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Macroscopic quantum phenomena.
Superfluidity Superconductivity
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In 2D: special meaning. Important for understanding new material :

Graphene High-Tc superconductors
Complex oxide 

heterostructures

LaAlO3/SrTiO3

Semiconductors 
heterostructures   



Quantum coherence.
Infinite uniform gas of non/weakly interacting Bosons at temperature T :

Classical world

describe by trajectories
No coherence
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Bose statistic in 3D.3D ∞
ideal gas, λT > d

Bose–Einstein condensation (at "T > C d). 
C = cst ≈ 1.38
 for 3D ∞ id.
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State of matter stemming from Bose stat.  

Saturation of the population in k ≠ 0 at "T = C d.
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✦ Motivation: specificity of 2D and 3D-to-2D crossover.

✦ Motivation: from harmonic to uniform traps.

✦ Experimental setup: creating 2D uniform gases.

✦ Emergence of an extended phase coherence in 2D 
uniform gases at thermal equilibrium.

✦ Dynamics of the establishment of coherence along 
forced evaporative cooling in uniform fluids.

Outline.
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Effect of  bidimensionality.    .2D ∞
ideal gas, λT > d

no BEC in an infinite 2D gas at T≠ 0 
(Peierls - 1935, Mermin-Wagner-Hohenberg - 1966-67) 

G1(r) �!
r!1

0
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Corrections for experimental 2D systems.
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Finite size effect

Fast increase of `c with D
(when ` dominates, i.e. D & 1).

L
At D � DBEC, `c & L

) recover BEC :

G1(r) > 0 8r 2 gas.

) DBEC ⇠ 7–10 (for typical L and T )

G1(L) , condensed density
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3rd dim. in 2D experiments.

Along the 3rd direction z : 
tight (harmonic) trap 2D densityD ⌘ �2
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How to realize 2D systems in cold atoms experiments...
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3rd dim.: Transverse condensation.
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f(E-µ)

Bose population 
of the states

E
0
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Saturation of the population of the 
quantum states in Bose statistics.
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3rd dim.: Transverse condensation.

D(D)(µ) =

✓
�T
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f(E � µ)D(E) dE

Density of the 
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µ

11

E
0

Bose population 
of the states
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Saturation of the population of the 
quantum states in Bose statistics.
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✦ Motivation: specificity of 2D and 3D-to-2D crossover.

✦ Motivation: from harmonic to uniform traps.

✦ Experimental setup: creating 2D uniform gases.

✦ Emergence of an extended phase coherence in 2D 
uniform gases at thermal equilibrium.

✦ Dynamics of the establishment of coherence along 
forced evaporative cooling in uniform fluids.

Outline.
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Harmonic confinement and local probing

V (r)

0

Trapping region :
extrema of magnetic field / light intensity.

=> typical dependance V(r) ~ r2
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✤ Useful  for exploring local properties : smooth variation => locally uniform.

Local Density Approximation

Trapped density profile Homogeneous equivalent
⇢(r)

r

µ0, T

0

⇢ = ⇢(r), µ
loc

= µ
0

� V (r), T

⇢ = ⇢(0), µ
loc

= µ
0

, T



Example of the Equation of State.
EoS = relation between dimensionless parameters.

=> dictates all thermodynamics properties. can deduce EoS for any variables. 
In weakly interacting 2D gases: only 2 variables (approx. scale invariance).
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check scale invariance

T.  Yefsah & al. , PRL (2011), R. Desbuquois & al. , PRL (2014)
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Example of the superfluid behavior.
Superfluidity <=> frictionless response to a moving obstacle.
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Limitations of harmonic confinement.
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✤ Limiting for non-local measurements: 
‣ long-range properties
‣ coherence and correlation functions

✤ In particular at vicinity of a transition point: 
‣ transitions become local phenomena 
‣ divergences are smoothen

✤ Entangles effects of interactions / Bose stat / dimensionality:

‣ strong influence of interactions (even if weak) / overall state of the gas.
‣ transverse condensation disappears : not a transition anymore

Limitations of harmonic confinement.
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✦ Motivation: specificity of 2D and 3D-to-2D crossover.

✦ Motivation: from harmonic to uniform traps.

✦ Experimental setup: creating 2D uniform gases.

✦ Emergence of an extended phase coherence in 2D 
uniform gases at thermal equilibrium.

✦ Dynamics of the establishment of coherence along 
forced evaporative cooling in uniform fluids.

Outline.
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✦ Motivation: specificity of 2D and 3D-to-2D crossover.

✦ Motivation: from harmonic to uniform traps.

✦ Experimental setup: creating 2D uniform gases.

✦ Emergence of an extended phase coherence in 2D 
uniform gases at thermal equilibrium.

✦ Dynamics of the establishment of coherence along 
forced evaporative cooling in uniform fluids.
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superfluid behavior
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✦ Toward characterizing correlations and fluctuations:
➡ Characterization of G1 : exponential vs. algebraic decay.

