Collins solutions in Fig. IV.6)

v̆ = v̌ +Bµ(N̆st)

where v̌ is the CAA solution obtained with the same spanning tree. The choice N̆st := 0
would lead to a ‘mild version’ of the corresponding NL closure-ambiguity approach; see how
the NLP problem is solved in Sect. IV.6.1.
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IV.7.4 Suggested improvements of the existing methods
In the previous sections, we have analysed some of the most frequently-used GNSS calibra-
tion methods. This analysis was made on the basis of published papers; it is thereby partial,
since there are unfortunately many important topics which are not described in the papers
presenting those methodologies. Blewitt (1989)’s method is rather well established from a
theoretical point of view, but its UD-DD-UD principle is not optimal. The UD approaches of
Collins et al. (2010) and Loyer et al. (2012) are closer to our CAA-(S-system) principle, but
their introduction is rather intuitive: no theoretical justification is clearly given.

For the first time, all those methods have been presented in a unified framework. We
thus provided a theoretical justification of what is done for removing the rank defect in those
methods. Our study also showed that despite their apparent differences, they are rather close
to one another; see Fig. IV.6.

Taking profit of the theoretical analysis presented in this chapter, we now propose some
modifications aimed at improving those methodologies. First of all, in the implementation of
those methods, on the edges of the selected spanning tree, the ambiguities to be fixed should
be set equal to zero: N̆st := 0. It is indeed the simplest choice, and the remaining ambiguities
are then the closure ambiguities of N . This concept, which is also used in astronomy, has a
clear meaning; see Sects. IV.3.3, and II. As these ambiguities depend on the selected spanning
tree, it is also recommended to provide the reference set of every ambiguity solution; see
Sect. IV.2.5 and Fig. IV.6. Furthermore, this particular solution is also convenient for plotting
and comparing the time variations of the clock-phase biases; see 2.7.

A suggestion for improving the performances of existing network-calibration methods, in
particular for real-time PPP applications, would be the progressive construction of graph G ;
see Sect. IV.2.1, Figs. IV.1 and IV.5. This would allow one to determine the first epoch at
which the fixed ambiguities can be validated; see Sect. IV.6.1 and 6.3.

Another related aspect is the use of modern integer-programming techniques. In particu-
lar, we suggest that the NLP/ILS problems should be solved via ‘reduction methods’ which
benefit from the last developments of the LLL algorithm; see, e.g., Jazaeri et al. (2012);
Lannes (2013); Lannes & Prieur (2013). This should lead to a substantial gain in reliability
and processing time. Note that these methods can be even used for huge networks. Indeed,
parallel versions of the LLL algorithm have already been implemented; see Luo & Qiao
(2011) and Lannes (2013) for the LAMBDA-decorrelation versions of such algorithms.

Remark.7.5: With regard to the NLP/ILS problems to be solved, the ‘traditional
ionosphere-free approach’ (such as that of Collins et al. (2010), or Loyer et al. (2012)) is not
recommended. This approach leads to unnecessary developments. Furthermore, the physical
arguments for using it were called to question many years ago. Indeed, as explicitly shown
by Teunissen (1997), the wide-lane decorrelation effect of that approach is far from being
optimal ·
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Figure IV.1: Characteristic functions of Hk with regard to Gk for k = 1, 2, 3 (example). From top to bottom,H1,
H2, and H3. The dots define the edges (ri, sj) for which no data have been obtained until epoch k included.
Here, ne1 = 11, ne2 = 15, and ne3 = 16. By definition, Gk is the union of the observational graphs until
epoch k included. The number of the edges of Gk is 11 at epoch 1, 17 at epoch 2, and 20 at epoch 3. Six edges
appear at epoch 2: (r1, s7), (r2, s6), (r2, s7), (r3, s2), (r3, s6) and (r4, s5); two edges disappear: (r2, s3) and
(r3, s3). Note that satellites s6 and s7 are then detected by the network. Three edges appear at epoch 3: (r2, s8),
(r4, s7) and (r4, s8); two edges disappear: (r3, s1) and (r4, s3). Satellite s3 then disappears. At each epoch, the
large-sized numbers define the edges of Gst,k, the selected spanning tree of Gk; see Fig. IV.5 further on.
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Figure IV.2: Geometrical illustration of Property P1. In this geometrical representation of the edge-delay
space E ∼= R

ne , Est is the spanning-tree delay space. This space is isomorphic to the vertex-bias space Vb ∼=
R
nst . The orthogonal complement of Est in the Euclidean space E is the closure-delay space Ec. The range of

the bias operator B, the edge-bias space, is a subspace of E denoted by Eb. This space is isomorphic to Est

and thereby to Vb. (The dimensions of these spaces are written within parentheses.) As illustrated here, E is the
oblique direct sum of Eb and Ec. The closure operator C is the oblique projection of E onto Ec along Eb.
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Figure IV.3: Geometrical illustration of Property P2 In this symbolic representation of the edge-delay space E,
E

(N)
b (Z) is the affine lattice passing through N and parallel to the integer lattice Eb(Z) of the edge-bias

space Eb (here, for clarity, the vertical axis); N̆ is the UD ambiguity obtained via the relationship (IV.50)
in which N̆st is arbitrarily fixed in Est, and Nc is the CD ambiguity point of N (the closure ambiguity of N ).
In the important special case where N̆st is set equal to 0, N̆ reduces to Nc.
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Figure IV.4: Geometrical illustration of the CAA principle in the S-system approach. In this 3D-geometrical il-
lustration, which completes Fig. IV.2, the Euclidean space E of the functional variable ξ involved in Eqs. (IV.67)
and (IV.68) is represented as a 3D-space; E is the orthogonal sum of Vϕ and E, where Vϕ is the direct sum of
the vertex-bias spaces Vϕκ (see Eq. (IV.62)), and E is the edge-delay space of the float ambiguity variable ϑ
(the projection of ξ on E). According to the definitions introduced in Sect. IV.3.1, E can be regarded as the
orthogonal sum of the spanning-tree delay space Est and the closure-delay space Ec. Note that the projection
of ξ on Est coincides with that of ϑ: Qstξ = Qstϑ. As shown in Sect. IV.3.2, we have φ(ϑ) = B−1

st Qstϑ
(Eq. (IV.35)). The operator A defined by Eq. (IV.67) is not of full rank. Its null space is a subspace of E of
dimension nst; more precisely, kerA is the range of the operator K; see Eq. (IV.69). The edge-bias space Eb is
the projection of kerA on E. In the CAA approach, the following condition is imposed: the functional variable
to be estimated lies in F, the orthogonal complement of Est in E. As E is the direct sum of F and kerA (see
text), the estimable functional variable is the oblique projection of ξ on F along kerA, i.e., §ξ with ϑ := N ; see
Eqs. (IV.78) and (IV.79). The projection of §ξ on E, ϑc

def= Cϑ, is the closure component of ϑ, i.e., the closure
ambiguity Nc

def= CN when ϑ := N .
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Figure IV.5: Spanning trees Gst,k and closure-edge lists c,k The example shown here corresponds to that in-
troduced in Fig. IV.1. From top to bottom, epoch k = 1 (nst,1 = 8), epoch k = 2 (nst,2 = 10), and epoch
k = 3 (nst,3 = 11). The large dots correspond to the edges of these spanning trees; the small dots define the
edges (ri, sj) that do not appear in Gk at those epochs. The spanning tree of G2 is obtained from that of G1 by
adding the edges (r1, s7) and (r2, s6). Likewise, the spanning tree of G3 is obtained from that of G2 by adding
the edge (r2, s8). The closure edges of c,k are ordered as shown in red; see text.
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Figure IV.6: Links between some equivalent ambiguity solutions In this geometrical representation of the edge-
delay space E, the equivalent ambiguity solutions lie in the affine lattice E (N)

b (Z) passing throughN and paral-
lel to the integer lattice Eb(Z) of the edge-bias space Eb (here for clarity the vertical axis). The Blewitt-Collins
solution v̆ obtained by imposing the constraint Qstv = N̆st (for some N̆st arbitrarily fixed in Est) corresponds
to the intersection of E (N)

b (Z) with the affine space passing through N̆st and parallel to Ec(Z) (the closure-
ambiguity lattice induced by the choice of Gst); see Fig. IV.3. The CAA solutions induced by the choice of
the spanning trees Gst and Gst′ , v̌ and v̌′, correspond to the intersections of E (N)

b (Z) with Ec(Z) and E′c(Z),
respectively. Note that v̌ = N − Bµ(N) from Property P1, and v̆ = v̌ + Bµ(N̆st) from Property P2. Here, v̄
represents the reference solution: v̄ = v̌ − Bµ̌; see Eqs. (IV.21), (IV.23) and (IV.25). Likewise, v̄ is obtained
from the Blewitt or Collins solution v̆ via the relation v̄ = v̆ −Bµ̆.
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Chapter V

Conclusion

In chapter II, we have presented an analysis of the phase-calibration problem encountered
in astronomy when mapping incoherent sources with aperture-synthesis devices. More pre-
cisely, we concentrated on the phase-calibration operation involved in the self-calibration
procedures of phase-closure imaging. In radio-astronomy, the related optimization problems
have been stated and solved hitherto at the phasor level. By conducting our analysis at the
phase level, we derived a new method for diagnosing and solving the difficulties of the phasor
approach.

In chapter III, we have presented the new method we proposed in Lannes & Prieur
(2013) for solving the nearest-lattice point (NLP) problems arising in astronomy, geodesy
and GNSS. The main theoretical aspects of the matter were also analysed. This contribution
concerns both the preconditioning stage, and the discrete-search stage in which the integer
ambiguities are finally fixed. We have proposed several algorithms whose efficiency was
shown via intensive numerical tests on GNSS data. The same algorithms can be used in the
astronomical self-calibration procedures. The related NLP problems are indeed very similar.

Concerning the preconditioning stage, we have shown in Sect. III.3.3 that the LLL-type
algorithms with delayed size-reduction lead to a gain of the order of two relative to the stan-
dard LLL algorithm. We have also particularly optimized the discrete-search (DS) algorithms
(see Sect. sec:integ-5.3). Our DS algorithms run also about twice as fast as the state-of-the-art
DS algorithms of Jazaeri et al. (2012). We have thus been able to perform intensive calcula-
tions on large-size problems with our old computers. This would be particularly interesting
for real-time data processing of world-wide global GNSS networks. As explicitly shown in
Lannes (2013), parallel versions of our LLL-type algorithms could also be implemented for
those extreme cases.

In astronomy, our self-calibration approach could lead to a substantial gain in computing
time for large interferometric arrays. Another important asset of our approach is to propose
a method for validating the calibration solution. For each phase-calibration operation, we
determine the global minimum of the arc functional and the first secondary minima (if any);
see Sects. III.1.1, III.4.3 and Sect. II.4. In the case of multiple minima, the relative discrep-
ancy between the values the global and secondary minima provides a measure against which
the reliability of the process can be appreciated. This is an innovative approach which could
promote the use of the self-calibration procedures in radio imaging.

In chapter IV, we have examined the problem of calibrating the clock (or pseudo-clock)
phase biases of GNSS networks. In the context specified in Sect. IV.1, the basic rank defect
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of this problem is related to the way these phase biases and the carrier-wave ambiguities are
involved in the observational equations. We have analyzed the different ways of removing
this rank defect, and defined an efficient strategy for obtaining clock-phase bias estimates in
a standard form.

