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et de École Doctorale Math ématiques, Sciences et Technologies de
l'Information, Informatique

Detection of Web Vulnerabilities
via Model Inference assisted Evo-
lutionary Fuzzing

Th�ese soutenue publiquement le 2 Juin, 2014 ,
devant le jury composé de :
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Détection de Vulńerabilit és Web par Frelatage Evolutionniste et
Inf érence de Mod�ele

Résuḿe: Le test est une approche ef�cace pour détecter des bogues d'implémen-
tation ayant un impact sur la sécurit́e, c.-�a-d. des vulńerabilit́es. Lorsque le code
source n'est pas disponible, il est nécessaire d'utiliser des techniques de test en
bô�te noire. Nous nous intéressons au probl�eme de d́etection automatique d'une
classe de vulńerabilit́es (Cross Site Scripting alias XSS) dans les applications
web dans un contexte de test en bo�̂te noire. Nous proposons une approche pour
inférer des mod�eles de telles applications et frelatons des séquences d'entrées
géńeŕees�a partir de ces mod�eles et d'une grammaire d'attaque. Nous inférons
des automates de contrôle et de teinte, dont nous extrayons des sous-mod�eles
a�n de réduire l'espace de recherche de l'étape de frelatage. Nous utilisons des
algorithmes ǵeńetiques pour guider la production d'entrées malicieuses envoyées
�a l'application. Nous produisons un verdict de test grâce�a une double inf́erence de
teinte sur l'arbre d'analyse grammaticale d'un navigateur et�a l'utilisation de mo-
tifs de vulńerabilit́es comportant des annotations de teinte. Nos implémentations
LigRE et KameleonFuzz obtiennent de meilleurs résultats que les scanneurs
bô�te noire open-source. Nous avons découvert des XSS “0-day” (c.-�a-d. des
vulnérabilit́es jusque lors inconnues publiquement) dans des applications web
utilisées par des millions d'utilisateurs.

Keywords: Sécurit́e, Frelatage, XSS, Algorithme Evolutionniste, Inférence,
Intelligence Arti�cielle, Applications Web



Detection of Web Vulnerabilities via Model Inference assisted
Evolutionary Fuzzing

Abstract: Testing is a viable approach for detecting implementation bugs
which have a security impact, a.k.a. vulnerabilities. When the source code is
not available, it is necessary to use black-box testing techniques. We address
the problem of automatically detecting a certain class of vulnerabilities (Cross
Site Scripting a.k.a. XSS) in web applications in a black-box test context. We
propose an approach for inferring models of web applications and fuzzing from
such models and an attack grammar. We infer control plus taint �ow automata,
from which we produce slices, which narrow the fuzzing search space. Genetic
algorithms are then used to schedule the malicious inputs which are sent to the
application. We incorporate a test verdict by performing a double taint inference
on the browser parse tree and combining this with taint aware vulnerability
patterns. Our implementations LigRE and KameleonFuzz outperform current
open-source black-box scanners. We discovered 0-day XSS (i.e., previously
unknown vulnerabilities) in web applications used by millions of users.

Keywords: Security, Fuzzing, XSS, Evolutionary Algorithm, Inference,
Arti�cial Intelligence, Web Applications
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CHAPTER 1

Introduction

Why did I rob banks? Because I enjoyed it. I loved it.
Go where the money is...and go there often.

[Sutton & Linn 2004]

The world is a dangerous place to live ; not because of those who do evil, but because
of those of the people who don't do anything about it.

[Einstein 1955]

Computer security is the cancer of the software industry. There is no money to
prevent it. Only sick persons care about it, but it is generally already too late.
However, everybody will have to face it someday.

[Ruff 2013b]

Do not underestimate the importance of cyber-attack capabilities.
I do not know how to defend a system if you are unaware of how to attack it.

[Filiol 2013b]

1.1 Context

Actors and Threats The Internet is a connected network of billions of devices.
For the simplicity of administrating them, we plugged into this network of net-
works devices having an impact on the physical world: traf�c control, power plants,
gas stations, etc. Corporations and governments have data-stores connected to the
Internet [Duwell 2013]. Banks and trading systems offer an interface with the In-
ternet. If not secured, those systems make the Internet a playground for hack-
ers with varying motivations (e.g., enemy governments, army, individuals paid by
Ma�a, etc.).

As security researchers, it is our duty to develop new techniques to protect bet-
ter national assets such as: energy, money, communication and information. More
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1.1. CONTEXT CHAPTER 1. INTRODUCTION

speci�cally, in this cyber war, we want to protect computer assets from attacks
exploitingvulnerabilities(�aws in the system). A way to achieve such goal is to
detect vulnerabilities, and more precisely to detect them as soon as possible. If they
are present in our systems, we need to patch them to prevent exploitation (defen-
sive security). If they are present in enemy systems, attackers may want to exploit
them to gain additional privileges (offensive security). The source code of appli-
cations may not be available (e.g., when testing integrated or remote components).
In such cases, we need to rely on black-box testing techniques. This thesis focuses
on detecting certain classes of vulnerabilities in a black-box test context.

Security and Vulnerabilities Figure 1.1 shows a dependability tree according to
the [Avi�zieniset al.2004] taxonomy. We mark inbold our focus for this thesis.
We detect errors and failures that affectavailability (readiness for correct service),

Dependability & Security

Means

Forecasting

Removal

Tolerance

Prevention

Threats

Failures

Errors

Faults

Attributes

Safety

Reliability

Maintainability

Integrity

Con�dentiality

Availability

Figure 1.1: Dependability & Security Tree [Trivediet al.2009] and ourFocus

integrity (absence of improper system alteration),con�dentiality (absence of unau-
thorized disclosure of information). More speci�cally, we search for vulnerabilities
in black-box test context. We address the automatic detection of Cross-Site Script-
ing (XSS).
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CHAPTER 1. INTRODUCTION 1.2. VULNERABILITIES

1.2 Vulnerabilities

1.2.1 Panorama

A vulnerability is an application fault which ultimately will lead to a failure violat-
ing a security property that was supposed to always hold.

Afterwards we list a non-exhaustive panorama of vulnerabilities:

• Code execution: permit an attacker to force an application to execute code
he created, because of a confusion between code and data. In such cases,
the integrity of the executed code is violated. It generally means that the
con�dentiality and the integrity of the data processed by the application is
also violated. It may also mean a violation of the availability property for
the application. Code injection vulnerabilities include:

– memory corruption (e.g., Buffer Over�ow),

– web command injection (e.g., Cross Site Scripting),

– cross-format interpretation (e.g., GIFAR [Magaziniuset al.2013]).

• Logical: for example, in an authentication protocol, a parameter is lacking
a security property (e.g., encryption, freshness, etc.), this makes the whole
scheme vulnerable to a particular kind of attacks:

– con�dentiality: a credential is transmitted over an unencrypted chan-
nel, e.g., not over an SSL encrypted connection;

– integrity: an unsigned authentication token permits a user to imperson-
ate another one, e.g.,session id ;

– freshness: an action vulnerable to replay attack e.g., Cross-Site Request
Forgery (CSRF)[Linet al.2009], [Armandoet al.2008].

• User interface: techniques trick the user to perform an action, whereas he
believes performing another one, e.g., click-jacking [Rydstedtet al.2010].
Such techniques violate the integrity of the user interface, thus of his actions.

• Flawed access control: depending on the path used to access an object,
there may be a discrepancy in the way the access control is enforced. Such a
situation frequently occurs when developers introduce new features in Web
Browsers (e.g., [Heiderich 2012a, Heiderichet al.2010, Heiderich 2013b]).
Such vulnerabilities generally result in the violation of the integrity of ob-
jects. In the case of a Same-Origin Policy Bypass [Huanget al.2010], the
con�dentiality of documents belonging to other security domains is also vi-
olated.

• Flawed or weak cryptography: e.g., sensitive information is sent in clear-
text [Soltani 2013] or the implementation of a cryptographic algorithm is
�awed [Thomas 2013]. Either the integrity, or the con�dentiality are gener-
ally targeted.

13



1.2. VULNERABILITIES CHAPTER 1. INTRODUCTION

In this thesis, we will search for code execution vulnerabilities.

1.2.2 About Code Execution Vulnerabilities

Code execution vulnerabilities arise because of the way an application is processing
data, it may interpret part of it as code. Examples of code execution vulnerabili-
ties includeBuffer Over�ow– amemory corruptionvulnerability – andCross Site
Scripting(XSS) – aWeb Command Injectionvulnerability.

A former black-hat1 used to make money with carding2 and botnets3. He used
to rely on XSS 55% of the time to take control of a website [Hansen 2013]. In
order to gain access to a web application, he used XSS more frequently than mem-
ory corruption vulnerabilities. In terms of frequency, SQL injection was the third
most common vulnerability category he used. All those three kinds of low-level
vulnerabilities permit attacker controlled code execution. XSS and SQL injection
belong to the family of Web Command Injection. SQL injection ranks �rst in the
OWASP top 10 of 2013, and XSS ranks third [OWASP 2013b]. Whereas years
ago, the focus was on desktop web application development, there is an increase
in customized versions of web applications for mobile devices (e.g., Android, IOS
applications). In this domain, developers seem to make similar mistakes. As a
result, numerous mobile applications are sensitive to Web Command Injection vul-
nerabilities [Moulu 2013].

1.2.3 Web Command Injection

Web Command Injection (WCI) belongs to the code execution vulnerabilities.
WCI is a family of vulnerabilities that affects applications interpreting a script-
ing language (e.g., HTML, SQL, Shell, PHP etc.) interpreters. WCI vulnerabilities
are characterized by the possibility to escape acon�nementwithin a grammati-
cal structure. Example of Web Command Injection include Cross Site Scripting
(XSS), SQL injection, PHP Code injection, etc.

Cross-Site Scripting (XSS) is one of the currently most dangerous web
based attacks: it ranks third in the [OWASP 2013b] Top 10 vulnerabilities.
[Zalewski 2011b] describes them as “one of the most signi�cant and pervasive
threats to the security of web applications.” Criminals use XSS to spam social
networks, spread malwares and steal money [Luoet al.2009]. In 2013, XSS
were found in Paypal, Facebook, and eBay [Kugler 2013, Nirgoldshlager 2013]
[ZentrixPlus 2013]. We shall present XSS in Chapter 2.

1Unauthorized hacker having malicious intentions; of course, the notion of maliciousness is de-
pendent on the entity which assesses it.

2The process of cloning credit cards.
3Network of bots, computer nodes controlled by an attacker.
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CHAPTER 1. INTRODUCTION 1.3. OBJECTIVES

Consequences of XSS an XSS vulnerability is activated by a maliciously crafted
HTTP request, or a maliciously crafted Ajax request. Its exploitation provides to
an attacker the capability of injecting arbitrary HTML code within portions of the
web application. Thus, the victim web interpreter will execute a sub-interpreter
code, which is controlled by the attacker. This permits:

• ex�ltrating data (e.g., emails [Krebs 2012], authentication tokens
[Naraine 2010], bank account password, contacts [Acunetix 2010],
etc.);

• using the victim computer as a proxy or a node of a malicious net-
work (e.g., spam relay, DDoS, exploiting websites, malware propagation
[Faghani & Saidi 2009], mining bitcoin for the attacker, etc.);

• de-anonymizing a target: a browser can be uniquely tracked – up to a cer-
tain precision – via HTTP headers, available plugins and version, subset of
interpreted codes [Nikiforakis & Vigna 2013] [Abgrallet al.2012];

• exploiting a memory corruption vulnerability in a browser sub-interpreter
to execute attacker controlled assembly code (e.g., [CVE-2008-1380 2008,
CVE-2006-4565 2006] target JavaScript interpreters in browser and email
client), to gain additional privileges (e.g., escape the browser process, obtain
additional security tokens, etc.).

1.3 Objectives

Our main problem is:

How to improve the ef�ciency and precision of black-box security testing
for automatically detecting XSS?

In order to address it, we face several sub-problems:

• sources:on which parts of the inputsto act for an ef�cient security testing?

• input sequences:how to drivethe system into a desired state?

• maliciousness:how to createparts of inputs likely to exhibit a failure?

• test verdict:howandwhereto observe the effect of an input?

• con�dence:which criteriacharacterize a precision in security testing?

1.4 Contributions

Our contributions are:

• an inference and slicing approach of particular control and taint �ows for
guiding XSS search;
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1.5. DISSERTATION STRUCTURE CHAPTER 1. INTRODUCTION

• a combination of model inference and fuzzing for detecting Type-1 (re-
�ected) & Type-2 (stored) XSS;

• an implementation of these approaches and their evaluation,

• which led to the discovery and responsible disclosure4 of previously un-
known vulnerabilities: four stored XSS (CVE-2013-7297[Duch�ene 2013a],
[Duch�ene 2014d], [Duch�ene 2014c]), and of forty re�ected XSS (CVE-
2014-1599 [Duch�ene 2014a], [Duch�ene 2014c]), some of them impacting
millions of users.

1.5 Dissertation Structure

We introduce the addressed problems in Chapter 2. We present the high level
architecture of our approach in Chapter 3. Our approach for black-box XSS detec-
tion combines a particular control+taint �ow inference (Chapter 4) and evolution-
ary fuzzing (Chapter 5). We evaluate this approach in Chapter 6. We provide an
overview of related techniques in Chapter 7. We conclude and provide directions
for future work in Chapter 8.

4In the responsible disclosure vulnerability model, vendors having a vulnerability in their product
are allowed a period of grace before the security researcher who discovered this vulnerability makes
it public.
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CHAPTER 2

Problem Statement

The only acronyms that matter: RCE (Remote Code Execution), LPE (Local
Privilege Escalation), COE (Continuation of Execution)

[Grugq 2013]

The importance of XSS may overstep that of memory corruption vulnerabilities.

[Heiderich 2013a]

Due to their wide existence and their high impact when exploited (an attacker
is able to remotely execute arbitrary code in the victim's interpreter), we focus in
this thesis on a particular case of web command injection: XSS. We de�ne XSS
in Section 2.1, and the problem of automatically detecting XSS in black-box in
Section 2.5.

Web Command Injection (WCI) is a family of vulnerabilities that affects ap-
plications interpreting languages at run-time (e.g., HTML, SQL, Shell, PHP etc.).
Since they compile and execute instructions at run-time, those are referred to asin-
terpreters. Command injection vulnerabilities are characterized by the possibility
to escape acon�nementwithin a structure.

Each WCI subfamily has a name dependent on the context (i.e., the output
grammar: database interpreter, browser interpreter, shell...). e.g., for the HTML
grammar, WCI is named XSS.

HTTP Request

Input

HTTP Response

Output
Web Client

(e.g., Firefox)
Web Server
(e.g. Apache httpd)

 <?php
 code
 ?>

White/Grey-BoxBlack-Box

Figure 2.1: Black-Box Web Command Injection Detection
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2.1. CROSS SITE SCRIPTING (XSS) CHAPTER 2. PROBLEM STATEMENT

2.1 Cross Site Scripting (XSS)

The detection of XSS involves ataint-�ow analysis on acontrol-�ow graph.

Example A: an XSS involves a control-�ow P0wnMe is a voluntarily vulnera-
ble web application containing several XSS. Once authenticated, a user Peach can
save a new message, view the saved ones, or logout. We illustrate several function-
alities of the P0wnMe application in Figure 2.2, Figure 2.3 and Figure 2.4.

Figure 2.2: Screenshots of P0wnMe v0.3: login

Figure 2.3: Screenshots of P0wnMe v0.3: Filtered Type-1 (re�ected) Taint Flow
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CHAPTER 2. PROBLEM STATEMENT 2.1. CROSS SITE SCRIPTING (XSS)

Figure 2.4: Screenshots of P0wnMe v0.3: Type-2 Taint Flow

Peach saves a note, e.g., buenosdias, by �lling and sub-
mitting the form, i.e., sending the abstract inputPOST
/?action=save message&msg= buenosdias 1 (transition 7 ! 17
in the control �ow model shown in Figure 2.5) to the application. We describe in
Chapter 4 how to construct such control �ow models, where nodes represent pages
and transitions HTTP requests. Such Control Flow Models (CFM) are different of
assembly control �ow graphs that most security engineers are used to work with,
but CFM capture similar information at a higher level of abstraction. Later on, she
lists the saved notes, by sendingGET /?action=get messages (transition
18 ! 21). An extract of corresponding output is shown in Listing 2.1.

1 <H2>list of saved messages</ H2>

2 buenosdias <A href ="./?action=delete&id=1">[X]</ A>

Listing 2.1: Excerpt of P0wnMe Output for the Transition18 ! 21

The value of the input parametermsg, sent in the transitiontsrc = 7 ! 17, is
re�ected in 18 ! 21: we observe it into the output. Thisre�ection is not �ltered:
the exact value sent in7 ! 17 is copied into the output oftdst = 18 ! 21.

1We highlight text to indicate that it is part of a taint �ow (partial string copy).
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0 GET /

2

GET /?action=auth&

POST /? {}  

7

POST /? {' login': 'yoda',
 'password': 'DoOrDoNot'}

GET /? 
 POST /? { 'message2': '/'}

GET
/?action=
logout&

33

POST /? 
 {' message2': 

'2_e_g_a_s_sem'}

17

POST /? 
{' action': 'save_message'

'msg': '   '  }

9

GET /?action=
view_messages GET /

GET /?action=
view_messages

GET / 
 GET /?action=

message&

GET /?action=
view_messages&

18 GET /?

21

GET /?action=
view_messages

GET /?

GET /?action=delete
_message& id=1

start

GET /

   buenosdias

Figure 2.5: Extract of a Control Flow Model of the P0wnMe Web Application

Moreover, in this application, notes are shared between users. Thus,
an attacker Koopa Troopa would attempt to send a maliciousmsg value
to escape thecon�nement (in Listing 2.1, a re�ection is constrained in a
speci�c context: outside tags, before the<A> tag). An example of mali-
cious input is tsrc = 7 ! 17 (POST /?action=save message&msg=
buenosdias <script> alert(1337)</script> ).

An excerpt of the corresponding output for the subse-
quent transition tdst = 18 ! 21 is ...of saved
messages</h2> buenosdias <script>alert(1337)</script> <a

href="./?action=delete... .
When Peach's browser (the victim) parses this output, it executes thecode
introduced by the attacker, and a messagebox is displayed, as shown in Figure 2.6.

In order to detect XSS, we need to navigate in the web application. Thus, we
need information about thecontrol �ow of the application. The problem is that
most deployed web applications lack formal documentation: a formal behavioral
model is rarely available. However, such models improve the ability to perform a
pertinent security testing campaign for an application [Takanenet al.2008], espe-
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Figure 2.6: Successful exploitation of an XSS in the P0wnMe application

cially if they combine control and taint information [Bekrar 2013b]. Thus the �rst
sub-problem to address is:

XSS.1 Navigating in the Application:
! How to obtain a model of the application? What kind of models are

appropriate for detecting XSS?

Example B: an XSS involves a taint �ow A �ctive website
http://yoshi.jp suffers from an XSS vulnerability. A necessary con-
dition for an XSS is a re�ection, i.e., ataint-�ow i.e., a partial input copy from
an attacker controlled input parameter to a sink, part of an output of the web
application, as illustrated in Figure 2.7. Our notion of taint �ow is different to
the traditional taint propagation rules for each assembly instruction in grey-box
contexts [Newsome & Song 2005, Xuet al.2006]. We de�ne our taint notion in
web applications in black-box more precisely in De�nition 3.

Client ! Server:

1 ...

2 GET /nice.html?name= birdo HTTP/1.1

3 Host : yoshi.jp

Client  Server:

1 ...

2 Hello birdo !

Figure 2.7: The Input Parameter name isre�ected into the output of the web
application

Koopa Troopa wants the victim Peach to execute a code that he controls. He
observes that the re�ection is located in a structure “text node, outside a tag”.
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He wants to “escape” this text node, and includes additional interpreter nodes
such as JavaScript (JS) ones. Thus he crafts the parametername with the value
lakitu<script>alert('evil');</script> . To achieve exploitation,

he creates a page hosted onkoopatroopa.fr , which will force the user browser
to perform this malicious request to the vulnerable website (hence the cross-
domain), once the code ofkoopatroppa.fr is interpreted (see Figure 2.8).

Client ! Attacker:

1 GET / HTTP/1.1
2 Host : koopatroopa.fr

Client  Attacker:

1 ...
2 <iframe src ="http://yoshi.jp/nice.html?name=

lakitu<script>alert('evil!');</script> ">

3 ...

Client ! Server:

1 GET /nice.html?name= lakitu<script>alert('evil!');</script> HTTP

/1.1
2 Host : yoshi.jp

Client  Server:

1 ...

2 Hello lakitu<script>alert('evil!');</script> !

Figure 2.8: Successful exploit of an XSS

Thus, in order to detect XSS, we need to address the sub-problem:

XSS.2 Achieving a Test Verdict
! How to infer the taint?

! XSS.2.1Whereare the potential sinks (re�ections)?

2.2 De�nitions

We abstract an actual Web site as aWeb Application. The Web Application re-
ceives aspiderlink and replies with apage model. As illustrated in Figure 2.9,
spiderlinks represent the HTTP requests sent to the concrete Web site, and page
models abstract the HTTP responses.
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spiderlink i page modelp

HTTP request
i

HTTP reply
o

abstract level

concrete level

Website

concretize abstract

Figure 2.9: Abstraction and Concretization Functions for Web Applications

2.2.1 Spiderlink and Page Model

We de�neabstract(o) which abstracts an HTTP replyo into apage modelp.
As illustrated in Figure 2.10, a page model is a pre�x tree containing several spi-
derlinks (i.e., abstract links from<A> tags or abstract forms from<form> tags).
We also de�neconcretize(i) which produces an HTTP requestreq from a
spiderlinki.

Input, concretize (Spiderlink i) Let � be an alphabet. Each spiderlink is
built from a link or a form.

De�nition 1 Spiderlink
A spiderlinkis a couple composed of:

• oneaction: the substring before the? of an Hypertext Transfer Protocol
(HTTP) Uniform Resource Locator (URL)

• a list of input parameters
(name;value;method) 2 f� � g2� f GET, POST, COOKIE, HEADERg

Output, abstraction to Page Modelp A page model is an abstraction of a con-
crete output of a web application. It contains spiderlinks.
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De�nition 2 Page Model
Let o 2 O be an output of a web application. LetF(o) be the set of links and

forms ino. A page modelp = abstract(o) is a pre�x tree which is built from the set
of spiderlinks and dompaths obtained fromF(o). It has at least six levels including
the root node.

For each spiderlinkf 2 F(o), a set of nodes is added to the tree. Each set
consist of the following nodes or groups of nodes, ordered from the immediate
children of the root node to the deepest ones:

• dompathis a node, child of the root node. Its value is a string2 f =([a � z] [
f=g)� g, the shortest path in the Document Object Model (DOM) from the root
to the<A> or <FORM>tag.

• actionis a tree of nodes, of depth� 1. Its root is a child of a dompath node.
Each node of an action subtree has a string value contains a part of an HTTP
URL before the? split by /

• paramsis a node, child of an action node. Its value is a list of strings: the
list of parameter names.

• valuesis a node, child of a params node. Its value is a list of strings: the list
of parameter values.

• methodsis a node, child of a values node. Its value is a list of parameter
methods, each element2 fGET, POST, COOKIE, HEADERg

Consider the HTML ouput in Listing 2.2. The corresponding page model is
shown in Figure 2.10. The left side shows the browser rendering, while the right
side represents the page model. It contains four spiderlinks. The pre�x tree rep-
resentation makes easier the identi�cation of similarities between spiderlinks and
between page models.

1 ...
2 <html >
3 ...
4 <body >
5
6 <div class =' menu'>
7 <span id =' menu-left'>
8 <a href ='/'>Home</ a>
9

10 </ span >
11 <span id =' menu-right'>
12 <a href ='/login'>Sign in</ a>
13 | < a href ='/newaccount.gtl'>Sign up</ a>
14 </ span >
15 </ div >
16
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page

/html/body/div/span/a

/

()

()

()

/login

()

()

()

/newaccount

()

()

()

/html/body/div/form

/login

(uid,pw,submit)

(? ,? ,'Login')

(GET,GET,GET)

Figure 2.10: Abstraction: graphical representation of the output and corresponding
Page Model.

17 <div >
18 <h2>Gruyere: Login</ h2>
19 </ div >
20
21 <div class =' content '>
22 <form method ='get' action ='/login'>
23 <table ><tr ><td >
24 User name:
25 </ td ><td >
26 <input type =' text ' name='uid'>
27 </ td ></ tr ><tr ><td >
28 Password:
29 </ td ><td >
30 <input type ='password' name='pw'>
31 </ td ></ tr ><tr ><td ></ td ><td align ='right'>
32 <input type ='submit' name='submit' value ='Login'>
33 </ td ></ tr ></ table >
34 </ form >
35 </ div >
36 </ body >
37 </ html >

Listing 2.2: The outputo (extract)

2.2.2 Taint

The taint is a metadata information between inputs and data handled by the ap-
plication [Livshits 2012]. It designates the possibility of an input to explicitly in-
�uence such data. The taint is a dynamic notion which �ows between data. It is
generally a dynamic white-box (assume the availability of the application source
code) or grey-box (assume the availability of the application code) notion, as in
[Rawat & Mounier 2010, Bekraret al.2012], although in our case we will perform
taint inference dynamically in black-box (see Section 4.3).
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When considering taint propagation in grey-box or white-box, three sub-
problems arise:

• Taint Sources: When is an objectdirectly in�uencedby inputs? In Table 2.1
we list examples of taint sources.

• Taint Propagation rules: When is an objectindirectly in�uencedby inputs?

• Taint Removal: When is an objectnot in�uencedby inputs?

