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9 Turbulent Von Kármán flow between counter-rotating disks 151
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Geometrical configuration and flow parameters . . . . . . . . . . . . . . . . . . . . . . 153

9.2.1 Geometrical configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2.2 Measurement technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.2.3 Flow parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.3 Numerical approach and blade modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.4 Smooth disk case: viscous stirring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.4.1 Flow structure in the exact counter-rotating regime . . . . . . . . . . . . . . . 155
9.4.2 Flow structure for −1 ≤ s ≤ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.4.3 Turbulence field in the exact counter-rotating regime . . . . . . . . . . . . . . . 160

9.5 Bladed disk case: inertial stirring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.5.1 Flow structure in the exact counter-rotating regime . . . . . . . . . . . . . . . 161
9.5.2 Flow structure for −1 ≤ s ≤ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.5.3 Turbulence field in the exact counter-rotating regime . . . . . . . . . . . . . . . 163

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

IV Taylor-Couette flows between concentric cylinders 165

10 Influence of a radial temperature gradient on the flow stability 167
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.2 Global flow parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.3 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.4 Base flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.5 Instability regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10.5.1 Stability diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.5.2 Primary bifurcations at low Taylor numbers . . . . . . . . . . . . . . . . . . . . 173
10.5.3 Secondary instabilities at higher Taylor numbers . . . . . . . . . . . . . . . . . 176

10.6 Moment coefficient and heat transfer distributions . . . . . . . . . . . . . . . . . . . . 179
10.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11 Turbulent flows with endwall effects 183
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.2 Details of the geometrical configuration and flow parameters . . . . . . . . . . . . . . . 185
11.3 Numerical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.4.1 Flow structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
11.4.2 Mean hydrodynamic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
11.4.3 Turbulent statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11.4.3.1 Cross-correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . 193
11.4.3.2 Transport of turbulent angular momentum . . . . . . . . . . . . . . . 194

11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

12 Turbulent Taylor-Couette-Poiseuille flows 197
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
12.2 Geometrical configuration and flow global parameters . . . . . . . . . . . . . . . . . . 200
12.3 Preliminary results using the RSM model . . . . . . . . . . . . . . . . . . . . . . . . . 201

12.3.1 Benchmark of RANS models in the configuration of Escudier and Gouldson [89] 201
12.3.2 Are second order RANS models suitable for modeling heat transfer in electrical

motors? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.3.2.1 Mean and turbulent flow field in the Configuration “Liebherr 1” . . . 205
12.3.2.2 Budgets for the turbulence kinetic energy transport equation . . . . . 208
12.3.2.3 Distributions of the Nusselt numbers . . . . . . . . . . . . . . . . . . 209

12.4 Towards the LES of Taylor-Couette-Poiseuille in real operating flow conditions . . . . 215
12.4.1 Configuration of Nouri and Whitelaw [226] . . . . . . . . . . . . . . . . . . . . 216

12.4.1.1 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

11



12 CONTENTS

12.4.1.2 Flow structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
12.4.1.3 Mean and turbulent flow fields . . . . . . . . . . . . . . . . . . . . . . 217

12.4.2 Configuration of the “Entrefer” project . . . . . . . . . . . . . . . . . . . . . . 219
12.4.2.1 Experimental facility developed at IRPHE . . . . . . . . . . . . . . . 219
12.4.2.2 Numerical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
12.4.2.3 Hydrodynamic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
12.4.2.4 Heat transfer coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 228

12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

V Research outlooks 237

13 Impinging jet flow onto a rotating disk 239
13.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
13.2 Experimental facility developed at the TEMPO laboratory . . . . . . . . . . . . . . . 241
13.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

13.3.1 Hydrodynamic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
13.3.2 Thermal field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

13.4 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

14 Other projects for the next five years 255
14.1 SIMEOX project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
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Part I

Introduction



Part I: Introduction

Summary: This first part is divided into two chapters. In Chapter 1, a general introduction
presents the main motivations of studying rotating confined flows between disks or cylinders as well as
the structure of this habilitation thesis. Chapter 2 is a detailed curriculum vitae listing my research
activities in terms of publications, conferences, seminars . . . as well as my teaching activites in the
Thermal Engineering and Energy department and in the Master 2 on process engineering at Aix-
Marseille University.



Chapter 1

Introduction

The subject of rotating flows is important for many engineers, mathematicians and physicists. The
Earth’s weather system is controlled by the combined effects of solar radiation and rotation. The jet
stream and ocean circulations occur as a direct result of the Earth’s rotation ; hurricanes and tornadoes
are extreme phenomena that owe their existence to rotation-induced swirl.

There are many examples of flow near rotating machines, the most important of which is the gas
turbine. Rotating-disc systems are used to model (theroretically, experimentally and computationally)
the flow and heat transfer associated with the internal-air systems of gas turbines, where discs rotate
close to a rotating or a stationary surface. The engine designer uses compressed air to cool the
turbine discs: too little air could result in catastrophic failure; too much is wasteful and increases the
fuel consumption and CO2 production of the engine. Small improvements to the cooling system can
result in significant savings, but the optimum design requires an understanding of the principles of
rotating flows and the development and solution of the appropriate solutions. These two paragraphs
are the foreword written by the Professor J.M. Owen from the University of Bath in the monograph
by Childs [51] on rotating flow. These words sum up perfectly (and without any english mistakes)
the motivations and applications of the present works in geophysics (Fig.1.1a), astrophysics (Fig.1.1b)
and in the turbomachinery industry (Fig.1.1c) as well as the different approaches (theory, experiment
and CFD) used.

(a) (b) (c)

Figure 1.1: (a) Massive supercell in North Texas (Photo by Mike Olbinski, 2013); (b) Artist’s concep-
tion of the Milky Way galaxy highlighting large scale spiral patterns (courtesy of Harvard-Smithsonian
Center for Astrophysics); (c) Example of steam turbine developed by Skoda.

Confined cavity flows between two coaxial disks or cylinders, are both rich in the flow phenomena
they create and the range of industrial flows with which they are linked. Figure 1.2 presents only
few of the possible geometrical configurations for interdisk flows. The same sketch could be drawn
for flows induced by the differential rotation of concentric cylinders and may be found in [51]. Some
impression of the variety of flow structures arising in various flow arrangements may be gained from
the books by Owen & Rogers [233], Childs [51] or the review papers of Launder et al. [170] for
enclosed rotor-stator disk flows, of Harmand et al. [123] for rotor-stator flows with an impinging jet
and of Fénot et al. [94] for Taylor-Couette flows between concentric cylinders. All these flows have
in common to be quite complex even if most of the time, the geometry considered remains quite
simple. There may have indeed a strong competition between rotation effects and the flow due either
to an impinging jet or a superimposed throughflow. Wall effects are also quite important in such
confined flows as very thin boundary layers, which are sites of various instabilities, develop along the
walls. With the presence of enclosed cylinders, curvature effects have also to be taken into account.
Thus, global control parameters (such as the rotational Reynolds number, the flowrate coefficient, the
aspect ratio of the cavity, the curvature parameter, the Rayleigh and Prandtl numbers . . . ), while
necessary, are not sufficient to describe the transition scenarii but also to simply describe the base
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16 CHAPTER 1. INTRODUCTION

Figure 1.2: Possible disk flow configurations after Childs [51].

flows. In various cases, different flow regimes may indeed coexist for a given set of global parameters.
Figure 1.3 presents an example of flow visualization of the Bödewadt problem (rotating fluid at a large
distance from a stationary disk) by Savas [294] highlighting the transition from a stable flow regime
around the rotation axis to a turbulent regime when moving towards the periphery of the cavity. Local
parameters such as the local Reynolds and Rossby numbers (including the spatial location) have then
to be introduced to fully understand the transition mechanisms. This multiplicity of flow parameters
and the various applications of rotating flows make that it is still an alive topic of research.

This habilitation thesis lies along the lines of my PhD thesis [249] defended in 2005 at IRPHE
under the co-supervisions of Dr M.P. Chauve and R. Schiestel (CNRS). I studied both experimentally
and numerically the effect of an axial throughflow on the stability and turbulent regime of isothermal
rotor-stator disk flows. Velocity and pressure measurements were compared to the predictions of the
Reynolds Stress Model (RSM) developed by Elena and Schiestel [85] mainly for flows with unmerged
boundary layers. New analytical models have been also developed to predict the core-swirl ratio of
the fluid as a function of the interdisk spacing, rotation rate and flowrate in various configurations
including smooth or rough disks and both in the laminar and turbulent regimes. It was financially
supported by the SNECMA Moteurs group, who uses them now in their codes to evaluate the axial

16



17

Figure 1.3: Flow visualization of the Bödewadt layer over a stationary finite disk after Savas [294].

thrusts applied on the rotors in the Hydrogen Liquid Turbopump of the Vulcain engine (Ariane V).
The influence of an axial throughflow on the stability of interdisk rotor-stator flows has been also
investigated from flow visualizations. Among other things, a crossflow instability, generic of rotating
flows, appeared under the form of positive spirals located at the periphery of the cavity along the stator
boundary layer. After one year as assistant lecturer at IRPHE, I got a position of assistant professor
attached to the M2P2 laboratory. By force of circumstance and a little bit despite me, I switch to
numerics with only few opportunities to perform other experiments. Rotating flows of Newtonian
fluids remain my favored research topic apprehended using various levels of modeling (direct or large
eddy simulations and RANS modeling) implemented into three in-house numerical codes:

• two DNS (Direct Numerical Simulation) codes, which solve the incompressible three-dimensional
Navier-Stokes equations written in the velocity-pressure formulation, together with the continu-
ity equation and appropriate boundary conditions. For both codes, Fourier series are used in
the azimuthal periodic direction. The time scheme is semi-implicit and second-order accurate.
It is a combination of an explicit treatment of the convective terms (Adams-Bashforth scheme)
and of an implicit treatment for the diffusive terms (second-order backward Euler scheme). The
solution method is based on an efficient projection scheme to solve the coupling between veloc-
ity and pressure ensuring a divergence-free velocity field at each time step. For each Fourier
mode, a full diagonalization technique is used and yields simple matrix products for the solution
of successive two-dimensional uncoupled Helmholtz and Poisson equations at each time step.
The main difference lies in the spatial discretizations of the continuity and Navier-Stokes in
the radial and axial inhomogeneous directions by Chebyshev polynomials for the code 1 and by
fourth-order compact schemes for the code 2. Both codes were formerly available in their mon-
odomain version, whereas the multidomain approach has been recently achieved and validated.
Code 1 is extended to LES (Large Eddy Simulation) via a SVV (Spectral Vanishing Viscosity)
technique [316], whereas in code 2, subgrid scale models like the dynamic Smagorinsky or the
WALE models have been introduced.

• the RSM of Elena and Schiestel [85] available in a 2D unsteady finite-volume code. The model
is available within a low Reynolds number approach and has been sensitized to rotation effects
through the introduction of four additive terms taking into account some implicit effects of
rotation on turbulence (spectral jamming, inverse cascade . . . ).

For non-isothermal flows, temperature is considered as a passive scalar, when heat transfers are
mainly piloted by forced convection. When temperature gradients remain small, the Boussinesq
approximation is used to solve the flow/heat transfer coupling.

Various flow configurations will be considered in the following chapters and for each problem, the
transition scenarii as well as the turbulence itself will be investigated experimentally and numerically
by varying most of the flow parameters to get a better insight into the dynamics of these flows and the
heat and mass transfer processes. This habilitation thesis is an attempt to summarize what I think
to be the main contributions of my research activities, which are at 90% dedicated to the study of
rotating flows. After a detailed curriculum vitae and a brief description of the numerical tools, which
will be used, the following subjects will be covered including:
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18 CHAPTER 1. INTRODUCTION

• Similarity solutions of the flow of a non-Newtonian fluid over an infinite stationary rough disk;

• Stability of the flow over a finite rotating disk with a free surface;

• Stability and transition to turbulence of enclosed rotor-stator disk flows;

• Fully turbulent regime of enclosed rotor-stator disk flows under isothermal and non-isothermal
conditions;

• Turbulent Von Kármán swirling flows between two rotating disks equipped or not with straight
blades;

• Stability of Taylor-Couette flows with a radial thermal gradient;

• Transitional and turbulent flows in a Taylor-Couette apparatus with atypical boundary condi-
tions;

• Turbulent Taylor-Couette-Poiseuille flows with or without heat transfer;

• Impinging jet flow over a rotating disk with heat transfer.

These flow configurations are gathered in two main parts: one dedicated to disk flows (Chapters
5 to 9) and the other on flows due to the differential rotation of cylinders (Chapters 10 to 12). This
second part was inspired by a collaboration initiated in 2008 with Liebherr Aerospace Toulouse on the
cooling of electric motors. The final part will address some overviews, first in similar configurations
and especially the turbulent impinging jet flow onto a rotating disk with or without heat transfer
(Chapter 13) and then in orthogonal domains related to the simulation of air/mucus/cilia interactions
for patients suffering from respiratory diseases and to the combined experimental and numerical
approaches of three refrigeration technologies (Chapter 14).
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ence du SIMEOX, Master 1, École de l’Air Salon, April-June 2013.

4. Emmanuel Tanti-Hardouin, Simulation numérique directe de la transition vers la turbulence
dans un système de Taylor-Couette-Poiseuille avec transferts thermiques et entrefer rainuré,
Master 1, June-September 2012. Financially supported by Liebherr Aerospace.

5. Clément Moreau, Bilan carbone du projet Entrefer moteur et étude des conditions d’entrée sur
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2. Poncet S., Pellé J., Nguyen T., Harmand S., Da Soghe R., Bianchini C., Viazzo S., Turbulent
impinging jet flow into an unshrouded rotor-stator system: hydrodynamics and heat transfer,
Int. J. Heat Fluid Flow, 44, p.719-734, 2013

3. Poncet S., Da Soghe R., Bianchini C., Viazzo S., Aubert A., Turbulent Couette-Taylor flows
with endwall effects: a numerical benchmark, Int. J. Heat Fluid Flow, 44, p.229-238, 2013

4. Sahoo B., Poncet S., Blasius flow and heat transfer of a fourth grade fluid with slip, to appear
in Appl. Math. Mech., 34 (12), p.1465-1480, 2013
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de masse dans des écoulements turbulents de Taylor-Couette avec flux axial, Congrès Français
de Mécanique, Bordeaux, 24-28 August 2013

2. Aubert A., Thouveny T., Le Bars M., Le Gal P., Poncet S., Viazzo S., Transferts de chaleur et
de masse dans des écoulements turbulents de Taylor-Couette avec flux axial, Congrès Français
de Thermique - SFT 2013 Thermique & Contexte incertain, Gérardmer, 28-31 May 2013

3. Peres N., Poncet S., Serre E., Traitement numérique de la singularité à l’axe pour les écoulements
3D en cavités tournantes, Actes du XXème Congrès Français de Mécanique, Ed. D. Chapelle, M.
Dahan, P. Picart, Presses universitaires de Franche-Comté, ISBN 978-2-84867-416-2, Besançon,
28 August - 2 September 2011

4. Fontaine G., Poncet S., Serre E., Approche multidomaine pseudospectrale pour la résolution
des éequations de Navier-Stokes en géometrie cylindrique, Actes du XXème Congrès Français
de Mécanique, Ed. D. Chapelle, M. Dahan, P. Picart, Presses universitaires de Franche-Comté,
ISBN 978-2-84867-416-2, Besançon, 28 August - 2 September 2011

5. Guillerm R., Da Soghe R., Poncet S., Viazzo S., Benchmark numérique des écoulements de
Couette-Taylor turbulents, Actes du XXème Congrès Français de Mécanique, Ed. D. Chapelle,
M. Dahan, P. Picart, Presses universitaires de Franche-Comté, ISBN 978-2-84867-416-2, Be-
sançon, 28 August - 2 September 2011
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6. Sahoo B., Poncet S., Effets des conditions de glissement sur l’écoulement de Bödewadt d’un flu-
ide de type Reiner-Rivlin, Actes du XXème Congrès Français de Mécanique, Ed. D. Chapelle, M.
Dahan, P. Picart, Presses universitaires de Franche-Comté, ISBN 978-2-84867-416-2, Besançon,
28 August - 2 September 2011

7. Poncet S., Chauve M.P., Instabilité d’une couche de cisaillement au-dessus d’un disque en
rotation, Actes du 18eme Congrès Français de Mécanique, Grenoble, 27-31 August 2007

8. Séverac E., Poncet S., Serre E., Chauve M.-P., Large Eddy Simulation and experimentation in
an enclosed rotor-stator flow, Actes du 18eme Congrès Français de Mécanique, Grenoble, 27-31
August 2007

9. Serre E., Poncet S., Schiestel R. Launder B., Simulation d’écoulements transitionnels et turbu-
lents en cavités rotor-stator avec transferts de chaleur, Congrès Français de Thermique SFT07:
Thermique et Société, Ile des Embiez (France), 29 May - 1 June 2007

10. Poncet S., Chauve M.-P., Schiestel R., Écoulements tournants: de Stewartson à Batchelor,
Actes du 17eme Congrès Français de Mécanique, Troyes, 29 August - 2 September 2005

Oral communications without proceedings in international or national con-
ferences (COM)

1. Sahoo B., Abbasbandy S., Poncet S., Pop I., Labropulu F., Modeling and computation of
Bodewadt flow and heat transfer of a viscous fluid near a rough disk, ISMMACS, Kanpur
(India), 31 December 2013 - 2 January 2014

2. Ait-Moussa N., Poncet S., Ghezal A., Lounis M., Numerical study of the transition in counter-
rotating Taylor-Couette flow for a wide gap, 18th International Couette-Taylor Workshop ICTW18,
Twente, 24-26 June 2013

3. Poncet S., Viazzo S., Thermo-hydrodynamic instabilities in a high aspect ratio Couette-Taylor
system using Direct Numerical Simulation, European Fluid Mechanics Conference 9, Roma, 9-13
September 2012

4. Kahouadji L., Martin-Witkowski L., Peres N., Poncet S., Le Quéré P., Serre E., Primary
bifurcation of a thin-layer flow driven by a rotating disk in a fixed open cylindrical cavity:
flat free surface, 4th International Symposium Bifurcations and instabilities in fluid dynamics,
Barcelona, 18-21 July 2011

5. Peres N., Poncet S., Serre E., Transition mechanisms to turbulence in a cylindrical rotor-
stator cavity by pseudo-spectral simulations of Navier-Stokes equations, Chaos, Complexity and
Transport, Marseilles, 23-27 May 2011

6. Viazzo S., Randriamampianina A., Poncet S., Serre E., High-order LES benchmarking in
confined rotor-stator flows, Large Eddy Simulation in Turbulence, Aeroacoustic and Combustion
(LESTAC 09), Marseilles, 24-28 August 2009

7. Poncet S., Serre E., Chauve M.P., Le Gal P., Circular and spiral waves in a Batchelor flow
between a rotating and a stationary disk, EUROMECH Fluid Mechanics Conference 7 (EFMC7),
Manchester, 14-18 September 2008. Marie Curie funding

8. Serre E., Séverac E., Poncet S., Chauve M.-P., Large Eddy Simulation and Measurements of
Turbulent Rotor-Stator Flows, 60th Annual Meeting of the Divison of Fluid Dynamics, APS,
Salt Lake City, 18-20 November 2007

9. Poncet S. et al., Sur les Écoulements de Disque Tournant, Colloque Interdisciplinaire des Écoles
Centrale, Marseilles, 31 Mai - 1 June 2007

10. Poncet S., Chauve M.-P., Crossflow instability in rotor-stator flows with throughflow, Euromech
Fluid Mechanics Conference 6, Stockholm, 26-30 June 2006
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11. Poncet S., Schiestel R., Numerical modeling of heat transfer and fluid flow in rotor-stator
cavities with throughflow, Euromech Fluid Mechanics Conference 6, Stockholm, 26-30 June
2006

12. Poncet S., Chauve M.-P., Schiestel R., Écoulements tournants: de Batchelor à Stewartson,
Observer, Analyser, Modéliser, dans les milieux fluides complexes, EGIM (Marseilles), 2005

Book chapters (OS)

1. Fontaine G., Poncet S., Serre E., Multidomain extension of a divergence-free pseudo-spectral
algorithm for the direct numerical simulation of wall-confined rotating flows, Lecture Notes in
computational Science and Engineering, M. Azaiez, H. El Fekih, J.S. Hesthaven (Eds), Springer,
95, p.261-271, 2014

2. Poncet S., Da Soghe R., Facchini B., RANS modeling of flows in rotating cavity systems,
Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD
2010, J.C.F. Pereira, A. Sequeira & J.M.C. Pereira (Eds), ISBN: 978-989-96778-1-4, Lisbon,
Portugal, June 14-17, 2010

3. Peres N., Poncet S., Serre E., Numerical treatment of cylindrical coordinate singularity, Pro-
ceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD
2010, J.C.F. Pereira, A. Sequeira & J.M.C. Pereira (Eds), ISBN: 978-989-96778-1-4, Lisbon,
Portugal, June 14-17, 2010

4. Poncet S., Le Gal, P., Serre E., Simulation numérique directe des écoulements rotor-stator en
cavité annulaire, Actes du XIXe Congrès Français de Mécanique, Marseilles, Ed. C. Rey, P.
Bontoux, A. Chrysochoos, ISSN 2103− 6225 paper 594 - S9, 24-28 August 2009

5. Abdel Nour F., Debuchy R., Bois G., Poncet S., A combined Analytical Experimental and
Numerical Investigation of Turbulent Air Flow Behaviour in a Rotor-Stator Cavity, Actes du
XIXe Congrès Français de Mécanique, Marseilles, Ed. C. Rey, P. Bontoux, A. Chrysochoos,
ISSN 2103− 6225 paper 222 - S11, 24-28 August 2009

6. Séverac E., Poncet S., Serre E., Chauve M.-P., A coupled numerical / experimental investiga-
tion of a turbulent rotor-stator flow, Conference Proceedings of the 8th International Symposium
on Experimental and Computational Aerothermodynamics of Internal Flows, Ed. X.Ottavy &
I. Trébinjac, Volume 2, p.703-712, paper ISAIF8-006, Lyon, 2-5 July 2007

7. Poncet S., Schiestel R., Monchaux R., Turbulent Von Kármán flow between two counter-
rotating disks, Conference Proceedings of the 8th International Symposium on Experimental and
Computational Aerothermodynamics of Internal Flows, Ed. X.Ottavy & I. Trébinjac, Volume 1,
p.141-150, paper ISAIF8-0013, Lyon, 2-5 July 2007

8. Poncet S., Schiestel R., Monchaux R., Turbulent Von Kármán Swirling flows, Advances in
Turbulence XI, Proceedings of the 11th EUROMECH European Turbulence Conference, Editors:
J.M.L.M. Palma and A.Silva Lopes, Springer Proceedings in Physics 117, Springer, Heidelberg,
ISBN 978-3-540-72603-6, Porto, Portugal, June 25-28, 2007

9. Poncet S., Chauve M.-P., Le Gal P., Study of the entrainment coefficient of the fluid in a
rotor-stator cavity, Proc. of the 6th European Conference on Turbomachinery - Fluid Dynamics
and Thermodynamics Vol.1, Ed. G. Bois, C. Sierverding, M. Manna, T. Arts, ENSAM (Lille),
p.246-256, 2005

10. Poncet S., Schiestel R., Chauve M.-P., Turbulence modelling and measurements in a rotor-
stator system with throughflow, Engineering Turbulence Modelling and Experiments 6, Ed. W.
Rodi & M. Mulas, Elsevier (New-York), p.761-770, 2005

11. Poncet S., Chauve M.-P., Le Gal P., Experimental study of rotor-stator flows with centripetal
fluxes, Mechanics of the 21st Century, Proceedings of the 21st International Congress of The-
oretical and Applied Mechanics, ISBN 1-4020-3559-4, Eds. W. Gutkowski, T.A. Kowalewski,
Springer Verlag, 2005 (ICTAM 2004, Warsaw)
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Reports of industrial contracts

1. Aubert A., Poncet S., Le Gal P., Viazzo S., Le Bars M., Projet entrefer moteur: Caractérisation
des écoulements et des transferts thermiques dans l’entrefer entre un cylindre fixe et un cylindre
tournant soumis ou non à un flux axial, Liebherr Aerospace Toulouse, Contract 30017596,
Final report, 2013

2. Seyssiecq-Guarente I., Poncet S., Étude sur la caractérisation rhéologique du mucus bronchique.
Premiers résultats sur fluides modèles, Physio-Assist, Contract 080931, Report 2, 2012

3. Poncet S., Seyssiecq-Guarente I., Étude sur la caractérisation rhéologique du mucus bronchique.
Étude bibliographique, Physio-Assist, Contract 080931, Report 1, 2012

4. Aubert A., Poncet S., Le Gal P., Le Bars M., Viazzo S., Projet entrefer moteur: Caractérisation
des écoulements et des transferts thermiques dans l’entrefer entre un cylindre fixe et un cylindre
tournant soumis ou non à un flux axial, Liebherr Aerospace Toulouse, Contract 30017596,
Report 2, 2012

5. Poncet S., Le Gal P., Viazzo S., Le Bars M., Guillerm R., Moreau C., Projet entrefer moteur:
Caractérisation des écoulements dans l’entrefer entre un cylindre fixe et un cylindre tournant
soumis ou non à un flux axial, Liebherr Aerospace Toulouse, Contract 30017596, Report 1,
2011

6. Chauve M.-P., Poncet S., Le Gal, P., Campagne de caractérisation des écoulements cen-
trifuges et centripètes entre un disque fixe lisse et un disque tournant aileté, SNECMA Moteurs,
2005.060.I, 2005

7. Poncet S., Chauve M.-P., Le Gal, P., Campagne de caractérisation des écoulements centrifuges
entre un disque lisse fixe et un disque lisse tournant, SNECMA Moteurs, 2004.093.G, 2005

8. Chauve M.-P., Poncet S., Le Gal, P., Campagne de caractérisation des écoulements centripètes
aux travers d’ajutages supérieurs, SNECMA Moteurs, 2003.021.G, 2004

Articles of popular science (OV)

1. Collegiate writing, Activities of the M2P2 laboratory, Report of the South-France Pilot Center
by M. Braza, ERCOFTAC Bulletin 97, Ed. M. Marek, p.20-24, 2013

2. Poncet S., Bontoux P., Ciraolo G., Morvan D., Serre E., Main activities of the MSNM-GP
laboratory, in France South Pilot Center by M. Braza, ERCOFTAC Bulletin 77, Ed. N. Borhani,
p.42-46, 2008

Editorial activities (DO)

• Member of the Editorial Board of the American Journal of Fluid Mechanics (SAPUB) since
2011 and then Editor-in-chief since 2012

• Member of the Editorial Board of the Progress in Computational Fluid Dynamics (Inderscience,
Impact factor: 0.48) since 2013

• Member of the Editorial Board of the The Scientific World Journal, Mechanical Engineering
(Hindawi, Impact factor: 1.73) since 2013

• Member of the Editorial Board of the Journal of Nonlinear Dynamics (Hindawi, journal funded
in 2013) since 2013

• Member of the Editorial Board of the Advances in Chemical Engineering (Edinwilsen, journal
funded in 2013) since 2013
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Dissertations

• PhD thesis, Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson,
under the supervisions of Marie-Pierre Chauve & Roland Schiestel, IRPHE / University of Aix-
Marseille I, 2005
Book format published by the “Éditions Universitaires Européennes”: Écoulements de type
rotor-stator soumis à un flux axial, ISBN 978-613-1-51686-3, 18 June 2010

• Master’s dissertation, Détection et suivi de cibles: étude du mouvement d’une bulle par l’effet
Doppler ultrasonore, under the supervision of Jean-François Pinton, Laboratoire de physique -
ENS Lyon, 2002

Seminars & Presentations

Invited Seminars

1. Deux exemples de simulation d’écoulements turbulents dans le domaine des turbomachines,
Faculté de Génie, Sherbrooke, 15 March 2011

2. Simulation et modélisation d’écoulements turbulents dans les turbomachines, Université des
Sciences et de la Technologie (USTO), Mohamed Boudiaf, Oran, 11 November 2010

3. High-order LES of confined rotor-stator flows, Institute of Thermomechanics, Academy of Sci-
ences of Czech Republic, Prague, 25 May 2010

4. High-order LES of confined rotor-stator flows, Energy Engineering Department S. Stecco, Uni-
versity of Florence, Florence, 16 April 2010

5. Approches expérimentale et numérique des écoulements de disque tournant, ENSAM-LML, Lille,
27 March 2008

6. “Café” seminar - Revue sur les écoulements de disque(s) tournant(s), Laboratoire PMMH, Paris,
4 May 2006

7. “Café” seminar - Revue sur les écoulements de disque(s) tournant(s), LMFA, Lyon, 2 May 2006

8. “Café” seminar - Revue sur les écoulements de disque(s) tournant(s), CEA/SPEC/GIT, Saclay,
4 January 2006

Presentations in International Conferences

1. Transferts de chaleur et de masse par jet impactant dans un système discoide rotor-stator, XI
Colloque Interuniversitaire Franco-Québécois sur la Thermique des Systèmes, Reims, 4 June
2013

2. Thermo-hydrodynamic instabilities in a high aspect ratio Couette-Taylor system using Direct
Numerical Simulation, European Fluid Mechanics Conference 9, Roma, 13 September 2012

3. Numerical predictions of flow field in closed and opened Taylor-Couette cavities, European Con-
ference for Aerospace Sciences (EUCASS 4), Saint-Petersburg, 7 July 2011

4. The legacy of Henri Victor Regnault in arts and sciences, IJAS Conference Series, Aix en
Provence, 7 June 2011

5. RANS modeling of flows in rotating cavity systems, ECCOMAS CFD 2010, Lisbon, 15 June
2010

6. High-order LES benchmarking in confined rotating disk flows, 3rd European Conference for
Aerospace Sciences (EUCASS), Versailles, 9 July 2009

7. Circular and spiral waves in a Batchelor flow between a rotating and a stationary disk, Seventh
Euromech Fluid Mechanics Conference, Manchester, 16 September 2008
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8. Large Eddy Simulation of Non-Isothermal Turbulent Rotor-Stator Flows, ISROMAC12, Hon-
olulu, 20 February 2008

9. Turbulent Von Kármán flow between two counter-rotating disks, 8th International Symposium
on Experimental and Computational Aerothermodynamics of Internal Flows, Lyon, 2 July 2007

10. Turbulent Von Kármán swirling flows, 11th European Turbulence Conference, Porto, 27 June
2007

11. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow,
Euromech Fluid Mechanics Conference 6, Stockholm, 27 June 2006

12. Crossflow instability in rotor-stator flows with throughflow, Euromech Fluid Mechanics Confer-
ence 6, Stockholm, 27 June 2006

13. Turbulence characteristics of the Bödewadt layer in a large shrouded rotor-stator system, Con-
ference on Turbulence and Interactions TI2006, Porquerolles, 29 May 2006

14. Turbulence modelling and measurements in a rotor-stator system with throughflow, 6th Int.
Symp. on Engng Turbulence Modelling and Measurements, Villasimius (Italy), 25 May 2005

15. Study of the entrainment coefficient of the fluid in a rotor-stator cavity, 6th European Turboma-
chinery Conference - Fluid Dynamics and Thermodynamics, Lille, 8 March 2005

Presentations in National Conferences

1. Effets des conditions de glissement sur l’écoulement de Bödewadt d’un fluide de type Reiner-
Rivlin, 20e Congrès Français de Mécanique, Besançon, 2 September 2011

2. Benchmark numérique des écoulements de Couette-Taylor turbulents, 20e Congrès Français de
Mécanique, Besançon, 30 August 2011

3. Études numériques d’écoulements confinés en rotation, Journée de la SFT - Groupe “Modes de
transfert - Convection”, Paris, 21 June 2011

4. Simulation numérique directe des écoulements rotor-stator en cavité annulaire, XIXe Congrès
Français de Mécanique, Marseilles, 26 August 2009

5. Instabilities and turbulence in rotating disk flows, Journée ERCOFTAC SIG 36 “Swirling flows”,
ENSEEIHT, Toulouse, 23 October 2007

6. Instabilité d’une couche de cisaillement au-dessus d’un disque en rotation, 18eme Congrès Français
de Mécanique, Grenoble, 29 August 2007

7. Sur les écoulements de disque tournant, Colloque Interdisciplinaire des Écoles Centrale, Mar-
seilles, 1 June 2007.

8. Simulation des Grandes Échelles d’écoulements en cavité rotor-stator fermée, GDR “Structure
de la Turbulence et Mélange” & DYCOEC, Marseilles, 21 May 2007

9. Écoulements de type rotor-stator soumis à un flux: de Batchelor à Stewartson, GDR Structure
de la Turbulence et Mélange, Nantes, 10 November 2005

10. Écoulements tournants: de Batchelor à Stewartson, 17eme Congrès Français de Mécanique,
Troyes, 1 September 2005
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Posters

1. Numerical study of the transition in counter-rotating Taylor-Couette flow for a wide gap, 18th
International Couette-Taylor Workshop ICTW18, Twente, 24-26 June 2013 (best poster award)

2. Transferts de chaleur et de masse dans des écoulements turbulents de Taylor-Couette avec flux,
Congrès Français de Thermique SFT 2013, Gerardmer, 28-31 May 2013

3. Transition mechanisms to turbulence in a cylindrical rotor-stator cavity by pseudo-spectral sim-
ulations of Navier-Stokes equations, Chaos, Complexity and Transport, Marseilles, 25 May 2011

4. Simulation numérique d’un écoulement de convection mixte en aval d’une marche, 14èmes
Journées Internationales de Thermiques (JITH2009), Djerba, 28 March 2009

5. Modélisation de la turbulence dans un système de Taylor-Couette différentiellement chauffé avec
flux axial, 14e Journées Internationales de Thermiques (JITH2009), Djerba, 28 March 2009

6. Écoulements tournants: de Batchelor à Stewartson, Observer, Analyser, Modéliser, dans les
milieux fluides complexes, EGIM, Marseilles, 31 January 2005

7. Écoulements tournants: de Batchelor à Stewartson, Journée de l’École Doctorale ED353, Mar-
seilles, 18 November 2004

8. Experimental study of rotor-stator flows with centripetal fluxes, XXI International Congress of
Theoretical and Applied Mechanics, Warsaw, 20 August 2004

Consulting experience

• Reviewer for international journals (total of 66 papers): Energy and Buildings (6 articles), Phys.
Fluids (5 articles), Int. J. Heat Fluid Flow, Int. J. Thermal Sciences, Progress in Computa-
tional Fluid Dynamics, Journal of Fluid Engineering (4 articles), Int. J. Comp. Meth., American
Journal of Fluid Dynamics (3), Experiments in Fluids, Computers and Mathematics with Ap-
plications, Int. J. Numerical Methods for Heat and Fluid Flow, Int. J. Physical Sciences, Eur.
J. Phys. Plus, J. Thermal Sci., The Scientific World Journal (2), Rheologica Acta, Langmuir, J.
Porous Media, ZAMM, Mechanics & Industry, J. Taiwan Institute of Chemical Engineers, Int.
J. Thermodynamics, Int. J. Numerical Methods in Fluids, J. Zhejiang University-SCIENCE A,
Applied Thermal Engineering, Sky J. Mech. Electrical Electronics Eng., Int. J. Fluid Mechanics
Research, Chem. Eng. Research & Design, Int. J. Mechanical Sciences, Adv. Chem. Eng., Int.
J. Eng. Technology Innovation, Int. J. Phys. Sci., J. Fluid Mech., Chem. Eng. J. (1)

• Reviewer for national or international conferences (total of 7): Congrès Français de Mécanique
2007 (1), 2009 (2), Congrès Français de Thermique SFT 2011 (2), Transactions ASME 2008 (1),
2014 (2)

• ”La Recherche” prize (2010), CIFRE fundings (2011), Executive Agency for Higher Education,
Research, Development and Innovation Funding (UEFISCDI) of Romania (2 projects in 2011, 8
in 2013), PEERS projects of AIRD (3 projects, 2011-2013), National Science Center of Poland
(1 project, 2012), ANR blanche (1 project in 2013)

Trainings

• Fortran 95, IDRIS, Orsay, December 2003

• Carbon balance, ADEME, Marseilles, 17-18 November 2010

• Lighting and energy efficiency, CM3E, Marseilles, 30 March 2011

• STAR CCM+ software, Marseilles, 31 May 2011
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Miscellaneous

• Stay at the University of de Manchester in the “School of Mechanical, Aerospace and Civil
Engineering” Department, with the Prof. B.E. Launder, 3D unsteady structures in turbulent
rotor-stator flows, November 2007

• Chairman of the “Technology and Science I” session, IJAS Conference, Aix-en-Provence, 7 June
2011
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Figure 2.1: Diploma of my PhD thesis from the University of Aix-Marseille I, defended the 3rd of
October 2005.
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Figure 2.2: Report of my PhD defence (IRPHE, 2005).
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Figure 2.3: PhD prize of the AUM/AFM received after the French Congress of Mechanics held in
Grenoble (2007).
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Teaching activities

The following section describes my teaching activities from an accounting point of view.

Details of the teaching activities

I am assistant professor since 2006 with most of my teaching activites in the Thermal Engineering and
Energy Department (GTE) of the Aix-Marseille University Institute of Technology (IUT). I teach also
two courses at the Master 2 level in process engineering at the Aix-Marseille University: one dealing
with two-phase flows and one being an introduction course to turbulence. It represents an average of
315.2 HETD (french equivalent of one hour of exercises) per year since 2006.

The distribution in terms of courses, exercises, practical works, internship supervision and admin-
istrative responsabilities is shown in Figure 2.4 for each year since 2006.

Figure 2.4: Histogram showing the distribution in terms of lectures, exercises and practical works and
the total amount of teaching hours converted in HETD (french equivalent of one hour of exercises)
since 2006.

These courses are provided mainly at the IUT GTE (L1-L2) as shown on Figure 2.5 with only
5% provided at the Master 2 level for the period 2006-2014. There are two main reasons for that: I
started to teach in Master 2 only in 2009 and these two courses are optional and so do not open each
year. This distribution changed to 13% of courses in Master 2 and 87% at the IUT GTE for the year
2011-12 as example.

One can also decompose the teaching activities according to the national section (section CNU) to
which they can be attached (Fig.2.5b): 56% for the section 62 (thermodynamics, thermal engineering,
air treatment), 43% for the section 60 (fluid mechanics, resistance of materials and solid mechanics,
acoustics) and 1% for the section 61 (automatism).

The strong spots of my teaching activities can be summed up as follows:

• Thermodynamics: course for 1-year students at the IUT GTE (lectures=24h, exercises=28h,
practical works=24h). In this course, the basic concepts in thermodynamics are tackled: different
forms of energy, concepts of thermodynamic pressure and temperature, perfect gas law . . . The
first principle is written for closed, open and isolated (calorimetry) systems. Students tackle
the concept of thermodynamic cycle thanks to the four elementary transformations (isothermal,
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(a) (b)

Figure 2.5: Distributions of my teaching activities by (a) level or by (b) section CNU.

isobaric, isovolumetric, adiabatic). The necessity of a second principle of evolution is demon-
strated. On that occasion, I wrote lecture course notes (95 pages), a collection of 127 exercices
and developed a practical work based on the software CyclePad used to study thermodynamic
cycles (Carnot and Beau de Rochas cycles).

• Fluid mechanics: course for 2-year students at the IUT GTE (lectures=12h, exercises=10h,
practical works=12h). This course is divided into two parts: an introduction to rheology and
a more detailed part dedicated to compressible fluid flows. In the first part, all types of non-
Newtonian fluids are discussed together with the main rheological laws and a description of the
main rheometers and experimental techniques (47 slides and 14 exercises). In the second part,
various concepts are tackled: speed of sound, the limit of the incompressibility assumption,
1D isentropic flows of compressible perfect fluid (Barré de Saint-Venant equations, Hugoniot
theorems), straight and oblique shock waves, flows in nozzles and in wind tunnels (25 pages
of lecture notes and 15 exercises). I developed three practical works: one on the rheological
characterization of everyday life fluids using a rheometer of Couette type, one on rotating flows
where students highlight the different characteristic times, the Taylor-Proudman theorem . . . and
one on the hydraulic jump (circular on in a channel with a free surface) for which a strong analogy
with compressible fluid flows may be done.

• Two-phase flows: courses at the Master 2 level in process engineering (lectures=12h, exer-
cises=4h). This course is written for students having a strong background in process engineering
and in chemistry but a weak background in fluid mechanics. It is then very phenomenological.
Through 103 slides, one presents first some industrial applications including multiphase flows,
some reminders on the basic fluid mechanics concepts, all configurations for two-phase flows in
vertical and horizontal pipes with or without heat transfer (mainly through flow maps) and then
the main experimental techniques dedicated specifically to the study of multiphase flows. In the
second part of this course (not available in an electronic format), one introduces the Favre aver-
age decomposition and the concept of phase weighted average. It enables to write the continuity,
fluid motion and energy equations for the mixture. Two models, the homogeneous model and
the separated phase model, are finally discussed in details. A collection of 16 exercises is used
to apply the concepts tackled in the course.

• Turbulent flows: courses at the Master 2 level in process engineering (lectures=12h, exer-
cises=4h). As for the course on “two-phase flows”, this course is very phenomenological. After
some concrete examples of turbulent flows and a brief historical overview, the different mech-
anisms for the transition to turbulence are discussed. One presents then the main properties
of turbulence. One introduces the different statistical tools used to analyse turbulent flows be-
fore establishing the one-point statistical equations (Reynolds average decomposition). Different
flow configurations are then classified according to the nature of turbulence: homogeneous turbu-
lence, open and confined flows. This course ends by a brief description of the main experimental
and numerical (DNS, LES, RANS models) approaches used to investigate turbulent flows. The
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lecture is based on a presentation composed of 183 slides and is accompanied by a collection of
17 exercises.

All the duplicated notes of the lectures, exercises and practical works I developed as well as all the
exams are available online (in French) on my website on the “Teaching” page:

http://l3mgp.l3m.univ-mrs.fr/site/SitePersoPoncet/teaching.html

I also wrote lecture course notes about automatism and regulation. I provided this course only
one year for 3-year students in the Bachelor’s degree (vocational Bachelor’s degree on management
and maintenance of energy systems, L3 pro GMIE). It is not available in an electronic format.

Between 2002 and 2005, I provided some courses during my PhD thesis for a total amount of 242
HETD distributed as follows:

• lectures, exercises and practical works on the finite difference method, 1-year engineer, ISITV
(Institut des Sciences de l’Ingénieur de Toulon et du Var, marine engineering option), 2002-05
(90 h). I had the opportunity to develop some practical works on that topic using Matlab;

• exercises in fluid mechanics, 1-year engineer, ISITV (marine engineering), 2002-03 (25 h);

• practical works in solid mechanics and resistance of materials, 1-year IUT GTE, Marseilles,
2004-05 (29 h);

• practical works in fluid mechanics, 1-year IUT GTE, Marseilles, 2004-05 (29 h);

• practical works in heat transfer, 2-year engineer, Ecole Polytechnique Universitaire de Marseille,
2004-05 (36 h);

• practical works in solid mechanics and resistance of materials, 1-year engineer, Ecole Polytech-
nique Universitaire de Marseille, 2003-04 (36 h);

• exercises in algorithmic in C language, 2-year engineer, Ecole Supérieure de Mécanique de Mar-
seille (ESM2), 2003-04 (10.5 h);

• practical works in fluid mechanics, 1-year engineer, Ecole Généraliste d’Ingénieurs de Marseille
(EGIM), 2003-04 (45 h).

I have been then assistant lecturer (demi-ATER in french) between 2005 and 2006 at IUT GTE
where I have been in charge of exercises and practical works in thermodynamics, fluid mechanics, solid
mechanics and mechanics of materials for the first and second year students for a total amount of 97
HETD.

Administrative responsabilities

• In charge of the Batchelor degree (second year) at the IUT GTE since 2010. It consists in
organizing and managing the second year at the IUT GTE in in-house training: to make up of
the groups, to organize two jurys, to promote the continuation through higher education . . .

• In charge of the Batchelor degree (indenture) at the IUT GTE since 2010. It consists in or-
ganizing and managing (teachers, students, companies) the second year at the IUT GTE in
professionalization contract. This vocational training does not open every year.

• In charge of the public relations at the IUT GTE between 2006 and 2009. The main assignments
are to promote the department through student forums and to organize the open doors day and
the “Rencontres du Futur Bachelier”.

Other activities

• Writing of lecture course notes on Energy and of specific sheets about all forms of energy for
the École Nationale des Techniciens de l’Équipement (ENTE), Aix-en-Provence, 2012.

• Recruitment mission DGBS-ADIUT-CNOUS in Gabon, May-June 2009.
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Part II: Numerical modeling

Summary: The results presented in this thesis have been obtained most of the time numerically by
Direct Numerical Simulation (DNS) for transitional regimes or by Reynolds-Averaged Navier-Stokes
modeling (RANS) or Large Eddy Simulation (LES) for turbulent regimes. The numerical methods
and the turbulence modeling are presented here briefly to ease the sections dedicated to the flow and
heat transfer analysis. The two DNS solvers as well as their extension to LES are described in Chapter
3. Some numerical developments including the treatment of the axis singularity and the extension to
a multidomain version made during the PhD theses of N. Peres and G. Fontaine respectively are also
briefly presented. Chapter 4 sums up the main ingredients of the innovative Reynolds Stress Model
of Elena and Schiestel [85] widely used in the following chapters.



Chapter 3

3D High-order numerical methods

For many years now, the M2P2 laboratory develops an highly accurate in-house code dedicated to
the direct numerical simulation (DNS) or large eddy simulation (LES) of confined rotating flows
[269, 313, 316]. It is based on a pseudospectral method using Chebyshev polynomials in the non
homogeneous directions and Fourier series in the tangential direction. It has been widely validated in
various rotating flow arrangements including rotor-stator disk flows [260, 261, 266, 309, 310, 311, 312,
314, 315], Taylor-Couette flows [63, 65, 338] or rotating cavities with throughflow [344]. This code in
its DNS then LES version as well as the recent developments by Peres [241] and Fontaine [97] during
their PhD theses, that I co-supervized with E. Serre, are described briefly below. A second code will
also be used in the following chapters. It is an extension of the former version of Abide and Viazzo
[3] developed for turbulent flows in a Cartesian frame. Both codes are based on the same methods.
They share the same time discretization but not the same spatial ones. The spatial discretizations in
the non homogeneous directions are achieved in the second code by compact finite-difference schemes.

3.1 Geometrical modeling

Let’s first introduce the parameters of a typical rotor-stator cavity (see in Fig.3.1) between two disks
of outer radius b: one rotating at a constant rotation rate Ω, while the other is at rest. They are
confined between two cylinders: the inner one of radius a being attached to the rotor and the outer
one to the stator. The interdisk spacing is denoted h, so that one can define the following geometrical
parameters:

• the curvature parameter: Rm = (b + a)/(b − a), which is usually replaced by the radius ratio
η = a/b when dealing with Taylor-Couette flows between cylinders;

• the aspect ratio of the cavity defined either as G = (b−a)/h (denoted also L) or as Γ = h/(b−a).

Figure 3.1: Schematic representation of an annular enclosed rotor-stator device with relevant notation.

In an enclosed cavity, the rotational Reynolds number Re = Ωb2/ν based on the maximum velocity
Ωb reached within the cavity may be also chosen as a flow control parameter.
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42 CHAPTER 3. 3D HIGH-ORDER NUMERICAL METHODS

3.2 Conservation equations

The flow is governed by the three-dimensional incompressible Navier-Stokes equations written in a
fixed frame of reference for the velocity-pressure formulation together with the continuity equation
and appropriate boundary conditions. The components of the velocity vector V are denoted u, v and
w in the cylindrical coordinate system (r, θ, z) and P is the static pressure. In the domain D of border
∂D, the equations can be written as:

ρ

(
∂V

∂t
+ (V.∇)V

)
= −∇P + µ∆V + F in D (3.1)

∇.V = 0 in D (3.2)

where t is time and F represents a given body force.
Appropriate boundary conditions of Dirichlet type for the velocity vector can be written in a

general way:

V = W on ∂D (3.3)

∆ is the vectorial Laplacian operator written for cylindrical coordinates:

(∆V )r = ∇2u− u

r2
− 2

r2
∂v

∂θ
(3.4)

(∆V )θ = ∇2v − v

r2
+

2

r2
∂u

∂θ
(3.5)

(∆V )z = ∇2w (3.6)

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ
+

∂2

∂z2
(3.7)

The scales for the dimensionless variables of space, time and velocity are h, Ω−1 and ΩR respec-
tively. (r, z) denote the dimensionless space variables (r, z) mapped into the square [−1, 1]× [−1, 1] as
r = (r/G−Rm) and z = z. It is a requisite for the use of Chebyshev polynomials. Thus, the domain
D can be defined as D = {(r, θ, z) ∈ [−1, 1]× [0, 2π[× [−1, 1]}. Dimensionless equations for continuity
and each velocity components write:

1

G

∂u

∂r
+

u

Gr
+

1

Gr

∂v

∂θ
+

∂w

∂z
= 0 in D (3.8)

Re

G2

∂u

∂t
+

Re

G
(V.∇)u = − Re

2G2

∂p

∂r
+

[
∇2u− u

G2r2
− 2

G2r2
∂v

∂θ

]
in D (3.9)

Re

G2

∂v

∂t
+

Re

G
(V.∇)v = −Re

2G

∂p

∂θ
+

[
∇2v − v

G2r2
+

2

G2r2
∂u

∂θ

]
in D (3.10)

Re

G2

∂w

∂t
+

Re

G
(V.∇)w = −Re

2G

∂p

∂z
+∇2w in D (3.11)

The advection terms are given by:

(V.∇)u =
1

G
u
∂u

∂r
+

1

G

v

r

∂u

∂θ
+ w

∂u

∂z
− v2

Gr
(3.12)

(V.∇)v =
1

G
v
∂v

∂r
+

1

G

v

r

∂v

∂θ
+ w

∂v

∂z
+

vu

Gr
(3.13)

(V.∇)w =
1

G
u
∂w

∂r
+

1

G

v

r

∂w

∂θ
+ w

∂w

∂z
(3.14)

and the Laplacian operator ∇2 can be rewritten as:

∇2 =
1

G2

∂2

∂r2
+

1

G2r2
∂

∂r
+

1

G2r2
∂2

∂θ2
+

∂2

∂z2
(3.15)
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43 3.3. PROJECTION SCHEME FOR TIME-DISCRETIZATION

When thermal effects are considered, the following dimensionless energy equation is also solved:

Re

G2

∂T

∂t
+

Re

G
(V.∇)T =

1

Pr
∆T in D (3.16)

where the temperature normalization has been made with respect to 2 (T ∗ − T ∗
0 ) /∆T with ∆T =

T ∗
max − T ∗

min, T ∗
0 being a reference temperature. Pr = ν/α is the Prandtl number, with ν the

kinematic viscosity and α the thermal diffusivity of the fluid. Buoyancy effect has been modeled using
the Boussinesq approximation, assuming linear variations of the density ρ with temperature in the
gravity term only such as:

ρ = ρ0 [1− β0 (T
∗ − T ∗

0 )] (3.17)

with β0 the thermal expansion coefficient and ρ0 the density at T0.
This coupling leads to a new force term F = (RaGT ) / (2PrRe) in the axial component of the

velocity (Eq. 3.11), controlled by the Rayleigh number defined as Ra = h3∆Tβ0g/(να). Centrifugal
buoyancy effects are here neglected. This assumption is generally valid for low values of the Froude
number Fr = Ω2b/g as in Chapter 10, where the maximum value of the Froude number is around
0.03.

Very recently, Lopez et al. [188] developed a new Boussinesq-type approximation accounting for
centrifugal buoyancy effects by keeping the density variations in the advection term of the Navier-
Stokes equations. This approximation appears to be relevant in various situations including flows
with differential rotation, high Rayleigh numbers, strong vortices . . . Taking into account centrifugal
buoyancy effects appears necessary, for example, to extend the results presented in Chapter 8 in the
case of non-isothermal turbulent rotor-stator flows. The approximation proposed by Lopez et al. [188]
could be easily implemented in the present solvers in a close future.

3.3 Projection scheme for time-discretization

The velocity-pressure coupling is solved using the 3D projection algorithm proposed by Raspo et
al. [269]. It is based on a semi-implicit second-order scheme that combines an implicit backward
Euler scheme for the diffusive terms and an explicit Adams-Bashforth extrapolation for the convective
non-linear terms as expressed below:


3Vn+1−4Vn+Vn−1

2∂t + 2(Vn.∇)Vn − (Vn−1.∇)Vn−1 = −∇Pn+1 + 1
Re∆Vn+1 + Fn+1 in D

∇.Vn+1 = 0 in D
Vn+1 = Wn+1 on ∂D

(3.18)

Just as in the classical projection scheme, initially proposed by Goda [111] for finite-element ap-
proximations, a velocity predictor is calculated from Equation (3.18). But here the projection method
introduces a preliminary step computing a preliminary pressure P̄n+1 from the Poisson equation, de-
rived from the Equation (3.18) applying the incompressibility condition and associated to Neumann
boundary conditions in which the diffusion term ∆Vn+1 is approximated using an Adams-Bashforth
scheme as mentioned above. The elliptic problem to solve is therefore:

 ∇2P̄n+1 = ∇
[
−2(Vn.∇)Vn + (Vn−1.∇)Vn−1 + Fn+1

]
in D

∂P̄n+1

∂n =
→
n .
[
−3Wn+1+4Vn−Vn−1

2δt − 2 (V.∇V)
n
+ (V.∇V)

n−1
+ 1

Re

(
2∆Vn −∆Vn−1

)
+ Fn+1

]
on ∂D

(3.19)

However this Poisson problem leads to an unstable algorithm. In order to satisfy the compatibility
condition, the diffusion term has been decomposed into a solenoidal and an rotational part as proposed
by Karniadakis et al. [147]. Since the velocity fields Vn and Vn−1 are divergence free, the diffusion
term is given by:

2∆Vn −∆Vn−1 = −2∇×∇×Vn +∇×∇×Vn−1 (3.20)
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the preliminary pressure P̄n+1 is then used to compute the predicted velocity field V∗. This velocity
field is obtained implicitly from Equation (3.18) in which the pressure gradient at the current time
step tn+1 is now replaced by the gradient of the preliminary pressure P̄n+1 as:

{
3V∗−4Vn+Vn−1

2∂t + 2(Vn.∇)Vn − (Vn−1.∇)Vn−1 = −∇P̄n+1 + 1
Re∆V∗ + Fn+1 in D

V∗ = Wn+1 on ∂D
(3.21)

The velocity field V∗ is then corrected taking into account the pressure gradient, ∇
(
Pn+1

)
at the

current time step tn+1. This step, defined as a projection step, makes it possible to obtain a velocity
field that respects the incompressibility constraint and is described as:


3
2δt

(
Vn+1 −V∗) = −∇

(
Pn+1 − P̄n+1

)
in D

∇.
(
Vn+1

)
= 0 in D

Vn+1.
→
n= Wn+1.

→
n on ∂D

(3.22)

This step is performed by computing a pseudo-pressure ϕ = 2δt
(
Pn+1 − P̄n+1

)
/3 from an elliptic

problem applying the incompressibility constraint with the respective boundary conditions defined by:

{
∇2ϕ = ∇.V∗ in D
∂ϕ
∂n = 0 on ∂D

(3.23)

Finally, the velocity and pressure fields are obtained from:

{
Vn+1 = V∗ −∇ϕ in D

Pn+1 = P̄n+1 + 3
2δtϕ in D

(3.24)

Projection schemes induce a spurious slip velocity on the boundary since the tangential boundary
conditions on the velocity are not prescribed in the projection step. This slip velocity is expressed
in 3D as Vs = n × ((Vn+1 − Wn+1) × n) where n is the unit normal vector to ∂D. By allowing
the correct temporal evolution of the normal pressure gradient at the boundaries during the time
integration, numerical results have shown that such calculation significantly improved the accuracy of
the scheme by reducing the error of the slip velocity by about one order at the walls to O(δt3) [269].

3.4 Space approximations

3.4.1 Pseudospectral method

All variables Ψ = (u, v, w, p, ϕ) are spatially discretized using the collocation-Chebyshev method for
both non-homogeneous directions (r, z) and the Fourier-Galerkin approximation in the azimuthal
direction θ. In three-dimensions, a numerical solution is thus sought in the form of the following
truncated series:

ΨNKM (r, θ, z) =

K/2−1∑
k=−K/2

N∑
n=0

M∑
m=0

Ψ̂nkmTn (r)Tm (z) eikθ (3.25)

where Tn and Tm are Chebyshev polynomials of highest degrees N and M respectively. (r, z) denote
the dimensionless space variables (r, z) mapped into the square [−1, 1]× [−1, 1]. N and M correspond
to the number of Gauss-Lobatto collocation points. K is the cut-off frequency of the Fourier series
that corresponds to K/2 modes. The explicit non-linear terms are calculated using the pseudospectral
techniques described in [244] where the derivatives in each space direction are calculated in the spectral
space and the products are performed in the physical one. The derivatives of implicit diffusion terms
are all performed in the physical space using matrix products.
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The coupling between the two first components of the vectorial cylindrical Laplacian (Eqs. (3.4, 3.5))
usually requires to split the operator into an implicit and explicit part that leads to time-step limita-
tions. Therefore, the following variable transformation [230] is introduced:

u+ = u+ iv, u− = u− iv
(
i2 = −1

)
(3.26)

that makes the Laplacian diagonal:

(∆V )+ =

(
∇2 − 1

r2
+

2i

r2
∂

∂θ

)
u+ (3.27)

(∆V )− =

(
∇2 − 1

r2
− 2i

r2
∂

∂θ

)
u− (3.28)

(∆V )z = ∇2w (3.29)

Such a transformation requires the reorganization in the complex plane of the Fourier coefficient
matrix Ψ̂ as follows:

Ψ̂ =


(
Ψ̂j,K2 +k

)
, k = 1,(

Ψ̂j,K2 +k + iΨ̂j,k−1

)
, k = 2, ...,K/2

(3.30)

for 1 ≤ j ≤ N × M . It must be noted that the Fourier mode K/2 has been set to zero [244] as
previously mentioned. According to Equation (3.26), the spectral matrices û+ and û− are written as:

û+ = û+ iv̂, û− = û− iv̂ , (3.31)

that is to say,

û+ =


(
ûj,K2 +k + iv̂j,K2 +k

)
, k = 1,(

ûj,K2 +k − v̂j,k−1

)
+ i
(
ûj,k−1 + v̂j,K2 +k

)
, k = 2, ...,K/2

(3.32)

û− =


(
ûj,K2 +k + iv̂j,K2 +k

)
, k = 1,(

ûj,K2 +k + v̂j,k−1

)
+ i
(
ûj,k−1 − v̂j,K2 +k

)
, k = 2, ...,K/2

(3.33)

Finally, the coefficients ûj,K2 +k, ûj,k−1, v̂j,K2 +k and v̂j,k−1 can be written for 1 ≤ k ≤ K/2:

 ûj,K2 +k = Re
(

û++û−
2

)
, ûj,k−1 = Im

(
û++û−

2

)
v̂j,K2 +k = Im

(
û+−û−

2

)
, v̂j,k−1 = Re

(
û−−û+

2

) (3.34)

The time-discretization and the Fourier-Galerkin approximation described above lead to a set of
elliptic equations for each Fourier wave to be solved in a 2D domain depending on the two non-periodic
directions (r, z). Successive 2D Helmholtz and Poisson equations can be written as:

∆(Ψ)
rz Ψ̂k − σ(Ψ)Ψ̂k = Ŝk (3.35)

for 1 ≤ k ≤ K/2. ∆
(Ψ)
rz and σ(Ψ) are given for the different variables by:
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∆(Ψ)
rz = ∇2 − 1

r2
for Ψ = u+,u−, (3.36)

∆(Ψ)
rz = ∇2 for Ψ = (w, P, ϕ) , (3.37)

σ(Ψ) (k, r) =
(k + 1)

2

r2
+

3Re

2δt
for Ψ = u+, (3.38)

σ(Ψ) (k, r) =
(k − 1)

2

r2
+

3Re

2δt
for Ψ = u−, (3.39)

σ(Ψ) (k, r) =
k2

r2
+

3Re

2δt
for Ψ = w, (3.40)

σ(Ψ) (k, r) =
k2

r2
for Ψ = (P, ϕ) (3.41)

The spectral derivatives of Ψ̂k in the radial and axial directions are expressed in terms of Ψ̂k (ri, zj)

at the other collocation points with appropriate coefficients dr
(p)
ij and dz

(p)
ji [244] as follows:

∂pΨ̂k

∂rp
(ri, zj) =

N∑
i=0

(
1

G

)p

dr
(p)
ij Ψ̂k (ri, zj) , (3.42)

∂pΨ̂k

∂zp
(ri, zj) =

M∑
j=0

dz
(p)
ji Ψ̂k (ri, zj) with p = 1, 2, (3.43)

that can be expressed in matrix notation as:

∂pΨ̂k

∂rp
(ri, zj) = D(p)

r Ψ (3.44)

∂pΨ̂k

∂zp
(ri, zj) = Ψ

(
D(p)

z

)T
(3.45)

If one denotes S the matrix
[
Ŝk (ri, zj)

]
, Equation (3.35) can be written in the matrix form:

AΨ+ΨBT = S (3.46)

with A = D
(2)
r − 1

rD
(1)
r − σ(Ψ)I and B = D

(2)
z . It is noted that only B does not depend on the

harmonic k. The Dirichlet boundary conditions are taken into account in S while the Neumann
boundary conditions appear in A or B according to the direction. These 2D algebraic linear systems
are solved directly using a fully diagonalization technique for each Fourier mode. This technique used
by Raspo et al. [269] is summarized below.

If A is diagonalizable, there exists a matrix Hr such that:


A = HrΛrH

−1
r

HrΛrH
−1
r Ψ+ΨB = S

ΛrΨ̃ + Ψ̃B = S̃

(3.47)

with Ψ̃ = H−1
r Ψ and S̃ = H−1

r S. The matrix Hr is formed by the eigenvectors and Λr the diagonal
matrix of the corresponding eigenvalues λr,i. Similarly, if the matrix B is diagonalizable, there exists
a matrix Hz such that:


B = HzΛzH

−1
z

ΛrΨ̃ + Ψ̃HzΛzH
−1
z = S̃

ΛrΨ+ΨΛz = S

(3.48)
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with Ψ = Ψ̃Hz and S = S̃Hz. The matrix Hz is formed by the eigenvectors and Λz the diagonal
matrix of the corresponding eigenvalues λz,j . The system (3.48) is equivalent to:

Ψij =
Sij

λr,i + λz,j
, for i = 1, ...,N− 1 and j = 1, ...,M− 1 (3.49)

where Ψij and Sij are the elements of matrices Ψ and S respectively. Finally knowing Ψ, one gets Ψ
from:

{
Ψ = HrΨ̃
Ψ = HrΨH−1

z

(3.50)

It should be noted that the matrix A may contain several complex eigenvalues on the three-
dimensional Fourier modes that are easily taken into account by the formalism introduced in Eq. (3.30).
The number of complex eigenvalues is mesh dependent and increases with finer meshes in the radial
and azimuthal directions.

3.4.2 Compact finite-difference schemes

The main difference between the two DNS codes lies in the discretization of the equations in the non
homogeneous radial and axial directions. This code is the cylindrical extension of the solver developed
by Abide and Viazzo [3]. In both codes, Fourier approximations are used in the tangential direction.

The equations in the non homogeneous radial and axial directions are discretized by fourth-order
compact finite-difference schemes. Hermitian methods provide compact relations between a given
function and its derivatives in several neighboring points of the mesh grid. These relations are de-
duced from Taylor series expansions of the function and its derivatives. Such numerical schemes are
relatively simple and easy to implement using only a reduced number of mesh points, while keeping a
high order accuracy close to the one reached by spectral or pseudo-spectral methods [177]. Another
advantage is their flexibility regarding the distribution of the mesh points.

Schiestel and Viazzo [300] have previously found that non-staggered grids cannot prevent oscil-
latory numerical wiggles in the pressure field. In order to circumvent the pressure checkerboarding,
a staggered MAC (Marker And Cell) mesh developed by Welch et al. [351] is used. Each primitive
variable is evaluated on its own grid. The main advantage is to reduce aliasing errors when using
pseudo-spectral methods on staggered grids. The mesh is refined close to the walls but also in in-
tense shear flow regions. The mesh point distribution is controlled through tanh functions including
refinement coefficients. Instead of using a complex spatial approximation on a non-uniform mesh,
an analytical coordinate transformation preserving the continuity of the first and second derivatives
is introduced. These first and second derivatives are then approximated using a spatial scheme on
an uniform mesh. As the pressure and the velocity components are evaluated on different meshes,
the first derivatives in the non-linear terms of the Navier-Stokes equation have to be evaluated on
the staggered but also on the non-staggered meshes. Some interpolations are then necessary. For
the diffusive terms, the second-order derivatives are only evaluated on the non-staggered mesh. All
the derivation and interpolation formula as well as the explicit calculation of the derivatives and the
Hermitian interpolations and details about the mesh grid may be found in the PhD theses of Beaubert
[18] and Abide [2].

Compact finite-difference discretizations, like other centered schemes, are non dissipative and are
therefore susceptible to numerical instabilities. Consequently, a sixth-order compact filter is applied
to the conserved variable and sequentially in each coordinate non-homogeneous direction [346]. This
numerical method has been validated in various Cartesian configurations: turbulent planar impinging
jet [19], lid-driven cavity flow, flow over a backward-facing step, flow past a square cylinder [3].

3.5 The r = 0-singularity

This section has been developed in the framework of the pseudo-spectral method based on Chebyshev
polynomials during the PhD thesis of Noele Peres [241], that I co-supervised with Eric Serre. This
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method has been published in Ref.[242].
As it will be shown in section 3.3, the discretization of Equations (3.1-3.3) leads to a Stokes problem

coupling velocity and pressure. The collocation method requires boundary conditions in the physical
space that can lead to an indetermination at r = 0 when the domain is discretized over the radius for
r ∈ [0, R] as in [313].

To avoid problems arising near the coordinate origin, the computational domain is discretized in
the radial direction over the whole diameter between −R and R with an even number of Gauss-Lobatto
collocation points, ri = cos(iπ/N), 0 ≤ i ≤ N . Thus, no collocation point is located at r = 0 and
consequently no pole condition is required. However, the discretization over the diameter leads to an
overlapping of points in the azimuthal direction that usually requires parity conditions for all variables
Ψ such as Ψ (r, θ, z) = Ψ (−r, θ + π, z).

Here, for a given even number of points K, a shift equal to π/ (2K) for θ > π is introduced in the
angular discretization over [0, 2π], as formerly proposed by Heinrichs [125] to solve two-dimensional
Poisson equations on an unit disk. According to the angular shift, the following discrete angles θj are
defined by:

θj =

{
(j − 1) 2π

K if j = 1, ..., K
2 ,

π + π
K +

(
j −

(
K
2 + 1

))
2π
K if j = K

2 + 1, ...,K.
(3.51)

An example is shown on Figure 3.2a for K = 8. Such discretization clearly leads to a better
resolution in the azimuthal direction with twice the amount of points although the number of Fourier
modes remains equal to K/2. An example of the 3D grid is shown on Figure 3.2b. The distribution
of Gauss-Lobatto collocation points over the diameter tightens the points within the boundary layers
along the vertical walls and avoids unnecessary clustering of points around the axis.

(a) (b)

Figure 3.2: Grid structure: (a) Discrete angle θj distribution defined by Equation (3.51) in a (θ, z)
plane showing the angular shift. Black and dashed diameters correspond to discretization indices
j = 1, ..., K

2 and j = K
2 + 1, ...,K, respectively. Grey circles show the radial mesh distribution; (b)

Example of 3D mesh discretization in a thin interdisk cavity.

According to this angular discretization, the following real Fourier basis can be introduced:

Φk (θ) =


sin (kθ) if k = 1, ..., K

2 − 1,

cos (kθ) + sin (kθ) if k = K
2 ,

cos
((
k −

(
K
2 + 1

))
θ
)

if k = K
2 + 1, ...,K.

(3.52)

that corresponds to the following K ×K transformation matrix in the spectral space:

Pθ = (Φk (θj)) , j, k = 1, ...,K (3.53)

According to this basis, calculations of the first and second-order derivative operators in the
azimuthal direction are straightforward both in the physical and spectral spaces. The first derivation
of any variable is given by the matrix product DθP

−1
θ Ψ, where Dθ is the following K×K full matrix:
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Dθ =
(
Φ

′

k (θj)
)
1≤j,k≤K

(3.54)

and for 1 ≤ j ≤ K:

Φ
′

k (θj) =


k cos (kθj) , k = 1, ..., K

2 − 1,

−k sin (kθj) + k cos (kθj) , k = K
2 ,

−
(
k −

(
K
2 + 1

))
sin
((
k −

(
K
2 + 1

))
θj
)
, k = K

2 + 1, ...,K.

As referred by Peyret [244], numerical experiments have shown that the presence of the term at
k = K/2 may lead to instabilities in time-dependent problems mainly because the first derivative
cannot be represented in this basis. Therefore the mode K/2 must be filtered. The second-order
derivative in Fourier space is written as:

D̂2
θ =

{ −diag
(
k2
)

if k = 1, ..., K
2 ,

−diag
((

k −
(
K
2 + 1

))2)
if k = K

2 + 1, ...,K.
(3.55)

The fast Fourier transform algorithm (FFT) based on Equation (3.52) is not yet available. Con-
sequently, the Fourier transform in the azimuthal direction is performed here by matrix products
using the subroutine DGEMM of the Blas (Basic Linear Algebra Subprograms) library. Additional
cost is expected since for the matrix multiplication transform the cost behaves as N2 with respect
to O(NLog2N) for FFT. However, as mentioned in Boyd [36], the actual costs must be significantly
different since it is known that they are strongly grid and hardware dependents [36]. The performance
study is presented in [241] using the NEC-SX8 supercomputer of IDRIS.

(a) (b) (c)

Figure 3.3: (a) Oscillating axisymmetric vortex breakdown of period 36.2Ω−1 for (G = 0.4, Re =
2750); (b) Unsteady and three-dimensional S-shaped vortex breakdown for G = 0.25 and Re = 6500;
(c) LES of a turbulent flow in a rotor-stator cavity heated from below at Re = 105, G = 0.4 and
Ra = 106 (see in [242]).

The present method developed by Peres [241] to take into account the r = 0-singularity has been
validated against reliable experimental data in rotor-stator cavities of aspect ratio larger than 1, for
which the vortex breakdown phenomenon may appear. Figure 3.3 presents the different regimes:
time-dependent vortex breakdown at Re = 2750, then an unsteady 3D S-shaped vortex at Re = 6500.
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Some calculations at a transitional Reynolds number Re = 105 with the SVV method described below
have also been performed under non-isothermal conditions. The validation against analytical solutions
as well as other simulations are available in [242].

3.6 Multidomain decomposition: the influence matrix tech-
nique

During his PhD thesis, that I co-supervised with Éric Serre, Guillaume Fontaine [97] improves the
existing pseudospectral divergence free algorithm, in order to extend its properties to a multidomain
patching of a rotating cavity. He worked on the multidomain extension of the existing divergence-free
Navier-Stokes solver with a Schur approach. It has the particularity not to require any subdomain
superposition: the value of a variable on the boundary between two adjacent subdomains is treated
as a boundary condition of a local Helmholtz solver. This value is computed on a direct way via a
so-called continuity influence matrix and the derivative jump of an homogeneous solution computed
independently on each subdomain. Such a method is known to have both good scalability and accuracy.
This technique is a direct Schur multidomain technique used by Raspo [268] for rotating flows using
the vorticity-stream function formulation.

3.6.1 Multidomain geometry

One will limit the discussion to a radial multidomain decomposition (Fig.3.4), because the curvature
terms vary only along this direction. The generalization of this technique to an axial decomposition is

quite immediate. Local geometrical parameters (L(m), R
(m)
m )m∈[[1;M ]] (M the number of subdomains)

satisfy :

M∑
m=1

L(m) = L (3.56)

R(m)
m − 1 = R(m+1)

m + 1 (3.57)

Figure 3.4: Example of a multidomain decomposition in the radial direction with 3 subdomains.

Local derivation matrixes are deduced from these local parameters, in order to have a good ap-
proximation for the curvature terms from one subdomain to another and to adapt the local mapping
to the one which would be used in a monodomain approach.

3.6.2 Multidomain decomposition of the solutions

Let Ψ be either (u, v, w, p, ϕ), Ω(m) and Ω(n) two adjacent subdomains, ξ the border between these
two subdomains and λ the value of Ψ on ξ. For both subdomains, the local problems to be solved
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may be written as : {
∆(m)Ψ(m) − σ(m)Ψ(m) = S(m) in Ω(m)

A(m)Ψ(m) = b(m) on Γ(m) (3.58)

{
∆(n)Ψ(n) − σ(n)Ψ(n) = S(n) in Ω(n)

A(n)Ψ(n) = b(n) on Γ(n) (3.59)

The resulting problem is that the boundary conditions to be imposed on the parts of Γ(m) and
Γ(n) corresponding to ξ are unknown. To find λ, one chooses to ensure both C0 and C1 continuities
through ξ. Ψ is written as the combination of an homogeneous solution Ψ̃ and a boundary solution
Ψ : Ψ = Ψ̃ + Ψ.

On Ω(m) : 
∆(m)Ψ̃(m) − σ(m)Ψ̃(m) = S(m) in Ω(m)

A(m)Ψ̃(m) = b(m) on Γ(m)

Ψ̃(m) = 0 on ξ(m)

(3.60)


∆(m)Ψ(m) − σ(m)Ψ(m) = 0 in Ω(m)

A(m)Ψ(m) = 0 on Γ(m)

Ψ(m) = λ(m) on ξ(m)

(3.61)

On Ω(n) : 
∆(m+1)Ψ̃(n) − σ(n)Ψ̃(n) = S(n) in Ω(n)

A(m)Ψ̃(n) = b(n) on Γ(m)

Ψ̃(n) = 0 on ξ(n)

(3.62)


∆(n)Ψ(n) − σ(n)Ψ(n) = 0 in Ω(m)

A(n)Ψ(n) = 0 on Γ(n)

Ψ(n) = λ(n) on ξ(n)
(3.63)

If λ is assumed to be known, one can verify easily that (Eq. 3.58)=(Eq. 3.60)+(Eq. 3.61) and
(Eq. 3.59)=(Eq. 3.62)+(Eq. 3.63).

3.6.3 The influence matrix technique

Let’s consider the boundary solution Ψ. It can be written as the linear combination of Green’s

elementary solutions G
(m)
kξ , defined for each subdomain Ω(m) by :

∆(m)G(m)
kξ − σ(m)G(m)

kξ = 0in Ω(m)

A(m)G(m)
kξ = 0on Γ(m)

G(m)
kξ (ηl ∈ ξ(m)) = δkl ∀l ∈ [[1;Nξ]]

(3.64)

Assuming that ξ is the only boundary (i.e. there are only 2 subdomains Ω(m) and Ω(n)), the
boundary solution should be written as:

Ψ(m) = Ψ̃(m) +

Nξ∑
k=1

λkG(m)
kE in Ω(m)

Ψ(n) = Ψ̃(n) +

Nξ∑
k=1

λkG(n)
kS in Ω(n)

(3.65)

Ψ̃(m) ∪ Ψ̃(n) is obviously continuous through ξ, but not ∂Ψ̃(m)

∂r ∪ ∂Ψ̃(n)

∂r . As the boundary solution is

continuous too, Ψ(m) ∪Ψ(n) should be continuous for any value of λ. The influence matrix technique
aims to find λ in order to make it C0 and C1 through ξ. One denotes ∂r = ∂

∂r . This C1-continuity
problem on ξ writes:
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∂̃rΨ(1)(ξ)− ∂̃rΨ(2)(ξ) =

Nξ∑
l=1

λl[∂rG(2)
lS (ξ)− ∂rG(1)

lE (ξ)] (3.66)

This can be written in a matrix form:
D = λM (3.67)

where D is the derivative (time-dependent) jump vector and M the continuity influence matrix of
the problem. Note that it depends only on the time-independent Green solutions, so it just has to be
computed in pre-processing. This matrix is diagonal-dominant. If there are more than 2 frontiers in
the domain, the influence matrix is built by blocks. The block dimension is then Nfront, the number
of frontiers. Each diagonal block is a Green derivative jump vector along each frontier. Some non-
diagonal blocks appear, resulting locally of the influence of 2 frontiers on one another through a single
subdomain, as shown on Figure 3.5.

Figure 3.5: Block definition of the influence matrix for an 1-D multidomain decomposition.

If M is inversible, one can find λ as:
λ = DM−1 (3.68)

This vector is then used as a boundary condition on ξ in the local Helmholtz solvers to get a C0

and C1 Ψ(m) ∪Ψ(n) solution.

3.6.4 Singularity of the Poisson-problem

The Neumann-Poisson problem has an infinity of solutions defined up to an additive constant. As
Dirichlet boundary conditions are implemented on the frontiers, this problem no longer exists locally.
Nevertheless, it is transposed to the influence matrix of the Poisson-problem of the k = 0 Fourier
mode, which has a null-eigenvalue. It is treated by a diagonalisation technique of this modal matrix.
The derivative jump is expressed in the diagonalisation basis and its i0-th component is set to zero,
if i0 is the null eigenvalue index, as proposed by Abide [2].

3.6.5 Validation of the multidomain approach

The multidomain approach developed by Fontaine [97] within the pseudospectral code has been vali-
dated in two fundamental configurations: a Taylor-Couette system (η = 0.85, Γ = 40) and an interdisk
rotor-stator system (G = 6.26, Rm = 1.8). For Taylor-Couette flows, the two first instabilities, Taylor
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vortices and wavy Taylor vortices (see Fig.3.6a) are recovered with the expected characteristics. In the
rotor-stator cavity, the two first bifurcations, circular and then spiral patterns, are also recovered in
good agreement with the former studies by Poncet et al. [261] and Peres [241] using the monodomain
version of the code. Again the validation against analytical solutions as well as other simulations are
available in [97, 98].

(a) (b)

Figure 3.6: (a) Wavy Vortex Flow at Ta/Tac = 1.36 (η = 0.85, Γ = 40, Tac being the critical Taylor
number for the appearance of Taylor vortices); (b) 17 spiral arms obtained for a 3D rotor-stator flow
at Re = 25000 (G = 6.26, Rm = 1.8). See in Ref.[98].

