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Preface: capturing the unicorn

. . . the fence inside which we hope to have enclosed what may appear as a possible, living creature.

O. Neugebauer, The Exact Sciences in Antiquity , p. 177.

Otto Neugebauer once recalled, in his masterpiece The exact Sciences in Antiquity , that

his endeavour in restoring the mathematics of the past had a simile in the tale of the

unicorn, which ended with the miraculous animal captured in a fence and gracefully

resigned to his fate.

In this dissertation, I have also erected, out of pieces of evidence, conjectures and indirect

testimonies, an enclosure in order to capture an elusive but (I think) living subject of

research. This subject is provided by the theme of impossibility results in classical and

early modern mathematics.

I started the inquiry which led to this dissertation out of the following, perhaps naive

observation: all the famous impossibility results in geometry (namely, the impossibility of

duplicating the cube, trisecting an angle or squaring the circle by ruler and compass) are

proved by appealing to a rather sophisticated algebraic machinery. Why mathematicians

had turned to algebra in order to prove geometric impossibility results, and what makes

algebra such a powerful resource that it could prove the impossibility of solving certain

problems in geometry, apparently unprovable by geometric means only?

9
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My original questioning was as much interesting to me as it was broad, and perhaps unfit

for a discussion within a single dissertation. I then decided to develop my inquiry mainly

from a historical viewpoint, and turned to what I considered one of the first examples of

algebraic thinking in geometry, namely, Descartes’ epoch-making La Géométrie. I read

this text wondering whether it might contain any deliberation on impossibility.

I found out that Descartes was concerned with the type of impossibilities I was looking

for, although his arguments were at first sight of difficult understanding. In order to

enlighten Descartes’ ideas on impossibility, I enlarged my interest to XVIIth century

geometry, and explored whether considerations about impossibility emerged elsewhere

too.

The results of this study are contained in this dissertation. This dissertation is composed

of two main parts. The first part (chapters 1 - 5) spans from antiquity to Descartes’

Géométrie (1637) but it is mainly focused on the latter work. The aim of this part is to

explore, in a critical manner, the historical setting in which early modern impossibility

results were formulated, with a particular attention for certain salient and problematic

episodes for the historian of mathematics (for instance, the problem of understanding

which rational criterion guided Descartes in order to distinguish geometrical from me-

chanical curves, and to choose the simplest solution for a problem at hand). These

episodes are related to the main focus of this dissertation, namely, impossibility results.

The second part of this study (chapters 6 - 9) covers two salient historical cases dur-

ing the second half of XVIIth century geometry, namely James Gregory’s and G. W.

Leibniz’s attempts to prove the impossibility of squaring the central conic sections. The

connection between the two parts is given by the legacy of La Géométrie. In particular,

this text offered a model in order to formulate, and tentatively prove impossibility results

in geometry.

In pursuing the theme of impossibility in early modern geometry, I left aside other possible

contexts in which impossibility in mathematics might have emerged, as in connection

with irrational, negative and impossible numbers. This dissertation is not about these

issues. This choice has obviously influenced the mathematical results examined in this

dissertation, the context investigated and the conclusions drawn.
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On the other hand, this dissertation is neither about a reconstruction of the historical

setting in which early modern impossibility results emerged. However, in studying im-

possibility results I was guided by a specific concern for mathematical pratices. I was

indeed interested in what motivated the formulation of certain impossibility results, in

the techniques mathematicians had employed in order to argue for the impossibility of

solving a certain problem, and how did these impossibility results differed from actual

impossibility theorems, both from the point of view of the arguments adopted and from

the point of view of their role and importance in their respective theories.

In order to explore these themes, a study of certain mathematical theories and achieve-

ments in their own terms seemed to me unavoidable. For this reason, I devoted large

sections of this works to present and discuss in more general terms some of the mathemat-

ical advances brought about by Descartes, James Gregory and Leibniz, among others, as

far as I judged them important for the theme of my research.

I consider my research on impossibility by no means finished. In order to have a more

complete description and a more satisfying understanding of early modern impossibility

results, the issues discussed in this dissertation should be deepened. An inquiry about

how other prominent XVIIth century mathematicians, besides those I have discussed in

this study, conceived and treated impossibilities in geometry (Newton and Wallis, for

instance), and how new impossibilities emerged in the second half of XVIIth century

and in XVIIIth century with the onset of Euler’s analysis are among possible, future

investigations.

Salvador de Bahia, 20 August 2014.
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Chapter 1

General introduction

1.1 The theme of my study

In this dissertation, I will discuss impossibility results in early modern geometry.1 More

specifically, I will focus on the period between the beginning of XVIIth century and the

second half of the 1670s, and I will examine some of the arguments advanced by geometers

in order to justify the impossibility of solving a problem by prescribed methods. I will

consider, in particular, the impossibility of solving by certain methods the three ‘classic’

construction problems of antiquity: the quadrature of the circle, the trisection of an angle,

and the duplication of the cube (or the problem of inserting two mean proportionals

between two given segments, to which the former problem can be reduced).2

It is generally acknowledged that the impossibility of solving those classic construction

problems was not rigorously proved until the 19th century. Moreover, it is also taken

for granted that the forms ultimately worked out in the end of 19th century, which were

transmitted to the present, depended on methods unavailable to early modern geometers,

and on an underlying conception of geometry almost foreign to its predecessors.

The impossibility of solving the duplication of the cube and the trisection of a general

angle by straightedge and compass were firstly proved by Pierre Wanztel (1814-1848) in

1The term ‘early modern geometry’ will be employed from now on to designate the collection of texts,
but also the results, problems and related solving methods that occupied mathematical research between
the renaissance and the enlightenment, from 1550 ca. to 1750 ca.

2For a classical survey of the ancient discussions about these problems, see Heath [1981], Becker
[1957] (p. 74ff. and p. 93ff .) and Enriques [1912] (in particular the article by L. Conti contained in this
volume).

14
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1837.3 On the other hand, the impossibility of squaring the circle was proved for the

first time by Ferdinand Lindemann (1852-1939), in 1882, in a very strong way: in fact he

formulated the first proof of the transcendentality of π, which implies the impossibility

of squaring the circle with straightedge and compass, and more generally with algebraic

curves.4

At their ground, all these impossibility proofs rely on the possibility of treating the ex-

istence of mathematical objects in an abstract, indirect way. Developments of algebra,

indeed, offered an adequate machinery in order to model geometric contexts, and there-

fore to handle questions about the existence of an object in a theory (for instance, a

certain geometric object in elementary Euclid’s geometry) without requiring its exhibi-

tion through a construction. It is well known that, relying on the same (or very similar)

resources employed by the aforementioned mathematicians, one can prove that a regular

polygon with 257 sides exists in Euclid’s Plane geometry, by proving its constructability

through ruler and compass, even if this polygon has not been constructed, i.e., even if

its existence has not been proved through an effective construction.5

A geometric impossibility theorem can be conceived as the negative counterpart of a the-

orem of constructability. We might envisage it as a theorem proving that a certain object

(namely a problem) does not possess the property of being constructable by prescribed

instruments. The property at stake in such a proof is constructability, which is under-

stood and treated as a property on a par with other properties that may be attributed

to a mathematical (in this case a geometrical) object.

But mathematicians ruled against the possibility of solving the previously mentioned

problems well before their impossibility were actually proved, and within contexts or

within mathematical practices where indirect proofs of existence were in general not al-

lowed. Thus Descartes pronounced, as early as 1637, against the possibility of duplicating

the cube and trisecting the angle by plane means (i.e. straight-line-and-circle construc-

tions). For what concerns the quadrature of the circle, M. Jacob has convincingly argued

in her Jacob [2005] that the problem was declared ‘unsolvable’ out of ‘an authoritarian

decision of enlightenment’.

3Wantzel [1837]. Cf . in particular the insightful study in Lützen [2009].
4See Lindemann [1882]. One year later, in 1893, Hilbert simplified Lindemann’s proof (cf. Klein

[1894], p. 53).
5The original proof of constructibility of this polygon is contained in Gauss [1801], § VIII.



CHAPTER 1. GENERAL INTRODUCTION 16

As I will discuss in this study, the belief in the unsolvability of one problem by given

methods was not only dictated by the authority, nor merely by repeated unsuccesses

in trying to solve it. The conviction on the impossibility of squaring the circle, dupli-

cating the cube and trisecting the angle by ruler and compass was in fact grounded on

arguments which, although they appeared either flawed or lacking in rigour if examined

from our viewpoint, enjoyed some circulatation during the second half of XVIIth cen-

tury, and were studied and discussed. In particular, my examination will consider some

of the earliest instances of impossibility results and correlated arguments given by René

Descartes (1596-1650) in La Géométrie (1637), then an important impossibility result

about the quadrature of the circle by algebraic or analytical methods, argued by James

Gregory (1638-1675) in his Vera Circuli et Hyperbolae Quadratura (1667), and finally,

the same impossibility result discussed by G.W. Leibniz (1646-1716), in an unpublished

work, which had however a vast resonance among contemporary mathematicians: De

quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria

sine tabulis (ultimated in 1676).

1.2 A difficult context

My choice to privilege XVIIth century geometry might appear infelicitous. In the early

modern period, in fact, geometry was a constructive enterprise, and it is by no means

clear which status might be attributed to impossibility results and arguments in such a

framework and within early modern mathematical practice.

By stressing the constructive character of early modern geometry, I refer foremost to an

aspect of the mathematical practice, which has been defined as the "classical conception

of proof and knowledge" in mathematics.6

According to this conception, problems and theorems, namely the fundamental types

of propositions, or modes of argumentation, in classical and early modern geometry

possessed an undeniable constructive component. Let us consider one of the standard

and most influential accounts of the distinction between these geometric propositions,

namely Proclus’ Commentary on the first Book of Euclid’s Elements:7

6See Detlefsen [2005].
7Proclus’ text, written in the fifth century A.D., was available in print since 1533. The latin trans-

lation (Procli Diadochi Lycii in primum Euclidis elementorum librum commentariorum ad universam
mathematicam disciplinam principium eruditionis tradentium libri IV ) appeared in 1560, and was made
by F. Barozzi (cf. Proclus [1948], pp. xxiff .). See also Bowen [1983] for a reconstruction of hellenistic
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The propositions that follow from the first principles he [Euclid] divides into

problems and theorems, the former including the construction of figures, the

division of them into sections, subtractions from and additions to them, and

in general the characters that result from such procedures, and the latter

concerned with demonstrating inherent properties belonging to each figure.8

According to Proclus, who drew his conceptions of problems and theorems on the tradi-

tion of Euclid’s geometry and on other traditions, not preserved to us,9 problems involve

the construction of a figure in the plane from some given or known figures, or the per-

forming of some operations on a given configuration of geometric entities, and concern

the properties which result thereby, whereas theorems show the intrinsic properties of

given geometric figures.

This very idea is developed in another passage of Proclus [1992]:

[geometry] calls ‘problems’ those propositions whose aim is to produce, bring

into view, or construct what in a sense does not exist, and ‘theorems’ those

whose purpose is to see, identify and demonstrate the existence or nonexis-

tence of an attribute. Problems require us to construct a figure, or set it at a

place, or apply it to another, or inscribe it or circumscribe it about another,

or fit it upon or bring it into contact with another, and the like; theorems

endeavor to grasp firmly and bind fast by demonstration the attributes and

inherent properties belonging to the objects that are the subject matter of

geometry.10

Hence, problems involve a construction in order to pass from something given to what

is sought for in the givens. An undeniable constructive component is also involved, in

Proclus’ view, in the conception of theorem. Even if Proclus states that most theorems do

not require an explicit construction,11 yet they can be characterized as well by something

‘given’ in an ‘enunciation’ and something sought for. The given figure or object must

be present to our visual inspection (let us recall that the purpose of theorems is to "see,

views on problems and theorems.
8Proclus [1992], p. 63.
9Proclus surveys several positions in the tradition of Greek mathematics, on the definitions of prob-

lems and theorems, that I will not explore here: cf . Proclus [1992], p. 65-66.
10Proclus [1992], p. 157.
11See, for instance, Proclus [1992], p. 159.
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identify and demonstrate"), if not as a physical diagram, at least as a representation in

the imagination, I surmise.

In another passage of the Commentary, Proclus explains more plainly that the figure of

which we want to prove certain attributes should be made present to our contemplation

by means of a construction, as it is the case in the ordering of the first proposition of

Euclid’s Elements. In fact, the first theorem of Euclid’s Elements (namely, El ., I, 4) is

preceded by three problems, in which the subject matter of the theorem is constructed

or exhibited:

The propositions before it have all been problems . . . our geometer follows

up these problems with this first theorem. . . . For unless he had previously

shown the existence of triangles and their mode of construction, how could he

discourse about their essential properties and the equality of their angles and

sides? And how could he have assumed sides equal to sides and straight lines

equal to other straight lines unless he had worked these out in the preceding

problems and devised a method by which equal lines can be discovered? . . . It

is to forestall such objections that the author of the Elements has given us

the construction of triangles. . . . These propositions are rightly preliminary

to the theorem. . . .12

This view about the primacy of constructions was possibly contested in classical antiquity,

as it can be gleaned through Proclus Commentary,13 but it exerted a tangible influence

12Proclus [1992], p. 182-183.
13I am referring, in particular, to the dispute, related by Proclus, risen in the Academy, between

the followers of Speusippus and those of Maenechmus (See Proclus [1992], p. 63ff .). According to the
former (and to his followers), the word ‘theorem’ is more appropriate than ‘problem’ in order to denote
arguments in geometry, since this science treats of eternal objects, for which it is not appropriate to
use the language of construction. According to the school of Speusippus, constructions do not produce
geometric objects, but they offer means for knowing such (eternal) geometric objects. On the contrary,
Maenechmus, and his school, defended the thesis that all geoemetric inquiries are problems, which can be
further subdivided in two types. On one hand, problems may serve to exhibit a figure by construction;
on the other, they may be employed to investigate the properties of a given object. Proclus tries to
harmonize this view, remarking that the followers of Speusippus are right in claiming that geometry
does not deal (unlike mechanics) with concrete, perceptible objects, which undergo changes and motion,
and that the followers of Maenechmus are right too in asserting the constructive aspect of geometric
propositions: "in going forth into this matter and shaping it, our ideas are plausibly said to resemble
acts of production; for the movement of our thought in projecting its own ideas is a production (. . . )
of the figures in our imagination and of their properties" (Proclus [1992], p. 64). Hence, Proclus
insists, geometers are legitimated in talking about construction and dissection of figures, provided they
understand that these changes occur in the imagination, whereas the "contents of our understanding"
remain immutable, thus granting geometry the status of science (Proclus [1992], p. 64).
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over early modern geometers, as it is attested both by the activity of the mathematicians,

and by their methodological pronouncements.14

As an example of the latter, let us consider how Clavius, one of the leading figures of

renaissance mathematics, who exerted a long-standing influence over the subsequent cen-

tury too, interpreted the ancient distinction into problems and theorems in terms of a

distinction between types of demonstration: "All demonstrations of mathematicians are

divided by ancients into problems and theorems. A demonstration that demands that

something be constructed and teaches how to construct it they call a problem (prob-

lema vocant eam demonstrationem, quae iubet an docet aliquid constituere) . . . but they

call the demonstration that examines only some aspects or property of one or several

magnitudes at once a theorem (Theorema aut appelatur eam demonstrationem, quae

solum passionem aliquam, proprietatemve unius vel plurium simul quantitatum perscru-

tatum)".15 As an example of theorem, Clavius chooses the following: "in every triangle,

the three angles are equal to two right angles", because "it does not prescribe to, not

teach how to construct a triangle, or anything else, but contemplates merely this prop-

erty of a constructed (constituti) triangle , namely that its angles [i.e. their sum] are

equal to two right angles".16

The kinship between Clavius’ and Proclus’ definitions eloquently points towards a direct

influence of the latter over Clavius’ reflection. It is, moreover, the mark of a deeper

influence on the structure of early modern mathematics, since geometers continued to

rely on Proclus’ account of the distinction between problems and theorems throughout

XVIIth century (for more seventeenth century examples, see chapter 6, p. 6.2).

In this setting, which constitutes the background of ancient and early modern geometry,

the principal types of inquiry consisted either in the construction of a geometric object

(for instance, a figure) from given ones, according to certain clauses, or in proving that

a figure thus constructed, or given, possessed some properties. Hence, it is at first sight

14The constructive character of ancient mathematics was emphasized by Zeuthen, in his famous paper
Zeuthen [1896]. Zeuthen’s thesis can be briefly resumed: constructions serve, in ancient geometry, as
proof of existence of the constructed figures. The historical plausibility of this thesis has been criticized,
notanly by W. Knorr (Knorr [1983]). I am not endorsing, in this study, the thesis that ancient geometers
consciously endorsed a constructivist position towards existential claims, but that in the structure of
ancient and early modern geometry existential claims were established by exhibiting geometric objects
through constructions, or by assuming them as given, on the ground of intuitive properties of geometric
figures, like continuity.

15Cf. Euclid [1589], p. 23, trad. in Jesseph [1999], p. 21.
16Cf. Euclid [1589], p. 24
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unclear which logical status might be attributed to negative, impossibility arguments,

like those purporting to show that a certain construction cannot be accomplished by

selected tools.

1.3 Types of impossibility arguments

1.3.1 An ancient example

It should be pointed out that impossibility proofs were not completely extraneous to

the context of ancient and early modern geometry. Indirect proofs, namely proofs using

reductio ad absurdum, can be in fact considered impossibility proofs, in the following,

trivial sense: any theorem p can be proved by proving that its negation is impossible.

This viewpoint is contemplated by Proclus, who comments upon reductio in these terms:

Every reduction to impossibility takes the contradictory of what it intends to

prove and from this as a hypothesis proceeds until it encounters something

admitted to be absurd and, by thus destroying its hypothesis, confirms the

proposition it set out to establish.17

Reductio is a standard argumentative pattern in Euclid’s Elements. In order to under-

stand it through a concrete example, let us consider El. 1, proposition 27:

If a straight line falling on two straight lines make the alternate angles equal

to each other, the straight lines will be parallel to one another.18

Euclid claims that given two straight lines AB and CD, and a transversal EF , if EF

forms alternate equal angles AEF , EFD, then the straight lines AB and CD are parallel.

Euclid argues indirectly, by supposing that straight lines AB and CD are not parallel.

If this is so, then they will concur in a point, lying either on one or the other side with

respect to the transversal. It is assumed that they meet, on a given side, in a point G.

This point, together with the intersection points E and F can form triangle EFG. But

such a triangle will have, by hypothesis, one exterior angle (namely AEF ) equal to the

opposite interior angle (namely EFD): which is impossible, in virtue of El . I, 16: "In

any triangle, if one of the sides be produced, the exterior angle is greater than either

17Proclus [1992], p. 198.
18I refer to the translation in Heath [1956 (first edition 1908].
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Figure 1.3.1: Elements, I, 27.

of the interior and opposite angles".19 Once discovered this contradiction, Euclid can

conclude by denying the thesis that the straight lines will meet. Therefore AB and CD

are parallel. Accordig to Euclid’s definition, in fact: "parallel straight lines are straight

lines which, being in the same place and being produced indefinitely in both directions,

do not meet one another in either direction" (El., I, df. 23).

This theorem is proved by assuming an impossible configuration: a triangle in which an

external angle is equal to the opposite, internal one. Such a triangle is impossible, in so

far it possesses properties which are inconsistent or incompatible with other properties

that have been proved to hold true of this figure.

Impossibility arguments like the one deployed in El . I, 27, occur in reductio modes of

argumentation, which are common in pre-modern mathematics. They can be considered

‘local’ impossibility arguments, at least in the context of Euclid’s first six Books of the

Elements: their aim is to prove theorems about given or constructed figures.

1.3.2 Impossibility in the theory versus impossibility in the meta-

theory

Contriving a little Euclid’s text, proposition 27 can be interpreted as stating that it is

impossible to construct the intersection point between a segment CD produced and a

19Eng. tr. in Heath [1956 (first edition 1908].
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segment AB produced, such that they form equal alternate angles with respect to a

transversal EF . In other words, El. I, 27 can be read as an impossibility theorem, or a

theorem of non-existence, since it states that an intersection point between straight lines

which obey the conditions specified in the protasis does not exist.

Another, well known example of such an impossibility proof is the proof of the incom-

mensurability between the side of a square and its diagonal. Let us recall that, according

to Aristotle, mathematicians: "prove that the diagonal of a square is incommensurable

with its sides by showing that, if it is assumed to be commensurable, odd numbers will be

equal to even" (Szabó [1978], p. 214). Adopting the interpretation advanced by Becker

and reported in Szabó’s account, on which I refer here, this argument leads from the as-

sumption that the side of a square is commensurable with its diagonal to the conclusion

that the side can be associated to a number both even and odd. From this conclusion, a

contradiction results (Szabó [1978], p. 215).20

However, an important difference can be singled out between impossibility results oc-

curring in indirect proofs in geometry, like in El. I 27 above, and impossibility claims

concerning the non constructability of a certain object by prescribed means. Let us con-

sider, for instance, the impossibility of constructing, by ruler and compass, a cube whose

volume is double of a given cube. The claim to the unsolvability of this problem does not

entail that the object we wish to construct (namely, a cube with volume double of a given

cube) involves a contradiction, but that the tools demanded for its construction (in the

case at point, the ruler and compass) are insufficient with respect to the task set at the

beginning. One could certainly assume, on the ground of an intuition of continuity, the

existence of a double cube without contradiction, and employ more ‘powerful’ methods

than the ruler and the compass in order to obtain the required solution (several examples

of such methods, available to Greek geometers, will be discussed in the next chapter).

We can call this kind of impossibility result ‘conditional’ impossibility result, because

the impossibility depends on the use of particular means to solve the problem.

On the contrary, proving that the intersection point between two straight lines, forming

alternate equal angles with the same transversal, cannot be constructed (El ., I, 27)

implies that such a point cannot be constructed tout court , independently from the

methods employed, because its existence would imply an impossible configuration. These

impossibility results can be called ‘absolute impossibilities’.

20See also Gardies [1991], p. 33 in particular.
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Did classical geometric reasoning could countenance also the conditional impossibility

results that I will address in this study, like the impossibility of solving the problem

of trisecting an angle, duplicating the cube or squaring the circle by a given set of

instruments, e.g. ruler and compass? In other words, did classical geometry, conceived

as a constructive enterprise, possess the resources in order to study constructibility and

therefore and prove conditional impossibility results?

In order to venture an answer, let us sharpen, by reverting to a more modern framework,

the distinction between absolute impossibility proofs and conditional impossibility proofs.

In order to capture the gist of this distinction, I shall expound, on broad strokes, an

example of the latter kind of impossibility result, namely the proof that a cube cannot

be duplicated by ruler and compass.

Although examples of this impossibility proof are commonplace in modern expository

textbooks in algebra, I shall follow the structure of the classical account offered in

Smorynski [2007] (p. 87-131) because it relies solely on considerations which do not

go beyond the scope of elementary algebra and geometry. Even in this case, I shall take

for granted few theorems whose proofs are not requisite for the sake of my argument.

My starting point will be a clarification of the meaning attached to the expressions

‘construction by ruler’, ‘construction by compass’, that I have so far used on an intuitive

base. Let us thus call a ‘configuration’ a finite collection C of points, segments and circles

lying in the plane. Let us define a ‘curve’ in C to be either a segment or a circle. Let us

call a ‘construction step’ one of the three following operations:21

• (ruler) Given two distinct points A and B belonging to C, trace the line AB which

connects A and B, and add AB to the configuration C.

• (compass) Given two distinct points A and B belonging to C, and a distinct point

O in C, trace the circle with center in O and radius equal to AB (namely the line

joining A and B), and add the circle to the configuration C.

• (intersection) Given two distinct curves in C, pick one point common to both curves,

and add it to the configuration C.

21See for instance H. et al. [1974], p. 199.
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Next we can state that a point, line or circle is ‘constructible’ by ruler and compass from

C, if it can be obtained from C after applying a finite number of constructions steps. Let

A and B two distinct point in the plane P . The first two operations just defined license

to add to the configuration both the line joining A and B, and the circle with center in

A and radius AB.

We can now ask the question standing at the core of the cube duplication problem: is it

always possible to construct a point C such that the cube built on AC is the double of

the cube built on AB?

An answer can be given by going through two main steps.22 The first step requires to

endow our plane with a system of coordinates over the reals. The notion of ruler-and-

compass constructability can be then characterized in algebraic terms, by relying on the

following:

Lemma A basic configuration {A,B} is given in the real cartesian plane, such that

A(0, 0), B(0, 1). Then it is possible to construct a point Q(α, β) by ruler and

compass if and only if α and β can be obtained from A and B by arithmetic

operations (+, −, ÷, ·) and by the solution of a finite number of successive

linear and quadratic equations, involving the square roots of positive real

numbers.

A number α is called ‘constructible’ if it can be obtained from rational numbers, by a finite

sequence of arithmetic operations (+,−,÷, ·) and successive extractions of square roots.

Consequently, a point is called ‘constructible’ if its coordinates, in a real cartesian plane,

are constructible numbers. I point out that the above lemma allows us to characterize

constructability, introduced as a purely geometric notion, in algebraic terms.

I will assume the above lemma,23 and confine myself to remarking that this lemma offers

an algebraic criterion to decide the general possibility of a straightedge and compass

construction. Hence, in the real cartesian plane, the question whether a point C(x, 0)

can be constructed by ruler and compass, in such a way that the cube built on AC is

the double of the cube with edge AB, where A has coordinates (0, 0) and B coordinates

(1, 0), boils down to inquire whether the abscissa x, satisfying the equation: x3 = 2, is

constructible.
22My presentation is indebted to Laugwitz [1962].
23The proof is elementary: see Hartshorne [2000] p. 122.
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This is the second step of our proof. A negative answer will follow from this other:

Lemma Consider the polynomial of the form: P (X) = X3 + aX2 + bX + c, with

a, b, c ∈ Q. If the equation P (x) = 0 has a constructible solution, then P has

a rational solution as well.24

The equation x3 − 2 = 0 is a special case of P (x) = 0 (for a = 0, b = 0 and c = −2). It

can be proved that the equation: x3 − 2 = 0 has no rational solutions.25 In virtue of the

preceeding lemma, the equation has no constructible solutions as well, so that point C

cannot be constructed by ruler and compass from the original configuration {A,B}.

Looking at today treatments of impossibility proofs, the translation of a statement in

a given theory (i.e plane constructive geometry) into another (i.e. algebra or analysis)

seems a requisite condition for proving conditional impossibility claims. Michael Otte

correctly and precisely observes in Otte [2003]:

Impossibility proofs (. . . ) are not only indirect proofs but also depend on

the choice of a certain representation. In order to prove, for instance, that

the doubling of the cube is impossible, one has to represent the constructible

numbers to show that the third root of 2 is not a constructible number.26

In the above passage, Otte only recalls the proof of the impossibility of duplicating the

cube by ruler-and-compass constructions, but similar examples will hold for the other

classical construction problems.

In the context of today mathematical knowledge,27 we thus recognize that ‘the choice

of a certain representation’, from which impossibility proofs in geometric problem solv-

ing depend, requires the systematic translation of a mathematical theory into another

mathematical theory, for example a translation from geometry to algebra or analysis.

24A fully-fledged proof can be found in Smorynski [2007], p. 92.
25Hartshorne [2000], p. 243. Let us suppose that the polynomial: P (x) = x3 − 2 could be factored

over Q. Then it will have at least a linear factor, so it will have a rational root. Let us assume that the
polynomial has the root: a

b
, with a and b both in Z and relatively prime. Then: a3 = 2b3, and it follows

that a is even. If 2 divides a, then 23 divides a3. Since a3 = 2b3, 23 will divide 2b3, hence 22 will divide
b. b is therefore even, which contradicts the hypothesis that a and b were relatively prime.

26Otte [2003], p. 183.
27We might say, using a kuhnian terminology, that the picture I have offered holds, in ist generality,

for today normal science’, for instance, the content of mathematics as it is apprehended in standard
textbooks.
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This viewpoint is clearly stated in the classical booklet by F. Klein Famous Problems of

Elementary geometry :

The singular thing is that elementary geometry furnishes no answer to the

question. We must fall back upon algebra and the higher analysis. The

question then arises: How shall we use the language of these sciences to

express the employment of straight edge and compasses? This new method

of attack is rendered necessary because elementary geometry possesses no

general method, no algorithm, as do the last two sciences.28

According to Klein’s views, that have become nowadays current,29 it results that state-

ments about the possibilities of different solving methods were not amenable to inves-

tigation unless one could appeal to algebra and analysis, conceived as meta-theories of

geometry, in order to translate geometric problems and construction procedures.

In the light of these considerations, the distinction between absolute and conditional

impossibility results can be now reformulated as a distinction between two types of im-

possibility proofs. On one hand, proofs that a construction cannot be obtained within a

certain context C if a specific choice of the construction tools is required. Such impossi-

bility proofs are obtained by appealing to another context C ′ for speaking of C, and can

be called ‘extra-theoretical’. On the other hand, we also recognize proofs showing that

if it were the case that an object obtained in a given context C, something impossible

would follow: these proofs do not require another context C ′ to speak of the context C,

and can be called ‘intra-theoretical’. Indirect arguments as the one deployed in El. I, 27

are, generally, intratheoretical impossibility proofs of this kind.

1.4 Impossibility statements as meta-statements

Scholars agree, when considering examples of extra-theoretical impossibility results, that

ancient geometers hardly possessed any argument that could qualify as (or equivalent

to) an extra-theoretical impossibility proof in the modern sense.30 Indeed, it is difficult

28Klein [1895], p. 2.
29For instance: Courant and Robbins [1996], p. 120, Smorynski [2007], p. 89.
30The opinions of the scholars is in general concordant on the issue. See for instance Becker’s con-

sideration: "It is not known whether they [the ancients] could prove that, for instance, the problem of
duplicating the cube is not solvable by ruler and compass alone. We do not even know with certainty
whether a method in order to carry out such an impossibility proof obtains, which remains within the
territory of Greek mathematics" (Becker [1957], p. 75).
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to envisage an analogous impossibility proof framed within the geometric manner of the

ancients. It may be conjectured, for instance, that a method able to prove the impossi-

bility of solving a problem (e.g. the duplication of the cube) by prescribed methods (e.g.

straight lines and circles only), within the framework of classical analysis and geometry,

should be able to survey all possible (plane) constructions and conclude that no one of

them can solve the problem. I have not been able to find, however, which methods or

arguments, in classical Greek geometry, could attain such a level of generality.31

However, evaluating ancient attempts to solve problems like the duplication of the cube,

the trisection of the angle and the squaring of the circle, a scholar like Heath states

unhesitantly that: "Greek geometers came very early to the conclusion that the three

problems in question were not plane, but required for their solution either higher curves

than circles, or constructions more mechanical in character than the mere use of the ruler

and compass in the sense of Euclid’s postulates 1-3".32

Heath does not delve further into this claim, but surveys in detail the ancient constructive

solutions to the classic problems. Of course, solving a problem by higher curves than

circles is not sufficient to claim that the problem is not plane: we can thus wonder on

which ground Greek geometers could have based their conviction that the classic problems

of construction were unsolvable by plane methods.

Occasional deliberations about the impossibility of solving a problem by given means

can be found, especially among authors of late antiquity (I will try to explain later on

a plausible reason why earlier Greek geometers remained silent). A shining example is

the Mathematical Collection, a miscellaneous work written by Pappus of Alexandria in

early fourth century AD. This is not only an outstanding text in ancient mathematics,

but also one of the most influential sources in late XVIth and XVIIth century.33

31Interesting considerations with respect to the scope and limits of ancient methods for problem-
solving can be found in Hintikka and Remes [1974], p. 57, and Saito and Sidoli [2010], p. 587. The
fact that ancient geometers had not produced, to my knowledge, such a proof, does not imply that this
impossibility proof is itself impossible, in the framework of a theory which formalizes relevant aspects of
ancient geometric theories. An interesting to raise, with regard to this problem, concerns the conditions
that a formal system should comply with in order to derive extra-theoretical impossibility proofs within
the theory itself.

32Heath [1981], p. 219.
33The Collection is a treatise of which most of books II through VIII are extant. These books preserve

a wealth of material on the ancient geometric tradition, much of which would otherwise be unknown to
us. But as the leading teacher of mathematics and astronomy at Alexandria, Pappus was most influential
in his own time for his commentaries on Ptolemy and Euclid (for general information on Pappus’ life, his
work and mathematical agenda, see Pappus 1986, p. 2-62; Cuomo [2007], and Mansfeld [1998], in partic-
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At the beginning of book III of the Collection, Pappus criticizes the sketch of an alleged

plane solution (that is, a solution appealing to circles and straight lines only, employed

according to Euclid’s first three postulates) of the problem of finding two mean pro-

portionals in continuous proportion, proposed, so Pappus states, by an "inexperienced

geometer".34

The mean proportionals problem is the problem of constructing, given two line segments

a and b, two segments x and y such that the following proportion holds: a : x = x :

y = y : b. It is easy to see that: ay = x2, bx = y2, xy = ab, and therefore: x3 = a2b.

Since this is an irreducible equation of third degree, we know that the problem cannot

be solved by plane means.35 I observe that if we posit: b = 2a, the solution of this

problem will solve also the duplication of a cube with side equal to a: the reduction of

the duplication problem to the insertion of two mean proportionals was well known to

Greek mathematicians.36

The content of Pappus’ criticism is not easy to define, because it mingles various argu-

ments, and Pappus’ exposition relies on several intricate digressions. At any rate, his

objections can be grouped around three main points:37 whereas two of these objections

concern certain fallacies allegedly committed by the inexperienced proponent, that I shall

not explore here, the third objection will interest more closely my narration. In fact, while

scrutinizing, at the outset of Book III of the Collection, the flawed solution to this very

problem advanced by the "inexperienced geometer", Pappus remarks that the former has

taken: "the thing sought for as admitted", and has been deluded by the impossibility of

constructing the givens, since the problem of inserting two mean proportionals "is indeed

solid by nature".38

ular chapter 2). Concerning the fortune of the text, in XVIIth century, I signal Pappus’ latin translation
prepared by F. Commandinus, appeared posthumously in 1588 (in bibliography: Commandinus [1588]).
The Mathematical Collection, however, was also known before, thanks to Greek manuscripts circulating
among mathematicians and humanists (see Bos [2001], p. 37, Treewek [1957]).

34Pappus refers to someone who "puts the thing forward in an inexperienced way" (πωϛ ἄρείρωϛ
προβάλλων), Cf. Pappus [1876-1878], vol. I, p. 31, line 16.

35An important catalogue of solutions of the mean proportionals problem (obtained either by mechan-
ical methods or curves higher than plane ones) can be found in Eutocius’ Commentary On Archimedes’
The Sphere and the Cylinder (Archimedes [1881], vol. 3).

36According to Proclus’ account, it should be attributed to the mathematicians Hippocrates of Chios:
"Reduction is a transition froma problem or a theorem to another one which, if known or constructed,
will make the original proposition evident. For example to solve the problem of the duplication of the
cube geometers shifted their inquiry to another on which this depends, namely, the finding of two mean
proportionals".Proclus [1992], p. 167.

37Cuomo [2007], p. 132.
38Pappus [1876-1878], vol. I, p. 40, 42. See Hintikka and Remes [1974], p. 79.
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The core of this criticism lies, so it seems, in the fact that the unskilled geometer has

improperly applied straight line-and-circle constructions to a solid problem, namely a

problem that can be adequately solved only by higher curves, like conic sections, or

by equivalent mechanical methods. I remark that Pappus assumed the unsolvability of

the problem of inserting two proportionals by plane method as a matter of principle,

and expressed no desire to prove or argue for it.39 In book IV of the Collection (Pappus

[1876-1878] vol. I, p. 271), we learn that Pappus suggested that the trisection of an angle

was unsolvable by planar means. Also in this case, he did not offer any justification for

unsolvability of the trisection problem by straight-lines-and-circles constructions.

Pappus did not justify the impossibility of solving the classical problems of cube dupli-

cation (and insertion of two mean proportionals) or the trisection of the angle by ruler

and compass. We might thus suppose that he grounded his conviction on a tradition

of commentary and research on these problems. It should be recalled, in fact, that the

cube duplication and the trisection of the angle were topical problems in Greek classical

geometry, and could claim a long tradition of research and numerous attempts to their

solution.40 It is thus possible that mathematicians became convinced that these two

problems were ‘plane by nature’.41 Pappus might refer to such a tradition when he ruled

out attempts to solve solid problems by planar means, and thus conclude, on this ground,

that embarking in the attempt to construct two mean proportions or trisect an angle by

ruler and compass was an investigation into the impossible, which revealed, at most,

ignorance about the previous tradition of research on these problems. Conclusively, at

least in the context of Pappus’ discussion, and probably among mathematicians of late

antiquity too,42 conditional impossibility claims had the status of principles regulating

the activity of problem-solving, rather than that of mathematical theorems.

Are these deliberations on the nature of certain problems to be found in earlier texts

belonging to the Greek corpus? I am not aware of any such case in earlier mathematical

literature properly (for instance, Euclid, Archimedes or Apollonius). One reason for

thos silence on impossibility claims in mathematical texts is probably due to the fact

that methodological considerations about mathematics (which included considerations

39The point is made in Lützen [2010], p. 5-6, to which I am particularly indebted.
40For the cube duplication, see in particular Saito [1985], p. 119. For the trisection of the angle, see,

in particular: Heath [1981], p. 235.
41See also Knorr [1986], p. 361.
42A similar judgement about the problem of inserting two means is expressed also in Hero’s mechanics,

quoted in Knorr [1989], p. 11.
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about legitimate and illegitimate methods) were treated, during the hellenistic period,

in philosophical rather than mathematical texts. Such a rigid division of tasks lost its

strenght later on, so that for someone like Pappus it would have been admissible to enrich

mathematical discussions with methodological and philosophical considerations.43

Consistently with this image of the ancient mathematics, I recall that the earliest sur-

viving claims about the unsolvability of the circle-squaring problem, the third classic

problem of antiquity, are to be found not among the considerations of a mathematician,

but of philosophers like Aristotle, that I will discuss in the next section.

1.4.1 The unsettled nature of the circle-squaring problem

The circle-squaring problem stood presumably as the most elusive case among the three

classic problems of antiquity, since its solution was not successfully settled by the ancients.

I recall that the term ‘quadrature of the circle’ did not concern for ancient, and for a good

part of early modern geometers too, the problem of measuring an area, provided a unity

of measurement is established in the backdrop. The concepts of length, area and volume,

as we understand them today, namely as numerical measures of certain magnitudes (a

line, a surface or a body) were extraneous to Greek geometry. Thus we never encounter,

in the writings of ancient Greek geometers, a general concept of area (volume or lengh),

nor claim like: " the area of the triangle is the half product of its basis by its height", nor

a question like: "what is the area of the circle (by which we mean what is the number

which expresses its surface)?" would have been formulated as such.44

The meanings of ‘lenght’ of a segment or ‘area’ of a surface were tacitly understood as

known from intuition (see Boyer [1959], p. 32). In the tradition of Greek geometry, the

problem of squaring a given figure consisted in the construction of a polygons equal to

that figure, or a polygon whose ratio with the figure to be squared could be expressed

numerically. In the latter case, moreover, it would be easy to convert the proportion so

obtained in an exact construction procedure.45

43On the methodological considerations in Pappus’ Collection, see Cuomo [2007], p. 170ff .
44Cf. Boyer [1959], p. 32.
45It should not be forgotten, on the other side, that reference to area could occur, in classical mathe-

matics, in the context of the operation of the ‘application of area’: ‘To apply an area to a (straight) line’
meant ‘to construct a parallelogram along that line’. The parallelogram might have the line segment as
one of its sides, known as ‘the parabolic application’ of area (Elements I. 44), or it may exceed the seg-
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The common way of proceeding would require to bound the figure to be squared –

generally delimited by a straight line and a curved line, if it was not a closed figure

already, like a circle or an ellipse - by a parallelogram, and then determine their ratio.

Thus, while we say that ‘the area of a triangle T measures one half of the product of

its base by its height’, a classical geometer would have reached an analogous conclusion

by writing down a proportion between the triangle T , a rectangle R constructed on the

same basis, and a couple of numbers, like: T : R = 1 : 2.

In general, squaring a polygon is a problem within the purview of Euclid’s Elements:

it can be solved, in an elementary way, by constructing a rectangle equal to a given

polygon (El . I, 45), and the by squaring the rectangle thus obtained (El . II, 14).46

Greek geometers obtained important results concerning problems of a higher order of

difficulty, like the quadratures of some curvilinear surfaces (and volumes): one of the

most outstanding was obtained by Archimedes and established that that the area of a

parabolic segment P (namely the figure buonded by a parabolic arc and having as basis

a chord of the parabola) is 4
3 of the triangle T0 having same basis and same height as the

parabolic segment: P : T0 = 4 : 3.47

However, no similar results were found for the case of the squaring of the circle: the reason

appears for us obvious, since the ratio between a circle and a suitably chosen rectangle

(for instance the square built on the diameter of the circle) cannot be expressed as a

ratio of numbers conceivable within the bounds of classical mathematics. Nevertheless,

Greek geometers tried to solve the circle-squaring problem, and eventually came up if

not with definitive, yet with outstanding results. According to the classical survey given

by Tropfke, they pursued three main directions of research. The first one consisted in

trying to construct a square equal to a given circle by ruler and compass only. The

second method required higher order, mechanical curves, whereas the third method did

not consist in finding a construction properly, but an approximate computation of the

area of the circle (we should more correctly refer, in this case, to the measurement of the

circle).48

ment – "the hyperbolical application" (Elements, VI. 29), or fall short of it – ‘the elliptical application’
(El ., VI. 28).

46Cf . Proclus [1992], p. 334-335.
47Cf. Archimedes [1881], vol. 2, p. 293ff ; for an english translation: Heath [1897], p. 233.
48Tropfke [1902], p. 110.
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Tropfke also adds, few lines later, that: "only the modern times have brought about the

knowledge that the first way is wholly impossible",49 so that a solution of the circle-

squaring problem could be found either by infinite methods or by special curves. But it

should be remarked that claims to the impossibility of effectuating the quadrature of the

circle by elementary methods occurred already in antiquity, and exerted a considerable

influence on early modern geometers.

Possibly the fundamental and most influential among the ancient contributions to the

understanding of the circle-squaring problem came from Archimedes. In particular,

Archimedes proved, in the first proposition of the Dimensio Circuli , an important theo-

rem stating that the area of any circle is equal to a right-angled triangle, in which one of

the sides about the right angle is equal to the radius, and the other to the circumference

of the circle. This theorem entails a noteworthy consequence: it is sufficient to construct

a straight line equal to the circumference of a given circle in order to construct a triangle

equal to the circle, and solve, in this way, the quadrature of the circle.50

The Archimedean reduction of the quadrature problem to the rectification of the cir-

cumference is based on the rounding off of the circumference by the construction of the

sequence {pn} of inscribed regular polygons, and the sequence {Pn} of similar circum-

scribed regular polygons, each polygon of the sequence being obtained by successively

halving the sides of the previous one. In order to understand how the rounding off pro-

cess intervenes in such reduction, one can venture the following reconstruction of the

archimedean reasoning underlying the proof of proposition 1 of Dimensio Circuli .51

To establish the result stated in Archimedes’ text, one would need to assume the following

premisses (implicit in the extant version of the Dimensio circuli):

1. The perimeters of every inscribed polygon is smaller than, and the perimeter of

every circumscribed polygon is greater than the circumference of the circle.

2. The in-radii of the polygons inscribed and circumscribed to a given circle are re-

spectively less than and equal to the radius of the circle.

3. The area of a regular polygon is equal to the rectangle formed by one-half its

perimeter and its in-radius.

49See Lindemann [1882].
50See Archimedes [1881], vol. I, p. 257ff.; Dijksterhuis and Knorr [1987], p. 222.
51Archimedes [1881], vol. I, p. 260-262.
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On the strenght of 1, 2 and 3 one can note that the rectangle formed by one-half the

circumference of a circle C and its radius is greater than the area of every regular polygon

inscribed in C, and smaller than the area of every regular polygon circumscribed to it.

From this, it can be proved, by the method of exhaustion, that the difference between

the area of the circle and the rectangle formed by one-half the circumference and the

radius can be made less than any preassigned quantity (this last proof is contained in

the text of Dimensio Circuli).52

It should be pointed out that Archimedes did not solve the circle-squaring problem,

but proved its equivalence with the problem of rectifying its circumference.53This result

might have suggested a way to attack the quadrature problem by passing through the

rectification of its circumference, but this route was not an easier one: ancient geometers

probably encountered deep technical and conceptual difficulties as they sought actually

to construct a segment equal to the circumference of a given circle. I will confine myself

to discussing two issues concerning the problem of rectifying the circle, which emerged

in ancient geometry and exerted a long-standing influence over XVIIth century debates

around the possibility or impossibility of solving the quadrature of the circle.54

The first issue concerns the constructability of a straight line equal to the circumference

of a circle. Ancient and medieval commentators felt bound to supplement the proof

of theorem 1 of the Dimensio Circuli with a postulate stating that one can produce a

straight line equal to a circle.55

The reason which urged ancient geometers to explicate this assumption may be traced

back to an Aristotelian standpoint, which was highly influential especially on early mod-

ern geometers, as mainline historiography of mathematics has often stressed.56 In the

seventh book of Physics (VII, 4, 248 a-b), for instance, Aristotle advanced an argu-

52See Knorr [1986], p. 153-154.
53Incidentally, I observe that this theorem represented a paradigmatic example of the reducibility of

quadrature problems to rectification ones, which became a general desideratum among geometers in the
second half of XVIIth century. We read, for instance, in a letter written by Leibniz to Huygens in the
1690s: "je souhaitte de pouvoir tousjours reduire les dimensions des aires ou espaces, aux dimensions des
lignes, comme plus simples. Et c’est pour cela qu’Archimede a reduit l’aire du cercle a la circomference"
(AIII5, 17, p. 96). On the issue of reducibility of quadratures to rectifications, see Blasjo [2012].

54My discussion is particularly indebted to Molland [1991].
55The postulate is explicit in Eutocius’ Commentary (Cf. Archimedes [1881], vol. 3, p. 267), and in

two medieval commentaries, the Cambridge and the Corpus Christi manuscripts of the Dimensio Circuli
(Clagett [1964], p. 68, 170, 382ff ., 414ff .).

56See Baron [1969], p. 223-228;Bos [2001], p. 342 Hofmann [2008], p. 101-103.
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ment for the ‘non-comparability’ between circular and straight motion. This argument,

although tantalizing in its vagueness, can be captured by the following scheme:

• Let us suppose that every movement is comparable (symbleta) in speed with every

other.

• Hence, straight and circular motions are comparable (symbleta).

• Movements of equal speed are those that cover equal distances in equal times (which

is admitted).

• There will be curvilinear movements which cover equal distances in equal times

with rectilinear movements.

• Therefore, there are curves equal to straight lines.

• Thus, segments and arcs will be comparable, which is absurd.57

Aristotle did not directly argue for impossibility of comparing arcs and straight lines,

but took this claim for granted in the course of an argument concerning the impossibility

of comparing straight and circular motions. On the ground of this example, we might

suppose that a belief in the ‘non comparability’ of circles and straight lines was circulating

among mathematicians, in Aristotle’s time, namely by the fourth century B.C.

By claiming that arcs and straight lines cannot be compared, Aristotle possibly meant

that circles and lines could not be made to coincide with each other, through some licensed

geometric construction.58 If the possibility of comparing circular and straight segments
57The translation of the original passage can be found inHeath [1998]: "The question may be raised

whether every motion is comparable with every other or not. If all motions are comparable and things
have the same speed when they move an equal amount in an equal time, then we may have a circular arc
equal to a straight line, while of course it may be greater or less". Few lines later we can read: "...but
once more, if the motions are comparable, we are met by the difficulty aforesaid, namely that we shall
have a straight line equal to a circle. But these are not comparable; therefore neither are the motions
comparable". Heath [1998], p. 140-141.

58A different interpretation is given by Ross: "One would have expected him [Aristotle] to accept as
obvious that a curve may be longer or shorter than a straight line, even if he did not admit that it could
be equal to one; for this is suggested by very obvious facts of experience. It seems probable that the fact
on which he is relying is that a straight line and a curve are οὺ σvυνβλητά, i.e. that there is no unitary
line of which both are multiples, and that from this he wrongly infers that a straight line cannot be
either equal to or lesser than a curve" (Aristotle [1936], p. 677-78). Ross’ interpretation tends to read
the non compatibility between straight and curved lines in terms of incommensurability, in analogy with
the famous incommensurability between the side and diagonal of a square. I am not competent enough,
on the exegesis of Aristotle, to question Ross’ interpretation, but I can stress that later interpreters took
Aristotle’s passage as a vindication of the belief that circular and straight lines are not comparable. I
shall offer examples below.
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were denied, one would also lack the conditions under which it could be operationally

decided whether, given a circular arc B, a segment A could be constructed such that

A < B, or B < A, or A = B. Hence the rectification of the circle, namely the construction

of a segment A equal to a given circular arc B, would be in principle impossible. On

the contrary, we know from other sources59 that Aristotle might allow the solvability in

principle of the circle-squaring problem.60 Aristotle might not be expressing incoherent

views here, as we cannot exclude that he ignored the equivalence between the quadrature

of the circle and the rectification of its circumference, proved only later, by Archimedes.61

However, the aristotelian passage was emphasized in a medieval commentary on the sev-

enth book of the Physics, written by Averroes during the twelfh century, and translated

into latin during the renaissance. If, on one hand, Averroes stressed, in the footsteps of

Aristotle, that there cannot be a straight line equal to a circular arc, on the other he

admitted the possibility of comparing, via superposition, straight segments with other

segments, and arcs with other arcs on the same circle, since in either of the two cases,

they belonged to the same kind.62 In Averroes’ commentary, in particular, the incompa-

rability between straight and circular lines is explained on the ground that these entities

belong to different kinds: this view might have been shared by Aristotle himself, as it

probably grew up as a fundamental divide within ancient classifications of curves.63

The Aristotelian standpoint on the impossibility of comparing straight lines and circular

arcs, mediated by Averroes’ interpretation, exerted a long-range influence onto early

59Cf . chapter 7 of Aristotle’s Categories (Cf . Knorr [1986], p. 361).
60Occasionally, we find among Aristotle’s writings critical discussions of contemporary or earlier at-

tempts to solve the circle-squaring problem. A survey of Aristotle’s opinions on the different quadratures
of the circle can be found in Mueller [1982].

61This hypothesis is advanced, for instance, in Mendell [2008].
62I report Averroes’ explanation in the latin translation of 1550-1552, by Bagolinus: "non est pro-

portionalitas secundum veritatem inter lineam rectam et circularem . . . et intendebat per hoc, quod
impossibile est de quantitatibus esse aequales nisi rectas tantum aut circulares tantum, scilicet quae sunt
ejusdem speciei, cum istae sibi superponantur; et ideo dicimus, quod quantitates curvae non aequabuntur
nisi sint ejusdem circuli" (in Hofmann [1941/42], p. 6: "there is no proportion betwen the straight line
and the circular, according to the truth . . . and he [Aristotle] meant by this, that it is impossible for
these quantities to be equal, unless they are both straight or both circular lines, which are indeed of the
same species, since in this case they can superimpose; and in the same way we say that curved quantities
cannot be made equal unless they belong to the same circle").

63Aristotle also embraces a fundamental classification of curves into straight and circular in De Caelo,
I 2, 268 b, 17-20: "But all movement that is in place, all locomotion, as we term it, is either straight or
circular or a combination of these two, which are the only simple movements. And the reason of this is
that these two, the straight and the circular line, are the only simple magnitudes" (eng. tr. in Aristotle
[1922]). Cf. also note 32 in this dissertation.
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modern geometry.64 It eventually acquired the role of a ‘mathematical dogma’, a precept

against the exact solvability of rectification problems, and therefore against the solvability

of the quadrature of the circle too, which loomed large in the mathematical community

until the half of XVIIth century, as I shall discuss in chapter 6.65

Despite the evidence for any definitive conclusion concerning the view about the non-

comparability between straight and curvilinear lines is tenuous, a conjecture can be

gleaned from the previous discussion. I suggest that the ‘dogma’ of the non-comparability

between straight and curved lines, possibly originated in the geometry of Aristotle’s time,

and later revived through the circulation of the aristotelian corpus and through its com-

mentaries (Averroes is but one among them), might have exerted a durable, although not

uncontested influence on later mathematics, as an example of impossibility ‘in the begin-

ning’. As far as the impossibility of solving the circle-squaring problem was not derived

from a mathematical proof, but it was grounded on a belief on the non-comparability

between straight and curves, perhaps justified on broad metaphysical reasons (curvilin-

ear and straight lines belong to different kinds), it might have acquired the status of a

principle in order to regulate the very activity of problem-solving, rather than a theorem

within the corpus of mathematics.

However, this view was contested since antiquity: objections can be found, in particular,

in the archimedean tradition. As a start, let us point out that the impossibility of com-

64Compare, on this concern, the informed study by J. E. Hofmann in Hofmann [1941/42], and Hofmann
[2008], p. 101ff .

65Aristotle’s dogma resonates in Descartes’ Géométrie as we can read in Descartes [1897-1913], vol.
6, p. 412: "La proportion, qui est entre les droites et les courbes, n’est pas connue, et mesme ie croy
ne le pouvant pas estre par les hommes, on ne pourroit rien conclure de là qui fust exact et assuré".
See also Baron [1969], p. 223-228;Bos [2001], p. 342. Both the expressions "mathematical dogma" and
"axiom" are employed by Hofmann in the already quoted study Hofmann [1941/42], and in Hofmann
[2008], p. 101. The latter, in particular, notes: "Er muss aber in kirchlichen Kreisen eine grosse Rolle
gespielt, und sich schlieslich, von einem Aristoteles-Kommentars in den andern übernommen, zu einem
Art von mathematischem Dogma entwickeln haben. Leider, lässt sich dieser Vorgang im Augenblick
nicht näher verfolgen, da von den zahlreichen Tratkaten der Spätscholastiker über der Kreisquadratur,
nur der kleinste Teil im druck zuganglich und wahrscheinlich viele Interessante für immer verloren ist."
(Hofmann [1941/42], p. 16: "It must have played a tangible role in ecclesiastic circles, and finally, it must
have turned, trasmitted from one commentary of Aristotle to the other, into a kind of mathematical
dogma. Unfortunately, this process is no more extant close to our eyes, since of the numerous treatises of
late Scholastics on the quadrature of the circle, only the smallest part was printed, and plausibly many
interesting ones are forever lost"). Claims to the impossibility of comparing circular arcs and straight
lines, or curvilinear arcs and straight lines are advanced, for instance, by numerous scholars from the
early XVIIth century, among them, for instance, Viète and Kepler, as the investigation led by Breger
shows (Breger [1991], p. 36ff .). I could not ascertain (nor Breger’s analysis carries information on this
concern) which was the origin of this tradition, or whether this belief spread from a relevant episode or
a main publication.
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paring segments and circular arcs is denied by one of the fundamental assumptions in

Archimedes’ proof of the first theorem of the Dimensio circuli , evoked above: the perime-

ters of every inscribed polygon is smaller than, and the perimeter of every circumscribed

polygon is greater than the circumference of the circle. This assumption can be seen as

obvious in virtue of two postulates, formulated by Archimedes at the outset of the first

book of the Sphere and the Cylinder : the shortest distance between two points is the

segment joining them, and of two curves with the same extremities and convex in the

same direction, the one which contains the other has greater length (the same postulate

can be generalized to curved surfaces).66

Robust objections against the aristotelian thesis on the non-comparability between straight

and circular lines were raised by commentators of Archimede’s work. Eutocius, an early

VIth century author of influential commentaries on Archimedes and Apollonius, wrote,

commenting the first proposition of the Dimensio circuli :

For it is somehow clear to everyone that the circumference of the circle is some

magnitude, I believe, and this is among those extended in one [sc. dimension]

while the straight line is of the same kind. Even if it seemed not yet possible to

produce a straight line equal to the circumference of the circle, nevertheless,

the fact that there exists some straight line by nature equal to it is deemed

by no one to be a matter of investigation.67

Eutocius strongly affirms that the existence of a straight line equal ‘by nature’ to a

circumference is a matter beyond doubts, even if its actual construction had not been

found out yet. By separating a concern for existence from a concern for constructability,

Eutocius possibly intended to rule out the non-comparability in principle between straight

and curve magnitudes, and thus establish the problem of rectifying the circumference as

a legitimate question, a question still worth investigating.

The medieval Corpus Christi version of the Dimensio Circuli (Clagett [1964], p. 170ff.)

incorporated the claim to the existence of a straight line equal to a circle, and more gener-

ally, the concern for the comparability of straight and circular segments, by interpolating

the original archimedea text with three postulates, "known per se and recognized by

anyone" (ibid .):

66Archimedes [1881], vol. 1, p. 8-9. These postulates were probably implicit in his Dimensio circuli ,
as suggested in Knorr [1986], p. 155.

67Archimedes [1881], vol. 3, p. 266. Eng. tr. in: Knorr [1986], p. 362.
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Primum est, quor arcus sit maior corda.68

Secundum petitorum est, quod linea curva sit aequalis rectae.69

Tercium petitorum tale est: quaelibet linea curva duobus terminis arcus cir-

cumferencialis conterminata ex parte convexitatis arcus arcum ambiens maior

est illo arcu.70

Even when the comparability between straight and curves was conceded, ancient sources

recorded some disagreement on what should count as a legitimate solution to the rec-

tification problem: this is the second conceptual issue related to this problem I shall

sketch here, and that I shall develop in this study. A simple, almost naive way to go

about with the rectification of the circumference would be to wrap a string around a

circle and subsequently straighten it, or let a circle roll along a line: both procedures are

evoked by the anonymous medieval commentator of Archimedes’ Corpus christi version,

although not as solution to the rectification of the circumference.71 It can be doubted,

in fact, whether such an ‘empirical’ solution were ever taken as offering any insight into

the structure of the problem, and thus whether they ever qualified as geometrical.72

On a higher level of sophistication, ancient geometers defined special curves, like the

quadratrix or the spiral, both generated by the composition of two simultaneous motions,

68Eng. translation in Clagett [1964], p. 171: "The first of the three postulates is that an arc is greater
than [its] chord".

69Clagett [1964], p. 171: "The second of the postulates is that a curved line be equal to a straight
line.".

70Clagett [1964], p. 173: "the third of the postulates is as follows: any curved line sharing the two
termini or a circumferential arc and including it in the direction of the convexity of the arc, is greater
than the arc."

71In Clagett [1964], p. 171: "For if a hair or silk thread is bent around circumference-wise in a plane
surface and then afterwards is extended in a straight line in the same plane, who will doubt - unless he
is hare-brained (cerebrosus) - that the hair or thread is the same, whether it is bent circumference-wise
or extended in a straight line and is just as long as the one time as the other". This example, together
with the well-known case of a wheel rolling on a tangent plane surface, is considered in order to justify
the admissibility of the second postulate as a truth endowed with great evidence, not as a solution to
the rectification problem.

72Still in the second half of XVIIth century, Leibniz went back on the question, and referred to such
attempts at rectifying the circumference by chords as "empirical quadratures": "Tamdiu quaesierint
Geometrae, quid enim facilius quam rectam circumferentiae aequalem invenire, Circulo materiali filum
circumligando, idque postea in rectum extendendo, ac mensurando . . . " (AVII6, 19, p. 170: "But for
a long time, geometers wondered what could be easier than finding a straight line equal to a circum-
ference, by revolving a thread around a material circle, and afterwards straightening and measuring
it."). However, Leibniz aptly recalled: "Verum sciendum est, tale quiddam a Geometris non quaeri"
("But it must be acknowledged that such a solution is not the one desired by the Geometers"). The
role of chords in mathematical endeavors will be critically discussed by XVIIth century geometers: On
Descartes’ contributions to the question, see this study, 5.3.
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uniform in time. As I shall discuss in the next chapter (see, in particular, section 2.3.2,

2.3.3) these curves did not obviously fit the bill of geometricity, since they were the target

of ancient objections (especially concerning the quadratrix), known and revived by early

modern geometers (see below, chapter 5).

These difficulties (as I will have the occasion to expound in the sequel, especially chapter

2, sec. 2.6) reveal that the ancients were divided on the nature of the circle-squaring

problem. As a consequence, when XVIth and XVIIth century mathematicians read

ancient writings, they could find to no extant arguments and techniques in order to solve

the quadrature of the circle.73

On one hand, the aristotelian belief on the non-comparability between straight and circu-

lar lines did circulate and exerted a non-negligible influence in the mathematical practice

of early XVIIth century, in order to inhibit mathematicians from accepting the rectifica-

tion of the circumference, and therefore the quadrature of the circle as a problem solvable

in geometry. On the other, especially from the end of XVIth century, the diffusion of

the latin version of Pappus’ Collection (1588) instilled the hope that the circle-squaring

problem could be overcome, if the geometrical nature of curves like the quadratrix or the

spiral could be established on firm grounds.

The question became therefore incumbent on geometers, from the end of XVIth century

onwards, to find criteria in order to decide which means should be considered as geo-

metrically reliable as the circle and the straight lines, employed according to Euclid’s

postulates. These construction means constituted, at the time, the paradigm of exact-

ness in geometry. In the backdrop of these considerations, I am now ready to broach the

subject matter of my study.

1.5 Impossibility results in early modern geometry

The main problems and questions I shall address in my study are the following. How did

early modern geometers prove (or argued for) the impossibilities of solving construction

73Bos observed, on this concern, that in XVIth century mathematics several attempts to solve the
circle-squaring problem by elementary means were discussed, and refuted. Although I cannot establish
the motivations behind each of these attempts, I can advance the hypothesis that these attempts might
be the consequence of the unclear status about the nature of the circle-squaring problem (Cf . Bos [2001],
p. 25). One late XVIth century endeavor to provide a flawed solution by ruler and compass is analyzed
in Hogendijk [2010].
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problems by prescribed means? Can we identify similar structures and similar roles in

different instances of these impossibility arguments?

Early modern geometry was deeply imbued with the legacy of ancient mathematics. As I

shall argue in this dissertation, such a legacy did not only concern a body of challenging

technical questions, with which early modern geometers could test the virtues of their

own methods, but also metatheoretical views regarding, for example, classifications of

geometric problems and curves.

In the previous sections, I have conjectured that impossibility results might have been

conceived by the ancients as metastatements, i.e. norms which fixed the most adequate

methods in problem-solving and sanctioned certain conducts as ungeometrical. As a key

role in the transmission of such metatheoretical views was exerted by Pappus’ Mathe-

matical Collection, mediated by its numerous readings and interpretations, I shall start

my investigation by inquiring whether early modern geometers inherited the views about

impossibility results that I have attributed, on the basis of the texts, to the ancients, or

whether they departed from ancient predicaments, or even corrected them in the light

of new mathematical advances, represented, for instance, by the incorporation of algebra

in geometric pursuits.

As a general methodological remark, I note that we cannot take for granted what a

certain problem was, independently from its historical context. We can rather think

of the context of a proof as its ‘underlying narratives’, constituted, for instance, by the

earlier assessments and by the historical evolution of this very proof, by its circulation and

the subsequent critiques, and more generally, by the philosophical and cultural influences

in force at a given time, within a certain community: in brief, what constitutes a historical

tradition. My study shall set out to describe the nature of impossibility results within a

precise historical setting (from the beginning of XVIIth century and the second half of

the 1670s) by selecting and investigating some relevant contexts in which these results

were deployed.

In the first part of my dissertation (from chapter 2 to ch. 6), after a general overview of

the main results contained in Book IV of Pappus’ Collection, I shall examine Descartes’

content and division of the subject matter of geometry, according to the programme pre-

sented in his epoch-making work La Géométrie. Broadly speaking, Descartes introduced,

on the ground of an explicit criticism to the ‘ancients’, criteria for acceptable geometric
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constructions, and offered a rational classification of the existing domain of problems on

the basis of their constructability. My examination of La Géométrie will mainly concern

the methodological points of this treatise: the foundations of the distinction between geo-

metrical and mechanical curves, and the classification of curves and problems. A general

thesis I shall illustrate is that conditional impossibility claims exerted a methodological,

or metatheoretical role on two levels. Firstly, they contribute to frame the demarca-

tion between acceptable and non acceptable curves. Secondly, conditional impossibility

claims enter in the classification of problems on the ground of the curves which construct

them, sketched in the third Book of La Géométrie and commented by Van Schooten in

his latin editions from 1649 and 1659. The presence of impossibility claims in a treatise,

like Descartes’ Géométrie, dedicated to lay down the fundamentals of a method to solve

all problems of geometry, is not surprising, in so far such a method should provide the

guidelines in order to solve each problem according to the most adequate means.

An interesting sketch of a classification into possible and impossible problems can be

found in Descartes’ correspondence with Mersenne. In chapter 6, I will analyze this

classification, and inquire about the nature of the circle-squaring problem with respect

to the edifice of Descartes’ geometry. The circle-squaring problem stood as an intriguing

problem in the context of XVIth and XVIIth century research: it was not only a difficult

mathematical question, but it had an important metatheoretical role, I surmise. Indeed

decisions about its solvability in principle would contribute to frame the subject matter

of geometry, by demarcating legitimate from illegitimate solving methods, as in the

outstanding attempt led by Descartes in La Géométrie.

Furthermore, in the second half of XVIIth century, arguments asserting that the quadra-

ture problem could not be solved by algebraic method would be invoked in order to

demarcate finite from infinitesimal analysis (I shall investigate, in chapter 7 and 8, the

case of J. Gregory and G. W. Leibniz, respectively).

In chapter 7 and 8, in particular, I shall investigate some fragments of two mathematical

works in detail:James Gregory’s work Vera circuli et hyperbolae quadratura (1667), and G.

W. Leibniz’s De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium

est trigonometria sine tabulis (1676). In this part of my work, I shall argue the general

thesis that impossibility claims concerning the circle-squaring problem acquires a new

status in the second half of XVIIth century. In order to defend this claim, I will detail a

critical examination of James Gregory’s work Vera circuli et hyperbolae quadratura. In
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this text, in fact, Gregory sets out to search for a way to reduce the problem of squaring

any sector of a central conic (the circle, the ellipse and the hyperbola), to an algebraic

equation, and comes up with an argument in order to prove that the impossibility of this

endeavor. Gregory’s argument is faulty and was heavily criticized by his contemporaries,

but it shows an uncommon insight, for his time, into impossibility results. Moreover, Gre-

gory’s thesis on the impossibility of finding an algebraic quadrature of the central conic

sections are historically relevant because they exerted, through a subsequent controversy

with Christiaan Huygens, a deep influence on Leibniz’s mathematics.

Chapter 8 of my dissertation will be indeed dedicated to Leibniz’s lenghty treatise De

quadratura arithmetica circuli ellipseos et hyperbolae, composed and ultimated during

Leibniz’s stay in Paris. Although the treatise circulated, under different versions, among

Leibniz friends and colleagues mathematicians from 1674, and historical evidence shows

that Leibniz had a manuscript ready for publication in the year 1676, this document

got lost, and the treatise never saw the publication in Leibniz’s lifetime. My interest

for the De quadratura arithmetica will be mainly directed towards the the concluding

proposition LI, considered by Leibniz as the ‘crowning’ of his treatise: a theorem on the

impossibility of squaring the circle, the ellipse and the hyperbola.

Leibniz allegedly proves, by an indirect argument, that there is no quadrature of the

central conic sections (namely, the circle, the ellipse and the hyperbola) that is more

geometrical than his own. Since the solution presented in the De quadratura arithmetica

is obtained through an infinite series, the above claim amounts to saying that the solution

to the quadrature of the circle, the ellipse and the hyperbola cannot be obtained by

a finite algebraic equation. In this chapter I shall examine in detail the influence of

the controversy between Gregory and Huygens over the genesis, the conception and

certain results presented in Leibniz’s De Quadratura Arithmetica. I shall then discuss

the mathematical and methodological meaning of Leibniz’s impossibility result, and I

argue that Gregory’s Vera Circuli et hyperbolae quadratura played a dependable role

concerning the function of Leibniz’s impossibility argument within the organization of

the treatise on the arithmetical quadrature of the circle and the conic sections.

Finally, in a concluding chapter, I shall respond to the questions raised in the beginning

of this section by assessing the function of impossibility results in the context of XVIIth

century mathematics and, more particularly, with respect to the case studies that will be

discussed in this dissertation. On this concern, I shall assess both with respect to today
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extrathereotical impossibility theorems, and with respect to the metatheoretical claims

of antiquity.



Chapter 2

Problem solving techniques in

Ancient geometry

2.1 Introduction

In the context of XVIIth century, geometry was predominantly presented as a problem-

oriented activity. Consistently with this, the basic facts of mathematics were not propo-

sitions whose truth or falsity was to be judged, but tasks - for instance, geometrical

problems - to be performed by means of constructions.

Until well into XVIIth century, many problems and problem-solving methods were in

various degrees inspired to ancient Greek sources. As I have already noted, besides basic

core concepts and a collection of challenging problems,1 ancient geometry also exerted a

major influence on deliberations about the ordering of problems and the acceptability of

solutions in force within a mathematical practice.2

In the context of early modern mathematics, such views were either tacitly assumed

or overtly invoked in order both to fix admissible problem-solving procedures and to

1Among the challenging problems from antiquity, we can quote two outstanding examples: the prob-
lem of Pappus (discussed in ch.3), and the so-called ‘problem of Apollonius’, a tangency problem consist-
ing of constructing a sphere, or a circle, tangent to three given spheres or circles (see Boyer and Merzbach
[1991], p. 129, for a general presentation, and Bos [2001], p. 111ff . for its early-modern assessments).

2As W. Knorr remarked, such deliberations concerned: ". . . How the ancients divided the geometric
field according to the types of problems and the solving methods; what they viewed the special role
of problems to be (...) what conditions they imposed on the techniques admissible for the solution of
problems, and whether they judged that satisfactory solutions for the three special problems had actually
been found",Knorr [1986], p. 6.

44
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determine admissibility conditions for curves.3

I thus surmise that a survey on the principal methods and techniques in ancient problem-

solving is important in order to understand the subsequent elaborations by early modern

authors. In the following lines, I will confine myself to presenting three main techniques

for solving geometric problems in the plane, following the classification proposed by Henk

Bos (namely Bos [1984]), and addressing the interested reader to exhaustive studies on

the topic.4 As Bos remarks:

The first category consists in constructing by means of a straight line which

is shifted in a certain way along the given figure until a position is reached in

which two line segments (both, or one of them, determined by the position of

the straight line) are equal (. . . ) the second category consists of constructions

performed by instruments devised for the purpose of one special construction.

The third category consists of constructions by means of the intersection of

straight or curved lines, including higher order curves . . . 5

This presentation, albeit succinct, will serve as an introduction for the subsequent section,

in which I shall discuss in more detail Pappus’ Mathematical Collection, and especially its

fourth book, which contains the most influential metatheoretical deliberations for early

modern geometric practice.

The first category concerns the constructive technique known as neusis. The neusis can

be depicted as operation in which a straight line AB pivots around a fixed point P , until

the intercept AB between two given lines m and l, forming a fixed angle, is equal to a

given segment δ (see fig. 2.1). At the end of the process, the segment δ can be thought

of as being placed between the givens l and m, in such a way that it inclines towards P

(this is the literal meaning of neusis).6

Neusis constructions were pervasive in Greek constructional practice: they were crucially

employed, according to the surviving accounts, to solve the classical problems of inserting

two mean proportionals and trisecting an arbitrary angle.7

3See Bos [2001], in particular chapter 1.
4For instance Bos [1984], p. 333; Panza [2011], especially p. 58-73.
5Bos [1984], p. 333-334.
6Bos [1984], p. 334. A particular example of a solution to a problem employing a neusis construction

is discussed in Bos [2001], p. 28-29.
7Ancient instances are attested, by indirect evidence, already in Hippocrates [Knorr [1986], p. 34].
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Figure 2.1.1: Neusis.

The use of the neusis in the construction of the problem of two mean proportions is

described, for instance, in Eutocius’ commentary to Archimedes’ treatise on the Sphere

and the Cylinder (Archimedes [1881], vol. III, p. 123-124), and it is attributed to the

geometer Hero of Alexandria. A similar construction occurs in Pappus’ Collection (Book

IV, proposition 24).

Neusis is employed, in Pappus’ Collection, also in relation with the trisection of a given

angle (Book IV, proposition 32). In order to trisect the given acute angle CÂB =

ϕ, following Pappus’ procedure, let a right angled triangle ABC with CÂB = ϕ be

constructed (fig. 2.1). Complete the rectangle ABCM , call AC = a, and construct a

line g passing through C and parallel to AB. In order to trisect the angle ϕ it is sufficient

to insert, by neusis, a segment of given length 2a between lines CB and g. The angle

DÂB will be in fact the required angle.8

As we will examine, a full constructive solution also invoked the elaboration of a protocol

in order to exhibit the required neusis via intersection of curves.9

8See, for the easy proof:Bos [2001], p. 54-55; Sefrin-Weis [2010], p. 148-150; Panza [2011], p. 60. The
locus classicus of this construction can be found in Pappus’ Mathematical Collection, Book IV, proposi-
tion 32 (Pappus [1876-1878], I, 275-276.Sefrin-Weis [2010], loc. cit., for a modern english translation), a
text well known by early modern writers, as I will comment later.

9This suggests that solutions obtained via neusis might not have been considered fully satisfactory,
at least in late antiquity, therefore they required to be supplemented by a construction, either through
intersection of curves or by means of a suitable instrument. Interestingly, though, the possibility of
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Figure 2.1.2: Neusis for the trisection of the angle.

The second category of construction methods concerns a special use of instruments in

problem solving, consisting in making them indicate some points (which are then taken

to be obtained) under the condition that some of their components coincide with some

given geometrical objects, or meet some other conditions relative to given objects: when

instruments are used in this way in order to solve mathematical problems, they are said

to be used "in the pointing way".10

A well-known example in the early modern and in the ancient tradition is offered by

an instrument attributed to the ancient mathematician Eratosthenes and called, in the

Latin tradition, ‘mesolabum’.11

neusis of "any predefined distance" was revived, and given the special status of an additional postulate
by François Viète, in his 1593 Supplementum Geometriae (see [Bos, 2001], p. 168-169). This possibility
was never considered in antiquity and hardly received among Viète’s contemporaries.

10Panza [2011], p. 62.
11The Greek name for this instrument was literally ‘taker of means’ (Knorr [1986], p. 211). The term

‘mesolabum’ was originally contained in the latin translation of Eutocius’ Commentaries on Archimedes’
"On the sphere and the cylinder". This text became available in print from the beginning of XVIth
century (first in works of Valla and Werner), and subsequently in the edition of the works of Archimedes,
published in 1544 and edited by Th, Geschauff (Opera . . . omnia . . . nuncque primum et Graece et
Latine in lucem edita . . . Eutocii Acalonitae in eosdem Archimedis libros commentaria item graece et
Latine . . . ), and later in the edition of 1615, edited by D. Rivault (1571-1616): Archimedis Opera quae
extant. Novis demonstrationibus illustrata.
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Figure 2.1.3: Eratosthenes’ Mesolabum.

Erathostenes’ mesolabe is a mechanical device that can be described as formed by three

rectangular plates of equal height, set out as in figure 3, which have the property of

gliding one under the other.

By virtue of its design, this instrument was employed in order to solve the so-called

problem of inserting two mean proportionals between two given segments,12 namely the

problem of constructing, given two line segments a and b, two segments x and y such

that the following proportion holds: a : x = x : y = y : b. It can be easily shown,

moreover, that the same instrument can solve the problem of inserting any number

of segments x1 . . . xn between given segments a and b, so as to satisfy the proportion:

a : x1 = x1 : x2 = . . . : xn = xn : b.

Let us consider the case of inserting two mean proportionals between a and b (with

a < b). The plates which form the mesolabe can be so conceived that their height will

12An extant solution can be found in Eutocius’ Commentary On Archimedes’ The Sphere and the
Cylinder ([Archimedes, 1881], vol. 3, p. 109), another one in Pappus’ Book III of the Collection
(Pappus [1876-1878], vol. I, p. 57). I recall that the solution using the mesolabum was just one among
the numerous procedures for constructing, in antiquity and especially in the early modern period, the
well-studied problem of the two mean proportionals (see Bos [2001], p. 27-34, Panza [2011], p. 64-70).
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Figure 2.1.4: The insertion of two mean proportionals with the Mesolabum.

be equal to b (whereas the width can be arbitrarily chosen), and that on AD, edge of

the first plate, a segment AH equal to a shall be marked off (in figure 2.1). Let us

move the plates, or imagine them to be moved, and call Q and K the intersection points

marked by the diagonals and the occluding edges between the third and second plate,

and the second and first plate, respectively, when the plates are both gliding. In order to

construct the required mean proportionals, the plates must be slid until points Q and K

fall in a line with points D and H. If this configuration is reached (the final configuration,

after the motion, is represented in figure 2.1), the segment l, projection of K on the base

of the mesolabe, and segment j, projection of Q will be the desired mean proportionals

between a and b. The proof can be easily supplemented by considering the similarity of

the triangles in the final configuration.13

The solution of the problem of inserting two mean proportionals illustrates how Eratos-

thenes’ mesolabe works in the so called ‘pointing way’: the instrument is not employed

13Knorr [1986], p. 211-212. The problem of inserting any number n of mean proportionals can be
solved by applying the same protocol, once a suitable number of plates has been added: in particular, if
n is the number of mean proportionals to be constructed, the number of plates to be added will be n+1.
The possibility of modifying this instrument in order to solve the problem for increasing values of n was
certanly known to the ancients, as we can read in Eutocius: " a nobis autem methodus per instrumenta
habilis inventa est, qua inter duas lineas datas non modo duas medias sumamus, sed quotcumque quis
voluerit" (Archimedes [1881], vol. III, p. 107)
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for tracing a curve, but directly exhibits the required points (namely Q and K) in order

to solve the problem.

As we will see, the mesolabe presents a certain kinship with the compass that Descartes

described in his early reflections collected in the Cogitationes Privatae (a series of notes

written between 1619-21), and subsequently with the instrument described in the second

book of La Géométrie (see chapter 3 of this dissertation), which can be thought of as an

evolution of both Descartes’ early instrument and Eratosthenes’ one.

Despite the similarity of their design, though, I point out that Descartes did not use

his instrument in the pointing way, in his problem-solving techniques. On the contrary,

Descartes employed it, as well as other geometrical instruments that he studied, in order

to trace curves, which in turn could be used in order to construct problems.14 The stan-

dard method for problem-solving adopted by Descartes fell indeed into a third category

described above in Bos [1984], that of solutions obtained by intersection of lines.

As an example of problem solved according to the third category, let us consider once

more the procedure, illustrated in the Collection, in order to solve the trisection of an

arbitrary angle. Pappus described, in proposition 32, how the construction of an angle

equal to one third of a given angle could be obtained via a neusis (see figure 2.1). In

the previous proposition 31, he had described how to to construct that neusis by an

intersection of two curves, a circle and an hyperbola.

Let us consider the second step, as it is dealt with by Pappus (figure 2.1). Given two

perpendicular segments a and b intersecting at point A, a point O on the perpendicular

to a at point B, and a given segment c, it is required to intercept, on the segment OF ,

a segment EF , between lines a and b, such that EF = c.

1. Complete the rectangle ABOC, and extend BO.

2. Describe, through point C, an hyperbola whose asymptotes are the lines BO (pro-

longed) and BA (prolonged, namely the line labelled as a). Let us recall that

a hyperbola can be univocally described, since it is univocally determined if its

asymptotes and a point through which it passes are given (Cf . Pappus, IV, 33).

3. Draw a circle with center C and radius equal to c. The circle so constructed will

intersect the hyperbola in D.
14Bos [2001], p. 240-243, p. 339-340. Panza [2011], p. 74-78.



CHAPTER 2. PROBLEM SOLVING TECHNIQUES IN ANCIENT GEOMETRY 51

Figure 2.1.5: Pappus, Collection, IV, 31.

4. Through D, draw a parallel to AC, call F its intersection point with BA prolonged.

5. Draw segment OF and mark in E its intersection with AC.

6. The problem is thus solved, since EF = c.15

This construction provides a neusis, which can be employed to solve the trisection of the

angle, as I have explicated above (see in particular, sec. 2.1, fig. 2.1).

The few examples here offered show with sufficient clarity that the three categories listed

above did overlap: a problem solved via a neusis might be supplemented with a con-

struction of the neusis by the intersection of two curves (as in the case of the trisection),

or by an instrument used in the pointing way (for instance Erathostenes’ mesolabe).

15An easy proof (Bos [2001], p. 54-55, where the original argument given by Pappus is resumed)
consists in showing that FECD is a parallelogram, and therefore that segment EF = CD = c. One
can reason, as Pappus did, by tracing the parallel to a passing from D, which intersect BO in G. Since
point D and C lie on an hyperbola whose asymptotes are the lines BO (prolonged) and BA (prolonged,
namely the line labelled as a), the rectangles FBGD and ABOC are equal, because of the fundamental
property (symptom) of this curve. From this equality we can derive the following proportion between
the sides: BF : BA = AC : FD (*). Considering the similarity between triangles BFO and COE,
moreover, we obtain: BF : BO = CO : CE, i.e. BF : CO = BO : CE. Since CO = BA and BO = AC,
we have also: BF : BA = AC : CE (**). In virtue of (*) and (**) we get: AC : FD = AC : CE, and
therefore: FD = CE. Since the segments are supposed parallel, the figure FECD is a parallelogram.
Q.E.D.
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It appears, however, from Books III and IV of the Collection, that the solution of prob-

lems via intersection of curves played a central methodological role in Pappus’ view on

the architecture of mathematics, and that such a role had a longstanding influence on

the practice of early modern geometers too.

2.2 Pappus’ division of problems into three kinds

As historians have shown, Pappus’ Mathematical Collection, both in Greek and in Latin

translation, largely circulated among mathematicians from the end of XVIth century, and

had a recognizable role in systematizing aims and methods within the field of geometrical

problem solving in early modern geometry.16

As I have noted in the introduction to this study, the historical importance of this text

is not restricted to the fact that it offered a rich insight into the tradition of ancient

mathematical problem solving. In fact it spread its influence over broadly methodological

concerns. Among them, I will pay special attention, in this chapter, to his attempt to

classify geometric problems, and in the next chapter, to one of the few surviving ancient

accounts of the method of analysis.

The most extensive presentation of Pappus’ classification of problems is contained in

Book IV:

When the ancient geometers wished to trisect a given rectilinear angle, they

got into difficulties for a reason such as the following. We say that there are

three kinds (γένη) of problems in geometry, and that some <of the problems>

are called ‘plane’ (ἐπίπεδα), others ‘solid’ (σvτερεά), and yet others ‘linear’

(γραμμικά). Now, those that can be solved by means of straight line and circle,

one might fittingly call ‘plane’. For the lines by means of which problems of

this sort are found have their genesis in the plane as well. All those problems,

however, that are solved when one employs for their invention either a single

one or even several of the conic sections, have been called ‘solid’. For it is

necessary to use the surfaces of solid figures – I mean, however, (surfaces)

of cones – in their construction. Finally, as a certain third kind of problems

the so-called ‘linear’ kind is left over. For different lines, besides the ones

16Bos [2001], chapter 3 in particular. Let us recall that the influence of Pappus’ Collection spread well
into XVIIth century, as it is attested by the case of Newton (cf ., on this concern Guicciardini [2009], p.
294ff . for instance).
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mentioned, are taken for their construction, which have a more varied and

forced genesis, because they are generated out of less structured surfaces, and

out of twisted motions.17

Pappus classified problems into ‘genera’ according to the means needed to solve them

(a similar passage can be read in Book III). In this context, a ‘genus’ can be taken to

qualify a collection of items (namely problems) linked by a relation (‘being solvable’) to

certain objects (namely curves) and to one another. For instance, an item a belongs to

the genus of plane (respectively solid, linear) problems if and only if it can be solved by

straight and circles (respectively straight lines, circles + conic sections, or by any of the

previous curves and higher curves).18

Curves are also sorted out in three genera, according to the mode of their generation.19

More precisely, Pappus starts his classification by listing plane problems, namely prob-

lems solved by means of straight lines and circles. These curves, it is asserted in the

Collection, have both their genesis in the plane.

Pappus might not be referring, for these definitions, to Euclid’s Elements, in which the

straight line and the circle are not defined with a direct reference to their ‘genesis in

the plane’.20 On the contrary, it is possible that Pappus alluded to other works21 in

which straight lines and circles were introduced by specifying their generation. A case at

point is, for instance, the definition of circle that we encounter in a treatise on geometric

definitions that was attributed to Hero of Alexandria (a scholar from III century A.

D). According to Hero, indeed, a circle is described by a segment rotating in a plane

17Pappus [1876-1878] vol. I, p. 271; Sefrin-Weis [2010], p. 144.
18This characterization of genus might be borrowed from the contemporary philosophical literature.

For instance, in Porphyry’s Isagoge, an Introduction to Aristotle’s Categories, we read: "Thus we call a
genus an assembly of certain people who are somehow related to some one item and to one another" (§
1, 18, see Poprhyry [2003], p. 3).

19It should be pointed out that, in the philosophical literature, the term‘genus’ could also be used
in order to denote a collection of items having a common origin, or genesis, for instance a collection of
individuals grouped by having one and the same precessor (see Poprhyry [2003], p. 3). Therefore, once
again, Pappus might have borrowed the term from the contemporary philosophical usage of these terms.

20Euclid defines the line as a "breadthless length" (df. 3) and the straight line as "the line which lies
evenly with the points on itself" (df. 4) and the circle as: "a plane figure contained by one line such that
all the straight lines falling upon it from one point among those lying within the figure are equal to one
another" (df. 15).

21The coexistence of several traditions is confirmed by Proclus, who surveys, in his Commentary to
the first Book of the Elements, several definitions and classifications of line, including the straight line
(cf . Proclus [1992], p. 84ff .).
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around one of its extremes.22 On the other hand, the same author offers the following

defintion of a straight linet: "that line which, when its ends remain fixed, itself remains

fixed when it is, as it were, turned round the same plane".23 Thus Hero does not give

a genetic definition of straight line, but characterizes it with a reference to the plane, as

he specifies that such a line remains fixed in the same plane, provided its ends remain

fixed.

The second genus contains solid problems, solvable by intersection of one or several

conic sections, which have their genesis in the cutting of a circular cone or a cylinder

by a plane.24 As we know, these curves allow us to solve two of the major problems

untreatable by Euclidean means: the trisection of the angle and the insertion of two

mean proportionals, which could be solved, for instance by the intersection of a circle,

or a parabola and an hyperbola.25

Finally, the third kind of problems does not seem to posseess well-defined features, but

rather to collect problems which apparently require, for their solution, curves different

from circles or conic sections, for which two different modes of genesis are contemplated in

Pappus’ account: either they are generated either out of "less structured surfaces" than

the cone, or out of "twisted motions", as we read in the Collection. In the subsequent

lines, Pappus mentions some of these curves:

. . . the line that was also called “the paradox” by Menelaus. And of this same

kind <i. e., the linear kind> are also the other spiral lines, the quadratrices

and the conchoids and the cissoids.26

On the same subject, we read in Book III that the curves belonging to the third kind of

geometry are: "Helices or spirals (. . . ) quadratrices, conchoids or conchiforms, cissoids,

22Cf . Heath’s Commentary in Heath [1956 (first edition 1908], p. 189.
23Cf . Heath’s Commentary in Heath [1956 (first edition 1908], p. 168.
24Let us remember that in the first book of the Conics, Apollonius introduces our familiar conic

sections as curves generated by the intersection of a plane with a double oblique circular cone: a cone
with a circle as its base, and with a vertex whose projection on the plane of the circular base does not
necessarily coincide with the center of the circle. The name ‘solid’, therefore, refers to the generation
of these curves from the cone, a three dimensional figure. In Pappus’ time, the class of solid lines was
probably already well-grounded in the tradition (see in particular Cuomo [2007], p. 157; Sefrin-Weis
[2010], p. 272)."

25For the trisection of an angle, see chapter 2, p. 106. For what concerns the mean proportionals
problem, its construction through a parabola and an hyperbola is attributed to Maenechmus: see, for
instance, Eutocius’ Commentary to the Sphere and the Cylinder (in Archimedes [1881], vol III, p. 93).
For a modern commentary, see: Heath [1981], p. 251ff .

26Sefrin-Weis [2010], p. 145. Pappus [1876-1878], vol. I, p. 271.
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or curves similar to ivy-leaves . . . ".27

Pappus mentions several sources where problems of the third kind were studied and

solved; but since all these cited works are no longer extant, our reconstructions of the

features of problems and curves of the third kind are irremediably conjectural and based

on the sole few examples mentioned in the Collection. Some of the lines of the third kind

mentioned by Pappus are of uncertain identification,28 although the description of other

relevant curves of the same genre survived in the work of ancient mathematicians, as

in the already mentioned Pappus himself or in Archimedes, and through them, entered

pervasively the practice of early modern geometers.

The ordering of curves presented by Pappus may offer a hierarchy based on the complexity

of their genesis. Although in the Collection there are no references to complexity as a

criterion chosen in order to distinguish plane, solid and linear curves, such considerations

may not have been extraneous to ancient geometers, and particularly to Pappus himself.

Let us start by considering the straight line and the circle. As it has been observed in

the secondary literature, these curves had a privileged status in ancient mathematical

practice, presumably on both pedagogical, methodological and philosophical grounds.

As an illustration of these thesis, we may evoke the classical study by H. Hankel, Zur

Geschichte der Mathematik in Altertum und Mittelalter (1874), in which it is suggested

that the straight line and the circle were the only geometric means of construction ac-

cepted by ancient geometers, precisely on metaphysical grounds, as a consequence of

the influence of Plato’s philosophy over ancient mathematical practice. Hankel’s thesis,

which had a vast resonance among late XIXth and XXth century historians of mathemat-

ics, is certainly overrestrictive: later studies29 have established that both pre-euclidean

geometers and geometers of the hellenistic period had no qualms in employing higher

curves and several methodologies in order to solve problems untreatable by the straight

line and circle.
27Pappus [1876-1878], vol. I, p. 55.
28An example quote before is the “paradox” of Menelaus, whose nature is still controversial. Paul

Tannery proposed the attractive (but ungrounded) conjecture that the paradoxical curve of Menealus
could be Viviani’s curve, a three dimensional curve generated by the intersection of two solid surfaces
(Tannery [1883], p. 289-291). It does not seem, however, that the reading of Pappus had any role in the
discovery of Viviani, which occurred in late XVIIth century.

29Cf . in particular the outstanding seminal work Steele [1936].
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However, an undeniable preference for the straight line and the circle can be found on

the side of philosophers, although it is not clear how far these philosophical views pen-

etrated into the mathematical practice of mathematicians of antiquity or late antiquity.

Such a philosophical predilection for the straight line and the circle is still evident in

later authors as Proclus, who conceived, in his Commentary to the first Book of the

Elements, these lines as the "simplest" and "most fundamental" geometric items. Their

geometrical primacy was well grounded in Proclus’ neo-platonic philosophy: the circle

represented, among geometric figures, the metaphysical principle of the "Limited", and

the straight line exemplifies the metaphysical principle of the "Unlimited". Eventually,

the combination of these fundamental lines generates all the other "mixed" lines.30

In particular, Proclus considered the circle: "the first and simplest and most perfect of

the figures (. . . ) superior to all solid figures because its being is of a simpler order, and

it surpasses other plane figures by reason of its homogeneity and self-identity".31 This

opinion is rooted in a classical view, to be found in Plato (summoned by Proclus himself

in the Commentary), and in Aristotle, according to which the circular shape and motions

embody the perfect and primary shapes and motions.32

But the preference for constructions requiring the straight line and the circle could be

justified on purely mathematical or pedagogical grounds too. As Proclus, once again,

notices, straight lines and circles can be considered the simplest lines not only on meta-

physical grounds, but on epistemic ones, because "most people have a conception [of

them] without being taught" (Proclus [1992], p. 96).

Moreover, straight lines and circles might have been considered ‘elementary’ geometric

objects, in the sense that they did only require Euclid’s plane geometry, in order to be

studied and understood, without the necessity of having recourse to higher theories, like

that of conic sections.33 The elementary aspect of circles and straight lines is stressed

by Proclus too, when he remarks that the problem of trisecting an acute angle can be

obtained by higher, ‘mixed’ lines, and it is therefore: "difficult for a beginner to follow".34

30Proclus [1992], p. 84. On the problem of the generation of mixed lines, see below, section 2.3.4.
31Proclus [1992], § 147, p. 117.
32See Proclus [1992], p. 14. Remarks on the circle as the simplest and most perfect shape can be

found, in Aristotle’s corpus, in Metaphysics, 1078a, 10-13 and De Caelo, 268b, 15-17.
33Both points are clearly made in Roque [2012], p. 161. See also Heath [1981], p. 175-176.
34Proclus [1992], p. 212.
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In this sense, constructions requiring the sole ruler and compass, namely plane con-

structions, could have been considered, by mathematicians from late antiquity, simpler

than constructions involving higher means, solid or linear curves, that were conceived as

composed out of the former, and therefore a subject matter for advanced studies.

2.2.1 A conjecture about the origin of Pappus’ classification of prob-

lems

A conjecture on the origins of Pappus’ classification of problems has been advanced by A.

Jones (see Pappus [1986], vol. 2, especially pp. 395-396, and p. 539) and tackled by W.

Knorr (in Knorr [1986], p. 344ff.). Let us observe, in fact, that Pappus also evoked, in

Book VII of the Collection, a classification of loci related to the classification of problems

and curves expounded in Book IV.

The mathematical concept of ‘locus’ (τόποϛ) in Greek geometric practice is of difficult

characterization, and Pappus does not provide any definition. He rather presents the

following sketchy ordering of ‘loci’, whose analogy with the classification of problems in

Book IV has been duly underlined in the secondary literature:35

The loci about which we are teaching, and generally all that are straight

lines or circles, are called ‘plane’ (επίπεδοι); all those that are sections of

cones, parabolas or ellipses or hyperbolas are called ‘solid’ (σvτερεοί); and all

those loci are called ‘curvilinear’ (γραμμικοί) that are neither straight lines

nor circles nor any of the aforesaid conic sections.36

I remark that the terminology here employed is consistent with the one used, in Book

IV of the Collection, for the distinction into problems (Jones chooses to render the

Greek ‘γραμμικοί’ with the word ‘curvilinear’, whereas the translation by Sefrin-Weis

has privileged: ‘linear’), and is telling of a more substantial analogy betwneen the two

classifications.

It is important to point out that the concept of locus in ancient Greek mathematics (or

at least, in the geometry of the late antiquity, to which our main sources on this issue

belong) differs in an important respect from the modern one.

35See, for instance, Knorr [1986], p. 342.
36Pappus [1986], vol. 1, p. 104.
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Our modern understanding of locus is forged by the development of analytic geometry

and by the germane concept of equation. It is, at its core, a set, or collection of points

satisfying some conditions.37 On the contrary, in ancient mathematics, as Jones clearly

explains: "a locus is (. . . ) not the aggregate of all possible points or lines subject

to specified conditions, but a definable geometrical object, on which any point or line

satisfying the conditions will be found, and such that any point that lies on the object

will satisfy the conditions of the problem . . . The ‘solution’ or ‘demonstration’ of a locus

is the construction of that object, and proof that is indeed the locus".38

Hence, a locus-problem may be understood as a proposition asking to construct a ge-

ometric object,39 given one or more geometric objects (point or lines), with respect to

which any point on the object to be constructed must obey particular conditions; and

conversely a locus-theorem can be defined as: "a proposition asserting that all objects

of a specific kind (points, straight or curved lines, solids) that satisfy certain given con-

ditions (. . . ) lie on or are part of some determined object, the ‘locus’".40 An example of

solid locus-theorem is evoked by Proclus:

The parallelogram inscribed in the asymptotes and the hyperbola are equal,

for the hyperbola is clearly a solid line, since it is a section of the cone.41

This is proposition 12 of the second book of Apollonius’ Conica, that I quote here in

Heiberg’s version (Apollonius [1891-1893]):

Si ab aliquo puncto sectionis duae rectae ad asymptotas ducuntur angulos

quoslibet efficientes, iisque parallelae ad aliquo puncto sectionis ducuntur,

rectangulum retis parallelis comprehensum aequale erit rectangulo compre-

henso rectis , quibus parallelae ductae sunt.42

37In today practice, a locus may be defined as: "Any system of points, lines or curves, which satisfies
one or more given conditions" (in Robert [1992]).

38Pappus [1986], vol. 2, p. 395.
39This object could be a curve, a surface or a point: see Pappus [1986], vol. 2, p. 540. I will not

enter here this further distinction concerning the nature of the locus, as I will confine myself to curves:
another example of locus’ problem, namely the problem of Pappus, will be discussed in the sequel, since
it will have a pivotal role in the development of cartesian geometry.

40Pappus [1986], vol. 2, p. 539.
41Proclus [1992], p. 311.
42In Heath’s paraphrase: "If Q, q be any two points on a hyperbola, and parallel straight lines QH,

qh be drawn to meet one asymptote at any angle, and QK qk also parallel to one another, meet the
other asymptote at any angle, then: HQ.QK = hq.qk" (Heath [1896], p. 59).
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I note that this proposition was not presented as a locus-theorem by Apollonius, but

it was interpreted in these terms by Proclus. In other words, by enunciating that any

point on an hyperbola displays the property proved above, this theorem was understood

by Proclus as characterizing the hyperbola by means of a condition to which its points

obey (I also remark that this condition is not the symptom, or fundamental property

of the hyperbola). This boils down to characterize the curve as a locus: a solid one,

in particular, since the hyperbola is a curve generated by cutting a solid. Constructing

the locus, in reverse, would mean to construct the hyperbola whose points satisfy the

locus-property enunciated in the theorem above.43

In the light of this explanation, it seems that the classification of loci proposed by Pap-

pus entails an analogous classification of locus-problems too. Accordingly, plane locus-

problems will result into the construction of a straight line or a circle, solid-locus problems

into the construction of a conic sections, and so on. As observed by Knorr, this is a de-

scriptive classification of problems, since it is based on a classification of curves on the

ground of their genesis, and the solution of a locus-problem is always a unique curve.44

However, when we pass from a classification of locus-problems to a more general classifi-

cation of geometric problems, as the one presented by Pappus in Book III and IV of his

treatise, logical difficulties emerge. For instance, in the cases of the problem of trisecting

a general angle, or of the problem of inserting two mean proportionals it is required, as

Pappus’ discussion amply shows, to construct one or more segments by the intersection

of curves (or by other solving methods). In the context of these problems, curves did

not enter as solutions, but as means in order to obtain these solutions. These means

should be selected among several, available ones, and a problem solved by curves of a

certain kind could be often solved by curves of a different kind. On the contrary, the

wrong choice of solving means may lead to no solution at all. These difficulties related to

the problem, or metaproblem of establishing the adequate solution to a specific problem

might have justified the normative aspect of Pappus’ classificatory scheme, that I shall

consider in the next section.
43This example of locus-theorem is discussed, in particular, in a conference paper written by S. Unguru

and M. Fried, as part of an ongoing project with Michael Fried on Geometrical Loci in Hellenistic
Mathematics (see [Unguru and Fried]).

44F. Acerbi remarks that questions of unicity and existence are not so easily separable. According
to him, ancient accounts about locus-problems, as Pappus’ one, took for granted the uniqueness of the
locus: the property in terms of which a curve must be constructed always determine a unique solution,
if the problem is well formulated. See Euclide [2007], p. 464.



CHAPTER 2. PROBLEM SOLVING TECHNIQUES IN ANCIENT GEOMETRY 60

2.2.2 Normative aspects in Pappus’ classification

The classification in Book IV is introduced, so Pappus relates, in order to explain the

difficulties occurred to the ancients when they tried "to trisect a given rectilinear angle".

An analogous classification is tackled in Book III (Pappus [1876-1878], vol. I, p. 55) after

a preliminary discussion about a misgiven attempt to solve the problem of inserting two

mean proportionals by means of plane methods (see ch. 1, section 1.4).

In Book IV, Pappus addresses the trisection of the angle, in the foreword to his classifi-

cation of problems, as a problem the ancients could overcome only with difficulty. Later

on, Pappus relates in these terms about the ‘difficulties’ met by the ancients in solving

such problem:

. . . the earlier geometers were not able to find the above mentioned problem

on the angle, given that it is by nature solid, and they sought it by means

of plane devices. For the conic sections were not yet common knowledge for

them, and on account of this they got into difficulties. Later, however, they

trisected the angle by means of conic sections.45

Failures in solving the trisection problem by means of plane methods are thus related, in

the account offered by Pappus, to a misunderstanding about the essence of the problem

and to a still imperfect knowledge of conic sections. The problem could be solved - so

we read in the Collection - once a sufficient knowledge of conic sections was acquired.46

More general constraints on the appropriate methods employable in solving mathematical

problems are set by Pappus himself, in the course of the same discussion:

Somehow, however, an error of the following sort seems to be not a small one

for geometers, <namely> when a plane problem is found by means of conics

or of linear devices by someone, and summarily, whenever it is solved from a

nonkindred kind, such as is the problem on the parabola in the fifth book of

Apollonius’ Conics and the neusis of a solid on a circle, which was taken by

Archimedes in the <book> about the spiral.47

45Sefrin-Weis [2010], p. 146; Pappus [1876-1878], vol. I, p. 273.
46Of course, it must be recalled that certain trisections are perfectly possible by straight lines and

circles: for instance, a right angle can be trisecting by plane methods. This case was singled out by
the ancients, as proved by Pappus, in prop. 32 (Pappus [1876-1878], vol. 1, p. 276). However, it
is disputable whether Pappus (and more generally, ancient geometers) possessed a method in order to
single out those angles trisectable by plane means, which is generaly done by means of algebra.

47In Sefrin-Weis [2010], p. 145; Pappus [1876-1878], vol. I, p. 271. I remark that there is not an
analogous requirement in Book III of the Collection.
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At its face value, this requirement enjoins that a problem solvable by straight lines and

circles (namley a plane problem), should not be solved by conics or by linear curves and,

more generally, that a problem should not be solved by an improper kind of curves. For

this reason, H. Sefrin-Weis refers to Pappus’ predicament as an ‘homogeneity require-

ment’ (Sefrin-Weis [2010], p. 273).

After having recalled the attempts to solve solid problems by plane means, Pappus cites

two examples of problems that were solved "by a nonkindred kind of curve", thus violating

the homogeneity requirement. The first one concerns, in Pappus’ words: "the problem on

the parabola in the fifth book of Apollonius’ Conics". Scholars agree in identifying this

problem with the one, discussed by Apollonius in Conica, book V, 51, of constructing

the normal ED (in fig. 2.2.2) to a given parabola, with vertex in A and latus rectum

equal to OB, from a point E outside it.48In the extant version in Book V, this problem

is solved by intersecting the given parabola with a hyperbola (passing through points E

and D in the figure) and thus falls within the category of solid problems, according to

Pappus’ classification. But the same construction can be also effectuated by employing a

circle instead of an hyperbola. Although no ancient sources leave trace of this procedure,

we can conjecture that its discovery was in the purview of Greek mathematicians.49 If

the parabola is supposed given, only a circle is required in order to solve the problem of

constructing the normal to a given parabola. Hence the problem should be considered

plane, according to Pappus’ scheme.50

48For an english paraphrase, see Heath [1896], p. 182. For the relations between this proposition and
Pappus’ statement, see, dor instance Zeuthen [1886], p. 286, Heath [1896], p. cxxviii, Sefrin-Weis [2010],
p. 274. An exception is represented by Hultsch, who relates this passage to the first Book of Apollonius’
Conica (see Pappus [1876-1878], vol 1, p. 273). I recall that latus rectum and latus transversum are
latin terms for certain line segments entering the defining properties of conic sections. With hindsight,
let us suppose that the X-axis coincides with the axis of the conic, and the Y -axis is taken perpendicular
to it, while the vertex of the conic section coincides with the intersection point of the axis. The latus
rectum a and the latus transversum b enter in the analytical equations of the conics in this way: x2 = ay

(parabola); y2 = ax − a
b
x2 (ellipse); y2 = ax + a

b
x2 (hyperbola). For the case of the parabola, the

latus rectum is, in a terminology closer to Apollonius, the segment a such that, if is a point B on the
parabola, C the corresponding point on the axis, and A the vertex, the following proportion holds:
AC : CB = CB : a.

49Cf . Heath [1896], p. cxxviii-cxxxix.
50I note that Huygens seems to be the first who advanced this interpretation of Pappus’ passage

(Huygens [1888-1950], vol. 3, p. 61, vol. 12, p. 81-82). Huygens’ remarks about the construction of the
perpendicular to a parabola were not published, but they were known, and mentioned, for instance, by
van Schooten in his commentary to Descartes’ Géométrie: " ... we can suggest the problem of Apollonius
on the parabola, in the fifth Book of the Conics, that Pappus from Alexandria recalls in the Scholium
of his proposition 30 of the fourth Book of the Mathematical Collection." see for instance: Descartes
[1659-1661], vol. 1, p. 322-324
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Figure 2.2.1: The normal to a parabola.

In the second example of solutions violating his precept, Pappus evokes a solid neusis

"taken by Archimedes in the <book> about the spiral". Despite Pappus’ remark is poorly

informative, it is generally accepted that Pappus was referring here to the problem of

determining whether a neusis employed in propositions 7, 8 of Archimedes’ treatise on

Spirals, and successively employed in proposition 18 of the same work, was constructable

by solid or plane means.51 I shall not enter into the details of this construction which,

contrarily to the case of the normal to the parabola, was not discussed during XVIIth

century, but I confine myself to pointing out to the likely analogy between these two

examples of erroneous understanding of the kind of a problem. It seems, indeed, that the

question at stake, in both the cases cited by Pappus, concerns attempts to demarcate

plane from solid problems, by arguing that a problem known to have been by means

of conic sections could be indeed solved plane methods, entailing that it was a plane

problem, in the end.

I observe that neither solving a plane problem by means of a solid or linear curve, nor

solving a solid problem by means of a linear curve constitutes per se a technical error,

nor it was understood as a technical error by Pappus himself. This fact can be illustrated

by an example discussed in the Collection: even if it seems that Pappus had no doubts

about the solid nature of the problem of inserting two mean proportionals,52 he still

accepted, probably for reasons of practicality, a solution to this problem based on a

51Sefrin-Weis [2010], 302ff ; Knorr [1986], p. 176-178.
52Pappus [1876-1878], vol. I, p. 55, p. 271.
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neusis constructable by means of a linear curve, namely the conchoid (Collectio, book

IV, proposition 23).

On the other hand, Pappus’ requirement can be read as including another sort of error.

As I have discussed the introduction of this study, in fact, it was also considered unwise to

attempt employing plane means in order to solve a solid problem. Pappus cites examples

of such flawed attempts, both in Book III (as we know: see ch. 1, p. 28) and more

succinctly in Book IV (with the case of the trisection of an acute angle).

From today perspective, this error stems from a mathematical impossibility. Certainly

Pappus might have suspected that solid problems could not be solved by plane means.

However, it should be pointed out that Pappus never explicates such a conjecture, but

confines himself to declare, without explanation, the solid nature of certain problems.

Pappus’ requirement can be conceived as a norm, whose rationality was ingrained in

the mathematicians’ practice and was justified both by a long record of failed attempts,

and by a tradition of studies dealing with a certain class of problems, like solid ones.

Therefore we could qualify any violation of Pappus’ requirement as a ‘metatheoretical

misbehaviour’,53 either in the sense of solving a problem by a more complex curve, or in

the opposite sense, of trying to solve a problem by a too simple one.

We can also inquire whether Pappus’ classification and requirement were known in the

context of Greek mathematics, and whether Pappus possess a general methodology in

order to decide whether this requirement had been met, or a method in order to decide

the class of a problem as plane, solid or linear.