Taint tracking is widely used in white-box/grey-box test context for vulnerabil-
ity runtime detection, e.g., for XSS [Vogtet al.2007] and for Memory Corruption
Vulnerabilities [Bosmanet al.2011].

Practical data tainting on important sized applications may only consider ex-
plicit value in�uence (e.g., assignments) in taint propagation rules, and not con-
sidering indirect value in�uence (e.g., resulting from a conditional check). Indeed,
such taint tracking systems aim at avoiding too numerous objects to be tainted, in
order to reduce the number of false positives in the test verdicts [Halleret al.2013].

In black-box test context, as we cannot track the taint �ow from a source to
a sink, we have to infer it, if possible. In Section 4.3, we provide information on
taint inference for XSS.

In Table 2.1, we list examples of code execution vulnerabilities, their taint
source, the code at server side, and sometimes how to infer knowledge in black-
box.

Vulnerability Taint Source Sink & Tainted Argument
(white-box)

Inference
(black-box)

Memory
Corruption

File read(han, buf ,nb)

Network read recv(sock, buff ,len,flag)
Keyboard input scanf("%d", &num)

XSS GET/POST pa-
rameters values

print(
$ POST['email'] )

input copied to
the output

SQL injec-
tion

Cookie param-
eter values

sql query(
$ COOKIE['sess id'] )

error message

Shell Injec-
tion

Parameter val-
ues

shell exec( $ POST['

action '])

error message

Table 2.1: Examples of Vulnerabilities andTaint Markers

In black-box test context, XSS vulnerabilities arise when atainted data (re-
sulting of a partial copy of an input parameter value, a string of characters) appears
in at least one substring of one output (HTML code), and gets executed by the
browser ascode.
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De�nition 3 Taint
Let xsrc andodst be two strings.xsrc{ odst denotesxsrc taintsodst. Our notion of

taint measures the similarity between two strings. It uses string distance functions.
We de�ne more precisely our notions of taint in De�nition 5 and Section 5.2.

2.2.3 Vulnerability and Exploit

A vulnerability is a fault leading to an error. If a fault is traversed by a taint �ow,
which is used to stimulate the fault, this will lead to a failure. Thus the problem of
searching vulnerabilities can be addressed by searching for sinks, and then search-
ing for inputs activating those sinks in a way prone to exhibit failures.

We are interested in vulnerabilities which violate thecode integrity property.
Such vulnerabilities arise due to confusion between data and code: the interpreter
will consider attacker controlled data as code and thus execute it.

Cross Site Scripting (XSS) is a Web Command Injection vulnerability within
the HTML grammar. An XSS permits attacker controlled code execution at client
side. An example of sink for XSS is the PHPprint() function:
<?php print( $ GET['message'] ); ?> .

For some malicious messages, once the client browser renders the webpage, the
property stating that the content of the message variable should not be executed by
the browser is violated.

An exploit is an input activating a vulnerability s.t. the application will violate
a security property (in our case the integrity of the code executed at browser side,
as it will execute apayloadresulting of the input).

Within a given class, some vulnerabilities are morecomplexto �nd than oth-
ers. The complexity of a vulnerability is an increasing metric w.r.t. the minimum
number of traversed states of the control �ow model to violate a security property.
When searching for Web Command Injection, the �lter (sanitizer) and the num-
ber of distinct traversed nodes in the control �ow models are factors in�uencing
the complexity of a vulnerability. When searching for Memory Corruption, the
number of traversed jump instructions affects the dif�culty in �nding such vulner-
abilities.

2.2.4 Web Application, Re�ection, Syntactic Con�nement, XSS

Figure 2.7 illustrates aRe�ection(i.e., a taint �ow from an input parameter value to
an output). A re�ection can be tracked (e.g., in white-box test context), or inferred
(e.g., in black-box test context). We formally de�ne a re�ection in De�nition 5.
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De�nition 4 Web Application (WA)
Let P be a set of page models, andI be a set of spiderlinks.
A Web Application (WA)W = (N;n0; T; I ; P; � ) , is a graph:

• N is a set of nodes.n0 2 N is the initial node of the application.

• Each transitiont = (na; i; nb) 2 T � (N� I � N).

• � : N ! P is a mapping which to each noden associates a page modelp.

In Section 2.5.2, we elaborate on the reasons why we consider that a re�ection
only involves one taint source parameter. In Chapter 8, we provide insights on how
to extend our work in the case of several taint sources.

De�nition 5 Re�ection
Let � be an alphabet. LetW = (N;n0; T; I ; P; � ) be a Web Application (De�-

nition 4). LetSI = [i0; ::;isrc(xsrc); ::;idst] be a sequence of spiderlinks (2 I+) and
SO = [o0; ::;osrc; ::;odst] (2 � ++) the corresponding sequence of concrete outputs
(trace). When submitting the inputidst, the obtained concrete output isodst 2 � + .
Let � 2 N be a threshold. Letxsrc be an input parameter value received in the
input isrc of the source transitiontsrc. The execution ofSI on W terminates with
tdst = (ns

dst; idst; ne
dst).

(xsrc; tsrc; tdst; odst) is a� -re�ection if:

• xsrc taints odst, there is a partial copy of length� � of xsrc into odst i.e.,
9y 2 � +

– jyj � �

– (y v xsrc) ^ (y v odst), wherex1 v x2 () 9 x3; x4 2 � � 2
; s:t:

x2 = x3x1x4

• � (ne
dst) = abstract(odst)

We denote it as:(xsrc; tsrc){ � (odst; tdst).

A sanitizer/�lter is a mechanism at server-side which validates and even-
tually modi�es (mutates) a fuzzed value before it is re�ected. Sanitiz-
ers may modify the input parameter values, e.g., by removing some char-
acters having a special meaning in the considered grammar (e.g.,(`; ” ; >
; <) in the HTML grammar for XSS vulnerabilities). A common mis-
take when building such �lters is to overlook thecontext of the re�ection
[Weinbergeret al.2011a] (for instance always applying a given string transfor-
mation regardless of where the re�ection happens a.k.a. “Context-Insensitive
Auto-Sanitization”. This may result in a false sense of security, in which the
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developer believes to be protected from XSS, whereas the sanitizer is �awed
[Weinbergeret al.2011a]. We illustrate an example of �awed sanitizer in List-
ing 2.3.

1 <?php function webapp_filter($str) {
2 if(eregi('"|`|>|<|;|/',$str)) {
3 $filtered_str = "XSS attempt!";
4 } else {
5 $filtered_str = str_replace(" ","",$str);
6 }
7 return $filtered_str;
8 } ?>

Listing 2.3: A vulnerable sanitizer in P0wnMe

Since �lter/sanitizer may change signi�cantly the fuzzed value before it gets
re�ected, we need to address the sub-problem:

XSS.2 Achieving a Test Verdict
! XSS.2.2 Can weexploit a potential sink?(i.e., �nd an input which

bypasses the �lter) How to infer the taint in the presence of �lter?

Generating an input which is able to partially bypass the �lter by partially being
copied into the output is not a suf�cient condition for a successful XSS exploit.
Indeed, the re�ected value has to “escape” the structure in which it wascon�ned.
We name this objectivenon syntactic con�nement.

Figure 2.11 illustrates two re�ections. The �rst one is syntactically con�ned
according to the grammar (see the production rules in Figure 2.12), and the second
one is not. Graphically, the �rst re�ection is syntactically con�ned because there
exists one non-terminal (TEXT ) s.t. the whole produced sub-tree istainted. This
is not the case for the second re�ection: the �rst common parent non-terminal of
TEXT andSCRIPT is START, and its sub-tree is not fullytainted.

[Su & Wassermann 2006, Wassermann 2008] formalized the problem of web
command injection with the notion ofSyntactic Con�nement(De�nition 6). We
use the following notations: LetG = (V; 
 ;S;R) be a context-free grammar with
nonterminalsV, terminals
 , a start symbolS, and productionsR. Let “) G”
denote “derives in one step” s.t.� A� ) G�
� if A! 
 2 R, and let “) � G” denote
the re�exive transitive closure of “) G”. If S ) � G 
 , then
 is a “sentential form”.

De�nition 6 Syntactic Con�nement
Given an unambiguous grammarG = (V; 
 ;S;R) (V non terminals,
 is an

alphabet of terminals,S a start symbol,Rproduction rules), a word! = ! 1! 2! 3 2

 � ; ! 2 is syntactically con�ned in! iff there exists a sentential form! 1X! 3 such
thatX 2 (V [ 
 ) andS ) � G ! 1X! 3 ) � G ! 1! 2! 3.
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Output and Taint Parse Tree Syntactically
Con�ned?

<h1>saved
messages</h1>
buenosdias <br />

saved 
messages

buenosdias<h1> </h1> <br />

TEXT

TEXT

START

H1_TITLE BR

X

<h1>saved
messages</h1>
buenosdias <script>

alert(1337) </script>

<br />
saved 

messages
buenosdias<h1> </h1> <br />

TEXT

TEXT

START

H1_TITLE BRSCRIPT

</script><script> alert(1337)

JS_CODE
7

Figure 2.11: Syntactic Con�nement of two Re�ections inG =HTML

START! [0:20](H1 TITLE j TEXT j BR j SCRIPT)
H1 TITLE ! "<h1>" TEXT "</h1>"
TEXT ! "a" j "b" j ...
BR ! "<br />"
SCRIPT! "<script>" JSCODE"</script>"

Figure 2.12: Extract of the HTML Grammar Production Rules

In De�nition 7, we give a restrictive de�nition of the notion of Web Command
Injection (WCI).

De�nition 7 Web Command Injection (WCI)
Let M be a Web Application (De�nition 4),Re f l(M) be a set of re�ections

(De�nition 5) in M, andG be a grammar. Let� 2 N be a threshold. Letr =
(xsrc; tsrc; tdst; odst) 2 Re f l(M) be a� -re�ection (De�nition 5), where for a given
trace,xsrc is a concrete input parameter value of the transitiontsrc, andodst is the
concrete output value of the transitiontdst. Let Z = taintedsub(xsrc; odst) be the set
of substrings of length� � in odst which are tainted byxsrc.
r is a Web Command Injection (WCI) w.r.t. toG, if 9 z 2 Z; s.t. zis not syntactically
con�ned in odst w.r.t. G.

A WCI permits to violate the code integrity property at the level ofG.
Type-1 (re�ected) and Type-2 (stored) XSS exist since applications handle dy-

namic data (i.e., since the �rst cgi-bin scripts appeared in web applications). As
of today, this problem is still unsolved: no scanner detects 100% of the XSS in all
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De�nition 8 Cross Site Scripting (XSS) Vulnerability
We de�ne a Cross-Site Scripting (XSS) as a Web Command Injection (De�ni-

tion 7) in which the output grammarG is HTML (and the interpreted grammars:
e.g., JavaScript, CSS, etc.).

De�nition 9 XSS Types

XSS Type Transition
(request)

Characteristic

“Pure” Type-0 /
DOM XSS

Ajax In a re�ected DOM-XSS, the taint �ow
does not involve an HTTP request.
Nodes are DOM states and transitions
are Javascript function or event calls.

Type-1 / Re-
�ected XSS

HTTP The source and destination transitions
are the same:tsrc = tdst. At least one
HTTP request is involved.

Type-2 / Stored
XSS

HTTP The source and destination transition are
different: tsrc , tdst. At least two HTTP
requests are involved.

Stored DOM-
XSS

Ajax + HTTP At least one Ajax request and one HTTP
request are involved.

web applications. Type-0/DOM XSS exist since web application execute dynamic
code at client side (e.g., JavaScript Ajax transitions, such as Facebook). DOM XSS
involve Ajax transitions.In this thesis, we only focus on Type-1 (re�ected) XSS
and Type-2 (stored) XSS.

[Heiderichet al.2013] browser parser quirks induces transformations conform
to the de�nition of the categories mentioned in De�nition 9.

2.3 Fuzzing

Fuzzing is the automatic generation and evaluation of abnormal inputs in order
to trigger the targeted vulnerability family(ies). Fuzzing is sometimes named as
“act of software torture” [Vuagnoux 2005]. The term was coined by Barton Miller
[Bartonet al.1989, Forrester & Miller 2000].

When searching for XSS in black-box, we will create fuzzed inputs from con-
trol and taint �ows knowledge in order to escape the syntactic con�nement of re-
�ections. Thus we need to answer the following sub-questions:
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XSS.3 Creating Fuzzed Inputs:

• XSS.3.1Whereto fuzz inputs?Which inputs to select? On which
parts of those inputs to act?

• XSS.3.2How to fuzz inputs?How to act on speci�c parts of those
inputs?

• XSS.3.3 How toprioritize inputs fuzzing? Which potential sinks
should we test �rst?

2.4 Other Web Command Injection Vulnerabilities

XSS is one vulnerability in the Web Command Injection family. We list other
sub-categories in Table 2.2, such as SQL injection, Shell Command Injection, PHP
Code Injection etc.We believe that the work applicable to XSS can also be applied
to those types of WCI.

Vulnerability Grammar Sink Similar Vuln. in
Cross Site Script-
ing (XSS)

HTML (&
sub-grammars)

print, echo

SQL Injection
(S QLi)

SQL sqlquery, etc. LDAP, NoSQL, etc.

Shell Command
Injection

bash, sh, zsh
etc.

exec

XML External
Entity (XXE)

XML XML processor

PHP Code Injec-
tion

PHP eval Ruby, Python, etc.

Table 2.2: Sub-Categories of the Web Command Injection Vulnerability Family

2.5 Summary of Addressed Problems

Automatically detecting XSS is an open problem. In the case of access to the
source code, white-box techniques range from static analysis to dynamic monitor-
ing of instrumented code. If the code or the binary are inaccessible, black-box
approaches generate inputs and observe responses. Such approaches are indepen-
dent of the language used to create the application, and permit a generic harness
setup. As they mimic the behaviors of external attackers, they are useful for offen-
sive security purposes, and may test defenses such as web application �rewalls.

Automated black-box security testing tools for web applications have long been
around. However, even in 2012, the fault detection capability of such tools is
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low: the best ones only detect 40% of non-�ltered Type-2 XSS, and 1/3 do not
detect any [Bauet al.2010, Bauet al.2012]. This is due to an imprecise learned
knowledge [Douṕeet al.2012], imprecise test verdicts, and limited sets of attack
values [Duch�eneet al.2013b].

Thus there is a need for methods which detect Type-2 XSS (and server-side
�ltered Type-1 XSS) using a black-box test context.

Problem:
! How to automatically detect Type-1 and Type-2 XSS in web

applications, with a black-box test context?

2.5.1 Problems

According to the previous discussion, in order to effectively address XSS detection,
the following sub-problems must be addressed:

• XSS.1 Navigating in the Application: In order to detect XSS in web appli-
cation, we need to navigate in the application. Thus, we need information
about thecontrol �ow of the application. The problem is that most deployed
web applications lack formal documentation: a formal behavioral model,
such as an FS (De�nition 5), is rarely available. However, such models im-
prove the ability to fuzz an application.
! How to obtain a model of the application? What kind of models are ap-
propriate for detecting XSS?

• XSS.2 Achieving a Test Verdict:

Server-side sanitizers may perform signi�cant string transformations be-
tween the fuzzed value and the re�ection. Since such re�ections are hard
to observe, there is a risk of false negative in the taint inference, thus in the
test verdict.
! How to perform a test verdict in the case of �ltered re�ections?

– XSS.2.1Whereare the potential sinks?

– XSS.2.2 Can weexploit a potential sink?How to infer the taint in the
presence of �lter?

• XSS.3 Creating Fuzzed Inputs: When creating fuzzed inputs, we need to
answer the following sub-questions:

– XSS.3.1Whereto fuzz inputs?Which inputs to select? On which parts
of those inputs to act?

– XSS.3.2How to fuzz inputs?How to act on speci�c parts of those
inputs?
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– XSS.3.3 How toprioritize inputs fuzzing?Which potential sinks should
we test �rst?

The core of this thesis is the automatic black-box detection of vulnerabilities
that permit attacker controlled code execution. Those include cross-site scripting.

2.5.2 Hypotheses on the Web application

• Reset: as we want to replay some input sequences, we assume the ability to
reset the application in its initial state. Candidate solutions include applying
a virtual machine snapshot, but also killing the application, restoring the
database in its initial state and starting it again.

• Defensive Mechanisms: Since we are interested in �nding XSS vulnera-
bilities with a black-box test context, and since the deployment of many
counter-measures is very low as of today (for more details, see Table 8.1 in
Chapter 8), we assume that the only counter-measure which may be present
in the tested web application is server side sanitizer. We believe that our ap-
proach for addressing this problem (see Chapter 4 and Chapter 5) could also
address situations when a Web Application Firewall (WAF) is present.
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CHAPTER 3

Our Proposal

Nobody ever defended anything successfully, there is only attack, attack and attack
some more.

Gen. George S. Patton ; 1885–1945

Glad to see more and more companies/researchers selling 0Ds to Govs. Software
vendors are losing the game but they are not yet aware of that.

[Bekrar 2013a]

As you've probably noticed, I'm basically lazy which is why I like fuzzing.

[Miller 2010]

The automatic detection of software vulnerabilities involve numerous combina-
torial problems [Filiol 2013a]. This also holds for the automatic detection of XSS
in a black-box test context. Due to these numerous problems and to the lack of
formal knowledge, we propose domain-based engineering [Czarneckiet al.2000]
approaches which use heuristics guided by the practical experience of penetration
testers. Such approaches may not be sound, but still are safe to be used in practice.

In this chapter, we brie�y justify our reasoning for addressing the aforemen-
tioned sub-problems.

Our approach for automatically detecting XSS in a black-box test context con-
sists of two steps: “crawling” infers thecontrol �ow and thetaint �ows of the
application, then “fuzzing” generates malicious inputs to exhibit vulnerabilities.

3.1 Control and Taint Flow Model Inference

Our �rst step constructs a model of the web application. This is achieved by a com-
bination of crawling and taint analysis. In order to do this, we need to address the
challenges XSS.1, XSS.2.1, and XSS.3.1, among those expressed in Section 2.5.1
(page 33).

• XSS.1 Navigating in the Application: [Doupéet al.2012] showed that
black-box WCI security scanners perform poorly due to a lack of precise
knowledge about the applications they are testing. How to learn knowledge
for driving the application?
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• XSS.2 Achieving a Test Verdict: XSS are characterized by the fact that
once an input has been sent, its effect cannot always be observed right away
(e.g., we may need to drive the application in another state). By answering
to the questionXSS.2.1Whereare the potential sinks?, we can prioritize the
locations where to invest more efforts in computing the test verdict.

• XSS.3 Creating Fuzzed Inputs: a naive fuzzing (e.g., mutating all input
parameters) may spend too much testing resources when focusing on non-
promising parts of the application. Therefore, we need to address the sub-
problem:XSS.3.1Whereto fuzz inputs?We also partly address the subprob-
lem XSS.3.3 How toprioritize inputs fuzzing?

To answer these sub-problems, we propose a reverse engineering approach.
Reverse Engineering is “the process of analyzing a subject system to identify the
system's components and their interrelationships and create representations of the
system in another form or at a higher level of abstraction” [Chikofskyet al.1990].
Since we are in a black-box test context, reverse-engineering can be achieved by
means of inference.

In order to address XSS.1, we propose an extension of
[Doupéet al.2012] for inferring the control �ow of the application. Then,
in order to addressXSS.3.1, we propose to extend the previously obtained control
�ow model with a taint �ow inference for indicating the re�ections. The outcome
is a hybrid control+taint �ow model. Lastly, from this hybrid model, we generate
input sequences fuzzing on a speci�c point and directing toward another point to
observe, thus providing an answer toXSS.2.1. We summarize these choices in
Figure 3.1, and develop it in Chapter 4.

Control
+ Taint

Flow
Model

Directed
Inputs 

Generation

B. 
Approximate 
Taint Flow 
Inference

A. 
Control 

Flow 
Inference

Reverse Engineering --> 

C. 
Chopping:

Inputs 
Generation

Reßection
Aware

Non
Malicious

Inputs

Control

Flow
Model

LigRE

Application
+ 

Credentials

Figure 3.1: LigRE: Control+Taint Flow Model Inference

Example Most of considered open-source black box web scanners (Skip�sh and
Wapiti) fail at detecting the P0wnMe XSS presented in Section 2.1. The main rea-
sons are imprecise application behavior awareness (some scanners do not navigate
properly, and do not observe the re�ections), imprecise test verdict (e.g., Skip�sh
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considers a page model change to be a suf�cient condition for XSS), and limited
set of fuzzed values (unaware of the output structure or the �lters). Our approach
overcomes the �rst limitation using a combination of control �ow inference, taint
�ow inference and a guided fuzzing.

In step A in Figure 3.1, our tool called LigRE infers a Control Flow Model (
Control Flow Model (CFM)) in the form of a colored automaton (nodes and contin-
uous arrows of Figure 3.2, where nodes represent webpages/outputs and transitions
represent inputs/HTTP requests), up to a tester de�ned precision. Then in step B,
LigRE walks through the model by generating HTTP requests and submitting them
to the application. The corresponding responses (HTTP replies) are recorded. Taint
�ows of sent input parameter values are inferred on the outputs, and annotated on
the model (blue dashed lines on Figure 3.2).

0 GET /

2

GET /?action=auth&

POST /? {}  

7

POST /? {' login': 'yoda',
 'password': 'DoOrDoNot'}

GET /? 
 POST /? { 'message2': '/'}

GET
/?action=
logout&

33

POST /? 
 {' message2': 

'2_e_g_a_s_sem'}

17

POST /? 
{' action': 'save_message'

'msg': 'egassem_'}

9

GET /?action=
view_messages GET /

GET /?action=
view_messages

GET / 
 GET /?action=

message&

GET /?action=
view_messages&

18 GET /?

21

GET /?action=
view_messages

GET /?

GET /?action=delete
_message& id=1

start

GET /

Figure 3.2: Extract of the CTFM for the P0wnMe application

In order to addressXSS.3.3 How toprioritize inputs fuzzing?, the chopping step
computes model slices (see Figure 3.3), and prioritizes them. Each slice is com-
posed of a pre�x and a suf�x. For instance, the pre�x[0 ! 2;2 ! 7] and the suf�x
[7 ! 17;17 ! 18;18 ! 21]. LigRE sends the pre�x to the application, then pass
the authentication credentials (e.g., cookie) to a fuzzer (e.g., w3af [Riancho 2011]
or KameleonFuzz) and limits its scope to the suf�x. Those slices permit to drive
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the tested application toward the originating transition of an inferred re�ectiontsrc,
and to constrain the fuzzing towards the transitiontdst to observe the re�ection.

0 GET /

2

GET /?action=auth&

POST /? {} 

7

POST /? {' login': 'yoda',
 'password': 'DoOrDoNot'}

GET /? 
 POST /? {'message2': ' /' }

start

GET /

7 GET /? 
 POST /? {'message2': ' /' }

17

POST /? 
{'action': 'save_message'

'msg': 'egassem_'}

18 GET /?

21

GET /?action=
view_messages

GET /?

Figure 3.3: A chopping slice produced by LigRE, during the step C, for the
P0wnMe application (pre�x on the left part, and suf�x on the right)

3.2 Evolutionary XSS Fuzzing

Once we have a model, we use it for generating fuzzed input sequences. In the cur-
rent section, we illustrate this fuzzing process. We address the challenges XSS.3.2,
XSS.3.3 and XSS.2 (Section 2.5.1, page 33).

• XSS.3 Creating Fuzzed InputsFor addressing the questionXSS.3.2How
to fuzz inputs?, we propose to reuse the hybrid control+taint �ow model.
Indeed such models notably provide information about the re�ection con-
text (e.g., the HTML structure of the re�ection: outside a tag<b>Hello
Lakitu </b> ). Fuzzing exists with various �avors: random, anomaly
operators, grammar-based. Since successful XSS exploits need to respect
some HTML constraints, we choose to generate fuzzed values with an attack
grammar. Thus the search space is composed of the re�ections and the attack
grammar.

For addressingXSS.3.3 How toprioritize inputs fuzzing?, we can use met-
rics such as the rarity of a re�ection, and the “injection power” of a re�ec-
tion (e.g., how many differentgrammar meaningfulHTML constructs are
re�ected?). We integrate such metrics in the �tness function of a genetic al-
gorithm which captures characteristics of the best inputs and evolves them.
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• XSS.2 Achieving a Test VerdictThe input sequence includes point(s) where
to observe the effect of a fuzzed input. Those are outputs of the web
application. Several Black-box scanners, e.g., [Zalewski & Heinen 2009,
Riancho 2011], only search for a verbatim re�ection (exact string recopy)
in the HTML code present in the body of an HTTP Reply. As this does
not provide enough information about the ability to execute attacker con-
trolled code, these scanners are likely to obtain fuzzy test verdicts. Indeed,
server-side sanitizers may signi�cantly transform fuzzed inputs when re�ect-
ing them. Thus, in order to achieve a test verdict, it is necessary to obtain
the taint information associated with “how the browser parsed the output”.
A candidate solution is to obtain taint information up to the browser parse
tree. However, since we are in a black-box context and want to �nd XSS ex-
ploits for real-world browsers, we cannot propagate the taint as [Sekar 2009]
did with his home-written browser. Thus we propose to use taint inference
techniques to obtain this information.

We illustrate these choices in Figure 3.4, and develop this second part of our
approach in Chapter 5.

D.1. 
Malicious 

Inputs 
Generation

Inputs Evolved 
by Genetic Algo.

Evolutionary Fuzzing--> 

Fuzzed
Inputs

KameleonFuzz

Found
Vulnerabilities

D.2. Precise
Taint Flow
Inference

Reßection
Aware

Non
Malicious

Inputs

Attack Input
Grammar

Figure 3.4: KameleonFuzz: Evolutionary XSS Fuzzing

Example We describe the execution of LigRE+KameleonFuzz on P0wnMe
(page 18). We here focus on KameleonFuzz, once LigRE has inferred the con-
trol+taint �ow models and generated input sequences.