3.7 Subgrid scale modeling

In Large Eddy Simulation (LES), each flow variable f is split into a large anisotropic scale component
f , which is computed and a small subgrid scale component f ′, which has to be modeled. This
separation is obtained by applying a spatial filter to the momentum and continuity equations in order
to reduce the amount of spatial scales to be solved:

∂ui

∂t
+

∂

∂xj
(uiuj) = − ∂p

∂xi
− ∂Tij

∂xj
+

1

Re

∂2ui

∂xj∂xj
(3.69)

∂ui

∂xi
= 0 (3.70)

Due to the divergence free constraint, pressure is modified according to p = p/ρ + Tkk/3. Scales
smaller than the grid size are modeled through the subgrid scale tensor Tij given by the Leonard
decomposition:

Tij = uiuj − ūiūj (3.71)

where the overbar denotes an appropriate low-pass filter and incompressibility is assumed. The com-
plex interactions between the resolved and unresolved scales are modeled using a turbulent eddy-
viscosity assumption. The anisotropic part of the subgrid scale stress Tij is linked to the eddy viscosity
νt though the following expression:

Tij −
1

3
Tkkδij = 2νtSij (3.72)

where the deformation tensor of the resolved field Sij writes:

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(3.73)
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3.7.1 The Spectral vanishing viscosity (SVV) technique

High Reynolds number flows are difficult to simulate when using spectral accurate numerical methods,
since the spectral approximations are less diffusive than the low-order ones leading to the accumulation
of energy on the highest spatial frequencies and consequent divergence of computations [244]. Several
stabilization techniques are available in the literature but generally these techniques degrade the
spectral convergence [116]. In this work, a Spectral Vanishing Viscosity (SVV) formulation is used here
as an efficient stabilizer for the high-accurate spectral method described previously. This technique
seeks to define a spectral viscosity that reaches a maximum at high wave numbers vanishing gradually
until reaches a given threshold at low wave numbers. The stabilization is therefore achieved through
damping at small length scales without degrading the accuracy properties of the discretization. It
has the property to preserve the spectral accuracy of the approximation developed in DNS [316] and
keeps the fast time integration of the DNS because it is condensed in pre-processing jobs.

The SVV concept was initially developed by Tadmor [334], who applied it to solve hyperbolic
equations, more precisely the inviscid Burger’s equation. He demonstrated that this method prevents
oscillations while keeping spectral accuracy. Maday et al. [196] were the first to consider the non-
periodic Legendre pseudospectral viscosity method for an initial-boundary value problem introducing
a smooth viscosity kernel. Ma [195] developed the non-periodic Chebyshev-Legendre approximation,
based on the ideas of hyper Spectral Viscosity. A formulation of the method for Galerkin spectral/hp
element has been proposed by Karamanos and Karniadakis [146] to solve the incompressible Navier-
Stokes equations and employed for turbulent channel flows. A formulation of the SVV method for
spectral element approximations has also been adapted by Xu and Pasquetti [358] and validated in the
computation of the two-dimensional turbulent wake of a cylinder. Due to the conceptual simplicity
and inherent spectral accuracy, the SVV technique has been seen as a real tool for LES.

The SVV technique used here is based on the work of Séverac and Serre [316], who extended it to
3D cylindrical flow problems. Later, Séverac et al. [315] used this technique to study turbulent flows
in an enclosed rotor-stator configuration with a rotating hub and a stationary shroud for Reynolds
numbers up to 106. Its implementation into the Navier-Stokes equations is made by defining a new
diffusion operator ∆SV V . This operator is simply implemented by combining the classical diffusion
and the new SVV terms to obtain in 1D:

ν∆SV V ≡ ν∆+∇. (εNQN∇) = ν∇.SN∇ (3.74)

where ν is the diffusive coefficient and where:

SN = 1 +
εN
ν

QN (3.75)

with εN the maximum of viscosity and QN a 1D viscosity kernel defined in the spectral space by:

Q̂N (ωn) = 0, 0 ≤ ωn ≤ ωT (3.76)

Q̂N (ωn) = exp

[
−
(
ωn − ωN

ωn − ωT

)2
]
, ωT < ωn ≤ ωN (3.77)

where ωT is the threshold after which the viscosity is applied, ωN the highest mode calculated and
εNQN ≡ diag(εiNi

Qi
Ni

) (i = r, θ, z). The SVV operator is then parametrized in each direction by
(ωT , εN ). According to the theoretical results obtained by Tadmor [334], good values of such pa-
rameters are ωT ≈ O(

√
N) and εN ≈ O(1/N), where N is the degree of approximation in each

direction. These values have also provided a good compromise between stability and accuracy in
former numerical studies [146, 234].

Figure 3.7 shows the viscosity kernel normalized by its maximum value at ωn = ωN for different
values of the cutoff wave number ωT showing that the SVV operator affects at most two-third of
the spectrum at the highest frequencies for ωT = 0. Consequently, DNS results are easily recovered
for laminar flows, contrarily to some classical LES techniques as for example with the spectral eddy
viscosity model of Kraichnan [160].

The main drawback of this approach is that the viscosity operator does not depend neither on
space and so nor on the flow dynamics. That is why Koal et al. [157] have recently developed three
modified kernels with enhanced stabilization in the axis region that could be of great interest in some
applications.

54



55 3.7. SUBGRID SCALE MODELING

Figure 3.7: Influence of the threshold frequency on the shape of the spectrum of the spectral viscosity
operator with N = 50.

3.7.2 Subgrid scale models based on an eddy-viscosity assumption

The direct numerical simulation code based on fourth-order compact schemes for the inhomogeneous
directions (Section 3.4.2) has been extended to large eddy simulation, denoted LES-FD in the following,
using three subgrid scale models used to model the turbulent eddy-viscosity νt (Eq.(3.72)):

• the Smagorinsky-Lilly model [323],

• the Germano dynamic model [106, 183],

• the WALE (Wall-Adapting Local Eddy-viscosity) model developed by Nicoud and Ducros [222].

In the Smagorinsky model, the eddy-viscosity is assumed to be proportional to the subgrid char-
acteristic length scale ∆ and to a characteristic turbulent velocity taken as the local strain rate |S|:

νt = (Cs∆)2|S| (3.78)

|S| =

√
2SijSij (3.79)

where ∆ = (r∆r∆θ∆z)
1/3

is the grid filter width. The constant Cs is obtained assuming that the
cut-off wave number kc = π/∆ lies within a k−5/3 Kolmogorov cascade for the energy spectrum
E(k) = CKε2/3k−5/3 and requiring that the ensemble-averaged subgrid dissipation is identical to ε.
An approximate value for the constant is then:

Cs =
1

π

(
3CK

2

)−3/4

(3.80)

The value of the Smagorinsky constant strongly depends on the particular flow geometry. This method
assumes that the energy production and dissipation of the small scales are in equilibrium. The clas-
sical Smagorinsky model was tested as a first approach in the case of turbulent rotor-stator interdisk
flows (discussed in Chapter 8) with Cs = 0.2. As in the case of the turbulent flow due to a plane
impinging jet [19], this model was found to be too dissipative and predicts incorrect behaviour near
the walls and in the laminar regions.

The dynamic Smagorinsky model developed by Germano et al. [106] overcomes some of the draw-
backs of the classical Smagorinsky model: it corrects its excessive dissipation, exhibits the correct
behaviour close to the walls and in laminar regions and does not formally prohibit energy backscatter
from the small to the large scales. The constant C2

s is replaced by a coefficient Cd, which is dynami-
cally computed. Cd is evaluated with a least-squares approach as a part of the solution at each time
step using a test filter denoted by a hat:

55



56 CHAPTER 3. 3D HIGH-ORDER NUMERICAL METHODS

Cd = −1

2

[(
Lij − 1

3Lkkδij
)
Mij

]
MijMij

(3.81)

Lij = ûiuj − ûiûj (3.82)

Mij = ∆̂
2 ∣∣∣Ŝ∣∣∣ Ŝij −∆

2 ∣̂∣S∣∣Sij (3.83)

The coefficient Cd is a local and instantaneous quantity: Cd(r, θ, z, t). Negative values of Cd may lead
to numerical instabilities. To overcome this problem, Cd is averaged in the homogeneous tangential
direction. The required stabilizing averaging could be done also over the fluid particle pathlines as
proposed by Méneveau et al. [204]. Furthermore, negative values of νt are set to zero if the total
viscosity ν + νt is negative. Thus, no backscatter is taken into account here as for the LES-SVV
model.

It is a common practice in the literature to choose the test filter width ∆̂ as twice the grid-
filter width ∆ [183]. In the homogeneous direction, a cutoff filter was applied with the Fourier
approximation. The test filter used sequentially in each non-homogeneous direction is a symmetric
discrete filter based on the trapezoidal rule:

f̂i =
1

4
(fi−1 + 2fi + fi+1) (3.84)

In order to improve time stability, the eddy viscosity is split into an averaged value in the azimuthal
direction treated semi-implicitly by the way of internal iterations during the resolution of the predictor
step and a fluctuation part treated fully explicitly. In practice, five iterations are required to obtain
a convergence criterion of 10−6. Finally, as expected from the dynamic procedure, the eddy viscosity
acts more significantly where the turbulence intensity is higher and vanishes in the laminar regions.

The Smagorinsky model is based on the second invariant of the symmetric part Sij of this tensor.
The main drawbacks are that this invariant is of order O(1) close to a wall and it is not related to
the rotation rate of the turbulent structure. To avoid that, Nicoud and Ducros [222] developed the
WALE model based on the gradient velocity tensor gij , which is a good candidate to represent the

velocity fluctuations at the length scale ∆. The turbulent eddy-viscosity is then modeled by:

νt = (Cm∆)2
(
Sd
ijS

d
ij

)3/2(
SijSij

)5/2
+
(
Sd
ijS

d
ij

)5/4 (3.85)

Sd
ij =

1

2

(
g2ij + g2ji

)
− 1

3
δijg

2
kk, gij =

∂ui

∂xj
(3.86)

The operator Sd
ij is based on the traceless symmetric part of the square of the gradient velocity tensor

gij . The constant Cm is fixed to C2
m ≃ 10.6C2

s as suggested by Nicoud and Ducros [222]. The WALE
model has a proper behavior near the wall and is defined to handle with transitional problem in
parietal flow. The WALE model provided very fair results in various complex turbulent flows in the
context of turbomachinery, that is the reason why it is now available in many CFD softwares such as
the AVBP code developed by CERFACS [80].
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Chapter 4

Reynolds Stress Model

Despite the relative simple geometry of the rotating flows considered here, such flows contain a complex
physics, which makes their modeling a very challenging task for numerical methods. These flows
present indeed several complexities such as the high rotation rates, confinement effects, transitional
zones, very thin boundary layers, recirculation zones, curvature of the streamlines, which are severe
conditions for turbulence modeling methods. An impinging jet may yield the flows even more complex
because of the interaction between the jet and the base rotor-stator flow.

During my PhD thesis under the supervision of Dr R. Schiestel (IRPHE), I widely used and
validated the Reynolds Stress Model (RSM), formerly developed by Elena and Schiestel [84, 85, 298],
in various rotating disk flow configurations [83, 85, 119, 249, 253, 258] and for a wide range of the flow
parameters (aspect ratio of the cavity, imposed throughflow, rotation rate, heat transfer). This level
of closure appeared to be adequate in many flow configurations, while the usual k− ϵ model, which is
blind to any rotation effect, presented serious deficiencies.

In some of the following Chapters, this well established turbulence model will be used to extend
its application to new flow conditions and to get a better insight into the dynamics of highly turbulent
rotating confined flows between disks or cylinders with or without heat transfer.

4.1 The differential Reynolds Stress Model (RSM)

4.1.1 The transport equations for the Reynolds stress tensor

To get the transport equations for the Reynolds stress tensor, one needs first to decompose each
instantaneous variable (velocity and pressure) into a statistical average part (capital letters) and a
fluctuating component (lowercase letters): Ṽi = Vi + vi and P̃ = P + p. They are introduced in the
Navier-Stokes equations. The Reynolds equations are then obtained by taking the statistical average
of these equations. The equations for the fluctuating velocities write by difference:

∂vi
∂t

+ Vjvi,j = −vjVi,j − vjvi,j − (
p

ρ
),i + (νvi,j + vivj),j (4.1)

The equation for vi is multiplied by vj and is added to the equation for vj multiplied by vi. By
statistically averaging, one finally gets the transport equations for the Reynolds stress tensor Rij =
vivj . The different terms can be gathered in the following way to highlight the different turbulent
interaction processes:

∂Rij

∂t
+Aij = Pij +Φij − εij +Dij (4.2)

with:

Aij = VlRij,l (4.3)

Pij = −RilVj,l −RjlVi,l (4.4)

Φij =
p

ρ
(vi,j + vj,i) (4.5)

εij = 2νvi,lvj,l (4.6)

Dij =

[
−vivjvl −

p

ρ
(viδjl + vjδil) + νRij,l

]
,l

(4.7)
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where Aij is the advection term. Pij is the work of the Reynolds stress tensor submitted to the mean
velocity gradient. As it does not introduced any new correlation, it does not need to be modeled. Φij

is the pressure-strain correlation term, which represents a distribution of energy along the components
of the Reynolds stress tensor due to the pressure fluctuations. εij is the viscous dissipation term and
Dij contains the turbulent and molecular diffusion contributions.

The main problem is to determine 10 unknown variables (6 Reynolds stress tensor components,
3 velocity components and the pressure) by solving only 4 equations (3 equations for vi and the
continuity equation). It is then absolutely necessary to model some terms to solve the system. One
solution would be to form new equations but it will introduce new high-order correlations. One need
to fix the closure order for the equations. Second-order models seem nowadays to offer the best
compromise between the calculation cost and the description level of turbulence.

The approach chosen here is based on one-point statistical modeling using a low Reynolds number
second-order full stress transport closure derived from the Launder and Tselepidakis [173] model and
sensitized to rotation effects [85]. It corresponds to the RSM3 model fully described in [85]. This
approach allows for a detailed description of near-wall turbulence and is free from any eddy viscosity
hypothesis. In order to obtain confident heat transfer prediction, it is necessary to reach already a
good description of the velocity and turbulence fields. The general equation for the Reynolds stress
tensor Rij can be written:

dRij

dt
= Pij +Dij +Φij − ϵij + Sij (4.8)

where Pij , Dij , Φij and ϵij respectively denote the production, diffusion, pressure-strain correlation
and dissipation terms. The term Sij takes into account the implicit effects of rotation on turbulence.

The production term can be expressed as Pij = −RijVj,l−RjlVi,l and does not need to be modeled.

4.1.2 Modeling of the diffusion terms

The diffusion term Dij = [−vivjvm − p/ρ(viδjm + vjδim) + νRij,m],m is split into two parts:

Dij = DT
ij +Dν

ij (4.9)

The turbulent diffusionDT
ij is the sum of two contributions: the triple correlations of the fluctuating

velocities vivjvm and the diffusion due to pressure fluctuations p/ρ(viδjm + vjδim). This last term is
besides often neglected due to the lack of experimental data. The turbulent diffusion term includes
then only the contribution of vivjvm, which is modeled according to the form proposed by Daly and
Harlow [69]:

DT
ij = (cs

k

ε
RmlRij,l),m (4.10)

The cs constant is fixed to 0.22 to enable the term DT
ij to be compatible with the diffusion term found

in the equation of the turbulence kinetic energy.
The viscous diffusion Dν

ij has not to be modeled. It can be neglected at high Reynolds numbers
but not in the low Reynolds number regions and especially close to the walls. It writes:

Dν
ij = −νRij,ll (4.11)

4.1.3 Modeling of the pressure-strain correlation term

Φij = p/ρ(vi,j + vj,i) is the pressure-strain correlation term, which can be decomposed into three
contributions: the first one contains only the turbulent interactions, the second term is due to the
interactions between turbulence and the mean velocity gradient and the last term acts only close to
the walls. Applying the divergence to the fluctuating velocity equation, one gets a Poisson equation
for the fluctuating pressure:

1

ρ
p,ii = −2vi,jVj,i − (vivj −Rij),ij (4.12)

By integrating this equation over the flow domain υ, one gets a relation for p including two volume
integrals over the domain υ and one surface integral along the frontier σ of the domain. The term Φij

at a given location point A can be expressed as:
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(pρ (vi,j + vj,i))A =
1

4π

∫∫∫
υ

(vBl vBm),lm(vAi,jv
A
j,i)

dυ

r
(4.13)

+
1

2π

∫∫∫
υ

V B
l,mvBm,l(v
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j,i)
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r
(4.14)

+
1

2πρ

∫∫
σ

(
1

r

∂pB

∂n
− pB

∂

∂n
(
1

r
))(vAi,jv

A
j,i)dσ (4.15)

The point B is the current point in the integrals.
In a classical way, the pressure-strain correlation term Φij can be decomposed into three contri-

butions as below:

Φij = Φ
(1)
ij +Φ

(2)
ij +Φ

(w)
ij (4.16)

Φ
(1)
ij is interpreted as a slow nonlinear return to isotropy and is modeled as a quadratic development

in the stress anisotropy tensor aij , with coefficients sensitized to the invariants of anisotropy. This
term, which contains the turbulent interactions, is damped near the wall:

Φ
(1)
ij = −(c̃1aij + c

′

1(ailalj −
1

3
A2δij))ε (4.17)

where aij denotes the stress anisotropy tensor and c̃1 and c
′

1 are two functions adapted for confined
flows, which vanish at the walls:

aij =
Rij

k
− 2

3
δij (4.18)

c̃1 = (3.1
√
AA2 + 1)(1− e−

Re2t
40 ) (4.19)

c
′

1 = 3.72
√

AA2(1− e−
Re2t
40 ) (4.20)

Here A = 1 − 9/8(A2 − A3) is the Lumley flatness parameter with A2 and A3 the second and third
invariants of the anisotropy tensor. Ret = k2/(νε) is the turbulence Reynolds number.

The second contribution Φ
(2)
ij represents the linear rapid part. It is induced by the interactions

between turbulence and the mean velocity gradient and includes cubic terms. It can be written as:

Φ
(2)
ij = −c2(Pij −

1

3
Pooδij) + 0.3εaij

Poo

ε
− 0.2[

RojRli

k
(Vo,l + Vl,o)−

Rlo

k
(Rio(Vj,l + ϵjmlΩm)

+Rjo(Vi,l + ϵimlΩm))]−min(0.6, A)(A2(Pij −Dij) + 3amianj(Pmn −Dmn)) (4.21)

with Dij = −RioVo,j −RjoVo,i and the constant c2 is fixed to 0.6, value used in isotropic turbulence.
Since the slow part of the pressure-strain correlation is already damped near the wall, a wall correction

Φ
(w)
ij is only applied to the rapid part. It is modeled using the Gibson and Launder hypothesis

[108] with a strongly reduced numerical coefficient. The classical length scale k3/2ε−1 is replaced by
k/ε(Rijninj)

1/2 which is the length scale of the fluctuations normal to the wall:

Φ
(w)
ij = 0.2[(Φ

(2)
lm +Φ

(R)
lm )nlnmδij −

3

2
(Φ

(2)
il +Φ

(R)
il )nlnj −

3

2
(Φ

(2)
lj +Φ

(R)
lj )ninl]

k
√

Rpqnpnq

εy
(4.22)

where y is evaluated by the minimal distance of the current point from the four walls, ni the unit

normal vector along the i component and c
′

2 = 0.2. The term Φ
(W )
ij redistributes the energy along the

orthogonal components of the Reynolds stress tensor. Its effect is noticeable at a distance from the
wall equal approximately to the integral scale.
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4.1.4 Modeling of the viscous dissipation term

The term εij = 2νvi,mvj,m represents the dissipation rate of the Reynolds stress tensor. At the wall,
this term is strongly inhomogeneous. Far from the walls, εij varies between 2εδij/3 for high Reynolds
numbers and εRij/k for low Reynolds numbers. The viscous dissipation tensor εij has been modeled
in order to conform with the wall limits obtained from Taylor series expansions of the fluctuating
velocities [171]:

εij = fAε
∗
ij + (1− fA)[fs

εRij

k
+

2

3
(1− fs)εδij ] (4.23)

The εRij/k term supposes that the dissipating vortices have the same structure as the vortices with
a high energy and the 2/3εδij term represents the local isotropy of micro-turbulence. The dissipation
rate of the Reynolds stress tensor εij is modeled by ponderating these two effects using the functions
fA and fs. These functions and ε∗ij for the near-wall regions are defined as:

fA = e−20A2

e−
Re2t
20 (4.24)

fs = e−
Re2t
40 (4.25)

ε∗ij =
(Rij +Rimnjnm +Rjmninm +Rmlnmnlninj)

k
ε (1 +

3
2
Rpq

k npnq)
(4.26)

This form of ε∗ij ensures that outside the near wall region and very low Reynolds number regions,
dissipation is an isotropic phenomenon. The functions fA and fs enable the model to respect some
realizability constraints.

4.1.5 Modeling of the extra terms sensitized to rotation effects

The extra term Sij accounts for implicit effects of rotation on turbulence. Indeed, high speed rotation
produces indirect effects on the turbulence field that are not modeled in usual closures, even in second-
order closures. These effects modify the structure of the turbulence eddies in a complex manner that
can be evidenced in two-point statistics [44]. The term Sij is decomposed into four terms:

Sij = Φ
(R)
ij +DR

ij +Bij + Jij (4.27)

Φ
(R)
ij is a part of the pressure-strain correlation term. It is obtained by supposing that Φij is also

function of the dimensionality tensor Cij and so that Φij is modified in presence of rotation, which
acts on the turbulence structure. It is a linear effect, modeled as:

Φ
(R)
ij = −0.6[(Dcij +

1

2
DcΩij)−

2

3
Pcδij ]−

2

5
k(Vi,j + Vj,i) (4.28)

where Dcij , DcΩij and Pc are defined as:

Dcij = −CipVp,j − CjpVp,i (4.29)

DcΩij = −2(ϵiplΩpClj − ϵjplΩpCli) (4.30)

Pc = −CipVi,p (4.31)

One proposes a simple behavior law for Cij :

Cij =
2

3
(1 +

fc
2
)kδij − fck

Ω∗
iΩ

∗
j

Ω∗2 (4.32)

fc =
Ro−1

t

5 +Ro−1
t

(4.33)

This law takes into account bidimensionalisation effects and contains somewhat the non-linear effects
of rotation. Rot = ε/(kΩ∗) is the turbulence Rossby number and Ω∗ = ||Ω∗

i || the intrinsic rotation.
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Cij is the dimensionality tensor, which represents the spatial properties of the turbulent structures
such as the stretching of the vortices. It is defined in case of homogeneous turbulence by:

Cij =

∫
κiκj

κ2
E(κ⃗)dκ⃗ (4.34)

where E(κ⃗) is the energy spectrum. The reader can refer to the work of Reynolds [276] for the exten-
sion to the inhomogeneous case.

The second term DR
ij is an inhomogeneous diffusion term, which slows down the bidimensionalisa-

tion of turbulence close to the walls:

DR
ij = (cs

k2

ε
fRoYlmRij,l),m (4.35)

where fRo and Ylm are defined as:

fRo =
2Ro

−1/2
t

1 + 15Ro
−1/2
t

(4.36)

Ylm =
Ω∗

lΩ
∗
m

Ω∗2 (4.37)

cs = 0.22 is an empirical constant and Ω∗
i = Ωi − 0.5ϵijlVj,l the intrinsic rotation vector. The second

term 0.5ϵijlVj,l corresponds the rotation of the fluid particles on themselves. This term subsists even
without any rotation (Re = 0) but its effect is negligible. Ω∗ acts only in case of strong rotation
and/or if Ω∗ >> ∂Vz/∂r.

Bij is a homogeneous source term, which rectifies the pressure-strain correlation and which acts
only in case of strong rotation. It produces spectral phase scrambling (angular dispersion). It writes:

Bij = −αB(Rij − kδij +
1

2
Cij) (4.38)

with αB defined by:

αB =
1

2
Ω∗Cpq

2k

Ω∗
pΩ

∗
q

Ω∗2 (4.39)

The rapid distortion theory shows indeed that the Coriolis forces produce, in the spectral space, a
rotation of the Fourier modes ûi around their wave vector κi at a given frequency, which depends
on the angle between κi and Ωi, which induces a decorrelation of the modes rotating at different
velocities. Under these conditions, Rij tends to −1/2Cij + kδij .

The rotation also reduces the energy transfer from large to small turbulent scales. Elena [83]
proposed to model it through an inverse flux J considered as isotropic for high Reynolds numbers
and introduced only in the transport equation for the turbulence kinetic energy. The inverse flux is
defined by:

J =
fJ

1 + fJ
ε̃ (4.40)

As there is no information about the blocking of the energy cascade for low Reynolds number flows,
Elena [83] introduced the function fJ defined by:

fJ =
0.12Ro−2

t + 0.015Ro−1
t − 0.3 e−Re2t (0.4Ro−2

t + 0.05Ro−1
t )

0.254Ro−2
t + 0.1567Ro−1

t + 1
(4.41)

This function does not modify the dissipation in the viscous sublayer. The inverse flux for the Reynolds
stress tensor components Jij is modeled by:

Jij =
2

3
[(1− fT )δij + fT

3Rij

2k
]J (4.42)

with fT defined by:

fT =
1

1 +Ret/10
(4.43)
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The effect of Jij , which is a corrective term of εij , is to increase the turbulence levels in the central
part of the flow.

These four terms allowed some improvements of results in an enclosed rotor-stator cavity [85].
They are fully described in [85, 298].

4.1.6 Transport equations for the turbulence kinetic energy k and its dis-
sipation rate ε

Below is the proposal of Launder and Tselepidakis [173] for the dissipation rate equation ε:

dε

dt
= −cε1

ε

k
RijVi,j − cε2fε

ε̃ε

k
+ (cε

k

ε
Rijε,j + νε,i),i + cε3ν

k

ε
RjpVi,jlVi,pl + (cε4ν

ε̃

k
k,i),i (4.44)

ε̃ is the isotropic part of the dissipation rate ε̃ = ε − 2νk
1/2
,i k

1/2
,i . cε1 = 1, cε2 = 1.92, cε = 0.15,

cε3 = 2, cε4 = 0.92 are five empirical constants and fε is defined by: fε = 1/(1 + 0.63
√
AA2). This

equation is sensitive to the anisotropy of the Reynolds stress tensor through the destructive term of
ε.

The source term with a diffusive form (cε4ν
ε̃
kk,i),i has been proposed by Launder and Tselepidakis

[173] to take into account the diffusion effects due to pressure fluctuations. It is negligible outside the
boundary layers. Inside the boundary layers, it is positive and has the tendency to increase ε.

The turbulence kinetic energy equation is redundant in a RSM model but it is however still solved
numerically in order to get faster convergence:

dk

dt
= −RijVi,j + J − ε+ 0.22(

k

ε
Rijk,j + νk,i),i + 0.22

(
k2

ε

2Ro
−1/2
t

1 + 15Ro
−1/2
t

Ω∗
iΩ

∗
j

Ω∗2 k,i

)
,j

(4.45)

It is verified after convergence that k is exactly 0.5Rjj within 0.05% at each grid point.

4.1.7 Energy equation

For the thermal field, as a first approach, one considered only relatively small differences between
the temperature of the inlet fluid T0 and the wall temperature Tw. As a consequence, density is not
significantly affected by temperature differences, which allows to dissociate the dynamical effects from
the heat transfer process. Poncet and Schiestel [258] obtained indeed very satisfactory results using
this approach for temperature differences up to 75 K in similar geometries. Then, the temperature
equation writes:

∂T

∂t
+ VjT,j = αT,jj − F t

j,j (4.46)

where α = ν/Pr (Pr the molecular Prandtl number) and F t
i is the turbulent flux approximated by a

gradient hypothesis with tensorial diffusive coefficient:

F t
i = −ct

k

ε
RijT,j (4.47)

where ct = cµ/Prt = 0.1 with cµ = νtε/k
2 = 0.09 a coefficient used to define the turbulent viscosity νt

and Prt the turbulent Prandtl number assumed to be constant at 0.9. It is indeed a common feature
for two-dimensional computations in rotating flows and more generally for near-wall turbulent flows
to fix the value of the turbulent Prandtl number Prt to 0.9 (see the monographs of Launder et al.
[169] and Schiestel [297]). The numerical work of Ong [229] and Iacovides and Chew [134] can also be
cited.

The effects of the anisotropy of the turbulence field and the effects of rotation are already included
in the term kRij/ε of Equation (4.47) for most of them.
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4.2 Numerical method

The computational procedure is based on a finite volume method using staggered grids for the mean
velocity components with axisymmetry hypothesis in the mean. The computer code is elliptic and the
numerical solution proceeds iteratively. The power PLDS scheme has been chosen as the convection-
diffusion scheme for its stability and its weak computational cost. It implies the linearization of the
source terms using the decomposition proposed by Patankar [235]. The new linear system is solved
by the tridiagonal algorithm of Thomas [235], which is a recursive algorithm of scanning line by line
and column by column. The velocity-pressure coupling is solved using the SIMPLER algorithm.

In order to overcome stability problems, several stabilizing techniques have been introduced in
the numerical procedure: diffusive formulation for the Reynolds stress tensor components deduced
from the discretized stress equations and reported into the momentum equations, implicit treatment
of Coriolis type terms and regular and inertial relaxations. Also, the stress component equations are
solved using matrix block tridiagonal solution to enhance stability using non staggered grids.

4.3 Boundary conditions

The boundary conditions are as follows:

• Along the symmetry axis:

∂ϕ

∂r
= 0, ϕ = Vr, Vθ, Vz, k, ε, Rrr, Rθθ, Rzz (4.48)

Rrθ = Rrz = Rθz = 0 (4.49)

• At the walls: Vr = Vz = k = Rij = 0 for (i, j) = (r, θ, z) and ϵ = νk,jk,j/(2k). Vθ = 0 on a
stationary wall and Vθ = Ωr on a rotating wall.

• At the inlet: Vθ is supposed to vary linearly from zero on the stationary wall up to Ωr on the
rotating wall. When a throughflow is enforced, a laminar or turbulent Poiseuille profile is then
imposed for the axial velocity Vz with or without preswirl depending on the flow configuration.
A given level of turbulence intensity is also imposed corresponding to a turbulence kinetic energy
at the inlet equal to 0.01(Ωr)2 and a turbulence Reynolds number equal to Ret = 1500.

• At the outlet: the pressure is permanently fixed, whereas the derivatives for all the other inde-
pendent quantities are set to zero if reversed flow occurs, and fixed external values are imposed
if the fluid re-enters the cavity. A special treatment for this type of mixed boundary conditions
has been developed. During the calculation, if reversed flow occurs, an advection equation for
all quantity is solved in a region located just outside the physical domain (see Poncet [249]). It
enables to moderate the evolution of these quantities and so to stabilize the calculations.

The flow in the similarity area is practically not sensitive to the shape of velocity profiles or to the
intensity level imposed at the inlet [249]. The turbulence levels calculated inside the cavity are indeed
always larger than those imposed at the inlet. Moreover, these choices are justified by the wish to
have a model as universal as possible. The calculation is initialized using realistic data fields, which
satisfy the boundary conditions.

The reader can refer to the previous works of Elena and Schiestel [84, 85, 298] and Poncet et al.
[119, 249, 253, 258] for more details about the statistical modeling and the numerical method.
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Part III: Rotating disk flows

Summary: This part is devoted to rotating flows in interdisk cavities. It is divided into five
chapters corresponding to five different flow configurations in terms of geometry or/and flow regimes.
It is organized by increasing progressively both the relative complexity of the geometry and the global
flow parameters. Thus, Chapter 5 presents some numerical results about the laminar flow of a non-
Newtonian fluid over a stationary infinite disk (known as the Bödewadt flow). Chapter 6 is devoted to
the combined experimental and numerical study of a shear-layer instability over a finite rotating disk
with a free surface. The route to turbulence is then investigated still experimentally and numerically
in Chapter 7 in the case of rotor-stator flows with unmerged boundary layers. Chapter 8 presents
the turbulent regime in the same configuration, with comparisons of three turbulence modelings and
velocity measurements. To finish with, some RANS predictions are shown and compared to velocity
measurements for the Von Kármán flow between counter-rotating disks equipped or not with straight
blades in Chapter 9.



Chapter 5

Bödewadt flow of a non-Newtonian
fluid

This Chapter is the result of a close collaboration with Dr Bikash Sahoo (National Institute of Tech-
nology, Rourkela, India) initiated in 2010. The goal is to provide numerical solution of academic flow
problems by reducing the system of highly nonlinear equations using appropriate variable transforma-
tions. It has been done by Von Kármán [348] in the context of rotating disk flows. This kind of flow
still receives a constant attention with about 8000 references published in Science Direct for the last
five years. Of course, more complex effects are considered now such as a magnetic field, heat transfer,
partial slip, non-Newtonian fluid, porous walls . . . .

The steady flow arising due to the rotation of a fluid at a larger distance from a stationary disk is
extended to the case where the disk surface admits partial slip for both Newtonian and non Newtonian
fluids. The constitutive equation of the non-Newtonian fluid is modeled by that for a Reiner-Rivlin
fluid. The momentum equation gives rise to a highly nonlinear boundary value problem. Numeri-
cal solutions of the governing nonlinear equations are obtained over the entire range of the physical
parameters. The effects of slip and non-Newtonian fluid characteristics on the momentum boundary
layer are discussed in details. It is observed that slip has prominent effect on the velocity field, whereas
a predominant influence of the non-Newtonian parameter is observed on the moment coefficient. The
results have been published in Commun. Nonlinear Sci. Numer. Simulat. in 2012 (Ref.[286]) and
compared also to those obtained by Dr. Abbasbandy (Islamic Azad Univ. in Tehran) using the
Keller-box method in the Newtonian case.

5.1 Introduction

The flow of non-Newtonian fluids over an infinite disk has received much attention during the last
decades [10, 13, 329] due to its immense industrial applications such as for designing gaseous core
nuclear reactor or power generators, increasing storage density in hard-disk drives and in rheology.
Sahoo and Sharma [288] then Sahoo [283] have discussed the steady Von Kármán flow and heat trans-
fer of an electrically conducting Reiner-Rivlin fluid with partial slip boundary conditions. The twin
problem arising when the fluid rotates with an uniform angular velocity at a larger distance from a
stationary disk is one of the classical problems of fluid mechanics, which has both theoretical and
practical value. In this case, the particles rotate at a large distance from the wall. They are in equi-
librium under the influence of the centrifugal force which is balanced by the radial pressure gradient.
Those particles close to the disk whose circumferential velocity is retarded under the same pressure
gradient directed inwards. However, the centrifugal force they are subjected to is greatly decreased.
This set of circumstances causes the particle near the disk to flow radially inwards, and for reasons
of continuity that motion must be compensated by an axial flow upwards, as shown in Figure 5.1. A
flow which arises in the boundary layer in this manner such that its direction deviates from that of the
outer flow is generally called a secondary flow. Such type of flow can be clearly observed in a teacup:
after the rotation has been generated by vigorous stirring and again after the flow has been left to
itself for a short while. The radial inward flow field near the bottom will be formed. Its existence can
be inferred from the fact that tea leaves settle in a little heap near the center at the bottom.

This problem was studied by Bödewadt [26] by making boundary layer approximations. That
is why the flow problem is widely known as the Bödewadt flow. For this problem, the Ackroyd’s
method [5] of expansion is not so suitable. Bödewadt approached the solution through a very labori-
ous method similar to that used by Cochran [55] for the Von Kármán equations. The method consists
of a power series expansion at z = 0 and an asymptotic expansion for z → ∞. Bödewadt’s solution
shows that the boundary layer effects extend out to about ζ = 8, where ζ is the non-dimensional
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distance measured along the rotation axis. A correction to this problem was worked out by Browning
(unpublished, see in [301]). He noticed a much thicker boundary layer than in the case of a disk
rotating in a fluid at rest. Batchelor [16] generalized theses analysis to include one parameter family
of solutions having a mathematical structure very similar to that of Von Kármán. It corresponds
to the flow above an infinite disk rotating with certain angular velocity, with the fluid in the far off
region in solid body rotation. The general problem of an infinite rotating fluid of which the above
two problems are particular cases has been later investigated by Hannah [122]. Subsequently, this
case has been treated by Stewartson [330]. Fettis [95] had been concerned largely with the problem of
Bödewadt. Rogers and Lance [278] studied numerically a similar problem when the disk rotates with
an angular velocity ω in a fluid rotating with a different speed Ω. When Ω = 0, the system reduces to
the free-disk problem of Von Kármán; when ω = Ω, there is a solid-body rotation; and when ω = 0, the
problem is the same as that discussed by Bödewadt. It was pointed out by Schwiderski and Lugt [305]
that the non-existence of a proper solution to the boundary value problems for rotating flows of Von
Kármán and Bödewadt types is an indication that, in reality, the flow is separated from the surface
of the disk. The simple ‘Tea cup experiment’ described above, displays very clearly a separation of
the fluid from the bottom of the cup. Application of the suction is an effective device to reduce the
chances of separation. Later, the local boundary layer approximations of first-order derived in [305]
have been generalized by Schwiderski and Lugt [306] to axisymmetric motions, which rotate over a
rotating disk of infinite dimensions. Numerical results are computed and discussed for a variety of
Reynolds numbers and for cases for which the disk is rotating in the same sense and in the opposite
sense as the fluid far away from the disk. The critical Reynolds numbers for steady laminar motions
which are attached to the surface of the disk are computed and displayed. Nanda [216] studied the
effects of uniform suction on the revolving flow of a viscous liquid over a stationary disk. It was
found that the presence of suction introduces an axial inflow at infinity. Nydahl [228] has extended
the Bödewadt flow problem by incorporating the heat transfer phenomena. The results obtained by
Nydahl effectively confirm those of Bödewadt. Those of Rogers and Lance [279] gave a significantly
larger value of H∞. The momentum and the displacement thicknesses decrease as the suction velocity
increases. The spin-up process in the Bödewadt flow of a viscous fluid has been studied by Chawla
and Purushothaman [47]. A comprehensive review of earlier works on flow and heat transfer due to
a single and two parallel rotating disks up to 1989 has been included in a monograph by Owen and
Rogers [233]. Recently, Chawla and Srivastava [48] have considered the physical situation in which
the disk is performing torsional oscillations in contact with a fluid in a state of rigid-body rotation
in the far field. Kitchens and Chang [156] have considered the Bödewadt flow for a non-Newtonian
second-order fluid.

A literature survey indicates that there has been an extensive literature available regarding the
boundary layer flow over a rotating disk (Kármán flow) in various situations. Such studies include
different fluid models, magnetohydrodynamic and hydrodynamic cases, with and without heat trans-
fer analysis. But there has been relatively little information regarding the Bödewadt type flow. The
present study is an endeavor to fill this gap. An important application of such flow arises from mod-
elling atmospheric flows. Besides the above reason, few other curious findings have motivated the
present investigation.

First of all, the steady Bödewadt flow of a viscous, incompressible fluid is one of the few problems
in fluid dynamics for which the Navier-Stokes equations admit an exact solution. Again as reported
by Owen and Rogers [233], there is a discrepancy in the numerical value of H∞ (axial flow velocity
at a sufficiently large distance from the surface of the disk), which was found to be 1.3494 using the
method of Rogers and Lance [278] on a VAX 8530 computer with a typical precision of 16 significant
figures. This depicts that the accuracy achieved by Rogers and Lance [278] was not sufficient to give an
accurate value of H∞. Moreover, it has been pointed out by many authors that Bödewadt’s solution
implies that there is a flow out of the boundary layer everywhere and no mechanism for supplying
fluid to it! For an infinite disk, the problem may be overcome by assuming an infinite reservoir of
fluid from which the boundary layer can draw in an unspecified way. For the more practical case of
a finite disk, it must be supposed that a similarity solution does not hold near the edge of the disk.
However, it is consistent with experience in other fields that a similarity solution becomes valid as the
boundary layer flow develops. It may then be assumed that fluid enters the boundary layer near the
edge of the disk and that this fluid is available for continuity in the similarity solution.

Most of the studies mentioned above admit no-slip condition on the walls, which is more a hy-
pothesis rather than a condition deduced from any principle, and thus its validity is questionable and
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69 5.2. FLOW ANALYSIS

has been continuously debated in the scientific community in various configurations. Evidences of
slip of a fluid on a solid surface have been reported by Matthews and Hill [200]. For example, if one
considers a zero-thickness disk admitting stress-free on its surface and rotating around its own axis,
it does not modify the motion of the surrounding fluid, which would remain at rest. It confirms an
intuitive result that the boundary condition on the disk surface plays a key role on the fluid motion.
Slip condition may have also some industrial relevance when the fluid is composed of emulsions, sus-
pensions, foams or polymer solutions. In other situations where the wall surface is rough, the no-slip
boundary condition becomes also impractical to apply exactly. In all these cases, the proper boundary
condition is well described by the general Navier’s condition [218], where the amount of relative slip is
proportional to the local shear stress through the slip length(es). Up to now, no particular attention
has been given to the effects of partial slip on rotating disk flows. If the characteristic scale of rough-
ness is small compared to the boundary layer thickness on the disk, the no-slip condition may be well
approximated by a partial slip condition [218]. Miklavčič and Wang [210] have considered the von
Kármán swirling flow of a viscous fluid with slip boundary condition. In a recent paper, Sherwood
[318] solved, among others, the flow due to a zero-thickness disk rotating around its own axis by the
use of Hankel transforms. The combined effects of slip and non-Newtonian cross-viscous parameter
on the rotating flows past free rotating disks have been thoroughly studied by Sahoo [283].

Literature survey however shows that hardly any attention has been given to the effects of slip
on the Bödewadt flow of a viscous fluid. The present work is devoted to study the effects of slip on
the steady Bödewadt flow of a viscous fluid. A second-order finite-difference method and the Keller-
box method are used to solve the resulting fully coupled and highly nonlinear differential equations
for a Newtonian fluid. The results are matched with the benchmark results corresponding to the
no-slip case [233] and are found to be in excellent agreement. The results are then extended for a
Reiner-Rivlin fluid using the finite-difference schemes.

5.2 Flow analysis

Figure 5.1: Schematic representation of the Bödewadt flow after Schlichting [301].

In this case, the non-Newtonian Reiner-Rivlin fluid model where the stress tensor τij is related to
the rate of strain tensor eij [13] has been considered:

τij = −pδij + 2µeij + 2µceikekj (5.1)

ejj = 0 (5.2)

where p is the pressure, µ is the coefficient of viscosity and µc is the coefficient of cross-viscosity.
The fluid occupies the space z > 0 over an infinite stationary disk (Fig. 5.1), which coincides with

z = 0. The motion is due to the rotation of the fluid like a rigid body with constant angular velocity
Ω at a large distance from the disk.
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The flow is described in the cylindrical polar coordinates (r, ϕ, z). In view of the rotational sym-
metry ∂

∂ϕ ≡ 0. The no-slip boundary conditions for the velocity field are given as:

z = 0, u = 0, v = 0, w = 0,

z → ∞, u → 0, v → rΩ, p → p∞ (5.3)

The Von Kármán transformations [348]

u = rΩF (ζ), v = rΩG(ζ), w =
√
ΩνH(ζ), z =

√
ν

Ω
ζ, p− p∞ = −ρνΩP (5.4)

reduce the Navier-Stokes equations for a Newtonian fluid to a set of ordinary differential equations.
The same is also true for a non-Newtonian Reiner-Rivlin fluid. One defines the non-Newtonian cross-
viscous parameter L = µcΩ

µ . With these definitions and by considering the usual boundary layer
approximations, the equations of continuity and motion take the form:

dH

dζ
+ 2F = 0, (5.5)

d2F

dζ2
−H

dF

dζ
− F 2 +G2 − 1

2
L
[(dF

dζ

)2
− 3
(dG
dζ

)2
− 2F

d2F

dζ2

]
= 1, (5.6)

d2G

dζ2
−H

dG

dζ
− 2FG+ L

(dF
dζ

dG

dζ
+ F

d2G

dζ2

)
= 0, (5.7)

d2H

dζ2
−H

dH

dζ
− 7

2
L
dH

dζ

d2H

dζ2
+

dP

dζ
= 0 (5.8)

and the boundary conditions (5.3) become:

ζ = 0 : F = 0, G = 0, H = 0,

ζ → ∞ : F → 0, G → 1 (5.9)

The fluid adheres to the surface partially and the motion of the fluid exhibits partial slip conditions.
A generalization of Navier’s partial slip condition gives, in the radial direction:

u|z=0 = λ1Trz|z=0, (5.10)

and in the azimuthal direction:
v|z=0 = λ2Tϕz|z=0, (5.11)

where λ1, λ2 are respectively the slip coefficients, and Trz, Tϕz are the physical components of the
stress tensor. One defines the dimensionless slip coefficients:

λ = λ1

√
Ω

ν
µ, η = λ2

√
Ω

ν
µ (5.12)

With the help of the transformations (5.4) the corresponding partial slip boundary conditions (5.10)-
(5.11) become:

F (0) = λ[F ′(0)− LF (0)F ′(0)], G(0) = η[G′(0)− 2LF (0)G′(0)], H(0) = 0,

F (∞) → 0, G(∞) → 1 (5.13)

The governing equations are still equations (5.5)- (5.7). The boundary conditions (5.9) are replaced
by the partial slip boundary conditions (5.13). It is clear that the boundary conditions at infinity
remain unaltered.

5.3 Numerical solutions of the problem

5.3.1 Finite-difference solution

The system of nonlinear differential equations (5.5) to (5.7) is solved under the boundary condi-
tions (5.13) by adopting the same second-order numerical scheme described in our previous works
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[283, 284, 288]. The semi-infinite integration domain ζ ∈ [0,∞) is replaced by a finite domain
ζ ∈ [0, ζ∞). In practice, ζ∞ should be chosen sufficiently large so that the numerical solution closely
approximates the terminal boundary conditions.

Now, the following mesh distribution is introduced:

ζi = ih (i = 0, 1, . . . n), (5.14)

h = 0.05 being the mesh size. Equations (5.5) to (5.7) are then discretized using the central difference
approximations for the derivatives:

Fi+1 − 2Fi + Fi−1

h2
−Hi

(Fi+1 − Fi−1

2h

)
− F 2

i +G2
i − Fi −

1

2
L
[(Fi+1 − Fi−1

2h

)2
− 3
(Gi+1 −Gi−1

2h

)2
− 2Fi

(Fi+1 − 2Fi + Fi−1

h2

)]
− 1 = 0,

(5.15)

Gi+1 − 2Gi +Gi−1

h2
−Hi

(Gi+1 −Gi−1

2h

)
− 2FiGi −Gi

+ L
[(Fi+1 − Fi−1

2h

)(Gi+1 −Gi−1

2h

)
+ Fi

(Gi+1 − 2Gi +Gi−1

h2

)]
= 0,

(5.16)

Hi+1 = Hi − h(Fi + Fi+1). (5.17)

Note that in Equations (5.15) and (5.16), which are written at the ith mesh point, the first and
second derivatives are approximated by the central differences centered at the ith mesh point, while in
Equation (5.17), which is written at the (i+1/2)th mesh point, the first derivative is approximated by
the difference quotient at the ith and (i+1)th mesh points and the right hand sides are approximated by
the respective averages at the same two mesh points. This scheme ensures to preserve the second-order
accuracy of the spatial discretization.

Equations (5.15) and (5.16) are three term recurrence relations in F and G respectively. Hence, in
order to start the recursion, besides the values of F0 and G0 the values of F1 and G1 are also required.
These values can be obtained by Taylor series expansion near ζ = 0 for F and G:

F ′(0) = s1, G′(0) = s2, (5.18)

F1 = F (0) + hF ′(0) +
h2

2
F ′′(0) +O(h2), (5.19)

G1 = G(0) + hG′(0) +
h2

2
G′′(0) +O(h2) (5.20)

The values H(0) and G(0) are given as boundary conditions in Equation (5.13). The values F ′′(0)
and G′′(0) can be obtained directly from Equations (5.6) and (5.7). After obtaining the values of F1

and G1, the integration can now be performed as follows. H1 can be obtained from Equation (5.17).
Using the values of H1 in Equations (5.15) and (5.16), the values of F2 and G2 are obtained. At
the next cycle, H2 is computed from Equation (5.17) and is used in Equations (5.15) and (5.16) to
obtain F3 and G3 respectively. The order indicated above is followed for the subsequent cycles. The
integration is carried out until the values of F , G and H are obtained at all the mesh points. Note that
one needs to satisfy the two asymptotic boundary conditions (Eq.(5.13)). In fact, s1 and s2 are found
by shooting method along with a fourth-order Runge-Kutta method so as to fulfil the free boundary
conditions at ζ = ζ∞ in Equation (5.9).

A noteworthy fact is that for the same values of the flow parameters, the value of the numerical
infinity should be chosen larger (ζ∞ = 28) as compared to the von Kármán flow problem (ζ∞ = 10)
[283], so that the numerical solution closely approximates the terminal boundary conditions at ζ∞.

The above algebraic system of equations are solved by a generalized Gauss-Seidel method [289]
instead of successive over relaxation method and thus the involvement of more parameters is avoided.
The convergence of the generalized Gauss-Seidel method for the above diagonally dominant system
of equations is quite fast.

5.3.2 The Keller-box method

The Keller-box method (KBM) originally developed by Keller [153] to solve parabolic partial differ-
ential equations describing boundary layer flow problems can be decomposed into four basic steps:
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72 CHAPTER 5. BÖDEWADT FLOW OF A NON-NEWTONIAN FLUID

1. Reduce the governing equations to a first-order system,

2. Write difference equations using central schemes,

3. Linearize the resulting equations,

4. Write the equations under a matrix-vector form and solve the linear system by block tridiagonal
elimination method.

The Keller-box method is only used here in the Newtonian case for which L = 0. The nonlinear
Eqs. (5.6)-(5.7), by considering (5.5), are reduced to:

d3H

dζ3
−H

d2H

dζ2
+

1

2

(dH
dζ

)2 − 2G2 + 2 = 0, (5.21)

d2G

dζ2
−H

dG

dζ
+G

dH

dζ
= 0 (5.22)

and boundary conditions (5.13) are converted to:

H ′(0) = λH ′′(0), G(0) = ηG′(0), H(0) = 0, H ′(∞) → 0, G(∞) → 1 (5.23)

Obviously, after solving the system (5.21)-(5.23), one can solve Eq.(5.6) very easily. In this method,
Eqs. (5.21)-(5.22) first converted into a system of five first-order equations are then expressed using
central differences. For this purpose, one introduces new dependent variables S(ζ), Q(ζ) and T (ζ) so
that Eqs. (5.21)-(5.22) can be written as:

dH

dζ
= S(ζ), (5.24)

dS

dζ
= Q(ζ), (5.25)

dG

dζ
= T (ζ), (5.26)

dQ

dζ
−HQ+

1

2
S2 − 2G2 + 2 = 0, (5.27)

dT

dζ
−HT + SG = 0 (5.28)

In terms of the new dependent variables, the boundary conditions (5.23) are given by:

S(0) = λQ(0), G(0) = ηT (0), H(0) = 0, S(∞) → 0, G(∞) → 1 (5.29)

One now considers the segment [ζj−1, ζj ], with ζj−1/2 as the midpoint, which is defined as below:

ζ0 = 0, ζj = ζj−1 + h, ζJ = ζ∞, (5.30)

where h = 0.01 is the ∆ζ-spacing and j = 1, · · · , J is a sequence number that indicates the coordinate
location. The finite-difference approximations of Eqs.(5.24)-(5.28) are written for the midpoint ζj−1/2:

Hj −Hj−1 −
h

2
(Sj + Sj+1) = 0, (5.31)

Sj − Sj−1 −
h

2
(Qj +Qj+1) = 0, (5.32)

Gj −Gj−1 −
h

2
(Tj + Tj+1) = 0, (5.33)

Qj −Qj−1 −
h

4
(Hj +Hj−1)(Qj +Qj−1) +

h

8
(Sj + Sj−1)

2 − h

2
(Gj +Gj−1)

2 + 2h = 0, (5.34)

Tj − Tj−1 −
h

4
(Hj +Hj−1)(Tj + Tj−1) +

h

4
(Sj + Sj−1)(Gj +Gj−1) = 0 (5.35)
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Equations (5.31)-(5.35) are imposed for j = 1, 2, · · · , J for sufficiently large ζ∞, the boundary layer
thickness. The boundary conditions (5.29) are converted to:

S0 = λQ0, G0 = ηT0, H0 = 0, SJ = 0, GJ = 1 (5.36)

One can linearize the nonlinear system (5.31)-(5.35) by the Newton’s method, and the linearized
difference system can be solved by the block elimination method as outlined by Cebeci and Bradshaw
[45], since the obtained linear system has block-tridiagonal structure.

5.3.3 Performances of the two methods

To compare the efficiency of the aforementioned two numerical schemes, Table 5.1 shows the CPU time
(in seconds) for L = 0, different values of the slip parameter and a given mesh distribution (ζ∞ = 14
and h = 0.01). Converged results are obtained after 15 iterations. Though the finite difference method
(FDM) is more effective than the KBM in some sense, the CPU time for the FDM is significantly much
higher as compared to the Keller-box method. It should be taken with certain caution as the methods
have been runned using different machines with different configurations. However, the calculations
remain quite fast and for both schemes, the CPU time increases with an increase in λ.

λ(= η) FDM Keller-box method

0 820.2 21.5

1 852.6 21.7

2 906.6 25.6

3 931.8 25.7

Table 5.1: Values of the CPU time (in seconds) for L = 0 and different values of λ(= η).

5.4 Results and discussion

The value of ζ∞ = 28 has been taken larger as compared to the previous problem [283] (ζ∞ = 10)
and kept constant. Although, the results are shown only from the disk surface ζ = 0 to ζ = 14, the
numerical integrations were performed over a substantially larger domain in order to assure that the
asymptotic boundary conditions are satisfied.

5.4.1 Viscous fluid (L = 0)

To validate our approach, the values of F , G and H for the no-slip condition (λ = 0) are compared
with those reported by Owen and Rogers [233] for a viscous fluid (L = 0) and reported in Table
5.2. The present numerical results presented herein both for the finite-difference method and the
Keller-box method confirm the calculations of Owen and Rogers [233] for the velocity components.
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Figure 5.2: Velocity profiles for the Newtonian case (L = 0) and λ(= η) = 0 obtained by the FDM.

Figure 5.2 depicts that near the disk, the radial velocity component F is radially inwards. It may
be of interest to note that this radially inward flow is the cause of the accumulation of the tea leaves
at the center of a stirred cup. The behaviors of the three velocity components confirm the sketch
shown in Figure 5.1. From the profile of G, one can deduce the value of the boundary layer thickness
ζ99, which is defined as the axial coordinate for which the tangential velocity of the fluid is equal to
the tangential fluid velocity at infinity within 1%. For L = 0 and λ = 0, the classical value ζ99 = 8 is
recovered by the present approach [233].

In order to have an insight into the effects of the slip, results are shown for the uniform roughness
(λ = η) using the FDM only. More comparisons between the two approaches are provided at the end
of this section. It is noteworthy that, for other combinations of λ and η, a similar behavior has been
obtained but is not shown here.

Figure 5.3 shows the effects of slip on the velocity field. Figure 5.3a shows the variation of the
radial velocity component F with the slip parameter λ. The effect of slip on F is prominent near
the disk. Clearly, the maximum value of the radial inflow decreases with an increase in slip and its
location moves towards the disk. The velocity profiles reverse the direction away from the disk and
approach the asymptotic value at a shorter distance from the disk for larger λ. Multiple cross-overs
are observed for the radial velocity profiles. Figure 5.3b shows the azimuthal velocity represented by
G(ζ). Its value increases with ζ, attains its maximum, then decreases and attains its asymptotic value
1. One can observe that G increases with an increase in slip, near the disk and decreases away from
the disk, as was expected. The oscillations occurring in the boundary layer when the fluid rotates
near a stationary disk can be explained in the following manner. The radial inflow, induced by the
retardation of the tangential velocity in the vicinity of the stationary disk, tends to conserve the
angular momentum of the flow and thus to increase the tangential velocity with decreasing radius.
For an overshoot, radial advection of the angular momentum near the disk must be strong enough
to more than balance the dissipation of angular momentum caused by the wall shear. This inward
radial advection of surplus angular momentum is possible as long as the distribution of circulation in
the outer flow increases with increasing radius. A local overshoot in the tangential velocity increases
the centrifugal force locally which then tends to induce a radial outflow. This radial outflow advects
an angular momentum defect to force an undershoot in the tangential velocity, and the above process
is repeated to yield oscillatory approach to infinity. The variation of the axial velocity component
H with λ can be seen in Figure 5.3c. It is observed that H decreases significantly with an increase
in slip. The axial profiles become flatter with an increase in λ. The axial velocity at infinity H∞ is
strongly reduced compared to the basic no-slip case λ = 0, for which H∞ = 1.349421. It is interesting
to find that slip dominates the oscillations in the velocity profiles.

Another important parameter of this flow problem is the effect of slip on the pressure distribution.
The prominent effect can be observed in Figure 5.3d. It is evident that in absence of slip (λ(= η) = 0),
the dimensionless pressure P has a dominating effect near the surface of the stationary disk. This
causes the radial inward flow near the disk surface. Pressure decreases with an increase in slip near
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Figure 5.3: Variations of F , G, H and P with λ(= η) for L = 0 obtained by the FDM.

the surface and consequently the strength of the radial inflow decreases, as shown on Figure 5.3b. In
presence of slip, the pressure profiles attain their asymptotic value P = 0 closer to the disk surface.

The expressions of the tangential shear stress τϕ, radial shear stress τ r and the dimensionless
moment coefficient CM are:

τϕ =
τϕ

ρr
√
νΩ3

=
dG(0)

dζ
, τr =

τ r

ρr
√
νΩ3

=
dF (0)

dζ
, CM =

−πG′(0)√
Re

(5.37)

where Re = R2Ω
ν is the Reynolds number based on the radius R and the tip velocity ΩR. Throughout

the computations, the value of Re has been fixed to Re = 1. This definition of CM is an extension of
the finite disk problem, which supposes that the disk radius is large enough. Note that the present
value of G′(0) for a Newtonian fluid and no slip condition (L = λ = 0) is in excellent agreement
with the value G′(0) = 0.77289 obtained by Owen and Rogers [233]. Thus, one got the classical value
CM = −4.86 in that basic case.

Figure 5.4a depicts the effects of slip on the surface shear stress in the radial direction τr, and
compares the finite-difference and Keller-box methods. It shows that the magnitude of τr decreases
with an increase in λ and remains negative throughout the range of the slip parameter. Figure 5.4b
shows that the tangential shear stress τϕ also decreases with an increase in slip, but its value remains
positive for the entire range of the slip parameter.

Figure 5.5 presents the variation of the dimensionless moment coefficient CM with slip. For the
whole range of slip parameter, CM exhibits negative values. It may be attributed to the flow problem:
the flow due to an infinite rotating disk [283]. The Von Kármán flow considered by Sahoo [283] is
precisely the inverse problem, which explains the different signs in CM . Moreover, it is important to
note that the linear nature of the τr, τϕ and CM profiles for the current viscous flow is contrary to
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(a) (b)

Figure 5.4: Variations of (a) τr and (b) τϕ with λ(= η) for L = 0; Comparison between the finite-
difference and the Keller-box methods.

Figure 5.5: Variation of Cm with λ(= η) for L = 0; Comparison between the finite-difference and the
Keller-box methods.

the corresponding profiles for non-Newtonian fluids [283, 286]. This may be due to the presence of
extra nonlinear terms in the expressions for τr, τϕ and CM , associated with the non-Newtonian cross-
viscous parameter in [283, 286]. For these three quantities, there is an excellent agreement between
the finite-difference schemes and the Keller-box method.

5.4.2 Non-Newtonian fluid (L ̸= 0)

In order to have an insight of the flow characteristics in the non-Newtonian case, results are plotted
for the uniform roughness (λ = η), and different values of the flow parameters only using the finite-
difference method (FDM). The variations of the radial velocity component F with the non-Newtonian
cross-viscous parameter L and the slip parameter λ(= η) are shown in Figures 5.6 and 5.7 respectively,
when the other flow parameters are kept constant. Figure 5.6 reveals that L has a prominent effect
on F , near the disk. The magnitude of the radial inflow, near the disk, decreases with an increase in
L. The radial velocity component near the disk remains negative for all values of the non-Newtonian
parameter L, reverses the direction away from the disk, and finally approaches its asymptotic value.
Thus, cross-overs are found in the velocity profile. Figure 5.7 shows the variation of F with the slip
parameter λ(= η), when other flow parameters are kept constant. It is clear that the effect of slip on
F is also prominent near the disk. The velocity profiles reverse the direction away from the disk and
approach the asymptotic value at a shorter distance from the disk as compared to the former case.

Figures 5.8 and 5.9 depict the variations of the azimuthal velocity component with L and λ(= η)
respectively. The non-Newtonian parameter L has a spectacular effect on G, away from the disk (near
ζ = 2). An increase in L decreases the velocity profile G near the disk. The velocity component
increases (see Figure 5.9) near the disk with an increase in λ(= η). Thus, it is interesting to find that
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Figure 5.6: Variations of F with L for
λ(= η) = 1.

0 2 4 6 8 10 12 14
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

ζ

F
(ζ

)

λ(=η)=1.0
=2.0
=3.0
=4.0
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Figure 5.8: Variations of G with L for
λ(= η) = 1 (FDM).
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Figure 5.9: Variations of G with λ(= η)
for L = 2 (FDM).

the slip has an opposite effect to that of the cross-viscous parameter on G. From these profiles, the
boundary layer thickness ζ99 can be calculated for all flow parameters. The variations of ζ99 with the
slip parameter λ and the non-Newtonian parameter L are shown in Figures 5.10 and 5.11 respectively
and compared with the classical value ζ99 = 8 obtained for a Newtonian fluid L = 0 and no slip
condition λ = 0. For L = 2, ζ99 slightly increases with increasing values of the slip parameter λ,
following the quadratical fitting law:

ζ99 = 0.098λ2 − 0.061λ+ 2.8 (5.38)

For a given value of the slip parameter λ = 1, ζ99 slightly increases also with increasing values of
the non-Newtonian parameter L, following also a quadratical law:

ζ99 = 0.055L2 − 0.027L+ 3.9 (5.39)

It is noteworthy that the values of ζ99 are much weaker than the ones obtained for no-slip condition
(λ = 0) in the case of a Newtonian fluid (L = 0): ζ99 = 8 [233].

Another interesting quantity, which can be deduced from the profiles of F and G, is the turning
moment for the disk with fluid on both sides. The expression of the dimensionless moment coefficient
CM is given by:
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Figure 5.10: Variation of the boundary
layer thickness ζ99 with λ for L = 2
(FDM).

Figure 5.11: Variation of the boundary
layer thickness ζ99 with L for λ = 1
(FDM).
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Figure 5.12: Variation of the moment
coefficient CM with λ for L = 1 and
Re = 1 (FDM).
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Figure 5.13: Variation of the moment
coefficient CM with L for λ = 1 and
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CM =
−2πG′(0)[1− 2LF (0)]√

Re
(5.40)

The variations of CM with the slip λ and non-Newtonian L parameters are shown in Figures
5.12 and 5.13 respectively. Whatever the flow parameters, CM exhibits negative values. It may be
attributed to the flow problem: a rotating fluid at infinity over a stationary disk. Thus, the axial
gradient of the tangential velocity G′ is still positive and CM is then always negative. The Von
Kármán flow considered by Sahoo [283] is precisely the inverse problem, which explains the different
signs. For L = 1 and Re = 1 (see Fig.5.12), the moment coefficient CM in absolute values strongly
increases (resp. decreases) with increasing values of the slip parameter λ for λ < 0.6 (resp. λ > 0.6).
It tends rapidly to zero for high values of λ, which means that the torque required to maintain the disk
at its original speed is almost zero when the slip parameter is high. Omitting the different boundary
conditions between the two problems, the present results confirm the previous ones of Sahoo [283] for
Von Kármán flows and comparable values are obtained.

The slip parameter λ is now fixed to unity and the non-Newtonian parameter L varies between 0
and 100 for Re = 1 (Fig.5.13). CM increases in magnitude with the parameter L. In that case, the
torque required to maintain the disk at rest is much higher than those necessary to maintain the disk
at Ω for the Von Kármán flow considered by Sahoo [283].

The variations of the axial velocity component H with L and λ(= η) have been plotted in Fig-
ures 5.14 and 5.15 respectively. The figures show that both parameters have a similar effect on H. It
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Figure 5.14: Variations of H with L for
λ(= η) = 1 (FDM).
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Figure 5.15: Variations of H with λ(=
η) for L = 2 (FDM).

is clear that the axial velocity becomes flatter with an increase in L and λ(= η). The axial velocity at
infinity H∞ in both cases is strongly reduced compared to the basic case L = 0 and λ = 0, for which
H∞ ≃ 1.3494.

5.5 Conclusion

In this work, the slip flow due to the rotation of a both a Newtonian viscous fluid and of a non-
Newtonian Reiner-Rivlin fluid near a stationary disk have been examined precisely for the first time.

In the Newtonian case, the resulting highly nonlinear differential equations are solved by two
methods: a second-order numerical scheme based on the finite-difference method and the Keller-box
method. It is found that slip decreases the radial inflow near the disk. With an increase in slip, the
azimuthal velocity G increases near the disk and decreases away from the disk. It is also observed that
slip dominates the oscillations in the velocity profiles. One of the significant findings of the present
study is that the moment coefficient Cm, which is a measure of the torque required to maintain the
disk at rest, decreases with an increase in slip.

Then, the Bödewadt flow problem is extended to the non-Newtonian case using the Reiner-Rivlin
fluid model. The combined effects of the slip (λ = η) and the non-Newtonian parameter (L) on the
velocity field are studied in details using the finite-difference schemes. It is interesting to find that
λ(= η) and L have similar effects on the radial and axial velocity components. For increasing values
of λ or L, a slight thicknening of the boundary layer on the stationary disk is observed. On the other
hand, both parameters have opposite effects on the azimuthal velocity component and the moment
coefficient. Thus, the torque required to maintain the disk at rest tends to zero for increasing values
of λ and increases (in absolute values) with L showing a predominant influence of the non-Newtonian
parameter.

The present work is a step forward in the computation of the rotor- stator flow with partial
slip effects and/or using non-Newtonian fluids to establish reference solutions for future numerical
benchmarks. A more faraway outlook is the inclusion of finite cavity and confinement effects.

The same analysis can be done in many other flow configurations: plane stagnation-point flow
(Hiemenz flow), flow past a stretching sheet, flow past an infinite plate (Blasius flow) . . . One has
performed the same kind of analysis in the two latter cases, whose results have been published in
references [285] and [287] respectively.
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Chapter 6

Shear-layer instability over a
rotating disk

In this Chapter, a spectacular shear-layer instability generic of rotating flow arrangements is studied
in details mainly by flow visualizations and image processing but also by recent DNS calculations.
This work was initiated when I was assistant lecturer at IRPHE. With Marie-Pierre Chauve, one has
discovered this instability a little bit by chance, simply by coming apart the rotor-stator experiment.
The experimental results have been published in J. Flow Visualization & Image Processing (Ref.
[250]). In the framework of a collaboration with Laurent Martin-Witkowski (LIMSI), the present
results have been compared to the stability analysis of Kahouadji et al. [144].

The shear-layer instability in the flow over a rotating disk with a free surface is thus investigated
mainly experimentally by flow visualizations and by DNS using the pseudospectral code described in
Chapter 3 for a large range of the flow parameters: the aspect ratio G of the cavity, the rotationnal
Reynolds number Re and the radius ratio η between the inner and outer radii of the disk. This
instability develops along the cylindrical shroud as sharp-cornered polygonal patterns characterized
by their number of vortices m. This number m can be scaled by considering an Ekman number
based on the water depth, which confirms that the shroud boundary layer is of Stewartson type.
The appearance threshold of the first polygonal mode is constant by considering the mixed Reynolds
number introduced by Niino and Misawa [223]. For large values of η, the instability patterns appear
along the hub as small stationary cells.

6.1 Introduction

The stability of rotating disk flows has been addressed for a long time, mostly in the case of a
single infinite rotating disk [91] and more recently in the rotor-stator configuration [61, 252]. The
present work considers an experimental system where a shear-layer instability is obtained over a finite
rotating disk with a free surface. Shear layers in rapidly rotating systems (called Stewartson layers)
are of primary importance from a geophysical point of view, as they can be observed in oceans or in
planetary atmospheres. For examples, the Great Red Spot on Jupiter (Fig.6.1a) and the Blue spot
on Neptune result from differential rotation with sharply sheared zonal flows. Figure 6.1b presents
another spectacular example: the hexagonal vortex formed at the North pole of Saturn. Rotating
shear layer instabilities have been seen also in flows enclosed in computer hard drives. The instability
that affects a circular shear-zone has then been widely studied in various configurations.

Stewartson [331] considered the stationary linear problem in the case of a split rotating cylinder.
He showed, using an asymptotical method, that the flow generated by a slight differential rotation
of one part of the shell is composed by two cylindrical shear layers aligned with the axis of rotation

and located at the split radius. The largest one is geostrophic and its width scales like E
1/4
b (where

Eb = ν/(Ωb2) = 1/Re is the Ekman number based on the cylinder radius b, ν the kinematic viscosity
of the fluid, Ω the rate of rotation of the cylinder and Re the rotationnal Reynolds number), whereas

the width of the thinner ones scales like E
1/3
b .

Hide and Titman [127] investigated experimentally the linear stability of the Stewartson layers,
which develop on a differentially rotating disk suspended in a rotating tank. The instability appears
as non-axisymmetric patterns of m waves in planes perpendicular to the rotation axis above a well-
defined threshold. The number m is maximum at the threshold and decreases with the amplitude
of the differential rotation. In their experiments, the Coriolis force plays an important role in the
development of the vortices proving that this is not just a Kelvin-Helmholtz instability. Rabaud and
Couder [265] performed experiments on the destabilization of a thin layer of air between two plates.
The instability is of Kelvin-Helmholtz type and induces regular, steady patterns ofm vortices. Neither
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(a) (b)

Figure 6.1: (a) The Great Red Spot on Jupiter as discovered by Giovanni Cassini; (b) Image of
the Saturn North polar hexagonal vortex taken by the Cassini Solstice Mission (Source: NASA /
JPL-Caltech / Space Science Institute, November 27, 2012).

the centrifugal nor the Coriolis forces are involved in the motion. The same configuration has been
considered later by Chomaz et al. [53], who compared the results presented in Rabaud and Couder
[265] with new experiments and numerical simulations. They showed in particular the dependence
on the aspect ratio of the cell on the dynamical behavior of the flow. In large cells, transitions from
a mode with m vortices to a mode with (m − 1) vortices occur through localized processes. On the
contrary, in small cells, transitions occur after a series of bifurcations corresponding to successive
breakings of all the symmetries of the flow. The same configuration has been studied numerically by
Bergeron et al. [22]. They compared the results of their numerical code with the experimental data
and the linear stability analysis of Rabaud and Couder [265] and Chomaz et al. [53] with a reasonable
agreement between the different approaches, although Bergeron et al. [22] found a clear dependence
of the critical Reynolds number on the aspect ratio of the shell.

Niino and Misawa [223] considered a flow driven by a thin disk at the bottom of a tank to study
the barotropic instability of horizontal shear flows. They compared their experimental results with
a linear stability analysis applied to an initially circular shear-layer, including viscous diffusion and
Ekman pumping. They found that the number of vortices should decrease with increasing Reynolds
number. In a laboratory experiment, Früh and Read [100] studied also the barotropic shear layer in
a rotating fluid. Above a critical shear, the shear layer breaks up through a barotropic instability,
which appears as a string of vortices along the shear zone. They showed that the transition from the
axisymmetric mode to regular vortices occurs through a Hopf bifurcation. They obtained between
m = 2 and 8 modes. Van de Konijnenberg et al. [341] investigated experimentally and numerically
the instability of a forced, circular shear layer in a rotating fluid. They applied a radial pumping to a
shallow layer of water in a parabolic tank to model a geophysical β-effect. The instability appears as
a sequence of vortices, the number of which decreases with increasing the shear strength. The radial
pumping of fluid from the periphery to the center of the cavity induces an azimuthal flow, which
stabilizes the shear flow if it is opposite to the rotation or destabilizes it otherwise. A β-effect may
prevent the formation of a steady vortex chain.

Dolzhanskii et al. [76] considered a MHD device for the generation of both a circular shear flow and
a Kolmogorov flow. They compared their experimental results to the stability theory of quasi-two-
dimensional flows with a close agreement between the different approaches. In the circular geometry,
the modes m = 3, 5 and 6 of the shear layer instability have been observed.

The flow between an enclosed corotating disk pair (ECDP) offers a well-known configuration to
observe polygonal patterns. Abrahamson et al. [4] studied experimentally this type of flow for a radius
ratio η = a/b = 0.5, 1.5× 105 ≤ Re ≤ 1.5× 106 and 0.013 ≤ G = h/b ≤ 0.1 (a and b are respectively
the inner and outer radii of the cavity and h is the interdisk spacing). They observed three distinct
regions: a solid body inner region near the hub, an outer region dominated by large counter-rotating
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vortices and a boundary layer along the shroud, the last one being three-dimensional (3D) contrary
to the two others. They considered two flow parameters: the Ekman number Eb and the aspect ratio
of the cavity G. When Eb decreases or G increases, the number of vortices m decreases but they
become larger. Herrero et al. [126] established numerically the bifurcation diagram in the ECDP case
in the plane (Re, G) for η = 0.537, Re ≤ 82380 and 0.05 ≤ G ≤ 0.2. They distinguished three
regions corresponding respectively to axisymmetric steady flow with interdisk midplane symmetry, to
3D unsteady flow with shift-and-reflect symmetry and to 3D unsteady flow with symmetry breaking
with respect to the midplane. In the last case, they obtained the mode m = 4 for Re = 13710 and
G = 0.18 and the mode m = 5 for Re = 82380 and G = 0.091 in agreement with the observations
of Abrahamson et al. [4]. Randriamampianina et al. [267] presented a numerical investigation of the
flow in the ECDP case for η = 0.5, 0.01 ≤ G ≤ 0.6 and Re = 1.06× 104. For G ≥ 0.26, they showed
that the transition to unsteady 3D flow occurs after the pitchfork bifurcation. The flow structure
is then characterized by a shift-and-reflect symmetry, which is consistent with the experiments of
Abrahamson et al. [4]. For smaller values of the aspect ratio, the 3D flow shows a symmetry breaking.
For G = 0.6 and increasing values of the rotation rate, they obtained successively the mode m = 8 for
Re = 3750, the mode m = 6 for Re = 4250 and the mode m = 5 for Re = 104.

The shear layer instability in the flow between two counter-rotating disks enclosed by a cylinder has
been investigated experimentally and numerically by Moisy et al. [212] for η = 0 and 0.048 ≤ G ≤ 0.5.
It develops as a sharp-cornered polygonal pattern with m sides, already observed by Lopez et al. [187],
surrounded by a set of 2m spiral arms. The lower modes m = 3− 5 (Fig.6.2) are observed essentially
for large aspect ratios and the number of sides increases for decreasing values of the aspect ratio. No
hysteresis is reported for the instability threshold but a noticeable one is present for the onset mode.
The authors believe that the bifurcation remains supercritical for the whole range of the flow control
parameters. The reader is referred to the work of Moisy et al. [212] for a more extensive literature
survey on such a flow configuration.

Figure 6.2: Results after Moisy et al. [212] in the counter-rotating disk cavity for G = 1/3, Retop =
2520 and Rebottom = 720: (a) Mode m = 5 after a sudden increase of Ω; (b) Mode m = 4 after a
progressive increase of Ω.

The reader is referred also to the review paper of Dolzhanskii et al. [75] and to the work of Bergeron
et al. [21] for discussion about the analysis of the shear layer with weakly nonlinear theory, which
accounts for phenomena such as hysteresis and saturation of the amplitude of the unstable wave mode.

6.2 Experimental set-up and flow parameters

6.2.1 The apparatus

A sketch of the experimental cell is presented in Figure 6.3. It consists of a smooth rotating stainless-
steel disk of radius b = 140 mm enclosed by a fixed cylindrical shroud of radius b+ j (j = 0.85± 0.05
mm). A central hub of radius a equal to either 40, 75 or 105 mm can be attached or not to the rotating
disk. The disk drive shaft is going through the bottom of the tank and is connected to an electric
engine by means of a belt, so that the disk can rotate with an angular velocity Ω varying from 0 to 200
rpm. A servo-control system for the rotation rate permits to maintain Ω constant with an accuracy
of 0.2%. Note that both the disk and the hub rotate clockwise. The heights of the cylinder and the
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hub are fixed to e = 20 mm. The cavity is filled up by water at a constant working temperature 20◦C
(kinematic viscosity of water ν = 10−6 m2/s). The water depth at rest is denoted h and can vary
between 0 and 15 mm.

Figure 6.3: Schematic representation of the cavity with relevant notation.

In order to visualize the hydrodynamic structures, which develop in the flow, the water is seeded
with reflective anisotropic particles of “kalliroscope” (size 30 × 6 × 0.07 µm) in suspension, whose
orientation depends upon the shear stress of the flow. The flow is illuminated with an annular neon
and the surface of the stainless steel rotor is painted black to improve flow visualizations. Images
(768× 576 pixels) are taken at a video frequency of 25 images per second using a CCD video camera
situated one meter above the cavity.

6.2.2 The flow global parameters

The flow is mainly controlled by three global parameters: the rotationnal Reynolds number Re based
on the outer radius b of the rotating disk, the aspect ratio G of the cavity and the radius ratio η
defined as:

Re =
Ωb2

ν
≤ 1.2× 105 G =

h

b
≤ 0.107 η =

a

b
= 0, 0.286, 0.536, 0.75

Note that η = 0 corresponds to the case where no hub is attached to the rotating disk. These
dimensionless numbers appeared to be the more common ones as they contain only one varying
parameter. The axial z∗ and r∗ radial dimensionless coordinate are defined as followed: z∗ = z/H
and r∗ = r/b, where H(r) is the local water depth (see next section). z∗ = 0 corresponds to the
rotating disk surface and z∗ = 1 to the free surface. For future discussions, the Ekman number
based on the water depth h at rest is introduced: Eh = ν/(Ωh2). It measures the viscous dissipation
compared to the Coriolis term. Numerous authors introduced also a Rossby number Ro based on the
differential rotation of their system. In the present work, the shear layer is produced by the differential
rotation between the rotating fluid (Ωf ) and the fixed shroud (Ωs = 0). The Rossby number Ro based
on the differential rotation (Ωf −Ωs)/Ωf is then equal to Ro = 1 and does not appear to be a relevant
parameter to study the stability of this flow.

