Superfluidity and coherence of Bose gases in reduced dimensions: from harmonic traps to uniform fluids

> Lauriane Chomaz - PhD defense November 10 ${ }^{\text {th }}, 2014$

Macroscopic quantum phenomena.

Superfluidity

Superconductivity

Macroscopic quantum phenomena.

Superfluidity

Superconductivity

In 2D: special meaning. Important for understanding new material :

Semiconductors heterostructures

Graphene

$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ (.3) lattice

Quantum coherence.

Infinite uniform gas of non/weakly interacting Bosons at temperature T:
Classical world

describe by trajectories
No coherence

Quantum coherence.

Infinite uniform gas of non/weakly interacting Bosons at temperature T:
Classical world Quantum world

Quantum field: $\hat{\psi}(\boldsymbol{r}) \equiv$ annihilates an atom in \boldsymbol{r} $\left\langle\hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r})\right\rangle=$ probability of finding an at. in \boldsymbol{r} $\langle.\rangle \equiv$ average over the thermal state of the gas
describe by waves Coherence

$$
G_{1}(r)=\left\langle\hat{\psi}^{\dagger}(r) \hat{\psi}(0)\right\rangle
$$

Quantum coherence.

Infinite uniform gas of non/weakly interacting Bosons at temperature T:

Classical world

Quantum world

Quantum field: $\hat{\psi}(\boldsymbol{r}) \equiv$ annihilates an atom in \boldsymbol{r} $\left\langle\hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r})\right\rangle=$ probability of finding an at. in \boldsymbol{r} $\langle.\rangle \equiv$ average over the thermal state of the gas
describe by waves Coherence

$$
G_{1}(r)=\left\langle\hat{\psi}^{\dagger}(r) \hat{\psi}(0)\right\rangle
$$

Characteristic lengths in ideal quantum gases :

* Coherence length:

$$
\ell_{c} \equiv \text { charact. of decay of } G_{1}(r)
$$

※ Thermal wavelength:

$$
\lambda_{T}=\sqrt{2 \pi \hbar^{2} / m k_{B} T}
$$

\% Mean distance between particles: d

Quantum coherence.

Infinite uniform gas of non/weakly interacting Bosons at temperature T:

Classical world

Quantum field: $\hat{\psi}(\boldsymbol{r}) \equiv$ annihilates an atom in \boldsymbol{r} $\left\langle\hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r})\right\rangle=$ probability of finding an at. in \boldsymbol{r} $\langle.\rangle \equiv$ average over the thermal state of the gas

Characteristic lengths in ideal quantum gases :

\% Coherence length:

$$
\ell_{c} \equiv \text { charact. of decay of } G_{1}(r)
$$

※ Thermal wavelength:

$$
\lambda_{T}=\sqrt{2 \pi \hbar^{2} / m k_{B} T}
$$

\% Mean distance between particles: d
~ Boltzmann statistics

$$
\lambda_{T}<d
$$

$G_{1}(r) \propto \exp \left(-\pi r^{2} / \lambda_{T}^{2}\right)$
Coherence over $\sim \lambda_{T}$

$$
G_{1}(r)=\left\langle\hat{\psi}^{\dagger}(r) \hat{\psi}(0)\right\rangle
$$

describe by trajectories describe by waves
Coherence

No coherence

Bose statistics

$$
\lambda_{T}>d
$$

Modif. G_{1} and $\uparrow \ell_{c}$. depends on the dimension
$3 \mathrm{D} \infty \quad$ Bose statistic in 3D.

ideal gas, $\lambda_{T}>d$
 Bose-Einstein condensation (at $\left.\lambda_{T}>C \overleftarrow{d}\right) . \quad \begin{aligned} & \mathrm{C}=\mathrm{c}^{\mathrm{ct}} \approx 1.38 \\ & \text { for } 3 \mathrm{D} \\ & \text { id }\end{aligned}$

Bose-Einstein condensation (at $\left.\lambda_{T}>C \overleftarrow{d}\right)$. for $3 \mathrm{C}=\mathrm{c}=$
\Leftrightarrow State of matter stemming from Bose stat.

$$
\hat{H}=\sum_{i \text { atoms }} \hat{h}_{i} \left\lvert\, \begin{aligned}
& \text { single-part. Hamiltonian } \hat{h}=\frac{\hat{\boldsymbol{p}}^{2}}{2 m} . \\
& \text { eigenstates }=\left|\varphi_{\boldsymbol{k}}\right\rangle, \boldsymbol{p}=\hbar \boldsymbol{k} .
\end{aligned}\right.
$$

\Rightarrow Saturation of the population in $k \neq 0$ at $\lambda_{T}=\mathrm{C} d$.
Macroscopic occupation of a single-particle state $\left|\varphi_{0}\right\rangle$.

Bose-Einstein condensation (at $\left.\lambda_{T}>C \overleftarrow{d}\right)$. $\begin{aligned} & C=c^{s t} \approx \\ & \qquad \Delta \text { Str } 3 D \\ & \Leftrightarrow \text { State of matter stemming from Bose stat. }\end{aligned}$

$$
\hat{H}=\sum_{i \text { atoms }} \hat{h}_{i} \left\lvert\, \begin{aligned}
& \text { single-part. Hamiltonian } \hat{h}=\frac{\hat{\boldsymbol{p}}^{2}}{2 m} . \\
& \text { eigenstates }=\left|\varphi_{\boldsymbol{k}}\right\rangle, \boldsymbol{p}=\hbar \boldsymbol{k} .
\end{aligned}\right.
$$

\Rightarrow Saturation of the population in $k \neq 0$ at $\lambda_{T}=\mathrm{C} d$. $\stackrel{\wedge}{\wedge}$ Macroscopic occupation of a single-particle state $\left|\varphi_{0}\right\rangle$.