➡ Higher order correlation functions, e.g. G2 (density fluctuations).

✦ Toward strongly interacting 2D gas in uniform geometry:
➡ Increase of $z : the accordion setup

➡ Regime where coherence established at BKT transition.
➡ New scaling expected from KZ mechanism.

✦ Toward other geometries,  e.g. transport measurement:
➡ Two uniform reservoirs linked by a small channel. 
➡ Study of superfluidity via transport measurement along the channel

Outlook.

(a) (b) Re(g1
(exp))

Esslinger group
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Thanks.
The Team:

Jean Dalibard
Jérôme Beugnon

Sylvain Nascimbène
Kenneth J. Günter

Christof Weitenberg 
Tom Bienaimé
Tarik Yefsah

Rémi Desbuquois
Laura Corman
David Perconte

Benno Rem
Julian Leonard

Katharina Kleinlein
Jean-Loup Ville

The Group:
BEC:

 Na, Yb, Dy
Gaz de Fermi: 

Li, K-Li
+ The theory

...

The technicians
& administratives:

Mécanique, Electronique,
Matériaux, Magasin,

Secrétériats, Informatique, 
Salle Blanche ...

The «maintenance» team 
from ENS (Didier Courtiade)

special thanks to 
Carmen Toderasc

 for help in organizing

The Lab
specially, the directors:

Paul Indelicato
Antoine Heidmann
+ its tutelles

The Friends:
The atomic physicists
The Master «LKB»

The «Climbers» & co.
The «Caennais»
The unclassified

...

The Family:
My parents

Pierrot & Lucile
Tonton Jean-Marc & Co.

Les Revels
Les Chomaz, Borel, Lopez

The Jury:
Gabriele Ferrari

Bruno Laburthe-Tolra
Patrizia Vignolo

Chris Westbrook
JD & JB

To all the 
people 
present 
today

L’X (teaching)
Linda Vary-Guevel
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T (U
box

) = T
0

⇣
1� e�U

box

/U
0

⌘

Temperature Measurement (I)
N
�v

� ⇢
Z = e�µ

T
All quantum, 3D 

Bose law ideal gas
ToF measurement for very 
weakly gas configurations :
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!z  = 1460 Hz!z  = 365 Hz

U0 / kB T0 "

!z  = 365 Hz

!z  = 1460 Hz

969 (75) nK 275 (8) nK 3.49 (25)

712 [115] nK 203 (18) nK 3.50[25]

Temperature Measurement (II)
Renormalize all T and U  by exp(2dmax/w), dmax  = maximal distance to trap center: 

w = waist of the 2D trap beam (Hermite-Gauss and box trap)
exp(-2dmax/w) = reduction of the heights of both traps compare to the center.  
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Characterizing the fringe contrast  

1D Fourier transform

k
x

(µm�1)

⇢̃ (k
x

, y)

y
(µ
m
)

u.a.⇢(x, y)

x (
µm)

y
(µ
m
)

µm�2

✤Look for extended coherence: 

� = h�(d)i 2µm<d< 5µm

[sup (�T ) < 2µm]

✤1-Body corr. on complex fringe contrast: 
�(d) = | h ⇢̃[kp(y), y ] ⇢̃⇤[kp(y + d), y + d ] i |

1 1D gases: �(d) = |G1(d)|2

kd[y]
� = b+ a

⇣
1� (Nc/N)0.6

⌘
⇥(N > Nc)

(c)

N

Γ
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Kibble Zurek in an annulus

nwind
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Stochastic origin:
random number of windings between -2 and 2
no bias on winding direction <n> = 0.001(12) 

Dynamic origin:
nw not compatible with thermal predictions
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Kibble Zurek in an annulus
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of KZM for 3D BEC (but no 
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d
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Reminder:
KZM for 
3D BEC 

nw / t�d/2
evap

d = 0.38 (12)
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Direct Observation of vortices (1I)

similar properties at a given τ
+ high contrast 

constant contrast and 
increasing size with τ
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Hole Nature:

= single vortices

≠ phonons 

≠ pairs of vortices 

Direct Observation of vortices (1I)

similar properties at a given τ
+ high contrast 

constant contrast and 
increasing size with τ
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Hole Nature:

= single vortices

≠ phonons 

≠ pairs of vortices 

Direct Observation of vortices (1I)

similar properties at a given τ
+ high contrast 

constant contrast and 
increasing size with τ

Dynamical orgin:
✤ Equilibrium expectation at final PSD (>100) = vanishingly small mean vortex 
number Nv. Experimentally Nv ≈ 0.6

✤ BKT theory at final PSD = vortices must be tightly paired.
✤ Dissipative dynamic (variation of Nv ) with a varying hold time ≠ equilibrium.
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tevap (ms)
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tevap (s)
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Quench-
induced

vortices in a
uniform Bose

gas

Tom
Bienaimé

Introduction

Uniform traps

Quenches in
the annulus

Quenches in
the square

Outlook

Location of the spontaneous vortices

Look at the vortex distance to edge distribution

Data compatible with random spacial distribution of vortices

29/32 Tom Bienaimé Quench-induced vortices in a uniform Bose gas
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Active Research
Steady state 2D Physics/

BKT Physics: 
Kibble Zurek mechanism 

with cold atoms 

✦ Cheng Chin, Chicago, USA.