6.2.3 The experimental procedure

One has observed that the stability of the basic flow is very sensitive to the initial conditions (in
particular to the initial shear stress), but also to the time history of the rotation rate as it is the only
varying flow parameter during a sequence of observations. Thus, the thresholds and the sequence of
the instabilities depend strongly on the experimental procedure, which must be always the same. In
order to impose a continuous shear between the rotating fluid and the shroud, the rotation rate Ω is
increased by step of one rpm between two observations. According to the linear Ekman dynamics [114],
the time evolution in rotating flow systems is characterized by the Ekman time: τE = b/

√
νΩ = 137 s

for Ω = 10 rpm. As long as the symmetry (the number of vortices) is constant, the adjustment of the
flow to changes in Re is almost instantaneous [22] but the time scale related to the transition between
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two modes is much longer and close to τE . As soon as the last pattern is obtained for large values of the
rotation rate, the same procedure is applied for decreasing values of Ω until the last mode disappears.
The shear is supposed to be constant along the axial direction as the water depth h remains small.
All results reported in the next section were found to be repeatable. For future discussions, as already
introduced by Bergeron et al. [22], spin up (resp. spin down) refers to a sequence of observations
where the values of the Reynolds number Re are increased (resp. decreased).

6.2.4 Shape of the free surface for η = 0

The experiments were performed in a shallow layer of water over a rotating disk. It has been checked
that the flow parameters are such that a wet central zone is guaranteed close to the rotation axis in all
cases (see in [8]). The local water depth H(r) (see Fig.6.3) may be determined in the unperturbated
equilibrium state by balancing the gravitational acceleration and the centrifugal one. For η = 0 and
a rotating endwall, it may be expressed as:

H(r) = h+
Ω2

f

2g
(r2 − b2

2
) (6.1)

where Ωf = FΩ is the fluid rotation rate and g = 9.81 m/s2 is the acceleration of gravity. One
has experimentally verified this relation for different values of Ω with a good agreement in the inner
region. This relation being established for a rotating endwall, it overestimates the value of the local
water depth close to the outer stationary cylinder. To our knowledge, the only detailed work on the
shape of the free surface is the one by Bouffanais and Lo Jacono [32], who developed a 3D code, which
takes into account the deformation of the free surface in all directions. But they considered very large
aspect ratios (G ≃ 1) and larger Froude numbers Fr = Ω2b/g = 0.1 and the shape of the free surface
is then quite far from those given by Equation (6.1). Some calculations of the free surface deformation
may also be found in the PhD thesis of Kahouadji [143].

Figure 6.4: Influence of the Reynolds number on the dimensionless azimuthal velocity F of the polygon
patterns deduced from the flow visualizations (black symbols) and the DNS (blue symbols) for 0.0143 ≤
G ≤ 0.143 and modes between m = 3 and 8.

The fluid rotation rate Ωf has been measured mainly from the flow visualizations but also by
laser Doppler anemometry (LDA). It rotates almost as a solid body with a tangential velocity directly
proportional to the rotating disk speed: Ωf = FΩ, with F the entrainment coefficient of the fluid. As
shown on Figure 6.4 for all values of G within the range [0.0143− 0.143], the experimental values of
F depend slightly on Re and G, which confirms the experimental results of Huang and Hsieh [132] in
the ECDP case (for 0.1 ≤ G ≤ 0.22). One can note a decrease of F when one decreases the modes:
F ≃ 0.8 for m = 7 and 8 and decreases to F ≃ 0.65 for m = 3. Huang and Hsieh [132] found that
F = 0.8± 0.01 for m = 5 and decreases to F = 0.6± 0.02 for m = 2. The four DNS results are within
the range of the experimental values.
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6.3 Results and discussion

Extensive flow visualizations have been performed for a wide range of the flow parameters G, η and
Re and compared in some specific cases to new DNS results obtained using the pseudospectral code
described in Chapter 3 and to the linear stability analysis (LSA) of Kahouadji et al. [144]. As the
Froude number Fr = Ω2b/g remains small (here max(Fr)= 0.027 << 1), the free surface may be
supposed to be undeformable and planar in the simulations. The LSA [144] also assumes a flat free
surface.

6.3.1 Structure of the flow for η = 0

Figure 6.5 illustrates an example of the flow structure (mode m = 5) observed for η = 0, Re = 45155
and G = 0.0429. This illustration is quite comparable to the vorticity maps obtained using DNS
by Randriamampianina et al. [267] in the ECDP case. The vortical structure occupies all the water
depth as the shear is supposed to be constant along the axial direction (small values of G). One
can distinguished three distinct radial regions, the inner and outer regions, separated by a polygonal
boundary.

Figure 6.5: Experimental flow visualization showing the flow structure (mode m = 5) for η = 0,
G = 0.0429 and Re = 45155.

The inner region is observed for 0 ≤ r∗ = r/b ≤ 0.64, in which the flow is two-dimensional, laminar
and rotates roughly as a solid body. The shape of the inner region is polygonal with m = 5 sides.
During flow visualization in the rotating frame of reference, one observed that the polygon rotates
slightly relative to the rotating disk, which is induced by the passage of the vortical structures in the
outer region.

The outer region, confined between the inner region and the shroud, is actively turbulent. It
contains m = 5 counterclockwise vortical structures. These structures are almost distributed along a
circle of radius r∗c = (R1+R2)/(2b), where R1 and R2 are the location of the polygonal boundary and
the maximum radial location of the vortical structures as being defined in Figure 6.5. This critical
radial location for the appearance of the polygonal patterns is equal to r∗c ≃ 0.73 and rather constant
whatever the values of the parameters.

The five vortices, which span the radial extent of the outer region, rotate relatively to the rotating
disk with a speed, estimated from the flow visualization, of about 73.5% of the disk speed relative to
the laboratory (see Fig.6.4). This value is in good agreement with the 75% obtained by Abrahamson
et al. [4] for m = 5, G = 0.05 and Re = 4.924× 105.

The vortical structures are responsible for the deformation of the inner region, which produces the
polygonal boundary. As showed by the straight arrows in Figure 6.5, the portion of the vortex that
flows outward induces the lobes of the polygon by pulling the inner region fluid away from the center
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of the rotating disk. In the same way, the portion of the vortex that flows inward (dashed arrows)
flattens the boundary by forcing it radially inward. Thus, the shape of the boundary moves with the
vortices. The inner region moves with the vortices too. In response to the passing train of vortices, it
moves slightly along a cyclic orbital.

At the periphery of the disk, a boundary layer develops along the fixed cylindrical shroud. This
shroud boundary layer is three-dimensional according to the observations of Abrahamson et al. [4].

(a) (b) (c)

Figure 6.6: Mode m = 5 for η = 0 and G = 0.0714: (a) flow visualizations at Re = 16425; (b) DNS
results at Re = 18000 and z∗ = 0.32 (iso-Vθ; 130×128×65 mesh points in the (r, θ, z) directions with
δt = 10−4Ω−1); (c) stability analysis [144] at Re = 16974. The disk rotates clockwise.

Figure 6.6 compares the flow structure of the mode m = 5 obtained by flow visualizations, DNS
and the stability analysis of Kahouadji et al. [144] for η = 0, G = 0.0714 close to the threshold
(Re ≃ 16425− 18000). The pentagonal form is well defined but the vortices in the outer region have
a weak intensity. A very good agreement between the three approaches is then observed in terms of
the flow structure, which valids the assumption of a flat free surface.

Figure 6.7: Flow structure of the mode m = 5 in a (r, z) plane for η = 0 and G = 0.0714: (a) Vr/(Ωb)
(DNS), (b) Vθ/(Ωb) (DNS), (c) Vθ (stability analysis [144]), (d) Vz/(Ωb) (DNS), (e) Vz (stability
analysis [144]); DNS results for Re = 18000 (130×128×65 mesh points in the (r, θ, z) directions with
δt = 10−4Ω−1) and the stability analysis for Re = 16974.

To go in more details, some maps of the mean velocity components are shown in Figure 6.7. For
the tangential and axial velocity components, the same flow structures are obtained by DNS and
the stability analysis of Kahouadji et al. [144]. For r∗ up to 0.6, the fluid rotates as a solid body

87



88 CHAPTER 6. SHEAR-LAYER INSTABILITY OVER A ROTATING DISK

with a constant and weak value of the normalized tangential velocity and quasi zero radial and axial
velocities. For 0.6 ≤ r∗ ≤ 0.75, Vθ remains independent of the axial position but gets stronger. For
larger radii r∗ ≥ 0.75, the flow structure gets closer to the one observed in rotor-stator configurations.
The appearance of the polygonal mode leads in that region to the creation of a secondary flow. The
radial velocity is positive at the periphery of the rotor due to centrifugal effects and by conservation
of mass gets negative along the free surface.

6.3.2 Transition diagram for η = 0

The main results concern a cavity where no hub is attached to the rotating disk (η = 0). The two only
flow parameters are the water depth h (G = h/b) and the rotation rate Ω (Re = Ωb2/ν). The purpose
to the two next subsections is to provide flow visualizations of the shear instability and transition
diagrams for various geometries. The reader is referred to the numerical studies of Chomaz et al.
[53] and Bergeron et al. [22] for a detailed description of the transition processes during spin-up and
spin-down, which is quite difficult to report from experimental observations.

(a) (b)

(c)

Figure 6.8: Stability diagram for η = 0 and: (a) G = 0.0714, (b) G = 0.0429, (c) G = 0.0179. Results
obtained by experimental flow visualizations.

Figure 6.8 represents the stability diagram of the basic flow in the plane (m, Re) for three char-
acteristic aspect ratios. One can recall that m is the number of vortices. For G = 0.0714 (Fig.6.8a),
the flow becomes unstable above a first threshold Re = 4105 and the axisymmetric mode denoted
m = 0 appears as a first circle C1 (Fig.6.9a) moving slightly towards the center of the rotating disk
for increasing values of the Reynolds number. A second circle C2 appears along the shroud and moves
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also towards the center of the disk. The flow is then almost entirely laminar. When both circles
interact for Re = 16420 (it corresponds to ReNM introduced below), a second pattern develops as a
sharp cornered polygon with five vortices (Fig.6.9e). When the Reynolds number is further increased
above this critical value, a series of two symmetry-breaking bifurcations occur. Each one of these is
characterized by a reduction of the number of vortices in the system. The transition from the mode
m = 5 to the mode m = 4 (Fig.6.9f) occurs above a third threshold Re = 36945. The existence
domain of the mode m = 4 is quite narrow, contrary to the mode m = 3 (Fig.6.9g), which subsists
in the range 4310 ≤ Re ≤ 102625. For larger Reynolds numbers, an axisymmetric state (Fig.6.9h) is
restored but the flow at the periphery of the cavity is turbulent and the mode denoted m = 1 appears.
During spin-down (dashed arrows in Figure 6.8a), only the modes m = 1, 3, 5 and 0 are successively
obtained. The sequence has then changed and the thresholds are slightly shifted to smaller values
of Re than in the case of spin-up. Finally the flow becomes again stable for Re = 4105. During
spin-down, the number of vortices in the flow has increased by more than one when the transition
from mode m = 3 to mode m = 5 occurred. It could be assigned to a too fast spin-down or to an
external noise, which postpones the transition as suggested by Bergeron et al. [22].

Figure 6.9: Experimental flow visualizations highlighting the shear-layer instabilities for η = 0: (a)
m = 0, G = 0.0179, Re = 38998; (b) m = 8, G = 0.0179, Re = 51313, (c) m = 7, G = 0.0286,
Re = 43101; (d) m = 6, G = 0.0429, Re = 34893; (e) m = 5, G = 0.0429, Re = 45155; (f) m = 4,
G = 0.0429, Re = 61575; (g) m = 3, G = 0.0714, Re = 49260; (h) m = 1, G = 0.0714, Re = 102625;
(i) m = 5, G = 0.0714, Re = 24630.

Note that the mode m = 2 has never been observed for η = 0 and that the modes m = 0 and 1
are always obtained whatever the geometry of the cavity (all values of G and η). All the observations

89



90 CHAPTER 6. SHEAR-LAYER INSTABILITY OVER A ROTATING DISK

reported here are in good agreement with other experiments [53, 212], where strong hysteresis is
observed for the modes, although no or a weak hysteresis is present for the threshold values. This
problem is generic for systems where the geometrical confinement leads to azimuthal wavenumber
quantization [265]. The weak hysteresis obtained for G = 0.0714 has been confirmed by present
DNS calculations. The m = 5 instability threshold is Re = 18000 during the spin-up process, while
this mode remains stable up to Re = 15000 during spin-down showing the subcritical nature of this
instability. From the experiments, the hysteresis is stronger with a threshold equal to Re = 15700
(resp. Re = 9800) during spin-up (resp. spin-down).

When the aspect ratio G decreases (Fig.6.8), the number of vortices of the first polygonal pattern
increases: m = 5 for G = 0.0714 (Fig.6.8a), m = 6 for G = 0.0429 (Fig.6.8b) and m = 8 for
G = 0.0179 (Fig.6.8c). The sequence is almost the same whatever the aspect ratio. N polygonal
patterns are observed during the spin-up and (N − 1) patterns during the spin-down. The number
of observed polygonal structures N decreases from N = 3 for G = 0.0719 and G = 0.0429 to N = 2
for G = 0.0179. The instability thresholds are also slightly shifted to smaller values of the Reynolds
number when G decreases. Note that the hysteresis on these thresholds is more important for the
smallest value of G = 0.0179 (Fig.6.8c). Moreover for this aspect ratio, the transition process during
the spin-down does not continue until the same number of vortices obtained at the threshold is reached.
This result is in contrast with the numerical simulations of Bergeron et al. [22], which is probably due
to both the configuration and especially to the experimental procedure.

Figure 6.10: Marginal stability diagram of the first observed polygonal mode in the plane (Re, G)
for η = 0 and increasing values of Re. Experimental results (red circles) compared to the stability
analysis of Kahouadji et al. [144] (black crosses) and DNS results (blue triangles).

Figure 6.10 presents the marginal stability diagram of the primary bifurcation in the plane (Re, G)
for η = 0 and increasing values of the Reynolds number Re. The present experimental and numerical
results compare quite well with the stability analysis of Kahouadji et al. [144] for G ≥ 0.07 in terms
of the instability threshold but also in terms of the number of vortices for the first bifurcation. For
large aspect ratios G, the first polygonal pattern appears for small values of Re and the number of
vortices m is then small. When G decreases, Re and m increase. For η = 0, modes in the range
m = 4 − 8 have been obtained for G ≤ 0.12. The discrepancies between the flow visualizations and
the stability analysis are more noticeable for small aspect ratios G ≤ 0.07, which is due to the flat
free surface hypothesis. The first mode appears indeed for larger Reynolds numbers, which induces a
larger deformation of the free surface not taken into account in the stability analysis presented here.
Kahouadji [143] developed a method with a curvilinear formulation during his PhD thesis to take
into account a deformation of the free surface. It does not modify significantly the previous results
obtained with a flat free surface in terms of the first instability threshold. More surprisingly, for
G ≤ 0.06, he observed a decrease of the number of vortices from 5 to 4 for increasing values of the
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Reynolds number.

Figure 6.11: Evolution of the number of vortices with the Ekman number based on the water depth
at rest for η = 0 and increasing values of Re. Results obtained by flow visualizations.

The first observed polygonal mode m (during spin-up) can be scaled by: m ∼ E
−1/4
h as already

mentioned by Schaeffer and Cardin [295] in their study of the instabilities of the Stewartson layer in
flat and depth-varying containers or by Moisy et al. [212] in the flow between counter-rotating disks,
where Eh = ν/(Ωh2) is the Ekman number based on the water depth h at rest. The reader is referred
also to the brief review of Manin [198] for similar behaviors and to the pioneering work of Stewartson

[331]. Figure 6.11 shows indeed that, in the present case, m ∼ −2.26 × E
−1/4
h . It confirms that the

boundary layer along the shroud is a Stewartson boundary layer, whose thickness is given by E
−1/4
h b.

From figures 6.9b to 6.9g, one can deduce the critical radius location for the appearance of the
polygonal patterns: r∗c = rc/b, with rc = (R1+R2)/2 (see Fig.6.5). It appears from all the observations
that this critical radius is almost constant whatever the number of vortices m: r∗c ≃ 0.73. Note that it
is not the case for the minimum radial location of the polygonal boundary R1 and for the maximum
radial location of the vortical structures R2.

Niino and Misawa [223] proposed a Reynolds number, denoted here ReNM = V L/ν, as the only
parameter which governs the stability of the base flow, where V and L are the characteristic velocity
and length of the base flow. They found a critical Reynolds number ReNM ≃ 11.7 ± 0.5, to be
compared to ReNM ≃ 110 ± 20 obtained by Moisy et al. [212] for counter-rotating disk flows or to
ReNM = 85 ± 10 obtained by Rabaud and Couder [265] for a circular shear-layer system. Note that
Manin [198] mentionned that the value of ReNM depends on the axial profile of the radial velocity.
In the present case, V is defined by V = Ωb as the shear is produced at the periphery of the rotating
disk, and the thickness L of the shear layer is given by L = (Eh/4)

1/4 × h [223]. Thus, ReNM can be
expressed as: ReNM = bh1/2(Ω/ν)3/4/

√
2. One has verified, in Figure 6.12, that the critical Reynolds

number ReNM is almost constant: ReNM ≃ 248. This value is an estimate since the instability takes
place for radii lower than the cell radius b. It confirms that, as the Rossby number is close to 1, the
Reynolds number ReNM is the only preponderant parameter to study the stability of the base flow.
It means also that the ratio m/δ between the number of vortices and the Ekman layer thickness is
constant.

Spiral patterns have also been observed both experimentally and numerically. They can coexist
with the polygonal structures as they are located at the periphery of the rotating disk as shown in
Figure 6.13 for the mode m = 5. For G = 0.0714, a close agreement is obtained on the flow structure
especially on the spiral characteristics as one will see below. Nevertheless, the m = 5 mode appears
to be weaker in the DNS. Figures 6.13c-e show that the spirals are characterized by a relatively high
turbulence kinetic energy, and that they flow from the rotor to the free surface (Vz > 0) and radially
inwards (Vr < 0). The pentagonal pattern corresponds to the boundary between two regions with
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Figure 6.12: Evolution of the critical Reynolds number ReNM with the rotational Reynolds number
Re for η = 0. Results obtained by flow visualizations.

high (outer region) and low (inner region) turbulence kinetic energy levels. It is characterized by:
Vr > 0 and Vz > 0.

Ω 

(a) (b)

(c) (d) (e)

Figure 6.13: SRJ2 spiral rolls: (a) experimental results for η = 0, Re = 24630 (spin-up) and G =
0.0714 coexisting with the mode m = 5 in the case of a free surface; (b) rotor-stator flow with
inward throughflow as observed by Poncet and Chauve [252] for η = 0, Re = 20500, G = 0.0429 and
Cw = 39.52. DNS results (73× 192× 65 mesh points in the (r, θ, z) directions with δt = 5× 10−5Ω−1)
for η = 0.5, Re = 27000 and G = 0.0714 at z∗ = 0.97 coexisting with a weak m = 5 mode in the case
of a flat free surface: (c) turbulence kinetic energy k/(Ωb)2, (d) instantaneous radial velocity Vr/(Ωb),
(e) instantaneous axial velocity Vz/(Ωb). Note that the disk rotates clockwise in the experiments and
counterclockwise in the simulations.
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Figure 6.14 represents two space-time diagrams respectively in terms of an angle θ∗ = θ/(2π) (at
r∗ = 0.95) and in terms of a radius r∗ of the flow for η = 0, Re = 24630 (spin-up) and G = 0.0714.
They correspond to the flow visualization in Figure 6.13a in the frame of reference of the polygonal
pattern. One defines the dimensionless time as t∗ = 2πt/Ω. The diagonal lines in Figure 6.14a
correspond to the spiral passing. The negative slope indicates that they move slower than the vortices
(16.6% of the passing velocity of the polygonal structures ie 0.125Ωr). The space-time diagram
according to a radius (Figure 6.14b) shows the radial extent of the spiral rolls, their inclination angle
ε and their azimuthal wavenumber n, which is also the number of structures by rotation. One can
notice also the passing of the vortical structures.

(a) (b)

Figure 6.14: Space-time diagrams for η = 0, Re = 24630 (spin-up) and G = 0.0714 in terms of: (a)
a fixed circle (θ∗) at r∗ = 0.95; (b) a radius r∗ for θ = π/2. Results obtained by experimental flow
visualizations.

The characteristics of the spirals obtained experimentally are summed up in Table 6.1. Note that
they have not been observed for G = 0.0179. These are positive spiral patterns as they are rolled
up towards the disk axis in the rotation sense of the rotor. The inclination angle remains small
14 ≤ ε ≤ 25◦ compared to the values obtained by Poncet and Chauve [252] in a rotor-stator cavity
with throughflow (ε → 70◦). The number of spiral arms 28 ≤ n ≤ 40 is also much lower compared to
n → 90. n = 29 spiral arms with a positive angle ε ≃ 25◦ have been observed numerically for η = 0.5,
Re = 27000 and G = 0.0714 (Fig.6.13c-e), in excellent agreement with the present flow visualizations.
It can be noticed that the characteristics of the spirals slightly depend on the aspect ratio of the cavity
G. In fact, the value of G (and the one of Re) settles the number of vortices, which settles itself the
characteristics of the SRJ2 rolls. As for the polygonal patterns, a weak hysteresis is observed on the
thresholds of the spiral instability.

G Re (spin-up) Re (spin-down) n ε (◦) r∗

0.0714 24630− 43102 16420− 36945 28− 30 23− 25 0.85− 0.89
0.0429 30788− 57470 24630− 45155 38− 40 14− 19 0.88− 0.92
0.0179 − − − − −

Table 6.1: Characteristics of the SRJ2 spirals obtained experimentally.

As already mentionned, the spirals are located at the periphery of the cavity for r∗ ≥ 0.85. They
are very similar to the SRJ2 spirals studied by Poncet and Chauve [252] in the case of weak inward
throughflow (Fig.6.13b). These authors showed that it is a crossflow instability due to the inflexion
point in the axial profile of the mean radial velocity. Figure 6.15 shows some axial profiles of the
radial velocity component obtained by DNS at different radial locations for η = 0.5, Re = 27000 and
G = 0.0714. Very close to the outer cylinder, at r∗ = 0.96, an inflexion point may be also observed
here. It confirms that these spirals are also due to a crossflow instability (type I inviscid instability).
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Figure 6.15: Axial distributions of the radial velocity component obtained by DNS at different radial
locations r∗ = (r − a)/(b− a) for η = 0.5, Re = 27000 and G = 0.0714.

6.3.3 Influence of the radius ratio η

Four values of the radius ratio η have been considered: η = 0, 0.286, 0.536 and 0.75. Figures 6.8b and
6.16 present the stability diagrams of the flow for G = 0.0429 and three values of the radius ratio in
the plane (m, Re).

(a) (b)

Figure 6.16: Stability diagrams for G = 0.0429 and: (a) η = 0.286; (b) η = 0.536. Results obtained
by experimental flow visualizations.

Whatever the value of η ≤ 0.536, modes in the range m = 4 − 6 have been obtained but the
thresholds and the sequences are different. When the size of the hub increases, the radial extent of
the inner region decreases strongly and the fluid rotates slightly faster, which settles the values of the
thresholds. Note that for η = 0.536 and G = 0.0714, the mode m = 2 (Fig. 6.17) has been observed
in the range 32840 ≤ Re ≤ 41050 only during spin-down.

Figures 6.18a to 6.18d represent the influence of the radius ratio η on the flow pattern for G =
0.0429, Re = 36945 (spin-up). Apart from the largest value of the radius ratio η = 0.75, the mode
m = 6 is observed. The critical radius r∗c is almost constant whatever the value of η: r∗c = rc/b ≃ 0.73
for η = 0, 0.286 and 0.536. When the radius ratio η is larger than the value of the critical radius,
the radial extent between the hub and the shroud is too small for the development of the vortical
structures. Thus, for η = 0.75 (Fig.6.18d), the critical size of the system has been reached and no
patterns are observed .

For η = 0.75, no vortical structures are obtained but new stationary patterns develop along the
hub as small cells (Fig.6.19a to Fig.6.19f) only for G ≥ 0.0714. 10 cells appear above a first threshold
Re = 10263. From Re = 10263 (Fig.6.19a) to Re = 16420 (Fig.6.19b), the number of cells decreases
from 10 to 9 but they grow both in the radial and tangential directions. They break up into 11 cells
for Re = 20525 (Fig.6.19c), then into 12 larger cells for Re = 24630 (Fig.6.19d). From Re = 24630
(Fig.6.19d) to Re = 28735 (Fig.6.19e), some cells merge and only 8 structures can be observed. When
the Reynolds number is further increased, the number and the size of the patterns do not change but
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Figure 6.17: Mode m = 2 of the shear-layer instability for η = 0.536, G = 0.0714 and Re = 41050
(spin-down). Result obtained by experimental flow visualizations.

Figure 6.18: Influence of the radius ratio η on the flow pattern for G = 0.0429 and Re = 36945
(spin-up): (a) η = 0, (b) η = 0.286, (c) η = 0.536, (d) η = 0.75. Results obtained by experimental
flow visualizations.

the flow confined between the cells and the shroud becomes turbulent (Fig.6.19f) and is fully turbulent
for Re = 36945.

6.4 Conclusion

One has presented flow visualizations of a shear layer instability developed on a rotating disk with a free
surface. Despite the different flow medias (gas, water, plasma) and the different forcing mechanisms
producing the shear layer, the qualitative behavior of the flow is remarkably similar. For low Reynolds
numbers, the flow is axisymmetric and becomes unstable above a first threshold ReNM with a well
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Figure 6.19: Shear-layer instabilities on the hub for η = 0.75 and G = 0.0714 (spin-up): (a) Re =
10263, (b) Re = 16420, (c) Re = 20525, (d) Re = 24630, (e) Re = 28735, (f) Re = 34893. Results
obtained by experimental flow visualizations.

defined azimuthal wave number m. The instability appears as a sharp-cornered polygonal pattern
with m vortices. In some specific cases, the experimental results are supported by DNS calculations
under the assumption of a flat free surface with a very good agreement between the two methods in
terms of the instability threshold and characteristics.

The number of vortices of the first polygonal mode can be scaled by the Ekman number based on
the water depth at rest to the power −1/4, showing that the shroud boundary layer is of Stewartson
type [295]. The instability sets in at a well defined value of the Reynolds number based on the thickness
of the shear layer: ReNM = 248. This supports the validity of the quasi-geostrophic approximation
used in the theoretical work of Niino and Misawa [223]. The critical radial location for the appearance
of the polygonal patterns is also constant and equal to r∗c ≃ 0.73. At a given aspect ratio, when
the Reynolds number Re is increased (spin-up), these m vortices transform into new arrangements
with a decreasing number of vortices (until (m− 2) in particular cases). For decreasing values of Re
(spin-down), the flow demonstrates a noticeable hysteresis for the modes and a slight hysteresis for
the thresholds, as already mentionned by Rabaud and Couder [265]. At a given rotation rate, the
number of vortices increases for decreasing values of the water depth. Note that modes up to m = 8
have been obtained.

Finally, the influence of the radius ratio has been investigated. The development of the shear layer
instability is constrained by the geometry of the system. When the size of the hub increases, the fluid
rotates slightly faster, which shifts the values of the thresholds. Above the critical value of the radius
ratio, new patterns are observed and develop along the hub as small stationary cells.
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Chapter 7

Transition to turbulence of a
Batchelor flow in a rotor-stator

system

The stability of the flow enclosed between a stationary and a rotating disk is here revisited by flow
visualizations and direct numerical simulations in the Batchelor regime with unmerged boundary
layers. It is now well known [303] that the first instability in such flow appears above a first threshold
as circular rolls (denoted CR, type 2 instability), which propagate along the stator before vanishing
in the vicinity of the hub. Above a second threshold, spiral rolls (denoted SR1, type 1 instability),
appear at the periphery of the cavity and can coexist with the circular rolls. Nevertheless, some
important matters remain to be dealt with:

• the confirmation or not of the convective nature of the circular rolls, which appear in the IRPHE’s
experiment under permanent conditions and in a transient state after a given perturbation in
the experiment of Gauthier et al. [105];

• the nature and the origin of the spiral patterns;

• the transition scenario in the rotor boundary layer, which is still the subject of an intense debate.

These results have been published in Phys. Fluids (Ref.[261]) for the stability of the stator boundary
layer and in J. Comp. Phys. (Ref.[242]) for the stability of the rotor boundary layer. This was done
in collaboration with Dr P. Le Gal (IRPHE) for the stability of the stator boundary layer and in the
framework of the PhD thesis of N. Peres (M2P2) for the transition scenario on the rotating disk.

7.1 Introduction

The stability of the flow confined between a rotating (rotor) and a stationary (stator) disk is mainly
governed by two global parameters [303]: the aspect ratio G = h/b of the cavity and the rotational
Reynolds number Re = Ωb2/ν (see Fig.3.1). In such rotating disk cavity, two types of instability have
been identified: type 1 instability results from an inviscid mechanism due to unstable inflection points
in the boundary layer velocity profiles, whereas type 2 instability is viscous and associated with the
Coriolis terms. Itoh et al. [138] observed experimentally that the first instabilities occur in the stator
boundary layer, which is confirmed by the linear stability analysis (LSA) of San’kov and Smirnov
[290] and Serre et al. [314] and also by the DNS of Serre et al. [311]. The transition to turbulence in
a cylindrical rotor-stator cavity has been considered later by Schouveiler et al. [302, 303, 304], who
established the transition diagram in a (Re, G) plane (see Fig.7.1).

Schouveiler et al. [302, 303, 304] reported that, for G > 0.071, the two first stages of the transition
are due to the developments of instabilities in the stator boundary layer. Above a first threshold, they
observed the formation of circular rolls (CR) centered on the rotation axis, which propagate towards
the center of the cavity. The CR instability, which is a type 2 instability has been formerly observed by
Savas [293, 294] during the spin-down of a rotating disk and later by Schouveiler et al. [302, 303, 304]
under permanent conditions. Above a second threshold, Schouveiler et al. [302, 303, 304] observed
spiral rolls (SR1), which appear at the periphery of the cavity and coexist with the CR instability. The
SR1 patterns are a type 1 instability with a band of stable modes limited by the Eckhaus secondary
instability. Their radial wavelength strongly varies between DNS results (between 4.4 and 14.7 for
G = 0.2) and the a LSA (between 21.2 and 24.35) [314]. When the Reynolds number is further
increased, a transition to a kind of wave turbulence occurs [61]. Gauthier et al. [105] showed, by
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Figure 7.1: Transition diagram by Schouveiler et al. [303]. Curves A and B (dashed gold lines) separate
the mixed-base flow (BFM) from the basic flows with separate boundary layers (BFS) and with joined
boundary layers (BFJ), respectively. Curves labeled 1 indicate the thresholds for circular rolls (CR).
Curves labeled 2, 1′, and 1′′ (blue colored lines) indicate the thresholds for spiral rolls (SRI, SRII, and
SRIII, respectively). Curves labeled 2′′ and 3′′ (red colored lines) indicate the thresholds for solitary
waves (SW) and turbulent spots (SP), respectively. Curve 4′′ is the threshold for the simultaneous
disappearance of the spiral rolls (SRIII) and the solitary waves (SW).

flow visualizations, that the CR are very sensitive to an external (un)controlled forcing and then
highlighted the convective nature of this instability.

Numerous experimental [105, 138, 302, 303, 304], theoretical [290] or numerical [311, 314] works
have already been dedicated to the stability of the flow with unmerged boundary layers corresponding
to G > 0.071. Nevertheless, the nature of both the circular and spiral rolls remains unclear. The
scenario first proposed by Schouveiler et al. [303] for the transition to turbulence in the enclosed rotor-
stator cavity is revisited in the first part of the present Chapter essentially by numerical experiments
using Direct Numerical Simulation (DNS) but also by flow visualizations in an annular cavity with
a central hub. The second part is dedicated to the scenario of transition to turbulence in the rotor
boundary layer using DNS. There is indeed still a persisting debate about the existence or not of a
direct route to turbulence in this boundary layer.

7.2 Geometrical configuration

The experimental part of this work has been performed on the set-up developed at IRPHE [61, 62,
252, 302, 303, 304]. It consists of two smooth parallel disks enclosed by an inner rotating cylinder
(hub) of radius a and an outer stationary casing (shroud) of radius b + j = 140.85 mm (Fig.3.1).
In the experiments, various hubs have been tested: a = [6, 5; 40; 55; 75; 110] mm. The lower disk of
outer radius b = 140± 0.05 mm is rotating (rotor), while the upper disk is stationnary (stator). The
interdisk spacing h is equal to 16 ± 0.02 mm. Thus, the value of the aspect ratio G = h/b is here
fixed to G = 0.114, whereas the curvature parameter Rm = (b + a)/(b − a) = (1 + η)/(1 − η) varies
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between 1 for a cylindrical cavity and 3.308 for the narrowest annular cavity (η = a/b the radius
ratio). The rotor and the hub rotate clockwise at the same uniform rotation rate Ω with an accuracy
of 0.2%. The shroud is fixed. The cavity is filled up with water maintained at a working temperature
of 20±0.1◦C and seeded with reflective particles of kalliroscope (30×6×0.07µm) in order to visualize
the hydrodynamic structures. This implies an accuracy better than 0.7% on the rotational Reynolds
number Re = Ωb2/ν. Images (768×576 pixels) are taken at a video frequency of 25 images per second
using a CCD video camera. More details about the experimental set-up can be found in [61, 252].

7.3 Two first bifurcations of Batchelor flows on the stator side

In this section, numerical results obtained using the pseudo-spectral code described previously in
Chapter 3 are compared to flow visualizations performed at IRPHE. In the following, a grid resolution
composed of 73 × 49 × 100 mesh points respectively in the radial, axial and azimuthal directions is
sufficient to get grid independent solutions. The dimensionless time step has been set to δt/Ω−1 =
10−3.

7.3.1 Influence of the curvature parameter on the stability of rotor-stator
flows

(a) (b) (c) (d)

Figure 7.2: Experimental flow visualizations for G = 0.114, Rm = 1.8 and: (a) Re = 16400, (b)
Re = 24600, (c) Re = 32500, (d) Re = 61600.

Figure 7.2 shows some experimental visualizations of the flow from above the stator for G = 0.114,
Rm = 1.8 and various Reynolds numbers in the range 16400 ≤ Re ≤ 61600. Note that, for the range
of parameters investigated, the flow along the rotating disk remains stable. These new visualizations
above the stator confirm the scenario proposed by Schouveiler et al. [302, 303, 304] for the transition to
turbulence in a cylindrical rotor-stator cavity (without central hub) in the case of unmerged boundary
layers. For this aspect ratio, the flow remains stable until the appearance of circular rolls CR (Fig.7.2a)
above a first threshold Rec1 = 12300 (Reh1 = ReG2 = 160, Reδ1 = (Ωr2c/ν)

1/2 = 63, with rc the
critical radial location for the appearance of the patterns), which is in excellent agreement with the
value Rec1 = 12000 obtained by these authors [302, 303, 304] for G = 0.114, Rm = 1 and j = 0.
Note that Serre et al. [314] obtained lower values by DNS (25.8 ≤ Reδ1 ≤ 62 for G = 0.2 and
Rm = 1 without any perturbation) and with their LSA for type II instability in the stator boundary
layer: 34.7 ≤ Reδ1 ≤ 62. Above a second threshold Rec2 = 20500 (Reh2 = 267, Reδ2 = 100), the SR1
instability (Fig.7.2b,c) appears along the stator at the periphery of the cavity and coexists with the CR
instability. This value matches with the experimental one of Cros et al. [61] for G = 0.114, Rm = 1
and j = 0.46 mm. Buisine et al. [39] obtained similar spiral waves by numerical simulation with
additionnal perturbations for Reh2 > 228 and without any perturbation for Reh2 > 400 (G = 0.114
and Rm = 1.857). The value Reδ2 = 100 obtained in the experiment remains in the range 47.5 ≤
Reδ2 ≤ 200 obtained by LSA for type I instability in the stator boundary layer. In the experiment,
when one increases further the Reynolds number, a transition to a kind of wave turbulence (Fig.7.2d)
appears for Re ≥ 41000 (see [61] for more details).

The influence of the parameter Rm on the stability diagram, in a (Rm, Re) plane, of the flow with
unmerged boundary layers is presented in Figure 7.3 for G = 0.114. The appearance thresholds of the
CR and SR1 patterns, which are both permanently observed, are very weakly shifted to lower values
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Figure 7.3: Stability diagram of the flow with unmerged boundary layers in the plane (Rm, Re)
deduced from the experiments in a rotor-stator cavity with a central hub for G = 0.114.

of Re compared to the base case with no inner cylinder (Rm = 1), when Rm is increased. There are
two possible reasons for that. Firstly, the rotating hub connects the rotating and the stationary disks,
which creates a stronger shear for the flow along the stator coming from the outer radii, than if the
hub was stationary. Secondly, the main effect of the inner rotating cylinder, which increases with Rm,
is to speed up the local fluid rotation rate Ωf in the core region and so, for a same value of Ω or Re, it
slightly accelerates the transition to the SR1 regime. It can be seen as a “Rossby effect”, the Rossby
number Ro being defined as Ro = Ωf/Ω. Note that the effect of the curvature parameter Rm remains
weak compared to the effect of a forced inward throughflow [252] for instance.

The main characteristics of these two instabilities deduced from the experiments are given below
for G = 0.114, Rm = 1.8 and j = 0.85 mm. The CR frequency fCR/Ω, which increases with the radial
location because of successive pairings [302], remains in the range [0.32 − 0.35] at r∗ = r/b = 0.53
whatever Re for Rm = 1.8, in agreement with the value 0.32 of Cros et al. [61] for G = 0.114, Rm = 1
and j = 0.46 mm. The mean critical radial location r∗CR for the disappearance of the CR, in the range
Re = [1.5×104−4×104], is around 0.4. Thus, Reδ1 varies between 52 and 109. The number of circular
rolls, denoted kCR, varies strongly with Re from 3 at the threshold to 6 just before the appearance of
the spiral waves. It confirms the value kCR = 6 obtained by Cros et al. [61] for Re = 18500. Then,
kCR remains equal to 4 for a wide range of Re values and decreases for Re ≥ 3.5 × 104 until their
disappearance. The critical radius r∗SR1 of appearance of the SR1 patterns slightly increases from 0.71
at Re = 20500 to 0.81 at Re = 41000.

For the same set of parameters (G = 0.114, Rm = 1.8 and j = 0.85 mm), the frequency of the spirals
fSR1/Ω remains almost constant in the range [0.32 − 0.36] at r∗ = 0.867 for Re = [20500 − 41000].
As the magnitude of the mean tangential flow increases with the disk rotation rate, the angle εSR1 of
the spirals with the tangential direction decreases with increasing values of Re from 31◦ at threshold
to 28◦ for Re = 24600 and finally to 24◦ for Re = 41000. The number of spiral arms kSR1 increases
with rotation. kSR1 = 17 up to Re ≃ 2.95 × 104 and increases to 18 for Re up to 3.8 × 104 then to
19 for larger Re values. Finally, the phase velocity Vϕ of the spirals is positive: Vϕ/(Ωb) = 0.101 for
Re = 24600 at r∗ = 0.867. The results concerning the spirals are in good agreement with the previous
results of Cros et al. [61] for G = 0.114, Rm = 1 and j = 0.46 mm: fSR1/Ω = 0.334 and εSR1 ≃ 25◦

for Re = 24600.

7.3.2 Nature of the circular and spiral patterns

These new experiments using a central hub have shown that the scenario proposed by Schouveiler et
al. [303] for the transition to turbulence in a cylindrical rotor-stator cavity (Rm = 1) as well as the
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main characteristics of the two instabilities remain almost the same in the case of an annular cavity
(Rm = 1.8). The nature of these circular and spiral waves is now investigated in more details using
DNS for an annular cavity defined by G = 0.114 and Rm = 1.8 already considered experimentally. In
the following, t∗ denotes the dimensionless time defined as t∗ = t× Ω.

7.3.2.1 Circular rolls (CR)

(a) (b)

Figure 7.4: Iso-values of the instantaneous axial component Vz of the velocity vector obtained by DNS
for G = 0.114 and Rm = 1.8 at z∗ = 0.86 showing (a) the circular waves for Re = 15000 at t∗ = 3.83
and (b) the spiral waves for Re = 24630 at t∗ = 175.9 (A = 0.2, N = 5).

The DNS is initialized using conditions corresponding to a fluid at rest. Then the Reynolds
number is increased regularly until the appearance threshold Rec1 of the CR instability. Whatever
the spin-up to reach this threshold and without any spatial perturbation, Rec1 remains in the range
[10000 − 10500] by DNS (28.6 ≤ Reδ1 ≤ 29.3), while they are visible from Rec1 = 12300 in the
experiment. The numerical values are in close agreement with previous DNS (Reδ1 = 27) of Serre et
al. [311] for G = 0.2 and Rm = 1. The LSA of Serre et al. [314] showed that the stator boundary
layer is convectively unstable for Reδ ≥ 34.7, which corresponds also to the appearance threshold
for the type II instability. This weak discrepancy between the LSA of Serre et al. [314] and the
present DNS results may be attributed to a “Rossby effect”. The LSA has been indeed performed
for Ro = 0.313 corresponding to Batchelor flows between infinite disks, whereas the Rossby number
varies in the present calculations between 0.34 and 0.53 far from the cylinders. The stator boundary
layer is then more stable when the Rossby number is increased in agreement with [314]. The stability
of such boundary layers depends thus more on local parameters such as the Rossby number than on
global ones like Re. Figures 7.4a and 7.5a present respectively, the iso-values of the instantaneous
axial velocity Vz in the stator boundary layer and some iso-contours of Vz in a (r∗ = r/b, z∗ = z/h)
plane for Re = 15000 at t∗ = 3.83. It reveals that the circular rolls appear in the Stewartson layer
attached to the external fixed cylinder (Fig.7.5a) and moves along the stator towards the rotation
axis with a negative phase velocity Vϕ/(Ωb) = −0.143 at (r∗ = 0.604, z∗ = z/h = 0.611). Previous
measurements of Schouveiler et al. [304] using an Ultrasonic Doppler Anemometer (UDA) showed that
the CR occupy the half upper part of the cavity and that, for Re = 17200, G = 0.114, Rm = 1 and
j = 0, they propagate with a negative phase velocity equal to −0.032 at r∗ = 0.57. This difference for
Vϕ may be attributed to the presence of the hub that accelerates the polöıdal circulation of the flow,
the circular rolls being advected by the secondary inward throughflow passing along the stator. Note
that the axial extent of the CR increases when approaching the hub. For r∗ = 0.693, they are confined
between z∗ = 0.4 and z∗ = 0.933, whereas, very close to the hub, the CR occupies about 90% of the
interdisk spacing. The number of circular rolls kCR = 4 remains the same in the experiment and in
the DNS for Re = 15000 and the CR frequency obtained numerically fCR/Ω = 0.318 is in excellent
agreement with the experimental value (fCR/Ω = 0.32).

Nevertheless, there is one main difference between the two approaches. Figure 7.7a shows the
space-time diagram of the dimensionless mean axial velocity V ∗

z = Vz/(Ωr) along a given circle
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(a)

(b)

Figure 7.5: Iso-values of the instantaneous axial component Vz of the velocity vector obtained by DNS
for G = 0.114 and Rm = 1.8 in a (r∗, z∗) plane: (a) the CR patterns for Re = 15000 at t∗ = 3.83 and
(b) the SR1 spirals for Re = 24630 at t∗ = 175.9 (A = 0.2, N = 5). r∗ ∈ [0.286, 1] and z∗ ∈ [0, 1].

(0 ≤ θ∗ = θ/(2π) ≤ 1) at r∗ = 0.604 and z∗ = 0.812 for Re = 24630. It reveals that, for this value of
Re, the circular rolls, which appear on this figure as vertical black and white stripes, disappear after 20
disk turns. For Re = 15000, they disappear after only 10 disk turns. These 10 disk turns correspond
in fact to the spin-up time τ = O(E−1/2Ω−1) introduced by Weidman [350], with E = ν/(Ωh2) the
Ekman number: t∗ = 10 ≃ 4.05× E−1/2Ω−1. It supports also the observations of Savas [294] during
the spin-down of a single rotating disk enclosed by an outer fixed cylinder. Moreover, it confirms the
conclusions of Gauthier et al. [105] on the convective nature of this instability. Thus, the CR seem
to be maintained in the present experimental set-up by an experimental noise probably due to the
driving-belt of the electrical motor. One recalls that Schouveiler et al. [302, 303, 304] and then Cros
and Le Gal [61, 62] used the same device.
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Figure 7.6: Duration time t∗ of the CR patterns versus a relative variation of rotation rate ∆Ω =
Ω1 −Ω0 during the spin-up of the rotor. Plot obtained by DNS (circles) for G = 0.114, Rm = 1.8 and
Ω0 = 0.536 rad/s (Re = 10500) interpolated by t∗ = 2.5∆Ω/Ω0 + 2.8 (dashed line).

Some numerical calculations have been performed to show the sensibility of the circular rolls to
the amplitude of a spin-up ∆Ω = Ω1 − Ω0 starting from the stable flow at Re = 10500 (Ω0 = 0.536
rad/s). Figure 7.6 shows the duration time t∗ (equivalent to the number of disk turns) of the CR
patterns against ∆Ω/Ω0. The spin-up of the rotor can be seen as an axisymmetric pertubation of
the base flow. When the amplitude of the spin-up increases, the disappearance of the circular rolls
is delayed according to the interpolation law: t∗ = 2.5∆Ω/Ω0 + 2.8. These results are very similar
to the numerical ones of Lopez and Weidman [190] during the spin-down of a rotating disk in a
stationary cylinder. They showed, in particular, that during the first radians of rotation, the endwall
boundary layer has a structure very similar to Bödewadt and stator boundary layers. They obtained
axisymmetric waves travelling radially inwards in this boundary layer. They conjectured that these
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are eigenmodes of the Bödewadt layer.

7.3.2.2 Spiral rolls (SR1)

(a)

(b)

(c)

(d)

Figure 7.7: Space-time diagrams of the axial velocity V ∗
z = Vz/(Ωr) deduced from the DNS for

Re = 24630, G = 0.114 and Rm = 1.8. θ∗ = θ/(2π) is the azimuthal angle on a fixed circle at
r∗ = 0.604 and z∗ = 0.812. (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.

To highlight the nature of the SR1 instability, calculations have been performed for Re = 24630 >
Rec2 = 20525 starting from the converged solution obtained at Re = 18473 for which the flow remains
stable. The values of G and Rm are still fixed to 0.114 and 1.8 respectively. Note that the critical
Reynolds number for the appearance of the SR1 patterns obtained by DNS is about Rec2 = 19781
(see Fig.7.9) in agreement with the experimental value Rec2 = 20500. It corresponds to Reδ2 = 68
close to the DNS results Reδ2 = 63.2 of Serre et al. [311] for G = 0.5 and Rm = 1. Two types of
boundary condition for the tangential velocity imposed on the external cylinder have been considered:
the first one (BC1) is a stationary cylinder with a small regularization at the corner between the
rotor and the shroud (V ∗

θ = αe−z∗/µ with α = 0.16 and µ = 0.003). The second condition (BC2)
corresponds to a linear profile for V ∗

θ (V ∗
θ = 1 − z∗). Note that, for Cases 2, 3 and 4 defined below,

a sinusöıdal perturbation is applied to the axial velocity component in the whole domain such as:
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Vz = Vz × (1 +A sin(2πi/Nθ)). Thus, the following scenarios have been considered (see Fig.7.7):

• Case 1: BC1. One does not introduce any imposed sinusöıdal perturbation.

• Case 2: BC1. A sinusöıdal perturbation (A = 0.2, N = 5) is introduced at t∗ = 62.8.

• Case 3: BC2. The sinusöıdal perturbation (A = 0.2, N = 5) is introduced at t∗ = 62.8.

• Case 4: Case 2 but at t∗ = 175.9, one switches to BC2.
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Figure 7.8: Amplitude of the spectral energy Ek after the saturation contained in the Fourier mode 17
versus the Reynolds number, obtained by DNS in Case 1 for Re = 24630, G = 0.114 and Rm = 1.8.

For all cases, the jump in Reynolds number between Re = 18473 and Re = 24630, corresponding to
the spin-up in the experiments of Savas [294], first generates the circular rolls (see Fig.7.7a-d) already
observed at lower Reynolds numbers. For Case 1, they disappear after about 20 disk turns and then,
the flow becomes stationary. The SR1 patterns appear, without any imposed perturbation, after 290
disk turns. Figures 7.8a and 7.8b show the exponential growth of Ek(t)

1/2 contained in each Fourier
modes k of the velocity in the range [15 − 19] and their first harmonic respectively. The saturation
of Ek(t) is reached after around t∗ = 310. Mode 17 appears to be the most unstable mode in this
configuration, close to the experimental value 18 obtained by Schouveiler et al. [302] for G = 0.114 and
Rm = 1. This saturation is a classical non-linear saturation as the slopes (in logarithmic scale) of the
first harmonics (Fig.7.8b) are twice steeper as the ones of the modes themselves (Fig.7.8a). It shows
that this SR1 instability appear through a Hopf bifurcation. Figure 7.9 confirms the supercritical
nature of the bifurcation observed by Schouveiler et al. [302] and Cros et al. [61] as the spectral
energy varies linearly with the Reynolds number. It provides also the value for the critical Reynolds
number (Rec2 = 19781) already invoked. One has measured the frequency of the spirals during their
growth in order to obtain a non-linear shift of this frequency. Amazingly, this frequency remains
constant whatever the amplitude of the spirals is. It implies that the Landau constant associated with
the Hopf bifurcation is equal to zero. Due to the periodicity of the flow in the azimuthal direction that
implies a quantification of the azimuthal wavenumber k, it appears that k remains constant during
the growth of the spirals (or at least during some lapse of time of this growth, see Fig.7.7). As the
frequency also remains constant (no non-linear frequency shift), it means that the phase velocity of
the SR1 patterns in the azimuthal direction is also constant. This can indeed be checked on the space-
time diagrams of Figure 7.7, where the spiral traces appear as rigourously straight lines. It suggests
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Figure 7.9: Amplitude of the spectral energy Ek(t) after the saturation contained in the Fourier mode
17 versus the Reynolds number, obtained by DNS in Case 1 for Re = 24630, G = 0.114 and Rm = 1.8.

that the phase velocity of the waves may be locked to some hydrodynamical velocity independent of
the wave amplitude.

Schouveiler et al. [302] have shown experimentally that the SR1 patterns are the subject to a
secondary Eckhaus instability and thus, the wavenumber selection is very sensitive to the experimental
procedure. To investigate its sensivity and also to accelerate the transition to the SR1 spiral regime,
the same calculation as the one described above is performed for the same parameters but a sinusoidal
perturbation is introduced at t∗ = 62.8. The space-time diagram corresponding to (A = 0.2, N = 5)
is shown in Figure 7.7b. After a short transient state, 18 positive spiral arms (Fig.7.4b) appear
along the stator (Fig.7.5b). The amplitude of the perturbation is strong enough to speed up and
control the transition process to the SR1 regime. From the 128 iso-contours of the instantaneous
axial velocity Vz in a (r, z) plane (Fig.7.5b), a decrease of the spiral size in the axial direction can be
seen when approaching the rotation axis. The frequency of the SR1 spirals fSR1/Ω = 0.352 and their
angle with the tangential direction ε = 26◦ are in excellent agreement with the present experiments
fSR1/Ω = 0.34 and ε = 28◦ also for G = 0.114 and Rm = 1.8.

In Case 3 (Fig.7.7c), the boundary condition 2 (BC2) corresponding to a linear profile for V ∗
θ on

the external cylinder is applied at t∗ = 0. It means that the shear between the wall and the fluid in
solid body rotation is reduced to approximately zero, as both rotate at approximately half the disk
speed at mid-height of the cavity. The increase in Reynolds number from 18473 to 24630 generates
the CR patterns, which disappear after about 20 disk turns. The sinusoidal perturbation is applied
at t∗ = 62.8 and after a short transient state (5 negative spiral arms with ε = −7◦ attached to the
stator), the flow becomes stable again until t∗ ≃ 175. The SR1 appear progressively with time. Thus,
this BC2 on the external cylinder has a strong stabilizing effect on the flow but do not annihilate
totally their growth.

The results obtained in Case 2 are used as initial conditions for Case 4 (Fig.7.7d). At t∗ = 175.9,
one switches to BC2 on the external cylinder. This change of boundary condition acts as a spin-up
at the periphery of the cavity and as a consequence, during a short transient state, circular rolls
appear and move towards the center of the cavity. At t∗ = 201.1, two CR coexist with 16 positive
spiral arms (ε = 25◦). At t∗ = 226.2, the flow becomes stable again. This sudden change has a
more effective stabilizing effect on the flow compared to Case 3. The modulations observed in the
space-time diagrams in Figures 7.7b,d are due to the growth of modes k = 17 and k = 19 together,
which are not negligible compared to the dominant mode k = 18 (Fig.7.4b).

These two last numerical experiments (Cases 3 and 4) show that by diminishing the shear between
the mean flow in the core region and the endwall, the appearance of the spirals has been delayed.
Moreover, it confirms that even if these spirals are due to the destabilization of the stator boundary
layer, the perturbation at the origin of the SR1 is produced in the Stewartson layer attached to the
shroud (see also Figure 7.5b).
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Figure 7.10: Iso-values of Ra at t∗ = 276.46 in Case 1 for r∗ ∈ [0.9, 1] and z∗ ∈ [0, 1] and for
Re = 24630, G = 0.114 and Rm = 1.8.

Buisine et al. [39] presumed that the spiral patterns, that they obtained for two values of G =
[0.114; 0.3] and Rm = 1.857, were generated at the corner between the stator and the shroud and were
due to the change of direction of the secondary flow. In the present cases, whatever the boundary
condition applied to the endwall, the boundary layer attached to it is centrifugally unstable regard-
ing the modified Rayleigh criterion of Leibovich and Stewartson [176] for an inviscid axisymmetric
instability: Ra = Vθ∂rΩ[∂rΩ∂rΓ + ∂rVz] < 0, with Γ = rVθ the circulation, Ω = Vθ/r the angular
velocity and ∂r the radial derivative. Figure 7.10 shows an example of iso-values of Ra for Case 1
at t∗ = 276.46. This map matches with the numerical results of Lopez and Weidman [190] for the
impulsive spin-down problem of a rotating disk in a stationary cylinder. There are two main regions
surrounded by zero Ra values: one region characterized by Ra > 0 is situated at the corner between
the stator and the cylinder and the other is just below with Ra < 0. The SR1 spirals appear to
be analog to the corner vortices obtained by Lopez and Weidman [190] at the junction between the
endwall and the stator. These authors showed that they are formed by the kinematics of the flow and
that their formation is not controlled by a noise level in their calculation.

Several values for the selected Fourier mode and A the amplitude of the sinusoidal perturbation
have been computed. The main result is obtained for A = 0.01. The 17 spiral waves are recovered,
which shows that the flow is linearly unstable to such sinusöıdal perturbation.

Finally, Figure 7.11 presents the dispersion relation for the spiral waves. The present DNS results
obtained for Re = 24630, G = 0.114, Rm = 1.8 and j = 0.85 mm are compared to the experimental
data of Schouveiler et al. [302] for Re = 25000, G = 0.114, Rm = 1 and j = 0. One calculates the
normalized frequency f∗ = f/Ω and the azimuthal wavenumber k of each mode from the transients
observed in Figure 7.7. As it can be observed, all the data collapse on the same dispersion relation
curve, although modes computed by DNS have been only observed during transient states (k =
5, 11, 16). All the data can be fitted by the following second-order polynomial giving the azimuthal
wavenumber k as a function of the spiral frequency f∗: k = −8.7f∗2+27f∗+10. The relation possesses
a notable curvature and does not go through (0, 0), showing that the spiral propagation is dispersive.
An isolated mode k = 5 (f∗ = 0.62), which may belong to another branch of the dispersion relation,
is also observed. This illustrates the possibility of multiple solutions in the rotor-stator problem [219].

7.4 Transitional flow regime on both rotor and stator sides

The rotor-stator cavity of aspect ratio G = 0.195 (Rm = 1) presented in Czarny et al. [63] is now
considered for some simulations up to Re = 4 × 105. The main difference lies in the absence here of
the central rotating cylinder attached to the rotor, which strongly modifies both the main flow and
the stability of the Ekman layer along the rotor. For a cylindrical cavity, as in the present case, the
fluid is pumped radially outwards along the rotor by the centrifugal effects, flows axially along the
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Figure 7.11: Dispersion relation obtained by DNS for Re = 24630, G = 0.114, Rm = 1.8 and
j = 0.85 mm and by experimental visualizations performed by Schouveiler et al. [302] for Re = 25000,
G = 0.114, Rm = 1 and j = 0.

external cylinder before coming back along the stator. As there is no inner cylinder, the Ekman and
Bödewadt layers are no more connected and all instabilities developed along the stator side can not
be advected along the rotor to disturb the rotor boundary layer.

The study of transition to turbulence was performed using the Spectral Vanishing Viscosity (SVV)
technique described in Section 3.7.1. The final grid in the radial, azimuthal and axial directions is
196×288×71 (∼ 4×106 nodes) and is associated with the time step δt = 5×10−4Ω−1, corresponding
to a memory size of 3.6 GB and an average time by iteration of 10 seconds. The SVV is active
for Reynolds numbers above 105 with parameterized amplitudes and cutoff wavenumbers equal to
εN = (1/N, 1/N, 1/N) and ωT = (

√
N,

√
N,

√
N) in the (r, θ, z) directions, respectively (N the number

of mesh points in the corresponding direction).

7.4.1 Boundary layers instabilities and turbulence in the Bödewadt layer

Solutions have been analyzed by increasing step by step the Reynolds number. As illustrated on
Figure 7.12, the boundary layer on the stator side globally behaves like those described in the previous
section. The response to spin-up still gives rise to circular patterns related to the convective instability.
At a sufficiently high Reynolds number, spiral arms related to the absolute instability are found: 10
spirals are obtained at Re = 2 × 104, while 16 spirals appear at the periphery of the cavity at
Re = 3×104. In this last case, some pairings may be observed at intermediate radii. A kind of waveless
turbulence appears on the stator side at about Re = 4 × 104, in agreement with the experimental
observations of Cros et al. [61]. It is characterized by more circular and thinner structures that extend
to the vicinity of the axis as shown on Figure 7.12 and at a higher Reynolds number on Figure 7.13a.

7.4.2 Boundary layers instabilities and turbulence in the Ekman layer

On the rotor side, the flow remains stable up to very high Reynolds numbers. In contrast to annular
cavity, any perturbation produced within the stator boundary layer is able to reach the rotor boundary
layer due to the stable flow region around the axis whatever the rotation rate. The first organized
structure related to boundary layer instability appears here at about Re = 4×105. It is characterized
by a high-wavenumber multi-armed spiral pattern (k = 68) immediately followed by a disorganized
flow, characteristic of incipient turbulence as shown on Figure 7.13b.

Incipient turbulence appears at the periphery of the disk at about Re = 2.5×105. When turbulence
occurs in the rotor layer, it reaches an extremum. The maximum of turbulence kinetic energy that
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(a)

(b)

(c) (d) (e)

Figure 7.12: Transition to a turbulent stator boundary layer flow in a cylindrical cavity of aspect
ratio G = 0.195. Spatio-temporal diagrams showing the dynamics of the instability structures when
increasing rotation: (a) Vz (r∗ = 0.809, z∗ = 0.89, θ, t); (b) Vz (r∗, z∗ = 0.89, 0, t∗). (c, d, e) isolines
of Vz showing the instability patterns: (c left) transient circular rolls alone at Re = 2× 104 (t∗ = 207
Ω−1), (c right,d) m = 10 spiral arms at Re = 2 × 104 and Re = 3 × 104, respectively, (e) turbulent
patterns at Re = 4× 104. The disk rotates counterclockwise.

was located on the stator at the impact of the swirling jet flowing along the cylinder wall, moves to
the periphery of the rotor when one increases the rotation rate.

The rotor layer being very stable, the investigation of the transition scenario is easier because
instability modes can grow successively over a wide range of Reynolds number, in contrast to the
stator boundary layer. The aim was to confirm the scenario of Viaud et al. [344].

As shown in Figure 7.13b, the spiral arms occur at a radial location r∗ ≈ 0.69, where the turbulence
kinetic energy suddenly increases forming a steep front (Fig. 7.14). At this position, the local Rossby
and Reynolds numbers are equal to Ro = −0.72 and Reδ = 314, respectively. The results compare
well with the theoretical study of Lingwood [184]. In this work, Lingwood [184] presents a study of
the laminar Ekman layer and the family of related rotating problems that includes the Bödewadt,
Ekman and von Kármán boundary layer flows, usually referred as BEK system. Figure 7.15 presents
the critical Reynolds and radii for the onset of absolute instability for the BEK system obtained by
Lingwood [184]. This diagram shows that, for a Rossby number equal to Ro = −0.72, the local
Reynolds number and dimensionless radius are equal to Re ≈ 300 and r∗/

√
Re ≈ 400, respectively.

From Figure 7.15 and Ro = −0.72, a theoretical value of the radial position, RCA(= r∗/
√
Re) =

6.76 is obtained. The radius RCA may be interpreted as the position, where the convective-absolute
instability transition occurs.

Figure 7.14 represents the theoretical position, RCA together with the turbulence kinetic energy
in the rotor boundary layer as a function of the radial position obtained for Re = 4 × 105, allowing
the visualization of the convective and absolute regions (noted by C and A respectively) and the
value of the absolute spatial growth rate, k0,i ≈ 3.635 indicated by the slope. The linear theory of
Lingwood [184] also predicts an unstable mode k = 67 for Ro = −0.72. This value was obtained by an
interpolation of the theoretical values and allows us to obtain a theoretical prediction of the unstable
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(a) (b)

Figure 7.13: Isolines of the Q-criterion for G = 0.195 and Re = 4×105: (a) stator boundary layer with
quasi-circular patterns; (b) rotor boundary layer with a stable flow region (R1) and a multi-armed
spiral front (k = 68) of the absolute mode of the crossflow instability (R2) immediately followed by
incipient turbulence (R3).

Figure 7.14: Turbulence kinetic energy k in the rotor boundary layer for G = 0.195 and Re = 4× 105

showing the structure of a steep front immediately followed by incipient turbulence. RCA is the local
radius for convective/absolute transition and k0,i is the linear absolute spatial growth rate.

mode. This estimate is close to the present LES results. The energy spectrum of the turbulence
kinetic energy is shown on Figure 7.16 for three different regions in the rotor boundary layer (referred
in Figure 7.13b as R1, R2 and R3). The wide spectrum in the R1-region is characteristic of incipient
turbulence while in the R3-region the energy is one order smaller indicating that the flow is still
stable. The spectrum corresponding to the R2-region, where are located the spiral arms, shows that
the mode 68 is the most unstable. However, about ten neighboring modes are also unstable showing
the strong non-linearity of the solution. All these modes could play a role in the slight vacillation
of the spiral front in the tangential direction. This vacillation may correspond to a small coupling
between the perturbations and the mean flow that changes the local properties and feedback on the
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Figure 7.15: Critical local Reynolds numbers(-) and radii (—) for the onset of absolute instability for
the BEK system by Lingwood [184]. The bounding lines are fitted to the calculated data points (X)
and the shaded areas correspond to the absolutely unstable regions.

radius of transition of the mean flow.

(a) (b) (c)

Figure 7.16: Energy spectrum of the turbulence kinetic energy in the rotor boundary layer: (a) region
R1, (b) region R2 and (c) region R3.

To conclude, these results show that the scenario of a direct transition to turbulence suggested
in the theoretical study of Pier [245] and obtained in the recent numerical studies of Viaud et al.
[344] can be naturally selected in a rotor-stator flow. The k = 68 spiral wave would correspond to
a non-linear global mode characterized by a steep front (Fig. 7.14) located on the upstream limit of
the absolutely unstable domain, followed downstream by a disordered state (Fig. 7.13b) related to
incipient turbulence and preceded upstream by a low level perturbation region.

7.5 Conclusion

A combined experimental and numerical study of the transition to turbulence of the flow in an an-
nular rotor-stator cavity has been first performed. One focused on the two instabilities, which occur
in the case of unmerged boundary layer flow. The influence of the hub on the stability diagram has
been investigated. It slightly increases the ratio between the fluid and the disk velocities (and so the
Rossby number) but this effect remains weak. Then, flow visualizations and DNS results have been
compared for Rm = 1.8 and an excellent agreement has been obtained for the main characteristics of
the circular and spiral rolls.
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These two instabilities have been revisited using accurate DNS and the convective nature of the
first instability, which appears as circular rolls attached to the stator, has been highlighted in agree-
ment with previous results [105]. Above a second threshold, a second instability appears as positive
spiral patterns (SR1) also propagating along the stationary disk. Numerically and without any per-
turbation, mode k = 17 appears to be the most unstable mode, in agreement with the results of
Schouveiler et al. [302]. This mode saturates through the production of higher harmonics following
the classical supercritical Hopf bifurcation picture. Whatever the boundary conditions on the end-
wall, the flow remains unstable according to the criterion of Leibovich and Stewartson [176]. This
endwall condition introduces a permanent perturbation, which destabilizes the stator boundary layer
and induces the formation of the SR1 patterns, that propagates dispersively in the stator boundary
layer. The convective nature of the circular rolls and the crossflow instability appearing as multiarmed
spiral waves via a supercritical Hopf bifurcation have been confirmed a little bit later by the linear
stability analysis of Lopez et al. [189] in a similar rotor-stator system (Rm = 1, G = 0.2).

Along the rotor side, present results are consistent with the scenario of transition to turbulence
obtained in recent theoretical and numerical studies of Pier [245] and Viaud et al. [344] with a k = 68
spiral non-linear global mode. In this sense, they should interfere in the debate around the existence
of a direct route to turbulence in the rotating disk boundary layer.
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Chapter 8

Turbulent enclosed rotor-stator
disk flows

This topic is the main thread of my research activities up to 2012. When I moved to the M2P2 labora-
tory, I switched to numerics and performed LES calculations using the approach based on the spectral
vanishing viscosity (SVV) technique developed by Séverac & Serre [316] (see Chapter 3). It has been
applied to enclosed rotor-stator flows under both isothermal and non-isothermal conditions. One of
the main goal was to reproduce and understand the 3D unsteady large-scale structures highlighted
experimentally by the team of Prof. B.E. Launder [60, 63].

In this Chapter, quantitative comparisons of two high-order LES are reported to predict a tur-
bulent rotor-stator flow at a rotational Reynolds number Re = Ωb2/ν = 106. A classical dynamic
Smagorinsky model for the subgrid-scale stress (LES-FD) is here compared to the spectral vanishing
viscosity technique (LES-SVV). Numerical results include both instantaneous data and post-processed
statistics. Results show that both LES are able to accurately describe the unsteady flow structures
and to predict satisfactorily mean velocities as well as the Reynolds stress tensor components. A slight
advantage is given to the spectral SVV approach in terms of accuracy and CPU cost. The strong
improvements obtained in the present results with respect to RANS results confirm that LES is the
right level of modeling for such flows. The results are then extended using the SVV code to investigate
the influence of the Reynolds number, finite cavity effects and the three-dimensional nature of the two
boundary layers.

The effects of thermal convection have been examined then for a turbulent flow and Rayleigh
numbers up to Ra = 108 still using the LES-SVV. The averaged results show small effects of density
variation on the mean and turbulent fields. The turbulent Prandtl number is a decreasing function of
the distance to the wall with 1.4 close to the disks and about 0.3 in the outer layers. The local Nusselt
number is found to be proportional to the local Reynolds number to the power 0.7. The evolution of
the averaged Bolgiano length scale with the Rayleigh number indicates that temperature fluctuations
may have a large influence on the dynamics at the largest scales of the system for Ra ≥ 107.

To conclude, some flow visualizations performed using the MACE facility in Manchester are pro-
vided and confirm the former results [60, 63] obtained in a cylindrical cavity. Large scale precessing
vortices may appear within the central core of the flow in the turbulent regime. When the cavity is
annular with a central hub, there is no evidence of these structures confirming the present LES results.

8.1 Introduction

8.1.1 Why studying rotor-stator flows?

Rotating disk flows have been the subject of a constant interest over the last decades because of their
relevance to applications in rotating machinery systems as computer storage, axial thrust bearings and
turbine disk cooling. For example, most of the works on rotor-stator flows shown in this manuscript
as well as the ones developed during my PhD thesis [249], have been motivated by the predictions
of the base rotor-stator flows found in the Liquid Hydrogen Turbopump of the Vulcain engine shown
in Figure 8.1. In such cavities, the centrifugal and the Coriolis forces have a strong influence on the
turbulence by producing a secondary flow in the meridian plane composed of two thin boundary layers
along the disks separated by a non-viscous geostrophic core. Thus, a good prediction of the mean
tangential velocity in the core enables to evaluate the axial thrusts on the rotating disk, which is one
key point for manufacturers [249, 251].

Under non-isothermal conditions, these flows are important in a large number of industrial appli-
cations such as in the ventilation of electrical air cycle machines, in semi-conductor manufacturing
processes with rotating wafers and in a lot of other rotating machineries. For example, in high-speed
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rotating gas turbines, the cooling air flow is used to both cool the disk and prevent the ingestion of
hot turbine passage gases into the cavity. A good knowledge of heat transfers and fluid flows in such
systems is crucial: an excessive amount of coolant is often supplied to the cavity that imposes an
unnecessary penalty on the engine cycle and leads to a loss of efficiency.

Figure 8.1: Exploded view of the Liquid Hydrogen Turbopump (TPH) of the Vulcain engine of Ariane
V developed by the group Snecma Moteurs.

The rotor-stator problem has also proved to be a fruitful means of studying turbulence properties
with wall confinement and rotation as this specific configuration is a relatively simple case where rota-
tion brings significant modifications to the turbulent field. Finally, rotating disk flows are also among
the simplest flows where the boundary layers are three-dimensional from their inception and they are
therefore well suited for studying the effects of mean-flow three-dimensionality on the turbulence and
its structure [145, 185, 193].

8.1.2 Regime IV of Daily and Nece [67]

Rotor-stator flow structure is largely dependent on the combination of the rotation speed Ω and the
interdisk spacing h. Daily and Nece [67] carried out an exhaustive theoretical and experimental study
of sealed rotor-stator flows and pointed out the existence of four flow regimes. These correspond re-
spectively to two laminar regimes (I and II) and two turbulent regimes (III and IV), each characterized
by either merged (I and III) or separated (II and IV) boundary layers. In the latter case, the two
boundary layers are separated by a central rotating core. The limits of the four regimes are shown in
Figure 8.2.

These authors provided also an estimated value for the local Reynolds number at which turbulence
originates with separated boundary layers, Rer = Ωr2/ν = 1.5×105 (r is the radial location) for aspect
ratios G ≥ 0.04. However, experiments have revealed that transition to turbulence can appear at a
lower value of Rer within the Bödewadt layer on the stator, even though the flow remains laminar in
the Ekman layer along the rotor.

Major experiments concerning this flow regime have been performed by Itoh et al. [136, 137] in
a closed cavity. They measured the mean flow and all the Reynolds stress tensor components, and
brought out the existence of a relaminarized region towards the axis even at high rotation rates. From
detailed measurements, Itoh et al. [137] reported a turbulent regime occurring earlier along the stator
side at Rer ≃ 8.× 103, while along the rotor side, turbulent flow develops later for 3.6× 105 < Rer <
6.4 × 105 for G = 0.08. This is in agreement with the experiment of Cheah et al. [49] performed for
rotational Reynolds numbers ranging 3× 105 < Rer < 1.6× 106 inside a rotor-stator system of aspect
ratio G = 0.127. The rotor side becomes turbulent for Rer = 4. × 105 while the stator is shown to
be turbulent at all Reynolds numbers considered. Cheah et al. [49] found differences in turbulence
characteristics between the rotor and the stator and that the turbulent flow field is also affected
by the radial location. These authors concluded to an influence of the radial convective transport
of turbulence on the flow field. Czarny et al. [63] displayed by flow visualizations the appearance
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Figure 8.2: Base flow regimes in enclosed rotor-stator cavities after Daily and Nece [67] with the main
numerical contributions (triangles=RANS modeling, circles=DNS, squares=LES).

of organized precessing vortex structures in a rotor-stator cavity of aspect ratio G = 0.126. These
three-dimensional patterns subsist at high Reynolds numbers Re → 1.78× 106 and might explain the
failure to predict heat and mass transfers accurately when only axisymmetric and steady approaches
are used. In the case of an outward throughflow, Poncet et al. [253] characterized, using the RSM
of Elena and Schiestel [85], the transition between the Batchelor and Stewartson flow structures as a
function of a modified Rossby number.

Relatively few experimental data are available in the literature for heat transfer in rotating disk
flows mainly because of the complexity and the cost of making accurate heat transfer measurements.
A large review of the fundamental investigations relevant to heat and mass transfers in rotor-stator
cavities carried out until 1989 has been performed by Owen and Rogers [233]. In the flow regime
with unmerged boundary layers, the dynamics of thermal convection with a rotating top wall can
be characterized essentially by three global physical parameters in a closed cavity, which are the
rotational Reynolds number Re, the Rayleigh number Ra and the Prandtl number Pr defined by:

Re = Ωb2/ν Ra =
Ω2b∆Th3

νκTr
Pr =

ν

κ

where ν and κ are the kinematic viscosity and the thermal diffusivity of the fluid, respectively. ∆T is
the temperature difference between the disks and Tr is the reference temperature equal to the average
of the wall temperatures. The total heat flux through the disks is usually expressed in terms of the
local Nusselt number Nu = hr/λ (h the convective heat transfer coefficient and λ the conductivity
of the fluid) or of the averaged Nusselt number Nuav. Both depend in a complicated manner on
(Ra,Re, Pr) but also on the flow rate coefficient for open cavities. The influence of the aspect ratio
G of the cavity on the distribution of the local Nusselt number along the disks is weak compared to
the ones of rotation for example [233].

In the regime IV (turbulent with unmerged boundary layers), Dorfman [78] proposes, from exper-
iments, a correlation for the local Nusselt number:

Nu = 0.0197Pr0.6Re0.8r (8.1)

Note that the aspect ratio and the Rayleigh number do not appear in this correlation. Dorfman [78]
proposes other correlations depending on the temperature distributions imposed on the disks. This
author showed also that heat transfer on the rotating disk was not affected by the presence of the
stator for G ≥ 1.05Re−0.2. That implies that the correlation laws obtained in the single disk case
[78, 233] can also be applicable here. Daily and Nece [67] proposed a correlation for the mean Nusselt
number on the rotor:

115



116 CHAPTER 8. TURBULENT ENCLOSED ROTOR-STATOR DISK FLOWS

Nuav = 0.0173(
G

2
)0.1Re0.8 (8.2)

Djaoui et al. [73, 74] examined the turbulent flow in a rotor-stator cavity of large aspect ratio
subjected to a superimposed radial inflow and heat transfer effects. Detailed velocity and Reynolds
stress tensor measurements as well as temperature and temperature-velocity correlations have been
carried out using a hot and cold wire anemometry technique. They studied in particular the external
peripheral geometry effects and the critical importance of the inlet conditions on the mean tangential
fluid velocity. They focused also on the dependence of the flow structure and heat transfer effects
on the Rossby and Reynolds numbers. Comparisons with an asymptotical formulation based on
the assumption of inviscid fluid were displayed and were shown to be in good agreement with the
experimental data. Harmand et al. [124] investigated both the flow structure by Particule Image
Velocimetry (PIV) and the heat transfers using a thermally rotor heated by infrared radiation in the
case of turbulent rotor-stator flows. The local heat flux distribution from the rotor was identified by
solving the Laplace equation by finite-difference schemes. The local Nusselt number Nu on the rotor
was found to be an increasing function of the Reynolds number and remains almost constant along
the radius contrary to the free disk case, where Nu increases from the axis to the periphery of the
cavity. Pellé and Harmand [237] studied experimentally the influence of the dimensionless interdisk
spacing G on the local Nusselt number. It remained almost constant whatever the Reynolds number
for G = 0.08. They identified four heat transfer regimes corresponding to the four flow regimes of
Daily and Nece [67] and gave correlations for the local and averaged Nusselt numbers depending on
the aspect ratio and the Reynolds number. For turbulent flows with separated boundary layers, the
general laws for Nu and Nuav are:

Nu = 0.035(1− e−40×G)(1− e−4.2×105Re)Re0.746r (8.3)

Nuav = 0.0325(1− e−40×G)(1− e−4.2×105Re)Re0.746 (8.4)

The last step towards the real machinery has been done experimentally by Verhille et al. [343],
who studied the resonances of a rotor-stator cavity filled with sulfur hexafluoride. They showed in
particular that such fluid near its critical point enables to reach the similarity parameters of the real
turbompump and that the resonances can be well predicted by considering a Helmholtz resonator
model.

8.1.3 Turbulent rotor-stator flows: a challenge for numerical methods

Until now, numerical studies have been dedicated to simpler flows: single disk flows [357], axisymmet-
ric flows using statistical approaches (Reynolds Averaged Navier-Stokes) [253], idealized rotor-stator
cavities [193], or enclosed rotor-stator cavities but at much lower rotation rates using Direct Numer-
ical Simulation (DNS) [266, 311]. So far very few investigations have been done using Large Eddy
Simulation (LES).

These flows are indeed very challenging for numerical modeling particularly in turbulent regimes
relevant to industrial conditions. A characteristic feature of such flows is indeed the coexistence of ad-
jacent coupled flow regions involving laminar, transitional and turbulent regions completely different
in terms of the flow properties. Moreover, the turbulence is strongly inhomogeneous and anisotropic
because of finite cavity effects, flow curvature and rotational effects.

At the present time, computer performances only permit DNS of transitionally turbulent cavity
flows (Re ≈ 105) [253, 266, 311] as shown in Figure 8.2. In a simpler flow model, where the flow is
restricted to an angular section of the cavity and assumed homogeneous also in the radial direction,
Lygren and Andersson [193] performed DNS at a higher Reynolds number (Re = 4 × 105) using a
second-order finite-difference scheme. They provided a detailed set of data to analyze the coherent
structures near the two disks. In the non-isothermal case, Serre et al. [310] performed DNS of non-
isothermal transitional flows under the Boussinesq approximation at Re = 1.1 × 105 and showed in
particular that the effects of density variation remain small for Rayleigh numbers up to Ra = 2× 106.