Figure 3.2 contains a re�ection for the value2 e g a s sem of the parameter
message2 sent in the transition7 ! 33. An extract of the outputOdst is:
<input name="message2" value=' 2 e g a s sem '/> where we

highlight the re�ection. Here, the re�ectioncontext is inside a tag attribute

value. The context in�uences how an attacker generates fuzzed values. Listing 3.1
shows the server sanitizer for this re�ection. It blocks simple attacks. Attackers
search a fuzzed value s.t. if passed through the sanitizer, then its re�ection is not
syntactically con�ned in the context [Su & Wassermann 2006] i.e., it spans over
different levels in the parse tree.
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1 <?php function webapp_filter($str) {
2 if(eregi('"|`|>|<|;|/',$str)) {
3 $filtered_str = "XSS attempt!";
4 } else {
5 $filtered_str = str_replace(" ","",$str);
6 }
7 return $filtered_str;
8 } ?>

Listing 3.1: A vulnerable sanitizer in P0wnMe

Table 3.1 shows fuzzed values sent by w3af [Riancho 2011], a black-box open
source scanner, when testing P0wnMe . W3af iterates over a list of fuzzed values.
It does not learn from previous requests, nor considers the re�ection context. As a
result, all fuzzed values in Table 3.1 were affected by the �lter described in List-
ing 3.1, and w3af considered this re�ection not to be dangerous (false negative in
vulnerability detection). Only the input value composed of characters having no
special meaning in HyperText Markup Language (HTML) or JS (i.e.,2 ~a � Z• )
were not �ltered. We illustrate in the following table the only re�ection that w3af
obtained.

Fuzzed Value(xsrc) Re�ection
SySlw SySlw
uI<hf>hf"hf'hf(hf)uI

XSS attempt!
</A/style="xss:exp/ ** /ression(
fake alert('XSS'))">
'';!--"<klqn>=& f () g
<IFRAME SRC="javascript:fake
alert('klqn');"></IFRAME>

Table 3.1: w3af fuzzed values (extract)

The chopping (step C of LigRE, illustrated in Figure 3.3) produces input se-
quences containing at least one re�ection.

In step D.1, KameleonFuzz generates individuals, i.e., input sequences in
which it fuzzes the re�ected value by replacing the input parameter value by a
word generated from the Attack Input Grammar (AIG). For each individual, the
corresponding outputs are recorded and the taint is inferred between the fuzzed
input value and the concrete output, but also between the tainted substrings of the
concrete output and the nodes of the browser parse tree. This taint aware tree is an
input for the test verdict (did this individual trigger an XSS?) and the �tness score
(how close is this individual to triggering an XSS?). The best individuals are genet-
ically recombined while still conforming to the AIG to create the next generation:
e.g., the individuals 3 and 4 of generation 1 produce the individual 1 of generation
2. This process is iterated until a tester de�ned stopping condition is satis�ed (e.g.,
one XSS is found). Table 3.2 illustrates this evolution.
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Fuzzed Value(xsrc) Re�ection XSS Fit. Gen.
T9nj1'><script>alert
(18138)</script>

XSS Attempt! 3.1 1

oH1eqL' onload="
document.body.inner
HTML+='<div id=90480>
</div>'" fakeattr='

XSS Attempt! 3.2 1

ZuIa2' onload
=alert(94478)

ZuIa2'onload
=alert(94478)

13.3 1

WUkp'ntLgpRa WUkp' ntLgpRa 9.1 1

WUkp'nt onload='
alert(94478)

WUkp'ntonload
='alert(94478)

X 18.5 2

Table 3.2: KameleonFuzz fuzzed values (extract) of the re�ection(tsrc =
7! 33)(message)! (tdst = 7! 33)

The sanitizer in Listing 3.1 removes the space, but notnt,nr or nn. An extract
of the outputodst for the last individual is
<input name="message2" value=' WUkp'nt

onload='alert(94478) '/>

Using string edit distance and a threshold, the taint is inferred between the
tainted substrings ofodst and each node of the parse tree obtained from a browser.
This produces a Taint-Aware Tree (TAT), as illustrated in Figure 3.5.

input attributes

onload alert(94478)

value WUkp

name message2

Figure 3.5: A Taint -Aware Tree (TAT)TTdst (extract). The payload is a message
box that displays 94478 (harmless).

.+ attributes ( onerror k onload k... ) . * .+ . *

Figure 3.6: OneTaint -Aware Patterns (TAP), represented in a Linear Syntax (a
tainted event handler attribute)

The TAT are �ltered, using a set of Taint Aware Patterns (TAP) (Figure 3.6).
Each TAP is characterized by a non-con�nement of a tainted value. TAP are pro-
vided by the tester, who can use a very generic TAP, or, for example, use ones
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which only detect XSS exploits triggering the JS interpreter. Since the TAP in Fig-
ure 3.6 matches the TAT in Figure 3.5, the syntactic con�nement of there�ection
of xsrc is violated and the individual is a successful XSS exploit.

This example illustrates how evolutionary input generation can adapt to sani-
tizers.
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CHAPTER 4

Web Application Model Inference
for Black-Box XSS Detection

We think too small, like the frog at the bottom of the well.
He thinks the sky is only as big as the top of the well.
If he surfaced, he would have an entirely different view.

Mao Zedong

XSS involve both control and taint �ows, as they rely on an input value being
partly copied to a transition output. Thus, our approach for automatically detecting
XSS in black-box consists of two steps: “crawling” infers thecontrol and taint �ow
of the application, then “fuzzing” generates malicious inputs to exhibit vulnerabil-
ities. In the current chapter, we focus on the �rst step, components A, B and C
of Figure 4.1. This chapter addresses the problems of Section 2.5.1 (see page 33):
XSS.1 How to navigate in the Application? XSS.2.1 Where are the potential sinks?
XSS.3.1 Where to fuzz inputs? XSS.3.3 How to prioritize inputs fuzzing?

4.1 Our Approach

4.1.1 High Level Overview

We propose LigRE, a reverse-engineering tool which produces a model used to
guide the fuzzing towards detecting XSS vulnerabilities. As illustrated in Fig-
ure 4.1, it �rst learns a control plus taint �ow model, and then generates slices of
this model to guide the fuzzing.

During step A of Figure 4.1, LigRE learns thecontrol �ow of the application,
using a state aware crawler, to maximize coverage. During step B, LigRE anno-
tates the inferred model with observabletaint �ows of input values into outputs to
produce acontrol plus taint �ow model. Annotations �ow from a sourcetsrc to
a potential sinktdst. We use an heuristic driven substring matching algorithm for
its ef�ciency and as �lters impact is generally low on re�ections on non malicious
input parameters values.

After step B, we prioritize the most promising annotations. For each of them,
step C produces a slice of the model. Slices are chopped models. They permit to
drive the application to the origin oftsrc, for sending a malicious valuexsrc, and
then to produce inputs guiding a fuzzer to navigate towardstdst, for observing the
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Figure 4.1: High Level View of our Approach

effects ofxsrc. The fuzzing, step D, consists in creating and prioritizing valuesxsrc

depending of their effect. The fuzzing step will be described in Chapter 5.

4.2 Control Flow Inference

Step A in Figure 4.1 takes as input the description of a remote web application
(e.g., interface, authentication credentials), interact with it, and outputs acontrol
�ow model (CFM). A CFM formalizes the observable behavior of a web appli-
cation in a black-box test context. Nodes (states) represent webpages and transi-
tions represent requests and associated responses. However, storing only the afore-
mentioned information is not suf�cient for constructing a precise model since the
web application may have internalmacro-states(e.g., new user created, logged-in,
logged-out, etc.). We capture this notion of macro-states by adding colors to nodes,
as in [Douṕeet al.2012].

The control �ow inference step uses heuristics to identify which request
changed the macro-state (Section 4.2.3), chooses the next request to be performed
(Section 4.2.4), and assess the degree of certainty in the model (Section 4.2.5.1).
The model is iteratively built.

Non-Deterministic Values (NDV) In the process ofabstraction , some pa-
rameters are omitted: NDV a.k.a. nonces [Wikipedia 2006], i.e., output parame-
ters whose values differ when sending twice a given input sequence (and resetting
the system in between) and which may be used in subsequent inputs. Examples
of NDV include: anti-CSRF tokens [OWASP 2013a], sessionid stored in cook-
ies [Barth 2011], viewstates [Microsoft 2004]. In the presence of NDV, crawlers
achieve a limited coverage. More important, since we are interested in building a
Control Flow Model of the tested application, the presence of NDV may change
the abstracted output, thus resulting in a state explosion, whereas the execution
reached a previously encountered state.

We address this problem by requiring the human tester to identify NDV. In
order to do so, the tester has to observe which parameter values in a page model
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SFR Webmail: Graphical User Interface

Execution› 0 Execution› 1

HTTP
Reply
(ex-
tract)

Page
Model
(ex-
tract)

page

/html/body/div/form

/cas/login

(domain,. . . ,lt,. . . )

('webmessagerie-pub',. . . ,' cEA2E9A07-...',. . . )

(GET,. . . ,POST,. . . )

page

/html/body/div/form

/cas/login

(domain,. . . ,lt,. . . )

('webmessagerie-pub',. . . ,' cA3686786-...',. . . )

(GET,. . . ,POST,. . . )

Figure 4.2: Visually Spotting a Nonce for the Parameterlt in SFR WebMail
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are constantly changing when executing the exact same input sequence after an
application reset.

For instance in Figure 4.2, when the tester submits twice the same inputGET
/ , while resetting the application in between, the part of the page model corre-
sponding to the parameterlt has a different value the second time, thuslt is a
nonce. Thus, for each NDV name, the tester has to execute twice at least one given
transition.1

For one given transition, detecting NDV may seem easy according to the pre-
vious example, assuming the knowledge of a complete control �ow model. How-
ever, during the control �ow inference, the complete model is not yet available
and is being inferred. Determining both the control �ow model and the NDV are
two connected problems: not identifying NDV may lead to parts of the model be-
ing duplicated, and identifying NDV requires the ability to navigate to a transition
which contains one. However, our inference algorithm is not able to solve them
both simultaneously. Thus we require the tester to identify NDV.

Tester Provided Values The tester may also provide values for extending the
page models and thus generating new spiderlinks (e.g., a special login value for a
�eld nameduid in a speci�c DOM path).

4.2.1 Overview

Algorithm 4.1 shows the inference of a control �ow model from a web application.
The control �ow inference step infers partial control �ow models (not necessarily
completely speci�ed for each input).

Until a tester de�ned multi-criterion stopping condition is met (e.g., number of
requests, duration, number of different pages seen, number of macro-states, etc.),
LigRE iterates the following process (line 8).

LigRE resets the web application to its initial state using a tester written script.
The �rst spiderlink to be chosen is the start input (generallyGET /). LigRE sends
the concretization of the current spiderlink to the web application, and abstracts the
corresponding application output (HTTP reply) to a page model.

LigRE then consults the history plus the current spiderlink and page to deter-
mine if the macro-state has changed since the last time the same spiderlink was
sent (line 15). If this is the case, LigRE determines which spiderlink in the history
changed the state (line 17), thanks to the score heuristic (see Section 4.2.3). The
identi�ers of each history entry are updated, and the colors of the macro-states are
computed (line 21 consists in merging identical macro-states).

LigRE updates the history by storing the spiderlink and the page model. LigRE
then updates the control �ow model w.r.t. the new information in the history (line
25).

1In this example, the form submission method is POST, and the url to submit the form contains
parameters which will be sent using the GET method.
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A new spiderlink is chosen in the ones available in the current page model. If
none is available, or if the current input sequence is longer than the maximal length
allowed by the tester, LigRE resets the web application, and builds a new sequence
following the aforementioned process by choosing the start spiderlink. The explo-
ration is thus a Depth First Search (DFS), until a contradiction is detected, or a
sequence of maximal length has been produced.

Similarly, when a contradiction is detected for a given macro-state, and the
con�dence of the color not already chosen for the macro-state is higher than the
one in the control �ow model, then we backtrack, undoing the latest macro-state
change, and reset the application and start a new input sequence.

LigRE makes use of heuristics, because the problem of determining macro-
state is addressed on the �y during the navigation problem.

Algorithm 4.1: Control Flow Inference

1 # IN: nonces, webapp, stoppingcriterion
2 # OUT: cfm
3 history=[]

4 webapp.reset ()

5 curr sequence length = 0

6 curr identif ier = 0

7 spiderlink = config.start spiderlink

8 while(not stopping criterion):

9 if ( curr sequence length >MAXSEQUENCELENGTH):

10 webapp.reset ()

11 curr sequence length = 0

12 spiderlink = config.start spiderlink

13 output = webapp.send(spiderlink.concretize(nonces))

14 page = output .abstract(nonces)

15 if (cfm.macro state changed(spiderlink ,page ,history)):

16 curr identif ier += 1

17 k = cfm. index changed macro state (spiderlink ,page ,history)

18 for i in range(k, len(history)):

19 history[i ]. identifier = curr identif ier

20 page. identifier = curr identif ier

21 cfm. compute colors (cfm. identifiers ,cfm.pages)

22 else:

23 page. identifier = curr identif ier

24 cfm.history.append( f spiderlink ,page g)

25 cfm.update hist (history)

26 spiderlink = page. pick spiderlink ()

27 curr sequence length += 1

28 return cfm
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4.2.2 Control Flow Notions

The history of inputs and outputs serves to build anavigation tree, which is used
to build a CFM. Both are colored. Their coloration evolves to characterize the
macro-states.
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4.2.2.1 Macro-State

Macro-stateis an important notion for understanding the control �ow of a web ap-
plication. It designates “anything that in�uences the executed code at server side”
[Doupéet al.2012]. Both nodes and macro-states represent the current execution
context of the web application. They differ in their granularity. A node is charac-
terized by a page (i.e., the last output). Whereas a macro-state is a set of nodes,
i.e., at a higher level of abstraction, and is characterized by a common behavior of
these nodes. De�nition 10 formalizes this notion.

De�nition 10 Macro-State
Let W = (N;n0; T; I ; P; � ) be a Web Application (De�nition 4).
A macro-state is a set of nodes which is coherent w.r.t. its successor nodes.
Let C � N be a set of colors. Letcol : N ! C be a coloring function which

associates a color to each node. We say thatcol is a valid macro-state coloring
iff, for any na; nb 2 N, col(na) , col(nb) whenever any of the following conditions
hold:

• 9i 2 I ; 9(nc; nd) 2 N2 s.t. (na; i; nc) 2 T ^ (nb; i; nd) 2 T ^ � (nc) , � (nd)

• f� (u)j9i 2 I ; (na; i; u) 2 Tg \ f � (u)j9i 2 I ; (nb; i; u) 2 Tg= ?

If col is such a coloring, for eachc 2 C, the set of nodesNc = fn 2 N;col(n) = cg
is a macro-state.

4.2.2.2 Control Flow Model (CFM) (model )

A CFM is a Web Application with colors (i.e., macro-states). It is de�ned in De�-
nition 11. The nodes and continuous arrows of Figure 3.2 are an example of CFM.
The inferred CFM are not necessarily completely speci�ed for each pair of node
and input.

De�nition 11 Control Flow Model (CFM)
A CFM is a 8-upleM = (N;n0; T; I ; P; � ;C; col) whereW = (N;n0; T; I ; P; � )

is a Web Application (De�nition 4) andcol : N ! C � N is a coloring ofW s.t.
the macro-states partitionN:

• for each colorc 2 C, let Nc be the set of nodes inN having this color. Either
Nc is empty, orNc is a macro-state (De�nition 10)

4.2.2.3 Navigation Tree (history )

The Navigation Tree (history in Algorithm 4.1) is a set of traces. It is a pre�x
tree which contains the sequences of abstract inputs (spiderlinks) and outputs (page
models). This navigation tree is an auxiliary structure for building the CFM.
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10 ! 20 GET /saveprofile?action=new&is author=True&...

20 ! 21 GET /login

10

20

GET /login

10

20

21

After
21th request

After
20th request

Figure 4.3: Evolution of the Navigation Tree when the Macro-State Changes

4.2.3 Macro-State Change Detection

As the stopping criterion will halt exploration before the Web Application is fully
explored, our inferred model is not completely speci�ed. This holds for the step A
(control �ow inference), but also for the step B (taint �ow inference).

We build the CFM iteratively in step A, using a DFS exploration, so we need to
characterize the current macro-state after each request. In order to do it, we need to
address four sub-problems: Did the macro-state change? Which request changed
the macro-state? What is the current macro-state? Which link to pick next?

In order to alleviate the computational complexity, we address these sub-
problems using heuristics, inspired from [Doupéet al.2012]. We added param-
eters in Table 4.1 and Table 4.2, and adjusted their weights using results from
experimentation by observing which combinations increased the ef�ciency of the
control �ow inference. ?? details the dimensions and the rationale behind each
dimension.

4.2.3.1 Example

Figure 4.3 shows the evolution of an extract of the navigation tree (history )
when a macro-state change occurs. In this example, the spiderlinkGET /login
permits detecting the macro-state change, because the page model obtained in!
10 is different from the one obtained in20 ! 21, and the same spiderlinkGET
/login was executed.index changed macro state selects10 ! 20 as
the cause of the state-change, because it has the highestscore (see Table 4.1)
value among[! 10;10 ! 20;20 ! 21].
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+ or -
weight

id dimension name

++ 1 number of input parameters
+ 2 distance between page models (pprev i

�!
pi)

+ 3 HTTP method
� 4 number of times performed (total)
� 5 number of times it changed the state
� 6 number of requests betweeni andidetect

�� 7 number of potential contradictions (approx.)

Table 4.1: Dimensions of thescore(spiderlink i) heuristic

4.2.3.2 Did the macro-state change? (macro state changed )

If a spiderlink i is sent twice to the application during the requests
prev and detect, and the obtained page models are different (i.e.,
( oprev = iprev.concretize().send()).abstract() , (odetect =
idetect.concretize().send()).abstract() ), then the macro-state
changed. This is the case for the spiderlinksiprev=GET /login (! 10) and
idetect=GET /login (20 ! 21) in the navigation tree extract shown in Figure 4.3.

4.2.3.3 Which request changed the macro-state? (index changed macro
state , score heuristic)

If a macro-state change is detected betweeniprev and idetect, then the question
“which request in the history between those changed the macro-state?” arises.
To answer it, the heuristic functionscore represents the likelihood of a request
having changed the macro-state. For a spiderlinki 2 [iprev; : : : ;idetect] the higher the
value ofscore(i) , the more likelyi changed the macro-state. The dimensions
of score are listed in Table 4.1. If there is a+, resp.� , in front of the dimension,
thenscore is increasing, resp. decreasing, w.r.t. this dimension.score is used
in index changed macro state in Algorithm 4.1.

The following dimensions compose the heuristic of Table 4.1:

• 1. Number of input parameters: the more inputs parameters for a given
spiderlink, the more likely it will change the macro-state (e.g., when creating
a new user in an application).

• 2. Distance between page models: the more distinct are the page models
of i andiprev, the more likely they correspond to nodes in different macro-
states. Due to its effectiveness, we use the PQ-gram distance for measuring
the similarity between page models [Augstenet al.2005].
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• 3. HTTP method : a POST method is more likely to change the macro-state
than a GET method, thus it will have a higher score.

• 4. Number of times performed (total): number of times that this spiderlink
has already been sent. Our navigation strategy prefers request that permit
determining a macro-state change, but not request that actually do change
the macro-state. Thus a frequently sent spiderlink is not very likely of having
changed the state.

• 5. Number of times this spiderlink changed the state: since we are using
heuristic functions, we want to be error tolerant, that is if once we determined
that a given spiderlink changed the macro-state, we want to decrease the
likelihood of repeating this error.

• 6. Number of requests betweeni and idetec: since our navigation strategy
prefers requests that help determining a macro-state change, it is likely that
we detected a macro-state change early, that is thatidetect is probably close
of the spiderlink that changed the macro-state.

• 7. Number of potential contradictions (approximative): if we hypothe-
size thati changed the macro-state, how many potential contradictions would
we have? It is likely that choosing a wrong spiderlink as the reason for a
macro-state change would increase the number of contradictions.

The �nal score is a weighted linear sum of each dimension.

4.2.3.4 What is the macro-state of the current node? (compute colors )

The current node is the result of the submission of the spider-links since the last
reset. In order to know if the current node is one previously encountered, it is
necessary to merge macro-states.

For this purpose, anidenti�er is associated to each node. If the macro-state
changes, then the current identi�er is updated to a one different of the preceding
node, it is unchanged otherwise (see Algorithm 4.1). [Doupéet al.2012] reduced
this macro-state collapsing problem to the coloring of an undirected graph of iden-
ti�ers [Doupéet al.2012]. If there is an edge between two identi�ers (e.g.,A and
B), then they will have different colors, otherwise they will be merged (e.g.,B and
D identi�ers are merged in the same colorB + D in Figure 4.4).
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Figure 4.4: Identi�ers Merge: B and D denote the same Macro-State (extract of the
Google Gruyere Macro-State Coloring Process)

There are four rules to add an edge between two identi�ers / macro-states�
and� :

• Rule1: there is a macro-state change from� ! � or � ! � (e.g.,A! B,
B! C, C! D etc.)

• Rule2: they have no common pages (pages(� ) \ pages(� ) = ? ) (e.g.,A and
C)

• Rule3: if 9 a spiderlinki, and identi�ers
; � , s.t.

– by executingi when the application is in the macro-statecolor(� )
drives it to the macro-statecolor(
 ): � (i) ! 


– and by executingi when in the macro-statecolor(� ) it leads to a macro-
statecolor(� ): � (i) ! �

– and the reached macro-states are different:color(
 ) , color(� )

– ... then it means that� and� should not be mapped to the same macro-
state:color(� ) , color(� )
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• Rule4: adding an edge reduces the number of potential contradictions

Backtracking may occur during coloring (see Section 4.2.5.3).

Algorithm 4.2: Compute Colors

1 # IN: history , cfm, identi f iers
2 # OUT: cfm, identi f iers
3
4 def compute colors ():

5 cfm.compute rules 1 and 2 () # R1: same input , different
page model

6 # R2: no common page model
7 cfm.compute rule 4 () # R4: contradictions
8 identifiers.greedy coloring ()

9 while(cfm.compute rule 3 () > 0 ): # R3: same input leads to
different macro� states

10 identifiers.greedy coloring ()

11
12 class CFM:

13 def compute rules 1 and 2 ():

14 for a in identifiers:

15 for b in identifiers:

16 next node b = false

17 if (a != b):

18 at least one commonpage model=false

19 for t a in a. transitions:

20 for t b in b. transitions:

21 if ( t a [ ' input ']== t b [ ' input ']):

22 # rule 1: same input , different page model
23 if ( t a [ 'node '][ 'page model ']!= t b [ 'node '][

'page model ']):

24 identifiers.edges.append([a,b])

25 next node b = true

26 break

27 if ( t a [ 'node '][ 'page model ']== t b [ 'node '][ '

page model ']):

28 at least one commonpage model=true

29 if ( next node b ):

30 break

31 # rule 2: no common page model
32 if (not at least one commonpage model ):

33 identifiers.edges.append([a,b])
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Algorithm 4.3: Compute Colors (cont.)

34 # R4: contradictions
35 def compute rules 4 ():

36 for a in identifiers:

37 for b in a.contradiction observed:

38 identifiers.edges.append([a,b])

39 # R3: same input leads to different macro� states
40 def compute rule 3 ():

41 num of added edges =0

42 for a in identifiers:

43 for b in identifiers:

44 if ((a != b) and ([a,b] not in identifiers .edges) and ([b,a

] not in identifiers.edges)):

45 for t a in a. transitions:

46 next b = false

47 for t b in b. transitions:

48 if ( t a [ ' input ']== t b [ ' input ']):

49 if ( t a [ 'node ']. identifier .color != t b [ '

node ']. identifier .color):

50 identifiers.edges.append([a,b])

51 num of added edges +=1

52 next b = true

53 break

54 if (next b ):

55 break

56 return num of added edges

57
58 class Identifier :

59 def greedy coloring ():

60 curr color = � 1

61 for a in identifiers:

62 neighbors colors=[]

63 for b in a.get identif iers edges ():

64 if (b.color != � 1):

65 neighbors colors .append(b.color)

66 neighbors colors .sort ()

67 # use the most recent available color
68 for j in range(curr color , � 1, � 1):

69 if (( found color== � 1) and (j not in neighbors colors )):

70 found color = j

71 break

72 if ( found color== � 1):

73 current color +=1

74 found color = current color

75 a.color = found color 55
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4.2.4 Navigation Strategy

Each time LigRE receives an output of the web application, it abstracts this con-
crete output to a page model and update the macro-states colors. Since we perform
a DFS exploration, LigRE chooses the next spiderlink to explore. Depending on
the tester parameters, it may generate additional spiderlinks – than the ones present
in the page model – for facilitating future taint �ow inference.

4.2.4.1 Choosing the Next Spiderlink to Explore (pick spiderlink )

After obtaining a page modelp, LigRE must decide what is the next spiderlink
in spiderlinks(p) to explore. The heuristic functionnavigating represents the
likelihood of a spiderlink to be chosen as the next one to be executed on the ap-
plication. For a given spiderlinki, the higher the value ofnavigating(i) , the
more likely i will be picked. Table 4.2 lists its dimensions.pick spiderlink
in Algorithm 4.1 uses it.

+ or -
weight

id dimension name

+ + + 1 request never executed
++ 2 (1+consecutivecontradictions)*numstatechange
++ 3 num recently sent
++ 4 number of arti�cially generated parameter values
+ 5 number of times sent
� 6 spiderlinkmethodweight
� 7 number of times it changed the macro-state

Table 4.2: Dimensions of thenavigating(spiderlink i) heuristic

The dimensions of Table 4.2 model the several intuitions:

• 1. Request Never Executed: we want to increase the knowledge of the
application.