This rank defect is intrinsically related to the structure of Eq. (IV.1), and cannot be re-
solved by additional experimental data. As a result, according to Eq. (IV.13), any variation of
the vertex ambiguity vector µ can be compensated by a variation of the edge-ambiguity func-
tion N ; µ is a vector of Znst; see Sect. IV.2.2. For PPP applications, the satellite clock-phase
biases can be estimated up to constant integers. The choice of µ in Znst does not therefore af-
fect the significant part of these bias values. The retrieved ambiguities are of course affected
by this choice, but this has no actual impact on the GNSS results such as the estimates of the
station-position parameters, for example.

We propose a new approach in chapter IV, the closure-ambiguity approach (CAA), which
is a simple and efficient way for finding a solution; see Sects. IV.4 to IV.6. It is an undiffer-
enced method based on some particular constraints. The related choice of µ, which is asso-
ciated with the notion of closure ambiguity, is similar to that implicitly made by de Jonge
(1998); it defines the very principle of the closure-ambiguity approach. Thanks to the intro-
duction of graph G , the union of the observational graphs until the current epoch, the closure
ambiguities are dealt with in an optimal manner. In particular, compared to the approaches
presented in de Jonge (1998) and Lannes & Gratton (2009), no graph transition is to be per-
formed. These new aspects have been illustrated with some simple and generic examples; see
Figs. IV.1 and IV.5.

We have analysed the main classes of other methods used for calibrating GNSS networks,
and established the link between those methods and our CAA method. More precisely, we
present a unified theoretical framework in which all those methods can be understood and
compared more easily (see Sect. IV.7). We have thus been able to derive functional relations
between the solutions provided by the methods of Blewitt (1989); Collins et al. (2010); Loyer
et al. (2012). Those solutions are displayed in Fig. IV.6 which gives a synthetic representation
of the results provided by our approach (CAA) and all those methods.

We have also shown that the intermediate differencing stage of Blewitt’s approach can
be avoided, without any counterpart, by removing the rank defect via our approach or that
of Teunissen (1984): the closure ambiguities to be fixed then appear in the very formulation
of the UD problem to be solved. The NLP techniques of ambiguity resolution can thus be
directly applied to the float solution; see Sect. IV.6.1. Compared to the hybrid UD-DD-UD
methods deriving from the basic contribution of Blewitt (1989), the technical implementation
of the CAA method is simpler and more efficient; some CPU time can thus be saved.

It also appeared that the concept of ambiguity datum fixing of Collins et al. (2010) comes
within our CAA framework. When the ambiguities are fixed at zero on the edges of some
arbitrary spanning tree of G , the remaining ambiguities to be fixed are nothing else than
the closure ambiguities of the ambiguity functional N under consideration. Compared to
Blewitt’s approach, one may therefore say that the UD approaches of Collins et al. (2010)
and Loyer et al. (2012) are closer to our CAA-(S-system) principle.

To compare the methods providing LS estimates of clock-phase biases, we have intro-
duced a reference particular solution. For this solution, when a clock-phase bias is estimated
for the first time, its fractional part is confined to the one-cycle width interval centred on
zero; the integer-ambiguity function is modified accordingly. The notion of reference solu-
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tion is very useful for testing the compatibility of all those GNSS methods: pertinent methods
should lead to the same reference ambiguity solution; see Fig. IV.6. This test is independent
of the selected spanning tree.

The QR implementation of the CAA method has been presented in Sect. IV.6 and I, in an
exhaustive manner. Completed by the NLP algorithms developed for huge networks (Lannes,
2013; Lannes & Prieur, 2013), all the elements are now gathered for implementing very pow-
erful techniques. The implications of our approach may concern the software packages used
for processing most GNSS networks, and particularly global networks using GPS, GLONASS,
Galileo, IRNSS or BeiDou/Compass satellites. The CAA principle is well suited for handling
the integer-ambiguity problem of all those networks. As outlined in 6.3, it could lead to
applications in real-time kinematic precise-point positioning (RTK-PPP).

In order to facilitate its integration in existing GNSS software packages, our approach
has been described in a precise manner. The gain of such an implementation would be both
in terms of performance and reliability. Indeed, our undifferenced approach proposes an
appropriate procedure for ambiguity resolution and clock-phase bias calibration, and this
with a rigorous handling of the rank defect to be removed. Another possible application of
this work would be to use the method described in Sect. IV.2.5 for comparing the solutions
obtained by different software packages.
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Appendix A

On some class of integer matrices

In Sect. II.2, we have introduced integer matrices whose entries are equal to ±1 or 0; see, for
example, Eqs. (II.31), (II.32) and (II.47). These matrices lie in a particular class of integer
matrices denoted byM: an [m× n] matrix [A] lies inM if its matrix elements ai,j are equal
to ±1 or 0. In this appendix, to analyse these matrices, we introduce two subclasses ofM:
M1 and M2 (Sects. A.1 and A.2, respectively). With the aid of the ‘founding algorithm’
presented in Sect. A.3, we are then be able to give a deeper insight into their structure, rank
and inverse if any (Sect. A.4).

A.1 ClassM1

Let [A] be some matrix inM such that for some i, i′ and j, we have either ai,j = ±1 with
ai′,j = ∓1 (Case 1), or ai,j = ±1 with ai′,j = ±1 (Case 2). We then denote by [S] the
unimodular matrix that reduces ai′,j to 0. In Case 1, [S] is the unimodular matrix [S+] that
adds the entries of line i to the corresponding entries of line i′. In Case 2, [S] is the unimodular
matrix [S−] that subtracts the entries of line i from the corresponding entries of line i′. Note
that when ai,j = −ai′,j for all j, [S+] sets to 0 all the elements of line i′. Likewise, when
ai,j = ai′,j for all j, [S−] annihilates line i′.

By definition, M1 is the class of matrices [A] for which the following property holds:
under successive actions of appropriate [S] operators, [A] remains inM.

Example 1. Baseline matrices of type B. Let V be a set of nv (vertices or) pupil elements
such as that defined in Sect. II.1.1: V

def
= {v1, v2, . . . , vnv}. Now, consider a matrix [A] ofM

built as follows. For each line, choose two distinct pupil elements of V : vp and vq. Then, set
ai,p = 1, ai,q = −1, and ai,j = 0 for j 6= p and j 6= q. Each line of [A] is thus associated
with a directed (edge or) baseline (vp, vq). When two distinct baselines (vp, vq) and (vp′ , vq′)
share only one pupil element, the action of either S+ or S− amounts to associating another
directed baseline with line i′. As a result, [A] lies inM1. In this framework, it is also clear
that if some column(s) of such a matrix is (are) removed, the matrix thus obtained also lies
inM1. This shows, in particular, that the matrices [B] and [Bst] of Sect. II.2.2 lie inM1; see
Eqs. (II.31) and (II.32) for example.

Example 2. Closure matrices of type C◦3 . Let G def
= (V ,E ) be some phase-calibration graph;

see Sect. II.1.1. A triangle whose edges lie in E defines a loop of order 3. All the triangles
of G can be listed. For example, the graph of Fig. II.4 includes the loops of order three
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(1, 2, 3), (1, 2, 4), (1, 3, 4) and (2, 3, 4). Clearly, such loops are involved in the definition
of the usual closure phases. Consider, for example, loop (1, 2, 3). For any βb in Eb (see
Sect. II.2.2), we have for this first loop:

βb(1, 2) + βb(2, 3)− βb(1, 3) = 0

i.e.,

[1]βb = 0

where [1] is a line matrix with 6 elements. The entries of [1] associated with the edges (1, 2),
(2, 3) and (1, 3) are 1, 1 and −1, respectively; the other entries are zero. We can thus build
a matrix [C◦3 ] ofM whose lines i are associated with the loops of order 3. In this example,
[C◦3 ] includes 4 lines and 6 columns. The baselines being ordered as specified in Sect. II.2.6,
we then have [Eq. (II.47)]:

[C◦3 ] =


1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1
0 0 0 1 −1 1

 (A.1)

By construction, such a ‘closure matrix’ annihilates the pupil phases.
When two loops of order 3 associated with lines i and i′ share some baseline, the action

of either [S+] or [S−] amounts to associating with line i′ a loop of order 4. By construction,
the entries of that line are still equal to ±1 or 0. Without giving here further details, we may
therefore surmise that the closure matrices [A]

set
= [C◦3 ] lie inM1: under successive actions of

appropriate [S] operators, [A] remains inM. This can be checked a posteriori by applying
to [A] the founding algorithm described in Sect. A1.3. Like in Example 1, if some column(s)
of such a matrix is (are) removed, the matrix thus obtained also lies inM1.

A.2 ClassM2

Let [A] be some matrix inM. For each line i of [A], we denote by ji the index j of the first
column for which ai,j is not zero. When ai,j is equal to 0 for all j ≤ n, we set ji

set
=n + 1.

Matrix [A] lies inM2 if the following conditions are satisfied:

1) For i = 1, . . . ,m: when ji ≤ n, then ai,ji = 1.

2) For i = 1, . . . ,m − 1: when ji < n, then ji+1 > ji; when ji = n (or n + 1), then
ji′ = n+ 1 for i′ = i+ 1, . . . ,m.

Examples of such matrices are to be found in Sect. A1.3 and A1.4: see Eqs. (A.2), (A.6) and
(A.11).

A.3 Founding algorithm
Before stating the following property, we recall that a unimodular matrix is a square integer
matrix with determinant ±1.
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Property. For any [A] inM1, there exists a unimodular matrix [Z] such that [Z][A] lies in
M2.

The following algorithm, which yields [Z][A] and [Z] explicitly, can be regarded as a
proof of this property.

Step 0: Initialization
Set i0

set
= 1, j0

set
= 1, and [Z]

set
= [Im], where [Im] is the [m×m] identity matrix.

Step 1: Define the column j0 to be processed
While ai,j0 = 0 for all i ≥ i0 with j0 < n, set j0

set
= j0 + 1. If ai,j0 = 0 for all i ≥ i0 with

j0 = n, terminate the process.

Step 2: If need be, perform some line permutation
Denote by i1 the smallest integer i ≥ i0 for which ai1,j0 is equal to ±1. When i1 is not
equal to i0, permute lines i0 and i1. The corresponding operation can be written in the form
[A]

set
= [¶][A] where [¶] is a permutation operator, a trivial unimodular matrix. Update [Z]:

[Z]
set
= [¶][Z].

Step 3: If need be, set ai0,j0 = 1

If ai0,j0 = −1, set [A]
set
= [S][A] and [Z]

set
= [S][Z], where [S] is the trivial unimodular operator

that changes the sign of the entries of line i0.

Step 4: If need be, set to 0 the lower part of column j0

For all i > i0, if ai,j0 = ±1, then combine lines i and i0 so that ai,j0 = 0. In other terms, set
[A]

set
= [S∓][A], and update [Z] consequently: [Z]

set
= [S∓][Z].

Step 5: Termination test
If i0 = m or j0 = n, terminate the process. Otherwise, set i0

set
= i0 + 1, j0

set
= j0 + 1, and go to

Step 1.