Attempts to compute turbulent rotor-stator flows using statistical approaches had only partial
success. Indeed, the turbulence model must be able to solve the low-Reynolds number regions not
only near the disks but also in the core of the flow. Moreover, the model has to predict precisely

116



117 8.2. THE EXPERIMENTAL SET-UP

the location of the transition from the laminar to the turbulent regime, even though it is bounded
by instabilities, and so cannot be completely represented by a steady flow model. The second-order
closures could be a more appropriate level of closure to predict such complex flows [85, 173, 253]
but even if they provide a correct distribution of laminar and turbulent regions, the Reynolds stress
behavior is not fully satisfactory, particularly near the rotating disk and in the core region.

Consequently, Large Eddy Simulation (LES) constitutes a valuable way to compute such flows.
Wu and Squires [357] have been the first to develop LES to predict the statistically three-dimensional
turbulent boundary layer (3DTBL) over a single rotating disk. They compared three dynamical sub-
grid models to the experimental data of Littell and Eaton [185] for Re = 6.5× 105. Their results have
offered new evidence to support the observations of Littell and Eaton [185] that streamwise vortices
with the same sign as the mean streamwise vorticity are mostly responsible for strong sweep events,
while streamwise vortices having opposite sign to the mean streamwise vorticity promote strong ejec-
tions. Lygren and Andersson [194] compared the results obtained from three LES models with their
DNS calculation and suggested that improved subgrid models have to be implemented to get closer
agreement. In their latter work, Andersson and Lygren [11] performed “wide-gap” and “narrow-gap”
simulations to investigate the degree of three-dimensionality in both Ekman and Bödewadt layers for
Re ≤ 1.6× 106. Their results support the same conclusions as Littell and Eaton [185] that the mean
flow three-dimensionality affects the near wall vortices and their ability to generate shear-stresses.

The fact that only few experimental works have been done under non-isothermal conditions has
slowed down the development of specific advanced heat transfer models. Abe et al. [1] developped
a two-equation heat transfer model, which incorporates essential features of second-order modeling.
They introduced the Kolmogorov velocity scale to take into account the low Reynolds number effects
in the near-wall region and also complex heat transfer fields with flow separation and reattachement.
But this model has not been yet implemented for rotating disk flows. A major numerical work is
the one of Iacovides and Chew [134]. They have used four different turbulence models to study the
convective heat transfer in three axisymmetric rotating disk cavities with throughflow. Three models
were based on a zonal modeling approach and one was based on a mixing-length hypothesis. Their
numerical predictions were compared to experimental data available in the literature but none of the
four models was entirely successful. Nevertheless, considering overall performance, the k − ϵ model
with the one-equation near-wall treatment was preferred. Schiestel et al. [299] have examined the
turbulent flow in a rotating cavity with a radial outward throughflow and heat transfer effects. They
compared a standard k − ϵ low-Reynolds number model and a zonal approach using second-order
Algebraic Stress Model (ASM) in the core of the flow. They showed that second-order modeling is
necessary to obtain a detailed near-wall treatment. Recently, Poncet and Schiestel [258] compared the
RSM of Elena and Schiestel [85] to data available in the literature. They considered the temperature
as a passive scalar (Ra = 0) and found a close agreement in the case of an open cavity even for
large temperature differences ∆T = 75 K. Most turbulence modelings do not take into account three-
dimensional effects due to highly structured large-scale vortices, which have a large influence on the
resultant heat transfer coefficients at the disk surface as shown in [27, 63]. Thus, all workers concluded
that further numerical research is required before a mathematical model can be recommanded with
any confidence.

Figure 8.2 sums up the main numerical contributions to rotor-stator disk flows in enclosed cavities
and under isothermal conditions. RANS models are able to predict the flow field until Re = 107

[84, 119], which remains quite far from the value Re = 2.8 × 108 reached in the real turbopump
(G ≃ 0.45) sketched in Figure 8.1. At this Reynolds number, it is clearly unthinkable to perform a 3D
well resolved DNS as more than 4× 1018 grid points will be required to resolve up to the Kolmogorov
length scale.

8.2 The experimental set-up

The cavity considered here and sketched in Figure 3.1 was developed at IRPHE. It is composed of
a smooth stationary disk (the stator) and a smooth rotating disk (the rotor) delimited by an inner
rotating cylinder (the hub) and an outer stationary casing (the shroud). The rotor and the central
hub attached to it rotate at the same uniform angular velocity Ω. The mean flow is governed by three
main parameters: the aspect ratio of the cavity G, the curvature parameter Rm and the rotational
Reynolds number Re based on the outer radius b of the rotating disk defined as follows:
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G =
h

b
=

1

7
Rm =

b+ a

b− a
= 1.8 105 ≤ Re =

Ωb2

ν
≤ 106

where ν is the kinematic viscosity of water, a = 40 mm and b = 140 mm the inner and outer radii of
the rotating disk, h = 20 mm the interdisk spacing and Ω the rotation rate of the rotating disk. The
values of the geometrical parameters have been chosen in order to be relevant with industrial devices
such as real stage of turbopump, and to satisfy technical constraints of the experimental device as well
as computational effort to reach statistically converged states. A variable speed numerical controller
drives the angular velocity Ω with an accuracy better than 1%. In the experimental set-up, two small
clearances exist: the first one δ1 = 0.85 mm between the rotor and the shroud (δ1/b = 0.0061) and
the second one δ2 = 0.1 mm between the hub and the stator (δ2/h = 0.005) because of mechanical
constraints. During one experiment, the temperature is almost constant: 20± 0.5◦C. One defines the
dimensionless radial r∗ and axial z∗ coordinates as: r∗ = (r − a)/(b− a) and z∗ = z/h.

The measurements are performed using a two component laser Doppler velocimeter (LDV). The
LDV technique is used to measure from above the stator the mean radial V ∗

r = Vr/(Ωr) and tangential
V ∗
θ = Vθ/(Ωr) velocity components and the associated Reynolds stress tensor components R∗

rr =

v′2
r /(Ωr)2, R∗

rθ = v′
rv

′
θ/(Ωr)

2, R∗
θθ = v

′2
θ /(Ωr)2 in a vertical plane (r, z). This method is based on the

accurate measurement (error margin of ±5% on the second order momentums) of the Doppler shift of
laser light scattered by small particles (Optimage PIV Seeding Powder, 30 µm) carried along with the
fluid. Its main qualities are its non intrusive nature and its robustness. The measurement is found
to be more difficult close to the rotating disk, because of strong reflections of the laser beams and
seeding problems. Note that the size of the probe volume in the axial direction (0.8 mm) is not small
compared to the interdisk spacing and to the boundary layer thicknesses. It has been experimentally
verified [249] that about 5000 validated data are necessary to obtain the statistical convergence of the
velocity fluctuations.

8.3 Numerical approaches

Two LES codes described in Chapter 3 have been used in the following to investigate turbulent
isothermal rotor-stator disk flows:

1. The first one is based on a pseudospectral method associated with the SVV technique (Section
3.7.1) developed by Séverac and Serre [316]. It will be denoted LES-SVV in the following. The
values of the SVV parameters wT and ϵN are given in Table 8.1.

2. The second code, denoted LES-FD in the following, is associated with fourth-order compact
schemes for the spatial discretization in the non homogeneous directions and a dynamic Smagorin-
sky model as subgrid scale model (Section 3.7.2).

Re wT (r,θ,z) ϵN grid Ωδt

105 3N/4, N/2,
√
N 1/(2N), 1/(2N), 1/(2N) 81, 150, 49 10−4

4× 105 0.8
√
N,

√
N,

√
N 1/(2N), 1/(2N), 1/(2N) 121, 181, 65 10−4

106 2
√
N, 5

√
N, 4

√
N 1/N, 1/N, 1/N 151, 241, 81 5× 10−5

Table 8.1: Computational parameters for the LES-SVV.

The same computational grid with 121× 65× 180 mesh points in the (r, z, θ) directions has been
sized for the two methods at Re = 106. For the LES-SVV, a time step equal to δt = 5 × 10−5Ω−1

has been used to be compared to the one used for the LES-FD δt = 3 × 10−4Ω−1. The calculations
have been performed in a half-cavity [0, π] in order to save CPU time. An a priori verification of the
resolution has been performed by calculating an estimation of the ratio of the resolved to modeled
scales, i.e. ∆max/η where ∆max is the maximum cut-off wavelength given by the grid and η the
Kolmogorov length scale estimated from the homogeneous isotropic turbulence theory using measure-
ments of the size and velocity of the primary rolls given by the linear stability analysis of Serre et al.
[314]. In LES-SVV and LES-FD calculations, the ratio ∆max/η is around 2.5 and 3.3 respectively.
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This permits to resolve near-wall structures. The numerical resolution has been checked a posteriori
by calculating the friction velocity in both boundary layers and in the core. Both LES-SVV and
LES-FD grids correspond to an axial wall-coordinate z+ around unity slightly varying with r as the
total friction velocity increases towards the periphery of the cavity whereas r+ and θ+ are around 10
at mid-cavity. The LES-SVV has been used for 2 other values of the Reynolds number and also in
the non-isothermal case.

After the time-dependent flow is settled at a statistically steady state, turbulence statistics are
averaged both in the homogeneous tangential direction and in time during around 10 global time units
(in term of Ω−1). The state is considered statistically steady when the fluctuations of the averaged
values in time are less than 1%.

The solution in the isothermal case is used as an initial solution for the non-isothermal calculations
using the LES-SVV code. The data in the non-isothermal cases are averaged on 77 disk revolutions,
which is sufficient as the averaging for the Nusselt number converges quite rapidly, about 20 dimen-
sionless time units in the similar system of Kunnen et al. [162].

8.4 Turbulent isothermal rotor-stator disk flows

8.4.1 Benchmark of two Large Eddy Simulations

The benchmark has been performed at a rotational Reynolds number equal to 106 guaranteing that
both boundary layers are turbulent. The results have been published in Flow, Turbulence & Combus-
tion (see Ref.[345]). The LES are compared also to the predictions of the RSM model described in
Chapter 4 (grid composed of 140× 80 mesh points in the radial and axial directions). Both LES-FD
and LES-SVV provide the same axisymmetric base flow. It is characterized by a secondary flow in
the meridian plane induced by the centrifugal force. As a consequence of the Coriolis force (Taylor-
Proudman theorem), the flow is composed of two thin boundary layers along the disks separated by
a geostrophic core at zero axial pressure gradient as shown on Figure 8.3 from the velocity profiles.
The fluid is pumped centrifugally outwards along the rotor (V ∗

r > 0) and is deflected in the axial
direction after impingement on the external cylinder. After a second impingement on the stator, it
flows radially inwards along the stator (V ∗

r < 0), due to conservation of mass, before turning along
the hub and being centrifuged again by the rotating disk. Note that due to a smaller radial velocity,
the Bödewadt layer along the stator is almost twice as thick as the Ekman layer on the rotor. By
analogy with the single disk problem, the boundary layer close to the rotor is known as the Ekman
layer (although Ekman layer solutions are linear, one retains this terminology in the non-linear case),
whereas the boundary layer close to the stator is called the Bödewadt layer. The thicknesses of both
boundary layers are scaled by the characteristics viscous length δ = (ν/Ω)1/2. These two boundary
layers are separated by a nearly homogeneous core region, characterized by a quasi zero radial velocity
(V ∗

r ≃ 0) and by a constant tangential velocity V ∗
θ = K, where K is called the entrainment coefficient

(denoted sometimes β). As the laminar regime [311], there exists on average, a main flow in the
tangential direction coupled with a secondary flow in the meridional plane.

The radial confinement by both cylinders makes the solutions inconsistent with self-similarity
solutions, although they can be close far from the endwalls. In particular, both boundary layers are
not parallel. Thus, comparisons between LES results and available linear stability results can be local
only. In consequence, quantitative comparisons between LES-SVV and LES-FD have been made at
three radial locations of the cavity r∗ = 0.3, 0.5 and 0.7, that correspond to a local Reynolds number
Rer = (r/δ) varying in the range 90.4 ≤ Rer ≤ 103. Figure 8.3 shows the axial profiles of the mean
radial V ∗

r and tangential V ∗
θ velocity components normalized by the rotor velocity at these radial

locations. The mean axial velocity component is not shown here because it is nearly zero in this
range of radii far from the endwalls. The agreement between experimental measurements and both
LES predictions is satisfactory. Nevertheless, LES-SVV provides better overall results than the LES-
FD and the RSM. The boundary layer thicknesses are globally well predicted. Both LES methods
slightly underestimate thicknesses, especially at large radii for LES-FD. The velocity maxima within
the boundary layers are well predicted by both LES over the stator but strongly overestimated over
the rotor. The core swirl ratio or entrainment coefficient K is crucial for engineering applications
because it is directly linked to the radial pressure gradient in the cavity and consequently to the axial
thrusts applied on the rotor [251]. The LES-FD slightly underestimates K, predicting K = 0.345 at

119



120 CHAPTER 8. TURBULENT ENCLOSED ROTOR-STATOR DISK FLOWS

Figure 8.3: Axial profiles of the mean tangential and radial velocity components normalized by the
local speed of the disk at three radial locations for G = 1/7, Rm = 1.8 and Re = 106. Comparisons
between the LES-SVV (full lines), the LES-FD (dashed lines), the velocity measurements (circles)
and the RSM model (dash-dotted lines).

r∗ = 0.5 with respect to K = 0.36 given by LES-SVV as well as experimental measurements. This
underestimation is more pronounced by the RSM, which predicts K = 0.315 close to the value for
laminar similarity solutions (K = 0.313) [236].

Figure 8.4: Axial profiles of the two main Reynolds stress tensor components R∗
rr and R∗

θθ at three
radial locations for G = 1/7, Rm = 1.8 and Re = 106. Comparisons between the LES-SVV (full
lines), the LES-FD (dashed lines), the velocity measurements (circles) and the RSM model (dash-
dotted lines).
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Second-order statistics available from experimental measurements in the radial R∗
rr = v′2

r /(Ωr)2

and tangential directions R∗
θθ = v

′2
θ /(Ωr)2 have been computed in Figure 8.4 at the same radial

locations. LES results provide an overall agreement with the experimental data both in boundary
layers and in the core with a slightly better estimation of the turbulence intensity by LES-SVV than
LES-FD. Surprisingly, RSM seems to strongly overestimate the maxima of the normal components of
the Reynolds stress tensor within the stator boundary layer at all locations while it underpredicts the
turbulence intensity in the core and completely misses the transition in the rotor layer. The peaks
of the normal Reynolds stress tensor components are relatively well predicted by both LES within
the stator layer at a wall distance of 0.05h and 0.025h for the radial and tangential components,
respectively. Both LES models overpredict Rθθ in both boundary layers, the maximum being reached
by the LES-SVV within the rotor layer at mid-radius. That leads to a much stronger anisotropy of the
Reynolds stress tensor than in experiments. Such behavior could be related to the anisotropy of the
grid computation, which is globally much coarser in the tangential direction, especially at large radii.
This hypothesis is supported by the LES of Wu and Squires [357], who observed a strong sensitivity
of this component depending on the resolution.

Figure 8.5: Axial profiles of the shear Reynolds stress tensor component R∗
rθ at mid-radius forG = 1/7,

Rm = 1.8 and Re = 106. Comparisons between the LES-SVV (full lines), the LES-FD (dashed lines)
and the velocity measurements (circles).

Figure 8.5 illustrates the R∗
rθ shear stress at mid-radius. The other components are not illustrated

because the two other cross components were not available using the LDV technique. Both LES
methods show a global agreement in terms of sign and intensity within the stator boundary layer.
On the rotor side, however, LES-FD underpredicts its intensity due to a lower turbulence level. As
expected from the literature, the shear stress magnitude is much smaller than the normal components
(see DNS results in [193]). This is a feature of rotating disk boundary layers that indicates an
important structural change in the turbulence compared to the more classical plane boundary layer.

Instantaneous results also show a good agreement between both LES methods that provide almost
similar coherent structures. Vortical structures are identified using positive isosurfaces of the Q-
criterion. The Q-criterion defines a vortex as a spatial region where the Euclidean norm of the vorticity
tensor Ω = 1

2 [∇v−(∇v)T ] dominates that of the rate strain S = 1
2 [∇v+(∇v)T ]: Q = 1

2 [|Ω|2−|S|2] >
0. As already observed in the turbulence statistics, the rotating disk layer is only weakly turbulent.
This is featured in the flow structure by coherent negative spiral arms (as they roll up in the opposite
rotation sense of the disk) at intermediate radii (Fig.8.6a & 8.20e) forming an angle of about −15◦

with the tangential direction. This feature is characteristic of the viscous linear instability referred
to in the literature as Type II and is known to play an important role in the transition process to
turbulence (see in [314]). Around the hub, where the flow coming from the stator impinges the rotor,
both simulations predict a highly turbulent region with smaller disorganized structures. The LES-
SVV gives the transition to turbulence at the right threshold expected from theory and experiments
at large radii, that is at a local Reynolds Rer = 386. These spiral arms break into much smaller and
more concentric structures similar to the ones observed along the stator. Along the stator, both LES
exhibit very thin coherent vortical structures aligned with the tangential direction (Fig.8.6b & 8.20f).
This is typical of a turbulent rotating boundary layer since the anisotropy invariant map shows that
turbulence tends to the axisymmetric limit in this flow region [315]. The thinner structures predicted
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(a) (b)

Figure 8.6: Isosurfaces (top view) of the Q-criterion in the (a) rotor boundary layer and in the (b)
stator boundary layer for G = 1/7, Rm = 1.8 and Re = 106 obtained using the LES-FD. Note that
the disk rotates counterclockwise.

by the LES-SVV confirm nevertheless a globally higher level of turbulence.

8.4.2 Influence of the rotational Reynolds number

The better overall agreement has been obtained in the previous section by the LES-SVV approach. It
has been used to investigate other flow regimes in the following. The mean and turbulent quantities
obtained with the LES-SVV approach are presented in this subsection for three values of the Reynolds
number Re in the range [105−106] for the same geometry. All the following results have been published
in Phys. Fluids (see Ref.[315]).

The axial profiles of the mean radial V ∗
r and tangential V ∗

θ velocity components at mid-radius (r∗ =
0.5) are shown for three Reynolds numbers in Figure 8.7. As the axial mean velocity component is
everywhere very small compared to the two other components, it will not be discussed here. Whatever
the Reynolds number considered in this study, the mean flow (Fig.8.7) still corresponds to the regime
IV [67], turbulent with unmerged boundary layers. It is noteworthy that the entrainment coefficient K
is consistently below 0.5 midway between the disk, which is the value obtained for the plane Couette
flow. Its value at mid-radius r∗ = 0.5 (Table 8.2) increases with the Reynolds number from 0.35
for Re = 105 to 0.38 for Re = 106 in the calculations and from 0.35 to 0.41 in the experiments.
These values can be compared to the value K ≃ 0.35 measured by Cheah et al. [49] for Rer up to
2.6×105 and to the one K = 0.4 obtained by Andersson and Lygren [11] at Re = 6.4×105 (G = 0.1).
Nevertheless, they remain substantially smaller than the semi-empirical value K = 0.43 of Poncet et
al. [251] for highly turbulent enclosed rotor-stator flows at Re ≥ 106.

Reynolds number K δE/h δB/h δ/h
105 0.35 0.104 0.222 0.022

4× 105 0.36 0.071 0.147 0.011
106 0.38 0.055 0.084 0.007

Table 8.2: Influence of the Reynolds number on the entrainment coefficient K and on the thicknesses
of the boundary layers for r∗ = 0.5. Results obtained by the LES-SVV for G = 1/7 and Rm = 1.8.

By comparing the Vr-profiles (Fig.8.7), the thickness of the Ekman boundary layer δE , which
is known to behave as

√
ν/Ω, decreases with Re by about a factor two between Re = 105 and

Re = 106 (Table 8.2). This is characteristic of a rotating boundary layer, which becomes turbulent.
By conservation of mass, as there is no radial flow in the core, the Bödewadt boundary layer thickness
δB behaves like the Ekman one. All the main results are summed up in Table 8.2. The Bödewadt
layer is almost two times thicker than the Ekman layer, which is itself about 10 times thicker than
the thickness of the boundary layer over a free rotating disk δ/h =

√
ν/Ωh2.

It is encouraging to observe from Figure 8.7 that the agreement between the numerical results and
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Figure 8.7: Axial profiles of the mean radial V ∗
r and tangential V ∗

θ velocity components at r∗ = 0.5
for G = 1/7, Rm = 1.8 and three Reynolds numbers. Comparison between (−) the LES-SVV results
and (◦) the LDV data.

the velocity measurements is very satisfactory for the mean field. Both boundary layers along the rotor
and the stator are well described by the LES, which captures the main features of rotor-stator flows.
The largest differences with the LDV measurements are observed for Re = 106. The calculations
underestimate the measures of the K coefficient of about 7%, as previously observed by Andersson
and Lygren [11] in a “wide-gap” cavity. The radial velocity component maximum on the rotor side is
overestimated of about 14% at mid-radius. It appears from these remarks that LES calculations at
Re = 106 are certainly too dissipative at this location. A better agreement has been obtained at other
radial locations as it will be shown in the next Section. Some discrepancies on the velocity maxima
can be also attributed to the size (in the axial direction) of the LDV probe volume, which becomes
not negligible compared to the boundary layer thicknesses when the Reynolds number increases. This
leads indeed to averaged values in space only.

Additional characteristics of the mean flow are provided by polar plots of the tangential and
radial velocity components in the whole gap between the disks at r∗ = 0.5 (Figure 8.8). Whatever
the Reynolds number considered, the polar profile is located between the similarity solution of Von
Kármán [348] and the DNS calculations of Lygren and Andersson [193] performed at Re = 4×105. By
increasing the Reynolds number, the LES polar plot goes away from the laminar solution. Whatever
the value of Re, the polar plot corresponding to the stator boundary layer (Vr < 0) largely differs
from the laminar flow, that confirms the turbulence feature of this boundary layer. Let’s notice that
at Re = 4× 105 the LES profile almost matches the DNS profile. On the contrary, on the rotor side
(Vr > 0), the polar plot is globally closer to the Von Kármán profile even if it goes away when Re
increases. Such behavior suggests a transition to a turbulent regime from about Re = 4 × 105 that

corresponds to a local Reynolds number at mid-radius of about Re
1/2
r = 407. This is in agreement

with the experimental and theoretical results of Lingwood [184]. The large difference observed with
the profile of Lygren and Andersson [193] is then surprising and cannot be only explained by finite
cavity effects.
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Figure 8.8: Polar plots of the velocity distribution in the whole gap between the disks at r∗ = 0.5 for
G = 1/7, Rm = 1.8 and three Reynolds numbers. Comparison between (−) the LES-SVV results, (◦)
the LDV data, (−.) the laminar Von Kármán solution [348] and (−−) the DNS results of Lygren and
Andersson [193].
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Figure 8.9: Mean (a) radial V +
r and (b) tangential V +

θ velocity components in wall units near the rotor
(solid lines) and the stator (dashed lines) normalized by the tangential friction velocity for Re = 106

at r∗ = 0.5. (c) Magnitude of the corresponding velocity vector |V +| near the rotor (solid lines) and
the stator (dashed lines) compared to the turbulent boundary layer over a flat plate (dash-dotted
lines) by Rotta [280]. Results obtained by the LES-SVV for G = 1/7 and Rm = 1.8.
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Figures 8.9a to 8.9c show respectively the axial variations of V +
r , V +

θ and |V +| = (V +2
r + V +2

θ )1/2

in wall coordinate z+ (z+ is the relative distance to the nearest disk) for Re = 106 and r∗ = 0.5.
These are respectively the two streamwise mean velocity components relative to the disk speed and the
magnitude of the corresponding velocity vector. One has numerically verified that the axial velocity
component V +

z is fairly close to zero along the disks. The velocities have been normalized by the
tangential friction velocity vτθ = (ν∂Vθ/∂z)

1/2 to enable direct comparisons with the work of Lygren
and Andersson [193]. The magnitude of the velocity vector (Fig.8.9c) follows rather closely the law
of the wall as obtained by Lygren and Andersson [193] in an open rotor-stator cavity. The profiles
along both disks are compared to the profile of a turbulent boundary layer on a flat plate obtained by
Rotta [280]. The linear region |V +| = z+ of the velocity profile, called the viscous sublayer, expands
to z+ = 10 near the rotor, whereas it is more reduced along the stator (about to z+ = 5). Lygren
and Andersson [193] obtained a linear profile up to z+ ≃ 7 on both disks. Further from the walls,
the “log-region” V + = a+ b× log10(z

+) is recovered with two coefficients a and b, which differ from
the values (a = 5, b = 5.62) obtained by Lygren and Andersson [193] along the rotor. Note that for
Couette-Poiseuille turbulent flows, the law of the wall is very close to: V + = 1.0857log10(z

+) + 5.5 as
shown by Nakabayshi etal. [215]. The fundamental study of Bradshaw [37] has revealed that rotation
substantially affects turbulence by introducing an extra linear term, depending on the Monin-Obukhov
coefficient, in the logarithmic law of the wall. By comparison with the turbulent boundary layer on a
flat plate [280], Figure 8.9c clearly shows that no buffer region, which is usually the region enclosed
between the sublayer and the log-region, is obtained in the present case because of rotation. Another
effect of rotation is the reduction of the log-region extent. To enable direct comparisons with the results
of Lygren and Andersson [193] in their open cavity, the profiles of V +

r and V +
θ are also presented in

Figures 8.9a and 8.9b respectively. The same remarks arise from the variations of V +
θ compared to the

ones of |V +|. By considering the profiles of V +
r (Fig.8.9a), the locations of the maximum crossflow are

in close agreement with the values obtained by Lygren and Andersson [193] at Re = 4× 105 although
as expected, the location of the peaks here is further out from the wall as the Reynolds number is
larger. Near the rotor, the maximum crossflow is reached at z+ = 16 (z+ = 15 in [193]) while near
the stator the maximum is located further from the disk at z+ = 25 (z+ = 22 in [193]). Thus, for
this radial location r∗ = 0.5, the location of the peak in the crossflow is not modified by finite cavity
effects.

All six Reynolds stress tensor components have been calculated. The axial distributions of the two
main normal components are shown together with available experimental measurements at mid-radius
on Figure 8.10. The normal component R∗

zz as well as the three shear components being found more
than one order smaller than the previous ones are presented all together in Figure 8.11 at Re = 106

only.
For the three considered Reynolds numbers, turbulence is mainly concentrated in the boundary

layers. Apart from the R∗
zz component, the other five components reach indeed their maxima in the

boundary layers and decrease to a value one order below (6× 10−3Ωr) in the core (Fig.8.11). On the
contrary, in their open cavity, Lygren and Andersson [193] reported that, except from the tangential
components of the Reynolds stress tensor, the other components reach a maximum at the edge of
the boundary layers. On Figure 8.10, the turbulence statistics confirm that whatever the Reynolds
number the Bödewadt layer is turbulent at mid-radius while the Ekman layer gets turbulent at about
Re = 4 × 105 but with a turbulence intensity larger than on the stator. The turbulence intensities
(scaled on the local speed of the rotor) remain almost constant in the turbulent boundary layers
when increasing the Reynolds number. That means that the turbulence intensity is intrinsic to the
geometrical characteristics of the cavity and not to the energy injected into the system. Whatever
the Reynolds number, LES results and experimental measurements fit quite well even in the core
region, where the turbulence intensity is weak. Let’s notice that it is generally not the case with
RANS modeling for which the predictions in this low-Reynolds number flow region far from the disks
are not satisfactory [253]. The locations of the peaks near the walls are also well predicted by the
LES. When increasing the Reynolds number, these maxima go closer to the disks. At Re = 106, the
tangential and radial turbulence intensities have maxima at the same location z∗ = 0.9904 near the
stationary disk and at different locations near the rotating disk: z∗ = 0.0138 for the R∗

rr component
and z∗ = 0.0096 for the R∗

θθ component.
The maximum error occurs in the prediction of the peak values. The singular behavior observed at

Re = 105 on the rotor side can be explained by the inherent difficulties of the LDV system previously
mentioned. At Re = 106, the turbulence intensities are rather the same in both boundary layers
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Figure 8.10: Axial profiles of the radial R∗
rr and tangential R∗

θθ Reynolds stress tensor components at
r∗ = 0.5 for G = 1/7, Rm = 1.8 and three Reynolds numbers. Comparison between (−) the LES-SVV
results and (◦) the LDV data.

by considering the experimental data, whereas the LES leads to a regime where the Ekman layer
is slightly more turbulent than the Bödewadt layer by looking at the R∗

rr-profile. This feature has
been formerly reported by Lygren and Andersson [193] when they compared their DNS results with
the experiments of Itoh [135]. They attributed this discrepancy to the increased mixing between the
boundary layers due to the presence of the shroud in the experiments of Itoh [135]. The present results
show that the presence of the shroud cannot explain this discrepancy, as LES and experiments used
the same cavity model.

The general trend is that LES results overestimate the turbulence intensity in the tangential
direction R∗

θθ while they underestimate it in the crossflow direction R∗
rr, particularly in the stator

boundary layer. On Figure 8.10 and at Re = 106, the numerical results predict a R∗
θθ component

almost twice larger than the R∗
rr component, whereas the experimental measurements give components

of about the same order. That suggests that the turbulence anisotropy is stronger in LES than in
experiments. There is no clear reason that explains such behavior if not the anisotropy of the grid
computation, which is globally coarser in the radial direction than in two other ones. This reason was
previously advocated by Scotti et al. [308] to explain some discrepancies between LES and experiments
in wall-bounded flows. The grid is indeed non homogeneous and tighter close to the walls. For
example, at mid-radius, the grid spacing is 0.052h, 0.033h and 0.019h in the radial, tangential and
axial directions respectively. This phenomenon could certainly be reduced with grid refinement in
the radial and tangential directions. As a consequence, the predicted Reynolds stress tensor is more
anisotropic than the measured one.

If one considers the shear components of the Reynolds stress tensor at Re = 106 (Fig.8.11), one
can clearly see that the peaks of R∗

rθ are the largest in both boundary layers compared to the two
other shear components. It is a major difference with two-dimensional boundary layer flows where this
component is usually neglected. One major difference between the idealized flow considered by Lygren
and Andersson [193] and the present study is that the R∗

rz and R∗
θz components are negligible in the

present LES, whereas these authors obtained magnitudes of these two components quite comparable
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Figure 8.11: Axial variations of the Reynolds stress tensor components in the stator (top graphs) and
rotor (bottom graphs) boundary layers for r∗ = 0.5, G = 1/7, Rm = 1.8 and Re = 106 using the
LES-SVV.

to the R∗
rθ component. Moreover, the R∗

rθ shear component is negative on both disks in the open
cavity of [193], whereas the shear is found here to be positive on the rotor with a magnitude higher
than on the stator side.

(a)

(b)

(c)

Figure 8.12: Isolines of the turbulence kinetic energy k∗ = k/(Ωb)2 at: (a) Re = 105, k∗ ≤ 4.6× 10−3,
(b) Re = 4× 105, k∗ ≤ 7× 10−3, (c) Re = 106, k∗ ≤ 6× 10−3. Results obtained by the LES-SVV for
G = 1/7 and Rm = 1.8.

In order to show the turbulent flow regions in the meridional plane, the isolines of the turbulence
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kinetic energy k∗ = k/(Ωb)2 are presented in Figure 8.12 at three Reynolds numbers. The maximum
value of the turbulence kinetic energy evolves from k∗max = 4.7×10−3 to k∗max = 9×10−3 for increasing
values of the Reynolds number, and its location moves from the stator boundary layer to the edge of
the rotor layer. At Re = 105, turbulence is mainly confined in the boundary layers along the stator
and the shroud. A small turbulent region is also observed at the impingement on the rotor of the flow
coming from the stator and accelerated along the rotating hub. The maximum of k∗ is obtained at
the junction between the stator and the shroud where the flow coming from the rotor impinges the
stator. By increasing the Reynolds number up to Re = 4× 105, the Ekman layer gets turbulent from
about mid-radius to r∗ = 1 corresponding to the largest values of the local Reynolds number. The
maximum of k∗ has moved to the bottom of the shroud and the hub is also turbulent. At Re = 106,
the map is relatively similar to the previous one at Re = 4× 105. The maximum is nevertheless two
times larger and has slightly moved on the left hand side along the rotor boundary layer.

8.4.3 Finite cavity effects

Due to the presence of the inner and outer cylinders at r∗ = 0 and r∗ = 1 respectively, the flow is
radially confined. Then, finite cavity effects on the mean field and turbulence statistics have been
explored at Re = 106 using the LES-SVV.
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Figure 8.13: Axial profiles of the mean radial V ∗
r and tangential V ∗

θ velocity components for G = 1/7,
Rm = 1.8 and Re = 106 at four radial locations. Comparison between (−) the LES-SVV results and
(◦) the LDV data.

Axial profiles of the mean radial V ∗
r and tangential V ∗

θ velocity components at four radial locations
are shown on Figure 8.13. The same agreement observed at mid-radius (Fig.8.7) between the experi-
mental measurements and the LES results is observed for the three other radial locations. In a flow
region of radial extension 0.3 ≤ r∗ ≤ 0.7, a self-similar behavior is observed and the boundary layers
remain separated. Close to the outer shroud (r∗ = 0.9), the Bödewadt layer thickens and the flow
in the core is clearly influenced by the boundary conditions. This effect on the core region is besides
larger on the LES results than on the experimental data. According to the mass flow conservation, the
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entrainment coefficient K increases with the radius from 0.35 at r∗ = 0.3 to 0.38 at r∗ = 0.9 whereas
the maxima of |V ∗

r | decrease in both layers.
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Figure 8.14: Radial distributions of the boundary layer thicknesses: (a) Ekman boundary layer thick-
ness δE/h, (b) Bödewadt boundary layer thickness δB/h. Comparisons between (−) the present
LES-SVV (Re = 106, G = 1/7, Rm = 1.8) and (−−) the predictions of the Reynolds Stress Model of
Poncet [249] (Re = 1.04× 106, G = 0.036, Rm = 1.36).

As the consequence, the flow along the disks is no longer parallel contrary to the flows in infinite
cavities [193]. The radial evolutions of the thicknesses of both boundary layers are shown on Figure
8.14, together with the predictions of the RSM of Poncet [249] for the same Reynolds number Re ≃ 106

but in a cavity of aspect ratio about five times larger (G = 0.036, Rm = 1.36). Except in the endwall
regions, both numerical results give qualitatively a good agreement. On the rotor side, the boundary
layer thickness increases with the radius whereas on the stator side the flow remains almost parallel
outside the endwall regions (0.1 ≤ r∗ ≤ 0.7). In that zone, the averaged value of δB/h is 1.5 larger than
the averaged value of the Ekman layer thickness: δB/h ≃ 1.5δE/h = 0.061. This result is close to the
one obtained by Daily and Nece [67] for turbulent flows with separated boundary layers: δB ≃ 1.7δE .
Let’s notice that this behavior seems different of the one observed in the laminar regime. Indeed,
Gauthier et al. [105] reported a decreasing of δB for increasing radial locations, as δB = δ(6.9−5.3r∗),
and an almost constant Ekman layer thickness δE = 2.2δ far from the endwalls. The discrepancies
between the LES and the RSM close to the cylinders is firstly attributed to the much larger value
of G considered by Poncet [249] that considerably diminishes the effects of the endwall layers. The
difficulty of the RSM to take into account large recirculation zones as well as the two-dimensional
hypothesis can be also evoked.

In the shroud boundary-layer, an intense shear is produced by the differential rotation between
the core region in solid body rotation (K ≃ 0.4) and the outer stationary cylinder. By analogy with
the classical Taylor-Couette problem between differentially rotating cylinders or spheres, this internal
shear layer is called the Stewartson layer [331]. The present cavity can be indeed considered as a
rotor-stator Taylor-Couette system of very low aspect ratio with the flow confined between an inner
rotating cylinder and an outer stationary cylinder. For Re = 106, the LES-SVV results can be scaled
by a linear fit δs/b = 17 × z∗ − 0.076 showing that the Stewartson layer is non homogeneous in
the axial direction contrary to the classical Taylor-Couette problem. After the impingement of the
outward radial flow along the rotor, the axial flow slows down along the shroud and as a consequence
δs increases. At the edge of the rotor, the Ekman layer turns into the axial flow of the Stewartson
layer in a region of which both the radial and axial dimensions are O(Re−1/2) [342]. In the present
case, the connection between the two boundary layers occurs when both dimensions are 1.62×Re−1/2,
which corresponds to δs/b = 0.0115 and to δE/h = 0.081 (Fig.8.14). Along the stator, the thickening
of the Stewartson layer is also closely linked to the thickening of the Bödewadt layer at the periphery
of the cavity.

Finite cavity effects also influence the turbulence statistics as shown on Figure 8.15. Whatever the
radial location, turbulence remains mainly confined in the boundary layers, whereas the inviscid core
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Figure 8.15: Axial profiles of the radial R∗
rr and tangential R∗

θθ Reynolds stress tensor components
for G = 1/7, Rm = 1.8 and Re = 106 at four radial locations. Comparison between (−) the LES-SVV
results and (◦) the LDV data.

remains laminar. The turbulence intensities slightly increase towards the periphery of the cavity as
expected by the increase of the local Reynolds number. At r∗ = 0.3 (Rer = 2 × 105), the boundary
layers are already turbulent with comparable turbulence intensities. At the periphery of the cavity
r∗ = 0.9 (Rer = 8.62 × 105), the Ekman layer becomes more turbulent than the Bödewadt layer.
Note that, whatever the radial location, the R∗

θθ component remains almost twice larger than the R∗
rr

component along the disks. The agreement between the LES and the velocity measurements remains
still satisfactory over the radius. Nevertheless, as already observed when varying the Reynolds number,
the general trend of the LES is to underestimate the turbulence level in the crossflow direction and
to overestimate it in the tangential direction in the whole cavity.

To investigate the effects on the flow structures arising from the three-dimensionality of the mean
flow, anisotropy invariant maps are shown at four different radial locations and Re = 106 (Fig.8.16).
The second A2 and third A3 invariants of the anisotropy tensor aij of the second moments of the
fluctuations are defined as A2 = aijaji and A3 = aijajkaki, where aij = Rij/k− 2

3δij [192] and δij the
Kronecker symbol. Thus, the anisotropy invariant maps do not provide spatial informations on the
flow structures but crucial informations on the structure properties and especially on their velocity
fluctuations. Let’s notice that, whatever the radial location, the LES results respect the realizability
diagram of Lumley [192] as they remain within the region delimited by the three solid lines. Very
close to the disks, turbulence tends to follow the two-component behavior (A3 = A2−8/9) as the wall
normal fluctuations are damped more effectively than fluctuations parallel to the disks. Whatever the
radial location, turbulence is fairly close to the isotropic case (A2 = A3 = 0) in the core region. The
domination of the R∗

θθ component (Fig.8.11) as well as the positive sign of the third invariant A3 of
the anisotropy tensor in the Bödewadt layer suggest a “cigar-shaped” structuring of turbulence in the
tangential direction. This kind of structuring is well known in dominantly rotating turbulence [43].
At the edge of the Ekman layer (z∗ ≃ 0.05), for 0.3 ≤ r∗ ≤ 0.7, the third invariant gets negative and
close to the two-dimensional isotropic turbulence limit (−2/9,2/3). In that region, the levels of the
two normal components R∗

θθ and R∗
rr are quite comparable as it can be seen on Figure 8.11. This
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Figure 8.16: Anisotropy invariant map for G = 1/7, Rm = 1.8 and Re = 106 at four radial locations.
Dashed lines: LES-SVV, solid lines: realizability diagram of Lumley [192].

is an indicator of “pancake” structuring contained in planes perpendicular to the rotation axis. One
interesting feature is that closer to the shroud (r∗ = 0.9) where high turbulence level prevails, these
vortex disappear, which is certainly due to the confinement.

8.4.4 Three-dimensional boundary layers

The flow between rotating disks is one of the simplest case where the boundary layers are three-
dimensional from their inception. In a classical way, a three-dimensional turbulent boundary layer
(3DTBL) is a boundary layer where:

• the direction of the mean velocity vector is non-constant with respect to the distance from the
wall,

• the direction of the Reynolds shear stress vector in planes parallel with the wall is not aligned
with the mean velocity gradient vector,

• the value of the Townsend structural parameter a1 = τ/2k, defined as the ratio of the shear

stress vector magnitude τ = (v′θv
′
z

2
+ v′rv

′
z

2
)1/2 to twice the turbulence kinetic energy k is lower

than the typical limit for two-dimensional turbulent boundary layers (2DTBL): a1 = 0.15.

The 3DTBL behaviors of the rotor and stator boundary layers are here investigated at Re = 106.
Figure 8.17 shows the axial variations of the mean velocity angle γm = arctan(Vr/Vθ) in the two
boundary layers at r∗ = 0.3. On the rotor side, the angle increases from 0 at the rotating disk to
16.5◦ at z+ = 25, then slightly decreases to about −0.5◦ outside the Ekman layer. On the stator side,
the angle monotonically decreases from 0 to −34◦. Let’s notice that the same behaviors have been
obtained for 0.3 ≤ r∗ ≤ 0.9.

The misalignment between the direction of the Reynolds shear stress vector in planes parallel
with the wall and the mean velocity gradient vector is observed in the present LES on both disks.
In Figure 8.17, the axial variations of two characteristic angles, the mean gradient velocity angle
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(a) (b)

Figure 8.17: Axial evolutions of the mean velocity angle γm, the mean gradient angle γg and the shear
stress angle γτ for G = 1/7, Rm = 1.8 and Re = 106 at r∗ = 0.3 (LES-SVV): (a) along the rotor side,
(b) along the stator side.

γg = arctan
(

∂Vr/∂z
∂Vθ/∂z

)
and the turbulent shear stress angle γτ = arctan(v′rv

′
z/v

′
θv

′
z) are shown. The

lag between γτ and γg is large towards the boundary layers with a maximum value equal to 94◦ on
the rotor at r∗ = 0.3 to be compared with the value 18◦ reported by Lygren and Andersson [193] in
an infinite disk system. Note that this lag increases up to 151◦ at r∗ = 0.9 (not presented here). In
their numerical study of non-stationary 3DTBL, Coleman et al. [56] obtained large values of the lag
especially near the wall and inferred it from the slow growth of the spanwise component of the shear
stress. These authors observed also the change of the sign of the gradient angle γg. Such large values
of this lag make the assumption of eddy-viscosity isotropy to fail for the prediction of such flows.

Compared to a 2DTBL as the one found in a Couette flow, one characteristic of a 3DTBL is
the relative reduction of the magnitude of the shear-stress vector in planes parallel with the disks
with the turbulence kinetic energy k. This measure is done using the Townsend structural parameter
a1 = τ/2k. Typically a1 = 0.15 for a wide range of 2DTBLs. The variations of a1 have been reported
in Figure 8.18 at four radial locations in both the Ekman and Bödewadt layers, whose thicknesses
depend on the local radius. Whatever the considered locations, the maximum and minimum peak
values of a1 are 0.062 and 0.038, respectively. They are reached on the stator side and are significantly
lower than the limiting value 0.15 for a 2DTBL. This behavior is similar to this reported by Itoh et
al. [137] and Littell and Eaton [185] from their measurements and suggests the three-dimensional
turbulent nature of the flow along the rotor and stator walls. This reduction of a1 indicates also that
the shear stress in this type of flow is less efficient in extracting turbulence energy from the mean
field. Note that a1 > 0.15 is obtained only very locally on the inner and outer cylinders. These values
are much smaller than those found by Andersson and Lygren [11] in the open cavity, suggesting that
finite cavity effects increase the three-dimensionality of the mean flow.

As a conclusion, the very large lag between γτ and γg as well as the strong reduction of the a1
parameter under the 2DTBL limit indicates a strong three-dimensionality of both disk boundary layers
compared to the idealized configuration of Lygren and Andersson [11, 193]. In their open cavity [11],
the degree of three-dimensionality is gradually reduced with the distance from the axis of rotation,
which has not been obtained in the present LES. It may be attributed to both a lower value of the
Reynolds number and most of all to confinement effects in the present calculation.

8.4.5 Flow structures

The flow structures in the boundary layers evolve from spiral arms to annuli when one increases the
rotation rate of the disk. The transition to turbulence for separated boundary layer flows has been
widely addressed experimentally [249, 303] and numerically [311]. During the transition process in
the laminar regime, the flow structures evolve from circular to spiral rolls.

Some flow visualizations have been firstly performed from above the stator for two Reynolds
numbers Re = 4.1 × 104 and Re = 105 using a CCD video camera. The cavity has been filled up
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Figure 8.18: Townsend structural parameter a1 = τ/(2k) on both disks for G = 1/7, Rm = 1.8 and
Re = 106 (LES-SVV).

(a) (b)

Figure 8.19: Flow visualizations from above the stator for G = 1/7, Rm = 1.8 and (a) Re = 4.1×104,
(b) Re = 105.

with water and seeded with reflective particles of kalliroscope (30× 6× 0.07 µm). For Re = 4.1× 104

(Fig.8.19a), the flow structure is already complex but it is still organized by large structures showing
spiral patterns with defects. For Re = 105, the Bödewadt layer is now clearly turbulent (Fig.8.19b).
The flow structures are much thinner and more aligned on the tangential direction.

Figure 8.20 presents the isosurfaces of the Q-criterion in both boundary layers and for the three
Reynolds numbers under consideration. At Re = 105, only the stator boundary layer (Fig.8.20b) is
turbulent with increasing intensities towards the periphery. On the rotor side, turbulent flow regions
are only confined close to the junctions with the hub and the shroud where the flow strongly impacts
the wall. The inner rotating hub is found to have a strong destabilizing effect, accelerating the flow
and strengthening the vortices coming from the Bödewadt layer to the Ekman layer. It is contrary
to the configuration where the hub is stationary [309]. For Re = 4 × 105, the flow along the stator
is fully turbulent as expected, while the rotor layer is now transitional turbulent. About 19 spiral
arms forming a positive angle ϵ ≃ 16◦ with the tangential direction (as they roll up in the rotation
sense) appear in the Ekman layer for 0.14 ≤ r∗ ≤ 0.61 (Fig.8.20c) where the flow is laminar unstable

(89 ≤ Re
1/2
r ≤ 386 < 500). These structures are characteristic of the Type I instability (crossflow

instability), which plays an important role in the transition process to turbulence. These results are
consistent with previous results (see the review of Saric et al. [292]). Close to the outer radius, the
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Figure 8.20: Isosurfaces (top view) of the Q-criterion in the rotor boundary layer (a,c,e) and in the
stator boundary layer (b,d,f) for G = 1/7, Rm = 1.8 and (a,b) Re = 105, (c,d) Re = 4× 105 and (e,f)
Re = 106. Note that the disk rotates counterclockwise and that the results have been obtained by the
LES-SVV.

structures are thinner and more axisymmetric, which is characteristic of a turbulent flow. At Re = 106

(Fig.8.20e,f), the flow gets fully turbulent in both boundary layers. Along the stator, as expected,
turbulence intensities increase for increasing values of the local Reynolds number and the coherent
vortical structures, which are aligned with the tangential direction, get thinner. Let’s notice that, for
all considered Reynolds numbers, any three-dimensional vortical structures were observed in the core
region, contrary to the experimental observations of Czarny et al. [63].
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8.5 Heat transfer in turbulent rotor-stator flows

The previous LES-SVV results obtained under isothermal conditions have been here extended to the
non-isothermal case for the same rotor-stator cavity (G = 1/7, Rm = 1.8). The effects of convective
heat transfers on the turbulent air flow (Re = 106) in an enclosed rotor-stator cavity are here inves-
tigated using the Boussinesq approximation. The cavity is heated from below along the stator side,
while the upper disk is rotating and cooled. Thus, it is an unstable configuration, where the density
gradient is opposed to gravity acceleration. All the numerical parameters are summed up in Table
8.1. All the results have been published in Int. J. Heat Fluid Flow (see Ref.[260]).

8.5.1 Heat transfer parameters

Conducting and insulating thermal boundary conditions have been considered on the disks and the
cylinders, respectively. The temperature is normalized by the temperature difference applied between
the stator and the rotor: T ∗ = 2(T − Tr)/∆T with ∆T = Thot − Tcold and Tr = (Thot + Tcold)/2.
The stator is thus maintained at the constant dimensionless temperature T ∗ = 1, while the rotor is
maintained at T ∗ = −1. The hub and the shroud are thermally insulated with zero heat flux. The
Prandtl number Pr and the Rayleigh number Ra based on the maximum radial acceleration have also
to be taken into account to study the flow dynamics. They are defined as follows:

Pr =
ν

κ
= 0.7 0 ≤ Ra =

Ω2b∆Th3

νκTr
≤ 108

where κ is the thermal diffusivity of the fluid. Note that the value of Pr chosen here corresponds to
the typical value for air at 293 K. For this value of Prandtl number, the thermal diffusivity is slightly
dominant. In a classical Rayleigh-Bénard system without rotation, there is no motion for Pr = 0.7
until the appearance of steady rolls at Ra = 5×103 [107]. All the parameters are then fixed except for
the Rayleigh number Ra, whose influence on the flow dynamics is here investigated. To have an idea
of the physical temperature difference between the disks, if the temperature of the rotor is fixed to the
initial temperature of air (293 K), the maximum value of the Rayleigh number Ra = 108 corresponds
to a temperature difference of 15.82 K, which is 50% larger than the temperature difference considered
by Elkins and Eaton [86]. Thus, some thermal effects may be expected in the present case while the
Boussinesq approximation considered here remains valid.

8.5.2 Influence of the heat transfer on the flow structures

The flow is here analysed at Ra = 107 in the case of a turbulent flow (Re = 106) of air (Pr = 0.7).
Instantaneous fields are first presented before quantifying the effect of Ra on the statistical data in
the following section.

Figure 8.21 shows the iso-values of the instantaneous tangential velocity component Vθ/(Ωb) in
both boundary layers and the corresponding instantaneous normal temperature gradient ∂T ∗/∂z∗ at
the disk surfaces, which is proportional to the local heat transfer rate through the surface. Although
the grey scales do not correspond perfectly, it is clear that these heat-fluxes pictures reveal the same
structures. Along the cooled rotor (Fig.8.21a), the structure of the iso-values of ∂T ∗/∂z∗ resembles the
one of the iso-values of Vθ/(Ωb) (Fig.8.21c) with large positive spiral arms appearing at intermediate
radial positions. They are enclosed by two turbulent flow regions. The first one is located at the
junction between the rotor and the hub. The hot fluid coming from the stator side flows along the
hub and impinges the rotor. It is then cooled by this disk. That is the reason why this turbulent
flow region is characterized by a temperature equal to zero (see Fig.8.22a). The second region of high
turbulence intensities appears at the periphery of the cavity where the highest values of the local
Reynolds number prevail. The spiral arms disappeared and more thin structures are created. They
are also characterized by a dimensionless temperature close to zero (see Fig.8.22a). The cooled fluid
coming from the rotor after impingement on the shroud and then on the stator is heated by this lower
disk. It creates a crown of fluid with a zero dimensionless temperature at the periphery of the cavity
(see Fig.8.22a). Afterwards, this fluid flows along the stator from the periphery to the axis of the
cavity. The fluid is progressively heated until the axis and so higher temperature levels are obtained
(Fig.8.22a). The heat-fluxes picture is more chaotic in this boundary layer. It resembles to the one
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Figure 8.21: Iso-values of the instantaneous normal temperature gradient ∂T ∗/∂z∗ at the (a) rotor
surface and at the (b) stator surface and of the instantaneous tangential velocity Vθ normalized by
the maximum disk speed Ωb in (c) the rotor boundary layer layer (z∗ = 0.97) and in (d) the stator
boundary layer (z∗ = 0.03). Results obtained using the LES-SVV for G = 1/7, Rm = 1.8, Re = 106

and Ra = 107.

of the iso-values of Vθ/(Ωb) with very thin structures (Fig.8.21d). To conclude, the pattern of heat
transfer rate is strongly affected by any organized structure in the flow field.

(a)

(b)

Figure 8.22: Iso-values of (a) the instantaneous temperature T ∗ and (b) the instantaneous axial
velocity Vz normalized by Ωb in a (r, z) plane. Results obtained using the LES-SVV for G = 1/7,
Rm = 1.8, Re = 106 and Ra = 107.
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Figure 8.22a presents the isotherms at Ra = 107 in a (r, z) plane. This map confirms that the fluid
heated along the stator is carried along the hub (dark areas on Fig.8.22a) with a positive axial velocity
(Vz/(Ωb) > 0 corresponds to dark areas on Fig.8.22b) and then cooled by the fluid flowing along the
rotor (bright areas on Fig.8.22a). In the same way, the flow cooled by the rotor impinges the shroud
and then the stator to be heating along this wall. The axial velocity of the fluid in the Stewartson
layer along the external cylinder is then negative (bright areas on Fig.8.22b). As a consequence,
there are two regions along the walls of quasi zero temperature: at the junction between the hub and
the rotor and at the junction between the shroud and the stator. The temperature in the core is
also quasi equal to zero in the whole cavity, which means that the secondary flow in the wall layers is
responsible for most of the heat transfer in the cavity. Nevertheless, it can be seen in Figure 8.22a that
vertical thermal plumes appear along the stator, essentially for inner radii. They are characterized
by a dimensionless temperature close to unity. The well defined vertical structure of these plumes
corresponds to regions of relatively high positive axial velocities (Fig.8.22b). At the periphery of the
cavity, where the highest turbulence intensities are obtained, there are no thermal plumes due to the
intense mixing between hot and cold fluids. Along the rotating disk, some cooled fluid is moving down
with a smaller vertical extension (Fig.8.22a). Thus, the effect of the heated disk seems to dominate
the heat transfer in the cavity.

8.5.3 Mean flow and turbulence statistics

The aim of this section is to quantify the effect of the Rayleigh number Ra on the mean and turbulent
flow fields, on the temperature field and then, on the heat fluxes along the disks for a turbulent air
flow (Pr = 0.7, Re = 106). All the data have been averaged both in time and in the tangential
direction. One recalls that the mean velocity components and the components of the Reynolds stress

tensor are respectively normalized as follows: V ∗
i = Vi/(Ωr) and R∗

ij = v
′
iv

′
j/(Ωr)

2 for i, j = (r, θ, z).

8.5.3.1 Flow field

To quantify the buoyancy effects on the flow field, one firstly defines a convective Rossby number
Roc =

√
Ra/(PrTa), where Ta = (2Ωh2/ν)2 is the Taylor number equal to 1.67× 109 in the present

case. It compares the buoyancy and the Coriolis forces. For Roc > 1, buoyancy forces are larger than
Coriolis forces.

Figure 8.23 shows axial profiles of the mean velocity components at four radial locations in the
range 0.3 ≤ r∗ ≤ 0.9. Four values of the Rayleigh number have been considered and the results are
compared to the isothermal case. Whatever the value of Ra considered, the Batchelor flow model best
describes the flow structure with fluid pumped radially outwards in the rotor boundary layer (V ∗

r > 0
close to z∗ = 1), called the Ekman layer, moving axially across the stator in the Stewartson boundary
layer over the cylindrical outer shroud. Then, the fluid flows radially inwards along the stator side
(V ∗

r < 0 close to z∗ = 0), in the Bödewadt layer, and impinges the rotating inner hub before going
along the rotor again. The rotor and stator boundary layers are separated by an inviscid rotating core
of fluid that rotates at around 38% of the rotating disk velocity, value which slightly depends on the
radial location. The value of this swirl ratio K = 0.382 at r∗ = 0.9 in the isothermal case is in good
agreement with the one provided by the correlation K = 0.49 − 0.57h/b = 0.409 given by Daily et
al. [68] for fully turbulent flows. So, for this set of parameters, the mean flow structure remains thus
unchanged, i.e. with unmerged boundary layers.

The influence of Ra remains weak as the maximum value of the convective Rossby number reached
for Ra = 108 is equal to 0.293. It confirms the previous results of Serre et al. [310] at lower Reynolds
(Re = 110000) and Rayleigh (Ra = 2 × 106) numbers. For example, the value of the swirl ratio
K = 0.382 at r∗ = 0.9 obtained in the isothermal case remains the same within less than 1% at this
radius even for the largest value of Ra. The maximum difference on K reaches 1.5% at r∗ = 0.5.
The influence of Ra is more noticeable by looking at the profiles of the mean radial and axial velocity
components. Even though there is no significant change on the maximum of V ∗

r in the Ekman layer,
there is a strong modification of the inflow in the Bödewadt layer. At r∗ = 0.9, there is a decrease
of 14% on the minimum of V ∗

r between Ra = 106 and Ra = 108. This decrease reaches 26% at mid-
radius. For all radial locations, the axial flow remains very weak compared to the main tangential flow,
whatever the value of Ra. The reason is that for these parameters, the convective Rossby number is
small, whereas the Taylor number is large. Thus, the bulk flow is in the thermal wind balance and so

137



138 CHAPTER 8. TURBULENT ENCLOSED ROTOR-STATOR DISK FLOWS

−0.1 0 0.1
0

0.5

1
r*=0.3

V
r
*

z*

−0.1 0 0.1
0

0.5

1
r*=0.5

V
r
* −0.1 0 0.1

0

0.5

1

V
r
*

r*=0.7

−0.1 0 0.1
0

0.5

1

V
r
*

r*=0.9

0 0.5 1
0

0.5

1

V
θ
*

z*

0 0.5 1
0

0.5

1

V
θ
* 0 0.5 1

0

0.5

1

V
θ
* 0 0.5 1

0

0.5

1

V
θ
*

−5 0 5 10 15

x 10
−3

0

0.5

1

z*

V
z
*

−5 0 5 10 15

x 10
−3

0

0.5

1

V
z
*

−5 0 5 10 15

x 10
−3

0

0.5

1

V
z
*

−5 0 5 10 15

x 10
−3

0

0.5

1

V
z
*

Figure 8.23: Axial profiles of the three mean velocity components at four radial locations in the range
0.3 ≤ r∗ ≤ 0.9 and for four values of the Rayleigh number: (solid lines) Ra = 0, (dashed lines)
Ra = 103, (dash-dotted lines) Ra = 106, (dotted lines) Ra = 108. Comparison with the isothermal
case (points). Results obtained using the LES-SVV for G = 1/7, Rm = 1.8 and Re = 106.

vertical motion is independent of the vertical coordinate. As no-slip boundary conditions are imposed
on the boundaries, the vertical motion is very weak.

Turbulence is mainly confined in the boundary layers where the peak values of the normal compo-
nents of the Reynolds stress tensor are obtained (Fig.8.24). On the other side, the central core remains
almost laminar. The turbulence intensities are rather the same in both boundary layers with values
of R∗

rr and R∗
θθ much larger than the ones of R∗

zz. Note that the values of the cross-components, not
shown here, are rather weak in the whole cavity. The influence of the Rayleigh number Ra on the
turbulent field is quite weak for Ra up to 106. Turbulence intensities slightly increase with Ra in the
boundary layers for 0 ≤ Ra ≤ 106. The maximum values of the normal stresses increase indeed at
least of 7% compared to the isothermal case. There are two exceptions: the maxima of R∗

rr and R∗
zz

in the Bödewadt layer at r∗ = 0.9, where peripheral effects may appear, are almost constant whatever
the Rayleigh number. For the highest value of the Rayleigh number Ra = 108 considered here, there
is a strong increase of R∗

zz especially for 0.3 ≤ r∗ ≤ 0.7. For these radial locations, some plumes
similar to the ones shown in Figures 8.22 & 8.27 appear and enhance turbulence in the axial direction.
For r∗ = 0.9 where they are not obtained, the component R∗

zz remains rather the same whatever the
Rayleigh number.

8.5.3.2 Temperature field

Figure 8.25 exhibits the temperature profiles along the axial direction for four Rayleigh numbers at
four radial locations. Whatever the radial location r∗ and the value of Ra, the temperature is almost
constant and equal to zero in the core region. Nevertheless, two cases have to be distinguished: Ra = 0
for which temperature can be considered as a passive scalar and Ra ̸= 0, for which temperature may
have an influence on the hydrodynamic field. Thus, for Ra = 0, the thermal boundary layers coincide
with the Ekman and Bödewadt layers from the hydrodynamic field. The structure of the thermal
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Figure 8.24: Axial profiles of the three normal Reynolds stress components at four radial locations in
the range 0.3 ≤ r∗ ≤ 0.9 and for four values of the Rayleigh number: (solid lines) Ra = 0, (dashed
lines) Ra = 103, (dash-dotted lines) Ra = 106, (dotted lines) Ra = 108. Comparison with the
isothermal case (points). Results obtained using the LES-SVV for G = 1/7, Rm = 1.8 and Re = 106.

field is so a Batchelor-like structure. For Ra ̸= 0, the thermal boundary layers are thicker than the
velocity boundary layers as the Prandtl number Pr, which is the ratio of the velocity boundary layer
thicknesses to the thermal boundary layer thicknesses is lower than unity (Pr = 0.7).

Figure 8.25: Axial profiles of the mean temperature at four radial locations and for four values of
the Rayleigh number: (solid lines) Ra = 0, (dashed lines) Ra = 103, (dash-dotted lines) Ra = 106,
(dotted lines) Ra = 108. Results obtained using the LES-SVV for G = 1/7, Rm = 1.8 and Re = 106.

From the axial profiles of T ∗ (Fig.8.25), one can deduce the values of the thermal boundary layer
thicknesses, denoted δRT

for the rotor side and δST
for the stator one. δRT

(respectively δST
) is the

height at which the mean temperature reaches −0.01 (resp. 0.01). δST is found to be larger than
δRT

, which confirms the preponderant influence of the heated disk on thermal convection. For a given
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Rayleigh number, Ra = 103 for example, both thermal boundary layers strongly vary with the radial
location. δRT

/h increases from 0.08 at r∗ = 0.3 to 0.15 at r∗ = 0.9. In the same time, δST
/h decreases

from 0.17 to 0.06.
At a given radius, when Ra is increased, the axial extension of the core decreases as the thermal

boundary layers thicken. At r∗ = 0.3, δRT
/h (resp. δST

/h) increases from 0.08 (resp. 0.17) for
Ra = 103 to 0.19 (resp. 0.53) for Ra = 108. In the similarity area 0.3 ≤ r∗ ≤ 0.7, the temperature of
the fluid at the edge of the stator boundary layer is increased with Ra due to the main influence of
the heated disk. On the other hand, at r∗ = 0.9 where the cold fluid coming from the shroud is mixed
with the hot fluid flowing along the stator, a small decrease appears in the axial temperature profiles.
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Figure 8.26: Radial distributions of the mean temperature along the rotor at z∗ = 0.99 and along the
stator at z∗ = 0.01 for four values of the Rayleigh number. Results obtained using the LES-SVV for
G = 1/7, Rm = 1.8 and Re = 106.

The results of Figure 8.25 are confirmed by the radial distributions of T ∗ shown in Figure 8.26
for both boundary layers and the same values of Ra. T ∗ slightly increases with the radius along the
rotor apart from some peripheral effects. On the stator side, T ∗ is almost constant close to the axis
and strongly decreases towards the periphery. The radial extent of the region of constant temperature
decreases rapidly with the Rayleigh number. The magnitude of T ∗ is almost constant whatever Ra ̸= 0
and then diminishes for Ra = 0. One can recall that, in that case, the temperature can be considered
as a passive scalar. Note that T ∗ tends to 0 at the corner between the insulating hub (r∗ = 0) and
the rotor, where an intense mixing is obtained and tends to 1 at the corner between the insulating
shroud (r∗ = 1) and the rotor. In the same way, T ∗ tends to the stator temperature at the junction
hub-stator (r∗ = 0) and to 0 at the junction stator-shroud (r∗ = 1).

8.5.3.3 Heat fluxes along the disks

Figure 8.27 shows the iso-values of the turbulent heat fluxes as well as the ones of the turbulent
temperature fluctuations in a (r, z) plane for Ra = 107. All these quantities are close to zero around
mid-plane and increase in magnitude towards the disks with a magnitude of order 10−3, which confirms
the experimental results of Djaoui and Debuchy [73] for the closed cavity. The highest values of these

correlations are observed along the hub and along the heated stationary disk. v′
zt

′ is found to be
different from zero along the disks and in particular along the stator, which is a characteristic of
three-dimensional turbulent boundary layers [86]. Areas with positive values of v′

rt
′ and especially of
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(a)

(b)

(c)

(d)

Figure 8.27: Iso-values of the turbulent heat fluxes (a) v′
rt

′ , (b) v
′
θt

′ and (c) v′
zt

′ normalized by Ωb∆T

and of (d) the turbulent temperature fluctuations t′2/(∆T )2 in a (r, z) plane. Results obtained using
the LES-SVV for G = 1/7, Rm = 1.8, Re = 106 and Ra = 107.

v′
zt

′ and t′2 along the stator correspond to the thermal plumes already observed from the isotherms
in Figure 8.22a. The axial extension of these plumes increases towards the periphery of the cavity.
There is a close relationship between the axial heat flux and the temperature fluctuations, contrary
to the single disk case, where Elkins and Eaton [86] obtained a stronger relationship between v′

rt
′ and

t′2. This difference may be attributed to the radial confinement in the present study, which induces

strong axial flows along the inner and outer cylinders. It is noteworthy that v
′
θt

′ is almost equal to
zero in the whole cavity, which confirms the vertical structure of the plumes.

One interesting parameter for numerical modeling is the turbulent Prandtl number Prt, defined
here as the ratio of the eddy diffusivity for momentum to the eddy diffusivity for heat:

Prt =
−v

′
θv

′
z
∂T
∂z

v′
zt

′ ∂Vθ

∂z

(8.5)

Even though it is not a rigorous definition of Prt for a three-dimensional turbulent boundary layer,
where Prt should be a second-order tensor, this definition is the one used Elkins and Eaton [86]
and appears simpler to enable direct comparisons with the results of these authors. Moreover, this
definition deals with the vertical direction along which the thermal plumes are aligned. Typical values
of the turbulent Prandtl number are around unity. Prt is strictly equal to 1 in accordance with the
Reynolds analogy and equal to 0.9 in classical RANS models.

The distributions of the turbulent Prandtl number in the disk boundary layers are shown in Figure
8.28 for Ra = 107 and four radial locations. z/δR and z/δS represent the distances from the rotor
and the stator respectively, with δR and δS the boundary layer thicknesses along the rotor and the
stator deduced from the velocity profiles (Fig.8.23). The same evolution is obtained along both disks.
The influence of the radial location remains weak apart at r∗ = 0.9, where Prt is lower close to the
disks than at the other radii. The averaged value of Prt for 0.3 ≤ r∗ ≤ 0.9 decreases from 1.4 very
close to the disk to about 0.3 at the edge of the boundary layer. The assumption of Prt ≃ 0.9 is
consistent for z/δR or z/δS up to 0.25 but this level is too high over most of the outer layers. These
results are consistent with the measurements of Elkins and Eaton [86] for the turbulent flow over
a rotating disk. They obtained Prt ≃ 1.2 (uncertainty of about 17%) at the disk surface and Prt
decreases monotically to 0.5 in the outer layer. These values are slightly lower than the ones obtained
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Figure 8.28: Axial variations of the turbulent Prandtl number in the rotor and stator boundary layers
at four radial locations. Results obtained using the LES-SVV for G = 1/7, Rm = 1.8, Re = 106 and
Ra = 107.

by Wroblewski [356] in a two-dimensional turbulent boundary layer, where Prt decreases to 0.8 at the
edge of the boundary layer. The present results and the ones of Elkins and Eaton [86] indicate so that
the diffusivity for momentum is reduced more than the diffusivity for heat. Nevertheless, according
to Kays [151], the concepts of eddy viscosity and eddy diffusivity are not valid in three-dimensional
turbulence and consequently, the turbulent Prandtl number has no meaning. Since the Ekman and
Bödewadt boundary layers are three-dimensional turbulent boundary layers, the conclusions on the
distributions of Prt must be considered tentative.

The effect of the Rayleigh number Ra on the local Nusselt number Nu along the two disks is
investigated in Figure 8.29 for given Reynolds Re = 106 and Prandtl Pr = 0.7 numbers. Apart from
some peripheral effects for r∗ very close to 0 and 1, Nu is an increasing function of the radial location.
It can be explained for the rotor side by looking at the radial distribution of the relative velocity
V ∗
rel = [(1 − V ∗

θ )
2 + V ∗2

r ]1/2 (Fig.8.30). In the region 0.2 ≤ r∗ ≤ 0.95, when moving towards the
periphery of the cavity, higher velocities are obtained, which enhances the heat transfer coefficient.
Moreover the relative velocity is almost constant whatever the Rayleigh number, which may explain
the weak influence of Ra on the local Nusselt number distribution. A second explanation has been
provided by Dorfman [78], which showed that the local Nusselt number varies proportionally to the
square root of the local Reynolds number Rer = Ωr2/ν and so varies linearly with the radial location.
Along the rotor side, this linear dependence is obtained (Fig.8.29) at Ra = 0 for 0.145 ≤ r∗ ≤ 0.68:
Nu = 470r∗ + 160. The radial extension of this zone decreases when the Rayleigh number increases.
On the stator, the linear dependence is obtained at Ra = 0 for a much larger radial domain 0.02 ≤
r∗ ≤ 0.85: Nu = 440r∗ + 140. Two cases have to be distinguished: Ra = 0 and Ra ̸= 0. As soon
as Ra ̸= 0, there is a strong decrease of Nu in the main part of the cavity. For 103 ≤ Ra ≤ 108,
there is no significant effect of the Rayleigh number on the radial distribution of Nu apart from at
the junction between the rotor and the hub and at the junction between the stator and the shroud
where an intense turbulent mixing between cold and hot fluids appears (see also Fig.8.22a). In these
zones, Nu increases with the Rayleigh number in agreement with previous results described in Owen
and Rogers [233].

In the present case, the numerical results can be correlated by:

Nu ∝ Re0.7r (8.6)
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Figure 8.29: Radial distributions of the local Nusselt number Nu along the rotor and the stator for
four values of the Rayleigh number. Results obtained using the LES-SVV for G = 1/7, Rm = 1.8 and
Re = 106.
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Figure 8.30: Radial distributions of the relative velocity V ∗
rel along the rotor (z∗ = 0.99) for four values

of the Rayleigh number. Results obtained using the LES-SVV for G = 1/7, Rm = 1.8 and Re = 106.

Thus, the local Nusselt number depends on the local Reynolds number to the power γ = 0.7. This
exponent is close to the one γ = 0.746 given by Pellé and Harmand [237] (Eq.8.3) for turbulent
flows in an open rotor-stator cavity. It confirms that the Nusselt number is generally lower in an
enclosed domain than in an unbounded one [107]. The value of γ falls between the classical values
given by Owen and Rogers [233] in the single disk case for the laminar regime γ = 0.5 and for the
turbulent regime γ = 0.8, confirming the turbulent nature of the flow here. The present calculations
are also in good agreement with the empirical correlation of Yu et al. [363] in the same configuration
(turbulent flow enclosed between a lower heated stationary disk and an upper cooled rotating disk for
Re > 1.5× 105) with the terms corresponding to the superimposed mass flow rate set to zero.
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Figure 8.31: Influence of the Rayleigh number Ra on the averaged Nusselt number Nuav on both
disks. Results obtained using the LES-SVV for G = 1/7, Rm = 1.8 and Re = 106.

Figure 8.31 presents the dependence of the averaged Nusselt number Nuav on the Rayleigh number
for both disks. The inner and outer cylinders being insulated, the overall energy balance implies that
the averaged Nusselt numbers are the same along both disks. Here, Nuav is the average value of Nu
over the range 0.05 ≤ r∗ ≤ 0.95. Thus, one removes the strong peripheral effects, which appear in the
values of the local Nusselt number close to the inner and outer cylinders (Fig.8.29). That is why Nuav

appears slightly higher on the rotating disk. Nevertheless, for both disks, the evolution remains the
same: Nuav decreases with Ra up to Ra = 105 and then increases. Thus, the results for the averaged
Nusselt number on the rotor and stator can respectively be scaled by:

Nuav = 3.7(ln(Ra))2 − 38ln(Ra) + 420 (8.7)

Nuav = 4.9(ln(Ra))2 − 47ln(Ra) + 400 (8.8)

The present value obtained for Ra = 0 along the stator is close to the one Nuav = 496.6 provided
by the correlation given by Poncet and Schiestel [258]. The weak difference may be attributed to the
confinement effects and to the insulating conditions imposed on the cylinders in the present case.

From these results, one can deduce the values of the Bolgiano length LB , which is the typical
length characterizing the forcing mechanism in a convective system defined as:

LB = (
ε5

(gα)6N3
)1/4 (8.9)

where ε is the turbulence kinetic energy dissipation rate, N the temperature variance dissipation rate
and α the thermal expansion coefficient of the fluid. Even though this length scale is a local quantity,
Chillá et al. [52] proposed an estimate of the averaged value valid for Nu >> 1:

< LB > /h = (
Nu

2

av

RaPr
)1/4 (8.10)

The turbulent dynamics below the Bolgiano length LB is unaffected by buoyancy effects, while above
it, it may be strongly influenced by the temperature fluctuations, because of their active feedback on
the velocity field. From Equation 8.10, one can estimate the mean value of < LB > /h in the two
boundary layers as a function of the Rayleigh number (Fig.8.32a).

As the mean values of the Nusselt number Nuav are rather the same in the two boundary layers,
the evolution with the Rayleigh number of < LB > /h is rather the same too along both disks.
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Figure 8.32: (a) Influence of the Rayleigh number on the mean Bolgiano scale < LB > /h for both
boundary layers; (b) Comparison with the thermal boundary layer thicknesses. Results obtained using
the LES-SVV for G = 1/7, Rm = 1.8 and Re = 106.

< LB > /h is almost equal to 3.5 for Ra = 103. It means that temperature fluctuations can not have
any influence in the system. The same remark can be done at Ra = 105, where < LB > is still larger
than the interdisk spacing h. To conclude if the temperature fluctuations may have an influence in the
system, it is required to compare < LB > with the boundary layer thicknesses. The distributions of
< LB > /h in both boundary layers have been first averaged using the laws (8.7) to get only one trend
curve as these distributions are quite similar. This curve is plotted on Figure 8.32b. It is compared
to the extrema values of δRT

and δST
obtained in the similarity area 0.3 ≤ r∗ ≤ 0.9. From Figure

8.32b, it can be seen that δRT
is lower than < LB > whatever the radial location for Ra ≤ 107 and

gets larger for Ra = 108 for the whole radial extent. For this value of Ra, temperature fluctuations
may have a large influence on the dynamics only at the largest scales of the system. In the same
time, δST

≥< LB > for Ra ≥ 106 whatever r∗. It confirms that heat transfers are enhanced along
the stator and that the thermal plumes appear to be larger on this disk than on the rotor as shown
in Figure 8.22a.

8.6 3D unsteady large scale vortices in turbulent flows

Three-dimensional unsteady large scale vortices have been highlighted experimentally in a cylindrical
rotor-stator cavity of aspect ratio G = [0.126; 0.195]. Experimental flow visualizations by dye injection
have been performed for a wide range of rotation rate Ω = [30; 250] rpm using the MACE facility in
Manchester to confirm or not the former work of Czarny et al. [63] on the same set-up. Such large scale
vortices may explain why some RANS models assuming the axisymmetry of the flow fail to predict
the good heat transfer distribution [231]. It is important to note firstly that the same experiments
have been also performed at IRPHE in Marseilles also by dye injection or using other colourings.
They did not reveal the existence of these large scale vortices for the same values of G, Rm, Ω, Re
and Rer. Secondly, the LES-SVV results did not highlight the presence of such structures in the case
of an annular cavity. It was then interesting to check the repeatability of the experiments previously
performed by Czarny et al. [63] and to extend them to a wider range of operating conditions. These
new experimental results have been then compared to calculations performed by a 3D unsteady k− ϵ
modeling with analytical wall functions [60]. Both approaches reveal the existence of such vortical
structures for the set of parameters considered.

8.6.1 A general feature in rotating flows

Computations for turbulent flow in rotating disk cavities assume most of the time the base flow to be
axisymmetric and steady. Though the geometry is strictly axisymmetric, some numerical simulations
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[60, 139, 340] and experimental flow visualizations [63] have revealed the presence of precessing large
scale vortical structures even in the turbulent regime. Tucker [340] computed the temporal flow
behaviors in a heated rotating cavity with an axial throughflow and in a sealed annulus. For both
systems, three-dimensional unsteady patterns have been obtained: a three-lobe instability for Ω = 9.6
rpm in the annular cavity (Fig.8.33) and a two-lobe structure for Ω = 162.3 rpm in the cavity with
throughflow. Jakoby et al. [139] reported the findings from an investigation with unsteady cavity
pressure measurements and the requirements to produce sufficiently accurate CFD predictions in an
axial bladed turbine. A large scale low frequency pulsating rotating structure was identified inside
the rotor-stator cavity comprising three low pressure bubbles rotating at 80% of the rotor speed
(9000 rpm). Owen [231] has drawn attention to difficulties in predicting the flow in rotating disk
arrangements using bidimensional steady calculations and speculated that the cause might be related
to the formation of these large scale unsteady vortices. Now, it appears to be crucial to take into
account these three-dimensional unsteady effects to determinate accurately fluid flow and heat transfer
in such cavities as 5% of error in the prediction of heat transfer are responsible for 60% of unscheduled
stops.

(a) (b)

Figure 8.33: Velocity vector plots obtained by Tucker [340] highlighting (a) two-lobe and (b) three-lobe
structures in a rotating cavity with throughflow.

Besides their practical importance in the turbomachinery industry, such large scale vortices em-
bedded in a turbulent rotating flow are also relevant in geophysical and astrophysical applications.
Sommeria [327] has indeed reproduced experimentally the formation of well structured vortices similar
to the well-known Red Spot of Jupiter. It is certainly the most spectacular and romantic example
of an organized three-dimensional structure persisting in a highly turbulent flow. In the experiment,
this pattern was obtained using a rotating water tank, one meter in diameter and for a rotation rate
Ω equal to 180 rpm, corresponding to a rotational Reynolds number of 7.54× 107.

8.6.2 The MACE rotor-stator facility

New experimental flow visualizations have been performed using the MACE facility under isothermal
condition for various rotor-stator cavities and in a wide range of rotation rate. The overall apparatus
consists of a motor-driven turntable mounted in an open cylindrical tank, 1.22 m in diameter. The
turntable can be driven over a continuous range of rotation rates from Ω = 30 to 250 rpm. On this,
is mounted a smooth rotating disk, b = 307 mm in radius (Fig.3.1) and 25 mm thick. An upper
stationary disk is facing the rotor at an axial distance h, which is fixed in the present study either
to 38.7 mm or to 60 mm. The stator is in transparent plexiglas to allow flow visualizations. The
rotor-stator cavity is enclosed by an outer stationary cylinder (the shroud), b+ j = 309 mm in radius.
An inner rotating cylinder (the hub), a = 87.7 mm in radius can be fixed or not to the rotor to
consider either a cylindrical or an annular cavity. The rotor and the hub rotate counter-clockwise at
the same uniform rotation rate Ω. The global flow parameters vary as follows: G = [0.126; 0.195] and
2.57× 105 ≤ Re ≤ 2.15× 106, whereas Rm = 1 for a cylindrical cavity.