• Some spiderlinks may be more likely to be picked up,
as they permit detecting a state change (2. (1+consecu-
tive contradictions)*num detect state change). However, we do not
want that only those are choosen, thus we temporarily introduce a penalty if
they have been recently picked (3. Number of Times Recently Sent).

• 5. Number of Times Sent: we want to favor less explored spiderlinks.

• 4. number of arti�cially generated parameter values, 6. spider-
link method weight and7. number of times it changed the macro-state:
we want to explore as much as possible of the current macro-state before ex-
ploring the next one. Thus, since POST requests are statistically more likely
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to change the macro-state than GET requests (e.g., user creation, user login),
navigating is a decreasing metric w.r.t. this dimension.

As illustrated in Algorithm 4.4, either the current node contains unexplored
spiderlinks and one of them is chosen according to theirnavigating score, or
the shortest path in the model to nodes containing non explored spiderlinks is com-
puted using [Dijkstra 1959]'s algorithm.

Algorithm 4.4: Pick Spiderlink

1
2 # IN: cfm, page, history
3 # OUT: spiderlink
4
5 def pick spiderlink (cfm, page , history):

6 chosen=None

7 never explored = []

8 for sp in page.spiderlinks:

9 if (sp not in history):

10 never explored.append(sp)

11 if ( len(never explored) > 0):

12 never explored.sort(key= lambda i: navigating(i),reversed=true)

13 sp set = never explored

14 else:

15 explored n times = []

16 n = 1

17 while(( len(explored n times)==0) and (n<config.stop.

N MIN LINKS)):

18 explored n times = cfm.

get al l t ransi t ions explored n t imes (n)

19 if ( len(explored n times)==0):

20 raise Exception('cfm built ')

21 explored n times .sort(key= lambda i: dijkstra(page.

current spiderlink ,i))

22 sp set = explored n times

23
24 chosen = sp set [0]

25 return chosen

The stopping criterion evaluates to true when for each node of the CFM, the
outgoing transitions have been explored a tester de�ned number of times. The
tester can limit the number of requests and the execution time. In our experiments,
we limit the number of sent requests. We adjust this metric by iteratively, browsing
manually the application, setting a limit, inferring a control �ow model, observing
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the obtained CFM, and eventually adjusting the number of requests. We adjusted
this metric depending on the tested web application (e.g., for P0wnMe , we limit
to 60 requests, whereas for Gruyere, we limit to200). Adjusting this metric is a
trial and error process, which converged around 25 iterations for the �rst tested
applications to around 8 for the most recently tested ones.

4.2.4.2 Pruning

Testers may want to prune the model for readability, speed, or desire to concentrate
the testing effort in one part of the application. This process is known to reverse en-
gineers of binary executables [Guilfanov 2008]. LigRE permits to specify pruning
patterns in order not to explore matching spiderlinks.

In Figure 4.5, we illustrate one pruning pattern. A pruning pattern matches
DOM tree nodes, in order to prevent LigRE to build spiderlinks for the<A> or
<FORM>DOM nodes containing in the subtrees matched by this pattern.

In Figure 4.6 we illustrate the impact that pruning has on the obtained CFM,
speci�cally for WebGoat [OWASP ], a deliberately vulnerable JSP web application
(see Table 6.1 in page 91). We want to focus the testing on one particular WebGoat
“lesson”: “Stored XSS”.

We de�ne pruning patterns manually speci�cally for each web application we
want to test.

Figure 4.5: Nine Examples of Pruning Patterns for Spiderlinks

4.2.4.3 Arti�cial Spiderlink Creation

Depending on tester de�ned con�guration, LigRE may create spiderlinks that con-
tain arti�cially generated values (i.e., which are not present in the page models).
This value creation aims at limiting the risks of collisions and false positives during
the later taint �ow inference.

We want a functionartif that receives an input parametername(e.g.,msgin
Figure 3.2) and produces a value s.t. the following properties hold for “most” input
parameter names:

• it is easy to computeartif(name)
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First LigRE Run: Initially Produced CFM after 60 requests: only one macro-state
is detected, because only the very �rst transitions from the root node are explored.

Second LigRE Run: Produced CFM with pruning after 60 requests. As LigRE
explore deeper parts of the application, it discovers a new (red) macro-state.

Figure 4.6: Result of Application of Spiderlink Pruning

• modifying an input parameternamesigni�cantly changesartif(name)

Those are two of the four properties of ideal cryptographic hash functions. Some
web fuzzers use hash functions [epsylon 2012].

In our implementation, we use our own function which creates parameter val-
ues by reversing the parameter name and by alternating characters from the re-
versed input parameter name and an extension string (may be tester provided, we
hardcoded default ones ; should not contain “special” HTML characters such as
f',",>,/ g), as illustrated in Table 4.3. This has the advantage of permitting a
human tester to visually identify the tainted parameter source. For two given input
parameters having the same name, our technique voluntarily generates the same
value, even if they originate from different transitions in the CFM.

Param. Name Extension String Generated Param. Value
pw 12 45 78 0 w1p2wp4w5p

Table 4.3: Automatic Value Generation for Helping Taint Flow Inference
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4.2.5 Backtracking

Backtracking consists of undoing parts of the model and recomputing them with
an additional constraint. It occurs when either apotential contradiction(De�ni-
tion 12) is observed on part of the model with a lowcon�dence, or when executing
a spiderlink on the CFM leads to a different page model than the one observed in
the Web Application. Backtracking is a part of themodel.update() process
(Algorithm 4.1).

4.2.5.1 Con�dence

TheCon�denceexpresses the level of trust in a part of the model. This metric is
applicable to a node or a transition. The higher its value, the more con�dent we
are in the coloring of the element. Table 4.4 contains the dimensions used in this
function.

weight dimension name
� number of nodes in the shortest path from root
� number of unexplored spiderlinks in the page model

of n
� ... that have same hash as one which permit deter-

mining a macro-state change

Table 4.4: Dimensions of theconfidence(node n) heuristic

4.2.5.2 Potential Contradiction

A potential contradiction indicate that we may have assigned a page model to the
wrong macro-state coloring. It is de�ned in De�nition 12. Let us assume that the

De�nition 12 Potential Contradiction
Let na andnb be two nodes2 N. A potential contradiction betweenna andnb

is de�ned as follows:

contradiction(na; nb) =

8
>>>>>><
>>>>>>:

True if ((con f idence(na) , con f idence(nb))
^ (pagemodel(na) == pagemodel(nb))
^ (color(na) , color(nb)))

False otherwise

nodeb is the current state. If there exists a nodea, s.t. contradiction(a;b) is True,
then wemayhave missed detecting a state change. Thus contradictions are inputs
for navigating (see Table 4.2) andscore (see Table 4.1).
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4.2.5.3 Backtracking

We hypothesize that the web application is deterministic at the abstract level: if
an input sequence of spiderlinks from the start node is executed several times, the
sequences of obtained page models are the same.

Each sent spiderlink is executed on the application, and on the currently in-
ferred CFM. It may happen that the CFM execution leads to a different page model
than the application one. This is a non-determinism: either the application is not
deterministic (and the tester missed a nonce in the abstraction process), or the cur-
rent CFM is not correct. We assume it is the second case.

In such a situation, our heuristic assumes that the ultimate macro-state change
was not correct: we considered the identi�ers� and� to map to the same macro-
state, but this turned out to be wrong. Thus, we add an edge between� and� (such
edges are used in thecompute rule 4() of Algorithm 4.2), redo the coloring
and update of the model, reset the application, and start a new sequence from the
initial node.

4.3 Taint Flow Model Annotations

Figure 4.7: Step B: Taint Flow Inference

The taint �ow model annotation corresponds to step B in Figure 4.1. It consumes
a Control Flow Model (CFM), to which it adds inferred taint �ows, thus producing
a hybrid Control plus Taint Flow Model (CTFM), such as the one represented in
Figure 3.2. In such a model, the bold text represents the source of a re�ectiontsrc,
and the blue/dotted arrow edges designate the re�ection destinationtdst.

This step consists of �rst generating walks in the CFM, and then actively sub-
mitting those walks to the web application while inferring observable taint �ows.

During this step, only taint �ows are added to the CFM, no transitions are
added or removed, even though a precise analysis may discover new macro-states.
This is a choice of our implementation.

We compute the control �ow inference (step A) and the taint �ow inference
(step B) separately. The reason is that until step A (control �ow inference) is
�nished, we are unsure whether the execution context of the application leads to
a node for which we already inferred the taint. Thus performing control and taint
�ow inference separately permits to only compute the taint when necessary. This
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is important, as on the tested applications, the taint �ow is inferred signi�cantly
more often than the control �ow inference.

4.3.1 De�nitions

Re�ection Context and CTFM are de�ned respectively in De�nition 13 and De�-
nition 14. The taint-�ow computation is explained in Section 4.3.3.

A re�ection context is the output structure in which a re�ected input value is
supposed to be con�ned (De�nition 6) during the processing of a non-malicious
input. We list several re�ection contexts in Table 4.5, and formally de�ne this
notion in De�nition 13.

outside an HTML tag <h1>

inside an HTML src/href at-
tribute value

<a href=" "/>

inside a non src/href HTML at-
tribute value

<input value=" "/>

inside an HTML textarea <textarea> </textarea>

inside a CSS value body f background-image:
url(images/ .png); g

inside a JS value var zipcode = " ";

Table 4.5: List of Considered Re�ection Contexts (CT X) for GO =HTML

De�nition 13 Re�ection Context
Let G be a grammar (e.g., HTML),CT X be a set of re�ection contexts (Ta-

ble 4.5),odst 2 � � be a concrete output and a word ofG, andv 2 � � be a non-empty
substring ofodst.

The re�ection contextctx(v) 2 CT X is the narrowest structure inG (non-
terminal production rule) in which the re�ected value is con�ned when sending
non fuzzed values. IfG is context-free, thenctx(v) is the smallest word inG con-
tainingv and derived from one unique terminal.

4.3.2 Generating Walks

Random walk and Breadth First Search (BFS) are the implemented strategies for
generating inputs from a CFM. The submission of those inputs is performed in a
DFS manner. Since we generate identical values if the same parameter is present
in several transitions, we want to reset the application frequently enough to avoid
over-tainting. Our input sequence creation strategies limit the length of the input
sequences, and the number of times the sequences traverse each node. If a sequence
is a pre�x of another one, then we only keep the latter. We analyzed XSS on
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De�nition 14 Control and Taint Flow Model (CTFM)
Let � be an alphabet, andG be a grammar. A Control and Taint Flow Model

(CTFM) is composed of:

• a CFM (De�nition 11)

• a taint-�ow function df: (� + � T � T) ! CT X+ , s.t. for a re�ection
re f l = (xsrc; tsrc; tdst; odst) of the valuexsrc of a parametername 2 � + ,
d f(name; tsrc; tdst) produces the list of Re�ection Contexts (De�nition 13)
of xsrc into odst w.r.t. G

�fteen applications of various complexity, and observed that the longest shortest
path betweentsrc andtdst, both included, is 4 transitions, and the shortest path to
reach the deepesttdst was 8, thus we arbitrarily limit the length of the generated
sequences to 8 (pre�x+suf�x).

4.3.3 Computing Taint Flows

For each sequenceI = (t1; :::;tk), for each concrete outputo j , j 2 [1::k], for each
previously sent input parameter valuexm, m 2 [1:: j], a distance betweenxm ando j

is computed.
Speci�cally, the taint �ow inference consists in �rst searching in the outputo j

for exact substrings ofxm of a minimal length, marking those found substrings,
clustering them, and then computing the edit distance [Levenshtein 1966] fromxm

to the clusters. If this distance is lower than an empirically determined threshold,
then a taint �ow is annotated on the CTFM.

Algorithm 4.5: Compute Taint

1 # IN: cfm, webapp
2 # OUT: ctfm
3
4 def from cfm to ctfm(cfm,webapp ,config):

5 # generate input sequences
6
7 reg exp =[]

8 # submit each input sequence
9 for inp seq in sequences:

10 for k in range(0, len( inp seq)):

11 try :

12 reg exp [k]

13 catch IndexException:

14 reg exp [k] = []
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Algorithm 4.6: Compute Taint (cont.)

15 i k = inp seq [k]

16 o k = webapp.submit( i k .concretize(config.nonces))

17 taint f low = []

18 for j in range(k, � 1, � 1):

19 for l in range(0, len( inp seq [j].params)):

20 if (k not in taint f low[j][ l ]) :

21 # search for exact substrings
22 inp param = inp seq [j].params[l]

23 try :

24 reg exp [j][ l]

25 catch IndexException:

26 reg exp [j][ l] = [

bui ld reg exp of min length ( inp param[

'value '], config.min taint length ),

bui ld reg exp of min length ( inp param[

'value '], config.min taint cluster )]

27 if ( reg exp [j][ l ][0]. search(o k )):

28 taint f low[j][ l] += [k]

29 continue

30 # f i l te rs may be in place
31 if (matches = reg exp [j][ l ][1]. search(o k )):

32 # see next page
33 def from cfm to ctfm(cfm,webapp ,config):

34 # . . .
35 # indexed here for readability
36 if (matches):

37 clusters = []

38 # cluster them
39 curr clust = 0

40 for c in range(0, len(o k )):

41 if (matches. char c is tainted ()):

42 if ( num of misses > config.max chars inside clus ):

43 curr clust += 1

44 clusters[curr clust ] += o k [c]

45 num of misses = 0

46 else:

47 num of misses += 1

48 # is any cluster suff ic ient ly close? (server� size f i l te r )
49 for clust in clusters:

50 if (edit distance(in= inp param['value '],out=clust) < =

config.max edit distance):

51 taint f low[j][ l] += [k]

52 break

53 ctfm = f 'cfm':cfm,' taint f lows ': taint f low g
54 return ctfm
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Algorithm 4.7: Compute Taint (cont.)

55 def bui ld reg exp of min length (my str ,my len):

56 to compile=val.substr (0,my len)

57 for k in range(1, len(val)):

58 to compile = " j "+val.substr(k,my len)

59 return re.compile( to compile )

4.4 Flow-aware Non Malicious Input Generation

Figure 4.8: Step C and D: Chopping and Flow aware Fuzzing

4.4.1 Overview

Control+Taint Flow Aware Fuzzing encompasses steps C and D in Figure 4.1:
�rst prioritizing the considered taint �ows (Section 4.4.2), producing slices (Sec-
tion 4.4.3), and then using those slices to guide a fuzzer. Its pseudo-code is in
Algorithm 4.8. get reflections returns the observed re�ections by decreas-
ing priority. It uses theprioritization(reflection) heuristic function
whose dimensions are described in Table 4.6. The higher the value ofsum, the
more likely this re�ection will be tested �rst. For each re�ection, LigRE positions
the application in the node from whichtsrc originates by sending aprefix se-
quence. Then LigRE feeds the fuzzer an authentication context (e.g., cookie) and
a suf�x obtained from the chopped model (CH(tsrc; tdst), see Section 4.4.3) for the
fuzzer to navigate fromtsrc to tdst.

4.4.2 Re�ection Prioritization

Table 4.7 is an extract of the prioritization table in its initial state.dimk corre-
sponds to the dimensionk of Table 4.6. Each tuple of cells(tsrc; xsrc; tdst) line
of Table 4.7 designates a re�ection. Thus we have re�ectionsa;b; c; d. Ini-
tially, chosen reflections , the list of already chosen re�ections, is empty.
Sincea has the highest prioritization value (see columnsum in Table 4.7 and
line 20 of Algorithm 4.8), a is the �rst re�ection chosen. a is added to
chosen reflections . The dimensions ofa are updated:dim4;5(a)+=1. Then
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Algorithm 4.8: Control+Taint Flow-aware Fuzzing

1 #IN: webapp, ctfm , fuzzer
2 #OUT: vulns
3
4 def control data aware fuzzing (webapp , ctfm , fuzzer):

5 vulns = []

6 for refl in ctfm. get reflections ():

7 webapp.reset ()

8 prefix =shortest path(from=root ,to=refl .src)

9 webapp.execute( prefix )

10 fuzzer.config.auth = webapp.context

11 suffix = shortest path(refl .src ,refl .dst)

12 fuzzer.config.urls = suffix

13 vulns += fuzzer.do()

14 return vulns

15
16 class CTFM(Object):

17 reflections=[]

18 def get reflections ( self ):

19 chosen reflections=[]

20 priorit ization table . init ()

21 while( len(chosen reflections) < max input to fuzz ):

22 chosen index= � 1

23 priorit ization table .sort(key= lambda refl :( � refl .sum,

refl . t imes chosen))

24 index having same sum =0

25 for i in range(1, len(priorit isation table)):

26 if ( priorit ization table [0]. t imes chosen <
priorit ization table [i ]. t imes chosen):

27 break

28 index having same sum=i� 1

29 chosen index = random.randint (0, index having same sum)

30 chosen reflections .append(reflections[chosen index ])

31 priorit ization table .update dimensions ()

32 return chosen reflections
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b is chosen, similarly:dim4;5(b)+=1. Later on, eitherc or d will be chosen. Let us
assumed is chosen �rst. Thendim4;5(d)+ = 1 anddim4(c)+ = 1 are updated, since
c andd have the samexsrc.

dim weight dimension name
1 � number of re�ections having the same pa-

rameter namexsrc

2 � number of re�ections having the same
(tsrc; tdst)

3 � number of macro-states fromtsrc to tdst

4 � number ofalready chosenre�ections hav-
ing the samexsrc

5 � number ofalready chosenre�ections hav-
ing the same(tsrc; tdst)

Table 4.6: Dimensions ofprioritization(reflection,chosen)

4.4.3 Chopping, a particular form of Slicing

Slicing permits to limit the state space exploration. This technique focuses on
parts of the applications w.r.t. aslicing criterion. The notion of slicing has
been extended to model-based languages. Various techniques are proposed in the
literature [Androutsopouloset al.2013]. In LigRE, we are interested in �nding
paths between a sourcetsrc and a destinationtdst on the model. Thus we use a
compressed form of slicing calledchopping[Jackson & Rollins 1994], which cap-
tures this relation.Our chopping consists in a shortest sequence of transitions (also
called path) starting withtsrc and ending on the originating node oftdst. We use
[Dijkstra 1959]'s algorithm for computing such paths on CTFM.

Figure 3.2 illustrates a CTFM produced by step B. If the targeted re�ection
is tdst = (7 � (msg)! 17)) andtdst = (18! 21), then an example of slice for this
re�ection is illustrated in Figure 3.3.

4.5 Implementation

The approach is implemented as a tool LigRE containing approximately 8000
SLOC of Python3.2. Figure 4.9 represents its architecture. KameleonFuzz (Chap-
ter 5) extends LigRE by incorporating a new fuzzer. During the control �ow in-
ference, the parse tree (approximated by a subset of the Document Object Model
(DOM)) is obtained using the selenium library [Hugginset al. ] which instruments
the Google Chrome browser to parse HTTP replies. During the taint �ow inference,
requests are performed directly to the web application. During the fuzzing, LigRE
drives the application in the source via the pre�x slice ; it then parameterizes the
suf�x slice for a fuzzer (w3af [Riancho 2011] or KameleonFuzz Chapter 5).
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Re�ection
id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5 sum chos:
a 7 ! 33 message2 7 ! 33 1 1 0 0 0 -2 0
b 7 ! 17 msg 18 ! 21 1 1 1 0 0 -3 0
c 33 ! 9 action 33 ! 9 5 1 0 0 0 -6 0
d 18 ! 21 action 21 ! 9 5 1 0 0 0 -6 0

(initial state)

id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5 sum chos:
a 7 ! 33 message2 7 ! 33 1 1 0 1 0 -3 1
b 7 ! 17 msg 18 ! 21 1 1 1 0 0 -3 0
c 33 ! 9 action 33 ! 9 5 1 0 0 0 -6 0
d 18 ! 21 action 21 ! 9 5 1 0 0 0 -6 0

(after the �rst iteration,a has been chosen)

id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5 sum chos:
b 7 ! 17 msg 18 ! 21 1 1 1 1 0 -4 1
c 33 ! 9 action 33 ! 9 5 1 0 0 0 -6 0
d 18 ! 21 action 21 ! 9 5 1 0 0 0 -6 0
a 7 ! 33 message2 7 ! 33 1 1 0 1 0 -3 1

(after the second iteration,b has been chosen)

id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5 sum chos:
c 33 ! 9 action 33 ! 9 5 1 0 1 0 -7 0
d 18 ! 21 action 21 ! 9 5 1 0 1 0 -7 1
a 7 ! 33 message2 7 ! 33 1 1 0 1 0 -3 1
b 7 ! 17 msg 18 ! 21 1 1 1 1 0 -4 1

(after the third iteration,d has been chosen, it could have beenc also, see lines
21-26 in Algorithm 4.8)

Table 4.7: Prioritization of Re�ections

In order to con�gure LigRE for an application, the tester has to write a
config.xml �le (an extract of such a �le is illustrated in Listing A.2 in
page 142) which contains informations about the interface (e.g., Domain Name
System (DNS) Fully Quali�ed Domain Name (FQDN), Transmission Control Pro-
tocol (TCP) port, baseHREF, etc.), a link to the tester written reset script, the stop-
ping condition, the nonces in the web application, and eventually some pruning
patterns if the tester wants the efforts to be concentrated in speci�c parts of the ap-
plication. The tester can also adapt the weight of the dimensions in our heuristics,
altough it should not be necessary to them for applications similar to the ones on
which we experimented.
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Figure 4.9: Architecture of LigRE

Figure 4.10: The Liger Hercules (10 feet long and 922 pounds weight), the LigRE
Logo

4.6 Related Work

4.6.1 Control Flow Inference (CFM)

Based on [Angluin 1987]'s L*, [Shahbaz & Groz 2009] designed an algorithm
for iteratively inferring the control �ow of an I/O system. [Choet al.2010] in-
fer a botnet protocol by adding a prediction heuristic to [Shahbaz & Groz 2009].
[Hossenet al.2013] automatically generate test drivers for non-Ajax web applica-
tions.

[Doupéet al.2012] showed that improving control �ow inference increases
vulnerability detection. LigRE shares similarities with their macro-state-aware-
crawler. Differences lay in the heuristics, the introduction of con�dence, contradic-
tions, backtracking, and taint �ow inference. [Doupéet al.2012] run experiments
on a local cloud, whereas we run ours on a laptop.

[Dessiatnikoffet al.2011] cluster pages according a specially crafted distance
for SQL injections [Dessiatnikoffet al.2011]. [Marchettoet al.2012a] dynam-
ically infer the control �ow of Ajax web applications [Marchettoet al.2012a].
They wrote abstraction functions for common Ajax primitives.
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[Tonellaet al.2012] use genetic algorithm for �nding the right balance be-
tween over and under-approximations of CFM[Tonellaet al.2012].

LigRE does not make use of L* (because of the NDV, the macro-states which
leads to enormous state machines) and is driven by heuristics. It clusters pages
according to the notion of macro-state. The current implementation supports non-
Ajax applications or Ajax applications which downgrade gracefully.

4.6.2 Taint Flow Inference

W3af [Riancho 2011] and XSSAuditor [Bateset al.2010](Chrome XSS �lter) as-
sume the fuzzed input value to be re�ected without modi�cation, and thus rely on
exact string matching. This may lead to false negatives when input values are trans-
formed [Heiderichet al.2010, Duch�eneet al.2013b]. Skip�sh generates three
variants for a spiderlink, and assumes there is a taint �ow if the response varies
[Zalewski & Heinen 2009, Dessiatnikoffet al.2011, Douṕeet al.2012].
This may lead to false positives, if the scanner is not aware of
a macro-state change. [Sunet al.2009] compute a string edit dis-
tance [Levenshtein 1966]. [Sekar 2009] proposed a �ltering algo-
rithm inspired from bioinformatics for improving the ef�ciency of
[Levenshtein 1966]'s distance. LigRE relies on a �lter-tolerant substring
matching of a minimal length, and computes the edit distance on a smaller output.
LigRE relies on the fuzzer test verdict.

4.6.3 Control and Taint Flow Inference (CTFM)

[Caseldenet al.2013] use similar models, named Hybrid Control Flow Graph
(HI-CFG) on basic blocs, to automatically generate exploits for memory corrup-
tion vulnerabilities in binary programs with a grey-box test context. Netzob infers
protocols implementations using L*, and enhance it with taint �ows w.r.t. equiv-
alence, size, or repetition relations. Its test driver, abstraction, and concretiza-
tion functions are written by an analyst [Bossert & Guihéry 2013]. With PRISMA,
[Kruegeret al.2012b] infer control and taint �ow Markov models of botnet proto-
cols from traf�c captures. LigRE targets XSS, a command injection vulnerability,
in web applications with a black-box test context, and produces CTFM to drive a
fuzzer.

4.6.4 Search for Parts of the Inputs where to Focus the Testing

[Haller et al.2013], [Rawat & Mounier 2012], [DeMottet al.2012a], and
[Bekraret al.2012, Bekrar 2013b] statically search for potential sinks and then
dynamically generate inputs targeting those potential sinks.

[Stocket al.2013, Duch�eneet al.2013a] dynamically propagate white-box
taint �ows to prioritise DOM-XSS tests.
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[Cadaret al.2008b] uses symbolic execution for generating inputs s.t. each
branch of an application is activated at least once by one input.

[Grégoire 2013] fuzzes third party code, and then generate inputs for applica-
tions which integrate such code (e.g., Acrobat Reader).

[Mulliner & Miller 2009] fuzzed the iOS SMS service by sending messages
through the baseband and modifying them before they reach the iOS service.