As for the latter question, scholars tend to limit the influence of Pappus’ requirement and

of his classification upon ancient Greek mathematics. It seems, in fact, that: "Pappus is

the only explicit authority on this mathematical pigeon-holing, and says nothing about

how it developed, or when".54 On the other hand, it can be ventured the hypothesis that

the possibility of associating one solution only to each given problem was still preferred,

at least in late antiquity, to the usual situation of a mathematical practice, in which a

problem could be tackled and solved by using several methods. For instance, Proclus

does not hesitate in judging solutions of problems which "can be effectuated in only one

way" more "elegant" than constructions which can be effectuated in finitely many or

53The expression can be found in Høyrup [2001], p. 242.
54[Pappus, 1986], vol. II, p. 530. See also Knorr [1986], p. 345, 348.



CHAPTER 2. PROBLEM SOLVING TECHNIQUES IN ANCIENT GEOMETRY 64

indefinitely many ways.55 If read in this context, Pappus’ requirement might have been

viewed as a prescription aiming towards a more ‘elegant’ problem solving practice, where

by ‘more elegant’ one might understand a less time-consuming and more easily cognizable

to the intellect.

For what concerns the former issue, namely the question whether methods for deciding

the nature of problems had been developed in ancient mathematics, it can be argued

that despite Pappus’ precept being readable as a strict directive on the adequate or

legitimate kind of geometrical constructions for a given problem or a given collection of

problems, it seems to be hardly workable in the context of Greek mathematics. Indeed,

if it is sufficient to solve a problem by plane means in order to classify it as plane, it is

not equally sufficient to solve a problem by solid or linear lines in order to range it into

the correspondent category. In order to have a mathematically sound classification, one

should be able to find a solution for a problem at hand, and then prove that the problem

is not solvable by means belonging to a lower class than the class of lines which actually

solve it. However, the methods ultimately worked out in order to classify problems on

the ground of their solvability crucially depend on algebraic techniques unavailable to

Greek mathematicians.56

However, Pappus’ classificatory scheme might be interpreted, instead of an abstract

classification of types of geometric objects (i. e. problems), according to their solutions,

as an attempt to organize and describe the scattered, or only partially ordered material

that came down to Pappus from a long tradition of problem-solving. Consistently with

this interpretation, the three ‘genera’ or kinds of problems might be as well envisioned

as three distinct traditions in geometry, either pre-existent Pappus’ compilative effort,

or conceptualized by Pappus himself on the ground of previous material, in order to

have a grip on the variety of results consigned by ancient geometers.57 According to this

historical reading, Pappus was describing a practice evolved in the tradition of problem

solving, and the requirement of solving each problem according to its own kind mirrored

such a tradition.
55Proclus [1992], p. 172-173.
56Knorr [1986], p. 347; see also chap. 1, p. 1.4. In the same vein, H. Sefrin Weis remarks that: ".

. . Pappus’ general homogeneity requirement was not fully developed, or integrated, into geometry, it
seems. Pappus’ meta-theory claims more than the practice, or the theory, could do".Sefrin-Weis [2010],
p. 274-275.

57Sefrin-Weis [2010], p. 271-272, and in particular, Cuomo [2007], p. 151ff .
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Then how are we to understand Pappus’ requirement, in the light of this interpretation?

As I have also observed in chapter 1 of this study, geometers from late antiquity shared

a tradition of commentary and research on topical problems, like the problems collected

in Euclid’s plane geometry, or the trisection of the angle and the duplication of the

cube (i.e. the insertion of two mean proportionals), considered as solid ‘by nature’, and

therefore outside of the problem-solving technique adopted in the Elements. I surmise,

in other words, that later geometers, like Pappus, identified the trisection and the cube

duplication problems with a veritable tradition of problems, that we can label "solid

geometry", characterized by the correlative development of special methods for their so-

lutions, namely conic sections. We can thus conjecture that it would have been sufficient

to prove that a certain problem, apparently not related with either the trisection of the

angle or the insertion of two mean proportionals, was reducible to either of them, in order

to ascribe it to the same tradition, and thus construct it by the methods allowed within

this tradition.

Conclusively, any decision about the plane, solid or linear nature of a problem ultimately

depended on how the mathematical tradition had treated the problem at hand: this

would determine, or contribute to determine, the ‘nature’ of a problem in the eyes of a

late-antiquity thinker as Pappus.

This interpretation may also explain the peculiar characteristic of problems of the ‘linear’

kind. It is doubtful, indeed, whether linear problems and curves may be said to form a

‘kind’, in analogy with the other two kinds of problems. Standing to Pappus’ account,

indeed, these problems and curves seem to be identifiable in no other way than by their

otherness: Pappus groups in one class those geometrical problems irreducible either to

plane or solid ones, and these curves whose genesis is more complex than straight lines,

circles and conic sections.

Moreover, there is little doubt that linear problems and curves constituted a vast (cer-

tainly vaster than the examples survived till us) but not-fully understood subject, even

in Pappus’ time, probably a subject matter of which mathematicians had cognizance,

but not complete domain. In the light of this situation, Cuomo [2007] claims that: ". . .

Pappus’ main focus [in the Collection] is to present the curves as successful problem-

solving tools, whose utility is proved by applying them to a number of constructions, and

whose homogeneity is underscored by streamlining their definitions and the descriptions
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of their main properties".58

It is arguable, standing to Cuomo’s observations, that one of Pappus’ purposes (or even

his main purpose) in presenting the third kind of geometry as he did in the Collection,

might have been that of giving legitimacy to curves thus far considered poorly familiar,

or ‘exotic’ by the mathematical tradition of antiquity and late antiquity, because of their

complex descriptions (below, I shall offer some examples of these complex curves) and of

their unclear employment in problem-solving.

2.3 Curves and problems of the third kind

When Pappus’ Collection circulated in latin, by the end of XVIth century, the problem

solving practice that Pappus might have direct or indirect endorsed was for the most

part lost. Consequently, the question about the applicability of Pappus’ classification of

problems came utility and to the fore again, with urgency. I will discuss this theme and

the developments that it gave rise to in chapters 3 and 5.

As we shall meet problems and curves of the third kind on several occasions in this

study, it is worth describing in more detail the definitions and properties of the best

known among them, following the account offered in surviving ancient texts, in particular

Pappus’ Collection.

2.3.1 The conchoid

One of the most important curves of the third kind mentioned by Pappus is the conchoid,

described in Book IV of the Mathematical Collection in connection with the two mean

proportionals problem. The conchoid will become, in XVIIth century geometry, a familiar

curve to mathematicians, to the point that it will be mentioned twice in Descartes’

Géométrie as an example of a curve properly geometrical (see chapter 3, p. 3.2.1) contra

Pappus, who considered it a linear curve on the ground of its genesis:

Set out a straight line AB, and a <straight line> CDZ at right angles to

it, and take a certain point E on CDZ as given. And assume that, while

the point E remains in the place where it is, the straight line CDEZ travels

along the straight line ADB, dragged via the point E in such a way that D

travels on the straight line AB throughout and does not fall outside while

58Cuomo [2007], p. 167-168.
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Figure 2.3.1: Conchoid.

CDEZ is dragged via E. Now, when such a motion takes place on both

sides, it is obvious that the point C will describe a line such as LCM is, and

its symptoma is of such a sort that, whenever some straight line <starting>

from the point E toward the line meets it, the <straight line> cut off between

the straight line AB and the line LCM is equal to the straight line CD. For,

while AB remains in place, and the point E remains in place, when D comes

to be upon <a point> H, the straight line CD reaches HT , and the point

C will fall onto T . Therefore, CD is equal to HT . Similarly, also, whenever

some other line <starting> from the point E toward the line meets <it>, it

will make the segment cut off by the line and the straight line AB equal to

CD.59

As we can read in the above passage, Pappus illustrates the generation of the conchoid

starting from a fixed couple of axis CZ and AB, perpendicular one to the other. Then,

he marks a point D, intersection point of the axis, and on CZ he marks another point

E, that will be maintained fixed during the generation of the curve. Its genesis is in fact

obtained by pivoting the straight line CDEZ around point E (“dragged via point E”,

Pappus writes), in such a way that point D is carried along the axis AB and, as Pappus

remarks, “ does not fall outside” this axis. Point C, which is carried along in this motion,

will eventually describe a conchoid, as it is shown in figure 2.3.1.

59Sefrin-Weis [2010], p. 126. Pappus [1876-1878], vol. I, p. 243-44.
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In the subsequent lines, Pappus recalls that this curve can be traced ‘ὁργανικῶς’,60 that

is, by the aid of an instrument. Eutocius’ commentary on Archimedes’ treatise On the

Sphere and the Cylinder , offers the description of a suitable device for the tracing of the

conchoid: this instrument is conceived simply by converting Pappus’ description into a

mechanism forming by two perpendicular fixed rulers, and a third sliding one, as in figure

2.3.1 (the bold lines can be taken to represent the components of the instruments).

The fundamental property of this curve, namely its symptoma,61 can be easily inferred

from the description given in the Collection. In fact the conchoid is generated in such a

way that the distance CD remains fixed during the motion. Therefore, any segment HT

intercepted on the pivoting line CDZ between the curve and AB is equal to CD. This

property obviously foreshadows the possibility of using the conchoid to mark segments of

given length, and therefore to employ this curve, or the compass employed for its tracing,

in order to perform a neusis construction.62

2.3.2 The Quadratrix

The curve known as ‘quadratrix’63 is described in the fourth book of the Mathematical

Collection (§ 25-26):

Set out a square ABCD and describe the arc BED of a circle with center A,

and assume that AB moves in such a way that while the point A remains in

place, <the point> B travels along the arc BED, whereas BC follows along

with the traveling point B down the <straight line> BA, remaining parallel

to AD throughout, and that in the same time both AB, moving uniformly,

completes the angle BAD, i.e.: the point B <completes> the arc BED, and

BC passes through the straight line BA, i.e.: the point B travels down BA

(. . . ) Now, while a motion of this kind is taking place, the straight lines BC

and BA will intersect each other during their traveling in some point that
60The word is translated with instrumentaliter by Commandinus ([Commandinus, 1588], 56r).
61The notion of symptoma of a curve is thus explained by Sefrin-Weis: "In order to study the math-

ematical properties of such curves, one has to come to a quantifiable characterization, as a proportion,
or an equality that applies to all the points on the curve and only to them. All mathematical proper-
ties have to be derived from, or related back to, this original characterizing property. It is called the
symptoma of the curve", (in Sefrin-Weis [2010], p. 223).

62An example of a neusis obtained via a conchoid is explained in prop 23 of book IV (Sefrin-Weis
[2010], p. 127-128; Pappus [1876-1878], I, 247-248).

63Its attribution is controversial, as the names of several pre-euclidean geometers (Hippias, Nicomedes,
and Dinostratus, for instance) are associated to it by the commentators (see Folkerts, Menso (Munich).
"Quadrature of the circle." Brill’s New Pauly. Antiquity volumes edited by: Hubert Cancik and ,
Helmuth Schneider. Brill Online, 2013).
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Figure 2.3.2: The quadratrix.

is always changing its position together with them. By this point a certain

line such as BZH is described in the space between the straight lines BA

and AD and the arc BED, concave in the same direction <as BED>, which

appears to be useful, among other things, for finding a square equal to a given

circle.64

As Pappus explains, the quadratrix BZH (fig. 2.3.2) is traced by the moving point

Z, intersection between the segment AE which pivots with uniform velocity around the

centre A of the circle and the segment BC, which moves uniformly along the vertical

direction BA during the same time-interval. The symptom of the curve, as Pappus

relates, is expressed by the following property:

Whichever arbitrary <straight line> is drawn through in the interior toward

the arc, such as AZE, the straight line BA will be to the <straight line> ZT

as the whole arc <BED is> to the arc ED.65

In other words, the quadratrix has the property that for any two points on it, their

distances from the given straight line AD are in the same ratio as the angles formed by

the lines that join them to the center of rotation of the pivoting radius and AD. As I

will discuss in the next session, thanks to this fundamental property the curve can be

64Sefrin-Weis [2010], p. 131. Pappus [1876-1878], vol. I, 253.
65Sefrin-Weis [2010], p. 132; Pappus [1876-1878], vol. I, 253.
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immediately employed to solve the problem of dividing an arbitrary angle into a number

n of equal parts.

Moreover, as its very etimology recalls, this curve can be used in order to solve another,

more prominent problem: the rectification of the circumference, and therefore the squar-

ing of the circle. Indee, in the same book IV of the Collection, Pappus proves that

the length of the pivoting radius AB is the mean proportional between the length of a

circular quadrant
⌢

BED and the limiting length AH, the point H being obtained when

the pivoting radius AB and the shifting line BC coincide. Since, in virtue of Elements,

VI, 11, one can construct a segment X which is the fourth proportional given the seg-

ments AH and AB, this line will be equal to
⌢

BED. In this way, the rectification of the

circumference ca be solved too.66

Already in antiquity, doubts were raised concerning the role of the quadratrix as a con-

struction method, particularly in relation with the circle-squaring problem. For instance,

after having illustrated the construction of this curve, Pappus himself related two objec-

tions attibuted to a commentator named Sporus.67

66See below for a reconstruction of Pappus’ proof. The latin term ‘quadratrix’ simply translates the
greek: ‘τετραγωνἰζουσvα’. The relation between the curve and the circle-squaring problem, besides being
evoked by the very name of the curve, is mentioned in Pappus’ account: ". . . For the squaring of
the circle a certain line has been taken up by Dinostratus and Nicomedes and some other more recent
(mathematicians). It takes its name from the symptoma concerning it. For it is called ‘quadratrix’
by them. . . " (Sefrin-Weis [2010], p. 131). I note that Pappus’ narration appears slightly inconsistent:
whereas here he seems to consider as the symptoma of the quadratix the possibility of using it for
squaring the circle, in the passage quoted before Pappus attributes a different symptoma to the same
curve, namely the possibility of cutting arcs into a given proportion. One hypothesis to explain this
inconsistency away would be to assume that the two problems were, for the ancient, equivalent under
certain relevant aspects. This supposition is however not grounded on any evidence, except the fact that
curves known to solve one problem were also known to solve the other, and vice versa.

67A digression may be useful at this point, since our understanding of Sporus’ passage can be sensibly
different from the way in which early modern geometers understood it. Indeed Commandinus, the Latin
editor and translator of Pappus’ text, heaviliy interpolated the original passage concerning Sporus’
critiques, and substituted the name of the mathematician ‘Sporus’ with the verb ‘spero’, dramatically
changing the meaning of the introductory sentence, which in his version reads as: "this line - I hope
- is, rightly and with merit, not satisfying . . . "( "Hec autem linea spero iure ac merito non satisfacit
propter haec . . . ", Commandinus [1588], 57v. The meaning of the whole passage resulted consequently
changed: readers of Pappus in Commandinus’ translation might have considered that such criticism
circulated among the ancients, and was not limited to few individuals. This might help understanding, for
instance, why Descartes refers generically to the ‘ancients’ when he relates, in La Géométrie, the passage
of Pappus’ book IV that we are examining here. Before the publication of Descartes’ Géométrie (1637),
Christophorus Clavius, one of the first, and most influential readers of Commandinus’ Collectiones,
discussed the same passage about Sporus in his second edition of his Commentary to Euclid’s Elements
and claimed that Pappus (and not Sporus) rejected the quadratrix as useless and not amenable to
description (". . . a Pappo reijciatur, tanquam inutilis et quae describi non possit . . . ", Euclid [1589], p.
894). Thus, early modern readers helped spread the opinion that the view on the mechanical nature of
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Sporus’ twofold critique was moved against the construction of this curve by composition

of motions, the same discussed by Pappus and summarized above. According to the first

one, the construction of the quadratrix was inconsistent because it would be based on a

circularity; in fact, in order for the moving segments to reach at the same moment the

axis, the ratio of their movement had to be known in advance. But the knowledge of this

ratio presupposes the knowledge of the ratio between the radius and the arc, and thus,

it presupposes to have solved the rectification problem in advance.

The second objection, instead, is related by Pappus with these words:

Consider what is being said, however, with reference to the diagram set forth.

For when the <straight lines> CB and BA, traveling, come to a halt simul-

taneously, they will <both> reach AD, and they will no longer produce an

intersection in each other. For the intersecting stops when AD is reached,

and this <last> intersection would have taken place as the endpoint of the

line, the <point> where it meets the straight line AD. Except if someone

were to say that he considers the line to be produced, as we assume straight

lines <to be produced>, up to AD. This, however, does not follow from the

underlying principles, but <one proceeds> just as if the point H were taken

after the ratio of the arc to the straight line had been taken beforehand.68

Contrarily to the first one, which can be forestalled, as H. Bos explains,69 the second

objection remains valid also today.70 Therefore, the last point H could not be determined

by the generation of the curve by two motions. The tracing of the quadratrix remained

therefore incomplete, unless it was supplemented by a different description or one had

the quadratrix was a well accepted fact among the ancients. The opinion is held also by Tannery [1883],
p. 285.

68Sefrin-Weis [2010], p. 133.
69Bos [2001], p. 43, notices that it is not necessary to pre-install a special ratio of velocities to construct

the quadratrix. Indeed it is sufficient to start from two given segments AE and AD, and to suppose
that the first of the two moves counterclockwise around A, while the second moves upward parallel to
itself, both motions being uniform, starting and finishing at the same instants of time. The curve will be
thus traced, and it will intersect the perpendicular to AD at A in a point B. We can therefore complete
the square, and obtain the same configuration as described by Pappus. Of course, the quadratrix so
conceived can be used to square the circle of radius AB, but since the ratio between the radius and the
circumference (or between the square built on the radius and the circle) is constant (Euclid, Elements,
XII, 2), once the quadrature problem is solved for the particular circle with radius AB it will be solved
for any other circle.

70If we write down the parametric equation for the quadratrix (which can be easily determined from its
construction), and call θ the angle DÂE, formed by AD and by the sweeping segment AE, we obtain the
following expressions: x = 2θ

πtanθ
, y = 2 θ

π
. Thus, the segment AH where the curve meets the horizontal

axis AD can only be obtained as the limit of 2θ
πtanθ

when θ tends to zero. Such limit is 2
π
= AH.
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previously found the ratio of the quadrant to the radius. These considerations induced

Sporus to conclude that - so Pappus says:

. . . Without this ratio being given, however, one must not, trusting in the

opinion of the men who invented the line, accept it, since it is rather mechan-

ical.71

The term employed by Pappus, namely: ‘μηκανικῶς’, should be differentiated from the

term ‘ὁργανικῶς’, seen before in connection with the conchoid. In the latter case, the

organic character of the curve is related to its concrete tracing by an instrument. The

former case is of a less easy understanding, because of the variety of possible and contro-

versial meanings connected with mechanics, in antiquity. For the sake of my argument,

I shall point out to two relevant aspects in the classical description of the quadratrix,

which may be connected with its ‘rather mechanical’ nature. Firstly, the term mechani-

cal may indicate the fact that this curve, just like the spiral and the cylindrical helix, is

generated by a couple of independent motions. But the sole reference to the genesis of

the curve by motions does not seem to fully explain Sporus’ intentions, in qualifying the

curve as ‘rather mechanical’.

Additional information can be gleaned through from the context in which the quadratrix

is judged a mechanical curve, and in particular, from the problematic aspect of its genesis,

discussed above. It can be conjectured, on the ground of Sporus’ objections, that the

quadratrix is qualified as mechanical, because its genesis, described in the Collection,

does not offer an exact construction of the curve, but only an approximate one. We have

seen, indeed, that the foot of the curve cannot be exhibited by the twin motions which

generate it; moreover, it might not have escaped to Pappus that this point could be

precisely approximated, for example, by the tracing of a smooth curve passing through

the other points of the quadratrix.72

These observations are relevant, particularly for the posterity of this text. Indeed the

term ‘mechanical’ would continue to be used in the early modern classifications of curves

and, especially with Descartes, came to denote such curves as the quadratrix, the spiral

and the cylindrical helix, generated by a couple of independent motions.73

71Sefrin-Weis [2010], p. 133.
72Cf. Van der Waerden [1961], p. 192. A similar reasoning will be deployed, in the early modern

period, in the Commentary written by Clavius to Euclid’s Elements (see ch. 5, sec. 5.2.3).
73This topic shall be discussed in ch. 5.
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2.3.3 The Archimedean spiral

The third curve that I want to examine is the Archimedean spiral. Pappus describes the

curve in these terms:

Let there be given a circle with center B and radius BA. Assume that

the straight line BA has been set in motion in such a way that, while B

remains in its place, A travels uniformly along the circumference of the circle,

and together with it <i.e., together with the rotating BA> a certain point,

starting from B, is assumed to travel uniformly along it, in the direction of A,

and assume that within the same time the point from B passes through BA

and A passes through the circumference of the circle. Now, the point moving

along BA will describe a line such as BEZA during the rotation, and its

starting point will be the point B, while the starting point of the rotation

will be BA.74

From Pappus’ protocol, we gather that the spiral is, like the quadratrix, generated by

a couple of motions. Indeed, given a circumference of center B, the curve is generated

by a mobile point A which covers the radius BA while the latter rotates, both motions

being uniform and starting at the same time. Since in Pappus’ construction the circle is

given, the generation of this curve falls into the same objection mentioned for the case

of the quadratrix: in order to start and terminate at the same time, the motions should

be syncronized according to the ratio 2πr : r, and their synchronization requires the

knowledge of π.

However, the same argument advanced in order to explain away Sporus’ objection in the

case of the quadratrix can be invoked in this case too: the knowledge of π (that is, the

solution of the rectification problem) is required only when a circle is given, as in the

74Sefrin-Weis [2010], p. 119, Ed. Pappus [1876-1878], vol. I, 235. The construction of the spiral can
be continued beyond the endpoint A. It is sufficient, in fact, that segment BA makes a second rotation,
with uniform velocity, while the point A travels uniformly on the segment BA extended. Since both the
rotational movement and the translational one can be indefinitely protracted, we can always construct
new branches of the spiral. The portion of the arc of the spiral bounded between consecutive returns of
the ray to its initial position is called a “turn.” Pappus limits his considerations to the one-turn spiral.
Archimedes comments about the possibility of extending the spiral by iterating the same construction
(see for instance, the prefatory letter to the treatise On Spirals, in Heath [1897], p. 154), therefore it
was well known, among ancient mathematicians, that this curve could potentially intersect the straight
line on which BA lies in an infinite number of times.
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Figure 2.3.3: The Archimedean spiral.
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case presented by Pappus, and a specific spiral must be traced. On the other hand, the

knowledge of π is not requisite if we start the construction of the curve from a point

translating on a radius rotating around one of its extremities.75

Also for its symptoma, the spiral can be put on a par with the quadratrix:

And its principal symptoma is of the following sort. Whichever <straight

line> is drawn through the interior toward it, such as BZ, and produced

<to C>, the straight line AB is to the <straight line> BZ as the whole

circumference of the circle is to the arc ADC.76

The mode of generation of the spiral allows us to establish a proportion between two

segments and two circular arcs (or the corresponding angles), so that the problem of

dividing an angle into any given ratio can be easily solved through this curve, as I will

detail later on.

2.3.4 The Apollonian helix

I will finally introduced a fourth curve, which is employed in propositions 28 of book

IV in order to generate the quadratrix,77 but never defined in this book. However, we

encounter its description in book VIII of the Collection, in connection with the shape

of a machine called cochlea (κοχλἴαϛ), probably employed for moving columns of water

upward.78

According to Pappus’ account, the helix is generated out of the composition of two

motions. Given a finite cylindrical section, this curve is traced by a point translating

uniformly along a straight line, that rotates uniformly on the surface of the cylinder, in

75The second way is followed by Archimedes in his treatise On Spiral, Df. 1: "If a straight line drawn
in a plane revolves at a uniform rate about one extremity which remains fixed and returns to the position
from which it started, and if, at the same time as the line revolves, a point mvoes at a uniform rate along
the straight line beginning from the extremity which remains fixed, the point will describe a spiral in
the plane" (Heath [1897], p. 165) . As one can evince from this treatise, the spiral was also involved in
the solution of the circle-squaring problem, although no explicit discussion on this concern can be found
in Pappus’ book IV. The connection is examined in Archimedes’ treatise instead, as I will discuss in the
next section.

76Sefrin-Weis [2010], p. 119, Pappus [1876-1878], vol. I, 235.
77See Sefrin-Weis [2010], p. 137. Pappus’ intention, in generating the quadratrix from the helix, was

probably to find an alternative genesis of this curve, that could circumvent the objections advanced by
Sporus. In the subsequent proposition 29, in fact, Pappus shows how the quadratrix can be generated
out of a complex surface, named "plectoid" (Sefrin-Weis [2010], p. 140). The plectoid here evoked is a
hapax in ancient mathematical literature.

78Tannery [1883], p. 288.
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Figure 2.3.4: The Apollonian Helix.

such a way that in the same time the point has traversed the whole segment, the segment

has accomplished a full rotation.79

The same description by composition of motions can be found in other ancient mathe-

matical texts, as in Hero’s Mechanics , or in Proclus’ Commentary in the first book of

Euclid’s Elements. It is worth reporting Proclus’ definition, as it was also read during

XVIth and XVIIth century, and clearly shows the connection between this curve, Pappus’

description of the quadratrix and his description of the spiral:

the cylindrical helix is traced by a point moving uniformly along a straight

line that is moving around the surface of a cylinder. This moving point

generates a helix any part of which coincides homeomerously with any other,

as Apollonius has shown in his treatise On the Cochlias (. . . ) the very mode

of generating the cylindrical helix shows that it is a mixture of simple lines,

for it is produced by the movement of a straight line about the axis of a

cylinder and by the movement of a point along this line.80

The helix is thus generated by a couple of "dissimilar simple motions". By this expression,

as we can understand from the context, Proclus might refer to the uniform rotations and

79Pappus [1876-1878], vol. 3, p. 1110-1111.
80Proclus [1992], p. 86.
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traslations occurring at the same time: the kinship between the helix, the quadratrix

and the spiral is thus revealed by the common mode of generation of the three curves.81

The difficulty of explaining the genesis of complex curves of the third kind in terms of

elementary motions is evoked in a subsequent passage of the Commentary , when Proclus

discusses the nature of the helix as a "mixed line":82

. . . although a simple line can be produced by a plurality of motions, not

every such line is mixed, but only one that arises from dissimilar motions.

Imagine a square undergoing two motions of equal velocity, one lenghtwise

and the other sidewise; a diagonal motion in a straight line will result. But

this does not make the line a mixed one, for it is not brought into being by a

line different from itself and moving simply, as was the case of the cylindrical

helix mentioned.83

Although linear curves did not form a well defined group in late antiquity, we can thus

spell out, on the ground of the previous quotations, a generic trait of homogeneity un-

derscoring their characterization. Indeed, even if these curves were described in the

plane, their genesis, as provided by Pappus and presented with analogous terms in Pro-

clus, required cynematical elements (uniform rotations and translations occurring at the

same time) that ancient mathematicians were not able to reduce to more elementary

constructions in the plane itself, hence their ‘dissimilarity’ noted by Proclus.84

81Proclus mentions the quadratrix in another locus of his commentary, referring to it as a "mixed"
line as well (Proclus [1992], p. 212).

82Proclus introduces a classification, ascribed to Geminus, between mixed and simple lines. This
ordering of curves is different than Pappus’ tripartite one, although it is still based on the mode of
generation of curves (Proclus [1992], p. 90-91).

83Proclus [1992], p. 86.
84See Euclide [2007], p. 104. I will not discuss here the reference, made by Pappus, to the generation

of linear curves out of complex surfaces, since they had a minor role in early modern debates (see the
previous footnote 44). As I have suggested, the fundamental motivation behind Pappus’ choice to present
these spatial constructions might have been connected to the attempts at providing a more geometrical
description of curves whose genesis through motions was problematical and criticized, as the case of
the quadratrix. By describing this linear curve as an intersection between two solids, in fact, ancient
geometers might have tried to offer a complete description of the quadratrix, with its foot included.
Pappus’ attempts, however, failed to offer the crucial intersection point between the curve and the axis
(see Sefrin-Weis [2010], p. 137-139). By constructing linear curves through the intersection of solid
surfaces different than the cone, Pappus might have also wanted to stress the irreducibility of the curves
of the third kind to the second kind, so that the constitution of a third class of curves beyond the
conic sections was fully justified, on the ground that: a) the movements which produced these curves
in the plane were not reducible to one rotation (producing the circle) or one translation (producing the
straight line), and b) that the surfaces from which these curves could be engendered by projection or
by sectioning were more complex than the cone or the cylinder, and there was no known procedure for
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A possible exception among linear curves is offered by the conchoid: in the genesis of

this curve, in fact, we do not encounter two motions subject to uniformity constraints;

there is rather one principal motion (the swinging of the line CDE around point E),

the constraint being determined by the segment of fixed pre-assigned length CD [see

fig. 2.3.1]. As we know, there are mathematically meaningful reasons which underline

the different geometric description of the curve, and that motivate a distinction between

the conchoid and the other linear curves described above,85 but it is plausible that these

reasons passed unnoticed until the advent of Descartes’ Géométrie, in which they are are

pointed out explicitly and with a critical intent.86

2.4 Problems from the third kind of geometry

The examples of problems from the third kind of geometry treated by Pappus are dis-

cussed in propositions 26-30 of book IV of the Mathematical Collection, propositions

35-38 and propositions 39-41 of the same book. These three groups of propositions are

centered around the following issues: the problem of the rectification of the circumference

(propositions 26-30, 39-40) and the problem of the general angle division (propositions

35-39).

2.4.1 General Angle Division (Collection, IV, proposition 35)

The problem of the General Angular Section can be stated as follows:

Given an arbitrary angle ϕ and two natural numbers ρ and ̺ it is required to

divide ϕ in two angles ϕ1 and ϕ2 such that ϕ1 : ϕ2 = ρ : ̺.

This problem can be reduced to that of the division of the angle ϕ into ρ+ ̺ = µ equal

parts. In order to obtain ϕ1 it will be sufficient to take a number ρ of the equal parts

obtaining these curves out of the intersection between a plane and a cone.
85To this concern, Paul Tannery has remarked: "le rapprchement de la courbe d’Hippias avec la

conchoïde, au point de vuew géométrique, ne peut, d’autre part, être regardé que comme passablement
forcé. . . " (Tannery [1883], p. 284). In modern parlance, the conchoid is an algebraic curve, that is, a
curve described by a finite polynomial equation, while the quadratrix and the spiral are transcendental,
that is, the relation between the abscissas and the ordinates are expressed by transcendental functions.
A similar reasoning holds for the cissoid, another curve listed by Pappus as ‘linear’, although it is which
is described by an algebraic equation.

86"The conchoid of the ancients" is evoked, for example, in Book II of La Géométrie (Descartes [1897-
1913], vol. 6, p. 395). As I will discuss in the next chapter, Descartes explicitly recognized that the
motions which generate, according to Pappus’ description, a curve like the conchoid could be reduced to
an ordered succession of rotations and translations and, on this ground, the locus of the curve could be
described by an algebraic equation.
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obtained by the previous division, and in order to obtain ϕ2 it will be sufficient to take

a number ̺ of equal parts.

Since Pappus’ book IV represents the only extant source which mentions the problem, it

is worth dealing briefly with its role in the treatise and with the methods applied for its

solution. As Pappus states:

Now, trisecting a given angle or arc is a solid problem, as has been shown

above, whereas dividing a given angle or arc in a given ratio is a linear prob-

lem, and while it has been shown by the more recent mathematicians, it will

be shown as well in a twofold way by me.87

As declared, Pappus gives two solutions of the problem, one through the quadratrix and

the other using the archimedean spiral. Both constructions follow similar patterns, as it

can be remarked from the protocols detailed below.

Solution via the quadratrix

In virtue of Euclid’s Elements, III, 27, the problem of dividing an arbitrary angle ϕ

into a given ratio can be reduced to the problem of dividing into the same ratio an arc

of circumference, corresponding to an angle at the centre equal to ϕ. Pappus proceeds

indeed by dividing the arc, in the following way:

Protasis: Divide an arc
⌢

LT into the ratio a : b.

1. Construction:

• Complete the quadrant BKLT and inscribe the quadratrix KAC.

• Draw the perpendicular AE onto BC.

• Draw point Z on AE such that AZ : AE = a : b.

• Draw ZD parallel to BC.

• Draw segments BD and DH, the latter perpendicular to BT .

• The arc
⌢

LM is to the arc
⌢

MT as a is to b.

2. Proof
87Sefrin-Weis [2010], p. 155. Pappus [1876-1878], I, 285.



CHAPTER 2. PROBLEM SOLVING TECHNIQUES IN ANCIENT GEOMETRY 80

Figure 2.4.1: General angle division by the Quadratrix.

•
⌢

KT :
⌢

LT = KB : AE,
⌢

KT :
⌢

MT = KB : DH. These proportions hold, according

to Pappus, because they are the "symptoma of the line" namely, the defining

properties of the quadratrix mentioned in proposition 26 of Pappus book IV.

• Since
⌢

LT :
⌢

MT = AE : DH, because of the symptoms of the quadratrix, and

ZE = DH (by construction), we shall have:
⌢

LT :
⌢

MT = AE : ZE.

• By Euclid, El. V, 17, the following proportion can be obtained:
⌢

(LT −
⌢

MT ) :
⌢

MT = (AE − ZE) : ZE, namely:
⌢

LM :
⌢

MT = AZ : ZE.

• Since AZ : ZE = a : b, by construction, then:
⌢

LM :
⌢

MT = a : b.

Solution via the spiral

It is required to divide an angle ϕ, or the corresponding circular arc
⌢

AC (fig. 2.4.1), into

the ratio a : b. (a, b are natural numbers).

1. Construction

• Draw the radii BA and BC.

• Describe the spiral BZDC inscribed in the circle ACH, with center B.
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Figure 2.4.2: General angle division with a spiral.

• Trace on DB a point E, such that DE : EB = a : b (this can be done in an

elementary way).

• Through E draw EZ, arc of a circle with center B and radius BE, which intersects

the spiral in point Z.

• Extend BZ to point H, on the circumference of the circle.

•
⌢

AH is to
⌢

HC as the given ratio.

2. Proof

• Calling
⌢

AHC denotes the circle with radius AB, and center B, we have that:

BC : BD =
⌢

AHC :
⌢

AC; BC : BZ =
⌢

AHC :
⌢

HC. As for the quadratrix, these

proportions hold because they describe the symptoma of the spiral.

• BD : BE =
⌢

AC :
⌢

HC(Euclid, V, 22).
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• DE : EB =
⌢

AH :
⌢

HC.

• Therefore,
⌢

AH :
⌢

HC = a : b. (Euclid, V, 17).

2.4.2 Problems related to the general angle division

Pappus adds some problems related to the General Angle division, because they are easily

solvable given the solution of the former problem. For instance, we read in proposition

36:

it is possible to cut off equal arcs from unequal circles.88

In the subsequent proposition 37:

<Let the task be> to put together an isosceles triangle with both angles at

the base possessing a given ratio to the remaining one.89

And in proposition 38:

it is obvious that it is possible to inscribe an equilateral and equiangular

polygon that has as many sides as anyone might prescribe into a circle.90

Together with proposition 41, on the construction of incommensurable angles, these

problems conclude the subgroup of propositions directly related to the General Angle

Division problem.

2.5 The rectification problem

A second set of problems in Pappus’ Collection is correlated to the rectification of the

circumference, which allows us to solve the circle-squaring problem, the second central

issue belonging to the third kind of geometry, according to Pappus’s narration. Book IV

of the Collection contains in fact the best documented record of an ancient technique for

solving this problem, which had recourse to the quadratrix.

88Sefrin-Weis [2010], p. 157. Pappus [1876-1878], vol. I, 287.
89Sefrin-Weis [2010], p. 157.
90Sefrin-Weis [2010], p. 158.



CHAPTER 2. PROBLEM SOLVING TECHNIQUES IN ANCIENT GEOMETRY 83

Other sources attest solutions of the rectification of the circumference that employed

different curves. For instance, the philosopher and commentator Iamblichus remarks:

Archimedes effected it [the rectification of the circumference] by means of the

spiral-shaped curve, Nicomedes by means of the curve known by the special

name quadratrix , Apollonius by means of a certain curve which he himself

calls "sister of the cochloid" but which is the same as Nicomedes’ curve, and

finally Carpus by means of a certain curve which he simply calls (the curve

arising) from a double motion.91

The solutions mentioned in the above passage are not extant for us, except for Archimedes’

construction, which can be derived from theorem XVIII of treatise On Spirals. In this

work, it is proved that the subtangent to a spiral at the endpoint of its first turn is equal

to the circumference of the circle, whose radius equals the generating radius of the spiral.

This construction, as well as the one using the quadratrix, will be discussed in the sequel.

2.5.1 The rectification of the circumference via quadratrix (Pappus,

Collection, IV, proposition 27)

In this section I will present the procedure for rectifying the circumference, and thus

solve the circle-squaring problem, relying on the quadratrix, as it is presented by Pappus

in the Collection.92

Let us construct a quadratrix BFM in a given quadrant BAD, as in the diagram of fig.

2.5.1. The quadratrix possesses the following propertywhich can be successfully employed

for rectifying the circumference: the point M at which this curve cuts the horizontal line

AD is such that the radius AD is mean proportional between the arc of circle
⌢

BD and

the segment AM , cut by the quadratrix on AD.

In order to prove it, Pappus recurs to an indirect argument not so transparent at a

first glance. Reasoning by absurd, he assumes that:

⌢

BD : AB 6= AB : AM

91See Heath [1981], p. 225.
92The invention of the quadratrix, attributed, in the above quoted passage of Iamblichus, to Nicomedes,

is dubious. For a discussion see Tannery [1883], Knorr [1986], p. 84-86.
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Figure 2.5.1: Rectification of the circumference by a Quadratrix.

Given this disproportion, he is able to write:

⌢

BD : AB = AB : AK,

where the point K is another arbitrary point of the lineAD, distinct from M . It follows

that K lies on one or on the other side of AD with respect to M . We can discriminate

the two situations using the symbol “>”:

• The first situation is represented by the expression: AK > AM ;

• whereas the second by: AK < AM .

Assume the first case. With center in A and radius AK, trace the arc KFL, where F is

the intersection point between the arc and the quadratrix. Thus, we will have:

⌢

BD : AB = AB : AK
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Moreover, Pappus asserts that:

⌢

BD : AB =
⌢

KFL : AK

as arcs on equal angles are proportional to their radii.

As a consequence:

AB =
⌢

KFL

From the definition of the curve, we also have that
⌢

BD :
⌢

ED = AB : FH, while
⌢

BD :
⌢

ED =
⌢

KFL :
⌢

FK.

Since AB =
⌢

KFL, it follows that
⌢

FK = FH.

For Archimedes’ assumption 1 in The Sphere and the Cylinder, FK <
⌢

FK,93 while FK

is the hypothenuse of the right triangle FHK, therefore, FH < FK. As a consequence,

FH <
⌢

FK, which contradicts the previous conclusion that:
⌢

FK = FH. Pappus can

therefore discard the possibility that point K is situated between A and M .

Let us assume then the second case, and let us suppose a point K given, such that

AK < AM (fig. 2.5.1). Let a circular arc
⌢

LK be described, with center A and radius

AK. The reasoning following by Pappus in disproving this case is almost analogous to

the previous one, with the exception that the arc
⌢

LK cannot cut the quadratrix. Let

then the perpendicular KF to AD be raised, which intersects the quadratrix in F , and

let AF be joined and extended to E (lying on the circumference). We will call C the

point of intersection between segment AE and the arc
⌢

LK, and CH the perpendicular

from point C to the segment AD.

By the same reasoning displayed before, Pappus can write:
⌢

LK = AB. As in the previous

case, the following proportions will hold, too:

⌢

BED :
⌢

ED =
⌢

LK :
⌢

CK = BA : CH

93"Of all lines that have the same extremities the straight line is the least", Heath [1897], p. 3.
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Figure 2.5.2: Rectification of the circumference by a Quadratrix.

This proportion entails:
⌢

CK = CH, which is contradictory, as
⌢

CK > CK > CH, by

virtue of Archimedes’ first assumption in the Sphere and the Cylinder .

Eventually, both cases lead to an absurdity, so that neither AK > AM nor AK <

AM hold. Consequently, Pappus can conclude that AK = AM , and thus consider the

following proportion:

⌢

BD : AD = AD : AM

to be proved.

Given this proportion, the problem of rectifying the arc
⌢

BD can be easily solved too.

Moreover, since the arc corresponds to a quarter of circonference, a segment equal to the

whole circumference can be construced consequently. Finally, thanks to a result given by
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Archimedes in Dimensio circuli94 it is easy to pass from this conclusion, which solves,

properly speaking, only the problem of the rectification of the circumference of the circle,

to the quadrature of the circle itself.

The rectification of the circumference can be solved through the quadratrix, by applying

the construction protocol described above, if point M , foot of this curve, is given or

constructed. As we know from Sporus’ remarks, the very construction of M was not

assured by the generation of the quadratrix curve by a couple of motion. In proposition

36, however, Pappus does not raise any problem in connection with the construction of M ,

arguably presupposing its existence, at least in the geometric context of this proposition,

on the ground of some intuition about the nature of continuous magnitudes.95

Conclusively, the construction exposed in Pappus’ Collection heavily relies on our intu-

ition of continuity, to which the geometer must make appeal in order to assume point M

as given. Such a reliance on intuition raised a serious concern from the end of XVIth cen-

tury, when attempts flourished to ground the existence of point M on explicit construc-

tions. These attempts went together with the efforts made by early modern geometers to

circumvent Sporus’ second objection to the construction of the quadratrix: indeed, if a

method to construct the foot of the quadratrix could be found, the rectification problem

would be solved as well.96

94See this study, p. 32.
95Incidentally, this example is chosen by W. Knorr in order to defy Zeuthen’s classical interpretation

on constructions as existence proofs in ancient geometry (See Zeuthen [1896], and Knorr [1986], Knorr
[1983] for the criticism). Indeed, this example could be taken as a counterinstance to Zeuthen’s thesis,
according to which the solution of problems of construction is intended to establish the existence of the
resulting configurations and of the geometric objects thereby denoted. In our case, on the contrary, the
existence of point M is simply assumed, although it is clear from the context of Pappus’ construction
that the point is not obtained via a construction.

96The best known case is certainly the one of Clavius, who dedicated important studies to the quadra-
trix (see Bos [2001], p. 159-165, Mancosu [1999], p. 75-77). The search for alternative descriptions of
the curve might not respond only to a strictly mathematical concern, namely, solving the circle-squaring
problem, but also to a more general, metatheoretical or broadly philosophical questioning: how is a curve
to be represented for the geometer to have knowledge of it? Is motion eliminable from the generation
of Pappus’ curves of the third kind, or is the complex combination of motions reducible to a simpler
generation? As I will show in the next chapters, this complex bundle of questions informed the context
in which Descartes’ Géométrie saw the light.
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2.5.2 The converse problem: to construct a circumference equal to a

given segment

In proposition 39, Pappus solves the converse problem of the rectification of a circumfer-

ence, namely:

. . . How one finds a circle the circumference of which is equal to a given

straight line. . . 97

The problem can be easily solved if we know how to solve the rectification of the circle;

however, Pappus’ protocol is instructive, as it offers a partial example of the analytic-

synthetic argumentative mode, the synthesis being omitted from his account. Pappus’

solution can be reconstructed as it follows.

Analysis

1. Assume that the problem has been solved: a circle a whose circumference is equal

to a given segment c has been found.

2. Construct an arbitrary circle b.

3. Construct, by means of the quadratrix, a segment d equal to the circumference of

b.

4. If we call ra the radius of the first circle and rb the radius of the second one, then

the following proportion will hold: d : c = rb : ra.98

5. Since the ratio of d to c is given, so is the ratio of rb to ra. Since rb is given,

therefore ra is given.99

97Sefrin-Weis [2010], p. 159.
98Using modern symbolism, one can observe that, by construction„ d = 2πrb . Moreover it is known

from the starting point of our analysis that: c = 2πra. As a consequence, d : c = rb : ra. The same
proof can be given, in a more extended form, by relying on the fifth book of the Collection, proposition
XI (Pappus [1876-1878], I, p. 335).

99Formulary expressions of the kind "The ratio, however, of d to c <is given.> Therefore, the ratio
of the radii to each other <is given>, also"(Sefrin-Weis [2010], p. 160) are commonplace in the ancient
technique of analysis. Analysis used in fact a collection of inferential patterns, codified in Euclid’s Data
in order to plot a path from the primary given geometric elements to the ones immediately constructible
from them, and so on, until the geometer reached the last step of analysis. In particular, in the analysis
of Pappus here reproduced, the inference from the givenness of the ratio of c to d to the givenness of
the ratio of ra to rb relies on the results contained propositions 1 and 2 of Euclid’s Data, together with
definition 5 of the same treatise.
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Synthesis (Commandinus)

Pappus omits the synthesis of the problem, which is given instead by Commandinus in

his 1588 edition.100 Commandinus starts by enunciating the problem:

• Let a given finite straight line c, to find a circle, whose circumference is equal to c.

Commandinus then constructs the problem according to the following protocol:

1. Construct a circle b with radius rb, and rectify it by means of the quadratrix, so as

to obtain a segment d equal to the circumference of b.

2. Construct a segment ra such that: rb : ra = d : c.

3. Construct a circle a with radius ra. The circumference of a equals the segment c.

4. Proof. By construction, we have that: rb : ra = d : c. The following proportion

holds too: ra : rb = b : a. If we indicate the circumference of circle a with the

symbol
⌢
a , then the following proportion will ensue: b : a =

⌢

b :
⌢
a . Therefore, we

will also have: d : c =
⌢

b :
⌢
a , and, permutando: d :

⌢

b = c :
⌢
a . By construction,

the circumference of b equals the segment d. Therefore the circumference of a is

equal to the segment c.

2.5.3 Rectification through the spiral (Archimedes, On Spiral lines,

prop. XVIII)

As I have anticipated, no rectification of the circle requiring the spiral is extant in ancient

sources. However, precious indications on how to solve the rectification of the circumfer-

ence (and thus the quadrature of the circle) by means of the spiral can be collected from

Archimedes’ treatise On Spirals .101 In particular, a theorem is proved by Archimedes,

establishing a property of the tangent to the spiral in the endpoint of its first turn, from

which a constructive solution of the circle-squaring problem can be promptly deduced.

We read, in fact, in proposition XVIII of the mentioned treatise (I refer to figure 12 below,

which reproduces with minor differences the diagram as it can be found in Heiberg’s

critical edition):

100Commandinus [1588], 70r.
101Archimedes [1881], vol II, p. 3-140; Heath [1897], pp. 151-188.
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Figure 2.5.3: Rectification property of the spiral.

If OA be the initial line, A the end of the first turn of the spiral, and if the

tangent to the spiral at A be drawn, the straight line OB drawn from O

perpendicular to OA will meet the said tangent in some point B, and OB

will be equal to the circumference of the ‘first circle’. 102

In other terms, if the tangent to the spiral at the endpoint of its first revolution (point

A in fig. 2.5.3) is extended to meet the perpendicular to the initial position of the radial

generator OA of the curve, then the segment cut off ths line (namely, the subtangent

OB) will be equal to the length of the circumference of the circle with radius equal to

the radial generator (namely
⌢

ACH).

2. Proof (figure 2.5.3)

It is demanded to prove that the segment OB is equal to the circumference
⌢

ACH.

Let ACH be the circle with radius OA (the generator of the spiral) and center O.

Archimedes relies on theorem 16 of the same book as a lemma,103 in order to state that

the tangent to the spiral at A will cut the circle in a point C (). Moreover, since angle
ˆOAC is less than one right angle, by Euclid’s fifth postulate the tangent to the spiral

102Heath [1897], p. 171. The theorem is contained in proposition XVIII of the treatise (Heiberg, II,
171).

103See Heath [1897], p. 169. With respect to fig. 2.5.3 th. 16 can be thus formulated: "If BF is a
tangent to the spiral at A, AF being the ‘forward’ part of BF , and if OA be joined, the angle OAF is
obtuse, while the angle OAB is acute".
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at point A will also cut off a segment OB on the perpendicular from O to the radius

OA. Archimedes states, in proposition XVIII, that the segment OB is equal to the

circumference
⌢

ACH.

In order to prove this theorem Archimedes reasons indirectly: he assumes that either

OB >
⌢

ACH or OB <
⌢

ACH, and then derives a contradiction from each of these

cases.104

It will useful to sketch the first part of this proof. Let us therefore assume:

OB >
⌢

ACH

and cut off a segment OD such that: OB > OD >
⌢

ACH (fig. 2.5.3). Referring to

the chord AC and the perpendicular to it OI , we will have therefore the following

disproportion:

AO : OD > AO : OB

A radius OP can be traced, such that if it is extended to meet the tangent AB in F , the

following proportion will result:105

FP : PA = AO : OD

Since AO = PO, and alternating the previous proportion, we will have:

FP : PO = PA : OD

104Heath [1897], p. 171.
105Archimedes’ proof depends on the previous proposition 7 of the treatise On spirals, which allows

this possibility and performs the construction of the line OPF through a neusis. Incidentally, this is the
neusis - construction also evoked by Pappus, in Book IV of the Collection, in connection with violations
of the homogeneity requirement, that we have examined above. I observe in fact that Archimedes
assumed the possibility of the neusis, but did not specify how it was to be effected (see Knorr [1986], p.
176-178, and in particular Knorr [1978]).
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Since PA <
⌢

PA (on the ground of Archimedes’ first assumption in On the Sphere and

the Cylinder) and on the assumption that OD >
⌢

ACH, we can deduce:

PA : OD <
⌢

PA :
⌢

ACH

which entails:

FP : PO <
⌢

PA :
⌢

ACH

Componendo the previous proportion, we obtain:

(FP + PO) : PO <
⌢

(PA+
⌢

ACH) :
⌢

ACH

Since
⌢

ACH denotes the circumference of the circle, the defining property of the spiral

(namely, the arcs and the corresponding radial generators have the same ratio) yields

that the right-hand ratio above equals, namely the ratio OQ : OA.

From this result, the following disproportion can be derived:

FO : PO < OQ : OA

From FO : PO < OQ : OA, and from the equality between PO and OA (both radii

of the same circle), the following inequality can be also derived: FO < OQ. But

this is impossible, because by construction point Q lies between points P and F . This

terminates the reductio ad absurdum argument, and leads to the conclusion that segment

OB is not greater than
⌢

ACH.

Subsequently, Archimedes treats the other branch of the alternative, by supposing: OB <
⌢

ACH. Although the argumentative steps differ with respect to the previous case, the

general procedure follows a similar reductio strategy. I will thus refer to the discussion in
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Dijksterhuis and Knorr [1987] for a precise reconstruction,106 and skip to the conclusion

of Archimedes’ argument: since OB is neither greater nor smaller than
⌢

ACH, it must

be equal to the circumference.

As I have observed, although no rectification of the circle requiring the spiral is extant

in ancient sources, it is not difficult to sketch, from the above theorem, a construction

protocol in the following manner:107

1. Construction

• Let a spiral be constructed, with center O, and radial generator OA.

• Let a circle ACH with center O and radius OA be constructed. Let us call
⌢

ACH

its circumference.

• Let a straight line OE be cut perpendicularly to OA.

• Let the tangent AC to the spiral in point A be traced, and let B be the intersection

point between the tangent and the line OE.

• By virtue of theorem 18 of Archimedes’ On Spirals, segment OB is equal to the

circumference
⌢

ACH. Since the ratio between the circumference of a circle and its

diameter is constant, the rectification of the circle ACH allows us to deduce the

rectification of any given circle.

Since there are no extant documents containing a solution of the rectification problems

by mean of the spiral, we can only conjecture whether such a solution was or would have

been accepted as a correct and sound construction of the problem. It is arguable that

doubts against the soundness or the feasibility of the above solution were raised, already

in antiquity, in connection with the construction of the spiral. The description of this

curve required, in fact, to tackle the difficult task of coordinatizing a radial and a circular

uniform motion.
106See Heath [1897], p. 172; Dijksterhuis and Knorr [1987], p. 270.
107A similar protocol is described, for instance, in F. Viètes’ Variorum de rebus mathematicis (Viète

[1593], p. 24).
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Figure 2.5.4: Rectification property of the spiral.
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A second hindrance to the acceptability of this construction could have been represented

by the auxiliary construction of the tangent to this curve. Indeed, even if the spiral was

the object of intense study since the late middle ages, thanks to the circulation of the

first Latin version of Archimedes’ works and the connection between the construction of

the tangent and the rectification of the circle was noted and discussed by commentators,

no one, to my knowledge, had conceded the exact constructibility of the tangent.108

The riddle about this construction received a definite clarification well into XVIIth cen-

tury, with the emergence of infinitesimal calculus, and when the tangent to a curve

passing from one of its points was finally conceived as the limit of the secants to this

curve.

2.6 On the quadrature of the circle

In the structure of the fourth Book of the Collection, the problems of rectifying the

circumference and squaring the circle are evoked after plane and solid ones, and together

with the general angular division, they are instances of ‘linear’ problems. However, it

should be noted that it is not required, in order to solve the problem of the General Angle

Division, to construct the (problematic) intersection point between the quadratrix and

the axis, but only to assume the quadratrix (or the spiral) as given. On the contrary,

the solution of the rectification of the circumference by means of the quadratrix involves

the supplementary problem of exhibiting its terminal point.

In the previous section, we have also inquired whether the solution of the rectification

problem through the spiral, which, unlike the quadratrix, is not touched by Sporus’

objection on the non- constructibility of its points, would have provided a fully-fledged

solution of the rectification of the circle. We listed few reasons for doubting that a

construction employing the spiral could be accepted by ancient mathematicians as a

satisfactory solution to the rectification of the circumference.

The issue of the quadrature of the circle surfaces on several occasions in commentaries to

the aristotelian corpus from late antiquity, posterior to Pappus. Although the context is

that of commentaries to philosophical works, the commentators themselves did not lack

108See Clagett [1964-1984], vol. 2 and vol. 5 in particular. Useful information can be found, for
instance, in Hofmann [1954]. Hoffman’s article also contains the exposition of an early-modern attempt
to provide an approximate method for the tracing of the tangent of the spiral, due to Viète.
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good mathematical credentials, and the way in which they engaged with the mathemat-

ical examples summoned by Aristotle can cast a light on the contemporary knowledge of

these themes.

Consistently with what remarked in chapter 1 of this work, we can infer from the tes-

timony of commentators that the circle-squaring problem (and therefore the problem of

rectifying the circumference too) was still regarded as an open problem in late antiquity.

A remark109 at point is, for instance, the one made by Ammonius (ca. 435/445–517/526),

a commentator of Aristotle and pupil of Proclus:110

Having erected a square equal to a rectilinear figure, geometers also sought,

if possible, to find a square equal to a given circle. Many geometers - in-

cluded the greatest ones - looked for it, but did not find it. Only the divine

Archimedes discovered anything at all close, but so far the exact solution has

not been discovered. Indeed it may be impossible. And this is, in fact, why

Aristotle says: ‘if indeed it is something to be known’ [It is perhaps because

he produced a straight line not dissimilar to the circumference <that he was

in doubt> whether it is or is not something to be known.] He therefore says

that if indeed the squaring of the circle is something to be known although

the knowledge of it does not yet exist, it follows from this that what is known

is prior to knowledge.111

Ammonius is commenting, in the passage above, upon a remark on the quadrature of

the circle made by Aristotle in the course of a discussion, which occurs in chapter seven

of the Categories , about knowledge as belonging to the category of ‘relative’. In the

course of this discussion, Aristotle chose the example of the circle-squaring problem in

order to illustrate the relation between knowledge and knowable, and in particular the

following thesis: "for if there is not a knowable there is no knowledge - there will no

longer be anything for knowledge to be of - but if there is not knowledge there is nothing

to prevent there being a knowable".112 The squaring of the circle was indeed a case at

point of something that may knowable, although not yet known.

109I shall follow, in the subsequent lines, the account offered by Knorr (Knorr [1986], p. 361-381).
110Although primarily known for his commentary to Aristotle, Ammonius was a distinguished geometer

himself (see David [2012]).
111Ammonius [1992], 75, 10. See also Knorr [1986], p. 362.
112Aristotle [1963], 7b 30-35.
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The example of the quadrature of the circle offered to Ammonius the occasion to comment

upon the current status of this geometric problem. Ammonius, who probably had some

knowledge in mathematics and must therefore be considered reliable, conceded that the

question about the solvability of the circle-squaring problem had not been assessed yet.

Analogous opinions about the solvability of the circle-squaring problem echo also among

contemporary and later commentators too.113

Let us recall, for instance, Marinus’ commentary to Euclid’s Data, a text written in the

fifth century of our era, in which the quadrature of the circle was even representative of

a category of problems, called ‘aporon’. As Marinus wrote:

That which we are now able to construct - i.e., to bring to our thought - is

porimon (. . . ) The opposite is aporon. For example, squaring a circle, for

this is not yet in our power, even if it can be attained and falls under some

science, for the scientific knowledge of it has not yet been grasped.114

In other words, the class of problems labelled by the term ‘aporon’ groups all those

problems "whose investigation is undecided (adiakritos)", under which Marinus ranged

the quadrature of the circle. By the term undecided, namely ‘adiakritos ’, Marinus meant,

in particular, arguably problems in want of a satisfactory solution, and for which it is

unknown whether a satisfactory solution did actually exist.115

But what might have been a ‘satisfactory’ solution, in the context of Marinus’ consid-

erations? We do not precisely know of constraints on the acceptability of curves and

solutions in force within Greek mathematics, although there is evidence that a distinc-

tion between acceptable and non acceptable constructions was contemplated, at least

among geometers and commentators from the late antiquity. In his commentary on

Aristotle’s Categories , for instance, Simplicius116 referred to the circle-squaring problem
113See again the survey contained in Knorr [1986], p. 362. We read, for instance, in Simplicius’

Commentary to the seventh Book of the Physics (1083, 1): "[In Aristotle’s days], it was still being
investigated whether it is possible for a straight line to be equal to a curve, or rather it had been given
upon. And hence the squaring of the circle had not yet been discovered either, and, even if it seems to
have been discovered now, nevertheless it is accompanied by certain disputed hypothesis. The reason
why the squaring of the circle, though not yet discovered, is still being investigated, as well as [the
question] whether a straight line is equal to a curved one, is that it has also not been discovered that
these things are impossible, as for instance [it has that] the diagonal is incommensurable with the side.
This is why the latter is not still being investigated".

114In Euclid [2003], p. 244-245.
115Euclid [2003], p. 245.
116Simplicius was probably born towards the end of V century A. D, and was himself a discipline of Am-

monius. As for his teacher, we can find sparse remarks about the circle-squaring problem in Simplicius’
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and remarked that geometers had come up, by the time he was writing, only with ’in-

strumental’ (‘organike’) constructions or discoveries instead of providing ’demonstrative’

(‘apodeiktike’) ones.

Anyway, the distinction at stake here between ‘organical’ and ‘demonstrative’ construc-

tions seems to concern a distinction into geometrically legitimate and illegitimate meth-

ods in problem solving. I remark that the term employed by Simplicius is ‘organikos ’

(‘ὁργανικῶς’), which refers, as we have seen, to the use of instruments for the generation

of curves. Simplicius does not employ the term ‘mekanikos ’ (‘μηκανικῶς’), which was

used by Sporus in order to qualify the generation of the quadratrix, instead. W. Knorr

advances the conjecture that Simplicius might be conflating both terms, treating ‘instru-

mental methods’ as a synonym with ‘mechanical methods’. An ‘organic’ construction

of the quadrature of the circle would be, therefore, a construction of the problem which

makes appeal to curves of the third, linear class, like the quadratrix, or to approximate

methods, as it occurred with the classical techniques consisting in approximating the

surface of the circle by sequences of inscribed and circumscribed polygons.117

If we confine to the solution of the circle-squaring problem by means of intersection of

curves, Pappus’ Collection represented, among ancient source, the most complete survey

into the problem. In Book IV of the Collection, in particular, Pappus had offered an

insight into a possible way to solve the problem, together with its formal justification. A

fully-fledged construction of the quadrature of the circle according to the protocol devised

in the Collection depended on the condition of defining the quadratrix as a geometrical

curve, so as to be able to use it as a reliable means of construction. This implied,

moreover, that a method for generating the quadratrix had to be described, such that

the foot of this curve could be constructed too.

The positions I have surveyed allow us to conclude that, although it was not excluded

by late mathematicians and commentators that the problem of the quadrature of the

circle might be impossible, nevertheless it was still considered as a rational, and even

plausible endeavor to investigate its construction, possibly by more geometrical method

commentaries to Aristotle. In spite of their non-technical character, these remarks are valuable, as Knorr
observes, since: "the commentators often avail themselves of the authorities from the technical literature
as well as from the historical and philosophical writings in geometry. Thus, one might expect that they
would reflect whatever conclusions had been drawn concerning the status of the circle quadrature among
the ancient geometers." (Knorr [1986], p. 361). See alsoKnorr [1986], p. 364.

117This approximation is described by Archimedes in his A Measurement of the Circle (Archimedes
[1881], vol. I, p. 257).
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than ‘linear’ curves, or curves of the third kind. Conclusively, in spite of its indirect

character, the evidence offered by late antiquity commentators represents an important

source of information on the status of the circle-squaring problem during that period:

this was an ‘open problem’, because it had received thus far no acceptable and fully

satisfactory solution. Even if the solutions to the circle-squaring problem which made

appeal to ‘linear’ curves were known to mathematicians from late antiquity, they probably

have failed to meet proper standards for geometricity in force within those historical

settings.

On the aftermath of the publication of the latin translation of the Collection (1588),

due to Commandinus, mathematicians saw in perfectly clear terms the question at stake:

the study of alternative descriptions of the quadratrix with respect to the ones given by

Pappus might offer a construction of the foot of this curve, and thus provide a solution for

the sought-for circle-squaring problem. Some of these attempts, as well as the ultimate

criticism advanced by Descartes on this subject will be examined in the next chapters.



Chapter 3

The geometry of René Descartes

3.0.1 Descartes’ geometry and its methodological presuppositions

XVIIth century was a period of profound changes in the image and content of geometry.

With the exception of the theory of conic sections, that had reached a high level of

sophistication thanks to the work of Apollonius, in particular, ancient Greeks lacked

a systematic treatment of more complex curves, although they studied and employed

in problem-solving some interesting special curves (I have discussed some of them in

the previous chapter). On the contrary, from the 1630s the field of known geometric

curves recorded, over a short period of time, a considerable growth with respect to

the curves accessible to ancient geometers. In Bos [1981], for instance, three directions

of research are individuated through which new curves could enter the mathematical

discourse. Curves could be introduced as given objects of study: this is the case of the

cycloid, the curve described by the rim of a rolling circle, whose properties as its area,

the areas and centres of gravity of its segments and the contents and centres of gravity of

solids arising by rotation of its segments were studied in response to a famous challenge

proposed by Pascal in 1658 (cf. Bos [1981], p. 295-296). Otherwise, curves could be

introduced as means for solving problems (one can think, for instance, of the cartesian

parabola constructed by Descartes in order to construct the roots of equations in fifth

and sixth degree, and illustrated below, at p. 3.2.1). Finally, curves arose as solutions

to problems (for example the ‘linea proportionum’, a curve nowadays considered as a

primitive representation of an exponential function, which arose in connection with the

problem of compound interest.1

1See Bos [2001], p. 246.

100
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However, this undeniable enrichment in the domain of curves, and consequently in the

domain of problem-solving methods, should not adumbrate the fact that classical geom-

etry exerted a pervasive influence on the early-modern period. Not only ancient sources

still dictated, until well into XVIIth century, the agenda of problems to be solved and of-

fered a basic repertoire of techniques to be used in this activity, but Greek mathematical

texts, which survived and circulated among XVIth and XVIIth century practitioners (it

is the case, as I have recalled in the previous chapter, of Pappus’ Mathematical Collec-

tion), also contained important predicaments on the way of framing the global activity

of solving problems and organizing the body of mathematical knowledge.

It should be noted that the availability of diverse techniques for problem-solving hardly

entailed their overall acceptability in geometry. Early modern geometers were often called

to decide, through a tacit or explicit recourse to extramathematical deliberations, which

curves and methods could be legitimately used in order to solve a problem at hand, and

which ones, on the contrary, were not to be used for the same goal. Thus, several early

modern geometers seriously considered the following cluster of questions: ‘how curves

themselves were to be constructed? Which construction methods satisfied the requisites

of exactness that one wishes to attribute to any geometric procedure, and which ones,

on the contrary, lacked the exactness of proper geometric thinking?’ Answers obviously

varied, depending on available technical knowledge, but also on the ideal of exactness

that the single geometer might embrace.2

It is admitted that a turning point in this history is represented by Descartes’ work in

geometry, culminated with the publication of La Géométrie, in its french first edition

(1637), and successfully in two latin editions, from 1649 and 1659-61.3 Descartes’ geom-

2For a book-lenght discussion of these questions, at least during the period between 1590 and 1650,
I refer to the ground-breaking Bos [2001]. Bos gives a general characterization of ‘exactness’, as the
quality of mathematical procedures that, in the opinion of some mathematicians, makes them acceptable
as leading to genuine and precise mathematical knowledge. An important clarification on the matter
of exactness is offered in the contributions by Panza (see Panza [2011]). Concerning the definition of
exactness, Panza explains: "The exactness concern for classical geometry was not a matter of accuracy.
Accuracy was certainly a requirement for practical or applied geometry, but the exactness requirement
concerned pure geometry, and was quite different: whereas, for the purposes of practical geometry, it was
required to perform some (material) procedures with a sufficient degree of precision, in pure geometry
it was required to argue in some licensed ways. This is what the exactness concern was about" (Panza
[2011], p. 46).

3The second latin edition of Descartes’ geometry, published in two volumes in 1659 and 1661, re-
spectively, included some papers from Van Schooten’s students and colleagues. These papers contained
results of their research on Descartes’ geometry. For instance, Jan de Witt (1625-1672) treated conic
sections; Jan Hudde (1628-1704) studied in one article the factorization of polynomial equations, and in
a second paper, he simplified Descartes’ method of normals. Finally, Hendrick Van Heuraet (1634-1660?)
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etry exerted a considerable influence over the mathematicians of XVIIth century, as it

framed a new and general method for problem-solving.

A survey of Descartes’ method will be the starting point of my inquiry too. In particular,

I will probe into the guidelines, or norms, governing the search for solutions to geometrical

problems and the criteria for the acceptability of solving-methods deployed by Descartes

in his Géométrie.

A methodological point I am going to unravel - in chapter 5 of this study - concerns the

demarcation between legitimate and illegitimate solving methods, deployed in the second

book of Descartes’ treatise. Since Descartes relied on the solution of geometric problems

by intersection of curves, for him the criteria in order to demarcate the collection of ac-

ceptable methods ought to depend on a distinction between acceptable, or "geometrical"

curves, and "mechanical" ones, the latter being excluded from the scope of geometry.

In chapter 4, I will examine a second aspect of Descartes’ programme instead, namely his

classification of curves and the internal constraints imposed on the solvability of problems.

The legacy of ancient geometry was significant with respect to this issue. For instance,

the "metatheoretical" passage on the classification of problems, in Book IV of Pappus’

Collection, exerted a palpable influence over the choice of the most adequate solution to

a given problem, and it shaped, in this way, Descartes’ problem solving strategy.4

contributed some material to Geometria, addressing the problem of the rectification of curves. In his
Phd dissertation, S. Maronne interestingly argues that the Géométrie of 1637 is but one among four
‘Geometries’. A ‘second geometry’ consists of the collection of critiques to Descartes’ Géométrie and of
his own replies, mainly consigned to correspondence, A ‘third’ and a ‘fourth geometry’ are represented
by the two first latin editions mentioned in the main text: the first one from 1649, and the second
one from 1659-61. This corpus is certainly rich and varied, and it offers precious evidence of the way
in which the key questions and problems brought to the fore by Descartes Géométrie of 1637 evolved
throughout a period of about thirty years. I observe, nevertheless, that the issues I will discuss in this
and the following chapters, namely the demarcation between acceptable and unacceptable curves, and
the constraints on the acceptability of curves as legitimate solutions to given goemetric problems, were
hardly ever discussed, at least until 1667-1668, and when it happened, they were by no means object of
criticism.

4In Commandinus’ translation, Pappus’ "homogeneity requirement" sounded even more peremptory
than the original, and assumed moralistic tones: "Videtur autem quodammodo peccatum non parum
esse apud Geometras, cum problema plano per conica, vel linearia ab aliquo invenitur, et ut summatum
(summatim?) dicam, cum ex improprio solvitur genere . . . "(Commandinus [1588], fol. 61r.): "It seems
a somehow non small sin, among geometers, when someone solves a problem of plane kind by means
of conics, or linear curves, and, to speak generally, when it is solved by a non-kindred kind (improprio
genere)".
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Descartes reinterpreted this precept in the light of the representation of problems and

curves via algebraic equations, and incorporated it into his problem-solving practice, to

the point of considering any of its violation an error in geometry ("une faute", as written

in Descartes [1897-1913], vol. 6, p. 443). In fact, as it is clearly stated in the third

Book of La Géométrie, Descartes required a solution to a mathematical problem to be

not only logically correct and obtained by the intersection of acceptable curves, but also

be as simple as possible. Algebra will reveal a fundamental tool in order to measure

simplicity, and therefore to assess the nature of a problem by excluding too simple (and

therefore impossible) solutions, and too complex ones.

As I will argue, Pappus’ homogeneity requirement, reinterpreted by Descartes in the

light of algebra, exerted a long-range influence on mathematical practice throughout

XVII century. This requirement was not straightforward though, and gave rise to broad

disagreement among early-modern geometers.5

My examination will take into account what I deem to be the original tension, lying at the

basis of this disagreement, between two different constraints on problem-solving set and

contrasted by Descartes, that I will call: "dimensional simplicity" and "easiness". The

preference for the former, manifested by the author of La Géométrie, is counterintuitive

under several aspects and was thus perceived by many readers of this work. My goal

will be to motivate Descartes’ choice for dimensional simplicity in the light of the ancient

classification of problems and curves.

3.0.2 Descartes’ early methodology of problem solving

Concerns with the proper methodology for problem-solving and with the constraints on

the acceptability of curves accompanied Descartes’ reflection on mathematics since the

earliest sketches of the program he would later develop in 1637.

One of the first broad considerations is committed to a letter from 26th march 1619 ad-

dressed by the young Descartes to one of his closest fellows at the time, Isaac Beckmann.6

5Instances of criticism to the cartesian view on what should count as the proper solution of a problem
have been analized in Bos [1984], especially p. 358ff .

6On the Dutch savant Isaac Beeckman, see Sasaki [2003], p. 95-103. The meeting between Descartes
and Beeckman occurred in Autumn 1618, and it is worth noting in which terms Descartes recalled to
Beeckman the role of the latter on his own scientific maturing: "You are truly the only one who awoke
[me] from sloth, recalled erudition which had almost passed away from memory, and bettered my mind
which was drifting away from serious occupations" (translation inSasaki [2003], p. 95).
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In this letter, Descartes outlined his mathematical aspirations, whose highest goal con-

sisted in the foundations of a "new science" capable of determining the most adequate

means to solve any given geometric problem, such that no problem would finally remain

unsolved. Since this programme lay the groundwork for the future inquiries developed

in La Géométrie, I will reproduce Descartes’ account of it in its entirety:

Et certe, ut tibi nude aperiam quod moliar, non Lullij Artem brevem, sed sci-

entiam penitus novam tradere cupio, quâ generaliter solvi possint quaestiones

omnes, quae in quodlibet genere quantitatis, tam continuae quam discretae,

possunt proponi. Sed unaquaeque iuxtam suam naturam: ut enim in Arith-

meticâ quaedam quaestiones numeris rationalibus absolvuntur, aliae tantum

numeris surdis, aliae denique imaginari quidem possunt, sed non solvi: ita

me demonstraturum spero, in quantitate continuâ, quaedem problemata ab-

solvi posse cum solis lineis rectis vel circularibus; alia solvi non posse, nisi

cum alijs lineis curvis, sed quae ex unico motu oriuntur, ideoque per novos

circinos duci possunt, quos non minus certos existimo & geometricos, quam

communis quo ducuntur circuli; alia denique solvi non posse, nisi per lineas

curvas ex diversis motibus sibi invicem non subordinatis generatas, quae certe

imaginariae tantum sunt: talis est linea quadratrix, satis vulgata. Et nihil

imaginari posse existimo, quod saltem per tales lineas solvi non possit; sed

spero fore ut demonstrem quales quaestiones solvi queant hoc vel illo modo

et non altero: adeo ut pene nihil in geometria suprsit inveniendum; Infinitum

quidem opus est, nec unius. Incredibile quam ambitiosum; sed nescio quid

luminis per obscurum hujus scientiae chaos aspexi, cujus auxilio densissimas

quasque tenerbas discuti posse existimo.7

7Descartes [1897-1913], vol. 10, pages 154-155:"And to tell you quite openly what I intend to under-
take, I do not want to propound a Short Art as that of Lullius, but a completely new science by which
all questions in general may be solved that can be proposed about any kind of quantity, continuous as
well as discrete. But each according to its own nature. In arithmetic, for instance, some questions can
be solved by rational numbers, some by surd numbers only, and others can be imagined but not solved.
For continuous quantity I hope to prove that, similarly, certain problems can be solved by using only
straight or curved lines, that some problems require other curves for their solution, but still curves which
arise from one single motion and which therefore can be traced by the new compasses, which I consider
to be no less certain and geometrical than the usual compasses by which circles are traced; and, finally,
that other problems can only be solved by curved lines generated by separate motions not subordinate
to one another; certainly such curves are imaginary only; the well known quadratrix is of that kind. And
in my opinion it is impossible to imagine anything that cannot at least be solved by such lines; but in
due time I hope to prove which questions can or cannot be solved in these several ways: so that hardly
anything would remain to be found in geometry” (English translation in Bos [2001], p. 232).
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The ambitious program presented in this letter concerns continuous and discrete mag-

nitudes, whose paradigmatic sciences are, respectively, geometry and arithmetic. Arith-

metic and geometric problems are considered in parallel and classified according to tri-

partite distinctions. In particular, these disciplines mirror each other, but do not mix:

it seems that Descartes excluded, by 1619, the use of arithmetic in geometric problem-

solving.

Let us consider more closely the organization of geometry as it shines through Descartes’

letter to Beeckman. Geometric problems are classified on the ground of the curves

used to solve them. Analogously to what will be done almost twenty years later in La

Géométrie, curves are distinguished according to the motions intervening in their gen-

eration (and, ultimately, according to the instruments employed for their construction):

a major divide is made between curves obtained through a single motion (generated by

the ordinary compass and by other instruments, called in the letter "new compasses")

and curves obtained through several non-subordinate motions. These latter curves are

called “imaginary”, and among them Descartes mentions the quadratrix.

It cannot be assessed with precision whether by 1619 Descartes had read about the

quadratrix in Pappus’ latin translation. Another possible source for Descartes’ knowledge

might have been Clavius’ Geometria practica, in which the curve is studied (see, Clavius

[1604], book VII, p. 320-327), since we know that Beeckman possessed a copy of it, and

references to this treatise are extant in his diaries.8

Nor can it be assessed with certainty whether Descartes was familiar at all, in 1619, with

Pappus’ classification of problems and curves. There are, at any rate, evident analogies

between Descartes’ classification exposed in the letter to Beeckman and the one proposed

by Pappus: both admit a class of problems solvable by the intersection of straight lines

and circles and a class of problems solvable by lines generated by separate motions, like

the quadratrix.

Perhaps the aspect in which Descartes moves away the greatest from the traditional

classification of problems based on their curve-solutions concerns the emphasis put on

the instrumental generation of curves, evoked above and in other locus of the same letter,

like the following:

8Sasaki [2003], p. 95-96.
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Quatuor enim a tam brevi tempore insignes et plane novas demonstrationes

adinveni, meorum circinorum adjumento. Prima est celeberrima de dividendo

angulo in aequales partes quotlibet. Tres aliae pertinent ad aequationes cu-

bicas, quarum primum genus est inter numerum absolutum, radices et cubos,

alterum inter numerum absolutum, quadrata et cubos, tertium denique inter

numerum absolutum, radices, quadrata et cubos.9

Descartes claimed that he could use compasses ("meorum circinorum") in the demonstra-

tion of four problems: the first was the classical problem of sectioning an arbitrary angle

in equal parts, the latter three problems were algebraic, and related to the construction

of three general classes of cubic equations (in modern notation, these are equations of

the form: x3 = ±ax2 ± c, x3 = ±bx2 ± c, x3 = ±ax2 ± bx± c).10

These compasses are probably the same instruments discussed in some of Descartes’s

unpublished notes from 1619-21, known as Cogitationes Privatae.11 We find in this

manuscript, in fact, the description of a device for solving the problem of sectioning

an angle into three and more equal parts (Descartes calls it: "circinus ad angulum in

quotlibet partes dividendum", i.e.: "compass to divide an angle into however many equal

parts"), and two other instruments applied in the solution of certain cubic equations.

The compass to divide an angle into three equal parts is described by Descartes as follows

(Descartes [1897-1913], vol. 10, p. 240). We consider a configuration formed by four

segments or rulers AB, AC, AU and AT , such that while the first is kept fixed the other

three (namely AC, AU and AT ) rotate around point A. On these segments, four points

9Descartes [1897-1913], vol. 10, p. 154-155: "In such a small time, in fact, I have found four notable
and fully new demonstrations with the help of my compasses. The first is the very famous problem of
dividing an angle into any number of equal parts. The other three pertain to cubic equations: of which
the first kind between an absolute number, roots and cubes; the second between an absolute number,
squares and cubes; the third, finally, between an absolute number, roots, squares and cubes" (english
translation in Sasaki [2003], p. 100).

10See Schuster [1980].
11This is a manuscript presumably written by Descartes in the years 1619-21 which collected the

results of his broad scientific activity during the time (cf. Descartes [1897-1913], vol 10, p. 234-241;
and particularly: Descartes [1897-1913], vol. 10, p. 234-35, p. 238-40). This work came down to us
through a somewhat tortuous route. Indeed it was perused and copied by Leibniz in 1676. Leibniz’s
annotated copy was deposited at Hannover Library, and later published by Fouché de Careil in the first
volume of the Oeuvres inédites de M. Descartes. Unfortunately, this edition contained notable errors,
but remains the only available source of Descartes’ Cogitationes, since both the original manuscript and
Leibniz’s copy went lost (the latter, in fact, disappeared after Fouché de Careil could peruse it). Finally,
thanks to endeavours of Gustav Eneström, Henri Vogt, and Henri Adam Fouché de Careil’s version was
thoroughly amended, and published in vol. 10 of Descartes’ Oeuvres.
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Figure 3.0.1: Trisector compass.

are subsequently marked, such that AF = AG = AQ = AS. At points F and Q two

segments of equal length (and equal to AF ) are thus constructed, joining in a common

extremity at J .

The same construction is repeated, so as to obtain two other congruent segments SR

and GR, connected at point R on AU (figure 3.0.2). In this way, when the segment AC

pivots around A, the trajectory of point R traces a curve, by whose means a given angle,

on which the compass so designed is applied, can be trisected.12

Descartes remarks that one could dispose of the problem of dividing an angle into 4, 5, 6...

and n sections, provided more and more intermediate rulers are added to the original

configuration, and corresponding sectrix curves will be traced, corresponding to each

instance of the problem of dividing an angle into n equal parts.13

It is important to remark that this dispositive does not solve the problem of the general

section of an angle, that is, all angular divisions, by tracing one curve only. The compass

devised by Descartes, in other words, traces infinitely many curves, each apt for the

12Descartes [1897-1913], vol. 10, p. 240-241. The full solution is reconstructed in Bos [2001], p. 239.
Let us consider the problem of trisecting a given angle TAB = θ. In order to trisect it, the compass
must be positioned so that one of its arms coincide with AB (as in the figure), and point R traces the
curve NRM (marked in red in the figure), until the trisector is opened with amplitude θ. It is then
sufficient to mark off a segment AS = a on AT , and with center in S, trace a circle with radius equal to
a. Named R the intersection point between the curve NRM and the circle, the angle TAR is one third
of the angle TAB. The proof is immediate from the construction of the segment.

13Descartes [1897-1913], vol. 10, p. 241.
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Figure 3.0.2: Generalization of a trisector compass.

solution of a particular instance of the multisection of the angle (therefore, this instrument

will trace a trisectrix, a quadrisectrix, . . . an n−sectrix provided an adequate number of

rulers is added). In figure 3.0.2, for instance, the compass has been suitably extended

in order to perform a division of an angle into five equal parts through the curve traced

by the moving point D1. As the figure shows, the curve so obtained sensibly differs from

the curve traced by the moving point R.

The instruments mentioned in the Cogitationes for the solution of cubic equations were

adaptations of a more general compass, perfunctorily mentioned in the Cogitationes as

"mesolabe compass" (circinus mesolabi). Even if the description of this compass is

unclear from the Cogitationes , there is a general agreement among commentators14 in

considering the mesolabe compass as an early exemplification of an instrument later

described in La Géométrie in order to solve the problem of inserting an arbitrary number

of mean proportionals between two given segments (the instrument appear, without a

name, in: Descartes [1897-1913], vol. 6, p. 391, p. p. 443).15

14See for instance Sasaki [2003], pp. 112ff.; Bos [2001], p. 239ff ; Schuster [1980] et alii . I will notice
that this similarity was already indicated by Leibniz, in his marginal notes to the Cogitationes, at least
according to Fouché de Careil’s edition (Descartes [1859], p. 38, 41).

15As it is convincingly argued by Sasaki (Sasaki [2003], p. 120-121), Descartes might have been in-
spired by ancient examples in devising his mesolabe compass. Because of the similarity of structure (see
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As suggested by Bos (Bos [2001] p. 243-244) the universality to which Descartes aspired

by the use of both his instruments was legitimated by the configuration of geometric

problems at the turning of XVIth century. Indeed, a part from the problems solvable

within Euclid’s geometry, solid problems, like the insertion of two mean proportions

and the trisection of the angle were certainly known and discussed, especially after the

publication of Commandinus’ translation of Pappus. Among higher problems than the

solid, the only known problems concerned the construction of regular polygons and the

quadrature of the circle.

By supplementing instruments in order to solve solid problems, together with the problem

of dividing the angle into an arbitrary number of equal parts (and therefore to solve

the construction of any regular polygon too), and by adding to these instruments an

imaginary curve like the quadratrix (Descartes had not excluded it from geometry, as

he would do in the subsequent years), Descartes could reasonably admit that: "it is

impossible to imagine anything that cannot at least be solved by such lines". In this way,

he also deemed to have provided with his programme the guidelines in order to achieve

the "infinite task" (Infinitum Opus) consisting in solving "any problem, concerning either

discrete or continuous quantities, according to its own nature, without leaving unsolvable

questions".

Descartes’ challenge responds to another well-known passage from Viète’s In Artem An-

alyticam Isagoge, in which the author praises his new analytic technique by boasting its

capacity to solve the "problem of all problems, which is TO LEAVE NO PROBLEM

UNSOLVED".

Descartes [1897-1913], vol. 6, p. 391, and below) Descartes might have studied the design of the mesolabe
from the extant passage of Pappus’ book III, or from Eutocius’ Commentary (proving, in the first case,
that he could know of Pappus’ Collection already at the beginning of the 20s). Another possibility is
that Descartes had knowledge of the ancient Mesolabe through early modern work in which it appeared,
for instance: J. J. Scaliger, Mesolabium (Leiden, 1594); Viète, Variorum de rebus Mathematicis Re-
sponsorum Liber VIII (Tours, 1593); Idem, Pseudo-Mesolabum (Paris, 1595). A third plausible, early
modern antecent of Descartes’ Mesolabe might be an instrument conceived by Galileo and illustrated
in the following manual, published in 1606: Le operazioni del compasso geometrico e militare. Galileo’s
"geometric and militar compass" is a graduated instrument devised for the purpose of executing geomet-
ric operations and physical measurements without the recourse to numerical computations (for a survey
of the various purposes of Galileo’s compass, see Righini [1974], and Sasaki [2003], p. 103-105). The
context in which Galileo’s compass is studied is that of practical geometry, ballistic, land surveying and
astronomy, hence an utterly different context than the one of Descartes’ project in geometry. Never-
theless, we can detect a structural similarity between Descartes’ mesolabe or proportions compass and
Galileo compass: the principle on which both instruments are based is the similarity between triangles
popping up in the configuration of the compass (Righini [1974], p. 207).
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These ideas may not have come to Descartes directly from Viète.16 In fact, ambitious

declarations like the ones of Viète were not rare among XVIIth century mathematicians,

and could even be seen as a consequence of the widespread optimistic turn occurred

in connection with the rise of algebraic methods in geometry, which has been called

"mathematical utopianism".17

We can define "mathematical utopianism" as: ". . . the doctrine that the whole of

mathematics can be developed simply, straightforwardly, and seamlessly from a few easily

grasped general precepts." I will quote only two outstanding examples of this intellectual

posture. In his An Idea of Mathematics , for instance, John Pell set out to show:

. . . how manie Mathematician that will take the pains, may prepare himself,

so, as that hee may, though hee bee utterly destitute of Books or Instruments,

resolv anie Mathematical Probleme as exactly as if hee had a complete Li-

brarie by him.18

Later mathematicians were also imbued by similar utopian visions. A well-studied case

at point is Leibniz, for instance, who showed this attitude from his early deliberations.

Hence, We read in a manuscript of 1673:

I dare say that this has been discovered by me, and that I have opened the

sources of the archimedean geometry which, if one follow them, can perform

what is boasted by apollonian geometry: to solve a problem, or to show its

unsolvability.19

These considerations must be referred to the specific mathematical context represented by

problems of quadratures in Leibniz’s mathematical practice. However, they seem inspired

more by a general philosophical attitude than by concrete technical achievements.
16It is noteworthy that in the 1631 edition of Viète’s works, edited and commented by Jean de Beau-

grand, the formulary expression: "to leave no problem unsolved" appears several times, like a refrain
(cf. Sasaki [2003], p. 247). Descartes read Viète’s works in this edition, only between 1631 and 1632,
and indeed complained with Mersenne about the excessive self-confidence shown by Viète: ". . . Ie vous
remercie du liure d’Analyse que m’auez enuoye; mais entre nous, ie ne vois pas qu’il soit de grande vtilite,
ny que personne puisse apprendre en le lisant la façon, ie ne dis pas de nullum non problema soluere,
mais de soudre aucun probleme, tant puisse-t-il estre facile. Ce n’est pas que ie ne ve’uille bien croire
que les auteurs en sont fort sçauans, mais ie n’ay pas assez bon esprit pour iuger de ce qui est dans ce
livre, non plus que de ce que vous me mandez du probleme de Pappus: car il faut bien aller au dela des
sections coniques & des lieux solides, pour Ie resoudre en tout nombre de lignes donnees, ainsi que Ie
doit resoudre vn homme qui se vante de nullum non problema soluere, et que ie pense I’auoir resolu."
(Descartes [1897-1913], vol. 1, p. 245).

17For more information, see D. Jesseph’s comments in van Maanen [2006].
18van Maanen [2006]p. 227.
19Leibniz, Fines Geometriae, in AVII4, 36, p. 595.
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I surmise that Descartes’ early deliberations, sketched in the letter to Beeckman, can be

ascribed to the utopian ideas that we find in Pell and Leibniz. Even if it is a controversial

issue whether Descartes’ mathematical thought developed without discontinuities in the

subsequent years, from the noteworthy but still immature insight from 1619 to its highest

mathematical peak reached with La Géométrie,20 a kinship can be certainly detected,

at least at a programmatic level, between Descartes’s earliest programme in geometry

and some of the key-points at the core of the mathematical program presented in La

Géométrie.

Firstly, we can envisage a similarity with respect to the emphasis on the rational classifi-

cation of problems and techniques and to the requirement to solve each problem according

to its own nature. As I will expound in the rest of my chapter, Descartes adhered to

these general desiderata particularly in La Géométrie.

A second motif of continuity between the early programme and the more mature achieve-

ments presented in La Géométrie concerns the emphasis on the instrumental generation

of curves. The invention of new compasses is in fact at the core of Descartes’ "new

science", in 1619, both because the employment of these devices allowed him to solve,

by tracing appropriate curves, many of the questions lying open in the problem-solving

configuration of early XVIIth century practice, and because these instruments offered to

20Particularly controversial are the role and significance, for the subsequent development of Descartes’
geometric thought, of the Regulae ad directionem ingenii (as Bos summarized it: "Descartes’ unfinished
attempt to formulate rules of reasoning" Bos [2001], p. 261), a text written in latin and dating presumably
composed between 1619/20 and 1628 (see Gaukroger [1992b], p. 586), although never published during
Descartes’s lifetime. The question about what do the Regulae tell us concerning Descartes’s knowledge
of mathematics and his ideal of exactness has been dealt, among others, in Gaukroger [1992a], Bos
[2001], in particular chapter 18 (p. 261 ff.), and Rabouin [2010]. Both Bos [2001] and Rabouin [2010]
agree upon the fact that one must be very cautious in tracing a continuity between the Scientia penitus
nova evoked in 1619, the program ventured in the Regulae, and the general program expounded in the
Discours de la méthode and in the Essais appended to it. As Rabouin explains: "The general context
[of the Regulae] is an investigation into what makes possible the unity of mathematics - which is indeed
the traditional context of reflection on a possible "general" or "universal" mathematics (. . . ) there is no
reason to merge what seem to be different projects (the "entirely new science" of 1619, the alia disciplina
and the mathesis universalis of the Regulae, the "general algebra" of 1628) into a single grandiose view
culminating in La Géométrie" (Rabouin [2010], p. 435). In a sense, Descartes’ silence, in the Regulae,
on some crucial matters bears evidence against the continuity between the project cultivated in 1628 and
the later programme developed in La Géométrie. To mention few but significant examples, we cannot
find any mention, in this text, about the classification of problems based on the classification of curves,
nor about the use of algebra as a tool in order to analyze the nature of problems (Rabouin [2010], p.
434, p. 441). Even if it is highly plausible that some of the ideas expounded in the Regulae were still
considered valid by the later Descartes, yet it is dubious to consider this treatise as an intermediate
step between the program for the new science illustrated in 1619 and the programme expounded in La
Géométrie.
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Descartes a rational and expedient means in order to organize geometrical knowledge.

In La Géométrie, Descartes circumscribed the curves usable in solving geometric prob-

lems to those generated by a well-defined class of devices ("geometrical linkages"), whose

paradigmatic example, chosen by Descartes primarily for its illustrative value, was an

instrument designed for inserting an arbitrary number of mean proportions (ref.).

As it has been conjectured,21 Descartes arguably devised this instrument (or a instrument

very similar, for its design and function, to the one depicted in La Géométrie) already in

1619-20: it was one of the "new compasses" that he boasted of in the letter to Beeckman.

This certainly represents an important link between Descartes’ geometry of 1637 and his

original project depicted to Beeckman.

Undeniably, though, Descartes deeply reshaped his early program under the urge of

methodological and technical acquisitions. In order to show the significance of this re-

shaping, I will point out two elements of discontinuity between Descartes’s geometry

of 1637 and his early 1619 program, which constituted fundamental innovations in the

development of his mathematical thought.

The first element of discontinuity concerns the exclusion from geometry of certain curves,

previously held as fully goemetrical. A case at point is the quadratrix, a curve called

"imaginary" in 1619, but not explicitly considered, at that time, ungeometrical. Descartes’

view about the nature of this curve had changed by 1637, although the quadratrix was

still described, in La Géométrie, as a curve generated by two indipendent motions. What

change did happen, in Descartes’ conception of geometry, that might have led him to

consider this curve as illegitimate, and range it among mechanical, or ungeometrical

ones?

An answer might be advanced by considering a second element of discontinuity between

the earlier programme and its mature development: it concerns the role of algebra, which

had become dominant in La Géométrie. Not only Descartes devoted a large part of his

treatise (especially the third book) to algebraic techniques relating to the solution of

equations. Algebra (understood, as I will discuss in more detail below, as a language in

order to express proportions in a more compact way) assumed a fundamental method-

21Cf. Bos [2001], p. 240-241.
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ological role in establishing a classification of geometrical constructions according to their

simplicity, and in permitting a thorough insight into the structure of problems.

3.1 Analysis and Synthesis in Descartes’ geometry

3.1.1 Cartesian analysis as transconfigurational analysis

In 1637, Descartes admitted the view, reverberating in his early 1619 deliberations, and

common within ancient and early modern mathematics, of geometry as a problem-solving

activity. This viewpoint shapes both the surface form of this treatise and the very content

of the mathematics dealt with by Descartes.22

For what concerns the form, it must be observed that La Géométrie, without lacking a

foundational aim (see previous footnote), does not deploys its content according to an

outstanding deductive structure, as the one deployed, for instance in Euclid’s Elements.

The lack of a clearcut deductive concatenation explains why the order in which the three

books appear (namely: "Des problesmes qu’on peut construire sans y employer que des

cercles & des lignes droites" (book I), "De la nature des lignes courbes (II) and "De

la Construction des Problesme solides ou plusque solides" (book III) may not coincide

with the order in which they can or should be read: this flexibility in reading had been

remarked already by Descartes himself, who, for instance, suggested to Mydorge (one

of his early readers) to postpone book II to book III, without any loss in the overall

understanding.23

On the other hand, Descartes did not consider his book as a mere collection of results ,

but rather he shaped its content according to a method whose core evidently escaped to

the ancients’ insight:

. . . ce que je ne croys pas que les anciens aient remarqué, car autrement

ils n’eussent pas la peine d’escrire tant de gros livres, ou le seul ordre de

22It is perhaps too reductive to consider Descartes’ treatise merely the display of a method or art of
problem solving, as Henk Bos seems to concede: "Descartes wrote his book from a particular view of
geometry. He saw geometry as an art of solving geometrical problems".Bos [2001], p. 352. Against this
hypothesis, see Panza [2011], where some of the the foundational aspects of Descartes’ geometry are
discussed.

23". . . on doit aussy lire le trosième livre avant le second, à cause qu’il est beaucoup plus aysé",
Descartes [1897-1913], vol. 2, p. 22.
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leurs propositions nous fait connaitre qu’ils n’ont point eu la vraye methode

pour les trouver toutes, mais qu’ils ont seulement ramassé celles qu’ils ont

rencontré.24

We can immediately refer Descartes’s criticism to such a treatise as Pappus’ Collection:

a large work, whose structure is however loosely articulated. On the contrary, Descartes

placed himself in the opposite position while writing, in the closing lines of this treatise:

Mais mon dessein n’est pas de faire un gros livre, & je tache plutost de

comprendre beaucoup en peu de mots: comme on iugera peuestre que j’ay fait,

si on considere, qu’ayant reduit a une mesme construction tous les problesmes

d’un mesme genre, j’ay tout ensemble donné la façon de les reduire à une

infinité d’autres diverses; & ainsi de resoudre chacun d’eux en une infinité de

façons . . . 25

It is also interesting to note that Descartes did not essentially develop the results ob-

tained in La Géométrie, but rather conceived his program achieved with it. On various

occasions, both in La Géométrie and in his correspondence, Descartes claimed to have

unfolded a general strategy in order to construct any problem of ever higher degree, and

thus maintained to have laid the guidelines of an epistemologically accomplished science,

in which any question that may be raised could in principle find an answer in virtue of

one and the same method.26

Although Descartes admitted that there still remained problems "unsolved", those were

either considered "impossible", i.e. problems constitutively outside the boundaries of ge-

ometry, or they were judged solvable by applying the method introduced in La Géométrie,

but only at a cost of greater work.27 This attitude bears a clear resemblance to the inten-

tions expressed in Descartes’ 1619 letter to Beeckman, discussed in the previous section.28

24Descartes [1897-1913], vol. 6, p. 376.
25Descartes [1897-1913], vol. 6, p. 413.
26Cf., for instance, Descartes [1897-1913], vol. 6, p. 485, and Descartes [1897-1913], vol. 2, p. 83:

"j’en fais la construction - wrote Descartes to Mersenne in a letter from 31 March 1638 - comme les
Architectes font les bâtiments, en prescrivant seulement tout ce qu’il faut faire, et laissant le travail
de main aux charpentiers et aux masons". Although Descartes is discussing a specific problem, this
judgement may hold for any problem which can be treated via the precepts of his method.

27Cf. Descartes [1897-1913], vol. 2, p. 90-91.
28Henk Bos has made a similar point, by writing that: "After 1637 Descartes occasionally returned

to geometrical matters but he did not essentially develop the results reached in The geometry (...) In
the letter to Beeckman of 1619 he had written that he intended to achieve a ’completely new science by
which all questions in general may be solved’; this goal he now had reached for geometry, the science
which from the beginning inspired his vision of the scientic method"Bos [2001], p. 399.
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Therefore, there is room to examine whether and to what extent the cartesian goal for a

"new science" is achieved in La Géométrie, and his hope about proving "what questions

could be solved either in this or that way" is fullfilled by the method applied in this

treatise. In order to get a clearer grasp of this position, I will concentrate on book I and

II, and successively skip to to book III, in chapter 155 of the present work.

Descartes’ principal problem in organizing his treatise is to provide it with structure and

limits. La Géométrie starts with a clear explanation of how the method for solving any

problem in geometry must proceed:

Tous les problesmes de Geometrie se peuvent facilement reduire a tels termes,

qu’il n’est besoin par aprés que de connoistre la longueur de quelques lignes

droites, pour les construire.29

Descartes’ problem-solving strategy, as it is illustrated in the first book of La Géométrie,

is in fact composed by two parts, which we may call, after the traditional terminology,

"analysis" and "synthesis". The analytical part consists in reducing to lines all geomet-

rical objects figuring in a given construction problem, and coding the problem into an

equation. In the second part, namely the synthesis, the equation so obtained is solved

by constructing a segment by the intersection of adequately chosen geometrical curves,

or by finding infinitely many points entertaining with a given configuration of segments

certain geometrical relations specified in the equation itself: these points would therefore

form a locus described by the equation. In each case, anyway, the geometer can offer a

solution to the original problem by solving geometrically the equation obtained from the

analysis.30

This description is of course reminiscent of the traditional twin method of analysis and

synthesis, known to early modern geometers through ancient mathematical texts and few

classical accounts, like the one contained in a famous section of Pappus’ Book VII of the

Collection. 31

29Descartes [1897-1913], vol. 6, p. 169.
30Descartes [1897-1913], vol. 6, p. 369.
31Among the surviving mathematical texts where the argumentative mode of analysis is applied, we can

list Book II of Archimedes’ Sphere and Cylinder, together with Eutocius’ commentary on propositions
II-1 and II-4, and with Pappus’ Collection. Also Euclid’s Data was recognized as a source of theorems
applicable in the analysis of plane problems (See Bos [2001], p. 95). The best known exposition of this
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This account has been the object, in past and recent years, of an enormous amount

of studies to which I am reluctant to add, and it has caught the attention of a larger

group of scholars than the sole historians of mathematics;32 hence I will only summarize

the main properties of the process of analysis, according to Pappus, and stress some

relevant differences with respect to the cartesian model of analysis that shines through

La Géométrie.

Pappus distinguished, in his account, two kinds of analysis: one called "problematical",

and the other one called "theorematical". The case of problematic analysis, to which

I will confine myself here, as it seems the most relevant one for Descartes and many

early modern geometers, applies to a geometrical problem asking for the construction of

a geometric object, satisfying certain spatial conditions relative to other given objects.

This procedure can be thus sketched: the sought-for object of the problem is given at

the outset of analysis and represented in a diagram involving the givens too. The initial

configuration is eventually extended, via licensed inferences and auxiliary constructions,

to another configuration, itself represented in a sub-diagram of the original diagram.

According to Pappus’ methodological considerations, analysis does not provide per se

a solution to the problem at hand, but has to be converted into a synthesis, in which

a geometric construction is effectuated. The connection between the analytical and

the synthetical part of the method is secured by the fact that analysis is achieved by

producing a configuration which shows how the sought-for object can be geometrically

related to some of the givens. Hence, the synthesis proceeds by a kind of reversal of the

analytical steps: starting from some given objects and data in the configuration with

which analysis terminates, it exhibits the sought-for object by licensed constructions,

argumentative strategy is however the one by Pappus’. The seventh book of Pappus collection contains,
as the author himself remarked: "Lemmas of the domain of analysis". The book is subdivided into a
preface, which contains the well-known exposition of the method of analysis and synthesis, and a list of
these books, there follows a series of synopsis of most of these books, and sets of lemma that are deemed
necessary for their reading (see Pappus [1986], vol. 1, p. 66ff.).

32For an annotated biography on analysis, not restricted to mathematics, see Beaney, Michael, "Anal-
ysis", The Stanford Encyclopedia of Philosophy (Winter 2012 Edition), Edward N. Zalta (ed.), URL =
<http://plato.stanford.edu/archives/win2012/entries/analysis/>. Among the works more specifically
dedicated to the changes in the method of analysis produced after the incorporation of the algebraic
mode of reasoning, we can recall: Hintikka and Remes [1974], Mäenpää [1993] (this work unpublished),
Otte and Panza [1997], Bos [2001] and, among the articles specifically dedicated to early modern geom-
etry Panza [2007], Panza [2006], Hintikka [2012].
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and thus solves the problem.33

The form of problematic analysis sketched above is not the only one we encounter in

the context of ancient greek geometrical practice. A different type of analysis concerns,

for instance, such problems in which a geometric object is sought for, which satisfies

purely quantitative conditions, expressible either in the form of proportions between

homogeneous geometric objects, or between a pair of homogeneous geometric magnitudes

and two numbers, or in the form of equalities between two sums of mutually homogeneous

magnitudes.34

As an example of this kind of analysis, let us consider the construction of the problem of

inserting two mean proportionals between two given segments related by Eutocius, in his

Commentary to the archimedean treatise on the Sphere and the Cylinder, and ascribed

by him to Maenechmus.35

The problem goes as follows. Let be two given lines A and E (with A > E), it is is

required to find two mean proportionals B and Γ between them. According to the first

step of analysis, let us assume the problem solved. Let a line O∆ be given in position,

and let us trace on it a point N , such that the segment ON = B. Let us trace the

perpendicular NP = Γ, as in fig. 3.1.1.

Since we have: A : B = B : Γ, by hypothesis, we can deduce that the rectangle with

sides A, Γ, namely: R(A,Γ) is equal to the square with side B, namely: sq(R). Since

NP = Γ and ON = B, we obtain the following equality: R(A,NP ) = sq(ON). This

equality expresses the symptom of a parabola passing through P , having vertex in O,

OM for axis, A for latus rectum.

Let us then trace OM and MP equal and parallel to NP and ON , respectively. Since we

also have that: A : B = Γ : E, the rectangle with sides A and E is equal to the rectangle

with sides B and Γ. But we have set B = ON , so that: B = MP , and Γ = NP = OM .

Hence we derive the following equality: R(A,E) = R(MP,OM). This second equality

expresses a locus property of an hyperbola which passes through P , with O as center

and OM and ON as asymptotes.36

33The precise logical nature of the process of analysis and synthesis and their mutual relation is still
an open problem (See the illuminating studies: Hintikka and Remes [1974], Maenpaa [1997].

34The terminology is due to Panza [2007], p. 116.
35Archimedes [1881], vol III, p. 84-85.
36See also Heath [1981], p. 253-255, and chapter 2, p. 58.
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Figure 3.1.1: Insertion of two mean proportionals.

Since the curves are univocally determined in the plane, they can be both constructed

in the synthesis, so that their intersection point P can determine the sought for mean

proportionals B(= NP ) and Γ(= MP ).

Let us observe that a fundamental step in the analysis of this problem, as reported above,

consists in the derivation, from the proporition: A : B = B : Γ = Γ : E, assumed at the

beginning of analysis, of the couple of proportions: A : B = B : Γ and A : B = Γ : E,

from which the symptoma of the constructing curves can be derived too. The inference

leading from the first proportion to the subsequent ones is a non positional one, since it

does not depend on the configuration in which the segments A, B, Γ and E appear.

We might thus employ the term: "trans-configurational analysis" in order to refer to

this type of transformative analysis, consisting in relying on geometrical non-positional

inferences, in order to reduce a geometrical problem which can be formulated in the

language of proportions, like the problem of inserting two mean proportionals, into new

problem or problems, like that of constructing the curves whose symptoma are expressed

by the couple of proportions: A : B = B : Γ and A : B = Γ : E.37

37The term is used in Panza [2006], p. 280, and Panza [2007], p. 121-122.
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The cartesian model of analysis may be also conceived as a transconfigurational type of

analysis. Descartes sketches his strategy in the following terms:

Ainsi, voulant resoudre quelque problesme, on doit d’abord le considerer

comme deja fait, & donner des noms à toutes les lignes, qui semblent nec-

essaires pour le construire, aussy bien à celles qui sont inconnues, qu’aux

autres. Puis, sans considerer aucune difference entre ces lignes connues et

inconnues, on doit parcourir la difficulté, selon l’ordre qui montre le plus na-

turellement de tous en quelle sorte elles dependent mutuellement les unes des

autres, jusqu’a ce que’on ait trouvé moyen d’exprimer une mesme quantité

en deux facons: ce qui se nomme une Equation, car les termes de l’une de ces

deux facons sont esgaux a ceux de l’autre.38

As we read in the passage above, a problem at hand, considered as solved, is reduced via

geometrical non-positional inferences not into another geometric problem, but into a finite

polynomial equation (namely, "a way to express the same quantity in two manners"), i.e.

an algebraic object.39 The equation obtained by "unravelling the problem" (parcourir la

difficulté) must be then constructed, in order to solve the original geometric question.

38Descartes [1897-1913], vol. 6, p. 300. The general characters of the process of analysis are discussed
also in the Rule XVII of the Regulae ad directionem ingenii , composed in the late 1620s. Here is how
Descartes describes it: "We should make a direct survey of the problem to be solved (proposita difficultas
directè est percurrenda), disregarding the fact that some of its terms are known (cogniti) and some are
unknown (incogniti), and intuiting, through a train of sound reasonings, the dependence of one term on
another (. . . ) the trick here is to treat the unknown ones as if they were known. This may enable us
to adopt the easy and direct method of inquiry even in the most complicated of problems. There is no
reason why we should not always do this, since from the outset of this part of the treatise our assumption
has been that we know that the unknown terms in the problem are so dependent on the known ones
that they are wholly determined by them. Accordingly, we shall be carrying out everything this Rule
prescribes if, recognizing that the unknown is determinded by the known, we reflect on the terms which
occur to us first and count the unknown ones among the known, so that by reasoning soundly step by
step (gradatim & per veros discursus) we may deduce from these all the rest, even the known terms as
if they are unknown." (Eng. tr. in Mäenpää P., From backward reduction to configurational analysis, in
Otte and Panza [1997], p. 207-208).