I995: Groundbreaking observation of BEC in dilute ultracold gases.

Bose-Einstein condensation (at $\lambda_{T}>C \overleftarrow{d}$). for $3 \mathrm{C}=\mathrm{c}^{\mathrm{st}} \approx$
\Leftrightarrow State of matter stemming from Bose stat.

$$
\hat{H}=\sum_{i \text { atoms }} \hat{h}_{i} \left\lvert\, \begin{aligned}
& \text { single-part. Hamiltonian } \hat{h}=\frac{\hat{\boldsymbol{p}}^{2}}{2 m} . \\
& \text { eigenstates }=\left|\varphi_{\boldsymbol{k}}\right\rangle, \boldsymbol{p}=\hbar \boldsymbol{k} .
\end{aligned}\right.
$$

\Rightarrow Saturation of the population in $k \neq 0$ at $\lambda_{T}=\mathrm{C} d$.
$\stackrel{\wedge}{\wedge}$ Macroscopic occupation of a single-particle state $\left|\varphi_{0}\right\rangle$.

I995: Groundbreaking observation of BEC in dilute ultracold gases.
\leftrightarrow
long-range phase coherence

$$
\begin{aligned}
& \boldsymbol{G}_{\mathbf{1}}(r) \underset{r \rightarrow \infty}{\longrightarrow} n_{\mathbf{0}} \neq \mathbf{0} \\
& n_{0}=\text { density in }\left|\varphi_{0}\right\rangle
\end{aligned}
$$

Outline.

Motivation: specificity of 2D and 3D-to-2D crossover.

Motivation: from harmonic to uniform traps.

Experimental setup: creating 2D uniform gases.

Emergence of an extended phase coherence in 2D uniform gases at thermal equilibrium.
\uparrow Dynamics of the establishment of coherence along forced evaporative cooling in uniform fluids.

Outline.

Motivation: specificity of 2D and 3D-to-2D crossover.

Motivation: from harmonic to uniform traps.

Experimental setup: creating 2D uniform gases.

Emergence of an extended phase coherence in 2D uniform gases at thermal equilibrium.
\downarrow Dynamics of the establishment of coherence along forced evaporative cooling in uniform fluids.

Effect of bidimensionality.

ideal gas, $\lambda_{T}>d$

no BEC in an infinite 2D gas at $T \neq 0$
(Peierls - 1935, Mermin-Wagner-Hohenberg - 1966-67)

$$
G_{1}(r) \underset{r \rightarrow \infty}{\longrightarrow} 0
$$

Effect of bidimensionality.

ideal gas, $\lambda_{T}>d$

no BEC in an infinite 2D gas at $T \neq 0$ (Peierls - 1935, Mermin-Wagner-Hohenberg - 1966-67)

$$
G_{1}(r) \underset{r \rightarrow \infty}{\longrightarrow} 0
$$

but Bose statistic $=>$ broader component in G_{1} arises.

$$
G_{1}(r)=\underset{\uparrow}{G_{1}^{(\mathrm{th})}}+G_{1}^{(0)}+\ldots \leftarrow \text { intermediate energy-states }
$$

high energy-states
$G_{1}^{(\text {th })}(r) \propto \exp \left(-\frac{\pi r^{2}}{\lambda_{T}^{2}}\right)$

Effect of bidimensionality.

ideal gas, $\lambda_{T}>d$
no BEC in an infinite 2D gas at $T \neq 0$
(Peierls - 1935, Mermin-Wagner-Hohenberg - 1966-67)

$$
G_{1}(r) \underset{r \rightarrow \infty}{\longrightarrow} 0
$$

but Bose statistic $=>$ broader component in G_{1} arises.

$$
G_{1}(r)=G_{1}^{(\mathrm{th})}+G_{1}^{(0)}+\ldots \leftarrow \text { intermediate energy-states }
$$

N
0
0
0

high energy-states

low energy-states

$$
\begin{aligned}
G_{1}^{(\mathrm{th})}(r) \propto \exp \left(-\frac{\pi r^{2}}{\lambda_{T}^{2}}\right) \quad & G_{1}^{(0)}(r) \propto \exp \left(-\frac{r}{\ell}\right) \\
\ell & =\frac{\lambda_{T}}{\sqrt{4 \pi}} \exp \left(\frac{\mathcal{D}}{2}\right) \\
\mathcal{D} & =\left(\frac{\lambda_{T}}{d}\right)^{2}
\end{aligned}
$$

Effect of bidimensionality.

ideal gas, $\lambda_{T}>d$
no BEC in an infinite 2D gas at $T \neq 0$
(Peierls - 1935, Mermin-Wagner-Hohenberg - 1966-67)

$$
G_{1}(r) \underset{r \rightarrow \infty}{\longrightarrow} 0
$$

but Bose statistic $=>$ broader component in G_{1} arises.

$$
G_{1}(r)=G_{1}^{(\mathrm{th})}+G_{1}^{(0)}+\ldots \leftarrow \text { intermediate energy-states }
$$

告high energy-states low energy-states

$$
\begin{aligned}
G_{1}^{(\mathrm{th})}(r) \propto \exp \left(-\frac{\pi r^{2}}{\lambda_{T}^{2}}\right) \quad & G_{1}^{(0)}(r) \propto \exp \left(-\frac{r}{\ell}\right) \\
\ell & =\frac{\lambda_{T}}{\sqrt{4 \pi}} \exp \left(\frac{\mathcal{D}}{2}\right) \\
\mathcal{D} & =\left(\frac{\lambda_{T}}{d}\right)^{2}
\end{aligned}
$$

\Rightarrow Fast increase of ℓ_{c} / λ_{T} when $\mathcal{D} \gtrsim 1$

Corrections for experimental 2D systems.