The cavity is filled up with water maintained at a working temperature of 15◦C (kinematic viscosity
ν = 1.15× 10−6 m2/s). Ink is used to visualize the hydrodynamic structures. It is introduced to the
cavity, usually at mid-radius, via a hypodermic tube inserted through a small hole in the stator. Dye is
released continuously during about 30 seconds typically. Gradually the dye disperses and the injection
is renewed to verify that the flow structure previously observed remains the same. After Daily and
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Nece [67], the flow in such a cavity exhibits a Batchelor-like flow structure with two very thin boundary
layers developed on each disk separated by a central core in near solid body rotation characterized by a
quasi zero radial velocity component Vr ≃ 0 and a constant tangential velocity component Vθ ≃ 0.4Ωr.
Different radial and axial positions have been investigated for ink injection and the same results have
been obtained for r∗ = r/b in the range [0.404; 0.603] and z∗ = z/h = [0.1; 0.9] ever since ink is injected
in the geostrophic core region far from the inner and outer cylinders where confinement effects may
appear. Images (768 × 576 pixels) are taken at a video frequency of 25 images per second using a
CCD camera situated above the stator.

8.6.3 Flow visualizations of 3D unsteady vortices in turbulent Batchelor
rotor-stator flows

New experimental flow visualizations have been performed from above the stationary disk for various
cavities in a wide range of rotation rate Ω. The existence domains of the precessing vortex structures in
terms of Ω have been established for two different aspect ratios, G = 0.126 (Fig.8.34a) and G = 0.195
(Fig.8.34b). The present experiments are compared to the previous ones of Czarny et al. [63] performed
using the same device and for the same flow parameters and with previous DNS results of Serre et al.
[309, 312].
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Figure 8.34: Evolutions of the number of vorticesm against the rotation rate Ω (rpm) in the cylindrical
case for two values of the aspect ratio: (a) G = 0.126, (b) G = 0.195. Comparisons between the present
experiments (circles), the experiments of Czarny et al. [63] (cross symbols) and the DNS results of
Serre et al. [309, 312] (squares).

For the lowest aspect ratio G = 0.126 (Fig.8.34a), the flow exhibits a Batchelor like flow structure
with two boundary layers developed on each disk separated by a central geostrophic core. The tran-
sition to turbulence for G ≥ 0.042 occurs for Re ≃ 1.5× 105 [67]. It corresponds to a critical rotation
rate equal to Ω ≃ 17.5 rpm. For Ω up to 50 rpm, there is no evidence of large scale precessing vortices
(Fig.8.35a) even if the flow is not purely axisymmetric. It is referred in the following as the mode
m = 0. If one slightly increases further Ω to 55.4 rpm, the mode m = 0 destabilizes and an 9−sided
polygon (Fig.8.35b) is observed. It is consistent with the DNS of Serre et al. [312] for G = 0.3 (see
Figures 8.34b & 8.36b). One recalls that the disk rotates counter-clockwise but Czarny et al. [63]
have shown that clockwise rotation provides no discernibly different patterns. The number of lobes
strongly decreases to m = 2 for Ω = 75.6 rpm (Fig.8.35c). For Ω ≥ 96 rpm, a reversed S−shaped two-
lobe pattern subsists in the flow (Fig.8.35d). Note that these two different patterns are both referred
as two-lobe structures but they are not distinguished in Figures 8.34a,b. Comparisons between the
experiments of Czarny et al. [63] and the present ones show a certain repeatability of the observations.

For G = 0.126, the two-vortex structure forming a reversed S−shape has also been found in the
computations. Figure 8.36a presents the iso-values of the turbulence kinetic energy, which match the
dye trace in appearance even if the rotation rate is much higher: Ω = 1287 rpm. This S−shaped
pattern rotates at about 50% of the disk speed. In fact, all the large scale vortical structures presented
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.35: Experimental flow visualizations for different flow conditions (Ω(rpm), G,Rm): (a) ax-
isymmetric mode m = 0 for (47, 0.126, 1); (b) mode m = 9 for (55.4, 0.126, 1); (c) mode m = 2 for
(75.8, 0.126, 1); (d) S-shaped mode m = 2 for (96, 0.126, 1); (e) mode m = 3 for (72, 0.195, 1); (f) mode
m = 3 for (103, 0.195, 1); (g) S-shaped mode m = 2 for (180, 0.195, 1); (h) axisymmetric mode m = 0
for (192, 0.195, 1.8). The disk rotates counter-clockwise.

here rotate at approximately half the rate of the rotor Ω underlining that these are vortices located
in the central geostrophic core of the cavity, where the tangential velocity is nearly invariant with the
axial distance and also with the radius.

If one slightly increases the axial gap between the disks, so that G = 0.195, similar patterns are
obtained. There are no three-dimensional unsteady vortices for Ω up to 30 rpm [63]. For Ω = 30.1
rpm, the mode m = 7 is observed. Then, the number of lobes m decreases for increasing values
of the rotation rate and the modes m = [6; 5; 3] are thus obtained for Ω = [51.7; 55.4; 65.2] rpm,
respectively. The increasing importance of conventional small-scale mixing as Ω is raised means that
the contribution of these large scale vortices to the overall transport of heat and momentum gradually
diminishes with increase in Ω. The mode m = 3 subsists for a wide range of Ω = [65.2 − 172.7]
rpm but different forms of three-lobe modes are observed as shown in Figures 8.35e-f. For Ω ≥ 180
rpm, the S−shaped two-lobe mode is recovered (Fig.8.35g) but its form is quite different from the
one observed for G = 0.126 (Fig.8.35d). As shown in Figure 8.34b, within certain bands of operation
Ω = [130.9− 166.1] rpm, the vortex structure appears to be highly sensitive to the time history of the
flow and depending on the experimental procedure, the modes m = 2 or m = 3 can be indifferently
obtained, which confirms the former study of Czarny et al. [63]. These patterns are very similar to
those observed by Poncet and Chauve [250] for the flow over a rotating disk enclosed by an outer
stationary cylinder or to the ones of Abrahamson et al. [4] in the flow between shrouded co-rotating
disks. It shows that they are basic structures common to many rotating flow devices. Poncet and
Chauve [250] reported also the same sensitivity of these patterns to the time history of the flow and
more generally to the experimental procedure.

Similar patterns have also been obtained by Craft et al. [60] near the stator for G = 0.195 using a
three-dimensional unsteady k − ε modeling within the STREAM code. The computations performed
for Ω = 724 rpm reveal a successive change of structure with time (Fig.8.37a-c). After 7 disk revolu-
tions, a three-lobe vortex (Fig.8.37a) develops and is maintained until more than 20 revolutions. It
reorganizes to a two-lobe pattern by 40 revolutions (Fig.8.37b), which still continues to evolve until 70
revolutions (Fig.8.37c). This corresponds to the maximum number of revolutions that resources and
time permitted. Zacharos [364] have performed more computations using a second-moment trans-
port closure but the result was that the flow developed rapidly to a steady form with none of the
three-dimensional vortices reported above.

The effect of a central hub on the existence of these patterns has also been investigated. The flow
visualizations performed for Rm = 1.8 and G = [0.126; 0.195] do not reveal the existence of any large
scale organized structure in the geostrophic core over the entire range of rotation rate Ω = [30; 250]
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(a) (b)

Figure 8.36: Unsteady vortical structures obtained numerically: (a) iso-values of the turbulence kinetic
energy revealing a reversed S−shaped pattern for Ω = 1287 rpm, G = 0.126 and Rm = 1 (three-
dimensional k − ε modeling of [60]); (b) Iso-values of a passive scalar obtained by DNS for Ω = 23.3
rpm, G = 0.3 and Rm = 2.33 [312].

Figure 8.37: Unsteady vortical structures obtained by the three-dimensional k − ε modeling of Craft
et al. [60] for Ω = 724 rpm and G = 0.195 near the stator. Contours of axial velocity after: (a) 20
disk revolutions, (b) 40 revolutions, (c) 70 revolutions.

rpm considered. Figure 8.35h presents an example of axisymmetric mode (m = 0) obtained in the
case of an annular cavity (Ω = 192 rpm, G = 0.195). It confirms both the DNS results of Serre et al.
[312] for G = 0.12 and Rm = 2.33 and the recent LES results of Séverac et al. [315] for G = 0.143
and Rm = 1.8. One can not draw final conclusions about the existence or not of these patterns in an
annular cavity as Serre et al. [312] reported using DNS the existence of a 9−lobe pattern for G = 0.3
and Rm = 2.33 (Fig.8.34b).

One recalls that the same experiments have been recently performed at IRPHE in Marseilles also
by colouring injection. They did not reveal the existence of these large-scale vortices for the same
values of G, Rm, Ω, Re and Rer. It may be attributed to size effects as the rotor in the IRPHE’s
cavity is only 140 mm in radius. It is more probably due to the smallest gap between the rotor and
the shroud (j = 0.85 mm) in the IRPHE’s experiment compared to the present one j = 2 mm. It
prevents the ingestion of fluid coming from below the rotor. In the MACE’s facility, this gap may be
large enough for the fluid coming from the region confined between the shroud and the rim to enter
the cavity as in the simulation of Jakoby et al. [139].

8.7 Conclusion

Turbulent flows in an enclosed rotor-stator cavity have been investigated up to Re = 106 both numer-
ically using two high-order LES and experimentally using LDV measurements. As far as the authors
are aware, efficient LES of fully turbulent flow in an enclosed rotor-stator cavity have not been per-
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formed before. The disks are enclosed by an inner hub attached to the rotor and an outer shroud
attached to the stator involving finite cavity effects that were not taken into account in the former
LES results of Lygren and Andersson [11, 193, 194].

The LES have been performed first using a spectral vanishing viscosity method (LES-SVV) pre-
serving the spectral accuracy of smooth solutions. Such flows are difficult to compute when using
spectrally accurate numerical schemes, that results directly from the fact that spectral approxima-
tions are much less diffusive than low-order ones. Their results have been compared to a second code
(LES-FD) using fourth-order compact schemes in the non-homogeneous directions and a dynamic
Smagorinsky subgrid-scale model.

Numerical results using the LES-SVV and experimental measurements have been presented for
three Reynolds numbers, Re = 105, 4 × 105 and 106 in order to show the increasing complexity in
modeling these flows when rotation is increased. The boundary layers are separated with a turbulent
Ekman layer on the rotor from Re = 4× 105 and a Bödewadt layer on the stator already turbulent at
Re = 105. On both layers, finite cavity effects have been shown at Re = 106 with a radial dependence
of the main features of the turbulent flow. The turbulence intensities slightly increase going towards
the periphery. In the flow regions where the turbulence level is the weakest, the Q-criterion reveals spi-
ral arm patterns related to the crossflow instability. In the fully turbulent flow regions, the structures
become much thinner and aligned on the tangential direction. At Re = 106, the anisotropy invariant
map reveals some features related to “cigar-shaped vortex” aligned on the tangential direction on the
rotor side and related to “pancake-shaped vortex” on the stator side. The reduction of the Townsend
structural parameter a1 under the typical limit 0.15, as well as the strong misalignment between the
shear stress vector and the mean velocity gradient vector, highlight the three-dimensional nature of
both boundary layers with a degree of three-dimensionality much higher than in the idealized system
studied by Lygren and Andersson [11, 193].

The LES-SVV results compare very favorably with the LDV measurements that is very encour-
aging for this numerical approach to deal with complex flows with a slightly better overall agreement
compared to the LES-FD approach. Improvements in the future should come from a coupling of the
SVV procedure to the flow dynamics in order to optimize the dissipation of the model.

The results using the LES-SVV have been also extended to the non-isothermal case. Buoyancy ef-
fects have been investigated under the Boussinesq approximation for Rayleigh numbers up to Ra = 108

and a given Prandtl number Pr = 0.7. Some instantaneous views of the velocity and temperature fields
have been provided and reveal that the temperature field is strongly affected by the hydrodynamic
structures even at large Ra values. The averaged results show small effects of density variation on the
mean and turbulent hydrodynamic fields. The main features of non-isothermal turbulent rotor-stator
flows have been caught by the LES-SVV and compared to previous results. The turbulent Prandtl
number decreases from 1.4 at the walls to 0.3 at the edge of the boundary layers. The local Nusselt
number is found to be proportional to the local Reynolds number to the power γ = 0.7. This exponent
is close to the one γ = 0.746 given by Pellé and Harmand [237] for turbulent flows in an open rotor-
stator cavity, which confirms that the Nusselt number is generally lower in an enclosed domain than
in an unbounded one. Correlations for the averaged Nusselt number on both disks as a function of
the Rayleigh number are also provided. The evolution of the averaged Bolgiano length scale < LB >
with the Rayleigh number indicates that temperature fluctuations may have a large influence on the
dynamics only at the largest scales of the system for Ra ≥ 107.

The LES calculations did not reveal the existence of the 3D unsteady vortices observed experi-
mentally using the MACE facility. One has reported indeed flow visualizations of three-dimensional
unsteady vortices embedded in a turbulent rotor-stator flow with separated boundary layers. These
large scale organized structures appear in the geostrophic core, where the tangential velocity is invari-
ant with the axial position. Two values of the aspect ratio G have been investigated revealing that
a wider range of different vortex patterns is obtained for the highest value of G. Moreover, a clearly
established tendency for the number of vortices to decrease as the rotation rate is increased is observed
in both cases. Similar structures have also been found in the computations using a three-dimensional
unsteady k− ε modeling with analytical wall functions but for much higher rotation rates [60]. In an
annular cavity with a central hub, there is no experimental evidence of such structures, which confirms
our numerical investigations using LES. LES calculations are now required in the cylindrical case to
confirm the existence of these large scale vortices and to perform a more detailed investigation.
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Chapter 9

Turbulent Von Kármán flow
between counter-rotating disks

In this Chapter, the turbulent Von Kármán flow generated by two counter-rotating smooth flat (vis-
cous stirring) or bladed (inertial stirring) disks is considered. Numerical predictions based the RSM
model previously described in Chapter 4 are compared to velocity measurements performed at CEA
(Commissariat à l’Énergie Atomique, France) by Romain Monchaux, who was PhD student there at
that time. The main and significant novelty is the use of a drag force in the momentum equations to
reproduce the effects of inertial stirring instead of modeling the blades themselves. The influences of
the rotational Reynolds number, the aspect ratio of the cavity, the rotating disk speed ratio and of
the presence or not of impellers are investigated and discussed in details. In particular, the transitions
between the merged and separated boundary layer regimes and the one between the Batchelor [16] and
the Stewartson [330] flow structures have been highlighted in the smooth disk case. The transition
between the one cell and the two cell regimes has also been determined for both viscous and inertial
stirrings. The results have been published in Int. J. Heat Fluid Flow in 2008 (Ref.[259]).

9.1 Introduction

The flow between two finite counter-rotating disks enclosed by a cylinder, known as the Von Kármán
[348] geometry, is of practical importance in many industrial devices. Counter-rotating turbines may
indeed be used to drive the counter-rotating fans in gas-turbine aeroengines. Moreover, this con-
figuration is often used for studying fundamental aspects of developed turbulence and especially of
magneto-hydrodynamic turbulence.

From an academic point of view, the laminar flow between two infinite disks has justified many
works since the beginning of the controversy between Batchelor [16] and Stewartson [330] on the flow
structure. Batchelor [16] solved the system of differential equations relative to the steady rotationally-
symmetric viscous flow between two infinite disks. In the exactly counter-rotating regime, the distri-
bution of tangential velocity is symmetric around the mid-plane and exhibits five distinct zones: two
boundary layers developed on each disk, a transition shear layer at mid-plane, where the axial and
tangential velocities change sign and two rotating cores on either side of the transition layer. The
central cores rotate with a tangential velocity proportional to the disk velocities. The proportionality
coefficient is always inferior to 1. This solution can be regarded as the connection of two Batchelor
flows in the rotor-stator configuration. As stated by Batchelor [16] himself, “this singular solution
may not be realizable experimentally, of course”, which supposes that another solution may exist.
In 1953, Stewartson [330] found that the flow is divided into only three zones for large values of the
Reynolds number Reh = Ωh2/ν > 100 based on the interdisk spacing h: one boundary layer on each
disk separated by a zone of zero tangential velocity and uniform radial inflow. Lance and Rogers [167]
found numerically in the exactly counter-rotating regime a Stewartson solution for Reh = 1023. The
existence at large Reynolds numbers of the Stewartson solution has been confirmed by the analysis
of McLeod and Parter [202] in an infinite counter-rotating disk system. The Stewartson solution has
also been obtained numerically by Pesch and Rentrop [243] at Reh = 2000. Kreiss and Parter [161]
have proved the existence and non-uniqueness of solutions at sufficiently large Reynolds numbers for
the two-disk configuration. Thus, both Batchelor and Stewartson solutions are possible depending
on the initial and boundary conditions but the Batchelor prediction has not been mentioned in the
literature for the exact counter-rotating disk case. Pearson [236] obtained numerically a base inviscid
solution of the Von Kármán flow, which differs from both the Batchelor and Stewartson solutions: at
high Reynolds number (Reh = 103), the solution is asymmetric and the main body of the fluid rotates
faster than that of either disk. In the counter-rotating regime, Dijkstra and Van Heijst [72] showed
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numerically that the transition from the one cell to the two cell structure occurs for a given Reynolds
number and corresponds to the appearance of a detached shear layer on the slower disk. The reader is
referred to the work of Holodniok et al. [131] and to the review of Zandbergen and Dijkstra [367] for
a more extensive survey until 1987. More recently, Nore et al. [225] studied experimentally by flow
visualizations and particle image velocimetry the bifurcations and the nonlinear dynamics of the von
Kármán flow between exactly counter-rotating disks for a low aspect ratio cavity (G = h/R = 2 with
R the disk radius). It has been extended in [224] both experimentally and by a stability analysis for
2 ≤ G ≤ 20. Yang and Liao [359] solved the Von Kármán swirling viscous flow using the homotopy
analysis method.

In the turbulent case, the Von Kármán flow is a model flow to study the turbulence characteristics
on small scales. The main flow is axisymmetric and so offers an interesting intermediate situation
between two-dimensional and three-dimensional flows. Fauve et al. [93] reported measurements of
pressure fluctuations in the turbulent Von Kármán flow. They showed that the pressure probability
function is strongly non-Gaussian and displays an exponential tail toward low pressures. Maurer et
al. [201] used low-temperature helium gas to obtain high Reynolds numbers and well-defined scal-
ing properties. They established the turbulence characteristics such as structure functions or the
probability density function of the velocity differences and confirmed that turbulence on small scales
has universal properties independent of the forcing. Mordant et al. [214] investigated the dynamical
behavior of the Von Kármán flow at moderate to high Reynolds numbers using spatially averaged
measurements. Data of the power input and of pressure fluctuations at the walls are sufficient to
calculate the main turbulence characteristics such as the velocity fluctuations or the typical length
scales. Cadot et al. [41] measured the mean rates of energy injection and energy dissipation in steady
regimes of turbulence in the flow between counter-rotating stirrers. The smooth stirrers are found to
be less efficient in setting the fluid into motion than in the case of bladed disks. Pinton et al. [247]
measured the power consumption of the turbulent Von Kármán flow at constant Reynolds number and
showed that power fluctuations occur and involve coherent fluid motions in the whole cell. Marié and
Daviaud [199] performed full velocity measurements linking velocity fluctuations with the turbulent
drag in this geometry. They showed especially that the turbulent drag is dominantly generated by
coherent structures at the largest scales of the flow. Cadot and Le Mâıtre [42] considered the turbulent
between two co- and counter-rotating stirrers. They measured the instantaneous torques driving the
flow and compared them to similarity laws having no dependence on the Reynolds number with a
good agreement.

Ravelet et al. [270, 272] reported experimental evidence of a global bifurcation for a highly tur-
bulent flow between two counter-rotating impellers. The transition between the symmetric and the
asymmetric solutions is subcritical and the system keeps a memory of its history. Monchaux et al.
[213] investigated the properties of the mean and most likely velocity fields in the same configuration.
They showed that these two fields are described by two families of functions [181] depending on both
the viscosity and the forcing. For large values of the Reynolds number, in some regions, the flow
behaves like a Beltrami flow in which vorticity is locally aligned with velocity. Boroński [28] simulated
the laminar Von Kármán flow between two counter-rotating disks equipped or not by straight blades.
For a rotational Reynolds number Re = ΩR2/ν equal to 500, the poloidal-to-toroidal ratio is increased
from 13% in the smooth disk case to 51% in the bladed disk case.

A renewal of interest for the Von Kármán flow is born from the dynamo experiments. The flow
between counter-rotating impellers is considered as a possible candidate for the observation of a ho-
mogeneous fluid dynamo less constrained than the Riga and Karlsruhe devices. The flow needs to be
highly turbulent in order for nonlinearities to develop in the magnetic induction. Numerous experi-
mental [34, 347] or numerical [35, 271] studies have then been dedicated to magneto-hydrodynamics
turbulence in the Von Kármán geometry (see for example the VKS experiment developed in Cadarache
on Fig. 9.1a). In the latter work, the flow has been optimized using a water model experiment, varying
the driving impeller configuration, well described in [270]. An example of the magnetic field produced
by a kinematic dynamo outside a Von Kármán container is displayed in Figure 9.1b. One can cite
also the review paper of Léorat and Nore [178], who took stock of the numerical developments, which
have accompanied the VKS experiment until 2006.

To our knowledge, only very few numerical works have been devoted to the characterization of
the mean and turbulent flow properties in the Von Kármán geometry. Kilic et al. [154] performed a
combined numerical and experimental study of the transitional flow between smooth counter-rotating
disks with a central hub for −1 ≤ s ≤ 0, Re = 105 and G = 0.12, where s = Ω2/Ω1 is the ratio
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(a) (b)

Figure 9.1: (a) Photography of the experimental Von Kármán Sodium (VKS) setup developed at CEA
Cadarache; (b) Magnetic field produced by a kinematic dynamo outside a Von Kármán container, after
Léorat and Nore [178].

between the rotating speeds of the two disks. They compared mean radial and tangential velocity
measurements using a single-component laser Doppler anemometer with computed results using either
the low Reynolds number k − ϵ turbulence model of Launder and Sharma [172] or a laminar elliptic
code. For s = −1, the weakly turbulent flow is of Stewartson type, whereas the laminar computations
and measurements produce a Batchelor type of flow. The transitions from laminar to turbulent regime
and from Batchelor to Stewartson flow structure occur for s = −0.4. A good agreement is obtained
in the rotor-stator configuration (s = 0) and in the exactly counter-rotating regime (s = −1) but at
intermediate values of s, the agreement is less satisfactory. The same authors [102] performed the
same comparisons when a radial outflow of air is superimposed.

In this Chapter, the numerical predictions using the Reynolds Stress Model described in Chap-
ter 4 are compared to velocity measurements performed at CEA for the turbulent flow between two
counter-rotating disks. The main objective is to acquire a precise knowledge of both the flow structure
and the turbulence properties of the highly turbulent Von Kármán flow between smooth disks for a
large range of the flow parameters. A second objective is to propose an easy and efficient way to
model impellers and to quantify their effect on the Von Kármán flow at high Reynolds number.

9.2 Geometrical configuration and flow parameters

Velocity measurements using a laser Doppler velocimeter have been performed at CEA in the Von
Kármán geometry during the PhD thesis of Ravelet [270] and then by Romain Monchaux [213] in two
cases: viscous and inertial stirrings.

9.2.1 Geometrical configuration

The Von Kármán flow generated by two counter-rotating disks fitted or not by straight blades in
a cylindrical vessel is illustrated in Figure 9.2. The geometrical parameters are fixed by the values
studied experimentally by Ravelet [270]. The cylinder and disk radii are respectively Rc = 100 mm
and R = 92.5 mm. The radius ratio R/Rc is then fixed to 0.925. The distance between the inner
faces of the disks h can vary between 1 and 180 mm. Disks 1 and 2 rotate respectively clockwise and
counterclockwise with two rotation rates denoted Ω1 and Ω2. The motor rotation rates can be varied
independently in the range 0− 900 rpm, with |Ω1| ≥ |Ω2|. One uses bladed disks (n blades of height
hb equal to 10 or 20 mm) to ensure inertial stirring or flat disks for viscous stirring. The impellers are
driven by two independent brushless 1.8 kW motors.
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Figure 9.2: Sketches of the Von Kármán flow configuration with relevant notation.

9.2.2 Measurement technique

Velocity measurements are performed using a laser doppler velocimetry (LDV). A basic acquisition
of 190.000 randomly sampled values of one velocity component at one point of the flow lasts about
two minutes. Due to geometry constraints, one can measure only the axial Vz and tangential Vθ mean
velocity components. From this raw data, one may compute the time-averaged flow at every point on
a 11× 15 grid.

9.2.3 Flow parameters

In the smooth case, the mean flow is mainly governed by three global parameters: the aspect ratio of
the cavity G, the rotational Reynolds number Re based on the disk radius and the ratio s between
the two rotation rates, defined as follows:

0.01 ≤ G =
h

Rc
≤ 1.8 2× 105 ≤ Re =

Ω1R
2

ν
≤ 4× 106 − 1 ≤ s = −Ω2

Ω1
≤ 0

where ν is the kinematic viscosity of water. In the exact counter-rotating regime and in the rotor-stator
configuration, the ratio s is equal to −1 and 0 respectively. One defines also the radial r∗ = r/Rc and
axial z∗ = 2z/h coordinates. Thus, r∗ = 0 is obtained at the center of the disks and r∗ = 1 on the
outer cylinder for r = Rc. In the same way, z∗ = −1 on the lower disk 1 and z∗ = 1 on the upper
disk 2. In the case of inertial stirring, the number of straight blades n and their dimensionless height
h∗ = hb/Rc have also to be considered (hb the blade height).

9.3 Numerical approach and blade modeling

The predictions of the Reynolds Stress Model (RSM) fully described in Chapter 4 have already been
validated in the rotor-stator configuration (s = 0) [83, 85, 249, 253] for a wide range of the aspect
ratio G and the Reynolds number Re.

It has been verified here that a 120 × 120 mesh in the (r, z) frame is sufficient in the smooth
rotating disk cases to get grid-independent solutions. A refined mesh 160× 160 is necessary to model
flows with straight blades. About 20000 iterations (almost 20 hours on a bi-Opteron 18 nodes cluster)
are necessary to obtain the numerical convergence of the calculation.
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At the wall, all the variables are set to zero except for the tangential velocity Vθ, which is set to
Ω1r on disk 1, −Ω2r on disk 2 and zero on the stationary cylinder. The usual value ε = νk,jk,j/(2k)
is imposed at the wall for the dissipation rate ε of the turbulence kinetic energy. At the periphery of
the disks, for R ≤ r ≤ Rc, Vθ is supposed to vary linearly from zero on the stationary cylinder up to
Ω1R on disk 1 and −Ω2R on disk 2 and the radial Vr and axial Vz velocity components are fixed to
zero.

One can not implement real straight blades in this two-dimensional code. As the most important
effect to be modeled is to increase the efficiency of the disks in forcing the flow. a volumic drag force
f has been added in the equation of the tangential velocity component Vθ. For n straight blades, the
volumic drag force f can be written as:

f =
n

2πr
F =

n

4πr
ρCD|Vrel|Vrel (9.1)

where F is the drag force of one blade, ρ the fluid density, CD the dimensionless drag coefficient and
Vrel = Ωir − Vθ the relative tangential velocity on disk i = 1, 2. The force is designed to make the
fluid velocity closer to the local disk velocity near the disks. This form is close to the one proposed
by Boroński [28] for spectral code. For curved blades, the same approach could be used: a volumic
lift force could be indeed added in the equation of the radial velocity component Vr. Another way to
take into account the presence of blades has been proposed by Laguerre et al. [166], who introduced
a tangential component of the electromotive force in the induction equation only in the two fluid
cylinder region occupied by the blades.

The height of the blades (h∗ = 0.1 or 0.2) is considered to be much larger than the boundary layer
thickness δ/Rc ≃ Re−1/2 ≤ 2 × 10−3 (for Re = 2 × 105). In this case, Blevins [25] proposed some
values for the drag coefficient (expected errors of ±20%) in an uniform flow. For a thin rectangular
plate perpendicular to the mean flow, the value of CD is in the range [1.05 − 1.9], depending on the
size of the plate. As the flow is here not uniform along the blades and as the drag coefficient is
supposed to decrease for increasing values of the Reynolds number, CD is expected to be lower than
2 depending on the flow and blade parameters. Some calculations have been performed for s = −1,
G = 1.8, Re = 2 × 105 and straight blades (h∗ = 0.2, n = 8) to study the influence of the trailing
coefficient CD. The differences on the extrema of the tangential velocity component are inferior to
0.5% for CD in the range [0.1− 2]. Thus, the value of CD has been fixed to 0.5.

9.4 Smooth disk case: viscous stirring

In this section, the turbulent flow between two counter-rotating smooth disks is considered. Thus, a
viscous stirring is ensured: the actuation is done by the setting in rotation of the smooth walls and the
movement is communicated to the fluid by diffusion of the momentum through the boundary layers.
The influence of the Reynolds number Re, the aspect ratio of the system G, and the ratio s between
the two rotation rates on the mean and turbulent fields is investigated in details.

9.4.1 Flow structure in the exact counter-rotating regime

The structure of the mean flow in the exact counter-rotating regime is henceforth globally well known:
it can be decomposed into two toroidal cells in the tangential direction θ (not modeled here because
of the axisymmetry hypothesis) and into two poloidal recirculations in the (r, z) plane [271].

Regarding the poloidal cells (Fig.9.6a), the fluid at the top and the bottom of the cavity is forced
into two opposite rotation speeds, and is then entrained by the disks. Consequently, a shear layer
develops in the equatorial plane. This is perceptible in Figure 9.3, which presents axial variations
of the tangential velocity component for s = −1, Re = 6.28 × 105, G = 1.8 at five radial locations
in the range r∗ = [0.346 − 0.865]. The radial and axial velocity components are not presented here
because they are almost zero in the whole cavity both in the experiments and in the calculations. The
tangential component is quite weak too except in the two very thin boundary layers, which develop
on each disk and whose size is shown in Figure 9.4 and close to the periphery, where the shear layer is
observed. For r∗ ≤ 0.476 (Fig.9.3a,b), the profile exhibits a Stewartson [330] flow structure: a quasi
zero tangential velocity zone enclosed by two boundary layers on each disk. The flow in the boundary
layers is characterized by a strong tangential velocity component (positive on disk 1 and negative on
disk 2) and by a radial outward component not shown here. Towards the periphery (Fig.9.3c-e), the
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Figure 9.3: Axial profiles of the tangential velocity component for s = −1, Re = 6.28 × 105 and
G = 1.8 at five radial locations: (a) r∗ = 0.346, (b) r∗ = 0.476, (c) r∗ = 0.605, (d) r∗ = 0.735, (e)
r∗ = 0.865. Comparisons between the RSM (−) and the experimental data (◦) in the smooth disk
case.

flow gets of Batchelor type with five distinct zones: two boundary layers on the disks, a shear layer
at mid-plane and two zones enclosed between the two. These last two zones are characterized by a
weak but non zero tangential velocity component. The shear layer thickens when the local radius r∗

increases. Contrary to the laminar case reported by Kilic et al. [154], there is practically no radial
inflow around z∗ = 0.

A good agreement between the numerical results and the experimental data is obtained even if the
values are quite weak. The RSM model catches the appearance and the thickening of the shear layer.
On the other hand, the size of the LDV probe volume in the axial direction (1 mm) is not negligible
compared to the boundary layer thickness. It is the main reason why the agreement between the
numerical predictions and the measurements is less satisfactory in the boundary layers as it can be
seen in Figure 9.3.

Figure 9.4: Radial evolution of the boundary layer thickness δ/h in the smooth disk case for s = −1,
Re = 6.28× 105 and G = 1.8 (symbols: RSM, line: polynomial interpolation).

The transition between the Stewartson and Batchelor flow structures can also be seen in Figure 9.4
from the radial evolution of the boundary layer thickness δ for the same set of parameters. Very close
to the rotation axis, the axial flow impinges the disks and creates very large boundary layers on both
disks, whose size decreases with the local radius as expected [104]. The flow is then of Stewartson type.
During the transition, δ increases as already observed by Poncet [249] for rotor-stator flows (s = 0).
For r∗ ≃ 0.47, the flow is clearly of Batchelor type and then, δ decreases towards the periphery of
the cavity. It confirms the visualizations of the laminar flow between co- and counter-rotating disks
(−0.2 ≤ s ≤ 0.87) performed by Gauthier et al. [104]. They found indeed that the boundary layer
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thickness of the slower disk decreases for increasing values of the radial location r∗.
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Figure 9.5: Radial profiles of the tangential velocity component in the smooth disk case for s = −1,
G = 1.8 and four Reynolds numbers at different axial locations: (a) z∗ = 0.91, (b) z∗ = 0.59, (c)
z∗ = 0.02, (d) z∗ = −0.59, (e) z∗ = −0.92.

The influence of the Reynolds number on the mean flow is now investigated. Figure 9.5 presents
radial profiles of the tangential velocity component for s = −1, G = 1.8 and four Reynolds numbers at
different axial locations. The numerical predictions of the RSM model are compared to present LDV
measurements and to the velocity measurements of Ravelet [270] for Re ≥ 105. The numerical data for
Re ≥ 6.28×105 merge almost into a single fitting curve. It means that there is practically no effect of
the Reynolds number on the mean field ever since the flow is turbulent. For Re = 2×105, a significant
increase of the magnitude of Vθ is observed whatever the axial position, which is characteristic of the
laminar regime. The critical Reynolds number for the transition from the laminar to the turbulent
state is thus overestimated compared to the one obtained by Ravelet [270]: Re = 105. Nevertheless,
the present velocity measurements performed on the same experimental set-up as [270] confirm the
numerical results. Compared to the previous measurements, an effect of Re is observed on the radial
profiles of Vθ at the periphery of the cavity. In fact, the critical Reynolds number for the laminar
to turbulent state transition depends strongly on the boundary conditions and especially on the
conditions imposed in the radial gap 0.925 ≤ r∗ ≤ 1. One recalls that a linear profile is imposed in the
numerical code for Vθ, that does not take into account any recirculation zone and that could explain
this difference. This tendency for relaminarization of the RSM model has already been noticed by
Poncet et al. [249, 253] in the rotor-stator configuration. As a conclusion, there is no significant effect
of the Reynolds number on the mean flow for Re ≥ 105, which confirms the results of Cadot et al.
[41] and Ravelet [270].

Figure 9.6 presents the corresponding streamline patterns. The mean flow is divided into two
symmetric poloidal cells, whose size is equal here to 0.5h along the axial direction and independent of
the Reynolds number. In the radial direction, the diameter of the largest eddies observed is of the order
of the disk radius R, showing that this scale is the order of the energy scale injection. Experimentally,
Ravelet [271] observed a weak asymmetry of the flow in the (r, z) plane, which disappears for increasing
values of the Reynolds number.

The influence of the aspect ratio of the cavity G on the mean field has also been investigated for
0.01 ≤ G ≤ 1.8 (Fig.9.7) and a given Reynolds number Re = 1.3 × 106. Note that the radial and
most of all the axial velocity components are quite weak compared to the tangential one and to the
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Figure 9.6: Computed streamlines between smooth disks for s = −1 and G = 1.8 (RSM): (a) Re =
2× 105; (b) Re = 7.8× 105; (c) Re = 1.3× 106; (d) Re = 4× 106.
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Figure 9.7: Axial profiles of the mean velocity components at r∗ = 0.81 for s = −1, Re = 1.3 × 106

and four values of G in the smooth disk case (RSM).

disk velocity. For G = 1.8, the boundary layers are separated as already mentioned and the mean
tangential velocity component is constant in the core of the flow. For G = 0.01, the flow is of torsional
Couette type with merged boundary layers as Vθ (Fig.9.7a) varies linearly in the median region of the
flow. This is to be compared to the value G = 0.012 obtained in the rotor-stator configuration [249].
For intermediate values G ≃ 0.4, both boundary layers interact. The transition between the two main
regimes is continuous and not clear from the Vθ-profile. Nevertheless, if one considers the Vz-profile
(Fig.9.7c), one can clearly see that the axial velocity component is almost zero whatever the value
of G, expect for G = 0.4, where the fluid moves towards the upper and lower disks. The transition
can also be characterized by considering the Vr-profiles (Fig.9.7b), which exhibit the thinning of the
boundary layers for increasing values of the aspect ratio.

9.4.2 Flow structure for −1 ≤ s ≤ 0

Another interesting feature in counter-rotating disk flows is the influence of the ratio s between the
two rotating disk speeds (Fig.9.8). The Reynolds number and the aspect ratio of the cavity are
respectively fixed to Re = 1.3 × 106 and G = 1.8. One focuses on the counter-rotating disk case for
which −1 ≤ s ≤ 0.

In the exact counter-rotating regime (Fig.9.8a), the flow is symmetric and two cells with the same
size 0.5h coexist. For small rotating speed differences, the structure of the mean flow is strongly
dominated by the faster disk (Fig.9.8b). Varying the ratio s displaces the shear layer towards the
slower disk. The cell close to the lower disk invades almost the whole interdisk spacing for s = −0.7
(Fig.9.8d). For s = −0.2 (Fig.9.8e), the flow structure resembles the one observed in the rotor-stator
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Figure 9.8: Computed streamlines between smooth disks for Re = 1.3× 106 and G = 1.8 (RSM): (a)
s = −1; (b) s = −0.9; (c) s = −0.8; (d) s = −0.7; (e) s = −0.2.

configuration [249] with streamline patterns parallel to the rotating axis. This transition between the
two cell and the one cell regimes can be seen also from Figure 9.9. It presents the evolution with s of
the dimensionless size Sc/h of the smallest cell (along the upper disk) in the axial direction defined in
Figure 9.8b. In the smooth disk case, one can notice that Sc decreases rapidly for decreasing values
of |s| in the range −1 ≤ s ≤ −0.8 (see also Fig.9.8a-c) following Sc/h ∝ −2.2s. For smallest values of
|s|, the cell is reduced to a very thin region attached to the upper disk (Fig.9.8d), which disappears
progressively along the external cylinder and so Sc tends to zero.

Figure 9.9: Size Sc/h of the smallest cell against s for G = 1.8 (RSM). Comparison between (−) the
smooth disk case (Re = 1.3× 106), (−−) the bladed disk case (Re = 2× 105) and previous numerical
results of (∗) Kilic et al. [154] and (⋄) Gan et al. [102] in the smooth disk case.

In Figure 9.9, the present results are compared to the ones obtained by Kilic et al. [154] and Gan
et al. [102], who performed calculations for −1 ≤ s ≤ 0 and G = 0.12 using a classical k−ε turbulence
model. Considering that the k− ε prediction of these authors is in relatively good agreement with the
smooth disk case, the comparison given in Figure 9.9 may be meaningful to get an idea of the effect
of the aspect ratio. For Re = 105, Kilic et al. [154] found that the evolution of Sc against s is non
monotonous. It decreases more slowly from s = −1 to s = −0.2 than in our case. It is a combined
effect of both the Reynolds number and the aspect ratio of the cavity. For s = −0.4, they observed
a double transition: from laminar to turbulent flow and from Batchelor to Stewartson type of flow.
The decrease of Sc is much faster with s in the laminar case [154]. For Re = 1.25 × 106, Gan et al.
[102] obtained streamline patterns different from the ones shown in Figure 9.8 for s = [−0.8;−0.2]
essentially because of the small value of G. A large cell along the slower disk is still observed for
s = −0.4. This cell is trapped by the main flow due to the faster disk in the zone 0.3 ≤ r∗ ≤ 0.45.
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9.4.3 Turbulence field in the exact counter-rotating regime

As already mentioned above, the influences of both the Reynolds number and the aspect ratio are
relatively weak (compared to the effect of the ratio s between the rotation rates). In the following,
one focuses on the exact counter-rotating regime s = −1 and Re and G are fixed respectively to
Re = 6.28× 105 and G = 1.8.
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Figure 9.10: Axial profiles of the six Reynolds stress tensor components at r∗ = 0.81 for s = −1,
G = 1.8 and Re = 6.28× 105 in the smooth disk case (RSM).

Figure 9.10 presents the axial profiles of the six components of the Reynolds stress tensor. These
components are normalized by the local disk 1 velocity Ω1r. For example, R∗

rr is defined as: R∗
rr =

v′2
r /(Ω1r)

2. As in all rotating disk problems [253], turbulence is mainly concentrated in the boundary
layers with the same turbulence levels in the upper and lower disk boundary layers. The main
difference with the rotor-stator configuration is that turbulence is also generated in the median region
of the interdisk spacing and is due to the shear, stretched by the recirculations. The Von Kármán
arrangement is indeed known to produce an intense turbulence in a compact region of space [201]. The
magnitudes of the three normal components are almost the same in the equatorial plane. It means
that turbulence is quasi isotropic in that region. The cross components are quite weak except for the
R∗

rθ component, which behaves like the normal components with a bump at mid-plane.
As expected, the maximum of the turbulence Reynolds number Ret = k2/(νε) = 5836 is located

in the shear layer close to the periphery of the cavity, where the highest values of the local Reynolds
number Rer = Ω1r

2/ν are obtained (Fig.9.11a). This maximum is to be compared to the maximum
value Ret ≃ 500 obtained by Poncet [249] for s = 0 and Re ≃ 106, which indicates the high turbulence
level in that region.

Figure 9.11b shows the anisotropy invariant map for the Reynolds stress tensor in the whole
interdisk spacing at r∗ = 0.51. The second A2 and third A3 invariants of the anisotropy tensor aij of
the second moments of the fluctuations are defined as: A2 = aijaji and A3 = aijajkaki [192], where
aij = Rij/k− 2

3δij (δij the Kronecker symbol). The results of the RSM model satisfy the realizability
diagram of Lumley [192]. Very close to the disks, the turbulence tends to follow the two-component
behavior as the wall normal fluctuations are damped more effectively than fluctuations parallel to the
disk. Outside the boundary layers and especially in the shear layer, turbulence is fairly close to the
isotropic case (A2 = A3 = 0), which confirms the results observed from Figure 9.10. Note that very
close to the mid-plane, the flow tends to the axisymmetric limit.

9.5 Bladed disk case: inertial stirring

To increase the efficiency of the disks in forcing the flow, n blades of height h∗ are mounted on both
disks. The stirring is called inertial because the fluid is set into motion thanks to areas of forcing

160



161 9.5. BLADED DISK CASE: INERTIAL STIRRING

−0.2 −0.1 0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

A
3

A
2

+ 

(a) (b)

Figure 9.11: s = −1, G = 1.8 and Re = 6.28× 105 in the smooth disk case (RSM): (a) Iso-turbulence
Reynolds number Ret = k2/(νε) - (b) Anisotropy invariant map at r∗ = 0.51: (×) −1 ≤ z∗ ≤ 0, (�)
0 ≤ z∗ ≤ 1.

perpendicular to the motion itself. In that case, Ravelet [270] showed that all mean and turbulent
quantities are independent of the Reynolds number in the range Re = [105, 2 × 106]. Thus, the
parameters are fixed to Re ≃ 2 × 105 and G = 1.8. In that case, the boundary layers are separated
and the flow is found to be highly turbulent. Moreover, direct comparisons with the experiments of
Ravelet [270] can be performed. The purpose of this section is to propose an efficient way to model
the effect of straight blades on both the mean and turbulent fields.

9.5.1 Flow structure in the exact counter-rotating regime

In the bladed disk case, the flow structure is completely different from the smooth disk case, where the
velocity gradient are located in the boundary layers along the disks and decrease when the Reynolds
number increases. For an inertially driven flow, the mean flow does not present any appreciable velocity
gradient in the vicinity of the blades (Fig.9.12) and the gradients are distributed in the median region
of the flow. The mean flow is divided into three main regions: a shear layer at mid-plane and two
fluid regions close to each bladed disk. The intensity of the shear at mid-plane is increased compared
to the viscous stirring case. This shear is due to the two recirculation cells. It induces a strong radial
inflow (Vr < 0) around z∗ = 0 and two opposite axial flows towards the disks. The magnitude of
the mean axial and radial velocity components increase from the periphery (Fig.9.12c) to the rotation
axis (Fig.9.12a). From the disk to the top of the blades, the tangential fluid velocity is fairly close to
the local disk velocity. Moreover, a strong radial outflow is created along the bladed disks and goes
with the impellers. At the top of the blades, there is a strong decrease of |Vθ| interpreted as the wake
of the blades. There is a very good agreement between the numerical predictions and the velocity
measurements concerning the Vθ-profiles. A small difference is observed in the shear layer, where
the RSM model predicts a thinner layer than the one measured by Ravelet [270]. This last author
observed, for the same set of parameters, high energy levels for frequencies inferior to the injection
frequency. This contribution is attributed to the appearance of strong coherent structures in the shear
layer not observed in the smooth disk case and which may explain the weak discrepancies obtained.

9.5.2 Flow structure for −1 ≤ s ≤ 0

The same analysis as in the smooth disk case is performed by varying the ratio s between the two
rotating disk speeds. Figure 9.9 presents comparisons between the smooth and bladed disk cases
concerning the size Sc of the cell along the slowest disk for −1 ≤ s ≤ 0. The same behavior is
obtained but the transition between the two cell and the one cell structures (Sc → 0) is slightly
delayed. It occurs in the inertial stirring case for s ≃ −0.65, which is close to the experimental value
obtained by Cadot and Le Mâıtre [42] in the same configuration s = −0.69 and the analytical one
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Figure 9.12: Axial profiles of the mean velocity components for s = −1, Re = 2 × 105, G = 1.8 and
straight blades (n = 8, h∗ = 0.2) at three radial locations: (a) r∗ = 0.4, (b) r∗ = 0.5, (c) r∗ = 0.6.
Comparisons between the RSM model (lines) and the LDV measurements of Ravelet [270] (◦).

obtained by Dijkstra and Van Heijst [72] for Re → 0 and s = −2/3 in the smooth disk case. The
measurements of Ravelet [270] reveal a transition for s = −0.78. It confirms the similitude observed
by Cadot and Le Mâıtre [42] between the smooth disk flow with a large viscosity and the mean flow
in the inertial stirring case.
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Figure 9.13: Computed streamlines obtained by the RSM for Re = 2 × 105, G = 1.8 and straight
blades (n = 8, h∗ = 0.2): (a) s = −1; (b) s = −0.9; (c) s = −0.8; (d) s = −0.7; (e) s = −0.6.

The transition from the two cell to the one cell structures can be seen also from Figure 9.13.
Compared to the smooth disk case, the cell along the slowest disk is larger for s = −0.8 (Fig.9.13b).
For s = −0.7, only a small recirculation subsists along the upper disk and completely disappears for
s = −0.6. For s ≥ −0.6, the same pattern is observed with streamlines parallel to the rotation axis.
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9.5.3 Turbulence field in the exact counter-rotating regime

To enable direct comparisons with the viscous stirring case, Figure 9.14 presents the axial profiles of
the six components of the Reynolds stress tensor at the same radius r∗ = 0.81 and for the same values
of G and s. The main difference between the smooth and the bladed disk configurations is that, in the
latter case, the turbulence intensities vanish towards the disks. Apart from that, turbulence is also
mostly generated at mid-plane because of the shear stretched by the recirculations. The blades induce
a much stronger shear zone in the equatorial plane compared to the smooth disk case as already
seen from the mean velocity profiles (Fig.9.12). Thus, the turbulence levels, regarding the normal
Reynolds stress components (Fig.9.14a), are almost 20 times larger than for viscous stirring and quite
comparable to the mean fluid velocity. It confirms the previous measurements of Cadot et al. [41]
in steady regimes of turbulence in the Von Kármán geometry. They found that the fluid velocity
fluctuations are close to the fluid mean velocity and 6 times larger in the bladed disk case than in the
smooth disk case. In the present study, the R∗

rr component is much weaker than the two other normal
components, which indicates the turbulence anisotropy in the core of the flow. The cross components
are also stronger than in the smooth disk case. The level of the R∗

rθ component (Fig.9.14b) is of

the order of R∗
rr. Note that the maximum of the R

∗1/2
θθ component obtained at mid-plane (z∗ = 0)

using the RSM model is in excellent agreement with the asymptotic value measured by Ravelet [270]
for Re ≥ 104 (relative error inferior to 0.1%). Nevertheless, one must remark that only a single
measurement point is available, and consequently it is hard to derive definite conclusions. Another
point is that the periodic unsteadiness introduced by the blades is not exactly accounted for in the
calculation and may explain small discrepancies in the mean velocity profiles.

To study the influence of the number n of blades and their height h∗ on the turbulent field,
Figure 9.15 shows radial profiles of the turbulence kinetic energy k∗ normalized by (Ω1R)2 for various
impeller configurations. These profiles are plotted at mid-plane where the maximum of k∗ prevails.
As expected, k∗ increases towards the periphery of the cavity, it means for increasing local Reynolds
number. Then, k∗ decreases for radial locations in the gap between the disks and the external cylinder.
One can first notice the very weak level of turbulence kinetic energy in the smooth disk case compared
to the other bladed disk cases. Secondly, the influence of the blade number n is quite weak for n = 4,
8 or 16. Only very close to the rotation axis, one can remark a different behavior in the configuration
with 16 blades. Nevertheless, in the whole flow, four blades seem to be sufficient to force the flow. On
the other hand, the blade height plays a more important role. The k∗ level is twice higher when the
blades are twice higher too.

It is now established that all mean and turbulent quantities are independent of the Reynolds
number in the range Re = [105, 2× 106]. The turbulent dissipation is indeed much stronger than the
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CHAPTER 9. TURBULENT VON KÁRMÁN FLOW BETWEEN COUNTER-ROTATING

DISKS

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

r*

k*

n=4,h*=0.2
n=8,h*=0.2
n=16,h*=0.2
n=8,h*=0.1
smooth disks

Figure 9.15: Radial profiles of the turbulence kinetic energy k∗ = k/(Ω1R)2 at z∗ = 0 for s = −1,
G = 1.8, Re = 2 × 105 and different bladed disk configurations - comparison with the smooth disk
case (Re = 6.28× 105) (RSM).

dissipation due to the boundary layers and hides the dependence on Re. All these results can thus be
extended to higher Reynolds numbers.

9.6 Conclusion

Some comparisons between numerical predictions using a RSM model and velocity measurements
have been performed for the turbulent flow between two flat or bladed counter-rotating disks. This
configuration known as the Von Kármán geometry is used to produce an intense turbulence in a
compact region of space.

For viscous stirring, the flow is of Stewartson type close to the rotation axis and so exhibits
three distinct regions: two boundary layers and one shear layer at mid-plane. When one approaches
the periphery of the cavity, for r∗ ≃ 0.476, the flow gets of Batchelor type. Turbulence is mainly
concentrated in the boundary layers and in the transitional shear layer, where turbulence is almost
isotropic. Turbulence intensities increase towards the outer cylinder. When one decreases the aspect
ratio of the cavity until G ≤ 0.4, the boundary layers mixed and the flow is then of torsional Couette
type for lower values of G. In the case of inertial stirring, the impellers are more efficient to force
the flow. Thus, the transitional shear layer intensifies. Turbulence is so mainly concentrated around
z∗ = 0 and vanish towards the disks. The turbulence intensities are almost 20 times larger than in
the flat disk case. The height of the blades is found to be the preponderant parameter to increase
the turbulence intensities more than the number of blades. In the flat and bladed disk cases, it has
been numerically verified the statement of Cadot et al. [41]: “smooth or rough, the efficiency of a
given type of stirrer to set the bulk of the fluid in motion is independent of the Reynolds number”.
Moreover, one has characterized the transition between the two cell and the one cell regimes. For
inertial stirring, it occurs for s ≃ −0.65 close to the values obtained by Dijkstra and Van Heijst [72]
and Cadot and Le Mâıtre [42].

The agreement between the numerical predictions and the LDV measurements is very satisfactory
in both cases. For the first time, an easy and efficient way to model the main effect of straight blades
has then been proposed.
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Part III: Taylor-Couette flows between concentric cylinders

Summary: In this part, we switch to flows confined between two concentric cylinders with the inner
one being rotating and the outer one being stationary. It has been totally inspired by the industrial
contract with the Liebherr Aerospace company on the effective cooling of rotating walls in electrical
motors, which will be considered in Chapter 12. The two first chapters are only pleas to validate
the numerical code based on the fourth-order compact schemes. Thus, in Chapter 10, the stability
of Taylor-Couette flows with radial temperature gradient is investigated by DNS to validate both the
heat transfer approach and the multidomain decomposition technique. Chapter 11 is a numerical
benchmark of turbulence models considering the original geometrical configuration of Burin et al. [40]
with endcap rings to validate the multidomain decomposition technique in the turbulent regime.



Chapter 10

Influence of a radial temperature
gradient on the flow stability

In 2008, one initiated a collaboration with a new industrial partner, Liebherr Aerospace Toulouse,
on the cooling of electrical motors. These flows can be simply modeled by a Taylor-Couette system
with a superimposed axial Poiseuille flow and a radial temperature gradient. It will be the subject
of Chapter 12. To simulate these flows with the in-house DNS code based on compact schemes, it
was necessary to make some numerical developments to take into account heat transfer effects and
most of all, the large aspect ratio of the cavity in the axial direction. The experimental data on the
stability of Taylor-Couette flow with a radial thermal gradient obtained by Guillerm [117], who was at
that time postdoc on that project, was then a valuable database to validate both the implementation
of the energy equation and the multidomain approach. The goal was thus mainly to validate the
numerics and so the stability diagram established by Guillerm [117] has been explored by extensive
computations without going into too much details. As a consequence, this Chapter is without any
doubt the less accomplished one of this habilitation thesis also because some calculations are still in
progress. The results presented during the Euromech Conference held in Roma in 2012 are currently
under review.

10.1 Introduction

Taylor-Couette flows confined between two concentric cylinders have been widely considered since
the pioneering work of Couette [59] in 1890, which has led up to now to an abundant literature.
Nowadays it still receives a constant attention from the scientific community because of its relevance
to numerous engineering applications: the cooling of electronic motors [256], thermal energy storage
systems or electrical transmission cables. In rheology, the Taylor-Couette flow confined between a
permeable rotating inner cylinder and an impermeable concentric outer cylinder is a prototype flow
for dynamic rotating filtration [338]. When an axial flow is superimposed, it is used as a novel reactor
type offering a wide range of mixing regimes [332]. In the presence of axial stratification, it finds
also direct applications in geophysics to model atmospheric or oceanic flows and in astrophysics for
accretion disks [174].

For an enclosed annulus with independently rotating cylinders, a wide variety of flow states, both
laminar and turbulent, as well as states with the co-existence of laminar and turbulent regions, can
occur after the first transition to the regular Taylor vortex flow. The critical Taylor numbers for
the appearances of these various patterns are dependent on a large number of factors, including the
rotation ratio and cavity dimensions. Di Prima and Swinney [71] proposed a large review of the
different studies up to 1981 with, in particular, the values of the critical Taylor numbers as a function
of the radius ratio and the angular velocity ratio. Andereck et al. [9] established the transition
diagram according to the Reynolds numbers based on the tangential velocity of the inner and outer
cylinders respectively. It became a very useful guide for the experimental [112], numerical [65] or
theoretical investigations, which followed. When the inner cylinder is stationary and the outer one is
rotating, Taylor-Couette flows as well as other shear flows like Hagen-Poiseuille flows, plane Couette
flows . . . are linearly stable. Thus, the transition to turbulence can occur via the appearance of edge
states. Compared to these other configurations, the Taylor-Couette problem has the main advantage
to be 2π−periodic, which does not require very long cavities as in pipe flows for example. Very
recently, Borrero-Echeverry et al. [29] observed that, at sufficiently high Reynolds numbers, laminar
and turbulent patches can coexist with the same decay characteristics than in the other configurations.
The reader can refer to Lueptow [191] for fundamentals on Taylor-Couette flows and to Fénot et al.
[94] for a recent exhaustive review.
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In the non-isothermal case, the strong competition between two mechanisms, an azimuthal flow due
to rotation and an axial flow due to convection effects, leads indeed to a wide variety of spectacular
instability patterns with some noticeable differences compared to the isothermal case. Snyder and
Karlsson [325] have performed extensive measurements in a tall narrow-gap annulus (aspect ratio
Γ = h/∆R = 337, radius ratio η = a/b = 0.958) to understand the influence of a weak radial
temperature gradient on the stability of water flows (a and b the radii of the inner and outer cylinders
respectively, ∆R = b − a and h the cylinder height). They have observed that small positive or
negative radial temperature gradient stabilizes the base flow. For larger temperature gradients, they
successively obtained spirals, wavy vortices and then a transition to Taylor vortices at high Taylor
numbers. Sorour and Coney [328] have found experimentally that an imposed radial temperature
gradient leads first to the appearance of stationary axisymmetric toroidal vortices for oils with large
Prandtl numbers (Pr ∈ [300− 860]). Ball et al. [14] classified the different flow regimes obtained by
flow visualizations using the Richardson number Ri = Gr/Re2 (Gr and Re the Grashof and Reynolds
numbers), which is the ratio between the buoyancy and inertia forces. For Ri < 0.01, rotation is
dominant over the buoyancy, whereas for Ri ∈ [0.01; 10], both effects play an important role in the
transition process. For Ri > 10, the flow is destabilized by the buoyancy only. Ali and Weidman
[7] performed a linear stability analysis for non-axisymmetric perturbations for a wide range of the
global flow parameters. Liu et al. [186] investigated the stability of Taylor-Couette flows with a radial
temperature gradient by digital PIV for four different outer cylinders, smooth or with different number
of slits (η = 0.825, Γ = 48). Lepiller et al. [180] studied the influence of a radial temperature gradient
on the stability of circular Couette flows in the non-rotating case. It is found to destabilize the flow
leading to a pattern of traveling helicoidal vortices occurring only near the bottom of the system.
They invade progressively the whole cavity by increasing the Taylor number Ta. It has been extended
later by Guillerm [117] for small rotation rates of the inner cylinder. He provided the most exhaustive
experimental study in this configuration, which will serve as reference data in the present work.
Using flow visualizations and thermochromic liquid crystals, he established the stability diagram in
a (Gr, Ta) plane and the main instability characteristics. Recently, Yoshikawa et al. [360] performed
a linear stability analysis (LSA) for given values of Pr and η. A small stabilization zone is obtained
near the isothermal situation. Otherwise, the radial temperature gradient destabilizes the flow and
leads to spiral vortices traveling in the azimuth with large wavelengths compared to the stationary
Taylor modes. By studying the perturbation kinetic energy, they proposed different values of the
Richardson number compared to Ball et al. [14] to distinguish the three flow regimes: Ri < 0.002
(rotation dominates), Ri ∈ [0.01; 10] (both effects coexist) and Ri > 3.75 (buoyancy dominates).

At the present time, there is clearly a lack of numerical investigations in this configuration to
obtain more quantitative data, especially for large aspect ratio cavity as pointed out by Yoshikawa et
al. [360]. To our knowledge, Kuo and Ball [163] and Kedia et al. [152] are the only ones to consider this
problem numerically. Kuo and Ball [163] performed six simulations using a pseudo-spectral method
with Chebychev polynomials in the radial and axial directions in a small aspect ratio cavity (Γ = 10,
η = 0.5). Kedia et al. [152] investigated the effects of the gravitational and centrifugal potentials on
the stability of Taylor-Couette flows assuming the problem as being periodic in both tangential and
axial directions. They calculated the heat transfer coefficients for an air flow at fixed Taylor number
(Ta = 200) and radius ratio (η = 0.5, 0.7) considering a large range of Grashof numbers. The present
work is then an attempt to fill this gap in the case of an enclosed cavity of large aspect ratio (Γ = 80)
avoiding the appearance of edge effects as observed by Kuo and Ball [163] for Γ = 10. Very elongated
Taylor-Couette systems are very challenging for numerical methods. The present work represents the
first DNS for such a high-aspect ratio cavity. The goals are firstly to confirm or not the stability
diagram established experimentally by Guillerm [117], secondly to describe all instability regimes in
terms of the flow and thermal fields and thirdly to characterize the heat transfer process.

The Chapter is organized as follows: the global flow parameters and the numerical method are
first briefly described in Sections 10.2 and 10.3 respectively. The numerical method is first validated
in Section 10.4 against analytical solutions, enabling also to describe the base flow. The large variety
of instability patterns and their main characteristics are then shown and discussed in Section 10.5.
The distributions of the moment and heat transfer coefficients are presented in Section 10.6. Some
concluding remarks are finally provided in Section 10.7.
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Figure 10.1: Schematic representation of the Taylor-Couette system submitted to a radial temperature
gradient with relevant notations (Ti > To).

10.2 Global flow parameters

The cavity sketched in Figure 12.2 consists of two smooth concentric and vertical cylinders of height
h = 400 mm. The radii of the inner and outer cylinders are fixed to a = 20 and b = 25 mm respectively,
so that the gap width is set to ∆R = b − a = 5 mm. The cylinders are enclosed by two insulated
stationary disks attached to the outer cylinder. The inner rotating cylinder rotates at a constant
rotation rate Ω. A temperature gradient ∆T = Ti −To is applied between the inner (at Ti) and outer
(at To < Ti) cylinders. The results will be discussed later in terms of four global parameters defined
as follows to enable direct comparisons with Guillerm [117]:

• the radius ratio of the cavity η = a/b = 0.8 (narrow-gap system);

• the aspect ratio Γ = h/∆R = 80 of the cavity. This value is slightly reduced compared to the
experimental one Γ = 111.8 of Guillerm [117] to save computation time;

• the Taylor number Ta = τν/τe = Ωa∆R(∆R/a)1/2/ν defined as the ratio between the viscous
diffusion time τν = (∆R)2/ν (ν the kinematic viscosity) and the Ekman time related to the
centrifugal force τe = (∆R/a)1/2Ω−1;

• the Grashof number Gr = (τν/τa)
2 = gα∆T (∆R)3/ν2, which compares the viscous diffusion

time and the characteristic time related to buoyancy τa = (∆R/(gα∆T ))1/2. The Prandtl
number Pr = τκ/τν = ν/κ, which is the ratio between the thermal (τκ = (∆R)2/κ) and viscous
diffusion times, is here fixed to Pr = 5.5 (κ the thermal diffusivity). These two parameters can
be gathered in only one parameter: the Rayleigh number Ra = Gr × Pr.

Some authors [14] use also the Richardson number Ri = Gr/Re2 (Re = (a/∆R)1/2Ta) to in-
vestigate the stability of Taylor-Couette flows with a thermal gradient. All the computed cases are
summed up in Figure 10.2.

10.3 Numerical details

The DNS code used here is the one based on the fourth-order compact schemes for the inhomogeneous
directions fully described in Chapter 3. The thermal effects are considered using the Boussinesq
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Figure 10.2: Stability diagram in the plane (Ra > 0, Ta) obtained experimentally by Guillerm [117]
with the present calculations (symbols). Crosses indicate that the flow remains stable.

approximation [113] as temperature differences remain small. Density variations are taken into account
only in the gravitational buoyancy term. The maximum value for the Froude number Fr = Ω2a/g,
which controls the importance of the centrifugal effects, is here Fr ≃ 0.03 (Ta = 175) well below the
common value Fr = 0.1 [188] such that the effect of thermal dilatation on the centrifugal body force
may be neglected.

Due to the very large aspect ratio of the cavity Γ = 80, the domain is axially decomposed into 8
subdomains in all the computations. Each subdomain contains Nθ = 64 Fourier modes over 2π and
Nr ×Nz = 61× 61 grid points in the radial and axial directions. This mesh arrangement has proved
to be sufficient to get grid independent solutions. In the radial and axial directions, the grid is refined
near the interfaces and the physical boundaries using a coordinate transform mapping [3]. The time
step δt varies in the range [2× 10−3 − 4× 10−3] s. All calculations performed using the M2P2 cluster
have been keeping on until, at least, 20 times the thermal diffusion time. One recalls that the inner
and outer cylinders are maintained at constant temperatures Ti and To respectively, while the lower
and upper stationary disks are insulated. No-slip boundary conditions for the velocity field are applied
at all walls.

It is noticeable that some calculations for the same flow parameters have also been performed
using Star-CCM+ but this software appears to be not able to capture the present instabilities. For
all sets of parameters considered, Taylor vortices have been observed. It proves the importance to use
high-order spatial and temporal schemes.

10.4 Base flow

In the case (∆T = 0, Ω ̸= 0), the base flow is a laminar circular Couette flow far from the endcap
disks. The axial and radial velocity components are then null and the azimuthal velocity component
Uθ depends only on the radial position r under the form: Uθ = Ar+B/r, where A and B are constants
deduced from the boundary conditions on the inner and outer cylinders. On the contrary, for (weak
∆T ̸= 0, Ω = 0), a radial stratification of the density induces a baroclinic flow characterized by a large
convection cell within the gap. Far from the disks, an axial upward flow is induced along the inner
hot wall and by conservation of mass, fluid moves downwards close to the outer cold wall. The axial
velocity component depends only on the radial position r. The radial velocity becomes not negligible
in the vicinity of the endcap stationary disks. When both effects coexist (∆T ̸= Ω ̸= 0), the two base
flows are superimposed. Maps of these two velocity components, the temperature and the azimuthal
vorticity (ωθ = ∂Ur/∂z−∂Uz/∂r) are displayed in Figure 10.3 and confirm the superposition of these
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Figure 10.3: Maps of the tangential and axial velocity components, the temperature and the azimuthal
vorticity for Ta = 30 and Ra = 2063 in a (r ∈ [a, b], z/h ∈ [0.375, 0.625]) plane.

two base flows. The azimuthal vorticity is maximum around mid-gap and this flow region delimitates
the upward flow of hot fluid along the rotor and the downward flow of cold fluid along the stator.

For infinite Taylor-Couette systems, analytical solutions for the dimensionless temperature T ∗,
the axial U∗

z and azimuthal U∗
θ velocity components may be found from the energy and Navier-Stokes

equations with the corresponding boundary conditions. They are briefly recalled below (see [117, 360]
for more details):

T ∗(r) =
T (r)− To

∆T
=

ln [(1− η)r/∆R]

ln η
(10.1)

U∗
z (r) =

Uz(r)

α∆Tg(∆R)2/ν

= AB

[
(1− η2)

(( r

∆R

)2
+ T ∗(r)

)
− 1

]
− 4A

[
(1− η)2

( r

∆R

)2
− η2

]
T ∗(r) (10.2)

A =
1

16(1− η)2
B =

(1− η2)(1− 3η2)− 4η4 ln η

(1− η2)2 + (1− η4) ln η

U∗
θ (r) =

Uθ(r)

Ωa
=

η

1 + η

[
− r

∆R
+

1

(1− η)2
∆R

r

]
(10.3)

The present DNS is compared to the analytical solution for Ta = 30 and Ra = 2063 in Figure 10.4.
There is a perfect agreement between the two approaches, which validates the numerical approach.
The temperature and azimuthal velocity profiles exhibit a weak curvature due to the high value of
the radius ratio η = 0.8. A weak asymmetry is observed for the axial velocity component induced by
the curvature of the system and inflexion points may be observed. This profile may become unstable
to infinitesimal perturbations after the Rayleigh criterion, leading to different modes of instability.
The radial profile of the azimuthal vorticity is also asymmetric and confirms that ω∗

θ is maximum at
r∗ = 0.5.
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Figure 10.4: Radial distributions of the temperature T ∗, the axial V ∗
z and tangential V ∗

θ velocity
components and the azimuthal vorticity ω∗

θ for Ta = 30 and Ra = 2063 at mid-height. Comparisons
with the analytical solution (Eqs.10.1 - 10.3).

10.5 Instability regimes

28 DNS calculations have been performed here and compared to the experimental data of Guillerm
[117]. This author showed that the sign of the temperature gradient does not affect significantly the
stability of such flows confirming the former work of Snyder and Karlsson [325]. The slight departure
from a symmetric behavior is attributed, according to these last authors, to the Rayleigh instability in
the centrifugal field, which makes the flow slightly more stable for ∆T < 0 than for the corresponding
positive values. In the following, one will focus only on the case Ra > 0.

10.5.1 Stability diagram

At a given Rayleigh number, the flow becomes unstable with the appearance of vortices when the
Taylor number is increased without any numerical perturbation. The stability diagram obtained
experimentally by Guillerm [117] is plotted here in a (Ra,Ta) plane (Fig.10.2) together with the present
simulations. The Taylor Vortex Flow regime (TVF) is recovered under isothermal conditions (Ra = 0)
at a critical Taylor number equal to Ta = 48, in close agreement with the theoretical value Ta = 47.4
obtained by Taylor [337]. Above a second threshold Ta = 56, DNS results report the classical Wavy
Vortex Flow regime (WVF). These two thresholds perfectly match with the measurements of Guillerm
[117].

In the non-isothermal case, the stability diagram shows a large variety of instability patterns
appearing as spirals, wavy vortices or the coexistence of both shown in Figure 10.5 in terms of
temperature maps. The Partial SPIral regime (PSPI) observed by Lepiller et al. [180] and Guillerm
[117] using the same device appears as regular helicoidal vortices located at the bottom of the cavity.
The PSPI regime has not been obtained here confirming the numerical study of Kedia et al. [152], who
reported a direct transition from the axisymmetric TVF to a regular spiral flow for Ta = 50 (η = 0.5
and 0.7) around Ra ≃ 910. It is probably due to experimental imperfections in the thermal heating
not included in the numerics. Moreover, it has been carefully checked that the flow and thermal fields
are similar to the base state even in the vicinity of the endcap disks, which supposes also a direct
transition to the regular spiral regime (SPI). The six other instability regimes have been recovered
by DNS for different combinations of (Ra, Ta) values. The temperature maps in Figure 10.5 clearly
show that endcap effects are relatively weak and confined in the vicinity of the disks.

At low Rayleigh numbers, for example Ra = 2063, the first transition leads to the appearance of the
SPIral regime (SPI, Fig.10.5a). Even for a slight departure from the critical Taylor number, the spirals
invade the whole system. These helicoidal vortices are very regular along the axial direction with only
weak endwall effects close to the top and bottom stationary disks. Above a second threshold, these
spirals may coexist with a Wavy Vortex Flow, regime denoted SPI+WVF (Fig.10.5e) in the following.
Increasing further the Taylor number leads to a progressive encroachment of the wavy vortices in the
whole system. Finally, above a third threshold, the WVF regime (Fig.10.5f) is obtained because of the
progressive decreasing influence of the thermal effects compared to the inertial ones. By numerical
simulations, Kuo and Ball [163] observed successively the SPI regime and Taylor vortices but the
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(a) (b) (c) (d) (e) (f)

Figure 10.5: Temperature maps obtained by DNS in a (θ = [0, 2π], z = [0, h]) plane at mid-radius
highlighting 6 different instabilities: (a) MSPI (Ra = 7150, Ta = 11), (b) SPI (Ra = 1166, Ta = 50),
(c) SPI+D (Ra = 7150, Ta = 40), (d) WSPI (Ra = 7150, Ta = 75), (e) SPI+WVF (Ra = 7150,
Ta = 90), (f) WVF (Ra = 7150, Ta = 150). The aspect ratio has been modified for readability.

authors did not report the existence of the WVF regime. They combined the Taylor and Grashof
numbers to form the mixed convection parameter σ = Gr

Ta2
∆R
a and showed that, for a fixed Prandtl

number, the onset of the spiral patterns is governed only by σ.
At larger Rayleigh numbers, for example Ra = 13228, the base flow destabilizes at Ta = 11.3 in

agreement with Guillerm [117] with the appearance of the Modulated SPIral regime (MSPI, Fig.10.5a).
These modulated spirals are characterized by the alternation of spirals with laminar flow regions. They
are matched by groups and are observed in the whole cavity but for a very narrow range of Taylor
numbers. Above a second threshold, the flow switches to the regime denoted SPI+D, for SPIrals with
Dislocations (Fig.10.5c). This pattern is very irregular as the spirals are affected by numerous defects
and dislocations. Thus, their inclination angle strongly varies depending on their spatial location.
Increasing further the Taylor number induces the third instability regime: the Wavy SPIral regime
(WSPI, Fig.10.5d). The spirals get wavy with a temporal and spatial variation of their inclination
angle. The two following regimes are successively the SPI+WVF and the WVF regimes already evoked
for low Rayleigh numbers. The present DNS confirm the diagram of Guillerm [117].

10.5.2 Primary bifurcations at low Taylor numbers

The regular spiral regime (SPI) pattern has been observed for Ta = 50 and two Rayleigh numbers
Ra = 1166 and 2063. At Ra = 1166, a slight increase in Taylor number from Ta = 41 to 50 destabilizes
the base flow and these regular spirals invade the whole system. In this case, Ri = 0.12, indicating a
competition between rotation and temperature gradient effects. It is noticeable that the PSPI is not
obtained here even in a transient state at (Ra = 1166, Ta = 41).

The flow structure for this regime is depicted in details in Figure 10.6. The spirals are very regular
as it can be seen from the temperature map in Figure 10.2. Thus, iso-values of the Q-criterion and
maps of the velocity components (Ur, Uθ, Uz), the temperature T and the azimuthal vorticity ωθ are
shown only for z/h ∈ [0.375, 0.625]. The spirals are composed of co-rotating vortices located in the
middle of the gap. The axial velocity is zero in the vortex core and as for the convective cell, the fluid
moves upwards along the rotor and downwards close to the stator. The radial velocity has an opposite
behavior. It is equal to zero close the walls. A vortex corresponds to the alternation of positive
(top of the vortex) and negative (bottom) radial velocities in the axial direction. The tangential
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Figure 10.6: SPI regime (Ta = 50, Ra = 1166). From left to right: iso-values of the Q criterion
and maps of the three velocity components, the temperature and the azimuthal vorticity in a (r ∈
[a, b], z/h ∈ [0.375, 0.625]) plane.

velocity component Uθ presents a modulation in the axial direction, weakly shifted compared to
the temperature modulation. The radial profile of Ur exhibits an inflexion point at mid-gap. The
temperature field is indeed perturbated compared to the base convection cell. Large temperature
perturbations are localized in the middle of the gap with an alternation of hot and cold fluid regions.
In the vortex core, the thermal field is not modified compared to the base convection cell. These spirals,
whose absolute nature has been shown by Lepiller et al. [180], are somewhat similar from those one
observed in isothermal Taylor-Couette flows with an axial throughflow by Snyder and Karlsson [325].

The modulated spiral regime (MSPI) pattern appears for larger Rayleigh numbers. Guillerm
[117] showed that the critical Rayleigh number is Ra = 4675 for a large range of Taylor numbers.
The MSPI is recovered here for Ta = 12 and 13 at Ra = 7150 and at the experimental threshold
Ta = 11.3 for Ra = 13228. The last case corresponds to the maximum value of the Richardson
number Ri = 4.71 reached in the present work. According to the classification of Ball et al. [14], both
thermal gradient and rotation affect the flow stability. Recently, Yoshikawa et al. [360] showed that for
Ri > 3.75, rotation has no more effect on the stability. An alternation of spirals with laminar regions
are observed in the entire system. In laminar regions, the flow and temperature fields are similar to
the stable base flow. Two maps of Uz in a (r, θ) plane are shown on the left of Figure 10.7 at two
axial positions z/h = 0.438 and 0.563. It clearly highlights the 3D nature of the MSPI instability.
Figure 10.7 presents maps of the flow and thermal fields in a region z/h ∈ [0.375 − 0.625] where
the modulated spirals appear. The radial velocity component is almost zero there. The tangential
velocity and temperature fields are deformed compared to those obtained for the stable base flow. This
modulation induces the appearance of hot and cold fluid regions. The axial velocity field exhibits the
same modulation. High positive (resp. negative) axial velocities are observed in the hot (resp. cold)
regions. The perturbated temperature field is localized at mid-gap. Between two zones characterized
by an intense axial flow (alternately upwards and downwards), the azimuthal vorticity exhibits an
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Figure 10.7: MSPI regime (Ta = 11.3, Ra = 13228). From left to right: maps of the axial velocity Uz

in a (r, θ) plane at two axial positions z/h = 0.438 and 0.563, maps of the three velocity components,
the temperature and the azimuthal vorticity in a (r ∈ [a, b], z/h ∈ [0.375, 0.625]) plane.

undulatory behavior corresponding to a perturbation of the temperature and velocity fields. This
modulation delimits the ascending flow of hot fluid along the rotor and the descending flow of cold fluid
along the stator. The different maps indicate that rotation may have a limiting role in the transition
process. This pattern presents a certain analogy with a Kelvin-Helmholtz wave as suggested first by
Guillerm [117].

To go into more details, the characteristics of the spiral networks have been deduced from space-
time diagrams. The experimental values of Guillerm [117] were obtained at the threshold of the
primary instability. It is not strictly the case in the simulations due to the computational cost but all
results concern the primary instability at a given Rayleigh number.

Figure 10.8a presents the evolution of the inclination angle θ against the Rayleigh number. The
spiral networks form a positive angle with the azimuthal direction as they roll up in the rotation sense
of the inner cylinder. It confirms that the sign of θ is fixed by the product Ra × Ta > 0. θ is an
increasing function of Ra. A good agreement is particularly obtained at low Ra values, where the
behavior is quasi-linear. At higher Ra, θ tends to an asymptotical value, ranging between 60 and 70◦

in the experiments. By LSA, Yoshikawa et al. [360] showed that it saturates to about 80◦ for the
same flow parameters. If the present simulations slightly overestimate the asymptotical experimental
value [117], they seem to be in good agreement with the LSA of [360].

The evolution of the axial wavenumber q as a function of the Rayleigh number is given in Figure
10.8b with a close agreement between the DNS and the experimental results. It decreases exponentially
with Ra and reaches a limit value of 0.5 for large Rayleigh numbers. Thus, the axial size of the spiral
rolls increases for increasing temperature gradients.

From the inclination angle θ and the axial wavenumber q, the azimuthal wavenumber m can be
evaluated through: m = (1 + η)q tan θ/[4(1 − η)] [117]. The azimuthal wavenumber, which can take
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(a) (b)

(c) (d)

Figure 10.8: Influence of the Rayleigh number on some characteristics of the spirals close to the
threshold of the primary instability: (a) inclination angle θ, (b) axial wavenumber q, (c) azimuthal
wavenumber m, (d) frequency f .

only integer values, increases with the Rayleigh number (Fig.10.8c). It increases quite rapidly up
to m = 8 for Ra up to 5000. It increases more slowly by plateau to reach a limit value equal to
m = 9. One can consider also the total wavenumber k =

√
q2 +m2, which saturates to about 9 in the

experiments and in the numerics, whereas the LSA of Yoshikawa et al. [360] predicts a value around
k = 2.2 at the threshold of the primary instability.