39I observe that the transformation of a geometrical problem into an algebraic problem abstracts
from those particular conditions on the content of the original problem that depend on the relative
positions of geometrical objects in a particular configuration: rightly speaking, then, Descartes refers
to the transformation of a geometric problem into an algebraic expression by calling it a "reduction".
Using a word from logic and computer science, we may say that translation from geometry into algebra
is a kind of forgetful translation, namely a translation that removes a specific kind of information. See,
for instance Carnielli et al. [2009].
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Despite Descartes judged his method "clearer and safer" than the analysis of the an-

cients and the algebra of the moderns,40 the general illustration offered in Book I still

contains ambigous aspects. For instance, it seems that Descartes alludes, by stressing

that one must choose "the most natural order" in deriving the equation corresponding

to a problem, to the possibility that more than one equation can be obtained from the

same problem. But which criterion one must choose in order to avoid equations more

complex than necessary? Descartes eschews a direct answer In Book I (this issue will

be discussed in book III), and observes, quite mysteriously indeed, that the simplest

possible equations corresponding to a problem can be obtained by "making all possible

divisions".41

I will return to this issue in next chapter. In order to illustrate an example of cartesian

analysis, let us now consider how he dealt with the classical problem of finding two mean

proportionals between given segments a and q, whose solution was known since ancient

Greek geometry, and has been discussed also above. The first step is to reduce the

problem to an equation:

. . . si on veut donc suivant cette regle trouver deux moyennes proportion-

nelles entre les lignes a et q, chacun sait que posant z pour l’une, comme a

est à z, ainsi z à z2

a
, et z2

a
à z3

a2
, de façon qu’il y a Equation entre q et z3

a2
,

c’est à dire z3 = a2q.42

40In his Discours de la methode, Descartes observed: "Puis, pour l’analyse des Anciens et l’algebre des
modernes, outre qu’elles ne s’estendent qu’a des matieres fort abstractes, & qui ne semblent d’aucun
usage, la premiere est toujours si astrainte a la consideration des figures, qu’elle ne peut exceder
l’entendement sans fatiguer beaucoup l’imagination; et on s’est tellement assuieiti, en la derniere, a
certaines regles & a certaines chiffres, qu’on en a fait un art confus & obscur, qui embarrasse l’esprit,
au lieu d’une science qui le cultive. In particular: " Descartes disparaged the ancients for having con-
cealed their methods of discovery and having proceeded in such an unorderly way in their research, that
they wrote too long books: "ou le seul ordre des leurs propositions nous fait connoistre qu’ils n’ont
point eu la vraye methode pour les trouver toutes, mais qu’ils sont seulement ramassées celles qu’ils ont
rencontrées" (Descartes [1897-1913], vol. 6, p. 376). Although he was not lenient in his criticism of
Greek mathematicians, Descartes would also stress a fundamental continuity underscoring his techniques
for problem-solving and the techniques of the ancients: "Ils connoissent pas aussy ma Demonstration -
Descartes wrote to Mersenne in the already quoted letter from 31 March 1638, referring to his readers -
a cause que j’y parle par a b. Ce qui ne la rend toutefois en rien differente de celle des anciens, sinon que
par cette façon je puis mettre souvent en une ligne ce dont ils remplissent plusieurs pages, & pour cete
cause elle est incomparablement plus claire, plus facile et moins suiete a erreur que la leur" (Descartes
[1897-1913], vol. 2, p. 83).

41Descartes [1897-1913], vol. 6, p. 374: ". . . pourvû qu’en desmelant ces Equations on ne manque
point a se servir de toutes les divisions qui seront possibles, on aura infailliblement les plus simples
termes auxquels la question puisse estre reduite".

42Descartes [1897-1913], vol. 6, p. 469.
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Descartes’ notation is the one we are familiar with, where x, y, z denote unknowns, and

letters a, b, c etc. denote knowns segments. The problem actually asks to solve the prob-

lem of inserting two unknown segments denoted by x and z, given two known segments a

and q, in such a way that: a : z = z : x = x : q. Since the unknown x can be expressed in

terms of z and a, so the equation corresponding to the problem will be in one unknown,

namely: z3 = a2q.

This example illustrates how the construction of problems of ancient geometry is amenable

to a finite algebraic equation. Descartes claimed that his method of analysis could be

extended to problems "not entirely determined",43 namely problems admitting an in-

finity of solutions, as in Pappus’ locus problem. Let us recall that this problem (which

includes, in fact, several instances: it constitutes, therefore, a class of problems) is cen-

tral in Descartes’ Géométrie: in fact Descartes takes it up as a test-case in order to

demonstrate the superiority of his problem-solving strategy with respect to the geometry

of the ancients, who lacked a true method in order to discovery solutions to problems in

an exhaustive and orderly way. In explaining this problem I shall rely on Bos [1981] (p.

299), and Bos [2001] (p. 271ff .). Let a number of lines Li given in the planes, and let ϕi

denote a number of given angles. Let P be a given point, and di the line joining P to Li,

and cutting Li at a fixed angle ϕi (fig. 3.1.1). Let α : β be a fixed ratio, and a a given

segment. It is required to find points, which satisfy either the following properties:

(d1 · d2 . . . · dn) : (dn+1 . . . · d2n−1 · a) = α : β

For any given number of odd lines; or the following property:

(d1 · d2 . . . · dn) : (dn+1 . . . d2n) = α : β

For any given number of even lines.

As an example, I will resume, on broad strokes, the statement and analysis of Pappus’

problem for four lines (figure 3.1.1).44 The problem can be thus related. Given four

43See Descartes [1897-1913], vol. 6, p. 372.
44Cf. Bos [2001] , p. 272ff., p. 314ff.; Mancosu [1999], p. 69-71; Mancosu [2007], p. 113-114.
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Figure 3.1.2: Pappus’ problem in 5 lines.

lines in position (but not in length) AB, AD, EF , GH, and four angles α, β, δ, γ, it

is required to find a point C, such that lines CB, CF , CD, CH can be drawn forming

angles α, β, δ, γ (as in fig. 3.1.1), and such that the following equality is satisfied:

CB.CF = CD.CH

This is an instance of ‘locus-problem’, according to the terminology of the ancients: in

fact the problem characterizes a certain relation that a point C possesses, in virtue of

its belonging to a special curve. The construction of this curve will eventually solve the

problem (in this case a conic section). Descartes, while maintaining the same terminology

of the ancients, and while recognizing this problem as a locus problem as well, subtly

but thoroughly changed the very concept of ‘locus’. As a start, he gave the following

definition of locus (‘lieu’), quite different from the one we can desume from Pappus’ or

Proclus’ accounts:

ces lieux ne sont autre chose que, lorsqu’il ets question de trouver quelque

point auquel il manque une condition pour estre entierement determiné (. . . )
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Figure 3.1.3: Pappus’ problem in four lines.

tous les points d’un mesme ligne peuvent estre pris pour celuy qui est de-

mandé.45

A locus-problem, from Descartes’ viewpoint, asks to find points ("trouver quelque point")

that obey to specific conditions: more precisely, a locus-problem is an indeterminate

problem, and admits infinitely many points as solutions. Proceeding in compliace with

the general guidelines of analysis, Descartes starts by supposing: "la chose comme deja

faite", and considers the lines AB and BC as "principal", namely lines in terms of which

all the other lines in the configuration are to be expressed. Descartes names segments

AB and BC with the letters x and y, and names with other letters (z, b, c, d and

so on) the other segments appearing in the configuration of the problem (as depicted

in figure). Since the triangle ARB, which pops up in the configuration by a simple

elementary auxiliary construction, is such that its angles are known by constructions,

the ratio between sides AB and BR is given too. Descartes can thus write down the

following proportion: AB : BR = b : z. Since AB = x, segment BR can be expressed as:

BR = bx
z

. Descartes relies on a chain of similar relations in order to express segments

CF , CD and CH in terms of x, y and of the other known segments.

The second step of Descartes’ analysis consists in setting the equation CB.CF = CD.CH

with the expressions of segments CB, CF , CD and CH obtained in terms of the un-

knowns x and y. As a result, Descartes obtained an equation in the second degree in

45Descartes [1897-1913], vol. 6, p. 407.
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x and y. More generally, the analysis of an indeterminate problem, in the context of

Descartes’ Géométrie, yields a polynomial equation of the form: F (x, y) = 0.

The synthetic part of the cartesian model in order to solve determinate and indeterminate

problems consists in the geometric construction of the equation obtained at the end

of analysis. According to the standards in force in early modern geometry, Descartes

required to solve the equation through a geometric construction, and not through an

algebraic manipulation. The latter solution, which for the problem at hand would amount

to express the unknown z as a ‘function’ of the known terms (for instance: z = 3
√
a2q ) was

judged insufficient and non informative, because it did not tell us how z, corresponding to

the real root of the third degree equation, could be constructed, and thus how the original

geometric problem could be solved. As I will explain more extensively in the next section,

the importance of a geometric solution becomes clearer as we bear in mind that, in the

process of translating a construction problem into algebra, letters denoted segments

rather than abstract quantities, and equations were primarily shorthand notations for

proportions obtaining of segments. Accordingly, in Descartes’ synthesis of a determinate

problem, the solution to an equation ought to exhibit a geometric magnitude (for instance

a segment), that would thus enable to solve the original construction problem.46

If we remain to Descartes’ general deliberations offered Book I, it seems that once a

problem has been reduced to an equation, after having applied all ‘possible divisions’, its

construction could be effected by consequence, in the simplest way.47

But Descartes seems to conceal here, with rethorical ability, a real difficulty in the

problem-solving practice. For instance, before presenting his solution to the problem

of inserting two mean proportionals, by constructing the corresponding equation via the

intersection of a circle and a parabola (see chapter 4 for the details of this construction),

he warns that solving the same problem by more complex means is configurable as an

error in geometry. Yet, as we know from the previous chapter, the mean proportionals

46Bos [1984], in particular pp. 339-342. Let us remark that the equation z3 = a2q has two solutions
in the field of complex quantities (see Stewart [2003], p. 9), whereas we can judge from the examples
deployed in La Géométrie that Descartes’ considerations were confined to the field of real quantities (or
on a structure isomorphic to it), where the equations has one solution. The fact that the two imaginary
roots of the equation z = 3

√

a2q were not considered in the process of the geometric solution seems to
follow from Descartes’ emphasis on the geometrical character of the synthesis. What geometric object
might correspond to such solutions, in fact?

47Descartes even pleads the question as unworthy of being discussed in detail, and leaves it to the
student as a delightful and useful exercise (Descartes [1897-1913], vol. 6, p. 374).
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problem can solved, correctly, by several curves: what sort of inference led Descartes to

his particular choice, and why did he discard alternative solutions?

Later, in the next chapter, we shall consider this problematique more closely. In order

to complete my illustration of Descartes’ procedures for the construction of problems,

I point out that, in the case of an indeterminate problem (reducible, as seen above, to

an equation in two unknowns), Descartes’ synthesis simply consisted in transforming it

into a determinate problem, simply by taking one of the unknowns (generally the one of

higher degree) and replacing it by a constant term so as to obtain a new equation in the

other unknown. Descartes explained this procedure in book I:

Puis, a cause qu’il y a toujours une infinité de divers poins qui peuvent

satisfaire à ce qui est ici demandé, il est aussy requis de connoistre et de

tracer la ligne dans laquelle ils doivent tous se trouver . . . on peut prendre

a discretion l’une de deux quantités inconnues x ou y, & chercher l’autre par

cete equation (. . . ) mesme prenant successivement infinies diverses grandeurs

pour la ligne y, on en trouvera aussy infinies pour la ligne x, & ainsi on aura

une infinité de divers poins (. . . ) par les moyens desquels on descrira la ligne

courbe demandée.48

Iterating this process for arbitrary values of the y, one could obtain a distribution of

points on the curve with any required degree of density, namely, a pointwise construction

of the curve. It seems, from this procedure, that Descartes might have indulged in a

modern conception of locus as an aggregate of points obeying to specific conditions, and

which constitute the curve itself. However, other considerations invite to a more cautious

interpretation. For instance, on one occasion Descartes clearly reminds to Mersenne that

considering a line as the aggregate of all its points in actu is mere "phantasy" ("une

imagination toute pure").49 We can conjecture, also in the backdrop of Descartes’ way

of proceeding in La Géométrie, position seems to be that a locus characterized as an

aggregate of points, cannot be considered on a par with a curve; curves, in order to enter

the number of legitimate geometric objects, must be constructed by a continuous tracing.

As I will discuss later, construction of curves will be the central issued discussed in Book

II of La Géométrie.
48Descartes [1897-1913], vol. 6, p. 380, 385.
49Descartes [1897-1913], vol. 2, p. 384.
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3.1.2 The constitution of the algebra of segments

Descartes grounded the possibility of expressing a problem through an equation (let us

think, for instance, of the two mean proportionals problem seen above) on the possibility

of employing arithmetical operations in order to to denote geometrical constructions. It

is important to clarify how Descartes understood the relations between arithmetic and

geometry, which, according to him, were grasped only obscurely by the ancients.50 Hence

we read, in the second paragraph of Descartes’ text:

Et comme toute l’Arithmetique n’est composée, que de quatre ou cinq oper-

ations, qui sont l’Addition, la Soustraction, la Multiplication, la Division, &

l’extraction des racines, qu’on peut prendre pour une espece de division: Ainsi

n’at on autre chose a faire en Geometrie touchant les lignes qu’on cherche,

pour les preparer a estre connuës, que leur en adjouter d’autres, ou en oster,

Oubien en ayant une, que ie nommeray l’unité pour la rapporter d’autant

mieux aux nombres, & qui peut ordinairement estre prise a discretion, puis

en ayant encore deux autres, en trouver une quatriesme, qui soit à l’une de ces

deux, comme l’autre est à l’unité, ce que est le mesme que la multiplication,

oubien en trouver une quatrieme, qui soit a l’une de ces deux, comme l’unité

est a l’autre, ce qui est le mesme que la Division, ou enn trouver une, ou

deux, ou plusieurs moyennes proportionnelles entre l’unité & quelque autre

ligne, ce qui est le mesme que tirer la racine quarrée, ou cubique &c.51

The possibility of equations as meaningful expressions coding relations among segments

ultimately rests, for Descartes, on the definitions of specific geometrical operations of

sum, product, division, and extraction of square and n roots, which possess the same

properties as their arithmetico-algebraic analogues.

In order to do so, Descartes proceeds by stating the necessary and sufficient conditions

which any triple x; a; b of segments in the plane must satisfy for these operations to

hold. Subsequently, he offers geometrical constructions which produce a segment x as the

result of, respectively, addition, multiplication, division, or nth root extraction between

two given segments a and b.

50"Or je vous prie de remarquer, en passant, que le scrupule, que saisoient les anciens d’user des
termes de l’Arithmetique en la Geometrie, qui ne pouvoit proceder, que de ce qu’ils ne voyoient pas asses
clairement leur rapport, causoit beaucoup d’obscurité, & d’embaras, en la façon dont ils s’expliquoient"
(Descartes [1897-1913], vol. 6, p. 378).

51Descartes [1897-1913], vol. 6, p. 369.
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Defining operations of geometrical sum and difference between geometric quantities (like

segments or polygons) was not a problem: geometric operations analogous to addition

and subtraction can be defined, for instance, by joining two segments AB and CD or by

cutting off a segment CD from AB, provided CD < AB.52

A fundamental conceptual difficulty from which Descartes had to extricate his geometric

algebra occurs with changes in dimensionality introduced by the operations of multipli-

cation and division. Whereas arithmetic quantities are dimensionless, and the product,

division (and the extraction of root), in brief, the result of any operatory combination on

numbers is itself a number, analogous geometric operations apply to objects of different

dimensions: segments, figures in the plane and solids.

In the tradition of geometrical algebra, equations were interpreted geometrically accord-

ing to the following principle: the unknown x was associated to a segment, x2 to a square

in the plane, and x3 to a cube in the space. Moreover the multiplication and the division

between geometrical magnitudes were not defined so as to preserve homogeneity. For in-

stance, the product of two magnitudes of a given dimension was a magnitude of a higher

dimension, and, conversely, the quotient of two magnitudes was not a magnitude of the

same dimension of the dividend:

Le produit de deux quantités a et b, respectivement d’ordre m et n est de

ce fait identifié à une quantité d’ordre m + n; de même, leur quotient est

identifié à une quantité d’ordre m−n. Ceci conduit naturellement à introduire

des restrictions concernant l’addition et la soustraction: deux quantités ne

peuvent être additionnées entre elles et l’une d’elles ne peut être soustraite

de l’autre qu’à condition qu’elles soient du même ordre.53

In all early XVIIth century attempts at constructing a geometric algebra, which pre-

ceeded Descartes, the multiplication and division between segments, contrarily to their

arithmetic correlates, are not operations preserving homogeneity. It is sufficient to con-

sider the product between two segments, interpreted on the ground of the classical Eu-

clidean canon, in order to see that the result is not a segment anymore, but a surface.

Consequently, an expression like ab+ c, where a, b, c denoted three segments, turned out

to be an ill-formed expression in geometry, before the advent of cartesian geometry, as

52These operations rely on Euclid’s El ., I, 2; El., I. 3.
53See Panza [2005], p. 22. In particular, see Freguglia [1999a], p. 153-155, for an overview of the

principle of dimensionality.
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it is inconceivable to sum a one-dimensional magnitude with a two-dimensional one. A

correct geometric interpretation of the above expression would consist, according to the

constraints in homogeneity, in interpreting ‘a’ and ‘b’ as segments, and ‘c’ as a figure in

the plane.54

The introduction of a unity segment constitutes the crucial step in Descartes’ procedure

of encoding geometrical relations into algebraic operations. As it occurs with the ordinary

product and quotient between numbers, the product and quotient of two segments, and,

more generally, between two arbitrary homogeneous magnitudes, can yield a magnitude

homogeneous with the given previous ones, provided a unitary magnitude is introduced.

Consequently, even if homogeneity is not abandoned, its fulfilment becomes almost trivial:

Il est aussy a remarquer que toutes les parties d’une mesme ligne, se doivent

ordinairement exprimer par autant de dimensions l’une que l’autre, lorsque

l’unité n’est point determinée en la question (. . . ) mais que ce n’est pas de

mesme lorsque l’unité est déterminée, a cause qu’elle peut estre soustendue

par tout ou il y a trop ou trop peu de dimensions: comme s’il faut tirer la

racine cubique de aabb − b, il faut penser que la quantité aabb est divisée

une fois par l’unité, & que l’autre quantité b est multipliée deux fois par la

mesme.55

In this context, the role of unity looks more similar to the role of a multiplicative unity

within a semi-group, than the one of a number expressing the measure of a length. This

role clearly shines through the definitions of product and quotient stated in the beginning

of La Géométrie. Fundamentally, the necessary and sufficient conditions imposed to a

quadruple of magnitudes (x; a; b; 1) for x to be either the product or the quotient of

a and b, or the n-th root of either a or b, where 1 is the unity (note that here the

symbol ‘1’ is simply a name, that can be substituted by any other letter) boil down to

their codability into proportions. More specifically, given three homogeneous magnitudes

a; b; 1, Descartes defines the product between a and b as a magnitude x satisying the

following proportion:

54In slightly anachronistic terms, we could say that, in renaissance and early modern geometry, before
1637, whereas arithmetic was endowed with the structure of a field (with addition and multiplication),
geometry had the structure of a group (or semi-group) with respect to addition defined in the domain of
segments or polygons, for instance. The product between two segments, on the contrary, was not defined
as a segment: the operation of multiplication was not an internal operation in Euclid’s geometry, which
cannot be endowed with the structure of a field.

55Descartes [1897-1913], vol. 6, p. 299.
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(ab = x) =df (1 : b = a : x).

The quotient between two homogeneous magnitudes a and b can be defined along a

similar line:

(a
b
= x) =df (x : a = 1 : b).

And so can be defined the extraction of the n-root (where n is a natural number) of a

magnitude a:

( n
√
a = x) =df (1 : x = x : x1 = x1 : . . . xn−2 : a).

With the above definitions, Descartes confines himself to show that the operation of

dividing a magnitude by another, homogeneous magnitude is tantamount to establishing

a proportion between these magnitudes, the result of this operation and the unity. A

similar case occurs in the case of root extraction: extracting the n-th root of a magnitude

a is equivalent to establish a proportion between 1, a and n− 2 mean terms.

I observe that, in virtue of these definitions, expressions like: "the magnitude x is the

product of the magnitudes a and b" or "x is the cube root of a" remain meaningful, even

if it is not known how to exhibit this magnitude through a geometric construction, since,

as observed by M. Panza: "lorsqu’une proportion porte sur des quantités d’un genre

particulier, elle dit en effet quelque chose de ces quantités; en particulier, elle dit que ces

quantités satisfont certaines conditions définies en termes de l’opération d’addition, de la

relation d’égalité, et de la relation d’ordre qui sont définies sur elles".56 An algebra thus

defined can be called, following the suggestion in Panza [2005] (p. 25-26), an assertive

algebra.57

The reason for this terminology is clear if we consider that Descartes construes, at the

outset of La Géométrie, a formalism which enables him to rewrite polynomial equations

as a proportion or a system of proportions, and conversely, to code any proportion or

system of proportions into equations.58 On this ground, in fact, one can say that an

56Panza [2005], p. 25.
57The word "assertive" is my rendering of the french term "assertif" employed in Panza [2005]. I

surmise that the english term, which the Oxford Dictionary supplements with the following definition:
"characterized by mere assertion" conveys the original meaning in a fairly acceptable way. Descartes’ def-
initions allow one to specify several special geometric "assertive" algebras, all sharing the same structure.

58Panza [2005], p. 25.
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expression like z3 = a2q asserts something about z as a magnitude of a certain kind (for

instance, that the magnitude z appears in a certain proportion, or chain of proportions)

even if it is not known how z might be constructed.

I do not exclude that Descartes conceived also a different view of algebra, understood not

as a theory of quantities, but as a theory of operations governing these quantities, or the

structure common to the several assertive algebras.59 Nor I exclude that Descartes took

over the study of algebraic objects understood in this sense. On the contrary, in Book

III of La Géométrie Descartes defined equations independently from their geometrical

references, as:

. . . sommes composées de plusieurs termes, partie connus et parties inconnus,

dont les uns sont esgaux aux autres, ou, plutost, qui, considérés, sont esgaux

a rien.60

Such definition emphasizes a formal conception of equation, since it refers only to literal

signs and numbers (termes) as well as to operations among them. A similar remark holds

for those rules of transformation and algebraic reducibility, exposed and commented by

Descartes in the same book, which allow one to work on the structure of the equation as

an object per se.61

It is beyond my purpose to study here this idea of algebra and Descartes’ related achieve-

ments. I will rather consider, in the next section, a second fundamental step undertaken

by Descartes in the first Book of La Géométrie. As I have observed, the definitions just

given of product, quotient and root extraction are not constructive, in the sense that

they do not contain the instructions for exhibiting the results of the operations defined,

59This idea of algebra incorporates certain aspects of what Mahoney characterized as the "algebraic
mode of thought": "this mode of thought is characterized by the use of an operative symbolism, that is,
a symbolism that not only abbreviates words, but represents the working of the combinatory operations
or, in other words, a symbolism with which one operates . . . " (Mahoney [1980], p. 142). According to
the suggestion I want to convey, the algebra employed in the study of geometric problems (therefore
in the first two books of La Géométrie) was not merely a formal theory of operations. In order to
make things clearer, we may recur to the useful analogy introduced by J. Macbeth: "whereas Viète’s
logistice speciosa functions as an uninterpreted calculus, one that can be interpreted either geometrically
or arithmetically, Descartes’ symbolic language is always already interpreted" (Macbeth [2004], p. 99).

60Descartes [1897-1913], vol. 6, p. 444. As K. Manders observed, this definition complies with: ". . .
the most obvious feature of polynomials, cossist quantities and equations (...) as sums or aggregates of
terms, and have roots, which are typically sought", Manders [2006], p. 187.

61Descartes introduced the following degree-general transformations as rules of thumb: the sign of rule
(i), its reverse (ii), the substitution of x+a for x (iii), its effects and applications (Descartes [1897-1913],
vol. 6, p. 373, 374-378). See also Manders [2006], p. 197ff .
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when quantities a or b are quantities of a certain kind, for instance, segments. In Book

1 Descartes proceeds to constructively define the operations of addition, subtraction,

multiplication division and extraction of square roots as internal operations within the

class of segments. In the successive Book 2 he will show how the extraction of any root

of the form n
√
a, with n natural number, can be exhibited in geometry too. Descartes

obtains in this way a "determinative" algebra of segments, namely an algebra in which

it is possible to exhibit, by means of accepted geometric constructions, the result of any

operation on given segments, perfectly isomorphic to the arithmetical algebra.62

3.1.3 The construction of the ‘four figures’

The second fundamental moment of Descartes’ geometry, after the redefinition of the five

arithmetical operations between magnitudes, consists in supplementing these definitions

with geometrical constructions. In order to do so, Descartes confines himself to the class

of segments in the plane. Given two segments in the plane, denoted by a and b, it is easy

to define addition and substraction as geometric operations between them: Descartes

interprets the sum a+ b as a segment c obtained by juxtaposing segment b to segment a

(the operation is licensed by Euclid, Elements I, 2).

The geometric interpretations of multiplication, division and square root extraction be-

tween two segments rely, on the other hand, on Book VI of Euclid’s Elements. Thus,

given a triple of segments a, b, 1, the multiplication between a and b can be defined in the

following way. Let two segments BC = b and BD = a be drawn under any angle, as in

figure 3.1.3, and let the segment BA = 1 be traced. Let the segment CA be traced. From

point D, let a segment parallel to CA be traced and let the intersection with the segment

BC extended be called E. The product ab will be defined as the segment BE = x.

The same configuration allows the geometer to define the division between segments a

and b. Indeed, if we set: BE = b, BC = 1, BD = a, the quotient a
b

can be interpreted

geometrically as the segment BA = x.

62Panza [2005], p. 23. By "arithmetical algebra" I am referring to a symbolic language together with
a set of rules and techniques for forming and manipulating complex expressions - therefore, what we
may call a syntax- in order to deal with problems concerning numerical quantities (a developmental
history of this discipline is briefly sketched in Panza [2005], p. 9-12). My choice of "determinative",
on the other hand, translates the french "déterminatif" originally employed in Panza [2005]. According
to the Oxford Dictionary, determinative is defined as "Serving to limit or fix the extent, or the specific
kind or character of anything: said of attributes or marks added with this purpose". I assume that my
translation conveys the original meaning with sufficient clarity.
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Figure 3.1.4: Descartes’ treatment of product and division.

Figure 3.1.5: Square root extraction.

The operation of square root extraction between segments is defined in La Géométrie in

these terms: let a segment AO = a and an adjacent segment OE = 1 be constructed.

Let us then trace a circle with diameter AE, and from point O, let the perpendicular

toAE be traced, which intersect the circle in B. The segment OB will be the square

root of a. Again, the definion of square root extraction rely on a Euclidean construction,

exposed in Elements, VI, 13.63

After the constructive definition of the operation of square root extraction, given at the

beginning of book I, Descartes refrains from supplementing a constructive definition for

the operations of extracting the n-th root of a segment:

63Heath [1956 (first edition 1908], book VI, 13.
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. . . Ie ne dis rien icy de la racine cubique ny des autres, a cause que i’en

parleray plus commodement cy-aprés.64

He will indeed resume the problem in the Third book. Cubic and n-th root extraction

(where n is a natural number different than 2m, for m natural) represents indeed an

interesting phenomenon in Descartes’ geometry. In the previous paragraphs, I have used

the term "constructive definition" in order to refer to the geometric interpretation of the

operations of addition, multiplication, division and square-root extraction as operations

occurring among segments. For the sake of precision and coherence with my previous

terminology, I will rather use, following again Panza [2005], the expression determinative

algebra in order to denote an algebra where it is possible to exhibit, through standard

constructions, the result of any operation between given quantities.

If Descartes’ geometry relied solely on the constructions licensed in Euclid’s geometry or,

to use a pappusian terminology, on ‘plane’ constructions, the algebra of segments would

fail to be a determinative algebra. Indeed, Euclid’s plane geometry fails to supplement

a constructive definition already for the extraction of the cubic root of a segment, since

the problem of inserting 2, 4 and in general 2n mean proportions cannot be solved by

ruler and compass, employed according to Euclid’s constructive clauses.

Descartes was well-aware of this impossibility, already asserted in Pappus’ Mathematical

Collection (see this dissertation, chapter 1, section 1.4, for instance), and for which

he even provided an argument in the third book of La Géométrie.65 Therefore, he

tackled, in the second Book of this treatise, the methodological problem of extending the

constructive methods admissible in geometry beyond the limits of Euclid’s constructive

clauses, in order to endow the algebra of segments with its determinative character.

3.2 Descartes’ construal of geometricity in 1637

3.2.1 Euclidean restrictions reconsidered

But how to effectuate such extension? Descartes’ response depended on the answer to a

second question, that he tackled in the second book of La Géométrie: ‘which curves can

be received in geometry?’66

64Descartes [1897-1913], vol. 6, p. 371.
65Descartes [1897-1913], vol. 6, p. 475.
66Descartes [1897-1913], vol. 6, p. 388
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In asking this question, Descartes was continuing, albeit on a different plane of abstrac-

tion and generality, a long debate concerning the role and classification of curves in

the solution of problems, that was transmitted to early-modern mathematicians such

as Viète, Marino Ghetaldi, Johannes Kepler, and Fermat by way of Pappus.67Descartes

directly confronted with Pappus’ considerations on the ordering of problems, offered in

third and in fourth books of the Mathematical Collection. If Descartes praised the pap-

pusian viewpoint of classifying problems on the basis of the curves required for their

constructions, he had also few reservations about the traditional views on curves:

Les anciens ont fort bien remarqués, qu’entre les Problesmes de Geometrie, les

uns sont plans, les autres solides, et les autres lineaires, c’est a dire, que les uns

peuvent estre construits, en ne tracant que des droites, et des cercles, au lieu

que les autres ne le peuvent estre, qu’on n’y employe pour le moins quelque

section conique; ni enfin les autres, qu’on n’y employe quelque autre ligne

plus composée. Mais je m’étonne de ce qu’ils n’ont point outre cela distingué

divers degrés entre ces lignes plus composées, et je ne saurois comprendre

pourquoy ils les ont nommees mechaniques, plustost que Geometriques.68

In the above passage, we can distinguish two types of inroads made by Descartes against

the "ancients". Firstly, Descartes blamed ancient geometers to lump together curves

which should be more properly separated in distinct classes. Secondly, he contested to

them the fact of having called "mechanical", and cast out of geometry all those curves

"more composed" than straight lines and circles. Few lines later, Descartes suggested

that ancient geometers had some compunction also in countenancing the conic sections

among geometrical curves.69

Descartes did not deny that some curves ought to be excluded from geometry and ranged

in Mechanics: he was in fact convinced that the quadratrix, the spiral, and few kindred

curves (although never specified in La Géométrie) did not fit the bill for geometricity.

Nevertheless, Descartes considered overrestrictive and unjustified the traditional restric-

tion to the straight lines and circles as the sole acceptable constructive means.

According to Molland’s careful analysis (Molland [1976], in particular p. 35) Descartes

committed a blatant error in attributing to the ancients the view that curves more com-

67Guicciardini [2009], p. 42.
68Descartes [1897-1913], vol. 6, p. 388.
69Descartes [1897-1913], vol. 6, p. 389.
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plex than circles and straight lines were mechanical rather than geometrical. Confining

myself to the Mathematical Collection, presumably one of the main sources of Descartes’

knowledge about ancient geometry, I notice that Pappus shows few or no explicit qualms

about admitting curves like conic sections or linear curves in geometry, although plane

means of construction had traditionally enjoyed a theoretical primacy among geometrical

method.

However, even if Molland’s criticism is correct, on the historiographical level,70 it is ques-

tionable whether one should speak of an "error" on Descartes’ side. In fact, Descartes’

assessment of the ancient mathematics of higher curves might be as well rooted in a

communis opinio of XVIIth century.71

It may also be possible that the criticism to the "ancients" concealed Descartes’ disap-

proval towards a construal of geometricity adopted by some of his contemporaries instead.

This conjecture cannot be easily settled because, as far as it could be ascertained, math-

ematicians from XVIth and early XVIIth century did not propose positive criteria to

assess acceptable geometrical constructions.72

However, some light on this matter can be shed by Descartes’ Géométrie itself. In fact,

after having criticized the view of the ancients, Descartes sets out to carefully debunk, in

70Cf. also Sefrin-Weis [2010], p. 226. An different stance than that endorsed by Molland is held by V.
Jullien, who remarks: "Lorsque celui-ci [Descartes] reproche aux anciens de n’avoir pas véritablement
reçu les courbes dans leur géométrie, il a raison; mais c’est surtout dans la mesure où un tel programme
d’étude (étude intrinsèque des courbes comme objets déterminés) n’était pas, pour eux, à l’ordre du
jour" (Jullien [1996], chapter 2, "Critique de la Géométrie classique"). If my understanding of Jullien’s
viewpoint is correct, the chore of Descartes’ criticism to the ancients may be resumed, for him, in these
words: the ancients lacked a sufficiently general definition of curve, which could also ensure a systematic
classification.

71A similar idea was ventured, by the end of XVIth century, by François Viète (1540-1603). Viète
remarked, while discussing the problem of cube duplication in his Variorum de rebus mathematicis re-
sponsorum (1593), that the ancients believed the problem of doubling of the cube to be an irrational
(ἄλογον) and an unspeakable (ἄρρητον) problem: "not because it cannot be explicated in numbers, as
lines are called irrational, but because its structure is devised not by reason but by an instrument"
("Non quod numeris explicari non possit, ut γραμμαί ἄλογοι dicuntur, sed cujus fabrica non ratione, sed
instrumento constituatur".Viète [1646], p. 348)).The view that ancients restricted geometrical curves
to the sole straight lines and circles might go well into XVIIth century and in the XVIIIth. For in-
stance, still in XVIIIth century, Claude Rabuel, in his Commentaires à la Géométrie de M. Des Cartes
(1730), accepted an analogous view as an alleged historical fact: "Les Anciens Geometres n’ont appelé
Geometriques, que ce qui se fait avec la Regle & le Compas; nulle autre operation n’estoit Geometrique;
de toutes les lignes, la droite et la circulaire etoient les seules Geometriques. toutes les autres lignes
courbes (. . . ) passoient pour mécaniques, & toute Operation, par laquelle on les employoit, estoit aussy
appelée mécanique" [Rabuel [1730], p. 97].

72Cf. in particular, Bos [2001], p. 34-36.
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the second Book of this treatise, three arguments for the alleged theoretical primacy of

constructions by Euclidean means, that might as well have circulated among geometers

between XVIth XVIIth century.

Firstly, Descartes attacks against the idea that only the straight line and the circle ought

to be considered properly geometrical curves because they can be generated without the

appeal to instruments ("machines", in the french text).73 But if one labels a procedure

or a construction "mechanical" and excludes it from geometry provided it makes appeal

to an instrument - Descartes remarks - then constructions employing circles and straight

lines according to Euclidean clauses should be considered mechanical as well, as far as the

constructions licensed by Euclid’s three constructive postulates can be seen as derived,

by way of abstraction, from operations mediated by specific instrument, namely the ruler

and the compass.74

One may object, Descartes retaliates, that the difference between ruler and compass

constructions and constructions by more complex instruments boils down to a matter of

precision or accuracy. In order to debunk this claim, Descartes resorts to a conceptual

distinction that will indeed turn out to be costitutive of his ideal of geometry:

. . . Ce n’est pas non plus, a cause que les instruments, qui servent à les

tracer [namely, to trace higher curves], estant plus composés que la regle

73Descartes [1897-1913], vol. 6, p. 389. This view might have been shared by at least some of
the early modern geometers Descartes could know of. For instance, R. Bombelli (1526-1572) remarks,
in his Algebra (1572), that contemporary solutions to the problem of inserting two mean proportions
had been found only "instrumentally" ("instromentalmente", in Bombelli [1579], p. 48), and therefore
not geometrically. Analogous statements are encountered in the third and fourth book of Stevin’s
Problematum Geometricum. . . libri V (1583), where Stevin claimed that solid problems were: ". . . found
(. . . ) not by a Geometrical method . . . " but by means of instruments, instead (Stevin [1958], vol. 2, p.
301).

74I note that neither the ruler nor the compass are mentioned, as instruments devoted to the construc-
tion of curves, neither in Euclid’s Elements, nor in Pappus’ discussion of plane geometry, although the
first does not eliminate, from the Elements, the appeal to mechanical conceptions, like the rotation of
plane figures around fixed axes for the generation of solids (Elements, XII, Df. 18. See also Apollonius’
Conics, Book I, Df. 1). As an aside, I observe that I have not been able to find, in the panorama of
historical studies, a precise reconstruction of the route through which tracing devices entered mathemat-
ical discourse as objects of study - for instance in connection with their constructing power. Certainly
Descartes’ geometry gave an important contribution to this field of study by associating his criterion for
geometricity to the constitution of devices for tracing curves, as I will explore below. Another direction of
study, not taken over in this dissertation, but still worthwhile to be investigated, in my conviction, would
concern the study of the kinds of problems solvable by different employments or suitable modifications
of the Euclidean collapsible compass: what problems are and can be solved, for instance, using the ruler
and a compass with a fixed opening? On the other hand, what problems are solvable by restricting the
clauses for licesing legitimate constructions to the sole use of the compass for the tracing of circles, thus
excluding the ruler and the straight lines as solving means?
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et le compas, ne peuvent estre si justes; car il faudroit pour cete raison les

reietter des mechaniques, où la justesse des ouvrages qui sortent de la main

est desirée; plutost que de la Geometrie, ou c’est seulement la iustesse du

raisonnement qu’on recherche.75

I have already distinguished, at the beginning of chapter one, a concern for exactness

in problem solving from a concern for accuracy or precision. Due to its importance,

this conceptual distinction ought to be stressed once more. By considering geometry

as an exact discipline, Descartes is not contrasting accurate versus approximate proce-

dures.76 geometry - insists in fact Descartes - does not pursue the practical accuracy of

a construction ("la justesse des ouvrages qui sortent de la main"), which is the highest

attainable virtue in mechanics, but the exactness of reasoning ("la justesse du raison-

nement") which must obtain of every geometrical procedure. In the light of this ideal

of geometry, it made no sense to exclude a curve because the instrument employed for

its tracing could not assure a precise construction as the one granted by the ordinary

compass and straightedge.

Thirdly and finally, Descartes suggests that the geometers’ restrictions to the straight

lines and the circle as the unique means of construction might be rooted in the desire to

keep to a minimum the clauses licensing geometrical constructions, and to avoid enriching

geometry with more postulates beyond those established in Euclid’s Elements. However

this argument, based on what one might call the ‘logical simplicity’ of geometry, runs

against the very practice of geometers:

. . . je ne dirai pas aussy, que ce soit a cause qu’ils n’ont pas voulu augmenter

le nombre de leurs demandes, & qu’ils se sont content és qu’on leur accordait,

qu’ils pussent joindre deux points donnés par une ligne droite, & descrire un

cercle d’un centre donné, qui passait par un point donné, car ils n’ont point

fait de scrupule de supposer, outre cela, pour traiter des sections coniques,

qu’on pust coupper tout cone donné par un plan donné. . . 77

75Descartes [1897-1913], vol. 6, p. 389. I have not been able to trace, among early-modern geometers
before Descartes, any explicit argument that explicitly excluded higher curves because their tracing was
imprecise.

76I do not fully agree, therefore, with the claim advanced by M. Baron (Baron [1969], p. 163), for
whom Descartes was: ". . . always careful to distinguish between precision methods and approximate
method in mathematics". The turning point in Descartes’ conception of mathematics was not, I surmise,
the distinction between precise and approximate methods, but between exact and non-exact procedures
and objects.

77Descartes [1897-1913], vol.6, p. 389. I note that Descartes lists here only the first and the third of
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Once demoted these counterarguments, Descartes turned to the pars construens of his

programme. Firstly, he conceded that that the ancient decision (he plausibly had in

mind Pappus’ book IV of the Collection) to exclude from geometry certain curves, like

the spiral or the quadratrix, obeyed to a well-grounded rationale, since these curves are

imagined as: "descrites par deux mouvements separés & qu’ en ont entre eux aucun

rapport qu’on puisse mesurer exactement".78 On the other hand, curves receivable in

geometry are singled out by Descartes on the ground of specific properties of their genesis:

il n’est besoin de rien supposer pour tracer toutes les lignes courbes, que

ie pretens icy d’introduire, sinon que deux ou plusieurs lignes puissent estre

mües l’une par l’autre, & que leur intersection en marque d’autres (. . . ) Mais

il est, ce me semble, très clair, que prenant comme on fait pour Géométrique

ce qui est precis et exact, et pour mécanique ce qui ne l’est pas; et considérant

la Geometrie comme une science, qui enseigne généralement à connoitre la

mesure de tous les cors, on n’en doit pas plutot exclure les lignes les plus

composées que les plus simples, pourvu qu’on les puisse imaginer estre de-

scrites par un mouvement continu ou par plusieurs qui s’entresuivent et dont

les derniers soient entièrement reglés par ceux qui les précèdent, car par ce

moyen on peut toujours avoir une connaissance exacte de leur mesure.79

This passage has been given several interpretations,80 which contribute to underline its

importance for the understanding of Descartes’ overall mathematical project. For the

sake of my argument, I will limit to depict the standard of geometricity which shines

forth through the previous passage.

In Descartes’ view, not only straight lines and circles must be included among acceptable

solving methods in geometry, but also all the curves that can be constructed on the basis

of a definite rule, that we may call ‘exactness norm’ ,81 establishing that "two lines can

the five Euclidean postulates. However uses of the second postulate ("to produce a finite straight line
continuously in a straight line") are implicit in the text (for instance, at p. 320, one must concede the
possibility of extending straight lines KL and BA continuously into a straight line, in order to enable
the tracing of the hyperbola, there at stake). The reference to the sectioning of a cone by a plane is of
course to Apollonius’ Conics, Book I, Df. 1.

78Descartes [1897-1913], vol. 6, p. 390.
79Descartes [1897-1913], vol. 6, p. 388.
80See for instance: Serfati [1993], Serfati [2002] in [Serfati and Bitbol [2002], p. 39-104] Bos [2001],

Panza [2005], Panza [2011] (this is a non exhaustive list).
81I deem, following the enlightening discussion in Panza [2011], that the expression ‘exactness norm’

should be preferred to ‘postulate’ (or even to ‘axiom’, suggested in Boyer and Merzbach [1991], p. 315)
because Descartes - unlike Apollonius, whose definition 1 of the Conics is evoked above - is not directly
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be moved one onto the other, so that their intersections will trace others".

Consider, for instance, the following curve-constructing device, introduced in La Géométrie

as the first instance of a compass complying with Descartes’ exactness norm.82 This in-

strument is never called with a proper name in La Géométrie. I will call it hereinafter

"proportions compass",83 since it is conceived for the purpose of constructing an arbitrary

number of mean proportions between two given segments.84

Following the figure reproduced in book II, we can described the proportions compass

as follows. Consider two rulers Y Z and Y X pivoting around Y . At point B of Y X

a ruler BC is fixed perpendicularly to Y X. A number of sliding rulers CD, EF , GH

are inserted along Y Z, and similar sliding rulers DE and FG are inserted along Y X,

perpendicularly to it. When Y Z is fixed and the ruler Y X rotates around Y , BC is

supposed to push DC along Y Z, CD then pushes DE along Y X, DE pushes FE, in

such a way that the angles formed by the rulers with rulers Y Z and Y X remain constant.

Points B, D, F and H are thus supposed to trace in a continuous way a family curves,

each of which is recevable in geometry.85

Descartes in fact observes:

. . . je ne voy pas ce qui peut empecher, qu’on ne concoive aussy nettement,

et aussy distinctement la description de cette premiere, que du cercle, ou du

moins que de sections coniques, ny ce qui peut empecher, qu’on ne concoive

la seconde, & la troisieme, & toutes les autres, qu’on peut descrire, aussy

bien que la premiere, ny par consequent qu’on ne les recoive toutes de mesme

façon, pour servir aux speculations de Geometres.86

establishing which curves should be included in geometry, but fixing a criterion in order to decide the
permissible constructions, through which curves are to be described and hence ranged among legitimate
geometrical arguments.

82Descartes [1897-1913], vol. 6, p. 391.
83Panza [2011], p. 74.
84Descartes [1897-1913], vol. 6, p. 443. A previous version of this compass was probably envisaged by

Descartes’ manuscript notes now known as Cogitationes privatae, dating back to the beginning of the
20s.

85Descartes [1897-1913], vol. 6, p. 391.
86Descartes [1897-1913], p. 392. I note, on this concern, that these instruments cannot obtain objects

in the "pointing way", and consequently cannot enter directly in the problem-solving activity, but only
through the mediation of the curves described by them.
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Figure 3.2.1: Descartes [1897-1913], vol. 6, p. 391.

Roughly speaking, Descartes’ reasoning can be interpreted as the attempt at taking the

clauses stated in Euclid’s postulates (licensing ruler and compass constructions) as a

basis for iterative constructions describing other curves, different from straight lines and

circles, with which, nevertheless, share the same character of exactness.

Indeed, if we grant the acceptability in geometry of the ruler and the compass, employed,

according to the clauses established in Euclid’s postulates, as instruments for the tracing

of straight lines and circles, then the more composite devices ought to be accepted as

well, provided they are construed as systems of rulers allowing one degree of freedom

movements between the two links that they connect.

For reasons that my discussion has now made obvious, this criterion of acceptability can

be called by ‘coordinated continuous motion’87 or ‘by reiterated ruler and compass’.88

Moreover , the instruments which realize these criteria can be called ‘geometrical link-

ages’.89

87This terminology is used by Henk Bos. See Bos [2001], p. 336.
88The name has been given by Panza. See Panza [2005], pp. 63, 64.
89On the meaning of the term ‘linkage’ in the mathematical literature, Courant and Robbins write [in

Courant and Robbins [1996], p. 155]: "A linkage consists of a set of rigid rods, connected in some manner
at movable joints, in such a way that the whole system has just enough freedom to allow a point on it to
describe a certain curve". In their discussion, Courant and Robbins do not refer directly to Descartes, but
to a discussion occurring much later, well into XIXth century, concerning whether a system of connected
rulers could be conceived in order to trace a straight line (Courant and Robbins [1996], p. 156-7). The
problem is certainly relevant (see the classical Kempe [1877]), but did not directly concern Descartes’
geometry, though, since the constructability of a segment that can be arbitrarily extended is grounded
on Euclid’s postulates, and it is therefore the basis for more complicated constructions.
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The generation by geometrical linkages is not the only way of constructing geometrical

curves discussed by Descartes, although it has a clear foundational primacy over other

methods.90 It is therefore important to understand some of the most noticeable properties

of the constructions produced by geometrical linkages.

I observe, as a starting point, that a constructional device as the proportion compass

not only assures continuous motions, but assures the tracing of each curve described by

the moving points D, F , H . . . according to a unique continuous motions. This is due, I

surmise, to two relevant conditions which geometrical linkages comply with.

Firstly, these instruments must be so conceived that the local motions of any of their

parts are dependent on a principal motion. In the case of the proportion compass, for

instance, the principal motion is imparted by the rotation of the ruler Y X, which governs

the sliding motions of the interconnected rulers.91

A survey of the other linkages92 described in La Géométrie allows one to easily identify,

for each examined device, a principal motion on which local motions depend. Consider,

for instance, the following device introduced by Descartes in order to construct a branch

of hyperbola (GCE in fig. 3.2.1). The compass employed is formed by a pivoting joint

GL hinged at a segment CL sliding vertically along AB. In Descartes’ account, given in

Descartes [1897-1913], vol. 6 (p. 393) a principal motion can be easily identified: it is

the rotation of the ruler GL, which enables the connected ruler to translate along AB.

90Descartes also discussed constructions of curves based on the construction of finitely many points
on the curve and constructions based on strings (Cf. especially Bos [1990] and Mancosu [2007]). Some
of these constructions will be evoked in the following sections and chapters.

91As we read in La Géométrie: "a mesure qu’on l’ouvre [namely, the linkage depicted in fig. 3.2.1] la
reigle BC, qui est jointe a angles droites avec XY pousse vers Z la reigle CD . . . ". It clearly appears
from Descartes’ description that a principal motion can be singled out, namely the pivoting of XY

around Y .
92It must be stressed that one cannot find in La Géométrie a catalogue of curves, nor a systematic

description of their generation by linkages. Descartes offers only few examples of linkage constructions,
and assumes the constructibility of a large class of curves (namely the curves we would nowadays call
algebraic). It is likely that, in the author’s view, the few examples of tracing devices proposed in the
book are sufficently clear instances of the ideal of geometric constructibility derived from his exactness
norm. Descartes even remarks that it is superuous to add the description of other devices: ". . . Je
pourrais mettre ici plusieurs autres moyens, pour tracer et concevoir des lignes courbes qui seraient de
plus en plus composées par degrés à l’infini . . . "
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Figure 3.2.2: Descartes [1897-1913], vol. 6, p. 393.

Geometrical linkages, as they are conceived and presented in La Géométrie, meet a sec-

ond condition, derivable from the previous one:93 the compasses are conceived in such a

way that, when they move, the trajectories of all their motions are totally constrained.

In other words, the motions generated by geometrical linkages obey to purely kynematic

movements, and the shape of the curves thus constructed are independent of the mechan-

ical components of the movements, as the speed of the rotating joints and other physical

interrelations.

A third property should be added to the previous ones. In order to expound this con-

dition, let us return to the example depicted above, concerning the hyperbola-tracing

linkage: after having proved that the curve traced by the device in fig. 3.2.1 is an hy-

perbola, Descartes described a similar instrument, in which he substituted a circle to

the ruler KNC, and claimed that it would generate the "first conchoid of the ancients".

This is the name by which it was classically known Nichomedes’ conchoid, also described

by Pappus in the Collection (see Commandinus [1588], fol. 56r.). Descartes does not

illustrate the construction of the conchoid with any figure in La Géométrie, but one can

evince from his verbal description a possible generation, as the one offered in fig. 3.2.1.

93See especially Panza [2011], p. 81.
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The curve FKN is generated by a linkage formed by the moving point F , extremity of

the radius FE of a circle hinged to the pivoting ruler AE. When AE rotates, E slides

along the vertical BD, and the circle of radius EF translates along the same direction.

Since EF remains fixed, the curve traced by F will cut on the pivoting segment AE an-

other segment of constant length (namely FE). This property endows the curve traced

by F with the traditional symptoma of the conchoid described by Pappus, namely the "

first conchoid".

The proof that the first conchoid of the ancients could be traced by a geometrical link-

age, and therefore did qualify for geometry, stood as an important achievement in the

backdrop of the classification into plane, solid, and linear curves offered by Pappus. By

contriving to generate the conchoid through a geometric linkage, in fact, Descartes had

managed to show that a curve traditionally ranged with the spiral and the quadratrix

(genuinely mechanical, in Descartes’ view), ought to be more properly grouped with the

family of plane and solid curves. Even if the geometrical linkage devised by Descartes

for the tracing of the conchoid embodies the traditional genesis of the curve as described

by Pappus and by Eutocius, it brings forth, in virtue of its articulation, a structural

similarity with the compass for the hyperbola, described above, and lastly grants that

also the conchoid, being generated by reiterated ruler and compass, ought to be accepted

as geometrical on a par with the conic sections or the circle.

If then a parabola - a curve that Descartes correctly assumed to be generated by a

linkage, without however offering a construction in La Géométrie - is taken at the place

of the ruler KNC, then the linkage will generate another curve QCD (in fig. 3.2.1.

See Descartes [1897-1913], vol. 6, p. 477), more complicated, and unknown to ancient

geometers. Even so, this curve will still be acceptable in geometry, since it complies with

the exactness norm set by Descartes.

These examples show a peculiar characteristic of geometric linkages: as soon as a curve

has been traced by a system of connected joints with one degree of freedom movement,

it can become itself a component of the system, and thus trace other new curves, which

in their turn can become parts of more articulated devices.

As Descartes suggests, the compositional nature of linkages induces a tower of devices

with increasing complexity (the complexity of a device can be measured by the number

of subdevices employed for generating each component) at whose basis stand ruler and
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Figure 3.2.3: Descartes’ conchoid.
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Figure 3.2.4: Descartes [1897-1913], vol. 6, p. 477.
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compass, taken as elementary linkages for tracing straight lines and circles, which by

iterative constructions can produce all other admissible curves.94

By licensing the construction of the class of curve-tracing linkages, endowed with the

properties spelled out above, Descartes’ exactness norm can extend the clauses of con-

structibility fixed by Euclid’s constructive postulates, in order to enrich the domain of

legitimate, geometrical curves. As I will discuss in the next section, this extension war-

rants the possibility of supplementing any expression in the formalism of the algebra of

segments with a construction, thus warranting the determinative character of Descartes’

algebra of segments.

3.2.2 Early instances of geometrical linkages

An interesting question to be raised, as an addendum to the previous discussion, is

whether there is a way to reconstruct the historical development which brought Descartes

to the systematic characterization of geometrical curves offered in La Géométrie. In

the already quoted passage from the 1619 letter to Beeckman, we read in fact that

Descartes envisaged a class of problems solvable by curves, raising from a unique motion

and traceable by "new compasses" (novos circinos) as certain and geometrical as the

common compass.

By spelling out the property of unicity of motion as early as 1619, in his letter to Beeck-

man, Descartes seems to have insightfully anticipated one of the relevant properties we

can ascribed to geometric linkages on the ground of their presentation in La Géométrie,

namely the property of defining totally constrained trajectories, in which a principal mo-

tion can be singled out. We can thus wonder whether the tracing devices discussed in

the Cogitationes incorporated this constraint, and whether, more generally, these devices

can be considered as primitive instances of geometric linkages.

Leaving aside the case of the mesolabe compass, of which we can only have a conjectural,

although plausible, reconstruction, I would like to consider the case of the trisector.

This instrument, as examined above, is formed by a system of rigid, interconnected

rulers, to which new rulers can be added so as to trace more complicated curves. Is

this description sufficient in order to consider the trisector a linkage, on a par with the

proportions compass and the other instruments presented in La Géométrie?

94Descartes [1897-1913], vol. 6, p. 394-395.
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As remarked by Panza (Panza [2011], p. 86), the trisector can be certainly considered

a geometric linkage, provided it is constructed in such a way that the principal motion

is identified with the rotation of the arm AC (I refer to fig. 3.0.2 above). This can be

done if we can imagine the trisector to be constructed starting from a given segment

AB, to which we join at A a segment AC forming with AB an arbitrary angle. Then a

segment AFof arbitrary length is marked on AB, and the rest of the construction can

be then easily completed, in an elementary way, by multiplying the angle CAB. In this

way, the principal motion will be the rotation of the ruler AC around A , and the curve

will be traced by point R. On the contrary, this compass cannot be built as a geometric

linkage starting from the given segments AT and AB. In this case, in fact, AU and

AC would be then constructible provided we already knew how to the trisect the angle

TAB (which would obviously beg the question), or through a process of adjustement and

deformation of the arms, in order to contrive the connecting joints to have equal length

in the final configuration. Such a contrivance would introduce a physical component in

the functioning of the trisector: through the inclusion of forces, this instrument would

thus be reduced to a physical device, and therefore to something remarkably different

from a geometric linkage.95

In the text of the Cogitationes , the principal motion of the ruler AC, a property which

crucially characterizes the trisector as a geometrical linkage, is not emphasized. Descartes

does not say in fact how the compass is constructed, but tells us only that the rulers are

rigidly connected ("but one be unable to be augmented or diminished without the others’

being moved") and the instrument can be opened by rotating segment AT (I refer, in

particular, to fig. 3.0.2) which drags in its turn the other connected lines AU and AC

(ac and ad in the original). Descartes singles out the correct point which generates the

curve.96 On the ground of this text, it seems that Descartes had understood some of the

characteristics he would later attribute to linkages, but it is not clear whether he was

aware of all the conditions to be imposed on a trisector, in particular, in order to consider

this instrument a geometric linkage, on a par with those discussed in La Géométrie, and

not as a physical device instead.

In conclusion, even if Descartes had already emphasized, in the early 20s, the importance

of the instrumental generation of curves as a means for extending Euclid’s constructive

95See Panza [2011], p. 86. The distinction between the geometric nature of cartesian linkages versus
the physical nature of other devices will be discussed again in the next chapter.

96"Elevo lineam ba in partem b, quae secum trahit lineam ac & ad. . . " (Descartes [1897-1913], vol.
10, p. 241).
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clauses, he probably lacked a precise concept of geometric linkage back then. Only in the

subsequent years, his answers to the questions about which family of constructing instru-

ments is admissible beyond ruler and compass, and which relevant properties should such

an admissible instrument possess became precise, and eventually reached their definitive

form in La Géométrie.

3.2.3 The determinative character of cartesian algebra

All curves acceptable in Descartes’ geometry can legitimately enter in the synthetic part

of the problem solving procedure, allowing the construction of any polynomial equation

with finite arbitrary degree. This conclusion rests on one of the groundbreaking insights

which La Géométrie has brought to mathematicians: the construction of a curve by a

geometrical linkage implies the possibility of exhibiting all points of the curve by an

algebraic equation in two unknowns of the form: P (x; y) = 0. The entailment from

constructability to algebraic expressability is conceded by Descartes, as the following

passage explains:

. . . tous les poins, de celles [of the curves] qu’on peut nommer geometriques,

c’est a dire qui tombent sur quelque mesure précise et exacte, ont neces-

sairement quelque rapport a tous les poins d’une ligne droite, qui peut estre

exprimé par quelque equation, en tous par une mesme.97

As an example, Descartes determines the nature the curve GCE constructed by one of

the geometric linkages (cf. figure 3.2), by finding the equation satisfied by all the points

belonging to the curve. Descartes considers another point A on the straight line AB.

From a point C, arbitrarily chosen on the curve, a straight line is drawn to AB at a given

angle: the segments CB and BA, both unknown ("quantités indeterminées", Descartes

[1897-1913], vol. 6, p. 394), are named by Descartes with the letters y and x. Following

the problem-solving strategy deployed in Book I, Descartes names the other relevant

magnitudes: GA = a, NL, parallel to CB, will be called c and KL = b. Working

then on the elementary relations between similar triangles KNL and KCB, the relation

between segments CB = y and CA = x can be finally expressed as an equation of the

form: F (x, y) = 0, namely:

y2 − cy +
cx

b
y − ay + ac = 0 (3.2.1)

97Descartes [1897-1913], p. 392.
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Since point C has been chosen arbitrarily, Descartes can conclude, by generalization, that

all the points belonging to the curve constructed with the geometric linkage described

above satisfy equation 3.2.1. From this equation - Descartes claims, without explanations

- we know that the curve is an hyperbola.98

The correctness of Descartes’ conclusion can be verified by proving that equation 3.2.1

expresses a geometric property which characterizes univocally an hyperbola. Following

the suggestion advanced by Van Schooten in his commentary to La Géométrie, it can be

shown, in fact, that the equation 3.2.1 implies the following geometric equality:

R(IC,BC) = R(DA,EA)

Namely, the rectangle with sides IC and BC is equal to the rectangle with sides DA and

EA. Relying on proposition 10 of the second Book of Apollonius’ Conica, we recognize

that this equality characterizes indeed the curve GCE as an hyperbola whose asymptotes

are FA and FD, which confirms Descartes’ claim.99

A more detailed proof can be found in Van Schooten’s Commentary (see in particular,

Descartes [1659-1661], p. 170-171), which I will follow hereinafter. Hence, let us complete

Descartes’ original construction, as shown in fig. 3.2.3:100 AG is extended to point D,

such that DG = EA = NL, and let a parallel to CK be traced from point D, which

meets in a point K the segment AB extended.

Having worked out these auxiliary constructions, let us rewrite equation 3.2.1 as:

(a+ c− cx

b
− y)y = ac

98Descartes [1897-1913], vol. 6, p. 394.
99The reference to Apollonius’ Conica is made by Van Schooten in Descartes [1659-1661], p. 172.

100The figure reproduces Van Schooten’s diagram in his commentary to the latin edition of La Géométrie
(Descartes [1659-1661], p. 171).
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Figure 3.2.5: Descartes [1659-1661], vol. 1, p. 171.



CHAPTER 3. THE GEOMETRY OF RENÉ DESCARTES 151

By setting: AG = DA = a, KL = b, NL = EA = c, DH = AB = x, BC = y, it can be

proved that: a+ c− cx
b
− y = IC, and therefore:

IC ×BC = DA× EA

Since DF and CK are parallel, angles DFA and CKA are equal. Let us then produce

BC, so that it meets DF in a point I, and raise from D the parallel to AF , meeting

the line BC extended in a point H. The triangles: DHI, KLN , and FAD are thus

similar (indeed it can be easily proved that all their angles are equal), and the following

proportion holds:

KL : LN = DH : HI

As an immediate consequence from the proportion above, we have that: HI = cx
b

.

From fig. 3.2.3, the following equality can be deduced: HB − HI = IB = DA − HI.

Since HI = cx
b

, DA = a + c, IB = a + c − cx
b

,101 the segment IC can be eventually

determined as: IC = IB − BC = a + c − cx
b
− y. By consequence, from the equation:

(a+ c− cx
b
− y)y = ac we can infer: IC ×BC = DA× EA.

I point out that Van Schooten refers to a property satisfied by all points lying on an

hyperbola, proved by Apollonius in the Conics, Book II, prop. 12, and singled out also

by Proclus in connection with a discussion about solid loci.102 This reference may not

be casual, but indicative of the fact that an equation was conceived, by Descartes and

by his readers, as incorporating not only the symptoms of curves known since Antiquity,

but also their properties (and theoretically all the properties) by which a curve can be

characterized as a locus. It is therefore understandable why, in order to verify that the

curve traced by the linkage in fig. 3.2.1, is an hyperbola, Van Schooten relied on a

property asserted by a well-known solid locus theorem.

In an important article on the conceptual origins of cartesian geometry, A. G. Molland has

pointed out how Descartes’ algebra of segments can enrich the possibilities of denoting

101In fact, we have that: DA = AG + DG, and by hypothesis it is also: DG = NL = c. Hence
DA = a+ c.

102Proclus [1992], p. 311; see 2, sec. 2.2.1.
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a curve, by allowing the reference either to its equation, or to its geometrical description

via a suitable linkage, and refererred to these two modes for describing a curve in terms

of "specifications". More precisely, he observed that the construction of a curve by one

of the cartesian linkages is an instance of a "specification by genesis", while the way of

describing a curve by giving its equation in x and y is a case of ‘specification by property’:

"An equation in terms of x and y - Molland observes - could determine the curve, by

specifying a property all its points had to obey (. . . ) this has close similarities to such

ancient procedures as Apollonius’ establishment of symptomata".103

The similarity between the meaning and role of symptomata in ancient geometry and the

role of equations as specifications of curves, in Descartes’ geometry, is indeed manifest.

I have already remarked (chapter 2, p.68) how the symptoms of a curves can be un-

derstood in terms of relations expressing the fundamental properties of the curve under

examination. More precisely, for the case of the conic sections: "the symptoma refers to

a single arbitrary point on a given curve by relating a single square to a single rectangle

(. . . ) Thus, once a conic section is given, the symptoma gives an immediate criterion for a

point to be on that conic section".104 Analogously, the equation 3.2.1 can be understood

as referring to an arbitrary point belonging to the curve drawn by a geometric linkage,

by relating its distances from a couple of given segments, and by giving, in this way, a

criterion in order to recognize the curve thus drawn as a particular conic section, namely

an hyperbola. But, as the example of the hyperbola discussed by Van Schooten shows,

an equation associated to a geometric curve incorporates not merely the information on

the symptomata, but theoretically all information on the properties of a curve. Descartes

is explicit on this: "Pour trouver toutes les propriétés des lignes courbes - he subtitles

a paragraph of La Géométrie - il suffit de sçavoir le rapport qu’ont tous leurs points a

ceux des lignes droites", and explains:

Or, de cela seul qu’on sçait le rapport qu’ont tous les poins d’une ligne courbe

a tous ceux d’une ligne droite, en la façon que j’ay expliquée, il est aysé de

trouver aussy le rapport qu’ils ont a tous les autres poins et lignes données &,

en suite, de connoistre les diametres, les assieux, les centres, & autres lignes

ou poins a qui chasque ligne courbe aura quelque plus particulier, ou plus

simple, qu’aux autres. . . 105

103Molland [1976], p. 38.
104Michael N. Fried [2001], p. 88.
105Descartes [1897-1913], vol. 6, p. 412-413.
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According to Molland, moreover: "Descartes held the possibility of representing a curve

by an equation (specification by property)" to be equivalent to its "being constructible in

terms of the determinate motion criterion (specification by genesis)".106 This equivalence

is only suggested but not proved by Descartes. If, on one hand, constructability by

geometric linkages implies the representability of curves by equations in virtue of the

very constitution of the licensed linkages, on the other Descartes seems confident that

any algebraic curve can be constructed by a legitimate tracing device, although he does

not bother giving a proof of this claim.107

If this equivalence is uncontrovertible from the mathematical viewpoint (a curve con-

structed by a geometrical linkage can be specified via an algebraic equation, and con-

versely, a curve corresponding to a given algebraic equation can be constructed by a

suitable geometric linkage) the same may not be said from an epistemic viewpoint. In

other words, specification by genesis (in terms of geometric constructions) and specifica-

tion by property do not seem to stand on a par for Descartes when it comes to secure

the knowledge of a geometrical object, in this case a curves.

On the contrary, I surmise that in the context of Descartes’ geometry, the specification by

genesis of a curve still exerted a primary role in securing epistemic access to it. The first

evidence in order to support this claim consists in the plain observation that curves are

dealt with, in La Géométrie, notwithstanding their algebraic description: for instance,

Descartes discussed several curves without giving their equation or barely mentioning

them.108

A second evidence can be retrieved from the arguments given above, concerning the

acceptability of curves. Descartes often combined words like "tracer" with "connoistre",

"concevoir", in such a way that that legitimate procedures for tracing curves supposedly

bear a standing to warrant epistemic access to the produced objects.109 Van Schooten’s

later commentary was still more explicit on the point. Thus, in the prefatory words

106Molland [1976], p. 38.
107It is held that such a conjecture was proved by Kempe, in a famous paper from 1876 (Kempe

[1876]) in which he lay down the important result that any algebraic curve was traceable by a series
of interconnected moving joints called "linkages". However: "we may conclude from the intricacy and
the late date of Kempe’s method that a general tracing method for algebraic curves was not within
Descartes’ reach, let alone one which satisfied his further criteria" (Bos [2001], p. 405).

108As it is the case of the description of the optical ovals. See H. Bos. The structure of descartes’
geometry, in Belgioioso and Costabel [1990], p. 54.

109Bos [1981], p. 308.
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to the second book he emphasized the role of the construction by geometrical linkages,

effectuated in respect of Descartes’ exactness norm, as the mode of knowing (modus

cognoscendi) a curve:

Secundus liber agit de lineis curvis, earumque naturam explicat, docendo,

quaenam illae sint, quuas in geometriam recipere oportet, quaeque geomet-

ricae appellandae sunt, itemque quo pacto possint cognosci. Modus autem

eas cognoscendi in eo consistit, quod describi possint per motum aliquem

continuum, vel per plures eiusmodi motus, quorum posteriores regantur a

prioribus.110

Hence, the construction of a curve according to the standards in force within Descartes’

geometry, namely, its ‘specification by genesis’ secured the giveness of the curve itself in

geometry, and therefore the very possibility of its knowledge.111

Moreover, the representability of curves through equations, stands as the conclusive step

in order to endow cartesian algebra of segments with its determinative character. In fact,

through the possibility of associating acceptable curves to finite polynomial equations,

Descartes managed to to work out a procedure in order to construct any (real) root of a

given polynomial equation in a finite arbitrary degree, through the intersection of a pair

of geometric curves. The specification of curves through algebraic equations played an

essential role in constituting a criterion for the ordering of curves, as I will explicate in

the following chapter.

110Descartes [1659-1661], p. 167: "The second book [of La Géométrie] concerns curve lines, explains
their nature, teaching which lines they are, which it necessary to receive in geometry, and which are to
be called geometrical, and likewise how they can be known. And the way of knowing them (modus eas
cognoscendi) consists in this, that they can be described by a continuous motion, or by several motions
of this kind, of which the subsequent ones are governed by the preceding ones".

111In this sense, we are allowed to talk about Descartes’ ‘constructivism’, as suggested in Serfati and
Bitbol [2002].



Chapter 4

Simplicity in Descartes’ geometry

4.1 Introduction

As anticipated in chapter 3, Descartes lays down precise methodological guidelines, in La

Géométrie (1637), in order to solve a problem in the most appropriate way. These rules

involve a clearcut restriction in the domain of acceptable curves to those constructible

by geometric linkages, with the exclusion of few, ‘mechanical’ curves.

But the demarcation between mechanical and geometrical curves was not sufficient, from

Descartes’ viewpoint, in order to solve a problem geometrically. In fact Descartes ex-

plicitly recommended to use the ‘simplest’ solving means for a problem at hand. For

the case of problems reducible to quadratic equations, the choice of the simplest means

was uncontroversial. Descartes had given, in Book I, a method for the construction of

quadratic equations by means of circles and straight lines, therefore it was natural to

consider these curves as the simplest available ones. The choice became harder for the

case of problems whose analysis had led to higher equations. What were the ‘simplest’

curves, in these cases?

Although the notion of the maximal simplicity for the solution of a problem had probably

been accepted as a desideratum since antiquity,1 Descartes proposed the first attempt

(to my knowledge) in order to disambiguate the concept of simplicity in mathematics,

more particularly in geometry:

Encore que toutes les lignes courbes, qui peuvent estre descrites par quelque

mouvement regulier, doivent estre recües en la Geometrie, ce n’est pas a dire

1Van der Waerden [1961], p. 263, and chapter 2 of this study, in particular section 2.2.
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qu’il soit permis de se servir indifferemment de la premiere qui se rencon-

tre, pour la construction de chaque Problesme: mais il faut avoir soin de

choisir toujours la plus simple, par laquelle il soit possible de le resoudre. Et

meme il est a remarquer, que par les plus simples on ne doit pas seulement

entendre celles, qui peuvent le plus aysement estre descrites, ny celles qui ren-

dent la construction ou la demonstration du Problesme proposé plus facile,

mais principalement celles, qui sont du plus simple genres qui puisse servir a

determiner la Quantité qui est cherchée.2

I interpret Descartes’ passage as offering an accurate distinction into two main types of

simplicity:

• Easiness: A curve C is simpler than a curve D with respect to a given problem,

if both C and D solve the problem at hand, but curve C can be described in a

way that is ‘easier’, namely more transparent to understanding (I will discuss this

concept in more detail in the sequel) than the description of D.

• Dimensional simplicity. A curve C is simpler than a curve D if the first curve belongs

to a class inferior to the class of the second curve, according to a numerical order

of classes established in La Géométrie. Since the fact that a curve belongs to a

given kind is established by its equation, it can be said that algebraic considerations

ultimately guide the choice of the simplest curve in Descartes’ practice.

In Descartes’ view, only the second type must be taken into account in problem solving.

This distinction has a strong normative aspect which constrains so much the problem-

solving strategy that any violation is explicitly considered an error in geometry ("une

faute", as written in Descartes [1897-1913], vol. 6, p. 443).

More precisely, Descartes imposes, in La Géométrie, two constraints in order to avoid

such errors in geometry. Firstly, one must refrain from trying to solve a problem by

too simple means with respect to the class to which the problem belongs, and secondly,

one must also refrain from using too complex methods with respect to the class of the

problem.3

2Descartes [1897-1913], vol. 6, p. 370.
3Descartes [1897-1913], vol. 6, p. 444.
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However, not only the preference for dimensional simplicity is not justified in La Géométrie,

but it can also be questioned whether it is the most rational or obvious choice, when it

comes to decide the best methods in order to construct a problem. In this chapter, I

will provide an argument in order to justify the motivations behind the choice of dimen-

sional simplicity, in the light of Descartes’ attempt to find a rational systematization of

problems and solving methods which could improve the ancient ones. This justification

will also offer the context in which the first attempts to prove some impossibility results

of extratheoretical kind (namely, the impossibility of solving solid problems by ruler and

compass) occurred.

4.2 Simplicity in early modern geometry

Although the previously quoted passage from Book III of La Géométrie, in which Descartes

lays down the methodological rules for problem-solving, does not contain any explicit ref-

erences to Pappus, there is little doubt that the homogeneity requirement explicated in

Book III and IV of the Mathematical Collection (Cf . Ch. 2.) was envisaged as a di-

rect reference in Descartes’ discussion about the simplicity requirement. In his latin

commentary of Descartes’ Géométrie, van Schooten even paraphrased the requirement

to solve a problem by the simplest curves, employing a terminology evidently borrowed

from Commandinus’ latin version of the Collection:

Ubi observandum est quod, cum peccatum sit non leve apud Geometras,

Problema planum construere per Conica aut Linearia, hoc est, ipsum per

improprium solvitur genus, ita quoque sit cavendum, ne in constructionem

ejus adhibeamus lineam aliquam curvam, quae magis sit composita, quam

ipsius natura admittit.4

The closeness to Pappus’ statement can be better appreciated considering how Com-

mandinus rendered Pappus’ proposition 30 of Book IV:

Videtur autem quodammodo peccatum non parum esse apud Geometras, cum

problema plano per conica, vel linearia ab aliquo invenitur, et ut summatum

(summatim?) dicam, cum ex improprio solvitur genere . . . 5

4Descartes [1659-1661], 277: "Where it must be observed that, as it is not a small sin by the geometers
to construct a plane problem with conics or linear curves, namely, to solve it by a non kindred kind, so it
must be paid attention not to employ in its construction a curve which is more composed than conceded
by its nature".

5Commandinus [1588], fol. 61r: "It seems a somehow non small sin, among geometers, when someone
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There is no doubt, therefore, that Descartes’s methodological guidelines for solving prob-

lems in the ‘simplest’ way were deeply indebted (or at least were considered so by

Descartes’ contemporaries and fellows) to what has been called, in the first chapter

of this study: "Pappus’ homogeneity requirement".

As we can infer from the frequent references in the contemporary literature, Pappus’ con-

straint was often interpreted by early-modern geometers as a constraint on the simplicity

of solutions: it was considered an error, or in any case an illegitimate move to solve a

problem with means more complicated than necessary.

An example of reading of Pappus’ norm in terms of simplicity is offered by Marin

Mersenne, in his Harmonie Universelle (1636), where curves are classified into plane,

solid and linear, probably on the grounds of their constructional simplicity. Indeed,

circles and straight lines (plane curves), whose construction - points out Mersenne - is

postulated by Euclid at the beginning of the Elements, are also the simplest geometrical

curves. Conic sections follow plane curves in an ordering of decreasing simplicity, since

they are produced by cutting a cone, in its turn generated by the rotation of a straight

line around the circumference of a circle. Finally, Mersenne groups those curves tra-

ditionally excluded from the other two classes: conchoids, spirals, quadratrices, whose

description is barely judged "almost impossible".6

Mersenne also reformulated Pappus’ requirement, according to the virtue of simplicity:

Il semble raisonnable que tout Probleme qui peut estre resolu par les lieux

plans, soit resolu par les lieux plans, et que celuy qui ne pouvant estre resolu

par les lieux plans seuls, le peut estre par les lieux solides seuls, ou meslez

avec les lieux plans: en fin quand un Probleme est de telle nature qu’il ne peut

solves a problem of plane kind by means of conics, or linear curves, and, to speak generally, when it is
solved by a non-kindred kind (improprio genere)".

6The passage in its entirety is reproduced here: "Or comme les anciens, au rapport de Pappus, avaient
estimés que c’était une grande faute de resoudre par les lieux solides ou lineaires, un problème, qui de
sa nature pouvoit etre resolu par les seuls lieux plans, j’estime semblablement que la faute n’est pas
moindre, de resoudre par des lieux lineaires, ou par des mouvements impliqués, ou par des descriptions
è tatons, un problème que de sa nature peut etre resolu par des lieux solides. Car puis qu’entre les lieux
l’ordre est tel, que ceux que nous appelons plans sont les plus simples, à sçavoir la ligne droite, et la
circonférence du cercle, la description desquelles Euclide demande luy estre accordée au commencement
de les Elements: apres lesquels suivent les lieux solides, qui prennent leur origine de la section d’une
superficie conique, engendrée d’une ligne droite et de la circonference d’un cercle (...) qui sont suivis des
lieux que l’on appelle lineaires, engrendrez le plus souvent par deux mouvement impliquez, comme les
Choncoides, les Spirales, les Quadratrices et une infinité d’autres, dont la description est pour l’ordinaire
presque impossible. . . Mersenne [1636] , vol. 2, p. 407.
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estre resolu par les lieux plans ou solides, alors il est permis de le resoudre

par les lieux lineaires seuls, ou meslez avec les lieux plans, et solides: de

sorte toutefois que l’on se serve le plus que l’on pourra des lieux plans, et le

moins que l’on pourra des autres; et qu’une construction soit plus estimée, en

laquelle il n’entrera qu’un lieu solide, le reste estant plan, que celle en laquelle

entreront deux lieux solides, puis qu’à l’imitation de la nature, nous devons

tout faire par les moyens les plus simples.7

According to Mersenne, therefore, simplicity is rooted in the way nature operates, so

that a violation in the simplicity of the solution would result in a misunderstanding of

its nature.

An echo of this thesis is to be found in Fermat’s Dissertatio Tripartita, written after

december 1637:8

Puriorem certe Geometriam offendit qui ad solutionem cujusvis problema-

tis curvas compositas nimis et graduum elatiorum assumit, omissis propriis

et simplicioribus, quum jam saepe et a Pappo et a recentioribus determina-

tum sit non leve in Geometria peccatum esse quando problema ex improprio

solvitur genere.9

Fermat’s direct reference was Descartes, who offered a similar view in his Géométrie of

1637.

We can therefore conclude that a reading of Pappus’ classification of problems presented

in Book IV, in terms of the simplicity of their solving curves, was current, or at any rate

not new during the first half of the XVIIth century, and that such a reading had influence

also Descartes’ understanding of Pappus’ requirement. Less clear were the directives

about how simplicity ought to be interpreted. In this setting, Descartes had certainly

the merit to propose a clearcut interpretation of simplicity as a fundamental criterion

for the classification of curves, which represented a touchstone for several generations of

future geometers.

7ibid.
8Mahoney [1973], p. 130.
9"Certainly it is an offense against the more pure geometry if one assumes too complicated curves

of higher degree for the solution of some problem, rather than taking the simpler and more proper
ones, because, as Pappus, and recent mathematicians as well, have often declared, in geometry it is a
considerable error to solve a problem by means that are not proper to it"(in Arana [2003], p. 256).
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4.3 Classifications of curves and problems

4.3.1 Ancient and modern classifications

In Descartes’ geometry, the concept of dimensional simplicity is directly dependent on

a classification of curves into kinds ("genres"), articulated in Book II and III of La

Géométrie, and ultimately on the degree of their associated equations.10 In this section,

I would like to evaluate it with respect to the ancient classificatory scheme proposed by

Pappus.

At the beginning of Book II of La Géométrie, Descartes praised the ancients for having

introduced a distinction between plane, solid and linear problems. I stress that Descartes

gave a positive assessment of this distinction, that he presumably had learned from

Pappus. This is confirmed by the fact that Descartes did not reject it but incorporated

the ancient classification into his own classificatory scheme: as I will explicate more

precisely below, problems are sorted out, in La Géométrie, into classes on the ground of

the nature of curves entering their solution.

Descartes remained however critical towards two aspects of the classifications of the

ancients. Firstly, he argued, ancient geometers had allegedly proposed a misgiven dis-

tinction between geometrical and mechanical curves; secondly, they lacked a more fine-

grained distinction into classes of geometric curves beyond the conic sections.

But Descartes might have perceived another quandary with respect to the ancients’

grouping of problems and curves. As I have commented before (in particular, in chapter

2 of this study), in Books III and IV of Pappus’ Collection, we encounter a classification of

construction problems based on the means needed for their solutions. This classification

entailed a major logical difficulty: one problem could in priciple be solved by methods

and curves of different kinds in such a way that, except for certain cases, deciding the

appropriate level of a construction problem may turn out to be a complex, and perhaps

undoable task in classic geometric reasoning.

I shall thus argue, in what follows, that Descartes’ reform of the classifications of the

ancients, obtained through the substantial contribution of algebra, could represent an ad-

vance over ancient models because it offered a more reliable method in order to establish

the nature of a proposed problem.

10See, for instance: Sasaki [2003] (p. 222ff.) and in Bos [2001], p. 355ff.
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4.3.2 A classification of curves

Descartes elaborated in book II of La Géométrie a classification of curves into successive

classes ("genres") determined by the degree of the associated equations:

. . . lorsque cette equation ne monte que iusques au rectangle de deux quan-

tités indeterminées, ou bien au carré d’une mesme, la ligne courbe est du

premier et plus simple genre, dans lequel il n’y a que le cercle, la parabole,

l’hyperbole et l’ellipse qui soient comprises. Mais que, lorsque l’equation

monte iusques a la trois ou quatrieme dimension des deux ou de l’une des

deux quantités indeterminées: car il en faut deux pour expliquer icy le rap-

port d’un point a un autre: elle est du second. Et que, lorsque l’equation

monte jusqu’a la cinq ou sixiesme dimension, elle est du troisiesme: et ainsy

des autres a l’infini.11

Descartes explains that a curve is more complex ("composé") than another one when it

belongs to a kind higher than the kind of the second curve. This ordering of curves into

kinds proceeds, in La Géométrie, in a pairwise manner: the first class (genre) includes

curves associated with equations in degres 1 and 2 (the degree of an equation is to be

understood in the modern sense, namely, it concerns both unknowns taken together. In

this way, the monomial ‘xy’ will have degree 2), that is straight lines, circles and the other

conic sections; the second class includes curves associated with equations in degrees 3

and 4, like the cartesian parabola introduced in book III of La Géométrie;12 the third

class will include curves expressible with equations in degree 5 and 6, and so on, for any

couple of equations of degree 2n, 2n− 1.13

The motivations of this pairwise grouping are thus explained:

Au reste je mets les lignes courbes qui font monter cette Equation jusqu’au

quarré du quarré au mesme genre que celles qui ne la font monter que iusques

au cube. & celles dont l’equation monte au quarré du cube, au mesme genre

que celle dont elle ne monte qu’au sursolide, & ainsi des autres. Dont la

raison est, qu’il y a reigle generale pour reduire au cube toutes ls difficultés

11Descartes [1897-1913], vol. 6, p. 392-393.
12Descartes [1897-1913], vol. 6, p. 481ff.
13I remark that Descartes’ classification does not take into account the case of degenerate curves of

any degree.
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qui vont au quarré du quarré, & au sursolide toutes celles qui vont au quarré

de cube, de façon qu’on ne les doit point estimer plus composées.14

Even after this explanation, the rationale of Descartes’ pairwise classification is not ob-

vious. It might have been based on purely algebraic concerns, as Bos [2001] suggests.

Descartes might have thought, for instance, to import into the structure of his classifi-

cation of curves two important algebraic facts known and currently applied by the mid

XVIIth century: on one hand the fact that equations of 4th degree can be reduced to

equations of 3rd degree, and on the other, the fact that third degree equations withstood

all attemps to be reduced to quadratic equations.15 On this ground, it would make sense

to range together in the same class problems described by quartic and cubic equations,

for instance, and in contrast to range curves described by cubic and quadratric equations

in different classes, respectively.

This could have been the starting point taken by Descartes in order to generalize the

pairwise classification holding for curves, until the 4th degree, to successive couples of

curves, associated to equations of degree 2n and 2n− 1, respectively (with n > 2). This

interpretation is endorsed by Fermat, for instance, who noted:

Similiter quoque cubocubicam aequationem ad quadratocubicam sive æqua-

tionem sexti gradus ad equationem quinti deprimet, licet aliquanto difficilius,

Vietaeus aut Cartesianus Analysta. Ex eo autem quod in praedictis casi-

bus, in quibus una tantum ignota quantitas invenitur, æquationes graduum

parium ad aequationes graduum imparium proxime minorum deprimuntur,

idem omnino contingere in aequationibus in quibus duae ignotae quantitates

reperiuntur confidenter pronunciavit Cartesius pagina 323 Geometriae lingua

gallica a ipso conscriptae.16

14Descartes [1897-1913], vol. 6, p. 395-396.
15The notion of reducibility here considered is a technique which obtains of equations of the form

H(x) = U(V (x)). In order to reduce such equations, it is necessary at first to solve U(y) = 0, then,
inserting the value for y, to construct y = V (x). Descartes followed this technique in solving quartic
equations: at first he transformed a 4th degree equation into a 6th degree one, and subsequently he
transformed the latter into a third degree equation in x2. See Bos [1984], p. 342-343. ‘Reducibility’ is, in
this context, a technical term employed to denote a particular algebraic process. As I will explain later
on, it should be distinguished from another type of reducibility, obtained by factoring a given polynomial.

16As we read in Mahoney’s translation: "In a similar manner, (though with somewhat more difficulty)
the Vietian or Cartesian analyst will reduce a cubo-cubic equation to a quadrato-cubic, i.e an equation
of the sixth to one of the fifth degree. And, because in the aforesaid cases, in which there is only one
unknown quantity, equations of even degree can be reduced to the next lower odd degree, Descartes has
confidently asserted on p. 323 of the French version of his geometry that exactly the same thing holds
true of equations in which there are two unknown quantities" (Mahoney [1973]p. 134).
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However, Descartes’ commitment to such a strong and unproved conjecture in order to

ground his classication of problems remains stunning, and grounded on ouright false

premisses. Indeed, his claim about reducibility could be proved only for n = 2, as

Ferrari’s and Viète’s rules for solving quartic equations show, but there is no possible

reduction of sextics to quintics, and, at any rate, no argument (even flawed) was advanced

by Descartes to warrant this fact.17

Anyhow, Descartes’ choice to privilege a criterion of classification based on equations re-

mains a noteworthy fact. Since an equation incorporated, according to Descartes’ saying,

all information about the properties of a curve, we shall conclude that Descartes’ classi-

fication into kinds is primarily based on the ‘specification of properties’ of curves. This

is a relevant difference with respect to Pappus’ classification of curves, which depends

on their genesis, or even from the classification of curves adopted by Descartes himself

in his early writings.18

The ancients were certainly not ignorant of ways of characterizing curves by their prop-

erties. For instance, by solving locus-problems or proving locus-theorems, they were

possibly able to endow supplementary properties to the curves they could construct and

characterize via their symptoms. But I want to stress another point already emerged in

this study: while ancient geometers lacked a systematic means in order to express all the

properties of a curve, Descartes possessed, on the contrary, a compact symbolic notation

17But, as suggested especially by Freguglia (Freguglia [1999b], p. 173ff.) the mention of a "general
rule in order to reduce to the cube all difficulties that go to the quadrato-quadratic (quarré du quarré)"
might be also read as a reference to the fact that Descartes possessed a technique, detailed in Book III
of La Géometrie, in order to construct both 4th and 3rd degree equations (in one unknown) by means
of the same choice of curves, namely a parabola and a circle (I shall delve into an example in one of
the next sections). As I have discussed in the previous chapter, an equation issued from the analysis
of an indeterminate problem, thus an equation in the form: F (x, y) = 0, can be associated to a curve
constructible point by point, according to Descartes’ problem-solving protocol, by taking one of the two
unknowns, i.e. y, and replace it by a letter denoting a known segment (i.e. the letter a), so that the
resulting equation will be: F (x, a) = 0 . So, if F (x, y) = 0 has degree 2, it can be pointwise constructed
by ruler and compass; if F (x; y) = 0 has degree 3 or 4 (namely, if it is a cubic or a quartic), its points are
costructible by intersections of a circle and a parabola, which is indeed the standard procedure adopted
by Descartes, in Book III of La Géométrie. Likewise, Descartes constructed equations of degree 5 and 6
(in one unknown) by means of the same apparatus, and was confident that this pattern could be extended
indefinitely. Might this be the rationale in the backdrop of Descartes’ classification into genres of curves?
This possibility cannot be ruled out, although it seems problematical. Let us suppose, for a moment,
that it were the case. Then we would have a classification scheme for curves grounded on a technique for
constructing equations, which in its turn depends on the choice of the simplest curves, as I will explicate
in the next section. This amounts to saying that Descartes’ technique for constructing equations depends
itself on a classification of curves into kinds, so that it cannot ground that very classification.

18For instance, ch. 3, p. 104.
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for this aim, since he could rely on equations.19

R. Rashed has underlined, in his Rashed [2005], the historical significance of the shift

from classifying curves on the ground of their mode of generation to classifying curves

on the ground of their properties, remarking:

C’est en effet un événement dans l’histoire des mathématiques lorsque le

mode de génération de la courbe et sa formule président conjoinctement à sa

classification. C’est d’abord pour les coniques qu’un tel événement se produit,

au X siècle (. . . ) puis pour les courbes algébriques avec Descartes.20

According to Rashed, the criterion of classification adopted by Descartes was the culmi-

nating point of an evolution whose seeds can be found already in arabic mathematics. I

will not discuss this thesis here, except for observing that Descartes’ classification scheme,

although being grounded on the ‘specification by property’ does not rule out the mode

of generation of curves as a principle for ordering curves.

On the contrary, Descartes recognized the existence of a layer of complexity of curves

not fully captured by the classification of curves into kinds. For instance, conic sections

and the circle are all curves of the first class, according to the scheme presented in

La Géométrie, although Descartes conceded that one could solve more problems using

conic sections than by using solely circles and straight lines. Descartes agreed, as a

consequence, that his classification into kinds of curves did not fully express, in itself,

the ‘power’ of curves in problem solving. This property is portrayed, perhaps a bit

vaguely in La Géométrie, with the following words:

mais il est a remarquer qu’entre les lignes de chaque genre, encore que la

plupart soient esgalement composées, en sorte qu’elles peuvent servir a déter-

miner les mesmes points, & construire les mesmes Problesmes, il y en a

toutefois aussy quelques unes, qui sont plus simples, & qui n’ont pas tant

d’estendue en leur puissance, comme entre celles du premier genre (...) le

cercle, qui manifestement est plus simple, & entre celles du second genre il

y a la Conchoide vulgaire (...) & il y en a encore quelques autres, qui bien

19See Descartes [1897-1913], vol. 6, p. 412, in particular the title of the paragraph: "Pour trouver
toutes les propriétés des lignes courbes il suffit de sçavoir le rapport qu’ont tous leurs points a ceux des
lignes droites". Cf. also Sasaki [2003], p. 220ff.

20Rashed [2005]. p, 5.
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qu’elles n’ayent pas tant d’estendue que la plus part de celles du mesme genre,

ne peuvent toutefois estre mises dans le premier.21

With hindsight, we can recognize here a dim intuition of the notion of constructional

complexity of curves, worked out in a fully-fledged form only in late XIXth and early

XXth century.22 The distinction advanced by Descartes between curves that, within

the same kind, have a less or more extended application in problem solving, remains

grounded on a mix of qualitative considerations, either concerning the genesis of the

curve itself, or the knowledge of its employment in solving problems, derived from the

geometers’ experience. For instance, Descartes was well conscious that ruler and compass

(or, analogously, straight lines and circles) cannot solve problems that are solvable by the

use of conic sections instead. On the other hand, Descartes noted that the circle is also

generated in a simpler way than the hyperbola, for instance, which is a curve of the same

class.23 Analogously, the conchoid, being generated by a pivoting line that moves a circle

will be simpler, from the point of view of its constitution, than a cartesian parabola,

generated by a pivoting line and a moving parabola, although both curves belong to the

same class (both constructions are analyzed in chapter 3, sec. 3.2.1 and sec. 3.2.1).

21Descartes [1897-1913], vol. 6, p. 396.
22The possibility of associating analytic operations to geometric constructions in order to determine

the constructional possibilities of the diverse instruments, or curves, offers also a criterion in order to
judge the range of problems a given set of instruments or curves can solve. In this way, it is possible to
define, in mathematically precise terms, the "constructional power" of a curve. This issue is discussed
by Federigo Enqriques in Enriques [1912], vol. 2, p. 583, for instance: "Since we can associate to
any instrument (whose mode of employment has been fixed in advance) a body of solvable problems,
the power of the instrument can be rightly appreciated with respect to the extension of this field. If
two instruments, or groups of instruments, correspond to the same body, they must be regarded as
equivalent . . . ". Enriques refers then to the problem of determining the constructional possibilities of
several instruments, namely ruler and compass, ruler alone, and compass alone. A companion article,
written by Castelnuovo, provides further insight into the question, from the viewpoint of the latest
advances in the field of algebra and analytic geometry: "The examination of the problems solvable by
ruler and compass, and more generally by other instruments, involves two stages, one concerning analytic
geometry, the other concerning algebra or analysis. It must be examined which effects are produced,
upon a geometrical figure, by a construction performed through a given instrument. And because, by
the means of analytic geometry, any geometric operation corresponds to an analytic operation, one must
search for the analytic operation equivalent to a construction performed by some instruments (a ruler, a
compass . . . )" ((Enriques [1912], vol. 2, p. 314). Underscoring this programme, we find several concepts
foreign to the conceptual framework of Descartes’ geometry. It is the case, for instance, of the idea of
an analytic geometry over the reals, that cannot be found in force within Descartes’ geometry, where
algebra is but a compact notation for expressing proportions between geometric quantities, as seen in
the previous chapter.

23Cf. Descartes [1897-1913], vol. 6, p. 395:.
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It can be inferred from the above examples that Descartes did not dismiss, alongside

with a classification of curves based on degree, a classification of curves based on the

complexity of their generation. Descartes indeed set up, in Book II of La Géométrie,

a correspondence, never elaborated any further though, between the complexity of the

linkages which construct geometric curves and the kinds to which the constructed curves

belong. This correspondence can work, in principle, on the ground of the compositional

nature of linkages: in brief, the fact that a curve traced by some linkage can enter in the

composition of a new linkage makes the latter more complex.

On the ground of this intuition, Descartes observed that if one removes, from the linkage

employed in order to construct a curve of the first kind (e.g., an hyperbola), one of

its components (for instance, a ruler) and he replaces this ruler with a curve of the

first kind (for instance, a parabola) a curve of the next kind can be obtained, like the

cartesian parabola described in chapter 3 (p. 143). Descartes extrapolated from this

correct example an incorrect generalization it to successive kinds of curves:

Mais si, au lieu d’une de ces lignes courbes du premier genre, c’est en une du

second genre qui termine le plan CNKL on en descrira, par son moyen, une

du troisieme: ou, si c’est une du troisieme, on en descrira une du quatrieme;

et ainsi a l’infini, comme il est fort aysé a connoistre par le calcul.24

Calculations themselves fail to come up with Descartes’ expectations. In fact, as Fermat

will show with a simple but accurate counterexample, if one inserts in the linkage de-

scribed in the second Book of La Géométrie (see Descartes [1897-1913], vol.6, p. 393),

following Descartes’ instructions, a particular curve of the third class (namely, the cubic:

y3 = x), the new geometric linkage will trace a curve of the third class again, and not of

the next higher class, as Descartes predicted.25

From this counterexample, we can conclude that the cartesian classificatory scheme of

curves based on the degree of their associated equations fails to capture some relevant

aspects of the constructional and, more generally, geometrical complexity of curves. I

surmise that this failure engenders a tension, in Descartes’ ordering of problems and

curves, between specification by genesis and specification by property, in the sense that

curves constructionally more complex than other ones does not necessary fall into a higher

kind. An analogous tension caused by an imperfect mirroring between the complexity of

24Descartes [1897-1913], vol.6, p. 395. See this study, chapter 3, section 3.2.
25Cf. Mahoney [1973], p. 136.
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the construction of a curve, on one hand, and its algebraic characteristics like the degree,

on the other, will emerge also in the opposition between simplicity and easiness, as I will

develop in the sequel.

4.3.3 A Classification of problems

Similarly to the case of curves, Descartes sketched a hierarchy of problems by sorting them

out into classes according to the degree of their associated equations. This classification

does not occupy a dedicated section in the treatise, but it is deployed throughout Book

I to Book III of La Géométrie.

For instance, the classification of curves articulated in the second Book of La Géométrie

is applied, few lines after having been introduced, in order to classify the various cases

of Pappus’ problem, as the following survey made by Descartes reveals:

Or après avoir ainsy reduit toutes les lignes courbes a certains genres, il m’est

aysé de poursuivre en la demonstration de la reponse, que j’ay tantost faite

a la question de Pappus. Car premierement ayant fait voir cy dessus, que

lorsqu’il n’y a que trois ou 4 droites données, l’equation qui sert à determiner

les points cherchés, ne monte que iusqu’au carré; il est evident que la ligne

ou se trouvent ces points est necessairement quelque une de celles du premier

genre, a cause que cete mesme equation explique le raport, qu’ont tous les

points des lignes du premier genre a ceux d’une ligne droite. Et que lorsqu’il

n’y a point plus de 8 lignes droites données, cete equation ne monte que

iusqu’au quarré du quarré tout au plus, et que par consequent la ligne cherchee

ne peut estre que du second genre tout au plus . . . 26

Descartes proceeds, in the same Book II, to prove the results stated above, at least for the

problem of Pappus in three or four given lines, and shows that one can obtain all conic

sections as solutions; then he goes on to examine cases of Pappus’ problem in a higher

number of lines, and discusses the corresponding curve-solutions. Recently, scholars have

investigated in detail both Descartes’ exposition of the solution of the problem of Pappus,

made in the second Book of La Géométrie, and the ancillary discussions raised by the

recipients and correspondants within Descartes’ circle.27 This section of Descartes’ work

is therefore well known, and since it is not directly relevant to my present theme, I shall

26Descartes [1897-1913], vol. 6, p. 396.
27In particular: Bos [1981], p. 299-300, 315, 332ff . Bos [2001], chapter 23 in particular; see also:

Maronne [2007].
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confine myself to schematizing the core of Descartes’ classification as it results from the

summary offered in the above passage:

• If the locus is in 3 or 4 lines, the equation of the locus is of degree at most 2, the

locus is of the first class, on the ground of the previous classification of curves.

• If the locus is in 5, 6, 7 or 8 lines, the equation of the locus is of degree at most

4, the locus is of the second class (even if, in exceptional cases, the locus is of the

first class).

• If the number of given lines is between 9 and 12, the equation of the locus is of

degree at most 6, so that the locus is of the third class, and of the lower class in

exceptional cases.

• etc.

But this is not the only classification of the problems of Pappus discussed in Descartes’

Géométrie. In the final section of Book I, in fact, Descartes sketches another general

classification that, in his hopes, ought to encompass all instances of Pappus’ problem.

As in the previous classification, different cases are singled out into classes according to

the degree of the equation (namely F (x, y) = 0) obtained as a result of their analysis.

Hence, if we call n the number of given lines and k the degree of the equation associated

to the problem, the classification deployed by Descartes boils down to the following

scheme:28

• For n = 3, 4 and n = 5, in the case of five non-parallel lines, the degree of the

associated equation will be at least k = 2, and the points on the locus can be

constructed by ruler and compass;

• For 5 parallel lines, 6 ≤ n ≤ 8, and n = 9, if 9 lines are non parallel, the degree of

the associated equation will be k = 3, 4: the points on the locus can be constructed

by intersection of conic sections;

• For 9 parallel lines, 10 ≤ n ≤ 12, and n = 13, if the configuration of the problem

presents thirteen, non parallel lines, the degree of the associated equation will be

k = 5, 6. Descartes asserts that the points on the locus cannot be constructed

without the employment of curves more complicated than conic sections.

28See Descartes [1897-1913], vol. 6, p. 386-387. For an exhaustive discussion of Pappus’ problem, the
derivation of the equation for its locus and the constructions, see Bos [2001], especially chapter 23.
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The rationale of the classification presented in the first book is subtly different from

the one of the second Book, that I have presented before. Indeed, it reflects a hierar-

chical order among the cases of the problem of Pappus with respect to the pointwise

constructability of the curve-solutions: this classification is not grounded on the class of

the curve or locus that offers the solution to the problem, but on the means (namely, the

curves) that can effectuate its pointwise construction.

As seen in the previous chapters, Descartes set up a uniform methodology in order to

treat the constructions of indeterminate and determinate problems alike. Essentially,

indeterminate problems are solved once their corresponding equations in two unknowns,

i.e. F (x, y) = 0 are reduced to equations in one unknown. i.e :F (x, a) = 0. The problem

of Pappus in 3 and 4 lines, for instance, is reducible to a second degree equation, and

can be constructed - so Descartes relates - in the same way as a determinate problem of

the same degree, namely by ruler and compass.29

If one wishes to construct the curve-solution of a case of Pappus’ problem in higher

number of lines, the ruler and the compass soon become inadequate. As Descartes

suggests in Book I, the case of Pappus’ problem in five lines, four of which are parallel,

illustrates well this difficulty: the corresponding equation will be of third degree and -

Descartes maintains - cannot be constructed by ruler and compass, but will require conic

sections instead. In an analogous way, when the equation to which the problem has been

reduced is of degree five of six, then its solution will admit of curves "one degree higher

than the conic sections" (Descartes [1897-1913], vol. 6, p. 387).

I point out that Descartes does not explain, in Book I, why a problem of Pappus in

more than three or four lines, reducible to an equation of degree higher than 2, is not

constructible by ruler and compass. The relation between degree and constructability

is further studied in the third book of La Géométrie, where Descartes discusses the

construction of equations and correlated problems in a more thorough way.

Perhaps not surprisingly, we find, in that book, a classification of problems (both determi-

nate and indeterminate) into classes, which follows the same rationale of the classification

29See Descartes [1897-1913], vol. 6, p. 374, p. 386. In exceptional cases, the equation corresponding
to a locus of the problem of Pappus is in one unknown only. This occurs when the given 2n and 2n− 1
lines are all parallel: the result will be an equation in one unknown, of degree at most n, and the locus
will consist in a number of straight lines parallel to the given lines (Bos [1981], p. 300).
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of locus problems presented in the first Book (and schematized above). Basically, the

kind to which a problem belongs is grounded on the degree of the associated equations:

. . . si la quantité inconnue a 3 ou 4 dimensions, le Problesme pour lequel on

le cherche est solide, et si elle en a 5, ou 6, il est d’un degré plus composé, &

ainsi des autres (. . . ) . . . 30

Few lines below Descartes adds:

Or, quand on est assuré que le problème proposé est solide; soit que l’equation

par laquelle on le cherche monte jusqu’au quarré du quarré, soit qu’elle monte

jusqu’au cube, on peut toujours en trouver la racine par l’une des trois section

coniques . . . 31

On one hand, Descartes sketches, in these passages, a pairwise classification of problems

based on the degree of their associated curves, and claims that the degree of the equation

(provided the equation cannot be factored any further: I will discuss the problem of

factorization, in more detail below) on which a problem depends gives information on

the required solving means.

Descartes’ classification did not end here, at any rate, but was conceived as indefinitely

continuing. For instance, problems of higher degree than the five or sixth are mentioned

elsewhere, as we can read in a letter to Mersenne dating from 1638:

. . . de façon que ceux qui ont envie de faire paroistre qu’ils sçavent autant

de Geometrie que j’en ay ecrit (. . . ) devroient plustost s’exercer (. . . ) a

construire tous les Problesmes qui montent au quarré du quarré du quarré,

ou au cube de cube, comme j’ay construit tous ceux qui montent jusqu’au

quarré de cube.32

Generally speaking, Descartes maintained that a class of level n should contain problems

reducible to equations of degree 2n and 2n−1. Starting with n = 1, problems reducible to

equations of degree 2 or 1 belong to the same class, then problems reducible to equations

of degree 4 and 3 ought to be ranged in the same class, different from the previous

30Descartes [1897-1913], vol. 6, p. 464. The term "degré" is here vague. In fact it can be doubted
that it refers to the algebraic notion of degree of the equation, for which Descartes generally employed
the french term ‘dimension’. Descartes might be referred to the level of the problem, in the hierarchy
established by the degree of the associated equation.

31Descartes [1897-1913], vol. 6, p. 464.
32Descartes [1897-1913], vol. 1, p. 493.
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one, and so on, along the same pattern, for any n. This numerical classification is of a

descriptive type: a problem belongs to the first, second . . .nth class because its associated

equation has recognizable properties, expressed by its degree.

Let us remark that Descartes also gave concession to the classical, pappusian terminology,

as he currently employed adjectives as "plane" and "solid" in order to refer to the nature

of problems, together with newly cashed-out terms as "one-level more complex" ("un

degré plus composé") which stood for geometric questions never or hardly ever addressed

by the ancients, or generally ranged among the "linear" ones, according to Pappus’

lexicon.33

The use of such a classical terminology underscores, I surmise, an important connection

between Descartes’ and Pappus’ classifications. Problems reducible to quadratic equa-

tions are judged, in fact, ‘plane’ because they can be solved by the intersection of circles

and straight lines. Likewise, problems reducible to third and fourth degree equations

are ‘solid’ as they require the use of at least one conic section for their solution. Hence,

the hierarchy of problems classified according to the degree of their associated equations,

at least for what concerns the first and the second class, incorporated the classical dis-

tinction into solid and plane problems into a larger scheme, extendible in principle to

any geometric curve and problem, provided it could be reduced to a finite polynomial

equation.

But the pairing between Descartes’ numerical classification based on the degree of the

associated equation (provided it cannot be further reduced: this point will be touched

also later on) and the pappusian classification into plane and solid problems, asserted

already in the first Book of La Géométrie is not obvious.

If we remain to Descartes’ general deliberations offered in Book I, it seems that the

construction of a problem, once it had been reduced to an equation, and after having

applied all ‘possible divisions’ in order to see whether its degree can be lowered, would

33Indeed the only problems unsolvable either by conic sections or plane means known to the Greeks
either concerned the rectification of the circumference, or the division of the angle into an arbitrary
number of parts. For instance, there are no extant sources attesting that ancient Greeks geometers
occupied themselves with the construction of regular polygons non constructible by ruler and compass
(these were dealt with in Euclid’s Book IV of the Elements) or by solid techniques (the only case,
concerning the construction of a regular heptagon, is extant in arabic, but not in Greek sources: see
Hogendijk [1984]), like the regular polygon with 11 or 13 sides, two examples of polygonal constructions
evoked in Descartes’ Géométrie (Descartes [1897-1913], vol. 6, p. 484) as instances of problems "one-
degree more complex" than the solid ones.
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follow as an almost obvious consequence.34 We can concede that questions reducible to

quadratic equations did not pose any problem for Descartes: as it was sanctioned by a

long tradition of studies, the appeal to "la Geometrie ordinaire", namely to by straight

lines and circles "tracées sur une superficie plate", represented the most natural choice.35

On the contrary, the choice of the solutions in the case of higher degree problems was

not an obvious matter for early modern geometers, nor for Descartes.

As our overview in chapter 2 has shown, problems unsolvable by Euclidean means, like

the insertion of two mean proportionals or the trisection of an angle were not treated in

a unitary way before the advent of Descartes’ problem-solving strategy, but broached by

several techniques. These problems were either treated by means of neusis constructions

(see ch. 2, p. 45), or by employing conic sections (forexample, an hyperbola and a circle,

employed in order to construct the neusis required for the trisection discussed in the

Collection. See ch. 2, p. 50; or an hyperbola and a parabola, for the well-known case of

the insertion of two mean proportionals, handled by Maenechmus. For this last example,

see 3, 120 ff.), or linear curves, as in Pappus’ construction of two mean proportionals,

which demands to trace a conchoid (see ch. 2, sec. 2.3.1).

In these cases, it was not the lack of solving methods, but their excess which might cause

troubles for a rational organization of curves and problems. How can one decide, in

fact, the most adequate method in order to construct an equation or a problem, when

different possibilities are available, and are all technically correct? In order to answer

to this question, Descartes introduced the normative requirement which proclaims to

solve each problem in the dimensionally simplest manner, that we have examined in the

first section of this chapter. On the ground of this principle of simplicity, Descartes

could adopt the classical terminology of ‘plane’, when referring to problems reducible to

quadratic equations, and ‘solid’, when referring to problems reducible to equations in the

fourth or third degree.

34Cf. Descartes [1897-1913], vol. 6, p. 374.
35Cf. Descartes [1897-1913], vol. 6, p. 374. On the construction of quadratic equations by ruler and

compass, before Descartes, see: Bos [2001], chapter 4. In particular, Descartes states, in the first Book of
La Géométrie, that if a problem is "plane", then: ". . . lorsque la derniere equation aura esté entierement
démeslée, il n’y restera tout au plus qu’un quarré inconnu, esgal a ce qui se produit de l’Addition, ou
soustraction de sa Racine multipliée par quelque quantité connue, et de quelque autre quantité aussy
connue" (Descartes [1897-1913], vol. 6, p. 374). As correctly observed in Lützen [2010] (p. 13) this
statement is not proved. A proof of the converse claim is given instead: if a problem can be associated to
a quadratic equation, at the end of analysis, then it is constructible by the means of ordinary geometry
(Descartes [1897-1913], vol. 6, p. 375ff .).
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I shall discuss, in the following section, this requirement in the context of a case study,

namely the problem of inserting two mean proportionals, and argue that the choice

of dimensional simplicity is by no means an obvious strategy to take, especially if we

confront it with other possible strategies arisen in the very activity of problem solving.