Example 3: Rank of the closure matrices of type C◦3 . Let us consider, for example, the closure
matrix [C◦3 ] of Fig. II.4: Eq. (A.1). As already pointed out, this type of matrix lies inM1; see
Example 2 of Sect. A1.1. The founding algorithm then yields, without any line permutation,
the following matrix ofM2:

[Z][C◦3 ] =


1 −1 0 1 0 0
0 1 −1 −1 1 0
0 0 0 1 −1 1
0 0 0 0 0 0

 (A.2)

The column and row ranks of this matrix are equal to 3. As a result,
nc3

def
= rank [C◦3 ] = rank [C◦3 ]t = 3. The closure phases defined via the first three lines of C◦3 ,

i.e., those associated with the triangles (1, 2, 3), (1, 2, 4) and (1, 3, 4), are linearly indepen-
dent. Indeed, the first three lines of matrix (A.2) were obtained from matrix (A.1) without
any permutation. The matrix [C3] that provides the closure phases of a vector β of E on these
loops is therefore the following [Eq. (II.48)]:

[C3] =

 1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1

 (A.3)
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In the case of Fig. II.1, the founding algorithm applied to the corresponding closure matrix C◦3
shows that nc3 = 5; C3 then includes 5 lines. Note that we then also have nc3 = nc.

A.4 Unimodular matrices ofM1

Let us consider the special case where [A] is an invertible [n× n]-matrix ofM1. There then
exists some unimodular matrix [Z] such that [Z][A] is an upper-triangular matrix [U ] with
rank n and determinant 1; see Sect. A1.3. The determinant of A is then the same as that
of [Z]: ±1; [A] is therefore unimodular; its inverse is then given by the relation

[A]−1 = [U ]−1[Z] (A.4)

Indeed,

([U ]−1[Z]) [A] = [U ]−1([Z][A])

= [U ]−1[U ]

= [In]

As [U ] is an upper-triangular matrix, the jth column of [A]−1 can be obtained from the jth col-
umn of [Z] by back-substitution.

Example 4. Inverse of [Bst] matrices. Consider the special case of Example 1 (Sect. A1.1)
where [A] is the matrix [Bst] defined by Eq. (II.32):

[A] =

 −1 0 0
0 1 −1
1 0 −1

 (A.5)

Then,

[U ] =

 1 0 0
0 1 −1
0 0 1

 (A.6)

and

[Z] =

 −1 0 0
0 1 0
−1 0 −1

 (A.7)

hence [the alternative way of getting Eq. (II.37)]:

[A]−1 = [U ]−1[Z] =

 −1 0 0
−1 1 −1
−1 0 −1

 (A.8)

Example 5. Computation of the closure phases βc(i`, j`) from a maximum set of independent
closure phases of order three. In Sect. II.2.6, we have shown that when nc3 = nc, then
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ker C3 = kerC = Eb; see Eqs. (II.51) and (II.52). Let us then consider the operator from Ec

into Rnc that provides the closure-phase vector of order three of a vector of Ec:

A : Ec → R
nc , Aβc

def
= C3βc

We then have kerA = Eb ∩Ec, hence kerA = {0} from Property 1. Furthermore, dimEc =
nc [Eq. (II.30)]; A is then invertible. The closure phases βc(i`, j`) can then be expressed as
linear combinations of independent closure phases of order three.

To clarify this point in a concrete manner, let us consider the special case of Fig. II.4. The
matrix [C3] that provides the closure phases of a vector β of E on the loops (1, 2, 3), (1, 2, 4)
and (1, 3, 4) is that of Eq. (A.3). The column vectors of [C3] relative to the loop-closure
baselines (2, 3), (1, 3) and (1, 4) of Fig. II.4 form, in this order, the following matrix [A]:

[A]
def
=

 1 −1 0
0 0 −1
0 1 −1

 (A.9)

As β = βb + βc with βc = Cβ [Eq. (II.42)], and C3βb = 0 (since here, in particular,
ker C3 = Eb), we thus have

[C3β] = [A][Cβ] (A.10)

Here, [Cβ] =
[
βc(2, 3) βc(1, 3) βc(1, 4)

]t. Clearly, [A] is a unimodular matrix of M1.
Applied to this matrix, the founding algorithm then yields

[U ] =

 1 −1 0
0 1 −1
0 0 1

 (A.11)

and

[Z] =

 1 0 0
0 0 1
0 −1 0

 (A.12)

hence

[A]−1 = [U ]−1[Z] =

 1 −1 1
0 −1 1
0 −1 0

 (A.13)

We thus have, from Eq. (A.10),

[Cβ] = [A]−1[C3β] (A.14)

The closure phases βc(i`, j`) can thus be computed via the closure phases of order three.
As illustrated through this example, when nc3 = nc, there exists an operator that provides

the closure phases βc(i`, j`) from a maximum set of independent closure phases of order
three. However, that does not mean that the closure phases βc(i`, j`) are to be computed that
way. In all cases, it is much simpler to compute them directly from β via Eqs. (II.40) and
(II.35).
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Proof of Property 2

Let αg be a τ -constrained minimizer of g; see Sect. II.4.1. Then,

εαg
def
= arc(ϕ̂c −Bαg)
= (ϕ̂c −Bαg)− 2πν

where [see Eq. (II.20) in terms of functions]

ν
def
=
⌊ ϕ̂c −Bαg

2π

⌉
Moreover, |εαg | ≤ 2πτ all over E [Eq. (II.86)]. There then exists a small ball of Vb centred
on αg whose points α are such that⌊ ϕ̂c −Bα

2π

⌉
= ν

In this ball, we therefore have

arc(ϕ̂c −Bα) = (ϕ̂c −Bα)− 2πν

= (ϕ̂c − 2πν)−Bα
and thereby g(α) = ‖(ϕ̂c − 2πν) − Bα‖2

w. As αg is a minimizer of g, it then follows from
Eq. (II.57) that

αg = B+(ϕ̂c − 2πν)

According to Property 1, ν can be decomposed in the form

ν = Bµν + νc

where µν
def
=B−1

st Qstν; see Eq. (II.36). As a result,

αg = B+ϕ̂c − 2πB+(Bµν + νc)

i.e., αg = B+(ϕ̂c−2πνc)−2πµν . Denoting by v̇ the point of Znc defined by νc, we therefore
have, from the definition of v̂ [Eq. (II.88)],

αg = 2πB+(v̂ − v̇)− 2πµν
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As a result [see the definition of α̇ in Eq. (II.89)],

αg = α̇− 2πµν

On each pupil element of V , αg is therefore equal to α̇ modulo 2π. As a corollary, we of
course have eiαg = eiα̇. As Bαg = Bα̇− 2πBµν , we also have

εαg
def
= arc(ϕ̂c −Bαg)
= arc(ϕ̂c −Bα̇)

= εα̇

It then follows from Eq. (II.82) that g(αg) = g(α̇). Furthermore, using the relations estab-
lished in this appendix, we have

εαg = (ϕ̂c −Bαg)− 2πν

= (ϕ̂c − 2πν)− 2πBB+(v̂ − v̇) + 2πBµν

= ϕ̂c − 2π(ν −Bµν)− 2πBB+(v̂ − v̇)

= (ϕ̂c − 2πνc)− 2πBB+(v̂ − v̇)

= 2π[(v̂ − v̇)−BB+(v̂ − v̇)]

hence, from Eq. (II.60),

εαg = 2πS(v̂ − v̇)

As |εαg | ≤ 2πτ , we therefore have |S(v̂ − v̇)| ≤ τ ; v̇ therefore lies in Γτ ; see Eq. (II.90). We
have thus shown that every τ -constrained minimizer of g was associated with a point v̇ of Γτ .

It remains to prove the converse, i.e., if v̇ is a point of Γτ , there then exists a τ -constrained
minimizer of g associated with this point. Let us consider the particular pupil-phase function
[see Eq. (II.89)]

α̇
def
= 2πB+(v̂ − v̇)

where v̇ lies in Γτ . We then have, from Eq. (II.60),

2π(v̂ − v̇)−Bα̇ = 2πS(v̂ − v̇)

hence, since v̇ is in Γτ : |2π(v̂ − v̇) − Bα̇| ≤ 2πτ all over E . There therefore exists a small
ball of Vb centred on α̇ whose points α are such that⌊2πv̂ −Bα

2π

⌉
= v̇

In this ball

arc(ϕ̂c −Bα) = (2πv̂ −Bα)− 2πv̇

= 2π(v̂ − v̇)−Bα
From the definition of α̇ and Eq. (II.57), it follows that α̇ is a τ -constrained minimizer of g.
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Appendix C

Point search in integer lattices

This appendix describes the method that we presented in the appendix 3 of Lannes & Prieur
(2011). A more recent and complementary analysis of the NLP problem can be found in
Sect. III.

Let us consider the ellipsoid defined by Eq. (II.93),

E(c)
def
= {v ∈ Rnc : ω(v − v̂) ≤ c} (C.1)

where ω is the quadratic form

ω(v)
def
= ‖Tcv‖2 (C.2)

Clearly, we have

ω(v) = (v | Ωv)Rnc with Ω = [Tc]
t[Tc] (C.3)

As [Tc]
t[Tc] is positive definite (see Sect. 3.8), ω is a positive-definite quadratic form.

In this appendix, we show how to list the points v̇ of Znc ∩ E(c), and for each of them (if
need be), how to compute ω(v̇ − v̂), and thereby g(α̇) = 4π2ω(v̇ − v̂); see Eq. (II.96). For
clarity, we now set

n
set
=nc

In most cases encountered in practice, the standard basis of lattice Zn is far from being
orthogonal for the inner product induced by Ω. In other terms, in this basis, Ω is far from
being diagonal. When n is large, listing the points of Zn∩E(c) may then be time consuming.

To circumvent this difficulty, we need to find a basis of Zn in which the matrix of ω, Ω̄,
is as diagonal as possible, with diagonal terms of the same order of magnitude (as much as
possible). Such a basis is said to be a ‘reduced basis’ of lattice (Zn, ω). As Ω is the inverse
of the variance-covariance matrix of the closure-phase vector [see Eqs. (C.3) and (II.70)],
exhibiting a reduced basis amounts to performing a decorrelation process, hence the title
of Sect. A3.1. As specified in Sect. A3.2, the discrete search is performed in the selected
reduced basis.

C.1 Decorrelation method
The decorrelation methods to be implemented must somehow refer to the principle of the
LLL algorithm, an algorithm devised by Lenstra, Lenstra & Lovász (1982) (see, e.g., Cohen
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(1996)). The approach presented in this section corresponds to the ‘new implementation’ of
this algorithm devised by Luk & Tracy (2008).

One then starts from the Cholesky factorization

Ω = RtR (C.4)

in which R is an upper-triangular matrix with positive diagonal elements. Note that this
Cholesky factor R can be directly obtained from Tc by QR factorization; see, e.g., Sect. 7.1
in Lannes & Gratton (2009). The procedure proposed by Luk & Tracy (2008) provides a
reduced upper-triangular matrix of the form

R̄ = QRZ (C.5)

in which Q is an orthogonal matrix (Q−1 = Qt), and Z is a unimodular matrix. (A uni-
modular matrix is a square integer matrix with determinant ±1; its inverse is also an integer
matrix.) Denoting by r̄`,m, the matrix elements of R̄, let us set

κ̄`
def
=
r̄`,`+1

r̄`,`
(1 ≤ ` < n)

Luk and Tracy define Q and Z so that the following LLL conditions are satisfied:

(i) r̄`,` > 2|r̄`,m| (for 1 ≤ ` < m ≤ n)

(ii) r̄2
`,` ≥ (γ − κ̄2

`−1)r̄2
`−1,`−1 (for 2 ≤ ` ≤ n)

with 1/4 < γ < 1

In practice, for optimal decorrelation, γ is set equal to 0.999. From Condition (i), we have

κ̄2
` < 1/4

It then follows from Condition (ii) that

r̄2
`,` ≥

3

4
r̄2
`−1,`−1 (for 2 ≤ ` ≤ n) (C.6)

This pointed out, r̄`,` is generally less than r̄`−1,`−1.
According to Eqs. (C.2) to (C.5), we have, since QtQ is the identity on Rn,

ω(v̇ − v̂) = ‖R(v̇ − v̂)‖2
Rn

= ‖R̄(¯̇v − ¯̂v
)‖2

Rn

(C.7)

where

¯̇v
def
=Z−1v̇, ¯̂v

def
=Z−1v̂ (C.8)

The selected reduced basis is defined by the column vectors of Z . The entries of ¯̇v are
therefore the components of the integer-ambiguity vector v̇ in that reduced basis, and likewise
for ¯̂v. The integer matrices Z and Z−1 are progressively built through the process. Let us
finally note that Q is not explicitly built.
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C.2 Discrete search process
In this section, we identify the points of Zn ∩ E(c) in the reduced basis defined by Z .