4.6.5 Conclusion

LigRE automatically partially reverse-engineers web applications as a control and
taint �ow model. It prioritizes model slices to guide the scope of the fuzzing.

Heuristics drive LigRE. Empirical experiments show that LigRE detects more
XSS than open source and control �ow aware scanners (see Section 6.2).

In addition of being an input for human penetration testers, the obtained mod-
els can be the �rst step for automated vulnerability detection: e.g., if provided to
a model checker or a fuzzer. For instance, our evolutionary smart fuzzer Kame-
leonFuzz [Duch�eneet al.2012, Duch�eneet al.2013b] can use such models, and
improves the fuzzing step of LigRE to detect more complex �ltered XSS.

We observed there are two main reasons for false negatives: �rst the fuzzers
neither adapt to the re�ection context nor to the server sanitizers, and second they
have an imprecise test verdict. We address those issues in Chapter 5.
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CHAPTER 5

Evolutionary Fuzzing for
Black-Box XSS Detection

If no mistake have you made, yet losing you are ...
a different game you should play.

[Yoda 2001]

Fuzzing is normally limited to �nding obvious symptoms like crashes, because it's
rare to be able to tell correct behavior from incorrect behavior when the input is
generated randomly.

[Ruderman 2014]

5.1 Introduction

5.1.1 Context

XSS detection is a problem involving control+taint �ows, and input sanitization.
In presence of even basic sanitizers, many scanners have dif�culties in creating ap-
propriate inputs, and thus produce false negatives. In Chapter 4, we addressed the
automatic reverse-engineering of control+taint �ow models. In the current chapter,
we focus on how to generate malicious inputs targeting the potential sinks. We
address the following problems of Section 2.5.1 (page 33):XSS.3.2 How to fuzz
inputs? How to act on speci�c parts of those inputs? XSS.3.3 How to prioritize
inputs fuzzing? Which potential sinks should we test �rst? XSS.2.2 Can we exploit
a potential sink?

In order to address these issues, we propose KameleonFuzz, a fuzzer which
mimics a human attacker by evolving and prioritizing the most promising malicious
inputs and taint �ows obtained from LigRE. We incorporate in KameleonFuzz a
test verdict that relies on existing browser parsing and double taint inference.

5.1.2 The KameleonFuzz Approach

KameleonFuzz is a black-box fuzzer which targets Type-1 (re�ected) and Type-2
(stored) XSS (see De�nition 8) and can generate exploits targeting the discovered

73



5.2. EVOLUTIONARY XSS FUZZING CHAPTER 5. GA XSS FUZZING

Figure 5.1: High Level Approach Overview

XSS. As illustrated in Figure 5.1, our approach consists of learning the model of
the application and generating malicious inputs. We reuse the LigRE components
A, B, Cfrom Chapter 4. The main contribution of this chapter is KameleonFuzz
which encompasses the blocksD.1 (malicious input generation) andD.2 (precise
taint �ow inference).

A Genetic Algorithm (GA), parameterized by anAttack Input Grammar (AIG),
evolves individuals (malicious inputs). The AIG reduces the search space and mim-
ics the behavior of a human attacker by constraining the mutation and crossover
operators which generate next generation inputs. We de�ne a�tness functionthat
favors most suitable inputs for XSS attacks. Since server sanitizers may alter the
observed value at the re�ection pointOdst, a naive substring match may not in-
fer the taint precisely enough, which could lead to false negatives. To overcome
such limitations, we perform a double taint inference. The GA iteratively evolves
the best individuals of the current generation, according to their �tness score, and
recombines them to produce the next generation of individuals.

5.2 Evolutionary XSS Fuzzing

The fuzzing (step D in Figure 5.1) generates apopulationof individuals(Genetic
Algorithm (GA) terminology). An individual is an input (sequence of HTTP re-
quests) generated by LigRE (line 7 of Algorithm 5.1) in which KameleonFuzz
generates a fuzzed valuexsrc according to an Attack Input Grammar (AIG) for the
re�ected parameter (see line 15 of Algorithm 5.1). Inputs are concretized, sent to
the application, and the corresponding outputs are recorded. Then a precise taint
inference between the fuzzed value and the browser parse tree is performed in line
18. Each individual which did not �nd a vulnerability (test verdict of line 19 eval-
uates to false) is evolved via the mutation and crossover operators (Section 5.2.6,
line 25 and 28 of Algorithm 5.1) w.r.t. the AIG (Section 5.2.1) and according to
the �tness score (Section 5.2.5, line 22 of Algorithm 5.1).
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Algorithm 5.1: Genetic Algorithm (GA) pseudo-code

1 #IN: ctfm , attack grammar, webapp, config
2 #OUT: vulns
3
4 # First Generation: Individual s as Input Sequences
5 for l in range(1,config.popul size):

6 # a reflection is choosen, and a slice produced from the CTFM
7 popul[l] = Individual (ctfm.prio get sl ice (l))

8
9 vulns=[]

10 # Evolve the population
11 while(not(stopCondition())):

12 for indiv in popul :

13 webapp.reset ()

14 # generate a fuzzer value
15 x src = attack grammar.generate( indiv. reflection ctx )

16 input sequence = indiv. inputs.concretize(x src )

17 o = webapp.send( input sequence)

18 taint = precise taint infer (x src ,o,parser)

19 if (verdict (taint , patterns )):

20 vulns += [ input sequence]

21 popul[ indiv] = Individual (ctfm.prio get sl ice (len(vulns)+

len(population)))

22 else:

23 indiv. fitness compute(x src ,o,taint ,M)

24
25 children = crossover (popul . fittest ([0..math.ceil (config.cross * len(

popul))]) , attack grammar)

26 for c in children:

27 if ( random(0,1) < = config.mutationRate):

28 c. mutate ( attack grammar)

29 popul new = children

30 for l in range(len(children),len(popul)):

31 popul new[l] = popul . fittest(l � len(children])

32
33 popul = popul new

5.2.1 Attack Input Grammar (AIG)

Traditional fuzzing for memory corruption consists in the application of anomaly
operators on a set of bits (e.g., expanding a string, setting an integer to
INT32 MAX, etc.). This does not work when fuzzing for Web Command Injec-
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tion, as �rst the risk of memory corruption is low on web applications, and secondly
when searching for XSS, the re�ection must �t a certain output structure (i.e., re-
�ection context, De�nition 13). Thus, in order to constrain the search space (i.e.,
avoid to search in the complete space� � ), we use an Attack Input Grammar (AIG)
for generating fuzzed values. It represents parameter values an attacker would at-
tempt to the application. As compared to a list of payloads as in w3af and Skip�sh,
an AIG can generate more values, and is easier to maintain thanks to its hierarchi-
cal structure. This AIG also constrains mutation and crossover operators (lines 13,
25, 22 of Algorithm 5.1).

The knowledge used to build an AIG consists of the HTML grammar
[W3C 2012b], re�ection contexts (De�nition 13), string transformations in the case
of context change [Weinbergeret al.2011a], known attacks vectors [RSnake 2007,
Heyeset al.2012].

Figure 5.2: Structure of an Attack Input Grammar (AIG) (extract)

We only give a taste of how to build an AIG, as it is yet manually written and its
automatic generation is a research direction. Figure 5.2 illustrates its structure. The
�rst production rule consists of representation and context information. Example
of contexts (De�nition 13) include (<input value=" "/> ) and outside a tag
(<h1> ). The representation consists of encoding, charset, and special string
transformation functions that we name anti-�lter (e.g., PHP addslashes[PHP ]). In
our experiments it was suf�cient to use UTF-8 encoding. However, variable length
encoding such as UTF-7 [Goldsmith & Davis 1997], Shift JIS [Microsoft b], etc.
may be of interest when the webpage does not specify any encoding to use.

We assume the availability of a representative set of vulnerable web applica-
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tions (different from the tested applications) and corresponding XSS exploits. For
each re�ection context, the analyst writes a generalization of the XSS exploits in
the form of production rules with terminals and non-terminals.

We represent an AIG in an Extended Backus–Naur Form [Scowen 1993] with
bounded number of repetitions. We construct an AIG as an acyclic grammar. Thus
it unfolds to a �nite number of possibilities. Listing 5.1 contains an excerpt of an
AIG we used during our experiments. The fuzzed value in Figure 5.3 was generated
using this grammar.

1 START = REPRESENTATION CONTEXT
2 REPRESENTATION= CHARSET ENCODING ANTI_FILTER
3 CHARSET= ( "utf8" | "iso-8859-1" | ... )
4 ENCODING= ( "plain" | "base64_encode" | ... )
5 ANTI_FILTER = ( "identity" | "php_addslashes" | ... )
6 CONTEXT= ( ATTRIBUTE_VALUE | OUTSIDE_TAG | ... )
7 ATTRIBUTE_VALUE = TEXT QUOTE SPACES HANDLER "=" QUOTE

JS_PAYLOAD QUOTE
8 HANDLER= ( "onload" | "onerror" | ... )
9 JS_PAYLOAD= ( JS_P0 | JS_P1 | ... )

10 JS_P1 = "alert(" NUMS ")"
11 NUMS= [5:10](NUM)
12 NUM= ("0" | "1" | "2" | ... | "9")
13 QUOTE= ("'" | "\"" | "" | "\\'" | ...)
14 SPACES= [1:3](SPACE)
15 SPACE = (" " | "\n" | "\t" | "\r")
16 TEXT = [0:9](LETTER)
17 LETTER = ("a" | "b" | ...)

Listing 5.1: Attack Input Grammar (AIG) (excerpt)

Generating a fuzzed valueconsists in performing a stepwise expansion
[Holler et al.2012] through the production rules of an AIG and, if applica-
ble, performing choices. Producing the corresponding string from a fuzzed
value consists in concatenating the strings obtained by a depth-�rst explo-
ration of the context subtree, representing this string in a given charset, ap-
plying the anti-�lter function, and applying an encoding function. For in-
stance, the string that results from the fuzzed value of Figure 5.3 isWUkp' nt
onload='alert(94478) , on which theidentity function is applied as an
anti-�lter, and with no encoding change (nodeplain ), and the resulting string in
UTF-8 charset.

In Algorithm 5.2, we illustrate the algorithm to transduce a production tree to
a concrete fuzzed value.
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Figure 5.3: The Production Tree of a Fuzzed Value

Algorithm 5.2: AIG: From Production Tree to Concrete Fuzzed Value

1 #IN: indiv prod tree
2 #OUT: x src (as a string )
3
4 def from aig word to str ing ( indiv prod tree ):

5 x src=""

6 ipt = indiv prod tree

7 x src = DFS aggregate(ipt.context)

8
9 # anti� f i l te r

10 if ( ipt . representation.antifilter==" identity"):

11 pass

12 elif ( ipt . representation.antifilter=="addslashes"):

13 x src = addslashes(x src )

14 # . . .
15
16 # encoding
17 if ( ipt .encoding=="plain"):

18 pass

19 elif ( ipt .encoding=="b64 encode"):

20 x src = base64 encode(x src )

21 # . . .
22
23 # charset
24 if ( ipt .charset=="utf8"):

25 pass

26 elif ( ipt .charset=="EUC � CN"):

27 x src = ltchinese.conversion.python to euc (x src )

28 # . . .
29
30 return x src
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Algorithm 5.3: AIG: From Production Tree to Concrete Fuzzed Value (cont.)

1 def DFS aggregate(node):

2 n = len(node.children)

3 if (n==0):

4 str = node.value

5 else:

6 str = ""

7 for k in range(0,n):

8 str += DFS aggregate(node.children[k])

9 return str

In our experiments, we used the same AIG for the tested web applications. Due
to a minor limitation of the current implementation, we sometimes pruned some
production rules, for the search space to be narrowed, and thus the fuzzing to be
faster (this can be automated easily, as it only consists of selecting the production
rules for a given re�ection context). We think that one unique AIG can be used
when searching for Type-1 and Type-2 XSS and assuming a speci�c set of �lters
and of re�ection contexts (De�nition 13).

5.2.2 Individual

An individual is an input sequence targeting a speci�c re�ection. It is composed
of an input sequence as a walk in a LigRE chopped model (Section 4.4.3), and of a
fuzzed valuexsrc generated from an AIG. This input encompasses the originating
transitiontsrc of a taint �ow, and the transition where to observe the re�ectiontdst.
We de�ne an individual in De�nition 15.

De�nition 15 Individual
Let M be a CTFM (De�nition 14), let(xsrc; tsrc; tdst; odst) be a re�ection (De�-

nition 5) from the transitiontsrc for the valuexsrc of the parametername(xsrc).
An individual I = (i0; : : : ;in) is an input sequence s.t. :

• 9 j; k 2 [0: : :n]; j � k andtsrc is activated byi j andtdst is activated byik

• the value of the input parametername(xsrc), sent as part ofi j in tsrc, is pro-
duced by the AIG.

5.2.3 Precise Taint Flow Inference (D.2)

When fuzzing, server side sanitizers may �lter fuzzed input parameter values. Thus
we have to infer the taint again, and cannot only rely on results from the taint
annotation in step B (Section 4.3). Moreover, we want to answer the questions
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XSS.2.2 Can we exploit a potential sink?and XSS.3.3 How to prioritize inputs
fuzzing?. So we need to track the taint up to the nodes of browser parse tree. Thus
we perform thisprecisetaint �ow inference.

The precise taint �ow inference permits obtaining information about the con-
text of a re�ection. This later will serve for computing test verdict, and as an input
for the �tness function.

Figure 5.4: Precise Taint Inference (xsrc! odst! TTdst)

The �ow for producing a Taint Aware Tree (TAT)TTdst is shown in Figure 5.4.
We illustrate a TAT in Figure 5.6 and de�ne it in De�nition 16. First, a string to
string taint-inference algorithm (e.g., with the [Levenshtein 1966] edit distance) is
applied between the fuzzed valuexsrc and the outputodst in which it is re�ected.
This �rst step results in Figure 5.5. In parallel, a parser (e.g., from Google Chrome)
evaluates the application outputodst and produces a parse treeDOMdst (e.g., a
Document Object Model (DOM)). Then the taint is inferred between each tainted
substring ofodst and each node ofDOMdst to produce a TATTTdst (see Figure 5.6),
as follows.
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<input name="message2"
value=" WUkp" onload="alert(94478) " />

Figure 5.5: Taint ed Substrings of the outputodst

For each node of an output parse treeDOMdst, we compute a string distance
between each tainted substring and the node textual value. Then we only keep the
lowest distance score. If this score is lower than a tester de�ned threshold, then this
node is marked as tainted. This taint condition may be slightly relaxed in the case
of a cluster of neighbors nodes has a distance “close to the threshold”. The inferred
TAT TTdst (e.g., Figure 5.6) is an input for the �tness function and test verdict.

The data �ow from the sending of a fuzzed input parameter value to its re-
�ection within a parse tree node involves at least two transformations (if omit-
ting the transformations due to the encoding): a �lter / sanitizer at server side,
and the parsing by the browser of the concrete outputodst. During the server
side processing, the �lter / sanitizer will induce string transformations. During
the parsing, the browser may induce transformations [Weinbergeret al.2011a,
Heiderichet al.2013]. Intuitively, performing this two-steps taint inference pro-
cess should increase our rate of true positive and decrease our rate of true negative,
as compared to a direct string to parse tree inference.

input attributes

onload alert(94478)

value WUkp

name message2

Figure 5.6: A Taint -Aware Tree (TAT)TTdst (extract). The payload is a message
box that displays 94478 (harmless).

It is important to note that, instead of writing our own parser, as done in
[Sekar 2009], we rely on anreal-world parser. This has two advantages. First,
we are �exible with respect to the parser (e.g., for XSS: Chrome, Firefox, IE ;
for other vulnerabilities such as SQL injections, we could rely on a SQL parser).
Secondly, we are certain about the real-world applicability of the detected vulnera-
bilities. This contrasts with writing a homemade parser which may introduce false
negative or false positive. However, we are aware that this potentially increases the
number of cases to be tested (number of applications� number of browsers� num-
ber of versions), but the effort in searching for an XSS for a speci�c browser and
version in a given application can be weighted depending on the number of users
using that precise browser and version (which can directly relate to the allocation
of testing resources and to a risk analysis).
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De�nition 16 A �; � Taint Aware Tree (TAT)
Let M be a CTFM (De�nition 14). Let(xsrc; tsrc; tdst; odst) be a� -re�ection in M

(De�nition 5).
Let � 2 N and� 2 [[0::1]]. A �; � Taint Aware Tree (TAT) consists of:

• 
 (odst;G), the parse tree of the wordodst w.r.t. the grammarG.

• d : � � 2! [[0::1]], a string distance function.

• Z� (xsrc; odst), the set of� -tainted substrings inodst by xsrc.

• a taint function	 d;�;� : Z� 
 ! f true; f alsegs.t. for each tainted substring
z 2 Z and each parse tree node! 2 
 ,

	 d;�;� (z; ! ) =

8
>>>>>>>>>>><
>>>>>>>>>>>:

True

if:

– the set of� -tainted substrings inz
by !: valueis not empty

– ORd(!: value; z) � �

False otherwise

5.2.4 Test Verdict

The test verdict answers the question “Did this individual trigger an XSS vulner-
ability?”. The TATTTdst (Figure 5.6) is matched against a set oftaint-aware tree
patterns(TAP) (e.g., Figure 5.8).

If at least one pattern matches, then the individual is an XSS exploit (i.e., the
test verdict will output “yes, vulnerability detected”). Our TAP are stable w.r.t.
the tested applications: we use the same TAP for all of them. A TAP is a tree
containing regular expressions on its nodes. Those regular expressions may contain
strings(e.g.,script ), taint markers, repetition operators(+,* ), or the match-all
character(. ). The tester can provide its own TAP. We incorporate in KameleonFuzz
default TAP for detecting successful XSS exploits. Those all violate the syntactic
con�nement of tainted values.

Potential Vulnerability (Non Syntactic Con�nement) If the TAP illustrated in
Figure 5.7 matches the TATTTdst, then there is a non syntactic con�nement of a
tainted value. This exhibits apotential vulnerability.

.+ .+ .+

Figure 5.7: The generic TAP detecting non syntactic con�nement of a tainted value
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weight id dimension
+ + + 1 successfully injected character classes
+ + + 2 tainted nodes inTTdst

++ 3 singularity
++ 4 transitions from sourcexsrc to re�ection odst

++ 5 new page discovered
++ 6 new macro-state discovered
+ 7 unexpected page seen
+ 8 page correctly formed w.r.t. output grammar
+ 9 unique nodes from the start node

Table 5.1: Dimensions of thefitness function

Exploitability A second step is to match the TATTTdst with XSS speci�c TAP.
In order to write TAP, we observed the re�ection contexts (see De�nition 13 in
Section 4.3) and tainted parse tree nodes of outputs in various XSS attacks. Most
of them attempt to craft a handler in order to trigger code execution (e.g., Java-
Script) [Heyeset al.2012]. From this set of attack vector, we generalize minimal
tainted parse trees, which are the TAP. We illustrate an example of TAP in Fig-
ure 5.8. The second TAP in that �gure matches the TAT represented in Figure 5.6.
In Appendix B, we provide a detailed list of the TAP included in KameleonFuzz.

script children .+

.+ attributes ( onerror k onload k... ) . * .+ . *

Figure 5.8: TwoTaint -Aware tree Patterns (TAP), represented in a Linear Syntax
(resp. a tainted script tag content and a tainted event handler attribute)

5.2.5 Fitness

The �tness function assesses “how close” is an individual to �nding an XSS vul-
nerability. The higher its value, the more likely the GA evolution process will pick
the genes of this individual for creating the next generation. The inputs of the
�tness function are the individualI , the concrete outputodst in which the fuzzed
valuexsrc, sent in the transitionxsrc, is re�ected,Tdst = taint(parse(odst); xsrc) the
taint-aware parse tree, and the application modelM. The �tness dimensions are
related to properties we observed between the fuzzed value and the re�ection in
the case of successful XSS attacks. Those dimensions are listed in Table 5.1.

Those dimensions model several intuitions that a human penetration tester may
have. The most signi�cant ones are:

• 1: Percentage of Successfully Injected Character Classes. Characters
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that compose leaves of individual fuzzed value tree (see Figure 5.3) are
categorized into classes depending on their meaning in the grammar (e.g.,
C1 =f <,>g C2 =f " ,' g, C3 =f nn, nr, nt g, C4 =f ; ,: g, etc.). This metric
expresses the “injection power” for the considered re�ection.

• 2: Number of Tainted Nodes inTTdst. Whereas injecting several character
classes is important, it is however not a suf�cient condition for an attacker
to exert control on several parse tree nodes. Successful XSS injections are
generally characterised by at least two neighbours tainted nodes (one which
is supposed to con�ne the re�ection, and the other(s) that contain the payload
and a trigger for that payload). Thus, if an attacker is able to re�ect on
several nodes, we expect that it increases its chances to exploit a potential
vulnerability.

• 3: Singularity of an individual w.r.t. its current generation . A problem
of GA is overspecialization that will limit the explored space and keep �nd-
ing the same bugs [DeMottet al.2007]. To avoid this pitfall, we compute
“how singular” an individual is from its current generation. This dimension
uses the source transitionxsrc, the fuzzed valuexsrc, and the re�ection con-
texts (i.e., the destination transitionodst and the tainted nodes inTTdst, see
De�nition 13).

• 4: The higher theNumber of Transitions between the source transition
xsrc and its Re�ection odst, the more dif�cult it is to detect that vulnerability,
because it expands the search tree.

• 5: a New Page discovered (5) or 6: a new Macro-State (6) discovered:
increase application coverage.

5.2.6 Mutation and Crossover Operators

A probability distribution decides whether an individual will be mutated or not.
When a mutation will happen, an operator is applied either on thefuzzed valueor
on theinput sequence. We list the implemented fuzzed value mutation operators in
Table 5.2. We fuzzed while aiming at one re�ection at a time.

The fuzzed valuemutation operator works on the production tree of the
fuzzed valuexsrc (see Figure 5.3). The amplitude of the mutation is a decreasing
function of the �tness score: if an individual has a high �tness score, the mutation
will target nodes in the production tree that are close to leafs. Similarly, in the case
of a low �tness score, the operator is more likely to mutate nodes close to the root.
Figure 5.9 illustrates an example of application of the fuzzed value operator.
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Figure 5.9: An Example of Application of a Mutation Operator on a Fuzzed Value

The input sequencemutation operator works on the whole sequenceI . It
consists in either taking another path in the model from the sourcexsrcto the desti-
nationodst, or targeting a different re�ection.

Name Param0 name param 0 values
fuzzed
parameter value
mutation

# of sub-tree to mutate [[0 : : :2]]

path mutation max length of new input se-
quence

N+ (tester de�ned)

Table 5.2: The Mutation Operators

The crossover operator works at thefuzzed valuelevel, i.e., on the production
tree. Its inputs are two individuals of high �tness scores. It produces two children.
When a crossover operator is applied on two parents which share at least one pro-
duction rule at a suf�ciently deep level, we exchange at most two pairs of sub-trees
between the parents, in accordance with an AIG. Figure 5.10 illustrates an appli-
cation of the crossover operator on the fuzzed values of parentsA andB. In this
�gure, we only represent one of two children: the childAB1 contains theTEXT,
QUOTE, andSPACEproduction sub-trees ofA, the subtree17of B, the the subtree
10of B, and the subtreesEQUAL, QUOTEandJS PAYLOADof A.
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Figure 5.10: Crossover of Two IndividualsA andB in KameleonFuzz (only one of
two children is shown)

Name Param0 name param 0 values
sub-tree exchange # of sub-tree exchange [[0 : : :2]]

Table 5.3: The Crossover Operator

5.2.7 Stopping Condition

The stopping condition is a boolean function which evaluates to true when the
tester wants the fuzzing to be stopped. This function receives the number of dis-
tinct found XSS vulnerabilities, the number of founds XSS exploits, the number
of submitted fuzzed inputs, the duration of fuzzing, and the number of generations
evolved.

5.3 Implementation

5.3.1 Technical Details

KameleonFuzz is a python3 program which targets Type-1 and 2 XSS. It is com-
posed of 4500 lines of code. As shown in Figure 5.11, we instrument Google
Chrome [Google ] with the Selenium library [Hugginset al. ]. It includes LigRE
(8.000 lines of code) (Section 4.5), as control+taint �ow model inference tool and
slicer. The tester has to provide an attack grammar, and stopping conditions.
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Figure 5.11: Architecture of KameleonFuzz

Figure 5.12: Pascal, the KameleonFuzz Logo

5.3.2 A Potentially Iterative Process

In practise, the tester de�nes its stopping conditions. At the end of the test cam-
paign, if no interesting results were found, the tester can increase the testing re-
sources (e.g., increasing the number of generations, the size of the population,
etc.). In such a situation, our current implementation may repeat some tests which
were made during the �rst campaign. This can be avoided by storing the results of
the �rst campaign. This is a limitation of the implementation, not of the approach.
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5.4 Related Work

5.4.1 XSS Test Verdict in a Black-Box Approach

Con�nement Based Approaches assume that malicious inputs break the struc-
ture at a given level (lexical or syntactical). As in [Sekar 2009], we rely on non-
syntactical con�nement and we use detection policies that are both syntax and taint
aware. A key difference is that [Sekar 2009] wrote his own parser to propagate the
taint, whereas we use the parser of a browser (e.g., Google Chrome). Thus we
infer the taint twice (see Figure 5.4). By doing so, we are sure about the real-
world applicability of the found XSS exploits, and our implementation is �exible
w.r.t. the browser. [Su & Wassermann 2006] relies on non-lexical con�nement as
a suf�cient fault detection measure, which is more ef�cient than [Sekar 2009], but
requires a correctly formed output (which is not an always valid assumption on
HTML webpages [Heiderichet al.2010]) and is prone to false negatives.