4.4 Construction of third and fourth degree equations

A core result in the domain of solid problems, obtained by the end of XVIth century,

was the following: any problem leading to fourth or a third degree equations could be

effected by means of ruler and compass, and by either solving the problem of inserting

two mean proportionals or by solving the trisection of an arbitrary angle. This result was

stated in the final proposition of François Viète’s Supplementum Geometriae, published

in 1593.36 Certainly aware of Viète result, early modern geometers must have concluded,

in the backdrop of their knowledge of Pappus’ Collection, that any problem leading to

fourth or third degree equations could be effectuated by straight lines, circles and by conic

sections: it was therefore a solid problem, according to the classification of Pappus.37

Starting from these results, Descartes succeeded in framing into a unitary strategy the

different cases of problems leading to cubic (and quartic) equations, based on a unified

geometric procedure in order to construct fourth and third degree equations, that he

published for the first time in La Géométrie.38

Let us recall that in cartesian geometry, all equations code proportions between segments,

and are therefore algebraic equations of finite degree. The construction of an equation
36This result is contained in proposition XXV, labelled: "Consectarium generale" (Viète [1646], p.

256). For conciseness, we might resume the procedure followed by Viète by observing that it conflates
an algebraic and a geometric part. Firstly, Viète relied on a result obtained in another work of him, the
De aequationum recognitione et emendatione tractatus duo (published only in 1615) in order to state
that all fourth degree equations could be reduced, via quadratic equations, to third degree ones, and any
equation of third degree could be reduced to the following forms forms by removing the quadratic term:
(i) x3 = a2b; (ii) x3 + a2x = a2b; (iii) x3 − a2x = a2b; (iv) a2x− x3 = a2b, with a, b > 0. Subsequently,
Viète argued that the cases of third degree equations just listed not only formed a complete set, in the
sense that any cubic equation could be reduced to one of these forms, but they (or their suitable variants)
corresponded either to the problem of inserting two mean proportionals, or to the trisection of an angle
(for a presentation of this result, see Bos [2001], ch. 10). Hence, any fourth or third degree equation
could be solved by straight lines, circles (let us recall, indeed, that quadratic equations are involved in
the reduction of a fourth degree equation) and by constructing either the problem of inserting two mean
proportionals between given segments or by trisecting an angle.

37I point out, however, that Viète did not rely on the intersection of curves in order to solve solid
problems, but on constructions by neusis, that he grounded on a specific postulate, in his Supplementum
geometriae. See Viète [1646], p. 240.

38Although the discovery of both constructions dates back to the 1620s (See Bos [2001], chapter 17).
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was, in Descartes’ programme, a technique consisting in exhibiting, through the inter-

section of a pair chosen curves, as many segments as the number of real positive root(s)

of the equation at hand.39 Generally speaking, the aim of Descartes’ solving strategy

consists in finding, given an algebraic equation in one unknown, like H(x) = 0, resulting

as the outcome of the analytical stage, two curves F and G of equation, respectively,

F (x; y) = 0 and G(x; y) = 0, such that the roots of H(x) = 0 occur among the abscissae

of their intersection points.

In more formal terms, this comes down to state that the first member of the equation

H(x) = 0, that we consider irreducible,40 must be a factor of ℜF ;G(x) = 0, i.e. the

equation obtained by eliminating y from F (x; y) = 0 and G(x; y) = 0.41

I will refer to Bos [1984] for a general presentation of the technique for constructing

equations. Let us consider, in order to offer sketch of its main tenets, the general case of

a problem, whose analysis has provided the following equation:

H(x) = anx
n + an−1x

n−1 + an−2x
n−2 . . .+ a1x+ a0 = 0

Constructing this equation boils down to exhibit two geometric curves F and G of equa-

tion, respectively, F (x; y) = 0 and G(x; y) = 0, such that the roots of H(x) = 0 occur

among the abscissae of their intersection points. These curves are required to obey to the

39The technique for solving equations geometrically was a subject of research in mathematics and
part of current teaching between 1637 (indeed, the first contributions made by Descartes are exposed in
Book III of La Géométrie) and approximately 1750. The subject is exposed in detail in Bos [1984]. In
here, the author does not limit to treat it as a "technique" in geometry, but it goes on to consider it
a "mathematical theory" strictly related to the theory of curves and the algebraic theory of equations,
and offers a study of the reasons of its rise and subsequent decline during the half of XVIIIth century.

40The algebraic structure to which the coefficients of the equations discussed in La Géométrie generally
belong is the ring Z[a, b, c . . .], obtained from the ring of the integers by adding a finite number of
independent quantities, that express the given segments of the problem from which the equation to be
studied derives.The polynomials considered by Descartes are always monic, namely, they have leading
coefficient equal to 1, or ae always reducible to monic polynomials. The reason of choosing the special
ring Z[a, b, c . . .] is well grounded in the text of La Géométrie. In fact Descartes gives, in Book III,
general rules in order to transform all the rational coefficients appearing in an equation H(x) = 0 into
integers, and all irrational into rationals, whenever it is possible (Descartes [1897-1913], vol. 6, p. 454).
Once performed these transformations, one can obtain an equation in integer coefficients, with leading
coefficient equal to 1, while the degree remains unaltered. Descartes illustrated other transformations,
which modify the equation still leaving unchanged its degree: he taught how to change all negative roots
into positive ones, and how to suppress the term xn−1 in a nth-degree equation (Descartes [1897-1913],
vol. 6, p. 455-456).

41On the peculiar notion of reducibility evoked here, see below, section 4.5.2 of this chapter.
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following conditions: (i) they both have to be geometrical curves (a condition assured by

their expressability through algebraic equations); (ii) the abscissas of their intersection

points must be roots of the equation RF,G(x) = AH(x) = 0, where A is a constant, or

a polynomial in x. The RF,G(x) = 0 is the equation obtained by eliminating y from

F (x; y) = 0 and G(x; y) = 0;42 (iii) the curves F and G must belong to the simplest kind

which construct the equation.

We do not meet this abstract presentation anywhere in La Géométrie, although we find

in this treatise noteworthy applications to the construction of particular equations, and

to the solution of associated geometric problems.43

Let us now examine how the cartesian technique of the construction of equations works,

for the cases associated to special problems discussed in La Géométrie, like the problem

of finding two mean proportionals between two given segments, offered in Book III of La

Géométrie.

4.4.1 Construction of a cubic equation

As I have pointed out in chapter 3 (sec. 3.1.1) the geometric analysis of the problem has

lead to a cubic equation: z3−a2q = 0, with a single real root for any choice of the givens

a and q.

Descartes derives the construction of this equation by adapting to this specific case a

general procedure for constructing third and fourth degree equations. He discusses several

constructions, corresponding to the different cases of the equations: z3 = ±apz ± a2q

and z4 = ±apz2 ± a2qz ± a3,44 and obtains, as a general result, that the (real) roots of

third and fourth degree equations can be constructed by intersecting a given Parabola

with a circle.45 Let us consider, for instance, how Descartes’ procedure can be applied

to the construction of a general third degree equation:46

42See Bos [1984], especially p. 342-345 for the technical details; and Bos [2001], chapter 26.
43See, in particular, chapter 2. See also Galuzzi [2010], p. 551.
44Descartes [1897-1913], vol. 6, p. 464. Descartes did not use this notation, which is a modern

reformulation adopted, for instance, in the English translation by Smith and Latham. In fact we read
in the original: "z4 =∗ .apzz. aaqz", and "z3 =∗ .apz. aaq".

45Descartes also states, without proof, that the same result can be obtained by substituting to the
Parabola an Ellipse or an Hyperbola: see Descartes [1897-1913], vol. 6, p. 464.

46Descartes [1897-1913], vol. 6, p. 465. I shall not give here the analysis, which is not offered by
Descartes either. An example of analysis can be found in Van Schooten’s Commentary: Descartes
[1659-1661], vol. 1, p. 324.
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P (z) = z3 + pz + q = 0

According to the cartesian protocol, a parabola is supposed given, with axis POT , vertex

O and latus rectum a = 1 (see fig. 4.4.1). A segment OC = 1
2 is then taken on the axis,

together wth a point P , whose distance from C is CP = 1
2p (P must be chosen within

the parabola if p < 1, and upward if p > 1). From point P , Descartes’ procedure requires

to trace a segmen PR = 1
2q (I note that PR is traced to the left, since q is positive in the

equation P (x) = 0. If q is negative, PR must be constructed on the right). With R as

center, the circle with radius RO is traced, which intersects the parabola in another point

(for the case at hand). Let us call ‘S’ the intersection point. ST will be the required

(real) root of the equation P (z) = 0, which must be taken as negative if S lies on the

left of T (positive otherwise).

A justification of the soundness of the above construction can be given, following Descartes’

reasoning, by solving this geometric problem:

Problem. Given a parabola with vertex O, axis POT and latus rectum equal to 1, and

a circle with center R and radius RO, to find the length of ST , intersection between the

parabola and the circle, provided segments OC, CP , PR are given (4.4.2).

Following Descartes’ analytic strategy, we can name the segments: ST = −z, and

OT = y. Since RO and RS are radii of the same circle of center R, RO = RS. More-

over, ROP is a right-angled triangle by construction, hence: RO2 = RP 2 + PO2. By

tracing the perpendicular SM from S to RP , a second right-angled triangle RMS can

be constructed, such that: RS2 = RM2 +MS2.

Let us consider the latter equality. We have set: ST = −z and RP = 1
2q. Hence

RM2 = (RP − ST )2 = (12q + z)2. It is clear from the diagram that MS = PT ,

and PT = PO + OT , and by setting OT = 1
2p − 1

2 , PT = y + (12p − 1
2). Therefore

MS2 = (y + (12p− 1
2))

2. We can write, by consequence:

RM2 +MS2 = RS2 = (
1

2
q + z)2 + (y + (

1

2
p− 1

2
))2. (4.4.1)
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Figure 4.4.1: Construction of a cubic equation.
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Let us then consider the equality: RO2 = RP 2 + PO2. Since RP = 1
2q and PO =

(12p− 1
2), we infer:

RO2 =
1

4
q2 + (

1

2
p− 1

2
)2. (4.4.2)

If we equate the 4.4.1 and the 4.4.2, the equation for the circle with center R and radii

RO and RS will be:

(
1

2
q + z)2 + (y + (

1

2
p− 1

2
))2 =

1

4
q2 + (

1

2
p− 1

2
)2.

Simplifying this expression, we obtain:

y2 + z2 + qz + (p− 1)z2 = 0 (4.4.3)

If ST = −z, then TO = y = z2, since, by the nature of the parabola, we have (let us

recall that we have the latus rectum equal to 1):

TO : ST = ST : latus

We can substitute z2 in the 4.4.3, and obtain:

z4 + pz2 + qz = 0.

But this equation can be simplified, since: z4 + z2 + qz+ (p− 1)z2 = z(z3 + pz+ q) = 0,

which is equal to the equation P (z) = 0 multiplied by a factor z. If we leave this factor

out, the remaining roots of the equation z4+pz2+qz = 0, are the same roots of P (z) = 0.

Therefore the length of ST can be found by constructing the equation P (z) = 0. This

conclusion warrants the correctness of the previous procedure for the construction of

equation z3 + pz + q = 0.
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Figure 4.4.2: The insertion of two mean proportionals according to Descartes.

4.4.2 The insertion of two mean proportionals

The problems of inserting two mean proportionals and the problem of trisecting an

angle, both reducible to cubic equations, are constructed by Descartes, in Book III of La

Géométrie, by adapting the above protocol to particular geometric situations.

Let us consider in more detail the case of the problem of inserting two mean proportionals

between the given segments a and q. Following Descartes’ argument in La Géométrie,

let us suppose that a parabola P is given with vertex A (which is its highest point) and

with latus rectum AO = a (fig. 4.4.2). Let us mark a point C on the axis, such that

AC = 1
2a, and from C raise the perpendicular CE to the axis, such that EC = 1

2q. A

circle C must then be constructed, with center E, and which cuts the parabola at its

vertex A (see 4.4.2). As shown in figure, the circle will cut the parabola at another point

F . Segments FL, namely the distance of F from the principal axis of the parabola, and

segment AL, cut on the principal axis, will be the sought for solutions for the problem

of inserting two mean proportionals between a and q.47

47Descartes [1897-1913], vol. 6, p. 469.
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We can verify that both curves construct the equation z3 − a2q = 0 according to the

general protocol for the construction of equations, and on this ground they can construct

the original geometric problem too. Firstly, it is immediate to check that the circle and

the parabola are geometrical curves. It is less easy to verify that the resultant ℜP ;C(x),

namely the equation obtained by eliminating y from P: F (x, y) = 0 and C: G(x, y) = 0,

equals the polynomial equation: z3−a2q = 0, in case multiplied by a factor z ( condition

ii above).

Condition (ii) can be verified in the following way. Let us set: FL = z and AL = y. Since

F lies on the parabola P with parameter OA = a, we can derive the following equation for

P: F (x, y) = z2−ay = 0. Let us draw the auxiliary segment FM , perpendicular to EC.

By construction, EC2+AC2 = EA2, and EM2+FM2 = EA2. From this we can deduce:

EA2 = q2

4 + a2

4 . But we also have by construction: FM2 = (AL − AC)2 = (y − a
2 )

2,

and EM2 = (FL− EC)2 = (z − q
2)

2. At this point, we can elementarily derive: EF 2 =

EM2+FM2 = (z− q
2)

2+(y− a
2 )

2 = z2+ q2

4 −qz+y2+ a2

4 −ay. Since EF = EA (they are

both radii of the same circle), this equality will follow: z2+ q2

4 −qz+y2+ a2

4 −ay = q2

4 + a2

4

, which yields the following equation for the circle C: G(x, y) = z2 + y2 − qz − ay = 0.

We can now form the system:

{
F (x, y) = z2 − a.y = 0

G(x, y) = z2 + y2 − qz − ay = 0

And by eliminating y from both equations we obtain z4

a2
− zq = z(z3 − a2q) = 0. But

this equation yields exactly the equation associated to the problem of inserting two mean

proportionals (namely: z3 − a2q), multiplied by a factor z.48

48A geometric proof of the correctness of Descartes’ construction was provided not by Descartes himself,
but by two outstanding mathematicians, Mydorge and Roberval, who also attained the same result,
probably independently. I remark that Descartes firstly communicated to Mersenne, during the year
1625-1626, the construction (without proof) of the mean proportional problem, by intersecting a circle
with a given parabola. Hence, this solution was discovered well before the writing of La Géométrie.
Descartes’ construction, accompanied by a proof given by Roberval, was published by Mersenne in his
Harmonie Universelle (1636). Meanwhile, in 1628, Descartes showed his construction to Beeckman too,
together with a proof (this time the proof had been given by Mydorge), and a general construction for
the roots of the third and fourth degree equations, later elaborated in the third Book of La Géométrie.
Cf . Bos [2001], p. 255. For details on Roberval’s proof, see Descartes [1897-1913], vol. X, p. 655-657.
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A construction by a parabola and a circle is given by Descartes for the problem of

trisecting an angle too.49 Hence, Descartes’ general procedure for constructing fourth

and third degree equations proves that any problem reducible to them is constructable

by the same apparatus, formed by a conic section plus the use of ruler and compass:

hence, any problem reducible to a fourth or third degree equation will be solid, in the

sense of Pappus’ classification.

This conclusion, as I have argued in the foregoing, was already well-known by the time the

Géométrie went into press.50 Nevertheless, Descartes made an original contribution to

the history of the trisection and mean proportional problems. Indeed, for what concerns

the trisection problem, the only construction transmitted in ancient texts contemplated

the use of a hyperbola and a circle: it can be found in Pappus’ Collection, in prop. 31

(Cf . ch. 2, p. 45). Descartes probably considered his own achievement, consisting in

a solution obtained by means of a parabola and a circle, as a gain in simplicity with

respect to the construction provided by the Ancients, as he judged the parabola the

simplest conic section.51

On the other hand, the problem of inserting two mean proportionals had been effectively

solved through a parabola and a circle before XVIIth century. However, this solution

can be encountered only in the book titled: Istikmal ("Perfection"), and written in the

Xth century by the Andalusian mathematician Yusuf Al-Mu’taman ibn Hud.52 However,

it seems unlikely that early modern mathematicians or, at least, those mathematicians

acquainted with Descartes, had any knowledge of this work. Therefore a construction

of the problem of inserting two mean proportionals, obtained by a parabola and a circle

was probably a novely when Descartes produced it.53

49Descartes [1897-1913], vol. 6, p. 473. The idea of simplicity here evoked is certainly not ‘dimensional
simplicity’, because all conic sections are associated to equations in the same degree. However, Descartes
did not explain why the parabola should be considered simpler than the other conic sections, like the
hyperbola. This judgement might depend on the fact that the parabola, via an opportune choice of the
axis, can be endowed with a simpler equation that the one associated to the hyperbola (Cf . Descartes
[1659-1661], vol. 1, p. 174ff .).

50Descartes was certainly aware of the results obtained by Viète, concerning the relation between fourth
and third degree equations and solid problems. Indeed the Supplementum geometriae was published
during Viète’s lifetime, and most of Viète’s principal works had besen published in 1615 by Anderson,
and in 1631, by Beaugrand. However, let us recall that Descartes maintained a disparaging attitude
maintained towards Viète: Descartes [1897-1913], vol. 1, p. 479-480.

51Descartes [1897-1913], vol. 6, p. 464.
52Cf . Hogendijk [1992].
53This invention was highly valued by Descartes himself, as we can read from Beeckman’s testimony:

"Mr Descartes values this invention so much that he avows never to have found anything more out-
standing, indeed that nothing more outstanding has been found by anybody" (Descartes [1897-1913],
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To these remarks, we should add the fact that construction by conic sections were

rarely employed by XVIth and XVIIth century geometers, before the publication of

La Géométrie, so that Descartes’ solutions appeared as a novelty, in the backdrop of the

constructional tradition of the problems of trisecting an angle and duplicating the cube

(or inserting two mean proportionals).54

On the top of that, Descartes’s protocol for constructing quartic and cubic equations

might have represented a valuable contribution towards a rational organization of prob-

lems into classes. In fact, despite the solvability of fourth and third degree equations

by conic sections and plane means was known to mathematicians before Descartes, no

uniform feasible procedure was available in order to construct them.

We can extrapolate from Viète’s narration an abstract argument, proving that prob-

lems reducible to equations in the fourth and third degree are constructable by conic

sections (and by circles). However, we cannot find anywhere, in Viète’s work, a unique

procedure in order to solve both quartic and cubic equations and the related geometric

problems.Indeed, no constructional procedure was available, in Viète’s overall problem

solving technique (presented, in particular, in the Supplementum geometriae), in order

to directly construct quartic equations. He rather opted for reducing fourth degree equa-

tions to third degree ones, via purely algebraic transformations. The (real) roots of the

third degree equation so obtained could be constructed by solving either the problem

of inserting two mean proportionals or trisect the angle, via a neusis construction (Cf .

Supplementum geometriae, proposition V, IX, in Viète [1646], p. 240ff .).

But whereas Viète had merely proved the constructibility of fourth degree equations,55

Descartes had framed, in La Géométrie, a uniform strategy for their construction, to-

gether with the construction of cubic ones. In his eyes (as well as in the eyes of his

fellow mathematicians) this result might be seen as a felicitous consequence of the choice

of relying on the simplicity of curves, measured by algebra, in order to perform the

construction of equations and problems.

vol 10, p. 346: "Hanc inventionem tanti facit D. des Chartes, ut fateatur se nihil unquam praestantibus
invenisse, imò a nemine unquam praestantiùs quid inventum").

54One of the more extensive treatments of solid problems by means of conic sections (and plane means)
remained Commandinus’ Commentary of Pappus’ Collection, especially on propositions 31 and 34 (cf .
Commandinus [1588], fol. 62r, fol. 64r).

55Bos [2001], p. 259.
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Descartes did not limit his considerations to the organization of conic-constructible prob-

lems. In fact he extrapolated, from the construction of plane and solid cases, a general

protocol in order to construct higher degree problems. This protocol is resumed in the

closing paragraph of the text:

Puis outre cela, qu’ayant construit tous ceux qui sont plans, en coupant d’un

cercle une ligne droite, & tous ceux qui sont solides, en coupant aussy d’un

cercle une parabole, & enfin tous ceux qui sont d’un degré plus composé, en

coupant tout de mesme d’un cercle une ligne qui n’est que d’un degré plus

composée que la Parabole, il ne faut que suivre la mesme voye pour construire

tous ceux qui sont plus composésa l’infini.56

With these final words, the route to follow in order to solve problems of any class was

thus traced. Descartes’ choice relied on a generalization of the protocol adopted for

the construction of equations up to degree four (and their corresponding problems):

in fact any higher degree equation should be constructed, according to his scheme, by

intersecting a circle with another curve, selected on the basis of dimensional simplicity.57

4.5 Easiness versus simplicity

4.5.1 Two solutions compared

Descartes was also aware that the preference for dimensional simplicity, in deciding the

most adequate curve for a problem at hand, was not the only available choice.

In fact nothing, in the algebraic procedure which underscores the construction of an

equation, constraints to the choice of a certain solution. This underdetermination has

a precise mathematical explanation, related in these terms by H. Bos: "algebraically,

the problem of constructing equations is an inverse elimination problem. In a direct

elimination problem the equations F (x, y) = 0 and G(x, y) = 0 are given and it is required

to eliminate y, that is to determine ℜF ;G. Here H(x) is, however, given and F (x, y) and

G(x, y) have to be found such that ℜF ;G(x) = H(x), or ℜF ;G(x) has H(x) as a factor".58

56Descartes [1897-1913], vol. 6, p. 485.
57Even if we restrict our freedom in choosing curves to the dimensionally simpler, yet several choices

are still available for the same problem (see, on this point, Bos [1984], p. 345). The precept, in this
sense, is not too overrestrictive: this fact gave rise to discussions on the best canon to adopt in order to
solve problems in any degree (the core of Bos [1984] is dedicated to such discussions).

58Bos [1984], p. 344.
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Not only the required equations F (x, y) and G(x, y) are more complicated than the one

derived from the problem (namely H(x)), because they involve two unknowns, but the

inverse elimination problem also admits many (even infinitely many) solutions.

Descartes ventured another plausible ways of dealing with simplicity in geometry in

reference to curves and their constructions: one might choose curves that yield an easy

("facile") solution. The concept of easiness of solutions is illustrated by the following

example, in Book III of La Géométrie:

Je ne crois pas, qu’il y ait aucune façon plus facile, pour trouver autant

de moyennes proportionnelles, qu’on veut, ny dont la demonstration soit plus

evidente, que d’y employer les ligne courbes qui se descrivent par l’instrument

XY Z. Car, voulant trouver deux moyennes proportionnelles Y A et Y E, il ne

faut que descrire un cercle dont le diametre soit Y E: & pource que ce cercle

couppe la courbe AD au point D, Y D est l’une des moyennes proportionnelles

cherchées. Dont la demonstration se voit à l’oeil, par la seule application de

cet instrument sur la ligne Y D, car, comme Y A ou Y B qui lui est egale, est

a Y C, ainsy Y C est a Y D, et Y D a Y E (. . . ) Mais pource que la ligne AD

est du second genre, et qu’on peut trouver deux moyens proportionnelles par

les sections coniques, qui sont du premier; & aussy pourcequ’on peut trouver

quatre ou six moyennes proportionnelles, par des lignes qui ne sont pas de

genre si composés que sont AF & AH, ce seroit une faute en Geometrie que

de les y employer. 59

In this passage, Descartes presents another construction for the problem of inserting two

mean proportionals between segments Y A and Y E, such that Y A < Y E (see fig. 4.5.1).

Let us draw a circle with diameter Y E, and let us next apply to point A a proportions

compass (ch. 3, fig. 3.2.1), with opening Y A = a, which will trace the curve AD. Let

us call D the point in which the curve intersects the circle with diameter Y E, and let us

trace the segment Y D. Let a new circle with radius Y A and centre Y be traced, such

that B the intersection between the circle and the line Y D. Let the perpendicular from

D to the line Y E be drawn, and let the intersection be called C. The segments Y C and

Y D are the sought for mean proportionals.

One can prove the correctness of this construction geometrically, by considering triangles

Y BC, Y CD, Y DE (fig. 4.5.1), which are similar by construction. From the similarity

59Descartes [1897-1913], vol. 6, p. 442-443.
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Figure 4.5.1: Insertion of two mean proportionals (easy solution).
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of these triangles one can derive the following continuous proportion: Y B : Y C = Y C :

Y D = Y D : Y E, Since Y B = Y A, segments Y C e Y D are two sought-for mean

proportionals between Y A and Y E.60

The reason why the solution employed by means of a parabola and a circle is considered

by Descartes simpler than the solution to the same problem obtained by a curve traced via

the proportion compass is obvious, in the light of Descartes’ explanations. ‘Simplicity’, as

Descartes disambiguates at the beginning of Book III, is a property that depends on the

degree, and consequently on the kind to which a curve belongs. Therefore it is sufficient

to compare the curve traced by the proportions compass, on one hand, and the parabola,

on the other, in order to decide whether they are of different kinds, and which one among

them is simpler. Let us consider, for a start, the curve depicted in fig. 4.5.1. Its equation

can be easily determined: if we set angle BY A = θ, Y E = q Y A = Y B = a, then

Y C = a
cos θ , Y D = a

cos2 θ
, Y E = a

cos3 θ
. . . , point D will lie, by construction, on a curve of

polar equation: a = ρ cos2 θ (upon setting Y D = ρ). This equation can be transformed

into a cartesian equation in the unknowns z and y (provided we set: Y C = z, DC = y,

and z2+ y2 = ρ2), namely: z4 = a2(z2+ y2). Consequently, the curve traced by point D

(in fig. 4.5.1) is a curve of the second kind, hence a curve of higher kind than the conic

sections.61

4.5.2 Easiness, simplicity and the algebraic ordering of curves

The proportions compass is evoked twice in La Géométrie. As noted by H. Bos (Bos

[2001], p. 358) Descartes’ argumentative pattern seems to unfold in a puzzling way

for someone who reads La Géométrie according to the order of the books. At first, the

proportions compass is introduced in book II, in order to offer a paradigmatic instance of a

geometric linkage, namely an instrument which contrives the tracing of geometrical curves

60Let us recall that Descartes probably devised such a solution, in a purely geometrical way, as early
as 1619 (see Bos [2001], p. 239ff.).

61Let us verify, for the sake of completeness, that the construction of the problem of inserting two mean
proportionals by means of the curve traced by a proportions compass complies with the requirement for
constructing equations (except, perhaps, for the requirement of simplicity). Let us recall that the problem
of inserting two mean proportionals between given segments a and q, is solvable, according to Descartes’
protocol, by constructing the corresponding equation:H(z) = z3 − a2q = 0. It is sufficient to take, for
instance, the following couple of equations: U(z, y) = z4 − p2(z2 + y2) = 0, V (z, y) = z2 + y2 − qz = 0:
it is immediate to verify that the original equation H(z) = 0 can be found by eliminating the y from
both U(z, y) = z4 − a2(z2 + y2) = 0 and V (z, y) = z2 + y2 − qz = 0. The result, obtained by eliminating
y, will then be: z4 − a2qz = z(z3 − a2q) = 0, which proves that the curves associated to equations
U(z, y) = 0 and V (z, y) = 0 can construct the equation. While one recognizes the equation V (z, y) = 0
as the equation of a circle, the first equation is satisfied by the curves traced by the proportions compass.
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(see chapter 3, section 3.2). Successively, in book III, the same linkage is evoked in order

to illustrate the ‘easiest’ solutions for a (large) class of geometric problems, namely the

construction of arbitrarily many means between two given segments. Eventually, though,

Descartes subverts the privileged status of the proportions compass, and discards this

instrument as an unreliable method to be employed in problem solving, since it introduces

a systematic violation of dimensional simplicity.62

Let us observe, firstly, that the use of the proportions compass systematically produces

dimensionally too complex (and therefore erroneous) solutions. This phenomenon ob-

tains not only of the problem of inserting two mean proportionals, but of the general

problem of inserting an arbitrary number of mean proportionals between given segment:

in other words, there is no instance of this problem for which its construction through

the application of the proportions compass can trace curves of the lowest possible degree,

and thus comply with the requirement of dimensional simplicity.63 Hence, the precise

separation between dimensional simplicity and easiness in problem solving reflects into

an accurate distinction into two non-overlapping categories of solutions to the generalized

problem of inserting n mean proportionals.

However, discarding easy solutions in favour of dimensionally simple ones, at least for

what concerns the problem of inserting n mean proportionals , it is not an obviously

62See Bos [2001], p. 358.
63See Descartes [1897-1913], vol. 6, p. 442-443. In Panza [2011], it is proved that: "whatever the

positive integer n might be, solving the n mean proportionals problem by relying on a curve traced by
a proportions compass does not comply with Descartes’s simplicity precept" (Panza [2011], p. 77). For
n > 1, we distinguish two cases in the problem of inserting n mean proportions between given segments
a and q: either n is even, or n is odd. Let us consider the case of inserting an odd number n of mean
proportionals (i.e. n = 2µ− 1). For any positive integer µ, the 2µ− 1 mean proportionals problem can
be reduced to the problem of inserting a single mean proportional and to the problem of inserting µ− 1,
and then, by reiteration, either to the single mean proportional problem alone, or to the single mean
proportional and to problem of inserting 2m mean proportionals, for some positive integer m such that
2m < 2µ−1 (Panza [2011], p. 77). Thus, we need only to consider only the case of n = 2µ (µ is a positive
integer). Let us consider, therefore, the problem of inserting 2µ mean proportionals, whose algebraic
analysis yields the equation in the general form: x2µ+1 = a2µq. The use of the mean proportions compass
allows us to construct this equation (and, consequently, the related class of geometric problems) through
the intersection of the circle and a curve with equation in the following form: x4µ = a2(x2 + y2)2µ−1

(the equation of the corresponding curve, for each instance of the problem of inserting an even number
of means can be found by relying on the design of the mesolabe). I note that the equation of the solving
curve has degree 4µ. On the other hand, it can be proved that for every positive integer µ, there exist
curves, with degree less than 4µ, that solve the problem of inserting 2µ mean proportionals. In order to
show this, let us consider the equation: x2µ+1 = a2µq, which expresses the general geometric problem of
inserting 2µ mean proportionals. For any positive integer µ, the equation can be obviously constructed
by relying on two curves of equations yxµ = aµ and aµqy = xµ+1, respectively, which clearly belong to a
lower class than the curves of equation: x4µ = a2(x2+y2)2µ−1, constructed by the proportions compass.
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rational choice. Descartes was certainly aware that mathematical procedures leading to

easy solutions could possess significant virtues, besides being technically correct. Let

us consider, once again, the case of the problem of inserting n mean proportionals.

Descartes indulges in praising the curves traced by the proportions compass as offering

evident constructions ("demonstration evidente"), or constructions that can be seemn

‘by the eye’ (as we read in La Géométrie: "la demonstration se voit à l’oeil").64

Resuming Descartes’ words, I refer to the solutions obtained through the proportions

compass as ‘perspicuous’ solutions. By the quality of ‘perspicuity’, I refer, for the case of

the problem at hand, to the fact that for any number of desired mean proportionals the

construction of the corresponding insertion problem can be immediately given, or given

in few steps by referring to a single diagram, represented by a certain configuration of

the proportions compass (see, for instance fig. 4.5.1 and the corresponding construction

in sec. 4.5). Extrapolating from Descartes’ account, I can conclude that easiness can

be understood as an epistemic or cognitive type of simplicity: a problem solved in an

‘easy’ way is solved in a way that is transparent to the solver himself, by allowing an

immediate grasp of the inferential process leading from the data of the problem to its

construction. Hence, there is room to conjecture that Descartes’ downplaying of easy

solutions to problems, far from being a natural or expected way of proceeding, comes

with a cost, since it dismisses evident cognitive and epistemic virtues.

Since easiness should have appeared as a virtue in geometric pursuits, its demise, in favor

of a different strategy in problem solving, demands for adequate justification. In contrast,

Descartes offered no justification for his choice (as H. Bos recalls, Descartes made "a

sudden reversal of direction (. . . ) and ordered, without argument, that nevertheless

one should employ curves of lowest possible degree", Bos [2001], p. 358), so that his

adamantine preference for dimensional simplicity should have appeared puzzling and

unjustified to a reader who had followed the linear deployment of the treatise from book

I to book III.

But if we consider the developmental history of Descartes’ mathematical thought, such a

tension between two general strategies in problem solving may conceal a more profound

antithesis between two different projects liying behind them, both having to do with the

rational ordering of problems and curves in geometry. An interpretation in this direction

is prompted by H. Bos (see Bos [2001], p. 359ff.). According to him, the contrast between

64Descartes [1897-1913], vol. 6, p. 442-443.
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‘easiness’ and ‘simplicity’ stages a more fundamental contrast between the standpoint of

the "Descartes, author of La Géométrie" and of his ‘previous self’, namely the Descartes

‘author’ of the letter to Beeckman (1619) and soon later, of the Cogitationes privatae. let

us recall how Descartes, already in 1619, had sketched the groundwork of a programme

in order to solve each problem according to the most adequate solving method (for its

illustration, see chapter 3, p. 3.0.2). According to Bos’ interpretation, Descartes would

have reversed that very programme in La Géométrie: whereas he originally structured

the edifice of geometry according to a classification of problems on the basis of the type

of instrument required for their solutions and their intuitive cogency, in La Géométrie he

came to privilege algebraic expressions as a means for ordering curves, and, by relying

on dimensional simplicity, of ordering problems too.

As Bos suggests, the abandonment of the inchoate project of classifying problems accord-

ing to the design of the instruments which traced the curve-solutions, like the trisector

or the proportions compass, was probably due to the difficulty of generalizing the kine-

matic approach to problems other than solid ones.65 Meanwhile, such abandoment must

have involved the retraction of easiness, as the main quality associated to the intuitive

cogency of instruments, like the proportions compass, originally developed in the early

’20s in order to solve a specific class of problems.

The rationale suggested by Bos can be thus explicated. The preference for dimensional

simplicity - and the correlative downplaying of easiness - can be also explained in the

backdrop of the programme expounded in the geometry of 1637. This was not to be un-

derstood, in fact, as a mere catalogue of piecemeal results, but had the aim of classifying

problems and curves in a systematical way, imposing strict guidelines on the choice of

the solving methods.

Descartes did not fail to grasp that algebra offered clear methodological advantages for the

purpose of reaching such a systematical classification. Firstly, he provided unambiguous

claims for the preference accorded to the choice of classifying curves on the basis of their

degree. We read for instance, in La Géométrie:

. . . Je pourrois mettre ici plusieurs moyens pour tracer & concevoir des lignes

courbes, qui seroient de plus en plus composées par degré a l’infini, mais pour

comprendre ensemble tous celles qui sont en la Nature, & les distinguer par

65Bos [1984], p. 359ff .
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ordre en certains Genres; je ne sache rien de meilleur que de dire que tous les

Poins, de celles qu’on peut nommer Geometriques (...) ont necessairement

quelque rapport a tous les poins d’une ligne droite, qui peut estre exprimé

par quelque equation, et tous par une mesme. . .

Descartes insists, in the passage just quoted, on the conceivability of several methods

for tracing the same curve. This theme is repeated elsewhere, in the same work,66

underscoring what might have been perceived as a real concern in cartesian geometry,

with respect to the problem of classifying curves on the ground of their genesis.

This concern can be explained in a more plain form. Descartes had certainly understood

that the compositional nature of geometric linkages allowed one, in principle, to adopt

a criterion for ordering curves on purely geometric grounds. For instance, the family of

curves traced by a proportions compass can be ordered according to a hierarchy of higher

complexity, depending on the number of connected joints which trace a curve, as it is

pointed out in La Géométrie.67

In Descartes’ geometry however, and beyond the exemplary case of the proportions com-

pass, it appears difficult to judge the simpler among two competing, although both ac-

ceptable constructions of the same curve. This is because several elements can enter the

composition of geometric linkages, like already accepted curves (consider, for instance,

the circle in the construction of the conchoid, discussed in chapter 3, p. 142 of this

study), which increases the difficulty of defining a uniform measure of complexity for

them. On the other hand, the determination of the complexity of a curve based on the

complexity of linkages would demand to determine the linkage of minimal complexity

which can trace it: this is a difficult problem, to my knowledge unsolved.

Hence, I suggest that there is a fundamental reason why an ordering of curves based on

the complexity of their genesis might not have been considered a suitable choice in the

context of Descartes’ geometry. For Descartes, the nature of a curve is determined by

its specification by genesis. However, one cannot attribute to a curve, traced according

66Cf ., for instance, Descartes [1897-1913], vol. 6, p. 427: ". . . on pourrait encore trouver une infinité
d’autres moyens pour décrire ces mesmes Ovales . . . ".

67Descartes certainly envisaged this possibility, as we can read in Descartes [1897-1913], vol. 6, p.
392: "Or, pendant qu’on ouvre ainsi l’angle XY Z, le point B descrit la ligne AB, qui est un cercle; et
les autres points D, F , H, ou sont les intersections des autres regles, descrivent d’autres lignes courbes
AD, AF , AH, dont les dernières sont par ordre plus composées que la première, et celleci plus que le
cercle". See also ch. 3, sec. 3.2.
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to some rule or device, properties that are being predicated of its genesis, if the same

curve can be generated through other legitimate procedures, and there are no evident

guidelines at disposal in order to limit such a freedom, by preferring one among the

various available construction for the same curve.

On the other hand, in the context of cartesian geometry, all points belonging to a geo-

metric curve, or better, their distances (understood as segments) from a fixed axis, are

related by one and the same algebraic equation, which describes the curve. And even if

one curve may be described by more than one equation (I will present in the following

lines two examples of this phenomenon) this situation is by no means analogous to the

one occurring about curves and their construction means. Whereas the latter case was

characterized by the possibility of associating diverse methods of description to one and

the same curve, all the equations that can be associated to one curve share a fundamen-

tal property, namely, their degree. We might reformulate this insight by stating that,

in cartesian geometry, any curve can be associated to a one degree-invariant family of

homogeneous equations in rational, and eventually integer coefficients.

This argument does not rely on obvious premisses, though. Firstly, depending on the

choice of the reference axis, different equations may be associated to the same geometri

object. This inconvient can be bypassed by proving (in a slightly anachronistic terminol-

ogy with respect to the context of La Géométrie), that an algebraic equation associated

to a curve is degree-invariant under changes of coordinates, namely rotations, transla-

tions and changes of the unitary segment. Descartes did not supplement a proof of this

statement, or any equivalent proof, but made the following claim: ". . . encore qu’il y ait

beaucoup de choix pour rendre l’équation plus courte, et plus aisée, toutefois, en quelle

façon qu’on les prenne, on peut toujours faire que la ligne paraisse de mesme genre, ainsi

qu’il est aisé à démontrer" (Descartes [1897-1913], vol. 6, p. ), that we may take as

an indication that he had foreseen the objection, and did not consider it particularly

difficult. Probably Descartes considered that only linear transformations are involved in

changes of coordinates, so that invariance of degree may be easily verified.

But Descartes was also aware that the analysis of a problem (either determinate or

indeterminate) might result into equations in different degrees, depending on the initial

choice of the unknown: in fact he had not set up, in the analysis of a problem, any precise

procedure in order to guide the geometer towards the right choice of the unknown. As

a significant example in order to illustrate this fact, Descartes evokes a plane neusis
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Figure 4.5.2: Heraclides’ problem.

problem already solved by Pappus (Descartes [1897-1913], vol. 6, p. 462). This problem

can be thus resumed:

Problem (Heraclides). Given a square AD and a line BN , it is required to extend

AC to a point E, such that EF , where F is the intersection point between EB and CD

is equal to a given segment BN (fig. 4.5.2).

This is - we might say - an ‘exemplary example’ in Descartes’ treatise. Indeed, if we

apply the standard cartesian transconfigurational analysis, the most obvious, or natural

choice of the unknown will lead to attribute to this problem a solid nature. But this

conclusion is false, since the problem at hand is a plane neusis problem, as correctly

proved by Pappus.68

Let us examine in detail Descartes’ reasoning. Descartes remarks that the most ‘natural’

way of proceeding, according to his canon of analysis, is the following:

• Choose segment DF = x as unknown.

• Let then CD = BD = a; EF = c; CF = a− x.

68Cf . Pappus [1986], p. 202-205.
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• Since CF : EF = DD : BF (triangles CEF and BDF are similar by construction),

we will have that BF = cx
a−x

. Then, by Pytagoras’s theorem:FD2 + BD2 = BF 2,

or a2 + x2 = ( cx
a−x

)2.

• A little manipulation leads to the following equation in the fourth degree:

x4 − 2ax3 + (2a2 − c2)x2 − 2a3x+ a4 = 0 (4.5.1)

Other choices of the unknown, for instance when BF = x or CE = x, will also lead to

equations in the fourth degree, namely: x4 + 2cx3 + x2(c2 − 2a2)− 2a2cx− a2c2 = 0 or

x4 + 2ax3 + 2a2x2 − x2c2 − 2axc2 − a2c2 = 0, respectively.69

Since the equation obtained is of the fourth degree, the sole application of the canon

of construction deployed in Descartes’ geometry would prescribe, for this problem, a

construction by a parabola and a circle: therefore the problem will be solid.

Descartes was also aware that the problem could be constructed by ruler and compass.

Astutely, he reported only the construction by plane means, as given by Pappus in the

synthesis of the problem (Descartes [1897-1913], vol. 6, p. 462; Pappus, Collection, VII,

prop. 72, Pappus [1986], p. 202ff .):

• Let extend segment BD until point G, such that DG = DN .70

• Let a circle be drawn, with diameter BG.

• Let us extend AC, and mark as E the intersection point between this line and the

circle.

• Let us join E and B: we shall have EF = BN , therefore the segment EF will

solve the problem.

The proof, omitted from La Géométrie, is given in Pappus’ Collection, instead (Pappus,

Collection, VII, prop. 72; Pappus [1986], p. 202-204. I refer, for a modern paraphrase,

to: Bos [2001], p. 394, 395).

69See Descartes [1897-1913], vol. 6, p. 462.
70I have reported the auxiliary constructions with dotted lines in fig. 4.5.2.
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Proof. Since DG = DN by construction, we derive: sq(DG) = sq(DN) = sq(BN) +

sq(BD) (*).71 Let the semicircle built on BG as diameter be traced. The segment DG

is greater than DC (indeed: DH = DN > BD = DC), therefore point C will fall in

the circle with diameter BG. From E, intersection point between AC extended and the

semicircumference on BG, let us trace segments EB and EG. Pappus invokes, at this

point of the proof, the following lemma, proved in a previous proposition: sq(CD) +

sq(EF ) = sq(DG) (**).72 By equating (*) and (**) we obtain: sq(BN) + sq(BD) =

sq(CD) + sq(EF ). Since BD = CD, sq(CD) = sq(BD), whence: sq(BN) = sq(EF ).

Since the squares built on BN and EF are equal between them, so segments BN and

EF will be equal too.

I point out that Descartes did not seem so much interested in giving a justification of

the above construction, but on stressing the diffculty of its discovery. On this concern he

remarked: "Pour ceux qui ne sçauroient point cette construction, elle seroit assez difficile

à rencontrer, & en la cherchant par la methode icy proposée, ils ne s’aviseroient jamais

de prendre DG pour la quantité inconnüe, mais plutost CF ou FD, a cause que ce sont

elles qui conduisent plus aysement a l’Equation".73

In fact, starting from the construction offered by Pappus, one can associate to the problem

a quadratic equation: it is sufficient to set CD = BD = a DG = x, BN = c, Descartes

remarks, in order to obtain the second-degree equation: x2 − a2 − c2 = 0. The problem

will be constructable by ruler and compass, the required neusis will be therefore plane,

as the ancients had correctly stated.74

I observe, as a start, that the quadratic equation can be derived in a straightforward

way from the configuration described in fig. 4.5.2, in virtue of the equality: sq(DG) =

sq(BN) + sq(BD). But even if the problem can be effectively reduced to a quadratic

equation, setting DG = x is considered by Descartes a somewhat unnatural choice of the

unknown. The segment DG, in fact, is not evoked in the protasis of the problem, nor does

it immediately pops up in the resulting configuration. In order to make DG available, in

fact, an auxiliary construction is required, which, as Descartes emphasized, "is difficult

to find". I point out, moreover, that Descartes omits to report, in his narration, Pappus’

71The notation: ‘sq(a)’ denotes the square built on the segment a.
72Cf. Collection VII, prop. 71. See Pappus [1986], p. 202.
73Descartes [1897-1913], vol. 6, p. 462.
74Descartes [1897-1913], vol. 6, p. 463.
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analysis of the problem.75 In this way, a reader can gain an even stronger impression

that the auxiliary construction producing DG appears out of nothing, and that the most

obvious way of performing an analysis of the problem will be to reduce it to a quartic

equation (like eq. 4.5.1).

Conclusively, the example of Pappus’ neusis problem can be seen to undermine the

cogency of the algebraic ordering of problems and curves: according to Descartes’ canon

of problem-solving, in fact, a fourth degree equation requires a parabola and a circle,

whereas a quadratic equation requires the employment of the ruler and compass only (or

a straight line and a circle).

Descartes probably was aware of other occurrences of a similar phenomenon,76 but the

problem of Heraclides, discussed in La Géométrie, was well-known among early modern

mathematicians.77

How to prevent that a particular choice of the unknown might lead to associate to the

same problem equations in different degrees, and ultimately make us attribute the wrong

level to a certain problem?

Descartes partially made up to such a freedom connected to the choice of the unknown,

by giving clear and exhaustive (in his view) directions in order to check the reducibility

of an equation obtained at the end of the process of analysis.78

Let us point out that the notion of reducibility here at stake differs from those that I have

sketched in note 15. The concept of reducibility I would like to examine in this context

concerns in fact the possibility of factoring a polynomial H(x), in one variable, appearing

in an equation H(x) = 0 associated to a geometric problem, into the product of two

factors, U(x) and V (x) that are polynomials of degree at least one, and whose coefficients

can be constructed by ruler and compass from the coefficients of the original equation.

If such a reduction is possible, then the roots of the equation H(x) = V (x) · U(x) = 0

75Cf. Pappus [1986], p. 202.
76Another instance is discussed in van Schooten’s Commentary to the first latin adition of the

Géométrie, and it is reproduced in the second (Descartes [1659-1661], vol. 1, p. 317).
77See Brigaglia and P. [1986].
78As Descartes emphatically noted the neusis problem was instructive: "pour (. . . ) avertir que, lorsque

le Problesme proposé n’est point solide, si en le cherchant par un chemin on vient a une Equation fort
composée, on peut ordinairement venir a une plus simple, en le cherchant par un autre" (Descartes
[1897-1913], vol. 6, p. 463).
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will be roots either of V (x) or of U(x), both of degree less than the degree of H(x), so

that it will be sufficient to construct either one of these factors in order to construct the

original equation.

Descartes worked out a theory of reducibility of equations in the form of a series of tech-

niques with examples.79 Although these rules of reducibility are conceived, in principle,

so general that they apply to any polynomial equation,80 Descartes discussed in detail

only the reducibility for the case of the cubics and quartic polynomial equations in one

variable.

Hence, if we are given a cubic equation H(x) = 0, in a monic polynomial H(x), and whose

coefficients belong to the ring Z[a, b, c . . .], Descartes asks to search for an integer divisors

a of the constant term of H(x), and then divide H(x) by a linear factor (x± a).81If the

test is successful, then the polynomial H(x) will be divided by a linear factor (x±a) with

no remainder. We we will have therefore: H(x) = (x± a)U(x) = 0, for some polynomial

U(x) in the second degree. The equation H(x) = 0 will be constructible by ruler and

compass, and the original geometric problem is plane. If, on the contrary, the test is

not successful, then the equation will be judged irreducible, and the original geometric

problem will be a solid one.82

The same procedure can be applied in the case of a quartic equation, and to the cubic

polynomial that may result from a first division. The procedure continues until we obtain

an irreducible cubic factor, or a quadratic factor.

In the case of a fourth-degree equation, Descartes devised a more complex method in

order to check whether the equation could be decomposed into two quadratic factors.

In illustrating Descartes’ way of proceeding, I will follow the interpretations offered by

Galuzzi and Rovelli [1996], in order to explicate those points (sometimes crucial in order

79The following presentation is particularly indebted to Galuzzi and Rovelli [1996].
80Descartes was confident that these rules were infallible, and could be applied to higher degree equa-

tions: "je pourrois aussy en adiouter d’autres - explains Descartes, referring to rules for the reducibility
of equations - pour les equations qui montent jusqu’au sursolide, ou au quarré de cube, ou au delà. . . "
(Descartes [1897-1913], vol. 6, p. 463-464).

81Descartes [1897-1913], vol. 6, p. 454, 455 (continuing from the quotation in the previous note):
". . . puis, en examinant par ordre toutes les quantités qui peuvent diviser sans fraction le dernier terme,
il faut voir si quelqu’une d’elles, jointe a la quantité inconnüe par le signe + ou −, peut composer un
binome qui divise toute la Somme". I note that Descartes grounded this procedure on the tacit rule that
any rational root of an equation is a factor of the constant term.

82Descartes [1897-1913], vol. 6, p. 456-457.
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to understand Descartes’ reasoning) left implicit in the text of La Géométrie. Briefly

speaking, given an equation in the form (with p, q, r ∈ Z[a, b, c . . .], and q 6= 0):83

P (x) = x4 + px2 + qx+ r = 0

in which the second term in degree three is eliminated, thanks to a rule previously

specified in Descartes [1897-1913] (vol. 6, p. 449), we can still search for the divisors of

the known term. If, for instance, α is such a divisor, then P (x) can be factored in the

product: (x−α)f(x), where f(x) is a third degree polynomial. The same procedure can

be applied by searching whether f(x) can be factored into the product of a quadratic

and a linear factor.

But it can also happen that the polynomial P (x) cannot be factored simply by searching

the divisors of the known term. In this case, we can still ask (with Descartes) whether

P (x) may be factored in the following way:84

P (x) = x4 + px2 + qx+ r = (x2 + αx+ β)(x2 − αx+ γ) = 0.

From the above equality and by comparing the coefficients α, β and γ, left undetermined,

the following system can be set up:





β + γ = p+ α2

β − γ = − q
α

βγ = r

83See also: Vuillemin [1987] (p. 163), Bos [2001] (p. 391-392) and Lützen [2010] (p. 16-17).
84The method I will sketch in the subsequent lines corresponds to a plausible pattern of discovery

followed by Descartes, which is explicated, however, not in La Géométrie, but in van Schooten’s Com-
mentary. On the ground of Schooten’s and Hudde’s explanation it will become current to interpret
Descartes’ reducibility of a quartic in these terms: "la méthode de Descartes - so Lagrange notes in his
Leçons élementaires - qu’on suit communément dans les éléments de l’Algèbre (. . . ) consiste à supposer
immédiatement que la proposée soit produite par la multiplication de deux équations du second degré"
(in Vuillemin [1987], p. 161).
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The first two equations form a linear system in β and γ, so that γ = 1
2(α

2+pα+ q
α
), and

β = 1
2(p+ a2 − q

α
). By taking into account the third equation, βγ = r, we will have:

α6 + 2pα4 + (p2 − 4r)α2 − q2 = r. (4.5.2)

By setting r = 0, this equation can be considered, as stressed in Vuillemin [1987] (p.

163), a sixth degree ‘resolvent’ associated with the original quartic. But substituting with:

α2 = y, we obtain a third degree equation instead: Q(y) = y3+2py2+(p2−4r)y−q2 = 0.

The 4.5.2 can be therefore considered a cubic resolvent of our original equation P (x) = 0.

In fact, if yi is a root of the 4.5.2, then P (x) = 0 can be factored into the following

product:

P (x) = (x2 − yix+
1

2
y2i +

1

2
p+

q

2yi
)(x2 + yix+

1

2
y2i +

1

2
p− q

2yi
) = 0. (4.5.3)

Hence, if the equation Q(y) = 0 can be divided by a binomial factor (this factorization

can be performed by searching the divisors of the constant term q2, following the rules

prescribed above), it will have a real root yi constructable by ruler and compass. In this

case, each factor in which P (x) has been divided is a quadratic one, in the unknown x

and in the coefficient yi, constructable by ruler and compass. P (x) = 0 will be therefore

constructable by ruler and compass too, and the associated problem will be plane. If

the cubic resolvent cannot be factorized, on the other hand, the equation will not be

decomposable into quadratic ones, and the associated problem will be a solid problem.85

Descartes applied these rules precisely to the case of the fourth-degree equation obtained

from the analysis of Pappus’ neusis problem, and succeeded in decomposing that equation

into the product of two quadratic factors.86 He thus managed to express segment DF

(fig. 4.5.2) as:

DF =

√
1

4
a2 +

1

4
c2 −

√
1

4
c2 − 1

2
a2 +

1

2
a
√

a2 + c2.

85Descartes’ proof of the reducibility of the fourth degree equation connected with the problem of
Heraclides, discussed above, can be interpreted, with the benefit of hindsight, as a strategy for checking
the factorization of a polynomial over a field obtained by the adjunction of square roots (see Galuzzi
[2010], p. 538).

86See Descartes [1897-1913], vol. 6, p. 462-463.
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Since this expression contains only square roots, Descartes could conclude that DF would

be constructable by ruler and compass, and the corresponding neusis problem solvable

by plane means, just like the ancients had claimed (it is in fact sufficient to determine

point F in order to solve the neusis problem).

Virtues and limitations of Descartes’ techniques of factorization have been analyzed

through the lense of modern mathematics in a number of recent studies.87

It is important to underline, with respect to the theme discussed in this chapter, that

Descartes’ belief that his rules for reducibility was certain and ‘infallible’ is partially

justified in the light of the examples treated in the Book. Indeed, at least for the simplest

cases (namely, third and fourth degree equations discussed in Book III of La Géométrie)

Descartes’ reducibility techniques can be envisaged as representing an ‘effective method’,

namely: "a method for computing the answer [to a problem] that, if followed necessary

and as far as it may be necessary, is logically bound to give the right answer (and

no wrong answers) in a finite number of steps" (in Hunter [1973], p. 14) in order to

decide whether a problem leading to fourth or third degree equations with coefficients in

Z[a, b, c, . . .] can be further factored, and therefore whether it corresponds to a solid or

a plane problem. On this ground, Descartes prescribed the guidelines of a more general

method for reducibility, that could be virtually applied to equations in any degree:

Lorsque on a tasché de les reduire [namely, the equations] a mesme forme

que celles, d’autant de dimensions, qui vienent de la multiplication de deux

autres qui en ont moins, & qu’ayant denombré tous les moyens par lesquels

cette multiplication est possible, la chose n’a pû succeder par aucun, on doit

s’assurer qu’elles ne sçaroient estre reduites a de plus simples. En sorte que,

si la quantité inconnuë a 3 ou 4 dimensions, le Probleme, pour lequel on la

cherche, est solide; et si elle en a 5 ou 6, il est d’un degré plus composé, et

ainsy des autres.88

87Among the numerous studies, I refer in particular to the following ones: Vuillemin [1987], p. 154ff .,
Galuzzi and Rovelli [1996], Bos [2001] (especially p. 391ff .), Lützen [2010], p. 16-18.

88Descartes [1897-1913], vol. 6, p. 464.
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The procedure here described can be thus paraphrased: let us suppose that we want to

evaluate whether an algebraic equation P (x) = 0, of degree higher than 2 is reducible.89

Then we must consider all the finitely many integer divisors of the known term (provided

this can be done: Descartes takes this point for granted), and check whether it exists

a divisor α such that: P (x) = (x ± α)Q(x), where Q(x) will have degree smaller than

the degree of P (x). If the polynomial Q(x) has degree 2, then the procedure terminates

here: the equation is a quadratic one, and the corresponding problem will be plane. If

Q(x) has degree higher than 2, the same factorization procedure can be applied to this

polynomial, until we can factor it into the product of an irreducible polynomial of degree

higher than 2, or into the product of a quadratic factor, and finitely many linear factors.

I note that Descartes never required that quadratic factors should be decomposed into

the product of linear binomials, even when this could be done over the ring Z[a, b, c . . .].

This restriction underscores that the motivations behind the techniques of reducibility

expounded in La Géométrie remained geometrical: in the context of Book III, Descartes

was primarily interested in the reducibility of equations in order to determine whether

an apparently solid problem was in fact plane, and thus avoid the error of solving it by

overcomplicated methods.

Descartes omitted the details of this general procedure, leaving the task to perform the

required demonstrations to the intelligence of the reader. This does not appear as an

easy task, but such moves consisting in leaving on the shoulder of the readers the burden

of completing the demonstrations are a characteristic of Descartes’ style. At any rate,

the core of the techniques of reducibility expounded in La Géométrie is partially justified,

with the benefit of hindsight, in the light of today treatments, which recast and improve

Descartes’ inchoate procedures with the aid of tools essentially extraneous to cartesian

mathematics.90

However, Descartes’ technique for the decomposition of equations also presents open is-

sues. Let us consider, for instance, the equation 4.5.3: in this case, the polynomial P (x)

is factored into two quadratic factors in which the coefficient yi are constructable by ruler

and compass from the coefficients of the original quartic equation. In a slightly anachro-

nistic terminology, we can say that the quartic polynomials considered by Descartes are
89Let us recall that P (x) is a monic polynomial, whose coefficients can be generally considered in the

ring Z[a, b, c, . . .], and a, b, c, . . . are finitely many quantities, given of the original problem.
90For polynomials in one variable, see Childs [2008], ch. 13.
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not factored over the ring Z[a, b, c, . . .] but over another structure, obtained, in modern

parlance, by the adjunction of quadratic irrationals to the field of the rational quantities.

But the very possibility of unique factorization of polynomials in this new structure is

an open question, though, as underlined in Bos [2001] (p. 391), and in Lützen [2010] (p.

18).

Given this premiss, the meaning of reducibility becomes unclear, at least in the context

of the decomposition of quartic polynomials over the field obtained by the adjunction of

quadratic irrationals.Therefore, the effectiveness of Descartes’ technique of reducibility

is also undermined. These considerations alert us against taking Descartes’ method of

reducibility as an effective method, since, in so far the notion of reducibility is not clearly

defined, the method is not logically bound to always give the right answer.

Let us now resume the main tenets of Descartes’ interpretation of simplicity in relation

with problem solving. In this and the previous chapters I have endeavoured to show that

Descartes’ long-term program, whose first formulation can be retrieved in the 1619 letter

to Beeckman, and whose mature accomplished is to be found in La Géométrie, aimed to

provide a method by which all problems of geometry could be solved, each by the most

adequate means.

A central methodological role in this project was played by Pappus’ precept, according to

which it is a sin (in Commandinus’ translation: "peccatum") to solve a problem through

an inappropriate genre of curves. In La Géométrie, simplicity is the key word in order

to understand Descartes’ interpretation of the Pappusian requirement: geometers should

always choose the most appropriate curves for a problem by avoiding committing the

errors ("fautes") of using too simple and too complex solutions.

Since simplicity is primarily measured by the algebraic equations associated to curves,

the latter becomes the key resource in order to secure knowledge about the solution of a

problem, or, we may say, about its ‘nature’.

Descartes’ reliance on equations as a privileged means in order to denote and order curves

and, consequently, as a means for choosing the most geometrical solution of problems too,

can be motivated on the backdrop of different measures of simplicity, certainly available

to Descartes, like the measure dictated by the constitution of the linkages employed for

the construction of a curve. As I have related in chapter 3, the compositional nature
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of linkages could offered a criterion for ordering curves, according to the complexity of

their tracing devices. But the possibility of associating to a certain curve a particular

tracing procedure is not sufficient, in the context of La Géométrie, in order to exclude

that simpler combinations of linkages might be found, for the same curve.

In fact, there was no available method either to Descartes or to his contemporaries,

in order to assess the minimal number of linkages necessary and sufficient for tracing

a curve.91 On the contrary, as I have illustrated in the previous section, Descartes’

techniques of reducibility offered, in principle, a quasi-algorithmic method (at least in

Descartes’ mind) in order to associate any curve to one and the same class of degree

invariant equations.

The very existence of an effective procedure (at least in Descartes’ view) in order to

associate any geometric curve to a class of irreducible equations, in the same degree (that

is also the lowest possible degree for the curve at hand) probably made, or contributed to

make algebraic equations a preferred modality of reference in order to give information

on a curve as such, rather than on the mechanisms for its construction.

Reducibility techniques could be also applied to equations associated to problems. In-

deed, as I have illustrated in the previous section, equations allowed the geometer to

extract information on the nature of problems, namely, information on their constructibil-

ity. This point is clearly resumed in Van Schooten’s summary of Book III of Descartes’

Géométrie:

Postquam igitur ea, quae ad aequationum recognitionem ac emendationem

pertinent, exposita sunt, et quidem ex aequationum cognitione (. . . ) de-

pendeat quoque problematum cognitio, ac prout aequatio est vel Quadrata,

vel Cubica . . . Problema, quod ad ipsam reducitur, dicatur vel Planum vel

Solidum (. . . ) illudque exinde construi queat vel per rectas lineas et circulos,

vel per Sectiones Conicas.92

91Nor I do know of the existence of such methods, even today.
92Descartes [1659-1661], vol. 1, p. 279: "Hence, after that all that concerns with the understanding

and amendment of equations have been expounded, and after it has been expounded that the knowledge
of the problems depends on the knowledge of equations too, and accordingly the equation is either
Quadratic, or Cubic (. . . ) the Problem, to which it can be reduced, will be said Plane or Solid (. . . ) and
it will be constructible thereby either through straight lines and circles, or through conic sections."
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As we can evince from Van Schooten’s remarks, which paraphrase, in their turn, the

programme deployed by Descartes in the central part of Book III, the ‘knowledge of

a problem’, i.e. of its nature, depends on the knowledge of the (irreducible) equation

obtained as the end result of its analysis. Descartes judged it would be sufficient, on

the ground of the rule of simplicity established by Descartes, to know the degree of the

equation associated to a certain problem, in order to choose the simplest solving curves,

and therefore determine the plane, solid or linear nature of the former. This dictated a

hierarchical organization of geometric problems based on their constructional complexity,

although only the plane/solid divide is probed along broad lines in the La Géométrie.

4.6 Impossibility and the interpretation of Pappus’ norm

4.6.1 Impossibility arguments in La Géométrie

A crucial question for the completion of Descartes’ programme remains to be answered:

on which grounds are we entitled to claim, when the end result of the analysis of a

problem is an equation of a certain degree, constructible by prescribed means according

to Descartes’ protocol, that the same equation cannot be constructed by other, simpler

curves?

Descartes did tackle the question explicitly, in the final sections of Book III:

Il est vray que je n’ay pas encore dit sur quelle raison je me fonde, pour oser

ainsy assurer si une chose est possible, ou ne l’est pas. Mais, si on prend

garde comment, par la methode dont ie me sers, tout ce qui tombe sur la

consideration des Geometres, se reduit a un mesme genre de Problesmes, qui

est de chercher la valeur des racines de quelque Equation, on iugera bien qu’il

n’est pas malaysé de faire un denombrement de toutes les voyes par lesquelles

on les peut trouver, qui soit suffisant pour demonstrer qu’on a choisi la plus

generale et la plus simple.93

And added on these general remarks a fully synthetic impossibility argument, with the

purpose of showing why a solid problem cannot be solved by "plane" means, instead:

Et particulierement pour ce qui est des Problesmes Solides, que j’ay dit ne

pouvoir estre construits sans qu’on y employe quelque ligne plus composée que

93Descartes [1897-1913], vol. 6, p. 475.
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la circulaire, c’est chose qu’on peut assez trouver, de ce qu’ils se reduisent à

deux constructions; en l’une desquelles il faut avoir tous ensemble deux poins,

qui determinent deux moyennes proportionnelles entre deux lignes données,

& en l’autre les deux poins, qui divisent en trois parties esgales un arc donné:

Car d’autant que la courbure du cercle ne depend, que d’un simple rapport

de toutes ses parties, au point qui en est le centre, on ne peut aussy s’en

servir qu’ a determiner un seul point entre deux extremes, comme a trouver

une moyenne proportionnelle entre deux lignes droites données, ou diviser en

deux un arc donné, au lieu que la courbure des sections coniques, dependant

toujours de deux diverses choses, peut aussy servir a determiner deux poins

differents.94

Descartes generalized the same argumentative scheme to problems of "one degree higher

than solids", ". . . et qui presupposent l’invention de quatre moyennes proportionnelles,

ou la division d’un angle en cinq parties esgales",95 in order to prove that these prob-

lems cannot be solved by conic sections, but require higher curves, like the cartesian

parabola.96

Descartes’ impossibility argument has been viewed as "the earliest attempt to prove or

explain the impossibility of constructing certain problems (such as the trisection of the

angle) with certain means (such as straight lines and circles)".97 This judgement might

be not wholly correct, though. As remarked by J. V. Field: "a very early example of an

attempt to prove that a construction is impossible" is represented by Kepler’s attempt,

in the Harmonices mundi libri V (1619) to prove, in a merely geometric way, that a

regular heptagon cannot be constructed by ruler and compass.98

Nevertheless, Descartes was probably the first to have ventured an argument that the an-

gle cannot be trisected by plane means.99 Because of the entanglement between algebraic

and geometric reasoning in Descartes’ argument, its structure is certainly remarking, and

it is worth being examined.
94Descartes [1897-1913], vol. 6, p. 475-476.
95Descartes [1897-1913], vol. 6, p. 476.
96"La ligne courbe qui se descrit par l’intersection d’une Parabole et d’une ligne droite (. . . ) car j’ose

assurer qu’il n’y a de plus simple en la nature, qui puisse servir a ce mesme effet", ibid .
97Bos [2001], p. 380.
98Field [1994], p. 226.
99As observed by J. V. Field, Kepler probably shared the view of many of his contemporaries, according

to which the trisection was an unsolved problem, although it was unknown whether it was an unsolvable
one (see Field [1994], p. 226).
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As reported in the above passages, Descartes introduced his reflections on impossibility

by general considerations concerning the construction of equations: "il n’est pas malaysé

de faire un denombrement de toutes les voyes par lesquelles on les peut trouver, qui soit

suffisant pour demonstrer qu’on a choisi la plus generale et la plus simple". But when

Descartes examined the case of solid problems, he did not seem to follow the approach

just skecthed, and offered a quite different argument, that can be resumed in three steps:

1. If a problem - Descartes argues - is reducible to a fourth or third degree equation

(Descartes employed the expression: "Problesmes Solides" in order to refer, I sup-

pose, to such problems), it can be constructed either by solving the problem of

trisecting an angle (plus auxiliary ruler and compass constructions), or by solving

the trisection problem (plus auxiliary ruler and compass constructions).

2. The problems of inserting two mean proportionals between two segments and of

trisecting an angle are unsolvable by ruler and compass.

3. Therefore, problems reducible to fourth and third degree equations cannot be con-

structed by ruler and compass only.

The first claim, according to which any solid problem can be reduced either to the

problem of inserting two mean proportionals or to the problem of trisecting a given

angle, is crucial for the structure of Descartes’ impossibility argument, and it is proved,

relying on algebra. Indeed, as Descartes observed in Book III, one could show that all

solid problems are reducible to the insertion of two mean proportionals between given

segments, or to the problem of trisecting an angle (or the corresponding arc), by an

algebraic reasoning:

En considerant que leur difficulté peuvent toujours estre comprises en des

Equations qui ne montent que iusques au quarré de quarré ou au cube; et que

toutes celles qui montent au quarré du quarré se reduisent au quarré, par le

moyen de quelques autres qui ne montent que iusques au cube, et enfin qu’on

peut oster le second terme de celles cy.100

This result, let us recall, had been already proved by Viète in the Supplementum Geome-

triae (1593), though. Descartes did not give any credit to his predecessor, and offered

a new argument, along the following lines. Since quartic equations can be reduced to

quadratic ones by means of cubic resolvents, Descartes could restrict his scope to the

100Descartes [1897-1913], vol. 6, p. 471.
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exam of the sole cubic equations, that he reduced to the following cases by applying

standard rules of transformation:101

z3 = px+ q;

z3 = px− q;

z3 = −px+ q.

For the sake of conciseness, we can set: | P |= p and | Q |= q, and conclude that any

cubic equation can be written, ultimately, as: z3 = Px+Q.

The exam of the discriminant led Descartes to distinguish two situations: either (Q2 )
2 >

(P3 )
3 or (Q2 )

2 < (P3 )
3. In the former case, the unknown could be expressed by a rule

"attributed by Cardan to a certain Scipio Ferreus":
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As, by hypothesis, we have that: (Q2 )
2 > (P3 )

3, the unknown z can be found by determin-

ing a cubic root, or by constructing two mean proportionals between 1 and the known

quantities appearing under the cubic root signs in the formula above.102

On the contrary, the case corresponding to: (Q2 )
2 < (P3 )

3 represents the so-called casus

irreducibilis , because it involves uninterpretable square roots of negative quantities. In

this case, Descartes proved, by giving the construction, that the problem could be reduced

to the trisection of an angle.103

101A fourth case, namely: z3 = −px − q is not discussed by Descartes. The reason, according to Bos,
is that Descartes: "implicitly assumed that at least one solution was positive" (Bos [2001], p. 377).

102Descartes [1897-1913], vol. 6, p. 472.
103Descartes [1897-1913], vol. 6, p. 474-475.
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Ultimately, the examination of the cases in which (Q2 )
2 > (P3 )

3 and in which (Q2 )
2 < (P3 )

3

allowed Descartes to conclude that any solid problem (in this case, any problem reducible

to a cubic equation) can be reduced either to the geometric problem of the insertion of

two mean proportionals, or to the trisection of an angle. On these grounds, Descartes

could infer that it was sufficient to prove that either the problem of inserting two mean

proportionals or the trisection problem cannot be constructed by plane means, in order

to prove that any problem reducible to quartic or cubic equations is unsolvable that way.

But the argument deployed in La Géométrie in order to prove the unsolvability of the

trisection and the insertion of two mean proportionals (see above: Descartes [1897-1913],

vol. 6, p. 475-476) is not perspicuous. I shall try to disentangle it here, following

Descartes’ narration as closely as possible:

1. Since the curvature of the circle depends on one ‘simple relation’ (to be understood

as the distance to the center of all the points on the circumference), this curve

can be used to construct at most one point between the extremes of a segment or

arc. Since the curvature of a conic section (namely a Parabola, an Hyperbola, or

an Ellipse) depends on two "things" or relations, it can be employed in order to

determine at most two points between two (given) extremities.

2. The problem of bisecting an angle or of finding one mean proportional demands

the construction of one point only, whereas the problem of trisectiong an angle

or of finding two mean proportionals between two given segments requires the

determination of two points.

3. Hence, circles alone, or circles and straight lines, cannot be employed to solve either

the trisection problem or the problem of inserting two mean proportionals, because

in order to construct them it is required to determine at most two points between

two given extremities.

The point 1 above can be followed as far as it establishes that the curvature of a circle

is constant and depends on the distance of each point on the circumference from the

centre. The generalization to conic sections is less evident, though, probably because

Descartes’ notion of curvature is barely analyzed in La Géométrie, and remains treated

on a mere intuitive level. At any rate, I will follow H. Bos’ suggestion, according to

which: "Probably Descartes had focal properties in mind when he wrote about the two

‘things’ (‘choses’) involved in the curvature of conics as opposed to the single relation (to
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the center) involved in the curvature of a circle. One may say that he saw the variability

of the curvature as the essential feature that determined the power of curves in solving

problems".104

Even on the ground of this explanation, though, it is difficult to see how this qualitative

distinction relates to the possible use of curves in solving the problems of a certain class.

Descartes’ remark reported in point 2 might be tentatively explained in this way: in order

to construct the bisection of a given angle it is sufficient, according to a simple euclidean

construction (it can be found proposition I, 9 of the Elements), to determine one point

only on the bisectrix of the angle. Morever, in order to insert one mean proportional

between two given segments, we can rely on proposition VI, 13 of Euclid’s Elements (also

evoked in Book I of La Géométrie), so that it will be sufficient, again to construct one

point in order to solve the problem.105

On the other hand, by claiming that the trisection of an angle or an arc is solved by the

finding of two points between two extremes, Descartes was probably referring to one of

the previous sections of La Géométrie, where he had discussed the trisection problem

(in particular to the diagram reporduced in Descartes [1897-1913], vol. 6, p. 470, fig.

4.6.1 below), where points Q and T are inserted between the extremities N and P , so

that the angle NÔQ is one third of the angle NÔP . It is less clear how to understand

the reference to the problem of inserting two mean proportionals: Descartes might be

referring to the construction of the couple of points O and T (in fig. 4.4.2 above) or

points C and D (with respect to the construction by the proportions compass, in fig.

4.5.1).

However, it is by no means clear why, on this ground, the sole circles (or circles and

straight lines coupled together) cannot be successfully employed for solving solid prob-

lems. Actually, as convincingly pointed out by Lützen (in Lützen [2010], p. 22-23), the

employment of the circle and straight lines (or ruler and compass) can solve problems in

which the construction of two points between two extremes are required, as in the case of

the trisection of a given segment. One can certainly iterate the application of ruler and

compass, and obtain the division of an angle in four parts, for instance. On the other

hand, in order to solve the problem of trisecting a given angle, it is sufficient to construct

104Bos [2001], p. 380.
105For instance, with reference to the fig. 3.1.3, p. 3.1.3, it will be sufficient to construct point B in

order to solve the problem of inserting one mean proportional between EO and OA.
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Figure 4.6.1: Descartes [1897-1913], vol. 6, p. 470.

only one point by means of a conic section, corresponding to one third of the given angle

(with reference to the figure, it is sufficient to construct point Q, for instance), whereas

the other point can be constructed by ruler and compass (it is sufficient to duplicate the

angle previously obtained).

Conclusively, it seems that Descartes did not succeed in making sufficiently clear in

which sense the notion of ‘curvature’ of the circle and of the conic sections, respectively,

is related to the constructional capacities of these curves, and in which sense their con-

structional power makes the circle unsuitable in order to solve solid problems.

4.6.2 A case for unrigorous reasoning

If we consider the structure of Descartes’ reasoning when dealing with impossibility

results, it will probably come as a matter of surprise for us that this argument is grounded,

unlike modern impossibility proofs, on sole geometric considerations. Such an emphasis

on geometric impossibility proof might be explained on several grounds.

Firstly, it should be pointed out that Descartes’ algebra of segments does not seem to

possess the resources in order to recast salient differences in the ‘constructional power’ of
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curves, to which I have referred above. Descartes acknowledged, among curves belonging

to the same genre, curves having a more or less extended application in problem solving:

he admitted, for instance, that the circle could solve less problems than the conic sections

(see this chapter, p. 164). But such a difference in constructional power, which enters

crucially in the impossibility of solving solid problems by plane means, did not correspond

to any salient algebraic property. Indeed the principal characteristic of equations, namely

their degree, does not allow one to distinguish between the circle and the conic sections,

which are both associated to quadratic equations.

Secondly, I surmise that Descartes could have inquired about whether cubic equations

were solvable by means of quadratic equations. He probably lacked the means to offer

an answer, yet he should have realized that had he found a negative answer, this answer

would correspond to an impossibility theorem cast into an algebraic form. But it was

probably not easy to generalize this algebraic-proof structure to other relevant cases.

For instance, how could one prove, by reasoning on algebraic equations alone, that the

division of the angle into five equal parts cannot be solved by conic sections? The answer

was arguably not obvious to Descartes (as it is not obvious for us, either): we might

therefore envisage also an intention of generality on Descartes’ side, behind his choice of

grounding an argument of impossibility on a purely geometric argument.

A third reason concerns the role that algebra played with respect to geometric problems

in the early modern mathematical practice. Algebra was generally conceived, during

that period, as a method of discovery rather than a method of proof. As the case of

Descartes’ geometry illustrates too, the algebra of segments constituted, in the views of

his author, a powerful method for searching the construction of problems, but it was

hardly ever applied as a method for theorem proving. It seems that geometric arguments

were invoked when it came to prove a theorem, either in geometry (it goes without saying)

but also in algebra: the latter case is testified by Al Kwarizmi’s proof for solving quadratic

equations, or for Cardanos’ proof of the algorithm for solving cubic equations.106

Impossibility claims, as they are formulated in La Géométrie, are closer to theorems

than to problems, since they are assertions whose truth is to be proved or disproved,

rather than problems which express tasks to be accomplished. Therefore it must have

been natural, for Descartes, to prove such impossibility results by means of a synthetic,

geometric proof.

106Both cases are evoked in Lützen [2010], p. 9-10.
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In conclusion, Descartes deployed a loosely deductive, and in some points obscure argu-

ment in order to claim that solid problems could not be solved by plane means. However,

even if this argument could not be recast either into an algebraic form or into a gapless

deductive structure, it did not went forgotten, but it was the source for further consider-

ations on impossibility, during the following years. In this sense, Descartes’ impossibility

argument can be considered an instance of ‘unrigorous reasoning’, according to the sense

specified by P. Kitcher, with respect to those kinds of argument that: "appear to be

candidates for adoption within the system of accepted proofs (. . . ) however, there is no

known way of recasting them as arguments which accord with the background constraints

on proofs".107

Just like other examples of unrigorous reasonings in a practice,108 later mathematicians

did not discard Descartes’ argument on the impossibility of solving a third degree prob-

lem by ruler and compass, but tried to recast them into forms which agree with the

background constraints on acceptable proofs.

Thus, as the historical analysis in Lützen [2010] shows, Descartes’ aforementioned impos-

sibility claims represent the starting point for a discussion on the impossibility of solving

the classical problems (duplication of the cube and trisection of the angle) put forward

by E. Montucla, in his Histoire des recherches sur la quadrature du cercle (1754).

Montucla valued the importance of impossibility arguments for pragmatical reasons, re-

hearsing motives that we have already seen in force in Descartes’ Géométrie: by proving

that a problem like the trisection was unsolvable by ruler and compass, Montucla argues,

one could undermine the aims of "trisectors", by preventing geometers from searching

vainly for the solution of solid problems without having examined their nature in ad-

vance.109

Briefly speaking, Montucla envisaged a role for impossibility results similar to that sug-

gested by Descartes in his Géométrie: these results should indicate the correct way of

finding the solution to problems, by inhibiting impossible attempts. Moreover, the legacy

107Kitcher [1984], p. 182.
108Kitcher evokes, as paradigmatic examples of unrigorous argument are those reasonings using in-

finitesimals, since: "The problem is not simply that we cannot recast the argument as a deduction from
accepted premises. As the mathematicians of the seventeenth and eighteenth centuries found, it is hard
to present it in any way which does not introduce premises which are obviously false" (Kitcher [1984],
p. 182).

109See Montucla [1754], p. 235.



CHAPTER 4. SIMPLICITY IN DESCARTES’ GEOMETRY 212

of cartesian geometry is explicit in Montucla’s account of the classical problems, as we

can read in his Histoire:

Ce n’est qu’à la Geometrie moderne qu’est due leur solution complète. Ce sont

en effet seulement les Lumières qu’elle nous fournit, qui nous mettent en état

de faire voir qu’ils sont d’une nature à ne pouvoir être généralement résolus

par la Géométrie élémentaire, ce qui était un point nécessaire à démontrer

avant de cesser ses efforts pour y parvenir par cette voye. Mais l’analyse

moderne lève toute doute à cet égard.110

Presumably dissatisfied by Descartes’ impossibility argument, Montucla advanced a proof

of his own in order to claim that solid problems were not solvable by circles and straight

lines. I will not enter into the details of this proof here, since it will bring me far from the

historical setting I am investigating, but I shall remark that Montucla recast Descartes’

geometrical argument into a more algebraic one. It should be pointed out that this

algebraization of the cartesian argument does not yield an impossibility proof analogous

to the modern, existing ones, since Montucla still relies on the the fundamental guideline

of the theory of the construction of equations, that we have previously discussed in

connection with Descartes’ solution of solid problems: the gist of his argument lies in the

(unproven) claim that a circle and a straight line necessarily cut in two points,111 and

therefore cannot be employed in order to exhibit the three roots of a cubic equation, to

which both the trisection of the angle and the insertion of two mean proportionals can

be eventually reduced.

Montucla was not the only one who attempted to reformulate Descartes’ impossibility

claim in a more algebraic vest. I shall point out, as another remarkable, although concise

example, the following considerations expressed by James Gregory in a work from 1668,

Geometriae pars universalis :

Hic conabor ostendere nullam vel aequationem cubicam posse resolvi ope

solius regulae et circini: omnes aequatio cubica habet vel unam solam vel

110Montucla [1754], p. 273.
111In Euclid’s Elements it is proved that two circles meet at most in two points (Euclid III, 10), and

it can be inferred, from proposition III, 2, for instance, that a straight line and a circle meet at most in
two points (Heath [1956 (first edition 1908], p. 10). Moreover, it is proved that a straight line touches
a circle in one point (this condition expresses the fact that a line is tangent to the circle), but I cannot
find any proof of the claim that a straight line cuts the circle in two points, or, equivalently, that if a
straight line cuts (but does not touch) the circle in one point, it cuts it into another, distinct point.
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tres radices reales, quae si invenirentur ope solius regulae et circini, seu in-

tersectione circuli et lineae rectae, linea recta circulum secaret vel in uno solo

puncto vel in tribus, quod utrumque est absurdissimum . . . .112

Gregory sketched, in the above passage, an argument in order to prove that no cubic

equation could be solved by ruler and compass. Differently than Descartes, he did not

make any direct reference to the trisection problem or to the problem of inserting two

mean proportionals, but he referred instead to the problem of constructing solid equations

(in the same way Montucla would do, after him). Gregory’s starting point is the following

true fact: every cubic equation has either one or three real roots. In order to construct

these roots by a geometric procedure, we should construct either one or three intersection

points between two curves. If these curves were the circle and the straight line, then the

real roots could be found either by finding one or three intersection points between these

curves. But, Gregory concludes, this is "very absurd" (absurdissimum) in both clases.

As no explanation is added to this sketch of a reductio argument, we can try to reconstruct

the missing steps of Gregory’s reasoning. As remarked above, it was known from Euclid’s

Elements that a circle and a straight line cannot intersect in more than two points. On

the other hand, Gregory assumed that they cannot intersect (secaret) either in one point

only. He was probably distinguishing, alongside with a classical tradition in geometry,

two ways in which a straight line can meet a circle. A meeting between these curves

could happen either when the straight line cut the circle (in this case, the straight line

would be a secant to the circle) or when the straight line touched it (in this case, the

straight line would be a tangent to the circle). Hence, Gregory had probably assumed

that if a straight line cuts (but does not touch) the circle in one point, it should cut it

in a second point too (see also above, note 111).

This topic is not dealt with any further in the Geometriae Pars Universalis , but it was

certainly remarked as noteworthy by Gregory’s contemporaries. For instance, Gregory’s

argument on the impossibility of solving cubics is reported almost literally in the review

of Geometriae Pars Universalis , appeared in the Philosophical Transactions, in 1668.113

112Geometriae Pars Universalis, preface, unnumbered sheet: "I shall try to show here that no cubic
equation can be solved by means of the circle and the straight line. Any cubic equation has either three
or one real root, so that if it could be found by means of the sole ruler and compass, or by the intersection
of a circle and a straight line, the straight line would cut (secaret) the circle either in only one, or in
three points, but this is very absurd".

113See account of some Books [1668], p. 686.



CHAPTER 4. SIMPLICITY IN DESCARTES’ GEOMETRY 214

Moreover, a perusal of Huygens’ marginal notes reveals that the former geometer had

meditated upon this very passage of Gregory’s Book, writing in margin the following

comment:

an non aeque impossibile est circulum secare sectionem conicam in uno vel

tribus punctis. Et tamen hujusmodi intersectione aequationes cubicae solvun-

tur.114

It can be read as a consideration in favour of Gregory’s reasoning, since it pointed to

the use of a conic section (Descartes employed a parabola) as a legitimate and correct

method in order to construct cubic equations.

4.6.3 Impossibility results as metastatements

I shall conclude my survey of Descartes’ impossibility results by considering their function

in the economy of the geometry. Descartes’ assertions on the impossibility of solving

problems by prescribed means assume a peculiar form. Firstly, let us remark that their

content does not concern properties or configurations of geometric objects, but rather

the general conditions under which a problem can be solved.

This point marks an important difference with respect to modern impossibility results.

From the second half of XIX century, in fact, impossibility results assume the form of

existential theorems, whose proofs requires to show the non-existence of a particular

type of solution by an indirect argument: as an example, the modern proof that angles

cannot be trisected by ruler and compass constructions starts from the assumption that

the resulting third degree equation has roots in a quadratic extensions of the rationals,

and from this assumption a contradiction is derived.115

In the context of La Géométrie, instead, Descartes employs the same word, ‘faute’ (clearly

reminiscent of Pappus’ norm), in order to denote two different errors from the mathe-

matical viewpoint. They are, on one hand, that of consisting in solving a problem by

inadequate means, namely by using too complex curves with respect to the nature of a

problem; on the other, the error consisting in trying to solve a problem by too (dimension-

ally) simple curves, which is an unattainable task. This latter error should be qualified

as a practical rather than a mathematical one, in so far trying to construct a problem by

114In Hess [1980], p. 36: "But it is not impossible that a circle cuts a conic section in one or three
points. And then, cubic equations are solved by such intersections"

115See ch. 1, sec. 1.3.2.
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inadequate means is a ‘useless’ activity, which may waste energies and efforts but it is in

no way an activity that we may qualify as mathematics.116 In Descartes’ narration, both

errors are methodological faults, because they stem from a common source: indeed they

are imputable to the use of ‘improper procedures’ in problem solving, which ultimately

depended on the ‘ignorance’, shown by the geometer, about the nature of a problem.

It seems correct to claim that ignorance can be avoided, according to Descartes, when

Pappus’ original requirement, reinterpreted in algebraic terms, is respected.

This view of impossibility results complies with the structure of early modern mathe-

matics, which can be considered as a constructive enterprise,117 in which non-existence

proofs like the one demanded by modern impossibility results do not seem to fit properly.

Assuming this thesis, we may conclude, following J. Lützen’s analysis, that an impossi-

bility result cannot stand as: ". . . a mathematical result (. . . ) but a metaresult saying

that there is no reason to continue to look for a solution because there is none".118

However, in contrast with ancient meta-statements, as the impossibility claims arguably

in force in the mathematics of late antiquity, Descartes justified the impossibility of

solving the insertion of two mean proportionals and the trisection of the angle by ruler

and compass by a mathematical argument.

4.6.4 The legacy of the cartesian programme: simplicity at stake

It should be noted that Descartes’ reading of Pappus’ norm in terms of dimensional

simplicity left contemporary and later critics dissatisfied. Indeed the interpretation of

Pappus’ norm in terms of a simplicity requirement, to be set entirely upon algebra, was

pointed out as a weakness of Descartes’ programme.

Newton, for instance, took an opposite stance with respect to Descartes, considering

the construction of solid problems by curves of higher degree than the parabola and

the circle (namely conchoids) as a legitimate procedure, on the basis of a criterion of

simplicity founded on easiness of geometrical construction, on an ideal similar to the

‘easiness’, excluded by Descartes as a criterion leading to errors.119 Simplicity remained

116Descartes disqualifies such attempts as "useless": "...se travailler inutilement a vouloir construire
quelque problesme par un genre de lignes plus simple que sa Nature ne permet", Descartes [1897-1913],
vol. 6, p. 444.

117Lützen [2009], p. 388.
118Lützen [2009], p. 388; see also Lützen [2009], p. 6.
119Bos [1984], p. 359ff.
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a virtue in geometry, Newton observed, but algebra could not be the right measure for

it. Geometrical simplicity, namely the simplicity of describing a curve, should be the

criterion to be used in geometric problem solving.

A suggestive example in order to grasp Newton’s adherence to significantly difference

principles in problem-solving is the following passage, taken from the Arithmetica Uni-

versalis (1707), in which Newton invokes the importance of including in goemetry me-

chanical curves like the cycloids, in virtue of the easiness of their description:

Si trochoides in geometriam reciperetur, liceret eius beneficio angulum in data

ratione secare. Numquid ergo reprehenderes siquis haec linea ad dividendum

angulum in ratione numeri ad numerum uteretur, & contenderes haec lineam

per aequationem non definiri, lineas vero quae per aequationes definiuntur,

adhibendas esse? Igitur si angulus e.g. in 10001 partes dividendum esset,

teneremur curvam lineam aequatione plusquam centum dimensionum defini-

tam in medium afferre, quam tamen nemo mortalium describere, nedum in-

telligere valeret; et haec anteponere trochoidi quae linea notissima est, et per

motum rotae vel circuli facile describitur.120

In thia passage, Newton deliberately subverted Descartes’ line of thought, refusing the

methodological distinction between geometrical and mechanical curves (to be examined

in more detail in next chapter), on one hand, and the precept of simplicity, on the other.

Similar positions can be encountered elsewhere among XVIIIth century mathematicians,

to the point that, on the long run, constructions through mathematical instruments,

which could secure the easiness of construction, were considered superior to: "... that

usual one so long in vogue, of first obtaining an algebraic equation by means of the given

conditions of the problem; and then finding the linear roots of that equation, which in

almost all cases is troublesome, unelegant and unnatural, and in many other cases is

intolerable, and almost impossible".121

120Newton [1745], p. 238: "If the trochoid were received into geometry, it would be possible by its aid
to divide the angle in a given ratio. Then, would you maybe criticize someone if he used this line in
order to divide an angle in the ratio of a number to another number, and argue that this line is not
defined through an equation, and that only such lines which are defined by an equation should be used?
Indeed, if an angle were to be divided in 1001 parts, we would have to employ a curve line defined by
an equation of more than one hundred dimensions, which however no mortal would dare describe, and
not even understand, and we would have to prefer this line to the trochoid, which is a well known line,
and which is described easily by the motion of a wheel or a circle".

121Stone [1723], p. 324. See also Bos [1984], p. 367.
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The use of algebra as a guide for the art of discovery in geometry could be seen as

compromising the major virtues of classical geometry. Indeed, Newton stressed once

more, at the beginning of the ’80s, when algebra is regarded as a criterion and a guideline

in geometric problem-solving:

progress has been brought and far-reaching, if your eye is on the profuseness

of the output but the advance is less of a blessing if you look at the complexity

of its conclusion. For these computations, progressing by means of arithmeti-

cal operations alone, very often express in an intolerably roundabout way

quantities which in geometry are designated by the drawing of single lines.122

In a similar vein, Jakob Bernoulli’s critique contained in his Notae et animadversiones

tumultuariae in universum opus (published in 1695 as an appendix to the fourth latin edi-

tion of geometry) are instructive to this effect. I will merely quote the core of Bernoulli’s

criticism, leaving aside the example he produced to illustrate it:

Si sola Dni. Descartes auctoritate standum sit, e pluribus curvis, per quas

aliquod Problema construi potest, semper illa eligenda venit, quae generis

est simplicissimi, ut maxime constructionem et demonstrationem Problema-

tis multo impeditiorem reddat, quam alia, quae uno alterove gradu magis

composita est. At si asserti rationes desideremus, altum silentium . . . Nam,

quamquam curva gradus altioris quiddam forte habeat in natura sua magis

compositi, quam alia inferioris, ratiocinium tamen quo id colligimus, in con-

structione problematis non attenditur, sed tamquam jam antea factum sup-

ponitur; et nunc solummodo spectatur curvae descriptio.123

Bernoulli agrees that the dimensional simplicity reflects a property of the nature of curves

("quamquam curva gradus altioris quiddam forte habeat in natura sua magis compositi":

I remark that Bernoulli does not mention Descartes’ ordering by couples of degrees, but

by single degrees), but disagrees upon the choice of the dimensionally simplest curve

122In Guicciardini [2009], p. 77.
123In my translation: "If we had to stay to the sole authority of M. Descartes, among the several curves

by which a problem can be constructed, it must be always chosen the one of the simplest kind, so that it
makes the construction and demonstration of the Problem much more convoluted, than the other, which
is more complex for this or that degree. But if we wish the motivations for such an assertion, then a
deep silence . . . Indeed, although the curve of higher degree has maybe something more composite in
its nature, than the one of lower degree, the reasoning through which we seize this, is not respected in
the construction of the problem, but it is presupposed as already done, and then only the description of
the curve is regarded."(in Descartes [1695], p. 444-45).
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in problem solving, since when it comes to the construction of a problem, only the

description of a curve (a criterion related to ‘easiness’) should matter.124

On the other side, Descartes’ requirement of solving a problem by the curve of the simplest

kind became an important factor in the shaping of mathematical practice throughout

XVIIth century, in particular with respect to a subject closely connected to geometric

problem solving, namely the construction of equations.

Dimensional simplicity was indeed emphasized as an important properties that solutions

of problems ought to possess. Many outstanding mathematicians became engaged in

this research program almost until the beginning of XVIIIth century. Let us recall that

constructing an equation meant to find two curves whose intersection points (or more

precisely, the abscissa of the intersection points) offered the geometrical solutions to the

equation itself. Since the problem generally admits infinite solutions, it gradually became

customary to select, among the possible solutions, the curves of lowest degree, on the

ground of Descartes’ requirement.125

On a related note, Descartes’ discussion of simplicity can be considered a common source

for the methodological reflections of two authors who shall be examined in the sequel:

James Gregory and G. W. Leibniz.

Descartes’ criteria for simplicity are evoked, for instance, in a noeworthy unpublished

tract written by Leibniz in 1674: De Constructione.126 This tract is a methodological

survey, in which Leibniz considered the role of simplicity in the choice of solving methods,

124J. Bernoulli used the word ‘ v̓αγεομετρησvίαϛ’ in order to refer to the flaw of using illegitimate means
in the solution of a problem : "nihil prorsum video, quid CARTESIUM hoc in passu ab v̓αγεομετρησvίαϛ
vitio, quod ipsemet perstringit saepius, liberare queat ...". In Henk Bos’ translation : "I can see nothing
that could in this case acquit Descartes from the vice of acting ungeometrically, which he mentions so
often" (in Bos [1984], p. 365).

125The construction of degree up to four became a standard topic on expository writings on algebra and
geometry from the second half of XVIIth century, among which we may name: F. de Sluse’s Mesolabum,
seu duae mediae proportionales inter extremas datas per circulum et ellipsim vel hyperbolam infinitis
modis exhibitae (1659), de la Hire’s Nouveaux elemens des sections coniques, les lieux geometriques,
la construction ou effection des équations Paris 1679, Wallis’ Algebra (1685, 1693), Sturm’s Mathesis
enucleata (1689, Engl. tr. 1700), Ozanam’s Dictionaire Mathématique (1691), and Nouveaux elements
d’Algèbre (1702), Harris’ Algebra (1702) and Lexicon (1704), Guisnée’s Application de l’algèbre à la
géométrie (1705), L’Hôpital’s Traité analytique des sections coniques et de leur usage pour la résolu-
tion des équations dans les problèmes tant déterminez qu’indéterminez (1707), Newton’s Arithmetica
universalis (1707) and Reyneau’s Analyse demontrée (1700). See Bos [1984], p. 354ff .

126Now published in AVI1, 45.
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within a more comprehensive discussion on the virtues of the synthetic geometry of the

ancients and the analysis of the moderns.

With respect to our theme, it should be pointed out that Leibniz expressed the necessity

of adopting general rules (regulas constructionum elegantium) in problem solving, in order

to avoid to employ useless curves, or avoid not to employ those curves that fall within

our power,127 and thus perform ‘elegant’ constructions.

Indeed, according to Leibniz, a geometric construction should not be merely understood

as the exhibition of a geometric objects or of a configuration of objects, starting from

given ones. This process should also occur in the most ‘elegant’ way:

Ergo constructio eo censeri debet elegantior, quo lineae quas ducere necesse

est simpliciores paucioresque sunt. Simpliciores censentur geometricae me-

chanicis, et inter geometricas eae quae gradus sunt inferioris, superioribus.

Si duae sint ejusdem problematis constructiones, quarum altera paucioribus,

altera simplicioribus lineis utatur, posterior praeferenda plerumque est.128

It can be inferred, from the above passage, that Leibniz’s notion of elegance in geometriz-

ing was clearly influenced by the cartesian concept of dimensional simplicity: simplest

lines, namely lines of the lowest possible class should be always preferred to solutions

recurring to fewer lines.129

127"ne scilicet inutilibus utamur, aut ne quibusdam utilibus in nostra potestate siti non utamur.", AVI1,
45, p. 417.

128"Thus, a construction must be considered the more elegant the simpler and fewer are the lines it
is necessary to draw. Geometrical lines are thought to be simpler than mechanical, and among the
geometrical ones, those which are of lower degree are thought to be simpler than those of higher degree.
If there are two constructions of the same problem, one of which employs fewer lines, and the other
simpler lines, the latter is to be preferred in general" (in AVI1, 45, p. 418).

129Cf. De constructione, AVI1, 45, p. 418: "Hinc patet, non esse utendum linea superiore ad problema
inferius, nisi ea linea superior jam tum adsit sive quod data sit in problemate, sive quod alia ex causa
describenda fuerit" ("From these things it appears that one should avoid using a higher line for a lower
problem, unless this higher line is already available, either because it is given in the problem, or it
had to be described for other reasons"). It should be pointed out that Leibniz had to restrict the
validity of Descartes’ simplicity precept, as a consequence of a problematic asymmetry concerning the
correspondence between algebra and geometry, although he recognized the global validity of the norm.
The exception indicated here concerns a problem already explored by Schooten and Huygens (cf. for
instance Descartes [1659-1661], vol. 1, p. 322ff .), for instance, like the construction of a normal to a
given parabola, from a point located outside the curve. The problem can be analyzed and reduced to
a cubic equation, which can be constructed, through Descartes’ protocol, by a circle and a parabola.
But in the problem at hand, the parabola is given, so that, strictly speaking, it is sufficient to construct
a circle in order to solve the problem. This caused a serious fracture between geometric and algebraic
criteria in judging the proper level of a problem: geometrically, the problem was plane, since it required
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the sole construction of a circle, which could intersect the given parabola in the correct points so as to
produce the unknowns. Algebraically, the problem yielded an equation of third degree, and was therefore
solid, according to the classification of La Géométrie (Bos [1984], p. 356-357).



Chapter 5

Mechanical curves in Descartes’

geometry

5.1 Mechanical curves in Descartes’ geometry

In the second Book of La Géométrie, Descartes excludes from geometry and ranges

into mechanics the spiral, the quadratrix and other similar but unspecified curves, and

motivates his judgement on two grounds. On one hand they are generated by a couple

of separate motions, and on the other, these motions do not entertain an exact relation

between them.1

The distinction between geometrical and mechanical curves is a cornerstone in Descartes’

program, since it shapes the boundaries of geometry and dictates the legitimate proce-

dures in the synthetic part of problem solving. However, despite the centrality of this

issue and Descartes’ self confidence about the non-geometrical nature of certain curves,

the rationale of his distinction still defies the interpretation of modern scholars.

As I have anticipated above, we can evince from Descartes’ considerations that the criteria

for excluding a curve from geometry rely on the way in which the curve is generated.

Descartes was acquainted with the genesis of the quadratrix and the spiral from the

available traditional sources dealing with linear problems and curves, which included

1". . . la Spirale, la Quadratrice, & semblables (. . . ) n’appartiennent veritablement qu’aux
mechaniques, & ne sont point du nombre de celles que ie pense devoir icy estre receues, a cause qu’on
les imagine descrites par deux mouvements separés & qu’ en ont entre eux aucun rapport qu’on puisse
mesurer exactement".Descartes [1897-1913], vol. 6, p. 390.

221
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Pappus’ Collection, Archimedes’ treatise On Spirals and indirectly Proclus’ Commentary

on the first book of Euclid’s Elements.2

Unlike the case of the circle and other curves constructible by geometric linkages, in

the construction of the quadratrix or the spiral reported, for instance, by Pappus, two

movements are set independently one from another except from certain kynematical

parameters, as the speed of the moving segments or points, which is assumed uniform

for both of them.

Descartes arguably knew, via ancient and early modern sources, other curves that could

be characterized through a similar description. One of them is the cylindrical helix: a

curve, let us recall, mentioned in Proclus’ Commentary and, before it, in Pappus’ Book

IV of the Collection (proposition 28), although its fully-fledged description is set out in

book VIII, devoted to mechanics.3

A reader of Pappus apud Commandinus could also find, already in Book IV, a sub-

stantial anticipation of the description of the cylindrical helix, thanks to the following

2There is evidence that, by 1637, the spiral and the quadratrix were well-known curves to geometers.
Several sources can be found dealing with the description of these curves (for a detailed survey, see Ulivi
[1990], in particular, pp. 517- 541). Techniques for the construction of the spiral are discussed in J.
Besson, Theatrum instrumentorum et machinarum (1578); S. Stevin, Hypomnemata mathematica (1605-
1608), p. 23; (and in Stevin, Oeuvres, p. 351), D. Schwenter, Geometriae practicae novae et auctae
(1625), p. 163; V. Leotaud, Geometriae practica (1630), pp. 436-39; S. Marolois, Géométrie contenant la
théorie et pratique d’icelle, in Oeuvres mathématiques (1628), p. 10. The quadratrix started to capture
the attention of mathematicians a bit later, after the publication of Pappus’ Collection in latin, and
mostly under the suggestion of Clavius, who dedicated a study to this curve in his second edition of
the Elements [Elementa (1589), p. 894 - 918]. The quadratrix was studied, between 1598 and 1637, by
F. Viète, Variorum de rebus mathematicis responsorum, LIber VIII , (1593) p. 11, again by Clavius, in
his Geometria Practica (1604), p. 320-329, by P. Van Lansbergen, Cyclometriae novae libri duo (1616),
in V. Léotaud, Elementa . . . , p. 441-442, T. Bruni, Dell’Armonia astronomica et geometrica (1631),
p. 37-38, and by B. Sover, Curvi ac recti proportio (. . . ) libri sex , (1630), p. 388-390. This list may
not be exhaustive, but it is indicative, I surmise, of the interest for the spiral and the quadratrix in
the 60 years preceding the publication of La Géométrie. Most of these works (which Descartes was, in
part, acquainted with) involved attempts to offer alternative constructions of the curves under exam,
and were deployed in the backdrop of the classical accounts of Pappus (for the spiral and especially the
quadratrix) and Archimedes (for the spiral). Extant documents reveal that Descartes was acquainted
with the quadratrix since 1619: the curve is in fact mentioned in his letter to Beeckman that I have
reproduced above, and it is considered as a geometrical curve. It is possible that Descartes learned about
the quadratrix from Beeckman himself (who indeed studied the curve in 1614-15, as we can evince from
his diary), but he did not explicitly discard this curve from the number of geometrical ones until 1629 -
from the end of this year dates in fact a critique to the construction of this curve presented by Clavius in
his commentary to the Elements. Concerning the spiral, we can assume that Descartes knew it through
the accounts in Pappus’ Collection and possibly Archimedes (on Descartes’ early acquaintance with
Archimedes’ works, see Sasaki [2003], p. 118-121).

3A second important source for the helix is Proclus’ Commentary (Proclus [1992], p. 86).
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commentary added by the editor:

Describetur autem linea spiralis in dicti cylindri superficie, si intelligatur in

linea CM punctum aliquod incipiens a C aequaliter ferri usque ad M , et

eodem tempore lineam CM rectam ad planum circuli permeare circumferen-

tiam CDA punctum etenim illud lineam spiralem describet, cujus principale

accidens est, ut sumpto quovis puncto in ipsa, quod exempli gratia sit H

ductaque HD ad planum perpendiculari, habeat HD ad circumferentiam

DC eam proportionem, quam tota CM habeat ad circumferentiam CDA.4

The helix is called by Commandinus a "spiral line on the surface of a cylinder", and

shares similar properties with the spiral in the plane and with the quadratrix, even if

it is a three-dimensional curve. It results in fact from the combination of two motions,

a uniform translation of a point along a segment which revolves, at the same time,

uniformly around a circumference.

Several studies5 allow us to claim that Descartes was acquainted with this curve before

1637. A curve named ‘helix’ (ligne hélice) is in fact summoned by Descartes, in the

course of an exchange with Mersenne from autumn 1629, in the context of a discussion

about a ‘mysterious’ problem of dividing circles in 27 and 29 parts. The only mention of

this problem is contained in a letter written by Descartes on October 8, 1629:

De diviser les cercles en 27 et 29, ie le croy, mechaniquement, mais non pas en

Geometrie. Il est vray qu’il se peut en 27 par le moyen d’un cylindre, encore

que peu de gens en puissant trouver le moyen; mais non pas en 29, ny en tous

autres, & si on m’en veut envoyer la pratique, I’ose vous promettre de faire

voir qu’elle ne’est pas exacte.6

According to the interpretation advanced in Bos [2001], this problem can be plausibly

identified with that of dividing an angle into an arbitrary number of parts.7

4Commandinus [1588], fol. 58v: "A spiral line will be described on the surface of the said cylinder,
if one conceives that a point is moved uniformly (aequaliter) along line CM from C to M , and at the
same time the straight line CM , orthogonal to the plane of the circle, revolves around the circumference
CDA. In fact the point [C] will describe the spiral line, whose symptom (principale accidens) is such
that, taken any point in it, for example H, and traced HD perpendicular to the plane, HD has to the
arc DC the same proportion that the whole line CM has to the circumference CDA". This description
is summarized also few pages later (fol. 60r).

5See in particular: Mancosu [1999], Mancosu [2007] and Mancosu and Arana [2010].
6Descartes [1897-1913], vol 1, p. 25-26.
7Even so, some reservations can be advanced towards this interpretation. The reference to two circles

in the text of the problem (in Descartes’ account) is obscure, since one arc (and eventually one circle) is
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Descartes returned on the subject one month later, commenting upon an alleged solu-

tion due to an unknown Mr. Gaudey, which seems to have made appeal to the curve

designated by the name ‘helice’:

L’invention de Mr Gaudey est tres bonne & tres exacte en prattique; toutesfois

affin que vous ne pensiés pas que ie me fusse mespris de vous mander que cela

ne pouvoit estre Geometrique, ie vous diray que ce n’est pas le cylindre qui

est cause de l’effait, comme vous m’aviés fait entendre, et qu’il n’y fait pas

plus que le cercle ou la ligne droitte, mais que le tout depend de la ligne helice

que vous ne m’aviés point nommee & qui n’est pas une ligne plus receue en

Geometrie que celle qu’on appele quadraticem, pource qu’elle sert a quarrer

le cercle & mesme a diviser l’angle en toutes sortes de parties esgales aussy

bien que celle cy & a beaucoup d’autres usages que vous pourrés voir dans

les elemans d’Euclide commantés par Clavius.8

As we can read in the text above, the ‘ligne helice’ is explicitly treated on a par with the

quadratrix of the ancients: one of the reasons on which Descartes grounds their similarity

lies on the fact that they are generated out of two independent motions, as he remarks

in the sequel of the same letter from 13th November 1629.9 Such a description recalls

the characterization of mechanical curves in La Géométrie. Even without advancing any

definitive argument, Mancosu [2007], and especially Mancosu and Arana [2010], argue

convincingly that the curve named "hélice" by Descartes, in the aforementioned letter,

may be the cylindrical helix whose description can be also found in Pappus’ Collection.10

usually invoked in the statement of the problem (see for instance proposition 35 of the Book IV of the
Mathematical Collection, in Sefrin-Weis [2010], p. 155). Moreover, Descartes claims specifically that only
the division in 27 parts can be done by a cylinder (also evoked in the subsequent letter from November
13, 1629), so he might be convinced that the problem of dividing the circles in 27 and 29 parts could
be solved by different methodologies. To these puzzles we may add the following one: the division of an
angle into 27 parts is a simple case of a reiterated trisection, whereas the division in 29 parts cannot be
simplified (being 29 a prime number). Descartes was probably aware of this fact. But if it is the case,
we should conclude that Descartes believed that the problem of dividing the circle in 27 parts was not
doable in geometry: a conviction in striking opposition with the construal of geometricity presented in
La Géométrie. Indeed, since the division of a circle in 27 parts is reducible to a solid problem, recognized
as fully geometrical, it must be a geometrical problem too.