From Eq. (C.7), we have ω(v̇− v̂) = ω̄(¯̇v− ¯̂v), where ω̄ is the quadratic form with matrix
Ω̄ = R̄tR̄. For clarity, in the remainder of this section, we will omit the bars on v̇, v̂, ω, Ω
and R. As

ω(v̇ − v̂) =
[
R(v̇ − v̂)

]t[
R(v̇ − v̂)

]
we have

ω(v̇ − v̂) =
n∑
`=1

w2
` (C.9)

where

w`
def
=

n∑
m=`

r`,mv
(m) (C.10)

with

v(m) def
= v̇(m) − v̂(m) (C.11)

Here, we have implicitly set v def
= v̇ − v̂ and w def

=Rv; v̇(m) is the mth component of v̇ (in the
selected basis), i.e., the mth integer ambiguity (in that basis), whereas v̂(m) is the mth com-
ponent of the float solution v̂ (in the same basis).

We now show that the ambiguity vectors v̇ of E(c) can be identified by ‘conditioning,’
successively, their components v̇(n), v̇(n−1), . . . , v̇(1). Given some p ≤ n, assume that

1) when p is strictly less than n, the ambiguities v̇(`) for ` = n, n− 1, . . . , p+ 1 have
already been conditioned properly;

2) the ambiguities v̇(`) for ` = p, p− 1, . . . , 1 have not been conditioned yet.

The problem is to define the values of v̇(p) so that the ambiguity vector v̇ thus progressively
defined (if possible) lies in ellipsoid E(c).

Conditioning interval for v̇(p). The following condition must then be satisfied [see
Eqs. (C.1), (C.7) and (C.9)]:{
w2
p ≤ c if p = n;

w2
p +

∑n
`=p+1 w

2
` ≤ c if 1 ≤ p < n

By setting

yp
def
=w2

p (1 ≤ p ≤ n) (C.12)

and

zp
def
=

{
c if p = n;

c−∑n
`=p+1w

2
` if 0 ≤ p < n

(C.13)
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the above conditions are equivalent to

yp ≤ zp (1 ≤ p ≤ n) (C.14)

For 0 ≤ p < n, zp can be written in the form

zp =
(
c−∑n

`=p+2w
2
`

)− w2
p+1

We thus have the recurrence formula

zp = zp+1 − yp+1 (0 ≤ p < n) (C.15)

Note that

yn =
[
rn,nv

(n)
]2
, zn = c (C.16)

From Eqs. (C.14) and (C.12), |wp|must be less than or equal to√zp; we must therefore have

−√zp ≤ wp ≤ √zp (C.17)

Let us now expand wp in the form [see Eq. (C.10)]

wp = rp,pv
(p) + w̃p (C.18)

where

w̃p
def
=


0 if p = n;

n∑
m=p+1

rp,mv
(m) if 1 ≤ p < n

(C.19)

As rp,p is positive [see Condition (i)], Equation (C.17) is therefore equivalent to

− 1

rp,p
(
√
zp + w̃p) ≤ v(p) ≤ 1

rp,p
(
√
zp − w̃p)

It then results from Eq. (C.11) that v̇(p) must lie in the ‘conditioning interval’

Jp def
=
[
tp −

√
zp

rp,p
tp +

√
zp

rp,p

]
(1 ≤ p ≤ n) (C.20)

where

tp
def
= v̂(p) − w̃p

rp,p
(C.21)

The width of this interval (which centred on tp) is equal to 2
√
zp/rp,p. In the conditioning

procedure, as zp−1 is less than or equal to zp [see Eqs. (C.15) and (C.12)], and rp−1,p−1 is
generally greater than rp,p, the width of Jp is gradually reduced. In the case where there
exists no integer in Jp, ambiguity v̇(p) cannot be conditioned. This means that ellipsoid E(c)
does not include any ambiguity vector of Zn whose last n − p components are the v̇` for
` = p+ 1, . . . , n.

112



C.2. DISCRETE SEARCH PROCESS

Listing the ambiguity vectors v̇ of E(c). We are now ready to start listing the points of
Z
n ∩ E(c). To follow the process described below, it is convenient to consider v̇ as a column

vector with v̇(n) at the top, and v̇(1) at the bottom. In practice, of course, the entries are left in
their original order, from 1 to n.

We first set p set
=n. From Eqs. (C.20) and (C.21), we have, since w̃n = 0 and zn = c [see

Eqs. (C.19) and (C.13)],

Jn def
=
[
v̂(n) −

√
c

rn,n
v̂(n) +

√
c

rn,n

]
Provided that c is sufficiently large, Jn includes some integer(s). Ambiguity v̇(n) is then set
equal to the ‘integer rounded centre’ of Jn, i.e., the integer of Jn the closest to its centre; v̇(n)

being thus conditioned, we compute [see successively Eqs. (C.11), (C.16), (C.15) and (C.19)]

vn, yn, zn−1 = zn − yn, w̃n−1 = rn−1,nv
(n)

We then set p set
=n − 1, and define the conditioning interval Jn−1; see Eq. (C.20). Likewise,

v̇(n−1) being set equal to the integer rounded centre (if any) of Jn−1, we compute

vp, yp, zp−1 = zp − yp, w̃p−1 =
n∑

m=p

rp−1,mv
(m)

We then set p set
=n − 2, and define the conditioning interval for ambiguity v̇(n−2); ambi-

guity v̇(n−2) is then conditioned. We then proceed similarly for conditioning the ambigui-
ties v̇(n−3), . . . , v̇(1).

Without going into further details, a sequence of n entries v̇(p) from p = n to p = 1
(if any) can thus be obtained. Such a sequence can be visualized as a complete downward
walk of a ‘tree-data structure.’ Clearly, from the root node (or vertex) v̇(n), we now know
the way of creating its descendants (or child nodes) if any. We are thus able to generate an
‘ordered directed tree’ whose nodes are (associated with) the coordinates v̇(p) of the points v̇
of Zn ∩ E(c), if any. Note that some paths may be incomplete. Indeed, some conditioning
intervals Jp may include no integer; see Eqs. (C.20) and (C.21).

There exists a one-to-one map between the ‘directed complete paths’ in that tree and the
points v̇ of Zn ∩ E(c). Searching for all the points contained in E(c) amounts therefore to
finding all the existing complete paths in this ordered directed tree. Many possible ‘tree-
walking’ algorithms can be devised. We present below the principle of the algorithm that
we have implemented to obtain the results presented in Sect. II.6. Note that, by convention,
trees are drawn growing downwards (as in genealogical trees). By definition, a subtree from
a given node v̇(p) is the tree having v̇(p) as root node and all its descendants in the original
tree.

For simplicity, let us assume that we have obtained a point v̇ (if any) corresponding to one
path from the root level p = n to the lowest level p = 1.

We then add the points (if any) corresponding to the complete paths obtained by simply
using the brothers of v̇(1).

We then successively consider all the brothers at level p = 2 of the parent node v̇(2), and
for each of them walk down the corresponding subtree (if any).
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We repeat the process at level p = 3 by exploring, successively, all the brothers of v̇(3),
and walking down all the corresponding subtrees.

We continue this ‘up-and-down’ process at levels p = 4, p = 5, and so on, until reaching
level p = n, thus ending our exploration of all the possible complete paths of this tree.

Values ofω(v̇ − v̂) for v̇ inZn ∩ E(c). Let us now concentrate on the conditioning process
at level p = 1. Denoting by k0 the integer rounded centre of J1, we first set v̇(1) set

= k0; see
Eqs. (C.20) and (C.21) for p = 1. We then compute [see Eqs. (C.18) and (C.11)]

w1 = r1,1(k0 − v̂(1)) + w̃1 (C.22)

and y1 = w2
1 . According to Eqs. (C.9), (C.13) and (C.15), the value of ω(v̇− v̂) at the integer

ambiguity vector v̇ thus conditioned is given by the formula

ω(v̇ − v̂) = c− z0

= c− (z1 − y1)
(C.23)

The brothers of v̇ (if any) are of the form v̇ + ku̇1, where u̇1 is the vector with components
u̇

(1)
1 = 1 and u̇(m)

1 = 0 for m > 1. The corresponding values of ω are then obtained via the
variational formula [see Eq. (C.7)]

ω
(
(v̇ − v̂) + ku̇1

)
= ω(v̇ − v̂)

+ 2k(v̇ − v̂)tRtRu̇1 + k2ω(u̇1)

As

(v̇ − v̂)tRtRu̇1 = [R(v̇ − v̂)]tRu̇1 = w1r1,1

and

ω(u̇1) = u̇t
1R

tRu̇1 = [Ru̇1]tRu̇1 = r2
1,1

we therefore have

ω
(
(v̇ + ku̇1)− v̂) = ω(v̇ − v̂) + 2(kr1,1)w1 + (kr1,1)2

i.e.,

ω
(
(v̇ + ku̇1)− v̂) = ω(v̇ − v̂) + bk(c+ bk) (C.24)

where bk
def
= kr11 and c def

= 2w1. In our algorithms, this formula is intensively used.

Remark A3.2.1: Search for v̌ only. When one simply wants to identify the point v̌ for which
the smallest value of ω(v̇− v̂) is attained, the up-and-down algorithm can often be shortened.
Indeed, from Eqs. (C.13) and (C.15), we have∑n

`=pw
2
` = c− zp−1

= c− (zp − yp)
(2 ≤ p ≤ n)

Consequently, when for some node v̇(p) (with p ≥ 2), [c− (zp − yp)] is greater than (or equal
to) the smallest value of ω(v̇ − v̂) already attained in the process, the subtree from that node
can be ignored (pruning).
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To save CPU time, it then also strongly recommended to span each ambiguity interval in
an alternate manner around its integer rounded centre. Moreover, from the outset, the value
of c may be reduced via the ‘bootstrapping operation’ described in Remark A3.2.2. As it
is the case in GNSS (see, e.g., Lannes & Teunissen (2011)), finding v̌ with n = 100 (for
example) can then be done in real time.

Remark A3.2.2: Bootstrapping operation. Consider the smallest ellipsoid E(c) including
some integer-ambiguity point v̇, for instance the zero point of Zn: v̇0 [Eq. (II.97)]. From
Eqs. (C.1), (C.2) and (C.7), we have

c
set
= c(v̇) = ‖w∗‖2

Rn where w∗
def
=R(v̂ − v̇) (C.25)

To reduce the size of E(c), we now consider the impact on c of an integer variation of the pth
component of v̇.