Corrections for experimental 2D systems.

Finite size effect

Fast increase of ℓ_{c} with \mathcal{D} (when ℓ dominates, i.e. $\mathcal{D} \gtrsim 1$).

$G_{1}(L) \Leftrightarrow$ condensed density
$\Rightarrow \mathcal{D}_{B E C} \sim 7-10($ for typical L and $T)$

Corrections for experimental 2D systems.

Finite size effect

Fast increase of ℓ_{c} with \mathcal{D} (when ℓ dominates, i.e. $\mathcal{D} \gtrsim 1$).

$$
\begin{aligned}
& \text { At } \mathcal{D} \geq \mathcal{D}_{\mathrm{BEC}}, \ell_{c} \gtrsim L \\
& \quad \Rightarrow \text { recover BEC }: L \\
& G_{1}(r)>0 \forall r \in \text { gas. }
\end{aligned} \downarrow \square \square \square
$$

$G_{1}(L) \Leftrightarrow$ condensed density
$\Rightarrow \mathcal{D}_{B E C} \sim 7-10($ for typical L and $T)$

Inter-particle interactions

A distinct type of phase transition possible:
Berezinskii-Kosterlitz-Thouless => Superfluid

Corrections for experimental 2D systems.

Finite size effect

Fast increase of ℓ_{c} with \mathcal{D} (when ℓ dominates, i.e. $\mathcal{D} \gtrsim 1$).

$$
\begin{aligned}
& \text { At } \mathcal{D} \geq \mathcal{D}_{\mathrm{BEC}}, \quad \ell_{c} \gtrsim L \\
& \Rightarrow \text { recover BEC }: L \\
& G_{1}(r)>0 \forall r \in \text { gas. }
\end{aligned}
$$

$G_{1}(L) \Leftrightarrow$ condensed density
$\Rightarrow \mathcal{D}_{B E C} \sim 7-10($ for typical L and $T)$

Inter-particle interactions

A distinct type of phase transition possible:
Berezinskii-Kosterlitz-Thouless $=>$ Superfluid
Quasi-long
range order

$$
\xrightarrow[\rho_{\mathrm{s}}=0]{G_{1}(r) \propto e^{-\pi r^{2} / \lambda_{T}^{2}}}
$$

Infinite order transition
$\mathcal{D}_{\text {BKT }} \sim 7-10$ for weakly interacting gases

Corrections for experimental 2D systems.

Finite size effect

Fast increase of ℓ_{c} with \mathcal{D} (when ℓ dominates, i.e. $\mathcal{D} \gtrsim 1$).

$G_{1}(L) \Leftrightarrow$ condensed density
$\Rightarrow \mathcal{D}_{B E C} \sim 7-10($ for typical L and $T)$

Inter-particle interactions

A distinct type of phase transition possible:
Berezinskii-Kosterlitz-Thouless $=>$ Superfluid
Quasi-long
range order

$$
\xrightarrow[\rho_{\mathrm{s}}=0]{G_{1}(r) \propto e^{-\pi r^{2} / \lambda_{T}^{2}}} \stackrel{\mathcal{D}_{\mathrm{BKT}}}{G_{1}(r) \propto r^{-\alpha}+\ldots} \begin{aligned}
& \alpha=1 /\left(\rho_{\mathrm{s}} \lambda_{T}^{2}\right) \\
& \rho_{\mathrm{s}}=4 / \lambda_{T}^{2}
\end{aligned}
$$

Infinite order transition
$\mathcal{D}_{\text {BKT }} \sim 7-10$ for weakly interacting gases

Boltzmann	«Pre-superfluid»//«Quasi-condensate»	BEC/ Superfluid	\mathcal{D}	
$G_{1}(r) \propto e^{-\pi r^{2} / \lambda_{T}^{2}}$	≈ 1	$G_{1}(r) \propto \rho_{0} e^{-r / \ell}+\ldots$	$\approx 7-10$	$G_{1}(r)>0, \forall r \in$ gas

Corrections for experimental 2D systems.

Finite size effect

Fast increase of ℓ_{c} with \mathcal{D} (when ℓ dominates, i.e. $\mathcal{D} \gtrsim 1$).

$G_{1}(L) \Leftrightarrow$ condensed density
$\Rightarrow \mathcal{D}_{B E C} \sim 7-10($ for typical L and $T)$

Inter-particle interactions

A distinct type of phase transition possible:
Berezinskii-Kosterlitz-Thouless $=>$ Superfluid
Quasi-long range order

$$
\xrightarrow[\rho_{\mathrm{s}}=0]{G_{1}(r) \propto e^{-\pi r^{2} / \lambda_{T}^{2}}} \stackrel{\mathcal{D}_{\mathrm{BKT}}}{G_{1}(r) \propto r^{-\alpha}+\ldots} \begin{aligned}
& \alpha=1 /\left(\rho_{\mathrm{s}} \lambda_{T}^{2}\right) \\
& \rho_{\mathrm{s}}=4 / \lambda_{T}^{2}
\end{aligned}
$$

Infinite order transition
$\mathcal{D}_{\text {BKT }} \sim 7-10$ for weakly interacting gases

NIST Gaithersburg, Boulder

| Boltzmann | «Pre-superfluid»/«Quasi-condensate» | BEC/ Superfluid | \mathcal{D} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $G_{1}(r) \propto e^{-\pi r^{2} / \lambda_{T}^{2}} \approx 1$ | $G_{1}(r) \propto \rho_{0} e^{-r / l}+\ldots$ | $\approx 7-10$ | $G_{1}(r)>0, \forall r \in \operatorname{gas}$ |

$3^{\text {rd }}$ dim. in 2D experiments.