As reported by Guillerm [117], for small Ra values, there is only one characteristic frequency, which
is the one of the spiral itself. For larger temperature gradients, a modulation frequency appears. The
frequency of the spiral is reported in Figure 10.8d. It increases first quite rapidly with Ra and more
slowly at large Ra values with a good agreement between the two approaches.

The spiral regime reported here is somewhat different to the one obtained by Snyder and Karlsson
[325] for small Ra. The authors observed indeed an alternation of small and large cells (in the axial
direction) with a constant wavenumber and a weak inclination angle for −5 ≤ ∆T ≤ 5◦C. It may be
attributed to a larger radius ratio η = 0.958 inducing a more intense shearing in their experiments.

10.5.3 Secondary instabilities at higher Taylor numbers

Secondary instabilities have not been considered so far in the literature [117]. At Ra = 7150 for
example, after a second critical Taylor number, a transition from the MSPI regime to the SPI+D
regime (spirals with dislocations) is observed. Maps of the three velocity components, the temperature
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Figure 10.9: SPI+D regime (Ta = 40, Ra = 7150). From left to right: iso-values of the azimuthal
vorticity ωθ and maps of the three velocity components, the temperature and the azimuthal vorticity
in a (r ∈ [a, b], z/h ∈ [0.5, 0.75]) plane.

and the azimuthal vorticity in a (r, z) plane are shown in Figure 10.9 for Ta = 40 and Ra = 7150.
Some defects may be clearly observed in the spiral network (see also Fig.10.5c), which goes with
strong variations of their inclination angle. Compared to the MSPI regime, the axial wave number is
significantly increased, which induces a decrease in size for the spirals. The radial velocity is almost
zero in the whole cavity. The tangential velocity and the temperature are in phase and quite similar to
those obtained for the SPI regime (Fig.10.6). The axial velocity and the azimuthal vorticity have an
intermediate behavior between the MSPI and the SPI regimes. The azimuthal vorticity ωθ is mainly
localized at mid-gap as for the MSPI regime and delimits the two regions close to the cylinders where
hot fluid moves upwards along the rotor and cold fluid moves downwards close to the stator. It can
be seen also like a wave of Kelvin-Helmholtz type with also some defects in the ωθ-map.

At Ra = 7150, when one increases further the Taylor number, the flow switches to the wavy spiral
regime (WSPI). The radial velocity remains quite weak also for this instability regime (Fig.10.10).
An axial ondulation of the tangential velocity and temperature fields may be observed with hot fluid
coming more closer to the outer cold cylinder. More noticeable are the behaviors of the axial velocity
and azimuthal vorticity. There is an alternation of negative and positive axial velocities around mid-
gap corresponding to the same alternation of positive and negative values of ωθ. It indicates that
the WSPI does not correspond to a progressive wave as the SPI+D instability but corresponds to
counter-rotating vortices, confirming the observations of Guillerm [117]. The azimuthal vorticity in
the core of the vortex varies with the axial position within the cavity between 40% and 83% of the
maximum vorticity.

Increasing further the Taylor number at Ra = 7150 leads to the appearance of spirals coexisting

177



178
CHAPTER 10. INFLUENCE OF A RADIAL TEMPERATURE GRADIENT ON THE FLOW

STABILITY

Figure 10.10: WSPI regime (Ta = 75, Ra = 7150). From left to right: iso-values of the azimuthal
vorticity ωθ and maps of the three velocity components, the temperature and the azimuthal vorticity
in a (r ∈ [a, b], z/h ∈ [0.375, 0.625]) plane.

with a wavy vortex flow (SPI+WVF), whose velocity and temperature fields are depicted in Figure
10.11. The Richardson number is equal to 0.023 close to the limit value Ri = 0.01, where thermal
effects still play a role in the transition process. The maps of the radial and axial velocities indicate
that they correspond also to counter-rotating vortices.

The wavy vortices invade progressively the whole system (Wavy vortex flow regime, WVF) by
increasing the rotation rate. Some edge effects occur in regions close to the endcap disks (Fig.10.5f).
As for the other instability regimes, the critical Taylor number depends on the Rayleigh number. In
fact, Lepiller [179] showed that this regime appears for a constant value of the Richardson number
Ri ≃ 0.034 ± 0.003, which remains far from the one Ri = 0.12 obtained by Kuo and Ball [163] for
Γ = 10 and η = 0.5. Here Ri = 0.014, which corresponds to a weak influence of the thermal effects
compared to the inertial ones. This regime is characterized by a pattern of traveling waves, which
are periodic in the tangential direction. The transition to the WVF regime is not unique and is
subject to strong hysteresis, which has not been investigated here. At the onset of this instability,
only one fundamental frequency corresponding to the traveling tangential waves is observed. A second
fundamental frequency corresponding to a modulation of the waves may appear for Ta > 19.3Tac,
which is far above the range of Taylor numbers considered here.

The azimuthal waviness of the vortices may be seen from the isotherm map in Figure 10.2. For
Ta = 150 and Ra = 7150, three waves travel around the annulus as shown from the maps of the axial
velocity in Figure 10.12. The number of azimuthal waves strongly depends on the flow parameters
and the experimental conditions but still remains less than 6 after Coles [58]. They travel here at a
speed corresponding to 35% of the inner cylinder rotation speed, value which remains in the classical
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Figure 10.11: SPI+WVF regime (Ta = 120, Ra = 7150). From left to right: maps of the radial
velocity component in two (r, θ) planes at z/h = 0.438 and 0.563 and maps of the three velocity
components and the temperature in a (r ∈ [a, b], z/h ∈ [0.375, 0.625]) plane.

range [30− 50%] depending on the Taylor number among other things [155].
The structure of the hydrodynamic and thermal fields are displayed in Figure 10.12 for the WVF

regime. The map of the azimuthal vorticity clearly shows that these are counter-rotating vortices. For
z/h ∈ [0.375−0.625], 14 vortices are observed in the axial direction, which perfectly matches with the
observations of Guillerm [117]. The number of vortices in this direction does not depend so much on
the values of Ra and Ta. The isotherms reveal that temperature gradients are located very close to the
walls, while temperature remains almost constant within the gap. Periodically in the axial direction,
hot fluid penetrates more deeply the gap to form some mushroom patterns. The same phenomenon
is observed along the cold outer cylinder with a small axial shift. The same behavior is obtained
for the tangential velocity, showing that increasing the inertial effects leads to a redistribution of the
temperature field. The wavy vortices are located on either side of these hot and cold fluid regions.
Outside the thin thermal boundary layers (about 10% of the gap width), the temperature increases
from cold to hot fluid regions, with a value close to (Ti + To)/2 in the vortex core region.

10.6 Moment coefficient and heat transfer distributions

It may be useful for engineering applications to determine the power P required to overcome the
frictional drag of the inner rotating cylinder. It can be directly linked to the torque T exerted by the
fluid on the inner cylindrical surface or to the moment coefficient Cm through: P = 0.5πρΩ3a4hCm.
Cm represents the normalized torque acting on the inner cylinder (r = a) and may be defined as:

Cm(r) =
T

0.5πρr2h(Ωa)2
(10.4)
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Figure 10.12: WVF regime (Ta = 150, Ra = 7150). From left to right: maps of the axial velocity com-
ponent in five (r, θ) planes at different axial positions z/h and maps of the three velocity components,
the temperature and the azimuthal vorticity in a (r ∈ [a, b], z/h ∈ [0.375, 0.625]) plane.

with T (r) = 2πrhτrθ(r)

and τrθ(r) = −µ
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Bilgen and Boulos [24] provided the following equation for the moment coefficient in the case of

an annulus with inner cylinder rotation and no axial pressure gradient in the laminar regime:

Cm = f(η)Reα (10.5)

where Re = 2Ta in the present case. f(η) = 174.375 and α = −1 for Ta < 32 and α = −0.6 for
32 < Ta < 250. They reported that the maximum mean deviation from their experimental data was
±5.8%. The present DNS results are compared to Equation (10.5) on Figure 10.13 taking into account
the confidence interval of ±5.8%.

First, there is an excellent agreement with the experimental data of Bilgen and Boulos [24] up
to Ta ≃ 55. Then, the computed moment coefficient is slightly higher than the experimental one.
The second important point is that the evolution of the moment coefficient with the Taylor number
is continuous and not sensitive to the Rayleigh number proving that it is not affected by the various
instability patterns.

The second quantity for engineering applications is the heat transfer coefficient, which can be
evaluated along both walls. The heat transfers are discussed here in terms of the averaged Nusselt
numbers (conductive Nusselt numbers) calculated along both walls as: Nu = −∆R

∆T
∂T
∂r |w. They have

been averaged both in time but also in the azimuthal and axial directions. Figure 10.14 clearly shows
that the Nusselt numbers along the rotor and the stator increase for increasing values of the Taylor

180



181 10.6. MOMENT COEFFICIENT AND HEAT TRANSFER DISTRIBUTIONS

Figure 10.13: Moment coefficient Cm against the Taylor number Ta for four Rayleigh numbers.
Comparisons with the experimental data of Bilgen and Boulos [24] for f(η) = 174.375 and α = −1.

(a) (b)

Figure 10.14: Distributions of the averaged Nusselt numbers Nu against the Taylor number Ta for
four Rayleigh numbers along (a) the rotor Nui and (b) the stator Nuo.

number. The averaged Nusselt number along the rotor Nui is besides slightly higher than Nuo along
the stationary outer wall. For all values of the Rayleigh number Ra, Nu remains close to unity at
very low Taylor numbers Ta < 40 on both sides, which confirms the experiments of Aoki et al. [12]
for various fluids including air, water and a spindle oil flow (Pr up to 160). Becker and Kaye [20]
observed also a constant Nusselt number equal to 1 for Γ = 172 and η = 0.81 up to Ta ≃ 570. For
larger Ta values, two different behaviors are observed in the present simulations. It is convenient to
search for scalings under the form: Nu ∝ Tan. For large Rayleigh numbers Ra ≥ 7150, the DNS
results are well fitted using n = 0.35 and 0.3 on the inner and outer cylinders respectively and the
Rayleigh number has only a weak effect on the Nusselt number distribution. It perfectly falls between
the values predicted by the boundary layer theory: n = 0.5 in the laminar regime [12] and n = 2/7 in
the turbulent regime (using the present definition of Ta).

For Ra ≤ 2063, a similar behavior is observed with n = 0.47 and 0.45 along the rotor and stator
respectively. The instabilities do not affect significantly the heat transfer process, as the exponent on
the rotating cylinder is fairly close to the one predicted by the boundary layer theory in the laminar
regime. Once again, Ra has only a weak influence on the heat transfer coefficients. Around Ta ≃ 75,
the WVF regime seems to enhance the heat transfer compared to the WSPI regime. Finally, it is
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Figure 10.15: Distributions of the ratio Nuo/Nui against the Taylor number Ta for four Rayleigh
numbers.

noteworthy to mention that apart from very low Taylor numbers, the evolution of the Nusselt numbers
is continuous whatever the instability regime.

The ratio between the averaged Nusselt numbersNuo/Nui is found to be rather constantNuo/Nui =
0.78 whatever the global parameters Ra and Ta as shown in Figure 10.15. It is to be compared with
the value 0.83 obtained by Guillerm [117] for Ra = 13228 and Ta = 42.2. By a simple energy balance,
one can easily show that this ratio is fixed by the value of the radius ratio η = 0.8, which confirms
the validity of the present approach. For the base flow as well as the primary instabilities, the Nusselt
numbers are close to unity, which means that the heat transfer is purely conductive. For secondary
instabilities and further, the appearance of the different spirals or wavy vortices enhances the heat
transfer along both walls in a proportional way.

10.7 Conclusion

The first high-order direct numerical simulations of Taylor-Couette flows subjected to a radial tem-
perature gradient have been compared to the experimental data of Guillerm [117] in a tall system
characterized by Γ = 80 and η = 0.8 for a wide range of Taylor and Rayleigh numbers. Seven over the
eight instability regimes appearing as spiral rolls (MSPI, SPI, SPI+D, WSPI), regular (TVF) or wavy
vortices (WVF) or a combination of both (SPI+WVF) observed experimentally have been recovered
by DNS. The spatio-temporal properties of the flow patterns have been investigated in details with
a particular good agreement for the main characteristics of the spiral regimes close to the threshold
of the primary instability. Finally, correlations for the moment coefficient and the averaged Nusselt
numbers along both walls have been provided against the Taylor number. These thermo-convective
structures enhance the heat transfer process along both walls in a proportional way as the ratio be-
tween the averaged inner and outer Nusselt numbers remains constant (= 0.78).

The discrepancy observed between the numerics and the experiments concerns the partial spiral
regime observed by Lepiller et al. [180] and Guillerm [117] in the non-rotating and rotating cases
respectively, using the same device. It may be attributed either to heating asymmetries in the exper-
iments or to some differences in the variations of Ta and Ra before reaching the instability thresh-
old. Further calculations are then required to clarify this point but also to go into more details on
the secondary instability mechanisms. The goal of this chapter to validate the numerical code (the
multidomain approach and the implementation of the hydrodynamic/thermal coupling through the
Boussineq approximation) has been reached. It is a first step on the road to the simulation of fluid
flow and heat transfer in the rotor-stator gap of electrical motors discussed in Chapter 12.
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Chapter 11

Turbulent flows with endwall effects

The aim of this Chapter, as for the previous one, was at the early beginning to validate the multidomain
approach developed for the finite-difference DNS code. It was also the opportunity to perform a
numerical benchmark of the different CFD approaches avalaible in the laboratory. The accurate
prediction of fluid flow within rotating systems has indeed a primary role for the reliability and
performance of rotating machineries and the selection of a suitable model to account for the effects
of turbulence on such complex flows remains an open issue in the literature. Riccardo Da Soghe
and Cosimo Bianchini from the Energy Engineering Department “S. Stecco” at the University of
Florence are involved in this project and bring their skills in RANS and LES modelings using CFX
and OpenFOAM respectively.

The CFD calculations are compared to the experimental data of Burin et al. [40], who developed
an atypical Taylor-Couette apparatus with endcap rings. The results are discussed in details for both
the mean and turbulent fields. A particular attention has been turned to the scaling of the turbulent
angular momentum G with the Reynolds number Re. By DNS, G is found to be proportional to Reα,
the exponent α = 1.9 being constant in our case for the whole range of Reynolds numbers. Most
of the approaches predict quite well the good trends apart from the k-ω SST model, which provides
relatively poor agreement with the experiments even for the mean tangential velocity profile. Among
the RANS models, even though no approach appears to be fully satisfactory, the RSM closure offers
the best overall agreement. The results have been recently published in Int. J. Heat Fluid Flow (see
Ref.[254]).

11.1 Introduction

The present investigation is concerned with the numerical modeling of fluid flow in an enclosed Taylor-
Couette system. The turbulent flow is confined between two coaxial cylinders, with an inner rotating
cylinder and an outer stationary one. This kind of Taylor-Couette flows is of great importance, since
they found many applications in process engineering (dynamic membrane filtration, rheology, UV
disinfection), in astrophysics (accretion disks) and most of all in turbomachineries for bearings, asyn-
chronous motor with axial ventilation, rotating heat exchangers or gas turbine engines among others.
In rotating machineries, a better knowledge of the fluid flow is required to better predict the heat
transfer distribution and thus to optimize the performances of the device.

For many years, the turbulent flow regime has then been treated, in computations but also in
experiments, as though the flow patterns were steady and axisymmetric. Treating the turbulent flow
as statistically stationary implicitly assumed that the coherent structures present in the transitional
modes disappeared or that their effect when averaged out was accounted for in the model without
explicit treatment. Owen [231] first suggested that the flow within such cavity might not be steady.
In the case of rotating disk systems with throughflow, the RANS model he used failed to converge
for a certain range of parameters and he speculated that some form of organized large-scale structure
may have been present in the flow. These three-dimensional patterns might be responsible for some
discrepancies between experiments and axisymmetric computations. Even if three-dimensional cal-
culations may be required in some specific configurations, their highly expensive computational cost
makes the selection of a suitable turbulence model for the study of rotating cavity flows still perti-
nent. One can cite, among the 3D simulations, the work of Bazilevs and Akkerman [17], who presented
an application of the residual-based variational multiscale turbulence modeling methodology to the
computation of turbulent Taylor-Couette flow at high Reynolds numbers. Its formulation globally
conserves angular momentum, a feature that is felt to be important for flows dominated by rotation,
and that is not shared by standard stabilized formulations. One can cite also the DNS results of Dong
[77] for turbulent Taylor-Couette flows between counter-rotating cylinders.
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The aim of the present work is then to perform a numerical benchmarking of turbulence model-
ings and Large Eddy Simulations (LES) against three-dimensional direct numerical simulation (DNS)
results and experimental data. The geometrical configuration corresponds to the Taylor-Couette ap-
paratus developed by Burin et al. [40], who offered reliable velocity measurements in a rather complex
geometry. Enclosed Taylor-Couette systems have been widely considered since the work of Wendt
[354] because they offer an academic and relatively simple geometry to investigate the influence of
rotation on turbulence for fundamental purposes or applications in astrophysics. When the inner
cylinder is rotating while the outer one is at rest, the base flow depends mainly on three global pa-
rameters: the rotational Reynolds number of the inner cylinder based on the gap width Re = Ωa∆R/ν
(∆R = b − a), the aspect ratio of the cavity Γ = h/∆R and its radius ratio η = a/b, where a and
b are the radii of the inner and outer cylinders respectively and h is the cavity height. Biage and
Campos [23] proposed a classification of the systems depending on the value of their radius ratio η
as follows: narrow-gap cavities for η > 0.67, middle-gap cavities for 0.33 < η < 0.67 and wide-gap
cavities for η < 0.33. Most of the experiments up to now including the seminal one of Taylor [337]
have considered narrow-gap cavities with an aspect ratio larger than 100. Experiments with small
aspect Γ < 20 and radius η < 0.5 ratios are less common. Kageyama et al. [142] considered both ex-
perimentally and numerically the flow in a small aspect ratio Taylor-Couette apparatus for η = 0.256
and Γ = 0.9. For such parameters, the vertical boundaries have a dynamical role on the secondary
flow, that is why these authors proposed a novel approach to increase control over the velocity profile
by increasing the number of endcap boundary conditions. Thus, they designed a new system with
multiple independent endcap rings (up to 5) rotating at different speeds. Such apparatus with endcap
rings was formely considered by Coles [58] to investigate the transition scenarios in circular Couette
flows. Compared to classical Taylor-Couette systems, these rings allow for a reduction of the Ekman
circulation in order to create a Couette-like velocity profile: Vθ ∝ 1/r2. Ji et al. [140] developed a
similar Taylor-Couette apparatus characterized by a low aspect ratio Γ = 2.12 and a low radius ratio
η = 0.35 with two independent end-rings between the inner and outer cylinders. By playing with the
rotation rates of the 6 walls (Fig.11.1b), they can obtain various flow structures (centrifugally unsta-
ble flow or quasi-Keplerian flow) even if the visualizations displayed in Figure 11.1a do not highlight
different flow structures along the outer cylinder. Burin et al. [40] reported velocity fluctuations and
the fluctuation-driven radial transport of angular momentum in the same apparatus. Fluctuation
levels and the mean specific angular momentum were found to be roughly constant over a radius,
in accordance with previous studies featuring narrower gaps. At lower Taylor numbers, Sobolik et
al. [326] investigated the effect of a confining ring on the onset of Ekman vortices for Γ = 4.93 and
η = 0.91 and showed that they appear below the critical rotation rate for the onset of Taylor vortices
in an infinite system. Czarny et al. [64] studied by direct numerical simulations the case Γ = 3 and
η = 0.75, for different endcap boundary conditions (no-slip stationary or rotating endwalls, stress-
free). They investigated the interaction between the endwall Ekman layers and the Taylor vortices
near the transition to the vortical flow regime.

Taylor-Couette flows as well as Rayleigh-Bénard convection are used also as canonical flows to
analyse the transport properties in closed turbulent systems with a strong analogy between them [79].
Besides their primary concern with astrophysical flows, the main goal is to understand the interplay
between the boundary layers and the bulk flow. By torque measurements, Wendt [354] proposed some
correlations for the dimensionless torque per unit length G for η = 0.68, 0.85, 0.935:

G = 1.45
η3/2

(1− η)7/4
Re1.5, 400 < Re < 104 (11.1)

G = 0.23
η3/2

(1− η)7/4
Re1.7, 104 < Re < 105 (11.2)

Other experiments indicated the existence of two scaling regimes, one for small Re, where the
exponent, denoted α in the following, is 1.5 and one for larger Re, where α remains in the range
[1.7− 1.8] [337, 354]. From their torque measurements, Tong et al. [339] found indeed that G ∝ Re1.8

for 4×104 < Re < 4×105 and η = 0.448. The experimental data of Burin et al. [40] for the turbulent
angular momentum scale with the Reynolds number to the power α = 1.7, whatever the flow being
laminar or turbulent. Dubrulle and Hersant [79] identified three logarithmic regimes using an analogy
with turbulent Rayleigh-Bénard convection:
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(a) (b)

Figure 11.1: (a) Kalliroscope image of three flows at Re ≃ 5×105: (A) centrifugally unstable flow with
[Ω1,Ω2,Ω3,Ω4] = [41.8, 0, 0, 0] rad/s, (B) a quasi-Keplerian flow using the Ekman configuration with
[Ω1,Ω2,Ω3,Ω4] = [41.8, 5.6, 5.6, 5.6] rad/s, (C) a quasi-Keplerian profile with endring speeds optimized
to produce the best approximation to the ideal Couette flow with [Ω1,Ω2,Ω3,Ω4] = [41.8, 15.3, 4.2, 5.6]
rad/s; (b) Boundary conditions for the experiment of Ji’s group after [296].

• Regime 1 or “mean flow dominated” regime for 400 < Re < 104:

G = 1.46
η3/2

(1− η)7/4
Re3/2 (11.3)

• Regime 2 is not always observed in Taylor-Couette systems:

G = 2.12
η2/3

(1− η)5/3
Re5/3

ln[η2(1− η)Re2/20]2/3
(11.4)

• Regime 3 or “fluctuation dominated” regime for 4× 103 < Re < 106:

G = 0.5
η2

(1− η)3/2
Re2

ln[η2(1− η)Re2/104]3/2
(11.5)

On the other hand, the experiments of Lathrop et al. [168] and Lewis and Swinney [182] yielded no
region of constant exponent. For 800 < Re < 1.23× 106, these authors found indeed that α can vary
between 1.6 and 1.86 in the turbulent regime. Eckhardt et al. [82] argued that there is not a single
scaling but a superposition of different scalings: from α = 1.5 for small Re to α = 2 for larger ones.
The exact value of α is then still debated since the pioneering work of Wendt [354].

11.2 Details of the geometrical configuration and flow param-
eters

The fluid is confined between two concentric cylinders of radii a = 0.071 m and b = 0.203 m and height
h = 0.28 m (Fig.11.2). The inner cylinder is rotating at a constant angular rate Ω, while the outer
cylinder is stationary. The originality of the apparatus developed by Burin et al. [40] is that each
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endcap is divided into two independently driven rings of equal radial extension. The inner cylinder
and the inner ring rotate at Ω, while the other walls are stationary. In the following, the radial and
axial coordinates are normalized as: r∗ = (r − a)/∆R and z∗ = z/h. The junction between the rings
is then at r∗ = 0.5.

Figure 11.2: Geometrical configuration corresponding to the system considered by Burin et al. [40].
Red walls are rotating and grey ones are stationary.

Under isothermal conditions, the main flow is governed by three flow parameters: the rotational
Reynolds number Re based on the gap width ∆R = b − a, the aspect ratio of the cavity Γ and the
radius ratio η defined as:

Re =
Ωa∆R

ν
= 5× 104, 105, 2× 105, 4× 105 Γ =

h

∆R
= 2.12 η =

a

b
= 0.35

The radius ratio remains in the range 0.33 < η < 0.67, so that the cavity is considered as a middle
gap cavity [23]. For enclosed systems characterized by a low aspect ratio Γ, such as in the experiment
of Burin et al. [40], the choice of the boundary conditions on the endcap disks is primordial and can
favour the development of large Ekman recirculations in the meridian plane (r,z). Depending on the
rotation rates of the rings, the flow can be either in solid body rotation (constant angular velocity
Vθ/r of the fluid) or present some characteristics of quasi-keplerian flows (Vθ/r ∝ r−3/2) or of pure
Couette flows (Vθ/r ∝ r−2).

11.3 Numerical modeling

The present flow configuration presents several complexities (high rotation rate, confinement effect and
singularities in the boundary conditions among other things), which are very challenging for numerical
methods. Different numerical approaches including DNS, RANS and LES models either developed
at the M2P2 laboratory or at the University of Florence or available within commercial CFD codes
have been compared against the velocity measurements of Burin et al. [40]. A brief description of the
various numerical methods used is given in the following.

The DNS code based on the fourth-order compact finite-difference schemes already used in the
Chapters 8 & 10 has been here considered in its multidomain version as the reference tool. It has
been compared to the predictions of the Reynolds Stress Model of Elena & Schiestel [85] described
in Chapter 4. All computations have been runned on the M2P2 cluster. The numerical details are
provided in Table 11.1.

The turbulence model considered within CFX is the innovative k − ω SST SAS (scale-adaptative
simulation) originally proposed by Menter and Egorov [206] and available within CFX 12.0. The
Scale-Adaptive Simulation (SAS) is an improved URANS formulation, which allows the resolution of
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the turbulent spectrum in unstable flow conditions. The SAS concept is based on the introduction of
the von Kármán length scale into the turbulence scale equation. The information provided by the von
Kármán length scale allows SAS models to dynamically adjust to resolved structures in a URANS
simulation, which results in a LES-like behavior in unsteady regions of the flow field. At the same
time, the model provides standard RANS capabilities in stable flow regions. The governing equations
of the k − ω SST SAS model differ from those of the SST RANS model by an additional source term
in the transport equation for the turbulence eddy frequency. Further details regarding the k−ω SST
SAS model are available in the literature [206, 207]. The time step have been selected assuring, for
each operating velocity, a RMS Courant number lower than 1. The convective fluxes were solved
using a second-order upwinded scheme. Automatic wall treatment (i.e. automatic blending from low
to high Reynolds treatment as a function of the local first node wall distance) have been considered.
A multi-block hexahedral grid has been used. Computations have been performed on 4 cores of an
Intel Xeon 3430 at 2.4 GHz. Please refer to Table 11.1 for the computational details concerning the
SAS approach. Note that calculations have been performed on a 5◦ sector.

OpenFOAM is an open-source CFD code composed of a set of libraries implemented to resolve
continuum mechanics problems in 3D on unstructured grids [352]. A pressure based segregated solver
implementing the PISO loop to solve the pressure-velocity coupling is used in a transient formulation.
Both the convective and diffusive flux schemes employed are based on a purely linear interpolation.
The time advancement is achieved by means of the implicit backward Euler scheme, guaranteeing
a second-order accuracy both in space and in time. The time step was generally chosen to achieve
a maximum Courant number inside the domain close to 1 to guarantee stability and improve the
convergence rate. The LES subgrid effects are evaluated by means of a one-equation model chosen
among the available SGS treatments as the most suited to reproduce near-wall behavior. Such model
exploits a transport equation for the subgrid-scale turbulence kinetic energy for which low-Reynolds
boundary conditions on the wall were imposed [205, 362]:

∂k

∂t
+

∂(Uik)

∂xi
− ∂

∂xi
((ν +

νSGS

σk
)
∂k

∂xi
) = νSGS∥S∥2 −

cek
3/2

∆
, νSGS = ck

√
k∆ (11.6)

The LES filter width is a simple cube root of the cell volume. A multi-block hexahedral grid mesh
has been used and calculations have been performed on 6 cores of an Intel Xeon 3430 at 2.4 GHz for
the case Re = 105 (see the numerical details in Table 11.1).

Classical RANS models (k-ε, k-ω SST, RSM, v2−f) including both high and low-Reynolds number
approaches, but also a Detached Eddy Simulation based on the Spalart-Allmaras model available
within Star CCM+ 5.04 have been compared for the present test case in Guillerm et al. [118]. The
LES model considered here uses a standard Smagorinsky model as subgrid scale model with a model
constant Cs equal to 0.1 offering a good compromise between the value 0.165 for homogeneous isotropic
decaying turbulence and 0.07 for channel flows. The synthetic eddy method has been used to provide
an initial perturbated flow field. A polyhedral unstructured mesh grid has been generated. To take
into account the thin boundary layers developed along the cylinders and the rings, 12 prismatic layers
are imposed on each wall on just 2% of the gap width to guarantee acceptable values for the wall
coordinates (see Table 11.1). Computations have been conducted on a HP Z400 workstation with a
quadcore Intel Xeon CPU W3520 processor at 2.67 GHz.

All the numerical approaches together with the corresponding computational details are summed
up in Table 11.1. Note that Nr, Nθ and Nz represent the number of mesh points in the radial,
tangential and axial directions respectively. The values of Nr, Nθ and Nz for each approach have been
optimized to guarantee grid independent solutions while saving computation time. Some computations
have been performed considering a half cavity or only a 90◦ sector, which is justified by the absence
of large scale vortical structures as highlighted by the DNS of Fukushima et al. [101] for Re up to
12000. The parameters for the DNS have been chosen to guarantee a CFL number lower than 0.3.

From Table 11.1, though calculations have been done on different types of machines, one can deduce
for each model the CPU time required to perform 1 s of physical time advance. Not surprisingly, the
in-house RSM is ranked first using this criterion with 1.6 × 103 s. Then, 1.34 × 105 s, 1.75 × 105 s
and 5.73 × 105 s of calculation time are required for the LES-StarCCM+, the LES-OpenFOAM and
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modeling time step (s) Nr ×Nθ ×Nz geometry wall coordinates time per
iteration (s)

DNS 3× 10−5 152× 64× 242 3D r+ < 4 17.2
(half cavity) z+ < 6

LES 4× 10−4 200× 70× 300 3D r+ < 0.9 70
(OpenFOAM) (90◦ sector) z+ < 1.3

LES 10−3 74× 104× 115 3D r+ < 0.7 13.4
(Star CCM+) z+ < 0.95
RSM [85] 10−2 140× 1× 280 2D r+ < 0.02 16

axisymmetric z+ < 0.06
k-ω SST SAS 5× 10−5 140× 5× 280 2D r+ < 5 30

axisymmetric z+ < 5

Table 11.1: Computational details for Re = 105.

the DNS respectively to get 1 s of physical time advance. Finally, the SAS model require 6 × 105 s
for 1 s of physical time though the calculations are 2D axisymmetric, which is more than for the 3D
DNS. It can be explained by the fact that the SAS model consists in an adaptative model. Thus, the
run time adaptation of the model source terms increases the number of iterations needed to reach the
calculation convergence.

11.4 Results

The numerical results are compared to the velocity measurements of Burin et al. [40] in terms of
the mean tangential velocity and angular momentum and of the cross-correlation coefficient and the
turbulent angular momentum. The DNS results provide also useful data to investigate the three-
dimensional structure of the flow field. All the computed data have been averaged both in time and
in the tangential direction.

11.4.1 Flow structures

The critical Reynolds number Re for the transition to turbulence in such a flow depends upon a
large number of factors, including the aspect ratio of the cavity, the curvature and the flow history.
Nevertheless, one commonly admitted value deduced from the Reynolds number dependence of the
mean torque at the inner cylinder is around 104 [168]. In the present case, the transition to a
state of featureless turbulence appears for lower values of Re. At very low Re values, the flow is
laminar unstable with some circular rolls of different sizes propagating towards the gap (Re = 5×103,
Fig.11.3a). They are somewhat different from classical Taylor vortices, which would have occupied
the whole cavity with a corresponding axial wave number of 2. At Re = 104 (Fig.11.3b), some spiral
patterns aligned with the tangential direction appear along the inner rings and around the midplane
(z∗ = 0.5). They coexist with the circular rolls on the top and bottom stationary rings. Some evidence
of a disorganized flow structure can be seen from this Q-criterion map. When one increases further
the Reynolds number, the flow gets clearly turbulent at Re = 5 × 104 (Fig.11.3c) with fine scale
eddies elongated in the tangential direction. Some circular rolls (not shown here) persist along the
inner cylinder, with a structure similar to the toroidal vortices observed by Biage and Campos [23]
for Re = 2.04 × 105, η = 0.38 and Γ = 10. At Re = 105, the iso-values of the Q-criterion obtained
by DNS (Fig.11.3d) show that the flow is clearly turbulent with even thinner turbulent structures.
There is absolutely no evidence of large scale vortical structures embedded in the flow apart from
large circular patterns, which appear along the inner cylinder. Turbulence is mainly concentrated at
midplane (z∗ = 0.5) because of the shear produced by the intense recirculation bubbles (Fig.11.5).
Thus, the critical Reynolds number for the transition to turbulence is not significantly modified by
the presence of the endcap rings compared to classical Taylor-Couette flows.
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(a) (b)

(c) (d)

Figure 11.3: Iso-values of the Q-criterion obtained by DNS for Γ = 2.12, η = 0.35 and (a) Re = 5×103,
(b) Re = 104, (c) Re = 5× 104 and (d) Re = 105.

11.4.2 Mean hydrodynamic field

In such configuration, the main flow is directed tangentially due to the high rotation rate of the
inner cylinder and rings. Due to centrifugal and confinement effects, a secondary flow develops in
the meridional plane (r,z). The results for the mean field are first qualitatively analysed considering
bidimensional streamlines averaged in time for unsteady approaches.

Figure 11.4 presents the streamline patterns obtained by DNS and the RSM for Re = 5× 104. In
the bulk flow, the pressure balances the centrifugal force. The pressure being approximately uniform
axially, the difference in the centrifugal force between the bulk flow and the endcap rings generates
a radial secondary flow in the (r,z) plane. The fluid is pumped along the rotating disks and being
not blocked by the fixed rings, continues to flow radially outward. After that, it moves axially to
the center of the cavity. Then the two axial flows create an intense shear layer at midplane, where
the flow is mainly radially inwards. By conservation of mass, the fluid goes back axially along the
inner cylinder to the rotating rings. Thus, the two approaches predict a meridional circulation with
a 2−lobe flow structure, known as Ekman cells. Some small bubbles can be observed at the junction
between the outer rings and the outer cylinder. The DNS predicts also 2 small recirculations along
the inner cylinder.

When one increases the Reynolds number up to Re = 105, very different patterns arise from the
different computations (Fig.11.5). The DNS (Fig.11.5a), LES (Fig.11.5d&e) and RSM (Fig.11.5b)
predict a main big vortex for each of the two sides with some differences between these approaches.
Looking at the streamline patterns obtained by DNS, the k-ω SST SAS (Fig.11.5c) and the LES of
StarCCM+, asymmetry can develop at this Reynolds number. The secondary flow structure in the
meridional plane gets more complex with the presence of small vortices arising along the inner cylinder
or in the corners between the rings and the cylinders.
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(a) (b)

Figure 11.4: Mean streamline patterns obtained for Γ = 2.12, η = 0.35 and Re = 5× 104 by (a) DNS
and (b) RSM. The rotation axis is located on the left of each subfigure.

(a) (b) (c) (d) (e)

Figure 11.5: Mean streamline patterns obtained for Γ = 2.12, η = 0.35 and Re = 105 by (a) DNS,
(b) RSM, (c) k-ω SST SAS, (d) LES (OpenFOAM) & (e) LES (Star CCM+). The rotation axis is
located on the left of each subfigure.

The k-ω SST SAS model predicts a mean velocity pattern characterized by four rotating structures
in the meridional plane, which is confirmed by computations performed by other k-ω models, indiffer-
ently in their unsteady or steady-state formulations and whatever the flow solver: CFX, OpenFOAM
or STAR CCM+ (some results can be found in [118]). The fluid pumped along the rotating disks is
deviated away from the wall almost as soon as it reattaches on the fixed rings creating a high tangen-
tial velocity zone around mid-radius (Fig.11.6). Such movement towards the center of the cylinder
creates two counter-rotating bubbles in the inner and outer zones. While the outer bubble is almost
symmetric in the axial direction, the inner one is centered quite close to the rotating disk showing
a quite stretched shape. Smaller recirculations attached to the inner cylinder can also be observed.
These smaller vortical structures are formed close to mid-height of the cylinder and are convected
towards the rings.

Figure 11.6 presents the radial profiles of the mean tangential velocity component V ∗
θ = Vθ/(ΩR1)

at the axial position z∗ = 1/4 for four Reynolds numbers from Re = 5 × 104 to Re = 4 × 105.
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Figure 11.6: Radial profiles of the mean tangential velocity at z∗ = 1/4 for Γ = 2.12, η = 0.35 and
(a) Re = 5× 104, (b) Re = 105, (c) Re = 2× 105 and (d) Re = 4× 105.

At Re = 105 for example (Fig.11.6b), all the numerical approaches apart from the k-ω SST SAS
model predict a radial profile of the mean tangential velocity divided into three areas. Two very thin
boundary layers develop along the cylinders with a thickness of the order of 1% of the gap width. They
are separated by a central region where the tangential velocity component is a quadratic function of
the radius. From the DNS, V ∗

θ (r) = 0.43×r∗2−0.78×r∗+0.59 for example. Hollerbach and Fournier
[130] pointed out that, at this Reynolds number, the shear layers developed close to the discontinuity
should penetrate into the cavity and create a small discontinuity in the velocity profile. Burin et al.
[40] attributed the absence of this discontinuity to an inadequate resolution of their measurements.
The present data do not indicate any discontinuity in the velocity profile confirming the results of
Burin et al. [40].

The k-ω SST SAS model as well as all the other k-ω SST models considered in [118] fail to
predict the expected profile with a large overestimation of the mean tangential velocity within the gap
(Fig.11.6b). While most of the models predict V ∗

θ (r
∗ = 0.5) between 0.3 (LES OpenFOAM) and 0.36

(RSM), the SAS model predicts V ∗
θ (0.5) ≃ 0.48. A local maximum is also observed around r∗ ≃ 0.36

from the SAS results, which is not the case in the experiments. The unsatisfying agreement between
the k-ω SST and the experimental data in terms of the tangential velocity is probably related to the
presence of the four rotating structures in the meridian plane. The velocity peak close to the radius
r∗ = 0.36 on Figure 11.6 can be indeed justified by the tangential momentum transport operated by
these inner vortices. This behavior is similar to what obtained both experimentally and numerically
by Kageyama et al. [142] for Re ≃ 106, η = 0.256 and Γ = 0.45. The tangential velocity profile is
nearly constant over a radius in their case and the authors attribute it to the reduction of the Ekman
cells due to endcap ring effects. It is noteworthy that the DNS predicts a local maximum close to the
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outer cylinder but due to the lack of experimental data very close to the wall, no definitive conclusion
can be drawn.

By comparing Figures 11.6a to 11.6d, a noticeable influence of the Reynolds number on the mean
velocity profiles can be observed. For Re ≥ 105, the mean tangential velocity slightly increases
for increasing values of Re but this effect remains weak. It is besides not observed from the LES
(OpenFOAM) results, which underpredict the tangential fluid velocity in that cases. The SAS model
still overestimates V ∗

θ in the main part of the gap. ForRe = 5×104 (Fig.11.6a), the experimental profile
is much lower, which is characteristic of much weaker turbulence levels. All the numerical approaches
fail to reproduce the good profile. The DNS seems to offer the best agreement with the experiment at
this Reynolds number. The overestimation of the tangential velocity of the fluid may be attributed to
higher turbulence intensities and to an earlier transition to the fully turbulent regime in the numerics.
Surprisingly, the LES of OpenFOAM strongly overestimates the mean velocity profile in that case,
with a profile quite similar to the laminar circular Couette profile (V ∗

θ = R1(R
2
2/r − r)/(R2

2 − R2
1)),

indicating much lower turbulence levels than in the experiments or in the DNS for examples.
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Figure 11.7: Radial profiles of the normalized angular momentum at z∗ = 1/4 for Γ = 2.12, η = 0.35
and (a) Re = 5× 104, (b) Re = 105, (c) Re = 2× 105 and (d) Re = 4× 105.

The same data can also be plotted in terms of the angular momentum Lθ = rVθ of the mean flow.
Thus, Figure 11.7 presents the radial profiles of Lθ at the same axial location z∗ = 1/4. It has been
made dimensionless using the value of Lθ at the inner cylinder Lθ(R1) = ΩR2

1. For Re = 5× 104, the
angular momentum is rather constant over the radius with a measured value around 0.5, whereas a
slight increase may be observed from the numerical profiles with L∗

θ(r
∗ = 0.5) ≃ 0.62 for the DNS.

192



193 11.4. RESULTS

Surprisingly, the LES of OpenFOAM predicts an angular momentum, which can be slightly higher
than one. For Re ≥ 105, the influence of Re on L∗

θ remains weak. Apart very close to the walls, the
numerical approaches predict an angular momentum almost constant over the radius, while a slight
increase with r∗ may be noticed from the measurements. The value at mid-gap is around 0.65, which
is much larger than the usual value 0.5 obtained in classical Taylor-Couette flows [324]. It can be
explained by considering the additional torque from the inner rotating rings, which rotate at the same
rate as the inner cylinder but at a larger radius. Even if most of the models predict quite well the
mean tangential velocity, the variations of the angular momentum with the radius highlight larger
discrepancies mainly because of the normalization. The DNS slightly underestimates the slope of the
profile in the central region, where the RSM of Elena and Schiestel [85] offers the best agreement with
the experimental data of Burin et al. [40]. The k-ω SST SAS model strongly overestimates the mean
angular momentum in the whole gap.

11.4.3 Turbulent statistics

11.4.3.1 Cross-correlation coefficient

Burin et al. [40] provided also the variations with the Reynolds number of the cross-correlation coef-
ficient Crθ defined as:

Crθ =
v′θv

′
r√

v′2θ

√
v′2r

(11.7)

The variation of Crθ with the Reynolds number Re are provided on Figure 11.8 at a given position
(r∗ = 3/4, z∗ = 1/4). Burin et al. [40] observed that Crθ slightly decreases with Re as the flow
becomes increasingly random. As it can be seen from Figure 11.8, the time averaged value obtained
by the different models at the monitoring point is close to 20% and does not vary so much with Re
in the range [500, 4 × 105], in quite good agreement with [40]. For Re = 5 × 104, Burin et al. [40]
have inferred from the data of Smith and Townsend [324] that Crθ = 30− 40%. This value has been
found using the RSM of Star CCM+ (not shown here), in the same geometry as [40], whereas all
the other approaches predict Crθ = 0.24 or less. The high value obtained by Smith and Townsend
[324] is due, according to [40], to the presence of large scale vortical structures embedded in the flow.
This conclusion is not supported by none of the present calculations, which, even if some of them are
performed assuming a periodicity in the tangential direction, do not highlight such type of vortices.
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Figure 11.8: Variations of the cross correlation coefficient Crθ with the Reynolds number Re at
r∗ = 3/4 and z∗ = 1/4 for Γ = 2.12 and η = 0.35.
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In fact, the LES results (OpenFOAM) show that the cross-correlation coefficient strongly varies
between −0.4 and 0.4 depending on the computed position in a meridian plane, as it can be seen from
the Crθ-map in Figure 11.9. Thus, those punctual values have to be considered carefully and might
be not so representative of the time averaged cross correlation in that region.

Figure 11.9: Map of the cross-correlation coefficient Crθ in a meridian plane obtained by the LES of
OpenFOAM for Γ = 2.12, η = 0.35 and Re = 105.

11.4.3.2 Transport of turbulent angular momentum

The measured velocity correlation is discussed also in terms of a dimensionless torque per unit length
G, in which the viscous term has been neglected as in [40]:

G =
2πr2v′θv

′
r

ν2
(11.8)

Its variation with the Reynolds number is shown in Figure 11.10 for all the approaches and compared
to the measurements of Burin et al. [40]. It is also compared to the scalings proposed by Dubrulle and
Hersant [79] (Eqs.11.3-11.5). For this range of Reynolds numbers, the DNS, LES (OpenFOAM) and
RSM results confirm that G depends on Re following an unique power law: G ∝ Reα with α = 1.9,
which suggests that the transport of angular momentum may be seen as a diffusive process. This
value remains slightly larger than the one α = 1.7 deduced from the measurements of Burin et al.
[40] or Wendt [354]. Tong et al. [339] obtained α = 1.8 for η = 0.448 and 4× 104 < Re < 4× 105. It
shows that only one regime is obtained here corresponding to the regime 3 of Dubrulle and Hersant
[79]. Equation (11.5) would fit indeed quite well our numerical results with a lower radius ratio η.

Most of the models underestimate the values of G compared to the predictions of Equation (11.5)
or to the measurements of [354]. Two main reasons can be advocated in the present case. Firstly, the
aspect ratio of the Burin et al.’s [40] apparatus is low compared to classical Taylor-Couette systems,
which increases the influence of the endcap disks on the flow. The fact that only the inner rings
are rotating with the inner cylinder may partly explain the reduced values of the turbulent angular
momentum. Secondly, looking at Figure 11.11, one may also argue whether comparing a punctual value
is an efficient strategy to verify turbulence levels when, as this is the case here, the local variability of
the resolved part of G is high. Figure 11.11 shows also how the modeled contributions are important
only very close to the outer walls and are of the same order of magnitude as the resolved part in that
regions.

A preliminary calculation on a 5 degree sector using the LES within OpenFOAM has been per-
formed providing much lower values of both Crθ and G with at least one order of magnitude. This
finding confirms the importance of large tangential vortical structures on the behavior of the flow.
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Figure 11.10: Variations of the turbulent angular momentum transport G with the Reynolds number
Re at r∗ = 3/4 and z∗ = 1/4 for Γ = 2.12 and η = 0.35.

Figure 11.11: Maps of the turbulent angular momentum G in a meridian plane obtained by the LES
of OpenFOAM for Γ = 2.12, η = 0.35 and Re = 105. The resolved and modeled parts are shown on
the left and right figures respectively.

It could be also pertinent to average the turbulent angular momentum transport G along the inner
cylinder as done in Figure 11.12. The values obtained by the in-house DNS code are globally lower
than those expected by the different laws provided by Dubrulle and Hersant [79]. G depends here
on the Reynolds number to the power α = 2.2 for the whole range of Re-values. The exponent α is
slightly higher than the value α = 2 proposed by Eckhard et al. [82].
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Figure 11.12: Influence of the Reynolds number Re on the turbulent angular momentum transport G
averaged along the inner cylinder. DNS results for Γ = 2.12 and η = 0.35.

11.5 Conclusion

Numerical predictions have been performed using a DNS code, the RSM closure of Elena and Schi-
estel [85] and some LES and RANS models available within OpenFOAM, StarCCM+ or CFX. The
computed results have been compared to experimental data available in the literature for an original
Taylor-Couette arrangement initially developed by Burin et al. [40] characterized by endcap rings
enclosing the cavity.

In the present cavity, the difficulty arises from the presence of two endcap rings attached to both
cylinders. It appeared then crucial to take into account accurately the brutal variations in the bound-
ary conditions on the upper and lower walls. A multidomain DNS code has then been developed
providing very valuable data for comparisons with the experimental data and other numerical results.
DNS showed that there is no evidence of Taylor vortices embedded in the turbulent flow apart very
close to the inner cylinder where circular vortices have been observed. It explains why the 2D un-
steady RSM [85], which has been sensitized to the implicit effects of rotation on turbulence, provides
the best overall agreement in that case, where the rotation rate is quite high. On the contrary, all
the k-ω SST models including the innovative SAS model fail to predict the mean tangential velocity
profiles with large discrepancies even in the core of the flow. It can be attributed to the existence of
four large recirculations in a meridian plane, whereas all the other models predict only two bubbles.
All the models predict the good tendency for the turbulent angular momentum transport G, which is
found to vary as Re1.9 in agreement with previous approaches [79]. Nevertheless, most of the models
including the RSM [85], the LES (OpenFOAM) but also the DNS underpredict the shear stress tensor
component. The cross correlation coefficient Crθ is well predicted by all the approaches with almost
a constant value around 0.2 (at a given location) for a wide range of Reynolds numbers. The LES
provides very useful data showing the high variability of these two parameters.

For industrial applications, the DNS remains computationally expensive compared to the other
approaches. The LES within Star-CCM+ and the RSM model [85] showed a good behavior in this
challenging test case providing fair results for the mean and turbulent fields. It offers then a good
compromise between accuracy and calculation cost. More comparisons at higher Reynolds numbers
are now required to confirm these tendencies.
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Chapter 12

Turbulent Taylor-Couette-Poiseuille
flows

As already evoked in the two previous Chapters, this topic on the turbulent flow and heat transfer
in the rotor-stator gap of an electrical motor has been inspired by the need of Liebherr Aerospace
Toulouse to known more accurately what are the heat transfers in such rotating machineries depending
on the operating conditions. It started in 2008 with the Master 2 internship of S. Haddadi. This project
called “Entrefer” is financially supported by Liebherr Aerospace Toulouse for the period 2010-2013.
It is a close collaboration with the IRPHE lab and the team “Geophysical and rotating flows” in
particular, which is in charge of the experimental part. The problem can be simply modeled by
a Taylor-Couette-Poiseuille flow with thermal gradients. The first results obtained using the RSM
during the internship of S. Haddadi have been published in 2011 in Int. J. Heat Fluid Flow (Ref.[256]).
LES calculations have been then performed to investigate prospective 3D effects, which could explain
the discrepancies in the Nusselt number distributions between the experiments and the numerics.
They have been compared to the velocity and temperature measurements performed using a new
experimental set-up developed at IRPHE on that occasion. This work will partly fill the need of a
wide database of velocity profiles and heat transfer distributions for a wide range of global parameters
as pointed out in the recent review of Fénot et al. [94].

12.1 Introduction

The present investigation is concerned with the numerical modeling of fluid flow and heat transfer in
a Taylor-Couette-Poiseuille system. The turbulent flow is confined between two differentially heated
coaxial cylinders, with an inner rotating cylinder and a outer stationary one. An axial thoughflow
of fresh fluid is also superimposed. This kind of Taylor-Couette flows with a superimposed Poiseuille
flow is of great importance, since these flows have many applications in process engineering (dynamic
membrane filtration, rheology, UV disinfection, pasteurization), geophysics (mantle convection) and
also in the turbomachinery industry for bearings, asynchronous motor with axial ventilation [110],
rotating heat exchangers and the drilling of oil wells among other things. In the present work, the
Taylor-Couette-Poiseuille system is a simple representation of the gap between the rotating and the
stationary parts of an electrical motor (Fig.12.1) contained in an air conditioning pack. A better
knowledge of the convective heat transfer in the annular gap is required to optimize the perfomances
of such a rotating machinery. Usually, the radial gap between the cylinders is quite weak (of the order
of 1 mm) and the rotation rate of the inner cylinder can reach more than 2× 105 rpm. The difficulty
to perform accurate measurements in such closed clearances and especially in the very thin boundary
layers along the cylinders has slowed down the development of specific turbulence models. It explains
why relatively few works have been dedicated to such complex flows up to now.

The effect of an axial throughflow in a Taylor-Couette system, where only the inner cylinder
is rotating, has been considered experimentally by Kaye and Elgar [150] in the isothermal case.
Their results showed in particular the existence of four flow regimes depending on the Reynolds
number (based on the incoming flow velocity Vz and the radial gap between the cylinders ∆R =
e = b − a, a and b being the radii of the inner and outer cylinders respectively) and on the Taylor
number: laminar and turbulent flows, with or without Taylor vortices. Becker and Kaye [20] performed
temperature measurements for a large range of rotation rate and superimposed flowrate. They studied
the heat transfer in the gap between a heated inner rotating cylinder and a cooled outer stationary
one. Compared to the isothermal case, they did not highlight the existence of Taylor vortices in the
turbulent regime.

Most of the experimental works so far have been performed in Taylor-Couette systems characterized

197



198 CHAPTER 12. TURBULENT TAYLOR-COUETTE-POISEUILLE FLOWS

Figure 12.1: Exploded view of an electrical motor and its rotor-stator gap.

by a large aspect ratio Γ = h/∆R and a large radius ratio η = a/b, with h the length of the cylinders.
Aoki et al. [12] performed a combined theoretical and experimental investigation of turbulent Taylor-
Couette flows without any Poiseuille flow. The most noticeable result is that the gap ratio ∆R/a in the
range [0.055−0.132] has only a small effect on the heat transfer for three different fluids: air, iso-buthyl
alcohol and spindle oil. They provided also numerous correlations for the Nusselt number according
to the Taylor and Prandtl numbers. Kuzay and Scott [165] studied experimentally the turbulent
heat transfer in the gap between an inner rotating or non rotating insulated cylinder and an outer
stationary and heated cylinder combined with an axial air flow. They established correlations for the
Nusselt numbers against a new physical parameter, called the rotation parameter N = Ωa/Vz, which
combines both the rotation and axial flow effects. This parameter is defined as the ratio between
the rotating speed of the inner cylinder Ωa and the mean axial velocity of the incoming fluid Vz.
Lee and Minkowycz [175] highlighted experimentally the effects of the gap ratio ∆R/a in the range
[0.0083 − 0.051] and of grooved cylinders on the heat transfer. They showed in particular that the
heat transfer process is enhanced for increasing values of the gap ratio. Escudier and Gouldson [89]
performed velocity measurements by Laser Doppler Anemometry (LDA) in a cavity characterized by
Γ = 244 and η = 0.506 for various flow conditions (rotation rate Ω and flowrate Q) and different fluids
including Newtonian and shear-thinning fluids. For the Newtonian fluid in the turbulent regime, the
radial distribution of the axial velocity and the pressure drop are similar to the ones observed in pipe
flows. The radial distribution of the tangential velocity reveals a flow structure divided into three
regions: two very thin boundary layers, one on each cylinder, separated by a central core in near solid
body rotation. The main effect of the superimposed axial throughflow is to reduce the tangential
velocity in the core region. Nouri and Whitelaw [226] measured the three mean velocity components
and the associated Reynolds stress tensor for the flow subjected to an axial superimposed throughflow
in a concentric annulus (Γ = 98, η = 0.496) with or without rotation of the inner cylinder. Compared
to the non rotating case (for Cw = Q/(νb) = 42306), the rotation of the inner cylinder at Ω = 300
rpm (Rei = Ωa∆R/ν = 1616.6) does not affect the drag coefficient and the radial distribution of
the mean axial velocity in the turbulent regime. It slightly enhances turbulence intensities especially
close to the walls. For Cw = 125039, there is absolutely no effect of the rotation of the inner shaft
on both the mean axial flow and turbulence intensities. In a further paper, Nouri and Whitelaw [227]
extended their work to the case of eccentric cylinder arrangements and proposed a review of previous
works on Taylor-Couette flows including Newtonian and non-Newtonian fluids and rotating and non
rotating flows. Bouafia et al. [30] performed extensive temperature measurements in the gap between
a heated rotating inner cylinder and a cooled stationary outer one. An axial Poiseuille flow of air
can be superimposed or not. The heat transfer is increased in the case of grooved cylinders compared
to the basic case with smooth walls for an enclosed cavity. When an axial flow is imposed, the heat
transfer along the rotating wall is increased in the smooth case. Numerous correlations for the Nusselt
numbers along both surfaces are provided against a modified Taylor number and an effective Reynolds
number for various flow conditions.
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Naser [217] compared the predictions of a k− ε model with the experimental data of Escudier and
Gouldson [89] for the same flow conditions. For a turbulent Newtonian flow, the model showed large
discrepancies for the mean velocity components. The profiles depend strongly on the axial position,
which is not observed in the experiments [89]. The author attributed these deviations to the fact
that the eddy viscosity concept, on which the model is developed, is incompatible with the simulated
flow conditions. It can be attributed also to the fact that the k − ε model is not sensitized to the
implicit effects of rotation on turbulence. Char and Hsu [46] conducted numerical predictions using
a modified version of the Launder-Sharma k − ε model for turbulent mixed convection of air in a
concentric horizontal rotating annulus. This model includes both the Yap correction and the Kato-
Launder modification, which slightly improves the predictions compared to the classical Launder and
Sharma model. The authors performed a parametric study of the fluid flow and heat transfer for
various radius ratios 0.1 ≤ η ≤ 0.385, Reynolds numbers 0 ≤ Rei ≤ 105 and Rayleigh numbers
107 ≤ Ra ≤ 1010. For this range of Ra, they highlighted the three-dimensional structure of the
flow with a two-cell structure in a (r, θ) plane for Re up to 104. Kuosa et al. [164] considered the
cooling of high-speed electrical machines, where only the inner cylinder is rotating. They compared
the predictions of three different models: an algebraic model, a low-Reynolds number k−ε model and
a k − ω SST model. The hydrodynamic and thermal fields are established for various rotation rates
and mass flowrates. The three turbulence models underestimated the heat transfer coefficients along
both cylinders. Moreover, the entrainment coefficient of the fluid is far from the theoretical value for
a fully turbulent flow. These discrepancies were attributed by the authors to the boundary conditions
imposed at the inlet and outlet sections and to the turbulence models used. More recently, Giret [110]
performed a combined experimental and numerical investigation of the convective heat transfers in the
air gap of an alternator. Heat transfer measurements were compared to two-equation models available
within the commercial code ANSYS CFX for various flow conditions and different geometries for the
inner rotating cylinder. The convective heat transfers were underestimated by the models on the rotor
and overestimated on the stator. The experimental results were found to be almost the same when
the inner cylinder is smooth or with four inter-polar gaps.

To our knowledge, Chung and Sung [54] were the first to perform Large Eddy Simulation (LES)
in such complex configurations. They compared their numerical data to the experimental ones of
Nouri and Whitelaw [226] for η = 0.5, Cw = 20970 and Rei = [954.5; 1909.1; 3818.1]. They obtained a
relatively close agreement for the mean velocity and the Reynolds stress tensor components. The mean
tangential velocity was slightly overestimated in the main part of the radial gap between the cylinders.
They focused their numerical investigation on the appearance of turbulent structures attributed to the
destabilization of the flow along the inner rotating cylinder and giving rise to strong events (sweeps
and ejections).

Recently, Fénot et al. [94] performed a review on the heat transfer between concentric rotating
cylinders with or without axial flow. They concluded their paper by: notwithstanding the sizable
quantity of studies focused on the subject of flows in rotating annular space, the similarly large number
of influence and impact factors still leaves many question marks pertaining to the dynamics and,
more specifically, to the heat transfer in the flow . . . the published results hinge to a great extent
on the configurations that have been studied, and do not yet offer an adequate basis for large-scale
extrapolation.

The purpose of this Chapter is to predict the turbulent flow and heat transfer in the gap of an
electrical machine schematized here by a very narrow Taylor-Couette-Poiseuille system for a wide range
of operating conditions (see Table 12.1). The Reynolds Stress Model (RSM) of Elena and Schiestel
[84, 85, 298], which has shown to offer the best trade-off between accuracy and calculation cost in
various rotating flow arrangements [119, 249, 253, 258, 259], has thus been chosen for a preliminary
study. Then, some LES results are compared to velocity and temperature measurements performed
at IRPHE using a new experimental set-up. The two codes have been first validated under isothermal
conditions on well established data available in the literature before being applied to the real flow
conditions operating in the electrical motor developed by Liebherr Aerospace Toulouse. It is also to
get a better insight into the dynamics and the heat transfer process of the turbulent Taylor-Couette-
Poiseuille flow in a very narrow cavity.
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Figure 12.2: Schematic representation of the Taylor-Couette-Poiseuille configuration with relevant
notations.

12.2 Geometrical configuration and flow global parameters

The cavity sketched in Figure 12.2 is composed of two smooth concentric cylinders. The inner cylinder
of radius a is rotating at a given rotation rate Ω, while the outer cylinder of radius b is stationary. The
height of the cavity is denoted h in the following. An axial voluminal flowrate Q can be superimposed
at the cavity inlet.

The mean flow is mainly governed by four global parameters: the aspect ratio of the cavity Γ, its
radius ratio η, the rotational Reynolds number Rei based on the rotating speed of the inner cylinder
Ωa and half the hydraulic diameter ∆R = b− a and the flowrate coefficient Cw defined as follows:

Γ =
h

∆R
η =

a

b

Rei =
Ωa∆R

ν
or Ta =

Ω2a(∆R)3

ν2
=

∆R

a
Re2i

Cw =
Q

νb
or ReQ =

2Vz∆R

ν
=

2

π∆R(1 + η)Cw

where ν is the fluid kinematic viscosity. In the last section, the results will be discussed in terms of an
axial Reynolds number ReQ and the Taylor number Ta for easier comparisons with published data,
where Vz = Q/[π(b2 − a2)] is the axial velocity imposed at the inlet. These two parameters can be
gathered to form the rotation parameter N = Ωa/Vz.

For the thermal field, one important parameter is the Prandtl number Pr defined as:

Pr =
ν

α
(12.1)

where α is the fluid thermal diffusivity. The thermal field will depend also on other parameters under
the form of dimensionless thermal gradients, which will be introduced later in the corresponding
sections.

Four different geometries will be considered in the following, two under isothermal conditions and
the two others under non-isothermal conditions correspond to real operating conditions in the rotating
machineries developed by Liebherr Aerospace Toulouse. The values of all parameters for these four
configurations are summarized in Table 12.1. The values of Rei considered here are much higher than
the critical value Rei = 210 for the transition to turbulence found experimentally by Aoki et al. [12],
which ensures that the flow is highly turbulent without Taylor vortices in all cases.
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Test case Γ η Rei Cw N Pr
Ta ReQ

Escudier and Gouldson [89] 244 0.506 961.1 2839; 5914; 17742 1.6; 0.77; 0.26 −
9.02 × 105 1202; 2497; 7501

Liebherr 1 77 0.961 [3744 − 37443] [0 − 30000] [1.6;∞[ [0.01 − 12]
[5.69 × 105 − 5.69 × 107] [0 − 46805]

Nouri and Whitelaw [226] 9 0.5 954.5; 1909.1; 3818.1 20970 0.2145; 0.429; 0.858 −
9.11; 36.4; 146 ×105 8900

“Entrefer project” 50 8/9 8391; 16733; 25140 222.2; 332.3 [149.8 − 671.4] 0.7; 7
0.88; 3.5; 7.9 ×107 7490; 11200

Table 12.1: Values of the flow parameters for the four configurations considered in this Chapter.

12.3 Preliminary results using the RSM model

The flow is studied here using the RSM model described in Chapter 4. The grid independence of
the solution has been checked for the two configurations considered here: the first one corresponds
to the experiment of Escudier and Gouldson [89] and the second one to a real machinery developed
by Liebherr Aerospace Toulouse. A (Nr = 180) × (Nz = 400) mesh in the (r, z) frame provides the
best arrangement between accuracy and CPU time compared to the other meshes considered. Table
12.2 summarizes the computational details used in this section. For this grid, the sizes of the thinner
mesh ∆1r and ∆1z in the radial and axial directions respectively remain quite low. It is also verified
that the grid is sufficiently refined close the cylinders to describe accurately the viscous sublayers. For
example, the wall coordinate r+ = ∆1ru

∗/ν (u∗ the friction velocity at the wall) remains below 0.05
along both cylinders for configuration 2, which is quite below the classical value r+ = 1. About 30000
iterations (20 hours) on the M2P2 cluster are necessary to obtain the numerical convergence of the
calculations.

configuration test case Nr ×Nz ∆1r/h ∆1z/h max(r+)
1 Escudier and Gouldson [89] 180× 400 5.65× 10−5 6.38× 10−3 0.21
2 Liebherr 1 180× 400 9× 10−8 3.89× 10−6 0.05

Table 12.2: Computational details for the two test cases of Escudier and Gouldson [89] and Liebherr
1. ∆1r and ∆1z are the size of the first cell in the radial and axial directions and max(r+) is the
maximum value of the wall coordinate along both cylinders.

12.3.1 Benchmark of RANS models in the configuration of Escudier and
Gouldson [89]

The predictions of the RSM [85] and other models available within OpenFOAM, Fluent and Star-
CCM+ are compared to the LDA measurements of Escudier and Gouldson [89] and to the previous
k− ε computations of Naser [217] in a very elongated Taylor-Couette system defined by Γ = 244 and
η = 0.506 (middle-gap cavity [23]). The rotational Reynolds number is fixed here to Rei = 961.07
and the comparisons are performed at a given axial position z∗ = z/h = 0.1 for three values of the
flowrate coefficient: Cw = 2839, 5914 and 17742. Thus, three values of the rotation parameter are
considered: N = 0.968, 0.465 and 0.148. It corresponds to the values 1200, 2500 and 7500 for the
Reynolds number based on the bulk velocity in [89]. All the comparisons and the numerical details
are presented in details in two proceeding papers (Ref.[118, 255]). It was done in close collaboration
with R. Da Soghe and C. Bianchini from the University of Florence. It is noticeable that all compu-
tations performed with StarCCM+ are 3D unsteady and use unstructured grids with 2.8 millions of
mesh points and time step lower than 0.01 s. Calculations with the LES of OpenFOAM are also 3D
unsteady (periodicity of π/2) and use unstructured grids with 3.8 millions of mesh points and a time
step equal to 0.0015 s. The computations using the in-house RSM are 2D steady and use structured
grids with 72000 mesh points (see Table 12.2).

In order to offer an idea of the turbulent structures arising in the flow, maps of the instantaneous
tangential and axial velocities are reported in Figures 12.3b & c respectively together with the isovalues
of the Q-criterion in Figure 12.3a obtained by LES (OpenFOAM) for Rei = 961.07 and Cw = 17742.
Note that the isocontours of Q are reported from the point where turbulent flow behavior first arises,
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Figure 12.3: (a) Iso-values of the Q-criterion (Q = −2000) and maps of the instantaneous (b) tangential
and (c) axial velocity components in a meridian plane (the rotation axis is at the bottom of each figure
and it flows from the left to the right). Results obtained by LES using OpenFOAM for Γ = 244,
η = 0.506, Rei = 961.07 and Cw = 17742.

at approximately one-fourth of the entire axial extension (due to the laminar behavior imposed by
the inflow boundary conditions). The radial velocity component (not reported here) is almost zero
in the whole cavity for this set of parameters. Thus, the flow is a combination of an intense Taylor-
Couette flow close to the inner rotating cylinder due to rotation and of an axial Poiseuille flow within
the gap. It explains the presence of helical vertical patterns, which roll up along the inner wall.
Otherwise there is no evidence of 3D large scale structures embedded in the flow. The main flow
is dominated by the axial Poiseuille flow, which can be explained by the low value of the rotation
parameter N = Ωa/Vz = 0.148.

As a preliminary, one defines the following dimensionless quantities: the dimensionless radial
r∗ = (r − a)/∆R and axial z∗ = z/h positions. Thus, r∗ = 0 on the inner cylinder and r∗ = 1
on the outer cylinder. In the same way, z∗ = 0 corresponds to the cavity inlet and z∗ = 1 to
the outlet. The mean tangential velocity component is normalized using the rotational speed of the
inner cylinder Ωa, whereas the mean axial velocity component is normalized using the mean axial
velocity Vz imposed at the inlet: V ∗

θ = Vθ/(Ωa) and V ∗
z = Vz/Vz. To enable direct comparisons with

the measurements of Escudier and Gouldson [89], the tangential v′θ and axial v′z normal stresses are

normalized by Vz: v
′∗
θ =

√
v

′2
θ /Vz and v

′∗
z =

√
v′2
z /Vz. Note that the measurements of Escudier and

Gouldson [89] for V ∗
θ and v

′∗
θ have been obtained for values of Cw slightly different than for V ∗

z and

v
′∗
z : Cw = 2839, 6387, 17505. It corresponds to the values ReQ = 1200, 2700, 7400 for the Reynolds
number based on the bulk velocity [89].

As it can be seen from Figure 12.4, the tangential velocity varies with 1/r within the gap apart
close to the walls where two boundary layers develop. The tangential velocity profile is quite far
from the laminar circular Couette profile: Vθ(r) ∝ 1/r2 highlighting the turbulent nature of the flow.
The boundary layer thicknesses are here quite thick (15% of the gap width each), because of a low
value of the rotation rate Ω. Most of the computed results are found in good agreement with the
experimental data for the mean tangential velocity. The DES and most of all the RSM of Elena &
Schiestel [85] and the k-ω SST of OpenFOAM provide the best results. On the contrary, the LES and
RSM of StarCCM+ predict a centerbody rotation within the gap with an overestimation of the mean
tangential velocity whatever the radial position is, leading to around 17% of error at r∗ = 0.5. This
behavior is characteristic to higher values of the rotation parameter N . The radial variations of the
mean axial velocity component displayed in Figure 12.4 confirm the turbulent nature of the flow by
comparison with the laminar Poiseuille profile. The results of the LES, the k-ω SST (OpenFOAM)
and the in-house RSM predict the same symmetric profile as in the experiments of Escudier and
Gouldson [89]. All the other approaches found in StarCCM+ overestimate the axial velocity in the
bulk of the flow and by conservation of mass, they overestimate also the boundary layer thicknesses.
It is noteworthy that fully developed conditions are reached at z∗ = 0.1 using the RSM in agreement
with the observations of Escudier and Gouldson [89].

Another calculation on a 1◦ sector using the LES within OpenFOAM has also been performed
(but not shown here) providing, among other things, a profile for the axial velocity fairly close to the
classical laminar Poiseuille profile with a much higher maximum velocity at mid-gap.
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Figure 12.4: Radial profiles of the mean (a) tangential and (b) axial velocity components and of the
corresponding fluctuating (c) tangential and (d) axial velocity components at z∗ = 0.1 for Γ = 244,
η = 0.506, Rei = 961.07 and Cw = 17742. Comparisons between various turbulence models (lines)
and the velocity measurements (symbols) of Escudier and Gouldson [89].

Figure 12.4 presents also the radial distributions of the tangential and axial normal Reynolds
stress tensor components for the same set of parameters. Turbulence is mainly concentrated in the
core region with peak values at the edge of each boundary layer. Then, it vanishes towards the walls.
Turbulence intensities are much higher close the outer cylinder as it can be seen from the experiments of
Escudier and Gouldson [89], which is not captured by any of the numerical approaches. This behavior
observed in the experiments looks surprising. The same authors report indeed similar measurements
in Reference [90] for another value of Cw = 16672 very close to the present one. In that case, the profile
of the fluctuating axial velocity is almost symmetric, with values remaining lower than 0.2. The values
around 0.35 may be attributed in the experiments to the difficulty to perform accurate measurements
very close to the walls. The RSM of Elena & Schiestel [85] provides the best overall agreement with
good intensity levels in the gap and close to the inner cylinder. The LES of OpenFOAM offers also
quite good results excepted for the v

′∗
θ intensity at large radial locations.

For industrial applications, the v2 − f model showed a good behavior providing especially good
results for the mean field. It offers then a good compromise between accuracy and calculation cost.
For more specific applications where turbulence intensities have to be computed accurately, the RSM,
which has been sensitized to the main rotation effects, has shown to predict quite accurately both the
mean and turbulent fields.

Figure 12.5 shows the distributions of the dimensionless mean tangential and axial velocity com-
ponents at z∗ = 0.1 for the same value of Rei but for three values of the flowrate coefficient. For the
two lowest values of Cw, the tangential velocity profiles (Fig.12.5a) exhibit a structure divided into
three regions: two thin boundary layers developed on each cylinder separated by a core rotating at a
constant velocity. The central region rotates at 32% (resp. 34%) of the cylinder speed for Cw = 2839,
N = 0.968 (resp. Cw = 5914, N = 0.465) well below the value 0.53 given by Taylor [336] in the ab-
sence of throughflow. The flow is here mainly governed by rotation for these values of N . A decrease
of the rotation parameter to N = 0.148 (corresponding to an increase of the flowrate coefficient to
Cw = 17742) implies a decrease of the rotating speed of the core region. Moreover, the tangential
velocity is no more constant in the gap but is inversely proportional to the radius. Thus, the mean
angular momentum is almost constant in that region.

There is only a weak effect of the flowrate coefficient on the radial distributions of the axial veloc-
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Figure 12.5: Radial distributions of the mean tangential and axial velocity components for Γ = 244,
η = 0.506 and Rei = 961.1 at z∗ = 0.1; Comparisons between the present RSM (straight lines) and
the LDA measurements of Escudier and Gouldson [89] (symbols) for three values of Cw: Cw = 2839,
Cw = 5914 and Cw = 17742. The laminar profiles (dotted lines) and the predictions of the k − ε
model of Naser [217] (dashed lines) for Cw = 17742 are also shown.

ity (Fig.12.5b). The profiles are close to the turbulent Poiseuille flow profiles in pipes with a nearly
constant axial velocity in the gap and thin boundary layers on the cylinders. For this value of radius
ratio η = 0.506, the profiles are almost symmetric. The profiles become flatter with increasing N as
already noted by Nouri and Whitelaw [226]. It is noteworthy that, whatever the value of Cw, the
mean velocity profiles are far from the laminar profiles highlighting the turbulent nature of the flow.

For the mean field, the predictions of the RSM model are in very good agreement with the experi-
mental data. The RSM predicts quite well the mean tangential velocity in the core region. Moreover,
it offers a good description of the boundary layer thicknesses along the cylinders as it can be seen from
the mean axial velocity profiles. For Cw = 17742, the RSM improves significantly the results of the
k− ε of Naser [217], which fails to predict the right profiles with large discrepancies for both the axial
and tangential velocity components. The axial velocity is largely underestimated in the core and the
tangential velocity is slightly overestimated. It is besides surprising that, by integration of the mean
axial velocity profile, mass is not conserved. Fully developed conditions are reached at z∗ = 0.1 using
the RSM in agreement with the observations of Escudier and Gouldson [89], whereas the predictions
of the k− ε model of Naser [217] showed a large dependence of the tangential velocity profiles on the
axial position. This last author attributed the discrepancies obtained by the k-ε model to the fact that
its model is blind to any rotation effects, and that the eddy viscosity concept, on which this model
is based, is unsuitable with the present flow situation. On the contrary, the present RSM model is
both sensitized to rotation effects and free from any eddy viscosity hypothesis, which may explain the
better overall agreement with the experimental data.

Figure 12.6 presents the radial distributions of the tangential and axial normal Reynolds stress
tensor components for the same sets of parameters. Turbulence is mainly concentrated in the core
region and vanishes towards the walls. The tangential and axial velocity fluctuations show a progressive
decrease with increasing flowrate coefficient (or decreasing rotation parameter) in agreement with the
experimental data of Escudier and Gouldson [89] and the LES results of Chung and Sung [54]. It
is attributed by Escudier and Gouldson [89] to the vortical structures observed for low values of Cw

induced by the centerbody rotation. For high values of Cw, the radial penetration of the rotational
influence is reduced and turbulent fluctuations are suppressed as if there was no solid body rotation.
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Figure 12.6: Radial distributions of the tangential v
′∗
θ and axial v

′∗
z normal Reynolds stress tensor

components. See legend of Figure 12.5.

The profiles of v
′∗
θ and v

′∗
z are asymmetric for the highest value of the rotation parameter N = 0.968

(Cw = 2839) in agreement with Chung and Sung [54], which can be attributed to the destabilizing
effect of the centrifugal forces. All these phenomena are well reproduced by the RSM, which predicts
also quite good the turbulent intensities in the core of the flow. Some discrepancies are obtained in
the boundary layers, especially for the peak values very close to the walls. The variations in the radial
direction of the turbulent levels along each cylinder are also smoother than the experimental ones,
which was also the case for the LES results of Chung and Sung [54] against the measurements of Nouri
and Whitelaw [226].

12.3.2 Are second order RANS models suitable for modeling heat transfer
in electrical motors?

The RSM is now used to carry a parametric study of turbulent Taylor-Couette-Poiseuille flows with
heat transfers in a narrow-gap cavity characterized by a large aspect ratio Γ = 77 and a large radius
ratio η = 0.961 and for a wide range of the flow parameters (see Table 12.1). It corresponds to a
real rotating machinery developed by Liebherr Aerospace Toulouse. All the results obtained using the
in-house RSM of Elena and Schiestel [85] and, in particular, the parametric study (variations of Rei,
Cw and Pr) can be found in Reference [256].

12.3.2.1 Mean and turbulent flow field in the Configuration “Liebherr 1”

The mean and turbulent flow fields are very similar to those obtained in the previous configuration
of Escudier & Goulson [89]. The mean radial velocity component is quasi zero in the whole cavity.
The mean flow is then helical with a tangential main flow due to the rotation of the inner cylinder
(Taylor-Couette flow) and an axially secondary flow due to the superimposed throughflow (Poiseuille
flow) as shown in Figure 12.7. One interesting feature is that, from z∗ ≃ 0.2 ≃ 15.6/Γ to 0.8, the mean
flow is well established and the profiles do not depend anymore neither on the axial position z∗ nor on
the boundary conditions imposed at the inlet (see in Reference [256]). The mean profiles of V ∗

θ and
V ∗
z are characteristic of the turbulent regime with two very thin boundary layers developed on each

cylinder. The central region between the two boundary layers is characterized by a quasi constant
mean axial velocity equal to approximatively 1.07, close to a turbulent Poiseuille-like profile in pipes.
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The mean tangential velocity component increases linearly when moving from the outer to the inner
cylinders in that region in agreement with the LES results of Chung and Sung [54]. This behavior is
analogous to the turbulent torsional Couette flow found in very flat rotor-stator disk cavities [119].
V ∗
θ is exactly equal to 0.5 at mid-radius, which is to be compared to the theoretical value 0.48 of

Polkowski [248], whereas Kuosa et al. [164] obtained 0.083 with the k− ω SST model. Note that this
swirl level is much higher than the measured or computed one obtained in the case of the Escudier
and Gouldson’s [89] experiment, which is a direct effect of both the narrow gap between the walls
and to the high value of the rotation parameter N = 4.24 considered here. From the radial profiles in
Figure 12.7, one can deduce the thicknesses of the boundary layers δV i and δV o on the inner and outer
cylinders respectively. δV i (resp. δV o) is the height at which the mean tangential velocity component
reaches 99% (resp. 1%) of Ωa. For 0.2 ≤ z∗ ≤ 0.8, these thicknesses are almost constant and equal to
δV i/(∆R) = 0.03 and δV o/(∆R) = 0.04.