Let u̇p be the integer vector whose components are all zero, except u̇(p)
p which is equal to

unity. Denoting by A the column matrix formed by the pth column of R, we have, for any k
in Z,

c(v̇ + ku̇p) = ‖w∗ − Ak‖2
Rn (C.26)

If k was a real number x, the minimum of c in x would be obtained for the solution of the
normal equation AtAx = Atw∗. Here, this ‘float solution’ is therefore given by the formula

x◦ = b/a where a
def
=AtA, b

def
=Atw∗ (C.27)

As w∗ − Ak ≡ (w∗ − Ax◦)− A(k − x◦), we have

‖w∗ − Ak‖2
Rn

= ‖w∗ − Ax◦‖2
Rn

+ ‖A(k − x◦)‖2
Rn

= ‖w∗ − Ax◦‖2
Rn

+ a(k − x◦)2

Indeed, (w∗ − Ax◦ | Ah)Rn = 0 for any h in R, and in particular for h = k − x◦. The
minimum of c in k is therefore obtained for the integer k◦ closest to x◦:

k◦ = bb/ae (C.28)

As ‖w∗−Ak‖2
Rn

= ‖w∗‖2
Rn

+ ‖Ak‖2
Rn
− 2(w∗ | Ak)Rn , we have [see Eqs. (C.26) and (C.25)]

c(v̇ + k◦u̇p) = c(v̇) + d

where

d = ‖Ak◦‖2
Rn
− 2[Atw∗]k◦

= ak2
◦ − 2bk◦

= k◦(ak◦ − 2b)

(C.29)

When k◦ is different from zero [see Eq. (C.28)], d is negative. We then successively set∣∣∣∣∣∣∣
c

set
= c + d

v̇
set
= v̇ + k◦u̇p

w∗
set
=w∗ − Ak◦

(C.30)
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We have thus found a way of reducing the size of E(c) in an elementary manner. The boot-
strapping operation is based on this principle. One starts with c

set
= c0 ≡ c(v̇0) [for which

w∗ = Rv̂ from Eq. (C.25)], the operations (C.30) being performed for p = n, n− 1, . . . , 1 in
a cyclical manner, until c does not change all over a cycle. In the context of Remark A3.2.1,
the discrete search for v̌ is restricted to the ellipsoid thus obtained.
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Trust-region method

For the functional f of the problem considered in Sect. II.5, the principle the trust-region
method can be presented as follows (for further details, see Moré (1983)).

Let us consider the following quadratic expansion of f at some pupil-phase point α [see
Eqs. (II.102) and (II.103)]:

q(h)
def
= c+ (b | h)Vb +

1

2
(h | Ah)Vb (D.1)

where

c
def
= f(α), b

def
= f ′(α), A

def
= f ′′(α) (D.2)

According to these definitions, c is the value of the chord functional at α, b is its gradient,
and A is its Hessian [see Eq. (II.104)]; (· | ·)Vb is the inner product on the Euclidean space Vb
[see Eq. (II.25)]. In this appendix, as no confusion may arise, subscript Vb is now omitted.

The iteration of the trust-region method is of the traditional form α
set
=α+h. The original-

ity of this method is to choose h, at each iteration, so that the smallest value of q is attained
in the largest possible ball centred on the origin; the trust ball is the corresponding ball cen-
tred on α. The degree of confidence in the approximation f(α + h) ' q(h), and thereby the
size of the trust ball, is controlled throughout the process by means of the Armijo test; see
Sect. A4.2. One thus goes down ‘continuously’ to a local minimum. We now clarify these
points.

D.1 Local quadratic minimization
Given % ≥ 0, let us consider the functional

q%(h)
def
= q(h) +

1

2
%‖h‖2 (D.3)

Note that

q%(h) = c+ (b | h) +
1

2
(h | A%h) (D.4)

where

A%
def
=A+ %I (D.5)
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Here, I is the identity operator (on Vb). The gradient and the Hessian of q% at h are equal
to b+ A%h and A%, respectively.

Let λmin be the smallest eigenvalue of A. Clearly [see Eq. (D.5)], the eigenvalues of A%
are equal to those of A translated by %. Subject to the condition

% ≥ %0
def
= max(−λmin + ε, 0) (D.6)

where ε is a positive number arbitrarily small, A% is therefore positive definite, and thereby
invertible. The minimum of q% is then attained at the point h% such that b+ A%h% = 0; h% is
therefore the solution of the equation

A%h% = −b (D.7)

Note that the conjugate-gradient method is well suited for solving this equation.

D.2 Trust ball

For any h 6= h%, we have (for any % ≥ %0)

q(h) +
1

2
%‖h‖2 > q(h%) +

1

2
%‖h%‖2

hence: q(h) > q(h%) + 1
2
%(‖h%‖2 − ‖h‖2). This relation shows that in the ball B% centred on

the origin with radius ‖h%‖, the smallest value of q is attained for h = h%. More precisely, for
any h lying in B%, and different from h%, we have q(h) > q(h%). From Eqs. (D.7) and (D.5),
the size of B% is a decreasing function of %. This size is controlled via the Armijo test.

Armijo Test. Given some positive number < 1 (of the order of 0.3), this test consists in
verifying whether the following inequality is satisfied or not:

f(α)− f(α + h%) > [q(0)− q(h%)] (D.8)

Note that q(0) = f(α); see Eqs. (D.1) and (D.2). Clearly,

q(0)− q(h%) = −(b | h%)− 1

2
(h% | Ah%)

As (A+ %I)h% = −b [see Eqs. (D.7) and (D.5)], we therefore have

q(0)− q(h%) =
1

2

[
%‖h%‖2 − (b | h%)

]
(D.9)

If the Armijo test is satisfied, h% is a possible iteration step; otherwise, ‖h%‖ is too large;
% must then be increased. The trust ball can therefore be determined by a search algorithm
in % based on the Armijo test. In principle, the initial value of % must be chosen as small as
possible.
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D.3 Special case where A is positive definite

For the chord functional of Sect. II.5, the Hessian is given by the formula [see Eq. (E.6) in
A5]

A = 2B∗[cos(ϕ̂c −Bα)]B

As explicitly shown in Sect. A5.2, the condition

|arc(ϕ̂c −Bα)| < π/2 (all over E )

is a sufficient condition for A to be positive definite, and thereby invertible. When this condi-
tion is satisfied, the initial value of % can be set equal to zero. In fact, for that functional, the
Armijo test proves then to be satisfied. As a result, according to Eqs. (D.7), (D.5) and (D.2),
the trust-region iteration then reduces to the Newton-Raphson iteration: h is the solution of
the equation

[f ′′(α)]h = −f ′(α) (D.10)

D.4 General case
When the condition |arc(ϕ̂c − Bα)| < π/2 is not satisfied on some baseline(s), the smallest
eigenvalue of A is to be computed. For this purpose, we first introduce the following defini-
tion: the dominant eigenvalue of A is the eigenvalue of A that is the largest in absolute value.
We can then proceed as follows.

Firstly, the following ‘power iteration’ provides the dominant eigenvalue λ of A (and an
eigenvector v such that Av = λv):

Step 0. Choose some vector u (in Vb); u must not be an eigenvector of A. For example, for
our Hessian, set all the components u(i) of u equal to unity.

Step 1. Compute v set
=Au; then, set λ equal to the dominant component of v, i.e., the largest

component of v in absolute value. Then, normalize v as follows: v set
= v/λ.

Step 2. If max |v(i)−u(i)| < 10−5 (for example), terminate the process; otherwise, set u = v,
and go to Step 1.

When the eigenvalue λ thus found is negative, λ is the smallest eigenvalue ofA: λmin = λ.
When this is not the case, i.e, when λ is positive, λmin is computed via the dominant

eigenvalue λ′ of the operator A′ def
= I − A/λ. Indeed, we then have λ′ = 1 − λmin/λ, hence

λmin = λ(1 − λ′). The power iteration that yields λ′ is of course similar to that used for
obtaining λ.
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Appendix E

Gradient and Hessian of the chord
functional

In this appendix, we give explicit expressions for the gradient and the Hessian of the chord
functional (II.101):

f : Vb → R, f(α) = ‖c(α)‖2
w (E.1)

where

c(α)
def
= 2 sin

( ϕ̂c −Bα
2

)
(E.2)

E.1 Gradient

The gradient of f at α is the vector f ′(α) of Vb involved in the relation

f(α + h) ' f(α) + (f ′(α) | h)Vb (E.3)

From Eqs. (E.1) and (E.2), we have

f(α + h) ' ‖c(α) + c′(α)h‖2
w

' f(α) + 2
(
c(α) | c′(α)h

)
w

where

c′(α)h ' 2
[
cos
( ϕ̂c −Bα

2

)] [
−1

2
Bh
]

= −
[
cos
( ϕ̂c −Bα

2

)]
Bh

As a result,

f(α + h) ' f(α)− 2
(
B∗
[
cos
( ϕ̂c −Bα

2

)]
c(α)

∣∣∣ h)
Vb
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Here, the adjoint of B is the operator from Ew into Vb explicitly defined by Eq. (II.59). From
Eq. (E.2), we have[
cos
( ϕ̂c −Bα

2

)]
c(α) = sin(ϕ̂c −Bα)

It then follows from Eq. (E.3) that the gradient of f at α is given by the formula

f ′(α) = −2B∗ sin(ϕ̂c −Bα) (E.4)

E.2 Hessian
The Hessian of f at α is the operator f ′′(α) on Vb involved in the relation

f ′(α + h) ' f ′(α) + [f ′′(α)]h (E.5)

From Eq. (E.4), we therefore have

[f ′′(α)]h = 2B∗[cos(ϕ̂c −Bα)]Bh

hence

f ′′(α) = 2B∗[cos(ϕ̂c −Bα)]B (E.6)

We now introduce a sufficient condition for f ′′(α) to be positive definite and thereby
invertible. For clarity, let us set εα

def
= arc(ϕ̂c −Bα) [Eq. (II.81)]. When

|εα| < π/2 (all over E ) (E.7)

we have f ′′(α) = 2
[√

cos εαB
]∗ [√

cos εαB
]
, hence, for any h in Vb,(

h
∣∣ [f ′′(α)]h

)
Vb

= 2
(√

cos εαBh
∣∣ √cos εαBh

)
w

= 2
∥∥√cos εαBh

∥∥2

w

The condition
(
h
∣∣ [f ′′(α̇)]h

)
Vb

= 0 then implies that h = 0; indeed, the null space of B is
reduced to {0} [Eq. (II.34)]. Condition (E.7) is therefore a sufficient condition for f ′′(α) to
be positive definite.
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Appendix F

Proof of Property RSR

The proof of Property REDUCESWAPRESTORE can be obtained as follows.
From Eqs. (III.41) and (III.36), we have

(UjMj)
TDj (UjMj) =

[
ŭ 1

1 0

][
dj−1 0

0 dj

][
ŭ 1

1 0

]
i.e., explicitly,

(UjMj)
TDj (UjMj) =

[
d̄j−1 dj−1ŭ

dj−1ŭ dj−1

]
Let us now factorize this matrix in the form

UTDU =

[
1 0

u 1

][
cj−1 0

0 cj

][
1 u

0 1

]

=

[
cj−1 cj−1u

cj−1u cj + cj−1u
2

]
By identifying the corresponding terms, we have

cj−1 = d̄j−1 cj−1u = dj−1ŭ cj + cj−1u
2 = dj−1

As a result, u = ū and cj + d̄j−1u
2 = dj−1, hence

cj = dj−1 − d̄j−1ŭ
2
d2
j−1

d̄2
j−1

= dj−1

(
1− ŭ2 dj−1

d̄j−1

)
=
dj−1

d̄j−1

(d̄j−1 − ŭ2dj−1)

=
dj−1

d̄j−1

dj

= d̄j
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Consequently, (UjMj)
TDj (UjMj) = ŪT

j D̄j Ūj .
The corollary results from the fact that (see Eq. (III.41))

Ūj(UjMj)
−1 =

[
1 ū

0 1

][
0 1

1 −ŭ

]
=

[
ū 1− ŭū
1 −ŭ

]

i.e., Ūj(UjMj)
−1 = Gj , hence GjUjMj = Ūj . We then have

(UjMj)
TDj (UjMj)

= (GjUjMj)
T (G−1

j )TDjG
−1
j (GjUjMj)

= ŪT
j D̄j Ūj

hence (G−1
j )TDjG

−1
j = D̄j
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Appendix G

Elementary notions on GNSS graphs

In this appendix, we present some preliminary notions of algebraic graph
theory; these elementary notions are used throughout the paper. Fur-
ther details about the functional spaces and the operators involved in the
GNSS problems can be found in Sect. IV.3. We first define the notions of GNSS grid
and GNSS graph (Sect. G.1). We then introduce the concepts of spanning tree and loop
(Sect. G.2).