How to realize 2D systems in cold atoms experiments...

$3^{\text {rd }}$ dim. in 2D experiments.

How to realize 2D systems in cold atoms experiments...

$3^{\text {rd }}$ dim. in 2D experiments.

How to realize 2D systems in cold atoms experiments...

$$
\mathcal{D} \equiv \lambda_{T}^{2} \rho \leftarrow 2 \mathrm{D} \text { density }
$$

\& $k_{B} T \ll \hbar \omega_{z}$ thermally 2D, only $j=0$ populated:

$$
\mathcal{D}_{\mathrm{tot}} \approx \mathcal{D}_{0}
$$

$\& k_{B} T \gtrsim \hbar \omega_{z}$ all j 's must be accounted for.

$$
\begin{aligned}
& \mathcal{D}_{\mathrm{tot}}=\mathcal{D}_{0}+\mathcal{D}_{\mathrm{exc}} \\
& G_{1}(r)=\sum_{j=0}^{\infty} G_{1}^{(j)}(r)
\end{aligned}
$$

$G_{1}^{(0)}(r) \equiv$ broadest contribution
$3^{\text {rd dim.: Transverse condensation. }}$

$3^{\text {rd }}$ dim.: Transverse condensation.

 quantum states in Bose statistics.

3rd dim.:Transverse condensation.

Saturation of the population of the quantum states in Bose statistics.

$$
\mathcal{D}^{(D)}(\mu)=\left(\frac{\lambda_{T}}{L}\right)^{D} \int f(E-\mu) D(E) \mathrm{d} E
$$

$$
\mathcal{D}^{(D)}(\mu) \underset{\mu \rightarrow 0}{\longrightarrow} \begin{cases}\mathcal{D}_{\mathrm{c}} & \Leftrightarrow \text { BEC } \\ \infty & \Leftrightarrow \text { no BEC }\end{cases}
$$

$3^{\text {rd }}$ dim.: Transverse condensation.

2D+ configuration

$3^{\text {rd }}$ dim.: Transverse condensation.

$3^{\text {rd }}$ dim.: Transverse condensation.

3rd dim.:Transverse condensation.

When $\mathcal{D}_{\text {tot }}$ large enough, atoms accumulate in $j=0: \mathcal{D}_{0} \sim \mathcal{D}_{\text {tot }}$ even if $k_{B} T \gg \hbar \omega_{z}$.

Recover relevance for 2D physics!

$$
\mathcal{D} \rightarrow \mathcal{D}_{0}
$$

$G_{1}^{(0)}(r)$ becomes dominant
$=>$ enhanced coherence in plane!
N. J. van Druten \& W. Ketterle, PRL (1997)

Outline.

Motivation: specificity of 2D and 3D-to-2D crossover.
\uparrow Motivation: from harmonic to uniform traps.
\uparrow Experimental setup: creating 2D uniform gases.
\downarrow Emergence of an extended phase coherence in 2D uniform gases at thermal equilibrium.
\uparrow Dynamics of the establishment of coherence along forced evaporative cooling in uniform fluids.

Harmonic confinement and local probing

Trapping region :

extrema of magnetic field / light intensity. $=>$ typical dependance $V(r) \sim r^{2}$

Harmonic confinement and local probing

Trapping region :

extrema of magnetic field / light intensity. => typical dependance $V(r) \sim r^{2}$
\& Useful for exploring local properties : smooth variation => locally uniform.
Local Density Approximation
Trapped density profile
Homogeneous equivalent

Example of the Equation of State.

EoS $=$ relation between dimensionless parameters.
=> dictates all thermodynamics properties. can deduce EoS for any variables.
In weakly interacting 2D gases: only 2 variables (approx. scale invariance).

Example of the Equation of State.

EOS = relation between dimensionless parameters.
=> dictates all thermodynamics properties. can deduce EoS for any variables. In weakly interacting 2D gases: only $\mathbf{2}$ variables (approx. scale invariance).

Example of the Equation of State.

EoS = relation between dimensionless parameters.
=> dictates all thermodynamics properties. can deduce EoS for any variables. In weakly interacting 2D gases: only $\mathbf{2}$ variables (approx. scale invariance).

$=>$ fit-free method for measuring the EoS by derivations/integrations of $E(V)=\frac{\hbar^{2} n(V)}{m}$:

Example of the Equation of State.

EOS = relation between dimensionless parameters.
=> dictates all thermodynamics properties. can deduce EoS for any variables. In weakly interacting 2D gases: only $\mathbf{2}$ variables (approx. scale invariance).

15
$=>$ fit-free method for measuring the EoS by derivations/integrations of $E(V)=\frac{\hbar^{2} n(V)}{m}$: check scale invariance

$$
\rightarrow\left(\mu / k_{B} T, \mathcal{D}\right)
$$

T. Yefsah \& al. , PRL (20II), R. Desbuquois \& al. , PRL (20|4)

Example of the superfluid behavior.

Superfluidity $<=>$ frictionless response to a moving obstacle.

Example of the superfluid behavior.

Superfluidity <=> frictionless response to a moving obstacle.

Local probing :

rotation of a tightly focused laser beam
$\left(w=2 \mu \mathrm{~m} / R_{\mathrm{TF}}=20 \mu \mathrm{~m}\right)$
on "equi-potential" $r=\mathrm{C}^{\text {st }}$

$$
\left(\mu_{\mathrm{loc}}=\mu_{0}-V(r)\right)
$$

at velocity $v=\mathrm{C}^{\text {st }}$.