8Descartes [1897-1913], vol 1, p. 70-71.
9In the letter to Mersenne from November 13, 1629, Descartes noted several similarities between the

helix and the quadratrix, among them the fact that both curves are generated by "deus mouvemans
qui ne dependent point l’un de l’autre" (Descartes [1897-1913], vol. 1, p. 70-71). The other analogies
highlighted by Descartes (concerning their pointwise construction and their use for the quadrature of
the circle) will be examined later.

10Besides, it should be pointed out that in the mathematical literature of XVIIth century, "la ligne
helice" could refer either to the Archimedean plane spiral, or to the cylindrical helix; therefore Descartes’
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Conclusively, this interpretation of the 1629 letter, together with the addenda of Com-

mandinus version of the Collection, add plausibility to the hypothesis that Descartes was

acquainted by 1637 with the cylindrical helix, and to the thesis that he considered this

curve as mechanical, on a par with the quadratrix and the spiral.

In the commentary to the first (1649) and second (1659) latin edition of Descartes’

geometry, Frans Van Schooten enriched the number of mechanical curves discussed in

the french 1637 edition by studying the generation and the main properties of the cycloids,

those curves traced by any point on the plane of a circle (or, more generally, of a convex

figure), which rolls without gliding on a straight line.11 The best known and studied

example in XVIIth century was represented by the ‘ordinary cycloid’ generated by any

point on the circumference of the rolling circle, as Van Schooten explains (fig. 5.1):

Ut si super recta linea AE circumvolvatur circulus, rota sive circulus ABCD,

donec punctum ejus A, in quo dictam lineam tangit, eidem rursus occurrat

in E: describet punctum A hoc motu lineam curvam AFE, quae Trochoides

sive Cycloides appellatur. Idem intellige de quovis alio puncto, extra vel intra

rotam sive circulum assumpto, excepto tantum ejus centro.12

mention is ambiguous as such (Mancosu and Arana [2010], p. 408). Bos had preferred the identification
of "la ligne helice" with an archimedean spiral (see Bos [2001], p. 345), whereas Mancosu and Arana
suggest that nothing goes against interpreting Descartes’ helice as a cylindrical helix, since he presumably
possessed sufficient knowledge of this curve by the time, and this curve can successfully solve the problem
of dividing the angle into equal parts. I point out that one of the sources through which Descartes
might have come to know the cylindrical helix was Pappus’ Book IV of the Collection in the version of
Commandinus.

11Descartes [1659-1661], p. 268-269. For the history and the main properties of this curve, one can
consult the modern studies contained in (Teixeira [1995], vol. II, pp. 133-150) or (Loria [1930] , vol.
2, chapter VIII). The cycloid was studied in depth in the early modern period, although already in
XVIIth century its origins were debated (see also Teixeira [1995], pp. 133-134). Incidentally, the history
of the curve was investigated sistematically for the first time in an informed account given by Wallis,
in a letter published in 1695, in the Philosophical Transactions of the Royal Society (see Wallis [1695]).
Wallis traced the first mentions of this curve back to Mersenne - who supposedly identified it in 1615-
and Galileo, who knew this curve since 1590. But Wallis went even farther, boldly stating that neither
Mersenne, nor Galileo were the first who discovered this curve. Even before Bovillus, Wallis added,
it results that this curve was known to Cusanus. In order to lend credence to this hypothesis, Wallis
mentioned a mechanical solution of the rectification of the circumference, presumably due to Cusanus.
This solution is simply obtained by the rolling of a circle (interestingly, Wallis copied the original drawings
in the manuscripts that he perused); from this, Wallis deduced that Cusanus must know how to describe
a cycloid. Despite this bold, and ultimately poorly grounded conjecture, Wallis showed more caution in
the end of his letter, remarking that, even if there are elements to date the cycloid back to XVIth century,
only during his own century this curve had been studied in depth. Indeed the study of the cycloid of the
circle in XVIIth century, pioneered by Roberval, revealed interesting properties, whose study prompted
the fruitful development of new methods for the computation of area, tangents and volumes, which were
later extended to other curves.

12Descartes [1659-1661], p. 265: "And if a circle or a wheel ABCD is revolved over line AE, until
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Figure 5.1.1: Descartes [1659-1661], p. 265.

Descartes himself had unhesitantly excluded cycloids from geometry, as he wrote to

Mersenne, on 23rd August 1638:

. . . Les courbes descrites par des rouletes sont des lignes entierement mechaniques

& du nombre de celles que j’ay rejettées de ma Geometrie . . . 13

Following Descartes’ opinion, Van Schooten ranged cycloid among those lines "quas pro

geometricis pari jure habere non licet".14 The reason is further detailed in these terms:

De supra dicta linea AFE notandum, eam duobus motibus describi, inter se

distinctis; recto nempe, quo circulus ABCD defertur ab A ad E, et circulari,

quo puncto in ejus circumferentia A (quod Trochoidem describit) rotatur circa

centrum, dum movetur per lineam rectam ipsi AE aequalem & parallelam.15

The same criterion adopted for ruling the spiral and the quadratrix out of geometry is

extended in order to exclude cycloids too: these curves are in fact generated by two

distinct motions ("duobus motibus describi, inter se distinctis").

one of its points A, which touches the said line, returns again to itself in point E; such a point A will
describe, out of this motions, the curve line AFE, which is called Trochoid or Cycloid. Understand the
same of any other point, taken outside or inside, or on the wheel or circle, except only for its center".

13Descartes [1897-1913], vol. 2, p. 312-313. I remark that Descartes was well familiar with the cycloid
of the circle, of which he computed the area in 1638, as we know from the correspondence with Mersenne
(for a technical account of Descartes’ achievement, see, for instance, Costabel [1985], p. 46-48).

14Descartes [1659-1661], p. 264: "which is not legitimate to consider to equal right geometrical".
15Descartes [1659-1661], p. 266: "Concerning the above mentioned line AFE it must be remarked

that it is described by two motions, distinct one from the other ; indeed a rectilinear one, by which the
circle ABCD is deplaced from A to E, and a circular one, by which the point A on its circumference
(which describes the trochoid), rotates around the center, while moving through a straight line equal
and parallel to AE".
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5.2 On Geometrical and Mechanical constructions

From our vantage point, the cartesian distinction between geometrical and mechanical

curves appears as a forerunner of the distinction between algebraic and transcendental

curves. The idea of separating geometrical from mechanical curves on the ground of their

expressability through algebraic equations is certainly grounded in Descartes’ geometry

(as we learn in La Géométrie, the possibility of expressing a curve via a finite polynomial

equation is posited as an essential property of acceptable curves), and was also adopted

by later commentators, as I will remark below, as the fundamental rationale in order to

separate acceptable from non-acceptable curves in geometry.16

However, despite the opinion of some scholars,17 I surmise that it remains disputable

whether Descartes adopted an algebraic criterion as the touchstone for distinguishing

geometrical from mechanical curves.

As a start, whilst holding the possibility of associating a curve to an equation as a fun-

damental achievement of Descartes’ Géométrie, it should be remarked that Descartes

defined a curve as an exact, and therefore geometrical object on the ground of its ‘speci-

fication by genesis’. Unlike the case of the circle and other curves which are constructible

in a canonical way through a suitable geometric linkage, mechanical curves are not con-

structed, according to Descartes’ account, by employing a unique device, but through a

system formed by two segments, whose movements are set independently one from an-

other except from certain kynematical parameters, as the speed of the moving axes, which

are required to be uniform for both of them. It is true that also geometrical linkages are

movable configurations but, in their cases, the kynematic components of the motions (for

instance, the velocity) do not enter essentially in determining the shape - and therefore

the nature - of the curve traced.18 The distinction between the genesis of a curve by

a geometric linkage and the genesis of a curve in a mechanical way is mathematically

clear: only the second kind of genesis involves the appeal to kynematic constraints as

an essential component of the construction of such curves, like the quadratrix and the

spiral, that are henceforth called "mechanical".

16Descartes [1897-1913], vol. 6, p. 392.
17See, for instance, Sasaki [2003], p. 71.
18This point might be at the origin of the somewhat puzzling remark made by Descartes, who avowed

to one of his correspondents, Ciermans, that he had not dealt with motion in La Géométrie ( the letter
is from 23rd March 1638. SeeDescartes [1897-1913], vol. 2, 70-71).
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Such a clearcut distinction is however hindered by two pitfalls, which do not make it

a workable criterion in order to separate geometrical from mechanical curves. The first

difficulty originates within the early modern history of curve constructions. As I shall

argue with more details in the sequel, renaissance and XVIIth century geometers had

developed procedures - some of them certainly known to Descartes too - in order to

legitimate the construction of the spiral, the quadratrix and the helix, namely those

‘mechanical curves’ mentioned by Descartes in La Géométrie, avoiding a direct appeal

to independent motions.19

I shall discuss two kinds of procedures, elaborated in XVIth and XVIIth century, in

order to describe mechanical curves, such as the quadratrix and the spiral, without any

direct appeal to twin independent motions. The first alternative procedure consists in

contriving the twin motions into a unique mechanism, or a unique apparatus, involving

the use of strings or threads, or the possibility of twisting concrete objects in order to

adapt them to curvilinear surfaces. The second procedure consists in generating the

desired curve by a pointwise construction.20

As a consequence, the problem could be raised of understanding whether, in the light

of those new construction procedures, mechanical curves could be judged recevable with

respect to the standards in force within cartesian geometry. I shall argue that a reference

to both methods can be found in La Géométrie. Descartes was presumably aware of

this conceptual difficulty, and provided an answer in La Géométrie through a detailed

distinction between acceptable and unacceptable methods for constructing curves.

The second pitfall can be introduced by the following remark: procedures for the mechan-

ical generation of curves via independent motions can be employed for the description

of geometrical curves as well. A simple case at point is that of the parabola: this curve

can be described either via the composition of two independent motions, one horizontal

and uniform, the other vertical and uniformly accelerated, as in Galileo, Discorsi e di-

mostrazioni matematiche, for instance,21 or through a suitable geometric linkage, as it is

illustrated in Frans Van Schooten’s treatise De organica conicarum sectionum in plano

19Consult, for instance: Bos [2001], in particular chapters 1, 9, 11, 12, 14; Mancosu [1999], chapter 3.
20I do not exclude that other tracing procedures might exist, to the same effect. A promising, still

unexplored domain of research (at least to my knowledge) concerns studies in solid geometry in renais-
sance and early modern period. In fact, as known from ancient examples, curves can be also generated
by the intersection of solid figures. In particular, attempts are made, in Pappus’ Collection, to generate
the quadratrix in this way, by an appeal to ‘loci in the surface’ (see Pappus, Collectio, IV, 28-29).

21See Galilei [2005], vol II, p. 772-807.
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descriptione.22 This example is sufficient to cast doubts on the appropriateness of a

criterion based on properties inherent to the procedures for constructing curves, in order

to classify curves themselves: nothing impedes, in principle, that a curve which has not

been constructed by a geometric linkage is constructible in this way, and is therefore a

geometrical curve, according to cartesian standards.23

This being said, I will search for reasons that may rationally justify Descartes’ self-

confidence about the mechanical nature of the curves evoked above, namely the spiral,

the quadratrix and the cylindrical helix.

5.2.1 Constructions by means of twisted lines or strings

Construction of the cylindrical helix (Guido Ubaldo)

Constructions of mechanical curves that made essential use of the possibility of twisting

a segment or a polygon so as to adapt it to a curved surface or line mostly appeared in

treatises of practical geometry, architecture or mechanics. In the following lines, I will

confine myself to a couple of examples taken indeed from such contexts: on one hand,

a construction of the cylindrical helix, included in the treatise written by Guido Ubaldo

del Monte (1545-1607), a disciple of Commandinus: Mechanicorum libri (1577), and

on the other, a construction of the archimedean spiral devised by the german geometer

Daniel Schwenter (1585-1636) in his Geometriae Practicae novae libri (1625). The latter

construction, in particular, presents similarities with a construction devised by Christiaan

Huygens, and contained in a manuscript written in 1650.24

The cylindrical helix has a crucial position in Book VIII of the Mathematical Collec-

tion - a book dedicated indeed to mechanics - because it represents the form assumed

by the thread of a screw, one of the fundamental machines in ancient and renaissance

mechanics.25

22See van Schooten [1656-57], p. 356-359.
23The point has been raised and discussed in Mancosu [1999], Mancosu [2007] and Mancosu and Arana

[2010].
24Huygens [1888-1950], vol. 11, p. 216.
25In Commandinus’ translation of Pappus’ Collection, in fact, this machine figured as one of the five

simple machines, to which, according to Hero of Alexandria, all complex machines could be reduced (the
other ones were (lever, wheel and axle, pulley, wedge). See Laird and Roux [2008], in particular the
Introduction, p. 4.
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Probably because of its essential role played in the realization of fundamental machines,

the description of the helix often recurred in early modern treatises of mechanics. A note-

worthy example can be found in the treatise Mechanicorum Libri . In this momentous

work, Guido Ubaldo pioneered the attempts to give a systematic account of mechanical

knowledge contained in ancient sources, specifically Pappus and Hero, while taking as

a methodological model the deductive architecture of Euclid’s and Archimedes’ mathe-

matical works.26

In particular, Guido Ubaldo centered the last chapter of his treatise on screws ("De

cochlea", in Del Monte [1577], p, 120). In the first proposition of this chapter,27 Guido

Ubaldo claimed that a wedge, appropriately coiled around an axle, constructs a screw.

In order to prove this claim, he exposed a geometric procedure in order to construct a

helix revolving around a cylinder of finite height.

Guido Ubaldo constructs a cylindrical helix about a given cylinder of finite height MN

(fig.5.2.1, which reproduces the original in Del Monte [1577], p. 121) by wrapping around

its surface a right-angled triangle EFG, whose greatest leg GF equals the base of the

cylinder, whereas the other leg EF , equal to half of the height of the cylinder, is made

to coincide with a generatrix MN of the cylinder itself. In this way, the hypothenuse

GE, wrapped around the cylindrical surface, describes the path of an helix, which starts

at the base ON of the cylinder and terminates at point P , middle point of MN . In

order to construct the remaining part of the helix, Guido Ubaldo places on the cylinder

another right-angled triangle, KIH equal to the former, but in such a way that its leg

KI is wrapped around base LM of the cylinder, and the leg IH lies on MN . Therefore,

the hypothenuse KH of the second triangle, twisted around the cylindrical surface, can

extend the path of the helix NQP , until it reaches point M .

Let us observe that the procedure just resumed engenders a helix on the surface of a given

finite cylinder without direct appeal to a pair of independent motions;28 it has recourse,

instead, to the ‘twisting’ of a segment (namely, the greatest leg in both triangles in fig.

26Cf. Becchi et al. [2013].
27Del Monte [1577], p. 121.
28An analogous construction can be found in Hero’s Mechanics, which was not known to renaissance

and XVIIth century geometers (see Mancosu and Arana [2010], p. 415). The same construction is given
in Pappus’ Book VIII (Pappus [1876-1878], III, p. pp. 1109–1111), a likely source of Guido Ubaldo’s
construction. A third construction of the helix, similar to Hero’s and Pappus’ one, in so far it is based
on the bending of a segment into a around a cylinder, is given by Vitruvius, in the De Architectura, X.
6 (Mancosu and Arana [2010], p. 416).
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Figure 5.2.1: Del Monte [1577], p. 121.

5.2.1) so as to adapt it to a circumference (I observe that this construction requires that

one can rectify the circumference, since sides GF and IK have the same length as the

circumferences of diameters ON or LM .

However, it should be pointed out that, even if Guido Ubaldo’s discourse is about geomet-

rical figures- he refers, in fact, to "triangles" that are made to coincide with a "cylinder"

- he considers, from the beginning of his proposition, that the triangles required for the

construction of the helix are obtained from the splitting of a wedge, namely a concrete

objects, possibly made of a supple material that can be twisted around a cylindrical

shaft.29 It seems, therefore, that the physical properties of the wedge enter essentially in

the description of the helix reported in the Mechanicorum Libri .

5.2.2 Construction of the spiral (Schwenter, Huygens)

We find, among renaissance and early modern geometers, other techniques for describing

mechanical curves based on similar devices to the ones described by Guido Ubaldo. A

noteworthy example is represented by the tracing of the archimedean spiral. Following

a suggestion made by H. Bos30 one can find an example of such instrument in one of

Huygens’ notebooks, more precisely in a manuscript of 1650.31

29Del Monte [1577], p. 121
30Bos [2001] p. 347-348; Panza [2011], p. 81-82.
31Huygens [1888-1950], vol. 11, p. 216.
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Figure 5.2.2: Huygens [1888-1950], vol. 11, p. 216.

The instrument described by Huygens and depicted in the figure 5.2.2, according to the

original drawing, works as follows. It is composed of a flat circular disk (called "cylinder"

by Huygens, and denoted by the letter C in the original figure) on which lies a concentric

smaller cylinder ("cylindrus minor" in Huygens’ parlance). A ruler FA is fixed to to the

center of its basis, call it B. A string ("chorda") winds around the circumference of the

larger cylinder, and is tied to points A and B. At the extremity of the string a tracing pin

is attached (BD in the figure). The pin can freely glide along AF (imagine, for example,

that the pin can move along a groove dug in the ruler FA), and AF can turn around

B, together with the smaller cylinder. Since points A, B and E (an arbitrary point on

the basis of the first cylinder) are tightly connected by a string, when FA turns around

B, the string unwraps upon the circular basis, and the pin BD is pushed forward in the

groove. The spiral is traced by B: in fact, this point is contrived to move uniformly

("aequabili motu" remarks Huygens) along FA, which rotates around B.

Even if this sketch dates from the year of Descartes’ death, H. Bos (Bos [2001], p. 348)

points out that, being an early mathematical piece by Huygens, it might have been

inspired by Descartes himself, who was one of Huygens’ early acquaitances.

Since this evidence is tenuous, we wonder whether similar mechanisms were known to

practitioners before 1637. The answer is positive: Daniel Schwenter, for instance, in

his Geometriae Practicae novae libri IV (1625) offers a construction of the spiral by

means of a thread, that presents the same functioning of Huygens’ device, although its

description is not as detailed as the latter. The mechanism described by Schwenter is

formed by a thread or string, whose extremity is connected to a tracing pin and the other

to a cylinder. As the cylinder turns, the thread, remaining in tension, wraps around the

cylinder, and its extremity traces a spiral, because the tracing pin moves uniformly along
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a rotating radius.32

From the descriptions given above, we can single out a similar process at work in the

mechanisms for the tracing of the spiral and in the one for the construction of the helix,

described in Guido Ubaldo’s book on mechanics. In all these cases, the tracing of the de-

sired curve involves the twisting of a concrete object like a thread or a triangular wedge.

Hence, the possibility of these constructions can be seen to depend, as a necessary con-

dition, on the physical properties of the objects involved in their genesis: the triangular

wedge in Guido Ubaldo’s and the threads in Huygens’ or Schwenter’s mechanisms are to

be imagined as composed of a material that can be suitably twisted in order to fit in the

construction protocol.33

But the physical properties of these devices also constrain the very process of construc-

tion. For instance, the number of spires that one can trace with Huygens’ or Schwenter’s

device depends on the length of the thread, whereas, in Guido Ubaldo’s procedure, the

number of twists in the helix depends on the height of the given cylinder. Such insistence

on the material aspect of the instruments involved in curve construction is not surprising

in the authors discussed in this section: indeed, the constructions I have illustrated in

the previous lines belong to treatises of mechanics or practical geometry, where practical

elements usually overshadowed any concern over theoretical questions.

Yet I venture to conjecture that the apparata for the construction of mechanical curves,

presented in this section, did not have a mere practical import for early modern authors

who promoted and discussed them. For instance, according to the witness of David

Rivault, a French literate and mathematician, author of a momentous commented edition

of Archimedes’ works,34 an instrument called ‘helixograph compass’ was used in order to

construct the archimedean spiral "by a rotation in the manner of a vine leaf" ("pampini

modo circumductio", Rivault [1615], p. 380), in such a way that:

32Ulivi [1990], p. 539. Schwenter’s mechanism was probably not original. According to E. Ulivi, in
fact, constructions of the spiral involving the torsion of strings were known in XVIth century, as a brief
remark in Besson’s Theatrum instrumentorum, a work published in 1578, attests. The latter mentions
the existence of constructions obtained "funiculi circumplicatione" (Besson [1578], p. 6), without giving
examples. Another interesting, although brief remark, can be found in D. Rivault’s Commentary to
Archimedes’ Spirals (more on this below).

33Cf . Panza [2011], p. 81.
34The edition of Archimedes prepared by Rivault was published in 1615 with the title: Opera quae

extant. Novis demonstrationibus Commentariisque illustrata (see Rivault [1615]). This edition remained
influential for the whole XVIIth century. As a sign of its circulation, let us remark that the first german
edition of Archimedes’ collected works: Des unvergleichlichen Archimedis Kunst-Bücher oder heutigs
Tags befindliche Schrifften, edited by Sturm and published in 1670, was still based on Rivault’s edition.
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Qui volet defendere Helixographi circini operationem, quae unica revolu-

tione opponet communem διαβήτης materiam etiam constare, manu duci,

oculis videi, sensu tangi: nec propterea mechanicas ipsius censeri opera-

tiones, admitti eas a Geometris: licet propterea mathematicam fidem etiam

illi ὲλιξογράφῳ praestare.35

Although this passage is of difficult interpretation, yet we can still glean from Rivault’s

words the conclusion that a device for constructing the spiral (possibly a model analogous

to those devised by Schwenter and by Huygens) was judged, in the opinion of some

unspecified practitioners, as geometrical as the common compass. Even if the passage

does not tell it overtly, those practitioners might have also grounded, on the alleged

geometrical character of their compass, the geometrical nature of the curve traced by its

application, like the spiral.36

5.2.3 Pointwise construction of mechanical curves

Rivault’s pointwise construction

A second technique, frequently employed in order to describe curves of the third kind

(according to Pappus’ classification) without appeal to motions, consisted in constructing

- by legitimate instruments like the ruler and the compass - a net of points on the curve

and, in order to describe it, interpolating these points by the continuous tracing of the

pen.

A notable example among the numerous ones which flourished during XVIth and early

XVIIth century37 concerns the construction of the archimedean spiral, and it is ex-

pounded by the aforementioned David Rivault. It can be found in a commentary to the

latin version of Archimedes’ treatise On Spirals translated by Rivault himself.38

35Rivault [1615], p. 380: "Some would like to defend the operation of the helixograph compass, which
by a sole rotation shows that [like] the common compass it is made of matter, guided by the hand, seen
by the eyes, touched by the senses; and it does not follow that its operations are judged mechanical, but
they are admitted by geometers, in virtue of which we can bestow mathematical reliability upon such
helixograph compass".

36I have not been able to find other occurrences of such a ‘helixograph compass’ in the corpus of
XVIth and XVIIth century mathematics, in order to test my conjecture. I envisage to undertake further
investigations in this direction in future works.

37This manner of construction became well-known and occassionally criticized between late XVIth and
early XVIIth century, as the survey in Bos [2001] (in particular, p. 75, and sparsim chapter 9, chapter
11 and 12) confirms.

38See Rivault [1615], p. 339-405.
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Figure 5.2.3: Rivault [1615], p. 347.

As we recall from chapter 2, section 2.3.3, the spiral (or, more precisely, the first turn of

a spiral) is defined at the outset of Archimedes’ treatise, as a curve resulting from the

motion of a point along a diameter of a given circle, while the said diameter executes

one complete revolution. Rivault translates and comments this definition, adding that a

similar one can be found in Pappus’ Collection, Book 4, proposition 19.39

Like Pappus (and unlike Archimedes), Rivault proposes the problem of describing a spiral

("spiralem describere") within a given circle, and solve it by a pointwise construction of

the curve. Rivault’s construction protocol can be thus sketched.40

• Trace a circle γ with radius BA (fig. 5.2.3).

• Divide γ into n equal sections ("multas partes aequales"). In the diagram that

exemplifies Rivault’s text, the circle has been divided in 24 parts (see 5.2.3, which

reproduces the original, in Rivault [1615], p. 347). Such a choice is plausibly

motivated by the fact that a regular polygon of 24 sides is constructible with ruler

and compass. Obviously, not all divisions of the circle into equal parts can be done

in an elementary way: Rivault probably knew that the division in seven or nine

39Rivault [1615], p. 347.
40Rivault [1615], p. 347.
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points, for instance, requires higher curves, but no considerations with this respect

are to be found in Rivault’s commentary.

• As a next step, divide the radius BA into the same number of parts. This operation

can be effectuated by ruler and compass, for any number of divisions.

• Name the points thus traced from B to A, by an increasing sequence of numbers:

1, 2, 3 . . . (in the diagram, the sequence terminates with point 24).

• With centre B, trace circles with radii: B1, B2, B3, . . .BA (where A ≡ 24).

• Starting from BA, and proceeding clockwise, mark the intersection point between

the circle with radius B1 and the first radius of γ encountered (namely BM). Then

proceed in the same way, and mark the intersection point between the circle with

radius B2 and the second radius BN .

Iterating the same procedure, a net of points can be constructed, which belong to a spiral

(as Rivault notices, the more parts the angle is divided, the more precisely the pointwise

description of the spiral will approximate its continuous shape). The correctness of

Rivault’s procedure can be inferred from the the very symptom of the spiral. Indeed, let

s1 and s2 be the distances traversed, in times t1 and t2, by the translating point from

A to B. Then, let
⌢
a1 and

⌢
a2 be the distances covered, in the same times t1 and t2, by

the radius starting its rotation from the initial position BA. Since the twin motions are

supposed uniform, the following proportion will ensue: s1 : s2 =
⌢
a1 :

⌢
a2 = t1 : t2. Hence,

any couple of points on the spiral will thus satisfy the proportion: s1 : s2 =
⌢
a1 :

⌢
a2, where

s1 and s2 stand for the distances of the points from the centre, and
⌢
a1,

⌢
a2 represent the

angular distances from the points to BA. It can be immediately verified that all the

points constructed by Rivault’s protocol satisfy this condition. Therefore, these points

lie on a spiral traced by a translating point on a segment BA, which pivots around its

centre B, both motions occurring uniformly.

Epistemic considerations

I notice that the protocol just illustrated does not give a continuous tracing of the spiral,

but only a net of points through which the curve had to pass. I argue that Rivault

may have judged his pointwise description of the spiral as a source of legitimation for

the continuous construction of the curve, given by Archimedes and Pappus (see chapter

2). Firstly, Rivault’s pointwise description of the spiral defines the curve avoiding the
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petitio principii , pointed out originally by Sporus (see chapter 2, sec. 2.3.2), consisting

in assuming the ratio between the rotational and translational motions, and therefore the

rectification of the circle. Moreover, the pointwise construction can be obtained solely

by ruler and compass (provided the circle is divided in a number of parts constructible

by Euclidean means). Thirdly, and finally, the pointwise description can be performed

in a more expedient way than by recourse to motions, since it does not require to impose

specific conditions on the velocities, that are difficult to control during the practical

tracing of the curve, or during its tracing in the imagination.

I remark that Rivault dedicates interesting considerations to the difficulties inherent to

the generation of the spiral by twin motions. In particular, Rivault points to a difference,

that we may define of epistemic order, between the genesis of the circle according to

Euclidean clauses, that he deems fully geometrical, and the construction of the spiral:

Circulum mens breviter concipit, quae in apprehendenda helica turbatur.

Motus simplex familiaris est, atque hoc circulis constat: mixtus vero seu

compositus quo voluta oritur, remotior est a communi conceptu, difficilisque

phantasiae inhaeret, eoque facilius in errorem est praeceps. 41

The core difference between the construction of the circle and that of the spiral is based,

in Rivault’s narration, on the different capacity of representing the genesis of each curve

to the mind. Rivault takes for granted that, while the action that allows him to trace

a circle can be easily cognized, since it consists in one, simple and familiar motion, the

construction of the spiral depends on the composition of two motions, namely a rotation

and a translation, occurring at the same time and with uniform speed. Hence, Rivault

concludes, the process which generates a spiral is not as transparent to the mind as the

generation of the circle. On this ground, he states that a curve like the spiral appears

somewhat mechanical ("mechanicum redoleret").

Even if some may defend the geometrical nature of a spiral on the ground of its generation

by instruments, like the "circinus helixographus" discussed above,42 Rivault maintains

41Rivault [1615], p. 381: "The mind can quickly (breviter) cognize the circle while it is troubled in
cognizing the spiral (helica). A simple motion is familiar, and the circle consists of this: but the mixed
or composed one, from which the spiral is engendered, is distant from the common opinion (a communi
conceptu), and it remains fixed with difficulty in our imagination, and for this it is more liable to error".

42Rivault [1615], p. 380.
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that a curve thus traced does not become more perspicuous to us, because it is still

engendered in a complex manner:

At indignum est mathematica certitudine quodcumque primo intuitu non

patet vel perspicua rationcinatione non elicitur, vel perplexum est, vel mix-

tum, vel compositione sua erroneum.43

In conclusion, it is possible that Rivault regarded his own pointwise construction as closer

to mathematical certaintly, because it eliminates both the reference to uncontrollable

motions and the recourse to complex instruments.

Whether the above reflections were developed by Rivault in connection with an original

philosophy of mathematics, I am not competent to decide. However, I can still venture the

hypothesis that Rivault envisaged the actions of the geometer (in terms of construction of

curves and figures) as deploying in the abstract space of the imagination, which might be

thought as a sort of mental analogue of the paper on which geometrical constructions and

diagrams are drawn. Exact constructions would thus be perspicuous ones (notice: the

word ‘perspicuus ’ is used by Rivault himself in the excerpt reproduced above), namely

constructions which appealed to simple and familiar actions (i. e. the case of the circle)

and that enjoy, consequently, immediate evidence. Similar views can be encountered in

the reflection of other mathematicians writing around the same period,44 so that it is

not implausible to interpret Rivault’s claims within this constellation of ideas.

Clavius’ pointwise construction of the quadratrix

The second pointwise construction I want to consider regards another curve discussed

in Pappus’ Collection, namely the quadratrix. The pointwise construction of this curve

was elaborated by the Jesuit mathematician Christophorus Clavius around 1589, on the

aftermath of the publication of Commandinus’ first edition of Pappus’ Collection. This

43Rivault [1615], p. 381: "But it is not worth of mathematical certainty anything that is not evident
at first sight, or is not made manifest through a perspicuous reasoning, or it is intricate, or embroiled,
or vague because of its intricacy".

44In his Bos [2001], for instance, Henk Bos mentions at least two geometers, Johannes Molther and
Willebrod Snellius, who held similar opinions on the mental status of geometrical constructions. As Bos
remarks: "Molther stressed that motion was very common within pure geometry; a line was generated
by motion of a point; spheres, cones and cylinders were generated by the motions of circles and straight
lines (. . . ) constructions still had to be performed in the mind by an inner sense, and this was done
by procedures idealized from the actual physical construction procedures" (Bos [2001], p. 200), whereas
Snellius: "stated that motion in pure geometry was imaginary in the sense that it was conceived in the
mind of the geometer" (ibid .).
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construction appeared for the first time in an appendix to the second edition of Euclidis

elementorum libri XV (1589) and in his Geometria practica (1606),45 and enjoyed a

considerable fortune in the subsequent years.46

In his Euclid [1589], in particular, Clavius argued that if a truly geometrical construc-

tion of the quadratrix were given, it could profitably extend the number of curves fully

acceptable in geometry, and thus fulfill the ambitious project of solving geometrically

the circle-squaring problem, the general angle division, and the construction of regular

polygons of any number of sides, namely the main problems in want of a solution by the

time of his writing.47 Arguably, one may suppose that in Clavius’ view the problem on

which mathematicians should focus their effort was not to find a new construction for

the squaring of the circle, but to give a description of the quadratrix which may comply

with the requirements of mathematical acceptability in force within Clavius’ conception

of geometry.

Indeed Clavius’ fundamental contribution to the study of the quadratrix consisted in

offering a way to circumvent the difficulties inherent in Pappus’ construction of the curve

through movable axes:

Quamquam autem praedicti auctores huiusmodi lineam conentur describere

per duos motus imaginarios duarum rectarurm, qua in re principium petunt,

ut propterea a Pappo reijciatur, tamquam inutilis, et qua describi non possit,

nos tamen eam sine illis motibus Geometrice describemus per inventionem

quotius punctorum, per quae duci debeat, quaemadmodum in descriptionibus

conicarum sectionum fieri solet.48

45Clavius’ construction can be found in the appendix to Euclid [1589]: "De mirabili Natura lineae
cuiusdam inflexae per quam et in circulo figura quotliber laterum aequalium inscribitur, &circulum
quadratur & plura alia scitu iucundissima perfinciuntur". The study on the quadratrix, in particular,
was incorporated in (Clavius [1604], p. 320-329). Both the Geometria Practica and the Elementorum
libri XV were reprinted in Clavius’ mathematical works (1611-1612). See also Bos [2001], p. 160 and
Mancosu [1999], p. 74, for an overview of Clavius’ discussion on the quadratrix, to which I am especially
indebted.

46Garibaldi [1996], p. 81.
47Euclid [1589], p. 894.
48Euclid [1589], p. 894: "But although the said authors [i.e. Hippias and Dinostratus, among the

ancients] try to describe a curve of this sort [namely, the quadratrix] via two imaginary motions of two
straight lines, which beg the question, so that, henceforth, the curve is refused by Pappus as useless
and for this reason impossible to be described, we describe this line geometrically instead, without these
motions, by the invention of so many points, through which it can be traced, in the same way as it
happens in the description of conic sections".
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Clavius wrote these considerations under the spur of the recent publication of Command-

inus’ translation of the Collection, occurred in 1588, and specifically after his attentive

reading of book IV. We find indeed resumed, in the above passage, the objections to

the generation of the quadratrix that can be traced in Pappus’ account too (Book IV,

propositions 26). Firstly, Clavius recalls that the quadratrix is described by a couple

of motions which ‘beg the question’. Clavius revives here the objection originally at-

tributed to Sporus:49 a particular quadratrix cannot be described via the appeal to a

couple of motions, according to the protocol set out in Collectio, IV, 26, unless one knows

beforehand the ratio between the velocities of the tracing motions, and ultimately the

ratio between diameter and circumference. Clavius maintains that the quadratrix, as

described in the Collection, is useless, because it presupposes the very problem that it

should solve.50

But Clavius had clearly in mind also the other objection originally advanced by Sporus,

concerning the fact that the foot of the quadratrix cannot be determined, when the

curve is described by a couple of motions. Clavius indeed points out to the difficulty

concerning the construction of the terminal point of the quadratrix when he underlines

that it: "cannot be found geometrically, because all intersections of the lines will at that

moment cease".51

A new description of the quadratrix is thus advanced by Clavius:

Quare nos Geometrice eandem lineam Quadratricem describemus hoc modo.

Arcus BD in quotius partes aequales dividatur, & latus utrum AD, BC in toti-

dem aequales partes. Facillima divisio erit, si et arcus DB et utrumque latus

AD, BC secetur primum bifariam, deinde utraque semissis iterum bifariam,

etc., ita deinceps, quantum libuerit. Quo autem plures existerint divisiones,

eo accuratius linea describebitur. . . 52

49Clavius’ reading of Collection, Book IV, 26 is however vitiated by Commandinus’ interpolation of
the proper name Sporus with the verb "spero", hence there is no mention of the ancient geometer who
criticized the generation of the quadratrix.

50Similar considerations return one page later, in Euclid [1589], p. 895. I recall that this objection
holds only if we want to construct a particular quadratrix, for instance inscribed in a given circle (see
chapter 1). To my knowledge, Clavius makes no considerations on this point.

51Euclid [1589], p. 896: "inveniri Geometrice non potest, cum ibi omnis sectio rectarum cesset".
52Euclid [1589], p. 895: "Thus, we describe geometrically the quadratrix line in this way: Let the arc

BD be divided in a number of equal parts, and either side AD or BG be divided in the same number
of equal parts. This division will be very easy, if the arc DB and one of the two sides AD, BG are
firstly bisected, then any half side will be again divided in two, and so on, as much as we like. The more
divisions will be, the more accurately will the line be described. . . ".
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Figure 5.2.4: Euclid [1589], p. 895.

The protocol detailed in the passage can be thus schematized:

• In a given circle with radius AD, divide AD and the arc
⌢

BD into the same number

of equal parts (this operation can be accomplished by ruler and compass).

• From the points of division so obtained on AD and
⌢

BD, let the parallels to AB

and the radii be traced, respectively.

• The intersection points of corresponding segments will lie on the quadratrix.

The proof is immediate, since the quadratrix is the sectrix curve of the arc corresponding

to a quarter of the circumference (this property is implicit in the very symptoma of

the quadratrix, as reported by Pappus. Cf. chapter 2, section 2.3.2), so that all points

constructed in the way explained by Clavius in the above passage lie on that curve.

In this way, Clavius concluded that his pointwise description of the quadratrix was more

geometrical than the construction of Dinostratus, as it possessed the advantage of deter-

mining the curve without the dubious appeal to a pair of independent motions.53

53As we read in Euclid [1589], p, 897: "esse autem hanc lineam inflexam DE a nobis per puncta
descriptam geometrice eandem, quam Dinostratus et Nicomedes per duos illos motus imaginarios describi
concipiebat, perspicuum est" ("It is clear that this curve DE, described by us geometrically point by
point, is the same that Dinostratus and Nicomedes conceived described by these two imaginary motions").
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On the other hand, the pointwise construction of the quadratrix could not secure the

continuous tracing of the curve. Clavius was certainly aware of the discrete character

of his pointwise description, as he recommended that one should carry out a continuous

description of the curve:

Per ea puncta Quadratrix linea congruenter ducenda est, ita ut not sit sinuosa,

sed aequabiliter semper progrediatur nullum efficiens gibbum, aut angulum

alicubi, qualis est linea inflexa DE, secans semidiametrum AB in E.54

According to this passage, the quadratrix should be traced ("duci") by connecting all

the points constructed by ruler and compass with a smooth continuous line, that does

not make bents or angles anywhere. He even recommended to increase the number of

divisions in order to obtain a more accurate tracing of this curve.55 It is not clear,

though, by which means the continuous tracing of the quadratrix should be effectuated.

Probably Clavius was confident that the continuity of the quadratrix could be ensured

by the classical generation via two motions. Hence, the pointwise construction offered

by Clavius would legitimate the soundness of Dinostratus’ construction, but it would be

no substitute for the latter.

A second difficulty connected with Clavius’ pointwise construction of the quadratrix

concerns the fact that, even if it could deploy, through continual bisections of the radius

and the arc, an infinite collection of points belonging to the quadratrix, it could not

construct any point among those on the quadratrix. In particular, it could not construct

the intersection point with the horizontal axis (point E in figure 5.2.3). But Clavius

trusted that his method offered an accurate way of tracing the whole curve, included

point E, and consequently could circumvent the second objection raised by Sporus (or

Pappus himself, in Clavius’ reading of Commandinus’ version).

In order to determine point E, Clavius illustrated the following, special procedure:

• Bisect the arc BD and the segment AD repeatedly, until obtaining a very small

("perexigua", in Clavius’ words) segment AF and its corresponding arc
⌢

BI.

• Bisect segments AF , and call G the midpoint of AF .

54Euclid [1589], p. 896: "The Quadratrix must be traced through these points in a fitly way, so that
it is not wavy (sinuosa), but proceeds uniformly (aequabiliter), without making any bent (gibbum), or
angle anywhere, like it is the curved line DE, which cuts the semi-diameter AB in point E".

55See for instance Euclid [1589], p. 895: "Quo autem plures existerint divisiones, eo accuratius linea
describebitur" ("the more divisions will be made, the more accurately the curve will be described").
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Figure 5.2.5: Euclid [1589], p. 896.

• Construct point M , symmetrical of G with respect to A. On point B, and per-

pendicular to AB, construct a segment BL = AG. Then construct a point N ,

symmetrical of L with respect to B. Since GA = MA = BL = BN by construc-

tion, segments GL and MN will be parallel and equal.

• Bisect the arc
⌢

BJ , and call K the midpoint of the arc.

• The intersection between segment GL and AK will yield a point H, belonging by

construction to the quadratrix.

• Construct point P , symmetric of H with respect to the axis AB (the point will

lie on MN) and connect with a continuous tracing all points thus constructed,

included point P .

Clavius assumed (implicitly) that the curve joining points H and P , lying on opposite

sides with respect to the axis AB, would cut AB in a point which coincides with E,

below "a noticeable error, that is, an error that could be perceived by the senses".56

With hindsight, we might be tempted to interpret Clavius’ construction as suggesting

a geometric representation of a limiting process, in the following way.57 Consider the

56"Sine notabili errore, qui scilicet sub sensum cadat."Euclid [1589], p. 896.
57as we can recognize from the model offered in (Becker [1957], p. 97-98) in order to determine the

foot of the quadratrix point E as the limit of two converging sequences through an iterative construction
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Figure 5.2.6: Clavius’ pointwise construction.

quadrant of side AB (fig. 5.2.3), let points point F1, F2 . . . Fn . . . be constructed according

to Clavius’ protocol: point F1 will be obtained by bisecting the angle BAD and the side

AB; the chain of points Fn will be obtained by successive dichotomies of the angle and

the side.

Let the perpendiculars F1K1, F2K2 . . . FnKn . . . to the line AD be dropped. As n in-

creases, points Fn get closer and closer to the intersection point E, that we assume to

exist by continuity, without ‘touching’ it. Similarly, as n increases, it is clear from the

diagram that also points Kn tend to point E. Thus, two sequences of points (or seg-

ments, taking A and B, respectively, as their origins) have been constructed in order to

approach E from below and from above. It is therefore implicit, in Clavius’ procedure,

the determination of point E as a limit of two converging sequences of points.

is studied, for instance, Becker, however, omits to mention Clavius as a predecessor of this technique.
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Moreover, it can be easily proved that segments FnFn+1, obtained by joining two suc-

cessive points constructed by Clavius’ method are perpendicular to the corresponding

segments AFn+1. Let us take, for instance, the segment F1F2 in figure 5.2.3. Let us re-

mark that the triangle AF1F2 can be considered the half of an isosceles triangle, having

vertex in A, one side AF1 and the other side lying on AD (in fact the angles DAF2 and

F2AF1 are equal, in virtue of Clavius’ construction). Therefore AF2 will bisect the base

of the isosceles triangle at point F2, and will be perpendicular to F1F2. The same result

holds, without loss of generality, for successive segmentsFnFn+1.

On this ground, using trigonometry, and setting AB = 1, we will have that: AF1 = cos π
4 ,

AF2 = AF1 cos
π
8 = cos π

4 cos
π
8 , AF3 = AF2 cos

π
16 = cos π

4 cos
π
8 cos

π
16 , and so on. After

n bisections we will have:

AFn = AFn−1 cos
π

2n+1
= cos

π

4
cos

π

8
cos

π

16
. . . cos

π

2n+1
.

In an analogous way, we can express segments AK1, AK2 . . . , AKn as: AK1 = AF1 cos
π
4 =

cos2 π
4 , AK2 = AK2 cos

π
8 = cos π

4 cos
2 π

8 , AK3 = AF3 cos
π
16 = cos π

4 cos
π
8 cos

2 π
16 , and

AKn = AFn cos
π

2n+1 = cos π
4 cos

π
8 cos

π
16 . . . cos

2 π
2n+1 . Clavius’ geometric construction

shows that point E is squeezed in the interval AFn −AKn, namely:58

AFn −AKn = cos
π

4
cos

π

8
. . . cos

π

2n+1
(1− cos

π

2n+1
) < 1− cos

π

2n+1
.

Hence the difference between segments AFn and AKn is smaller than the difference

1− cos π
2n+1 , which tends to zero as n grows. This reconstruction can justify why Clavius

was confident that his procedure could determine point E "sine notabili errore", the

more one proceeds in subdividing the side and the angle. However, it should be pointed

out that Clavius did not explicate, in the Commentary to Euclid or in other works, a

notion of limit akin to the modern one. In other words, he did not (at least explicitly)

define point E as the limit point of two converging sequences of points, in the sense that,

for any chosen interval AFn − AKn, there exists a couple of points (Fn+1,Kn+1) such

that the interval AFn+1 −AKn+1 is smaller than AFn −AKn.

58Becker [1957], p. 98.
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The discussion of the quadratrix contained in the second edition of his Commentary to

Euclid’s Elements raised a long and lively debate, mainly centered around the geomet-

rical character of the construction there proposed, and around the acceptability of the

quadratrix as a geometrical curve.

We can remark that the latter claim is not fully and clearly justified by Clavius: if the

pointwise description of the quadratrix avoids any appeal to motions, nevertheless it does

not warrant the continuous tracing of this curve. Moreover, Clavius’ construction of the

foot of the quadratrix contains some obscurities too, as some of his early readers, like

Van Roomen and Lansbergen did not fail to remark. For instance, Van Roomen wrote to

Clavius in 1592, observing that his construction was simply of "no help in calculation",59

and Lansbergen, in his Cyclometriae libri duo (1616), noticed that Clavius’ effort was of

"no significance" ("conatu irrito"), since the termination of the quadratrix is not exactly

captured by his procedure.60

As a response to these and other critiques, Clavius later modified his views on the ge-

ometrical nature of the quadratrix. Probably aware of the difficulties inherent to the

pointwise construction of this curve, in the 1603 edition of his Elements he published the

appendix on the quadratrix with a small, but significant correction: he stated in fact that

his procedure allowed to trace the eponymous curve not "geometrice" but "quodammodo

geometrice", namely "somewhat geometrically". One year later, In 1604, Clavius pub-

lished the Geometria practica. We find, at the end of book VII, dedicated to isoperimetric

problems, an appendix: "De circulo per lineas quadrando", where Clavius illustrates sev-

eral methods for solving the circle-squaring problem, and manifests his conviction that

the quadratrix constitutes the most accurate way.61

Conclusively, it seems that Clavius did not abandon his conviction that the quadratrix,

redefined according to his own description, could be a curve that we might accept as

geometrical, even if it did not possess the same character of exactness of the circle and

the straight line. In summary, the pointwise construction of this mechanical curve might

represent, in Clavius’ viewpoint, a satisfactory compromise between practical accuracy

59See Bos [2001], p. 165.
60It did not escape to Lansbergen that Clavius was well aware of this flaw: ". . . Clavius ipse fateri

cogitur, ipsius tetragonisouses finis eo modo numquam deprehenditur" (van Lansbergen [1616], p. 107).
61"Haec via licet ad Geometricè inveniendum punctum quoddam nonnihil in ea desideretur, accuratior

tam est omnibus alijs quas hactenus videre potui" (Clavius [1604], p.320). In the subsequent section,
Clavius illustrates the pointwise construction of the quadratrix, reproducing the protocol and, almost
literally, the text of his 1589 and 1603 editions.
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and geometrical exactness. The evolution of Clavius’ ideas on the quadratrix, and es-

pecially his final deliberations on the quasi-geometrical status of this curve, make Bos’

suggestion plausible, according to which Clavius: "took practical precision as guideline

for deciding on geometrical exactness" (Bos [2001], p. 166).

5.3 Descartes’ appraisal of string-based mechanisms and point-

wise constructions

In this section, I will provide evidence that Descartes was not only acquainted with

the two modes for constructing mechanical curves presented in the foregoing sections,

namely constructions performed by the twisting of a straight line into a circular arc

and pointwise construction, but that he critically discussed, compared with analogous

constructions for geometrical curves and eventually discarded the methods for describing

mechanical curves as methods that ought to be truly ranged among mechanics, where,

Descartes glossed, only: "la justesesse des oeuvrages qui sortent de la main est désirée".62

Acceptable and non-acceptable uses of strings

Let us revert to the construction of the helix presented in Guido Ubaldo’s work or the

description of the spiral given by Daniel Schwenter. Evidence that Descartes might be ac-

quainted with either of these mechanisms comes from the following controversial passage,

taken from a letter, evoked above, written by Descartes to Mersenne in November 1629.

As we have seen, the letter mentions a curve called helix ("la ligne hélice"), described:

. . . par le moyen d’un filet, car tournant un filet de biais autour du cylindre,

il decrit justement cete ligne là, mais on peut avec le mesme filet quarrer le

cercle si bien que cela ne nous donne rien de nouveau en Geometrie.63

As I have also explained above, scholars are divided on the exact significance of Descartes’s

description. Arana and Mancosu claim, in Mancosu and Arana [2010], that this pas-

sage relates the construction of a cylindrical helix, obtained through "a thread turning

obliquely around a cylinder", a procedure that we recognize similar or analogous to the

one expounded in the Mechanicorum of Guido Ubaldo.

62Descartes [1897-1913], vol. 6, p. 389.
63Descartes [1897-1913], vol. 1, p. 71.
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I recall, on the other hand, that the term helix ("hélice", in french, and "helica" in latin)

could be used in XVIth and XVIIth to denote either the cylindrical helix, as in the previ-

ous interpretation, or the archimedean spiral. On the ground of this attested ambiguity,

the line obtained through "a thread turning obliquely around a cylinder" has been in-

terpreted as the archimedean spiral: Descartes’ concise description may be immediately

referred to Huygens’ mechanism (see Bos [2001], p. 348) or more likely, I suggest, to the

mechanism presented by Schwenter for the construction of the Archimedean spiral.

It is not my purpose to assess here whether Descartes was referring, in his 1629 letter,

to the helix or to the archimedean spiral. I will merely confine myself to remarking

the following: the letter suggests that Descartes was acquainted, by 1629, with such

mechanisms for the tracing of mechanical curves based on the twisting of strings or

threads.64

Another indication of such acquaintance shines through the text of La Géométrie. In

fact Descartes carefully distinguishes, in a section of the second book eloquently ti-

tled: "quelles sont aussy celles qu’on descrit avec une chorde, qui peuvent y estre re-

ceues" ("which are the curves described with a string, that can be received in geometry",

Descartes [1897-1913], vol. 6, p. 412), two modes of employing string-like constructions

in geometry:

Et on n’en doit pas reietter non plus celles ou l’on se sert d’un fil, ou d’une

chorde repliée, pour determiner l’esgalité ou la différence de deux ou plusieurs

64An isolated remark that we find in the Cogitationes Privatae (written between 1619 and 1621) con-
firms this hypothesis, showing that Descartes has some knowledge of the use of strings for tracing curves
already by the beginning of the 20s: "Si funis mathematicus admittatur, is erit communis mensura recti
et obliqui. Verum dicimus hanc lineam admitti posse, sed a mechanicis tantum: ea scilicet ratione qua
uti possumus statera ad aequandam cum pondere, vel nervo ad eandem comparandam cum sono; item
spatio in facie horologii contento ad metiendum tempus, et similibus in quibus duo genera conferun-
tur"("If a mathematical chord is admitted, there will be a common measure between the straight and
the oblique. Indeed, we say that such line can be admitted, although only by practitioners of mechanics:
for the very same reason on which we can use a lever to make it [namely a line] equal to a weight, or
a string to compare the line with a sound, or the interval on the quadrant of a clock to measure time,
and in similar things in which two different kinds are compared"). The expression "funis mathematica"
(mathematical chord) may indeed refer to the process of adapting a segment onto an arc or a curved
surface until the two coincide, the same process we detect in the genesis of the spiral and the helix by
strings. Notice that Descartes confines such a process among mechanics ("we say that such line can be
admitted, although only only by practitioners of mechanics"). The reason, according to what the passage
from the Cogitationes tells us, is that the operation engendered by a "mathematical chord" would stand
on a par with the measuring of physical magnitudes, like the flow of time or the intensity of a sound,
by means of geometrical magnitudes, like the line traced on the clock dial or the vibration of a chord,
respectively. In all these cases -Descartes affirms - two "kinds" of magnitudes are conflated.



CHAPTER 5. MECHANICAL CURVES IN DESCARTES’ GEOMETRY 249

lignes droites qui peuvent estre tirées, de chasque point de la courbe qu’on

cherche, a certains autres poins, ou sur certaines autres lignes, a certains

angles, ainsi que nous avons fait en la Dioptrique, pour expliquer l’Ellipse ou

l’hyperbole. Car, encore qu’on n’y puisse recevoir aucunes lignes qui semblent

à des chordes, c’est à dire qui devienent tantost droites et tantost courbes,

à cause que la proportion, qui est entre les droites et les courbes, n’est pas

connue, et mesme ie croy ne le pouvant pas estre par les hommes, on ne

pourroit rien conclure de là qui fust exact et assuré.65

Descartes opposes here a legitimate and an illegitimate use of strings in curve construc-

tion. In the first case, strings are employed with the sole purpose of determining: ". . .

the equality or difference of two or more straight lines drawn from each point of the

required curve to certain other points, or making fixed angles to certain other lines".

This use is exemplified by such procedures for the construction of conic sections through

the so-called gardener’s method, explained, for instance, in Descartes’ Dioptrique.66

Let us consider, for instance, the construction of the ellipse, offered there. Descartes

starts by tying a string taut between two pins, coincident for instance with the two foci

of the ellipse. Fixing a pencil against the string, it is sufficient to pull the taut string

with the pencil, and then move this one in a large arc keeping the string taut.67

These constructions can produce geometrical curves, although by means of a procedure

different from the ones using geometrical linkages only, and it is judged by Descartes

"very coarse and not very exact" ("fort grossière et peu exacte"), but sufficient in order

to make the nature of the curve "better known". I note that the procedure presented

in the Dioptrique respects the constraints on the legitimate use of strings specified in La

65Descartes [1897-1913], vol. 6, p. 412. In order to better understand this important passage, I will
report here the translation proposed by Smith and Latham: "Nor should we reject a method in which a
string or loop of thread is used to determine the equality or difference of two or more straight lines drawn
from each point of the required curve to certain other points, or making fixed angles to certain other
lines. We have used this method in La Dioptrique in the discussion of the Ellipse and the Hyperbola.
On the other hand, geometry should not include lines that are like strings, in that they are sometimes
straight and sometimes curve, since the ratios between straight and curved lines are not known, and I
believe cannot be discovered by human minds, and therefore no conclusion based upon such ratios can
be accepted as rigorous and exact" (Descartes [1952], p. 91).

66Let us recall that the Discours de la méthode was published along with three treatises: the Diop-
triques, the Météores, the Géométrie. Although they were published together, the Dioptrique was
probably already completed by 1630 (Descartes [1897-1913], vol. 1, p. 179).

67An analogous procedure can be set up in order to construct an hyperbola. See Descartes [1897-1913],
vol. 6, p. 166 and p. 176.
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Géométrie: indeed, the strings employed for the construction of the ellipse (or the hy-

perbola) constrain every point on the curve in such a way that the sum (resp., difference,

in the case of the hyperbola) of the segments joining it to the two pins is constant. Even

if string-constructions of the ellipse and the hyperbola were not considered by Descartes

on a par with constructions by geometrical linkages, yet Descartes might have recognized

that strings are sometimes useful as heuristic devices, when they suggest how to con-

ceive a geometrical linkage which could be employed for the construction of the curve at

hand.68

On the contrary, the illegitimate use of strings in geometry concerns those constructions

employing cords which become "sometimes straight and sometimes curve". Moreover,

Descartes explains that string-like lines are not receivable in geometry because the pro-

portion between curves and straight lines cannot be exactly known.

It is not obvious to grasp how these two claims can go together. In order to venture

an interpretation of Descartes’ argument, I shall start by remarking that, although

no examples of strings which are "sometimes straight and sometimes curve" appear in

La Géométrie, Descartes might think of certain devices involved in the construction of

curves. These could be, for instance, either the instruments tracing of spirals obtained

through the devices described by Huygens or Schwenter, or the construction of the helix

which, either in Pappus or in Guido Ubaldo, requires the twisting of a string or of a figure

in order to trace the desired curve. As we have read in the foregoing section, it is plau-

sible that Descartes was acquainted with these or analogous constructions, elaborated

in the course of XVIth century and early XVIIth century, that involved the twisting of

strings in order to trace mechanical curves.

I remark, on the ground of the analysis given in Panza [2011], that all these devices with

which Descartes might have been familiar, and that involve the twisting of lines in order

to construct the desired curves, are concrete instruments, since they are able to function

thanks to specific physical properties of their components. The sources I have examined

are quite eloquent on this point: both Guido Ubaldo and Huygens, for instance, insist on

such physical characteristics of the objects entering their respective constructions, be it

the material of which the triangular wedge is made, or the length of the chord wrapping

on the cylinder.

68Molland [1976], p. 42, Panza [2005] p. 84.
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As a consequence, it can be noticed that the instruments or procedures for the tracing of

mechanical curves were so designed to work only insofar as some forces are exerted by and

upon their components, for instance in order to suitably bend strings and adapt them to

curved surface: the constraints imposed to the construction of the spiral or the helix are

undoubtedly of a mechanical nature.69 These properties suggest an important difference

with respect to the procedure involving the use of strings for the construction of conic

sections. It is true that also in these cases concrete objects are employed, namely moving

strings fixed to some pins. However, these strings can be conceived as instances of purely

geometrical systems, in the sense that the only constraints to which the motions of these

strings obey in order to trace an ellipse or a hyperbola can be expressed geometrically, as,

in the case at hand, in terms of the sum or the difference between each point individuated

by the moving strings and two fixed points.

From this discussion, we can venture the conclusion that, in the backdrop of a distinc-

tion between admissible and non admissible uses of strings deployed in La Géométrie,

Descartes succeeded in isolating a certain type of curve constructions involving strings,

whose behaviour was judged unacceptable in geometry, because it resulted from obvious

mechanical constraints imposed on the traced curve.

However, the ground in order to discriminate between acceptable and unacceptable use

of strings for curve-tracing devices does not seem immediately related to the reason

explicitly invoked by Descartes, namely, the fact that the exact proportion between

straight lines and curvilinear ones is unknown to men (a similar point is made in Panza

[2011], p. 82). I suggest that Descartes might be convinced that, had the exact proportion

between straight and curvilinear segments been known, the mechanical devices for the

construction of the spiral or the helix could be replaced by geometrical linkages, in the

same way in which, the construction of the conics by the strings can be easily substituted

by constructions obtained via geometrical linkages. Hence, Descartes’ peremptory denial

that such a ratio could be exactly known would warrant the illegitimate status of those

instruments, analyzed in the previous sections, employed for the tracing of the helix and

the spiral.

In order to bear more evidence to this conjecture, I shall return later on an more precise

interpretation of the expression ‘exact proportion’, crucial in Descartes’ considerations.

69Panza [2011], p. 83.
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Figure 5.3.1: Descartes [1897-1913], vol. 6, p. 424.

Acceptable and non acceptable pointwise constructions

As explored in chapter 3, pointwise constructions play an important role in Descartes’

Géométrie, for instance in connection with indeterminate problems, like Pappus’ problem

discussed in first and second books of the Géométrie. But, in Descartes’ geometry, we

come across pointwise constructions also independently from any occurrence of Pappus’

problem: this is case of the ovals,70 which are described both by a pointwise construction

and by a method involving strings (this one analogous to the gardener’s method employed

in La Dioptrique for the construction of the ellipse and the hyperbola.

In the following lines I will deal only with one pointwise construction offered by Descartes,

namely, the first one he presented in the treatise of 1637. Let FG and AR (fig. 5.3, in

Descartes [1897-1913], vol. 6, p. 424.) be two lines intersecting at point A (between F

and G) with a given angle. Let the ratio AF
AG

be given. Let then AR = AG. From point

5, arbitrarily taken on AG, let the circle with center F and radius F5 be traced. Let

the segment 56 be traced, perpendicular to AR. Then, describe the circle with center

in G and radius R6. The intersection points between circle F5 and circle R6 belong

to the oval. By reiterating the same construction starting from other points arbitrarily

70For a discussion of the ovals in Descartes’ Géométrie, see Maronne [2010].
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chosen on AG, we can provide a distribution of points on the same curve,71 which indeed

describes one of the cartesian ovals. Changing a little this method Descartes could obtain,

always by a pointwise construction, ovals with different shapes.72

As for the constructions with strings, Descartes posited certain limits to the acceptability

of pointwise constructions as legitimate descriptions of curves:

Ayant expliqué la façon de trouver une infinité de poins par ou elles passent,

je pense avoir assés donné les moyens de les décrire. Mesme, il est a propos

de remarquer qu il y a grande difference entre cette façon de trouver plusieurs

poins pour tracer une ligne courbe, et celle dont on se sert pour la spirale, et

ses semblables. car par cete dernière on ne trouve pas indifféremment tous

les points de la ligne qu’on cherche, mais seulement ceux qui peuvent être

determinés par quelque mesure plus simple, que celle qui est requise pour la

composer, et ainsi a proprement parler, on ne trouve pas un de ses points,

c’est à dire pas un de ceux qui luy sont tellement propres qu’ils ne puissent

etre trouvés que par elle.73

In this passage, Descartes distinguished two types of pointwise constructions. A first

type is the one in which any point belonging to a curve can be found. We may call this

construction: ‘generic pointwise construction’. Descartes also recognizes a second type,

through which one can find only some points on a curve. This construciton can be called:

‘specific pointwise construction’.74

The first case is exemplified by those curves which are expressed by finite polynomial

equations of the form: F (x, y) = 0. In such cases, any point on the curve is in principle

constructible geometrically, for instance by solving corresponding equations in one un-

known. Also the construction of the ovals can be seen as an instantiation of the ‘generic’

pointwise construction evoked by Descartes: indeed it allows us to find any point belong-

ing to that curve by following a finite ruler-and-compass stepwise procedure, starting

from a point arbitrarily chosen on a straight line: in this sense any point on an oval

"may be found at pleasure".

71In other terms, the curve so constructed is the locus formed by the vertex of a triangle FIG which
contains three given collinear points A, 5, 7, and whose sides FI and FG have fixed length.

72Descartes [1897-1913], vol. 6, p. 424-425.
73Descartes [1897-1913], vol. 6, p. 411-412.
74Both terms are employed in Bos [2001], p. 343-345.
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Specific pointwise constructions concern, on the other hand, those constructions in which

only some points on a curve can be found, determined by a "simpler measure" that the

one employed for the construction of the curve. Although examples of specific pointwise

constructions cannot be found in La Géométrie, our previous discussion on Clavius and

Rivault reveals illuminating on this concern.

In particular, several studies agree on the opinion that Descartes, while discussing specific

pointwise constructions, had in mind the very construction of the quadratrix offered by

Clavius, in the appendix to book VI of his Commentary to Euclid’s Elements.75 In fact,

we notice that the pointwise construction of the quadratrix given by Clavius does not

yield indifferently any point belonging to the curve, but only those constructible by ruler

and compass lying on a bisectrix of the angle π
2n .

But we can also venture the hypothesis that Descartes was familiar with Rivault’s point-

wise description of the spiral, although I have not found any evidence proving a direct

connection between the two authors. I point out, though, that similarly to Clavius’ point-

wise construction of the quadratrix, also Rivault’s pointwise generation can be considered

an instance of a specific pointwise construction, because it cannot determine any point

on the spiral, but only those obtained by a previous division of the angle at the center

of the circle into m equal parts. In particular, if m = 2n, the pointwise construction of

the spiral can be effectuated by ruler and compass, following exactly the same protocol

adopted by Clavius, for the case of the quadratrix.

Descartes claims, in a correct and insightful way, that there is a ‘great difference’ between

generic and specific pointwise constructions, but he does not claim that it is sufficient for

a curve to be constructed in a specific pointwise way in order to be excluded from geom-

etry. Whereas he certainly believes that a curve described through a generic pointwise

75See in particular: Mancosu [1999], p. 74ff, Mancosu [2007], p. 116. The first piece of evidence
proving Descartes’ acquaintance with Clavius’ study of the quadratrix is indirect: around 1614-1615,
I. Beeckman, with whom Descartes would collaborate between 1618 and 1619, made a reference in
his journal to Clavius’ passage on the quadratrix, with respect to a problem in hydraulic (Beeckman
[1939-1953], 1, p. 42-43). Since Descartes worked closely to Beeckman during the following years, it is
plausible that he had heard of this construction. Direct evidence that Descartes knew about Clavius’
pointwise construction is also given by the letter to Mersenne from 1629, quoted on previous occasions
in this chapter. In this letter, Descartes is particularly critical about the pointwise description of the
quadratrix and of the curve named "hélice" because, I quote: "encore qu’on puisse trouver une infinité
de points par où passe l’helice et la quadratrice, toutefois on ne peut trouver Geometriquement aucun
des poins qui sont necessaries pour les effaits desires tant de l’une que de l’autre" (Descartes [1897-1913],
vol. 1, p. 71).
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construction is geometrical, such a belief does not obviously entail that if a curve is not

described through a generic pointwise construction it is not constructible by geometric

linkages, either.

5.4 Specification by genesis and specification by property:

the case of mechanical curves

In the light of our previous considerations, Descartes’ inquiries about methods for con-

structing curves, as they appear in La Géométrie, can be interpreted as a clear-cut

criticism against the attempts to argue for the geometricity of certain curves, like the

spiral and the quadratrix, on the ground of their constructibility by points or by means

of strings. Acceptable methods, in Descartes’ geometry, consisted either in constructions

obtained by a geometric linkage, or in constructions obtained by generic pointwise con-

structions, or in construction effectuated by strings, employed only in order to determine:

". . . the equality or difference of two or more straight lines drawn from each point of the

required curve to certain other points, or making fixed angles to certain other lines".

On the other hand, known procedures for describing the geometric nature of curves like

the quadratrix, the spiral and the helix were crucially different from the standard methods

just recalled, because they either made an essential appeal to independent motions, or

had recourse to tracing devices or procedures which required the application of forces

in order to properly function (like in those mechanisms in which strings are bent from

straight to curve) or finally, they were based on specific pointwise constructions.

However, whereas Descartes had successfully succeeded in disqualifying attempts to legit-

imate the geometricity of mechanical curves, he still did not possess, solely on this ground,

an effective criterion in order to discern geometrical from non-geometrical curves. Even

if it is sufficient to describe a curve through a geometrical linkage in order to accept the

curve in geometry, to provide a mechanical construction of a curve is not sufficient to show

its mechanical nature. In brief, constructibility by geometric linkages provides necessary

and sufficient conditions for accepting a curve as “geometrical”, and certain necessary,

though not sufficient conditions in order to sort out a curve as non-geometrical. Since

identity conditions for curves are extensional, namely, they do not depend on how curves

are constructed, we need a kind of impossibility proof unavaible to Descartes, and more

generally to the mathematics of XVIIth century, in order to prove that a curve, exhibited
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by a mechanical construction, is not receivable in geometry.76

In Mancosu [1999], and more specifically in Mancosu [2007], P. Mancosu argues that the

classification of several curves as mechanical is motivated by a local criterion, namely a

criterion not necessarily shared by all curves that, with hindsight, we may want to rule

out from geometry, but only by a subclass, certainly relevant with respect to Descartes’

geometry, as it included most of the mechanical curves known to Descartes. On the

ground of important textual evidence, this local criterion is identified with the possibility

of solving the quadrature of the circle.77

According to this suggestion, Descartes’ decision of excluding such curves as the quadra-

trix, the spiral and, possibly, the cilyndrical helix from geometry depended on his belief

about the impossibility of knowing the exact proportion between straight and curved

lines, that I have evoked above:

Car, encore qu’on n’y puisse recevoir aucunes lignes qui semblent à des

chordes, c’est à dire qui devienent tantost droites et tantost courbes, à cause

que la proportion, qui est entre les droites et les courbes, n’est pas connue,

et mesme ie croy ne le pouvant pas estre par les hommes, on ne pourroit rien

conclure de là qui fust exact et assuré.78

This belief involved a belief in the impossibility of solving geometrically the rectification

of the circle, and therefore its quadrature too.

Since the precise significance of this belief and its role in the economy of the treatise

have raised several interpretations in the scholarly literature, it is worth analyzing it

76The point is discussed in Mancosu [2007], p. 117, and Mancosu and Arana [2010], p. 404. These
objections may not have been unknown to early modern geometers themselves. Proclus, in his Com-
mentary to the the First Book of the Elements of Euclid, reports the following opinion, attributed to
Geminus: "Geminus has rightly declared that, although a simple line can be produced by a plurality of
motions, not every such line is mixed (. . . ) Imagine a square unfergoing two motions of equal velocity,
one lenghtwise and the other sidewise; a diagonal motion in a straight line will result" (Proclus [1992],
p. 86). Hence, in Geminus’ opinions, even lines we would accept as geometrical can be generated by
a plurality of (independent) motions. The puzzle is solved by Proclus (supposedly reporting Geminus’
view) by remarking that these motions are rectilinear and simple, contrarily to the motions which pro-
duce a linear curve like the helix (see ch. 2, sec. 2.3.4). However Proclus’ explanation, which is not fully
convincing (also the motions which generate mechanical curves, in fact, result from simple, circular and
rectilinear motions) might not have been accepted by later readers.

77See Mancosu [1999], p. 77-79, and Mancosu [2007], p. 117-122.
78Descartes [1897-1913], vol. 6, p. 412.
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with more care. I therefore observe, again with Mancosu (Mancosu [2007], p. 119), that

Descartes assumed, in La Géométrie, two distinct and equally crucial assertions:

A. The proportion between straight and curved lines is not known (exactly).

B. The proportion between straight and curved lines cannot be known (exactly).

Assertion A. reports a piece of knowledge shared by the author and his audience: since, at

the time of Descartes’ writing no general methods were known and available to early mod-

ern geometers in order to solve rectification problems, the proportion between straight

and curved lines was not known. Assertion B., instead, reports an utterance, in the form

of a propositional attitude report (stressed by the verb "je croys") relating the opinion of

the author himself on the unknowability of the proportion between straight and curved

lines.

Descartes could infer, on the ground of B., that the proportion between segments and

circular arcs could not be exactly known. Hence he could also infer a belief on the

impossibility of rectifying the circumference, and thus solving the quadrature of the

circle geometrically. This conviction, Mancosu argues, especially in Mancosu [1999] and

Mancosu [2007], and not the general belief on the non-rectifiability of curves, could have

played an essential role in separating geometrical from mechanical curves in the economy

of Descartes’ geometry. Indeed, Descartes might have been guided by the following

inference, in order to demarcate legitimate from illegitimate curves: if a curve, together

with other geometrical curves and constructions, allowed one to solve the quadrature of

the circle, then it would be illegitimate in geometry, since the quadrature of the circle is

judged by Descartes geometrically impossible. Eventually, the impossibility of solving the

circle-squaring problem geometrically, asserted by Descartes on several occasions, both

in La Géométrie and in his correspondence,79 would have endowed him with a sufficient

condition in order to exclude from geometry certain curves, like the quadratrix, the helix

and, as it was known from Pappus and Archimedes, also the archimedean spiral, on the

ground of their effects.80

79See, for instance,Descartes [1897-1913], vol. 1, p. 70-71; p. 486.
80As pointed out in (Mancosu [2007], p. 118), this criterion is local, in so far it does not exclude from

geometry all curves that one wants to consider mechanical. An example of a curve that was probably
considered mechanical by Descartes, without satisfying this local criterion, is the linea proportionum,
discussed in the Cogitationes (Descartes [1897-1913], vol 10, p. 222-223). Descartes introduced this
curve in order to solve problems of compound interest, ie. problems concerning the computation of a
debt increasing according to a geometrical rate in equal intervals of time. If we depict the problem
geometrically, the linea proportionum would relate segments forming an arithmetical sequence (their
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Mancosu’s thesis is mathematically sound and based on textual evidence.81 However,

I would like to supplement it with another hypothesis, which might contribute to shed

more light on Descartes’ self-confidence in delineating the boundary between geometrical

and mechanical curves.

In order to deploy my argument, I shall recall that the specification of a curve by genesis

has a bearing on the specification of its essential properties. In other words, Descartes

conceded that all the points on a curve constructed by a geometric linkage, and "which

we may call Geometric (. . . ) must bear a definite relation to all the points on a straight

line, and that this relation must be expressed by means of a single equation".82 As an

equation codes a proportion or a system of proportions, we also recognize that an explicit

connection is established, in Descartes’ geometry, between a geometric curve, namely a

curve constructed by one of the acceptable linkages, and the possibility of expressing its

symptoms by means of an algebraic equation (chapter 3, section 3.2.3).

Let us consider, on the other hand, the original passage of La Géométrie in which

Descartes contrasts geometrical and mechanical curves. So far, I have focussed my atten-

tion on the kynematical characterization of mechanical curves qua curves generated out

of independent uniform motions, leaving aside another detail emphasized by Descartes:

these motions do not entertain an exactly measurable relation namely: "aucun rapport

qu’on puisse mesurer exactement".83

constant difference represents the unit interval of time. If the unit interval is t, then the sequence will
be: t, 2t, 3t, 4t, . . . nt ) to corresponding segments forming a geometrical sequence with constant ratio (if
the ratio is r, the sequence will be: 1, r1, r2, r3, . . . , rn), indicating the increase of the interest. The curve
thus obtained is an exponential or logarithmic curve. The name "linea proportionum" bears a relation
to the fact that the curve can be employed to find n-th mean proportions between two given segments. If
we represent the segments t, 2t, 3t, 4t, . . . nt forming an arithmetical sequence, on a straight line, and the
segments increasing according a geometrical sequence on another line perpendicular to the first, it would
be sufficient to consider the segment of length (n+ 1)t: all the segments corresponding to t, 2t, 3t . . . nt
on the geometrical sequence will form the n mean proportionals between the initial segment of the
geometric progression and the segment corresponding to (n+1)t. Interestingly, Descartes considered, in
the Cogitationes, this curve on a par with the quadratrix, since the latter raises from two non subordinate
motions, a circular and a rectilinear one (Descartes [1897-1913], vol 10, p. 223). The same cannot be told
about the former, though. Even Descartes remains silent on this point, he probably conceived the "linea
proportionum" as a line of the same nature of the quadratrix because it arose out of the combination of
a uniform motion and an accelerated motion, whose velocities varies proportionally to the corresponding
equal interval of time (Bos [2001], p. 248). This curve was probably judged by Descartes on a par
with the quadratrix because it was difficult to envisage a geometric compass suitable for its generation.
Although the linea proportionum is not discussed on other occasions, we can arguably assume that
Descartes envisaged it as a mechanical curve, in the light of the partition proposed in La Géométrie.

81Cf . Mancosu [1999], p. 78-79.
82Descartes [1952], p. 48.
83Descartes [1897-1913], vol. 6, p. 390. For a discussion of this passage, see Bos [2001], p. 341-342.
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Descartes also denies, as I have already reported, the possibility of knowing with exact-

ness what he calls "proportion" between a curve and a straight line ("la proportion qui

est entre les droites et les courbes"). Such a belief has been interpreted as the source of

Descartes’ conviction that it is impossible to measure with exactness the relation (rap-

port) between the rotational and translational motions in the genesis of the quadratrix

and of the spiral.84 But what did Descartes refer to when he spoke about such a "rap-

port" between the motions which generate mechanical curves, that we cannot measure

exactly?

I remark that the word "rapport" reappears, in La Géométrie, few pages later, in order

to designate the opposite situation of geometrical curves:

. . . tous les poins, de celles qu’on peut nommer Geometriques, c’est a dire qui

tombent sous quelque mesure précise et exacte, ont necessairement quelque

rapport a tous les points d’une ligne droite, qui peut estre exprimé par quelque

equation, et tous par une mesme.85

And again few lines later, while studying the hyperbola, Descartes set out to find the

rapport between the unknowns x and y which characterize every point of the hyperbola.

Indeed any point that we may arbitrarily choose on the curve traced by the linkage

described by Descartes (I am referring to Descartes [1897-1913], vol. 6, p. 395) is such

that its distances from axes GA and AK entertain the same relation, coded by the

equation: ay + cy − cx
b
y − y2 = ac.86

In these cases, the word "rapport" refers to the relation that a point on a curve, con-

structible by a geometric linkage, entertains with the points on given straight lines: in

other words, ‘rapport’ refers here to a proportion or an equation which characterizes the

curve itself.

If we assume that Descartes employed his lexicon univocally, we might also refer the term

‘rapport’, appearing in the description of mechanical curves, to the relation between the

84Bos [2001], p. 341ff .
85Descartes [1897-1913], vol. 6, p. . The emphasis is mine.
86I share here the suggestion made by (Descartes [2009], p. 716): "le mot rapport ne signifie pas ici

proportion, ou raison, mais relation numérique; et bien qu’il soit question d’une seule ligne droite (un
axe de coordonnées), et non de deux, il s’agit bien d’une equation avec deux variables x et y". See
also Molland: "Descartes’s interpretation of what was meant by an exact knowledge of the measure of a
curve may have undergone some development, but in the Geometric he clearly explicates it in terms of
equations" (Molland [1976], p. 37).
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distances of any point on the curve from given straight lines (or axes of references, in a

modern parlance), and therefore to the possibility of coding the fundamental properties

of such curves as the quadratrix and the spiral into an algebraic equation.

Descartes was certainly aware that in ancient geometrical thinking, the articulation be-

tween the exhibition of a curve through its construction and the subsequent determination

of its fundamental properties concerned the study of curves even beyond conic sections.

The same opinion can be gathered from a short but informative remark made by Proclus:

This is the way in which other mathematicians also are accostumed to dis-

tinguish lines, giving the property of each species. Apollonius, for instance,

shows for each of his conic lines what its property is, and Nicomedes likewise

for the conchoids, Hippias for the quadratrices, and Perseus for the spiric

curves. After a species has been constructed, the apprehension of its inherent

and intrinsic property differentiates the thing constructed from all others.87

It cannot be overlooked that the quadratrix is mentioned in the previous passage. Its

symptoms, together with those of the spiral, are described by Pappus, another source

well known to Descartes, in these terms, for the quadratrix:

And its principal symptoma is of the following sort. Whichever arbitrary

<straight line> is drawn through in the interior toward the arc, such as

AZE, the straight line BA will be to the <straight line> ZT as the whole

arc <
⌢

BED is> to the arc
⌢

ED.88

Whereas for the case of the spiral:

Its principal symptoma is of the following sort. Whichever <straight line>

is drawn through the interior toward it, such as BZ, and produced <to C>,

the straight line AB is to the <straight line> BZ as the whole circumference

of the circle is to the arc
⌢

ADC. This, however, is rather easy to understand

from the genesis <of the spiral>. For in the time in which the point A

passes through the whole circumference of the circle, in that time the <point

starting> from B <passes through> BA, also, whereas in the time in which

A <passes through> the arc
⌢

ADC, in that time the <point starting> from

B <passes through> the straight line BZ, also.89

87Proclus [1992], p. 277.
88Proclus [1992], p. 277.
89Proclus [1992], p. 277.
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In his commentary, Commandinus also adds an important note about the cylindrical

helix:

. . . cuius principale accidens est, ut sumpto quovis puncto in ipsa, quod

exempli gratia sit H, ductaque HD ad planum perpendiculari, habeat HD

ad circumferentiam DC eam proportionem, quam tota CM habet ad cir-

cumferentiam DCA. illud vero ita esse ex ipso ortu manifestum apparet.90

The fundamental properties of the mechanical curves known to Descartes can be thus

schematized (cf . ch. 2, sec. 2.3.2 and sec. 2.3.3). In the case of the quadratrix, they

are expressed by the proportion: BA : ZT =
⌢

BED :
⌢

ED, (keeping the same letters as

in Pappus’ passages quoted above), whereas for the spiral the analogous proportion is:

BA : BZ = circ :
⌢

ADC, where ‘circ’ denotes the circumference mentioned in the above

passage. Finally, Commandinus’ commentary reports the symptom ("accidens") of the

cylindrical helix too: if we call HD and CM the two perpendiculars to the base of the

cylinder from points H and M , both on the helix,
⌢

DC the arc cut on the base by the

foots of these perpendiculars, and
⌢

DCA the length of the circular base, we have that:

HD :
⌢

DC = CM :
⌢

DCA.

As a reader of Pappus apud Commandinus, Descartes was certainly aware that the

symptoms of curves like the quadratrix, the spiral and similar curves involve a proportion

between segments and arcs of a circle, derivable from the uniform motions generating

these curves. Counter to the case of conic sections and of the other geometric curves,

whose symptoms can be expressed by proportions between segments (and ultimately via

equations), the symptoms of the quadratrix, the spiral or the cylindrical helix, as they

are expounded in Pappus’ Collection, cannot be expressed in such a form, since Descartes

had assumed that the proportion between circular arcs and a straight lines (and more

generally, between straight and curves) defied exact knowledge.

Let us recall, moreover, that Descartes admitted the equivalence between curves con-

structible by linkages, and curves expressible by algebraic equations (chapter 3, section

3.2.3). On this ground, he could immediately infer from the impossibility of express-

ing the properties of a curve by an algebraic equation, the impossibility of constructing
90Commandinus [1588], 58v.: "Whose [i.e. of the cylindrical helix] fundamental property is that, taken

any point in it, which for instance is H, ad traced HD, perpendicular to the base, HD has to the arc
DC the same proportion, that all CM has to the circumference DCA. But in fact it appears that this
is evident from the very genesis."
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the curve by a geometric linkage. This conclusion complies with the characterization of

mechanical curves as curves constructible solely by separated motions.

Conclusively, the impossibility of representing the fundamental properties of a curve by a

system of proportions, and therefore by means of the apparatus offered by algebra, could

represent a further reason in order to explain Descartes’ self-confidence in excluding

certain curves as mechanical, although it remains a sufficient, not a necessary criterion of

ungeometricality, just like the criterion studied in Mancosu [1999] and Mancosu [2007],

to which it is evidently related: both criteria are in fact ultimately grounded on the

incomparability between straight and curvilinear lines.

Certainly, there are curves non expressible by algebraic equations, but whose symptoms

do not depend on the proportion between segments and arcs (Mancosu [2007], p. 122).

The case of the linea proportionum, already mentioned in this dissertation, is an eloquent

couterexample with this respect.91 But we can still maintain that the appeal to the

impossibility of finding an exact proportion between straight lines and circular arcs offered

a sound justification, when Descartes was preparing La Géométrie, in order to exclude

from geometry those few special curves, like the spiral, the quadratrix and the cylindrical

helix, transmitted by ancient sources, and mostly studied by early modern practitioners.

On this connection, I surmise, Descartes showed, by underlying the inexact character of

the pointwise constructions and the constructions by strings of the quadratrix the spiral,

and the helix, that all the attempts to exhibit the geometrical nature of these curves

(as we have seen, several geometers were engaged in this ‘research programe’, between

late ’500 and the following century) had globally failed. Moreover, by excluding such

mechanical curves from geometry, perhaps on the ground of their symptoms, and there-

fore relying on classical considerations (let us recall that the symptoms of the mechanical

curves are already described in Pappus’ Collection) Descartes might want to assert, once

91See note 80. Descartes became acquainted, after the publication of La Géométrie, with other curves
like De Beaune’s curve (which is a logarithmic curve), or the logarithmic spiral, both explicitly recognized
as mechanical, although not in the backdrop of the incomparability between straight and curvilinear
segments. For a detailed investigation about Descartes’ study of this curve, see Vuillemin [1987], p. 1-
25. Descartes judged De Beaune’s curve mechanical, on the ground of its generation by two movements:
"tellement incommensurables, qu’ils ne peuvent estre reglé exactement l’un par l’autre; et ainsi que cette
ligne est du nombre de celles que j’ai rejettées de ma Geometrie, comme étant Mechanique", Descartes
[1897-1913], vol. 2, p. 517. The logarithmic spiral was introduced by Mersenne in his Harmonie
Universelle , and was the curve represented by a body descending on an equally inclined plane (Descartes
[1897-1913], vol. 2, p. 360).
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established a clear-cut canon of geometricity, that any investigation aiming at probing

the geometrical nature of the quadratrix, the spiral or the helix, was destined to fail.92

Such a methodological choice did not imply that mechanical curves had to be abandoned

as objects of mathematical interest. Let us recall, indeed, as it has been amply studied

in the literature,93 that Descartes dealt with mechanical curves outside geometry.

Conclusively, I would like to stress that the possibility (resp. impossibility) of expressing

their symptoms of curves via equations eventually became the usual way of shaping the

bounds between geometrical and mechanical, or transcendental curves, when Descartes’

method in problem solving became one of the staple of eighteenth century mathematical

textbooks.94

As an evidence for this claim, I will offer two examples, both taken from expository

treatises written during the first half of XVIIIth century. The first example is taken from

Guisnée’s treatise Applications de l’algebre a la Geometrie, ou Methode de demonstrer par

l’Algebre, les Theorêmes de Geometrie, et d’en resoudre et construire tous les Problêmes

(1733). The last section of this book is dedicated to "mechanical or transcendental curves,

their descriptions and the problems one can solve by them". In this chapter of Guisnée’s

book, mechanical curves are not primarily introduced by a specification of their genesis,

as it happens in Descartes’ Géométrie. On the contrary, Guisnée characterizes them as

those curves for which:

. . . on ne peut point trouver d’equations qui expriment geometriquement

la relation de leurs coordonnees; car il y a des courbes mechaniques dont

une des coordonnees est une ligne droite, et l’autre une ligne courbe dont la

rectification est geometriquement impossible. Il y en a d’autres dont les deux

coordonnées sont deux lignes courbes; d’autres dont les appliquées partent

toutes d’un même point, et d’autres qui sont figurées de manière que leurs

axes les rencontrent en une infinité de points . . . 95

At the root of the distinction between curves whose coordinates can be "expressed ge-

ometrically" and curves whose coordinates cannot undergo the same treatment, we can

92The possibility that Descartes was addressing to the practice of curve-construction, still lively in the
1630s is also ventured in Giusti [1999], p. 232.

93For instance: Costabel [1985], Mahoney [1984], Jullien [1996], Jullien [2006], Vuillemin [1987].
94An overview of XVIIIth century expository treatises on cartesian geometry can be found in Shabel

[2003], p. 70ff .
95Guisnée [1733], p. 233.
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still find the cartesian characterization of geometrical curves, as those curves such that

the distances of any of their points from one given straight line (the first occurence of

what would later be called axis of coordinates) can be expressed by means of a finite

algebraic equations. On the other hand, a point on a mechanical curve like the spiral

(discussed by Guisnée in the same text few lines later) can be individuated by expressing

a proportion combining segments and circular arcs, whose rectification, Guisnée observes

above, is held to be "geometrically impossible".

As it was already known to Descartes, not all mechanical curves could be associated to

proportions involving segments and circular arcs. The local character of this criterion

would become even clearer during XVIIth century and XVIIIth century, when the number

of mechanical curves grew considerably, and only a small part turn out to depend on the

rectification of arcs. This fact is underlined by Guisnée too, who gives, in the passage

we can read above, a brief survey of several types of mechanical curves, each being

characterized by a specific property of their coordinates. On the other hand, all these

curves have in common the (negative) property of not being relatable to finite algebraic

equations.

Along similar lines, Ozanam defines mechanical curves, in his Dictionnaire des mathé-

matiques (1696), without reference to the motions which generate them:

La ligne mechanique est une ligne courbe qui n’a point d’Equation propre a

exprimer la Relation de tous ses points sur quelque ligne droite. Telle est la

Quadratrice de Dinostrate, et plusieurs autres. . . 96

A final significant example is reported by Rabuel, who wrote an extensive commentary

on Descartes’ geometry, and noted:

Les courbes Géométriques sont celles, dont on peut exprimer et determiner

la nature par le rapport des ordonnées et des abscisses, qui sont les unes et

les autres des grandeurs finies. Les Méchaniques sont celles, dont on ne peut

ainsi exprimer la Nature, parceque les ordonnées et les abscisses n’ont point

de rapport reglé.97

Examples might be multiplied, among contemporary treatises on cartesian geometry.

This brief survey is however sufficient in order to show that the bound between geo-

metrical and mechanical curves ended up being currently understood and formulated,
96Ozanam [1691], p. 94.
97Rabuel [1730], p. 99.
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from late XVIIth to the beginning of XVIIIth century, as a bound between curves ex-

pressible by a finite algebraic equation, and curves which could not be expressed by a

finite algebraic equations, thus exploiting a suggestion that, I think, was originally in La

Géométrie.98

98On the history of analytic geometry, especially after the publication of La Géométrie, see Boyer
[1956].



Chapter 6

Impossible problems in cartesian

geometry

6.1 On the cartesian distinction between possible and im-

possible problems

According to my reconstruction, the impossibility of finding an exact proportion be-

tween segments and arcs of circles offers a rationale in order to understand the clear-cut

separation, in Descartes’ geometry, between geometrical and mechanical curves. In par-

ticular, the latter curves are not generated according to a legitimate procedure, and their

‘symptoms’, or fundamental properties, cannot be characterized by a quantifiable relation

expressible through a proportion between segment, or through an algebraic equation.

In Descartes’ Géométrie, though, the claim that segments and circular arcs are incom-

mensurable magnitudes or, at least, magnitudes that stay to each other in an exactly

unknowable proportion, does not rely on any proof or argument. Probably on this ground,

Bos referred to it (or, more precisely, to its possible generalization) as: "the axiom of

incommensurability of the straight and the curved", and traced the axiom back to an

aristotelian view on the nature of curves, still influential in the first half of seventeenth

century.1

Can we find any trace, in Descartes’ mathematical activity, of attempts to justify this

so-called "axiom"? This is the question I have in view in this and the following sections.

1See Bos [1981], p. 314; Bos [2001], p. 342; Hofmann [2008], p. 101-103.

266
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As a start, I remark that Descartes occasionally discussed, during his mathematical

career, the problem of the quadrature of the circle. These discussions might, in principle,

be pertinent to our inquiry, since, as Archimedes’s Dimensio circuli does show, the

circle-squaring problem is reducible to the rectification of the circumference. We expect

therefore, coherently with Descartes’ view about incomparability between straight and

curves, that Descartes judged this problem unsolvable in geometry.

On the other hand, Descartes rarely entered into considerations which might offer ar-

guments for the possibility/impossibility of solving the circle-squaring problem by given

solving-methods.2

An interesting exception can be found in a letter to Mersenne from 31 March 1638.

In a section of this long letter, Descartes comments upon some objections raised by

contemporary geometers, in particular Fermat and Roberval, concerning those: ". . .

questions de Geometrie qu’ils ne peuvent soudre et croient ne pouvoir estre resolues par

ma methode. . . " (Descartes [1897-1913], vol. 2, p. 90).

In his response, Descartes did not deal with the specific content of these objections, but

proposed a methodological discussion about problems that could or should be proposed

as legitimate ways in order to challenge the method proposed in La Géométrie:

. . . car premierement, c’est contre le style des geometres de proposer aux

autres des questions qu’ils ne peuvent soudre eux mesmes. Puis il y en a

d’impossibles, comme la quadrature du cercle, etc. ; il y en a d’autres qui,

bien qu’elles soient possibles, vont toutefois au dela des colonnes que j’ai

posees, non a cause qu’il faut d’autres regles ou plus d’esprit, mais a cause

qu’il y faut plus de travail. Et de ce genre sont celles dont j’ay parlé dans ma

réponse à M. de Fermat sur son escrit de maximis et minimis , pour l’avertir

que, s’il vouloit aller plus loin que moy, c’estoit par la qu’il devoit passer.

Enfin il y en a qui appartiennent a l’Arithmetique et non a la Geometrie,

comme celles de Diophante . . . 3

2Few remarks can be be found in Descartes’s correspondence, which relate his scornful opinion with
respect to alleged solutions to the quadrature of the circle. The first documented situation which saw
Descartes’s involvement with the squaring of the circle was brought about by a letter from Van Schooten
(10th March 1649), Descartes [1897-1913], vol. 5, p. 318-320. On that occasion, Descartes criticized
the work of Gregorius of St. Vincent. See also Descartes [1897-1913], vol. 5, p. 343, where Descartes
dismisses a flawed solution to the quadrature of the circle by Longomontanus.

3Descartes [1897-1913], vol. 2, p. 90-91.
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In the passage quoted above, Descartes mentions the quadrature of the circle as an

"impossible problems", and contrasts it with arithmetical problems, on one hand, and

on the other, with "possible problems" which, though solvable in principle, still demand

an effort ("travail") for their solution.

Correspondence and correspondence networks played indeed a major role, within the

community of early-modern mathematicians, for the circulation of theories and methods.

Problems often laid at the core of these exchanges: they were in fact proposed in order

to challenge a given method, to test its generality or the ability of his proponent in

front of difficult cases, and eventually enhance or downplay his rank in the community

of mathematicians.4

In this general context, Descartes was concerned with the overriding task of regulating

the ways in which his method could be legitimately challenged. In the backdrop of this

attitude, I propose to interpret the above distinction into different types of problems as

an explicit attempt, on Descartes’s side, to set norms in order to tailor the development

of geometry, and the correlative practice of problem-solving according to the method and

the rules set in La Géométrie.

At first, it should be noted that Descartes disqualifies as contrary to the style of geometers

proposing problems that " they cannot solve themselves. . . " ("questions qu’ils ne peuvent

soudre eux mesmes"). This remark does not aim so much at isolating a category of

problems, but rather at deterring geometers from proposing "open" problems, namely

problems not only in want of a solution (which is an obvious requirement if a method

must be challenged at all), but for which it is not known whether a solution can be found

at all, in order to challenge a certain method (and, in the specific context of the letter,

his own method).5

4Compare on this subject the recent studies Goldstein [2009] and Goldstein [2013].
5Such a distrust towards open problems is by no means original with Descartes. As an example,

let us recall that Fermat did pose open questions, to the effect that his recipients were displeased
by this attitude, fearing that behind these questions impossible problems might lurk (Fermat
[1891-1896], vol. 2, p. 260-261). On the contrary, Fermat defended the importance of asking open
problems and theorems. He was in fact confident of the significance for the development of mathematics;
as we read in a letter to Mersenne from August 1643, he remarked: ". . . il y a beaucoup de problèmes
desquels, comme a dit autrefois Archimède, οὐκ εὐμέθοδα τῷ πρώτῳ φανέντα χρόνῴ τήν ἑξεργασvίαν
λαμβάνοντι". Vid. Heath [1897], p. 151: "In fact, how many theorems in geometry which
had seemed at first impracticable are in time successfully worked out!" (Fermat’s quote slightly
modifies Archimedes’s original, to be found in the treatise On Spirals).
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Furthermore, Descartes evoked three categories of problems: problems from arithmetic,

possible and impossible problems. I surmise that two distinct issues are at play in the

backdrop of this tripartite distinction. One issue is of disciplinary nature (I borrow

the term ‘disciplinary’ from Goldstein [2013]), since it concerns the distinction betwee

arithmetic and geometry: arithmetical problems are in fact isolated and as extremely

laborious, but useless, and therefore not worth of discussion and challenge.6

On the other hand, Descartes did not consider all problem concerning geometric entities

as suitable cases in order to challenge his method. To this effect, I note that, whereas

La Géométrie contains explicit criteria for separating acceptable from non-acceptable

curves, thus demarcating the ontology of Descartes’ geometry, there are no further dis-

tinctions, in this treatise, between acceptable and non-acceptable problems, in analogy

with the distinction between permissible, or geometrical, and non permissible, or me-

chanical curves.

This silence might be explained on the ground of the practice, current among early-

modern mathematicians and practitioners, to delegate to epistolary exchanges the task of

challenging a method for problem-solving. Correlatively, defining the kind of admissible

questions (i.e. problems) would have been considered as an activity (that we might label

as ‘meta-theoretical’, since it concerns the setting of rules in order to shape mathematical

activity itself) to be more properly performed in correspondence than in a treatise.

6Descartes remarks: ". . . non pas pour ces dernieres [arithmetical questions] qu’elles soient plus dif-
ficiles que celles de Geometrie; mais pource qu’elles peuvent quelquefois mieux estre trouvées par un
homme laborieux qui examinera opiniastrement la suite des nombres, que par l’adresse du plus grand
esprit qui puisse estre, et que d’ailleurs elles sont tres inutiles, je fais profession de ne vouloir pas m’y
amuser" (Descartes [1897-1913], vol. 2, p. 91). I point out that by "problems of arithmetic" Descartes
probably meant questions concerning the theory of numbers, whose main proponent was, by that time,
Pierre de Fermat. Descartes’s disparaging attitude is similar in outlook to the opinions of other geome-
ters who looked favourably to the "new" analysis exeplified by the canon of problem-solving promoted
in La Géométrie, as De Beaune: "Je vous supplie de me dispenser de la recherche de ceste question -
he wrote to Mersenne on March 1639, concerning a problem of arithmetic - pour m’apliquer, aus heures
de mon loisir, à de plus sérieuses : ceste question n’estant d’aulcun usage et ne tombant poinct soubs
la science des rapports, qui les considere universelement aussi bien entre les lignes commensurables et
incommensurables si bien que la recherche en seroit extremement laborieuse et de nul proffict, ce qui
n’arrive pas en celles de geometrie et celles d’arithmétique qui tombent soubs la science des proportions,
les autres estant de peu de consideration et n’estant d’aulcun usage" (Mersenne [1986], vol. VIII, p.
360). The problem De Beaune wanted to avoid concerned the determination of a class of numbers that
are sums of squares: it was therefore a problem concerning integer numbers, at its core, although it was
presented in a geometric garb, as a problem about ellipses (Goldstein [2013], p. 266). Even without
entering the details of the problem, its presentation is sufficient to show that the distinction between
geometrical and arithmetical problems was not so obvious as it may seem.
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Indeed, this delimitation is arguably implied by the second distinction, articulated by

Descartes in the above letter to Mersenne, between ‘possible’ and ‘impossible’ problems.

As we can evince from the general description and from the examples evoked in that

letter, ‘possible’ problems are problems which, though solvable in principle, still demand

"more effort" ("plus de travail") for their solution. Among them, Descartes counts those

problems discussed in another letter written to Mersenne, in January 1638.7

That letter contains a lenghty response on Fermat’s method for finding the tangent to a

given algebraic curve (for example, a parabola).8 Descartes refuses to consider Fermat’s

achievement as a legitimate challenge to his geometry, and encourages, on the other

hand, geometers to turn towards other challenges: to solve the general problems of the

composition of the sursolid loci (namely, the problems yielding indeterminate equations

in degree 6 or 5) or the construction of all problems of degree 6 or 9, or, eventually, the

construction of burning mirrors composed of a sphere and a conoid in order to test their

knowledge and understanding of the cartesian method.9

These examples clarify that the ‘possible problems’ mentioned in the 1638 letter are, in

Descartes’ view, problems for which a solution is envisionable within the canon of his

geometry, because they can be reduced to an equation or a system of equations expressing

the dependance between segments designated by the unknown(s) and the known terms,

according to the protocol expounded at the beginning of La Géométrie.

In the backdrop of this characterization of ‘possible problems’, I surmise that ‘impossible’

ones, exemplified by the quadrature of the circle, are purportedly excluded from the

scope of La Géométrie because they are not problems in the sense countenanced by the

opening paragraph of this treatise, namely they are not reducible to equations expressing

7Descartes [1897-1913], vol. 1, p. 486.
8Here the quotation from Descartes’ letter: "De façon que ceux qui ont envie de faire paroistre qu’il

savent autant de Geometrie que j’en ay escrit, ne doivent pas se contenter de chercher ce Probleme par
d’autres moyens que j’en ai fait, mais ils devraient s’exercer plutost a composer tous les lieux sursolides,
ainsy que j’ai produit tous les solides, et à expliquer la figure des verres brulants, lorsque l’une de ces
superficies est une partie de Sphere ou de Conoïde donné", Descartes [1897-1913], vol. 1, p. 492-93. The
peculiarity of Fermat’s method (see Stromholm [1969], for a reconstruction) lies in the idea of idetifying
the tangent to a curve as its secant of maximal length. Descartes dissented about this conception,
preferring, in order to solve the problem of tracing a tangent to a given algebraic curve, to develop a
method of normals, but he shared the view according to which the general problem of tracing the tangent
to a curve (or, in his perspective, tracing a normal) can be considered as a specific example of a problem
of extremum.

9I remark that an example of problem neither plane nor solid is discussed in Descartes [1897-1913],
vol. 2, p. 317.
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the relations between known and unknown segments, and are obviously unfit in order to

test the canon of problem-solving set out in La Géométrie.

This conclusion not only confirm Descartes’ conviction that the circumference cannot be

rectified geometrically. The case of the quadrature of the circle is also telling for another

reason. Probably around 1625-1628, in fact, Descartes wrote a brief text which purports

to give the best way to solve this problem by means of an approximation argument

based on iterated bisections, akin to Archimedes’s method for approximating the length

of the circumference.10 Descartes solved the circle-squaring problem by giving a rule in

order to produce, through an interative ruler-and-compass construction, a sequence of

points converging towards a limit-point x. This point is determined through an infinite

approximation procedure, hence it is by no means ‘constructed’, according to the meaning

of this word in force within Descartes’ geometry: in other words, point x is not found by

the intersection between geometric curves.

The fragment on the circle-squaring problem is not only an interesting mathematical

achievement per se, but it indirectly elucidates the meaning of ‘impossible’ problems,

according to Descartes’ use made in the letter to Mersenne. It should be noted, indeed,

that the cartesian solution of the quadrature of the circle relied on a practice which made

10See Descartes [1701], p. 6-7, and Descartes [1897-1913], vol. 10, p. 304-305. This piece was
published only posthumously, in the Excerpta ex Mss R. Des-Cartes (1701), so that the precise occasion
which inspired its composition is unknown. The brief text can be reported here in full: "CIRCULI
QUADRATIO. Ad quadrandum circulum nihil aptius invenio quam si dato quadrato bf adiungatur
rectangulum cg comprehensum sub lineis ac et cb, quod sit aequale quartae parti precedentis; item
rectangulum dh, factum ex lineis da, dc aequale quartae parti precedentis ; et eodem modo rectangulum
ei, atque alia infinita usque ad x; quae omnia simul aequanbantur tertiae parti quadrati bf . Et haec linea
ax erit diameter circuli, cujus circonferentia aequalis est circumferentiae huius quadrati bf , est autem
ac diameter circuli octagono, quadrato bf isoperimetro, inscripti; ad diameter circuli inscripti figurae 16
laterum, ae diameter circuli inscripti figurae 32 laterum, quadrato bf isoperimetrae, et sic in infinitum"
("To square the circle, I find nothing more adequate than that, being given a square bf , to add the
rectangle cg delimited by lines ac and cb, equal to the fourth of the preceding figure, and then to add the
rectangle dh, formed by the segments da, dc, equal to the fourth of the previous one, and in the same
way to add rectangle ei, and other ones, infinitely, until point x is reached. All together, they will make
one third of the square bf . On the other side, ac is the diameter of the circle inscribed into the octagone
isoperimeter to the square bf , ad the diameter inscribed in the figure of 16 sides, ae the diameter of the
circle inscribed in the figure of 32 sides, isoperimeter to the square bf ... and so on infinitely."). The title
Circuli quadratio was added in Adama-Tannery critical edition, on the basis of an index excerptorum
that accompanied Descartes’s mathematical fragments collected in Descartes [1701]. The authenticity of
this fragment can be hardly put into doubt. The text was indeed known to Huygens, at least since 1654,
as it is quoted in the introduction to his De Circuli Magnitudine Inventa of the same year. Descartes
was himself an acquaintance of Huygens’s family, and Christiaan Huygens himself acknowledged, only
four years after Descartes’s death, that Descartes had written some pieces on the quadrature of the circle
(Vid. Huygens [1888-1950], vol. 12, p. 119-120). As for a mathematical analysis of the content of this
fragment, see Costabel [1985].



CHAPTER 6. IMPOSSIBLE PROBLEMS IN CARTESIAN GEOMETRY 272

appeal to different constraints on solvability and unsolvability of problems than those in

force in La Géométrie. Hence, the ‘impossibility’ of solving a problem, at least in the

context of the 1638 letter, did not entail, for Descartes, its unsolvability tout court, but

its unsolvability by means of the techniques and the method deployed within cartesian

geometry.

On a par with the quadrature of the circle, we recognize other problems, studied and

solved by Descartes in his correspondence, that might be ascribed to the same category

of "impossible problems". These are, for instance, problems concerning the construction

or the properties of objects explicitly recognized as non geometrical, like mechanical

curves. Remarkable examples are the problem of determining the tangent to a point

on the cycloid, a mechanical curve according to Descartes, discussed by Descartes in a

letter to Mersenne from 23rd August 1638 (in Descartes [1897-1913], vol.2, p. 307ff.),

the problem of determining the area under a cycloidal arc, discussed by Descartes with

Mersenne, in two letters, from May 1638 and July 1638 (see Descartes [1897-1913], vol.2,

pp. 135-137 and 257ff.) or the problem of describing the equiangular spiral, defined as

the (mechanical) curve making a constant angle with the radius vector at every point

(see Descartes [1897-1913], vol.2, p. 360).

I surmise that, consistently with the characterization of "impossible" problems that I

have tried to elucidate in this section, all the problems evoked above can fall into this

category because, even if they could not be counted within the subject matter of geome-

try, they could nevertheless be solved by appeal to diverse techniques, well-mastered by

Descartes.11

6.2 Impossibility claims as a meta-statements

Even if the meaning of ‘impossible problem’ can be clarified in the light of Descartes’

methodological considerations about problems, yet two questions remain to be answered:

on which grounds the quadrature of the circle could be judged impossible? Could the task

of proving such an impossibility be considered a legitimate task at all in the mathematical

practice of XVIIth century?

Firstly, I point out that even if the impossibility of constructing a certain geometric

entity might be posed as a problem in disguise, proving an impossibility boils down to

11Compare, on this concern, the technical analysis in Costabel [1985] and Jullien [1999].
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proving a theorem. But the activity of theorem-proving occupied a peripheral role in the

network of exchanges between mathematicians Descartes was part of.12

Moreover, proving impossible theorems was an activity generally met with disregard

by mathematicians of XVIIth century.13 One reason can be found in the nature of

such propositions: impossible theorems departed from the current view, still inspired by

the standard definition found in Proclus’ Commentary , according to which a theorem

establishes a property of a given or constructed figure.14

A further reason that might have deterred Descartes from attempting to prove the impos-

sibility of squaring the circle geometrically concerns the very structure of impossibility

arguments. Even if no one had produced, by the half of XVIIth century, a proof that the

circle-squaring problem could not be constructed in a geometrical way, it was envisionable

that such a proof ought to rely on a reductio argumentation.

Descartes expressed an unmitigated judgement concerning proofs involving indirect ar-

guments, for instance in his critique to the method of Fermat (in Descartes [1897-1913],

vol. 1, p. 489-490) which relied on indirect proofs, namely: ". . . la façon de demonstrer

qui reduit à l’impossible (. . . ) la moins estimée et la moins ingenieuse de toutes celles

dont on se sert en Mathematique". This criticism was by no means the expression of a

personal belief, as it was shared by a large audience and motivated on the ground of a

precise philosophical position, as the analysis in Mancosu [1999] has amply illustrated.

Arnauld and Nicole, for instance, evoke demostrations by impossibility as a "defect" in

geometry: "demonstrations by impossibility . . . while they may convince the mind, they

do not enlighten it, which ought to be the chief result of knowledge; for our mind is not

12Cf . Goldstein [2013], p. 258-259: "Theorems when mentioned are facts to be used, eventually to be
commented, more than results of a necessary demonstrative procedure".

13Significant is the example of Fermat who, since the beginning of his mathematical career (cf. Gold-
stein [2013], p. 270), proposed impossible problems in arithmetic, which failed to raise the interest of his
recipients. Moreover the ‘bad habit’ of proposing impossible problems caused some epistolary relations to
cease (Fermat [1891-1896], vol. 2, p. 260) or could raise the irritation of mathematicians (noteworthy
is Wallis’ reaction, in Fermat [1891-1896], vol. 3, p. 468; cf . Lützen [2010], p. 8).

14Cf. Introduction of this study. If we consider a work that well represents XVIIth century practice,
as the Dictionnaire mathématique (1691) by Jacques Ozanam, we can note that Proclus’ conception of
problems and theorems is fundamentally accepted: "le probleme - wrote Ozanam in the Dictionnaire
- est une proposition qui tend à la pratique, comme de diviser une ligne terminée en autant de parties
égales que l’on voudra . . . " (Ozanam [1691], p. 2). On the other hand, Ozanam also agrees with
Proclus’ characterization of a theorem: "le theoreme est une proposition speculative, qui exprime les
proprietez d’une chose. Comme quand on dit que dans un triangle rectiligne la somme des trois angles
est égale à deux droits, et que dans un triangle spherique la somme des trois angles est plus grande que
deux droits . . . " (Ozanam [1691], p. 8).
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satisfied until it knows not only that a thing is, but why it is, which cannot be learnt

from a demonstration which reduces it to the impossible." (quoted in Mancosu [1999], p.