Regular-Expressions Based Approachesassume that the fuzzed value is re-
�ected “as such” in the application output i.e., that the sanitizer is the identity
function. In the case of sanitizers this may lead to false negatives [Riancho 2011].
Moreover, most do not consider the re�ection context, which can lead to false pos-
itive. IE8 [Ross 2008] and NoScript [Maone 2006] rely on regular expressions on
fuzzed values. XSSAuditor (Chrome XSS �lter) performs exact string matching
with JavaScriptDOM nodes [Bateset al.2010].

String Distance Based Approaches Sun[Sunet al.2009] detects self-
replicating XSS worms by computing a string distance between DOM nodes
and requests performed at run-time by the browser.

IE8 [Ross 2008] and Chrome XSSAuditor [Bateset al.2010] �lters only work
on Type-1 XSS. Whereas NoScript [Maone 2006] is able to block some Type-2
XSS, but is only available as a Firefox plugin.

5.4.2 Learning and Security Testing

In its basic form,fuzzing is an undirected black-box active testing technique
[Bartonet al.1989]. [Zalewski 2011a, Valotta 2013, Holleret al.2012,
Ruderman 2007] mainly target memory corruption vulnerabilities.
[Stocket al.2013]'s recent work fuzzes and detects Type-0 XSS in a white-box
test context. [Heiderichet al.2013] detects in black-box Mutation based Cross
Site Scripting (m-XSS) caused by browser parser quirks. LigRE+KameleonFuzz
is a black-box fuzzer which targets Type-1 and 2 XSS (De�nition 8).

Genetic Algorithm (GA) for black-box secu-
rity testing has been applied to evolve malwares
[Noreenet al.2009] and attacker scripts [Budyneket al.2005].
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[DeMott et al.2007, Rawat & Mounier 2010, Bekraret al.2012] target memory
corruption vulnerabilities in a grey-box test context. Their �tness function
contains the number of executed basic blocks and the singularity of inputs.
[DeMott et al.2007] performs random 1-point crossover and 2-points mutation.
[Rawat & Mounier 2010, Bekraret al.2012] perform offset aware mutations.
KameleonFuzzis the �rst application of GA to the problem of black-box XSS
search. Its �tness dimensions model the intuition of human security penetration
testers.

An Attack Grammar (AIG) produces fuzzed values for XSS as a composition
of tokens. [Wanget al.2010, Trippet al.2013] and KameleonFuzz share this view.
In their recent work, [Trippet al.2013] prune a grammar based on the test his-
tory to ef�ciently determine a valid XSS attack vector for a re�ection. It would
be interesting to compare KameleonFuzz to their approach, and to combine both.
[Wanget al.2010] use a hidden Markov model to build a grammar from XSS vec-
tors. [Kalset al.2006] uses attack vectors from a very large manually written li-
brary, without speci�c criterion.

Learning for Security Testing Radamsa targets memory corruption vulnera-
bilities: it infers a grammar from known inputs then fuzzes to create new inputs
[Pietikäinenet al.2011]. [Shu & Lee 2007] passively infer a model from network
traces, and actively fuzz inputs.

For command injection vulnerabilities (XSS, SQL injection, . . . ),
[Dessiatnikoffet al.2011] cluster pages according a specially crafted dis-
tance for SQL injections. [Sotirov 2008] iterates between reverse-engineering of
XSS �lters, local fuzzing, and remote fuzzing. [Doupéet al.2012] showed that
inferring macro-state aware control �ow models increases vulnerability detection
capabilities.
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CHAPTER 6

Experiments for XSS Detection

You bruteforce all the moves in chess,are you playing? Mutate the code that plays
chess, you are learning and playing. The seed is the code.

[Heyes 2013]

One development team cannot fail 1000 times to develop a secure application, but
1000 teams can fail one time.

[Ruff 2013a]

I enjoy making things, breaking things, and making things that break things.

[Moore 2013]

Making the world a better place... One crash a time!

[Takanen 2012]

We evaluate our approach by applying our tools on different Web Applications,
listed in Table 6.1. We separately evaluate the LigRE inference (Section 6.2) and
the KameleonFuzz evolutionary fuzzer (Section 6.3) components. We discuss the
limitations of our tools in Section 6.4.

6.1 Evaluation methodology

We selected sevenweb applicationsof various complexity (Table 6.1). The cri-
teria for choices are various (different server side languages: JSP, Python, PHP;
have shown to contain at least one XSS each; some are used at industrial scale).
KameleonFuzz detected at least one true XSS in all of them.

P0wnMe v0.3 is an intentionally vulnerable web application for evaluating
black-box XSS scanners. It contains XSS of various complexity (transitions, �lters,
re�ection structure).

WebGoat v5.4is an intentionally vulnerable web application for educating de-
velopers and testers. Its multiple XSS lessons range from message book to human
resources.
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Application Description Version Plugins
P0wnMe

8
>>><
>>>:

Intentionally
Vulnerable

0.3
WebGoat 5.4
Gruyere 1.0

WordPress Blog 3.2.1 Count-Per-Day 3.2.3
Elgg Social Network 1.8.13

phpBB Forum 2.0
e-Health Medical 04/16/2013

Table 6.1: Tested Web Applications

Gruyere v1.0 is an intentionally vulnerable web application for educating de-
velopers and testers. Users can update their pro�le, post and modify “snippets”
and view public ones.

Elgg v1.8.13is a social network platform used by universities, governments.
Users can post messages, create groups, update their pro�le. An XSS exists since
several versions.

WordPress v3 is a blogging system: the blogger can create posts and tune
parameters. Visitors can post comments, and search. The count-per-day plugin is
known to contain XSS.

PhpBB v2 is a forum platform. We include this version, as it is notorious for
containing several XSS[Bauet al.2010].

e-Health 04/16/2013is an extract of a medical platform used by patients and
practitioners, developed by a company.

XSS Uniqueness an XSS is uniquely characterized by its source transitionIsrc,
its parameter name, its destination transitionOdst and the tainted nodes in the parse
tree T(P(Odst); Isrc). Hence if a fuzzed value is re�ected twice inOdst, e.g., in
two different nodes in the parse tree, and for each node, the scanner generated an
exploitation sequence, then we count two distinct XSS. In our experiments, the
only time we had to distinguish two XSS using the nodes in the parse tree was in
the Gruyere application.

Experimental Platform We run the scanners on a Mac OS X 10.7.5 platform
with a 64 Bit Intel Quad-Core i7 at 2.66GHz processor, and 4GB of RAM DDR3
at 1067MHz.

6.2 LigRE evaluation

We aim at determining if control plus taint �ow model aware XSS fuzzing is ef-
�cient enough to search for vulnerabilities in typical web applications. We also
aim at comparing the fault detection capability of our prototype implementation
LigRE against existing state of the art black-box vulnerability scanners. Relevant
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metrics include the number of distinct true XSS discovered, and the number only
found by a given scanner. To measure the ef�ciency of the scanners, we compare
the number of sent requests and of found XSS. In our experiments, LigRE detected
XSS missed by other scanners, and most of the XSS found by those.

We consider the following open-source black-box XSS scanners to compare
with our approach: Wapiti, w3af and SkipFish. They all infer the control �ow and
fuzz. Their con�guration i available in [Duch�ene 2013c]. In addition to LigRE
with all its components (A,B,C and D in Figure 4.1), we also include LigRE with
only A(control �ow inference) and D(w3af). We denote them asLigREABC+D and
LigREA+D. In both setups,D denotes the w3af fuzzer.

RQ1. (Fault Revealing):Does control plus taint �ow aware fuzzing �nd more
true vulnerabilities than other scanners?

For each scanner and application, we sequentially con�gure the scanner, reset the
application, set a random seed to the scanner, run it against the application, and
retrieve the results. We repeat this process �ve times, using different seeds. If
possible, scanners are con�gured s.t. they only target XSS. We con�gure them
with the same information (e.g., credentials). When a scanner does not handle it,
we perform two sub-runs: one with the cookie of a logged-on user and one without.

We adjust parameters for the runs to last at most �ve hours. Beyond this dura-
tion, we stop the scanner and manually analyze the results. The number of detected
XSS is the union of distinct true XSS found during the different runs. An XSS is
uniquely characterized by its source transitiontsrc, its fuzzed parameter namexsrc,
its destination outputtdst and the structure in which the value ofxsrc is re�ected.
For all scanners, we manually verify XSS. During our experiments, no scanner
reported false positive XSS (Skip�sh reported other false positives).

Application Inferred
Taint-Flows

True XSS
Detected

Nodes Transitions

P0wnMe 28 2 13 51
WebGoat 134 4 20 80
Gruyere 23 3 30 130

WordPress 52 2 15 129
Elgg 59 1 49 214

PhpBB 213 4 63 279
e-Health 12 5 15 33

Table 6.2:LigREABC+D (D=w3af) detection capabilities on the tested applications

Table 6.2 contains the numbers of annotated re�ections, found XSS, inferred
nodes and transitions. This illustrates the practicality of LigRE to infer the control
and taint �ow models of the evaluated applications. The number of nodes and
transitions, may correspond to a partial application coverage.

Figure 6.1 represents the number of detected true XSS vulnerabilities for the
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considered scanners and applications.LigREABC+D (D=w3af) detected the highest
number of vulnerabilities for every application, and several vulnerabilities not de-
tected by other scanners. These results con�rm [Doupéet al.2012]'s experiments:
improving the control �ow inference(LigREA+D) increases the vulnerability detec-
tion capabilities, as compared to non macro-state-aware scanners (Wapiti, w3af(D),
Skip�sh). Moreover, comparingLigREA+D andLigREABC+D shows that taint �ow
inference(B) and slices for �ow aware fuzzing(C) also increase XSS detection ca-
pabilities. We notice thatLigREABC+D founds vulnerabilities missed by other scan-
ners, includingLigREA+D (D=w3af): see the non-dotted part of Figure 6.1.

Most scanners achieve limited coverage due to their partial handling of basic
forms, their inability to track the macro-state (beyond the classic logged in/out, and
assuming the tester provides values). At times, they send requests regardless of the
available links. The aggressive behavior of Skip�sh is sometimes positive (e.g., in
Gruyere, it found one XSS missed by others on 404 pages), sometimes not (e.g.,
in Wordpress, it submitted 150 times a form without detecting any XSS). As the
control �ow for the targeted re�ection is quite simple, LigRE detected the XSS in
Wordpress mainly because it sent fewer fuzzed values than SkipFish. For Elgg,
both Skip�sh and w3af loop between pages because they only consider the URL
and not the page model.

p0wnMewebgoatgruyerewordpresselgg phpbb ehealth
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Figure 6.1: XSS Detection Capabilities of Black-Box Scanners
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On considered applications, a control plus taint �ow directed fuzzing
increases XSS revealing capabilities.

RQ2. (Ef�ciency): How ef�cient are the scanners in terms of vulnerability
detection capabilities per number of tests?

We set up a proxy between the scanner and the web application, and con�gure
this proxy to limit the number of requests. We iteratively increase this limit, run
the scanner, and retrieve the number of found and distinct true XSS. We manually
verify them. We run such a process �ve times per scanner, web application, and
limit. For each number of requests, for each scanner, we sum the number of unique
true XSS detected for all applications. The results are illustrated in Figure 6.2.
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Figure 6.2: XSS Detection Ef�ciency of Black-Box Scanners

Below approximately 850 HTTP requests, w3af is the most ef�cient scanner.
Thus we hypothesize that in applications with few macro-states, assuming it is able
to navigate correctly, which in our experiments mainly happened in P0wnMe and
Gruyere, then w3af is more ef�cient than other scanners at �nding non �ltered
XSS.

Moreover, the LigRE proof-of-concept spends a signi�cative number of re-
quests in taint �ow inference (from 75 to 93%). There is room for improvement.
An industrial implementation should consider additional heuristics to prune se-
quences: e.g., with a notion of achieved coverage ofn long sub-sequences.
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Taint �ow inference is the main barrier to entry of LigRE. If acceptable,
LigRE had the highest detection capabilities. Otherwise, traditional

scanners are of interest.

RQ3. (Current Use by Testers):What is the current use of CTFM by testers?

We conducted two surveys for evaluating the current level of use of CTFM by
penetration testers[Duch�eneet al.2013c], and how they obtained them. Figure 6.3
synthesize relevant knowledge.

Figure 6.3: Main Results of Poll for Web Applications Security Testers

Obtaining and using models Currently used open-source web scanners do not
output CTFM. W3af [Riancho 2011] outputs CFM. It achieves a low coverage
[Doupéet al.2012]. In our sample, no tester uses w3af to obtain a CFM.
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Those who make use of CFM rely on a manual crawling approach, using Burp
[Stuttard 2007] as a proxy, and manually draw CFM. However, since considered
web fuzzers only accept a list of urls and an authentication context, they would
achieve a low transition coverage.

Taint Flow Tracking 77% of testers do not perform white-box taint �ow track-
ing, mainly because they think that not enough tools are available. 50% of those
�nd this manual work tedious. Those who perform it rely on dynamic exact string
matching. 54% of testers perform black-box taint �ow inference. Most of them do
it manually. 57% of those �nd it tedious. Taint �ow tracking aims at determining
the exact composing of �lters, in order to produce fuzzed inputs to bypass those
�lters. Performing it manually is time consuming, and limited to human expertise.
In white-box, it may require knowledge of various server languages. Whereas in
black-box, the ability to interpret few client side languages is enough.

Even skilled penetration testers largely rely on manual taint �ow tracking.
Since such work is time consuming, and prone to false negatives, there is

a need for tools producing hybrid control plus taint �ow models.

6.3 KameleonFuzz evaluation

We evaluate our prototype implementation of KameleonFuzz against black-box
open source XSS scanners, in terms of detection capabilities (RQ4) and detection
ef�ciency (RQ5). In our experiments, KameleonFuzz detected most of the XSS
detected by other scanners, several XSS missed by other scanners, and 3 previously
unknown XSS.

We considered fourblack-box XSS scannersto compare with KameleonFuzz:
Wapiti, w3af, Skip�sh and LigRE+w3af. Appendix A contains the con�guration
we used during the experiments. It is important to note that only LigRE and Ka-
meleonFuzz are macro-state aware.

RQ4. (Fault Revealing):Does evolutionary fuzzing �nd more true vulnerabili-
ties than other scanners?

To answer this question, we consider the number of true positives, the number
of false positives, and the overlap of true positives. For the �rst two metrics, we
compare all tools, whereas for the overlap, we compare LigRE+KameleonFuzz
against the others (Wapiti, w3af, skip�sh, LigRE+w3af). True positives are the
number of XSS found by a scanner that actually are attacks, thus the higher, the
better. If a scanner produces false positives, a tester will loose time, thus the lower
the better. The overlap indicates vulnerabilities detected by several scanners. We
denote asTA the True XSS vulnerabilities found by the scanner A. We de�ne the
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Application
Potential
Re�ections

# gen. to
detect the
found XSS

Transitions
start! Odst

True
Positive
(TP)

False
Positive
(FP)1st 2nd 3rd

P0wnMe 37 3 4 6 7 3 0
WebGoat 134 2 6 7 7 6 0
Gruyere 23 4 2 2 7 4 0
WordPress 52 2 2 2 5 4 0
Elgg 59 1 6 1 0
PhpBB 213 4 5 5 6 6 0
e-Health 12 1 4 4 4 8 0

Table 6.3: KameleonFuzz detection capabilities on the considered applications

overlap as:

overlap(A; B) = TA\ TB
TA[ TB

A low overlap indicates that scanners are complementary. We also consider the
vulnerabilities only detected by one scanner:

only by(A; B) = TA
TA[ TB

� overlap(A; B)

A low only by indicates that a given scanner does not �nd many XSS that the other
missed.

For each scanner and application, we sequentially con�gure the scanner, reset
the application, set a random seed to the scanner, run the scanner against the ap-
plication, and retrieve the results. We repeat this process �ve times, using different
seeds. Parameters have been adjusted so that each run lasts at most �ve hours.
Beyond this period, we stop the scanner and analyze the produced results. The
number of found vulnerabilities is the union of distinct true vulnerabilities found
during the different runs. If possible, scanners are con�gured so that they only
target XSS. We con�gure the scanners with the same information (e.g., authenti-
cation credentials). When a scanner does not handle this information correctly, we
perform two sub-runs: one with the cookie of a logged-on user, and one without.
Since all scanners, except LigRE and KameleonFuzz, are not macro-state aware we
con�gure them to exclude requests that would irreversibly change the macro-state
(e.g., logout when an authentication token is provided).

The practicality of LigRE+KameleonFuzz is illustrated in Table 6.3. This
�gure reports the number of potential re�ections, found vulnerabilities, and gener-
ations to �nd all detected vulnerabilities during the fuzzing. The three columns in
the middle report the length of created XSS exploits for the closest vulnerabilities
from the start node.

True and False XSS Positives. We manually verify the XSS for each scanner.
During our experiments, no scanner found a false positive XSS (Skip�sh had other
false positives). Figure 6.4 lists the results of the black-box scanners against each
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application. In our experiments, KameleonFuzz detected the highest number of
XSS, and several XSS missed by others. The union of the distinct true XSS found
by the scanners is 35. LigRE+w3af �nds23

35 = 65:7% of the known true XSS,
whereas LigRE+KameleonFuzz �nds32

35 = 91:4%. KameleonFuzz improves XSS
detection capabilities.
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Figure 6.4: Detection Capabilities of Black-Box XSS Scanners

The overlap and only by of true XSS found by LigRE+KameleonFuzz (KF)
against other scanners are illustrated on Figure 6.5. KameleonFuzz �nds the major-
ity of known true XSS. W3af and Skip�sh �nd the remaining ones. In the Gruyere
application, Skip�sh and w3af each found one vulnerability missed by all other
scanners, including KameleonFuzz. Those consist of a not referenced 404 page
containing a type-1 XSS, and of a type-2 XSS within the pseudo �eld when reg-
istering. It is harder to �nd the latter XSS than others: the application behaves
differently as inferred when the scanner registers a new user with a fuzzed pseudo.
Reusing the fuzzing learned knowledge in the inference may permit Kameleon-
Fuzz to detect this XSS. Additionally, Skip�sh and w3af both detected one XSS
in Gruyere that other scanners missed. Thus the onlyby of Skip�sh and w3af is
two in Figure 6.5, whereas in Figure 6.4, one XSS is detected by both of them.
Inferring the control �ow for navigating to non-referenced pages may increase Li-
gRE+KameleonFuzz XSS detection capabilities. If this is not an option, the tester
should use LigRE+KameleonFuzz, Skip�sh, and w3af.
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Wap. overlap KF
0% 6.7% 93.8%

w3af overlap KF
5.9% 5.9% 88.2%

Wapiti
2

LigRE+KF
30

w3af
2 2

LigRE+KF
30

SkipFishoverlap KF
5.9% 5.9% 88.2%

PT.+w. overlap KF
0% 65.6% 34.3%

Skip�sh
2 2

LigRE+KF
30

LigRE
+w3af

21

LigRE
+KF
11

Figure 6.5: Number of True XSS found, onlyby, and overlap of Li-
gRE+KameleonFuzz and other scanners

LigRE+KameleonFuzz detects more true XSS than other scanners. It has
no false positive.

KameleonFuzz increases XSS detection capabilities.
The non null onlyby of w3af and Skip�sh suggest they are

complementary to KameleonFuzz.

RQ5. (Ef�ciency): How ef�cient are the scanners in terms of found vulnera-
bilities per number of tests?

To answer this question, it is appropriate to observe the number of detected
true XSS depending of the number of HTTP requests. Thus, we set up a proxy
between the scanner and the web application, and con�gure this proxy to limit the
number of requests. We iteratively increase this limit, run the scanner, and retrieve
the number of found distinct true XSS. We manually verify them. We run such
a process �ve times per scanner, web application, and limit. For each number of
requests, for each scanner, we sum the number of unique true XSS detected for all
applications. The results are illustrated in Figure 6.6.

On considered applications, below approximatively 800
HTTP requests per application, w3af is the most ef�cient scanner. Thus we
hypothesize that in applications with few macro-states, assuming it is able to
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Figure 6.6: Detection Ef�ciency of Black-Box XSS Scanners

navigate correctly, w3af is more ef�cient than other scanners at �nding non
�ltered XSS. In our experiments, mainly happened in P0wnMe and Gruyere.
In applications with more macro-states, assuming the cost of control+taint �ow
inference is acceptable, LigRE improves vulnerability detection. Starting from 900
HTTP requests, LigRE+KameleonFuzz detects more vulnerabilities per number
of requests than LigRE+w3af. For instance, after 2200 requests per application,
fuzzing with KameleonFuzz detects 42.9% more XSS than fuzzing with w3af.
On the LigRE+w3af and LigRE+KameleonFuzz curves, we can observe several
landings, which mostly correspond to the end of the LigRE control+taint �ow
inference for a given application.

If the cost of LigRE inference is acceptable, then LigRE+KameleonFuzz
is more ef�cient than LigRE+w3af.
Otherwise, w3af alone is of interest.

6.4 Discussion

6.4.1 Found 0-days XSS

During the experiments, I found the following XSS. We describe two of them in
the appendix at page 155.
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• CVE-2013-7297 – 1 Type-2 XSS in Elgg 1.8.13 (impact: Elgg is notably
used by the Australia Governement, Wiley Publishing, the University of
Florida) [Duch�ene 2013a]

• CVE-2014-1599 – 39 Type-1 XSS in SFR BOX NB6-MAIN-R3.3.4 (im-
pact: � 5.2 Million users + possibility of changing the routing table)
[Duch�ene 2014a]

• 1 Type-1 XSS and 2 Type-2 XSS in Siemens-Home (impact: user imperson-
ation, customer data thief, privilege escalation) [Duch�ene 2014c]

• 4 Type-1 and 4 Type-2 XSS in Siemens e-Health (impact: privilege escala-
tion) [Siemens 2014, Duch�ene 2014b]

• 2 Type-2 XSS in HITB CFP (impact: privilege escalation) [Duch�ene 2014f]

• 1 Type-1 XSS in ITEA2 Diamonds Website [Duch�ene 2014b]

6.4.2 Applicability to other Web Command Injections (WCI)

Even though we only experimented with Type-1 and 2 XSS vulnerabilities, we are
con�dent that the KameleonFuzz approach can be applied to other types of WCI,
with proper adaptations (e.g., attack grammar), as shown in Table 6.4. Such adap-

Vulnerability Output Grammar Where to Parse?
Cross Site Scripting HTML HTML page

HPP Param. Pollution HTTP Reply Headers
PHP Code Injection PHP argument ofeval

SQL Injection SQL arg. ofsql query
Shell Injection Shell . . .exec , system

Table 6.4: Command Injections: Vulnerabilities, Output Grammars, and Observa-
tion Points

tation still do not require access to the application source code, only the ability
to intercept at run-time the arguments at the observation points. Thus for com-
mand injection vulnerabilities other than Type-1 and Type-2 XSS, one may con-
sider our approach as having a grey-box harness. Using our approach for detect-
ing Type-0 XSS and mutation-XSS is likely to require an adaptation of the attack
grammar[Heiderichet al.2010, Heiderichet al.2013].

6.4.3 Limitations

We classify the limitations in two categories: the limitations of our approach, and
those of our implementation.
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6.4.3.1 Approach Limitations

Reset We assume the ability to reset the application in its initial node, which
may not always be practical (e.g., when testing a live application having users
connected, we have to work on a copy). However, this does not break the black-
box harness assumption: we do not require to be aware of how the macro-state is
stored (e.g., database). How to relax this assumption is a research direction.

Generation of an Attack Input Grammar (AIG) Writing an AIG requires
knowledge of the parameters mentioned in Section 5.2.1. This work is yet man-
ual. The trade-off between the size of the language generated by this grammar
and the fault detection capabilities is yet to be studied. A too narrow generated
language (e.g., few produced fuzzed values for a given context, or very few con-
texts) may limit the fault detection capability, whereas a too important one may
have limited ef�ciency. Moreover, the AIG is tied to the targeted injection sub-
family (e.g., XSS, SQL injection, etc), thus the need for human input is a cur-
rent limitation. There is room for research in automating this generation process
[Wanget al.2010].

XSS Model Hypothesis We hypothesize that an XSS is the result of only one
fuzzed value. Our current approach may have false negative on XSS involving the
fuzzing of at least two fuzzed values at a time[Dalili 2012]. To our knowledge, no
scanner handles such cases.

6.4.3.2 Implementation Limitations

Non Deterministic Value (NDV) We assume the tester's ability to iden-
tify the NDV (e.g., anti-CSRF, viewstate, . . . ), or constantly changing pages
[SPaCIoS 2013]. Approaches to automate their detection have been investigated
[Hossenet al.2011].

Dynamic Client-Side Content Our implementation does not support Ajax ap-
plications, unless they gracefully downgrade (i.e., keep their functionality while
navigating via HTTP requests instead of Ajax events). [Marchettoet al.2008,
Amal�tano et al.2008] automatically infer Ajax applications. Flash and PDF �les
are not yet supported. Thus on very dynamic applications such as Facebook which
made intensive use of DOM transitions, our implementation would only infer and
fuzz a subset of the tested application. This means that the fault detection capa-
bilities of our implementation is limited to the subset of the application accessible
by performing only HTTP requests which can be discovered in links and in forms.
We did not experiment with such applications.
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Encoding The precision and ef�ciency of the taint �ow inference is dependent
of the considered encoding transformations. Plain, url and base64 encodings are
implemented. LigRE and KameleonFuzz can be extended to support more.

6.4.4 Threats to Validity

External Comparison We only compare to open source black-box web scanners
and LigRE. We contacted several vendors of commercial products, but we did not
receive a positive reply within a reasonable timeframe. Thus we were unaware
to compare with commercial scanners. Those may obtain better results than the
considered scanners.