Example of the superfluid behavior.

Superfluidity <=> frictionless response to a moving obstacle.

Local probing :

rotation of a tightly focused laser beam

$$
\left(w=2 \mu \mathrm{~m} / R_{\mathrm{TF}}=20 \mu \mathrm{~m}\right)
$$

on "equi-potential" $r=\mathrm{C}^{\text {st }}$

$$
\left(\mu_{\mathrm{loc}}=\mu_{0}-V(r)\right)
$$

at velocity $v=\mathrm{C}^{\text {st }}$.
Measure heating

$T(v)=T_{v=0}+\kappa \tau \max \left[v^{2}-v_{c}^{2}, 0\right]$

Example of the superfluid behavior.

Superfluidity $<=>$ frictionless response to a moving obstacle.

Local probing :

 rotation of a tightly focused laser beam ($w=2 \mu \mathrm{~m} / R_{\mathrm{TF}}=20 \mu \mathrm{~m}$) on "equi-potential" $r=\mathrm{c}^{\text {st }}$$$
\left(\mu_{\mathrm{loc}}=\mu_{0}-V(r)\right)
$$

discrepancy (partly) due to $w \neq 0$ at velocity $v=\mathrm{c}^{\text {st }}$.
Measure heating

$$
T(v)=T_{v=0}+\kappa \tau \max \left[v^{2}-v_{c}^{2} 0\right]
$$

Limitations of harmonic confinement.

Limitations of harmonic confinement.

\% Limiting for non-local measurements:

- long-range properties
- coherence and correlation functions
\% In particular at vicinity of a transition point:
- transitions become local phenomena
- divergences are smoothen
$\%$ Entangles effects of interactions / Bose stat / dimensionality:
- strong influence of interactions (even if weak) / overall state of the gas.
- transverse condensation disappears : not a transition anymore

Limitations of harmonic confinement.

\% Limiting for non-local measurements:

- long-range properties
- coherence and correlation functions
\% In particular at vicinity of a transition point:
- transitions become local phenomena
- divergences are smoothen
$\%$ Entangles effects of interactions / Bose stat / dimensionality:
- strong influence of interactions (even if weak) / overall state of the gas.
- transverse condensation disappears : not a transition anymore
\Rightarrow Toward uniform traps...

Outline.

Motivation: specificity of 2D and 3D-to-2D crossover.

Motivation: from harmonic to uniform traps.

Experimental setup: creating 2D uniform gases.

Emergence of an extended phase coherence in 2D uniform gases at thermal equilibrium.
\downarrow Dynamics of the establishment of coherence along forced evaporative cooling in uniform fluids.

Creating uniform 2D gases in experiments.

$x \xrightarrow{2} y$
3D cold gas
of ${ }^{87} \mathrm{Rb}$

Creating uniform 2D gases in experiments.

Creating uniform 2D gases in experiments.

$x_{4}^{z} y$

$+$
Hermite-Gauss beam $=2 \mathrm{D}$ conf.
$+$
Hollow beam
= Uniform conf.

Creating uniform 2D gases in experiments.

$x_{4}^{z} y$

$+$
Hermite-Gauss beam $=2 \mathrm{D}$ conf.
$+$
Hollow beam
= Uniform conf.
3D: Hadzibabic group, 2013

Creating uniform 2D gases in experiments.

Creating uniform 2D gases in experiments.

Quasi-2D gases in boxes.

Outline.

Motivation: specificity of 2D and 3D-to-2D crossover.

Motivation: from harmonic to uniform traps.

Experimental setup: creating 2D uniform gases.
\downarrow Emergence of an extended phase coherence in 2D uniform gases at thermal equilibrium.
\downarrow Dynamics of the establishment of coherence along forced evaporative cooling in uniform fluids.

Coherence in time-of-flight.

Coherence in time-of-flight.

3D ToF

Release all trapping potential and let expand for long τ : access velocity distribution.

Coherence in time-of-flight.

3D ToF

Release all trapping potential and let expand for long τ : access velocity distribution.

velocity distribution $=$

Fourier transform of G_{1}

Bimodality of ToF density distribution.

fit by a sum of 2 Gaussians

$$
N=N_{1}+N_{2}
$$

Bimodality of ToF density distribution.

fit by a sum of 2 Gaussians

$$
N=N_{1}+N_{2}
$$

bimodality parameter : $\Delta=N_{1} / N$

Bimodality of To density distribution.

For each T, fit $\Delta(N)$ by «heuristic» threshold function:
$\Delta=\left(1-\left(N_{\mathrm{c}} / N\right)^{0.6}\right) \Theta\left(N>N_{c}\right)$

fit by a sum of 2 Gaussian

$$
N=N_{1}+N_{2}
$$

bimodality parameter : $\Delta=N_{1} / N$

Coherence via matter-wave interference.

Coherence via matter-wave interference.

Release box confinement and let expand in-plane for τ such that the gases overlap
Visualize interferences in a unique plane.

Universal behavior of the onset of coherence.

$$
\zeta \equiv k_{B} T / h \nu_{z}
$$

full symbols : bimodality open symbols : fringe contrast colors:
\neq shapes,sizes

$$
\neq v_{z}
$$

Universal behavior of the onset of coherence.

Universal behavior of the onset of coherence.

Universal behavior of the onset of coherence.

$\zeta \equiv k_{B} T / h \nu_{z}$

Outline.

Motivation: specificity of 2D and 3D-to-2D crossover.

Motivation: from harmonic to uniform traps.
\uparrow Experimental setup: creating 2D uniform gases.
\downarrow Emergence of an extended phase coherence in 2D uniform gases at thermal equilibrium.
\uparrow Dynamics of the establishment of coherence along forced evaporative cooling in uniform fluids.