101).

These considerations suggest that Descartes might not consider the claim that ‘the

quadrature of the circle is impossible’ on a par with usual geometric theorems. In other

words, he did not deduce an impossibility from the supposition that the circle could be

squared geometrically, as in a reductio ad absurdum, but inferred the impossibility of

squaring the circle geometrically as a consequence from the ‘axiom of incomparability of

the straight and the curved’.

Although this axiom or, more precisely, its restriction to the case of segments and arcs

of the circle, invested the very activity of problem-solving and contributed to shaping a

meaningful separation between geometrical and ungeometrical curves, as I have argued

in the previous chapter, it was not justified by Descartes, nor explained any further.

As suggested by Bos or by Hoffman,15 Descartes’ belief on the impossibility of finding

an exact proportion between a straight line and a curved line might be traced back to an

ancient classification of lines, which echoes in Aristotle’s Physics, and was later resumed

by Averroes. In particular, straight lines and arcs of circles, on one hand, and polygons

and circles, on the other, cannot be compared, since they ultimately belonged to different

kinds (see ch. 1, sec. 1.4.1). It can be conjectured that Descartes was influenced by this

aristotelian-averroistic view on curves at some stages of his career, although the details

of such influence (by which mediator, and through which sources was he exposed to this

view? and why did he accept it?) are at present unknown, and certainly worthwhile of

further investigations in the future.16

15See Bos [1981], p. 314; Bos [2001], p. 342; Hofmann [2008], p. 101-103.
16Descartes was educated according to the 1599 Ratio Studiorum, a practical handbook in educational

method and college management which established the influential system of jesuitic education. It is well
known that the teaching of Aristotle had an extant role in that training, although it is dubious whether
a specific teaching on the squaring of the circle were imparted too; on the contrary, the difficulty of the
subject made it a topic for research mathematicians rather than for apprentices (See Romano [2000],
especially on pp. 255-266, for details about the educational system in Jesuit schools). It is worth
mentioning, with respect to the problem of the quadrature of the circle, the jesuit father Antoine Jordin
(1562-1636), who was responsible, between 1604 and 1606, for the education of students in philosophy
at Collège de la Madeleine, in Bordeaux. As it can be read in the manuscript of his courses, Jordin
dedicated an entire section of his geometry class to a discussion of the problem of the squaring of the
circle. Although expositions on the quadrature of the circle were by no means the rule, in the jesuitic
elementary teaching, Jourdin’s exception leaves the possibility open that Descartes might have been
acquainted with the problem since his early formation. Among Jordin’s sources, we can list Clavius’
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Leaving aside the origins and plausibility of the Aristotelian standpoint, we can still

inquire about the reason why Descartes did not feel bound to offer any justification

for this belief. I surmise that the impossibility of expressing the proportion between

segments and arcs of the circle in an exactly knowable way could have assumed the role

of a ‘meta-statement’ with respect to Descartes’ geometry and to the canon of problem-

solving established in it.17If we suppose that Descartes adopted the non-comparability

between straight and circular magnitudes as a sort of meta-statement guiding the practice

of problem-solving (for instance, by ruling out certain problems from the ambit of those

that the geometer should tackle), it is not obvious that such a meta-statement could or

should be proved on a par with common theorems. Therefore, it is not surprising either

that Descartes did not produce any mathematical justification for the claim that the

proportion between straight and curves cannot be known exactly, nor it is astounding

that he might have simply relied on a rather ‘metaphysical’ position, as Bos and Hoffman

(among others) claim. In this, Descartes was continuing a custom that was proper of

ancient mathematicians, or mathematicians of late antiquity, who took for granted the

Geometria Practica (published in 1604) and, more probably, the second edition of his commentaries on
Euclid’s Elements (from 1589), since both works contained substantial digressions on the quadrature
of the circle. It should be pointed out that Clavius was very influential at La Flèche, where Descartes
took his first training in mathematics. Hence it can be supposed with some likeliness that Descartes
knew of Clavius by 1615-16, the years in which he graduated from the school, although we cannot say
with certainty that Descartes knew by this time Clavius’ remarks on the quadrature of the circle (See
Sasaki [2003], p. 51). I note, in particular, that the passage from Aristotle Book VII of the Physics,
concerning straight and curved lines, is critically evoked in Clavius’ commentary to the Elements, a text
certainly perused by Descartes in later years. Clavius’ opinion about Aristotle’s axiom is negative, as
we can read: "Hae etenim [namely, straight lines and curves] ita differre inter se videntur, ut Aristoteles
liquido affirmarit, unam alteri aequalem esse non posse, quod tamen (pace Aristotelis dictum sit) verum
usquequaque non est, cum Archimedes in lib. de lineis spiralibus demonstraverit, quaenam linea recta
aequalis possit esse circumferentia cujusvis circuli dati, idemque in quadratura circuli ostenderimus",
(Euclid [1589], p. 374). It is not known whether Descartes had read this passage, in particular. On
the other hand, Descartes disapproved Clavius’ proposal, also evoked in the quoted passage, to solve
the quadrature of the circle by the quadratrix, suitably redefined through a pointwise construction (see
Euclid [1589], p. 894ff.). Since Clavius’ inquiry arguably presupposed the possibility of finding an exact
proportion between straight and curves, its refusal by Descartes might have been also motivated by
his adherence to the opposite conviction. Some interesting notes on this concern can be found in Isaac
Beeckman’s Journal , at one time Descartes’ mentor: "Quadratura circuli estne possibilis? Respondeo: Si
physicè dicas, maximè. Nulla enim res physica infinitè secatur; primordia igitur physica erunt communis
mensura circuli et quadrati, ergo aequalis numerus talium mensurarum circulum et quadratum perficiunt.
Verùm, quoniam haec eadem primordia physica hnoni infinitè secari possunt, dubitatur mathematicè,
quamquam quadratum majus et minus dari possit, aut physicè aequale cogitari possit. Nec mirum. Recta
enim rectae, et rectilineum rectilineo, est incommensurabile. Quidni ergo circularis linea ad rectam et
circulus ad rectilineum ἁσvύμμετρος dici posset?" (Beeckman [1939-1953], Vol. 1, p. 26, written around
1613–1614). It cannot be excluded that Descartes discussed with Beeckman about this issue too during
the time spent with him in 1618-1619. This would suggest that Descartes was exposed, since his early
mathematical education, to the thesis that rectilinear and circular magnitudes cannot be compared.

17Cf . chapter 1, sec. 1.4.
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unsolvability of certain problems by prescribed means (see ch. 1, sec. 1.4 ).

6.3 On the significance of early rectifications for Descartes’

meta-statement

The general conviction that arcs of curves could not stand in an exact proportion started

to waver soon after 1637.18 Nearly nine years later, for example, Mersenne pointed out

in a letter to Torricelli that the problem of rectifying curvilinear arcs was an unsettled

question worth being pursued:

Sexto gratissimum facies, si doceas quid nuper inveneris, quidque mente pre-

mas, gauderetque summopere Fermatius, si laborares in spiralibus, aut aliis

curvis reperiundis, quae rectis lineis forent aequales, caret enim ejusmodi

genio.19

By mentioning ". . . other curves equal to straight lines", Mersenne might want to refer to

the rectification of algebraic curves too. As a further confirmation of this hypothesis, I

recall that in a previous letter from 1645, Mersenne had inquired about the possibility of

rectifying a portion of the parabola in a geometrical way (vid. Torricelli [1919], p. 269).

These exchanges were but a preamble of an intense research started in the fifties - hence

soon after Descartes’ death - which led to important results concerning the rectification

of geometrical curves, and eventually knocked on the head Aristotle’s axiom.

One of the first outstanding results concerned the oft-invoked rectification of the parabola.

In 1657, in fact, Huygens informed his recipients and associates that he had discovered

the equivalence between the problem of rectifying a parabolic arc and the quadrature

of a corresponding sector of an equilateral hyperbola. Huygens gave his result as a

theorem, but omitted the proof (a sketch of Huygens’ reasoning that might have led to

the formulation of his theorem can be found in Hofmann [2008], pp. 106-107). Meanwhile,

as we learn from Huygens’ correspondence,20 the dutch geometer Hendrick van Heuraet

(1634-1660?) had reached the same result on the equivalence between the problem of the

rectification of the parabola and the squaring of the hyperbola. Van Heuraet’s discovery

18Cf. Hofmann [2008], in particular chapter 8; Yoder [1988], chapter 7.
19"And, sixtly, you will make such a beloved thing if you teach what you have just found, and which

occupies your mind, and Fermat would be greately pleased, if you worked on finding spirals, or other
curves equal to straight lines. He lacks indeed of such an insight."(Paris 26th August 1646, in Torricelli
[1919], p. 411).

20Cf., for instance, Huygens [1888-1950], vol. 2, p. 353.
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was soon published in the second latin edition of Descartes’ geometry (1659), as part of a

letter with the title: "Epistola de transmutatione curvarum linearum in rectas" ("Letter

on the transmutation of curves into straight lines").21

The "Letter on the transmutation of curves" contains a lot more than Huygens’ result

on the rectification of the parabola, as we come to know from the praise-worthy words

of Frans Van Schooten, on the eve of its publication:

. . . he [namely, van Heuraet] has furthermore invented a Method (as he has

shown to me by letter) with which he can rectify several curves absolutely

perfectly (perfecte omnino). This he has explained so lucidly and briefly that

he hardly required two pages for the whole work. Moreover, his method was

such that what was said about the quadrature of the Hyperbola resulted from

it smoothly as if it were a corollary (. . . ) his Method for transforming curves

is already in press and will come out one of these days. If God so wishes,

along with the first part of Descartes’ Geometria.22

Van Heuraet’s Epistola contains indeed, beyond the above-mentioned result on the

parabola, a general theorem regarding the correspondence between rectifications and

quadratures, from which a method for the rectification of algebraic curves could be de-

rived, by reducing the problem of rectifying the arc of a given (algebraic) curve to the

problem of the quadrature of a certain figure constructed from the given curve. In the

same letter, van Heuraet offered two applications of his method: firstly, he obtained a rec-

tification of an arc of quadrato-cubic parabola (namely, the curve of equation y2 = x3a),23

and secondly he derived, as a "corollary" of his Method, to employ Van Schooten’s terms,

the result concerning the equivalence between the rectification of an arc of a parabola

and the quadrature of an hyperbolic sector.

21Descartes [1659-1661], vol. 1, p. 517-20. For an English and Dutch translation of van Heuraet’s
piece see: Grootendorst A. W. [1982]. For an attempt to reconstruction van Heuraet’s life and his
mathematical achievements, see van Maanen [1984].

22Huygens [1888-1950], vol. 2, p. 353. English translation in van Maanen [1984], p. 243.
23Van Heuraet’s rectification of the quadrato-cubical parabola was possibly the first published rectifi-

cation of an geometrical curve, even if it must be recalled that during the same year Wallis gave, in his
Tractatus de cycloide, an account of the rectification of a higher parabola obtained by the english math-
ematician William Neil. Fifteen years later, in 1673, a controversy arose between Wallis and Huygens
concerning the priority of the first rectifications. The detailed study contained in Yoder [1988] allows me
to eschew such questions of priority, and confine myself to evaluating the consequences that the early
rectifications of geometrical curves had onto the reception of Descartes’ geometry, and in particular on
the reception of one of its cornerstones, namely the distinction between geometrical and mechanical
curves and the related separation between possible and impossible problems.
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The content of the mathematical discoveries deployed in the brief Letter on the Transmu-

tation of curves has been explored in few detailed inquiries, reported in bibliography.24

In the following lines, I will summarize the main points of van Heuraet’s reasoning in

order to understand why the Epistola, whose does not deal, apparently, with any of the

themes treated by Descartes in his Géométrie, was appended as a commentary to this

text.

Let us consider, firstly, the theorem stated by Van Heuraet. Let two curves AML and

END (as in fig. 6.3), referred to the same axis AH, be given such that, for any point P

on this axis, the perpendicular to AH from P meets the curves on two points, M and

N , in such a way that:

PM : MG = K : PN (6.3.1)

(MG being the normal to AML, and K a segment of constant length). If this condition

holds, then the surface BDCA equals the rectangle built on a segment K and another

segment whose length is equal to the length of the arc
⌢

AML, taken on the first curve,

and corresponding to arc
⌢

CND on the second.25

In order to prove this theorem, van Heuraet did not rely on any of the algebraic techniques

exposed in Descartes’ geometry, but on the method of indivisibles and on the geometry

of Euclid’s Elements. In order to reconstruct his argument, let us suppose curves AML

and END given (fig. 6.3), such that they comply with the only condition of satisfying

proportion 6.3.1, once an arbitrary point M on the first curve has been chosen. I note

that van Heuraet does not require these curves to be constructed, they need not be

geometrical curves.

In order to complete the proof, let the tangent MF and the normal MG to the curve

AML be also given. Being P the foot of the perpendicular from M to AH, let us take

two points O and Q on AH, from opposite sides with respect to the perpendicular PM .

Let also OU and QV , perpendiculars to AH from O and Q, be drawn. Next, let us

suppose that MF cuts these perpendiculars in points I and T , respectively, and that IJ

perpendicular to QV is dropped. At this point, Van Heuraet can exploit the fact that

24See, in particular, Panza [2005], p. 119-132; van Maanen [1984]; Edwards [1994], for a rendering of
Heuraet’s argument with the tools of modern analysis.

25Descartes [1659-1661], vol.1, p. 519.
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Figure 6.3.1: Van Heuraet’s method for the rectification of certain algebraic curves.
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two right angle triangles (PMG and IJT ) have been constructed, in order to derive the

following proportion:

PM : MG = IJ : IT.

If we compare it with the 6.3.1, we can infer:

IJ : IT = K : PN.

By applying Euclid VI, 16, it is immediate to conclude from the above proportion that

rectangle r(QV ;UV ), with sides OQ = IJ and QV = PN is equal to the rectangle

constructed on IT and K:

r(QV ;UV ) = r(IT ;K).

Van Heuraet’s reasoning rests, so far, on an elementary geometric arguments: a triangle

(IJT ) is constructed similar to a given one (PMG), and from the comparison of their

homologous sides a proportion can be written. This proportion allows van Heuraet, in

its turn, to conclude the equality between the two rectangles r(QV ;UO) and r(IT ;K),

stated above.

In order to pass from considerations of rectilinear figures and segments to considerations

of curvilinear figures and arcs, and in order to compare them, van Heuraet resorts to a

method akin to Cavalieri’s method of indivisibles.26

26The basic conception in the backdrop of Cavalieri’s method, exposed in the influential treatise
Geometria indivisibilibus continuorum nova quadam ratione promota (1635. hereinafter: Geometria
indivisibilibus) was to consider the surface of a plane figure or region (or the volume of a solid body)
as the aggregate of all the chords (resp. all the planes) intercepted within the bounds of the figure
when we trace infinitely many parallel lines crossing the figure itself. On the ground of this suggestive
interpretation, Cavalieri could state a principle, that still bears his name: if two plane surfaces are cut
by a system of parallel lines, which intercept corresponding equal chords over each figure, then also their
surfaces are equal. If corresponding chords have a constant ratio, then the surfaces entertain the same
ratio (for a presentation and discussion of Cavalieri’s method, see Andersen [1986], and Giusti [1980]).
As I will explain in more detail later, Van Heuraet seems to conceive the curvilinear surface BNDCA as
composed by rectangles with infinitely small height, rather than as an aggregate of all the chords. This
was a current interpretation of Cavalieri’s original ideas by the end of the fifties.
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Van Heuraet’s argument proceeds as follows: since the distance of O and Q from P has

not been fixed, it can be taken arbitrarily small, and certainly sufficiently small that

segment IT cannot be distinguished from the corresponding section of the curve AML,

and the rectangle r(QV ;UV ) cannot be distinguished from the corresponding portion of

the curvilinear figure BDCA.27

If we indicate, slightly anachronistically, with ∆s the length of a small hypothenuse IT ,

tangent to the curve, and with ∆x the length of a small leg IJ , then we can state the

following proportion:

∆x : ∆s = K : PN.

From which derives, by elementary geometry:

r(∆x;QV ) = r(∆s,K).

If the arc of the curve AML between A and L is considered as the sum of all its small

tangents (that we may indicate as follows:
⌢

AML =
∑

∆s ), we can conclude from it that

the curvilinear figure BDCA, equal to the sum of rectangles r(∆x;QV ) of infinitesimal

width, is equal to the rectangle built on K and on a segment of length equal to the length

of the arc
⌢

AML, between points A and L, namely:

∑
r(∆x;QV ) = r(

∑
∆s;K). (6.3.2)

The appeal to indivisibles or infinitesimals (namely rectangles or line-segments of infines-

imal breadth or length) is fundamental, in the proof of van Heuraet’s theorem, in order

to consider an arc of the curve AML (as the arc
⌢

AML between points A and L in the

example) as the sum of infinitely small sections of its tangents, each drawn to a point on

the curve infinitely close to a point previously drawn, and the trapezoid BNDCA as the

sum of infinitely small rectangular sections. Only on this ground, in fact, van Heuraet

27This point is made explicit, in particular, in Panza [2005], p. 121.
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can establish that the the trapezoid BDCA is equal to a rectangle whose sides are the

segment K and a segment equal to
⌢

AML, and therefore conclude the proof.28

This proof concludes the first part of the Epistola. In the second part, van Heuraet

expounds his method for rectification by solving few exemplary problems.29 The two

moments in which van Heuraet’s tract can be divided are obviously related. Not only

the theorem of van Heuraet is required in order to solve the first problem discussed in the

text, namely the rectification of the quadrato-cubic parabola, but the very method for

rectification, that shines through the examples discussed in the Epistola, can be envisaged

as a synthetic reversal of the inferential path which led from 6.3.1 to the proof of van

Heuraet’s theorem. As a result of such a synthesis, van Heuraet explicitly conceives

his method as a method of rectification, undergoing the following constraint: it does

not permit to rectify an arc of any curve, but only arcs of curves associated to given

curves, whose quadrature (or the quadrature of corresponding sectors) can be solved or

has already been solved.

I observe that the applicability of van Heuraet’s method is subject to another important

restriction: in order to obtain the rectification of a proposed curve, it is required to solve

the auxiliary problem of finding the normal MG for any point M on the curve. Since

the example chosen by van Heuraet concerns the rectification of a particular algebraic

curve, its normals can be determined with cartesian techniques. The appeal to cartesian

geometry certainly facilitates the determination of the normal, but it is not necessary.

Let us then suppose to rectify an arc of the curve AML, expressed by the algebraic

equation: F (x, y) = 0 with respect to the coordinate system with origin in P (AP = x

and PM = y). Since AML is an algebraic curve, its normal MG = s can be expressed

algebraically, using Descartes’ method for tangents, exposed in La Géométrie and in few

28In Van Heuraet’s words (I point out that the letters used by Van Heuraet differ from the ones I
have employed): "Quapropter omnia haec rectangula simul sumpta aequalia erunt rectangulo sub Σ &
alia recta aequalia omnibus tangentibus simul sumptis. Unde cum illud verum sit, quotcumque rectan-
gula atque tangentes extiterint, & figura ex parallelogrammis constans, si eorum numerus in infinitum
augeatur, definat in superficem AGHIKLF , ac tangentes similter in lineam curvam ABCDE, liquet
superficiem AGHIKLF aequalem esse rectangulo sub Σ & recta aequali curvae ABCDE. Quod erat
demonstrandum" ("Therefore these rectangles taken together will be equal to the rectangle contained
by Σ [K in our notation] equal to the curve ABCDE", in Grootendorst A. W. [1982], p. 519).

29As Heuraet avowed: "methodum a me inventum, cujus beneficio complures curvae lineae (. . . ) in
rectas possunt transmutari": "the method I have invented, by whose aid several curved lines can be
transformed into straight ones", Descartes [1659-1661], vol.1, p. 517. See also Descartes [1659-1661],
vol.1, p. 519.
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remarks appended by Van Schooten in his commentary to the latin edition.30

If PN is set equal to z, the equation of the second curve END can be obtained from

the following system (the second equation figuring in the system is simply derived from

6.3.1): {
F (x, y) = 0

zy = Ks

and by substituting y in the first equation. The curve END will be finally expressed by

an algebraic equation in the unknowns x and z with respect to the same coordinate axes

AP , MP : let us call the equation of END: G(x, z) = 0.

This result is obtained by the sole application of the cartesian machinery for algebraic

manipulations on equations and for the method of tangents. On the other hand, in order

to pass from the algebraic expression of the curve to an expression for the area subtended

by the curve, namely, the trapezoid ABCD, Van Heuraet must suppose that measures of

areas can be expressed, in general, in algebraic terms. The same supposition holds for the

measure of arcs. Both moves demand, in order to be rigorously justified, an insight into

the foundations of the theory of areas, which is lacking or is implicit in Van Heuraet’s

solution. Nevertheless, in order to work out the content of Van Heuraet’s solution, we

might proceed as suggested in (Panza [2005], p. 124ff .) and take momentarily for granted

the algebraic expressability of areas and arcs.

Since the trapezoid ABCD is conceived as the collection of infinitely small rectangles

of ordinate z, varying from point A (with abscissa x = 0) and point B (with abscissa

x = ξ), we can express its surface, according to the suggestion advanced in Panza [2005]

(pp. 123-125), by the following symbol:
∑ξ

0[z]. Similarly, the arc bounded by points

A and L can be expressed by the symbol: Λξ
0[y]. The result in 6.3.2 can be suitably

reformulated as:
ξ∑

0

[z] = R(K,Λξ
0[y]).

30See in particular Descartes [1659-1661], vol.1, p. 43-59, p. 246-253.
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If
∑ξ

0[z] is expressed algebraically, for instance by a formula in which only the variable

ξ occurs, then also Λξ
0[y] can be expressed algebraically, since it can be obtained as the

result of the division of
∑ξ

0[z] by K (K being a constant, the algebraic expression for

Λξ
0[y] will contain only the variable ξ).

This procedure is firstly applied by Van Heuraet to solve, by an analytical procedure, the

particular problem of the rectification of an arc of a cubic parabola, of equation y2 = x3

a
.

The first step exposed by Van Heuraet consists in finding the normal MG for a point

M of the curve. Van Heuraet reasons on the curve AML drawn within the system of

orthogonal axes AH, BD.

If the normal MG to the point M is supposed already drawn in the diagram, its length

can be computed applying Descartes’ strategy. As prescribed by it, the problem of

constructing a normal MG to a curve in one of its points M can be solved by constructing

a circle with center G and radius MG, and posing the condition that the circle intersects

the given curve AML in a double point.31

This geometrical condition can be expressed only analytically. Let us name the segments

in the diagram as follows: PM = y, AP = x, FQ = s, MG = v, PN = z, GP = s− x,

GP 2 = s2− 2sx+x2. Since GM2 = y2 = x3

a
, applying Pytagoras’ theorem one will find:

MG2 = s2 − 2sx+ x2 + x3

a
= v2.32 This is an algebraic equation (let us call it φ(x) = 0)

of the general form f(x)2 + (s− x)2 − v2 = 0.

The analytical counterpart of Descartes’ geometrical condition for the double point is

expressed by the condition that equation φ(x) = 0 possesses a double root. In order to

find the (double) root of s2−2sx+x2+x3

a
= v2, and thus find s(= FQ) and v(= MG), van

Heuraet employs Hudde’s method, an algorithm which simplified Descartes’ techniques

exposed in La Géométrie.

Without entering the details of the algorithm,33 I will limit myself to state the final result

obtained for the segment s, namely: s = FQ = x + 3x2

2a , and for segment GP , equal to
3x2

2a . Another application of Pythagoras’ theorem will give us the length of the normal

v = MG =
√

9x4

4a2
+ x3

a
.

31See Panza [2005], pp. 83-118, and also Giusti [1986], pp. 26-37.
32Descartes [1659-1661], vol.1, p. 519.
33An exhaustive explanation can be found in Panza [2005], pp. 104-113. See also Whiteside, Newton

Mathematical Papers, I, pp. 213-215.
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By setting K = 1
3 (as Van Heuraet remarks, K can assume arbitrary values: "licet enim

pro libitu assumere"), 6.3.1 will yield:

PN(= z) =

√
1

4
ax+

1

9
a2.

It results that the curve G(x, z) = 0 associated to the semi-cubical parabola of equation:

y2 = x3

a
is a parabola with vertex E, such that EA = 4

9a, and latus rectum 1
4a.

34

Without further explanation, van Heuraet concludes that the length of arc
⌢

AML mea-

sures
√

χ3

a
− 8

27a, with χ = EB = AB + EA = x+ 4
9a.

35

Van Heuraet possibly assumes that the region under by the curvilinear figure ABCD is

expressed by the algebraic formula:
∑ξ

0[z] =
1
3(
√

χ3

a
− 8

27a) (in this case, ξ = AB).36

Consequently, the length of
⌢

AML can be obtained by dividing the value of the area by

K = 1
3 :

Λξ
0[y] =

1
3(
√

χ3

a
− 8

27a)

1
3

=

√
χ3

a
− 8

27
a.

The second example discussed by Van Heuraet concerns the rectification of a parabolic

arc, and had a different, "negative" outcome. Indeed, let the parabola y = x2

a
be given.

The subnormal PG, determined by Hudde’s rule as in the previous case, is equal to 2x3

a2
,

whereas the normal PS is equal to 4x6

a4
+ x4

a2
. By setting K = a, the curve associated to the

parabola will be defined by the equation z =
√
4x2 + a2, which expresses an hyperbola.

Hence, van Heuraet’s procedure showed that the rectification of the parabola depended

on the quadrature of this figure, an unsolved quadrature at his time. For this reason

34Descartes [1659-1661], vol.1, p. 520.
35Descartes [1659-1661], vol.1, p. 520. Note that van Heuraet employs the symbol ν to denote segment

EB.
36Van Maanen and Grootendorst suggest that van Heuraet might have relied on well-known results by

Cavalieri, who had given the quadratures for the class of paraboloids of cartesian equation: y = xk, with
k a positive natural number (see Grootendorst A. W. [1982], p. 108). Yoder refers directly to Archimedes’
result on the quadrature of a parabolic sector, that van Heuraet certainly knew as well. I will sketch
below a possible reconstruction of van Heuraet’s reasoning based on the archimedean quadrature.
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Van Heuraet concluded his letter not by solving the rectification of the parabola, but by

merely pointing out the relation between the two problems.37

From the survey of van Heuraet’s main contributions to the rectification of curves, it is

clear why this inquiry was appended to a translation of Descartes’ geometry: it provided

in fact an unsuspected application of algebraic techniques, developed by Descartes in

order to solve the problem of tangents, into the different problem of rectifications.

Van Heuraet’s mathematical results were hailed by his contemporaries as momentous

achievements. F. de Sluse (1622-1685), for instance, who entertained in the fifities a rich

correspondence with Schooten and Huygens, and was therefore informed on the latest

results concerning the rectification problem, thus commented on the recently published

letter on the rectification of curves:

Novum autem illud de Parabolicae lineae, et Hyperboles dimensionis mutuo

nexu, dici non potest quantum mihi placuerit, praesertim cum Heuratio oc-

casionem dederit inueniendj rem quam inter ἀδύνατα hactenus recensueram.

In quo errore et Cartesium et plures alios, vt scis, socios habuj; ideoque

maximo desiderio teneor videndj Commentarij Schotenianj, cuius editionem

postremam nondum aspexi . . . 38

Sluse evokes, in this passage, the equivalence ("mutuo nexu") between the rectification

of an arc of the parabola and the quadrature of an hyperbolic sector as a fundamental

discovery leading to another one, associated with van Heraet’s name. This result consists,

in all likelihood, in the analytical rectification of an arc of a quadrato-cubic parabola, a

result that Sluse himself - so we read in the passage reproduced above- together with sev-

eral other geometers (including Descartes) erroneously ranged "among impossibilities".

We can read here a reference to the axiom about the incomparability between straight

and curved, against which the application of Heuraet’s method provided an astounding

counterexample.
37"Quod ipsum docet, longitudinem curvae Parabolicae inveniri non posse, quin simul inveniatur

quadratura Hyperbolae, & vicê versa", Descartes [1659-1661], vol.1, p. 520. In van Maanen’s and
Grootendorst’s translation: "and from this exactly we learn that the length of the parabolic curve
cannot be found unless at the same time the quadrature of the hyperbola is found, and vice versa."
(Grootendorst A. W. [1982], p. 105).

38Huygens [1888-1950], vol. 2, p. 354: "It cannot be said how far I enjoyed this news about the
parabola and its mutual relation with the quadrature of the hyperbola, in particular, because it gave to
van Heuraet the occasion to discover a thing that I have so far confined among the impossible [ἀδύνατα].
As you know, Descartes and several others were fellows to me in such an error. Thus I am gripped by
desire to see the Commentary of Schooten, whose last edition I have not yet looked upon".
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Henk Bos suggests, in Bos [1981] and in Bos [2001], that the first rectifications of algebraic

curves might have represented more than a refutation of an axiom or a dogma believed

for a long time (a conclusion that, as attested by the excerpt reproduced above, was taken

also by Sluse). In fact, Bos argues that by refuting the incomparability of straight and

curves, the first rectification of geometrical curves would also undermine the fundamental

dichotomy, in Descartes’ classification of curves, between geometrical and mechanical

ones.39

However, Bos’ conjecture on the revolutionary character of the first rectifications clashes

against an obvious historical fact, stressed in Mancosu [1999] (p. 77-78), and Mancosu

[2007] (pp. 119-120): not only van Heuraet’s rectification of the semi-cubical parabola

was inserted in the second latin edition of Descartes’ geometry (1659) as an exemplifica-

tion of cartesian method, but no one at that time nor during the following years, claimed

that this result undermined the foundations of Descartes’ geometry.

I think that these objections are sound. But I also point out, with Mancosu,40 that

it is sufficient to hold, as a ‘meta-statement’, the non-comparability between straight

segments and circular arcs (that is, the impossibility of stating exactly a proportion

between the two kinds of quantities) in order to demarcate as ungeometrical curves like

the quadratrix, the spiral and the helix, known to Descartes via ancient sources.

Indeed van Heuraet’s method for rectification did not succeed in refuting the non-

comparability between segments and circular arcs. Only an algebraic rectification of

the circle and of its arcs, or equivalently, the algebraic quadrature of the circle, that we

know to be impossible, would achieve such a refutation. Hence, the contemporaries of

van Heuraet probably realized that the restrictions inherent to the latter’s method of

rectification (restrictions analyzed above) rendered it unfit in order to tackle the prob-

lem of rectifying an arc of the circle, and therefore they also realized that van Heuraet’s

method could not threaten the foundational edifice of Descartes’ geometry.

On the other hand, I surmise, one must be also cautious in excluding that the early rec-

tifications of algebraic curves, like the one obtained by means of van Heuraet’s method,

39Compare, in particular, Bos [2001], p. 342: "The central role of the incomparability of straight and
curves in Descartes’ geometry was the reason why the first rectification of algebraic (i.e. for Descartes:
geometrical) curves in the late 1650s were so revolutionary: they undermined a cornerstone of the edifice
of Descartes’ geometry".

40This proposal has been advanced in the worksevoked in the previous note.
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had any consequences on the reception of Descartes’ geometry and on Descartes’ belief

about solvable and unsolvable problems. It should be pointed out that Descartes plausi-

bly grounded his conviction about the non-comparability between straight segments and

circular arcs on a preliminary conviction on the non comparability between straight and

curvilinear magnitudes, whose universality, at least, was refuted by van Heureaet.

The following conjecture can be ventured: even if the first algebraic rectifications of al-

gebraic curves did not refute the conviction that the rectification of circular arcs was

impossible, and therefore they did not directly undermine the distinction between geo-

metrical and mechanical curves, one of the cornerstones of Descartes’ geometry, yet they

partly undermined the grounds of this conviction.

Probably as a consequence of such undermining, in 1667, less than ten years after the

second latin edition of the geometry was published, James Gregory was still dubious

about whether the quadrature of the circle could be solved by cartesian means, and

eventually came up with a negative answer, published in his Vera Circuli et Hyperbolae

Quadratura.

6.4 Problems of quadratures and the problem of area

In my effort to clarify and interpret van Heuraet’s solution, I have expressed the length

of the arc of quadrato-cubic parabola through the following symbolic notation: ‘Λξ
0[y] =

∑ξ
0[z]
K

’.41 The expression: ‘
∑ξ

0[z]’ represents the area of the section of the parabola

delimited by abscissas 0 and ξ, and the expression: ‘Λξ
0[y]’ represents the length of an

arc between the same abscissas.

So far, I have not questioned how a seventeenth century geometer like van Heuraet might

have understood the concepts of area and arc-lenghts. On this concern, Van Heuraet’s

account, at least the one published in the Geometria, is not illuminating either. In

fact, Van Heuraet employs the symbolism of Descartes’ algebra of segments in order to

express the length of an arc and the area of a figure, without justification. Van Heuraet’s

reticence on this concern leaves us with crucial questions: was the algebraic formalism

employed by van Heuraet in order to express the measure of a surface and a arc the

same as Descartes’ formalism for the algebra of segments? And which tacit conditions

41This notation is employed in Panza [2005], p. 122ff .
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made such an extension of the cartesian symbolism possible and accepted without any

objection?

Problem of quadratures were dealt with, in the period 1630-1660 ca., by a number of

mathematicians who tried to constitute a general framework in order to solve the largest

possible number of quadratures of special figures, by combining the cavalerian method

of indivisibles with arithmetic procedures. On the contrary, the formalism of Descartes’

algebra of segments was not employed, in this framework, in order to solve quadrature

problems.

The reason was not accidental, but can be found in the difficulty of expressing the result

of quadrature and correlatively with rectification problems through the algebra of seg-

ments exposed in La Géométrie. At least for what concerns quadratures, this difficulty

was not related to any explicit methodological caveat : whereas Descartes explicitly de-

nied, in La Géométrie, that problems of rectifications could be solved in an exact way,

he simply eschewed discussing quadrature problems. On the other hand, I surmise that

the possibility of extending the algebra of segments in order to obtain an assertive and

determinative algebra, capable of treating problems of quadrature and rectification, con-

flicts with two major conceptual problems. The first one is related with the concept of

surface as magnitudes, and the other with a limitation inherent to Descartes’ algebra of

segments.

Let us consider the first problem. Given a pair of polygons (α, β) it is always possible,

relying on Euclid’s plane geometry, to constructively determine whether: α < β, α = β

or β < α, and to endow with a geometric meaning the result of the addition α+ β. On

the ground of El . VI, 25 we can construct two rectangles A and B, having the same

height, and being equal to polygons α and β respectively. It will be therefore easy, on

the basis of the Elements, to compare these rectangles, in order to determine whether

A < B or B < A, and to construct the rectangle A+B.42

Once clarified this point, we can define an assertive ‘algebra of polygons’ on the model

of the algebra of segments (a supplementary problem, on which I will not enter, would

be to endow this algebra with a determinative character: in order to do this, we should

also be capable of constructing the product and division of two polygons, and offer a

geometric interpretation for the operation of extracting its square root, for example).

42Panza [2005], p. 2-6Mueller [2006], p. 122.
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On the contrary, the possibility of comparing trapezoids among them and with rectilin-

ear figures (i.e. polygons) cannot be established in an equally general way, either relying

on Euclid’s plane geometry or in other available theories to early modern geometers.

It is true that in ancient mathematical practice, polygons and curvilinear figures could

be compared employing a variety of techniques, and certain quadrature problems could

be thereby solved in an exact, rigorous way.43 But the very method of exhaustion was

classically applied for the quadrature of particular figures, from which one could not ex-

trapolate general conditions that allowed not only to compare trectilinear and curvilinear

figures involved in specific problems, but in general, to compare arbitrary curvilinear and

rectilinear figures (for instance curvilinear regions, or trapezoids, bounded by geometrical

curves). This would represent a noticeable difficulty against the setting up of an assertive

algebra holding of figures in general, either curvilinear and rectilinear ones.44

The second qualm against the possibility of treating quadrature problems in an algebraic

way can be briefly stated: even if we had a criterion in order to compare and add

curvilinear figures, a problem would remain concerning how to denote, using Descartes’

algebra of segments, a trapezoid as a magnitude. Indeed any operation on segments will

always yield, within the cartesian formalism, a segment as a result. How can the algebra

of segments be employed in order to express a different magnitude than a segment, for

instance a polygon or a curvilinear figure?

Probably aware of the difficulty of explicating and incorporating these conditions within

the structure of the cartesian algebra, Descartes accurately avoided to mention quadra-

ture problems in his treatise, and even when he dealt with them, outside of La Géométrie,

he employed several techniques (included the method of exhaustion) arguably without

the intent of constructing a unifiying procedure (namely a calculus) analogous to the one

developed in La Géométrie.

But, as a survey of XVIIth century mathematics will confirm, the silence of van Heuraet

on the rationale and motivations of his application of the cartesian formalism to areas

and arcs is not surprising. It seems that no argument was explicitly given, in XVIIth or

XVIIIth century, in order to ground the extension of algebraic symbolism from segments

43For an overview of ancient examples, see Baron [1969], chapter 1.
44On the XVIIth century discussions around the problem of redefining the classical notion of equality,

in order to cope with the problem of comparing rectilinear and curvilinear figures, see de Risi [2007], p.
150ff.
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to areas: either cartesian algebra was ignored when dealing with problems of area, or the

possibility of its extension was tacitly assumed, like Van Heuraet did.45

In the absence of any explicit position held by XVIIth century mathematicians, it is still

possible to venture a conjecture in order to explain under which conditions the expression

‘a3 (
√

χ3

a
− 8

27a)’, that would denote a segment, in the framework of cartesian geometry,

can tacitly refer to an area, in the context of Van Heureat’s work. The hypothesis I want

to propose and endorse here has been advanced by M. Panza, in his Panza [2005] (see,

in particular, the discussion at pp. 125-128).

As a first remark, it should be pointed out that no general formal restrictions enjoin

geometers from employing symbols, that in the formalism of cartesian algebra denote

segments, in order to express magnitudes other than segments.46 We might, therefore,

envisage to employ symbols belonging to Descartes’ algebra of segments in order to

measure, within the the domain of segments, other magnitudes, like the surface of a

plane bounded region. In order to understand how this process is in principle possible,

and how it might have effectively occurred, I will start from a basic example. Formulas

for computing the areas of figures are among the basic facts of elementary geometry:

for instance, the area of a parallelogram is the product of its base and its height; the

area of a triangle is 1
2 of the product of its base and height. But measuring a surface

via the application of these formulas requires several presuppositions.47 For instance,

such presuppositions may include the availability of a number system endowed with

multiplication, and a way of assigning numbers to lines and figures in order to express

their lenghts and breadth, respectively. Thus, when someone states that: "the area of a

parallelogram ABCD is the product of its base α and its height β, namely: A(ABCD) =

αβ, he is not using, in this context, the symbols ‘α’ and ‘β’ as names for two segments,

but as measures of these segments, expressed for instance through numbers.48

45Panza [2005], p. 127.
46Cf . ch. 3, p. 120ff .
47Cf . also ch. 1, sec. 1.4.1.
48According to the interpretation of Descartes’ geometry I have endorsed in this study, the formula

stating: "the area of a parallelogram is the product of its base and height" works in an utterly different
way with respect the formalism of Descartes’ algebra of segments: in the latter, symbols denote segments,
not the measures of these segments. For a discussion of the modern concept of area, see Moise [1990],
chapter 13 and 14.



CHAPTER 6. IMPOSSIBLE PROBLEMS IN CARTESIAN GEOMETRY 292

Taking the lead from this remark, I observe that another way can be envisioned to

measure the content of a figure, avoiding the appeal to numbers.49 To this effect, let us

consider once again the elementary example of the parallelogram. Its base AB and height

DH are segments that can be denoted, within the cartesian formalism, with letters,

e.g: ‘a’ and ‘b’. These letters do not express any measure, but denote the segments

themselves. Hence, according to the internal multiplication in force within Descartes’

algebra of segments, we can write the product of a and b as: ab = c, where ‘c’ denotes a

segment too, namely the unique segment which satisfies the proportion: 1 : a = b : c.

But it can also be supposed that c, while denoting the product of segments a and b,

expresses the area of the rectangular region whose base and height are, respectively a

and b.50 More generally, it can be supposed that a segment x can measure, in the domain

of segments, a magnitude X different than a segment, provided x behaves with respect

of any other segment in the same way that X behaves with respect to the magnitudes

of the same kind. In order to refer to the fact that the segment x measures X in the

domain of segments, one may adopt the following notation, following (Panza [2005], p.

128-129):

s[X] = x.

I stress that such a supposition and the consequent correspondence between segments

and magnitudes other than segments (for instance, surfaces or volumes) is not made

explicit either by Van Heuraet or by any other early-modern geometer. However, it is

arguable that the algebraic measure of the parabolic surface obtained by Van Heuraet

might be inferred from algebraic expressions denoting segments, by means of procedures

that comply with the theory of proportions and with the metrical relations licensed by

it.
49The possibility of measuring the content of a two-dimensional figure was rigorously proved in David

Hilbert’s Grundlagen der Geometrie, for the first time. Roughly speaking, Hilbert proved that it is
possible to associate to the content of a figure a certain area-function with values in the additive group
of segment arithmetic, which is itself isomorphic to the field of the real numbers. If the existence and
unicity of this function are proved (as it is done in the Grundlagen der Geometrie) then the area of
a rectilinear figure can be measured by associating to it a certain value expressed by a member of the
field of segment arithmetic. Obviously, the axiomatic treatment provided in Hilbert’s foundational work
cannot be found anywhere in XVIIth century mathematical thought, and it would be an anachronism
to suppose the contrary.

50Moise derives the theorem in a rigorous way, stating that the area of a parallelogram is the product
of its base and its height can be derived from the postulates defining an area-function (Moise [1990], p.
185-186).
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In order to understand this crucial claim, I will propose a plausible reconstruction of van

Heuraet’s inferential path leading from the derivation of the algebraic expression for the

parabola associated to the curve to be rectified, to the algebraic determination of the

arc-lenght of the semi-cubical parabola.

The most direct way to square geometrically the parabolic sector ABDC (fig. 6.3) would

be to consider it as the difference between the parabolic sector EBDC and the sector

ECAE (the conclusion is obvious on the ground of the diagram), and then to square

sectors EBDC and ECAE by relying on known procedures, like Archimedes’ quadrature

of the parabola. Since the parabola z =
√

1
4ax+ 1

9a
2 has EB as axis, vertex in E and

latus rectum equal to 1
4a, the following equalities can be immediately derived: EBDC =

2
3R(EB,BD), EACE = 2

3R(EA,AC).51 On this ground, each parabolic sector can

be squared, according to a classical, euclidean procedure: it is sufficient to construct a

rectangle equal to two thirds of the rectangle with sides EB and BD, and transform

it into a square. Once the quadratures of the two sectors have been accomplished, the

quadrature of the sector ABDC immediately follows: it is sufficient to take the difference

between the square equal to the sector EBDC and the square equal to the sector ECAE,

and transform this difference into a square.

In order to express this solution algebraically, Van Heuraet might have proceeded in the

following way. By simplicity, one may choose point E as the origin of the axis, so that

the equation of the parabola with respect to the new origin will be: z = 1
2

√
a2x, and:

EACE = 2
3R(49a,

1
3a) and EBDC = 2

3R(χ, 12
√
aχ), if χ = EB = AB + EA = x+ 4

9a.

If it is assumed that the surface of a rectangle is measured in the domain of segments

by the segment equal to the product of its sides, then the geometric relation between

parabolic sectors, namely: ABDC = EBDC−ECAE, yields the area
∑ξ

0[z] of the sector

ABDC in algebraic terms (in virtue of the change of the origin, we are now looking for the

area of the trapezoid ABDC between the abscissa x = 4
9a and the abscissa x = 4

9a+ξ, but

I note that the area can be assumed as an invariant with respect to any transformation

51Both results can be inferred as corollaries from Archimedes’ Quadrature of the parabola, proposition
17 (Archimedes [1881], vol. 2, p. 335). In Heath’s paraphrase: "the area of any segment of a parabola
is four-thirds of the triangle which has the same base as the segment and equal height" (Heath [1897],
p. 246).
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of the coordinates involving the translation of the origin along one axis):

s[

ξ∑

0

[z]] =
2

3
s[R(χ,

1

2

√
aχ)]− 2

3
s[R(

4

9
a,

1

3
a)] =

1

3
a

√
χ3

a
− 8

81
a2

In other words, the segment measuring the surface ABDC in the domain of segments,

namely s[
∑ξ

0[z]] is equal to 2
3 of the segment equal to the difference between the segments

measuring the surfaces of rectangles EBDC and EACE, respectively.

The algebraic expression ‘a3 (
√

χ3

a
− 8

27a)’ can therefore denote a segment, in full compli-

ance with the cartesian formalism, and at the same time express the measure of a surface

(hence, a magnitude different than a segment).

In virtue of Van Heuraet’s theorem, moreover, the surface of the trapezoid ABCD is

equal to a rectangle bounded by a segment K and by the arc
⌢

AML, in symbols:
∑ξ

0[z] =

R(K,Λξ
0[y]). In order to infer from the measure of the trapezoid the measure of the

arc
⌢

AML, Van Heuraet arguably made two simple, but tacit assumptions. Firstly, an

assumption, already in force in the deduction of the algebraic measure of ABCD, is

required: a rectangle is measured, in the domain of segments, by the product of its sides.

Secondly, van Heuraet had to assume the following too: if a magnitude A is measured

by segment α, then any magnitude B = A (provided a suitable notion of equality has

been given within the class of magnitudes to which A belongs) is measured by the same

segment α.

Hence, if the area
∑ξ

0[z] is measured by segment a
3 (
√

χ3

a
− 8

27a), according to the above

conclusion, the area of R(K,Λξ
0[y]) will be measured by the same segment. Consequently,

the length of side Λξ
0[y] will be expressed by the quotient:

a
3
(

√

χ3

a
− 8

27
a)

K
, in agreement

wih the result found in van Heuraet’s Epistola.

On the methodological level, the conclusion reached by van Heuraet contains a simple but

deep consequence. In fact, it shows that the scope of the formalism of (determinative)

cartesian algebra could be extended to the measuring of curvilinear surfaces bounded by

algebraic curves and to arc-lenghts of algebraic curves. It should be pointed out, however,

that Van Heuraet limited the range of application of his method, and therefore of his



CHAPTER 6. IMPOSSIBLE PROBLEMS IN CARTESIAN GEOMETRY 295

representational innovation too, to the sole case of the parabola, whose quadrature was

known since antiquity, and therefore did not present any difficulty) and to the rectification

of its associated curve, namely the quadrato-cubic parabola. Despite van Heuraet’s

confidence that his method for rectification would be applicable to the family of curves

with equations y2n = x2n+1

a
,52 it is not clear how the rectification of these higher parabolas

might be obtained, since van Heuraet did not possess a procedure in order to square the

associated sectors or, at any rate, he did not report such a method in any known text.53

52Descartes [1659-1661], vol. 1, p. 520.
53Cf. van Maanen [1984], p. 268; Panza [2005], p. 129.



Chapter 7

James Gregory’s Vera Circuli

Quadratura

7.1 Introduction: the quadrature of the circle

Descartes’ Géométrie contains explicit criteria for separating acceptable from non ac-

ceptable solving methods, thus demarcating the ontology of Descartes’ geometry and its

strenght in problem solving.1 However, in this treatise there are no further distinctions

between acceptable and non acceptable problems, in analogy with the distinction between

permissible, or geometrical, and non permissible, or mechanical curves. In particular, I

have found, in the context of Descartes’ mathematical production, no use of the word

"mechanical" with reference to problems.2

A criterion for classifying problems was delineated, as I have discussed before, in a

letter to Mersenne from 1638. According to my reading of it, Descartes grounded on

the techniques presented in his Géométrie a sketchy distinction between possible and

impossible problems, according to whether the content of a given problem could be

reduced to an equation, and thus the problem admitted a geometrical solution. Probably

reminiscent of the traditional view on the non rectifiability of circular arcs in geometry,

Descartes denied that such a reduction was possible in principle, for the case of the

squaring of the circle.

1See, for instance Jullien [1999], Panza [2005], Panza [2011].
2It seems that later writers, when commenting upon Descartes’ geometry, simply overlooked these

terminological restrictions. On this, confront Collins’ remarks on Descartes’ Géométrie (Hofmann [2008],
p. 203).

296
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Obviously, proving that a problem can be solved mechanically (as it is the case, for

instance, of the squaring of the circle or the rectification of its circumference) is not

sufficient to exclude it from geometry: the trisection of the angle, for instance, can be

solved either using a mechanical curve like the quadratrix, or an acceptable construction

through a couple of geometrical curves. Nothing could have prevented, in principle, a

XVIIth century mathematician to conceive that a similar situation would hold also for

a problem like the quadrature of the circle, that can be solved, to our knowledge, solely

on the basis of mechanical methods.3

Moreover, the circle-squaring problem possesses this further peculiarity: while it could

not be allegedly expressed through an algebraic equation, nor solved by intersection of

geometrical curves, its content could be understood without appeal to notions extraneous

to Euclid’s plane geometry.4 This might have been one of the reasons why efforts towards

a solution by euclidean means were recorded for at least two centuries after the period

we are considering, and it might also have been the occasion of more serious reflections

on the relationships between cartesian analysis and the non algebraic methods adopted

by ancient geometers.

Early modern geometers, and particularly cartesian geometers, were concerned with such

considerations, as a tract written by Frans Van Schooten: De concinnandis demonstra-

tionibus geometricis ex calculo algebraico might show.5 The preface of this text, written

by Pieter Van Schooten (Frans’ brother), who also published this text, after Frans van

Schootens’ death, maintains two broad claims that would soon become commonplace

opinions concerning algebraic methods in geometry. The first claim is that algebra, un-

derstood as an analytic art, has been accurately concealed by ancient mathematicians,

who “exhibited only the synthesis, in a vulgar form”. Therefore, the analytical method

has been forgotten, and its certainty occasionally cast into doubt. In fact, in Pieter Van

Schooten’s words, his brother:

. . . neque dubitabat, quin pleraque omnia, quae Veteribus tantum gloriae

peperissent, Analyseos beneficio ac ope reperta essent, sed quae illi, ut inven-

torum maior admiratio foret, dissimulato hoc artificio et suppresso, vulgari
3I recall that the observation is made by Mancosu [2007], p. 117.
4One could object that the notion of “circle” as a magnitude is never introduced in Euclid’s plane

geometry, because Euclid never offers a procedure in order to sum circles. This claim is debatable, though,
since a suitable generalization of Pythagora’s theorem to semicircles would be sufficient to introduce an
operation of addition among circles. Nevertheless, it doesn’t seem to me that, even if the circle is never
defined as a magnitude in the Elements, the meaning of the problem of squaring the circle remains.

5This tract is contained in Descartes [1659-1661], vol. 2.
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tantum syntheseos forma exhibuissent. Sed cum Veterum dissimulatione fac-

tum videret, hunc Analyticae methodi praestantem usum non modo a multis

ignorari ac negligi, sed ipsam ejus certitudinem ac evidentiam a nonnullis

suspectam haberi . . . 6

The second broad claim is that the algebraic method employed in cartesian geometry is

able to translate and demonstrate everything that can be expressed in the language of

pure geometry and that, conversely, every algebraic inference corresponds to a geometric

inference. This correspondence would be sufficient to warrant, in Van Schooten’s view,

the legitimacy of using algebra in order to solve geometric questions:

Ipsum quoque syntheticum demonstrandi modum in analysi contineri atque

ex ea elici posse; ut eo argumento quemvis convinceret, quantum illa et

prevaleat, et praeferenda sit.7

Nevertheless, the vocation of algebra as a universal language of geometry - this was, at

least, the ideal endorsed by Van Schooten - was hindered by two general quandaries.

This first one concerned the applicability of the cartesian model of analysis: could all

the concepts and operations of geometry be translated into algebraic operations? The

second one was the reciprocal problem: could all concepts and operations of algebra be

translated into geometry?

The problem of trisecting an angle already constituted a major stumbling block to a

mathematician like Ghetaldi, who was skeptical as to whether this problem could fall

under algebra, because its formulation concerned a magnitude like an angle, and not

line segments.8 However, the treatments of Viète and later of Descartes illustrated that

the problem of trisection can be easily converted into an equation, namely a proportion

between segments. However, reducibility of geometric problems to algebra remained an

open question for other problems.

6Geometria, vol 2, p. 343. ". . . did not doubt, that most of these achievements, which engendered
so much glory for the Ancients, had been obtained with the benefit and aid of Analysis, but that they
concealed and suppressed this technique and, in order to increase the wonder for their discoveries, they
exhibited them only in the vulgar form of the synthesis. But although this appeared to be caused by
the dissimulation of the Ancients, the rewarding use of the analytical method not only was ignored
and neglected by many, but its very certainty and evidence was suspected by several people". My
understanding of the programmatic aspects of this treatise is particularly indebted to Brigaglia [1995].

7Descartes [1659-1661], vol 2, p. 343. “Also, the very synthetical method of proof is contained in
analysis, and can be derived from it. Therefore by this argument anyone can be convinced, how much
analysis is more fruitful and preferable than synthesis”.

8See Panza and Roero [1995], p. 225.
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The impossibility of solving the circle-squaring problem was occasionally evoked in con-

nection with this issue. In the same spirit of Frans Van Schooten’s, the question about

the range of problems that may fall under the scope of analysis is explicitly posed in the

preface of a work written by François Dulaurens: Specimina mathematica (1667).9

Here Dulaurens offers a summary or plan of his work, and in the end of it he evokes

some thoeretical problems arisen with analysis – namely the anaysis of the moderns, in

which Dulaurens conflated both Viète’s Ars Analytica and Descartes’ algebra of segments.

In particular, the author points to a still unachieved or possibly unachievable part of

analysis, concerning the reducibility to equations of problems dealing with as quadratures

or cubatures:

Restat Analyseos pars altera, quae nonnullas questiones spectat, pro quibus

solvendis impossibile, aut admodum difficile est ad aliquam aequationem per-

venire, quales sunt fere omnes quae planorum, vel solidorum curvilineorum

quadraturas, aut cubationes investigari proponunt.10

Among such difficult questions we find problems of rectification. Probably Dulaurens

was thinking about the rectifications of circular arcs, when he observed that, in cartesian

geometry: " . . . nam in hujuscemodi questionibus media desunt, aut saltem difficillime

apparent ad instituendam curvi cum recto comparationem . . . ".11

Indeed Dulaurens mentioned the circle-squaring problem, for which no equation had

been produced in order to infer a construction by geometrical means, so that the sole

solutions available were still those of the ancients, by means of mechanical curves like

the quadratrix.12

9Dulaurens’ book was an elementary treatise in algebra, illustrating the recent advances in the field
brought by Descartes, Harriot and Viéte. The second part has some interest, though, as Dulaurens
studies there the solutions of 5th and 7th degree equations, in connection with the geometrc problem of
angular sections. He obtained, for these specific cases, a resolutive formula, that enabled him to express
one root numerically, in terms of the coefficients. The book became however known as a result of a
polemic with John Wallis, whose name was mentioned in the Specimina in connection with an algebraic
problem that he had presumably proposed. Wallis denied furiously that he had any part in this, and
attacked Dulaurens and his Specimina. Thanks to this attack, the book became known to Collins, and
through it, to Gregory as well (See Stedall [2011], p. 59-60).

10"There remains another part of analysis, which concerns several questions, for whose solution it
is impossible or very difficult to obtain an equation, as are almost all those that ask to investigate
quadratures of plane or curvilinear solids, or their cubatures" (from the preface, unnumbered sheet).

11" . . . indeed the means are lacking in questions of this kind, or at any rate they seem to be very
difficult [to find], in order to establish a comparison of the curve with the straight." (pref .).

12"Nulla aequatio elici potest ad propositam circuli quadrationem arguendam . . . " ("No equation can
be set out in order to solve the proposed quadrature of the circle", pref .).
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The study of quadratures occupied a central place in the development of mathematics

during the second half of XVIIth. Following the publication of Cavalieri’s Geometria

Indivisibilium (1635), several mathematicians strove in order to combine the principles of

the method of indivisibles with the algebraic formalism issued from Descartes’ geometry,

in order to derive a more general analytical method able to encompass a large class of

curvilinear figures. One of the principal aims of these inquiries was to collect preparatory

results in order to solve the squaring of the circle.

Behind these ideas we can still find the conception, ventured also in Van Schooten’s

De concinnandis , that Descartes’ algebra of segments might be a fragment of a general

method of analysis, whose principles had been secretly developed by the ancients, and

whose applications allowed them to solve problems and present them in the synthetic

form in which they were mostly trasmitted to us. If duly re-discovered, this method

of analysis would lead to new and important results, like solving in a systematic way

quadratures and rectifications.13

However, as pointed out in Panza [2005], a major conceptual difficulty was inherent to the

attempts at applying to quadrature problems the fundamental idea of the cartesian model

of analysis, namely, the reduction of a geometrical statement to a symbolic expression in

the form of an equation. This difficulty concerned the very expression of the result of a

quadrature problem.

It is significant, for instance, that one of the most influential early modern treatises

on quadratures, the Arithmetica infinitorum (1656) of John Wallis, Savilian professor

of geometry at Oxford for the whole second half of XVIIth century, was still grounded

on a traditional approach to the problem: Given a curvilinear figure delimited by the

origin and the absissa x = z, the problem of its quadrature consisted for Wallis in the

determination of the ratio between the curvilinear figure and the parallelogram, with side

z, constructed around the curve.14

Squaring the curve would thus come down to determine a proportion which we can

express in the following form, denoting by A the figure to be squared and by P the

13This theme, which appears in Van Schooten’s De concinnandis, and before him in Viète, can be found
in several writers dealing with quadratures. On this concern, Stedall observes: “Torricelli supposed that
Cavalieri’s methods were those by which the Greeks had found their results, and that by reintroducing
them not only would ancient methods be made clear, but new results might be discovered (exactly the
hopes Viete had for his ‘analytic art’).”Stedall [2002], p. 157.

14Panza [2005], p. 51-52.
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parallelogram:

A : P = 1 : z

If we read this proportion as the equality between two ratios (an interpretation accepted

by Wallis), the determination of the fourth proportional z would boil down to the de-

termination of a number expressing the ratio between the curvilinear figure and the

parallelogram. Once this ratio is supposed determined, a square or a parallelogram equal

in area to the figure A can be also constructed. Therefore, at least in the Arithmetica

infinitorum, Wallis did not conceive a quadrature as the operation of calculating an area

under a closed figure, applicable to any known curve or portion of curve bounded by a

system of axes, but held a rather traditional view, which considered a quadrature prob-

lem as the determination of a ratio between a curvilinear and a rectilinear figure, and the

subsequent construction of a rectilinear figure equivalent to the given curvilinear one.15

Two major conceptual aspects of Wallis’ work can help understand his approach to

quadratures. Firstly, he adopted the indivisibilistic point of view, prompted by Cavalieri

and Torricelli, which consisted in thinking a plane region as an aggregate of lines, or

a solid figure as an aggregate of planes. Secondly, Wallis’ way of proceeding in the

Arithmetica infinitorum relied on an arithmetical approach,16 in virtue of which he did

not formulate the solution of a quadrature problem, including the quadrature of the

circle, within the structure of the cartesian algebra of segments, nor did he associate the

problem to an equation, but relied on the apparatus of divergent series and numerical

interpolations in order to express the ratio between the figure to be squared (in our case,

a circle or one of its rational factors) and a polygon circumscribed to it (for instance, a

square circumscribed to the given circle) as a ratio of a number to a number.

Such an arithmetical approach to the circle squaring problem, however, presented Wallis

with a thorny question. We know that the ratio between a square and its inscribed circle

cannot be expressed but throughout a ratio involving a transcendental number. In the

classical framework in which Wallis still operated, all the attempts to provision a positive

solution to the problem of the quadrature of the circle had therefore to fail: indeed it

15Panza [2005], p. 53.
16The primacy of arithmetic over geometry is discussed and justified by Wallis especially in his Mathesis

universalis (See the Dedicatio, in Wallis [1695, 1693, 1699], vol. 1, especially the fourth unnumbered
sheet).
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is not possible to express the ratio of a square to an inscribed circle in terms of a ratio

between known numbers, either rational or surds.

As it has been analyzed in Panza [2005],17 Wallis circumvented the problem by hypoth-

esizing the existence of a number ̟, expressing the fourth proportional:

Q : C = 1 : ̟

and observed, about the ratio 1
̟

: "I am inclined to believe (what from the beginning

I suspected) that this ratio we seek is such that it cannot be forced out in numbers

according to any method of notation so far accepted, not even by surds, so that it seems

necessary to introduce another method of explanining a ratio of this kind, than by true

numbers or even by the accepted means of surds".18 Hence Wallis conjectured that

the hypothetical number ̟ could not be expressed in any number so far known, either

rational or surds, although it could be calculated to any degree of accuracy and clearly

satisfied all the usual rules of arithmetic: it was therefore a number on a par with the

other, commonly accepted, numbers.19

Wallis’ treatise offered important insights on the nature of number π, but his arithmetical

approach was of little guidance in settling the question posed above with respect to the

cartesian stance: is the squaring of the circle air of any of its sectors an impossible

problem, namely a problem not expressible by the language of algebra and subject to

the method of cartesian analysis?

In this chapter and the following one, I will consider two historical and conceptual de-

velopments related to the XVIIth century debate about the quadrature of the circle and

of other conic sections. The first case I will consider one is offered by James Gregory’s

Vera Circuli et hyperbolae Quadratura (1667) and by the subsequent controversy which

17In particular, chapter 1. See also Stedall [2002], chapter 6)
18Wallis [2004], p. 161.
19Although, with hindsight, we can state that Wallis’ negative answer is correct, I stress that it

remained on the level of a conjecture (Wallis himself spoke of "conjectura mea" when referring to it). The
point is stressed, among others, by Yoder: "All these techniques for delimiting π, be they geometrically
or algebraically garbed, involved repeated processes that were considered to proceed ad infinitum but
were truncated at some arbitrary point for evaluation purpose. Of course, today we know that any
method for determining π will inevitably involve an appeal to the infinite, because π is transcendental.
However, in the XVIIth century the question was still open ..." (Yoder [1988], p. 138).
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opposed Gregory to Christiaan Huygens as one of his main recipients. The second one,

that I will discuss in the next chapter, is offered by Leibniz’s treatise De quadratura

arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tab-

ulis, conceived and written in the years 1674-76, which also contains an argument for

the impossibility of reducing the squaring of the circle to an algebraic equation. As I

will argue, the argument presented by Leibniz maintains important links with Gregory’s

argument and with the debate between the scottish mathematician and Huygens.

7.2 The controversy between James Gregory and Christiaan

Huygens

James Gregory’s work Vera circuli et hyperbolae quadratura (hereinafter VCHQ) was

published in Padua in 1667, and reprinted few months later, in Spring 1668, as an

appendix to another treatise, Geometriae pars universalis (hereinafter GPU ).20

The first edition, printed in 150 copies, circulated among Gregory’s acquaintances, dis-

tinguished mathematicians and learned societies. In particular, a copy was promptly

sent to Huygens for a critical appraisal.21

However, the Dutch mathematician never responded to Gregory; he chose instead to

publish, in the form of a letter to the director of the Journal des Sçavants a review in

which he pointed out what he considered major flaws of Gregory’s work.22 As I will

expound in the sequel, if proved correct, Huygens’ critique would substantially demolish

all the original contributions brought by VCHQ .

20See Gregory [1667], Gregory [1668b]. See also Gregory [1939], p. 45; Huygens [1888-1950], vol. 6,
p. 154. The book underwent a reprint during Gregory’s lifetime, as an appendix to GPU (published
in Spring 1668), and had only one subsequent edition, as part of XVIIth edition of Huygens’ Opera
(Christiani Hugenii Zuilichemii, dum viveret Zelhemii toparchae, opuscula posthuma ... 1728). Around
1670, Gregory was probably preparing another, enriched edition of his VCHQ, but this never saw the
light (a mention of this edition can be found in a letter to Collins, from 23 November 1670. See Gregory
[1939], p. 118).

21Gregory accompanied the copy of his book for Huygens with a letter in which he vehemently re-
quested his opinion (". . . mihique censuram tuam remittas, quam inprimis expecto et vehementer a te
peto . . . "), dated from 26th September 1667. Indeed, Huygens could be considered an authority in the
field: after having studied quadrature problems by means of the centers of gravity, in 1651 (Huygens
[1888-1950], vol. XI, p. 273) he published in 1654 a well known work on the quadrature of the circle,
namely De circuli magnitudine inventa (see Huygens [1888-1950], vol. XII, p. 93). Both works are
evoked by Gregory in his accompanying letter.

22Letter from Huygens to Gallois, 2nd July 1668, in Huygens [1888-1950], vol 6., p. 228.
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This severe review probably probably caught Gregory unprepared, since the VCHQ had

so far received favourable commentaries,23 and caused an angry polemic between Gregory

and Huygens, starting in the month of July 1668 and lasting for few subsequent months.

This polemics was mostly consigned to letters addressed for publication in the two major

journals of the time: the already quoted Journal des Sçavants and the Philosophical

Transactions.24

This controversy, which saw the involvement of other leading scientific personalities, as

John Wallis, Robert Moray, Henry Oldenburg, Lord Brouncker and John Collins, reached

an end, at least for which concerns its public dimension, by 1669.25 The following words,

written by Robert Moray to Huygens, on 15th February 1669, can be taken as a final

and equitable judgement about the the quarrel which opposed the two mathematicians:

23See, for instance the review appeared on the Philosophical Transactions of the Royal Society, in
March 1668 (Philosophical Transactions, 3, 1668, p. 640-4): " This tract perused by some very able
and judicious Mathematicians, and particularly by the Lord Viscount Brouncker, and the Reverend Dr.
John Wallis, receiveth the character of being very ingenuously and very Mathematically written and
well worthy the study of men addicted to that Science. . . " (Wallis [1668a], p. 641).

24The first reply by Gregory dates from 23rd of July 1668 (Huygens [1888-1950], vol. 6, p. 240). Soon
later, in the introduction to his book Exercitationes Geometricae (hereinafter EG), which was probably
terminated in midsummer 1668 and published soon after, Gregory returned, this time with particularly
harsh tones, on Huygens’ criticism. Huygens ignored the attack, though, but replied to Gregory’s
letter from July with another critical paper published in november 1668 on the Journal des Sçavants
(Huygens [1888-1950], vol. 6, p. 272-276). Gregory’s answer, written in the form of a letter to Henry
Oldenburg, on 25th December 1668, was eventually printed in the Philosophical Transactions on 15th
February 1669 (Huygens [1888-1950], vol.6, p. 306-311). Subsequently, Huygens planned a response to
Gregory’s Exercitationes, but never published it (Huygens [1888-1950], vol. 6, p. 321). The main pieces
of the controversy are also reproduced in the volume Christiani Hugenii Zulichemii, Dum viveret Zelemii
Toparchae, Opera Varia. Volumen primum. Lugduni Batavorum, 1724. Under the title De circuli
et hyperbolae quadratura Controversia the following pieces can be found: Vera Circuli et hyperbolae
Quadratura authore Jacobo Gregorio (p. 405-462); Hugenii Observationes in librum Jacobi Gregorii, De
Vera Circuli et hyperbolae quadratura (pp. 463-466); Domini Gregorii Responsum ad animadversiones
Domini Hugenii, in ejus librum, De Vera Circuli et hyperbolae quadratura (p. 466-471); Excerpta ex
literis Domini Hugenii de responso ... (p. 472-474); Excerpta ex epistola D. Jacobi Gregorii, impressa
in vindicationem ... (p. 476 - 482). See also Dijksterhuis [1939], p. 485.

25After February 1669, echoes of the dispute continue to be found sporadically in private communi-
cations, both by Huygens (see for instance, 30 march 1669, p. 397) and Gregory (see for instance, the
letter sent to Collins from 6th January 1670, in Gregory [1939], p. 75-77). One of the main reasons
which caused the controversy to end concerned the political undertones which accompanied it. Gregory’s
responses were published on the Transactions of the Royal Society, to which Huygens belonged as the
most distinguished foreign member. Huygens’ influential opinion and Gregory’s lack of care for public
relations contributed to isolate Gregory within the Royal Society, of which he was also a member. Thus,
in the arc of few months, Gregory managed to lose the support of the intellectual world of London, and
in particular of Robert Moray, an important political man, and of John Wallis, who had backed him
firstly, at least mathematically speaking (See Malet [1989], p. 36). Nevertheless, Hofmann remarks a
smoothening of the tension, at least on Huygens’ side, towards the year 1671: for instance, Huygens
proposed Gregory’s name as a future member of the Académie des Sciences, and even sent him, as a
present, a copy of his Horologium Oscillatorium (AIII, 1, p. LV.).
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Il n’est pas necessaire que j’entre dans la matiere dont il y a question entre

vous. Mais permettez moy de vous dire franchement ce que je pense de

laigreur qui en est produite. Monsieur Gregoire est à la verité bien sçavant

dans la Mathématique mais le feu de sa jeunesse a besoin d’adoucisement.

Je ne scaurois approuver son procedé envers vous quelque iustification qu’il

en presente, il a failly contre les regles de la morale en se laissant emporter

comme il a fait. Je le blasme donc fort de ce qu’il vous a traitte d’une maniere

si rude. Mais d’autre part il ne faut pas que Je vous cele, que de la façon

qu’il s’est represente vostre procedé en son endroit, il auroit besoin d’une

retenue plus grande qu’il n’a pour ne s’en piquer en quelque façon. Non pas

tant de ce qu’au lieu de luy representer par lettre ce que vous auriez trouvé a

redire a ce qu’il avoit publié, comme il avoit desiré, vous l’avez fait imprimer

sans luy escrire, comme de ce que d’abord vous le traittez, a ce qu’il luy

semble, nettement de plagiaire. Je ne veux pas examiner s’il sy est mépris ou

non. Mais Je vous diray que Je scay plusieurs instances ou deux personnes

ont inventé une mesme chose sans que lun ait rien pris de l’autre (. . . ) de

sorte qu’en telles rencontres on doibt se bien garder de traitter quelqu’un de

plagiaire sans le pouvoir prouver formellement, veu qu’a mon avis il ne se

peut rien dire de plus cuisant a un honeste homme.26

This judgement bore, to quote Moray again, on the "circumstance et maniere d’agir"

rather than on the matter of the dispute.27

On the other hand, if we turn to the issues at stake in the controversy, we can note that

the structure of the latter escapes the usual argumentative scheme of most of XVIth and

XVIIth century disputes over the quadrature of the circle. As the cases of Longomon-

tanus’ or Van Roomen’s illustrate, early modern controversies generally raised after an

alleged solution to the quadrature was proposed; the flawed solution was then followed

by negative responses by one or several expert mathematicians, pointing to the errors in

the alleged quadrature.28

26Huygens [1888-1950], vol. 6, p. 370.
27See the letter from Meray to Huygens, of 26th April 1669: Huygens [1888-1950], vol. 6, p. 423.
28Many examples from XVIIIth century can be taken from Jacob [2005]: the exchanges between

countless "circle-squarers" and the mathematicians of the Académie des Sciences, charged to judge, and
eventually refuted all faulty attemps, obeyed to the same dynamics.
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In the case I am here examining, on the contrary, Gregory did not propose a constructive

solution to the problem, but argued that it was impossible to express, by any finite

succession of ‘analytic’ operations, that is, operations we would call today ‘algebraic’

(addition, subtraction, multiplication division and extraction of roots of k order, for

k ∈ N) starting from polygonal areas of rational measure, the measure of any Portion of

a Circle, Ellipse or Hyperbola.

The problem considered by Gregory is more general than the traditional circle-squaring

problem, since it concerned the quadrability of an arbitrary sector of a central conic.

Gregory also believed that the impossibility of solving this problem analytically entailed

the impossibility of solving analytically the quadrature of the whole circle, that is, the

quadrature problem in the traditional sense.

The controversy which opposed James Gregory and Christiaan Huygens developed around

three main points of divergence.29 Firstly, Huygens addressed to Gregory an accusation

of plagiarism, as he recognized two proposition of VCHQ (namely the XX and the XXI)

supposedly similar to a couple of propositions formulated in his own work De Circuli

magnitudine inventa (1654).30 The second point of divergence regards another accusa-

tion of plagiarism moved by Huygens, concerning, in this case, a method for calculating

logarithms based on the quadrature of the hyperbola, that Gregory had presented in

VCHQ as original. Huygens objected that Gregory’s method had been already known to

him and communicated to the French Académie des Sciences and to the Royal Society ,

before the publication of the VCHQ .31

The third group of objections advanced by Huygens regarded, instead, the soundness of

Gregory’s impossibility theorem and the validity of deducing from it the impossibility of

an analytical quadrature of the whole circle (this is proposition XI in Gregory’s treatise

and in its subsequent corollary). Eventually, as I will discuss later, Huygens denied both

the validity of Gregory’s proofs and expressed doubts as to the truth of the impossibility

theorems proposed.

Only this point of divergence will interest my narration. In the following sections, I will

firstly describe the strategy pursued by Gregory in order to formulate an impossibility

claim in the form of a theorem, and I will study the proof he eventually supplemented.

29Dijksterhuis [1939], p. 483.
30Huygens [1888-1950], vol. 6, p. 231.
31Huygens [1888-1950], vol. 6, p. 231.
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My focus will deal with the attempts, pursued by Gregory, in order to merge the tech-

niques for approximating the circle by polygonal sequences with the structure of cartesian

analysis: such attempts, as Dehn and Hellinger resumed it in their survey paper on Gre-

gory’s mathematical achievement, led Gregory to transform the archimedean geometric

method of approximation into "an algebraic one (. . . ) a sort of calculus", and on this

basis to formulate his impossibility claim.32

My second line of interest will concern the role played by impossibility results, like the

ones alleged proved in VCHQ, in Gregory’s view about the architecture of mathematics

and, more particularly, in his view about the deliminations of the boundaries of geometry.

Indeed, Gregory expressed the conviction that certain impossibility results might act as

a source for legitimating the enrichment of geometry with new entities and operations. I

will argue that this view follows two conceptual threads which originated with Descartes’

reflection on simplicity in problem solving, on one hand, and with Wallis’ considerations

about the role of impossibility proofs in mathematics, mostly consigned to his Arithmetica

Infinitorum (1656), on the other.

7.3 Analyzing the quadrature of the circle

7.3.1 The aims of analysis

The body of the short treatise VCHQ is organized in a rather traditional fashion: after the

preface, written in the form of a dedicatory letter to a friend, Gregory lists ten definitions

and two postulates (petitiones), followed by the thirty-five propositions (divided into

theorems, problems and scholia) which compose the whole treatise.

My survey of VCHQ will be limited to the first eleven propositions (plus the definitions

and postulates), which occupy less than half of the whole treatise, but can be seen as

forming a unitary body: on one hand, they are somehow preparatory for Gregorys’

impossibility argument; on the other, the saliency of these propositions is recognized by

Gregory himself, who admitted their theoretical import in contrast with the remaining

ones, added "for facilitating the practice".33

32Gregory [1939], p. 469.
33This point was made, as a clarificatory remark, from Gregory to Wallis, on 26th March 1668. See

Gregory [1939], p. 49. By the expression "facilitating the practice", Gregory might have referred to the
new procedures for the approximate measure of the area of the circle and the hyperbola and for the
calculation of logarithms, exposed in his treatise, especially in propositions XXIX-XXXIV.
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Cartesian geometry, and in particular Descartes’ method of analysis are evoked at the

outset of the VCHQ , where we read, in a prefatory letter to the "friendly reader", the

following words:

Mecum alinquando cogitabam, amice lector, num analytica cum suis quinque

operationibus esset sufficiens, et generalis methodus investigandi omnes quan-

titatum proportiones, ut in initio suae Geometriae affirmare videtur Carte-

sius; si enim ita esset, possibile foret ejus ope toties decantatam circuli

quadraturam exhibere: cumque hac mente revolverem, facile percepi ex hactenus

repertis circuli proprietatibus nullam posse analysin institui tali structurae

inservientem: deinde mihi alias quaerenti incidit in mentem huius secunda,

prima enim in circulo vulgo est cognita: ex hisce percepi seriem polygono-

rum convergentem, cujus terminatio est circuli sector, ubi statim vidi aliquod

analysios vestigium. Deinde serierum convergentium naturis non solum in

facilioribus quibusdam casibus, sed etiam in genere consideratis, et praedic-

tis circuli proprietatibus ad ellipsim et hyperbolam nullo negotio reductis,

infallibilis mihi videbatur omnium sectionum conicarum quadratura . . . 34

This dense passage requires some clarifications. Gregory starts his letter resuming the

motivations and rationale of his work: Gregory considers the problem of the quadrature

of the circle as a test-case in order to question the generality of the cartesian transcon-

figurational analysis, and immediately concludes that the structure of the circle-squaring

problem could not be unfolded by the tools of Descartes’ analysis.

For a reader of Descartes, this is certainly not so stunning, since the latter had postulated

the non-comparability between straight and curved lines within geometry. However it

cannot be established whether Gregory had a first-hand knowledge of La Géométrie

during his mathematical studies in Padua; it is probable, on the contrary, that he had

34"I have been wondering sometimes, my friendly reader, whether Analysis with its five operations was
a sufficient and general method to investigate all proportions between quantities, as Descartes seemed
to affirm in the beginning of his geometry; if it was so, it would be possible, by its aid, to exhibit the
so illustrious quadrature of the circle: thinking with this idea in mind, I could easily perceive, from
the properties of the circle so far discovered, that no analysis could be construed so as to serve such a
structure [namely, the structure of the problem]: then it came to my mind a second kind of analysis, while
I was searching for others (the first, concerning the circle, was indeed known to the laymen). Through
these I understood the convergent series of polygons, whose limit (terminatio) is a sector of the circle,
where, immediately, I saw some trace of analysis. Then, considered the natures of the convergent series
not only in the easier cases, but also in general, and reduced the properties predicted for the circle to
the ellipsis and the hyperbola with little trouble, the quadrature of every conic sections seemed infallible
to me" (VCHQ , p. 4).
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had only an indirect acquaintance with Descartes’ geometry, during his stay in Italy

as a mathematics trainee, through the work and teaching of italian analysts, like Carlo

Renaldini (1615-1698).35

Moreover, by 1667 Descartes’ conviction about the impossibility of solving the circle-

squaring problem in an exact way had been deeply questioned among mathematicians,36

so that, in this historical setting the question, raised by Gregory, whether the "Analysis

with its five operations" was a sufficient and general method to investigate the quadrature

of the circle, was a genuine one.

At any rate, after having correctly pointed out the inadequacy of known methods in

order to study the circle-squaring problem, Gregory invokes, in the same preface (see

the above excerpt) a "second kind of analysis", more apt to study the quadrature of

the circle and the other conic sections (at the sequel will make it clear, Gregory will

discuss only the central conic sections). The structure of such "second kind analysis"

can be tentatively reconstructed both from the elliptic account presented in the preface

and from the content of the Vera circuli et hyperbolae quadratura.37

To provide a clearer account, I will distinguish two steps constitutive of it. The first

one consisted in the elaboration of a geometric approximation method, detailed in the

opening lines of VCHQ , in order to compute the area of the circle by the successive

construction of inscribed and circumscribed polygons. The second step consists in ex-

trapolating an infinite double sequence from the previous geometric process. Gregory

35According to Hofmann [2008], p. 70, Gregory was not yet conversant with cartesian geometry by
the late sixties. I note that Descartes’ latin edition of the geometry is mentioned in another treatise
by Gregory, the Geometriae Pars Universalis, published in 1668 (in particular, proposition 70, p. 132),
together with the work of Carlo Renaldini, De resolutione atque compositione mathematica libri duo
(Patauii: typis ac impensis heredum Pauli Frambotti, 1668). The latter, in particular, was teaching in
Padua around the same period in which Gregory was there a student. Thus Renaldini was a likely source
of Gregorys’ early knowledge about cartesian geometry.

36Cf . ch. 6, sec. 6.3.
37Gregory contrasts his own method with an analytical method for treating the circle-squaring problem

"known to the laymen" ("vulgo . . . cognita"), although he is not explicit about his sources. He might
be envisaging known archimedean-like procedures for approximating the area of the circle: Viète’s ap-
proximate procedure, contained in Variorum de rebus mathematicis (published in 1593 and subsequently
in Francisci Vietae Opera mathematica, edited by F. van Schooten and published in 1646 - Francisci
Vietae Opera mathematica in vnum volumen congesta ac recognita ..., 1646, Ex Officina Bonaventurae
et Abrahami Elzeviriorum, Leiden) could be one of these. Evidence, though tenuous, for a connection
between Gregory’s techniques and Viète’s achievement is offered by Dehn and Hellinger who note that
the formula for area given by Viète (in modern notation: 2

π
= cosπ

4
cosπ

8
cos π

16
. . .) allows one to derive

one of the recursive formulas given by Gregory, specifically for the case of the semicircle (Gregory [1939],
p. 469).
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defined this sequence recursively, by specifying its law of formation, independently from

the original geometric model which originated it (compare df. 9, quoted below).

The starting point of Gregory’s analysis was the traditional archimedean method for the

measurement of the circumference. However, Gregory introduced an important novelty

with respect to the tradition, as he conceived only one approximation procedure appli-

cable to any central conic section (i.e. a circle, an ellipse or an hyperbola, showed in fig.

7.3.1 and 7.3.1).38

Gregory’s construction is presented in the first proportions of VCHQ (p. 11) can be thus

summarized according to the following scheme:

1. Let A
⌢

PB be the given sector with center A. Trace the tangents PF and BF , and

join points F and A so as to yield points Q, intersection between segments FA and

PB, and point I, intersection between FA and the arc delimiting the sector. In

the case of a circle or an ellipse, this construction yields a triangle ABP called by

Gregory "inscribed" in the sector and a trapezium ABFP circumscribed to it. The

same construction can be applied to an hyperbola (fig. 3.2). In this case, though,

the triangle will be circumscribed and the trapezium inscribed to the figure.39

2. The same protocol can be applied to sectors B
⌢

AI and I
⌢

AP , so as to obtain a sec-

ond inscribed (resp. circumscribed, in the case of the hyperbola) polygon, namely

ABIP , and a a new circumscribed (resp. inscribed) pentagon ABDLP (or vicev-

ersa, in the case of the hyperbola). Moreover, if points D and L are joined with the

center A, a couple of new points E and O is obtained on the perimeter of the sector,

and the hexagon ABEIOP can be thus traced. Similarly, by tracing a new couple

38The concept of ‘center’ is defined, for the hyperbola and the ellipse, in Apollonius’ Conica. For the
ellipse, the centre is the midpoint of the principa diamter. For the case of the hyperbola, the center
is defined as the midpointof the segment cut on the principal diameter by the intersection points with
the hyperbola and the opposite branch (Cf. Hogendijk [1991], p. 9-10). For the case of the circle, the
concept of center is defined in the Elements, df. 15 and 16: "A circle is a plane figure contained by one
line such that all the straight lines falling upon it from one point among those lying within the figure
are equal to one another; and the point is called the centre of the circle". Gregory’s general method for
the squaring of the central conic sections fits surprisingly with Newton’s results obtained in the 1666
treatise De Methodis. Newton’s achievement concerned the non-algebraic quadrability of a large class of
what we call today ’elliptic functions’, and may stand as the first step of the modern theory of elliptic
functions. However it is excluded, I think, that Gregory could have consulted, in 1667, Newton’s treatise
of 1666. Hence the two results are independent and also very different, although consistent one with the
other. Therefore Gregory’s contribution in VCHQ can be taken as a parallel starting point of the theory
of elliptic functions as Dehn and Hellinger also seem to suggest (Dehn and Hellinger [1943], p. 156).

39VCHQ , p. 9
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Figure 7.3.1: The quadrature of a circula sector.

of tangents in E and O, a new circumscribed heptagon can be drawn, contained in

ABDLP , and so on.40

Once introduced this protocol for constructing two successions of inscribed and circum-

scribed polygons to a given sector, Gregory managed to represent them by means of a

pair of infinite "convergent"41 sequences {In} and {Cn}, recursively defined as follows:

{
In+1 =

√
CnIn

Cn+1 =
2CnIn

In+
√
CnIn

In this way, through the reduction of a geometric recursive process to a two-term recur-

sion, Gregory also managed to reduce the geometric problem of squaring the sector of a

conic to the algebraic problem of computing the common limit Φ (the "terminatio", in

Gregory’s own words, which expresses the sector itself, or its area) of the sequences {In}
and {Cn} associated to the polygonal construction given above.

40VCHQ , p. 12, 13.
41As I will explain later, the term "convergent" is employed by Gregory in an essentially different way

than in its modern usage, but slightly closer to our notion of convergent in the sense of Cauchy.
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Figure 7.3.2: The quadrature of an hyperbolic sector.

In my reconstruction, this step concludes Gregory’s analysis of both the circle (or ellipse)

and the hyperbola-squaring problems. As Gregory admitted in the preface of VCHQ ,

he was probably confident, in a first stance, that the limit Φ could be found by means

of analytical techniques, involving only the five arithmetical operations introduced by

Descartes at the outset of La Géométrie (in other words, Gregory might think about

the possibility of constructing the magnitude Φ as a root of an algebraic equation) and

tried to work out a general method in order to express analytically the limit of a double

convergent sequence (some examples discussed by Gregory are illustrated below), which

however did not lead to any result for the special case of the sequences approaching Φ.42

Having fallen short in his attempt to find an algebraic, or analytical quadrature, Gregory

turned to the core result presented in VCHQ , that we may paraphrase as such: the recur-

sive sequences extracted from the geometric successions of inscribed and circumscribed

42As Gregory commented: "deinde serierum convergentium naturis non solum in facilioribus quibus-
dam casibus, sed etiam in genere consideratis, et praedictis circuli proprietatibus ad ellipsim et hyper-
bolam nullo negotio reductis, infallibilis mihi videbatur omnium sectionum conicarum quadratura: dum
autem me illuc converti ut polygonorum seriem terminarem, insuperabilem difficultatem in ejus termi-
nationem invenienda post omnes artis et aleae conatus deprehendi" (VCHQ , p. 4). In my translation:
"Then, considered the natures of the convergent series not only in the easier cases, but also in general,
and reduced, without difficulty, the properties predicted of the circle to the ellipsis and the hyperbola, the
quadrature of every conic sections seemed infallible to me. However, while I turned myself to terminate
the convergent series of polygons, I stumbled on an unsurpassable difficulty in finding its termination,
after having tried all methods and chances".
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polygons fail to converge to a limit computable by analytic (algebraic) operations.43

Eventually, Gregory acknowledged that this negative outcome of analysis could be stated

and proved by a mathematical argument.44 Although the idea that the structure of the

analytical reasoning could lead to impossibility results had already surfaced in the consid-

erations of early modern mathematicians,45 Gregory showed an original insight not only

by formulating an impossibility claim in the form of a mathematical theorem, but also

by suggesting that other useful and highly admirable results would enrich mathematics,

provided one included, among the proper tasks of the mathematician, the systematic

search and proof of ilikewise mpossibility results. In brief, this would open a new realm

of research, that includes:

. . . demonstratio, quod mesolabium non posse perfici ope regulae et circini,

item quod non semper et quando aequationes affectae possunt reduci ad

puras, item quod necessaria fit ad minimum talis generis curva ad mechani-

cam talium aequationum resolutionem, cum talibus innumeris, quae a praes-

tantioribus geometris impossibilia esse deprehenduntur ex analysi, et a rudioribus

quotidie et frustra quaeruntur.46

Gregory delineates a veritable program by singling out some of the central mathematical

issues that may constitute the new territory of research: firstly, to prove the impossibility

of solving by ruler and compass problems solvable through the ‘mesolabe’, namely solid or

higher problems (I recall that the mesolabe is a device elaborated for solving the problem

43In Gregory’s words: "dico sectorem circuli, ellipseos vel hyperbolae ABIP , non esse compositum
analytice a triangulo ABP et trapezio ABFP ."VCHQ , p. 25. "I claim that the sector of the circle, ellpise
or hyperbola ABIP is not composed analytically from the triangle ABP and the trapezoid ABFP". See
also Dijksterhuis [1939] in Gregory [1939], p. 482.

44VCHQ , p. 4. In my translation: ". . . judging with my mind that it was a task of analysis, as well
as of common algebra (animo revolvens analysios esset sicut algebrae communis), not merely to solve
problems, but also to prove their impossibility (if there is the necessity); and since I have found unsayable
difficulties in the first, I turned to the second, which was certainly obtained beyond expectations; indeed,
I disclose the true and legitimate (veram et legitimam) quadrature in its kind of proportions not of the
sole circle, which I have proposed to myself from the beginning, but of the whole conic sections, and an
integer kind of proportion unknown before to the domain of geometry (et integram proportionis speciem
ante incognitam orbi Geometrico)".

45We find traces in the consideration of other authors, like Descartes. See our discussion in chapter 4.
46VCHQ, p. 5-6: ". . . the proof that the mesolabium cannot be superseded by ruler and compass,

that composed equations cannot be always reduced to pure ones, and in which cases they can, and which
curve of minimal kind is necessary for the mechanical solution of given equations, with countless similar
, which are cognized as impossible by the most expert geometers on the ground of analysis, and are daily
searched in vain by the less skilled ones". See also the exposition of Dehn and Hellinger, in Gregory
[1939], p. 474-475.
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of inserting two or more mean proportionals between two given segments: cf . chapter

3 of the present study, sec. 3.2), secondly, to prove in which case a given (algebraic)

equation cannot be decomposed into factors, and thirdly to assess the curves of minimal

kind necessary for the construction of a given problem.

We recognize that the results mentioned above can be all brought back to insights orig-

inated in Descartes’ Géométrie (cf. chapter 4 of this study): hence we can venture the

hypothesis that Descartes’ geometry inspired the main guidelines of Gregory’s program

concerning the study of impossibilities in mathematics; at the same time, as I shall

discuss below, the method of analysis employed in La Géométrie constituted a funda-

mental tool in order to study and prove impossibility results (as Gregory remarks, in

fact, impossibility results are discovered "by the most expert geometers on the ground

of analysis").

With hindsight, Dehn and Hellinger recognize that: "a modern mathematician will highly

admire Gregory’s daring attempt of a ‘proof of impossibility’ even if Gregory could not

attain his aim. He will consider it a first step into a new group of mathematical questions

which became extremely important in the 19th century".47 However, modern (namely,

late XIXth century) impossibility results are not only technically more correct than

the arguments offered by Gregory (to be examined in what follows), but they are also

proved by means of concepts extraneous to the fragment of mathematics we are con-

sidering: modern impossibility theorems were in fact recognized as proper mathematical

achievements only at the price of a deep conceptual shift in mathematics, which occurred

between the end of XIXth century and XXth century.48 It is therefore important to in-

quire to what extent the impossibility claims advanced by Gregory, together with the

arguments offered for their proofs, differed in their meaning, scope and aims from the

modern (XIXth century onwards) ones.

7.3.2 Introducing convergent sequences

In this section, I will explore in more detail how Gregory accomplished the reduction

from the geometric quadrature problem to its algebraic counterpart, which led to the

crucial impossibility result expressed in proposition XI of VCHQ.

47Dehn and Hellinger [1943], p. 160.
48Cf. the Introduction of this study.
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The group of ten definitions which opens Gregory’s treatise VCHQ may be divided in

two parts: whereas the first four definitions concern geometric figures in the plane, and

offer an adequate terminology in order to denote the specific configurations of polygons

which will be considered during the treatise and their relations in the construction of the

sequences (see fig. 7.3.1 and fig. 7.3.1 ), the content of definition 5 and of the following

ones is radically different, since they concern operations between abstract quantities.

Thus, Gregory introduces in df. 5 a general notion of "composition", which holds between

quantities considered both as numbers, i.e. arithmetical entities, and magnitudes, ie,

geometrical entities, probably on the ground of the correspondence between arithmetical

operations and geometrical constructions set up in Descartes’ geometry. In Gregory’s

own words:

quantitatem dicimus a quantitatibus esse compositam, cum a quantitatum

additione, subductione, multiplicatione, divisione, radicum extractione, vel

quacumque alia imaginabili operatione, sit alia quantitas.49

Definition 6, on the other hand, specifies that when we consider only addition, substrac-

tion, multiplication division and the extraction of roots (‘radicum extractio’) the resulting

quantities are composed analytically:

Quando quantitas componitur ex quantitatum additione, subductione, multi-

plicatione, divisione, radicum extractione; dicimus illam componi analytice.50

I surmise that Gregory groups, in this definition, the very operations evoked at the

beginning of the VCHQ , namely the ‘five arithmetical operations’ constitutive of the

determinative algebra deployed by Descartes at the beginning of La Géométrie. Thus

49"We say that a quantity is composed by quantities, when another quantity derives from the addition,
substraction, multiplication, division, extraction of roots, or from whatever other imaginable operation
of these quantities". VCHQ , def. 5, p. 9. I note that the definition of composition proposed here by
Gregory resembles the definition of function encountered in later works by Euler, Bernoulli or Lagrange,
for instance. It is sufficient to compare it with Euler’s proposed one in the Introductio in analysi
infinitorum (1748): "A function of a variable quantity is an analytical expression composed in any way
whatever of this variable quantity and numbers or constant quantities" or with a similar definition to be
found in Bernoulli’s article Remarques sur ce qu’on a donné jusqu’ici de solutions des problèmes sur les
isoperimètres (1718): "I call a function of a variable quantity, a quantity composed in whatever way of
that variable quantity and constants" (see Ferraro and Panza [2011], p. 105, footnote 17, where Gregory
is explicitly mentioned in connection with Euler and Bernoulli).

50"When a quantity is composed from the addition, substraction, multiplication division and extraction
of roots; we say that it is composed analytically". VCHQ , def. 6, p. 9.
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‘radicum extractione’ plausibly refers to the n-th-root extraction (for n natural number),

of a quantity.51

In df. 7, then, Gregory offers a genetic definition of "analytical" quantities, as those

quantities obtained from given commensurable ones through the application of finite

combination of analytical operations:

Quando quantitates a quantitatibus inter se commensurabilibus analytice

componi possint, dicimus illas esse inter se analyticas.52

Df. 7 states that if a and b are given commensurable quantities, their sum is a quantity

analytical with them, and so are their difference, product and quotient. Moreover, if a is

a quantity, n
√
a is analytical with a as well (for n natural number). Since Gregory consid-

ered any finite combination of analytical operations an analytical operation it its turn, it

is immediate to conclude that any quantity obtained from given commensurable quan-

tities a and b by any finite combination of the five analytical operations results into an

analytical quantity. According to this definition, therefore, analytical quantities include

both commensurable and incommensurable ones, the latter obtained by the operation of

root extraction applied to commensurables.53

On this ground, an adequate relation of equivalence can be defined, for instance in the

following terms:

a quantity a is equivalent to b if a is analytical with b.

Since combinations of analytical operations are also analytical operations, this rela-

tion is transitive, whereas symmetry and reflexivity are obvious by definition. There-

fore, we can introduce a partition within the set of couples of quantities, and define

51Descartes [1897-1913], vol. 6, p. 370.
52"When quantities can be composed analytically from quantities commensurable among themselves,

we say that they are analytical among them" (VCHQ , p. 9).
53The quantities denoted as "analytical" in VCHQ can be taken to correspond, at first sight, to the

field of real algebraic magnitudes. It must be noted, however, that this reading is in conflict with some
of Gregory’s assertions made in VCHQ . Contrary to what Gregory claimed, for instance, in VCHQ (p.
10) real algebraic magnitudes are not closed under algebraic operations, since the roots of a negative
quantity do not belong to them. In order to give a mathematically coherent reading of Gregory’s idea of
analytical quantities, we should consider complex algebraic quantities as analytical too: only in the field
of complex algebraic numbers, in fact, the extraction of roots becomes an internal operation. This is not
the only point which speaks against a plain identity between ‘algebraic’ and ‘analytic’: I will consider a
second objection later, with respect to a remark advanced in Scriba [1983], p. 283.
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two classes Ec = {D/analytical(D,C)}, where C and D are quantities, and Fc =

{A/non− analytical(A,C)}, where A and C are also quantities.54

This result is not explicit in Gregory’s narration, but corresponds to what we find stated

in a couple of postulates (petitiones) following the list of definitions:

Petimus quantitates, a quantitatibus datis inter se analyticis analytice com-

positas, esse inter se & cum quantitatibus datis analyticas.55

Item quantitates, quae a quantitatibus datis inter se analyticis non possunt

analytice componi, non esse cum quantitatibus datis analyticas.56

Despite their unclear axiomatic status,57 we note that, through the formulation of these

postulates, Gregory strove to characterize analytical quantities by the fact of being closed

under a specific collection of operations, namely analytic, or algebraic ones.58 This con-

stitutes a fundamental insight laying the grounds for Gregory’s impossibility argument,

as I will argue later.

The second fundamental insight brought about by Gregory is represented by the definition

of ‘convergent sequence’, presented in VCHQ , df. 9, p. 10. In order to understand

its meaning and import, I will briefly go back to the polygonal approximation method

devised by Gregory and illustrated in figures 7.3.1, and 7.3.1.

Since the construction protocol which generates the succession of inscribed and circum-

scribed polygons can be indefinitely iterated, two infinite sequences {In} and {Cn} of

54See Scriba [1957], p. 14. An analogy can be made with proposition 12 and 13 of Euclid’s book X,
where the relation "being commensurable" is proved to be an equivalent relation and, on the strenght of
this result, the domain of quantities can be partitioned into two disjoint sets (See Vitrac’s commentary
in Euclid [1990], vol. 3, p. 135). However, unlike Euclid did in the Elements, Gregory did not prove
theorems, but formulated postulates in order to characterize the analytical quantities, as I will explain
below.

55"We demand that quantities composed analytically from given analytical quantities one with respect
the the other, are analytical between them and respect to the given quantities". VCHQ , p. 10.

56"Similarly, quantities which cannot be composed analytically from given quantities analytical one
with respect to the other, are not analytical with the given quantities". VCHQ , p. 10.

57The characterization of both statements as postulates can be questioned too: they both appear
more similar to theorems which require to be proved. It is possible that Gregory perceived this problem,
though. As he confessed in a letter to Wallis from October 1668, he judged his two "petitions" too
obscure, although he mitigated his judgement considering that the principles of geometry were difficult
to set, as the example of Euclid’s first Book of the Elements reveals to us ( inGregory [1939], p. 52-53).

58In the Cambridge Dictionary of philosophy, ’Closure’ is so defined: ’A set of objects, O, is said to
exhibit closure or to be closed under a given operation, R, provided that for every object, x, if x is a
member of O and x is R-related to any object y, then y is a member of O’. See Audi [1999].
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inscribed and circumscribed polygons can be constructed, starting from the initial tri-

angle ABP = I0 and from the initial trapezium ABFP = C0. It is clear, from the

geometric model, that both sequences converge to the sector A
⌢

PB, that is, they approx-

imate it closer and closer as the number n increases.59

It is also clear, from the previous fact, that as n increases, polygons In and Cn approach

each other more and more. In definition 9, Gregory tried to capture this intuitive geo-

metric fact by the concept of ‘convergent sequence" (series convergens , in the original)

defined in the following terms:

Sint duae quantitates A et B, quibus componantur duae aliae quantitates C

et D, quarum differentia sit minor differentia quantitatum A et B, et eodem

modo quo C componitur a quantitatibus A et B, componatur E a quanti-

tatibus C et D, et eodem modo quo D componatur a quantitatibus A et B,

componatur F a quantitatibus C et D, et eodem modo quo E componitur a

quantitatibus C et D, vel C a quantitatibus A et B, componatur G a quanti-

tatibus E F, et eodem modo quo F componitur a quantitatibus C D, vel D a

quantitatibus A B, componatur H a quantitatibus E F, atque ita continuetur

series: appello hanc seriem, seriem convergentem.60

The somewhat verbose content of this definition can be resumed as such:

Definition. By a "convergent sequence" (series convergens) Gregory actually refers to

a couple of successions {an}0≤n≤∞ and {bn}0≤n≤∞ obeying to these conditions:

∀n,
{

an+1 = S(an, bn)

bn+1 = S′(an, bn)
(7.3.1)

59Whiteside chose to represent this process according to the formalism of limits: limn→∞ {In} =

limn→∞ {Cn} = A
⌢

PB. This representation is formally correct, and complies with a heuristic definition

of limit: in the space of geometrical quantities, the difference between the sector A
⌢

PB and an inscribed
polygon In, and the difference between a circumscribed polygons Cn can be taken arbitrarily small as n

increases.
60"Let A and B be two quantities, from which two other quantities C and D are composed, whose

difference is less than the difference of quantities A and B, and in the same way in which C is composed
from quantities A and B, let E be composed from quantities C and D, and in the same way in which D
is composed from quantities A and B, let F be composed from quantities C and D, and in the same way
in which E is composed from quantities C and D, or C from A and B, let G be compsoed from quantities
E and F, and in the same way in which F is composed from quantities C and D, or D from quantities A
and B, let H be composed from quantities E and F, and thus let the sequence be continued: I call this
sequence, convergent sequence". VCHQ , definition 9. p. 10.
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∀n | bn+1 − an+1 |<| bn − an | (7.3.2)

In the rest of the chapter, I will use, following Gregory, the expression ‘convergent se-

quence’, in the singular, to denote a couple of successions which obey to property 7.3.1

and 7.3.2, and the expression ‘convergent term’ to denote the couple (ak, bk).61

Returning to the above definition, let us observe that through condition 7.3.1 Gregory

defines convergent sequences recursively: the term ak+1 of the succession {an} is obtained

by applying composition S to the couple (ak, bk), and the term bk+1 of succession {bn}
is obtained by applying another compositions S′ to the same couple (ak, bk). Condition

7.3.2, on the other hand, only states that the difference between the second couple is

smaller than the difference between the first couple.62

I remark that no concept of limit is explicitly involved in Gregory’s definition of conver-

gent sequence. This point is relevant, since it allows us to advance the hypothesis that

Gregory intended to define a notion of ‘convergence’ for the successions an and bn in

terms of the following property: as n grows, the differences between bn and an become

smaller and smaller. Convergence in this sense should not be confused with the property

of approaching a given limit-quantity as n grows: with hindsight, we may here ascribe

to Gregory a partial attempt to capture a property analogous to that of being Cauchy

sequential.63

61As the subsequent discussion will clarify, the term ‘convergent’ is employed here in a different sense
than the modern one. Therefore, in the following sections, any refererence to the modern meaning of
convergence will be explicited, when necessary, in order to avoid ambiguities.

62The use of moduli is required here, since from Gregory’s definition it is not specified whether an < bn
or bn < an, although in the examples made in VCHQ the order between the terms will be clearly
determined. I also note that in Df. 9 the order relation: | bn+1 − an+1 |<| bn − an | is explicited only
for the first couples (a0,b0), (a1, b1). However, as it appears from sparse considerations made in VCHQ ,
Gregory had in mind the more general condition 7.3.2 when he discussed convergent sequences (a telling
remark can be found in Scholium of proposition VI, where Gregory points out that in a convergent
sequence one can find a couple of terms whose difference is smaller than any given quantity: ". . . igitur
possunt inveniri huius seriei termini convergentes quorum differentia sit omni exhibita quantitate minor",
Scholium to proposition VI, VCHQ , p.18-19). This evidently entails that the difference between two
corresponding terms bn and an strictly decreases as n increases.

63I remind that a sequence {pn} in a given metric space is Cauchy sequential if for every ε > 0 there is
an integer N such that d(pn, pm) < ε if n ≥ N and m ≥ N . I also observe, with Scriba [1957], that even
if Gregory’s concept of the convergence of the sequences {In} and {Cn} is dependent on the geometric
framework from which they are derived, it: ". . . is formulated in such a abstract and neat way, that
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It must be pointed out, however, that leaving aside the formal aspects of our own mod-

ern treatment of sequences, Gregory’s characterization of convergence differs in two sub-

stantial aspects from our notion of Cauchy-sequentiality: as we have seen, convergence

sequences in Gregory’s sense are always considered as pairs of sequences recursively de-

fined, and such that the differences between successive terms {an, bn} and {an+1, bn+1}
approaches zero as n grows. Therefore, according to the sole conditions explicit in df. 9,

even two sequences which do not satisfy the property of being Cauchy can comply with

Gregory’s definition of convergence, provided their differences can be taken arbitrarily

small.64

Definition 9 only partially characterizes the examples of convergent sequences presented

and discussed in the book, even when they concern abstract quantities. Indeed, all the

pairs of sequences considered in VCHQ share two fundamental properties besides the 7.3.1

and 7.3.2: firstly, they are composed by a monotonically increasing and a monotonically

decreasing sequence, and secondly, each term of the first sequence is smaller than the

corresponding term of the second one.

The paradigmatic example of convergent sequences in Gregory’s sense is offered by the

successions {In} and {Cn} of inscribed ad circumscribed polygons constructed accord-

ing to the protocol specified above. It is thus obvious from the construction that the

series {In} is monotonically increasing, and the series {Cn} monotonically decreasing.

Moreover, it is also clear that for any n, an < bn.

Thus, even if Gregory did not succeed in giving a general and abstract definition of

convergence, he provided a recursive definition of sequences {In} and {Cn} (condition

7.3.1) and a proof that the difference between two terms (bn−an) can be made arbitrarily

small (condition 7.3.2). On the ground of both conditions, Gregory finally proved that

the limit of sequences {In} and {Cn} is not expressible in the given domain of analytical

quantities.

today we can recognize in it the ε, which may not be absent from any modern criterion of convergence
. . . " (Scriba [1957], p. 15).

64It is sufficient to consider, for instance, two unbounded sequences {an} and {bn} which can obey the
conditions stated by Gregory without being convergent in the sense of Cauchy. Accordingly, Dehn and
Hellinger observe that: "this definition (namely, Gregory’s definition of convergence) is not sufficient for
our notion of convergence" (in Gregory [1939], p. 471).
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7.3.3 The convergence of the double sequence

In the first six propositions of VCHQ Gregory reaches the following result: the double

sequence {In, Cn} formed by inscribed and circumscribed polygons to an arbitrary sector

of the circle, according to the protocol specified above, is convergent in Gregory’s sense,

ie. complies with the following conditions:

1.

{
In+1 = S(In, Cn)

∗

Cn+1 = S′(In, Cn)

2. ∀n (Cn+1 − In+1) < (Cn − In).

* I remind that S and S′ refer, as in 7.3.1, to two particular compositions, or finite

combination of compositions (in this case, both compositions are assumed analytical)

that I will explain in the sequel.

Let us start by 1. In order to prove this theorem, Gregory employs the classical theory

of proportions. He thus starts by proving, in propositions I and II of VCHQ, the follow-

ing relations holding between the first couple of inscribed and circumscribed polygons,

namely ABP and ABFP , and the second couple, namely ABIP and ABDLP (see fig.

7.3.1):

• ABFP : ABIP = ABIP : ABP

• (ABFP +ABIP ) : 2ABIP = ABFP : ABDLP

• (ABP +ABIP ) : ABIP = 2ABIP : ABDLP

In order to prove the first proportion, namely: ABFP : ABIP = ABIP : ABP , we will

observe with Gregory that triangles ABF , ABI and ABQ lie on the same line and have

the same height.