G.1 GNSS grid and graph
For our present purpose (see Sects. IV.2.1 and IV.2.2 in particular), we consider a typical
situation in which the network has nr receivers ri and ns satellites sj . (We recall that ‘satellite’
should be here understood as ‘satellite transmitter;’ see Sect. IV.1.) The ‘network grid’ Go

then includes nr rows, ns columns, and nrns points; see Fig. G.1. A function such as N(i, j)
for example takes its values on some points (i, j) of that grid. Those points form a subgrid
denoted by G.

In the example presented in Fig. G.1, the points (i, j) of G are displayed as large dots
in the upper part of this figure. Those points correspond to the ‘edges’ (ri, sj) of the graph
associated with the GNSS network; this graph is displayed in the lower part of Fig. G.1;
E denotes the set of its edges; ne is their number. The receivers and the satellites involved
in the definition of these edges define the ‘vertices’ of this graph; V denotes the set of its
vertices, and nv their number: nv = nr + ns. A graph such as G is therefore defined by the
pair (V ,E ): G ≡ G (V ,E ). We now assume that G is connected: given any two vertices
of V , there exists a path of edges of E connecting these vertices; see, e.g., Biggs (1996).

G.2 GNSS spanning tree and loops
As illustrated in Fig. G.2, a spanning tree of G ≡ G (V ,E ) is a subgraph Gst ≡ Gst(V ,Est)
formed by nv vertices and nv − 1 edges, with no ‘cycle’ in it. Here, ‘cycle’ is used in the
sense defined in algebraic graph theory; see, e.g., Biggs (1996). In the GNSS community, to
avoid any confusion with the usual notion of wave cycle, the term of ‘loop’ can be substituted
for that of ‘cycle.’ In this context, the number of loops defined through a given fixed (but
arbitrary) spanning tree is the number of edges of E that do not lie in Est . These edges,
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Figure G.1: Subgrid G and graph G . In the example described here, the network grid Go includes twelve points
(nr = 3, ns = 4), while its subgrid G includes nine points only; these points are shown as large dots. The
corresponding graph G includes seven vertices and nine edges: nv = nr + ns = 7, ne = 9; r1 does not see s2,
r2 does not see s3, and r3 does not see s1.

c(`)
def
= (ri` , sj`), are said to be ‘(loop-)closure edges’ (see Fig. G.2). Their number is denoted

by nc:

nc = ne − nst (G.1)

where

nst
def
= nv − 1 = nr + ns − 1 (G.2)

Many spanning trees of the same graph can be constructed. Here, we are going to present
the Kruskal algorithm which is often used in algebraic graph theory; see Biggs (1996). The
first step of this algorithm consists in ordering the edges of E , thus generating a sequence of
the form {(riq , sjq) : q = 1, . . . , ne}. The spanning tree is then obtained as follows. Set
q = 0, nst = 0, and Est = ∅ (the empty set). Then,

(i) if nst = nv − 1, terminate the process; otherwise, set q := q + 1;

(ii) when the vertices of edge (riq , sjq) are not connected via edges of Est, set Est := Est ∪
{(riq , sjq)}, nst := nst + 1; then go to step (i).

By construction, the spanning tree thus found depends on how the edges are ordered in
the first step. The subgrid of G corresponding to the edges of Gst is denoted by Gst; Gc is that
corresponding to the closure edges:

Gc
def
= {(i, j) ∈ G : (i, j) /∈ Gst} (G.3)
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s s ss s r4s r6 r6
r1

r2

r3

s1 s2 s3 s4

r1 r2 r3

s1 s2 s3 s4

Figure G.2: GNSS spanning tree and loops. Here, the edges of the selected spanning tree Gst of the graph G
introduced in Fig. G.1 are shown as thick lines. The points of the corresponding subgrid Gst are shown as large
dots. The remaining points of G (the small dots of G) correspond to the (loop-)closure edges (the thin edges
of G ). We then have one loop of order four, and 2 loops of order six: (r2, s4, r1, s1), (r3, s3, r1, s1, r2, s2)
and (r3, s4, r1, s1, r2, s2). In G, these orders are shown as small numbers.

Clearly, Gc includes nc loop-closure points; see Eq. (G.1) and Fig. G.2.
To illustrate the action of the Kruskal algorithm, let us consider the graph G of Fig. G.1.

To build a spanning tree of G from its grid G, let us order the edges of G by scanning G
from left to right and top to bottom. The algorithm examines the edges of G in that order
and adds them to the current version of Est when condition (ii) holds. In this example, this
is the case for the first five edges; the vertices s1, s3, s4, r1, r2 are thus connected. The sixth
edge, (r2, s4), therefore includes two vertices already connected. This edge is therefore the
first closure edge: (̧1) = (r2, s4). The next edge, (r3, s2), is added to Est since it corresponds
to the first connection of s2 with the edges of the current version of Est. All the vertices
of G are then connected. The remaining edges are therefore closure edges: (̧2) = (r3, s3),
(̧3) = (r3, s4). The Gst-edge set thus obtained is the following (see Fig. G.2):

Est := {(r1, s1), (r1, s3), (r1, s4), (r2, s1), (r2, s2), (r3, s2)}

Note that this procedure does not provide the edge path of Est that links the vertices of the
closure edge under consideration. Clearly, closure paths are not needed to be known for the
construction of Gst. In simple cases such as that of Fig. G.2, such a path can visually be ob-
tained by moving on grid G horizontally and vertically, in alternate manner from the selected
closure-edge point; see the related telescoping sums introduced in Sect. IV.3.3. If need be,
the edges paths can be obtained automatically in an algebraic manner; see Sect. IV.3.4.
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Appendix H

The S-system approach

In this appendix, we give a survey of the general framework of the S-system approach; for fur-
ther details and related applications, see Baarda (1973); Teunissen (1984); de Jonge (1998);
Teunissen & Odijk (2003).

Denoting by E a Euclidean space of dimension n, we consider some linear operator A
from E into Rm with m ≥ n. The problem to be solved in a sense to be defined is governed
by a relation of the form

Aξ = β (H.1)

The components of ξ are the unknown parameters of the problem, whereas β is the data
vector. In many situations encountered in practice, A is not of full rank; its null space (i.e.,
its kernel) is not reduced to {0}:

n0
def
= dim(kerA) ≥ 1 (H.2)

In the S-system approach, this rank defect is removed via an appropri-
ate reduction and redefinition of the unknown parameters. Those new pa-
rameters are the ‘estimable functions of parameters’ of some minimum-
constrained problem thus defined; see, e.g., de Jonge (1998). We now give a geomet-
rical interpretation of the S-system principle.

Let us choose some subspace F of E of dimension n− n0 such that F ∩ kerA = {0};
E can then be regarded as the direct sum of F and kerA (see Fig. H.1):

E = F⊕ kerA (H.3)

The ‘estimable functional variable’ is then defined as the oblique projection of ξ on F

along kerA: §ξ. The oblique projection (operator) § is the §-transformation of the S-system
method; see, e.g., de Jonge (1998).

We now show how the S-system approach can provide the matrix of § in the standard
basis of E. The estimable functional variable §ξ, which basically depends on the choice of F,
can thus be explicitly defined.

According to its definition,

§ξ = ξ − η (H.4)
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Figure H.1: S-system principle. In this geometrical representation, E is a Euclidean space of dimension n. The
unknown functional variable ξ is a vector of E. The null space of the operator A involved in Eq. (H.1) is of
dimension n0: dim(kerA) = n0; F is a subspace of E of dimension n− n0 such that F ∩ kerA = {0}; E can
then be regarded as the direct sum F ⊕ kerA. In the S-system approach, the ‘estimable functional variable’ is
then defined as the oblique projection of ξ on F along kerA: §ξ.

where η is the vector of kerA such that ξ − η lies in F; see Fig. H.1. Denoting by [W ] a
matrix whose column vectors form a basis of kerA, we have

[η] = [W ][ζ] (H.5)

where ζ is some vector of Rn0 . Clearly, the entries of [η], [W ] and [ζ] are expressed in the
standard basis of E. Let [S⊥] now be a matrix whose column vectors form a basis of F⊥, the
orthogonal complement of F in E. As ξ − η is orthogonal to all the vectors of F⊥, we have
(in particular) [S⊥]T

(
[ξ]− [W ][ζ]

)
= 0, i.e.,

[S⊥]T[W ][ζ] = [S⊥]T[ξ] (H.6)

As shown further on, [S⊥]T[W ] is invertible. It then
follows that [ζ] =

(
[S⊥]T[W ]

)−1
[S⊥]T[ξ], hence from

Eqs. (H.4) and (H.5),

[§] = [I]− [W ]
(
[S⊥]T[W ]

)−1
[S⊥]T (H.7)

where [I] is the identity matrix on E.
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We now show that the n0-by-n0 matrix [M0]
def
= [S⊥]T[W ] is invertible.

Proof. Let ξ⊥ be the projection of some vector η of kerA on F⊥; see Fig. H.1. By
considering the case where ξ = ξ⊥, Eq. (H.6) yields [M0][ζ] = [S⊥]T[ξ⊥]. The condi-
tion [M0][ζ] = 0 implies [S⊥]T[ξ⊥] = 0, hence ξ⊥ = 0. As a result, η then lies in F. As
F ∩ kerA = {0}, it follows that η = 0, hence ζ = 0. The null space of [M0] is therefore
reduced to {0}; but [M0] is an n0-by-n0 matrix; [M0] is therefore invertible.

Remark.0.1: In the S-system approach as it is implemented by de Jonge (1998) for ex-
ample, one chooses some basis for F. The corresponding matrix is denoted by S; F is then
regarded as the range of S; [S⊥]Tξ is called the ‘S-basis.’ Note that [S⊥] is then denoted
by S⊥ ·

131



APPENDIX H. THE S-SYSTEM APPROACH

132



Appendix I

QR implementation

In Sect. I.1, we first recall the notion of QR factorization. In Sect. I.2, we then show how
the float version of Eq. (IV.82) can be solved in the LS sense recursively. In the closure-
ambiguity approach, the number of entries of v, nc, is a non-decreasing function of k; see
Sect. IV.6.3. In Sect. I.2, we consider the case where nc is constant; the cases where at some
epochs k, nc increases is dealt with in Sect. I.2.1. In that QR framework, we finally describe
(in Sect. I.3) the construction of the matricesAk,Bk and bk involved in Eq. (IV.82).