Kibble Zurek mechanism.

Topological defects from KZM.

Direct observation of vortices.

$T \uparrow$ thermal cloud

$$
\underline{v_{\mathrm{z}}}=365 \mathrm{~Hz}:
$$

Coherence emerges
via BEC_{\perp}.

Direct observation of vortices.

$v_{\mathrm{z}}=365 \mathrm{~Hz}:$
Coherence emerges via BEC_{\perp}.

In situ images, no excitation:

- Phonons = phase defects $=>$ not visible -Vortices $=$ too small (charact. size $\approx 0.6 \mu \mathrm{~m} /$ imaging res. $\approx 1-2 \mu \mathrm{~m}$)

Direct observation of vortices.

$$
\underline{v_{\mathrm{z}}}=365 \mathrm{~Hz}:
$$

Coherence emerges via BEC_{\perp}.

In situ images, no excitation:

- Phonons = phase defects $=>$ not visible -Vortices $=$ too small (charact. size $\approx 0.6 \mu \mathrm{~m} /$ imaging res. $\approx 1-2 \mu \mathrm{~m}$)

After 4 ms Release

«short» 3D TOF

reveals defects as

 density holes...

Direct observation of vortices.

$\underline{v_{\mathrm{z}}}=365 \mathrm{~Hz}:$
Coherence emerges via BEC_{\perp}.

In situ images, no excitation:

- Phonons = phase defects $=>$ not visible -Vortices $=$ too small (charact. size $\approx 0.6 \mu \mathrm{~m} /$ imaging res. $\approx 1-2 \mu \mathrm{~m}$)

«short» 3D TOF

reveals defects as density holes...
After 4 ms Release

Analysis of holes properties (size, contrast) $=>$ single vortices (\neq phonons, \neq pairs) Highly degenerate gas (PSD >100) => no thermally activated vortices.

Transverse BEC as a candidate for KZM.

BEC_{\perp} similar to standard 3D BEC

BEC_{\perp} occurs at
$<n(z=0)=2.612 \lambda_{T}^{-3}$

$B E C$ in an ∞ 3D gas.

Transverse BEC as a candidate for KZM.

BEC_{\perp} similar to standard 3D BEC

ℓ_{c}
Same universality class but quasi-2D geometry cut divergences...
\leftarrow transition point

3D BEC

Transverse BEC as a candidate for KZM.

BEC_{\perp} similar to standard 3D BEC

$B E C$ in an ∞ 3D gas.

Same universality class but quasi-2D geometry cut divergences...
$\ell_{c} \leqslant a_{z} \longleftarrow$ size of the ground state of the harmonic oscillator along z

$$
a_{z}=\sqrt{\hbar / m \omega_{z}}
$$

$\ell_{c} \uparrow$| Same universality class but |
| ---: |
| quasi-2D geometry cut divergences... |
| $\ell_{c} \leqslant a_{z} \longleftarrow$ size of the ground state |
| harmonic oscillator alo |
| $a_{z}=\sqrt{\hbar / m \omega_{z}}$ |

T_{c}
\longleftarrow transition point

3D BEC
BEC_{\perp}

Transverse BEC as a candidate for KZM.

BEC_{\perp} similar to standard 3D BEC

$B E C$ in an ∞ 3D gas.

Same universality class but quasi-2D geometry cut divergences...
$\ell_{\boldsymbol{c}} \leqslant \boldsymbol{a}_{\boldsymbol{z}} \longleftarrow$ size of the ground state of the harmonic oscillator along z

$\ell_{c} \uparrow$| Same universality class but |
| ---: |
| quasi-2D geometry cut divergences... |
| $\ell_{c} \leqslant \boldsymbol{a}_{\boldsymbol{z}} \longleftarrow$ size of the ground state |
| harmonic oscillator alo |
| $a_{z}=\sqrt{\hbar / m \omega_{z}}$ |

Standard BEC description of $B E C_{\perp}$ not valid when it predicts $\ell_{c} \gtrsim \boldsymbol{a}_{\boldsymbol{z}}$

Quantitative test of KZM scaling.

Quantitative test of KZM scaling.

Quantitative test of KZM scaling.

KZ supercurrents in an annulus.

$10 \mu \mathrm{~m}$

$$
\begin{aligned}
& \text { In situ } \\
& \text { small central disk } \\
& \text { = phase reference } \\
& R_{0}<\hat{\xi} \\
& \text { Annulus } \\
& \text { ~1D for KZM } \\
& \delta R<\hat{\xi}
\end{aligned}
$$

KZ supercurrents in an annulus.

$10 \mu \mathrm{~m}$

Similar quench through BEC_{\perp}

At freezing out:
\% unique patch in the central disk
$\%$ ID chain of phase patches in the annulus

KZ supercurrents in an annulus.

$10 \mu \mathrm{~m}$

In situ

Similar quench through BEC_{\perp}

At freezing out: \% unique patch in the central disk
$\%$ ID chain of phase patches in the annulus

Merging of patches:
$=>2 \pi n$ phase winding = Supercurrents
$n_{\mathrm{w}}=\langle | n| \rangle \propto t_{\mathrm{evap}}^{-d / 2}$

KZ supercurrents in an annulus.

Similar quench through BEC_{\perp}

2D TOF

matter-wave interference

At freezing out: \% unique patch in the central disk
$\%$ ID chain of phase patches in the annulus

$$
\begin{gathered}
\begin{array}{c}
\frac{\text { Merging of patches: }}{=>2 \pi n \text { phase winding }} \\
=\text { Supercurrents }
\end{array} \\
n_{\mathrm{w}}=\langle | n| \rangle \propto t_{\mathrm{evap}}^{-d / 2}
\end{gathered}
$$

Spiral pattern: $2 n \pi$ phase winding in the annulus (+access to n)

KZ supercurrents in an annulus.