In the outlet section (z∗ = 1) where a given pressure is imposed, absolutely no reversed flow has
been observed in the present case. At the outlet, V ∗

θ varies non monotonously with r∗. Close to the
inner rotating cylinder, it varies very quickly from 0.1 for r∗ = 0.1 to 1 on the rotor. The axial velocity
profile tends to the laminar profile at the outlet with a strong axial velocity in the center of the gap.
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Figure 12.7: Radial profiles of the mean (a) tangential V ∗
θ , (b) axial V

∗
z velocity components and (c)

dimensionless temperature T ∗ for different axial positions z∗ and Γ = 77, η = 0.961, Rei = 10216,
Cw = 14858 and Pr = 0.7. Results obtained by the in-house RSM.

Concerning the thermal field, the fluid at the inlet enters the cavity at a constant temperature
denoted Ta. The inner and outer cylinders are maintained at constant temperatures Ti and To respec-
tively. Thus, the heat transfer is driven by three main parameters, two heating factors κi and κo for
the inner and outer cylinders respectively and the Prandtl number Pr defined as follows:

κi =
Ti − Ta

Ta
= 0.117 κo =

To − Ta

Ta
= 0.245 0.01 ≤ Pr ≤ 12

The two heating factors κi = 0.117 and κo = 0.245, which are proportional to Gr/Re2i , where Gr is the
Grashof number based on the temperature Ta, are small enough to make the hypothesis of no density
variation. The gravitational effects are indeed small compared to the inertial effects (Gr << Re2i ).

As for the hydrodynamic mean flow, the temperature field T ∗ does not depend on the axial position
for z∗ ≥ 0.4 (Fig.12.7c). Note that the temperature T is normalized as follows: T ∗ = (T−Ta)/(To−Ta).
Thus, T ∗ = 0 in the inlet section (z∗ = 0) and T ∗ = 1 along the outer cylinder (r∗ = 1), where the

206



207 12.3. PRELIMINARY RESULTS USING THE RSM MODEL

highest temperature is reached. The mean temperature profiles can also be divided into three areas:
two thermal boundary layers separated by a region, where the temperature is quasi constant. For
z∗ ≥ 0.4, the temperature reached in the core region tends to T ∗ = 0.768. It is slightly higher
than the value T ∗ = 0.738 corresponding to the averaged value between the cylinder temperatures
Ti and To. It shows in particular the dominating influence of the (warmest) outer cylinder. For this
set of parameters, rotation effects on the mean flow are dominant compared to the superimposed
throughflow as the value of the rotation parameter N = 4.24 is high. Thus, the residence time of the
incoming fluid (at T ∗ = 0) inside the cavity is large enough for the walls to warm significantly the fresh
incoming fluid. It explains why the mean temperature remains in the range 0.7 ≤ T ∗ ≤ 0.9. From the
temperature profiles in Figure 12.7c, one can evaluate the thicknesses of the thermal boundary layers
denoted δTi and δTo on the inner and outer cylinders respectively. δTi (resp. δTo) is the height at
which the mean temperature reaches 99% (resp. 1%) of the averaged temperature in the core. Thus,
δTi/∆R = 0.023 and δTo/∆R = 0.06 for 0.4 ≤ z∗ ≤ 0.8. As expected, the thermal boundary layer
is thicker than the hydrodynamic one along the stator. The Prandtl number, which compares the
hydrodynamic and thermal boundary layer thicknesses, is indeed equal to Pr = 0.7 ≤ 1 in the present
case.
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Figure 12.8: Radial profiles of the six Reynolds stress tensor components and of the turbulence kinetic
energy for Γ = 77, η = 0.961, Rei = 10216, Cw = 14858 and Pr = 0.7 at z∗ = 0.5. Results obtained
by the in-house RSM.

Figure 12.8 shows the radial profiles of the six Reynolds stress tensor components R∗
ij and of the

turbulence kinetic energy k∗ at mid-height z∗ = 0.5 for the same set of parameters. Note that the
Reynolds stress tensor components as well as k∗ are normalized by (Ωa)2. It is not shown here but
as for the mean field, there is no axial dependence of these turbulent quantities for 0.2 ≤ z∗ ≤ 0.8.
Turbulence is then fully developed in that region and not influenced by the inlet and outlet areas. The
highest levels of the normal Reynolds stress tensor components are reached in the core of the flow with
maxima closest to the outer cylinder. As for the highest value of the rotation parameter N = 0.968
considered in Configuration 1, it can be attributed to the destabilizing effect of the centrifugal forces.
Turbulence intensities vanish at the walls. The magnitudes of the three normal Reynolds stress tensor
components are quite comparable indicating that the turbulence is only weakly anisotropic. The R∗

rθ

behaves like the normal components, with a maximum along the external cylinder. The two other
cross components, which are one order of magnitude below, indicate a strong shear along the cylinders
in agreement with the LES results of Chung and Sung [54].
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12.3.2.2 Budgets for the turbulence kinetic energy transport equation

To highlight the influence of the additionnal terms taking into account the implicit effects of rotation
on turbulence in the present RSM, budgets for the turbulence kinetic energy transport equation are
here performed. The equation for the turbulence kinetic energy k is given in Elena and Schiestel [85]
as:

dk

dt
= P +DT +Dν − ϵ+DR + J (12.2)

The terms DR and J model two implicit effects of rotation on turbulence. DR is an inhomogeneous
diffusion term, which slows down the tendancy of bidimensionalization close to the walls. Its empir-
ical term takes also into account the significant increase of the turbulent diffusion due to the triple
fluctuating velocity correlation and to the fluctuating pressure in the case of strong rotation. Another
characteristic phenomenon due to rotation is a reduction of the energy transfer from large to small
turbulent scales. This last phenomenon is modeled here through an inverse flux J . All details about
these terms can be found in Elena and Schiestel [85] or in Chapter 4.

0 0.05 0.1
−40

−30

−20

−10

0

10

20

30

r*

dk/dt
ε
P

Dν

DT

DR

J

0.9 0.95 1
−200

−150

−100

−50

0

50

100

150

r*

Figure 12.9: Turbulence kinetic energy budgets at z∗ = 0.5 along both cylinders for Γ = 77, η = 0.961,
Rei = 10216 and Cw = 14858. Results obtained by the in-house RSM.

Budgets for the turbulence kinetic energy k (normalized here by (Ωh)2) are presented in Figure
12.9 at mid-height of the cavity in both boundary layers. The transport of k is mainly governed by
the production P and the dissipation ϵ terms, which compensate almost each other. The molecular
Dν and turbulent DT diffusion terms can not be neglected close to the walls. In the viscous sublayers,
where low Reynolds numbers are reached, Dν compensates exactly the dissipation ϵ, whereas the
term DT is almost zero. The inhomogeneous diffusion term DR, which usually flattens the turbulence
kinetic energy by diffusion along the rotation axis [249], does not contribute here to the k budgets.
The inverse flux J , which increases the turbulence level in the core of the flow, has only a weak
contribution to the k budgets in both boundary layers, which does not mean that it does not affect
the mean and turbulent fields. It can be noticed that the values reached along the stationary outer
cylinder are much higher (in absolute value) than those obtained along the inner one. It confirms in
particular the RSM predictions of Poncet [249] in the case of rotor-stator disk flows with throughflow.

The influence of the additionnal terms contained in Tij has been already addressed by Elena and
Schiestel [85] for rotor-stator disk flows. They compared the predictions of three low-Reynolds number
RSM models from the base model of Hanjalic and Launder [121] to the final version described here
with experimental data available in the literature. The introduction of the new terms did not produce
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important changes. Nevertheless, the final model was found to improve the predictions of the former
ones. The turbulence levels close to the rotor and the location of the relaminarized and turbulent
regions were better predicted. Here, the term J , which is not a redistributive term, slightly increases
the energy levels at the edge of the boundary layers and also in the core.

12.3.2.3 Distributions of the Nusselt numbers

18 calculations have been performed to investigate the influence of the flow parameters: the rotational
Reynolds number Rei, the flowrate coefficient Cw and the Prandtl number Pr. These 18 sets of
parameters cover a wide range of the rotation parameter N : from 2.1 up to infinity, when no through-
flow is superimposed. Thus, for all cases, the parameter N is higher than 0.8, which ensures that the
Nusselt numbers depend on both the rotation Ω and the axial throughflow Q (see in [165]). Only the
results on the thermal field are shown below but the influence of these parameters on the flow field
may be found in Reference [256].

Figure 12.10: Isovalues of the mean temperature T ∗ obtained by the in-house RSM for Γ = 77
and η = 0.961. Influence of the Reynolds number for Cw = 5000, Pr = 0.7: (a) Rei = 3744, (b)
Rei = 10216, (c) Rei = 14959, (d) Rei = 26189, (e) Rei = 37443. Influence of the flowrate coefficient
for Rei = 10216, Pr = 0.7: (f) Cw = 0, (g) Cw = 103, (h) Cw = 5 × 103, (i) Cw = 14858, (j)
Cw = 3× 104. Influence of the Prandtl number Pr for Rei = 10216, Cw = 14858: (k) Pr = 0.01, (l)
Pr = 0.7, (m) Pr = 2, (n) Pr = 7, (o) Pr = 12.

Figure 12.10 presents the isotherm maps in a (r, z) plane for all the cases considered here highlight-
ing the influence of the flow parameters on the thermal field. The effect of the rotational Reynolds
number is illustrated by comparing Figures 12.10a to 12.10e for Cw = 5000 and Pr = 0.7. For a given
superimposed throughflow, when the rotation rate of the inner cylinder is increased, the centrifugal
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effect increases. The main flow is still helical but the thread of the screw gets even smaller. As
a consequence, the time of residence increases with increasing values of Rei, which implies a more
efficient mixing and a better homogenization of the mean temperature in the whole cavity. So, the
mean temperature in the center of the cavity T ∗

mid = T ∗(r∗ = 0.5, z∗ = 0.5) is a decreasing function
of Rei following the quadratic law: T ∗

mid = 7.5 × 10−11Re2i − 6.4 × 10−6Rei + 0.88. For very high
rotational Reynolds numbers, T ∗

mid tends to the value 0.738 corresponding to the averaged between
the wall temperatures. For all cases, the isotherms are parallel to the rotation axis. The size of the
cold fluid region around the inlet increases with the rotation rate of the inner cylinder.

The effect of the flowrate coefficient on the temperature field (Fig.12.10f-12.10j) is more noticeable
than the one of the rotational Reynolds number. Without any superimposed throughflow (Fig.12.10f),
the isotherms are parallel to the rotation axis and T ∗

mid is equal to 0.841, which is much warmer than
the averaged temperature 0.738 between the two walls, showing the preponderant effect of the outer
cylinder. When the flowrate coefficient increases, the isotherms get progressively inclined. For the
highest value Cw = 30000 (Fig.12.10j), the effect of Cw is preponderant compared to the effect of the
rotation rate (N = 2.1). T ∗

mid appears to be a decreasing function of Cw following the quadratic law:
T ∗
mid = −1.3 × 10−10C2

w − 2.6 × 10−6Cw + 0.84. It is simply due to the fact that the fresh incoming
fluid spends a shorter time in the cavity when Cw is high.

The influence of the Prandtl number Pr on the thermal field is now investigated for Rei = 10216,
Cw = 14858 and 0.01 ≤ Pr ≤ 12. Pr = 0.01 is a typical value for liquid metals, Pr = 0.7 − 1 for
gases (Pr = 0.71 for air at 20◦C) and Pr = 2 − 12 for water. For Pr = 0.01 (Fig.12.10k), the heat
transfer process is dominated by conduction from the outer to the inner cylinders. For this Prandtl
number, the fluid behaves thermally like a solid. The isotherms are then parallel to the rotation axis
except very close to the inlet region. The mean temperature increases linearly from the hub to the
shroud. When the Prandtl number Pr = ν/σ increases (Fig.12.10l - 12.10o), the thermal diffusivity
of the fluid σ decreases. Thus, the characteristic time for the heat transfer between the cylinders and
the fluid increases. As the residence time of the fluid in the cavity remains the same (Rei and Cw

being constant), the fluid requires more time to exchange heat with the walls. The thermal effects
diminish then with increasing values of Pr and the flow behavior is essentially hydrodynamic. That is
the reason why the mean temperature in the center of the cavity T ∗

mid decreases for increasing values
of Pr following the quadratic law: T ∗

mid = 0.0014Pr2 − 0.052Pr + 0.79.
From the isotherm maps, one can deduce the axial distributions of the local Nusselt numbers Nui

and Nuo along the inner and outer cylinders respectively defined by:

Nui(z) =
∆R

Ti − Ta

∂T

∂r
|i(z) (12.3)

Nuo(z) =
∆R

To − Ta

∂T

∂r
|o(z) (12.4)

The axial distributions of the local Nusselt numbers along the inner cylinder Nui and the outer
one Nuo are presented in Figure 12.11a for Cw = 5000, Pr = 0.7 and different Reynolds numbers.
For this flowrate, Nui tends to zero for z∗ ≃ 0.1 and Rei = 3744 as the incoming fluid warms and
reaches the same temperature than the inner cylinder at this axial location. For the other Reynolds
numbers, Nui increases with z∗ in the region close to the inlet and then, for z∗ ≤ 0.2, Nui remains
almost constant as the mean flow and thermal fields are established. Giret [110] did not measure the
heat transfer coefficients close to the inlet where the strong variations are expected. Nevertheless, he
observed also a strong decrease of Nui from z∗ ≃ 0.15 to z∗ ≃ 0.8. Along the outer cylinder, Nuo

decreases with z∗ at the cavity inlet and then remains constant. Except very close to the inlet, Nui

and Nuo increase for increasing values of the Reynolds number Rei, which is expected in such rotating
flows [233]. Figure 12.11b sums up the results presented in Figure 12.11a at a given axial position
z∗ = 0.5, and confirms the dependence of Nui and Nuo on the rotational Reynolds number Rei.

The influence of the axial Poiseuille flow on the local Nusselt numbers is depicted in Figure 12.12a
for Rei = 10216, Pr = 0.7 and different values of the flowrate coefficient. Along the hub and for
Cw ≤ 5000, the local Nusselt number Nui does not depend on the axial location for 0.05 ≤ z∗ ≤ 0.95.
Nui depends weakly on Cw for Cw < 5000 then increases strongly for higher flowrates. For Cw ≥ 104,
when Cw increases, the axial location for which Nui tends to 0 moves towards the cavity outlet:
Nui ≃ 0 at z∗ ≃ 0.095 for Cw = 104, at z∗ ≃ 0.14 for Cw = 14858 and at z∗ ≃ 0.27 for Cw = 30000.
In the same time, the region where Nui is quasi constant gets always smaller for increasing values of
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Figure 12.11: Local Nusselt numbers along both cylinders for Cw = 5000, Pr = 0.7 and different
Reynolds numbers Rei: (a) Axial profiles; (b) Variations against Rei at mid-height z∗ = 0.5. Results
obtained by the in-house RSM for Γ = 77 and η = 0.961.

Cw. Along the stationary cylinder, the same behavior is observed. For Cw < 5000, Nuo depends very
weakly on both z∗ and Cw. When increasing Cw up to 30000, Nuo reaches a maximum close to the
cavity inlet. This maximum is shifted to larger z∗ values, when Cw increases. Thus, Nuo is maximum
at z∗ ≃ 0.06 for Cw = 104, at z∗ ≃ 0.1 for Cw = 14858 and at z∗ ≃ 0.17 for Cw = 30000. Note that
the axial positions for the maxima of Nuo do not coincide with the locations of the minima reached
by Nui because of the helicity of the main flow. Figure 12.12b confirms these previous results at a
given location z∗ = 0.5. Nui and Nuo both increase for increasing values of Cw. The local decrease
of Nui or Nuo corresponds to the fact that the fluid gets close the wall temperatures at this given
location. Except for Cw = 30000, the heat transfer coefficient along the rotating cylinder is higher
than the one along the stationary cylinder at z∗ = 0.5.

Figure 12.13a shows the axial distributions of the local Nusselt numbers for Rei = 10216, Cw =
14858 and different Prandtl numbers. For liquid metals (Pr = 0.01), both Nui and Nuo are quite low
and remain independent of z∗, which reflects the dominating influence of the molecular diffusivity on
the heat transfer process. For higher Prandtl numbers Pr ≥ 0.7, Nui decreases for increasing values
of z∗, reaches a minimum value at a given axial location and then increases weakly when moving
towards the cavity outlet. The minimum value is obtained when the fluid is at approximately the
same temperature than the wall. The axial location for which Nui reaches this minimum value is
shifted towards the outlet for increasing Prandtl numbers. Along the outer cylinder, Nuo increases for
increasing Pr values. For gases (Pr = 0.7) and liquids (Pr = [2, 7, 12]), Nuo reaches a maximum close
to the cavity inlet and diminishes for larger axial locations. These results are confirmed by Figure
12.13b, highlighting the influence of Pr on the local Nusselt number at mid-height. It clearly shows
that Nuo strongly increases for increasing Pr values and also that, for a given Prandtl number, Nuo

is larger than Nui. Nui does not vary monotonously with Pr, because at mid-height and for Pr = 7,
the fluid reaches the wall temperature and so Nui tends to zero. Apart from Pr = 7, Nui slightly
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Figure 12.12: Local Nusselt numbers along both cylinders for Rei = 10216, Pr = 0.7 and different
values of the flowrate coefficient Cw: (a) Axial profiles; (b) Variations at mid-height z∗ = 0.5 against
Cw. Results obtained by the in-house RSM for Γ = 77 and η = 0.961.

increases with Pr.
From an engineering point of view, the most interesting quantities are the averaged Nusselt numbers

Nui and Nuo for the inner and outer cylinders respectively. They are the averaged values of the local
Nusselt numbers along the heated surfaces, defined as follows:

Nui =
∆R

h

1

Ti − Ta

∫ h

0

∂T

∂r
|i(z)dz (12.5)

Nuo =
∆R

h

1

To − Ta

∫ h

0

∂T

∂r
|o(z)dz (12.6)

The goal is to provide correlations for Nui and Nuo according to the flow parameters (Rei, Cw and
Pr). Figure 12.14 shows that the averaged Nusselt numbers on both cylinders can be correlated
according to the three flow parameters as follows:

Nui = 0.0291×Re0.82i × Pr0.3 × C0.09
w (12.7)

Nuo = 0.0454×Re0.75i × Pr0.8 × C0.08
w (12.8)

These two correlations are valid for 3744 ≤ Rei ≤ 37443, 0 ≤ Cw ≤ 30000 and 0.01 ≤ Pr ≤ 12 for
a cavity characterized by a large aspect ratio Γ = 77 and a large radius ratio η = 0.961 and for two
given heating factors κi = 0.117 and κo = 0.245.

These results are in agreement with previous results in various rotating flow arrangements. For
turbulent rotating flows, the mean Nusselt number is usually proportional to Re0.8 [233], which is the
case in rotor-stator disk cavities [258] and also in Taylor-Couette systems [164]. In rotor-stator disk
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Figure 12.13: Local Nusselt numbers along both cylinders for Rei = 10216, Cw = 14858 and different
Prandtl numbers Pr: (a) Axial profiles; (b) Variations at mid-height z∗ = 0.5 against Pr. Results
obtained by the in-house RSM for Γ = 77 and η = 0.961.
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Figure 12.14: Correlations for the averaged Nusselt numbers along the: (a) inner cylinder and (b)
the outer cylinder for all the considered cases. Results obtained by the in-house RSM for Γ = 77 and
η = 0.961.

cavities, the exponent varies between 0.7 [260] and 0.89 [281], which confirms the relevance of the
present results.

In the present case, one found that Nui ∝ C0.09
w and Nuo ∝ C0.08

w . To our knowledge, the only
previous work providing a correlation with the flowrate coefficient is the one of Poncet and Schies-
tel [258] obtained using the same RSM model in the case of a rotor-stator interdisk cavity. These
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authors gave indeed the following correlation for the averaged Nusselt number along the stationary
disk: Nu ∝ Re0.8Pr0.5C0.11

w for a wide range of the parameters 5× 105 ≤ Re = Ωb2/ν ≤ 1.44× 106,
0 ≤ Cw ≤ 12082 and 1 ≤ Pr ≤ 12. The present results appear then to be in good agreement with
this previous study in an other rotating flow system.

The dependence of Nui and Nuo on the Prandtl number is quite different between the two cylin-
ders. In Taylor-Couette systems, Nu is usually known to be proportional to Prβ , with β equal or
close to 0.3, which is characteristic of forced convective heat transfer over a rotating cylinder. Aoki et
al. [12] proposed β = 0.3 for 360 ≤ Rei ≤ 2274 and Tachibana and Fukui [333] found β = 1/3. The
present results along the inner cylinder match quite well with these previous results as Nui ∝ Pr0.3

here. But there is also a large variability in the values of β depending especially on the temperature
distributions imposed at the walls (effect of the Grashof number Gr or of the heating factors κi and
κo) and on the geometry (ratio ∆R/a). Aoki et al. [12] showed indeed that Nu ∝ Gr0.29. Among
other things, one can cite the numerical work of Kuosa et al. [164] and the experimental one of Lee
and Minkowycz [175], who proposed β = 0.4 or the work of Simmers and Coney [322], who obtained
Nu ∝ f(Pr)×Pr. In the case of a turbulent rotor-stator flow, Owen and Haynes [232] found β = 0.6.
Thus, it appears difficult to provide definitive conclusions concerning the correlation between the aver-
aged Nusselt number and the Prandt number along the outer cylinder. Nevertheless, the value β = 0.8
found here, remains in the range [0.4 − 1]. The reader can refer to the PhD theses of Fasquelle [92]
and Giret [110] and to the review paper of Fénot et al. [94], who performed a large review of previous
works in Taylor-Couette systems with or without axial throughflow, grooved or ungrooved cylinders
and, who provided numerous correlations for the Nusselt number against all flow parameters.

Some calculations have been performed using a classical RSM and a k-ω model available within
StarCCM+ by Liebherr Aerospace for Rei = 10216, Cw = 14858 and Pr = 0.7 in the same config-
uration. The computations are 3D with a mesh grid composed of 1.7 × 105 cells (Nz = 30). The
k-ω and the RSM predict almost the same values for the averaged Nusselt numbers: Nui = 144 and
Nuo = 190 for the k-ω and Nui = 162 and Nuo = 214 for the RSM. It means that the difference
between the two RSM (StarCCM+ and the one of Elena and Schiestel [85]) is larger than 100% for
the averaged Nusselt number on the stator, for example. This discrepancy may be explained either by
the choice of the turbulence model or by the presence of 3D effects close to the walls. This question
will be clarified in the following section by some LES calculations.

To validate the correlation law (12.7) along the rotor and to highlight the influence of both the
rotation rate Ω and the flowrate coefficient Cw on the heat transfer coefficient, our results are compared
to previous experimental [30, 110, 115] and numerical [240] data for a given Prandtl number Pr = 0.7
and three values of the flowrate coefficient (see Figure 12.15). For these parameters, the law (12.7)
reduces to the form:

Nui = Nui0 + α× Ω0.82 (12.9)

where the averaged Nusselt number Nui0 has been obtained in the configuration of Giret [110] (η =
0.99 and Γ = 333) without rotation (Ω = 0). The coefficient α depends on C0.09

w . The values of Nui0

and α are given in Table 12.3 for the three flowrates considered by Giret [110].

mass flowrate (g/s) Cw α Nui0

30 10684 0.533 6.03
60 21368 0.568 9.85
90 32052 0.589 14.17

Table 12.3: Coefficients involved in the empirical law (12.9) for the three flowrates considered by Giret
[110].

A relatively good agreement is observed between the present results and the experimental data of
Giret [110] for Ω up to 1500 rpm whatever the value of Cw. The better agreement is obtained for the
intermediate value of the flowrate coefficient Cw = 21368. This new correlation (12.9) improves the
correlation of Grosgeorges [115] and most of all the one of Bouafia et al. [30], which overestimates
Nui whatever the value of the rotation rate. The numerical results of Peres [240] fail to predict
the good tendency as the averaged Nusselt number varies slightly against the rotation rate. For all
correlations, the main discrepancy for the heat transfer coefficient along the rotor is observed for very
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Figure 12.15: Variations of the averaged Nusselt number along the rotor Nui against the rotation rate
Ω for Pr = 0.7 and three values of the flowrate coefficient: (a) Cw = 10684 (mass flowrate of 30 g/s),
(b) Cw = 21368 (mass flowrate of 60 g/s), (c) Cw = 32052 (mass flowrate of 90 g/s). Comparisons
between Eq.(12.9) and previous results [30, 110, 115, 240].

high rotation rates (Ω = 2000 rpm). Giret [110] did not provide any explanation for the weak values
of Nui obtained for Ω = 2000 rpm. Note that the same experimental results are not available along
the stator.

12.4 Towards the LES of Taylor-Couette-Poiseuille in real op-
erating flow conditions

Turbulent flows in an open Taylor-Couette system with an axial throughflow is studied here by the
means of large eddy simulations. The ultimate industrial application is the effective cooling of the
rotor-stator gap of an electrical motor. The recent review of Fénot et al. [94] pointed out the lack of
reliable data in such configurations for the hydrodynamic field and most of all for the thermal one.
The main objective of the first subsection is to validate the present LES approach against reliable data
available in the literature [54, 226], which can be seen as a first step towards the simulation of the
real flow conditions. Then, LES results in the configuration corresponding to the real machinery de-
veloped by Liebherr Aerospace Toulouse will be compared to velocity and temperature measurements
performed at IRPHE using a new experimental set-up.
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[54] present [54] present [54] present
N 0.2145 0.2145 0.429 0.429 0.858 0.858

∆z+i 22.95 21.36 16.8 15.87 9.93 9.31
∆z+o − 19.4 − 13.41 − 7.05
∆r+i 0.27 0.47 0.3 0.33 0.35 0.63
∆r+o 0.23 0.43 0.24 0.45 0.26 0.47

(a∆θ)+ 8.01 7.34 8.8 8.22 10.4 9.7
(b∆θ)+ 13.86 13.33 14.34 13.9 15.8 14.7
(Nθ, Nz) (128, 128) (128, 130) (128, 192) (128, 194) (128, 384) (128, 386)
δt(s) − 9× 10−3 − 7× 10−3 − 4× 10−3

CFL − 0.2 − 0.22 − 0.25
CPU time − 5.2 (s/it) − 9 (s/it) − 25.5 (s/it)

Cf,i 8.91× 10−3 8.91× 10−3 9.86× 10−3 1.08× 10−2 1.2× 10−2 1.58× 10−2

Cf,o − 7.44× 10−3 − 8.05× 10−3 − 9.05× 10−3

Reτ,i 163.21 149.53 179.24 167.52 211.85 197.51
Reτ,o 141.19 135.8 146.1 141.6 160.91 149.71

Table 12.4: Numerical details and mean flow parameters. The number of mesh points Nr in the radial
direction is fixed to 65 in all calculations. Comparisons with the LES of Chung and Sung [54].

12.4.1 Configuration of Nouri and Whitelaw [226]

The present LES results are compared to the velocity measurements of Nouri and Whitelaw [226] and
to the LES of Chung and Sung [54] and discussed in terms of the rotation parameter N , which will
take the values 0.2145, 0.429 and 0.858. The axial Reynolds number ReQ is fixed to 8900 and the
rotational Reynolds number will vary. All flow parameters are summed up in Table 12.1.

12.4.1.1 Numerical details

The numerical method is fully described in Chapter 3 and is the same as the one used in the two
previous Chapters 10 and 11. It is only recalled that the derivatives are approximated using fourth-
order compact formula in the radial and axial directions. A dynamic Smagorinsky model is used as
subgrid-scale modeling.

Periodic boundary conditions are applied in the axial and circumferential directions and no-slip
boundary conditions are imposed on the walls. All the numerical details used are summed in Table
12.4 and compared to the LES calculations of Chung and Sung [54]. The domain is here decomposed
into 2 subdomains in the axial direction. In order to save computational ressources, the solution
is calculated by assuming a π−periodicity to enable direct comparisons with Chung and Sung [54].
After reaching the statistical convergence (about 2000 s of computed physical time), the mean and
rms quantities are sampled during the last 80 s in each case and averaged both in the tangential and
axial directions. All the calculations have been performed on the M2P2 cluster.

It is noticeable that Chung and Sung [54] discretized the different equations in time using the
Crank-Nicholson method, and then the coupled velocity components in the convection terms are
decoupled using the implicit velocity decoupling procedure. All the terms are resolved using a second-
order central difference scheme in space with a staggered mesh. They used also a dynamic Smagorinsky
model as subgrid-scale modeling.

12.4.1.2 Flow structures

To highlight the presence of near-wall structures, Figures 12.16 present isovalues of the Q-criterion
colored by the radial position. Whatever the value of the rotation parameter N , coherent structures
are well aligned with the axial flow along the stator. Rotation of the inner cylinder tilts the coherent
structures appearing as spiral rolls and forming a negative angle (as they roll up in the opposite sense
of the rotor) with the axial direction. These spirals are not observed in the LES results of Chung and
Sung [54] for N = 0.429.
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Figure 12.16: Isosurfaces of the Q-criterion (Q = 0.5) colored by the radial position for Γ = 9, η = 0.5
and three values of the rotation parameter N obtained by LES.

12.4.1.3 Mean and turbulent flow fields

Figure 12.17 shows the radial distributions of the mean axial and tangential velocity components nor-
malized respectively by Vz and Ωa. The axial velocity is weakly influenced by the rotation parameter
N and the profile resembles the turbulent Poiseuille profile usually observed in pipe flows. The tan-
gential velocity profile varies with 1/r for 0.35 ≤ r∗ ≤ 0.9 for N = 0.429 and N = 0.858, which means
that the mean angular momentum is almost constant in the center region. On the contrary, it varies
abruptly near the walls. The present results are in good agreement with the experimental data of
Nouri and Whitelaw [226] for N = 0.429 and improve the previous ones of Chung and Sung [54]. The
averaged friction coefficients Cf and the friction Reynolds numbers Reτ obtained along both cylinders
compare very favorably to the LES results of Chung and Sung [54] as listed in Table 12.4.

The radial variations of the Rθθ and Rrz components of the Reynolds stress tensor normalized by

Vz
2
are also displayed in Figure 12.17. Velocity fluctuations are particularly higher for the tangential

component with very intense peak values close to the walls. For the two other normal components (not
shown here), the same behavior is observed with almost constant turbulence intensities within the gap,
which vanish towards the cylinders. As expected, increasing the rotation parameter N induces higher
turbulence levels especially for the radial and tangential components. Furthermore, the distributions
of the normal components are asymmetric, which may be attributed to the destabilizing effect of the
centrifugal force. The Rrz shear component of the Reynolds stress tensor is shown in Figure 12.17.
When N increases, the shear stresses increase in strength too. A good quantitative agreement has
been obtained between the present LES results and the data of Nouri and Whitelaw [226]. It slightly
improves the LES results of Chung and Sung [54] based on second-order spatial numerical schemes.
It highlights then the importance of the high order schemes. The improvements are quite similar to
those obtained by Jung and Sung [141] using a DNS with 65 × 256 × 256 mesh points in the radial,
tangential and axial directions respectively.

Figure 12.18 presents the anisotropy invariant map for the Reynolds stress tensor. It is noticeable
that the present LES results respect the realizability diagram of Lumley [192]. As expected, turbu-
lence is mainly at two-component close to the cylinders and tends to the isotropic state within the
center of the gap. There is only a weak effect of the rotation parameter, the flow getting more isotropic
in the center region for high N values. The present results and the ones of Chung and Sung [54] do
not support their conclusions about a “disk-like” state at mid-radius. Even if the third invariant gets
weakly negative, all the normal components of the Reynolds stress tensor are indeed all of the same
order.

As a partial conclusion, this new LES approach has been fully validated against the velocity mea-
surements of Nouri and Whitelaw [226] in an open Taylor-Couette system with an axial throughflow.
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Figure 12.17: Radial distributions of the mean tangential and axial velocity components and of two
components of the Reynolds stress tensor for Γ = 9, η = 0.5 and three values of N . Comparisons
between the present LES (straight lines), the LES of Chung and Sung [54] (dashed lines) and the
measurements of Nouri and Whitelaw [226] (symbols).

Figure 12.18: Anisotropy invariant map for the Reynolds stress tensor for Γ = 9, η = 0.5 and three
values of N obtained by LES.

Near-wall structures appearing as elongated spiral rolls are observed along the inner cylinder. A very
good agreement has been obtained for both the mean and turbulent fields and for the three values of
the rotation parameter considered. More important, the present results improve the LES of Chung
and Sung [54] highlighting the importance of the order of the spatial schemes. The present LES results
can be now extended confidently to include heat transfer effects.
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12.4.2 Configuration of the “Entrefer” project

In this section, one considers the fluid flow and the heat transfer in the gap between the rotor of an Air
Cycle Machine and the stator of the electrical motor contained in an air conditioning pack developed
by Liebherr Aerospace Toulouse. This configuration is very close to the one previously considered
in Section 12.3.2 using the RSM. LES calculations will be compared to velocity and temperature
measurements performed at IRPHE on a new experimental set-up.

12.4.2.1 Experimental facility developed at IRPHE

Two successive postdoctorate students developed a new Taylor-Couette facility at IRPHE to investi-
gate the fluid flow and the heat transfer in a rotor-stator gap cooled by an axial throughflow.

General description and flow parameters The system (Fig.12.19) is composed of two concentric
cylinders of length h = 0.5 m. The inner cylinder of radius a = 8 cm rotates around its axis at the rate
Ω. The outer cylinder of radius b = 9 cm is stationary. The cavity may be thus defined by an aspect
ratio equal to Γ = 50 and a radius ratio equal to η = 0.89 (narrow-gap cavity). The outer cylinder is
made of PMMA to allow optical velocimetry techniques. Both cylinders are located in a tank made
of PMMA that is regulated in temperature by a refrigerated circulator. The axial volumetric flowrate
Q is imposed within the gap ∆R = b− a = 1 cm by a centrifugal pump from the top to the bottom.
All flow parameters are summarized in Table 12.1 and ensure that the similarity in terms of the
Rossby number (ratio between the rotation velocity and the axial flow) and in terms of the geometry
is preserved between the present experiment and the real turbomachinery. Using water as the working
fluid (instead of air or freon) enables to consider weaker values of the rotation rate compared to the
real rotating machinery.

Before entering the rotor-stator cavity, the water flow coming from 6 pipes is collected in a small
cavity. When leaving the gap, water is gathered in an open tank which is also regulated in temperature.
Water temperature is measured at the entrance and at the outlet of the gap through a set of 2 PT 100
probes located at mid-gap (r = 0.85 cm). The Prandtl number is fixed to 7 in most of the experiments
but may be varied by changing the fluid temperature at the inlet.

PSfrag replacementsInlet RTDRTD 2
RTD 1 Outlet RTD

Slip ring
Heating wire

Water inlet

Water outlet

PVCCopper
Thermalisation tankCorkAluminium

Ω

(a) (b)

Figure 12.19: (a) Schematic representation and (b) photograph of the experimental facility developed
at IRPHE.
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Details about the rotor The rotor, which is also dedicated to supply a heat flux of φ = 5.4
kW/m2 to the fluid, is itself made of two concentric cylinders. The inner one is a 6 cm radius tube in
aluminium. A 1 cm layer of cork was stuck on it to reduce heat losses. Then 60 m of a 4 mm diameter
heating wire (1 Ω/m) was wound on the cork layer. Conductive silver paste was added to fill the gap
between the rings. A 8 cm radius tube in copper (5 mm thickness) was threaded on this assembly.
In order to close the rotor, two PVC endcaps (5 cm thickness) were assembled on both sides. The
motor shaft is a 3 cm radius tube in stainless steel metal. A small hole was drilled in it to take out
every wires (probes and heating resistance) from the inner part of the rotor to a slip ring located at
the top of the shaft. The shaft was passed through the endcaps of the rotor and sealing was achieved
by two O-rings on both sides. Pressure screws on the end caps allow a proper alignment (±0.15 mm)
and positioning of the cylinders respectively to the shaft. The rotor is mounted on 2 bearings. Atop,
a lip seal is used for sealing between the shaft and the cavity as well as for the bottom.

To perform parietal temperature measurements, 4 RTD probes (PT100) were carefully mounted
flush in the rotor. They were arranged in pairs symmetrically opposite respectively located at 16.7
and 33.3 cm from the top of the cylinder. Data were acquired using a 4 channel analog module.

Experimental procedure and data treatment The axial and azimuthal components of the
velocity vector are measured by a two-component LDV sytem arranged as shown in Figure 12.20.
Seeding was achieved with 5 µm polyamide particles. Each sample was conducted during 2 minutes
in order to obtain a statistical convergence of the velocity.

Figure 12.20: Arrangement of the different velocity measurement systems.

PIV and SPIV (Stereo-PIV) measurements were also performed by using a 5 W continuous laser
and two high-speed cameras. Data acquisition frequency is set at 1500 Hz for a 512 × 1024 pixels
resolution. The camera buffer limits the acquisition time at 2.6 s. Polyamide particles of 30 µm in
diameter were used to seed the flow. Cross-correlations between the different frames are performed
with the software DPIVSoft [209]. First interrogation windows are composed of 64×64 pixels with 50%
overlapping. They are then translated and deformed according to the velocity field estimation. Smaller
windows (32× 32 pixels with 50% overlapping) are then chosen to enhance the spatial resolution.

The experimental procedure for the temperature measurements is described as follows. At first,
the different temperature regulation systems are switched on. The pump is also turned on and the
gap is filled with water before starting the rotation of the inner cylinder. When the whole system
reaches the thermal equilibrium, data acquisition is triggered. Finally, the heating wire is powered.
Different experiments showed that around 2h30 are necessary for the system to reach the steady state.
The temperature of the incoming fluid is then close to 25◦C. A 2D axisymmetric model developed
with COMSOL allowed to estimate the heat loss in the system considering mainly conductive heat
transfers. The wall heat flux is found to be equal to 90% of the flux provided by the heating wire.

12.4.2.2 Numerical modeling

One of the main conclusions drawn by Fénot et al. [94] in their review paper is that the multiplication of
influential factors renders open cylindrical gap (Taylor-Couette-Poiseuille) far less widely understood,
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Q (l/s) 2 2 2 3 3 3
Ω (rpm) 100 200 300 100 200 300
ReQ 7490 7490 7490 11200 11200 11200
Ta 8.8 × 106 3.5 × 107 7.9 × 107 8.8 × 106 3.5 × 107 7.9 × 107

N 2.24 4.47 6.71 1.49 2.98 4.47

∆z+
i 26.95 37.6 48.82 22 29.99 36.15

∆z+
o 24.4 33.88 43.38 19.68 27.29 32.57

∆r+i 0.47 0.66 0.86 0.38 0.52 0.62
∆r+o 0.43 0.6 0.76 0.34 0.47 0.56

(a∆θ)+ 44.45 62. 80.51 57.66 78.62 94.76

(b∆θ)+ 45.27 62.86 80.49 58.01 80.48 96.05
(Nr, Nθ, Nz) (65, 144, 130) (65, 144, 130) (65, 144, 130) (91, 128, 182) (91, 128, 182) (91, 128, 182)

δt(s) 1.5 × 10−4 10−4 8 × 10−5 3 × 10−5 7 × 10−5 5 × 10−5

CFL 0.21 0.22 0.24 0.07 0.23 0.22
CPU (s/it) 16.25 17.12 16.09 32.77 32.32 31.54

Cf,i 1.65 × 10−2 3.2 × 10−2 5.4 × 10−2 9.72 × 10−3 1.81 × 10−2 2.63 × 10−2

Cf,o 1.35 × 10−2 2.6 × 10−2 4.26 × 10−2 7.77 × 10−3 1.5 × 10−2 2.13 × 10−2

Reτ,i 169.8 236.86 307.54 195.79 266.93 321.74
Reτ,o 153.71 213.44 273.29 175.11 242.9 289.88

Table 12.5: Numerical details and mean flow parameters for the LES in the “Entrefer” configuration.

and it leads to contradictory conclusions among the authors. This state of affairs would seem to be
essentially due to the entrance or input conditions for axial flow, whether it be dynamic or thermal.
To overcome this problem, one chose to simulate a well-established hydrodynamic flow regime by
rending the flow in the axial direction periodic. To save computational time without any influence on
the velocity field, the length of the cavity has been reduced such that Γ = 10 (i.e. 5 times smaller
than in the experiment). It is noticeable that the boundary conditions for the thermal field remain
the same as in the experiments. The consequence is that the thermal field is not established. The
geometrical configuration simulated here is represented in Figure 12.21. The cavity is decomposed
into 2 subdomains in the axial direction and to reduce computational time, a periodicity of 3π/4 is
assumed in the tangential direction. In this configuration, the WALE model has been used as the
subgrid scale model. All the numerical details for the LES calculations are summed up in Table 12.5.

Figure 12.21: Sketch of the simulated cavity with boundary conditions for the thermal field.

In the present case, one considers only very small temperature differences between the incoming
fluid and the rotor wall. Moreover, one has shown previously in a similar flow arrangement that the
heat transfer process is dominated by forced convection and so that considering temperature as a
passive scalar may lead to very satisfactory results. One supposes that density is not significantly
affected by temperature differences, which allows to dissociate the dynamical effects from the heat
transfer process.

Some calculations for Pr = 7 have also been performed using the RSM (Fluent) in its low Reynolds
number formulation. Calculations are steady axisymmetric with a (Nr = 81×Nz = 500) mesh grid.
The geometrical parameters of the cavity are strictly the same as in the experiments. The Reynolds
and energy equations are coupled through the Boussinesq approximation without the term of viscous
dissipation. It has been checked that the inlet boundary conditions (turbulence intensities, velocity
profiles) have only a weak influence on the velocity profiles and on the Nusselt distributions.

12.4.2.3 Hydrodynamic field

Figure 12.22 presents the iso-values of the Q criterion obtained by LES for four sets of parameters
(ReQ, Ta). It highlights the presence of 3D unsteady coherent structures within the two boundary
layers. They appear as thin negative spiral patterns along the rotor as they roll up in the opposite
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12.22: Iso-values of the Q criterion colored by the radial position along the rotor (a,c,e,g) and
along the stator (b,d,f,h) obtained by LES for Γ = 10, η = 0.89 and: N = 1.49 (Ta = 8.8 × 106 &
ReQ = 11200; a,b), N = 2.24 (Ta = 8.8 × 106 & ReQ = 7490; c,d), N = 4.47 (Ta = 3.5 × 107 &
ReQ = 7490; e,f), N = 6.71 (Ta = 7.9× 107 & ReQ = 7490; g,h).

sense of the inner cylinder rotation. They are very similar to those obtained in the previous section for
a middle-gap cavity. The same spiral network is obtained along the stator with a positive angle. When
the axial throughflow dominates rotation effects, these structures are aligned with the axial direction.
They get progressively inclined with the tangential direction when the rotation rate increases. As
examples, along the rotor, the angle formed by the spirals with the tangential direction is equal to
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45◦ for N = 1.49 (Ta = 8.8× 106, ReQ = 11200), to 22◦ for N = 4.47 (Ta = 3.5× 107, ReQ = 7490)
and to 16◦ for N = 6.71 (Ta = 7.9 × 107, ReQ = 7490). From this figure, one can draw two main
conclusions:

• from a numerical point of view, there is no evidence of structures at the interface between the
two subdomains produced by a numerical artifact, which valids one more time the multidomain
approach.

• 3D unsteady structures appear as spiral rolls along both walls at a relatively small scale. They
may play a key role in the wall heat transfer process. They could explain why most of the RANS
models, which assume the base flow as being stationary and axisymmetric, fail to predict the
right distributions of the heat transfer coefficient [231].

Figure 12.23: Iso-values of the Q criterion obtained by a hybrid RANS/LES method for Γ = 10,
η = 0.89 and N = 2.24 (see in Reference [99]).

Some calculations have also been performed using the Code Saturne developed by EDF using both
the elliptic blending RSM and a hybrid RANS/LES approach. The comparisons with the present
LES have been published in Reference [99] for two sets of parameters. The computational cost is
certainly about 2 − 3 times lower than in the present LES but the hybrid RANS/LES computation
does not improve even the predictions of the RANS model and completely fails to predict the mean
and turbulent flow fields, especially close to the walls. Figure 12.23 exhibits the iso-values of the Q
criterion obtained by the hybrid RANS/LES method for N = 2.24 (Ta = 8.8 × 106 & ReQ = 7490).
Some streaks are obtained within the boundary layers but it is clear that this approach does not
capture so well the thin coherent 3D structures obtained by the pure LES.

Figure 12.24: Iso-values of the λ2 criterion (λ2 = 103) obtained experimentally from SPIV measure-
ments for Γ = 50, η = 0.89, ReQ = 7490 and Ta = 8.7× 106.

The SPIV measurements have been performed at a sufficiently high frequency (1500 Hz) to be
resolved in time and to make the Taylor hypothesis valid. By considering also that the flow is mainly
in solid body rotation, one can calculate the λ2 criterion, which is the second proper value of the
S2 + A2 tensor, where S and A are the symmetric and antisymmetric parts of the velocity gradient
tensor approximated using second-order finite difference schemes. The iso-values of λ2 enable to
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highlight the presence of coherent structures within the flow. One example is given in Figure 12.24
for ReQ = 7490 and Ta = 8.7 × 106. The axial fluid flows from the top to the bottom and time is
increasing from the right to the left. Coherent structures along the rotor side can be observed with a
given inclination angle. There is no apparent 3D large scale vortices within the core of the flow. These
results are in qualitative good agreement with the iso-values of the Q criterion obtained numerically
(Fig.12.22c & d).

(a) (b)

(c) (d)

Figure 12.25: Axial variations of the mean tangential velocity V ∗
θ for η = 0.89 and: (a) N = 1.49

(Ta = 8.8 × 106, ReQ = 11200), (b) N = 2.24 (Ta = 8.8 × 106, ReQ = 7490), (c) N = 4.47
(Ta = 7.9× 107, ReQ = 11200), (d) N = 6.71 (Ta = 7.9× 107, ReQ = 7490). Comparisons between
the LES (lines) and the LDV measurements (symbols).

To go a little bit in more details, the LES results are compared first to the velocity measurements
in terms of the mean velocity profiles. The axial and azimuthal velocity components are made di-
mensionless by the mean inlet axial velocity Vz and the rotor wall velocity Ωa respectively. Note that
the value of Vz is the one read on the flowmeter, which slightly fluctuates. Thus, the integration of
the normalized experimental axial velocity profiles in the radial direction does not yield a value of
unity. The experimental profiles should be then rescaled to get the conservation of mass as was done
by Chung and Sung [54] for the experimental data of Nouri & Whitelaw [226].

First of all, it has been checked whether the flow field is well established in the experiment or
not. For that, Figure 12.25 compares the LES results with the velocity measurements performed by
LDV at various axial positions and for four sets of parameters. First of all, the tangential velocity
profiles vary very weakly with the rotation parameter N such that V ∗

θ (r
∗ = 0.5) at mid-gap remains

close to 0.5 in the simulations. One can just notice that, at low N values, V ∗
θ varies with 1/r in the
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gap and gets constant at high N . In that case, the profile resembles the Batchelor profile obtained in
unmerged boundary layer interdisk flows. Experimentally, for N = 1.49 and N = 2.24, the axial flow
pilots the hydrodynamic field and the tangential velocity remains very low even close to the cavity
outlet at z∗ = 0.88, corresponding to 22Dh (where Dh = 2∆R is the hydraulic diameter). It means
that the flow is not hydrodynamically established. When one increases the rotation rate, the exper-
imental profiles get closer to the numerical ones as rotation effects dominate the axial flow. In the
experiments, one can suppose that the flow is not perfectly established even if the axial dependence
of the velocity profiles is weak for 0.4 ≤ z∗ ≤ 0.88 (between 10 and 22 Dh). The main conclusion
is that, even if the length of the cavity is relatively short in the experiments, for large values of the
rotation parameter N ≥ 4, the flow field may be considered as hydrodynamically established at the
cavity outlet. On the contrary, the axial dependence of the tangential velocity profile is strong for
N ≤ 2.3.

(a) (b)

(c) (d)

Figure 12.26: Comparisons of the different experimental approaches (symbols) plotted at z∗ = 0.9
in terms of the mean (a,b) tangential V ∗

θ and (c,d) axial V ∗
z velocity components for η = 0.89,

ReQ = 7490 and two Taylor numbers: Ta = 8.8× 106, N = 2.24 (a,c) and Ta = 7.9× 107, N = 6.71
(b,d). Comparisons with the LES (lines).

Figure 12.26 compares the three velocity measurement techniques (LDV, PIV et SPIV) for two very
different values of N close to the cavity outlet at z∗ = 0.9 (22.5Dh). One recalls that all techniques do
not provide the same informations. The results obtained by LDV and PIV 3C (at three components)
are very similar. The PIV 3C gives an access to the velocity field closer to the walls, especially on
the stator side. Close to the rotor, laser reflexions induce a loss of information within the boundary
layer. The radial distribution of the mean axial velocity component computed by LES resembles a
typical Poiseuille profile usually encountered in well established turbulent pipe flows and is not so
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sensitive to the value of N . Experimentally, one recalls that by integration over the radius of the
velocity profile, one does not obtain the flowrate corresponding to ReQ and all profiles should be then
rescaled. It is a quite classical result in such experiments already observed by Nouri and Whitelaw
[226]. For N = 2.24, the experimental profiles are close to a turbulent Poiseuille profile, whereas for
a larger value of N = 6.71 (same flowrate Q but a higher rotation rate Ω), the profiles look more like
a laminar Poiseuille profile with a parabolic shape.

The corresponding profiles of the normal components of the Reynolds stress tensor are plotted
in Figure 12.27 for the same parameters and at the same axial position z∗ = 0.9. The tangential

component Rθθ has been normalized by (Ωa)2 and the two others Rrr and Rzz by Vz
2
. It is noticeable

that the cross-components of the Reynolds stress tensor are not shown here for three main reasons:
they are at least one order weaker than the normal components, their behavior is very similar to that
obtained in the previous section for a middle-gap cavity and it is particularly difficult to get a good
statistical convergence of these quantities in the experiments. As shown on Figure 12.27, turbulence
is mainly concentrated within the boundary layers, where peak values for R∗

θθ and R∗
zz are observed.

On the contrary, the radial normal component is maximum at mid-gap. A weak asymmetry may
be observed from the numerical profiles with higher turbulence levels close to the rotor. For a given
axial Reynolds number, turbulence intensities increase, as expected, with increasing values of the
Taylor number. The main interesting result is the very high levels of the R∗

θθ and R∗
zz components for

N = 6.71, which have never been observed in any of the previous experimental or numerical studies
published on that configuration [54, 226, 256]. A relatively good agreement has been obtained between
the numerics and the experimental methods, especially for the radial and axial normal components.
On the contrary, large discrepancies between the LDV and the PIV 3C techniques are observed for
the tangential normal component.

The influence of the flow parameters (ReQ, Ta) on the mean and turbulent flow fields is now
investigated. The LES results and the LDV measurements are compared at z∗ = 0.9 (22.5Dh) in
terms of the two mean velocity components V ∗

θ and V ∗
z for two axial Reynolds numbers and three

Taylor numbers (Fig.12.28 & 12.29). Note that the different quantities can not be measured by
LDV in the boundary layers due to technical constraints. Figure 12.28 confirms the previous results
already discussed. The numerical profiles for the mean velocity components are weakly dependent
on the flow parameters, which can be mainly explained by the axial periodicity of the cavity. The
axial mean velocity remains the same whatever the values of ReQ and Ta. For large Ta values, the
normalized tangential velocity remains constant within the gap and equal to 0.5. Fluid rotates as
a solid body in the region located outside the boundary layers. For weaker values of Ta, V ∗

θ varies
linearly with 1/r such that the angular momentum is conserved. In the experiments, the effect of
ReQ remains weak. An asymmetry in the Vz profile is observed for all sets of parameters but it is
not always along the same wall depending on the parameters. The flowrate has contrariwise a large
influence on the tangential velocity profile and especially outside the boundary layers. High flowrates
induce low tangential velocities in the gap. The discrepancies observed between the LES and the LDV
measurements may be fully attributed to the different hydrodynamic flow regimes.

Figure 12.29 highlights the influence of the parameters on the turbulent field. As expected, higher
values of the Taylor number induce higher turbulence levels within the gap and in the boundary layers
whatever the value of ReQ. This result is not so intuitive for the tangential normal component due to
the normalization by (Ωa)2. It means that the tangential turbulence intensities increase more rapidly
than the rotation rate of the inner cylinder, which can not be attributed to the axial flowrate fixed
at a constant value. The same trends have been obtained both experimentally and numerically with
a relatively good agreement between the two approaches. The LDV measurements seem to be less
sensitive to the rotation rate. By comparisons between Figure 12.29a,c and 12.29b,d, it can be seen
that the effect of the axial flowrate remains weak. Once again, as the normal axial component R∗

zz is

normalized by Vz
2
, it means that this component Rzz increases with increasing values of ReQ. It is

also noticeable here that the peak values observed within the boundary layers, and especially along
the rotor side, are particularly high compared to those published in previous papers [54, 226, 256].

A large numerical and experimental database has been established for 6 sets of parameters (ReQ,
Ta). The three measurement techniques have been compared favorably for most of the mean and
turbulent quantities. Some important results are gained from this study. The axial variation of the
velocity profiles does not depend only on the length of the cavity but also on the value of the rotation
parameter N . For high values of N ≥ 4, i.e. rotation effects are strong compared to the axial flowrate,
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(a) (b)

(c) (d)

(e) (f)

Figure 12.27: Comparisons of the different experimental approaches (symbols) plotted at z∗ = 0.9 in

terms of the normal components (a,b) R∗
rr = v′2

r /Vz
2
, (c,d) R∗

θθ = v
′2
θ /(Ωa)2 and (e,f) R∗

zz = v′2
z /Vz

2
of

the Reynolds stress tensor for η = 0.89, ReQ = 7490 and two Taylor numbers: (a,c,e) Ta = 8.8× 106,
N = 2.24 and (b,d,f) Ta = 7.9× 107, N = 6.71. Comparisons with the LES (lines).

similarity profiles are obtained for z∗ ≥ 0.4. In that case, LES results and velocity measurements
compare quite favorably. On the contrary, for N ≤ 2.4, all mean velocity profiles strongly depend on
the axial position such that the experimental profiles remain far from the computed ones. In all cases,
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(a) (b)

(c) (d)

Figure 12.28: Influence of the Taylor number on the mean (a,b) tangential V ∗
θ and (c,d) axial V ∗

z

velocity components for ReQ = 7490 (a,c) and ReQ = 11200 (b,d). Comparisons between the LES
(lines) and the LDV measurements (symbols) obtained at z∗ = 0.9 for η = 0.89.

the flow is highly turbulent with peak values in the boundary layers, where 3D coherent unsteady
structures are observed in the simulations along both cylinders.

12.4.2.4 Heat transfer coefficient

From an engineering point of view, the main goal is to establish correlations for the heat transfer
coefficient on the rotor wall according to the flow parameters: ReQ, Ta and the Prandtl number Pr.
In the “Liebherr 1” configuration, correlation laws have been established using the RSM for both
cylinders. Equations under the form Nu ∝ RemQTanPrγ have been obtained in the case of imposed
temperatures on the walls. If the coefficients m, n and γ were in good agreement with data available in
the literature on the rotor side, it has been found that γ = 0.8 on the stator, which was somewhat an
unexpected result. Moreover, there were large discrepancies between the RSM results and calculations
performed using StarCCM+ on the same configuration. It appeared then crucial to develop a LES
approach to investigate possible 3D structures embedded in the flow before trying to establish more
precise correlations for the Nusselt number in the case of an imposed heat flux on the inner surface of
the rotor. In the following, the LES results will be compared to temperature measurements performed
using the new IRPHE’s experiment.

As a shorter cavity is considered in the simulations and to enable direct comparisons with the
experiments in which the Nusselt number measurements are performed at z = 16 cm and z = 33 cm,
the LES results are extended to larger axial positions z using the following law:
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(a) (b)

(c) (d)

Figure 12.29: Influence of the Taylor number on the normal components (a,b) R∗
θθ and (c,d) R∗

zz of
the Reynolds stress tensor for ReQ = 7490 (a,c) and ReQ = 11200 (b,d). Comparisons between the
LES (lines) and the LDV measurements (symbols) obtained at z∗ = 0.9 for η = 0.89.

Nu(z) =
φ∆R

λ
[
2πaφ
cpqm

(z − z0)
]
− Tp(z) + Tf (z0)

(12.10)

where Tp(z) and Tf (z0) are the wall and fluid temperatures deduced from the simulations, z0 = 0 the
inlet axial location, λ the fluid thermal conductivity, qm the mass flowrate and cp the fluid thermal
capacity. Equation (12.10) is deduced from an energy balance in an annulus of gap ∆R subjected to
a heat flux φ imposed on the inner cylinder and a superimposed throughflow Q. It does not take into
account the growth of the rotor boundary layer.

Figure 12.30 shows the temperature distribution Tp(θ, z) on the rotor wall for ReQ = 11200 and
Ta = 8.8 × 106. It can be noticed that a small buffer region with adiabatic thermal conditions has
been used in the numerics at the bottom of the system for numerical stability purpose. Streaks in
the wall temperature distribution can be clearly seen due to the presence of the coherent structures
within the rotor boundary layer, already evoked in the previous section. To evaluate the local Nusselt
number distribution using Equation (12.10), the wall temperature has been then averaged along the
azimuthal direction.

Figure 12.31 shows that the local Nusselt number decreases from the inlet of the gap and then tends
to reach a constant value around z ≃ 0.05 cm (for Ta = 7.9 × 107), which is well fitted by Equation
(12.10). The higher the Taylor number is, more rapidly Nu tends to reach its limit. This behavior is
in agreement with the precedent findings of Hirai et al. [128] or Poncet et al. [256] in Taylor-Couette-
Poiseuille flows, which corresponds also to the thermal development of flow in pipes or ducts. As
Nu tends to an asymptotical limit, the LES can be extended using Equation (12.10) and simulated
Nusselt numbers will be given in the following at an axial position z = 33 cm (z∗ = z/h = 0.66),
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Figure 12.30: Outspread view in a (r, z) plane of the temperature map on the rotating inner cylinder
surface for ReQ = 11200, Ta = 8.8× 106 (N = 1.49) and Pr = 7 obtained by LES.

Figure 12.31: Axial variations of the local Nusselt number for ReQ = 11200, Pr = 7 and three Taylor
numbers. Comparisons between the present LES and Eq.(12.10).

corresponding to the lowest temperature probe in the experiment, thus giving the measurements as
close as possible to the established regime.

The computational cost to get a good convergence of the statistics being relatively expensive, only
9 different cases for two Prandtl numbers have been considered, which is not enough to establish
valuable correlations for the Nusselt number. So, let’s start by presenting the experimental results.
Figure 12.32 shows the evolution of the Nusselt number Nu = h∆R/λ (λ the thermal conductivity
of water) on the rotor as a function of the Taylor number for various axial Reynolds numbers ReQ.
There is a noticeable difference between the values obtained with the two probes (at z∗ = 0.32 and
0.66) due to the transient nature of the heat transfer process. Nu is clearly an increasing function
of Ta with more important variations for weak rotation rates. It may be attributed to the coherent
structures observed within the rotor boundary layer, which would prevent the axial flow to cool the
rotor at high rotation rates. The same tendency is obtained whatever the axial Reynolds number ReQ.
The present results are also compared to the experimental data of Gilchrist et al. [109] performed for
950 ≤ ReQ ≤ 2080. The agreement is particularly good at high Ta values.

The experimental data plotted in Figure 12.32 have also been fitted by correlation laws under the

form: Nu = B∆R
(
Ω
ν

)2/7
, with B an adjusting coefficient equal to 26 for the probe at z∗ = 0.32
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Figure 12.32: Variations of the Nusselt number according to the Taylor number for various axial
Reynolds numbers. Comparisons between the present measurements and the previous results of
Gilchrist et al. [109]. The lines correspond to the scalings deduced from Equation (12.14).

and ReQ = 11200 as example. It is based on both the boundary theory in the turbulent regime and
the assumption that heat transfer is purely conductive as it will be shown in the following. It works
quite well especially for Ta > 2× 107. Thus, Nu scales like Ta1/7 (Ω2/7) in the present experiments,
whereas Gilchrist et al. [109] found an exponent equal to 0.226 but for a narrower range of Ta values.

Let’s come back to the form of the correlation law for Nu. It was inspired by the work of Aoki
et al. [12] on laminar Taylor-Couette flows. If one assumes that the flow may be divided into two
flow regions, the inviscid region where the mixing effect of disturbance is very large and the viscous
dominant region near the wall, the boundary theory in the turbulent regime gives the following relation:

δ

∆R
∼ (

Vef∆R

ν
)−1/5 (12.11)

where Vef represents the velocity at the boundary of the two regions. The balance between the
centrifugal and viscous forces in the boundary layer region is:

Ω2a ∼ Vefν

δ2
(12.12)

Then, the expression for δ/∆R representing the velocity gradient at the wall is:

δ

∆R
∼
(
Ω2a∆R3

ν2

)−1/7

(12.13)

Assuming that the heat transfer is purely conductive h = λ/δ, one finally gets:

Nu ∼ Ta1/7 (12.14)

By removing the thermalization of the external tank, the temperature of water can vary and the
Prandtl number as well. It has been done for four sets of parameters (Ω, Q). Thus, 4 × 15000
measurements have been performed. An error minimization by the least square method provides the
following correlation law:

Nu = 1.5294× 10−5Re1.0831Q Ta0.1218Pr0.9204 (12.15)

It confirms, in particular, that the Nusselt number depends on the Taylor number with an exponent
close to 1/7(≃ 0.1438) as found by Equation (12.14). On the contrary, the exponent for the axial

231



232 CHAPTER 12. TURBULENT TAYLOR-COUETTE-POISEUILLE FLOWS

Reynolds number 1.0831 is higher than the classical one found in the literature 0.8 [51]. The exponent
for the Prandtl number 0.9 is also much higher than the classical value 0.3. The reader can refer to
the section 12.3.2.3 for the discussion about the values of the different exponents and to the review of
Fénot et al. [94].

One can also try to gather the results and express the Nusselt number under the form:

Nu = A(Pr)Reβeff (12.16)

Reeff =
Veff ×Dh

ν
, Veff =

(
Vz

2
+ α(Ωa)2

)1/2
(12.17)

where Reeff and Veff are the effective Reynolds number and velocity respectively, Dh = 2∆R the
hydraulic diameter and α a coefficient representing the relative importance of rotation compared to
the axial flowrate. Figure 12.33a shows the evolution of Nu against Reeff for α = 0.5. α is usually
arbitrarily fixed to 0.5 (see in [94]). It will be shown in the following that its value can also be
optimized. The results obtained for three values of the axial Reynolds number are well scaled by a
linear interpolation with A = 0.92 and β = 0.27.

(a) (b)

Figure 12.33: Evolution of the experimental Nusselt number at z∗ = 0.66 according to the effective
Reynolds number: (a) for three values of the axial Reynolds number and Pr = 6 (the linear inter-
polation has been obtained using α = 0.5, A = 0.92 and β = 0.27); (b) for various Prandtl numbers
with α = 0.5.

If the Prandtl number varies, the experimental data may be correlated under the form:

Nu = AReβeffPrγ (12.18)

Using the least square method, the coefficients A, β and γ can be deduced for different values of α
used in the literature [94] (see Table 12.6). The usual value for β found in the literature is 0.8 far from
the one obtained here around 0.3. The same remark can be done for γ lower than 0.1 in the present
case and far from the usual value 0.3. It can be partly explained by the fact that usual averaged
values for the Nusselt number are obtained by an average along the axial direction and so integrates
some edge effects as shown in Figure 12.11 for example.

Figure 12.33b reports the evolution of the Nusselt number against the effective Reynolds number
for α = 0.5 and various Prandtl numbers. Each segment corresponds to a given temperature drift due
to the stop of the thermalization. The experimental values follow a linear behavior with the same
slope when Reeff increases.

Figure 12.34 shows the main results of this section. The LES and RSM results are compared to
the temperature measurements in terms of the Nusselt number on the rotor side at z∗ = 0.66. Nu
is plotted against Equation (12.15). Some typical values are also reported in Table 12.7. What first
meets the eyes is the large discrepancy between the different approaches, with an overestimation of
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α A β γ
0.25 0.28 0.37 0.1
0.5 0.499 0.31 0.05
0.6 0.667 0.28 0.026
0.8 0.56 0.3 0.04

Table 12.6: Values of A, β and γ for different values of α.

the Nusselt number by the numerics. There is no apparent reason, which could explain such a large
overestimation by the RSM (Fluent) compared to the experiment, as the same boundary conditions
and flow parameters have been considered. Fénot et al. [94] tried, in their review paper, to provide
some explanations for that: It should be added that important data such as entry velocity profile
and turbulence rate are generally not given consideration by the authors, and this omission no doubt
partially explains to striking disparities in their reported results. The influence of these parameters
has been then tested for some particular cases, keeping in mind that the inlet boundary conditions are
unknown in the experiments. Changing the turbulence intensities at the inlet or the type of velocity
profile does not modify significantly the averaged value for the Nusselt number on the rotor. For
example, Nu is 15% lower if the turbulence intensities imposed at the inlet decrease from 10% to 1%,
which is not enough to explain the difference with the experiments. It may be attributed to both the
presence of 3D structures within the boundary layers not captured by the RSM (Fluent) and to the
turbulence modeling, which is not adapted to confined rotating flows with heat transfer.

Ta ReQ Pr = 0.7 Pr = 7
8.8× 106 7490 15.65 (LES) −
8.8× 106 11200 17.23 (LES) 19.25 (LES)

16.01 (exp.)
73.4 (RSM)

3.5× 107 7490 20.89 (LES) −
3.5× 107 11200 24.9 (LES) 51.6 (LES)

16.81 (exp.)
125.4 (RSM)

7.9× 107 7490 22.25 (LES) −
7.9× 107 11200 26.7 (LES) 64.65 (LES)

18.09 (exp.)
156.3 (RSM)

Table 12.7: Values of the Nusselt number at z∗ = 0.66 for various flow parameters. Comparisons
between the LES, the RSM (Fluent) and the experimental data.

The circles on Figure 12.34 represent the LES results, whose magnitude is roughly the same as
in the experiments. The symbols confined closed to the origin of the axis correspond to the values
obtained for Pr = 0.7 and the other group of three circles represent computations for Pr = 7. For
N = 1.49 and Pr = 7, the LES is in close agreement with the experimental data: Nu = 16.01 in
the experiment and Nu = 19.25 by LES (see Table 12.7). The general overestimation of the Nusselt
number by the LES is mainly due to the periodicity of the flow in the axial direction, whereas the flow
is in a transient state in the experiments. It would be risky to identify some correlations with such
few numerical points but it seems that the Nusselt number is much more dependent on the Taylor
number in the LES than in the experiments. On the contrary, its dependence on the Prandtl number
is much weaker and close to Pr1/3. Nevertheless, the LES improves significantly the predictions of
the RSM.

In order to explain the difference remaining between the experiments and the LES or RSM pre-
dictions, the influence of the viscous dissipation term on the Nusselt number has been checked in
the particular case where one is in perfect similarity with the real turbomachinery: an air flow at
ReQ = 7490 and Ta = 7.8 × 107 using the RSM model of Fluent. In all simulations, the viscous
dissipation term has been indeed not taken into account in the energy equation. With the viscous
dissipation term, the Nusselt number is slightly lower. The maximum difference is 1.25 at a given
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Figure 12.34: Comparisons in terms of the Nusselt number at z∗ = 0.66 between the LES (circles),
the RSM (Fluent, crosses) and the measurements (squares).

axial position, such that the difference is less than 1% on the mean value, which does not explain the
discrepancies observed in Figure 12.34.

The measure of this heat source by viscous dissipation has also been performed in the experiments
with no axial flow and for both fluids: water and air. For a water flow at a Taylor number equal to
7.9 × 107, an increase of 0.085 K per hour has been registered. For an air flow at the same Ta, one
has estimated the dissipated power being equal to 0.26 W, which would correspond to an increase in
temperature of 300 K per hour. This last value is, of course, not negligible but one recalls that no
axial flow is here imposed. The power injected in the fluid by viscous dissipation remains weak in all
cases except for long time experiments using air as the working fluid. Nevertheless, when an axial flow
is imposed, the increase in temperature is much lower. By supposing that the dissipated power due
to viscosity remains the same (denoted here Pinj), one can also estimate the increase in temperature
∆T as a function of the axial mass flowrate qm: ∆T = Pinj/(cpqm). Thus, for a flowrate equal to
0.01 m3/s, the increase in ∆T is reduced to 79.2 K per hour.

12.5 Conclusion

In this Chapter, the turbulent flow between two concentric cylinders, where only the inner cylinder is
rotating, has been considered numerically in the isothermal and non isothermal cases and the influence
of the flow parameters (rotation rate, axial flowrate, geometry, working fluid) has been discussed in
details. Four configurations have been studied: two using the RSM of Elena and Schiestel [85, 298]
and the two others by LES. The numerical predictions have been compared either to data available
in the literature or to measurements performed using a new experimental set-up recently developed
at IRPHE for that occasion.

Even if the RSM has been widely validated in various rotating cavities [85, 253, 258, 298], it
has been first favorably compared to the velocity measurements of Escudier and Gouldson [89] for a
turbulent isothermal flow in a very elongated Taylor-Couette system with an axial flow. In particular,
it improves significantly the predictions of the k − ε model of Naser [217] in the same configuration.
The RSM model has then be used in a Taylor-Couette-Poiseuille system defined by a radius ratio
η = 0.961 and an aspect ratio Γ = 77 close to the real electric motor developed by Liebherr Aerospace
Toulouse. The results showed that the flow is established quite rapidly. For axial positions larger
than 20% of the cavity height, the radial profiles of the mean velocity components and also of the
Reynolds stress tensor components do not depend any more on the axial position. The mean flow is
helical with a turbulent Poiseuille-like profile for the mean axial velocity component and a torsional
Couette-like profile for the mean tangential velocity component. Turbulence is mainly concentrated
in the middle of the gap between the two cylinders and vanishes towards the walls. The thermal
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field is also independent of the axial position for z ≥ 0.2h. The dominating influence of the outer
cylinder on the thermal field has been shown. Finally, new correlations have been provided for the
averaged Nusselt numbers along both cylinders. On the rotor side, the Nusselt number depends on the
voluminal flowrate Q to the power 0.09, on the rotation rate Ω to the power 0.82 and on the Prandtl
number to the power 0.3. These coefficients are in relatively good agreement with other experimental
data but large discrepancies remain with other RANS models available within StarCCM+ in the same
configuration.

The calculations using the RSM were a first step towards the modeling of the real flow conditions.
To go a little further, LES computations have been then compared to the velocity and temperature
measurements performed on a new experimental set-up developed at IRPHE. To validate the LES
approach, some comparisons have been first performed with the experimental data of Nouri and
Whitelaw [226] and the LES of Chung and Sung [54] in the isothermal case and for a middle-gap
cavity. The present LES improves the former one of Chung and Sung [54]. It shows, in particular, that
high order spatial schemes (4th order here) are necessary to predict more accurately the turbulence
intensities within the thin boundary layers. The second main result is the appearance of 3D coherent
structures along both cylinders under the form of spiral rolls, which can not be captured by RANS
models assuming the axisymmetry of the flow. In the framework of the “Entrefer moteur” project
financially supported by Liebherr Aerospace Toulouse, a last configuration characterized by an aspect
ratio Γ = 50 and a radius ratio η = 8/9 has been considered both numerically and experimentally. An
axial water flow is superimposed on the base Taylor-Couette flow. The inner cylinder is rotating and
heated by a constant heat flux, while the outer one is stationary and insulated. Spiral rolls have been
also highlighted by LES in this configuration. Turbulence levels are remarkably high within the gap
and especially in the boundary layers. A correlation for the Nusselt number measured at z∗ = 0.66
has been established from 60000 measurements. On the rotor side, the Nusselt number depends on
the voluminal flowrate Q to the power 1.08, on the rotation rate Ω to the power 0.24 and on the
Prandtl number to the power 0.92, coefficients quite far from those previously found by the RSM in a
slightly different configuration. A good agreement is obtained with the LES for some particular values
of the rotation parameter N ≥ 4. The hydrodynamic flow is then established in the experiments
and the two approaches compare quite well in terms of the mean and turbulent velocity fields. For
N ≤ 2.4, the two methods show larger discrepancies even for the mean tangential flow. The flow is in
a transient state in the experiments and all quantities are strongly dependent on the axial position,
whereas the flow is assumed to be periodic in the axial direction in the LES. Nevertheless, the LES
strongly improves the predictions of classical RANS models. Other calculations are now required to
both cover a wider range of the flow parameters and to simulate also a non-periodic flow in the LES
to get closer to the experimental conditions.
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Part V: Research outlooks

Summary: This final part presents some research outlooks, which will be undertaken within the
next few years. The main topic is on the turbulent impinging jet flow onto a rotating disk with heat
transfer (Chapter 13) used for the effective cooling of rotating machineries. This project is one part of
the HYDREX action of the Labex MEC (ANR-11-LABX-0092). Other projects are briefly presented
in the last Chapter 14 of this habilitation thesis and have absolutely nothing to deal with rotating
disk flows: simulation of the mucus flow in the human respiratory system and its interaction with
the cilia, and three projects on refrigeration technologies in the framework of an industrial chair on
energy efficiency.



Chapter 13

Impinging jet flow onto a rotating
disk

Rotating flows remain an alive topic of research. Some future issues have already been evoked through
the previous Chapters. One can add also the ones pointed out, in the review paper of Launder, Poncet
& Serre [170]:

• the knowledge of the different scenarii for the transition to turbulence must be further extended.
In particular, the role of the crossflow instability on turbulence breakdown needs to be clarified.

• efficient control strategies to delay or promote the transition to turbulence in the disk boundary
layers remain to be developed.

• an urgent question to resolve is whether, in turbulent flow, the failure to reproduce numerically
the permanent large-scale structures (see section 8.6) results from inadequate numerical modeling
or whether the so-called failure arises from relatively small departures of the actual experiments
from the idealized test-case configurations.

• numerical modeling must be improved to facilitate the exploration via LES of more complex flows
addressing, in particular, higher rotation rates, appreciable density variations associated with
large temperature differences, and finally actual industrial disk flow configuration geometries.

The last point will be my quest for the Holy Grail for the next few years. It falls perfectly
within the framework of the HYDREX (“Extreme hydrodynamics in rotating machineries”) project
(Labex “Mechanics & Complexity” MEC, 2011-2021, ANR-11-LABX-0092) coordinated by P. Le Gal
(IRPHE). The goal is to consider industrial flows in real operating conditions. Two configurations
will be considered:

1. the turbulent impinging jet flow over a rotating disk with heat transfer. This project will be my
main one for the next few years and is discussed in the following;

2. the flow around a cluster of river current turbines (not evoked here). This work is part of the
Federative Research and Development program Urabäıla recently granted by the FUI14 in the
frame of the Energy Climate program of the french government. In this large project coordinated
by Bertin Technologies, the aim is to perform LES with the objective to achieve an accurate
description of the physical mechanisms and thereby to provide reliable reference databases using
the CFD code of the k-epsilon society, member also of the consortium.

The project on the impinging jet flow is in close collaboration with some members of the D2FT
team (“Fluid dynamics and heat transfer”), Dr J. Pellé and Prof. S. Harmand, from the TEMPO
laboratory in Valenciennes. They established a huge experimental database for both the heat transfer
[237, 238] (by infrared thermography) and the hydrodynamic field [220] (using PIV) for a wide range
of the flow parameters. This project is in the framework of the theme V entitled “Heat transfer in
one- and two-phase jet flows” of the AMETH research group coordinated by Prof. Harmand. Dr. R.
Da Soghe and Dr. C. Bianchini from the University of Florence are also involved in this work for their
expertise in CFD using the softwares CFX and OpenFOAM. Dr A. Meslem and Pr. V. Sobolik from
LaSIE in La Rochelle will perform mass transfer measurements using an innovative electrodiffusionnal
method coupled to a voluminal PIV system. This project called EASIJET has been submitted to the
2014 call for project of the french National Research Agency (ANR blanche).
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13.1 Motivation

In rotating machineries, an effective cooling system is nearly always required to remove heat due to
the high rotation rates reached in very small clearances. The specific engineering application of this
study is an alternator, which can be found in a wind generator (3 m radius, maximum rotational
speed of 25 rpm, delivered power of 750 kW) established in the North of France (see Fig.13.1). It
consists of a discoidal rotor-stator system, which does not use gears allowing the generators to operate
at low rotational speeds while reducing energy losses. The main technological lock consists in solving
the ineffective cooling due to high electrical losses dissipated for a relative low rotational speed. An
improvement on the cooling of discoidal rotor-stator alternators could be obtained by using air jet
impingement. The turbulent impinging jet is also of great importance in many other engineering
problems, such as the drying of textiles and paper products, the cooling of gas turbine components
and microelectronic equipments or the freezing of tissue in cryosurgery, among other things. One is
particularly interested here in the optimization of the cooling process in gas turbine engine or electrical
wind generator (see Fig.13.1) to increase their efficiency.

Figure 13.1: Illustration of an alternator wind generator after Diamond Industrial Ltd.

In the literature, a huge amount of heat transfer data is available but it is often restricted to the
cooling of a stationary disk by jet impingement. Rotating disks have been considered more recently
in the framework of the 13th ERCOFTAC/IAHR Workshop on Refined Turbulence Modeling (Graz,
2008) in open configurations. Its workshop has summarized the main works dedicated to the round
jet impinging perpendicularly onto a rotating heated disk. Numerical results have been compared
to the experimental data of Popiel and Boguslawski [263] and Minagawa and Obi [211] for a single
rotating disk. As far as unshrouded rotor-stator systems with impinging jet are concerned, there is
a lack of information available in the literature as pointed out by the recent review of Harmand et
al. [123]. Only few groups of researchers have concentrated their efforts to investigate the problem of
a jet impinging onto a rotating disk with confinement effects. Sara et al. [291] have experimentally
investigated the mass transfer between an impinging jet and a rotating disk in a confined system by
naphtalene sublimation. These authors concluded that the mass/heat transfers increase by increasing
both rotation and impinging flowrate even if for their low rotational Reynolds numbers, the jet is
dominant. One can cite also Minagawa and Obi [211], who have been interested in the turbulence
development in this configuration. In fact, in all available studies about convective heat transfer in
configuration where effects of a rotating disk and jet impingement are coupled, authors [50, 263] have
distinguished three regions (Fig.13.2):

• Region 1: the area of the disk where the jet influence on the heat transfer is the greatest near
the impingement point;

• Region 2: a mixed region between regions 1 and 3;

• Region 3: the area where rotation has the greatest effect far from the impingement point at high
radii.

Chen et al. [50] have also concluded that the location of those three zones depends on the ratio between
the jet and the rotation mass flowrates. They have also noted that the heat transfer on the rotating
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disk is modified by the jet for rotational Reynolds numbers lower than 2× 105. For greater values of
Re, the jet does not affect so much the local heat transfer distribution.