Therefore, by Elements VI, 1 they also stand in the same proportion as their basis:

• ABQ : ABI = AQ : AI

• ABI : ABF = AI : AF
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Gregory then claims that AI is the mean proportion between AQ and AF . Since he did

not offer any argument to support this claim, we suppose that he might have noted that,

by construction, the segment BP is the polar of point P , so that the following relation

holds: AI2 = AQ.AF .65 Therefore basis AF , AI and AQ are in continuous proportion,

which entails:

ABQ : ABI = ABI : ABF

Since, by construction: ABF = ABFP
2 , ABI = ABIP

2 and ABQ = ABP
2 , we will have:

ABP : ABIP = ABIP : ABFP

and, permutando:

ABFP : ABIP = ABIP : ABP (7.3.3)

In order to prove the second proportion above, namely:

(ABFP +ABIP ) : 2ABIP = ABFP : ABDLP

let us start by observing that triangles ALF and ALI (see fig. 7.3.1 for instance) are

constructed on the same line AF and have equal height IL, which implies, by El. VI, 1:

ALF : ALI = AF : AI

On the ground of the previous proof, we also know that:

ABF : ABI = AF : AI

65See Whiteside [1961], p. 226. The pole-polar property is illustrated in Coxeter and Greitzer [1996] ,
p. 133.
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and, multiplying the left members by the factor 2:

2ABF : 2ABI = AF : AI

This proportion yields:

ABFP : ABIP = AF : AI

From this and the previous proportion ( namely ALF : ALI = AF : AI) we thus obtain:

ABFP : ABIP = ALF : ALI

Componendo, we obtain:

(ABFP +ABIP ) : ABIP = (ALF +ALI) : ALI

and duplicando:

(ABFP +ABIP ) : 2ABIP = AFP : 2ALI

By construction, 2ALI = AILP = ABDLP
2 and AFP = ABFP

2 (see figure 7.3.1). This

being so, from the previous proportion it can be immediately derived:

(ABFP +ABIP ) : 2ABIP = ABFP : ABDLP (7.3.4)
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The third proportion listed above, namely:

(ABP +ABIP ) : ABIP = 2ABIP : ABDLP

can be easily proved from 7.3.4 and 7.3.3. Indeed The latter yields the following propor-

tion, invertendo:

ABIP : ABFP = ABP : ABIP

Componendo, we obtain from it:

(ABIP +ABFP ) : ABFP = (ABP +ABIP ) : ABIP

While from 7.3.4 we have, permutando:

(ABFP +ABIP ) : ABFP = 2ABIP : ABDLP

From it we can immediately derive:

(ABP +ABIP ) : ABIP = 2ABIP : ABDLP (7.3.5)

Gregory recognized that analogous proportions hold between successive couples of in-

scribed and circumscribed polygons on the ground of the recursive construction protocol

by which they are generated,66 and chose to represent this recursive procedure through

the symbolism of literal algebra.

66In Gregorys’ words: "atque hinc evidens est has polygonorum analogias ita se habere in infinitum
(. . . ) alia et alia polygona intra et extra semper scribendo. . . " (VCHQ , Scholium to proposition V, p.
15).
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Following Gregory’s reasoning, we can set ABP = I0 and ABFP = C0. On the ground

of 7.3.3 and 7.3.4, polygons ABIP (= I1) and ABDLP (= C1) can be thus expressed in

terms of I0 and C0: {
I1 =

√
I0C0

C1 =
2I0C0

I0+
√
I0C0

While the first equality is immediate, the second one can be derived by rewriting propor-

tion 7.3.5 according to the symbolism above specified, and by simplifying the expression

thus obtained.67

Hence, by setting: ABP = I0 , ABIP = I1, ABDLP = C1, proportion 7.3.5 can be

immediately rewritten as:

(I0 + I1) : I1 = 2I1 : C1

Gregory plausibly derived from this proportion the following equality between ratios:

(I0 + I1)

I1
=

2I1
C1

from which he obtained:

C1 =
2(I1)

2

I0 + I1

67See Scholium to proposition V, p. 15: "si ponatur triangulum ABP = a, & trapezium ABFP = b

. . . ". Instead of the letters ‘a’ and ‘b’ I have employed symbols: ‘I0’, ‘C0’, and so on. In the process
of abstracting a convergent sequence from the corresponding recursive polygonal construction, Gregory
presumably used the symbolism of literal algebra, together with arithmetical operations, in order to deal
with regions of the plane, like polygons or sectors of a conic. The use of algebra of segments outside of
the domain of segments is never undertaken by Descartes; nevertheless, it seems to me that no formal
constraints impede such a move. In virtue of the tacit distinction between ‘assertive’ and ‘determinative’
algebras in Descartes’ geometry, in fact, one can consider expressions like: ‘

√
ab = c’ or ‘ 2ab

a+
√
ab

= c’ as

perfectly meaningful even if a, b, c are polygons, and not segments, or if they are segments used in order
to measure polygonal surfaces (I have examined this likelihood in the previous chapter, concerning van
Heuraet’s rectification). These expressions are simply compact formulations of proportions, and this is
indeed the way Gregory treats them.
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Since I1 =
√
I0C0 we can rewrite the previous equality as:

C1 =
2I0C0

I0 +
√
I0C0

If we consider the sequences {In} and {Cn}, the above relations can be generalized, on

geometrical ground, to any couple of successive terms (In, Cn) and (In+1, Cn+1), so that:

{
In+1 =

√
CnIn

Cn+1 =
2CnIn

In+
√
CnIn

(7.3.6)

This proves that sequences {In}, {Cn} can be recursively defined in terms of two ana-

lytical compositions S and S′.

The convergence of the sequence {In, Cn}is established in VCHQ by showing that the

differences between the successive terms of the sequences {In} and {Cn}, as n increases,

approaches 0. Gregory proceeded by giving a direct proof of the following inequality:

C1 − I1 <
1

2
(C0 − I0) (7.3.7)

and then he generalized 7.3.7 to any successive convergent terms, on the strenght of the

recursive polygonal construction.68

In order to obtain this result, Gregory employed he rules of the classical theory of pro-

portions. Thus, consistently with Gregory’s way of proceeding, I will call ABP = I0,

ABFP = C0, ABIP = I1 and ABDLP = C1.69

In this way, proportions 7.3.3 and 7.3.5 can be rewritten as:

In this way, proportions 7.3.3 and 7.3.5 can be rewritten as:

(i) I0 : I1 = I1 : C0

68VCHQ , Prop. VI and in the successive scholium, p. 16-18.
69In VCHQ capitals letters: A, B, C . . . are employed to denote polygons.
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(ii) (I0 + I1) : I1 = 2I1 : C1

Gregory’s proof of 7.3.7 starts by reducing (i) to:

(I1 − I0) : I0 = (C0 − I1) : I1(Permutando&separando)

which yields:

(I1 − I0) : (C0 − I1) = I0 : I1(permutando)

and finally, by composition:

(iii) (C0 − I0) : (C0 − I1) = (I0 + I1) : I1

(ii) yields instead, by alternation:

(I0 + I1) : 2I1 = I1 : C1(permutando)

This proportion can be further reduced:

(I1 − I0) : 2I1 = (C1 − I1) : C1(permutando&separando)

from which it follows, again by alternation:

(iv) (I1 − I0) : (C1 − I1) = 2I1 : C1(permutando).

We thus have, from (ii) & (iii):

(C0 − I0) : (C0 − I1) = 2I1 : C1

and, from this proportion and (iv) we obtain:

(v) (C0 − I0) : (C0 − I1) = (I1 − I0) : (C1 − I1)

We thus have, from (ii) & (iii):

(C0 − I0) : (C0 − I1) = 2I1 : C1

and, from this proportion and (iv) we obtain:

(v) (C0 − I0) : (C0 − I1) = (I1 − I0) : (C1 − I1)



CHAPTER 7. JAMES GREGORY’S VERA CIRCULI QUADRATURA 328

Since I1 > I0 holds by construction, Gregory inferred the new inequality:

C0 − I0 > C0 − I1

Using (v), Gregory could also conclude:

(I1 − I0) > (C1 − I1)

By alternation, (v) yields the following proportion:

(C0 − I0) : (I1 − I0) = (C0 − I1) : (C1 − I1)(permutando)

Since C0 > I1 by construction, we can infer that: C0 − I0 > I1 − I0. Therefore we will

have also the following inequality:

C0 − I1 > C1 − I1

Since C0 − I0 = (I1 − I0) + (C0 − I1), and both the following inequalities obtain:

{
(I1 − I0) > (C1 − I1)

(C0 − I1) > (C1 − I1)

We can conclude:

C0 − I0 > 2(I1 − C1)

Or, in Gregory’s words: "the difference between triangle ABP and trapezoid ABFP

is greater than the double of the difference between trapezoid ABIP and the polygon

ABDLP".70

70VCHQ , p. 16.
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7.3.4 Computing the terminatio

Gregory takes for granted the existence of a limit ̟ to which the sequence {In, Cn} ap-

proaches. He develops, on the other hand, some valuable considerations on the uniqueness

of this limit. Indeed Gregory assumes, in the scholium of proposition V, that the sequence

{In} admits, in the space of geometric quantities, a last element (the "last inscribed poly-

gon" as he calls it), and the sequence {Cn} has a last element too, called, in this case,

"last circumscribed polygon". In a slightly more modern terminology, we may say that

Gregory assumes the existence of two polygons ̟ and ̟′, such that sup {In} = ̟ and

inf {Cn} = ̟′.

Then, on the ground of the convergence of the sequence {In, Cn}, Gregory argues, in the

scholium to proposition VI, that the two corresponding polygons (polygona complicata)

̟ and ̟′ are such that their difference is less than any exhibited quantity. Indeed we

have, by assumption, that for any n, In < ̟ and ̟′ < Cn. Since the sequence {In, Cn}
is convergent (in Gregory’s sense), we also have that polygons ̟ and ̟′ constitute a

convergent term (̟,̟′), such that the difference (̟′ −̟) < (Cn − In) for every n.

Gregory concludes: "by imagining to continue this sequence [namely: {In, Cn}] infinitely,

we can imagine the last convergent terms to be equal. We will call these equal terms, limit

of the sequence".71 In other terms, we will have that: ̟′ −̟ = 0, hence ̟′ = ̟. This

quantity is called limit or, in the original, ‘terminatio’ of the sequence, and it coincides,

on the ground of the geometric model of the problem, with the conic sector itself.72

Eventually, the problem became for Gregory whether this quantity was expressible as an

analytical composition of the elements of the successions {In} and {Cn} of inscribed and

circumscribed polygons:

si igitur praedicta polygonorum series terminari posset, hoc est, si inveniretur

ultimum illud polygonum inscriptum (ita loqui licet) aequale ultimo illo poly-

gono circumscripto, daretur infallibiliter circuli et hyperbolae quadratura: sed

quoniam difficile est in geometria, omnino fortasse inauditu tales series ter-

minare, praemittendae sunt quaedam propositiones e quibus inveniri possint

71". . . imaginando hanc seriem in infinitum continuari, possumus imaginari ultimos terminos conver-
gentes esse aequales, quos terminos aequales appellamus seriei terminationem." (VCHQ , p. 19).

72VCHQ , p. 18-19.
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huiusmodi aliquot serierum terminationes, et tandem (si fieri possit) generalis

methodus inveniendi omnium serierum convergentium terminationes.73

Gregory contrived to formulate a general procedure for searching and exhibiting the

‘terminatio’ of an arbitrary convergent sequence, possibly with the hope that the most

difficult cases, like the one related to the quadrature of the central conic sections, would

fall under such a method.74

His fundamental idea can be briefly explained. Gregory assumed that it was sufficient,

in order to find the limit of an arbitrary convergent sequence of this form:

{
an+1 = M(an, bn)

bn+1 = M ′(an, bn)

where M and M ′ are (analytical) compositions, to determine an invariant composition

S such that: S(an, bn) = S(an+1, bn+1).

Indeed, let us suppose that such a limit exists, and call it z. Since S is, by definition, an

invariant composition for any couple (an, bn), we will have that:

S(a0, b0) = S(a1, b1) = . . . = S(an, bn) = . . . = S(z, z)

According to Gregory’s understanding of convergent sequences - which, as I have shown,

does not fully coincide with his explicit definition, but it is moulded on the geometric

models treated in VCHQ - {an} is a bounded monotonically increasing succession, such

that: limn→∞ {an} = z , and z ∈ {an} and {bn} a bounded monotonically decreasing

one, such that limn→∞ {bn} = z′ and z′ ∈ {bn}. Moreover, the difference between the

limits (z′−z) is strictly inferior than the difference (bn−an), for every n, and eventually,

73VCHQ , Scholium to proposition V, p. 15: "If then the said sequence of polygons could be terminated,
namely, if it were found the last inscribed polygon (if I may say) equal to the last circumscribed polygon,
we would have without error the quadrature of the circle and the hyperbola. But since it is difficult in
geometry, and perhaps at all incredible to terminate this series, we have to premise some propositions,
from which the terminations of likewise series can be found, and finally (if it can be done) a general
method for the discovery of the terminations of all convergent series".

74VCHQ , p. 19-24. See also Gregory [1939], p. 472 - 473, Scriba [1957], p. 16-17.
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these limits coincide: we will have: z′ = z, so that the last convergent term can be

represented as: (z, z).

In order to find z, it is sufficient to solve the following equation:

S(a0, b0) = S(z, z) (7.3.8)

As a0, b0 are known terms, the term z can be computed once the composition S is known:

if S is analytical, for instance, z can be determined by solving an algebraic equation with

coefficients a0, b0.

The real problem, therefore, according to Gregory’s account, would be to find such a

composition S. Gregory correctly observes that, since the composition S is invariant

for two arbitrary couples (an, bn), (an+1, bn+1) it will satisfy the equation: S(a0, b0) =

S(a1, b1).

Hence, the problem of computing the limit of a convergent sequence is solved if an

invariant composition of the first and of the second couple can be found, as we can read

in VCHQ , proposition X:

Et proinde ad inveniendam cujuscumque seriei convergentis terminationem;

opus est solummodo invenire quantitatem eodem modo compositam ex ter-

minis convergentibus primis quo componitur eadem quantitas ex terminis

convergentibus secundis.75

A better grasp of Gregory’s procedure can be given by an example presented by Gregory

in his letter published in Philosophical Transactions (July 1668), written as a response

to critique moved by Huygens.76

75VCHQ , p. 24: "And, conclusively, in order to find the terminatio of any convergent sequence, one
only needs to find a quantity composed in the same way from the first convergent terms, as from the
second convergent terms". Dehn and Hellinger (in Gregory [1939]) maintain that Gregory’s expression
eodem modo must be interpreted in the sense of a syntactical identity: S(a0, b0) ≡ S(a1, b1), as in
"S(a0, b0) and S(a1, b1) are the same variable", that is, the combination of symbols on the left side of ≡
is the same as combination on the right. I surmise that this specification is important in connection with
the impossibility argument I will discuss in the next session, and therefore I share Dehn and Hellinger’s
interpretation, leaving the symbol "=" by commodity and trusting the alertness of the reader.

76 In a letter addressed to Gallois from 2nd July 1668, Huygens had claimed that one of the examples
of convergent sequences offered in VCHQ actually failed to converge, according to the definition of
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In this letter, Gregory examines the convergent sequence {an, bn} with 0 < an < bn ,

defined recursively as it follows:
a0 = a

b0 = b
(7.3.9)

{
an+1 =

2anbn
an+bn

bn+1 =
an+bn

2

(7.3.10)

Although the convergence of this sequence is not proved by Gregory, a proof can be easily

supplemented.77 Gregory’s aim was rather to show that this sequence had a unique limit,

analytical with its terms.

In virtue of the recursive nature of the sequences, an arbitrary couple (ak, bk) of terms,

aak ∈ {an} and bk ∈ {bn}, can be written as:

{
ak =

2ak−1bk−1

ak−1+bk−1

bk =
ak−1+bk−1

2

From which it appears that the product of ak and bk, equals the product of ak−1, bk−1:

akbk = (
2ak−1bk−1

ak−1 + bk−1
)(
ak−1 + bk−1

2
) = ak−1bk−1

convergence given in df. 9 (see Huygens [1888-1950], vol 6, p. 229). The example criticized by Huygens,
and discussed in VCHQ (prop. X, p. 23) concerns two sequences {an} and {bn}, defined via the

following recursive relations: a1 =
√
a0b0 and b1 =

a2

0√
a0b0

. Huygens does not explain why this couple
of sequences fails to converge, but the error can be easily detected. Indeed, it is sufficient to remark

that, in virtue of the recursive definition of sequence {an}, we have: a2 =
√√

a0b0 · a2

0√
a0b0

= a0, and:

b2 =
a2

1√
a1b1

= a0b0
a0

= b0. Hence, the sequence cannot comply with Gregory’s notion of convergence.
Gregory acknowledged the correctness of Huygens’ criticism and amended to his previous faulty example
by proposing another pair of sequences, for which he proved the convergence and, on the top of this,
computed the termination.

77The condition 7.3.1 and 7.3.2 are satisfied since the following inequalities hold:

{

an < 2anbn
an+bn

< bn

an < an+bn
2

< bn
.

From it, it is immediate to conclude:an+bn
2

− 2anbn
an+bn

< bn − an. Thus, for any n: bn+1 − an+1 < bn − an.
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Hence, as a consequence, if the recursive nature of the successions {an}, {bn}, we have

that:

akbk = ak−1bk−1 = . . . = a1b1 = ab

The product between terms ak and bk is invariant for any choice of the index k. From

this, Gregory concluded that for any couple (ak, bk) the product of its terms equals the

product of the known initial terms a and b:

termini priores inter se multiplicati efficiunt ab, item sequentes inter se multi-

plicati efficiunt eandem ab, ex his invenienda sit propositae seriei terminatio.

Manifestum est, quantitatem ab eodem modo fieri a terminis convergentibus

a, b, quo a terminis convergentibus immediate sequentibus 2ab
a+b

, a+b
2 : & quo-

niam quantitates a, b, indefinite ponuntur pro quibuslibet totius seriei ter-

minis convergentibus, evidens est, duos quoscunque terminos convergentes

propositae seriei inter se multiplicatos idem efficere productum, quod faciunt

termini immediate sequentes etiam inter se multiplicati; cumque duo termini

convergentes duos terminos convergentes semper immediate sequantur, man-

ifestum est, duos quoscunque terminos convergentes inter se multiplicatos

idem semper efficere productum, nempe ab.78

Following the reasoning deployed in the letter, we can suppose that sequences {an} and

{bn} tend to limits z and z′, so that the couple (z′, z) terminates the series convergens .

Moreover, because of the convergent character of the sequence, we have that z′ − z = 0.

We can thus write: z = z′.

On the other hand, the recursive character of the sequences under examination allows us

to establish the following equality:

z.z = . . . = akbk = ak−1bk−1 = . . . = a1b1 = ab

78Huygens [1888-1950], vol VI, p. 241, 242. In my translation: "The first terms multiplied one by the
other yield ab, then the next ones multiplied one by the other give the same ab, from them the limit of
the proposed series must be discovered. It is plain that the quantity ab is composed in the same way
from the convergent terms a and b as from the convergent terms immediately following, 2ab

a+b
, a+b

2
; and

since quantities a and b can stand for any term of the convergent sequence, indefinitely, it is evident
that any two convergent terms of the proposed series multiplied one to another yield the same product,
obtained from the immediately following terms multiplied one by the other; and since two convergent
terms are always immediately followed by two other convergent terms, it is plain that two arbitrary
convergent terms multiplied between them always yield the same product, namely ab".
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From it, Gregory can derive a quadratric equation in z:

z.z = z2 = ab

and then solve z in terms of a and b (both assumed positive):

z =
√
ab

In conclusion, the termination of this sequence is the geometric mean of the initial terms

a, b, and can be therefore computed analytically from the terms themselves.79

7.4 An argument of impossibility

The method devised by Gregory in order to compute the limit of an arbitrary convergent

sequence can in principle be applied also to compute the limit of the successions {In}
and {Cn} of inscribed and circumscribed polygons to a given conic sector. Indeed, if it

is possible to find a composition S of Ii and Ci, such that:80

S(In, Cn) = S(In+1, Cn+1),

The ‘terminatio’ ̟, whose existence is warranted on geometrical grounds (it is repre-

sented by the sector itself), may be computed, according to the procedure described in

7.3.8, out of an algebraic equation of the form:

S(I0, C0) = S(̟,̟)

79See Gregory [1939], p. 473. Gregory’s conclusion is correct; moreover, it is mathematically inter-
esting. Indeed we can recognize, in the example proposed by Gregory, the arithmetico-harmonic mean
iteration, which is known to converge quadratically. Thus, referring to the double succession defined by
conditions 7.3.9 and 7.3.10, we will have that: limn→∞ an = limn→∞ bn =

√
a0b0 ( See Borwein and

Borwein [1998], p. 4, for further details, and the considerations made by Dehn and Hellinger, in Gregory
[1939], p. 473).

80See corollary (consectarium) to proposition X. VCHQ , p. 24.
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Following Gregory’s reasoning, if the limit could be expressed analytically in terms of I0
and C0, then it could be expressed by the same analytical composition S in terms of I1
and C1. Therefore, the following identity would hold:

S(I0, C0) = S(I1, C1) = S(
√

I0C0,
2I0C0

I0 +
√
I0C0

) (7.4.1)

This is, I surmise, the implicit starting point of Gregory’s impossibility argument. Thence

Gregory argued that (i) no analytical composition satisfying the above identity could be

found, and allegedly concluded that the limit ̟ was not analytical with the terms of the

sequences (ii):

Dico sectorem circuli, ellipseos vel hyperbolae ABIP non esse compositum

analytice a triangulo ABP et trapezio ABFP .81

This implied, he concluded, that the sector of the conic could not be squared geometri-

cally. This conclusion would be vehemently denied by Huygens in the aftermath of the

publication of VCHQ , on the ground of two major objections.82 I observe now, in the

light of our discussion, and in accord with one of the criticisms advanced by Huygens (to

be analyzed in the next section) that Gregory’s method, explicated at proposition X of

VCHQ , merely offers a sufficient condition of solvability for the problem of computing the

termination ̟ of our series, composed by inscribed and circumscribed polygons. Hence,

we are entitled to conclude that, if a finite analytic composition satisfying the identity

7.4.1 could be found, ̟ could be expressed by a finite combination of elementary opera-

tions from a couple of inscribed and circumscribed polygons. But on the sole ground of

this implication, we are not entitled to infer the contrary, namely: if no finite analytic

composition satisfying the identity 7.4.1 could be found, ̟ could not be expressed by a

finite combination of elementary operations from a couple of inscribed and circumscribed

polygons.

81"I claim that the sector of the circle, the ellipse or the hyperbola ABIP cannot be composed
analytically from the triangle ABP and the trapeziumABFP". proposition XI, VCHQ , p. 29.

82The same criticism would be later reenacted and expanded by Leibniz. See this study, ch. 8, sec.
8.6.1.
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Yet, according to the unanymous opinion of his readers, Gregory proceeded in this way,

committing a non sequitur . Leaving this flaw aside for the moment, let us streamline

Gregory’s first stage of his impossibility argument, in which he set out to deny the

following claim (proposition XI):

Theorem 1. There is an analytical composition S, such that for every sector ω of the

circle (resp. the hyperbola) and its corresponding inscribed and circumscribed polygons

I0, C0, we have that: S(I0, C0) = S(ω, ω).

I note that this proposition presents a complex logical structure in which two quantifiers

are present: an existential and a universal one. Gregory proceeded by few stages. The

first stage is preparatory, and consists in removing the irrationalities contained in 7.3.6

(namely:

{
In+1 =

√
CnIn

Cn+1 =
2CnIn

In+
√
CnIn

) by a rational parametric representation in a and b,

supposed positive.83 The transformation staged by Gregorie is the following one:

ABP = I0 = a2(a+ b)

ABFP = C0 = b2(a+ b)

Relying on 7.3.6, the terms of the second couple can be parametrized in a and b too. We

have, therefore:

ABIP = I1 =
√
C0I0,= ab(a+ b)

ABDLP = C1 =
2C0I0

I0 +
√
C0I0

= 2ab2

Gregory thus supposes that an analytical composition S exists, which satisfies the iden-

tity:

S(a2(a+ b); b2(a+ b)) = S(ab(a+ b); 2ab2) (7.4.2)

83VCHQ , proposition XI, p. 25.
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and derives a contradiction from this assumption. Hence, he concludes that the limit, or

‘terminatio’, cannot be analytic with the terms of the sequence.84

Gregory’s reasoning is based on two arguments which depend on the structure of the

expressions S(a2(a + b); b2(a + b)) and S(ab(a + b); 2ab2), interpreted as finite non-zero

polynomials in either the variable a or b, and supposedly with real algebraic coefficients

(although we find, in VCHQ , no indication concerning this issue). Firstly, he points out

that the terms in the left side of the identity 7.4.2 are inhomogeneous with the terms of the

right side (the term a appears, if we expand the expressions which figure as arguments of

S, up to the third power, while the right side contains it only up to the second power, and

the same occurs for the term b). Secondly, Gregory remarks the right side of the identity

contains a monomial term (namely 2ab2), while on the left side both terms are binomials.

Thence, Gregory concludes that if the same finite succession S of elementary operations

is applied to the expression (a2(a+b); b2(a+b)) and to the expression (ab(a+b); 2ab2), the

resulting polynomial in the left side of the identity 7.4.2 will always exhibit either terms a

or b raised to a higher power than the corresponding terms of polynomial in the right side.

As for the second argument, concerning monomials, Gregory argues, along similar lines,

that under any finite combination of additions, subtractions, multiplications, divisions

and root extractions, the polynomial in the left-side of the supposed identity will be

composed by more terms than the polynomial in the right side.85

On the strength of these arguments, Gregory states that no finite combination S of

analytical compositions exists, capable of satisfying the 7.4.2. I observe, together with

Dehn and Hellinger (inGregory [1939], p. 476), and Whiteside (in Whiteside [1961],

p. 270), that the attempt to prove the non-analytical squarability of a central conic

sector starting from the algebraic parametrization proposed by Gregory, and following

his subsequent reasoning, has noticeable technical flaws. I shall sketch in what follows two

of these flaws. Firstly, Gregory’s proof is incomplete. Indeed, as we have seen, his alleged

proof is ultimately based on two structural differences between the polynomial S(a2(a+

b); b2(a+ b)) and the polynomial S(ab(a+ b); 2ab2): according to Gregory, they are non-

homogeneous and they are composed by a different number of terms. Gregory could

easily conclude that, if S is a linear combination of the first and the second arguments

84See Hofmann [2008], p. 65, Dehn&Hellinger, in Gregory [1939], p. 475.
85VCHQ , p. 27-28.
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in 7.4.2, the polynomial in the left side has higher degree than the polynomial in the

right side. However, he was not able to prove successfully that the identity 7.4.2 led to

contradiction when S is a rational or irrational function of the arguments, thus leaving his

proof incomplete.86 Secondly, Gregory’s argument is undermined by a counterexample,

as pointed out in Dehn and Hellinger’s commentary (Gregory [1939]) and in Whiteside’s

reconstruction (Whiteside [1961]).87

But, perhaps surprisingly to us, early modern geometers hardly contested these technical

inaccuracies. On the contrary, one of the major motives of criticism raised with respect

to proposition XI of VCHQ concerned the legitimacy of inferring, from the impossibility

of finding an analytical composition S, which satisfies equation 7.4.1, the impossibility

of the analytical quadrature of the corresponding sector.

This is indeed how Gregory reasons. Once having inferred that no S exists such that:

S(I0, C0) = S(̟,̟), he concludes that the limit of the convergent sequence formed by

successions {In}, {Cn}, starting from I0 and C0, and recursively defined as in 7.3.6,

is not analytic with the convergent terms. As I have stressed before, the limit exists

geometrically: it is the sector A
⌢

PB. On the ground of proposition XI, Gregory claims:

Ex hactenus demonstratis manifestum est sectorem ABIP [A
⌢

PB in my nar-

ration] non posse componi ex addictione, subductione, multiplicatione, divi-

sione et radicum extractione trianguli ABP et trapezii ABFP . Triangulum

ABP et trapezium ABFP supponimus esse quantitates inter se analyticas, et

proinde sector ABIP [A
⌢

PB in my narration] illis analytica esse non potest,

hoc est ex quantitatum ipsis ABP ABFP analyticarum additione, subduc-

tione, multiplicatione divisione et radicum extractione componi non potest.88

86Gregory [1939], p. 475 - 476.
87In their account of VCHQ, in fact, Dehn and Hellinger prove that: C1

√

I1
C1−I1

= 2C0(
√

I0
C0−I0

),

which shows unequivocally that there is at least one analytic composition S which remains invariant
with respect to the couples (I0, C0) and (I1, C1), a part from a factor 2. The same result is verified
by Whiteside (in Whiteside [1961], p. 269). I note that the case of the quadrature of the hyperbola is
analogous. In this case we have in fact: C0 < I0, therefore we need only to interchange C0 and I0 and to
replace the tan-function by the inverse of the hyperbolic tangent function. By letting imaginary numbers
in our reasoning, we recognize that we obtain a similar same analytic function, since tanh ix = i tanx.

88"It is evident that the sector ABIP [A
⌢

PB in my narration] cannot be composed from the addition,
subtraction, division and extraction of roots of the triangle ABP and of the trapezium ABFP . We
suppose that triangle ABP and trapezium ABFP are quantities analytical between them; hence the

sector ABIP [A
⌢

PB in my narration] cannot be analytical with them, that is, it cannot be composed by
the addition, subtraction, multiplication, division and root extraction of the analytical quantities ABP

and ABFP ." VCHQ , p. 29.
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Eventually, Gregory argues that the sector A
⌢

PB is not analytical with the polygons ABP

and ABFP . It should be pointed out that intepretations diverge on the precise signif-

icance of this result in geometry. In his Scriba [1983], for instance, Scriba understands

Gregory’s claim that the sector A
⌢

PB cannot be analytically composed from polygons

ABP and ABFP as implying that the sector cannot be obtained from the convergent

polygons by applying rational operations and square-root extractions only. In other

words, Scriba advocates a distinction between the notion of ‘analytic’ employed by Gre-

gory and our notion of ‘algebraic’. According to his interpretation, when Gregory states

that an arbitrary sector A
⌢

PB of a central conic cannot be "analytical" with the terms

of the double sequence {In, Cn} he intends, firstly, that the area of the sector cannot be

expressed as a rational function of these terms and, on the top of this, that it cannot be

obtained from them by any combination of the arithmetic operations and the extraction

of square roots. When this claim is translated into geometry, it amounts to saying that

the sector cannot be constructed by ruler and compass. Scriba motivates his claim on

the consideration that the terms of the convergent sequence {In, Cn} form a set closed

under the operations ±,×,÷, and the extraction of square roots: in a modern vest, this

is equivalent to say that these terms belong to a quadratic extension of Q, supposing

that the initial terms I0 and C0 are rational.89

However, in my view, the notion of ‘analytic composition’ ought to be given a less re-

strictive interpretation. In fact, as I have recalled before too, Gregory gave the following

definition of ‘analytic composition’, probably in accord with Descartes’ algebra of seg-

ments:

When a quantity is composed from the addition, substraction, multiplica-

tion division and extraction of roots (radicum extractione); we say that it is

composed analytically.90

According to my interpretation, this definition can be understood as including, among

analytical compositions, the extraction of roots of arbitrary order k: correspondingly,

analytical quantities are, in Gregory’s views, those quantities generated from given ones

by applying the usual arithmetical operations and the extraction of the k-th root of either

one of the given quantities (cf. df. 7, VCHQ , p. 9). For this reason, I hold that, when

Gregory states, in proposition XI, that: "the sector ABIP [A
⌢

PB in my narration] cannot

89Scriba [1983], p. 283.
90VCHQ , df. 6, p. 9.
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(. . . ) be composed by the addition, subtraction, multiplication, division and root extrac-

tion (radicum extractione) of the analytical quantities ABP and ABFP", he intends

that the sector cannot be obtained as the result of a finite concatenation of algebraic

operations bearing on given quantities, or, to state the same fact in geometric terms, it

cannot be exhibited through a geometric construction, namely a licensed construction in

cartesian geometry.

As it appears from the account given in VCHQ , Gregory took the inference from the non-

existence of S to the impossibility of squaring the sector analytically (i.e. algebraically)

for granted. I remark that the sector
⌢

APB is chosen arbitrarily, and may be thus replaced

with any other sector of the circle (resp. the hyperbola), included the whole circle itself.

On this ground, Gregory could also infer the impossibility of squaring the whole circle

analytically.91

This conclusion, as I will illustrate in the next section, will be strongly denied by Gre-

gory’s recipients: C. Huygens and John Wallis. In more recent times, Dehn and Hellinger

agree that: "in Gregory’s treatise we find no proof for the impossibility of squaring the

circle", and more generally, a given sector of a central conic.92

Dehn and Hellinger argue that the only impossibility result provided by Gregory consists

in denying theorem 1 above, for which, the commentators note: "it would be sufficient

to give the proof that tan-function is not an algebraic one". This claim is correct: if we

call ϕ the half of the arc delimiting the sector
⌢

APB (namely:
⌢

APB
2 = ϕ), we can derive,

on the ground of our geometrical model, the following parametrization for the areas of

the polygons ABP = I0 and ABFP = C0 ( we take r for the radius):

{
I0 =

r2

2 sin 2ϕ

C0 = r2 tanϕ

91In one passage of VCHQ, at least, Gregory assumes that his impossibility result concerns the quadra-
ture of the whole circle as well: "Since it is proved that the ratio of the circle to the square if its diameter
is not analytical, searching for it will be certainly vain and unseless search for it, as it is an impossible
task as such" (VCHQ , p. 29). In the preface of GPU , on the other hand, Gregory overtly referred to the
impossibility of finding an analytical proportion between the circle and the square built on its diameter,
thus proving that he intended to cover, by his result on the impossibility of the analytical quadrature,
also the traditional circle-squaring problem (GPU , p. 6).

92In Gregory [1939], p. 475.
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This shows that the areas of the polygons I0 and C0 depend solely on the tangent of ϕ

and on the radius (indeed sin 2ϕ = 4 tanϕ
1+tan2 ϕ

). Since the radius is constant, and can be

taken equal to 1, it is sufficient to prove that an algebraic equation relating the area A

of a sector, that is: A = 2ϕr2, and the tangent of ϕ does not exist.93

In order to prove that no analytic, or algebraic composition S can exist, it is sufficient

to show that the tan-function (or the corresponding tanh-function, in the case of the

hyperbola) is not algebraic either. This conclusion confirms Dehn and Hellinger’s remark.

One can be easily convinced of this by considering that the equation: tanx = y remains

invariant for the transformation x′ = x+π. Therefore, the graph of tan-function intersects

the x-axis in an infinite number of points: this proves that tan-function has an infinite

number of zeroes, hence it is transcendental.94

The theorem proved by Gregory in proposition XI of VCHQ does not concern, strictly

speaking, the quadrature of a sector, nor the circle-squaring problem in its traditional

sense or, examined under the lense of modern mathematics, the transcendental nature

of π. Even if it is impossible to find a unique analytical (or algebraic, as we would say)

composition S, which can solve the quadrature of an arbitrary sector of a central conic,

an algebraic equation with rational coefficients may still exist, which relates particular

sectors to their corresponding inscribed and circumscribed polygons. The reason can be

briefly exposed: the fact that the function tan (or tanh) is transcendental, and therefore

cannot coincide with an algebraic curve, does not exclude that the coordinates of each

point of the curve y = tanx may satisfy a particular algebraic equation with rational

coefficients, or that the curve may contain special points, whose coordinates satisfy an

algebraic equation.95

Within this setting, the question concerning the quadrature of the whole circle amounts

to ask whether its area, namely πr2, or the area of one of its of its rational submultiple

sectors, namely k π
n
r2, can be expressed as an algebraic function of the corresponding

tangents: tan(k π
n
), in which k, n ∈ N (n 6= 2). If the circle was algebraically squarable,

93We can adopt a similar parametrization for the case of the hyperbola, using the hyperbolic functions

sinh and tanh instead of sin and tan. If we put
⌢

APB
2

= ϕ and r = AB (or AP ), we will have in this case:

I0 = r2

2
sinh 2ϕ and C0 = r tanhϕ. Thence, the question for the case of the quadrature of an hyperbolic

segment would be whether we can find an algebraic equation such that: P (ϕ, tanhϕ) = 0.
94Dehn and Hellinger make this point in Gregory [1939], p. 475.
95This problem is discussed in B. Calò’s essay Sui problemi trascendenti e in particolare sulla quadratura

del circolo, in Enriques [1912], p. 18, vol 2.
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then its rational sectors would be squarable too. Therefore it would be sufficient to

inquire whether it exists an algebraic equation holding among a sector π
2 r

2 (its quarter)

and the corresponding inscribed and circumscribed polygons, namely I0 = r2

2 sin π
2 = r2

2

and C0 = r tan π
4 = r, which are obviously function of the radius r of the circle.

The answer to this problem is negative, as we know, since π is a transcendental num-

ber, and cannot be the root of an algebraic equation in rational coefficients. However,

neither the transcendence nor the irrationality of π seem to be derivable from Gregory’s

impossibility claim.96

7.5 Reception and criticism of Gregory’s impossibility ar-

gument

As evoked in section 7.3.2, a bitter controversy ensued between James Gregory and Chris-

tiaan Huygens, almost one year after the publication of VCHQ, over the contributions

allegedly achieved in the treatise. In this section, I will examine Huygens’ criticism moved

towards Gregory’s impossibility result and Gregory’s subsequent reactions. Among the

outstanding characters who were involved in the controversy, I will consider also the role

played by Wallis, who, I surmise, had an active part in evaluating the mathematical

import of Gregory’s impossibility claims.

Moreover, Wallis had a primary interest in the controversy, since he had himself conjec-

tured, in the Arithmetica infinitorum, that the ratio between the circle and the square

96B. Calò, in his essay on transcendental problems, distinguishes clearly between the problem of squar-
ing an arbitrary sector of the circle, that concerns, in modern terminology, the theory of algebraic and
transcendental functions, from the problem of squaring the whole circle or one of its rational submulti-
ples, a problem which, properly speaking, concerns arithmetic and the theory of numbers. In this second
case, in fact, the question concerning the possibility of the quadrature of the circle would depend on the
answer to the following crucial questions: are there transcendental numbers, namely numbers which do
not satisfy any algebraic equations in rational coefficients? And is π a transcendental or algebraic num-
ber? The answers, as known, will be given in the second half of XIXth century with methods extraneous
to the context of XVIIth century mathematics. However, even if Gregory’s attempt at establishing the
impossibility of the analytical quadrature of an arbitrary sector leaves untouched the question about the
algebraic or transcendental nature of π, one must takes into account that his procedure of polygonal
constructions is mathematically fruitful as far as it offers important insights into the computation of
π, as shown at length by the study of Scriba [1983] (in particular, p. 279-282). As Scriba discovered,
two of the most important representations of π, namely, Viète’s infinite product for 2

π
and the arctan

series (that will be known as Leibniz’s series) are implicit in Gregory’s construction, although, in order
to make this connection explicit, one should have recourse to tools of XIXth century mathematics, that
were obviously unknown to Gregory and to his contemporaries.
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built on its diameter, namely π could not be expressed in known numbers.97

Huygens formulated two main objections against Gregory’s assertion on the impossibility

of the analytical quadrature of a central conic section and against the arguments invoked

in VCHQ to support it.

The first of Huygens’ objections is exposed in the letter from 2nd july 1668 that we may

also take as the opening act of the controversy:

". . . encore que cela soit vray [namely, that the ‘terminatio’ is analytical with

the double sequence] lors que la terminaison est trouvée par la methode qu’il

[Gregory] enseigne, on n’en peut pas tirer une conclusion generale; à moins

que de supposer qu’on ne peut trouver que par sa methode la terminaison

d’une suite de grandeurs, qu’il appelle convergentes, ou que si on la trouve

par une autre voye, on la pourra aussi trouver par sa methode; ce qu’il n’a

pas demontré.98

Huygens held that the impossibility of the analytical quadrature of a central conic could

not be deduced merely on the ground of the arguments deployed in proposition X and

XI of VCHQ , unless one could prove that a convergent sequence tends to an analytical

limit only if this limit can be found according to the method prescribed by Gregory, or

that any method capable of computing the limit was eventually reducible to Gregory’s

one.99

Huygens’ criticism casts light on a major general flaw of Gregory’s impossibility argu-

ment. Indeed, while Gregory tried to characterize abstractly, i. e. indipendently from

the geometric model of reference, the recursive character of his convergent sequences,

his overall conception of these entities appears to be still dependent from the geometric

problems which engendered them.100 Gregory’s impossibility result too is derived from

a special geometric configuration, and because of this reason it might not be enough

97Wallis [2004], p. 161.
98In Huygens [1888-1950], vol. 6, p. 229.
99The gist of Huygens’ criticism can be synthetized, following [Dijksterhuis, 1939], with the following

words: "Huygens denied the right to assume that the common limit t of the two series a1, a2 . . . and
b1, b2 . . . if it exists, can always be expressed analytically in a1 and b1".See Dijksterhuis [1939], in Gregory
[1939], p. 483.

100This can be evinced, for instance, from the very definition of convergent sequence: in fact, as
explicited in df. 9, Gregory envisages convergent sequences as two-term recursions instead of single
successions, betraying their origin from the polygonal double sequences approximating a given sector.
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general in order to rule out other possible constructions that might solve the quadrature

problem simply appealing to a different procedure.

Gregory’s almost immediate reaction to this objection appeared, in the Philosophical

Transactions n. 37, from 13 July 1668, as a letter to Oldenburg.101 The main point of

his response consisted in denying the very legitimacy of Huygens’s criticism, by remarking

that Huygens had not offered any counterexample - for instance a convergent sequence,

whose limit was analytical with its terms and yet not computable through Gregory’s

method - or, more generically, any further motivation that might give solid ground for

doubting ("solidam dubitandi rationem") proposition XI and its Scholium.102

At an initial stage of this controversy, Gregory’s response received the approval of math-

ematicians, like Collins or Wallis, who judged Huygens’ criticism misgiven. For example,

we can read in a letter sent by Wallis to Oldenburg in August 1668:

Mr Gregories 10th Proposition, as to what it undertakes (if I mistake not his

meaning) seems well inough demonstrated; viz. that those converging series,

cannot bee so terminated by Analytical operation as he proposeth. But (what

Mr Hugens exceptions do oppose) that there can be no other Analytick means

of squaring the Circle or Hyperbole; is not (at lest there) affirmed, & therefore

was not to bee proved.103

However, this judgement was drastically subverted in a short interval of time. For in-

stance Wallis realized, in the light of a more detailed study, to have misinterpreted the

intentions of Gregory and the scope of his result. He thus wrote to John Collins, in

November 1668, reproaching Gregory’s stubborn attitude:

Mr. Gregory is certainly in the wrong, & therefore I am sorry to see him

write at that rate he doth.104

101In Huygens [1888-1950], vol 6, p. 240. The letter dates from 23 July 1668.
102As Gregory protested: "I would certainly like that this very Noble Man will assign me a convergent

sequence that, together with its limit, will refute our corollary or, if he cannot find it, I wish only a solid
ground for doubting". See Huygens [1888-1950], vol. 6, p. 240. The corollary (‘consectarium’) to which
Gregory referred to is the following: "And, conclusively, in order to find the terminatio of any convergent
sequence, one only needs to find a quantity composed in the same way from the first convergent terms,
as from the second convergent terms" (VCHQ, p. 24). See also footnote 62 of the present work.

103Wallis [2005], p. 544.
104Wallis to Collins, 3/13 November 1668. In Wallis [2012], p. 23.
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Wallis was probably referring also to the preface of EG , published at the end of summer

1668, in which Gregory had emphasized his criticism to Huygens and had even resorted

to direct attack and name-calling. Thus, in a subsequent letter to Brouncker, from

November 1668, he remarked, more precisely:

Supposing all to bee true which is demonstrated in his [namely, in Gregory’s]

11th proposition (where that demonstration is supposed to ly) it proves no

more but that it cannot be performed by his methode; nor that it cannot be

done at all; unless it be supposed that the termination of a converging series

can be no other way found but by his methode; or, at least, that if it may be

found any other way, it may be found this way also; which is not (he sayd)

demonstrated.105

Wallis clearly pointed out that, in order to overcome Huygens’ objection, Gregory ought

to prove also the converse of proposition X of VCHQ : namely, that if the termination of

a convergent series is analytical with its terms, it exists an invariant composition, with

respect to each convergent term. This would certainly endow the subsequent proposition

XI with the required generality.

Despite his subsequent efforts, Gregory did not succeed in giving a satisfactory answer

to Huygens’ particulari criticism, and failed to change the mind, on the long run, not

only of Huygens himself, but also of other recipients who, like Wallis, had initially sided

for Gregory’s position.106

Gregory’s counter-arguments turned out to be unconvincing in the case of the second

main criticism which invested his impossibility claim, and concerned, more specifically,

the quadrature of the circle. As I have remarked in the previous section, Gregory seemed

to believe, both in VCHQ and in GPU , that the result proved in proposition XI allowed

him to infer the unsolvability of the circle-squaring problem in the classical sense. This

belief shone through his correspondence as well, but it was explicitly criticized by both

Wallis and Huygens. For instance, disagreeing with Gregory’s opinion, Wallis maintained,

in a letter to Brouncker from November 1668:
105Wallis [2012], p. 27. Collins had the same reaction, as we can read in his résumé of the controversy

(Huygens [1888-1950], vol. 6, p. 372).
106Thus, in a letter from 12 November 1668, published in the Journal des Sçavants, Huygens showed his

ultimate and irreconcilable dissatisfaction with Gregory’s answers, by commenting: ". . . tant s’en faut,
mesme apres le supplement que Monsieur Gregory a donné à ses demonstrations, que cette impossibilité
soit bien prouvée . . . " (in Huygens [1888-1950], vol. 6, p. 273).
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. . . That his 11th proposition, though ever so well demonstrated, shews onely

yt ye Sector indefinitely considered can not be so compounded as is there sayd:

Or, (which is equivalent) not every Sector. Notwithstanding which, it might

well inough be possible, that some Sector (if not all) might be Analyticall to

its Triangle or Trapezium: (And I think he [namely, Gregory] doth allow it

so to bee, or even commensurable).107

This criticism is exemplified through a analogy with the known case of the trisection of

an arbitrary arc. Indeed, as Wallis knew from Descartes’ Géométrie and Van Schooten’s

Appendix de cubicarum aequationum resolutione (the latter author, in particular, is men-

tioned by Wallis), the trisection problem can be reduced to an irreducible cubic equation,

and therefore, according to Descartes’ canon of problem solving, cannot be solved by ruler

and compass. There are nevertheless such cases (for instance, the problem of trisecting

the angle α = π) in which the trisection can be reduced to a quadratric equation, and

the problem can be therefore solved by ruler and compass. By analogy, Wallis argued

that such cases might hold also for special sectors of the circle:

Now if but some one Sector (though not all, or ye Sector indefinitely taken)

be found Analytical with his Triangle, or Trapezium; there be many ways,

(as, by its proportion to ye whole, by its center of gravity, &c.) by ye help of

this one, to square ye whole circle".108

Huygens adopted a similar critical stance, discussing the impossibility of the analytical

quadrature of the whole circle in a letter dated from 12 November 1668 and published

in the Journal des Sçavans in the same month.109

Like Wallis before him, Huygens maintained that Gregory’s impossibility argument did

not allow him to derive any conclusion concerning the ratio between circle and the square

built on its diameter:

. . . il demeure encore incertain si le Cercle et le Quarré de son diametre ne

sont pas commensurables, c’est à dire à raison de nombre à nombre; et de

mesme en ce qui est d’une portion determinée de l’Hyperbole, et de sa figure

rectiligne inscrite. Pour conclure donc que la raison du Cercle au Quarré de

son diametre n’est pas analytique, il falloit demontrer non seulement que le

107Wallis [2012], p. 29. Also in Huygens [1888-1950], vol. 6 p. 283-4.
108Wallis [2012], p. 30. Also in Huygens [1888-1950], vol. 6, p. 285.
109Reproduced in Huygens [1888-1950], vol. 6., p. 292.
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Secteur de Cercle n’est pas analytique indefinitè à sa figure inscrite, quoyque

cette demonstration ne laisse pas d’avoir sa beautè; mais que cela est vray

aussi in omni casu definito.110

Huygens based his objection on a similar motivation to Wallis’ one: he suggested that

there might be sectors of the circle holding an analytical, or even a rational proportion

with the respective inscribed or circumscribed polygons.111 Huygens, like Wallis before

him, probably realized that the core of Gregory’s impossibility argument consisted in

denying the existence of a composition S, invariant with respect to couples of inscribed

and circumscribed polygons to any conic sector. But they also realized that one could not

infer from the previous result the non-existence of analytically squarable sectors, in the

circle, the ellipse and the hyperbola. Possible counterexamples can be easily imagined:

for instance, we can think of circular sectors, like those corresponding to the arcs ϕ = m
nπ

(with m, n rational), which are commesurable with the square built on the unitary radius.

Therefore, since the impossibility of squaring analytically the circle does not hold true

for any given sector, one can doubt whether it is true for those special sectors like the

rational submultiples of the circle.

With hindsight, I propose to recast the essential distinction between the impossibility

of ‘indefinite’ and ‘definite’ quadratures of the circle (resp. of the hyperbola or ellipse),

sketched in Huygens’ letter, into the following scheme:

• (Impossibility of the indefinite quadrature) There is not one analytical composition

S, such that for every sector ω of the circle (resp. the hyperbola) and its correspond-

ing inscribed and circumscribed polygons I0, C0, we have that: S(I0, C0) = S(̟,̟).

• (Impossibility of the definite quadrature) For every sector ω of the circle (resp. the

hyperbola) and its corresponding inscribed and circumscribed polygons I0 and C0,

there is not one analytical composition S, such that S(I0, C0) = S(̟,̟).

The different logical structures of the first and the second theorem are for us clear, so

that one cannot derive the impossibility of the analytical quadrature of a specific sector

solely from the impossibility of the indefinite quadrature. But this distinction might not

have been fully clear to the mind of a seventeenth century mathematician. Indeed, only

110Huygens [1888-1950], vol. 6, p. 273.
111Huygens [1888-1950], vol. 6, p. 273, 274.
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an adequate formalization, certainly not in the purview of early modern geometers, can

bring to light the different logical structures of the above theorems.112

On the contrary, Gregory might have ventured the (incorrect) conjecture that the im-

possibility of the ‘indefinite quadrature’ of the circle entailed the impossibility of the

‘definite’ one, deriving from it the (true, but incorrectly proven) conclusion that the

quadrature of the whole central conic could not be solved analytically.

The demarcation, introduced in the above passage, between proving the impossibility

of the quadrature of a conic "indefinitely" and "in every definite case" may represent a

first formulation of the distinction between the inquiry into a general resolutive formula

S, which allows one to square any arbitrary sector of a conic section (that we may call,

following the example of Huygens and Wallis, ‘indefinite’ quadrature), and the inquiry

for the quadrature of a particular sector (namely, the ‘definite’ quadrature) which entered

into successive mathematical practice and became current from the second half of XVIIth

century on.113

In his response to Huygens, contained in a letter addressed to the Transactions of the

Royal Society from 25th December 1668 (published in the Philosophical Transactions of

15th February 1669 No. 44), Gregory did not recognized the relevance of the distinc-

tion into indefinite/definite quadratures, and continued to argue that his impossibility

argument held for every "definite case", included the case of the whole circle.114

112As observed by Pourciau, with respect to an analogous problem concerning the integrability of ovals,
in which existential and universal quantifiers appear with the same functions as in the cases examined
here: "But in the mathematical work of an earlier era, such as the 17th century, it can be difficult to
decide what a given proposition or lemma actually asserts or was intended to assert. The statement may
contain words that have unclear definitions, there may be implicit assumptions that do not appear in
the statement but which would have been taken for granted by the author, and there may be a vague
use of quantifiers leading to an ambiguous logical structure" (Pourciau [2001], p. 481).

113Thus, a text like Montucla’s Histoire des recherches sur la quadrature du cercle (1765) presents this
distinction as an acquired fact: "Les géomètres distinguent deux manières de carrer les courbes, bien
inégales en perfection; ils nomment l’une définie, l’autre indéfinie. En appliquant ceci à l’objet présent,
la quadrature définie du cercle serait la mesure de son aire, ou entiere, ou seulement de quelque segment
determiné (...) si quelque methode donnait en général la quadrature d’un segment quelconque (. . . ) on
aurait la quadrature indéfinie du cercle (. . . ) pour passer de la quadrature définie du cercle à celle de ses
parties quelconques, il resterait à resoudre ce problème, plus difficile que le premier: trouver la raison de
deux arcs dont on connaîtrait le sinus ou les tangentes."Montucla [1831], p. 28.

114"Ne tamen ullus reliquatur cavillationi locus, 11mam nostram Propositionem etiam in definitis hic
demonstrabimus"(Huygens [1888-1950], vol. 6, p. 308, also in Gregory [1939], p. 52, 64-65: ". . . in order
to leave no place for sophistries, we will prove our proposition XI also in definite cases".
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However, Gregory’s argument in defence of the charge that he had proved solely the

impossibility of the ‘indefinite’ quadrature of the circle is inadequate and "predestined

to fail", as pointed out in Dehn and Hellinger [1943].115 Gregory treats, in the letter

from February 1669, the case of the (definite) quadrature of the whole circle with the

aid of the result obtained for the indefinite case. Thus, he argues, if we assumed that

an analytical composition S existed, such that the following algebraic equation held:

S(x, a) = S(̟,̟), in the unknown x (‘x’ and ‘a’ denote an inscribed and a circumscribed

polygon to a given sector, like the quarter of a circle, while ‘̟’, the termination, denotes

the sector itself), then the same algebraic equation must also hold for any couple of

inscribed and circumscribed polygons (all expressible in terms of x and a). Therefore,

Gregory concludes, the equation: S(x, a) = S(̟,̟) cannot have a fixed finite degree,

which involves a contradiction with the previous suppositions. Independently from its

correctness, this argument establishes only that no analytical composition S satisfying

the previous conditions exists, but it does not imply that the area of a definite sector (for

instance, the quarter of a circle) is not analytical with the inscribed and circumscribed

polygons.116

Yet Gregory could have taken the easier step to study those sectors squarable analytically,

in order to inquire for their common feature and exclude, on this ground, the rational

sectors of the circle (and therefore the circle itself) as lacking such characteristics proper

to analytical sectors. This argument may not yield a rigorous proof that the circle

cannot be squared analytically, but it could have offered a ground for conjecturing such

an impossibility.

If A is the area of a circle with circumference c and radius r, we shall have, in virtue of

Archimedes’ first proposition of the Dimensio circuli : A = cr
2 . On ths ground, we can

characterize sectors that are analytical with the square built on the radius: these will

be all sectors whose area is a rational multiple of the arc-lenght 1
c

(namely m
nc

, where m

and n are rational numbers) and more generally all sectors whose area is an irrational

algebraic multiple of 1
c
, namely α

c
.

Such a characterization of the squarable sectors in a circle calls for the following obser-

vations. Firstly, one can remark that these sectors cannot be constructed, unless one

115 [Gregory, 1939], p. 476.
116Dehn and Hellinger advance an obvious counterexample against Gregory’s reasoning. It is in fact

sufficient to consider a transcendental function like sin π
2
x. The equation: sin π

2
x = 1, indeed, admits

infinite solutions (namely x = 1, 5, 9 . . .), although they are all ‘analytical’.
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knows how to construct a sector of area: 1
c
, which depends on the determination of c.

Therefore, even if it is true that analytic sectors (with respect to the square built on the

radius) exist, one may object that these sectors, at least those we can identify in princi-

ple, cannot be exhibited through elementary constructions. This reasoning seems to be

within the purview of an early modern mathematician, and might have been employed

by Gregory as a reply against Huygens’ (and Wallis’) claim to the existence of squarable

sectors, although I could not found such a critique explicit among Gregory’s arguments.

My second remark concerns more properly the core question dealt with by Gregory:

the possibility of expressing the area of the circle by a finite combination of arithmetic

operations in terms of the inscribed triangle and the circumscribed quadrilateral or,

equivalently in terms of the square built on the radius. We have shown above that

there exists infinite sectors of the circle analytical with the square on the radius. With

hindsight, we recognize that these sectors represent a countable infinity (indeed the set

of algebraic numbers is countable). We might venture the following conjecture: among

circular sectors, those we can recognize as analitical are very rare, so that the rational

sectors of the circle, among which we count the whole circle too, will have a higher

probability to fall into the class of sectors that cannot be analytically squared.

This is not an argument for the impossibility of the definite quadrature of the whole

circle, but could have offered the ground for conjecturing such impossibility. If a rigorous

distinction between countable and uncountable sets was not in Gregory’s purview, he

might have intuited that analytical sectors are somewhat ‘special’ sectors within the

circle. In order to clarify the meaning of ‘special’, I underline an analogy with a similar

phenomenon, discussed by Descartes: the constructible points on a mechanical curve,

like the quadratrix. Let us recall that by means of such procedures as Clavius’ ruler-and

compass construction of the points on a quadratrix (explored in chapter 5, sec. 5.2.3

of this study) infinitely many points are constructible on the curve, although not any

point, arbitrarily chosen, can be constructed by a geometric procedure: in this sense, the

quadratrix is constructible, although only in a ‘special’ way. Analogously, Gregory might

have hypothesized that infinitely many squarable sectors could be discovered (these are

all the rational multiples of the sector measuring 1
π
), but not any sector, arbitrarily

chosen, could be squared. However, these remarks shall remain, so far, on the level of

conjectures, since no considerations of this kind can be found among Gregory’s extant

responses.
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At any rate, Gregory’s reply did not persuade either Huygens or Wallis, who declared

themselves dissatisfied with the central points of Gregory’s response and, in front of the

latter’s obstinate defense, abandoned the controversy.117

When the dispute finally closed off by the beginning of 1669, Gregory had not accepted

either one of the two main criticisms advanced against his impossibility claim. On the

contrary, he persisted in his opinion that proposition XI of VCHQ proved the impossibil-

ity of the analytical quadrature of an arbitrary sector of a conic and of the whole circle

too, without adding new evidence for his claim, and barely concerned by the negative

reactions of his correspondents.118

The end of the controversy might have been sanctioned either by political and sociological

reasons and by mathematical ones. Concerning the first reasons, Gregory’s vehement re-

actions towards Wallis and especially towards Huygens, who enjoyed a high consideration

as a foreign member of the Royal Society, certainly damaged Gregory’s reputation and

led other members of the Society, included those who had initially supported Gregory,

to officially take a stance against him and refuse to concede their main publication, the

"Philosophical ttransactions of the Royal Society", as a resonating chamber for Gregory’s

and Huygens’ controversy.119

However, the controversy had also reached, in the turn of few months, a real mathematical

impasse. As I have argued, Wallis’ and Huygens’ objections are mathematically sound:
117This is witnessed, for instance, by Wallis’ eloquent letter to Oldenburg, from 7 nov. 1668: "As for

Mr. Gregory, I do not mean to trouble myself farther with him. I am onely sorry that I have, upon his
importunity, taken so much pains to displease him. Yet, after all his ranting, he is certainly in an error;
for what he does pretend to neither is by him demonstrated, nor can it (his way) bee done. But he is
not capable of being advised, and therefore must take his course." (in Scriba, vol III, p. 37. See also the
same work, p. 23). Huygens’ ultimate opinion was on a similar tone. In a letter from March 1669 to
Robert Moray, one of Gregory’s friends and supporters, had eventually dismissed Gregory’s reply: ". . .
la derniere response de Monsieur Gregory sur le suject de la Quadrature, ou il n’a rien fait qui vaille,
et je voudrois bien scavoir s’il y a aucun des geometres par de la qui prenne pour des demonstrations
ce qu’il donne pour telles. J’ay de la peine a m’imaginer qu’il le croye luy mesme, et il me paroit plus
vraysemblable qu’il s’est voulu sauver dans l’embaras et dans l’obscuritè" (in Huygens [1888-1950], vol.
6, p. 396).

118In February 1669, for instance, Gregory even declared to have "nothing to reply" to Wallis’ criticism,
as he judged it incomprehensible in the light of the principles of geometry and analysis (Gregory [1939],
p. 68). Moreover, Gregory continued to express his disagreement with Huygens still in 1670: "I do not
know (neither do I desire to know) who calleth (. . . ) Hugenius his animadversions of Nov. 12 1668,
judicious, but I would earnestly desire tha he would particularize (if he be not an ignorant) in what my
answer, which is contradictory to Hugenius his animadversions, is faulty. . . " (In Gregory [1939], p. 77).

119The consequences of Gregory’s poor diplomatic skills over the conclusion of the controversy, and the
abrupt turn taken by his career are examined in Antoni Malet’s phd dissertation, especially page 39 and
sq.
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taken at their face value, neither Gregory’s arguments nor its further elucidations seem

sufficient in order to prove the impossibility of the analytical quadrature and properly

respond to the objections.

On the contrary, it is apparent from Huygens and Wallis’ reactions (who were the most

outstanding mathematical recipients of Gregory’s ideas) that the moves of Gregory had

the opposite effect of entangling the discussion instead of clarifying it. This is, at least,

what we evince from Huygens’ considerations in a letter to Oldenburg, from 30/03/1669:

"Il me semble par la response de Monsieur Gregory qu’il s’est trouvè fort embarassè

de mes derniers instances, car au lieu d’y respondre pertinemment, il ne cherche qu’a

embrouiller tellement la dispute, et la rendre si obscure que personne n’y comprendra

dorenavant rien".120

A predictable consequence of this situation was probably a general loss of interest in the

controversy, and its eventual abandonment, since no advance or change appeared either

on Gregory’s side or on the side of his critics, to the effect that the whole debate ought

to appear rather sterile to its readers.

The criticism so far examined made it clear that Gregory’s reasoning relied on implicit

and unjustified assumptions, although it did not imply the falsity of his impossibility

claims. Wallis was certainly aware of this, as he detailed it in his account. Indeed, in

his letter to Brouncker from 14 November 1668, he qualified his objections to Gregory as

‘Objections against his Demonstration’ instead of objections against his own ‘doctrine’.

In other words, Wallis sympathized for Gregory’s ‘doctrine’, that is, for his belief on the

impossibility of squaring the circle analytically, "having many years since demonstrated

the same (. . . ) though he [namely Gregory] take no notice of it, in my Arithmetica

Infinitorum, propositio 190 with ye Scholium annexed".121

120In Huygens [1888-1950], vol. 6, p. 391. "La response de M. Gregory" to which Huygens refers to is
obviously the last letter published in the Transactions in February 1669.

121Huygens [1888-1950], vol. 6, p. 288. The reference is to the commentary to proposition 190 of
Arithmetica Infinitorum, where Wallis explained: "And indeed I am inclined to believe (what from the
beginning I suspected) that this ratio we seek is such that it cannot be forced out in numbers according
to any method of notation so far accepted, not even by surds (. . . ) so that it seems necessary to introduce
another method of explaining a ratio of this kind than by true numbers or even by the accepted means
of surds" (Wallis [2004], p. 161). The case dealt with by Wallis concerns the quadrature for the definite
case of the circle, as it is stressed in the same letter to Brouncker: ". . . in my Arithmetica Infinitorum;
proposition 190. with ye Scholium annexed to it. Where it is proved, that what was before demonstrated
to be ye true proportion between ye Circle & ye Square of its Diameter or Radius, or between ye Diameter
& ye Perimeter; cannot be expressed either by Rational Numbers or Surd Rootes (or, as this Author
speakes, is not Analyticall;)" (Huygens [1888-1950], vol. 6, p. 289).
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On the other hand, Huygens entertained a different belief concerning the nature of the

circle-squaring problem. Not only he refused to accept the validity of Gregory’s argument

in order to prove his impossibility claims, but he believed that the circle-squaring problem

in its traditional meaning (namely, the problem of constructing a square equal to the

whole sector of the circle) was solvable either by ruler and compass, or by one of the

acceptable curves in cartesian geometry.

His idea is motivated firstly on pragmatical grounds: "La recherche de la Quadrature

du Cercle - he explained in his letter from 12 November 1668 - a fait trouver tant de

belles choses aux Geometres, qu’afin qu’ils ne soient pas privez d’un exercice si utile,

je suis d’avis de defendre contre Monsieur Gregory la possibilitè d’y reüssir" (Huygens

[1888-1950], vol. 6, p. 272). Huygens was possibly thinking that the circle-squaring

problem was a ‘fruitful’ problem, in the sense that it had been and would be the source

of numerous discoveries. We can suppose that Huygens had in mind his own work

De Circuli Magnitudine Inventa, in which he improved the Archimedean approximation

techniques in order to compute the area of the circle: even if he did not find a geometric

quadrature, such an hope might have been one of the leading motives of his research.

We can also recognize, acting as a broad methodological motivation in the backdrop

of this critique, a rather traditional refusal to accept a negative outcome of a problem

as a meaningful solution at all, which complies with Huygens’ style and practice of

doing mathematics. As Scriba put it, perhaps in too sharp but fundamentally correct

terms: "the Dutch mathematician was a geometer, not an analyst. Huygens mastered the

classical methods in a superb way but never really grasped the new analytical methods

of the calculus; he was a traditionalist in the best sense of the word, emphasizing the

beauty and exactness of the classical methods".122

However, despite his confidence that the ratio between a circle and the square built on

its diameter might still be a rational or surd number, Huygens convincingly argued only

about the inadequacy of Gregory’s impossibility arguments, but did not advance any

ultimate objection in order to debunk Gregory’s impossibility claim. In particular, when

he tried to show its inconsistency, he came up with faulty arguments.123

122[Scriba, 1983], p. 283.
123Huygens’ fallacious argument is discussed and dismissed in Dijksterhuis [1939], p. 483, inScriba

[1957], in particular p. 18.
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Consequently, when the controversy reached an end, Huygens could not deploy any ‘killer’

argument to debunk Gregory’s impossibility claim. This outcome shows that the main

issue of the controversy, concerning the algebraic or analytical quadrability of the circle,

remained unsolved by the beginning of 1669. I surmise that this unsatisfactory ending is

one of the driving forces which motivate, still three or four years after, the interest shown

by Huygens for Leibniz’s treatise De Quadratura arithmetica circuli ellipseos et hyperbolae

cujus corollarium est trigonometria sine tabulis , and the impossibility arguments which

can be found in this work.

I will discuss these topics with more detail in the next chapter, in order to argue, against

[Dijksterhuis, 1939] in particular, that this controversy did not remain inconclusive, at

least from an historical point of view.

7.6 Conclusions

Gregory’s statement on the impossibility of finding an analytical solution to the quadra-

ture of the circle or of the other central conic sections entailed a negative answer to the

question raised in the preface of VCHQ : is Descartes’ problem solving strategy, relying

on the five arithmetical operations introduced in the first book of La Géométrie (analyt-

ical operations in the language of VCHQ), endowed with sufficient generality in order to

express any kind of proportions among quantities?

In the previous chapter, I have argued that a distinction between possible and impossible

problems could be made in the framework of Descartes’ geometry: the first ones, but not

the second, being reducible to a finite algebraic equation. Descartes did not offer a proof,

however, that a problem like the squaring of the circle could not be solved: his claims

were based on a mixture of opinions transmitted by tradition and of personal convictions.

As we have examined in this chapter, Gregory offered a tentative proof for Descartes’

guess by reducing the problem of the quadrature of the circle (generalized to the quadra-

ture of conic sectors) to its analytical counterpart. This reduction could be obtained by

employing the symbolism of the algebra of segments to denote areas, which makes also

possible the use of convergent series in order to reduce the problem of quadrature to

a problem concerning the computation of the limit of a convergent sequence, namely a

problem of algebra, as far as the limit t (terminatio) of a sequence might be found as a
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solution of the finite polynomial equation in the form: f(t, t) = f(a0, b0), with {a0, b0}
taken as initial term of the sequence.

Gregory assumed that the problem of squaring the central conic sections was solvable by

cartesian tools, and turned to a proof of impossibility once he had gained the presumption

that the area of the sector was not analytical with given polygonal areas of rational

measure.124 This approach, I surmise, shaped the structure and the scope of his proof

of impossibility: Gregory’s argument remained clothed in a geometric vest, so to speak,

and, as pointed out by Huygens’ critique, it depended on the construction procedure

employed for obtaining the polygonal approximations to the sector, lacking therefore the

desired generality.

On the other hand, though, I suggest that the impossibility result stated in VCHQ has a

role that might be called as "metatheoretical", as far as it was seen by Gregory as playing

a structural and methodological role for the constitution of algebra and geometry.

In his view, in fact, the impossibility of solving a problem (like the squaring of the circle)

by a given established methodology (like the method prescribed by cartesian analysis and

synthesis) was not only a result analysis should accomplish, but it had the fundamental

consequence of promoting the extension of mathematical entities and thus redesigning

the disciplinary boundaries of geometry by adding new constructions, new arithmetical

operations and finally new quantities to the already existent ones.

Let us reconsider, for instance, the content of proposition XI of VCHQ , largerly discussed

in the previous sections. One way to understand it would be by saying that the limit of

the convergent sequence {In, Cn} does not exist within the space of analytical quantities,

although it denotes a geometric magnitude, namely a magnitude that we can represent

by a construction and whose area can be measured.

We may therefore ask whether a new operation can be conceived, that allows us to attain

such a geometric, non-analytical quantity starting from given analytical ones. It seems,

from the scant remarks offered in VCHQ , that Gregory pondered the questions, and

suggested that the infinite succession of operations which engendered the sequence itself

might stand as a "sixth operation", namely an operation - he explained in the preface of

VCHQ , anticipating the main result of his work - whose nature is infinite and does not

124VCHQ, p. 5.
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coincide with any finite combination of the 5 arithmetic operations, although it could be

applied to them in order to yield non-analytical quantities.125

Gregory argued that the ampliation of known operations with new ones, which appears

as a consequence of an impossibility result of the kind proved in the VCHQ , was a

phenomenon somehow germane to the development of geometry and arithmetic. A case

at point is represented by irrational quantities or numbers (namely ‘surd’ quantities,

or quantities obtained from rational ones by root extraction). In fact, Gregory saw an

analogy between the extension of the commensurable quantities by means of the operation

of root extraction to include incommensurable ones, and the extension of analytical

quantities by means of a new species of non analytical quantities, obtained by the “sixth

operation”. Thus, we read in the preface of VCHQ :

Advertendum quoque est sicut numeri fracti nunquam procedunt ex commen-

surabilium additione, subductione, multiplicatione, divisione, sed tantum ex

radicum extractione; ita numeros, vel quantitates non analyticas numquam

provenire ex analyticarum additione, subductione, multiplicatione, divisione,

radicum extractione, sed ex sexta hac operatione, ita ut haec nostra in-

ventio addat arithmeticae aliam operationem, et geometriae aliam rationis

speciem.126

Gregory had plausibly in mind the traditional result on incommensurability between the

diagonal and the side of the square. It should be pointed out that for XVIIth century

mathematicians, the traditional incommensurability proof ought to be interpreted differ-

ently than in antiquity. Indeed, the Greeks could not conceive of a number expressing

the ratio between the diagonal and the side of a square. As A. Szabó argues, in his Szabó

[1978], the proof of incommensurability did not lead ancient mathematicians to derive

the existence of such a ratio as a number, but rather to shift the approach to the problem

from arithmetic to geometry and eliminate what was regarded as an insoluble question.

On the contrary, Gregory, and presumably his contemporaries too, admitted irrational

numbers as arithmetical entities, and recognized that these entities could not be obtained

125VCHQ , p. 7.
126"It must be remarked that just like surd numbers are never obtained from the addition, subtraction,

multiplication, division of commensurable quantities, but only from the extraction of roots; so numbers
or non analytical quantities are never obtained from the addition, subtraction, multiplication, divisions,
extraction of root of analytical quantities, but from this sixth operation, so that our invention adds
another arithmetical operation, and another kind of ratio", VCHQ , p. 5.
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from any finite combination of additions, subtractions multiplications or divisions of

rational quantities. In analogy with incommensurable quantities and irrational numbers,

Gregory held that non-analytical quantities and numbers, like the ratio between the circle

and the square built on its diameter, could be expressed solely by extending the known

arithmetical operations with a ‘sixth’ non analytical operation that applied to analytical

quantities could yield a non-analytical quantity as a result.

The similarity between the case of root extraction and the one of the sixth operation

suggests what role impossibility results might have played in Gregory’s view about the

architecture of mathematics: an impossibility result would eventually prompt the exten-

sion of a given domain in geometry or arithmetics by means of new objects and new

operations.

In the preface of VCHQ, Gregory deployed a theoretical classification of operations loosely

grounded on this view:

ex illis quinque operationibus arithmeticis, duae sunt tantum simplices, ad-

dition & substractio, multiplicatio est composita ex additione, & divisio ex

substractione, et extractio radicum, quae in genere nihil aliud est quam in-

ventio proportionis commensurabilis, quae quam proxime accedit ad propor-

tionem analyticam incommensurabilem, componitur ex praecedentis quatuor,

& nostra sexta operatio, quae in genere nihil aliud est quam inventio propor-

tionis commensurabilis quam proxime accedentis ad nostram proportionem

non analyticam, componitur ex prioribus quinque.127

Gregory defined the arithmetical operations genetically, starting from what he considered

the simplest ones: addition and substraction. Multiplication and division were thence

conceived as composed from the iteration of the previous operations,128 whereas the

127VCHQ , p. 5. "Out of these five arithmetical operations only two are simple, addition and sub-
traction; multiplication is composed from addition, and division from subtraction; and the extraction
of roots, which, in general, is nothing else than the invention of a commensurable proportion, which
approximates the most closely an incommensurable analytical proportion, is composed out of the four
previous operations; and our sixth operation, which in general is nothing but the invention of a com-
mensurable proportion, which approximates the most closely our non analytical proportion, is composed
out of the previous five operations".

128Multiplication might have been interpreted as an iterated addition, in the sense that: a × b =
a + a + a + . . . b times. On the other hand, Gregory might have in mind an algorithm for division
between integers similar to Euclid’s one (see Elements, VII,1). Thus, given two numbers a,b, such that
a > b : a ÷ b = q can be read as the repeated subtraction: a − b − b − b . . . q times. The subtraction
stops either when it reaches 0, or a number r < b. The operation of division can be extended also to the
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extraction of roots was characterized as the construction of a rational number sequence,

or a sequence of proportions holding among commensurable quantities approximating a

given incommensurable one.

The structural role of impossibility results emerges in particular concerning the intro-

duction of irrational and non-analytical quantities, together with their corresponding

operations of root-extraction and with the ‘sixth non analytical operation’. As we know,

in fact, in the same way that a quantity a incommensurable to a given quantity b can

be represented by an infinite sequence of commensurable quantities, which tend to a, a

quantity ̟ proved to be non analytical with a given quantity e, can be represented as

the limit of a sequence of analytical quantities with e.

Eventually, Gregory intended the operation of root extraction as a shorthand for the

construction of an infinite sequence of rational numbers or commensurable quantities

approximating an irrational number or an incommensurable quantity, and identified his

so-called ‘sixth operation’ with the construction of a convergent sequence of analytical

quantities or numbers tending to a non-analytical one.129

Echoes of this view resonate in some of Wallis’ considerations to be found, for instance,

in his Arithmetica Infinitorum (1656), on the role played by impossibility results in the

extension of mathematics.130

In the Arithmetica infinitorum, Wallis proposed to apply to geometry, and particularly

to the problem of determining the ratio between a circle and the square built on its

diameter, the same kind of reasoning that he saw applied in arithmetic, where new

entities are introduced "when some impossibility is arrived at, which indeed must be

case a < b via the introduction of rational numbers or fractions, but Gregory does not enter into these
details.

129VCHQ , p. 29. Dehn and Hellinger propose an original interpretation of this "sixth operation" (Gre-
gory [1939], p. 470), and suppose that Gregory did envisage to prove, in his proposition XI, the existence
of a (sixth) non-analytical composition S, such that: S(I0, C0) = S(I1, C1) = S(

√
I0C0,

2I0C0

I0+
√

I0C0

). It

is true that we can identify S with a non-analytical operation (as we know, Dehn and Hellinger work
out one such example) but it is at least debatable whether Gregory intended to prove the existence of a
non-analytic function, instead of the more likely claim on the non-existence of analytical compositions
which may allow him to compute the limit. Conclusively, since no explicit statement from Gregory’s
side supports this interpretation and a precise characterization of this sixth non analytical operation
is definitely lacking in Gregory’s narration, Dehn and Hellinger’s interpretation, although suggestive,
remains far-fetched.

130Panza [2005], p. 75-78, Stedall [2002], p. 181-183.



CHAPTER 7. JAMES GREGORY’S VERA CIRCULI QUADRATURA 359

assumed to be done, but nevertheless cannot actually be done".131

In this case, Wallis argues, arithmeticians " consider some method of representing what is

assumed to be done, though it may not be done in reality",132 for instance by introducing

a new symbol standing for the solution of an equation of the form: a+C = b when a < b

(for instance when a number x is required, such that 3 + x = 2), or or by introducing a

symbol standing for the solution of an equation of the form: a × C = b when a is not

its perfect divisor of b (for instance, in the case of the solution to the equation: 3x = 2),

or else, in the case of the introduction of irrational numbers, when we look for a number

whose square yields a given natural number, which is not a perfect square (for instance,

when we want to find a number x such that x2 = 12).133

In Wallis’ view, finding the expression of the ratio between a circle and the square con-

structed on its diameter was a similar problem, which could be solved by a likewise

procedure. According to his conjecture, in fact, the number π could not be expressed by

a known rational or irrational number. Therefore, it must be expressed by a new kind of

number, expressible through a new symbol:

quoties autem hoc contingint, cum illud veris numeris designari non possit

(& ne quidem solis radicibus surdis) quaerendus erit modus aliquis id ipsum

utcumque exprimendi. Si igitur ut
√
3× 6 significat terminum medium inter

3 et 6 in progressione Geometrica aequabili 3,6,13, &c. (continue multipli-

cando 3 × 2 × 2&c.) ita ` : 1 | 3
2 : significet terminum medium inter 1&3

2

progressione geometrica decrescente 1, 3
2 ,

15
8 , &c. (continue multiplicando

1 × 3
2 × 5

4&c.) erit ✵ = `:1 | 3
2 : Et propterea circulus est ad quadratum

diametri, ut 1 ad ` : 1 | 3
2 . Quae quidem erit vera circuli quadratura in

numeris, quatenus ipsa numerorum patitur, explicata.134

131Wallis [2004], p. 162.
132Wallis [2004], p. 162.
133Wallis [2004], p. 162.
134Wallis, Arithmetica Infinitorum, proposition CLXXXX, scholium 175."As much, moreover, holds

here; since it is not possible to designate that quantity (✵) by a true number (not even by the usual said
radicals, or surds), as

√
3× 6 signifies the mean term between 3 and 6 in a regular geometric progression

3, 6, 12, etc. (from the continued multiplication 3×2×2 etc.) so `(1 | 3
2
) signifies the mean term between

1 and 3
2

in a decreasing hypergeometric progression (from the continued multiplication 1 × 3
2
× 5

4
etc.)

which will be ✵=`(1 | 3
2
). And therefore the circle, to the square of its diameter, is as 1 to `(1 | 3

2
).

Which indeed is the true Quadrature of the Circle expressed in numbers, as far as the nature of those
numbers may be shown" (translation in Wallis [2004]).
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It is not known whether Gregory had knowledge of Wallis’ work before 1667, but certainly

his own research differed from Wallis’, starting from his approach to the circle-squaring

problem based on finite approximation techniques rather than infinitesimal ones. It is

certain, on the other hand, that Wallis saw the extant similarities between his conception

of impossibility results in mathematics and Gregory’s ideas.135

At their basis, both mathematicians shared similar ideas concerning progress of mathe-

matics, achievable through the introduction of new symbols and operations. In partic-

ular, Gregory explicitly connected this research to a critique of cartesian geometry, and

in particular of the analytical method there applied.

Concerning the critique of cartesian geometry, explicit in Gregory’s treatise, we can ask

whether and in which ways the very separation between geometry and mechanics under-

went any modifications caused by the enrichment of the domain of mathematical entities

after the introduction of non-analytical compositions and quantities. This concern was

effectively present to Gregory, as we can read in the last Scholium of VCHQ :

multa talia problemata possem hic resolvere ope analysios & nostrae serierum

convergentium doctrinae, quae antea impossibilia aestimabantur: sed dicet

forte aliquis has resolutiones non esse geometricas; respondeo, si per geo-

metricum intelligatur praxis ope solius regulae & circini peracta, hanc in his

non solum esse impossibilem sed etiam in omnibus problematis quae ad ae-

quationem quadraticam reduci non possunt, sicut facile demonstrari posset;

& si per geometricum intelligatur reductio problematis ad aequationem an-

alyticam, omnia haec problemata sunt geometrice impossibilia, cum ex hic

demonstratis, manifestum sit talem reductionem fieri non posse: si vero per

geometricum intelligatur methodus omnium possibilium simplicissima; inve-

nietur fortasse post maturam considerationem omnia praedicta problemata

esse geometricissime resoluta.136

135Huygens [1888-1950], vol. 6, p. 234.
136VCHQ , p. 58: "By means of the analysis and of our doctrine of convergent series I can solve many

of those problems, that before were judged impossible. However, one may perchance object that these
solutions are not geometrical. I answer, that if one understands by geometrical the praxis requiring
the sole aid of the ruler and compass, not only these problems will be impossible, but even all the
other problems which cannot be reduced to quadratic equations, as it could be easily proved. If, by
geometrical, one understands the reduction of a problem to an analytical equation, all these problems
are geometrically impossible, as it is manifest, from the results proved here, that this reduction cannot be
done. However, if by geometrical one understands the simplest of all possible methods; it may discover,
after mature consideration, that all the said problems are solved in the most geometrical way".
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Gregory was aware that the boundaries of geometry may vary according to the choice

of the solving means adopted. Preference for one view or the other could be argued

on mathematical grounds, but the decision about what should be considered "mathe-

matically proper" still remained a matter of methodological or meta-theoretical choice.

Therefore, one could adhere to the euclidean norm and identify geometricity with solv-

ability by ruler and compass (a move adopted, in early modern period, by Viète in his

Apollonius Gallus), or else extend, like Descartes did, geometry to include all problems

reducible to analytical equations. To these criteria, Gregory added a third criterion of

geometricity: the fact of being geometrical is a property of the solution to a problem,

which obtains when the problem has been solved by the simplest method.

This third criterion allows one to identify the content of geometry with a property of

solutions - namely simplicity - rather than with a domain of objects (curves or problems).

Therefore, provided a method for deciding the simplest solution for a given problem, there

would be no sound mathematical question which is in principle excluded from geometry.

These considerations lead me to approach here the second significant role impossibility

proofs might play in Gregory’s mathematical practice. I argue, indeed, that proving that

the quadrature of the circle could not be solved analytically did not imply, for Gregory,

that this problem admitted no solution at all in geometry.

This point is made clearer in the preface of the Geometriae pars universalis (GPU )

where the author remarks, responding to some criticism advanced against proposition XI

of VCHQ (criticism of unknown origin, as far as i could ascertain, as they are discussed

several months before Wallis’ and Huygens’ objections):

primo obiicitur contra titulum, nempe tractatum meum male appellari vera

circuli et hyperbolae quadraturam, cum potius sit conatus demonstrandi illam

esse impossibilem, respondeo, si esset impossibilis, nulla daretur proportio

inter circulum et diametri quadratum, et ideo falsa esset 5 definitio lib. 5

Euclidis. . . 137

137"At first, they objected against my title, namely that it is wrongly called ‘vera circuli et hyperbolae
quadratura’, since it is rather attempted to prove that the quadrature is impossible. I answer that, if it
were impossible, no proportion would be given between the circle and the square of its diameter, and
therefore the fifth definition of Euclid’s book V would be false". GPU , p. 5.
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The criticism mentioned by Gregory seems to point to the very title of his work: Vera

circuli et hyperbolae quadratura. According to this objection (whose author is not men-

tioned), we may not admit a ‘true’ and in the meantime ‘impossible’ solution to a problem,

as Gregory claims right from the title of his woek. In his explanation, Gregory makes

more precise his understanding of the term ‘impossible’. Gregory explains that we should

not understand the impossibility of solving the quadrature of the circle as implying that

no proportion exists between the circle and the square on its diameter. Indeed, if no such

proportion existed, then the fifth definition in Euclid’s Book V would be violated.

Gregory is probably referring, in his explanation, to the definition 5 in Clavius’ edition of

the elements, namely: "rationem habere inter se dicuntur, quae possunt multiplicate sese

mutuo superare".138 But a circle and the square are obviously quantities that can ‘exceed

one another’. On this basis, Gregory could assert the existence of a ‘true’ geometrical

quadrature of the circle, "discovered and proved in its own kind of proportion", as the

subtitle of VCHQ recites, but a quadrature which cannot be tackled by analytical means.

Just like Descartes did, with respect to the quadrature of the circle (cf . ch. 6), so Gregory

stressed that the impossibility of solving the problem of squaring the circle, and the other

conic sections did not entail that a solution did not exist, but entailed that a solution

could not be reached, by means of analytical methods.139

138This definition corresponds, in Heath’s edition, which follows the text established by Heiberg, to df.
4 of Book V: "Magnitudes are said to have a ratio to one another which are capable, when multiplied,
to exceed one another". This definition can be seen to state a condition of homogeneity between two
quantities x, y. Hence x will be homogeneous to y iff it exists a number m such that mx > y and it
exists a number n such that ny > x, where the relation ‘>’ can be read as ‘x is greater than y’.

139On this concern, we read in the Geometriae Pars Universalis that Gregory was persuaded by the very
analytical impossibility of the squaring of the central conic sections, argued in the VCHQ , to reorganize
the disciplinary field of geometry beyond the bounds of Descartes. Gregory indeed claimed, in the preface
of the GPU , that the weakness of the analytical method (based, in his words, on the "examination of
unknown quantities" and on their subsequent reduction to algebraic "equations with known quantities")
appears mainly in the "measurement of curvilinear quantities" (cf. GPU , p. 3). He thus proposed
to remedy ("suppleri") the deficiencies of cartesian analysis by emphasizing the role of geometrical
transformations as an essential tool to deal with quadratures. From Gregory’s viewpoint, quadratures
could be solved: "Si modo e data cujuscumque figurae proprietate essentiali, daretur methodus eam
transmutandi in aliam aequalem cognitas proprietates habentem, et huius in aliam, et sic deinceps,
donec tandem transmutatio fiat in aliquam quantitatem cognitam, sic enim exhiberentur quantitatis
propositae mensura quaesita, non secus quam in aequationis analyticae resolutione" (In Malet [1996], p.
64: "Provided that, knowing the essential property of any given figure, a method were given to transform
(transmutandi) the figure in an equal one having known properties, and then [to transform] this latter
figure in another, and so forth, until eventually the figure is transformed in some known quantity, in this
way the sought-for measure of the given quantity would be found, not differently from what is done in
the resolution of analytical equations"). A theorem of transformation established the equality between
a figure A and a figure B, once B has been obtained from A through a geometric transformation. I
note that the same method adopted by Gregory in order to transform figures in order to facilitate their
quadrature, lies at the ground of Leibniz’s transmutation theorem that we have discussed in the previous
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The third meaning of ‘geometrical’ introduced in the above passage as "the simplest

method among the possible ones" may also characterize, for Gregory, the solutions to a

problem like the squaring of a central conic. By assessing that there cannot be any solu-

tions obtained through the construction of finite algebraic equations, Gregory eventually

established tha there could not be a class of simpler solutions than the ones obtained by

sequences approaching non-analytical quantities (and therefore, by approximation meth-

ods as the one studied by Gregory himself in VCHQ), or by such mechanical curves like

the spiral and the quadratrix.140 Consequently, this kind of solution, being the simplest

one according to the impossibility argument given in VCHQ , would also be the most

geometrical one, according to the third meaning of geometricity detailed above.

Gregory might have conceived an ideal process of development of geometry by adding

new methods of solution, parallel to the one that he (and Wallis) saw in the development

of arithmetic by new operations. In this sense, a proof or an argument establishing

the impossibility of solving a problem by a given set of solving methods141 justified the

addition of new solving means, and rendered therefore untenable the identification of

geometry with a fixed domain of objects or problems.

chapter, and was probably a source of inspiration for it. Although Gregory’s demonstrations offered in
the GPU are all worked out in a purely geometric garb, Gregory did not perceive algebra and geometry
as opposed fields. On the contrary, Gregory recommends the geometer to study the method of cartesian
analysis, which offers an insight into the properties of figures themselves: "Huius methodi studiosus
ante omnia versatus esse debet in analyse, nam absque illa, cuiusvis ingenii vires superat, propositae
cujuscumque figurae proprietates examinare" (GPU , fol. IV: "The researcher of this method should
be an expert in analysis above all, in fact without it, the examination of the properties of any figure
surpasses the intellectual capacities of anyone"). In this context, Descartes’ method for problem solving
was not denied, but fused into a larger body of techniques, and the appeal to convergent sequences,
derived from the geometrical properties of the figures examined, rather than from the algebraic equation
expressing their properties, would be the "last recourse" (ultimum nostrae methodi refugium) when the
quadrature of a figure failed to receive a solution via other purely geometric approaches: "Quod si
geometra, post diligentem huius methodi applicationem secundum figurae proprietates, nullum inveniat
problematis exitum; recurrendum est ad seriem convergentem, cuius terminatio sit ipsa figura incognita
vel alia ad eam in ratione data. . . " (GPU , fol. V: "And if the geometer, after the proper application
of this method according to the properties of the figure, cannot find any solution, he must resort to
convergent series, whose limit is the unknown figure or another one, in a given ratio with this one". See
Malet [1989], p. 226).

140GPU , p. 7: "If someone wishes to square the circle or divide an angle in a given ratio, organically, I
can’t see how it can be done in a manner simpler than by the vulgar quadratrix line, described in the solid
and in the plane, accurately and pointwise". Gregory was probably referring to the generation of the
quadratrix from the cutting of solid sections (described in Pappus’ Collection, book IV, proposition 28,
29) or from a point by point construction (this can be found in Clavius, in book VI of his Commentary
to Euclid’s Elements, published in 1598).

141We can think, for instance, of the impossibility of solving the angle trisection by ruler and compass, or
of the impossibility of solving the circle-squaring problem by algebraic curves as warranting the extension
of geometry to higher curves, algebraic or mechanical, respectively.
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This is another reason why Gregory may have adopted as a general and encompassing

criterion for geometricity the simplest method, that is the simplest curves, that can solve

a given problem. The question gets more entangled, though, when we consider simplicity

as a criterion for extending the domain of geometric obejcts, and establish which curves

ought to be added to the domain of the given ones.

Let us recall that, from the outset of his work, Descartes interpreted Pappus’ norm pre-

scribing to solve each problem according to its nature as a constraint on the choice of

the algebraically simplest curves. Therefore, in order to make this requirement effective,

a criterion for excluding too simple and too complex curves was required too. The con-

straint on the choice of the simplest solution - meaning, in this case, the algebraically

simplest - constituted a strong normative stance orienting the practice of problem solving

in cartesian geometry, with the consequence of imposing, for some cases, too counterin-

tuive or convoluted solutions. Descartes never adopted the ideal consisting in identifying

geometry with the simplicity of solutions, but at most, he elected simplicity as a criterion

for choosing among several geometrical solutions the most adequate for the problem at

hand.142

Interestingly, Gregory also made notable contributions to the field of analytic geometry,

moved by the work of Van Schooten, Huygens and Sluse. His correspondence reveals

that Gregory was both interested in the general problem of constructing equations and

in the solution of geometrical problems by the simplest curves, both issues having their

origin in Descartes’ Géométrie.143

Actually, Gregory’s manuscripts on analytical geometry date from 1670-71 only, i. e.

three years almost after the publication of VCHQ , but we cannot exclude that concern

for simplicity in mathematical practice might have been transmitted to him through the

knowledge and the reception of cartesian geometry. Several clues indicate that Gregory

had a knowledge of cartesian geometry while writing VCHQ , although the depth of such

knowledge cannot be exactly scrutinized.
142On the other hand, reactions such as Newton’s, Leibniz’s or Fermat’s ones prove that the cartesian

ideal of simplicity (or algebraic simplicity) was not shared, in so far it lacked important epistemic virtues
in the construction of problems, such as elegance, easiness and conciseness. See Bos [1984], p. 356ff .

143Gregory’s extant manuscripts on the theory of equations date from the last months of his life, from
May to October 1675 (Gregory [1939], p. 382-389). This study resumes and tries to answer to a question
referred in VCHQ as an open one: "nam ex his petenda est demonstratio (. . . ) quod non semper et
quando aequationes affectae possunt reduci ad puras. . . " (VCHQ , p. 5). On the other hand, his extant
contrbutions to analytical geometry date from the year 1670, as the correspondence and manuscripts
reveal (Gregory [1939], p. 435-439).
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The recurrent theme of simplicity is a suggestive motive which permits to link Gregory’s

work to Descartes’ geometry, to the point that Gregory’s proposal to define a solution

‘geometrical’ on the ground of simplicity might have been inspired by a direct or in-

direct knowledge of Descartes’ work. As I have already stressed, though, this was not

Descartes’ view, and interpreting geometry in this way would raise some counterintuitive

consequences, as soon as we consider familiar examples.

Indeed, if simplicity, understood as algebraic simplicity, defined the boundaries of geome-

try and geometrical solutions, one must exclude as ungeometrical the well-known solution

of the cube duplication by means of a curve traced with the compass of proportion, or

‘mesolabum’. A second problem is related to the extension of our criteria of simplicity,

when algebraic simplicity can no longer be employed, as in the case of the circle-squaring

problem. How to judge about the simplicity of different solving methods, then? No

clues are to be found in Gregory’s works that may clarify such issues. At any rate, the

connection between the theme of simplicity in Descartes’ and in Gregory’s approaches

to geometry allows us to advance a further general conjecture: the influence cartesian

geometry exerted over the development of mathematics during the second half of XVI-

Ith century must be measured also in the backdrop of broad methodological questions

concerning the interplay between simplicity and impossibility results in geometry.

This conjecture is further confirmed by the role that the very impossibility result treated

by Gregory will play in another important work from the second half of XVIIth century,

namely the Quadratura Arithmetica written by G.W. Leibniz among 1674 and ’76. This

will be the theme of the next chapter.

7.6.1 Bibliographical note

As Turnbull remarks in the Memorial Volume (Gregory [1939], p. 25): "three sources

of Gregory’s works exist: his books, his letters and his notes". The edition of Gregory’s

work I have consulted are the following ones:

• Vera circuli et hyperbolae quadratura, in sua propria specie inventa (abbreviated

as VCHQ), Patavii ex typographia Iacobi de Cadorinis, 1667 (Gregory [1667]).

• Geometriae pars universalis (abbreviated as GPU), Patavii Pauli Frambotti, 1668

(Gregory [1668b]).

• Exercitationes Geometricae (Abbreviated as EG. see Gregory [1668a]), Giulielmi

Godbid, 1668. Later reprinted in N. Mercator, Logarithmo-technia sive methodus
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construendi logarithmos nova, accurata, & facilis; scripto antehac communicata,

anno sc. 1667 ... cui nunc accedit. Vera quadratura hyperbolae & inventio summae

..., Londini, 1668 (Mercator [1668]).

Concerning the corpus of letters and notes, I have fruitfully consulted H.W. Turnbull,

James Gregory Tercentenary Memorial Volume, listed in bibliography as [Gregory, 1939],

and the volume six of the complete works of C. Huygens, listed in the bibliography as

Huygens [1888-1950].



Chapter 8

The arithmetical quadrature of the

circle

8.1 Introduction

In this chapter, I shall discuss Leibniz’s early inquiries on the circle-squaring problem,

whose first grand result was the treatise: De quadratura arithmetica circuli ellipseos et

hyperbolae cujus corollarium est trigonometria sine tabulis (hereinafter De quadratura

arithmetica), composed and ultimated during Leibniz’s stay in Paris (which extended

from 1672 to September 1676),1 but published only in 1993.2

My interest for the De quadratura arithmetica will be mainly directed towards the con-

cluding proposition LI, the "crowning" of the treatise, as Leibniz called it.3 This propo-

sition asserts that the problem of the indefinite, or "general", or again "universal" (in

Leibniz’s terminology) quadrature of the central conic sections cannot be solved by a

1Leibniz arrived in Paris in Spring 1672, with little knowledge of mathematics and limited awareness
of the developments this field underwent during the earlier 35-40 years. By his departure, in September
1676, he had gained insightful knowledge of most of the debated questions and advances at his time, as
his manuscript production and his letters show us (Hofmann [2008], p. 12).

2Here and in the following sections, I will use the letter ‘A’, followed by a roman and an arabic
numerals, in order to refer to the edition of Leibniz’s collected works published by the Akademie der
Wissenschaften. Thus, ‘AVII6’ will refer to the sixth volume of the seventh tome of the Edition of
the Akademie der Wissenschaften, and ‘AVII6, 51’ will refer to the text number 51 contained in that
volume. In particular, AVII6, 51 contains a new critical edition of the De quadratura arithmetica, with
some additional passage with respect to the first edition made by E. Knobloch in 1993 (by simplicity, I
will use the shorthand ‘LKQ’ in order to refer to Knobloch’s edition). Finally I will use the abbreviation
‘LSG’ for Gerhardt’s historical edition of Leibniz’s mathematical works published in seven volumes
(1849-1863).

3I am referring to proposition LI, see: AVII6, 51, p. 674; LKQ, p. 134.

367
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better method, or expressed through a more geometrical relation than the ones exhibited

in De quadratura arithmetica. As I will argue throughout this chapter, Leibniz’s result

can be thus summarized: the quadrature of an arbitrary sector of circle, the ellipse and

the hyperbola cannot be expressed by a finite polynomial equation.

I shall also argue in this chapter that Leibniz’s impossibility result, presented in the

concluding proposition of the De quadratura arithmetica, was the outcome of Leibniz’s

engaging with the main points at stake in the controversy which opposed Gregory and

Huygens on the impossibility of the analytical quadrature of the central conic sections.

Let us recall that the quarrel between Gregory and Huygens had come to an end, upon

the tacit agreement of both parts, in February 1669. However, as I have argued in

the previous chapter, Gregory’s belief that no analytical quadrature of the central conic

sections was neither proved nor disproved, by then.

Although few or no exchanges occurred between Huygens and Gregory in the subsequent

years, they plausibly continued to ponder over the issue of the quadrability of conic

sections. Meanwhile, due to his closeness with Huygens during his stay in Paris, Leibniz

became acquainted to this issue and to the quarrels raised around it. I surmise that

the impossibility result which closes the De Quadratura Arithmetica can be viewed as

Leibniz’s late-ripe attempt to terminate the controversy once for all.

Leibniz’s results were only partially successful though. As I shall discuss in the sequel,

the problem of the analytic solvability of the quadrature of the circle had not received a

definite answer by the end of Leibniz’s stay in Paris.

In a preliminary way, I will survey both the complex editorial history of the De quadratura

arithmetica, and I will examine the scribal evidence which attests Leibniz’s critical study

of Gregory’s mathematical works, between 1672 and 1676.

8.1.1 The manuscript of the De quadratura arithmetica

The editorial work on Leibniz’s Nachlass4 has disclosed that Leibniz possessed a manuscript

of a treatise on the arithmetical quadrature of the central conics, ready for publication,

in September 1676. It can be determined with precision, on the ground of Leibniz’s vast

epistolary exchanges, that Leibniz had firstly conceived the project to print his treatise in

4On the complex editorial history of De Quadratura Arithmetica one can consult Knobloch
[1989], Probst [2006b], Probst [2008a] and the introduction to the recently published AVII6.
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Paris by confiding a copy to his friend Soudry, who remained in that city,5 while Leibniz

moved firstly to London, for a brief period, and then, from the end of 1676 onwards,

settled down in Hannover.

The project of preparing the treatise on the arithmetical quadrature for print, which was

continued and perhaps ultimated by Soudry in the next years, was hindered by the loss,

around 1680, of Soudry’s copy.6

Leibniz still possessed the original of his parisian manuscript (this manuscript was pub-

lished in LKQ and, with some additional passages, in AVII6, 51), and he inquired, in the

years subsequent to the loss of Soudry’s copy, whether other publishers may be interested

in this work.

However, Leibniz finally turned down the opportunities to publish his arithmetical quadra-

ture in its full length. His ultimate motivations, as revealed for instance in a letter to

Bernoulli, written in the late ninenties, concerned the content of the treatise which, by

then, was judged obsolete by Leibniz.7

Leibniz rather published, starting from 1682, few articles containing results and material

drawn from his parisian manuscript. I mention, in particular, the De Vera Proportione

Circuli ad Quadratum in Numeris Rationalibus Expressa ,8 the De geometria recondita

et analysi indivisibilium atque infinitorum (1686),9, and in particular the following three

papers:

• a short tract: Quadratura Arithmetica communis Sectionnum Conicarum quae cen-

trum habent (1691) published in the Acta Eruditorum (See LSG, V, p. 128);

• A Praefatio opusculi de quadratura arithmetica, written in 1676, (LSG, V, p. 93-

98): this was an introductory piece to a treatise on the arithmetical quadrature of

the circle, different than LKQ.

• And a Compendium quadraturae arithmeticae (LSG, V, p. 99), written in 1690-

91.10

5Cf . AIII2, p. 104, 105, 116, 129, 145; AII1, p. 482.
6The copy was lost in the post, in the route from Paris and Hannover. See Knobloch [1989], p.

132-133 for a detailed account.
7See LSG, 3, p. 522, 528, 537.
8Leibniz [1682]. Also in LSG, 5, p. 120. See also: Leibniz [1989], p. 77, for a French translation.
9Leibniz [1686], also in LSG, 5, pp. 226-233; Leibniz [1989], p. 126.

10Probst [2008a], p. 171.
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According to Leibniz’s testimony, the years 1675-76 are presumably the years in which

he completed what he considered the final version of this treatise.11 Before reaching a

final version, Leibniz composed several drafts of the De quadratura arithmetica, start-

ing from 1673, which circulated among his friends and fellow mathematicians (the first

known mention of his arithmetical quadrature was made by Leibniz in a letter to Henry

Oldenburg, the permanent secretary of the Royal Society, from 15.7.1674.12

From fall 1673 to October 1674 Leibniz also composed four Latin treatises (in chrono-

logical sequence: AVII4 42; AVII6 1, 3, 8 = AIII1 39.1) and a French treatise (AIII1, 39,

sent to Huygens). From late in 1675 two French fragments are extant, destined for La

Roque (AIII1, 72) and supposedly for Gallois (AIII1, 73).13 The successive manuscripts

date from spring to September 1676: AVII6, 14 (fragmentary), 20 + 28, 51. Conclusively,

we can say that Leibniz worked on the problem of the quadrature of the circle from 1673

(AVII4, 42) to September 1676, the last month of his stay in Paris.

It should be remarked that proposition LI, in which an impossibility result is enunciated,

appears in the 1676 version of the treatise (AVII6, 51), probably ultimated in September

1676, and before it, the same proposition occurred only in the draft AVII, 6 n. 28 (a

previous version of the De quadratura arithmetica, dating from Summer 1676). State-

ments analogous to proposition LI can be found in the already quoted Praefatio from late

spring 1676 (AVII, 6 n. 19, p. 176-177), and, stated as a theorem, but not proved, in the

tract AVII6, 18, also composed in spring 1676. The textual evidence suggests therefore

that , by Spring 1676, Leibniz had definitely planned to insert an impossibility result in

his treatise.

8.1.2 Leibniz’s acquaintance and study of Gregory’s works

Several manuscripts from Leibniz’s vast Nachlass, recently published in volumes AVII

3, 5, 6 of Leibniz’s mathematical works, have disclosed the details of Leibniz’s critical

reception both of Gregory’s arguments about the impossibility of squaring the central

conic sections,14 and of other notable contribution of Gregory to the foundations of

11Cf. for example "Quadratura Arithmetica communis Sectionum Conicarum", in; LSG, 5, p.
128. In Parmentier’s translation: "Dès 1675, j’avais composé un petit ouvrage de quadrature
arithmétique. . . " (Leibniz [1989], p. 176).

12AIII1, 120. See Knobloch [1989], p. 128.
13Concerning the latter, I point out that, in his Catalogue Critique of Leibniz’s manuscripts, Rivault

mentions Huygens as a recipient.
14In particular: AVII3, 20, 60; AVII5, 47; AVII6, 18, 19, 28, 41, 49.
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calculus and the study of series.

It must be reckoned that Leibniz was informed about Gregory’s Vera Circuli et Hyperbolae

Quadratura already in 1668 by a copy of a letter from Oldenburg to Curtius.15 Cursory

remarks, to be found in a letter sent to Jean Gallois in 1672 and in a manuscript from the

end of 1672, reveal that Leibniz was aware of Gregory’s VCHQ (I will keep also in this

chapter this abbreviation for: Vera Circuli et Hyperbolae Quadratura) or at least knew

the geometrical double sequence defined by Gregory in that work, from the beginning of

his parisian sojourn.16

A group of texts published in AVII4 (resp. numbers 31, 32) offers plausible informa-

tion concerning the way in which Leibniz came to know and read the Exercitationes

Geometricae, the third booklet published by Gregory, which contains as well valuable

considerations on the impossibility of the analytical quadrature of the circle. It can be

determined with certainty that Leibniz acquired this book during his first visit to Lon-

don, in Spring 1673.17 It is important to note that, during the same visit, he could buy

and later peruse two other mathematical works, subsequently bound together in a unique

volume, still kept in Leibniz’s library in Hannover: a part from Gregory’s Exercitationes

Geometricae, also Mercator’s Logarithmotechnia sive methodus construendi logarithmos

nova, accurata & facilis (1668) and Michelangelo Ricci’s Geometrica Exercitatio de max-

imis et minimis (1668).18

15The letter dates from 13. Juli 1668 (See AII1, N. 9 p. 17-18).
16See AIII, 1 p. 3: ". . . Archimedes iam olim usus est arithmetica infinitorum atque indivisibilium

geometria et inscriptis et circumscriptis in Dimensione Circuli (. . . ) Iac. Gregorius inscripta et cir-
cumscripta". Also: "Methodus universalis hactenus usitata est, ea quam primus attulit Archimedes, per
circumscripta inscriptaque polygona, quam postea Ludolphus a Colonia, Willebrordus Snellius, Iac. Gre-
gorius Scotus, aliique provexere" ("A universal method is so far very common, the one that Archimedes
brought the first, by inscribed and circumscribed polygons, and that later Ludolph of Koln, Willebrod
Snellius, James Gregory from Scotland and others improved").

17As Gerhardt recalls: "Leibniz paid two visits to London from Paris (. . . ) was from January 11 to
the beginning of March 1673; the second was made on his way home to Germany, when he stopped in
London for about a week, in October, 1676" (in Child [1920], p. 159).