Similar quench through BEC_{\perp}

2D TOF

matter-wave interference

At freezing out: \% unique patch in the central disk
$\%$ ID chain of phase patches in the annulus

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
\text { Merging of patches: } \\
=>2 \pi n \text { phase winding } \\
=\text { Supercurrents }
\end{array} \\
n_{\mathrm{w}}=\langle | n| \rangle \propto t_{\mathrm{evap}}^{-d / 2}
\end{array}
\end{gathered}
$$

Experiments	d
Holes	$0.35(8)$
Spirals	$\mathbf{0 . 3 8 (1 2)}$

Theory, Model F : $d=0.33$

Spiral pattern : $2 n \pi$ phase winding in the annulus (+access to n)

Summary

Summary

Summary

Summary

Summary

Outlook.

+ Toward characterizing correlations and fluctuations:
- Characterization of G_{1} : exponential vs. algebraic decay.
- Higher order correlation functions, e.g. G_{2} (density fluctuations).

+ Toward strongly interacting 2D gas in uniform geometry:
- Increase of v_{z} : the accordion setup
- Regime where coherence established at BKT transition.
- New scaling expected from KZ mechanism.

+ Toward other geometries, e.g. transport measurement:
- Two uniform reservoirs linked by a small channel.
= Study of superfluidity via transport measurement along the channel

The Team:

Jean Dalibard Jérôme Beugnon Sylvain Nascimbène Kenneth J. Günter ChristofWeitenberg

Tom Bienaimé Tarik Yefsah
Rémi Desbuquois
Laura Corman
David Perconte Benno Rem Julian Leonard Katharina Kleinlein Jean-Loup Ville

The Group: BEC: $\mathrm{Na}, \mathrm{Yb}, \mathrm{Dy}$ Gaz de Fermi: Li, K-Li

+ The theory

The Lab

 specially, the directors:Paul Indelicato
Antoine Heidmann

+ its tutelles

L'X (teaching)

Linda Vary-Guevel

COLLE GE
DE FRANCE
UPMC
Inel PARISUNIVERSITAS

The Family:

My parents
Pierrot \& Lucile
Tonton Jean-Marc \& Co.
Les Revels
Les Chomaz, Borel, Lopez

The Friends:

The atomic physicists
The Master «LKB»
The «Climbers» \& co.
The «Caennais»
The unclassified

To all the people present today

The Jury:
Gabriele Ferrari
Bruno Laburthe-Tolra
Patrizia Vignolo
Chris Westbrook JD \& JB
special thanks to
Carmen Toderasc for help in organizing

Temperature Measurement (I)

$\left.\begin{array}{ll}\text { ToF measurement for very } & N \\ \text { weakly gas configurations: } & \Delta v\end{array}\right\} \underset{\text { Bose law ideal gas }}{\text { All quantum, 3D }}\left\{\begin{array}{l}Z=e^{\beta \mu} \\ T\end{array}\right.$

Temperature Measurement (II)

Renormalize all T and U by $\exp \left(2 d_{\max } / w\right), d_{\max }=$ maximal distance to trap center: $w=$ waist of the 2D trap beam (Hermite-Gauss and box trap) 350 $\exp \left(-2 d_{\max } / w\right)=$ reduction of the heights of both traps compare to the center.

	U_{0} / k_{B}	T_{0}	η
$v_{\mathrm{z}}=365 \mathrm{~Hz}$	$969(75) \mathrm{nK}$	$275(8) \mathrm{nK}$	$3.49(25)$
$v_{\mathrm{z}}=1460 \mathrm{~Hz}$	$712[115] \mathrm{nK}_{38}$	$203(18) \mathrm{nK}$	$3.50[25]$

Characterizing the fringe contrast

$$
\Gamma=b+a\left(1-\left(N_{\mathrm{c}} / N\right)^{0.6}\right) \Theta\left(N>N_{c}\right)
$$

© 1-Body corr. on complex fringe contrast:

$$
\gamma(d)=\left|\left\langle\tilde{\rho}\left[k_{p}(y), y\right] \tilde{\rho}^{*}\left[k_{p}(y+d), y+d\right]\right\rangle\right|
$$

$$
\infty 1 \mathrm{D} \text { gases: } \gamma(d)=\left|G_{1}(d)\right|^{2}
$$

\% Look for extended coherence:

$$
\begin{gathered}
\Gamma=\langle\gamma(d)\rangle 2 \mu \mathrm{~m}<d<5 \mu \mathrm{~m} \\
{\left[\sup \left(\lambda_{T}\right)<2 \mu \mathrm{~m}\right]}
\end{gathered}
$$

Kibble Zurek in an annulus

Stochastic origin:

random number of windings between -2 and 2 no bias on winding direction $\langle n>=0.001$ (12)

Dynamic origin:

n_{w} not compatible with thermal predictions

Kibble Zurek in an annulus

Stochastic origin:

random number of windings between -2 and 2 no bias on winding direction $\langle n\rangle=0.001$ (12)

Dynamic origin:

n_{w} not compatible with thermal predictions

Reminder:
KZM for 3D BEC

	d
MF	0.25
F Model	0.33

no evidence for a breakdown of KZM for 3D BEC (but no counter-evidence either...) 40

Direct Observation of vortices (II)

similar properties at a given τ

+ high contrast

3 ms
4.5 ms

constant contrast and increasing size with τ

Direct Observation of vortices (II)

Direct Observation of vortices (II)

similar properties at a given τ + high contrast

Hole Nature:
= single vortices
\neq phonons
\neq pairs of vortices
constant contrast and increasing size with τ

Dynamical orgin:

\& Equilibrium expectation at final PSD $(>100)=$ vanishingly small mean vortex number N_{v}. Experimentally $N_{\mathrm{v}} \approx 0.6$
$\%$ BKT theory at final PSD $=$ vortices must be tightly paired.
\because Dissipative dynamic (variation of N_{v}) with a varying hold time \neq equilibrium.