I.1 QR factorization
Let us consider the following LS float problem. Given some matrix A ∈ Rm×n of full rank
n (≤ m), find

x̂
def
= argmin

x∈Rn

‖Ax− y‖2
Rm

where ‖·‖Rm is the Euclidean norm of Rm. With regard to numerical accuracy, the best way of
solving this problem is to use a method based on the QR factorization of A (see, e.g., Björck
(1996)):

A = Q

[
R
0

]
(I.1)

where R ∈ Rn×n is an upper-triangular matrix with positive diagonal terms, and Q ∈ Rm×m

is an orthogonal matrix: QTQ = Im (the identity matrix on Rm). We thus have

‖Ax− y‖2
Rm = ‖QT(Ax− y)‖2

Rm

=

∥∥∥∥QTQ

[
R
0

]
x−QTy

∥∥∥∥2

Rm

Setting QTy = z + z′ where z and z′ lie in Rn and Rm−n respectively (see Fig. I.1), it follows
that

‖Ax− y‖2
Rm = ‖Rx− z‖2

Rn + ‖z′‖2
Rm−n
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A y

R z

z′

0

0

QTy

Figure I.1: LS solution via QR factorization. The action of QT on A and y yields the basic QR structure
sketched here: the upper-triangular matrix R and the column matrix z. The solution of the equation Ax = y in
the LS sense is then given by Eq. (I.2): x̂ = R−1z.

The LS float solution is therefore given by the relation

x̂ = R−1z (I.2)

As R is an upper-triangular matrix, this solution can be obtained by back substitution.
In the case where x is confined to Zn, the solution x̌ of the corresponding nearest-lattice-

point (NLP) problem is therefore defined as follows:

x̌ = argmin
x∈Zn

‖R(x− x̂)‖2
Rn (I.3)

Indeed, Rx− z = R(x− x̂).
According to Eq. (I.1), QR factorization consists in finding an operator QT (and thereby

an operator Q) such that QTA has the block structure [R 0]T sketched in Fig. I.1. This
operator is defined as a product of elementary orthogonal transformations. In our implemen-
tation of the method presented in this paper, the latter are Givens rotations; see Eqs. (2.3.10)
to (2.3.13) in Björck (1996)). Premultiplication of A and y by such a rotation matrix affects
only row pairs (`1, `2) of A and y. Let

a = (a2
`1

+ a2
`2

)1/2 (I.4)

For a 6= 0, this rotation matrix is defined so that[
c s

−s c

] [
a`1
a`2

]
=

[
a

0

]
(I.5)

It is easy to check that the cosine and sine values c and s are then given by the following
formulas

c = a`1/a s = a`2/a (I.6)
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K1 L1 c1

R1

B1 A1 b1

c′
1

d1

d′
1

Figure I.2: QR factorization at epoch 1. The principle of the recursive QR method is sketched here for the
first epoch with the input block matrices B1 , A1 and the data column matrix b1. The initialization process
is performed in two steps: K1 , (L1 ,L

′
1), (c1 , c

′
1) are built in the first step (see text for L′1), whereas R1 ,

(d1 ,d
′
1) are built in the second one; for the LS solution thereby obtained at epoch 1, see text.

Note that m−1 Givens rotations are required to fully process the first column of A, m−2 for
the second, and so on (see Fig. I.1).

I.2 Recursive QR factorization
As shown in this section, the float version of the following equation (Eq. (IV.82)) can be
solved in the LS sense via recursive QR factorization:
B1 0 0 0 A1

0 B2 0 0 A2

0 0
. . . 0

...
0 0 0 Bk Ak



w1

w2...
wk

 =


b1

b2...
bk


[
v
]

Throughout this section, nc is assumed to be fixed; for related notions, see Sect. 6.3 of
Björck (1996), Golub & van Loan (1989), and Bierman (1977).

Initialization: epoch 1

At epoch 1, the problem is to minimize the functional (see the first line of Eq. (IV.82))

f1(w1,v)
def
= ‖(B1w1 +A1v)− b1‖2

Rne1

The LS solution (ŵ1, v̂) is then obtained via two QR factorizations (see Fig. I.2).
1) QR factorization ofB1: the Givens rotations of this step are those required for finding

the upper-triangular matrix K1; the principle is the same as that described in Sect. I.1 for

135



APPENDIX I. QR IMPLEMENTATION

K1 L1 c1

R1→R2

K2 L2

L′
2 → 0

B1 A1

B2 A2

b1

b2

c′
1

c2

c′
2 d′

2

d1

d′
1

d2

Figure I.3: QR factorization at epochs 1 and 2. The principle of the recursive QR method is sketched here for
the first two epochs: epoch 1 with the input block matrices B1 , A1 and the data column matrix b1; epoch 2
with the input block matrices B2 , A2 and the data column matrix b2. The initialization process is performed
in two steps as described in Fig. I.2. At epoch 2, one first builds K2 , (L2 ,L

′
2), (c2 , c

′
2) like at epoch 1, and

thenR2, (d2 ,d
′
2); for the LS solution thereby obtained at epoch 2, see text.

matrix A. The modified version ofA1 thus obtained includes an upper block L1 and a lower
block L′1. Likewise, the modified version of b1 includes two column submatrices: c1 and c′1.

2) QR factorization of L′1: the Givens rotations of that step yield the upper-triangular
matrix R1. The lower part of L′1 is reduced to 0; c′1 then yields (d1 ,d

′
1); see Fig. I.2. Note

thatK1, L1 and c1 are not affected by those rotations.
At the end of this initialization stage, we thus have

f1(w1,v) = ‖(K1w1 − (c1 −L1v)‖2
R
nb1 + ‖R1v − d1‖2

Rnc + ‖d′1‖2
R
ne1−nb1−nc

The float solution in v at epoch 1 is therefore given by the formula v̂ = R−1
1 d1, hence

ŵ1 = K−1
1 (c1 −L1v̂). These solutions can therefore be computed by back substitution.

Note that ‖d′1‖2
R
ne1−nb1−nc is the square of the LS residual norm at epoch 1.
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Kk Lk ck

Rk dk

Figure I.4: Recursive QR triangular structure. According to the principle of the recursive QR method sketched
in Fig. I.3, the calculation of Rk+1 and dk+1 requires to have kept in memory the upper-triangular matrix Rk

and the column matrix dk; see text.

Next epoch: epoch 2

The functional to be minimized is then f1(w1,v) + f2(w2,v) where

f2(w2,v)
def
= ‖(B2w2 +A2v)− b2‖2

Rne2

As sketched in Fig. I.3, the LS solution (ŵ1, ŵ2, v̂) is again obtained via two QR factoriza-
tions. The first step of epoch 2 is similar to that of epoch 1; the second one is different.

1) QR factorization ofB2

One thus obtains the upper-triangular matrixK2; see Fig. I.3. The modified version ofA2

then includes an upper block L2 and a lower block L′2. Likewise, the modified version of b2

includes two column submatrices: c2 and c′2.

2) QR factorization of
[R1

L′2

]
:

The Givens rotations of the second step then operate on (R1 ,L
′
2) and (d1 , c

′
2) so as to

transform L′2 into a zero-block matrix. One thus getsR2 and (d2 ,d
′
2).

At the end of this stage, we thus have

f1(w1,v) + f2(w2,v) = ‖(K1w1 − (c1 −L1v)‖2
R
nb1 + ‖R2v − d2‖2

Rnc

+ ‖d′1‖2
R
ne1−nb1−nc + ‖(K2w2 − (c2 −L2v)‖2

R
nb2 + ‖d′2‖2

R
ne2−nb2

The float solution in v at epoch 2 is therefore given by the formula v̂ = R−1
2 d2, hence the LS

solutions in w1 and w2:

ŵ1 = K−1
1 (c1 −L1v̂), ŵ2 = K−1

2 (c2 −L2v̂)

The square of the LS residual norm at epoch 2 is then equal to ‖d′1‖2
R
ne1−nb1−nc +‖d′2‖2

R
ne2−nb2

.
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Next epochs

In summary, one thus operates, recursively, with the key structure shown in Fig. I.4: Kk,
(Lk ,L

′
k) and (ck , c

′
k) are computed fromBk,Ak and bk, the quantitiesRk and (dk ,d

′
k) be-

ing then computed from (Rk−1 ,L
′
k) and (dk−1 , c

′
κ). The generalization is straightforward;

we then have

k∑
κ=1

fκ(w1,v) = ‖(K1w1 − (c1 −L1v)‖2
R
nb1 + ‖Rkv − dk‖2

Rnc + ‖d′1‖2
R
ne1−nb1−nc

+ ‖(K2w2 − (c2 −L2v)‖2
R
nb2 + ‖d′2‖2

R
ne2−nb2

...

+ ‖(Kkwk − (ck −Lkv)‖2
R
nbk + ‖d′k‖2

R
nek−nbk

The float solution in v at epoch k is therefore given by the formula

v̂ = R−1
k dk (I.7)

hence the LS solutions in w1, . . . ,wk:

ŵκ = K−1
κ (cκ −Lκv̂) (κ = 1, . . . , k) (I.8)

The solution of the corresponding NLP problem is therefore defined as follows:

v̌ = argmin
v∈Znc

‖Rk(v − v̂)‖2
Rnc (I.9)

Indeed,Rkv − dk = Rk(v − v̂). The phase biases w̌κ are then given by the relations

w̌κ = K−1
κ (cκ −Lκv̌) (κ = 1, . . . , k) (I.10)

Their variance-covariance matrix is equal toK−1
κ [K−1

κ ]T.

I.2.1 Handling new components of the closure-ambiguity variable

We now consider the case where c,k includes na
c new closure edges (see Sect. IV.6.3); super-

script a stands for added. One then proceeds in three steps:

1) na
c closure-ambiguity entries are added at the top of column matrix v;

2) as specified in Sect. I.3.2, na
c columns are added on the right-hand side ofBk;

3) as shown in Fig. I.5, to build Rk, the last na
c lines of K and L obtained through the

first QR step are added at the top of R. Matrices Kk, Lk and ck are then updated
accordingly.
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K L c

d

R dkRk

Figure I.5: Handling new components of the closure-ambiguity variable. When new entries of v appear at
epoch k, the first columns of Ak are processed as the last columns of Bk (see Fig. I.3). The recursive QR op-
eration then yields the quantities K, L, c, R and d. To get Rk and dk, one then proceeds as illustrated here.

I.3 Construction of matrices Bk, Ak and bk
We first consider the case where the variance-covariance matrix Vk of the data involved in
the definition of bk is the identity: Vk = I . Denoting by bk the column matrix whose entries
are the values of bk on the edges of the observational graph Hk (see Sect. IV.1), we then have
bk = bk. To build Bk = Bk and Ak = Ak, we then distinguish the cases where at epoch k,
nc does not increase (Sect. I.3.1), or increases (Sect. I.3.2). The case Vk 6= I is dealt with in
Sect. I.3.3.