Figure 13.2: Three characteristic flow regions after Pellé and Harmand [238] for a rotor-stator flow
with impinging jet and heat transfer.

Figure 13.3: Flow structure due to the interaction of the impinging jet with the base rotor-stator flow,
after Owen (unpublished).

Numerical simulations are complex due to the superimposition of complex elementary phenomena
(impinging jet, high rotation rates, confinement effects, unshrouded cavity . . . ). The effect of an
unshrouded cavity on the hydrodynamic field is that the flow pumped from the rotor leaves the cavity
to the external surroundings and ingress may then occur to supply the entrainment demands of the
rotating flow. At the periphery of the cavity, there can therefore be both inflow along the stator and
outflow on the rotor, which is very challenging for numerical methods for the choice of appropriate
outlet boundary conditions.

13.2 Experimental facility developed at the TEMPO labora-
tory

The experimental set-up (Fig.13.4) is the same than previously detailed in [237, 238]. The rotor has
a b = 310 mm radius and its rotational velocity could be changed with a frequency variator. Rotor
is made with aluminum, chosen for its high thermal conductivity and its low density. A p = 2.5 mm
layer of zircon whose thermal conductivity is λzir = 0.7W/mK was deposited on the cooled side of
the rotor by plasma projection. Four infrared emitters are placed on the bottom of the disk in order
to heat it until cooled surface reached about 80◦C. A stationary disk faces the rotor at a distance
h = 6.2 mm for which the dimensionless spacing interval is G = h/b = 0.02. It guarantees that
the stator clearly affects the fluid flow within the cavity, as G remains far below the limiting value
G = 0.0752 for the maximum Reynolds number considered here [51, 233]. The stationary disk has the
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same diameter as the rotating disk and a central opening (D = 26 mm) was pierced at the stator to
allow passage of a long pipe linked to a centrifugal blower, which is used to impose an axial flow. The
jet aspect ratio is then h/D = 0.25. The jet mass flowrate is controlled by pressure loss measurements,
which were previously correlated to the mass flow rate, and adjusted by creating a pressure loss at
the blower suction.

Figure 13.4: Experimental set-up for the impinging jet flow developed at the TEMPO laboratory.

Apart from the two geometrical parameters h/D and G, the base flow depends also on the jet and
rotational Reynolds numbers defined respectively by:

Rej =
V D

ν
Re =

Ωb2

ν
(13.1)

with ν the fluid kinematic viscosity and V the jet axial flow velocity imposed at the inlet. For
numerical investigations, it is also convenient to use a nondimensional flowrate Cw = Q

νb (Q the
voluminal flowrate) instead of Rej and which can be combined with Re to form the turbulent flow
parameter λt. To enable direct comparisons between the axial flow due to the impinging jet and the
tangential flow due to the rotation of the disk, one can define also the rotation parameter N :

λt = CwRe−0.8 N =
Ωb

V
(13.2)

All the values considered for these parameters are summed up in Table 13.1.
Fluid velocity is measured by PIV, whose system is fully described in Nguyen et al. [220]. It consists

of a double-pulsed Nd:YAG laser, a CCD camera mounted with a Nikkor lens of 105 mm and f/5.6
aperture and a synchronizer. The laser sheet thickness is about 1 mm created by a cylindrical and
a spherical lens. An olive oil droplet generator (TSI 9307) generates particles with a mean diameter
of 1µm to seed the inlet of the centrifugal blower. PIV images are captured by the TSI PowerView
Plus 4 MP camera with a resolution of 2048× 2048 pixels and a pixel size of 7.4× 7.4µm2. The time
interval between the first and second exposures is chosen to yield maximum particle displacements of
6 pixels. PIV measurements are performed at three (r, θ) planes and for each axial plane, images are
separately captured at three different regions. For the values of Re and Rej considered here, 500 image
pairs are recorded for each run at a sampling rate of 1 Hz to ensure that the velocity fields obtained
from the image pairs are statistically independent. Image acquisition and processing are performed
with TSI Insight TM 3G software. The PIV images are analysed by a recursive Nyquist rectangular
grid algorithm with two iterations and 50% window overlap. The first and second-pass interrogation
windows are square interrogation spots of 64 × 64 pixels and 32 × 32 pixels, respectively. The final
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Test case Ωb (m/s) Re (×10−5) V (m/s) Rej (×10−3) Cw λt N
1 1.623 0.33 10 17.2 1133 0.275 0.162
2 1.623 0.33 15 25.8 1700 0.413 0.108
3 1.623 0.33 25 43 2833 0.688 0.065
4 12.985 2.66 10 17.2 1133 0.052 1.299
5 12.985 2.66 15 25.8 1700 0.078 0.866
6 12.985 2.66 25 43 2833 0.13 0.519
7 25.971 5.32 10 17.2 1133 0.03 2.597
8 25.971 5.32 15 25.8 1700 0.045 1.731
9 25.971 5.32 25 43 2833 0.074 1.039

Table 13.1: Values of the flow parameters for the impinging jet flow over a rotating disk.

number of velocity vectors was 110×110 vectors. In the velocity computation, 2D displacement fields
are computed from the correlation map with a Gaussian peak fit [158] for sub-pixel accuracy and are
validated by a signal-to-noise ratio of 1.5. Statistical validation tools using a median filter [355] and a
standard deviation filter are performed between the iterations to remove erroneous vectors, and then
fill in the blanks by interpolation. The uncertainty in the PIV measurements, calculated using the
error analysis developed by Coleman and Steele [57], are estimated to be less than 9% of the mean
jet velocity near the rotation axis and typically less than 6% at the periphery.

The wall heat flux on the rotor surface can be obtained by solving the heat equation in the zircon
layer using a finite-difference method. The boundary conditions applied are the surface temperatures
recorded by an infrared camera (watching the rotor through a fluorspar window placed inside the
stator) and the interface (aluminum/zircon) temperatures recorded by thermocouples. The convective
heat flux can be then deduced by solving a thermal balance equation for each point on the disk surface
and the local heat transfer coefficient is then obtained. The best choice of the reference temperature
for the Nusselt number calculation in such a discoidal system [233] is the adiabatic wall temperature

Tad, which can be either measured or calculated by: Tad = T∞ + Pr1/3(ωr)2

2Cp
, where T∞ is the ambient

temperature of the test room. An estimation of the maximum reached by Pr1/3(ωr)2

2Cp
(Cp the mass

thermal capacity) shows that the temperature increase due to friction effects is under 0.3K. So it is
assumed that friction effects are negligible for our operating conditions and T∞ can be taken as the
reference temperature. An AGEMA 900 infrared camera is situated one meter above the rotor and
records the rotor surface temperatures with a frequency of 35 Hz. Two T-type thermocouples, located
at two different radii r = 0 and r = 0.3 m, are used to measure temperatures at the bottom of the disk
at the aluminium/zircon interface. Measurements are realized using a Graphtec GL 200 acquisition
system whose uncertainty on the temperature is ±0.5 K for T-type thermocouples. The thickness of
the aluminium layer is such that the temperature at the zircon/aluminum interface is homogeneous for
our operating conditions. Thermocouples give a difference temperature less than 1K. The reference
air temperature T∞ is measured by a K-type thermocouple placed outside the test-rig, far enough
from the heating system but near from the backside of the stator, in order to measure the temperature
of the air which will enter in the air-gap. That temperature is assumed constant during a test, due
to the placement of the experimental apparatus in a very large room. The absolute error for the air
temperature is estimated at ±1 K. Two special T-type thermocouples located at the bottom of the
stator to put them in constant contact with the stator surface inside the air-gap are directly linked
to the acquisition system. They are placed at radii of 0.05 m and 0.3 m. As for the measurements
at the zircon/aluminium interface, the absolute error for the stator temperature Tstator is ±0.5 K
according to the data acquisition system’s specifications. Due to the high conductivity material which
is used for the stator, temperature difference between the thermocouples is under 1 K. The reader can
refer to the previous paper of Pellé and Harmand [237, 238] for more details about the temperature
measurement set-up. Taking into account all uncertainties, Pellé and Harmand [239] showed that the
Nusselt numbers can be determined with an uncertainty under 30%.
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13.3 Preliminary results

Preliminary results have been obtained using the RSM model described in Chapter 4 and compared
to the experimental data of Nguyen et al. [220] and to the predictions of a k-ω SST model available
within the CFX solver performed by R. Da Soghe and C. Bianchini from the University of Florence.
The results have been published recently in Int. J. Heat Fluid Flow (see Ref.[257]). For both models,
a 200×80 mesh grid in the (r, z) frame is sufficient to get grid independent solutions with 20 elements
in the tangential direction for the k-ω SST model.

13.3.1 Hydrodynamic fields

Figures 13.5a,b present the mean streamline patterns obtained by the RSM and k-ω SST models in
a meridian (r,z) plane for G = 0.02, h/D = 0.25 and test case 5. The air jet squirtes from the
center of the stator and impinges the rotor. After the impingement, the fluid is deflected and flows
radially along the rotor. This radial outflow, which is enhanced due to the combination of the jet
flow and centrifugal effects, is confined by a large recirculation zone appearing along the stationary
disk. Poncet [249] showed that the size of this recirculation bubble depends mainly on the aspect
ratio G of the cavity, which could explain why it is almost constant in the present study. Whatever
the flow parameters, this jet-dominated area (Region 1) observed close to the rotation axis extends
to a dimensionless radius r/b ≃ 0.14. For larger radii, the flow is purely centrifugal with streamlines
parallel to the disks. In that case, this flow structure is sometimes called a Stewartson flow structure
by abuse of language. Its denomination is used to mention that looking at the tangential velocity
profile, there is only one boundary layer on the rotating disk. For some particular test cases (4, 5, 7,
8, 9), a recirculation zone is observed on the stator side. Qualitatively, the same results are obtained
by the k-ω SST model. Nevertheless, one can notice that the recirculation along the stator at low
radii after the jet impingement is much larger than the one observed by the RSM. Its size is besides
not so sensitive to the value of the jet Reynolds number Rej . Similar deficiencies have already pointed
out by Da Soghe et al. [66]. Secondly, some backflow was observed along the stator by the RSM for a
given set of parameters. For such cases, there may be some convective transport of turbulence close
to the rotation axis as reported by Cheah et al. [49] in an enclosed rotor-stator system.

(a)

(b)

Figure 13.5: Streamline patterns obtained for G = 0.02, h/D = 0.25 and test case 5 by: (a) the RSM;
(b) the k-ω SST model.

One interesting mean quantity for engineers is the radial distribution of the core-swirl ratio β
known also in the literature as the entrainment coefficient K. It is defined as the ratio of the time-
averaged tangential velocity at mid-gap (z/h = 0.5) and the local tangential velocity of the rotor
Ω r at the same radius. For flows with unmerged boundary layers, referred as Batchelor flows in the
literature, β can be indeed directly linked to the radial pressure gradient within the cavity and thus
to the axial thrusts applied on the rotor [251], which can be useful in real turbines. Figure 13.6 shows
the distribution of the core-swirl ratio β along the dimensionless radius for the 9 test cases. The
experimental results and those obtained by the RSM and k − ω SST models are compared to the
analytical law of Daily et al. [68] and to the ones obtained by Poncet et al. [251, 253] for Batchelor
and Stewartson flows.

In test cases 1− 3, the RSM model predicts Stewarston flows with a core-swirl ratio close to zero
even if a small increase can be noticed towards the periphery of the cavity. It is in good agreement
with the two analytical laws dedicated to this flow regime. The mean flow is thus clearly dominated
by the impinging jet (0.065 ≤ N ≤ 0.162) and rotation effects remain weak. For these test cases and
in certain flow regions, measured velocities are of the same order than the measurement uncertainty
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Figure 13.6: Radial variations of the core-swirl ratio β obtained by the RSM for G = 0.02 and
h/D = 0.25 and the 9 test cases. Comparisons with the analytical laws of Daily et al. [68] and Poncet
et al. [251, 253], the experimental data and the predictions of the k-ω SST model.

and are very fluctuating when non-dimensionalized so the analysis is biased. The relative high values
reached by β for test case 2 and r/b > 0.7 may be attributed to peripheral effects and some possible
ingress of fluid. By increasing the rotation rate (and so N and Re), the core-swirl ratio increases
as expected. For test cases 4 to 6, one can observe from the radial distributions of β the transition
from the Stewartson flow structure obtained for r < rc, where the predominant effect is due to the
impinging jet, to a Batchelor flow structure at r > rc where rotation effects become not negligible.
For example, for test case 5, it is found that rc = 0.66b from the PIV measurements, which is in good
agreement with [251]. A quite good agreement between the experiments and the numerics is here
obtained with the same radial evolution of β. It was indeed expected that the RSM performs better
for higher rotational Reynolds numbers Re. At low Re, such that for test cases 1-3, the RSM may
have the tendency to relaminarize the flow and predicts laminar flows, which are known to exhibit
smaller values of the core-swirl coefficient than in the turbulent regime (see for example in [233, 249]).
On the contrary, the k− ω SST overpredicts the core-swirl ratio especially for test case 4 and for low
radii in the two other cases. If one increases further Re up to 5.32 × 105 (Test cases 7-9), the flow
structure switches to a Batchelor flow at lower radii than in the previous cases, at around rc ≃ 0.5b in
test case 7 for example. This critical radius for the transition from the Stewartson to the Batchelor
flow regime increases when one increases the jet Reynolds number Rej to reach rc ≃ 0.65b in test case
9. The experimental data appear to be in particular good agreement with the values predicted by the
analytical laws of Daily et al. [68] and Poncet et al. [253].

Figure 13.7 shows the mean radial velocity distributions, normalized by the jet velocity V , along
the dimensionless radius r/b for test case 5 (N = 0.866, see Table 13.1) at three axial positions. One
position is located close to the rotor (z/h = 0.23), one is around mid-gap (z/h = 0.53) and one is near
the stator (z/h = 0.84). The present results are compared to the LDA measurements of Mingawa and
Obi [211] and the numerical results of Manceau et al. [197] obtained by an EB-RSM model in the case
of a jet impinging onto a rotating disk. Whatever the axial position, the present measurements provide
negative radial velocities for r/b ≤ 0.16 (r/D ≤ 2), meaning that the flow is mainly centripetal. It
was thought that the flow should be centrifugal due to the presence of the jet, so it is identified as a
recirculation area. Its thickness is very large because negative radial velocities are observed near the
stator but also near the rotor. It must involve very high radial velocities in the rotor boundary layer.
At larger radii (r/b ≥ 0.16 or r/D ≥ 2), radial velocities increase and reach a maximum at around
r/b ≃ 0.26 (r/D ≈ 3) before a slow decrease until the air gap outlet. As expected, the radial velocities
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Figure 13.7: Radial variation of the averaged mean radial velocity Vr/V for G = 0.02, h/D = 0.25
and test case 5 at three axial positions: one near the rotor (z/h = 0.23), at mid-gap (z/h = 0.53)
and one close to the stator (z/h = 0.84). Comparisons between the experiments (symbols), the RSM
(dashed lines), the k − ω SST (solid lines), the LDA measurements of Mingawa and Obi [211] (green
squares) and the EB-RSM model of Manceau et al. [197] (dash-dotted line).

near the rotor are higher than near the stator.
A good agreement is obtained between the PIV measurements and the RANS results at large radii

r/b ≥ 0.25, where Vr remains quite weak. On the other hand, large differences can be observed in
the jet dominated area. These discrepancies may be explained as following. After impinging on the
rotor, the jet deflects in radial direction. A radial wall jet begins to form and creates a thin wall
boundary layer. Hadz̆iabdić and Hanjalić [120] showed the existence of vortical structures formed
at the wall-jet edge and counter-rotating secondary vortices created near the impinging plane (rotor
plane in our case). The secondary vortices rolled up between the impinging plane and the vortical
structures at the wall-jet edge. Footprints of these structures were displayed in the POD analysis of
Nguyen et al. [220]. However, in the PIV measurements, the laser thickness was 1 mm, which is not
small enough compared to the boundary layer thickness and the small gap between the rotor and the
stator. Velocity measurements on the laser planes could be the volume-averaged values of particle
displacements that displaying the entrainment of the vortical structures around the stagnation point
in the radial direction. An investigation of the flow structures near the impinging jet in the (r,z) plane
using stereo PIV is arranged for a further study and validation of the numerical simulation.

The RSM profiles very close to the impinging zone (r/b ≤ 0.05, on the rotor side) are thus in better
agreement with the previous results of [197, 211] obtained without the stator. The RSM predicts the
centripetal flow along the stator but the size of this recirculation is much weaker than the measured
one. When one approaches the rotating disk, the values of the mean radial velocity increase to reach
the peak value obtained previously by the EB-RSM model of Manceau et al. [197] at r/b ≃ 0.075
(r/D ≃ 0.9). It is noticeable that almost the same distributions (not shown here) have been obtained
for the other sets of parameters. The k−ω SST predicts rather the same profiles as the ones obtained
by the RSM. The radial velocity is positive at low radii after the jet impingement with peak values
much higher than those obtained by the RSM. Then, Vr tends to zero along the rotor, also around
r/b ≃ 0.25. The discrepancies may be explained by the larger recirculation areas previously evoked in
Figure 13.5. It is noticeable that it reproduces quite well the radial velocity profile on the stator side.

Those observations about radial and tangential mean velocity components are concordant with
those by Poncet et al. [251]. The flow is at very low radii, near the jet impingement, mainly centrifugal.
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Thus, when increasing radius, radial velocities tend to decrease and rotation effects become dominant
inside the air-gap. If the jet Reynolds number is too low compared to the rotational Reynolds number,
a centripetal flow can occur near the stator at outer radii and the flow tends to become a Batchelor
type flow. Nevertheless, in this case, the rotating core rotates at a lower speed than in the rotor-stator
configuration without superposed flow (β = 0.438), as expected in unshrouded system [38].

(a)

(b)

Figure 13.8: Maps of the normalized turbulence kinetic energy k∗ obtained for G = 0.02, h/D = 0.25
and test case 6 by: (a) the RSM; (b) the k-ω SST model.

Figure 13.8 presents some maps of the turbulence kinetic energy k∗ (normalized by its maximum)
in a meridian plane for test case 6 obtained by the RSM and the k − ω SST models. Both models
exhibit the same behavior. Turbulence is mainly produced by the impinging jet at low radii, where the
lowest values of the local Reynolds number Rer are observed. Rotation has then only a weak effect on
the turbulence production. Not surprisingly, turbulence kinetic energy increases for increasing values
of Rej (not shown here). The cavity being opened to atmosphere, the fluid at the periphery does not
flow inwards along the stationary disk and then, there is no convective transport of turbulence close
to the rotation axis as reported by Cheah et al. [49] in an enclosed rotor-stator system.

Figure 13.9: Radial variation of three components of the Reynolds stress tensor for test case 5 (Re =
2.66 × 105, Cw = 1700), G = 0.02 and h/D = 0.25 and at three axial positions: one near the rotor
(z/h = 0.23), at mid-gap (z/h = 0.53) and one close to the stator (z/h = 0.84). Comparisons
between the experiments (symbols), the RSM (dashed lines), the k-ω SST model (solid lines), the
LDA measurements of Mingawa and Obi [211] (green squares) and the EB-RSM model of Manceau
et al. [197] (dash-dotted line). Note that the Reynolds stress tensor components are here normalized
as follows: R∗

rr = v
′2
r /V 2, R∗

θθ = v
′2
θ /V 2 and R∗

rθ = v
′

rv
′

θ/V
2.

To have a more precise view of the turbulent intensities for test case 5, the radial distributions of
the three Reynolds stress tensor components available in the experiments are plotted in Figure 13.9
at three axial positions and compared to the LDA measurements of Mingawa and Obi [211] and the
numerical results of Manceau et al. [197] obtained by an EB-RSM model in the case of a jet impinging
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onto a rotating disk. The two normal components increase up to a peak value reached at around
r/b ≃ 0.12 (r/D ≃ 1.4). Then, they decrease towards the periphery of the cavity. The peak values are
particularly well predicted by the RSM. On the other hand, the RSM seems to relaminarize the flow
more rapidly than expected in the experiments. Compared to the former results [197, 211], the stator
does not affect so much the behavior of the radial normal Reynolds stress tensor component. The cross
component has a more singular behavior: after reaching a maximum around r/b ≃ 0.15, it decreases
with the radius but can become negative close to the stator, which is not predicted here by the RSM. It
is important to note that, for the three Reynolds stress tensor components considered here, turbulent
intensities are more important on the rotor side and at given radius, decrease when one approaches
the stationary disk. The same tendencies have been obtained for the other test cases (not shown here),
Re and Rej having only a slight effect on the distributions of the turbulent intensities. Comparing
the two RANS modelings, the tendencies are rather the same with higher turbulence intensities close
to the jet and peak values observed along the rotor. Nevertheless, the k−ω SST strongly overpredicts
the turbulence intensities in the jet impingement zone.

Figure 13.10: Anisotropy invariant maps obtained by the RSM for G = 0.02, h/D = 0.25 and test
case 5 at three characteristic radial positions: (a) r/b = 0.1, (b) r/b = 0.4 and (c) r/b = 0.8.

Figure 13.10 shows the anisotropy invariant map for the Reynolds stress tensor at three radial
positions for test case 5. At r/b = 0.1 (Fig.13.10a), the flow is dominated by the impinging jet
and exhibits a Stewartson flow structure. In that flow region, turbulence exhibits a three-component
behavior. At mid-gap, it tends to the isotropic limit (A2 = A3 = 0). It confirms the previous results of
Haddadi and Poncet [119] for torsional Couette flows in a shrouded rotor-stator cavity. At r/b = 0.8
(Fig.13.10c), where the flow has switched to the Batchelor flow structure (β > 0.1) and is mainly
dominated by rotation, turbulence remains at three components. At r/b = 0.4 (Fig.13.10b), both
effects, rotation and jet impingement, live together. In that case, turbulence is isotropic at mid-gap
and tends to the one-component limit (high values of A2 and A3) close to the rotor. Similiar behaviors
are observed whatever the test case, which means that the flow anisotropy depends only weakly on the
rotational and jet Reynolds numbers in this range of parameters. Note that the structural anisotropy
is axisymmetric whatever the flow conditions, which is inherent to the choice of the dimensionality
tensor in the RSM model [249].

13.3.2 Thermal field

Some calculations have been performed for an air (Pr = 0.7) flow entering the cavity at the same
temperature as the one imposed on the stator surface: T∞ = Tstator = 20◦C. The temperature
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of the rotor is fixed to Trotor = 80◦C. At the periphery of the cavity, if ingress occurs, the fluid
reenters the cavity at T∞. Results are discussed in terms of the local Nusselt number defined as:
Nu = DJw

ρCpα(Trotor−T∞) , where D is the jet diameter, ρ the density of air and Cp its specific heat

capacity. Jw is the wall heat flux given by: Jw = −ρCpα
∂T
∂z |w, where the index w denotes a value

evaluated at the wall. Figure 13.11 shows the local Nusselt number along the dimensionless radius
r/b for 3 rotational Reynolds numbers and 2 jet Reynolds numbers. In all cases, Nu is a decreasing
function with r/b , the highest values being observed near the jet. Experimental data for r/b < 0.1
are not available due to the fact that the pipe which brings the jet does not allow an optical access to
this area.

(a) (b)

Figure 13.11: Radial profiles of the local Nusselt number for G = 0.02, h/D = 0.25: (a) Rej = 16000,
(b) Rej = 42000. Comparisons between the experiments (solid lines), the RSM (dash-dotted lines),
the k-ω SST model (dashed lines) and the experimental data of Katti and Prabhu [148] (circles).

For a fixed jet Reynolds number Rej , considering Figures 13.11a and b, the 3 profiles relative to
the 3 rotational Reynolds numbers show that the local Nusselt number does not depend on Re for
r/b ≤ (r/b)0. (r/b)0 is equal to around 0.34 for Rej = 1.6× 104 and 0.5 for Rej = 4.2× 104. In this
region, it is assumed that the convective heat transfer are the same as if there was no rotation. By
comparing the two figures, it can be seen also that the local Nusselt number increases with the jet
Reynolds number. Thus, when r/b ≤ (r/b)0 and for all tested Re and Rej values, radial velocities are
very high in a very thin rotor boundary layer because the flow is centripetal everywhere outside. In
this area, the flow is not rotating so the rotational Reynolds number Re is not an influent parameter.
Those high centrifugal velocities involve strong shear stresses and so high heat transfer. As the size
of this area is the same for all Rej , increasing the jet velocity results in an increase in the convective
heat transfer.

After that, one can detect another critical radius (r/b)1 where the curves relative to Re = 3× 104

and Re = 2.58 × 105 separate. It occurs at (r/b)1 = 0.67 for Rej = 1.6 × 104 and at (r/b)1 = 0.77
for Rej = 4.2× 104. The influence of rotation on the convective heat transfer appears after a critical
radius which is lower when increasing Re and higher when increasing Rej . The decrease of the local
Nusselt number when r/b is increasing is due to the thickening of the rotor boundary layer associated
with lower radial and higher tangential velocities. After (r/b)1, the local Nusselt number continues
to decrease but more slowly than near the center of the rotor. One can observe that it remains quite
constant in the case where Rej = 1.6 × 104 and Re = 2.58 × 105. Local Nusselt numbers, which are
reached at outer radii are higher for higher rotational speed.

On Figure 13.11a, results from Katti and Prabhu [148] are also reported. They have been es-
tablished for Rej = 16000, h/D = 0.5 and without rotation nor confinement. They are available
for r/b ≤ 0.5 where one proved before that the rotation has no high effect. The present results are
concordant with those of Katti and Prabhu [148] with slightly lower values. This difference may be
attributed to confinement effects as already demonstrated by Gao and Ewing [103].

The local Nusselt number also increases with the jet Reynolds number, which can be seen by
comparing Figures 13.11a and b. However, at the same value of Re, the difference between both Rej
is large near the impingement point and decreases as the radius increases, meaning that the influence
of the jet Reynolds number seems to disappear at the periphery of the cavity (large r/b).

The RSM and k-ω SST models provide very satisfactory results for test cases 4 and 6 in terms of
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the distribution of the local Nusselt number. Whatever the jet Reynolds number, similar behaviors are
observed: Nu decreases more rapidly with the local radius in the computations before being rather
constant at large radii where rotation effects dominate. The RSM seems to offer the best results,
especially for the peak value in case 6, where the k-ω SST slightly underestimates the heat transfer
coefficient.

For engineering applications, it can be also useful to consider the averaged Nusselt number NuD
av

based on the jet diameter D. Experimental results are typically correlated under the form [368]:

Nuav = aRenj Prlf(e/D) (13.3)

where f(e/D) is an empirically determined function and a, n and l are constants determined by
experiments. Additional dimensionless parameters may be added to the correlation to account for
other effects (angle of incidence, surface curvature, pressure loss . . . ). When rotation effects are
superimposed on the jet flow problem, one can also suppose that Nuav depends also on the rotational
Reynolds number Re to a power m. For turbulent rotor-stator flows without jet, it is quite classical
to obtain m = 0.8 [233].

0 1 2 3 4 5 6

x 10
5

15

20

25

30

35

40

45

50

55

Re

N
u avD

Re
j
=16000

Nu
0
=18, C=2×10−4, m=0.85

Re
j
=42000

Nu
0
=36, C=2×10−4, m=0.85

Figure 13.12: Variations of the averaged Nusselt number NuD
av (based on the jet diameter D) along

the rotor against the rotational Reynolds number for G = 0.02, h/D = 0.25 and two values of the
jet Reynolds number Rej = 16000 and Rej = 42000. Comparison between the experimental data
(symbols) and correlation laws (lines).

Figure 13.12 presents the dependence of NuD
av on Re for two values of the jet Reynolds number

Rej . The averaged Nusselt number is so an increasing function with Re and Rej , which is concordant
with the observations by Sara et al. [291] obtained for lower Re and larger jet aspect ratios. The
present experiments can be correlated under the form:

Nuav = Nu0 + C ×Rem (13.4)

where C = 2 × 10−4 and Nu0 is the averaged Nusselt number obtained without rotation. This
value can be deduced from the experiments performed by Sagot et al. [282] in the case of a round
jet impinging a circular flat stationary plate at constant temperature. They provided the following
correlation valid for 104 < Rej < 3× 104, 2 < h/D < 6 and 3 < b/D < 10:

Nuav = 0.0622Re0.8j

(
1− 0.168

b

D
+ 0.008

(
b

D

)2
)(

h

D

)−0.037

(13.5)

From the present measurements, Nu0 is equal to 18 and 36 for Rej = 1.6 × 104 and 4.2 × 104

respectively to be compared with the values 20.3 and 44 deduced from Equation (13.5). The weak
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discrepancies may be attributed to the very small value of h/D = 0.24 (not in the validity domain
2 < h/D < 6) and due to the difference of boundary conditions applied on the rotor (wall heat flux
against imposed wall temperature). The exponent m = 0.85 highlighting the dependance of Nuav on
the rotational Reynolds number is in good agreement with the common value m = 0.8 found in many
rotating disk systems [233]. It is more adventurous to get the coefficient n as only two values of the
jet Reynolds number Rej are considered here. Nevertheless, one can propose n = 0.72, which falls
between the values obtained by Wen and Jang [353] (n = 0.696) or Tawfek [335] (n = 0.691) for a
round jet impinging a flat surface and the value (n = 0.8) from Equation (13.5). It is noteworthy that
NuD

av does not scale neither with the turbulent flow parameter λt nor with the rotation parameter N .

Test case Experiments RSM k-ω SST
4 26.64 29.79 18.5
6 42.65 40.54 32.8

Table 13.2: Comparisons for the averaged Nusselt number over the rotating disk subjected to an
impinging jet for test cases 4 and 6.

The averaged Nusselt numbers have also been computed by the RSM and k-ω SST models for
test cases 4 and 6. As it can be seen in Table 13.2, the RSM results are in excellent agreement with
the values obtained experimentally, whereas the k-ω SST slightly underpredicts the averaged Nusselt
number in both cases. Calculations have also been performed with a modified version of the k-ω SST
model including a curvature correction term. The model correction results in a multiplicative factor
of the transport equation production term, expressed as a complex function of the stress and vorticity
tensors. This version does not improve the predictions of the former model in terms of velocity and
thermal fields.

13.4 Future works

As shown previously, the RSM of Elena & Schiestel [85] provided very satisfactory overall results for
the hydrodynamic and thermal fields if one compares it to the predictions of a classical k-ω SST model.
But it showed also some limits in predicting the interaction of the impinging jet with the base rotor-
stator flow and in particular, the spreading of the jet and the size of the recirculation area along the
stator. This may be attributed to the 3D unsteady structures highlighted by Owen (Fig.13.3), which
can not be captured by steady axisymmetric calculations. Thus, from a numerical point of view, 3D
simulations are now required to investigate the presence and the role of these structures but also the
three-dimensional nature of the turbulent boundary layers developed along both disks. To improve
our knowledge, it would be very interesting to investigate the flow field and the turbulence levels inside
the rotor boundary layer. It will be next realized with stereo-PIV measurements performed in a (r, z)
plane at TEMPO and compared to LES calculations.

A new PhD thesis just starts under the guidance of Dr S. Viazzo and myself on that topic. The
PhD student, R. Oguic, will investigate the fluid flow and the heat transfer in the case sketched on
Figure 13.13. It gathers many numerical difficulties (the r = 0-singularity evoked in Chapter 3, the
choice of the outlet boundary conditions, very elongated cavity in the radial direction, fluid/solid
thermal coupling) as well as several physical complexities (highly turbulent flow, 3D unsteady flow,
thin boundary layers, interaction of the jet with the rotor-stator flow . . . ), which are very challenging
for numerical methods.

Investigations using LES, which have not yet received much attention up to now, will be performed
using the code based on fourth-order compact schemes. Two configurations have been already suc-
cessfully simulated: the plane jet impinging onto a flat plate [19] and onto a cubical pedestal without
thermal effect [3]. Recently, the code in its mono-domain version has been extended to cylindrical
coordinate in annular configurations and validated against velocity measurements for turbulent rotor-
stator flows [345].

Some important numerical developments are still required before simulating the full problem:

1. The r = 0-singularity: the numerical method has to deal efficiently with the axis singularity.
Grid stretching being required close to the nozzle of the jet, one can not use the same approach
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Figure 13.13: Sketch of the impinging jet flow onto a rotating disk confined by a stationary disk and
opened to atmosphere, highlighting the presence of three distinct domains to simulate.

as the one developed by Peres [241] (see Chapter 3) but one will consider techniques based on
regularity properties along the axis.

2. Necessity of a multidomain approach: it is now well known that such flow is very sensitive
to inlet boundary conditions imposed for the jet. It seems then crucial to simulate also the
turbulent Poiseuille flow in the inlet nozzle (fluid domain Π1). For the heat transfer, both in
the real system and in the TEMPO experiment, the heat flux is imposed on the lower surface
of the rotor and the energy equation is then solved to estimate the heat transfer by conduction
and so the temperature distribution on the disk surface. To do that numerically, it is important
to solve also the energy equation in the solid part. It justifies the choice to decompose the
calculation domain into, at least 3 subdomains, 2 fluid domains and 1 solid domain (Fig.13.13).
According to the radial extension of the cavity, the fluid domain Π2 should be also divided into
several subdomains. The multidomain decomposition method used will be the same as the one
previously used in various rotating flow configurations (Chapters 10 to 12).

3. Choice of the inlet and outlet boundary conditions. For the inlet conditions, several cases could
be considered including pre-swirled flow or not. The choice of the outlet boundary conditions
is more crucial for both the stability and accuracy of the calculation. Advective boundary
conditions are usually considered in such configuration. A renormalization should be applied to
ensure mass conservation between the inlet and the outlet.

4. Simulations of eccentric single or multiple jets. It will require the treatment of the inlet bound-
ary conditions. The multidomain decomposition technique being incompatible with the use of
Fourier series according to the azimuthal direction, a voluminal penalization technique will be
implemented making it possible for the code to keep its structure.

When the first 3 steps will be achieved, one will try to increase the performance of the new code by
changing first the Fast Fourier Transforms using the FFTW (Fastest Fourier Transform in the West)
library. One will refer to the previous work of Mercader et al. [208] to do so. The FFTW package
provides very interesting features such as its speed or the opportunity to have a parallelized code for
platforms with SMP machines using an OpenMP implementation. A MPI version for distributed-
memory transforms is also available in FFTW version 3.3. It is also portable to any platform with a
C compiler. Finally, to increase the spatial resolution of the simulation and in association with the
multidomain approach, one will make a parallel computing using a MPI implementation.

In the framework of the EASIJET project, one will approach the experimental and numerical
analysis of heat transfers, wall frictions and flow structures in the following cases: single jet impinging
a stationary disk for the calibration of the experimental methods and the validation of the numerical
codes, single jet impinging a rotating disk in order to establish a detailed cartography of the flow
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regimes according to the parameters, single and multiple eccentric jets, configurations making it
possible to increase the wall heat transfers. The numerical part performed at M2P2 will cover all
levels of turbulence modeling. Simulations by DNS/LES will be based on the in-house research code
using high-order finite-difference compact schemes and some RANS and hybrid RANS/LES (with
continuous transition) calculations will be done using the open-source code developed by EDF, Code
Saturne. It will be also a good opportunity to implement the RSM version developed by Elena and
Schiestel [85] into the standard version available within Code Saturne to have a 3D version of this
model associated with more efficient algorithms, while keeping the innovative modeling. The numerical
simulations will be compared to dynamic and thermal measurements. For the dynamic measurements,
LaSIE developed a polarographic method already applied to the study of a jet impinging a stationary
surface, which allows the measurement of the local friction coefficient. It will be coupled to a voluminal
PIV using three cameras. For the thermal measurements, the DF2T team of the TEMPO laboratory
will perform temperature measurements by infrared thermography, associated to an inverse technique
of resolution of the energy equation. One will be able at the end of this project to propose correlations
for the heat transfer coefficients according to the flow parameters (jet arrangements, jet and rotation
speeds, interdisk spacing).
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Chapter 14

Other projects for the next five
years

The following projects have absolutely nothing to do with rotating flows. They are all closely linked
to industrial applications and thus are classified as being confidential.

14.1 SIMEOX project

SIMEOX is an apparatus of assistance to the bronchial drainage, developed by Physio-Assist, which
makes it possible to facilitate the mucus clearance from the bronchi for patients suffering from ob-
structive disorders, cystic fibrosis . . . The main advantage is a gain of autonomy as it would replace
daily physiotherapy sessions. The electronic device is composed of a generating turbine of depres-
sions, a generator of vibrations, and a microcontroller allowing the control of the vibration frequency.
SIMEOX produces successive pressure throughs during the exhalation phase (Fig.14.1). Between
each oscillation, the pulmonary pressure returns to the atmospheric pressure. The generated signal is
transmitted to the tracheo-bronchial air.

Figure 14.1: Pressure signal imposed by the SIMEOX during the respiratory cycle.

Mucus is a complex biological material that lubricates and protects the human lungs, gastrointesti-
nal tract, vagina, eyes, and other moist mucosal surfaces. Mucus serves as a physical barrier against
foreign particles, including toxins and environmental ultrafine particles, while allowing rapid passage
of selected gases, ions, nutrients, or proteins. Its selective barrier properties are precisely regulated
at the biochemical level across vastly different length scales. Though it is mostly composed of water
(98%), bronchial mucus is a chemically and rheologically complex fluid secreted by the respiratory
epithelium. A variety of glycol-sylated proteins, called mucins, gives it its intriguing mechanical prop-
erties while various additional constituents provide its immunological character. At the macroscale,
mucus behaves as a non-Newtonian gel, distinguished from classical solids and liquids by its response
to shear rate and shear stress, while, at the nanoscale, it behaves as a low viscosity fluid. Mucus is a
non-Newtonian fluid that exhibits a plethora of phenomena such as stress relaxation, tensile stresses,
shear-thinning, and yielding behavior.

Since the first description of cystic fibrosis, it has been known that these patients eventually suc-
cumb to severe lung disease associated with chronic infection. In persons with cystic fibrosis, there
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is extensive and progressive bronchiectasis associated with accumulation of large amounts of puru-
lent secretions. This toxic soup of pro-inflammatory cytokines, neutrophil breakdown products and
bacteria leads to progressive damage to the airways and lungs. Clinical wisdom has suggested that
patients with cystic fibrosis have thick secretions in their airway that make it difficult to clear bacteria,
and that promote the development of bronchiectasis. The difficult mucus clearance in that case is
not yet fully understood. Some researchers consider that patients with cystic fibrosis initially have
normal functioning cilia and an efficient cough and that poor mucus clearance in airways results from
abnormal mucus adhesiveness and tenacity. For others, mucus suffers from a default in the active ion
transport mechanisms through the epithelium resulting in thick secretions due to a low water and low
salt content of airway surface fluid. It has also been recently suggested that in cystic fibrosis, there is
no rheological abnormality of airway secretions other than that associated with purulence, and that
the apparent inhibition in the mucociliary transport rate might be partly due to a ciliary inhibitor
present in these secretions. The second problem is that the small peripheral airways can be completely
obstructed by mucus leading to pulmonary obstruction. Promoting airway clearance using a variety
of medications and chest physical therapy or airway clearance techniques and devices has long been a
mainstay of cystic fibrosis therapy.

Figure 14.2: Polymer structure of a cilium (left picture, M.R.Villareal), cilia cluster over an epithelium
cell (middle picture), and cilia details in straight state (right picture from [361]).

For healthy people, airway mucus is cleared by two major mechanisms: mucociliary clearance
and airflow interaction (cough). As shown in Figure 14.2, human respiratory ducts are coated by
epithelial cells that yield a carpet of cilia vibrating at a frequency between 8 and 15 Hz in the airway
surface fluid to propulse the mucus stratum with entrapped particles outside the ventilatory system.
Cilia are small hairlike projections (7µm in length) on the epithelial cells lined all along the bronchial
respiratory tract, the inner lining of which is covered by mucus blanket. By momentum transfer,
their beating induces a forward velocity of the mucus layer (Fig.14.3). If mucus is too viscous, the
cilia will not be able to move very well within it, and the decreased ciliary tip velocity will lead to
a reduction of the mucociliary clearance. The efficient transfer of momentum between the cilia and
the mucus layer requires that the cilia firmly contact the mucus during their forward stroke while
minimally interacting with it during the return stroke. If the serous fluid is too deep or too shallow,
the mucociliary clearance will also decrease. When the mucus layer is too thick and clearance by
the cilia is hindered, clearance by coughing takes over. Mucus needs to be both viscous and elastic.
The elasticity of mucus is important for clearance by cilia because it efficiently transmits energy, with
little energy losses. The viscosity of mucus results in energy loss, but this is necessary for mucus to be
displaced and either expectorated or swallowed. A balance between these factors must be maintained
for optimal mucociliary clearance.

When disruption of normal secretory or mucociliary clearance processes occurs, respiratory secre-
tions can accumulate and impair pulmonary function, reduce lung defenses, and increase the risk for
infection and possibly neoplasia. Infections may then induce the disappearance of cilia at the epithe-
lium surface. Cough assumes thus increasing importance as lung disease develops. Cough induces
high velocities of the airflow with typical values around 200 m/s in the trachea. During a forced ex-
piration, the airways are compressed by the transmural pressure. Airway narrowing increases airflow
velocity, which increases mucus transport. Using the former version of the SIMEOX, Zahm et al.
[366] found that the displacement of artificial mucus after a single simulated cough was higher when
the airway diameter was narrower due to higher shear stresses between the mucus layer and the air
flow. Mucus viscosity in a given sample may vary by a factor of up to 103, depending on the applied
shear. This decrease in viscosity can be explained by a temporary realignment of the macromolecular
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Figure 14.3: Two mechanisms of mucus clearance during breathing, after Fink [96].

glycoproteins by the applied force, so repeated forced exhalations with short intervals between the
exhalations may reduce viscosity and improve mucus transport more than cough with longer intervals,
which is supported by the findings of Zahm et al. [366]. The reader can refer to the monograph of
Rogers and Lethem [277] and to the report by Poncet and Seyssiecq-Guarente [262] for more details
about the state of art on bronchial mucus.

In the first part of the SIMEOX project, one has characterized the macrorheological properties of
artificial mucus (actigum and viscogum) by measurements using a plate-plate rheometer. The choice
of working with artificial mucus is imposed by the fact that real mucus contains antibiotic-resistant
bacteria. The main result is that for the highest concentration in actigum (2 g for 100 mL), the
rheological properties can follow a Herschel-Bulkley law:

τ = τ0 +Kγ̇n (14.1)

where the threshold shear constraint is equal to τ0 = 18 Pa, the consistency index to K = 23.3
Pa.s−0.312 and the flow index n = 0.312. The threshold viscosity µ0 for a shear rate γ̇ close to 0 is
equal to 900 Pa.s [317]. This law has been used to perform numerical simulations using the software
ANSYS Fluent. Different calculations have been performed in the upper bronchial tree (the trachea)
by R. Ngwong [221] and in the acinus (generation 20) by V. Hoarau [129] during their Master 1
internship in 2013. One assumes, in all calculations, rigid walls, laminar and isothermal flows and one
considers in most of them only the effect of the SIMEOX without air flow. Note that, for patients
suffering from cystic fibrosis, infections have generally completely destroyed the cilia, that is why they
do not have been taken into account here. The duration of the numerical experiments is fixed to the
exhalation time T = 2.33 s. The pressure signal imposed at the inlet is as follows:

P (t) = Pm +A sin(2πft) (14.2)

It allows to represent the established regime of the SIMEOX (Fig.14.1) with a return to the atmospheric
pressure after each oscillation. The values for the amplitude A of the signal is more or less imposed
by the tolerance of patients. Amplitudes larger than 30 mbar can be painful and induce respiratory
discomfort. V. Hoarau [129] performed calculations in the 20th generation of the bronchial tree
(acini), characterized by a small radius (0.225 mm) quite comparable to the mucus thickness. The
mucus thickness is besides very difficult to know accurately as it strongly varies from one patient to
another, as it depends on the disease progression and on many other factors (location in the bronchial
tree, period of the day, if the patients smoke or not . . . ). Thus, one simulated a rigid tube full of
bronchial mucus. He established for various values of the amplitude A between 15 and 150 mbar,
that the optimal frequency is 12 Hz with small differences between 6 and 20 Hz. Two criteria have
been used to identify the optimal frequency: the maximum decrease in dynamic viscosity induced by
pressure oscillations after one expiratory period and the flow regions where the dynamic viscosity of
mucus remains equal to µ0 = 900 Pa.s. It is noticeable that the value for the optimal frequency of
12 Hz confirms the previous results of Zahm [365]. However, he speculated that this value is due to
the beating frequency of the cilia equal also to 12 Hz. The present results show that the reason is
somewhere else as there is no cilia in the present case.

Ngwong [221] performed similar calculations within Fluent but for the air/mucus flow in the
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trachea considering a mucus thickness of 0.5 mm to be compared to the trachea radius of 8 mm. Some
results are shown in Figure 14.4 for A = 30 mbar and f = 12 Hz. After t = 2.33 s, there is both a
strong decrease for the maximum of the dynamic viscosity from 900 to 249 Pa.s but also an effective
transport of mucus with a noticeable decrease in the thickness of the mucus layer. The frequency still
does not have a major influence on the mucus clearance in the range [6−20] Hz, whereas, as expected,
increasing the amplitude of the signal increases significantly the mucus clearance.

Figure 14.4: Maps of the dynamic viscosity and the presence rate of the mucus in the trachea (zoom
on the wall region) for A = 30 mbar and f = 12 Hz at different times, after Ngwong [221].

Experimentally, future works include the development of an experimental set-up to establish corre-
lations between the mucus properties and its effective transport by the SIMEOX. The main difficulty
is due to the recovery thixotropic time of the mucus, which is shorter than the time required to collect
the mucus from the tube after the use of the SIMEOX and adjust the rheometer for the measurement
of the mucus dynamic viscosity. Some efforts to characterize the surface properties of the mucus, such
as its surface tension and its adhesivity, has to be done.

Numerically, one will work on the form of the signal imposed by the SIMEOX. The sinusoidal
pressure signal could be replaced by Heavyside functions to see if sharper gradients induce larger
decrease in viscosity. A second overview is to introduce the thixotropy of the mucus in its rheological
constitutive equation. A third step will be to take into account the air flow using a simplified model
for the cilia motion as done by Enault et al. [87], who imposed unsteady velocity profiles as boundary
conditions on the top and bottom sides of the mucus layer. Finally, the key point will be to be able to
simulate the whole respiratory system, from the trachea to the acini, to see if the SIMEOX has also
an influence on the mucus transport in the acini, where respiration acts.

In a close future, one will turn our attention also to the interaction between cilia and mucus for
patients suffering from severe asthma. Asthma is characterized by sudden episodes of dyspnea and
bronchospasm. The hypersecretion that is usually present during asthma episodes is a result of me-
diator release after antigen exposure. Even with resolution of dyspnea and pulmonary dysfunction,
there is ongoing airway inflammation and hyperplasia of the mucus glands and cells. Bronchodilation
probably has no effect on mucus transport in these patients. It has been postulated that during an
asthma episode, a cilia-inhibiting factor reduces cilia activity, disorganizes ciliary beating, and thereby
reduces ciliary efficiency but the cilia inhibition may be caused by abnormal physical properties of
the mucus rather than an intrinsic ciliary inhibitor. Mucus hypersecretion and changes in the flow or
surface properties of mucus may also reduce ciliary activity. Mucociliary transport, therefore, can be
severely reduced in patients with asthma, and there is a further reduction during sleep. This project,
called MUCIL, will be a collaboration with the Physio-Assist company and the “Laboratoire Adhésion
& Inflammation” (Inserm U1067 / CNRS UMR 7333) in Marseilles. They are two main goals. The
fundamental objective is to understand the interaction between cilia beating and mucus in the case
of patients suffering from severe asthma and how the dynamics of the cilia is modified by a change
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in the rheological properties of mucus. The team of A. Viallat at INSERM is able to recreate a full
epithelium with cilia and mucus production starting from cells taken on corpses. Then, they investi-
gate the rheological properties of mucus by microrheology and the interaction of cilia with the mucus
layer. With J. Favier and U. D’Ortona from the M2P2, one will perform numerical simulations based
on the lattice Boltzmann method. Cilia will be taken into account using the immersed boundary
method developed by Dauptain et al. [70] in the case of the ctenophore Pleurobrachia pileus. An
“one-way” coupling will be considered between cilia and the surrounding fluids. The second objective
concerns the performance of the SIMEOX in the case of severe asthma: are the form, the frequency
and the amplitude of the signals the same for cystic fibrosis and asthma? In a far future, one will
be able to consider other complex effects such as mass injection through the epithelium and the solid
deformation of the walls. A postdoctoral student funded by the Institut Carnot STAR will start to
work on that project in February 2014.

14.2 Industrial chair CRSNG-Hydro-Québec on energy effi-
ciency

I recently obtained an industrial chair CRSNG-Hydro-Québec on energy efficiency together with a
position of associate professor at the University of Sherbrooke (Faculté de Génie). This chair, which
should start in September 2014 and last 5 years, is directly linked to the RDC project of Prof. M. Sorin
(Univ. Sherbrooke) as it can be seen in Figure 14.5. The main objective is to develop CFD tools to
investigate the heat and mass transfers in three base components of refrigeration systems: two-phase
ejectors, cold transportation by ice slurries and magnetic refrigeration. Most of the experimental
set-ups are developed by the partners, the “Laboratoire des technologies de l’énergie” (LTE-Hydro-
Québec, Shawinigan) and CanmetEnergie (Varennes). It is financially supported by the CRSNG and
three companies: Hydro-Québec, CanmetEnergie and Rio Tinto Alcan for a total budget of 1 million
Canadian dollars over the next 5 years. It will finance, among others, 5 PhD and 3 Master theses.

Figure 14.5: Structure of the CRSNG-Hydro-Québec industrial chair on energy efficiency.
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14.2.1 Two-phase ejectors

The objective is here to develop CFD tools to analyze the fluid flow and the heat transfer in two-
phase ejectors. A sketch of a typical ejector is shown in Figure 14.6. Three experimental set-ups
are available for comparisons, two at CanmetEnergie and one at the University of Sherbrooke. This
project, which will imply one Master and two PhD students, is a close collaboration with M. Dostie
(LTE, Hydro-Québec) and Z. Aidoun (CanmetEnergie).

Refrigeration systems using an ejector offer some advantages compared to traditional systems
using vapor compression. They are cheaper and have a very simple form without moving part. This
simplicity of construction reduces the needs for maintenance and the associated costs. Contrary to a
classical compressor, ejectors can function with liquids, gases or a combination of both. An ejector
can be built-in in a system of refrigeration in several ways. One-phase ejector can easily replace the
compressor or at least decrease its load. There are systems which use two-phase ejectors to replace
partially or completely the relaxation valve in a conventional system with compressor. In an industrial
context where great quantities of thermal energy of low quality are rejected into the environment
and where requirements in refrigeration are simultaneously needed, the use of ejectors becomes an
attractive option. Another application of the ejectors is the pumping of heat (revalorization of the
thermal discharges).

One of the greatest disadvantages of the ejectors is their low thermodynamic effectiveness. To
understand the principal cause of this phenomenon and to design more efficient ejectors, it is necessary
to study the fundamental mechanisms governing the heat and mass transfers. Several phenomena
must be taken into account: interaction between the boundary layers and the shock waves, phase
change, transfer of momentum between phases, mixture process between the primary and secondary
flows . . . CFD is a powerful tool making it possible to reproduce the physics of the flow for a better
geometrical and operational design of the ejector. One finds many CFD studies on single-phase ejectors
in the literature [15, 307], but they are especially focused on the shock waves in the vapour phase.
The presence of droplets in the vapour phase is a current phenomenon, which has a strong impact
on the performance of the single-phase ejectors and, which does not receive until now any attention.
It will be studied within the framework of this chair. To our knowledge, there are no CFD studies
on two-phase ejectors, because of the very complex flow structure. Experimental work was already
completed at CanmetEnergie and at the University of Sherbrooke with this type of ejector [274] within
the framework of the research programme of the previous CRSNG-Hydro-Quebec chair. This set-up
will be used for optimization purposes.

Figure 14.6: Operating principle of an ejector (CanmetEnergie).

A combined numerical and experimental approach will be considered to evaluate the exergetic
losses in two types of ejector and to try to minimize them. This project is split into two parts:

• single-phase ejector with liquid droplets;

• two-phase ejector with liquid as the secondary fluid and vapour phase as the primary fluid.

From a methodological point of view, it is unthinkable to develop an in-house code being able to
take into account the complexity of all the phenomena involved in this problem: two-phase flow with
phase change, intense thermal transfers, turbulence, shock waves, interactions shock waves - boundary
layers, complex geometry . . . For the flow with liquid droplets in the vapour phase, one proposes to
consider, as a first step, an homogeneous model, which simulates the flow and the heat transfer for
only one phase with physical (density, dynamic and kinematic viscosities) and thermodynamic (specific
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heat, speed of sound, . . . ) properties expressed as a single formulation balanced by the presence rate
of the least dense phase. This model is perfectly relevant when the presence rate of the liquid phase,
represents less than 5% of the total. This model is proposed in all commercial softwares. The goal
being to carry out here a parametric study of the flow and heat transfer in an ejector, while varying its
geometry, the pressures and the temperatures at the generator and the evaporator, the compression
and entrainment ratios . . . , one will use the software ANSYS Fluent. This software offers, moreover,
a broad range of turbulence models, which could be compared. One will also be interested in the
impact of the mixture properties on the performance of the ejector.

Experimentally, global measurements of flowrates, pressures, temperatures (at the inlet, along the
mixing zone, at the outlet), heat fluxes, and of the pump power will be performed on the experimental
set-up developed at CanmetEnergie. These measurements will serve as entry data for the CFD model
in terms of initial and boundary conditions. Some local optical measurements are also planned to study
in more details the flow structure. A new transparent ejector will be designed. For the measurement
technique, one will consider the former work of Porcar et al. [264], who used the diffusion of light in
a two-phase ejector with liquid droplets or the more recent ones by Humble et al. [133] by PIV or
Dvorak & Safarik [81] by Schlieren diffraction.

Two-phase ejectors (here the primary flow is liquid and the secondary one is vapour) are systems
being able, in particular, to replace partially or completely the relaxation valve in a conventional
system of heat pump with compressor. Experimental work was already completed at CanmetEnergie
on this type of ejector by Reddick et al. [273, 274] in the framework of the research programme of the
previous CRSNG-Hydro-Québec chair. They showed in particular that the use of such ejector using
the R134a coolant can increase up to 11% the performance coefficient compared to the conventional
system with the relaxation valve. On the other hand, to our knowledge, there is no CFD study on
two-phase ejectors.

In this study, the CFD code considered will be the AVBP code developed by the CERFACS for the
study of the 3D unsteady turbulent flows of compressible fluids on unstructured or hybrid grids. This
code has been validated on many applications concerning reactive flows, flows in gas turbines, piston
engines or in industrial furnaces. New modules are also under constant development. It includes many
numerical ingredients: various numerical methods and turbulence models. The initial version of the
code is limited to gas flows but an extension to two-phase flows by an Euler-Euler or Euler-Lagrange
formulation is implemented in collaboration with the IMFT. AVBP is a parallel code under MPI
making it possible to perform calculations with a high space resolution.

Numerically, a particular effort will be related to the turbulence modeling by a more elaborate
approach than classical two-equation models in order to study the local interactions between the
shock waves, turbulence and the boundary layers in the mixing and recompression areas. To model
the two-phase character of the flow, it is rather complicated to predict, at this stage of the project,
the flow structure in the ejector, which should vary drastically according to the different pressures
and the entrainment ratio. Very simple experiments are thus necessary first to know even coarsely
the flow structure. It could be very simple numerical experiments starting from 2D calculations using
Fluent. After this preliminary step, one will consider more precise calculations with AVBP. If the
liquid phase is dispersed in the gas phase, which occurs for important rates of vacuum and high
speeds of gas compared to that of the liquid, the Euler-Euler mesoscopic model available in AVBP
seems completely suitable. It makes it possible to obtain the local properties of the dispersed phase
(liquid) by solving an evolution equation of Boltzmann type for the probability density of the liquid
phase. For certain ranges of parameters (typically 50% of gas and 50% of liquid with similar speeds),
one will switch to another method like the VOF (Volume of Fluid) method.

Experimentally, one will consider, in a second time, some modifications of the test bench already
available at the University of Sherbrooke to add an optical access in the divergent part of the nozzle in
order to make local measurements by laser tomography. Bouhanguel et al. [33] applied this technique
to study the flow structure in the mixing zone, the shock waves . . . by playing with the illumination
source, the polarization direction of the incident light and the type of tracers.

A combined numerical (AVBP code) and experimental approach (3 experiments at CanmetEnergie
and at the University of Sherbrooke) will thus be undertaken to evaluate the origin of the energy and
exergetic losses in a two-phase ejector with phase change and thus to make it possible to minimize
them. One will test several geometries of ejectors as well as mixtures of natural or synthetic cooling
agents under various operating conditions (geometry of the mixing chamber, operating conditions in
terms of primary and secondary flows, inlet pressures and temperatures, entrainment and compression
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ratios). The goal is to propose technical solutions (several entries of secondary fluid, control strategy
of the boundary layer . . . ) to decrease the sources of exergetic losses.

14.2.2 Storage and transport of ice slurry coolants

The objective is here to develop CFD tools able to simulate the formation, the storage and the
transport of ice slurry coolants. A new experimental set-up will be designed at the University of
Sherbrooke for the storage of ice slurry and the detailed analysis of its physical properties, while an
experiment is already available at CanmetEnergie for the transport part (see Fig.14.7a). This project,
which will imply one Master and two PhD students, is a close collaboration with Prof. N. Galanis
(Univ. Sherbrooke) and M. Poirier (CanmetEnergie).

Ice slurries (Fig.14.7b) constitute a substitution solution of the one-phase secondary fluids in
conventional systems of refrigeration. Ice slurry is a mixture composed of a liquid phase (water),
of a solid phase (ice crystals) and of an additive such as glycol for example. By its constitution, it
makes it possible to evacuate more heat than water alone for the same mass flowrate. Moreover, the
heat transfer is done at a relatively stable temperature (phase change), which improves the quality of
the produced cold. Its use as a coolant allows the reduction and the containment of the refrigerants,
the reduction in the size of the cold store thanks to the storage of cold, the reduction in the bore of
distribution and a fall in the electric demand [149].

(a) (b)

Figure 14.7: (a) Experimental set-up developed by Renaud-Boivin et al. [275] at CanmetEnergie
(Varennes) for the storage and transport of ice slurries; (b) Storage and mixing tank with ice slurries
(CanmetEnergie).

There exists only very few studies in the literature on the effectiveness of heat exchangers using ice
slurries. Indeed, although one notes a significant improvement of the effectiveness of such exchangers,
the structure of ice slurry flows inside the exchanger remains relatively unknown. Several cross effects
can influence the flow of the slurry inside the exchanger. The inlet mass flowrate of the fluid, the
concentration of the solid phase, the temperature of the mixture, the heat flux to be evacuated
and the geometry of the exchanger are indeed important parameters, which have to be considered.
Another key parameter is the change of ice concentration (in solid phase) during its transport in
the exchanger, which can involve a modification of the type of flow and, consequently, of the heat
transfer. A fundamental study is thus necessary in order to improve the understanding of the thermal
and hydraulic behaviors of this coolant. One will also be interested in the microscopic properties of
the slurry during its formation, its storage and its transport, to include/understand how they affect
its macroscopic behaviour.

This project is split into 2 parts: the development of a CFD tool to estimate the heat transfer
and the pressure losses of an ice slurry flow and the installation of an experimental set-up for the
production and storage of ice slurry to investigate in details its physical properties.

Ice slurry is a complex fluid, exhibiting various dynamical behaviours depending on its precise
composition [203]. Small differences in density can induce some stratification due to the competition
between the gravity and diffusion phenomena. One proposes here to extend the CFD model developed
under the ANSYS Fluent software during the previous chair. The main objectives are as followed:

• to investigate the heat and mass transfer mechanisms for a laminar circular pipe flow and the
influence of the stratification; A comparative study of the various multiphase flow methods as
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was made by Akbari et al. [6] for nanofluid flows will be performed. The authors concluded
that all the models provide similar results for the hydrodynamic and thermal fields, whereas the
VOF model is less computationally expensive;

• to perform a parametric study in the laminar regime and quantify the influence of the boundary
conditions on the thermal field (cold or hot walls), the influence of the heat exchanger geometry
(circular or rectangular channel) and of various other parameters (ice slurry concentration,
flowrate . . . ) on the flow characteristics (friction coefficient, Nusselt number, . . . );

• to perform the same analysis in the turbulent regime. To our knowledge, there are few studies on
turbulent ice-slurry flows [349]. In the turbulent regime, the mechanisms are even more complex
and the benchmark done in the laminar regime for the choice of the two-phase flow model has
to be made once again. Turbulence increases mixing, which reduces the inhomogeneities in
the flow while being able to cause the formation of aggregates of ice particles. The choice of
the two-phase flow model can be thus completely different from the laminar case. The choice
of the turbulence model is also crucial and a numerical benchmark of the different turbulence
models available within Fluent will be performed. The wall heat transfers being increased by
the turbulent nature of the flow, a low-Reynolds number model seems to be more appropriate.
The objective is to highlight the model providing the best compromise between accuracy and
computational cost.

CFD calculations will be systematically compared to the measurements carried out at CanmetEn-
ergie (measurements of the pressure losses, of the temperature and density of the slurry at both the
entry and the exit of the pipe, measurements of the axial temperature distribution along the lower
and upper walls of the tube to check the importance of the natural convection and/or the ice stratifi-
cation).

Another objective is the development of an experimental device of production, storage and trans-
port of ice slurry of low dimensions at the University of Sherbrooke for the optimization of both the
ice slurry generator and the storage tank (reduction of its size, minimization of the energy used for
agitation). It appears indeed crucial to understand how the characteristics at a microscopic scale of
the ice crystals affect the behaviour of the slurry at the macroscopic scale. This can be done only
by a well-controlled experiment allowing to act on all the chain links: additive (glycol, salts . . . ),
type of mixer . . . The size of the crystals and their form strongly influence the flow and the heat
transfer, mainly at low Reynolds numbers. One will study the size and the shape of the particles
during the storage phase by measurements using an electronic microscope. The goal is to understand
the growth of the crystals (maturation, agglomeration . . . ) and to obtain ideal characteristics for the
slurry (spherical form, fluidity . . . ) for a better storage without agglomeration and a better extraction
even for high values of ice mass fraction without stopper effect. The storage tank will be connected
to a capillary rheometer allowing the measurements of the rheological behavior of the slurry. Mellari
et al. [203] showed that according to the concentration in additive, the slurry has a shear-thinning,
Newtonian or shear-thickening behaviour but always exhibits a shear stress threshold. In most of the
CFD approaches, the slurry is considered as a Newtonian fluid for more simplicity. This assumption is
valid only for ice mass fraction between 6 and 15% depending on the type of additive and the rheome-
ter used. It appears necessary to develop more complete rheological models taking into account the
ice solid fraction, the temperature of the slurry . . . The possible thixotropic character of the slurry
should have also to be considered. Previous studies showed that it is necessary to have two rheological
models: one for weak shearing and one for strong shearing. Measurements by a second rheometer
with a vibrating membrane are planned to cover a broad range of shearing. Lastly, the device will be
supplemented by a circular heat exchanger designed in metaplex to allow flow visualizations. That will
allow moreover local velocity measurements by optical methods (PIV). The influence of the storage
time on the pressure gradient and on the heat transfer coefficients will be studied in details for various
sets of parameters (flow, ice mass fraction . . . ).

CFD calculations on the dynamic modeling of the progressive fusion of ice slurry in the storage
tank could be also carried out using the enthalpic method. This model will be validated from temper-
ature measurements made by thermocouples laid out on the interior wall of the tank. One proposes
to extend the study of Kouskou et al. [159] by taking into account the axisymmetric real geometry
of the tank and by considering the fusion phase of the ice. The Lattice Boltzmann methods seem
completely adapted to this type of problems.
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14.2.3 Magnetic refrigeration

The objective is here to develop a 3D modeling of a porous multi-layer regenerator used in magnetic
refrigeration (MR). This project will imply one Master and one PhD students in collaboration with
J. Bouchard (LTE, Hydro-Québec).

The MR is based on the magnetocaloric effect, which consists of the reversible heating of a magnetic
material as soon as it is subjected to a magnetic field (Fig.14.8). The magnetic material warms
up during magnetization (2) and cools during demagnetization (5). Between the 2 processes, heat
transfers take place between material and the heat and cold sources via coolants (3). The MR
is recognized as being more effective than the mechanical compression of gases to reach cryogenic
temperatures. The interest for the MR at ambient temperatures is induced by the recent discovery of
the magnetocaloric effect at these temperatures for certain magnetic materials such as gadolinium. A
vaster range of applications is thus accessible. The MR appears among technologies of cold production
with a strong potential in energy effectiveness. According to optimal conditions, the output associated
with the MR is considered as being 20% higher than that of the most powerful systems of refrigeration
with compression. Moreover, the solid state of the cooling agent allows to avoid the harmful gas
emission for the ozone layer such as CFC (chlorofluorocarbons) or HCFC (hydrochlorofluorocarbures).
That has other advantages: a system of MR can be compact because of its high density of energy and
the absence of compressor makes MR a relatively quiet technology.

Figure 14.8: Principle of the magneto-caloric effect.

A system of MR is composed of pumps, magnets, heat exchangers and a regenerator. The geometry
and the composition of the latter impose a limit on the fall of temperature, which is thermodynami-
cally possible to reach. Magnetic materials with a magneto-caloric effect at ambient temperature are
constantly required and can be found under the form of thin plates or of granules compacted in order
to obtain a dense regenerator but allowing an effective heat transfer with the coolant. As it is difficult
to measure this exchange inside the regenerator of an experimental prototype, a CFD tool is more
adapted to study the heat transfer and the capacity of refrigeration. Because of important approxi-
mations, the available models do not generate realistic quantitative results. Generally, the regenerator
is modeled like a 1D and one-phase flow [320, 321]. At best, one models a restricted volume made up
of ordered granules. It is now necessary to design a CFD tool able to simulate a porous regenerator
made up of a random three-dimensional arrangement of magnetic granules.

As a first step, it will be necessary to develop a new experimental set-up of porous regenerator in
LTE-Shawinigan since that developed during the previous chair has been dismounted. The device will
allow global measurements of the vacuum magnetic field, coolant flowrate, and pressures upstream
and downstream from the regenerator, temperatures at the entry, the exit and along the regenerator
for comparisons with the CFD model. Local measurements of the velocity profiles at the entry of
the regenerator are also planned to be used as boundary conditions for the model. According to the
aptitudes of the candidates, other developments will be considered on the three components of the
regenerator (magnet, coolant and active material) and in particular on the last two with the use of
nanofluids as coolant [6], and the use of alloys containing manganese [88], which have a large magneto-
caloric effect close of the ambient temperature for weak magnetic fields.

The only unsteady 3D model of porous regenerator is still to date that developed by Bouchard et
al. [31] during the previous chair. The two principal limitations of this model raised by the authors
themselves are: the limited size of the calculation domain because of the memory and computation
time required, which quickly become prohibitive if one wishes to reproduce several magnetic cycles
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of refrigeration; the incapacity to numerically reproduce the pressure loss in the porous regenera-
tor compared with the experiments made at LTE. This may be attributed to the ordered fitting of
the magneto-caloric material granules. The porous regenerator will be thus modeled like a three-
dimensional random fitting of the magnetic solid granules. Thus, the regenerating fluid will circulate
through the tortuous channels formed by the interstices between the granules. For that, one proposes
to use the Palabos library as CFD tool. It is an open-source library, developed in C++ and based
on the Lattice-Boltzmann method. Palabos is associated with the MPI library. It is thus easy to
carry out calculations massively parallel on suitable platforms and thus to reach calculation domains
over the full regenerator. Algorithms of sequential addition or reorganization will be used to pile up
randomly the magnetic granules [319]. The coupled resolution of the Navier-Stokes (fluid) and energy
(fluid and granules) equations will make it possible to determine the distributions of velocity (fluid)
and temperature (fluid and granules). These granules will be simulated by a immersed boundary
method [246]. The inclusion of a source term, which depends on the intensity of the magnetic field
in the energy equation for the granules will make it possible to model the magneto-caloric effect.
Also, the variation of the physical properties of the magnetic granules with the temperature and the
intensity of the magnetic field will be taken into account.
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Poitiers, 2009.

[111] K. Goda. A multistep technique with implicit difference schemes for calculating two or three dimensional cavity
flows. J. Comp. Phys., 30:76–95, 1979.

[112] A. Goharzadeh and I. Mutabazi. Experimental characterization of intermittency regimes in the Couette-Taylor
system. Eur. Phys. J. B, 19:157–162, 2001.

[113] D.D. Gray and A. Giorgini. The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass
Transfer, 19:545–551, 1976.

[114] H.P. Greenspan. The Theory of Rotating Fluids. Cambridge University Press, 1968.
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[145] H.S. Kang, H. Choi, and J.Y. Yoo. On the modification of the near-wall coherent structure in a three-dimensional
turbulent boundary layer on a free rotating disk. Phys. Fluids, 10(9):2315–2322, 1998.

[146] G.S. Karamanos and G.E. Karniadakis. A spectral vanishing viscosity method for large eddy simulation. J. Comp.
Phys., 163:22–50, 2000.

[147] G.E. Karniadakis, M. Israeli, and S.A. Orszag. High-order splitting methods for the incompressible Navier-Stokes
equations. J. Comp. Phys., 97:414–443, 1991.

[148] V. Katti and SV Prabhu. Experimental study and theoretical analysis of local heat transfer distribution between
smooth flat surface and impinging air jet from a circular straight pipe nozzle. Int. J. Heat Mass Transfer,
51(17-18):4480–4495, 2008.

[149] M. Kauffeld, M. Kawaji, and P. Egolf. Handbook on Ice Slurries Fundamentals and Engineering. IIF/IIR, 2005.

[150] J. Kaye and E. C. Elgar. Modes of adiabatic and diabatic fluid flow in an annulus with an inner rotating cylinder.
Trans. ASME, 80:753–765, 1958.

[151] W.M. Kays. Turbulent Prandtl number - where are we ? Trans. ASME, 116:284–295, 1994.

[152] R. Kedia, M.L. Hunt, and T. Colonius. Numerical simulations of heat transfer in Taylor-Couette flow. J. Heat
Transfer, 120:65–71, 1998.

[153] H.B. Keller. A new difference scheme for parabolic problems. in numerical solution of partial differential equations
II. In Proc. Sympos. of SYNSPADE 1970, pages 327–350, New-York, 1971. Academic Press.

[154] M. Kilic, X. Gan, and J.M. Owen. Transitional flow between contra-rotating disks. J. Fluid Mech., 281:119–135,
1994.

272



273 BIBLIOGRAPHY

[155] G.P. King, Y. Li, W. Lee, H.L. Swinney, and P.S. Marcus. Wave speeds in wavy Taylor-vortex flow. J. Fluid
Mech., 141:365–390, 1984.

[156] C.W. Kitchens and T.S. Chang. Newtonian and non-Newtonian liquids rotating adjacent to a stationary surface.
Appl. Sci. Res., 27:283–296, 1973.

[157] K. Koal, J. Stiller, and H.M. Blackburn. Adapting the spectral vanishing viscosity method for large-eddy simu-
lations in cylindrical configurations. J. Comput. Phys., 231:3389–3405, 2012.

[158] J. Kompenhans, M. Raffel, S.T. Wereley, and C.E. Willert. Particle image velocimetry: a practical guide; with
42 tables. Springer, 2007.

[159] T. Kousksou, J.P. Bédécarrats, F. Strub, and J. Castaing-Lasvignottes. Numerical simulation of fluid flow and
heat transfer in a phase change thermal energy storage. Int. J. Energy Technology Policy, 6(1-2):143–158, 2008.

[160] R.H. Kraichnan. Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33:1521, 1976.

[161] H.O. Kreiss and S.V. Parter. On the swirling flow between rotating coaxial disks: existence and uniqueness.
Commun. Pure Appl. Math., 36:55–84, 1983.

[162] R.P.J. Kunnen, H.J.H. Clercx, B.J. Geurts, L.J.A. Van Bokhoven, R.A.D. Akkermans, and R. Verzicco. Numerical
and experimental investigation of structure function scaling in turbulent Rayleigh-Bénard convection. Phys. Rev.
E, 77:016302, 2008.

[163] D.C. Kuo and K.S. Ball. Taylor-Couette flow with buoyancy: onset of spiral flow. Phys. Fluids, 9(10):2872–2884,
1997.

[164] M. Kuosa, P. Sallinen, and J. Larjola. Numerical and experimental modelling of gas flow and heat transfer in the
air gap of an electric machine. J. Thermal Science, 13(3):264–278, 2004.

[165] T. M. Kuzay and C. J. Scott. Turbulent heat transfer studies in annulus with inner cylinder rotation. J. Heat
Transfer, 99:12–19, 1977.
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Taylor soumis à un gradient radial de température. PhD thesis, Université du Havre, 2006.
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spiral waves. Phys. Fluids, 21:114107, 2009.

[190] J.M. Lopez and P.D. Weidman. Stability of stationary endwall boundary layers during spin-down. J. Fluid Mech.,
326:373–398, 1996.

[191] R. Lueptow. Taylor-Couette flow. Scholarpedia, 4(11):6389, 2009.

[192] J.L. Lumley. Computational modeling of turbulent flows. Adv. Appl. Mech., 18:123–176, 1978.

[193] M. Lygren and H. I. Andersson. Turbulent flow between a rotating and a stationary disk. J. Fluid. Mech.,
426:297–326, 2001.

[194] M. Lygren and H. I. Andersson. Large eddy simulations of the turbulent flow between a rotating and a stationary
disk. Z. Angew. Math. Phys., 55:268–281, 2004.

[195] H. Ma. Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J. Numer.
Anal., 35:893–908, 1998.

[196] Y. Maday, S. Ould-Kaber, and E. Tadmor. Legendre pseudospectral viscosity method for nonlinear conservation
laws. SIAM J. Numer. Anal., 30:321–342, 1993.

[197] R. Manceau, R. Perrin, M. Hadziabdic, P. Fourment, and S. Benhamadouche. Turbulent jet impinging onto a
rotating disc: a collaborative evaluation of RANS models. Turbulence, Heat and Mass Transfer 6, Begell House,
2009.

[198] D.Y. Manin. Characteristics size of vortices in developed quasi-two-dimensional flows. Izvestiya, Atmospheric
and Oceanic Physics, 26(6):426–429, 1990.
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[210] M. Miklavčič and C.Y. Wang. The flow due to a rough rotating disk. Z. Angew. Math. Phys., 55:235–246, 2004.

[211] Y. Minagawa and S. Obi. Development of turbulent impinging jet on a rotating disk. Int. J. Heat Fluid Flow,
25:759–766, 2004.
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Newtonian fluid. Bull. Braz. Math. Soc., 38:595–609, 2007.

[289] D.K. Salkuyeh. Generalized Jacobi and Gauss-Seidel methods for solving linear system of equations. Numer.
Math. J. Chinese Univ. (English Ser.), 16:164–170, 2007.

[290] P.I. San’kov and E.M. Smirnov. Stability of viscous flow between rotating and stationnary disks. Mekhanika
Zhidkoshi i gaza, 6:79–87, 1991.
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Instabilities, turbulence and heat transfer
in confined rotating flows

This habilitation thesis sums up 8 years of experimental and numerical investigations in the fields of fluid mechanics
and heat transfer. It is directly in line with my PhD thesis on the stability and turbulence of rotor-stator interdisk flows
with throughflow. It gave place to 12 publications in international journals of rank A. The following 9 flow arrangements
divided into two main parts have been thus considered and studied in details in this monograph:

1. Part 1: Rotating disk flows:

• Similarity solutions of the flow of a non-Newtonian fluid over an infinite stationary rough disk;

• Stability of the flow over a finite rotating disk with a free surface;

• Stability and transition to turbulence of enclosed rotor-stator disk flows;

• Fully turbulent regime of enclosed rotor-stator disk flows under isothermal and non-isothermal conditions;

• Turbulent Von Kármán swirling flows between two rotating disks equipped or not with straight blades;

• Impinging jet flow over a rotating disk with heat transfer.

2. Part 2: Flows induced by the differential rotation of concentric cylinders:

• Stability of Taylor-Couette flows with radial thermal gradients;

• Transitional and turbulent flows in a Taylor-Couette apparatus with atypical boundary conditions;

• Turbulent Taylor-Couette-Poiseuille flows with or without heat transfer.

These works are either fundamental or find some applications in geophysics (Earth’s mantle convection, zonal winds,
ocean currents . . . ) and in the turbomachinery industry. Almost all rotating machineries are indeed composed of rotor-
stator cavities, where high rotation rates are reached in very small clearances, which may induce large overheatings.
The first Part of this thesis has been mainly motivated by some industrial contracts with the SNECMA Moteurs group,
which develops the liquid hydrogen turbopump of the Vulcain engine (Ariane V) with the goal to better predict the
axial thrusts applied on the rotor. The final goal of the second Part was to improve the cooling of an electrical motor
developed by Liebherr Aerospace Toulouse.

High-order numerical tools have been then developed for these specific applications. Two codes based on the
same projection and temporal schemes have been used with different spatial schemes: code 1 is based on Chebyshev
polynomials for the spatial discretization in the non homogeneous directions, whereas code 2 is based on 4th order
compact finite-difference schemes. Both codes have been extended to Large Eddy Simulation using either the SVV
technique for code 1 or more classical subgrid scale modelings for code 2. They are both available in their multidomain
approach using the matrix influence technique, which enables to take into account either complex geometries, high
aspect ratio cavities or atypical boundary conditions. An innovative Reynolds Stress Model sensitized to rotation effects
has also been widely used to cover high turbulent flow regimes.

These in-house numerical tools have been compared also to other numerical approaches available within commercial
or open source CFD codes through different numerical benchmarks. They have been systematically validated against
experimental data obtained either by flow visualizations or by velocity measurements performed by Laser Doppler
Velocimetry or Particle Image Velocimetry.

Rotating flows in confined systems are still an alive topic of research. The route to turbulence in some specific cases
is not yet fully understood and there is clearly a lack of numerical and experimental studies of non-Newtonian rotating
fluid flows for applications in process or food engineering.

Keywords: interdisk flows, Taylor-Couette system, turbulence modeling, high-order numerical methods, flow visual-
izations, laser Doppler velocimetry, instability, heat transfer.