Randomness Scanners make extensive use of randomness. Since some XSS are
not trivial to be found, their discovery may involve randomness and duration. We
tried to limit such factors by running the scanners �ve times with different seeds
and up to �ve hours. The chosen duration of the experiments may impact the
results.

Considered Applications Our comparison with other scanners is limited to the
considered versions of scanners and applications. We cannot generalize results
from those experiments. Running the scanners on other applications or scanners
versions may produce different results.

KameleonFuzz Parameters KameleonFuzz contains numerous adjustable pa-
rameters e.g., probabilities that drive the mutation and crossover operators during
the fuzzing. In Appendix A, we provide signi�cant parameters and their default
values. Those are chosen empirically. Because the value domain of each param-
eter is quite wide, and it is time consuming to run the whole test suite, it was
not feasible to evaluate the combination of all parameters values and their impact.
Thus, we cannot guarantee that the chosen default values achieve the best detection
capabilities and ef�ciency.
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Other Approaches for Detecting
Vulnerabilities

Any suf�ciently complicated input data is indistinguishable from bytecode, its
consumer from a VM.

[Bratus & Bangert 2012]

After watching a lot of these talks I think what you have to do is ask each executive at
RSA how their vision differs from modern reputation-system, brain-in-the-cloud,
heuristics-based anti-viruses.

[Aitel 2014]

Sometimes, I forget that I launched calc.exe, and then I freak out when I notice it in
my taskbar.

[Kortchinsky 2013]

For the last three decades, in order to ensure the safety of systems, researchers
proposed many techniques dedicated to the automatic search and detection of vul-
nerabilities. Such techniques �rst differ from each other depending on the test
context (e.g., white-box, grey-box or black-box).

7.1 White and Grey-Box Approaches

Static Analysis techniques extract knowledge from information available with-
out executing the application (e.g., source code). Code review is performed by
automatic tools, or human security analysts. Even corporations with very large
web application code base, such as Google and Facebook, still perform manual
code reviews as part of their security testing processes. [Shar & Tan 2012] ex-
tracts the composition of sanitizers from the source code, and veri�es if a by-
pass can be found for the composed sanitizer. [Aydinet al.2014] extract sig-
natures from source code to generate CTFM-like automatons, from which they
generate input sequences towards achieving speci�c coverage criteria. Model
inference from source code generate CFM, e.g., [Mihancea & Minea 2014] for
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Java application. They need to balance between over and under approximation
[Sankaranarayananet al.2013].

[Stocket al.2013] crawls in the �rst reachable transitions from the start node
from various web applications, propagated the taint in white-box in javascript ob-
jects and submitted XSS attack vectors from a library. Even though only the �rst
transitions are covered, they found numerous DOM Cross Site Scripting (a.k.a.
Type-0 XSS) (DOM-XSS), which shows that those web applications were not
tested w.r.t. such vulnerabilities.

Grey-Box Approaches generally combine static and dynamic analysis tech-
niques, at the assembly level. [Rawat & Mounier 2012] statically search for
Buffer Over�ow (BOF) sinks at the assembly level. [DeMottet al.2012b,
Bekraret al.2012, Bekraret al.2011] use data taint propagation at the assembly
level to determine where to apply anomaly operators. Depending on the complex-
ity and required precision of the process, the taint can be inferred in web applica-
tion [Madouet al.2008], or propagated precisely (e.g., [Doupéet al.2013] in .Net
applications).

Symbolic Execution consists in expressing branches choices w.r.t. conditions
on inputs. Iteratively, the application is restarted and inputs are modi�ed for
the application to take another branch. The goal is to increase branch coverage.
The SAGE fuzzer by [Godefroidet al.2008] found various Memory Corruption
Vulnerabilities (Memory Corruption Vulnerability (MCV)) in Microsoft Of�ce
products. Microsoft uses it daily and use their idle computing power to solve
billions of constraints [Bounimovaet al.2013]. KLEE by [Cadaret al.2008a]
found many vulnerabilities in open-source projects. Those approaches assume
the availability of the source code. Symbolic execution techniques have also
been used for �nding Web Command Injections (WCI) in web applications:
[Kiezunet al.2009, Wassermannet al.2008, Saxenaet al.2010a] generate string
constraints and then solve those to generate input sequences containing one fuzzed
value. Symbolic execution has also been applied in a grey-box context (e.g., at bi-
nary level): [Campana 2009]. Recently, concolic execution is gaining adoption, as
it permits to simplify certain constraints by using concrete values and thus reduces
the search space. However, all the public work still assumes the availability of the
source code [Halleret al.2013, Feistet al.2013].

Symbolic execution techniques are starting to be used in passive testing:
[Mouttappaet al.2013b].

7.2 Black-Box Approaches

Black-Box security testing distinguish between passive techniques (e.g., monitor-
ing) and active techniques which submit inputs to the applications. Black-box
techniques produce a knowledge, often in the form of a model or a grammar, from
which inputs are produced.
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[Mouttappaet al.2013a] veri�es that properties are not violated on the
recorded traces. [Johnset al.2008] passively monitors HTTP traf�c, tokenize JS
in the outputs, and detects Type-1 and Type-2 XSS with an interesting precision.

[Offutt & Abdurazik 1999] generate tests from UML speci�cations writ-
ten by analysts, and have coverage criteria speci�c to UML diagrams.
[Friedmanet al.2002] generate tests from Finite State Machine (FSM) that
correspond to system speci�cations. Similar approaches are mentioned in
[Utting & Legeard 2010]. [Lebeauet al.2013] manually model the application as
a UML diagram with OCL guards, from which they automatically generate secu-
rity tests for web applications.

Model Inference is a reverse engineering technique that consumes an appli-
cation and produces a model. [Angluin 1987] pioneered the black-box model in-
ference with her L* algorithm. [Choet al.2010] apply [Shahbaz & Groz 2009]'s
algorithm to understand the behavior of a botnet C&C and to take it down.
[Choet al.2011] infer CFM of protocol server implementations using concolic
execution techniques from which fuzzed inputs are generated. [Shu & Lee 2007]
learns using L* models of an implementation and applies model checking tech-
niques for searching for security properties violation (e.g., con�dentiality or in-
tegrity of a given object). [Liet al.2006] separately infer components mod-
els and then compose them for creating a model corresponding to the aggre-
gation of the components. [Petrenkoet al.2014] infer models containing Non
Deterministic Values (NDV) (e.g., models of web applications containing view-
state). [Kruegeret al.2012a] learns CTFM for simulating network honeypots.
[Choudharyet al.2013] learns Asynchronous Javascript And XML (Ajax) applica-
tion models, which are signi�cantly larger than traditional web applications model.
[Mariani et al.2012] incrementally learns updates of Ajax application models.

Black-Box fuzzing techniques historically target MCV [Bartonet al.1989].
The beautiful story of how [Bartonet al.1989] crashed Unix utilities because of
transmission errors – due to a storm impacting his modem connectivity – explains
why black-box fuzzing is also called structural testing. In the domain of black-
box interpreter fuzzing [Wooet al.2013] schedule and prioritize tests according
to various coverage criteria. In theLangFuzzapproach, [Holleret al.2012] re-
quire a target grammar and code fragments which it mutates. LangFuzz exposed
previously unreported JavaScript and PHP vulnerabilities. [Guoet al.2013] infer
the grammars accepted by web browsers and mutate, according to this grammar,
code fragments known to have triggered a problem. [Wenet al.2013] generate
programs in two phases: �rst they generate abstract scripts, and then they replace
abstract labels with concrete identi�ers (e.g., variable name, function call, etc.).
They target ActionScript. They exposed previously unreported vulnerabilities in
the Adobe Flash ActionScript virtual machine. [Householder & Foote 2012] apply
a statistical theory algorithm to the problem of selection of parameters (random-
ization seed, �le seed, range).

Model checking searches for properties violations on states of a model. Such
models can be written by a human analyst, extracted using a white-box con-

107



7.2. BLACK-BOX APPROACHES CHAPTER 7. OTHER APPROCHES

text from e.g., the source code [Balint & Minea 2011], or inferred in black-box
[Shahbaz & Groz 2009] via the observed behavior at the application interfaces.
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CHAPTER 8

Discussion & Conclusion

Sure: today, it's so easy to phish users or exploit real RCE bugs, that backdooring
web origins is not worth the effort. But in a not-too-distant future, that balance may
shift.

[Zalewski 2011c]

Give me ten carefully chosen hackers, and within 90 days I would then be able to
have this nation lay down its arms and surrender.

J. Saiteerdou, FBI [Liang & Xiangsui 1999]

Vulnerability Detection Systems: Think Cyborg, Not Robot

[Heelan 2011]

8.1 Discussion

We propose several directions of research for overcoming limitations of the im-
plementation, applying to other web command injections, and applying to other
classes of vulnerabilities, such as memory corruption.

8.1.1 In�uence of Various Parameters

Encoding When no charset is speci�ed for a page which is a destination for
a re�ection (i.e., no content-type HTTP header, or no charset as a child of the
<head> node, or the re�ection happens before this tag), it is interesting to act
on the encoding in the attack input grammar (AIG), in order to �nd an XSS. In
our experiments we only used UTF-8 encoding, as it already permitted to �nd
XSS in various applications. However, variable length encoding such as UTF-7
[Goldsmith & Davis 1997], Shift JIS [Microsoft b], etc.may be of interest in the
aforementioned case.

Evolutionary Parameters Studying thoroughly the in�uence of evolutionary pa-
rameters (e.g., crossover and mutation rate, population size, �tness weights) may
be of interest. The main dif�culty is the signi�cant number of combinations to test,
and the required duration to test thoroughly each given combination.
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8.1.2 Improving the ef�ciency of attack grammar

Automatic Attack Grammar Generation Few researchers addressed the prob-
lem of the automatic generation of an attack grammar. [Wanget al.2010] pio-
neered this direction by inferring one grammar using a hidden Markov model. Ide-
ally an interesting grammar balances between a precision suf�cient to bypass �lters
and a narrowed search space s.t. the testing campaign for a given re�ection context
has an acceptable cost. [Trippet al.2013] have an interesting compromise with
their advanced representation which combines �lters, and re�ection contexts.

Web Filters Reverse-Engineering In the process of fuzzing a re�ection, knowl-
edge can iteratively be learned regarding the �lter, thus there is room for apply-
ing machine learning algorithms. For instance, if the sanitizer is on client side
(e.g., as in most DOM-XSS), precise automata may be built using static analysis
techniques [Saxenaet al.2010b], e.g., symbolic execution [Saxenaet al.2010a]
or even concolic execution [Choet al.2011]. However, when the sanitizer is at
server side, such techniques cannot be used. This research direction has been pio-
neered by [Sotirov 2008]. [Trippet al.2013] implicitly capture the notion of Web
Filters Models in their attack grammar. If we would infer using machine learning
techniques the transducer for each re�ection, then we would be able to prune our
attack grammar sub-tree with a great precision.

Attack Grammar Pruning A method for increasing the ef�ciency of Web Com-
mand Injection fuzzing consists in iteratively pruning sets of attack vectors after
observing the output obtained form each fuzzed input sequence. [Trippet al.2013]
exactly adopt such an approach.

8.1.3 Adapting the Approach in case of other Counter-Measures

In our problem, we hypothesize the only presence of server-side sanitizers. In this
section, we list the other defensive measures which it may be interesting to address.

Client-Side Sanitizers (inside the browser) transform input parameters
values based on black-listed regular expressions [nos 2006, Ross 2008]
[Bateset al.2010], or prevent the execution of inline scripts1 if this script was
sent in an input parameter value of the current HTTP request [Google , nos 2006].
[Ross 2013]'s jSanity is an Internet Explorer (IE) client side sanitizer based on
IE9+'s parser. Its con�guration is performed in a white-listing fashion (e.g., allow
foo-bar ; deny foo-*).

Web Application Firewall (WAF) is a �rewall performing Deep Packet Inspec-
tion (DPI) up to the HTTP layer. [qua , mod , iro 2011] are examples of WAF.

1In the webpage<script> code </script> .
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They act as active defense mechanism, by detecting and removing content within
the webpages. They may even parse and interpret the webpage as the an end-user
browser would do. Since their parser may be different from the end-user, there is a
risk of false negatives and of false positives.

Static Rewriting [Doupéet al.2013]'s deDacota statically rewrites .Net web ap-
plications in their binary form to enforce code+data separation when concatenated
variables or inlined JavaScript code creation has been detected.

Trusted DOM [Heiderichet al.2011] a white-listing policy in which the devel-
oper indicates which DOM modi�cation operations she allows. While this requires
work not to break the functionality of applications, such a counter-measure can
prevent type-0, type-1, and type-2 XSS.

HTML5 IFrame Sandbox Several XSS vulnerabilities exist due to
browser API developers not enforcing a strict access control model
[Heiderichet al.2010], several attacks consists in a webpage embedded in
an iframe to access its parent DOM. In order to limit the impact in such cases,
the HTML5 IFrame Sandbox [w3c 2009] permits the parent webpage to disable
capabilities of the embedded one such as script execution, form submission etc.

DOM Tags Randomization [Van Gundy & Chen 2009] randomizes the pre�x
of HTML tags for each request. For successfully exploiting a XSS vulnerabil-
ity, an attacker would have to guess the pre�x that will be picked up next. This
makes the reliability of an XSS exploit very low. Randomizing the position of
certain codes is a similar concept to the ASLR [Yarom 1999, Team 2012], a 2001
counter-measure for raising the cost of exploiting memory corruption vulnerabili-
ties. Slightly differently, [Kcet al.2003] randomizes the instruction set through a
XOR mechanism speci�c to each process and run.

Content Security Policy (CSP) [w3c 2012a, Google 2013] declares a policy at
server side, and enforces it at client side. The default policy prevents the execution
of inline scripts, only allows<script src="url.js" /> , and disables
eval() like functions, and only allows the loading of “local scripts” (i.e., with
the same security domain that is same server Fully Quali�ed Domain Name
(FQDN) and TCP port) and resources. The main hypothesis behind such counter-
measures is that attackers exploiting XSS �rst execute inline JavaScriptwhich
loads a more complete library from a remote server they control. This server
different of the server hosting the application under attack. CSP enforces at client
side a data and code separation policy, which is de�ned at server side.
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Unfortunately, as promising as those counter-measures may seem, their current
deployment is quite low. In Table 8.1, we list possible reasons behind the low
adoptions of the aforementioned XSS counter-measures.

Defense Barriers to adoption Server
Impact

Client
Impact

Client-Side
Sanitizer

- adherence to browser version
- may break applications

x

WAF may break applications
Trusted DOM may break applications x
HTML5
IFrame Sand-
box

scope very limited (e.g., not applicable
for Java, Flash)

x x

DOM ran-
domization

- may break applications
- only make exploit less reliable

x x

CSP - non trivial amount of adaptations
[Weinbergeret al.2011b] - 96% of
Alexa top 1000 use CSP-incompatible
code patterns [Golubovic 2013]

x

Static Rewrit-
ing

- may break applications
- limited to ASP.Net applications

x

Table 8.1: Dif�culties behind the Low Adoption of XSS Counter-Measures

8.1.4 Application to other Web Command Injections (WCI)

Abstraction Level When performing automatic control �ow inference for one
given HTTP driver, the obtained automata are of signi�cant size. When extend-
ing our LigRE+KameleonFuzz approach to other type of WCI such as DOM-XSS,
Ajax XSS, Cross Protocol XSS, or even SQL injections, the major challenge re-
searchers will face is likely to be the size of the obtained CFM. Depending on the
abstraction, the inferred CFM of an application such as Facebook may be com-
posed of several millions of nodes. If the abstraction is performed at a too high
level, speci�cities of WCI taint �ows may be missed ; if the abstraction is per-
formed at a too low level, it may be unpractical to infer a complete model and thus
transitions may be missed.

Automatic Detection of Cross Protocol XSS Automatically detecting Cross-
Protocol XSS is a research direction. From the test context perspective, it involves
two abstraction and concretization functions, thus there is the need of develop-
ing additional test drivers for handling protocols such as SMTP, FTP, URL han-
dlers. Penetration testers may not systematically search for such vulnerabilities,
thus some interesting results such as Figure C may be obtained.
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Automatic Detection of Type-0/DOM XSS While [Stocket al.2013] discov-
ered numerous DOM-XSS, it is important to note that they only traversed the
very �rst Ajax transitions from the start node. This means that deeper vul-
nerabilities are likely to have been overlooked. Thus the CFM should �rst
be extended to take into account transitions of the DOM which could be �red
by JavaScript events. There has been work in the inference of Ajax CFM
[Marchettoet al.2008, Marchettoet al.2012b]. A useful model for fuzzing would
be a composition of CTFM as obtained by LigRE and of CTFM extracted from taint
propagation mechanism in the JavaScript virtual machine (e.g., [Vogtet al.2007],
Dominator Pro [Paola 2011]). For detecting Type-1 and Type-2 XSS, the same
Taint Aware tree Patterns (TAP) used in KF can be used. From the test verdict per-
spective, the only difference lies in the matching of the taint aware parse tree (TAT)
against TAP after each transition (i.e., classic HTTP or Ajax transitions). Very pre-
liminary results obtained with students suggest that taint aware DOM-XSS gram-
mar based evolutionary fuzzing may increase the ef�ciency of DOM XSS fuzzers
[Duch�eneet al.2013a].

Automatic Detection of Flash XSS Similarly to the automatic detection of
DOM-XSS, the automatic detection of Flash Type-1 and Type-2 XSS involves
extending the CFM models by taking into account transitions in abstract Flash
machine states and re�ections originating and reaching those transitions. An im-
plementation can use tools such as FlashDOM [Murray 2010].

Application to other Web Command Injections (WCI) We believe that the
LigRE+KameleonFuzz approach can be applied to various types of web command
injections (WCI): e.g., SQL injection [Su & Wassermann 2006], Shell command
injection [Sekar 2009], PHP interpreted code injection. This requires adaptations
on the points where we observe the re�ections, so such an approach would then
be considered as having a grey-box test context. An implementation could hook
server side APIs such assql query() , shell exec() , eval() , etc.

Relaxing the Single Parameter Fuzzed Value HypothesisMany fuzzers and
penetration testers search for XSS using only one re�ection. However, XSS may
involve several tainted fuzzed parameter values. Even companies such as Google
acknowledge that such scenarii are a hard combinatorial problem: for a Type-1
XSS to be catched by the Google Chrome �lter, it has to be constructed with
only one re�ected fuzzed value and to use at least one special character in the
HTML grammar(e.g.," ). If two or more parameters are re�ected, this scenario is
unsupported by the �lter [Nikiforakis & Barth 2011]. In order to search for two
parameter XSS, the similar CTFM may be used. The selection strategy should
focus on transitions exhibiting at least two re�ected parameters. Such adaptations
would permit the automatic detections of the vulnerabilities mentioned in page 155:
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Type-2 double parameter confusion XSS in Siemens-Home [Duch�ene 2014c] and
1 Type-2 double parameter confusion XSS inhttps://mega.co.nz .

GUI Security Testing Black-box model inference can be applied to GUI desktop
applications such as Evernote. We discovered manually a Unconstrained URL
Handler (CVE-2014-1404) [Duch�ene 2014e]. Such a vulnerability could have been
detected using CTFM which contains re�ections within the arguments oflibc
functions such asexec() .

8.1.5 Evolutionary Black-Box Fuzzing for Memory Corruption

Our recent work [Duch�ene 2014f, Duch�ene 2013b] combines Genetic Algorithm
and Anti-Random Testing for detecting memory corruption vulnerabilities in inter-
preter. We alternatively prune the search space using a �tness heuristic and explore
other directions using anti-random testing techniques. Preliminary results suggest
such an approach increases the ef�ciency for detecting not very deeply embedded
memory corruption vulnerabilities in interpreters.

8.1.6 Using Control+Taint Flow Models for Defensive Security

From the perspective of a defender, Content Security Policy (Content Security Pol-
icy (CSP)) is a counter-measure implemented in recent browsers (IE10, Firefox,
Chrome), which permits web applications developers to enforce a policy regard-
ing cross domain inclusions and inline scripts. If de�ned wisely, such policies
could permit browsers to prevent XSS attacks. The current barrier before to the
adoption of CSP is the necessity for web application developers to write such poli-
cies (e.g., Mozilla foundation ask for human web developers to help them rewrite
pages on the Mozilla website). Thus there is the need for an automatic rewriting of
web application, in order to make them CSP-aware. [Golubovic 2013] proposed a
�rst candidate solution. However, in order not to break functionalities, automatic
application rewriting needs to infer precisely the control �ow of the application.
[Golubovic 2013] does not consider the macro-state and thus may lack precision.
The precision of a combination of our LigRE approach with their automatic CSP
generation is a direction of research.

8.2 Conclusion

The research we contributed aims at showing the advantages of combining tech-
niques such as reverse-engineering and evolutionary driven fuzzing for automati-
cally detecting web command injections vulnerabilities in a black-box test context.

Since we hypothesize a black-box test context, we send inputs, record out-
puts, perform a computation and send new inputs, based on the computation result.
The reverse engineering step consists in inferring a control �ow automaton, then
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annotating it with taint �ows, then producing chopped models. The control �ow in-
ference addresses the problem of navigating in the application and the macro-state
awareness. The taint �ow inference exhibits paths containing re�ections of input
parameter values. The chopping constraints the fuzzing transition search space.
The fuzzing step consists in the genetic evolution of individuals. An individual is
composed of a chopped model and of a fuzzed value generated by an attack gram-
mar. Once the individual is submitted, a double taint inference up to the nodes
of the browser parse tree, using string edit distance, produces a taint aware tree.
We designed taint aware patterns, which assess precisely the exploitability of po-
tential vulnerabilities, depending if they match the obtained taint aware tree. The
population of individuals is evolved w.r.t. a heuristic �tness function, but also mu-
tation and crossover operators. The evolution stops when a tester de�ned stopping
condition is met.

We discovered 0-days XSS in widely used applications: notoriously 1 Type-2
XSS in Elgg 1.8.13 (CVE-2013-7297), 39 Type-1 XSS in SFR-DSL-box (5.2M
DSL boxes, CVE-2014-1599). The main barrier of entry of our approach lays in
the noise induced by the number of resets and requests, which makes it unsuit-
able for a military offensive security operation which is supposed to be discrete,
and which may be of a too high cost for several companies. In such a case, we
advocate a combination of human tester guiding a hybrid inference plus fuzzing
tool. For extending this work, we suggest �rst to adapt the test drivers for detecting
DOM-XSS and Flash XSS. Then as the second research direction, we suggest to
explore how to relax the single parameter fuzzed value hypothesis, as it increases
signi�cantly the complexity of the taint inference, and of the fuzzed input values
creation.
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APPENDIX A

Web Scanners Con�guration

We here list the main settings used during experiments .

• Wapiti 2.20: -m "-all,xss"

• w3af 1.2 kali 1.0:

misc� s e t t i n g s
s e t maxThreads 1
s e t maxDepth 200
s e t maxDiscoveryTime 18000
back
p l u g i n s
d i s c o v e r y webSpider
d i s c o v e r y c o n f i g webSpider

s e t on lyForward True
back

a u d i t xss
a u d i t c o n f i g xss

s e t numberOfChecks 3
back

back
s t a r t

Listing A.1: w3af con�guration

• SkipFish 2.10b: -Y -Z -m 10 -k 18000

• LigRE: The model annotation limits are as follows:

– minimal re�ection length: 6 characters

– maximal input sequences length: 8 HTTP requests

The Fuzzing parameters are:

– fuzzer : w3af

– passthe context : cookie

• common parameters inKameleonFuzz 2013-08-31are mentioned in Ta-
ble A.1
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Parameter Default
Value

LigRE.targeted reflections – The percentage of re-
�ections that KameleonFuzz will focus on. LigREorders them
in descending order of potential interest [Duch�eneet al.2013d].

0.8

GA.population size – The size of the population i.e., the
number of individuals. The actual amount is this value times the
number of targeted LigREre�ections.

5

GA.elitism – Number of individuals having the highest �tness
score that are kept for the next generation.

4

GA.mutation proba – The probability to apply a mutation
operator on a new child.

0.5

GA.crossover num exchanges – Number of exchanges
performed by the crossover operator. One exchange means a
two points crossover i.e., for the whole sub-tree of the exchanged
grammar (non)-terminal.

1

Table A.1: Common parameters in KameleonFuzz and their default values. See
Section 6.4.4 on how we chose those default values.