Active Research

Steady state 2D Physics/ BKT Physics:

\downarrow Cheng Chin, Chicago, USA.
\downarrow Zoran Hadzibabic, Cambridge, UK.
\uparrow Yong-il Shin, Seoul, Korea.

- Bill Phillips, NIST, Maryland, USA.
\downarrow E.A. Cornell, JILA, Colorado, USA.
\downarrow Thomas Bourdel, Palaiseau, France.

Kibble Zurek mechanism with cold atoms

- B. P. Anderson, Tuscon, Arizona, USA.
\downarrow D. Stamper Kurn, Berkeley, California, USA.
- B. L. DeMarco, Urbana-Ch., Illinois, USA.
\downarrow Gabriele Ferrari, Trento, Italy.
\uparrow Immanuel Bloch, Munich, Germany.
\uparrow Zoran Hadzibabic, Cambridge, UK.
\downarrow...

Symmetry Breaking in 2D

Peierls |935

Crystalline order in 2D?

How do the fluctuations of the distance between two atoms vary with the distance itself?

$$
\begin{aligned}
& \left\langle\left(\overrightarrow{u_{a}}-\overrightarrow{u_{b}}\right)^{2}\right\rangle \propto \log \left(d_{a b}\right) \\
& \text { Crystalline order destroyed by long } \\
& \text { wavelength phonons }(T \neq 0)
\end{aligned}
$$

Mermin-Wagner-Hohenberg theorem (1966-67)
No breaking of continuous symmetry in dimensions < 3 (+ short range interactions)
No BEC in an infinite, uniform 2D gas

$$
g_{1}(r)=\left\langle\psi^{\dagger}(r) \psi(0)\right\rangle ; \lim _{r \rightarrow \infty} g_{1}(r)=0
$$

The superfluid transition in 2D

Not all phase transitions are excluded in 2D, only those due to symmetry breaking! universal jump of superfluid density

$g_{1}\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)=\left\langle\psi^{\dagger}(\vec{r}) \psi\left(\vec{r}^{\prime}\right)\right\rangle$

Bound vortexantivortex pairs

Coherence + microscopic nature of the transition : studied with cold atoms.

Previous studies with atomic gases and trapped ions:

- Kinks in ion chains: PTB (Mehlstäubler), Simon Fraser U. (Haljan), Mainz U. (Schmidt-Kaler), U. Freiburg (Schaetz)
- Quenched ferromagnetic spinor Bose-Einstein condensates: U. Berkeley (Stamper-Kurn)
- Formation of BEC in harmonic traps: U. Arizona (Anderson) \& U.

Queensland (Davis)

- Solitons in elongated BECs: U. Trento (Ferrari)
- Superfluid to Mott insulator: Munich (Bloch-Schneider)
- Formation of a 3D BEC in a box-like trap: U. Cambridge (Hadzibabic)

$$
\Delta=N_{1} / N
$$

Kibble Zurek mechanism for a 3D Bose gas

The static picture
Above the critical temperature, coherent patches of size d
For large $T: d \sim \lambda$ (thermal wavelength)
Approaching $T_{c}: d$ diverges as $1 /\left(T-T_{c}\right)^{\nu}$
Below T_{c}, full coherence: $d=$ size of the box

Kibble Zurek mechanism for a 3D Bose gas

The static picture

Above the critical temperature, coherent patches of size d

$$
\begin{aligned}
& \text { For large } T: d \sim \lambda \text { (thermal wavelength) } \\
& \text { Approaching } T_{c}: d \text { diverges as } 1 /\left(T-T_{c}\right)^{\nu}
\end{aligned}
$$

Below T_{c}, full coherence: $d=$ size of the box

Dynamical aspects

For a finite cooling rate, this picture fails: coherence cannot be established fast enough
$\rightarrow \dot{T}$ fixes the maximal size of phase-coherent patches: topological defects (vortex lines)
may appear at the border of the patches and survive to the subsequent
\rightarrow thermalization
KZ theory relates the number of topological defects N_{t} to the cooling rate:
One can also look for other signatures than topological defects: Hadzibabic's talk

$3^{\text {rd }}$ dim.: Transverse condensation.

2D+ configuration

$3^{\text {rd }}$ dim.: Transverse condensation.

$3^{\text {rd }}$ dim.: Transverse condensation.

3rd dim.:Transverse condensation.

$>$ When $\mathcal{D}_{\text {tot }}$ large enough, atoms accumulate in $j=0: \mathcal{D}_{0} \sim \mathcal{D}_{\text {tot }}$ even if $k_{B} T \gg \hbar \omega_{z}$.

Quench cooling of a thick 2D gi
 $$
\frac{k_{\mathrm{B}} T}{\hbar \omega_{z}}=10
$$

We cross two successive transitions:
T_{1} : transverse BEC which occurs when the 3D phase-space density reaches 2.6
Atoms accumulate in the ground state $j=0$ of the z motion, coherence $\sim a_{\text {ho }}$ length
T_{2} : superfluid BKT // full BEC corresponding to quasi-full coherence over the sample

Tentative scenario:

- Formation of independent coherent phase domains during transition T_{1}
- Going up to the superfluid regime allows us to visualize the vortices