✦ Zoran Hadzibabic, Cambridge, UK. 

✦ Yong-il Shin, Seoul, Korea.

✦ Bill Phillips, NIST, Maryland, USA.

✦ E. A. Cornell, JILA, Colorado, USA.

✦ Thomas Bourdel, Palaiseau, France.

✦ ...

✦ B. P.  Anderson,  Tuscon,  Arizona, USA.

✦ D. Stamper Kurn, Berkeley, California, USA.

✦ B. L. DeMarco, Urbana-Ch., Illinois, USA.

✦ Gabriele Ferrari, Trento, Italy.

✦ Immanuel Bloch, Munich, Germany.

✦ Zoran Hadzibabic, Cambridge, UK. 

✦ ...
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Symmetry Breaking in 2D
Peierls 1935 Crystalline order in 2D?

How do the fluctuations of the distance between 
two atoms vary with the distance itself?

Crystalline order destroyed by long 
wavelength phonons (T≠0)

⇥ua

⇥ub

dab h( ~ua � ~ub)
2i / log(dab)

Mermin-Wagner-Hohenberg theorem (1966-67) 

No BEC in an infinite, uniform 2D gas 

No breaking of continuous symmetry in dimensions < 3 ( + short range interactions)

g1 (r) = h † (r) (0)i ; lim
r!1

g1 (r) = 0
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The superfluid transition in 2D

Coherence + microscopic nature of the transition : studied with cold atoms. 

Bound vortex-
antivortex pairs

Proliferation of 
free vortices

Unbinding of
 

vortex pairs

T0 Superfluid state normal stateTc

universal jump of superfluid density

nsf = 4/�2 nsf = 0
algebraic decay of g1 exponential decay of g1

quasi long range order

Not all phase transitions are excluded in 2D, 
only those due to symmetry breaking! 
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• Kinks in ion chains: PTB (Mehlstäubler), Simon Fraser U. (Haljan),
                                     Mainz U. (Schmidt-Kaler), U. Freiburg (Schaetz)
• Quenched ferromagnetic spinor Bose–Einstein condensates: U. 
Berkeley (Stamper-Kurn)
• Formation of BEC in harmonic traps: U. Arizona (Anderson) & U. 
Queensland (Davis)
• Solitons in elongated BECs: U. Trento (Ferrari)
• Superfluid to Mott insulator: Munich (Bloch-Schneider)
• Formation of a 3D BEC in a box-like trap: U. Cambridge (Hadzibabic)

Previous studies with atomic gases and trapped ions:
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Kibble Zurek mechanism for a 3D Bose gas

Above the critical temperature, coherent patches of size d  

For large T : d ⇠ � (thermal wavelength)

Approaching Tc : d diverges as 1/(T � Tc)
⌫

Below Tc, full coherence: d = size of the box 

The static picture
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Kibble Zurek mechanism for a 3D Bose gas

Above the critical temperature, coherent patches of size d  

For large T : d ⇠ � (thermal wavelength)

Approaching Tc : d diverges as 1/(T � Tc)
⌫

Below Tc, full coherence: d = size of the box 

The static picture

For a finite cooling rate, this picture fails: coherence cannot be established fast 
enough  

Ṫ      fixes the maximal size of phase-coherent patches: topological defects 
(vortex lines)
may appear at the border of the patches and survive to the subsequent 
thermalization
KZ theory relates the number of topological defects Nt to the cooling rate:  
One can also look for other signatures than topological defects: Hadzibabic’s 
talk 

Nt / (Ṫ /T )↵

Dynamical aspects
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           becomes dominant
=> enhanced coherence in 

plane!
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Recover relevance 
for 2D physics!
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Quench cooling of a thick 2D gas 

We cross two successive transitions:
T1: transverse BEC which occurs when the 3D phase-space density reaches 2.6

T2: superfluid BKT // full BEC corresponding to quasi-full coherence over the 
sample 

•  Formation of independent coherent phase domains during transition T1

Tentative scenario: 

Thermal “True” superfluidity,
algebraic decay of g1

“Local“ coherence
and presuperfluidity

D(3D) = 2.6

Atoms accumulate in the ground state j = 0 of the z motion, coherence 
length

• Going up to the superfluid regime allows us to visualize the vortices 

D(2D)
j=0 ⇠ 10D(2D)

j=0 ⇠ 4

⇠ a
ho

kBT

~!z
= 10
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