1 <! DOCTYPERootElement SYSTEM "RootElement.dtd">
2 <KameleonFuzzConfig>
3 <FuzzingPruning>
4 <param name="max_index_of__do_not_follow" value ="200" />
5 <param name="do_not_fuzz[0]" value ="PARAM_NAME pw" />
6 <param name="do_not_fuzz[1]" value ="PARAM_NAME uid" />
7 </FuzzingPruning>
8
9 <Random>

10 <param name="seed.inference" value ="1361641868" />
11 <! --
12 Seed to feed the Prime Random Number Generator (useful for

tests replication). System time is used if no seed is
provided

13 -- >
14 <param name="seed.annotation" value ="" />
15 <param name="seed.fuzzing" value ="" />
16 </Random>
17
18 <Logging>
19 <! -- param name="loglevel" value ="DEBUG" /-- >
20 <param name="loglevel" value ="INFO" />
21 <! -- DEBUG, ERROR, WARN, NOTICE, INFO, NONE -- >
22 </Logging>
23
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24 <EvolutionaryAlgorithmConfig>
25 <param name="numberOfPoolsOrIslands" value ="1" />
26 <param name="

percentageOfPopulationMigratingFromOneIslandOrPoolToAnotherOne
" value ="0.04" />

27
28 <param name="PopulationSize" value ="10" />
29 <param name="PopulationTakingPartInRecombination" value ="1.00"

/>
30 <! -- FLOOR of this value * population_size will be choosen:

how many % of the BEST individuals do we consider for
crossover -- >

31 <param name="Elitism" value ="2" />
32 <param name="crossoverNodeSelectionAndNumberOfPointsStrategy"

value ="samePrefix_and_1NodeRandom" />
33 <! -- strategies: samePrefix_and_1NodeRandom,

samePrefix_and_1NodeFirstFromRoot -- >
34 <param name="mutationRate" value ="0.5" />
35 <param name="mutationStrategy" value ="random" />
36 <! -- other values of mutationStrategy include # most

frequent value first ... within nodes "close" from leafs
-- >

37 <param name="firstGenerationInputParamSelectOneInXPercents"
value ="0.8" />

38 <param name="modelMaxDepthForPrefixingInputSequences" value ="7
" />

39 </EvolutionaryAlgorithmConfig>
40
41 <Fitness> <! -- the higher the more important the weight will be

-- >
42 <param name="number_of_classes_injected_vs_sent" value ="2" />
43 <param name="string_distance" value ="2" />
44 <param name="number_of_tainted_nodes" value ="3" />
45 <param name="

number_of_nodes_between_fuzzed_input_sending_and_reflection
" value ="2" />

46
47 <param name="number_of_unique_states_from_start_node" value ="

0.5" />
48 <param name="how_well_formed_wrt_HTML_is_the_output" value ="

0.5" />
49
50 <param name="new_output_symbol_discovered" value ="5" />
51 <param name="percentage_of_expected_output_symbols" value ="3"

/>
52 <param name="

number_of_different_macro_states_between_fuzzed_value_submission_and_reflection
" value ="1" />

53 <param name="singularity_on_fuzzed_input_param_value" value =
"4" />

54 <param name="singularity_on_input_sequence" value ="3" />
55 </Fitness>
56
57 <InternalTests>
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58 <param name="run" value ="True" />
59 </InternalTests>
60
61
62 <Crawling>
63 <param name="stop.when_conjecture_is_complete" value ="True" />
64 <param name="stop.max_duration" value ="0" /> <! -- in seconds

-- >
65 <param name="stop.max_num_of_http_requests" value ="200" />
66 <param name="longest_path.max_times_per_edge" value ="7" />
67 <param name="longest_path.max_times_per_node" value ="7" />
68 <param name="longest_path.max_depth_of_subsequence" value ="10"

/>
69 <param name="stop.

minimum_number_of_times_we_went_trough_each_transition"
value ="7" />

70 <param name="stop.minimum_number_for_all_clusters" value ="7" /
>

71 <param name="stop.
number_of_times_to_go_through_each_link_and_no_new_page_discovered
" value ="7" />

72 <param name="
max_explored_times_for_a_transition_for_djisktra_computation
" value ="7" />

73 <param name="max_depth_of_input_sequence" value ="170" />
74 <param name="conjecture.

max_consecutive_potential_contradictions" value ="4" />
75 <param name="follow_external_links" value ="none" />
76 <param name="conjecture.strategy" value ="from_root" />
77 <param name="

once_emergency_sequence_executed_forbid_emergency_for_x_requests
" value ="2" />

78 <param name="save_model_in_config_folder" value ="True" />
79 <param name="load_last_model_in_config_folder" value ="True" />
80 <param name="folder_where_to_save_progression" value ="logs/

gruyere/0_inferred_models/" />
81
82 <param name="folder_where_to_save_and_load" value ="logs/" />
83 <! -- which folder will be used to check for a previously

annotated model -- >
84 <! -- or where to save it -- >
85 <param name="crawled_model_filename_suffix" value ="

crawled_model.json" />
86
87 <! -- we should here indicate all the nonce fields that could

lead to identifying different states -- >
88 <param name="prefix_tree.fields_to_ignore" value ="form.hidden.

nonce" />
89 <! -- if it is a form request, then we will ignore any field

that is of type hidden and of name nonce -- >
90 <param name="http_request_comparison.fields_to_ignore" value ="

params_structured.nonce" />
91 <! -- eg: for each GET or POST parameter, we will ignore any

field that names is nonce -- >
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92
93 <param name="performance.memory.

execute_only_x_last_navigation_sequences" value ="20" />
94 <param name="performance.dot.

discard_task_if_not_started_within_x_seconds" value ="100"
/>

95 <param name="performance.conjecture.
skip_executing_whole_sequences_on_infered_FSM" value ="True
" />

96
97 <param name="dot.skip_saving_files_and_producing_svg" value ="

False" />
98 <! -- can be useful for speeding execution -- >
99

100 <param name="dot.infered_FSM_filename" value ="infered_fsm.svg"
/>

101 <param name="dot.navigation_graph_filename" value ="
navigation_graph.svg" />

102 <param name="dot.skip_outputting_non_yet_explored_spiderlinks"
value ="True" />

103 <param name="dot.max_output_times" value ="2" /> <! -- to avoid
repetition -- >

104 <param name="dot.max_simulatneous_processes" value ="2" />
105 <! -- to make use of multi-core computers-- >
106 <! -- be aware that httpd and chrome will already use 1 each

one-- >
107
108 <param name="dot.enable_html_tags" value ="False" />
109 <param name="conjecture.

assumes_non_determinism_is_due_to_wrong_macro_state_hypothesis
" value ="True" />

110 <param name="conjecture.wrong_macro_state.
assumes_it_is_the_latest_change_that_went_to_an_already_known_macro_state_whereas_it_is_a_new_one
" value ="True" />

111 <param name="conjecture.die_when_wrong_prefix_tree" value ="
False" />

112 <! -- set to false for gruyere -- >
113 <param name="conjecture.wrong_prefix_tree.assumes_state_change

" value ="True" />
114 <! -- set to True for gruyere -- >
115
116 <! -- weights for confidence function -- >
117 <param name="confidence.weight.

number_of_unexplored_links_on_model_for_current_state_so_far
" value ="2" />

118 <param name="confidence.weight.nodes_from_root__shortest_path"
value ="1" />

119 <param name="confidence.weight.nodes_from_root__actual_path"
value ="0" />

120 <param name="confidence.weight.
number_of_explored_links_that_have_same_spiderlinks_as_one_who_helped_determining_a_state_change
" value ="0" />

121 <param name="confidence.weight.
number_of_unexplored_links_that_have_same_spiderlinks_as_one_who_helped_determining_a_state_change
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" value ="0" />
122 <param name="confidence.weight.number_of_incoming_edges" value

="0.1" />
123
124 <param name="conjecture.

consider_only_first_spiderpage_for_confidence_computation"
value ="True" />

125
126
127 <param name="raiseExceptionWhenEmptyForms" value ="False" />
128 <! -- if False, at least we will print a WARNING -->
129 <param name="infered_model.filename_suffix" value ="

infered_model.pickle" />
130 <param name="infered_model.

number_of_folders_in_which_to_search_for" value ="3000" />
131 <! -- we search in the last 5 recent log folders -- >
132
133 <param name="skip_outputting_graphs" value ="False" />
134
135 <param name="die_in_case_of_exception" value ="False" />
136 <param name="exit_after_inference" value ="True" />
137 <param name="stopping.finish_outputting_graphviz_files" value =

"True" />
138 <param name="stopping.timeout" value ="200" />
139
140 <param name="state_change.score.num_of_parameters" value ="0.3"

/>
141 <param name="state_change.score.boost_if_POST_request" value ="

0.18" />
142 <param name="state_change.score.boost_if_GET_request" value ="

0.10" />
143 <param name="state_change.score.distance_num_of_requests"

value ="0.3" />
144 <! -- default value is 1 -- >
145 <param name="state_change.score.num_of_contradictions" value ="

2" />
146 <! -- default value is 1 -- >
147
148 <param name="cluster.weights.min_number_of_leaves" value ="5" /

>
149 <! -- value used for p0wn_me,wordepress,webgoat is 5 -- >
150 <param name="navigation.score.weight.

likelyhood_to_detect_a_state_change" value ="0.3" />
151 <param name="navigation.score.weight.

if_new_page_boost_already_seen_requests" value ="0.6" />
152 <param name="navigation.score.weight.never_seen_boost" value ="

0.4" />
153 <param name="navigation.score.weight.

num_of_times_recently_performed" value ="1.0" />
154 <param name="navigation.score.

num_of_times_recently_performed__to_take_into_account"
value ="1" />

155 <param name="navigation.score.boost_if_POST_request" value ="
0.16" />
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156 <param name="navigation.score.boost_if_GET_request" value ="
0.10" />

157 <param name="navigation.score.weight.
number_of_artificial_values" value ="0.1" />

158 <param name="navigation.score.weight.tester_provided_values"
value ="0.3" />

159 <param name="conjecture.
consider_only_first_spiderpage_for_confidence_computation"

value ="True" />
160
161 <param name="navigating.

go_back_to_root_when_currently_accessible_graph_is_complete_
" value ="True" />

162 <param name="pickle.sys.recursionlimit.increase_factor" value =
"10" />

163 </Crawling>
164
165 <CrawlingFieldsValues>
166 <param name="subset_matching_enabled" value ="true" />
167 <param name="

number_of_expansion_to_consider_before_smartfilling" value
="15" />

168 <param name="expansion_sorting_order" value ="
no_more_polar_bears" />

169 <! -- reversed or anything else-- >
170 <param name="

expand_prefilled_values_with_one_of_length_greater_of_equal_than_min_length_to_infer_taint
" value ="True" />

171 </CrawlingFieldsValues>
172
173
174 <CrawlingSlicing>
175 <! -- prevent some requests to be performed -- >
176 <! -- works in a black- listing mode -- >
177 <! -- useful for pruning the inference and the fuzzing -- >
178
179 <param name="max_index_of__do_not_follow" value ="10" />
180 <param name="do_not_follow[0]" value ="GET /xss-type-1/?action=

logout" encoding="plain" />
181 <param name="do_not_follow[3]" value ="FORM_FIELD_VALUE

orlandopassword" encoding="plain" />
182 <param name="do_not_follow[4]" value ="GET /xss-type-1/?action=

auth" encoding="plain" />
183 <param name="do_not_follow[5]" value ="FORM_FIELD_VALUE Create

account" />
184 <param name="do_not_follow[6]" value ="FORM_FIELD_VALUE Upload"

/>
185 </CrawlingSlicing>
186
187
188 <HFuzz>
189 <param name="Fuzzer" value ="w3af" />
190 <param name="credentials" value ="cookie" />
191 </HFuzz>
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192
193
194 <ModelAnnotation>
195 <param name="ignoreOutputSymbols" value ="True" />
196 <param name="modelExplorationMethod" value ="

breath_first_prefix_1by1_bounded" />
197 <! -- values include:
198 - breath_first_prefix_1by1_bounded
199 - random_bounded:
200 NOTE: for both, the length of input sequences is bounded by

modelMaxInputSequencesLength
201 -- >
202 <param name="random_bounded.

max_attempts_to_generate_input_sequences" value ="6" />
203 <! --
204 60
205 -- >
206 <param name="max_number_of_times_per_each_state" value ="1" />
207 <! -- limits loop in the model. values:
208 * (not implemented yet)
209 or 1,2,3...
210 -- >
211 <param name="method" value ="efficient_substring" />
212 <! -- possible values:
213 - efficient_substring
214 - edit_distance
215 -- >
216 <param name="efficient_substring.min_string_length" value ="6"

/>
217 <! -- only input parameters with value of at least xx

characters will be considered for approximate taint
computation -- >

218
219 <param name="modelMaxBackwardDepthForAnnotatingTaint" value ="7

" />
220 <! -- should be greater or equal than the value of

modelMaxDepthForPrefixingInputSequences -- >
221 <param name="modelMaxInputSequencesLength" value ="8" />
222 <! -- should be greater or equal than the value of

modelMaxBackwardDepthForAnnotatingTaint -- >
223
224 <! -- param name="maxNumberOfGeneratedInputSequences" value ="60

" /-- >
225
226 <param name="save_annotated_model_in_config_folder" value ="

True" />
227 <! -- values: True or anything else -- >
228 <param name="load_last_annotated_model_in_config_folder" value

="True" />
229
230 <param name="folder_where_to_save_and_load" value ="logs/

gruyere/1_annotated_models" />
231 <! -- which folder will be used to check for a previously

annotated model -- >
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232 <! -- or where to save it -- >
233
234 <param name="annotated_model_filename_suffix" value ="

annotated_model.pickle" />
235
236 <param name="graphviz.generate" value ="True" />
237 <param name="graphviz.in_folder" value ="logs/gruyere/1

_annotated_models" />
238 <param name="graphviz.representation_type" value ="

concise_from_and_to_transition" />
239 <! -- values:
240 steps_123
241 concise_from_and_to_transition
242 -- >
243
244 <param name="exit_after_model_annotation" value ="False" />
245 <param name="list_reflections" value ="True" />
246 <param name="list_reflections.exit_after" value ="False" />
247 </ModelAnnotation>
248
249 <TaintInferenceConfig>
250 <param name="useExactStringMatchingFirst" value ="true" /> <! --

true, false -- >
251 <param name="distance" value ="sekar_basic" />
252 <! --
253 edit_distance, as described in Sekar' s paper
254 sekar_optimized
255 -- >
256
257 <param name="costInsertion" value ="1" />
258 <param name="costDeletion" value ="1.9" />
259 <param name="minimumLengthOfTaintedStrings" value ="6" />
260 <param name="sekar.minLengthOfTaintedSubstringsInOutput" value

="6" />
261
262 <param name="propagation.minLengthOfOutputSubstring" value ="6"

/>
263 <param name="propagation.minLengthOfInputSubstring" value ="6"

/>
264
265 <param name="maxDistanceToTaint" value ="1" /> <! -- NOT USED --

>
266
267 <! -- those values work well for substring taint propagation
268 DOMTaintIfNodeAlone = 1-0.15
269 DOMTaintIfNodeWithBrother = 1-0.06
270 DOMTaintMaxNodeDistance = 2
271 -- >
272 <param name="DOMTaintIfNodeAlone" value ="0.65" />
273 <param name="DOMTaintIfNodeWithBrother" value ="0.40" />
274 <param name="DOMTaintMaxNodeDistance" value ="2" />
275 <param name="TaintPropagationOnDOM" value ="substring" />
276 <! -- substring or sekar_basic -- >
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277 <! -- substring is faster, but more false negative on taint
propagation, thus on fault verdict also -- >

278
279 <param name="assertSamePageIsReached" value ="False" />
280 </TaintInferenceConfig>
281
282 <Fuzzing>
283 <param name="input_sequences.generating_strategy" value ="

ShortestPath" />
284 <param name="

max_number_of_fuzzed_input_parameters_per_individual"
value ="1" />

285 <param name="
max_number_of_fuzzed_input_parameters_per_transition"
value ="1" />

286 <param name="
during_fuzzing_do_not_require_reaching_same_state_as_in_model
" value ="True" />

287
288 </Fuzzing>
289
290 <VulnerabilityToSearch>
291 <param name="type" value ="HTTP-HTML-XSS-reflected" />
292 <param name="AttackInputGrammar" value ="./KameleonFuzz/Grammar

/HTTP/XSS/attack_grammar.kfgrammar" />
293 </VulnerabilityToSearch>
294
295
296 <! -- if any of those conditions is evaluated to true, then the

program stops -- >
297 <StoppingConditions>
298 <param name="numberOfFoundFaults" value ="1" />
299 <param name="max_duration" value ="60" /> <! -- in seconds -- >
300 <param name="EA_MaxPopulationGenerations" value ="200" />
301 </StoppingConditions>
302
303
304 <SUTConfig>
305
306 <param name="interface.protocol" value ="HTTP" />
307 <param name="interface.host" value ="127.0.0.1" />
308 <param name="interface.port" value ="8008" />
309 <param name="interface.baseHREF" value ="/2497762752997571069/"

/>
310 <param name="startPage" value ="" />
311 <param name="Reset.HTTP_Request.action" value ="GET

/2497762752997571069/reset" />
312 <param name="Reset.HTTP_Request.verification" value ="(. * )

Server reset to default values...(. * )" />
313
314 <if condition="os.name=='nt'">
315 <param name="reset.command.action" value ="C:/Users/php.exe -

c C:/Users/fabite/Documents/EasyPHP-5.3.8.1/apache C:/
Users/fabite/Dropbox/git/KameleonFuzz/KameleonFuzz/
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config/gruyere/script_reset.php &quote;coucou&quote;" />
316 </if>
317
318 </SUTConfig>
319
320
321 </KameleonFuzzConfig>

Listing A.2: Extract ofconfig.xml con�guration �le

151



APPENDIX A. WEB SCANNERS CONFIGURATION

152



APPENDIX B

KameleonFuzz: List of Taint
Aware tree Patterns

We incorporate in KameleonFuzz the list of default TAP illustrated in Table B.1

Name Re�ection
Context

(see Table 4.5)

Grammar TAP

tainted event
handler and

action

inside an attribute
value

HTML

.+

attributes

( onerror k onload k... )

. * .+ . *

tainted script
tag and
content

• outside a tag

• inside a
textarea

HTML
script

children

.+

tainted url /
src with a

script
pseudo-
protocol

inside a src/href
attribute value

HTML
.+

attributes

(src khref )

( javascript: | vbscript: ). * .+ . *

Table B.1: KF: List of Implemented Taint Aware tree Patterns (TAP)

We are aware that this list does not cover all cases of XSS. In Table B.2, we
list additional TAP that would be of interest.
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Name Re�ection
Context

Grammar TAP

Cascading
Style Sheets

(CSS)
escape

inside a CSS value CSS

.+

attributes

( onerror k onload k... )

. * .+ . *

CSS URL
handler

inside a CSS url
value

CSS

.+

attributes

(src khref )

( javascript: | vbscript: ). * .+ . *

JS escape inside a JS value JS

.+

expression

(.* .+ )

AND

.+

instructions

( .+ . * )

Table B.2: KF: List of Additional TAP to be Implemented

154



APPENDIX C

0-day Found XSS Vulnerabilities

Two of the 0-days XSS discovered by KameleonFuzz

We illustrate two 0-day XSS that KF uncovered:

• Elgg: Type-2 XSS (CVE-2013-7297). The control �ow inference, the re�ec-
tions, and the taint aware patterns permit detecting this XSS present since
several versions.

• SFR BOX NB6-MAIN-R3.3.4: 39 Type-1 XSS (CVE-2014-1599). The con-
trol �ow inference permits navigating suf�ciently deep enough in the appli-
cation.

Elgg 1.8.13: 1 Type-2 XSS (CVE-2013-7297)

Elgg is an open-source social network notably used by the University of Florida
and the Australian governement. Elgg 1.8.13 suffers from an un�ltered Type-2
XSS in the website �eld of the user (see Figure C.1). This vulnerability has been
responsibly reported [Duch�ene 2013a].
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Figure C.1: Elgg 1.8.13 – Type-2 XSS in the website �eld (CVE-2013-7297)

SFR BOX NB6-MAIN-R3.3.4: 39 Type-1 XSS (CVE-2014-1599)

SFR is the french Vodafone (estimated DSL user base of 5.2 Millions). The af-
fected product is SFR BOX NB6-MAIN-R3.3.4. It suffers from 39 un�ltered Type-
1 XSS. Some are illustrated in Figure C.2. These vulnerabilities have been reported
using responsible disclosure process [Duch�ene 2014a].
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Figure C.2: Examples of Type-1 XSS in SFR BOX NB6-MAIN-R3.3.4

Vulnerabilities

• /network/dns: 5 non-�ltered Type-1 XSS

• /network/dhcp: 6 non-�ltered Type-1 XSS

• /network/nat: 7 non-�ltered Type-1 XSS
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• /network/route: 12 non-�ltered Type-1 XSS

• /wi�/con�g: 1 non-�ltered Type-1 XSS

• /network/lan: 8 non-�ltered Type-1 XSS

Exploitation hypotheses The requirements for such exploits to work are:

• the user is already logged-in (or tricked by SE techniques to authenticate in
the interface of his web router)

• ip address of the SFR Box router is known (most users use the default set-
tings: 192.168.1.1/24)

Example of exploitation scenario If a user is tricked into authenticating into
its interface, an attacker can XSS the user, and thus getting read and write access
to the router con�guration webpages. Such as scenario is mainly possible due to
non �ltered re�ections (mainly Type-1 / re�ected) and the lack of Content Security
Policy. Moreover, no anti-CSRF token such as view-states are present, thus there
is the possibility of modifying the routing tables even without an XSS, if the user
is authenticated in the box.

A non limitative list of actions include:

• getting authentication credentials (wireless, DSL credentials)

• rebooting the router

• modifying the route table (thus possibility of content injection if an attacker
controlled server is on the route)

• DDOSing a target with numerous XSS'ed clients

Examples of Vulnerabilities that KameleonFuzz is unable
to detect

We illustrate three vulnerabilities that KF is unable to detect as of today:

• mega.co.nz : cross-domain double parameter HTML injection. Kame-
leonFuzz only supports one fuzzed input parameter value at a time.

• Evernote: unconstrained URL handler (CVE-2014-1404). KameleonFuzz
test drivers only support websites ; a CTFM containing re�ections into libc
parameters is required to detect this vulnerability.

• Siemens-Home: Two type-2 Re�ections in HTML context result in IE-7
XSS. KameleonFuzz only supports one fuzzed input parameter value at a
time.
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http://mega.co.nz : Phishing with Cross-Domain HTML Content
Injection in emails

Two parameters entered during the subscription transition (see Figure C.3) are re-
�ected in the HTML email sent by the mega servers (see the HTML code in Fig-
ure C.4 and the rendering in Figure C.5).

Figure C.3: mega: source transition

Evernote 5.4.4 (402282): unconstrained �le handler (CVE-2014-1404)

I reported using a responsible disclosure process an Unconstrained �le handler
which permits attacker controlled code execution [Duch�ene 2014e].

We can provide a local executable �le in the URL �eld (¡source-url¿ tag) of a
note. Once the note is opened or imported:

• on Mac OS X, if a user is tricked into clicking on info, open, it results in
attacker controlled shell command execution. No warning whatsoever is
displayed to the user

• on Windows, a warning to the user is presented, but this still is a risk on this
platform and should be prevented
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Figure C.4: mega: re�ection transition, HTML source code

The creation of such �les can be automated via the cre-
ation of XML document conform to the Evernote DTD:
http://xml.evernote.com/pub/evernote-export3.dtd
and via a specially crafted source-url tag:
<source-url>file:////bin/sh</source-url>

I tested this vulnerability on the following versions: Evernote 5.4.4 and Ever-
note 5.5. 402941 direct, Mac OS X (see Figure C.6) and on Windows (see Fig-
ure C.7).
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Figure C.5: mega: re�ection transition, rendered webpage

Figure C.6: Evernote CVE-2014-1404: on Mac OS X
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Figure C.7: Evernote CVE-2014-1404 on Windows: a warning is displayed though

Siemens-Home: 1 Type-1 XSS, 2 Type-2 XSS including 1 IE7-IE10 spe-
ci�c XSS [Duchene 2014b]

Re�ection in a JS context An unauthenticated webpage had a Type-1 re�ec-
tion, as illustrated in Figure C.8 and Figure C.9. The server-side sanitizers were
targeting re�ections in an HTML context.
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Figure C.8: Siemens–Type-1 Re�ection in a JS context - code

Figure C.9: Siemens–Type-1 Re�ection in a JS context - execution

Type-2 Re�ection in a JS context A Type-2 re�ection exists from thecity
�eld (Figure C.10) into thes.state JS sink (Figure C.11 ) results in an ex-
ploitable XSS (Figure C.12).
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Figure C.10: Siemens–Type-2 Re�ection in a JS context - source
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Figure C.11: Siemens–Type-2 Re�ection in a JS context - code

Figure C.12: Siemens–Type-2 Re�ection in a JS context - execution

Two type-2 Re�ections in HTML context result in IE-7 XSS This Type-2 XSS
involves two parameters and I only succeeded in exploiting this re�ection in one
browser. We have two POST parameters in which we can inject characters:name
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andfirstname (see Figure C.13).

Figure C.13: Siemens–Two Parameters Confusion - Re�ection

This is not a trivial XSS in the sense there is a server sanitizer in place (maybe
a WAF). So far, its observed behavior exhibits the following constraint:

Constraint 1: If the substring< immediately followed by a character in[a-Z]
is present in any parameter, then the request is not processed, and we are redirected
to an error page (see Figure C.14).Thus the fuzzed values<b or <u are blocked
by the sanitizer.
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Figure C.14: Siemens–Two Parameters Confusion - Filter

Hopefully, as [Heiderich 2012b] pointed out:<%permits inserting a node in
Internet Explorer 7.

Good starting point, we have injected an active DOM node.

Constraint 2: the sanitizer blocks input parameters which are more than 40
characters long.

However, on such a node, classic JS event handlers (e.g., onmouseover, etc.)
cannot be triggered. We need another method for triggering a scripting engine.
What about CSS?:after and:before only work starting from IE8, and the
�rst constraint permits only IE7-10 node injection. Thus this �rst candidate solu-
tion is discarded.

Microsoft integrated in Internet Explorer 5.0 a feature named Dynamic Prop-
erties, aka CSS expressions [Microsoft a]. And those are interpreted in IE7-10
[Braun & Heiderich 2013].

Thus we attempt name=<% and firstname=
style='a:expression(alert(1337))'> .

But now another subtlety of the sanitizer is revealed:

Constraint 3: [a-Z]:[a-Z] would be blocked from going into the database, thus
not being re�ected.

Hopefully, this part of the �lter can be bypassed by only putting a space: the
stringa: b is accepted. Moreover, the �lter does not remove simple quotes' .

Finally: name=<% and firstname= style='a:
expression(alert(1337))'>
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Figure C.15: Siemens–Two Parameters Confusion - Exploit IE7-IE10
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Figure C.16: Siemens–Two Parameters Confusion - Execution
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