I.3.1 Case where nc does not increase

Matrix Bk, whose number of columns is nbk, is built from the characteristic function Hk

of Hk; see Fig. IV.1. The pth line of Bk corresponds to the pth edge (ri, sj) on
which Hk(i, j) = 1. All the matrix elements of that line are zero, except (one or) two of
them (see Eq. (IV.6) and the definition of $sk in Sect. IV.6.2):

Bp,i−1
k = 1 (for i > 1), B

p, nr−1+$sk(j)
k = −1

Matrix Ak has nc columns: the number of elements of c,k; see Sect IV.6.3 and Fig. IV.5.
According to the action of Re

k, the entries of the column associated with some closure
edge (ri, sj) are then all zero, except that corresponding to the line associated with that edge
if Hk(i, j) = 1; that entry is then set equal to unity. The lines of Ak are of course sorted as
the lines of Bk.
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I.3.2 Case where nc increases
We here consider the case where na

c new closure edge(s) appear(s) in c,k at some epoch k > 1:
nc := nc + na

c; see Sect IV.6.3.
Matrix Bp,q

k is defined as in Sect. I.3.1, but na
c columns are then added on its right-hand

side. (For example, at epoch 2 of Fig. IV.5, B2 has four additional columns.) The entries
of the column of Bk associated with some new closure edge (ri, sj) are all zero, except that
corresponding to the line associated with that edge; that entry is set equal to unity.

Matrix Ak is then built as in Sect. I.3.1, except for the new closure-edges, since they are
then taken into account in the augmented definition of Bk.

I.3.3 Case where Vk is not the identity
We here consider the general case where the variance-covariance matrix Vk is to be taken into
account. In the QR implementation under consideration, the inverse of Vk is then factorized
in the form

V −1
k = U T

k Uk (I.11)

where Uk is an upper-triangular matrix. As

(Bkwk + Akv − bk)
T V −1

k (Bkwk + Akv − bk) = ‖Uk(Bkwk + Akv − bk)‖2
R
nek

matricesBk,Ak and bk are then given by the relations

Bk = UkBk, Ak = UkAk, bk = Ukbk (I.12)

The problem is then to solve Eq. (IV.82) in the Euclidean LS sense.
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E (edge delay space), 72
Eb (edge-bias space), 73
Ec (closure delay space), 73
Est (spanning-tree delay space), 73
Vb (vertex-bias space), 72
αd(i) (= αd(i)− αd(1))), 7
αd(i) (pupil-bias phase), 7
N(i, j) (integer ambiguity of (i, j) carrier

phase measurement), 65
Vd(i, j) (visibility data function of the ob-

ject), 6
Vm(i, j) (visibility function of the model), 7
Vo(i, j) (visibility function of the object), 6
F (Fourier-transform operator), 6
Gk, 67
Hκ, 67
κ (epoch index), 65

CAA (Closure Ambiguity Approach), 67
CD (Closure Delay), 3

DD (Double Difference), 3
DD (Double Differenced), 66

GNSS (Global Navigation Satellite System),
65

GPS (Global Positioning System), 67

LLL, 3
LS (Least Squares), 3, 66, 69

PLL (Phase-Loop Locked), 4
PPP (Precise Point Positioning), 65, 70
Property 1, 16
Property 2, 25
Property P1 (E = Eb + Ec), 75
Property P2, 78

QR, 67
QR factorisation, 3

rank defect, 65, 68
RTK (Real-Time Kinematics), 3

S-system approach, 66
scalar case, 43, 44

UD (UnDifferenced), 66

Van Cittert Zernike, 6
variable

global, 3
local, 3

WL (Wide lane), 65
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Glossary

V : set of pupil elements used for the definition of the baselines of E . 8, 13, 14, 25, 151

E : set of baselines (i, j) with i < j, on which the phases Vd(i, j) are “well defined” (see
Sect. II.1.1). 7, 149

Ec : set of loop-entry baselines, i.e., baselines of E that do not lie in Est. 13

Est : set of baselines of the spanning tree Gst. 10, 13

G : phase-calibration graph (G set
= G (V ,E )). 8, 18, 38, 40, 149, 151

Gst : spanning tree of the phase-calibration graph G (Gst
set
= G (V ,Est)). 38, 149

E : Selfcal: baseline-phase space, i.e., space of real-valued functions on E . GNSS: edge-
delay space.. 12

Eb : baseline-bias phase space, i.e., range of the B operator from Vb into E. It corresponds
to the functions βb(i, j) of the form α(i)− α(j) with α(1) = 0. 13

Ec : closure-phase space, i.e., space of the functions of E that vanish on Est. 13

Est : spanning tree phase space, i.e., space of the functions of E that vanish on Ec. 13

Ew : weighted baseline-phase space. It corresponds to E endowed with the inner product
(β1, β2)w (see Eq. II.53). 20, 37, 38

Vb : Selfcal: pupil-phase space, i.e., space of real-valued functions on V . GNSS: vertex-bias
space.. 12, 13, 15

nc : number of loop-entry baselines of E (= number of baselines of Ec). 11, 19

nc3 : maximum number of independent closure phases of order three of G (= rank of C◦3 ). 18

ne : number of edges of G (= number of baselines of E ). 8

nst : number of edges of the spanning tree Gst (= number of baselines of Est). 13

nv : number of vertices of G (= number of pupil elements of V ). 8

B : baseline-bias phase operator from Vb into E; (Bα)(i, j) = α(i)− α(j). 9

Bc : operator from Vb into Ec induced by B. (Bcα)(i, j) = (Bα)(i, j) for the loop-entry
baselines and (Bcα)(i, j) = 0 on the spanning tree Gst. 13
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Bst : operator from Vb into Est induced by B. (Bcα)(i, j) = (Bα)(i, j) for the spanning tree
baselines and (Bcα)(i, j) = 0 for the loop-entry baselines. 13

B∗ : adjoint of B, relative to the inner product w (see Eqs. II.53, II.59). 20

C : phase-closure operator from E to Ec (i.e., oblique projection onto Ec along Eb). 15

C3 : usual phase-closure operator. It provides the maximum set of independent closure
phases of order three of G . 18

C◦3 : phase-closure operator. It provides all the closure phases of order three of G . 18

F : Fourier-transform operator (see Eq. II.1). 6

ϕ(i, j) : baseline phase vector used as input for the phase-calibration procedure:
ϕ(i, j) = ϕd(i, j)− ϕm(i, j). 152

Qc : orthogonal projection of E onto Ec (see Fig. II.5). 17

Qst : orthogonal projection of E onto Est (see Fig. II.5). 14

Vd(i, j) : complex visibility data function Vd(i, j) ≈ Vo(i, j) ei[αd(i)−αd(j)] (Eq. II.4). 6, 149

Vd?(i, j) : calibrated visibility function Vd?(i, j)
def
= Vd(i, j) e−i[αd?(i)−αd?(j)] (Eq. II.7). 7

Vm(i, j) : visibility function of the model Vm(i, j) ≈ Vo(i, j) ei[αm(i)−αm(j)] (Eq. II.5). 7

Vo(i, j) : complex visibility function of the object Vo(i, j)
def
= (Fso){u(i, j)} (Eq. II.3). 6

αd(i) : pupil-bias phase of pupil element #i (see Eqs. II.4 and II.5). 7

αd(i) : pupil-bias phase of pupil element #i taking αd(1) as the phase reference:
αd(i)

def
= αd(i)− αd(1) (Eq. II.6). 7

α : pupil phase function defined as α = αd − αϕ (see Eq. II.74). It is used as variable of the
functionals f and g (see Eqs. II.77 and II.78). 23

αϕ : pupil phase function defined as αϕ = B−1
st Qstϕ (see Eq. II.73). 23

ϕ : baseline phase function defined as ϕ(i, j)
def
= ϕd(i, j)− ϕm(i, j) (Eq. II.10). 8

ϕd : (experimental) baseline phase function defined with (Eq. II.9): Vd = ρd e
iϕd . 8

ϕm : (model) baseline phase function defined with (Eq. II.9): Vm = ρd e
iϕm . Note that the

model visibility is progressively determined in the self-calibration procedure). 8

ϕc(i`, j`) : baseline closure phase function. Only relevant for the loop-entry baselines since
ϕc(i, j) = 0 for the baselines (i, j) belonging to the spanning tree Gst. 22

e` : characteristic function of the loop-entry baseline (i`, j`). 21

εα : phase-calibration residual defined as εα = arc(ϕ̂c −Bα) (Eq. II.81). 24
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arc : arc function defined as arc θ = θ − 2π
⌊
θ

2π

⌉
(Eq. II.20). 10

chord : chord function defined as chord θ = 2| sin(θ/2)| (Eq. II.17). 10

f◦(αd) : chord functional f◦(αd) = | chord(ϕ−Bαd)|2w (Eq. II.18) . 8

f(α) : chord functional f(α) = | chord(ϕ̂c −Bα)|2w (Eq. II.77) . 23

g◦(αd) : arc functional g◦(αd) = | arc(ϕ−Bαd)|2w (Eq. II.80) . 10, 23

g(α) : arc functional g(α) = | arc(ϕ̂c −Bα)|2w (Eq. II.78) . 23

closure phase : for any function β of E, its closure phase function is a function of Ec de-
fined by βc

def
= β − βb with βb = Bαβ in Eb and αβ = B−1

st Qstβ (see Eqs. II.35, II.38
and II.39). It is null on the spanning tree Gst. For the loop-entry baselines, βc(i`, j`)
corresponds to the sum of the phases β(i, j) of the baselines (i, j) making up the loop
closed by (i`, j`) (see Sect. II.2.4). 150, 152

Fourier-synthesis : image restoration produre using both the phase obtained after a phase-
calibration procedure and the Fourier modulus derived from the experimental visibili-
ties. In general this information does not lead to a unique solution. A piori information
is then needed to constrain this solution. 152

loop-entry baseline : baseline of E that do not lie in Est (see Eq. II.22). 11, 21, 149–151

phase-calibration : calibration of the phases of the experimental visibilities that have been
altered, for instance by the atmospheric turbulence. More precisely, it consists in deter-
mining the pupil-bias phases αd of all the elements of V that minimize the functionnal
the size of arc(ϕ−Bαd) on E ; see Eq. (II.19). 151, 152

phase-calibration graph : the phase-calibration graph G of an experimental setup is the
couple (V ,E ), where V is the set of its vertices (its antennas or telescopes), and E
that of its edges (its baselines): see Fig. II.1. 149

phase-calibration residual : quantity defined as εα = arc(ϕ̂c −Bα) (Eq. II.81) It is used
for clarifying the expression of the phase calibration residuals in the arc approach (see
sect. II.3.2). In particular g(αg) = |εαg |2w (see Eq. II.82). 24, 150

phase-closure : combination of the phases of the experimental visibilities in such a way that
the contribution of the atmospheric turbulence cancels to zero. 152

phase-closure operator : oblique projection of E onto Ec along Eb (see Fig. II.5). 150

pupil-bias phase : instantaneous phase of a pupil element of V . In the context of interfero-
metric observations through fast turbulence, this phase cannot be measured experimen-
tally and is therefore considered as a bias. 151

scalar :electromagnetic field. In this appendix, we limit our study to the scalar case, and
consider the global intensity of the electro-magnetic field only (individual polarimetric
channels are not taken into account). 43, 44
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self-calibration : iteration procedure made of successive phase-calibration and Fourier-
synthesis steps. The phase-calibration steps rely on the phase-closure relations on the
baseline phases ϕ(i, j). In this way, the object brightness distribution itself is used for
the phase calibration. 150

spanning tree : subgraph of a phase-calibration graph formed by nv vertices and nv − 1
edges, with no ‘cycle’ in it. It is unique in the case of a weighted graph when the
baseline weights are all different (see Sect. II.2.1). 10, 149–151

usual phase-closure operator : closure operator whose matrix that provides a maximum set
of independent closure phases of order three. 150
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