18See Hannover, Niedersächs. Landesbibl . Ms IV 377; AVII4, 3, p. 48; AVII5, 47, p. 332. In a letter
to Huygens from 1692, Leibniz returned on Gregory’s the Exercitationes Geometricae, observing: "J’ai
vû autre fois les Exercitations de Jacobus Gregorius, et peut-estre que vous me les aviez monstrées vous
même.", but this memories is arguably incorrect, since it appears that Leibniz bought his own copy
of the book. I point out that it is also possible that Huygens showed some or all of Gregory’s books
to Leibniz already in 1672/3 before Leibinz went to London and bought the Exercitationes. There are
early references to Gregory in AIII,1, 2 and in VII,1 3; but perhaps Leibniz refers to the articles in the
Philosophical Transactions and the Journal des Sçavans.
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Later on, I will have occasion to explain how the technique used by Leibniz in De

quadratura arithmetica in order to derive his series for π
4 is particularly indebted to

Mercator’s Logarithmotechnia. For the moment, I shall complete my survey of Leibniz’s

acquisition of the other texts written by Gregory. It is indeed certain that, by the end

of 1673, Huygens lent to Leibniz both a copy of his De circuli magnitudine inventa and

a copy of Gregory’s Vera Circuli et Hyperbolae Quadratura, as it is recorded in Huygens’

notebooks: "1673. 30 dec. prestè a Libnitz mon livre de Circuli magn. et Gregorius de

Vera Circuli quadratura".19

Finally, the Geometriae Pars Universalis was the last of Gregory’s books perused by

Leibniz, in 1675. As Hoffman notes, "Leibniz was immensely interested in this book",

although it seems that he did not work through it, but studied only some propositions.20

Leibniz’s interest for this work is not directly related to impossibility results, but to the

19Huygens [1888-1950], vol. 20, p. 388. An early 1674 references to VCQH can be found in AVII6,
3. Leibniz critically mentioned Gregory, in relation to the Vera circuli et hyperbolae quadratura, also
in two letters to Oldenburg from March 1675 (AIII,1, p. 202 and AIII,1 p. 207), and August 1676
(LBG:198). Gregory’s achievements were discussed by Leibniz on other occasions too, which occurred
however after 1676, and therefore after the temporal bounds of this study. For instance, Leibniz was
outspoken in a letter to Tschirnhaus, from 1684 (AIII, 4, p. 174), and in the context of a controversy on
Tschirnhaus’ alleged method for the integrability of algebraic curves: "Id ipsum scilicet ego objeci, verum
hujus precautionis nullum in ejus edito Schediasmate reperitur vestigium, sed quia probaverat non dari
quadraturam circuli portionumque ejus indefinitam, quod dudum constabat, sine haesitatione concluserat
impossibilitatem quadraturae totius circuli, in quo argumentandi modo et Jac. Gregorius insignis ge-
ometra olim lapsus erat, quaemadmodum recte a viro celeberrimo Christiano Hugenio fuit observatum".
Other critical references to Gregorie can be found in a letter to Wallis, dated 28 May (or 7 June) 1697,
where Leibniz remarked: "Ostendit mihi olim Hugenius Parisiis Jac. Gregorii perbrevem libellum in 4
in quo videbatur aliqua contineri promotio serierum convergentium, sed αινιγματιχῶς quamquam mihi
inspicere tantum in transitu non legere vacarit" (AIII, 7, p. 428). Although Leibniz claims here that
he only ran through Gregory’s book, he probably read the first part, concerning Gregory’s impossibility
argument, as we can suppose especially in the light of the manuscripts now published as: AVII,6 n. 18,
28. Finally, there is a later manuscript (Paralogsmus Jac. Gregorii cum circuli algebraice quadrari posse
negat , LH 35, XIII, 1, Bl. 118. This piece is also mentioned in Breger [1986], p. 121) which refers to
a "paralogism" committed by Gregory. As it can be read in the manuscript, the paralogims concerns
Gregory’s definition of convergent series, not his impossibility arguments. At any rate, its dating is still
uncertain, although it was possibly written during Leibniz’s stay in Hannover (it might be well related
to the exchanges with Wallis from 1697). Probably around the same period must be dated Leibniz’s an-
notations to Gregorie’s copy of Vera Circuli Hyperbolae Quadratura (in particular proposition X, XXV),
to be found in Hannover’s Library (Marg. Ms 98).

20The first mention of this book made by Leibniz occurs in a letter to Oldenburg, from March 1675
(AIII1, 46, p. 202). In (Hofmann [2008], p. 75-76), Hofmann argues that Leibniz did not possess a
personal copy while in Paris. This conclusion is justified on the basis of the extant collection of books
possessed by Leibniz, now in the Library of Hannover. There are in fact two copies of the Geometriae
Pars Universalis, one came to Leibniz after Huygens’ death (I signal that this copy contains Huygens’
annotations), occurred in 1695, and the other derived similarly from Martin Knorr’s library (Hofmann
[2008], p. 76, Mahnke [1925], p. 29). The copy of Knorre (catalogued as Marg. 98) contains also a
reissue of the VCHQ , annotated by Leibniz. The annotations are obviously later than 1676, and may
be dated to the end of XVIIth century.
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research on the quadrature of figures based on a method for transforming a given plane

bounded region into an equivalent surface.21

Conclusively, important scribal evidence shows that Leibniz became conversant, during

the years 1673-1676, with Gregory’s attempts to prove the impossibility of squaring

the central conic sections analytically, and criticized them by reenacting and deepening

Huygens’ objections. Moreover, there is room to argue, as I will explicate at length in this

chapter, that the structure, the rationale and the content of Leibniz’s proposition LI of

the De Quadratura Arithmetica, which expounds Leibniz’s result about the impossibility

of squaring the circle analytically, were crucially shaped by his reading of the published

pieces which composed the controversy between Gregory and Huygens.

8.2 The arithmetical quadrature of the circle, its main re-

sults

8.2.1 Looking backward onto Leibniz’s quadrature of the central conic

sections

As I said in the beginning of the chapter, the ultimate draft of the De quadratura arith-

metica ended, according to the evidence in our possession, with the following theorem,

considered by Leibniz: "the crowning of his contemplation":22

Impossibile est meliorem invenire Quadraturam Circuli Ellipseos aut Hyper-

bolae generalem, sive relationem inter arcum et latera, numerumve et Loga-

rithmum; quae magis geometrica sit, quam haec nostra est.23

According to my reading, Leibniz introduces, in the above statement, two equivalent

impossibility claims (this may be the sense conveyed by the disjunctive particle "sive"),

via two comparatives. Firstly, Leibniz states that it is impossible to find a better general

quadrature that his own, namely better than the solution he has found and presented

in the very treatise concluded by proposition LI. Secondly, Leibniz excludes that one

might express a more geometrical relation between arcs and subtending chords (latera)

21See, in particular, Hofmann [2008], p. 86-89.
22"Coronis erit contemplationis hujus nostrae" (AVII 6, n. 28, p. 349; 51, p. 674).
23AVII6, 51, p. 674: "It is impossible to find a better general quadrature of the circle, the ellipse or

the hyperbola, or a relation between the arc and its chords, or between the number and its logarithm,
which is more geometrical than our own".
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or between logarithms and numbers than the ones he discovered and expounded in the

De Quadratura Arithmetica.

In order to understand the significance of Leibniz’s impossibility claim, I deem therefore

important to delve into the content of the positive part of the De quadratura arithmetica,

in which Leibniz offers a solution to the problem of squaring the central conic sections

(the circle, the ellipse and the hyperbola).

A survey of the structure of De quadratura arithmetica shows that this treatise may be

divided in three sections.24 A first part (propositions 1-11) contains Leibniz’s attempt

to give a rigorous justification to the infinitesimal techniques on which his inquiry on

quadratures was based.25 A second part, which spans from proposition 12 to proposi-

tion 25, contains a set of preparatory theorems for the quadratures of the circle and the

hyperbola, which are offered in the third part (proposition 26-51). Indeed, from propo-

sition 27 to proposition 32, Leibniz presents the arithmetical quadrature of a sector of

the circle, obtained by expressing the area of the sector by means of an infinite series,

and deduces what can be called, nowadays, the alternate converging series for π
4 , namely:

π
4 = 1− 1

3 +
1
5 − . . .+ (−1)n

2n+1 + . . . 26 Then, from proposition 42 to proposition 50, Leibniz

deals with the arithmetical quadrature of the hyperbola. Finally, proposition 51, the

‘crowning’ of Leibniz’s treatise, contains his result concerning the impossibility of a more

geometrical quadrature of the central conic sections.

As it appears from this survey, Leibniz presented his impossibility result only after hav-

ing explicated his own method for quadratures, and having exhibited a solution to the

quadrature problems. Leibniz operated, therefore, a reversal with respect to the struc-

ture of the VCHQ. In this work, let us recall, Gregory set out to investigate whether

an analytical (i.e. algebraical) method for squaring the central conic sections might be

given, before entering the pars construens of his inquiry.

24Knobloch [1989], p. 139.
25As remarked in AVII6, p. XXIV, Leibniz occupied himself with this justification from 1675 onwards

(see in particular AVII6, 14, dating from early 1676, AVII6, 20, from Spring 1676, and the latest version
of the De Quadratura Arithmetica AVII51, propositions I-XI. The methodological aspect of Leibniz’s
research into the arithmetical quadrature was neglected until very recently, with perhaps the sole excep-
tion of the pioneering work of L. Scholz. Nowadays, it has been unravelled by several scholarly studies. I
will refer in particular to the following essays: Knobloch [1999a], Knobloch [2002] and Knobloch [2008].
See also the recent: Arthur [2013].

26See Child [1920], p. 163; Dutka [1982], p. 117, p. 121.
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On the contrary, the order followed by Leibniz is perhaps indicative of the stages through

which his research proceeded. Indeed, as the available manuscript evidence can show us

today, Leibniz firstly discovered the arithmetical quadrature of a sector of the circle,

probably already in 1673,27 then he generalized his method to the hyperbola28 and only

in the last stance, he set out to give a foundation of his method and to establish its limits,

by arguing the impossibility of attaining a ‘more geometrical’ result, for what concerns

the quadrature of a central conic sector.

In what follows, I shall advance a reconstruction of the pattern which led Leibniz to the

discovery of the arithmetical quadrature of a circular sector, and on this basis, to the

deduction of his series for π
4 . In order to accomplish this reconstruction I will directly rely

on Leibniz’s drafts of De quadratura arithmetica from 1674 (namely: AIII1, 39, AVII6, 4)

and 1675 (AIII1, 72, 73), and only indirectly on the De quadratura arithmetica itself. In

fact, although most of the results obtained in 1674 and 1675 drafts were later conflated in

the final version of the treatise, Leibniz privileged, in De quadratura arithmetica, a stricter

deductive ordering and a synthetic presentation of his results, which are reformulated in

the classical language of Euclid’s theory of proportions. This ‘synthetic style’, possibly

chosen in view of a publication, has the disadvantage to conceal the original process

of discovery and the possible influences exerted by other mathematicians on Leibniz’s

quadrature techniques.

As a general, preliminary remark, let us point out that the technique on which Leibniz

relied in order to solve the problem of squaring the central conic sections differs from the

one employed by Gregory in the VCHQ on one fundamental aspect. Whereas the latter

employed an ingenious variant of the Archimedean method of inscribed and circumscribed

polygons, avoiding therefore infinitesimal considerations, in order to construe a conver-

gent sequence to the sector,29 the essential background of the method applied by Leibniz

27For the datation of the first fragments, see: Probst [2006b] and Probst [2008a].
28The drafts of the De quadratura arithmetica discussed, until 1676, only the case of the circle; sub-

sequently, Leibniz decided to expand his treatise in order to countenance the case of the hyperbola too.
This conclusion is supported by the analysis of the relevant drafts. Let us remark, in particular, that
the quadrature of the hyperbola is indeed absent from the drafts of the De quadratura arithmetica until
half 1676 (cf. Quadraturae circuli Arithmeticae pars secunda, AVII6, 28).

29It should be pointed out, though, that the Archimedean process consisting in ‘squeezing’ a circle
by two sequences of inscribed and circumscribed polygons was a technique relying on infinitesimals, in
Leibniz’s opinion. Leibniz wrote, for instance, in his Accessio ad Arithmeticam Infinitorum (end of 1672):
"Archimedes jam olim usus est Arithmetica Infinitorum atque Indivisibilium Geometria, inscriptisque
atque circumscriptis in Dimensione Circuli, in de Sphaera et Cylindro, in Quadratura Parabolae: et
Geometriam quidem Indivisibilium resuscitavit nostro seculo Cavalerius obstetricante atque probante
Galilaeo; Wallisius Arithmeticam Infinitorum, Jac. Gregorius inscripta ac circumscripta; et vero nisi
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in order to solve the quadrature of the circle was Cavalieri’s method of indivisibles.30

8.2.2 Towards the arithmetical quadrature of the circle: the transmu-

tation theorem

Leibniz’s path towards the arithmetical quadrature of the circle might be ideally divided

in two parts, that we can call ‘geometrical reduction’ and ‘analytical solution’.31 The

nova ex indivisibilibus et infinitis Lux affulgeat et ars analyseos provehatur, nulla spes est provehendae
magnopere Geometriae", AII1, 109, p. 343.

30Hofmann [2008], p. 51. During the second half of XVIIth century, it was indeed common indeed,
as displayed by several examples and discussions in the works of Wallis, Mercator or Pascal, to conceive
a surface not as the aggregate of all its ordinates without breadth (according to Cavalieri’s ideas), but
as being covered by infinitely many small parallelograms. At any rate, the ‘correct’ way to conceive the
concepts of indivisible and infinitesimal was a debated issue at the time (Cf. Giusti [1980], Andersen
[1986], Malet [1996], among others), and the same mathematician could entertain eclectic opinions on the
issue. It is worth mentioning here the case of Wallis, for instance, who adopted a rather tolerant attitude,
at least in his De Sectionibus Conicis Nova Methodo Expositis, Tractatus (1655) an in his Arithmetica
infinitorum (1656), by admitting either the cavalierian interpretation consisting in considering the surface
of a plane region as an aggregate of parallel lines, or the interpretation consisting in considering a surface
as filled with infinitely many parallelograms with small base. Thus he wrote in his treatise on conic
sections: "I suppose, from the beginning (after Bonaventura Cavalieri’s Geometriam Indivisibilium) that
any [portion of] plane consists, as it were, of infinitely many parallel [straight] lines, or rather (as I would
prefer) of infinitely many parallelograms equally high, the altitude of each of which is 1

∞ of the total
altitude, that is, an infinitely small aliquot part (for ‘∞’ denotes an infinite number), so that the altitude
of all [such parts] taken together is equal to the altitude of the figure." (tr. Pasini [1993], p. 45-46).
Few lines after, Wallis justifies his scarce interest in taking a side with respect to the question about the
real nature of the indivisibles, on the ground that both interpretations evoked in the passage above are
operationally equivalent (Wallis [1695, 1693, 1699], vol 2, pp 4-5). Also Pascal endorsed, in his Lettres
de A. Dettonville, contenant quelque une de ses inventions de géométrie, an interpretation of indivisibles
as rectangular strips of infinitesimal coarseness, that will influence in particular Leibniz’s early views on
the subject. Leibniz firstly started to employ the term ‘indivisible’ according to the pascalian definition
and use, that he thus paraphrased and understood in a consideration from early 1673: "Note: in the
same way as it is necessary in equations in geometry, when lines are compared with surfaces or surfaces
with solids or lines with solids, that a unity is given (whence in numbers equations between dimensions
of different degrees are freely admitted), so it is necessary in the geometry of indivisibles, when it is said
that that the sum of lines is equal to some surface or the sum of surfaces to some solid, that a unity
be given, that some line is given, of course, as whose applicates they are understood, or that they are
multiplied into one of the infinitely many equal parts of that line each of which denotes the unity, so
that infinitely many surfaces are generated, though they are smaller than any given surface" (AVII4,
10, p. 135; english translation by Probst [2008b], p. 102). Hence Leibniz, on the ground of his reading
of the Lettres de Dettonville, considered himself entitled to employ the expressions: "the sum of lines
is equal to a surface" or "the sum of surfaces is equal to some solid", using the word ‘sum’ (instead of
‘aggregate’) without violating homogeneity. In fact he understood by ‘line’ a rectangle with infinitesimal
base, whose role was analogous to that of the unity, which suitably multiplied by a given magnitude can
re-establish homogeneity between non-homogeneous terms of an equation (Cf. also Pasini [1993], pp.
52-53; Mahnke [1925], p. 32; Probst [2008b], especially pp. 100-103).

31Such a division does not mirror the organization of the final draft of De quadratura arithmetica, but
corresponds to a a thematic partition present more evidently in the first known couple of manuscripts of
this treatise, dating from Autumn 1673 (AVII4, 421, 422), where, Leibniz had distinguished a "reductio
geometrica" - a geometrical reduction (AVII4, 421), and a "solutio analytica" (AVII4 422), and in the
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first part consists in reducing the problem of squaring an arbitrary sector of a central

conic, delimited by an arc of the given curve and the chord joining its extremities to

the problem of squaring another curvilinear figure, named "figura resectarum" or "figura

segmentorum" in the De quadratura arithmetica, whose surface is the double of the conic

sector.32

This reduction is effectuated through a purely geometric construction method, called

by Leibniz: "transmutatio",33 which does not hold merely for the conic sections, but

for a larger class of curves, although Leibniz originally applied this transmutation to a

a circular segment,34 i.e., according to Euclid’s definition: "the figure contained by a

straight line and the circumference of a circle" (Elements, df. 6, book III).

The transmutation theorem is a fundamental stage in Leibniz’s pattern towards the

solution of the circle-squaring problem, as he still acknowledged, almost forty years after

its original formulation, in Historia et Origo Calculi differentialis .35 Let us then consider

the general case, and assume that a ‘smooth convex’36 curve η is given (fig. 8.2.1). With

vertex in one of its points A, let a right angle BAT be traced as in fig. 8.2.1. The ray

AB is called by Leibniz "axis", and AT is called "conjugate axis". Let us then consider a

sequence of points Ci arbitrarily chosen on the curve, and draw, from each of these points,

excerpts sent to Huygens, La Roque and Gallois (AIII1, 39, 72, 73).
32In Leibniz’s corpus of manuscripts concerning quadrature problems, an explicit definition of figura

segmentorum can be encountered, among others, in the following places: AVII6, 4, p. 53, AVII6, 8, p.
94, AVII6, 20, p. 202, AVII6, 51, p. 539. On the other hand, the analogous expression Figura resectarum
occurs at AVII6 51, p. 535.

33The term ‘transmutatio’ (see AVII4, 11, for one of the first uses of the term by Leibniz) was current
in the geometrical practice of the second half of XVIIth century, and it was probably borrowed by Leibniz
from Van Heuraet’s Epistola de transmutatione curvarum linearum in rectas, where the word appears in
the very title, or from Gregory’s Geometriae Pars Universalis (Mahnke [1925], p. 10). Let us observe,
however, that in Van Heuraet it denoted in particular the transformation of an arc into a straight lines,
namely, a rectification. It is not the case in Leibniz, where the term denotes the construction of a curve
from a given one.

34On the ground of the extant manuscripts, we can establish that this theorem generalizes to sectors
of arbitrary curves a result on the surface of circular segment delimited by an arc and its subtending
chord, firstly discovered in 1673 (see AVII4, 421; AVII6, 1, p. 5). Generalizations of this theorem appear
in the drafts of the De Quadratura Arithmetica from 1675 onwards. I refer, in particular, to the version
sent to La Roque (see for instance AIII, 72, p. 341; 347), and to the subsequent AVII6, 14, p. 140, VII6,
51, proposition VII, p. 533-534.

35See Child [1920], p. 41ff.
36By this, I refer to a continuous curve, without inflection nor vertical points. The first condition

(in other words, the curve should contain no gaps) is indispensable, since Leibniz explicitly requires to
take neighboring points on the curve. The second and third conditions are imposed by the construction
protocol in order to trace the companion curve, that I will summarize in the text, but they can be easily
circumvented by suitably dividing the curve into portions (Knobloch [2002], p. 63).



CHAPTER 8. THE ARITHMETICAL QUADRATURE OF THE CIRCLE 378

lines parallel to AT , meeting AB in corresponding points Bi (segments BiCi are called

by Leibniz "ordinates"). Hence, from each point Ci, let the tangents CiTi be produced

so as to meet AT in corresponding points Ti. From each Ti, let the perpendicular to AT

be dropped so as to meet the corresponding segments CiBi in a point Di.

Leibniz claims that points Di will form the locus of a new curve γ such that the area

of an arbitrary segment
⌢

ACiA, delimited by an arc of η curve and by its subtending

chord, is half of the corresponding figura segmentorum, namely the trapezoid ADiBiA

delimited by the curve γ, by the ordinate BiDi and by the axis AB.37

In order to prove that the ratio between the segment
⌢

ACiA and the trapezoid ADiBiA

is 1
2 , Leibniz applies one of the chief principles of the method of indivisibles: if two plane

(or space) regions A and B are subdivided into indivisibles, or into an infinite number of

small rectangles (or prisms), such that there is a one-to-one correspondence between each

infinitesimal element of A and each elements of B, and that corresponding infinitesimals

have equal areas (or volumes), then A and B have equal area (or volume).38

Instead of dividing the segment
⌢

ACiA into an infinite number of small rectangles, as

it was current in early modern geometric practice, Leibniz chooses to divide the figure

at hand into an infinite number of curvilinear triangles, having their common vertex in

point A, and small arcs of the curve η for basis. In Leibniz’s parlance, the basis of these

triangles touching the curve would constitute the sides of an inscribed "infinitangular

polygon".39

The reason of such a triangular division will become clear in the light of what follows. In

fact, let us consider two neighboring points C ′
2 and C2 on a given curve η (in fig. 8.2.2).

Let AC ′
2C2 be the triangle with vertex in A and basis C ′

2C2, and let B′
2C

′
2 and B2C2 be

the ordinates passing through C ′
2 and C2. Let T2 be the intersection point between AT

37See, in particular, AVII6, 14, p. 140ff. AVII6, 51, pp. 533ff. I notice that whereas in AIII, 1, 72,
(p. 342) the right angle BAT is required to have its vertex on the curve, this requirement falls in the
subsequent versions of the De Quadratura Arithmetica (cf. for instance AVII6, 51, p. 533), so that the
right angle can be placed anywhere in the plane. This modification in the text of the theorem does
not change its content (as we might say, the relation between a segment and its figura segmentorum is
invariant by rigid displacement of the referential frame), but it might show that Leibniz was moving
towards a conception of an orthonormal referential frame, lying in the plane and fixed before drawing
other figures in it.

38Cf. Chisini [1912], p. 106.
39Cf. AIII1, 72, p. 341.
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Figure 8.2.1: Construction of a figura segmentorum.

and the tangent C ′
2C2 to the curve η.40 From T2, let the perpendicular to AT be traced,

such that it meets B′
2C

′
2 and B2C2 in points D′

2 and D2, respectively.

From this construction, it follows that the area of the triangle AC ′
2C2 is half the area of

the rectangle with sides B2D2 and D′
2D2. In order to prove this relation, let a segment

AO be drawn, perpendicular to line C2C
′
2 extended, and let the right angled triangle

C ′
2NC2 be constructed, with C ′

2C2 as hypothenuse, and C ′
2N , C2N as legs (see fig. 8.2.2.

Leibniz called this triangle "triangulum characteristicum"). In virtue of the similarity of

triangles C ′
2NC2 and AOT2 (both right-angled triangles), the following proportion holds:

C ′
2N : AO = C ′

2C2 : AT2.

40Leibniz requires both points C′
2 and C2 to lie on the curve, therefore the line passing from C′

2 and
C2 is strictly speaking, a cord lying on a secant to the curve. But since the distance between these two
points is taken very small or, as Leibniz would say, "infinitesimal" (see for instance: AIII, 1, 72, p. 341),
the cord C′

2C2 becomes indistinguishable from the tangent to η in C2 (or C′
2). Leibniz can therefore

consider C′
2C2 as a tangent to the curve, as we read in the draft of the De Quadratura Arithmetica sent

to La Roque: ". . . or ces bases ou costez du polygone [namely the infinitangular polygon formed by the
chords] prolongez sont les touchantes de la courbe" (AIII, 1, 72, p. 341).
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Figure 8.2.2: Figura segmentorum.

Therefore, the rectangle built on segments C ′
2N (=D′

2D2 by construction) and AT2 (=

B2D2 by construction) is equal to the rectangle built on AO and C ′
2C2. But the rectangle

built on AO and C ′
2C2 is the double of the triangle AC ′

2C2 (whose basis is AC ′
2C2 and

height AO, by construction). Hence, the rectangle with sides B2D2 and D′
2D2 is the

double of the triangle AC ′
2C2.

Since the chords C ′
2C2 are taken of infinitesimal length, the rectangular strip B′

2D
′
2D2B2

will have infinitesimal thickness too, and will coincide with the subtangent to the curve

η at point C2. By applying an inferential path commonly accepted in infinitesimal tech-

niques, Leibniz could conclude that the ratio between the aggregate of all the triangular

strips Ti all concurrent in A, and the aggregate of all the rectangular strips Ri, with
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length equal to the subtangents in Ci was:41

∑h
i=1 Ti∑h
i=1Ri

=
1

2
. (8.2.1)

Since the aggregate of all the triangular strips fills in the surface of the segment
⌢

ACiA,

and the aggregate of all the rectangular strips fills in the surface of the trapezoid ADiBiA

, namely the figura segmentorum, it follows that:

⌢

ACiA

ADiBiA
=

1

2
.

This is the core of the analytic solution to the arithmetical quadrature of the circle, which

allows Leibniz to measure the surface of any segment of a circle indirectly, by measuring

the area of the trapezoid obtained from it through a suitable application of the method

of transmutation.

8.2.3 Towards the arithmetical quadrature of the circle: the generation

of the ‘anonymous’ curve

Since the result sketched in the previous section holds for the case of the circle too,

Leibniz could rely on it, in order to find the ratio between the area of a segment
⌢

AC2A

of a circle with center B and radius BA (fig. 8.2.3 below) and its corresponding figura

segmentorum AD2B2A. In this way, the problem of squaring a circular segment was

reduced to the squaring of another curvilinear figure.

Apparently, the problem of squaring the latter figure can be equally difficult as that of

squaring the former, since the figure to be squared is still bounded by a curve, whose

nature is, in principle, unknown. But Leibniz showed, as I will expound below, that that

the area of the figura segmentorum obtained from a segment of the circle could be easily

41See Child [1920], p. 39, Mahnke [1925], p. 10-11; Hofmann [2008], p. 54-56. In the expression
below, the symbol: ‘

∑h

i=1 Ti’ indicates the operation of ‘filling’ a certain surface, as a circular segment,
with infinitely many triangles (h must be taken as an infinite number) having as basis a an infinitely
small part of the arc, or, in the terminology of the theory of indivisibles, it indicates the ‘aggregate of
all cords’ filling the surface of the figure.
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Figure 8.2.3: Figura segmentorum associated to the circle.

found by applying a procedure originally developed by Mercator in order to square the

hyperbola.

Let us return, by now, to the problem of describing the figura segmentorum associated

to a circular segment. The first step undertaken by Leibniz, as it clearly shines through

the account presented in the drafts to Huygens, for instance, consists in characterizing

the curve generated by transmutation from the circle (marked in fig. 8.2.3 below) via its

algebraic equation.42

Let us consider the arc of circle
⌢

AC2, whose tangent in C2 intercepts, in a point T2, the

tangent in the other extremity A . Leibniz calls AT2 "tangent of the arc
⌢

AF", with F

midpoint of
⌢

AC2. The other tangent segment C2T2 is then extended to the point O,

foot of the perpendicular drawn from A. Obviously AO is parallel to the radius BC2.

42See in particular the piece sent to Huygens (and its drafts) from 1674: AIII, 1, 39, p. 142ff.; AVII6,
8, p. 92ff. See also AVII6, 51, pp. 527-528.
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Leibniz then goes on to define two other segments: AB2, the ‘sinus versum of the arc
⌢

AC2’, according to the current terminology borrowed from classical trigonometry, and

segment B2C2, the ‘sinus rectum’ of the same arc.43

In virtue of the similitude between triangles BAT2 and AB2C2, the following proportion

ensues: AT2 : AB = AB2 : B2C2. Since AT2 and B2C2 are parallel, and so are AO

and BC2 (this is by construction), triangles AOT2 and BB2C2 are similar, therefore a

second proportion ensues: AO : B2C2 = AT2 : BC2. But it can be easily proved that

AO = AB2 (in fact triangles C2GT2 and AOT2 are similar: the angles OT2A and GT2C2

are equal because opposite, whereas angles OAT2 and GC2T2 are both complementary

of the equal angles OT2A and T2C2B2, and therefore are equal between them). Hence:

AB2 : B2C2 = AT2 : BC2 , or AB2 : B2C2 = AT2 : AB.

Leibniz then proceeds according to the canon of cartesian analysis,44 and names: AB2 =

x, AB = BC2 = a, AT2 = y. From the proportions derived above, he can infer B2C2 =√
2ax− x2 and, from AT2 : AB = AB2 : B2C2, the following:

y =
ax√

2ax− x2

In order to eliminate the irrational quantity figuring in the quotient, Leibniz rewrites the

above expression so as to obtain: y(
√
2ax− x2) = ax , then raises both members to the

square and derives the following equation:

x =
2ay2

a2 + y2
(8.2.2)

Equation 8.2.2 expresses the relations between the distances (here understood not as

lenghts, but as segments joining the points orthogonally to a straight line) from any

point Di, constructed according to the protocol above, to the tangent AT (extended)

and to the radius AB, respectively. Therefore this equation defines a curve, locus of all

43It is easy to translate the ‘sinus versum’ and ‘sinus rectum" in a modern terminology. Setting the

radius AB = 1, we can assume:
⌢

AC2 = θ (θ expresses the measure of the arc
⌢

AC2 in radians), and:
AB2 = 1− cos θ, B2C2 = sin θ.

44He explicitly refers to cartesian calculus, for instance in III, 39, p. 154, 142.
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points Di. Since the equation is algebraic, the curve is geometrical, in cartesian sense,

and can be constructed by continuous motion via a suitable geometric linkage.

Leibniz never constructed this curve by continuous motions, at least to my knowledge, al-

though he often represented it, in his diagrams, as a continuously drawn curve, and stud-

ied its properties.45 This curve was even left without a proper name in the De Quadratura

Arithmetica, but, as revealed by early occurrences, was initially called "anonymous". We

read, for instance, in the draft sent to Huygens in October 1674:

J’ose bien l’appeler Anonyme par excellence, car quoyqu’elle soit sans nom,

elle est pourtant une des plus considérables après les Coniques, et beaucoup

plus simple que la Cissoeide ou la Conchoeide, n’estant que de troisiesme

degrez, si les Coniques sont du deuxieszme, et outre cela estant du nombre

de celles que j’appelle Rationelles.46

The "anonymous curve" is indeed simpler than the conchoid or the cissoid, if we refer,

as Leibniz certainly did, to the cartesian idea of the simplicity of a curve, measured by

its degree. On the other hand, Leibniz calls the curve "rational": by this, he arguably

means that its associated equation, when it is written in the form: x = f(y) or y = f(x),

does not contain any irrational expression.47

In the 1680s (see for instance LSG5, p. 123), Leibniz called this anonymous curve a

"quadratrix" of the circle: this name that does not bear any relation to the quadratrix

of the ancients, which was a transcendental curve instead. In Leibniz’s later terminology,

the word ‘quadratrix’ refers, in general, to a curve which enhances the quadrature of a

figure bounded by another given curve, as it is the case of the quadratrix of the circle.

This further stage will be explored in the next sections.

45For instance, see AIII, 1, 39, p. 157.
46AIII, 39, p. 156, p. 163, . In his reply (Cf . AIII, 40, p. 170) Huygens proposed to call thus curve

"en luy donnant quelque nom composè des noms de deux lignes dont je trouvois qu’elle estoit produite,
qui sont le Cercle et la Cissoide des anciens". Huygens’ proposal is clear if we consider the analytical

expression of the curve: in fact, each ordinate y can be expressed as: y = x2√
2ax−x2

+
√
2ax− x2 =

ax√
2ax−x2

. With Huygens, we can recognize, in the first term: x2√
2ax−x2

, the expressions of the ordinates

of a cyssoid in terms of its abscissae, and in the second one the expressions of the ordinates of the circle.
47I interpret in this way Leibniz’s definition: "Figuram rationalem voco cujus abscissae sunt rationales

ad ordinatas vel ordinatae ad abscissas, id est quae aequatione exprimi possunt in qua unius incognitae
valor purus simplexque est" (AIII, 39, p. 142: "I call rational figure, whose abscissae are rational to the
ordinates, or the ordinates to the abscissas, i.e., which can be expressed through an equation, in which
the value of one of the unknown is pure and simple"). See also AIII, 1 73, p. 359.
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8.3 A digression: Mercator-Wallis technique for the quadra-

ture of the hyperbola

The second step of Leibniz’s quadrature of the circular segment
⌢

AC2A consists in finding

the area of the associated figura segmentorum by an analytical computation involving

infinite series. Once obtained this result, the area of the circular segment can be derived

in virtue of the simple proportion relating it to the figura segmentorum.

As the exam of the extant manuscripts tells us, Leibniz’s process for squaring the figura

segmentorum essentially depended on the method employed by Mercator in order to solve

the quadrature of an hyperbolic sector, in his treatise: Logarithmotechnia: sive methodus

construendi logarithmos nova, accurata, et facilis ("Logarithmotechnia: or new, accurate,

and easy method of constructing logarithms", 1668), and on the account of this book

given by Wallis, in two letters from July and August 1668 appeared in the Philosophical

Transactions (cf. Wallis [1668b]).48 In this section, I will go through Mercator’s and

Wallis’ quadrature of the hyperbola, and explain in the next section how Leibniz could

apply their methods to the case of the circle too.

Mercator’s quadrature of the hyperbola represents one of the principal results of the

Logarithmotechnia, a treatise dedicated to the properties of logarithms. The connection

between logarithms and the surfaces of hyperbolic sectors, namely, the spaces bounded

by the hyperbola and individuated by a segment on the abscissa and by the normals to

the hyperbola taken from the endpoints of the segment, was made clear during XVIIth

century, especially thanks to the works of Gregoire of St. Vincent and Sarasa.49

It must be recalled that the term ‘logarithm’ does not characterize the same notion for

us and for early modern geometers. In the context of early modern geometry, instead,

logarithms were understood as: "numbers with constant differences matched with num-

bers in continued proportion".50 In other words, logarithms appeared primarily in order

to study and evaluate numerically the correspondence between arithmetical and geo-

metrical progressions. Let us consider, for instance, a geometric sequence: a1, a2, a3,

48Indeed both works have been studied by the young Leibniz. Leibniz’s reading of the Logarithmotech-
nia can be dated, from his marginal notes, to 1673 (see VII3, 6, 8). On the other hand, Leibniz quoted
Wallis’ account already by the end of 1672 (See for instance: AVII3, 6, p. 107). Leibniz recalled the
importance of Mercator also in the later work Historia et Origo (Child [1920], p. 45).

49For a reconstruction of Gregoire’s and Sarasa’s contribution to the history of logarithms, see Burn
[2001].

50Burn [2001], p. 4. Burns is citing here Briggs’ definition in Arithmetica logarithmica (1624).
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. . . and an arithmetical sequence: b1, b2, b3, . . . The terms of the second sequence were

called ‘logarithms’, while the terms of the first sequence were called: ‘numbers’, provided:

bk+ bl = bm whenever ak ·al = am.51In a slightly anachronistic terminology, a one-to-one

functional correspondence between the two sequences can be described by the functional

equation:

f(ak · al) = f(am) = f(ak) + f(al).

As proved by Gregoire of St Vincent and De Sarasa,52 given an equilateral hyperbola

with asymptotes AE and AN (fig. 8.3) and taken on AN a succession of segments Ir,

IK, IL, IO forming a geometric progression, the sectors BIru, urKP , PKLQ, QLOR

are equal. This property made the equilateral hyperbola an appealing graphical model

of logarithmic relations. In fact, according to the definitions given above, the terms ak

in arithmetical progression (with respect to the hyperbolic model, such terms will be:

BIru, BIKP , BILQ, BIMR) will be called: ‘logarithms’ while the terms Ak (with

respect to the hyperbolic model, these terms will be: Ir, IK, IL, IO, . . .) are their

‘numbers’.

Consequently, a method that allows the geometer to square the hyperbola, for instance

by expressing its area as the (numerical) sum of small inscribed rectangles (as it will

be done by Mercator), will therefore turn out useful for the numerical computation of

the logarithms of given numbers. For this reason, Mercator dedicated the third part

of his treatise (propositions XIV-XIX) to the problem of finding the quadrature of an

hyperbolic sector.

Mercator’s achievement is mentioned in several occasions by Leibniz in the De quadratura

arithmetica (AVII6, 51, p. 566, 596-597, 616, 641-642), and in two introductory drafts

to the treatise (VII6. 41, p. 438, 49, p. 510). This couple of drafts, in particular, cast

light on the intellectual influence exerted by Mercator’s achievement on Leibniz. For

instance, in the middle of a long digression on the history of quadratures, Leibniz praises

Mercator’s method with these words:
51See Knobloch [1988], p. 297, and Whiteside [1961], p. 215. The computational advantage introduced

by logarithms consisted in replacing the operation of multiplication with that of addition. This was, as
Whiteside notes: "A cherished ideal when there were no automatic computing techniques at more than
the most elementary level" (Whiteside [1961], p. 216).

52See Burn [2001], for a detailed account.
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Figure 8.3.1: Hyperbola: logarithmic relation.

Mercator diversa plane ac pereleganti ratione rem longius produxit: consid-

eravit enim numerum fractum exprimi posse serie integrorum infinita, (a)

ut 1
1+x

esse aeqvale qvantitati: 1 − x
1+x

et x
1+x

aeqvari huic x − x2

1+x2 et
x2

1+x
huic x2 − x2

1+x
et ita porro, ac proinde omnibus collectis aeqvari 1

1+x

seriei 1 − x + x2 − x3 etc. (aa) Jam per arithmeticam infinitorum summa

omnium 1 est x novissima; et summa omnium x est x2

2 novissima (bb) Sit

jam curva cuius abscissa sit x, ordinata 1
1+x

, qvalis est Hyperbola erg. | vel

1−x+ x2−x3 etc. erit summa omnium ordinatarum praecedentium seu area

figurae, x
1−

x2

2 + x3

3 −

x4

4 etc ut notum est ex qvadraturis parabolarum.53

We can recognize here the well-known expansion of the fraction 1
1+x

(where x < 1 is

opportunely assumed, in order to guarantee the convergence of the series) into the infinite

53AVII6, 41, p. 438: "Mercator greatly improved the issue [namely, the problem of quadratures] in an
utterly peculiar and very elegant way: he considered that a fractional number can be expressed by an

infinite series of integers, such that 1
1+x

is equal to the quantity: 1− x
1+x

, and x
1+x

is equal to x− x2

1+x2 ,

and x2

1+x
to x3 − x2

1+x
and so on, and therefore once all the terms have been collected 1

1+x
is equal to the

series: 1−x+x2−x3 . . . Indeed, in virtue of the arithmetic of the infinites, the sum of all ones is the last

abscissa (novissima) x; and the sum of all x is the last abscissa (novissima) x2

2
. Let indeed a curve, like

the hyperbola, whose abscissa is x, and ordinate 1
1+x

, or 1−x+ x2
−x3 etc. the sum of all the previous

ordinates or the area of the figure will be x
1
−

x2

2
+ x3

3
−

x4

4
etc, as it is known from the quadratures of

the parabolas".
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series 1− x+ x2 − x3 . . ., which is effectively done in Mercator’s Logarithmotechnia (see

Mercator [1668], prop. XV, p. 30) and represents a crucial step in order to square an

hyperbolic sector (Mercator [1668], prop. XVI, p 31). As we read in the passage above,

in order to divide 1 by 1 + x, Leibniz simply set: 1− x
1+x

= 1−R, and found R (in this

case, R = x
1+x

), then set: R = x+S, and found S, and so on. Continuing this division in

infinitum, he obtained the same result obtained by Mercator, namely the power series:
1

1+x
= 1− x+ x2 − x3 . . . .54

This result is central for Mercator’s quadrature method. In order to give an idea of the

procedure which led to the quadrature of an hyperbolic sector, I will offer a reconstruction

of the technique exposed in propositions XIV-XIX of the Logarithmotechnia, on one

hand,55 and of the interpretation given by Wallis in his account of the book appeared in

the Philosophical Transactions , on the other.

Mercator’s procedure starts from the consideration of an hyperbola FBM (fig. 8.3), such

that its latus rectum is equals to its latus transversum, and with asymptotes AE and AN

forming a right angle in A. By setting AI = BI = 1, and IH = a, Mercator deduces, in

a purely geometrical way, that: FH = 1
1+a

.56

Mercator then develops the fraction 1
1+a

according to the method seen above, so as to

obtain the equality: 1
1+a

= 1−a+a2−a3+a4 . . ..57Since 1 denotes a segment (Mercator

posits: AI = BI = 1), also the expressions: "a", "a2" (and so on) figuring in the right-

hand member of the previous equality ought to be, by homogeneity, segments. Therefore

Mercator can write the following equality down: FH = 1− a+ a2 − a3 + a4 . . . .58

54The same process is resumed, with respect to the case of an arbitrary fraction a
b+c

, in De quadratura
arithmetica (AVII6, 51, p. 596).

55Mercator’s quadrature of the hyperbola has been discussed in Coolidge [1950], in Edwards [1994], p.
162-165 and in Ferraro [2008], p. 19-20.

56Mercator [1668], p. 28-29; Wallis [1668b], p. 753. Mercator proves the proportion: AH : AI = BI :
FH. This proportion holds in virtue of the well-known equivalence of all rectangles having one vertex
coincident with the center of the hyperbola, while the opposite vertex lies on the hyperbola, and both
sides lie on the asymptotes. Although neither Mercator nor Wallis refer to the hyperbola by means of
its equation, it can be evinced from their accounts that the hyperbola has equation y = 1

x
referred to its

asymptotes.
57Mercator [1668], prop. XVI, p. 30.
58Let us recall that the expansion is valid if a < 1, therefore if IH < AI for the case at hand. Mercator

omits to state this condition explicitly. However the condition of convergence is explicitly remarked by
Wallis (Wallis [1668b], p. 754). I also note that this part of the Logarithmotechnia was carefully read
by Leibniz, as revealed by his marginal notes, (AVII4, 3, p. 49-50).
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In order to square the hyperbolic sector BIru, Mercator proceeds by subdividing the

sector Ir into numerous thin strips, whose basis are formed by equal segments of length

α.59 In order to illustrate his procedure, Mercator supposes Ir subdivided in three

parts of equal length: Ip = pq = qr = α. The sector will be equal to the sum of the

three trapezoids: BIsp, spqt, tqrU ("areolas").60 and can be then approximated by

the corresponding rectangles r(Ip, ps), r(pq, qt) and r(qr, ru). Since AI = 1, we will

have: Ap = 1 + α. Let ps be the segment parallel to the asymptote AE, with s on the

hyperbola: in virtue of the properties of the hyperbola, it will be: ps = 1
1+α

. Accordingly,

the rectangle r(Ip, ps) will have its area equal to: S1 = α · 1
1+α

. If we consider a second

thin rectangle r(pq, qt), with t lying on the hyperbola, then its area will be: S2 = α· 1
1+2α ,

and proceeding in a likewise manner, the third rectangle r(qr, ru) will have area equal

to: S3 = α · 1
1+3α .

Since the hyperbolic sector from I to r is conposed by the trapezoids BIsp, spqt, tqrU

, its approximate surface may be computed by calculating the sum of the corresponding

rectangular strips: S(BIru) ≃ S1 + S2 + S3 = α( 1
1+α

+ 1
1+2α + 1

1+3α). Mercator then

employs to the expansion obtained before, in order to develop the terms 1
1+α

, 1
1+2α , 1

1+3α

59Mercator [1668], proposition XVII, p. 31. The expression employed by Mercator is "aequales partes
innumeras", that may be translated as: "equal, innumerable parts". It seems to me that, on the ground
of Mercator’s way of proceeding, one should understand by this expression that the segment Ir is
potentially divisible into infinitely many parts. Mercator, in his examples, divides it into finitely many
parts, and finds an approximate quadrature of the hyperbola. Since the number of parts in which the
segment can be divided can always be increased, the approximate measure can be improved better and
better.

60Mercator called α: "pars infinitissima" (Mercator [1668], p. 31), probably a deformation of "pars
infinitesima". As Probst notes: "Leibniz seems to have coined the term ‘infinitesimal’ in late spring 1673
and he uses it most more frequently in the summer of that year (. . . ) However there is an interesting
difference in this respect between Mercator and Leibniz: the former does not use the term ‘infinitesimal’,
but instead ‘pars infinitissima’ and he does so both for numbers and for lines (. . . ) Mercator’s expres-
sion signifies a minimal quantity and is therefore terminologically still close to Cavalieri’s indivisibles,
although he in fact employs infinitesimal quantities. By switching to the term ‘infinitesima’, which ef-
fectively paraphrases Wallis’ symbolic expression 1

∞ , Leibniz restores agreement between terminology
and usage" (Probst [2008b], p. 103). This conclusion should be revised, though, in the light of the fact
that Mercator himself changed his terminology in the immediately subsequent years, and adopted the
expression ‘pars infinitesima’. For instance, we read in his article: "Some illustrations of the Logarith-
motechnia", appeared in the Philosophical Transactions n° 38 (1668), pp. 759-764, the following note:
"atque ubicunque, Lector offenderit infinitissimam, legat infinitesimam". This was a reaction to the cri-
tique by Wallis at the beginning of his review of the book, printed in the same issue of the Philosophical
Transactions, and already cited above (cf. Wallis [1668b]). We can therefore conclude that Mercator
himself opted for the word ‘infinitesima’, and Leibniz arguably took this term from Mercator’s article
published in the Philosophical Transactions.
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into power series: 



1
1+α

= 1− α+ α2 − α3 + α4 . . .
1

1+2α = 1− 2α+ 4α2 − 8α3 + 16α4 . . .
1

1+3α = 1− 3α+ 9α2 − 27α3 + 81α4 . . .

Subsequently he adds together the terms in the same power, so as to obtain, for the

rectangular strips filling BIru: S1 + S2 + S3 = α( 1
1+α

+ 1
1+2α + 1

1+3α) = α(3 − 6α +

14α2−36α3+98α4 . . .). This result allows Mercator to compute the area of the sector by

approximating it by means of the formula: A(BIru) ≃ α(3−6α+14α2−36α3+98α4 . . .).

Provided the numerical measure of α (α = Ir
3 in the case at point) is known, the area of

the sector can be approximated numerically. This procedure yields better approximations

of the sector, the more the number of divisions of Ir increases, and the smaller the parts

α are correspondingly taken. By this result Mercator achieves "the squaring of the

hyperbola" ("quadrare hyperbolam", prop. XVII, Mercator [1668], p. 31-32).

It is immediate for us to conclude, for n tending to infinity:61

A(BIru) = nα− α2
i=n∑

i=1

i+ α3
i=n∑

i=1

i2 − . . .+ αk+1
i=n∑

i=1

ik + . . .

However this conclusion is not explicit in Mercator’s text. This step will be explicated, on

the other hand, in Wallis’ account of the book, appeared in July 1668 in the Philosophical

Transactions. Wallis alerts the reader that he has introduced few terminological changes

("pauca quaedam, Phraseologiam quod spectat, seu loquendi formulas nonnullas", Wallis

[1668b], p. 753) with respect to the Logarithmotechnia. However, these changes do not

invest the sole terminology employed by Mercator, as I will unravel in the following.

Wallis refers to the same figure in Mercator’s treatise, namely an hyperbola FBM , such

that its latus rectum equals its latus transversum, with asymptotes AE and AN forming

a right angle in A, and sets AI = BI = 1 and with FH = 1
1+IH

(fig. 8.3). In order to

61I adopt, hereinafter, a modern notation merely for the purpose of conciseness, when it does not (so
it seems to me) disturb the meaning of the original. The symbols "

∑

", with their relative indices and
apices are to be encountered nowhere in XVIIth century mathematical text.
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solve the problem of squaring the hyperbolic sector BIru, Wallis proposes to divide the

segment between points I and r in "aequales partes innumeras". By this expression, we

understand the segment as divided into an actual infinity of equal parts: "α, 2α, 3α . . .

usque ad A", where ‘A’, in this case, represents the length of Ir.62 In order to avoid

confusions with point A (namely the center of the hyperbola in Mercator’s and Wallis’

configuration) I will indicate, from now on, the length of Ir with the less ambiguous

letter ‘X’.

Wallis states, borrowing the terminology of the method of indivisibiles, that the ordinates

corresponding to the subdivision of segment Ir "fill in" (complentes) the hyperbolic

space.63

Hence, the area of the hyperbolic sector BIru might be thought of as the aggregate of the

segments ps, qt, . . . ru, each segment being equal to: 1
1+α

, 1
1+2α ,

1
1+3α , . . .

1
1+hα

(where h

is an infinite number) from I to r (such that Ir = X). We might also think that segments

ps, qt, . . . ru are rectangular strips with heights equal to 1
1+α

, 1
1+2α ,

1
1+3α , . . .

1
1+hα

and

base equal to the small segment α, namely:64

A(BIru) =

i=h∑

i=1

α(
1

1 + iα
)

The second step in Wallis’ method consists in expanding each fraction: 1
1+iα

(i =

1, 2, 3, . . . h), by means of Mercator’s procedure, so as to obtain:

A(BIru) = α[
∞∑

k=0

(−1)kαk] + α[
∞∑

k=0

(−1)k(2α)k] + . . .+ α[
∞∑

k=0

(−1)k(hα)k].

62Wallis is aware that Ir < 1 in order to ensure the convergence of the sum-series, otherwise: "if
one queries the quadrature of a sector BIHF (whose side IH is to be understoos longer than AI) this
procedure will not be successful: because the remedy, as we have said, will not be sufficient to cure the
disease. Since, in fact, we must posit: A > 1; it is evident that its successive powers will become greater,
hence they should not be neglected". Wallis could circumvent this problem, as he described in his Wallis
[1668b], by changing the unity and setting: AH = 1.

63Wallis [1668b], p. 753.
64Cf. Edwards [1994], p. 162-163.
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Collecting the terms containing equal powers of α, we obtain the following infinite sum

for the area of BIru:

α
i=h∑

i=1

(iα)0 − α

i=h∑

i=1

(iα)1 + α

i=h∑

i=1

(iα)2 + . . . (−1)kα

i=h∑

i=1

(iα)k + . . . (8.3.1)

Without further detail, Wallis immediately writes the results of the sums
∑i=h

i=1(iα)
k as:

∑i=h
i=1(iα)

0 = X
∑i=h

i=1(iα)
1 = X2

2∑i=h
i=1(iα)

2 = X3

3∑i=h
i=1(iα)

3 = X4

4
...

And states that the area of the hyperbolic sector BIru is:

A(BIru) = X − X2

2
+

X3

3
− X4

4
. . . (8.3.2)

given Ir = X.65

Wallis’ underlying reasoning might be reconstructed in the following way.66 The formula

8.3.1 can be rewritten as:

A(BIru) = α

i=h∑

i=1

i0 − α2
i=h∑

i=1

i1 + α3
i=h∑

i=1

i2 + . . . (−1)kαk+1
i=h∑

i=1

ik . . .

From which it follows, by setting α = X
h

(since Ir = X):

A(BIru) =
X

h
h− X2

h2
(

i=h∑

i=1

i1) +
X3

h3
(

i=h∑

i=1

i2) + . . . (−1)k
Xk+1

hk+1
(

i=h∑

i=1

ik) . . .

65Wallis [1668b], p. 754.
66I follow here the proposal advanced in Edwards [1994], p. 162ff., to which I am here particularly

indebted.
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In the Arithmetica infinitorum, Wallis had proved, by inductive enumeration from the

cases of k = 2, 3, 4, 5, and for h equal to an infinite number, that the ratio between the

two divergent series
∑h

i=0 i
k and

∑h
i=0 h

k is:67

∑h
i=0 i

k

∑h
i=0 h

k
=

∑h
i=0 i

k

hk(h+ 1)
=

1

k + 1
.

From this, one can derive:

∑h
i=1 i

k

∑h
i=1 h

k
=

∑h
i=1 i

k

hk+1
=

1

k + 1

Hence, Wallis plausibly relied on these results, obtained in the Arithmetica Infinitorum,

in order to concluded:

A(BIru) = X − X2

2
+

X3

3
− . . . (−1)k

Xk+1

k + 1
. . .

which is nothing but the formula 8.3.2.

According to Whiteside (Whiteside [1961], p. 228), Mercator’s power expansion pub-

lished in the Logarithmotechnia inspired Wallis to achieve an ‘exact’ quadrature of the

hyperbolic sector. I substantially endorse this judgement, and stress its historical signifi-

cance: without compunctions, and perhaps for the first time in a published work, Wallis

claims that the area of BIru is equal to the sum-series: X − X2

2 + X3

3 − X4

4 + . . . .

Wallis does not delve at all, however, into the nature of the expression: "X − X2

2 +
X3

3 − X4

4 + . . .". On the contrary, he stresses on two occasions the continuity between

67Wallis [2004], p. 13-15 and proposition 64 (quoted in Wallis [1668b], p. 758). Cf. Panza [2005], p.
55-56.
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Mercator’s quadrature and the quadrature of paraboloids found in the Arithmetica In-

finitorum.68 Yet it seems that a fundamental shift in Wallis’ mathematical practice

has occurred between the Arithmetica Infinitorum (1655) and his reading of Mercator

(1668), underscored by a change occurred in the very understanding of the solution to a

quadrature problem.

In his 1655 work, in fact, Wallis still adhered to the classical idea according to which

squaring a curvilinear figure S meant to find a proportion between the figure to be

squared, another constructible figure (in general a circumscribed parallelogram or a rect-

angle) and two other quantities (for instance numbers), so as to derive a rule in order to

construct a rectilinear figure equal to S.69 On the other hand, it seems that, in 1668,

squaring a figure like the trapezoid BIru did not consist, either for Mercator or Wallis, in

finding the ratio between the figure to be squared and a second rectilinear figure. In the

1668 account written by Wallis, for example, the quadrature of the sector of an hyperbola

is solved by expressing the area of the figure by a series (the 8.3.2 above), namely an

algebraic expression whose meaning however is not further explained by Wallis.

Yet an interpretation of the geometric significance series can be ventured, in the light

of our previous discussions (See, in particular, chapter 6). Since the expression ‘X’

denotes a segment (this was called, in XVIIth century mathematical practice, "ultima

abscissa"), it is arguable that also ‘X
2

2 ’, ‘X
3

3 ’ and so on ought, by homogeneity, denote

segments. Therefore, their sum-series will denote a segment too. This leads to the

following conjecture: in 1668, Wallis might have endorsed the practice, already in force

in Van Heuraet’s rectification from 1659 (examined in this study, see: ch. 6, sec. 6.3) to

employ segments in order to measure magnitudes that are different than segments. On the

ground of this hypothesis, the symbols ‘X’ ‘X
2

2 ’, ‘X
3

3 ’, . . . appearing in the expression of

the area of BIru, should be understood as denoting segments measuring two-dimensional

surfaces. Wallis does not specify which surface is measured, in particular, by ‘X’, ‘X
2

2 ’

and so on.

However, a conjecture may be ventured. Let us start by remarking that, on the ground

of well-known formulas for computing the areas of a rectangle and a triangle, ‘X’ can

denote a segment measuring the surface of a rectangle of base X and height equal to 1,

whereas ‘X
2

2 ’ measures, in the domain of segments, the surface of a triangle with base

68Wallis [1668b], p. 755.
69Panza [2005], especially p. 58-60.
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X and height X. Once clarified the unproblematic meaning of the first terms: X and
X2

2 , Wallis could have assumed, on the ground of known results obtained through the

method of indivisibles, that the expression ‘X
3

3 ’ denoted, in the domain of segment, the

surface of a parabolic sector cut off by the segment Ir under the parabola of equation

y = x2, drawn or imagined to be drawn with I as a vertex. On the same ground, he

might have taken ‘X
4

4 ’ to denote the surface of a trapezoid cut off by Ir under a cubic

parabola of equation y = x3 (traced with its origin in I). A likewise interpretation can

be extended to the other terms appearing in the sum-series: X − X2

2 + X3

3 − X4

4 + . . .,

by associating to each term a corresponding sector delimited by a paraboloid (namely a

curve with cartesian equation: y = xn, with n natural number).

As I have discussed in this study (cf. 6, sec. 6.3) it is obvious and natural to postulate

that the sum of two or more surfaces measured by segments a and b is measured, in the

domain of segments, by the sum-segment a + b. On this ground, we can conclude that

the sum-segment: X − X2

2 + X3

3 − X4

4 + . . . measures the surface BIru in the domain of

segments, by measuring, in the same domain, the sum of the trapezoids determined by

the family of curves with equation: y = xm.

Wallis closes his account by stressing that the quadrature so obtained is so "complete and

fast" ("absoluta est tamque expedita") that he did not know whether one should expect

a better one.70 This avowal closely reminds of Leibniz’s statement about the impossibil-

ity to find better and more geometrical quadratures of the conic sections offered in De

quadratura arithmetica. Indeed, this similary may not be adventitious. Indeed Leibniz

knew this passage well, since he recalled, in one of his manuscript notes, that: "insignis

Geometra, Joh. Wallisius (. . . ) pronuntiaverit (. . . ) eam esse tam absolutam tamque ex-

peditam Hyperbolae quadraturam, ut nescire se profiteatur an melior sperari debeat".71

Moreover, an attentive examination of the sources will reveal the deep influence of both

Mercator’s quadrature and, particularly, Wallis’ review over the techniques which led to

Leibniz’s arithmetical quadrature of the circle.

70Wallis [1668b], p.756.
71AVII6, 1, p. 30: "The celebrated geometer, J. Wallis claimed that it was such an absolute and

fast quadrature of the hyperbola, that he confessed he did not know whether a better one should be
expected".
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8.4 Leibniz’s arithmetical quadrature of 1674-’75

8.4.1 Extending Wallis-Mercator technique

Is there a way to extend Mercator’s and Wallis’ procedures for the quadrature of an

hyperbolic sector to the quadrature of a circular segment? An answer was far from easy,

as Leibniz conceded, since the general applicability of Mercator’s technique encountered

a major objection:

Caeterum nemo est qui non videat facilem hujus artificii ad Hyperbolam

fuisse applicationem (. . . ) At vero Circulum ipsum ita tractari posse, nemo

opinor vel sperare ausus est. Ego cum ad commodam Circuli dimensionem

illud maxime obstare viderem, quod ordinatae ex curva ejus ad axem alium

quemcunque demissae valore per relationem ad abscissas expresso nunquam

absolvi possent ab irrationalitate, cum contra in parabola et Hyperbola om-

nibusque paraboloeidibus et Hyperboloeidibus simplicibus possint. . . 72

Similar remarks are frequent in Leibniz’s considerations between 1673 and 1676,73 point-

ing at an apparently unsurpassable problem: the technique devised by Mercator for the

quadrature of the hyperbola could not be immediately applied to the quadrature of any

algebraic curve, but only to those having rational ordinates corresponding to rational

abscissas, like the hyperbola, the parabola or the higher parabolas (namely those curves

with equation: y = xm, with m integer), for instance, whose analytical expression could

be developed according to the method of long division, and therefore solved on the ba-

sis of the protocol applied by Mercator to the hyperbola.74 On the contrary, the circle

represents one of the most blatant cases to which Mercator’s algorithm of the long di-

visions failed to be immediately applicable, because an irrational expression emerges as

soon as we want to rewrite the equation as y = f(x), or, as we might say in a slightly

72AVII6, 1, p. 31: "However, everyone see that the application of this artifice to the hyperbola was
easy (. . . ) But, in fact no one, I think, dared even hope that the circle could be treated this way. This
would seem to me to impede the most an easy quadrature of the Circle: the fact that the ordinates,
directed from the curve to any of its other axis, will never be free from irrationalities, provided their
measure is expressed in relation to the abscissas. On the contrary, they can in the Parabola, and in the
hyperbola, and in all the simple paraboloids and hyperboloids".

73AVII4, 36, p. 596, AVII6, 41, p. 438, AVII6, 491, p. 510, AVII6, 51, p. 567, 641; AIII1, 392, p. 168.
74In the De Quadratura Arithmetica, Leibniz invented for such curves the special name of "analytically

simple". See, for instance, AVII6, 1, p. 31, n. 41, p. 438, and in particular AVII6, 51, p. 561:
"Curvam Analyticam simplicem voco, in qua relatio inter ordinatas et portiones ex axe aliquo abscissas,
aequatione duorum tantum terminorum explicari potest; sive in qua ordinatae earumve potentiae, sunt
in multiplicata, aut submultiplicata directa, aut reciproca ratione; abscissarum, potentiarumve ab ipsis,
vel contra" (the emphasis is in the original).
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anachronistic terminology, to express the ordinates of a circle in terms of their respective

abscissas.

By the end of 1673, Leibniz found out the means to circumvent the problem.75 His

solution, later expounded in De quadratura arithmetica, consisted in reducing the problem

of squaring a circular segment delimited by an arc and the subtending chord to the

quadrature of an associated "figura segmentorum", delimited by an algebraic curve of

equation: x = 2ay2

a2+y2
(where a denotes the radius).

Leibniz’s procedure, at least in the first drafts of the De Quadratura Arithmetica, closely

follows Wallis’ account of the Logarithmotechnia. Indeed, Leibniz started by setting:
x
2 = ay2

a2+y2
, and proceeded by setting a = 1 and by multiplying the numerator and the

denominator by the same quantity, namely: ‘1− y2’, so as to obtain: y2

1+y2
= y2

1+y2
· 1−y2

1−y2
.

From this expression, he derived:

y2

1 + y2
=

y2 − y4

1− y4
=

y2

1− y4
− y4

1− y4

Then Leibniz expanded both the term y2

1−y4
and y4

1−y4
by employing Mercator’s method

of long divisions, and obtained:

y2

1− y4
= y2 + y6 + y10 . . .

y4

1− y4
= y4 + y8 + y12 . . .

75AVII4, 27, p. 493. See also Mahnke [1925], p. 41.
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Finally, he combined the above series so as to obtain the following power-series:76

y2

1 + y2
= y2 − y4 + y6 . . . (8.4.1)

By means of this expansion,77 Leibniz could then find the quadrature of half the trapezoid
AT2D2A

2 (fig. 8.4.1), which, I note, is not the figura segmentorum, but the half of its

complement.

76Cf. AVII4, 422, p. 79; AIII1, 39, p. 160-161; AIII, 1, 72, p. 353; AVII6, 4, p. 58; AVII6, 51, p. 596ff.
The condition of convergence (which, for the above fraction, corresponds to: y2 < 1), is stated, as far as
I could ascertain, in AIII, 39, p. 164; and sparsim, in the various drafts of De Quadratura Arithmetica,
so that Leibniz was certainly aware of it. On this concern, I observe that in De quadratura arithmetica
Leibniz offered a general exemplification of the method of long divisions by applying it to the arbitrary
quantity: a

b+c
. He started by the equality: a

b+c
= a

b
− ac

b2+bc
. Then, by replacing ac, b2, bc by a1, b1

and c1, he got: a1

b1+c1
= a1

b1
− a1c1

b2
1
+b1c1

, and therefore: a
b+c

= a
b
− ac

b2
+ a1c1

b2
1
+b1c1

. Leibniz thus proceeded

in a similar way, so as obtain: a
b+c

= a
b
− ac

b2
+ ac2

b3
− a2c2

b2
2
+b2c2

, and stated (without proof) that the

remainders of each division would continually decreased. Therefore, he concluded that, by iterating the

same procedure, the ratio a : (b+c) could be expanded into an infinite series: a
b
− ac

b2
+ ac2

b3
. . . (seeFerraro

[2008], p. 37). It is important to remark, with Ferraro [2008], that Leibniz’s approach presents peculiar
differences with respect to the modern technique for the expansion of the function f(c) = a

b+c
. In

contemporary practice, given a function one can distinguish from the start constants, dependent and
independent variables. If we consider the real function f(c) = a

b+c
, we know by looking at its symbolic

representation that c is an indipendent variable, while a and b are constant, and that f(c) can be expanded

into a
b
− ac

b2
+ ac2

b3
. . .under the condition of convergence that | c |< b. If we exchange b with c we will

obtain a different function: f(b) = a
c+b

, which can be developed under different conditions, namely only
if | b |< c, and which gives rise to a different expansion. Leibniz, on the other hand, could associate
a priori two possible expansions to the quantity denoted by the expression a

b+c
. The first expansion

occurs under the hypothesis that c < b, the second under the hypothesis that b < c (quantities a, b, c
were always supposed positive). The choice between the two was made a posteriori , once the algebraic
expression was interpreted geometrically: in the case treated in the De Quadratura Arithmetica, for
instance, the geometric configuration of the problem determines the condition of convergence, namely:
c < b. According to Ferraro (Ferraro [2008], p. 37) this aspect of Leibniz’s practice can be understood
once we consider that Leibniz’s fundamental insights, in the De Quadratura Arithmetica, were essentially
of a geometrical nature: "Leibniz’s analysis was not based upon the notion of function in the modern
sense, but upon curves (. . . ) given a figure F, Leibniz had some geometric quantities connected to the
figure F and, according to specific circumstances, chose what were to be considered as variables and what
were to be considered as constants" (ibid.). Thus, even when Leibniz derived the infinite expansion for

the fraction: y2

1+y2 , by applying what we may judge as purely formal or combinatorial rules, the result
of the operation was still contingent on the conditions determined by the geometric configuration of the
problem to be solved.

77One of the first occurrences of this expansion, in which Mercator’s name is also mentioned, is the
already quoted AVII4, 27, p. 493. Leibniz explicitly refers to Mercator’s method in a draft of the De
quadratura arithmetica from 1675 (AIII1, 72, p. 344), for instance ("Il s’ensuit par la belle methode de
Nic. Mercator. . . "); then also in in AVII6, 4, p. 58, and on several occasions in the other preparatory
drafts for the De Quadratura Arithmetica, as we have also seen above. Finally, Mercator’s expansion
is discussed in the De quadratura arithmetica too (AVII6, 51, p. 596). See alsoMahnke [1925], p. 12,
Hofmann [2008], p. 60.
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Figure 8.4.1: Leibniz’s figura segmentorum relative to the circle.
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The filiation of the method of quadrature here illustrated from Mercator’s and Wallis’

techniques is further confirmed by the letters Leibniz sent to Huygens and to La Roque.78

In both accounts, Leibniz divides the segment AT2 (namely the tangent of
⌢

AF , in his

parlance) into an infinite number of equal parts, each of infinitesimal length β,79 and finds

the area of the trapezoid AT2D2A in the same way it is effectuated in Wallis’ Account

with respect to the sector of the hyperbola.80

In brief, after having set the tangent AT2 = b, Leibniz could compute the area of AT2D2A

following Mercator-Wallis technique, and on the ground of the expansion obtained in

8.4.1, he obtained: 81

A(AT2D2A) = 2(
b3

3
− b5

5
+

b7

7
. . .) (8.4.2)

Once obtained the expression of the area of AT2D2A
2 in terms of the tangent b, the area

of the segment
⌢

AC2A, delimited by the arc
⌢

AC2 and by its subtending chord AC2 (fig.

8.4.1), as well as the area of the circular sector ABC2A, delimited by the same arc
⌢

AC2

and by radii BA and BC2 (fig. 8.4.1) can be easily inferred.

Leibniz could rely on the transmutation theorem in order to derive the expression of the

surface of the segment
⌢

AC2A (let us recall that
⌢

AC2A is half of the curvilinear figure

AD2B2A, in virtue of the 8.2.1 above). Then, posited: R(AT2, AB2) as the area of the

rectangle delimited by the segments AT2 = b and AB2 = x, the area of the circular

segment
⌢

AC2A can be derived in what follows:

⌢

A(AC2A) =
1

2
(A(R(AT2, B2A))−A(AT2D2A)) =

xb

2
− (

b3

3
− b5

5
+

b7

7
. . .) (8.4.3)

78I am referring to the letters published, respectively, as: AIII1, 39, and AIII1, 72.
79Leibniz defines β as "infinitesimal part of the radius" (AIII1, 72, p. 344). In AVII6, 1, p. 16, he

explicitly refers to Wallis’ notation, by indicating the small β as: 1
inf.

(assuming AT2 = 1).
80Cf. AIII,1 72, p. 344, where Wallis’ procedure explained in the above section is followed almost step

by step; and AVII6, 1, p. 24.
81I note that Leibniz’s procedure in order to obtain this result is equivalent, from our viewpoint, to

the term-wise integration of the integral:
´ b

0
y2

1+y2 dy (provided AT2 = b), obtained by developing the

fraction y2

1+y2 according to the power expansion illustrated in 8.4.1.
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On the ground of 8.4.3, Leibniz then computes elementarily the area of the sector ABC2A

included between the arc
⌢

AC2 and the radii AB, BC2 = 1, obtaining:82

A(ABC2A) = b− b3

3
+

b5

5
− b7

7
. . . (8.4.4)

8.4.2 The rectification of a circular arc

From the quadrature of an arbitrary sector of the circle, Leibniz could derive the rectifi-

cation of the corresponding arc, by means of "ordinary geometry", as he pointed out.83

If the radius of the given circle has been set equal to 1, we can obtain from 8.4.4 the

length of the arc
⌢

AC2 (that we can symbolize as: s[
⌢

AC2]) in terms of an infinite series:84

s[
⌢

AC2] = 2(b− b3

3
+

b5

5
− b7

7
. . .) (8.4.5)

This result is also expounded in proposition XXXI of the De quadratura arithmetica. In

the Scholium to this proposition, Leibniz adds the following commentary:

Itaque si quis veram relationem analyticam generalem quaerit quae inter ar-

cum et tangentem intercedit, is quidem in hac propositione habet, quicquid

82AIII, 1, 39, p. 163-164.From fig. 8.4.1, ABC2A = ABC2 +
⌢

AC2A, where ABC2 is the triangle with
side AB and height B2C2. By setting: BA = 1, AB2 = x, AT2 = b = x√

2x−x2
, B2C2 =

√
2x− x2, and

the area of ABC2 will be equal to: A(ABC2) =

√
2x−x2

2
. On the ground of this result, and of the result

of 8.4.3, one can derive the area of the sector ABC2A as:A(ABC2A) =

√
2x−x2

2
+ xb

2
− ( b

3

3
− b5

5
+ b7

7
. . .).

Let us then consider, with Leibniz, the sum:

√
2x−x2

2
+ xb

2
(AIII1, 39, p. 164). Since AT2 = b = x√

2x−x2
,

we will have:

√
2x−x2

2
+ x

2
( x√

2x−x2
) =

√
2x−x2

2
+ x2

2
√

2x−x2
= x√

2x−x2
. But it has been posited that:

x√
2x−x2

= b, hence:

√
2x−x2

2
+ xb

2
= b. Leibniz then concludes: A(ABC2A) = b − b3

3
+ b5

5
− b7

7
. . . .

(see 8.4.4 in the main next). As I will argue below, Leibniz’s manipulation of the analytic symbols in
order to compute surfaces can be explained in the light of a current (but probably tacit) interpretation
of cartesian algebra of segments.

83AIII1, 72, p. 350, AVII6, 51 , p. 599. In the Metrica, Hero quotes the following theorem as a corollary
of Archimedes’ first proposition of the Dimensio circuli : every sector is half of the rectangle bounded
by the periphery of the sector and the radius. The same theorem is evoked in Pappus’ Commentary on
Ptolemy’s Book VI of the Almagest (cf . Knorr [1989], p. 377, p. 384). Obviously a formula in order to
express the relation between an arc and its tangent cannot be derived, in the same elementary way, for
an arc of hyperbola or ellipse.

84See AVII4, 422, p. 752; AIII1, 72, p. 345; see also AVII6, 51, proposition XXXI.
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ab homine fieri potest ut infra demonstrabo. Habet enim aequationem sim-

plicissimi generis quae incognitae quantitatis magnitudinem exprimit cum

hactenus apud geometras appropinquationes tantum, non vero aequationes

pro arcu circuli demonstratae extent (. . . ) Quare nunc primum hujus ae-

quationis ope arcus circulares, et anguli instar linearum rectarum analytico

calculo tractari possunt.85

Two thesis can be singled out from the above passage, which illustrate the meaning of

Leibniz’s result about the rectification of a circular arc. Firstly, Leibniz states that a

circular arc and its tangent are related by an equation (in formula 8.4.5 above) ". . .

which expresses the magnitude of the unknown (incognitae quantitatis magnitudinem

exprimit)", and therefore enables to treat quadrature and rectification problems by means

of an "analytical calculus". Secondly, Leibniz claims that his result is the most exact

that humans can attain, and adds that he has a proof for this claim: Presumably, Leibniz

refers here to the impossibility argument presented in proposition LI, that I will analyze

below.

Concerning the first claim, I point out that the leibnizian terminology reveals striking

similarities with the cartesian one, in La Géométrie.86 As seen in chapter 3, an equation

of the form: F (x, y) = 0 has, in the context of cartesian geometry, an immediate geo-

metric meaning, since it can be conceived as a shorthand for a proportion or a system of

proportions. The possibility of coding proportions makes an equation in two unknowns

as a suitable symbolic notation in order to represents a curve, in a classical way, by spec-

ifying its properties or symptoma. In particular, in the latin edition of La Géométrie,

the one studied by Leibniz, we can read:

puncta omnia illarum, quae Geometricae appellari possunt, hoc est, quae

sub mensuram aliquam certam et exactam cadunt, necessario ad puncta om-

nia lineae rectae, certam quandam relationem habent, quae per aequationem

aliquam, omnia puncta respicientem, exprimi possit.87

85AVII6, 51, p. 600: "Hence, if one asks for a true analytical and general relation which intervenes
between the arc and the tangent, he can find in this proposition everything that can be done by man, as
I will prove below. He can find an equation of very simple kind, which expresses the magnitude of the
unknown while geometers have only offered approximations sot far, not equations which can express an
arc of the circle. Therefore now we can for the first time treat, by means of such equation, circular arcs
and angles as straight lines, by means of an analytical calculus".

86The similarities between leibnizian and cartesian style are also discussed in Knobloch [2006], espe-
cially p. 120.

87Descartes [1659-1661], p. 21.
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The term "relatio" that occurs in the passage above is also employed by Leibniz, when

he speaks of a "true analytical and general relation (relatio) which intervenes between

the arc and the tangent".

In Leibniz’s understanding, however, this relation is not an equation coding a proportion

or a system of proportions, but the expression of a correspondence between an unknown

segment, measuring a sector of the circle, or the arc bounding it, and another segment,

namely the tangent of the arc (or its half). Hence the infinite sum: b− b3

3 + b5

5 − b7

7 . . . ,

in which each term is represented by the variable segment bn

n
, can be taken to measure,

in the domain of segments, the surface of an arbitrary circular sector or the length of its

corresponding arc.

I maintain that by referring to formulas like the ones expressed in equations 8.4.4 and

8.4.5 by the terms: "relatio" or "aequatio", Leibniz was still relying on the tradition of

Descartes’ geometry. Let us observe, in fact, that as far as an equation in two unknowns

could be employed to denote a curve, it could be also interpreted as establishing a relation

between the unknowns x and y, understood as variables quantities, and conceived as

coordinates expressing the distances of a succession of point on the curve from two given

lines. Descartes precisely exploited this possibility when he described the pointwise

construction of curves solution to the Pappus problem in n lines (See ch. 3, and ch. 4).

In his Freudenthal [1977], Freudenthal distinguishes three possible meanings we can as-

sociate to the word "equation": that of "formal identity", that of "conditional equality

involving unknowns to be made known", and finally that of "conditional equality involv-

ing variables".88 We can say, on the ground of the analysis deployed in the previous

chapters, that the three meanings coexist both in Descartes’ geometry and in Leibniz’s

De quadratura arithmetica. But when the latter wrote that his solution to the problems

of squaring a sector of the circle consisted in the discovery of "an equation (. . . ) which

expresses the quantity of the unknown" he was no more thinking of equations as encoding

proportions between segments or, at least, he had de-emphasized this aspect, that was

certainly prominent in cartesian geometry.

8.4.3 Leibniz’s fictionalist stance

In praising the importance of his discoveries about the quadrature of the circle, Leibniz

notes that for the first time he has managed to: "treat (. . . ) circular arcs and angles as

88Freudenthal [1977], p. 194.
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straight lines by means of an analytical calculus" (AVII6, 51, p. 600). This achievement,

on which he would often insist, since it marked in his view the overcoming of Descartes’

restriction to problems concerning segments alone, is grounded on a redefinition of the

concept of curve in terms of an infinitangular polygon with infinitely small sides.

The assumption that a curve is identical with an infinitangular polygons, or ‘principle

of the linearization of curves’ was common among early modern mathematicians,89 and

was adopted by Leibniz since his early mathematical considerations. Thus, already in

Summer 1673, Leibniz conceived curves as: ". . . consisting of infinitely many straight

lines or sides, which are like portions of the tangents joining two proximal points applied

on the curve (or two points separated by a distance infinitely small between them".90

But this principle had a key role in the study of quadratures and rectification problems,

since it allowed Leibniz to assert, in general, the homogeneity between a curvilinear and

a rectilinear segment.

Leibniz took up on this issue in contemporary papers of a more philosophical tone, in

which he discussed examples from the mathematical practice too. The tract De infinitis

parvis , for instance, from March 1676, is particular instructive in order to understand

Leibniz’s foundational concern with considering a curve as an infinite-sided polygon. In

these notes, Leibniz inquired the following problem: "One must examine if it is possible

to prove, in problems of quadratures, that the difference [between the polygons inscribed

to a curvilinear figure, ie a circle, and the figure itself] is not only infinitely small, but

actually nothing".91 In fact, if a curve is approximated by a sequence of polygons with n

sides of length s, whose vertices lie all on the curve, so that the length L of the curve is

89Cf . Knobloch [1999b], p. 216.
90AVII4, 40, p. 657: ". . . intelligi poterit constare ex infinitis lineis rectis velut lateribus, quae scilicet

portiones sint tangentium, duas applicatas proximas (seu distantia infinite parva a se invicem remotas)
iungentium". Leibniz maintained this very conception of a curve as an infinitangular polygon throughout
his research on calculus, and expressed this idea with the terms of ‘aequipollentia’ or ‘aequivalentia’.
The term ‘aequivalentia’ appeared in the Nova methodus, published in Acta Eruditorum of october 1684;
and the term ‘aequipollentia’ occurs, for instance, in Additio ad schedam de dimensionibus figurarum
inveniendis, appeared in Acta Eruditorum, December 1684 (for a french translation, seeLeibniz [1989],
pp. 94, 111). As for other occurrences of Leibniz’s lexicon, the term is polysemic: Leibniz employs
it to denote a curve which bounds a figure (or the figure itself), which has area equal ("à un facteur
multiplicatif près") to a given figure. In this sense, he also said that a circular segment is aequipollens
to its corresponding figura segmentorum (for instance: AVII51, p. 567). See more references in AVII6
p. XXX.

91"Videndum exacte an demonstrari possit in quadraturis, quod differentia non tamen sit infinite
parva, sed omnino nulla" (AVI3, 52, p. 434).
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computed, by approximations, by the sum of the lenghts of the n sides of the inscribed

polygons, it can always be found an integer n such that the error L−ns will be less than

s. From this premiss, Leibniz concludes that if n goes to infinity, the difference L − ns

will be less than any assignable quantity, and the lenghts s of the polygonal sides will

be eventually nothing. How can a curve be considered as an infinite-sided polygon, and

how its length can be computed, if each side forming the polygon ultimately reduced to

‘nothing’?

We have already encountered a similar conceptual difficulty with Gregory. In fact, in the

VCHQ, Gregory imagined (he employed the very word: ‘imaginare’. See VCHQ , p. 19)

the sector of a conic, to which the sequences of inscribed and circumscribed polygons

approach, identical with the couple of the last inscribed and circumscribed polygon. But

he also warned that defining the sector as the last polygon was a façon de parler (I stress

the use of the expression: ‘ita loqui licet ’, in VCHQ , p. 15), in order to describe a couple

of polygons such that their difference can be taken less than any exhibited quantity.

Leibniz was particularly concerned with this problem, and further developed his insight

in April 1676, in a tract titled Numeri Infiniti (I stress the temporal vicinity of these

reflections with the writing of the De quadratura arithmetica, completed in September

1676, and with the reading of Gregory, which occurred during the same year):

Circulus aliaque id genus, Entia ficta sunt; ut polygonum, quolibet assignabilis

maius, quasi hoc esset possibile. Itaque, cum aliquid de Circulo dicitur (. . . )

intelligimus id verum esse de quolibet polygono, ita, ut aliquod sit polygonum,

in quo error minor sit quovis assignato a, et aliud polygonum in quo error

minor alio quolibet certo assignato b. Non vero erit polygonum, in quo is

sit minor omnibus simul assignabilibus, a et b, etsi dici possit, ad tale ens

quodammodo accedere polygona ordine.92

The special example of the circle offers the clue in order to understand Leibniz’s solution

(or at least, the solution he gave in 1676) to the philosophical puzzle that arises from the

92Tr. by R. Arthur: "The circle - as a polygon greaer than any assignable, as if that were possible - is
a fictive entity, and so are other things of that kind. So when something is said about the circle (. . . ) we
understand it to be true of any polygon such that there is some polygon in which the error is less than
any assigned amount a, and another polygon in which the error is less than any other definite assigned
amount b. However, there is no polygon in which the error is less than all assignable amounts a and b at
the same time, even if it can be said that polygons somehow approach such an entity in order" ( Leibniz
[2001], p. 88-89).
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‘principle of linearization of curves’. In the passage above, in fact, Leibniz is discussing

the classical rounding-off method in order to approximate the circle by two sequences of

inscribed and circumscribed polygons, that come nearly and nearly to the circle as the

number of their sides increases. Leibniz’s position can be thus paraphrased: anything

which may be predicated, qua magnitude,93 of a circle C, holds for two polygons P and P ′

which satisfy, for any couples of quantities a and b, the following inequalities: C−P < a

and P ′ − C < b. In other words, a circle is conceivable as the ideal limit of a double

increasing sequence of polygons inscribed and circumscribed to it. Such a ‘fictional’ limit,

continues Leibniz, does not exist "in the nature of things", because it would be equal to

a polygon with null sides but, at the same time, "we can give expression to it" ("ferri

tamen eius expressio potest"). In particular, as I will deal in the next section, geometers

can meaningfully say that the unit circle has an area of π provided we understand, by

this, that one can find approximations of π within any prescribed degree of accuracy.94

8.5 The quadrature of the circle in numbers

8.5.1 Leibniz’s alternate series for π
4

Leibniz stressed, in De quadratura arithmetica, how the understanding of a curve as

an infinitangular polygon with infinitely small sides would open up a field for inven-

tions (inveniendi campus) in the domain of quadratures and rectifications.95 One of the

outstanding example in the ‘new field of inventions’ in which Leibniz saw himself as a

pioneer, was indeed the arithmetical quadrature of the circle and the rectification of the

circumference by means of an infinite series of numbers.

Considering the formulas 8.4.4 and 8.4.5 of the previous section, Leibniz could immedi-

ately infer, for a circle with radius BA = 1, circumference
⌢

C, and and by setting b = 1
2

93Leibniz is not concerned, in this context, with circles (or with any other curve) as means of con-
struction, but as magnitudes.

94See in particular Leibniz [2011], p. lvi.
95AVII6, 51, p. 586: "Sed malim id lectores suo potius experimento discere quam meis verbis, sentient

autem quantus inveniendi campus pateat, ubi hoc unum recte perceperint, figuram curvilineam omnem
nihil aliud quam polygonum laterum numero infinitorum, magnitudine infinite parvorum esse. Quod, si
Cavalerius, imo ipse Cartesius satis considerassent, majora dedissent aut sperassent" ("But I’d rather
that my readers learned it through their own essays than by my words, they will sense how vast a field
of discovery will be open, when they had understood just this: that every curvilinear figure is nothing
but a polygon of infinite sides in number, of infinitely small magnitude. If only Cavalieri, or Descartes
himself had considered it enough, they would have achieved or hoped for greatest results").
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and
⌢

AC2 =
π
2 , the following proportion:96

BA :
⌢

C = 1 :
4

1
− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
. . . (8.5.1)

If we consider the square Q built on the unitary diameter of a circle C instead, we will

have:97

Q : C = 1 :
1

1
− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
. . . (8.5.2)

Leibniz obtained these results already in Autumn 1673,98 and communicated them to

Huygens in the course of the subsequent year. The series for the area of the circle was

firstly enunciated in the manuscript now published as VII,6 N. 4 (p. 74), and later

on expounded in a more elaborated form, in the french draft of the De Quadratura

Arithmetica sent to Huygens in Autumn 1674.

In July 1674, Leibniz described his discovery in a letter to Oldenburg too, observing:

Alia mihi theoremata sunt, momenti non paulo majoris. Ex quibus illud

inprimis mirabile est, cujus ope Area Circuli, vel sectoris ejus dati, exacte

exprimi potest per Seriem quandam Numerorum rationalium continue pro-

ductam in infinitum.99

Few months later, Leibniz thus illustrated his arithmetical quadrature to Oldenburg

again, remarking:

Nemo tamen dedit progressionem numerorum rationalium, cujus in infinitum

continuatae summa sit exacte aequalis Circulo. Id vero mihi tandem feliciter

successit, inveni enim Seriem Numerorum rationalium valde simplicem cujus

Summa exacte aequantur Circumferentiae Circuli; posito Diametrum esse

Unitatem (. . . ) Ratio Diametri ad Circumferentiam, exacte a me exhiberi

96Cf. for instance: AIII1, 39, p. 165; AVII6, 4, p. 74; 7, p. 89.
97Cf. AIII1, 72, p. 339; 72, p. 345; 73, p. 356; AVII6, 51, p. 602.
98See S. Probst, Neues über Leibniz’ Abhandlung zur Kreisquadratur , in Hecht et al. [2008], p. 172.
99LSG, I, p. 53: "I have other theorems, of much greater importance. One of them is admirable in

the first stance, by whose aid the area of the circle, or of a given sector of it can be exactly expressed by
an infinite series of rational numbers, continually produced to infinity".
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potest per rationem, non quidem Numeri ad Numerum (id foret absolute

invenisse); sed per rationem Numeri ad totam quandam Seriem numerorum

Rationalium. . . 100

As we can read above, Leibniz highly praised his own result, consisting in expressing the

area of the circle (or the length of its circumference) with unitary diameter in an exact

way, by an infinite series of rational numbers.

However, it was problematic, in Leibniz’s eyes at least, to understand under which con-

ditions the assertion that a certain infinite series is exactly equal to a finite quantity

(like the area of a surface or the length of an arc) can be qualified as true. Probably

since his inchoate studies in quadratures, started in 1673,101 Leibniz was led to inquire

about the meaning of the equality between an infinite series, like the alternating series

1− 1
3 +

1
5 − 1

7 . . . and a finite quantity, like the finite area of the circle. He gave voice to

the same quandary in De quadratura arithmetica and, in a more outspoken tone, in the

tract Numeri infiniti (April 1676). We read in the latter, in fact:

Executiendum adhuc, an et quatenus vera est, v.g. quadratum est ad circulum

ut 1 ad 1
1− 1

3+
1
5− 1

7+
1
9− 1

11 etc. Nam cum dicitur etc. in infinitum intelligitur

ultimus numerus non esse quidem numerorum maximus, is enim nullus, sed

esse tamen infinitus. Sed quoniam non determinatur quomodo? Adijciendum

enim aliquid, etiamsi numerus infinitus sumatur, ideo dicendum id non esse

rigorose verum.102

In order to understand Leibniz’s concern with the ontological status of the last term

("ultimus numerus") of a series, evoked in the above passage, it should be mentioned

the fact that, in De quadratura arithmetica (prop. 49), Leibniz had sketched a general

100LSG, I, p. 55: "But no one has given a progression of rational numbers, whose sum, continued to
infinity is exactly equal to the circle. It eventually occurred to me: in fact I found a very simple series
of rational numbers, whose sum equals exactly the circumference of the circle; set the diameter equal to
the unity (. . . ) the proportion of the diameter to the circumference can be exactly exhibited by me via
a ratio, not of a number to a number (this would mean to find it absolutely); but by a ratio of a number
to a whole series of rational numbers".

101See Arthur [2006], p. 4.
102"We must still investigate whether, and to what extent, the following is true, namely that the square

is to the circle as 1 to 1
1
− 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
etc. For when we say ‘etc.’ or ‘to infinity’, the last number

is not really understood to be the greatest number, for there isn’t one, but it is still understood to be
infinite. But as the series is not bounded, how can this be the case? For something must be added, even
if it is assumed to be an infinite number, so that it must be said that this (equation) is not rigorously
true" AVI3, 69, p. 502.
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convergence criterion103 for alternate series, that would be later developed in the test

known as ‘alternating series test’.

The core of Leibniz’s argument consists in showing that in a series s = a1− a2+ a3± . . .

such that the terms ai become smaller than any given quantity (reverting to a modern

terminology, we would say that the sequence: a1, a2, a3 . . . is monotonically decreasing),

the partial sums with odd numbers of terms (namely: S2m+1 =
∑n=2m+1

n=1 (−1)n−1a) and

the partial sums with even numbers (namely: S2m =
∑n=2m

n=0 (−1)n−1a) tend to the same

finite quantity, as n increases.

This criterion of convergence is explicitly applied to the series: 1 − 1
3 + 1

5 − 1
7 . . . in an

article appeared in 1682, De Vera Proportione Circuli , where Leibniz published for the

first time his series for the quadrature of the circle (it is plausible, however, that Leibniz

had known or conjectured this result from his parisian years). In the De Vera Proportione

Circuli , Leibniz deployed an argument in order to show that the series 1− 1
3 +

1
5 − 1

7 . . .

was equal to a certain finite quantity, that I have named ' and can be identified with

the measure of the surface of a circle with unitary diameter.

Leibniz justified this claim by observing that if we take the first term of the series, then

' will be approximated with an error less than 1
3 ; if we take the first two terms, then the

limit-sum is approximated with an error less than 1
5 ; if we take the first three term, then

it is approximated with an error less than 1
7 , and so on. If the series is continued, one

can obtain, after n terms, a partial sum sn =
∑k=n

k=1 (−1)k+1ak which offers a rational

approximation to ', such that the remainder (in absolute value) is always smaller than

the last term of the partial sum. Hence, the more terms we take the less the error

becomes.104

Let us point out, with..., that Leibniz envisaged a convergent series as an ordered sequence

of terms. Thus, in the finite series: 1 − 1
3 + 1

5 , 1 is the first term, 1
3 the second, 1

5 the

third and last one. But, if we extrapolate from the situation of finite series to that of

infinite ones (like: 1
1 − 1

3 + 1
5 − 1

7 + 1
9 − 1

11 etc.), saying that the series is infinite and

103Knobloch [2006], p. 125, Ferraro and Panza [2003], p. 21. By ‘convergence’, I understand here the
property of a series which offers a close approximation of a certain quantity, when a convenient number of
their terms is considered. This idea of convergent series, at least in Leibniz’s case, was probably moulded
on the archimedean model of polygons squeezing the circle in the space of geometrical magnitudes.

104Leibniz [1682], also in LSG5, p. 120. See also: Leibniz [1989], p. 77.
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yet ‘bounded’, is tantamount to saying, in Leibniz’s view, that the series possesses an

‘infinieth last’ ("numerorum maximus") number.105

As I will expound later on, the postulation of a last term of an infinite (convergent) series

was crucial in Leibniz’s way of handling series. However, such a postulation contradicts

the fact that a convergent series always admits a smaller remainder (in absolute value)

than the last term. Hence, in order to justify the truth of the assertion: ‘the (sum of

the) infinite series 1− 1
3 +

1
5 − 1

7 + . . . is equal to the finite quantity '’, Leibniz explains

that the expression: ‘sum of an infinite series’ should be paraphrased in this way:

Quandocumque dicitur seriei cuiusdam infinitae numerorum dari summam,

nihil aliud dici arbitror, quam seriei finitae cuiuslibet eadem regula summam

dari, and semper decrescere errorem, crescente serie, ut fiat tam parvus quam

velimus.106

Leibniz follows the same line of reasoning adopted in his considerations about the identity

between curves and infinite-sided polygonal lines: a finite quantity l is exactly equal to

the sum of an infinite series
∑n=∞

n=0 an when the difference between l and any finite series

obtained by truncating the infinite expression: a1 + a2 + a3 . . ., at an arbitrary position,

can be made as small as we please.107 Analogously, the series: 1− 1
3 +

1
5 − 1

7 . . . is exactly

equal to a finite quantity, namely the area of a circle with unitary diameter because the

error becomes less than any given quantity. In this way, the whole series contains all

approximations and expresses the exact value of the area of the circle.108

105Leibniz qualifies, in the above passage, the last term as: "numerorum maximus", without reference to
the magnitude, since the last term would be infinitesimal (the sequence of the terms being monotonically
decreasing in absolute value), but referring to the ordinal position in the series: in other words, Leibniz
is considering here the ‘infinitieth’ term of the series. See in particular Levey [1998], p. 72ff, and Leibniz
[2001], p. lvi.

106AVI3, p. 503: "Whenever it is said that a certain infinite series of numbers has a sum I am of the
opinion that all that is being said is that any finite series with the same rule has a sum, and that the
error always diminishes as the series increases, so that it becomes as small as we would like".

107I point out that Leibniz’s argument contains two fundamental ideas which anticipate the modern
concept of the sum of a series, understood as the limit to which the sequence {s1, s2, s3 . . .} of its partial
sums (s1 = a1, s2 = a1+a2, s3 = a1+a2+a3, and so on) converges. Firstly, the partial sums constitute
better approximations of the limit-term l as we increase the number of terms, without ever reaching
the limit nor surpassing it; secondly, the difference between the limit and the successive terms in the
sequence becomes smaller than any rational number one may mention: in other words, "the error always
diminishes as the series increases" (See Levey [1998], p. 81). The same article contains an insightful
discussion (not in my purview here) about the philosophical implications of Leibniz’s consideration on
the ‘syncategorematic’ infinity involved in his discussion about series. I understand, for a sequence of
terms to be ‘syncategorematically’ infinite, the fact that there are ‘more terms than one can specify’ (see
also Arthur [2006], p. 4).

108Cf . also Leibniz [1682], or LSG5, p. 120.
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As we can read in a draft version of his treatise on the arithmetical quadrature of the

circle, written in 1675 and intended for Gallois, Leibniz was aware the infinite series can

be taken to express the area of the circle, in the same way as the sum of the series:

1 +
1

2
− 1

4 · 3 − 1

8 · 3 · 17 . . .

could be taken to express the number
√
2.109In both the cases above and the one related

to the quadrature of the circle, the relative series do not merely express numerical ap-

proximations to given geometric magnitudes, like the area of the circle or the diagonal

of the square, but they define these magnitudes by means of rational numbers only.110

Yet, a difference remains between the series which expresses the diagonal of the square

and the series which expresses the area of the circle. In the former case, the limit of the

series is equal to a known number, it is in fact the irrational number
√
2.

On the contrary, Leibniz, as well as his contemporaries, ignored whether the limit of

the series: 1 − 1
3 + 1

5 − 1
7 . . . were a rational number (thus belonging to the space of

the series), a number expressible from given number by means of a finite sequence of

algebraic operations or still a number non expressible in any known way (as it effectively

is). As Leibniz remarked in a tract from October 1674:

Nescio an detur aut dari possit numerus aequalis seriei infinitae ' [i.e. the

series for π
4 ]. Interim scio aream circuli aequalem esse huic seriei infinitae.111

109AIII1, 73, p. 357: "Car effectivement il n’y a que les nombres entiers qui ne soient effectivement
traitables par le calcul, et sans le secours des lignes, on ne saurait entendre ce que c’est unnombre
irrationnel, qu’en trouvant qu’il est égale à un nombre infini de nombres rationnaux. De sorte qu’on
peut dire, que la raison en nombres du Diametre à la Circomférence est a present aussy connue a notre
esprit que la Raison en nombres de

√
2 a 1, c’est à dire de la diagonale au costé du quarré". J. E.

Hofmann remarks that the special series for
√
2 mentioned above was obtained by Leibniz in 1674 (it

can be found in VII, 3, 3815, p. 519-520), by applying an approximate step-by step determination of
square roots which: "has been traced back, for special cases, to the Babylonians; it is given in Hero’s
Metrica 1:8; the cossists of the sixteenth century took it over from Islamic sources who themselves may
have been in the chain of tradition by way of India and Greece, or may well have re-invented the method
independently" (Hofmann [2008], p. 130).

110Hofmann [2008], p. 197.
111AVII6, 11 p. 111. "I ignore whether it will be given or it can be given a number equal to the infinite

series '. In the meantime, I know that the area of the circle is equal to this infinite series".
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In fact, Leibniz had no elements to exclude that the sum of the series 1− 1
3 + 1

5 − 1
7 . . .

could be equal to a rational or a known algebraic number (for instance, a surd number).

This possibility was ventured by Huygens, for instance, who favorably commented upon

Leibniz’s arithmetical quadrature, in November 1674:

Je vous renvoie, Monsieur, Vostre escrit touchant la Quadrature Arithme-

tique, que je trouve fort belle et fort heureuse. Et ce n’est pas peu à mon

avis d’avoir decouvert, dans un Probleme qui a exercè tant d’esprits, une voye

nouvelle qui semble donner quelque esperance de parvenir a sa veritable so-

lution. Car le Cercle, suivant vostre invention estant a son quarrè circonscrit

comme la suite infinie de fractions 1
1 − 1

3 + 1
5 − 1

7 + 1
9 − 1

11 etc. à l’unitè, il

ne paroistra pas impossible de donner la somme de cette progression ni par

consequent la quadrature du cercle, apres que vous aurez fait voir que vous

avez determinè les sommes de plusieurs autres progressions qui semblent de

mesme nature. Mais quand mesme l’impossibilitè seroit insurmontable dans

celle dont il s’agit, vous ne laisserez pas d’avoir trouvè une proprietè du cercle

tres remarquable, ce qui sera celebre a jamais parmi les geometres.112

Huygens judged Leibniz’s arithmetical quadrature of the circle as "a new way for the

true solution of the problem". It is likely, as suggested by Hoffman (Hofmann [2008],

p. 82), that Huygens envisaged the concrete possibility of working on Leibniz’s series in

order to find the "true quadrature of the circle",113 namely the value of the area of the

circle in terms of a rational or irrational algebraic number, which would demote Gregory’s

opposite conviction that the quadrature could not be solved analytically.

Leibniz had no elements to deny that the limit was analytical with the terms of the series,

and for some time he probably shared Huygens’ opinion. Indeed manuscript evidence

shows that in the years 1673-74 Leibniz tried to extrapolate, from his studies on diverse

numerical progressions, methods in order to calculate the sum of the converging series:

112Huygens [1888-1950], 7, p. 393-394.
113The expression "true quadrature" of the circle returns in the correspondence between C.A. Walter

and Leibniz (cf. the letter from 22 September 1676, AIII1, 93, p. 603). The former observes: "la
proportion du cercle par un nombre radical [namely the ratio between a circle and the squared built on
its unitary radius, or diameter, expressed by a finite chain of algebraic operations on known rational or
irrational numbers], comme on fait dans les lignes incommensurables (. . . ) ce seroit la vraye cadrature
du cercle" (AIII1, p. 604).
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1 − 1
3 + 1

5 − 1
7 . . . . Leibniz’s inchoate studies on summation of series114 concerned very

special cases, namely successions (either finite or infinite) whose terms can be recognized

as differences between successive terms of other sequences. An exemplary case studied

by Leibniz is the finite series: a1, a2, a3 . . . an, such that: a1 = b1− b2, a2 = b2− b3, an =

bn−bn+1, where b1, . . . bn+1 are the terms of a second series, monotonically decreasing).115

Leibniz proved that, for any finite sequence a1, a2, a3 . . . an, to which we can associate a

finite sequence b1, b2 . . . bn+1 (a1 = b1 − b2, a2 = b2 − b3, an = bn − bn+1), the following

result holds:

a1 + a2 + . . . an = b1 − bn+1.

This elementary theorem states that the sum of the consecutive terms in a ‘difference

sequence’ a1, a2, a3 . . . an is equal to the difference of the first and last term of the ‘base

sequence’ b1, b2 . . . bn+1. This result was extrapolated to the case of infinite sequences:

this move eventually led Leibniz to find, in 1672, the series of the reciprocal of triangular

numbers, namely:
∑∞

n=1
2

n(n+1) = 2 , as well to treat other series in likewise manner.116

Leibniz was probably convinced, on the aftermath of his discovery of the series for the

arithmetical quadrature of the circle, that this series, or a series extrapolated for it might

represent a ‘difference sequence’ of a still unknown base sequence, so that the limit of
∑∞

n=0
(−1)n

2n+1 might be obtained by applying the general theorem on difference series (or

114Most of his first results on the topic (see note 116 below, for an example) were incorporated in
the tract Accessio ad arithmeticam infinitorum, prepared for Jean Gallois, at the end of 1672, for an
eventual publication on the Journal des Sçavants, whose editor was Gallois himself. The publication
never occurred, so that the Accessio remained unpublished during Leibniz’s lifetime (AIII1, 2, p. 2ff.).
In order to give an idea of the extent and fecundity of Leibniz’s study on progressions and series, which
went hand in hand with his research into the quadrature of the circle, I will address to the rich collection
of manuscripts published in volume AVII3, containing Leibniz’s studies on series in the period 1672-76.
Finally, the early studies on series are considered in Costabel [1978], and further discussed, in the light
of new manuscript evidence, in Probst [2006a] and in Arthur [2006]. A general overview can be found
also in Ferraro [2008], the chapter 2 in particular.

115See Hofmann [2008], chapter 2.
116Cf . Hofmann [2008], chapter 2, p. 18 in particular. I point out that the problem of calculating the

sum of the series
∑∞

n=1
2

n(n+1)
, suggested by Huygens to Leibniz, had been solved by Huygens since the

60s (Huygens [1888-1950], vol. 14, p. 50-91). Therefore, it might have been proposed by Huygens as a
test in order to assess the ability of the young mathematician. Leibniz found that the reciprocal of the
triangular numbers, namely: 2

i(i+1)
satisfy the following equality: 2

i(i+1)
= 2

i
− 2

i+1
, so that, applying

the theorem on difference sequences he found: 1+ 1
3
+ 1

6
+ . . .+ 2

n(n+1)
= 2− 2

n+1
, and derived, the sum

of the infinite series of triangular numbers, namely: 1+ 1
3
+ 1

6
+ . . . = 2. Leibniz’s manipulation of series

often led to true results, even if their deduction may not always carry conviction to us, because of his
somewhat loose handling of divergent series, and the problematic ontological status of the last term in
an infinite series (Hofmann [2008], p. 18).
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sequences) stated above. I shall not insist on Leibniz’s inquiries into the sum of the series

for the quadrature of the circle, since they were soon abandoned.117 It is worth noticing

though, that despite the failed attempts to calculate the area of the circle with unitary

diameter, Leibniz maintained the confidence that his series for the quadrature of the

circle was the ‘royal highway’ towards a finite solution of the circle squaring problem.118

8.5.2 Oldenburg’s objections and the classification of quadratures

Counter to Huygens’ encouraging response, Oldenburg answered to Leibniz’s letters an-

nouncing the discovery of a series for the arithmetical quadrature of the circle in a less

forthcoming way. Indeed Oldenburg suggested that Leibniz should consider more care-

fully whether he had achieved an ‘exact’ quadrature, alerting him with these words:

De eo quidem tibi gratulor, sed adjungam oportet, quod nuper a viro de

rebus his sollicito accepi: Supradictum, nempe Gregorium, in eo jam esse, ut

scripto probet exactitudinem illam obtineri non posse. Quod tamen minime

a me dictum velim, ut ingenium studiumque Tuum sufflaminem, sed pro meo

in Te affectu cautum reddam, ut talia scil. probe Tecum volvas revolvasque

priusquam praelo divulges.119

The reference to Gregory was perhaps inspired by the circumstance that the latter was

then preparing an improved version of the VCHQ (which has not been come down to us,

unfortunately); therefore Oldenburg might have fresh knowledge about Gregory’s result

contained in VCHQ .

One of the main points at stake in the exchange between Oldenburg and Leibniz concerns

the meaning of ‘exact’, with respect to problems of quadratures. In a subsequent letter

117Examples can be found in AVII3, 15, p. 180; AVII3, 3810.
118AVII6, 7, p. 91: "Je crois que ceux qui entendent la matiere demeureront d’accord que c’est peut

estre le premier Moyen, qu’on ait donné pour arriver à la Quadrature Geometrique du Cercle; et que
même la moitié du chemin estant faite, il y a grande apparence, si elle se trouvera jamais, que ce sera
par cette voye.". See also the Scholium (AIII, 1, 39, p. 165ff .) of the draft for La Roque: "S’il y a lieu
d’esperer qu’on pourra jamais arriver à une raison analytique; exprimée en termes finis, du Diamètre à
la Circonference, je croys que ce sera par cette voye. Car quoyque les expressions soyent infinies, nous
ne laissons pas quelque fois d’en trouver les sommes" (AIII, 1, 72, p. 351).

119This letter dates from 18th December 1674. LSG, I, p. 57: "I need to add what I have recently
learned from a man well-versed in these subjects: the latter, namely Gregory, had already stumbled
upon this question, so that he proved that such exactness cannot be obtained [i.e. an exact quadrature
of the circle cannot be obtained]. But I wish you may take my words not in order to impede you, but as
an invitation, out of my affection for you, for your talent and study to proceed with care, so that you
may ponder these matters well within yourself, before divulging them for publication".
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to Oldenburg, from March 1675,120 Leibniz pointed out that Gregory’s impossibility

result, even if correct, did not entail the impossibility of finding an exact quadrature of

the circle. Let us recall, in fact, that Leibniz held that the sum of the infinite series
1
1 − 1

3 +
1
5 − 1

7 +
1
9 − 1

11 . . . was exactly equal to the area of the circle if and only if the error

between such a supposed magnitude and any finite subseries can be made smaller than

any given number. On the contrary, Gregory’s assertion about the analytical (defined

by Leibniz: "exacta penitus et geometrica") impossibility of the quadrature of the circle

implied that the area of the circle could not be expressed as a number obtained by

applying algebraic operations on known numbers, as Leibniz neatly pointed out:

Gregorius enim non hujus quidem quadraturae generis, quod arithmeticum

appellare soleo, per series numerorum rationalium infinitas, sed exacti penitus

et geometrici per unum quendam numerum aut finitam numerorum seriem,

sive illi rationales, sive irrationales sint, impossibilitatem a se demonstratam

putavit, quod meo invento nihil adversatur.121

Leibniz was particularly concerned with the problem of clarifying the meaning of exact-

ness in the context of the circle-squaring problem, as revealed by one of the drafts of the

letter prepared for Oldenburg, but never sent nor completed.122

Possibly as a reaction to Oldenburg’s misgiven objection, in fact, Leibniz set out to deploy

a general hierarchy in order to countenance several "gradus" (levels) of quadratures,

ranged from the least to the most exact one.123

Leibniz ranged, at the lowest level, what he called ‘approximate quadratures’, namely

quadratures solved by approximation processes, either numerical or geometrical. Among

the approximate ‘numerical’ quadratures, Leibniz mentioned the classical Archimedean

120The letter is now extant in three versions ( see AIII, 46, n. 1, 2 and 3, p. 201ff.). Only the version
n. 3 was sent to Oldenburg.

121LSG, I, p. 59: "Indeed, Gregory reckoned to have proved the impossibility not of this kind of
quadrature, that I am used to calling arithmetical, obtained by an infinite series of rational numbers,
but of the fully exact and geometrical one, by one number, or a finite series of numbers, rational or
irrational, which is not against my discovery.". See also Hofmann [2008], p. 116, 127.

122See AIII46, n. 2.
123An analogous classification of quadratures is discussed also in the tract, written in 1676, Praefatio

opusculi de Quadratura Circuli Arithmetica (AVII6 19, p. 176-177), written one year later. Leibniz prob-
ably intended to present in the 1676 wrok the achievement of a series of methodological considerations
on quadratures that he had been elaborating for the previous two years. Leibniz resumed a classification
of quadratures also in the De Vera Proportione Circuli ad Quadratum in Numeris Rationalibus Expressa,
published in 1682 ( Leibniz [1682], also in LSG5, p. 120).
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technique of approximation, Ludolph van Ceulen’s Fundamenta arithmetica et geometrica

(1615), and, finally John Wallis’ Arithmetica Infinitorum (1656), among early modern

representatives of approximate quadratures.124 ‘Linear’ quadratures consist of approx-

imated constructions obtained by ruler and compass: Leibniz evokes on this concern

Willebrod Snell’s Cyclometria (1621) and Christiaan Huygens’ De circuli magnitudine

inventa (1654).125

After the class of approximate and linear quadratures, Leibniz introduces ‘mechanical’

ones in these terms:

Proxima est mechanica, quae exacta esse potest, sed perficitur ope cur-

varum quarundam materialium mensurae cuidam applicatarum, ut per evo-

lutione fili; curvae materiali circumplicati, aut provolutione curvae materialis

in plano, aut applicatione regulae ad curvam materialem inveniendae tangen-

tis causa; talis est dimensio circuli aut arcus circularis per cycloidem, aut per

tangentem spiralis Archimedeae.126

Leibniz stresses that mechanical quadratures are those ones solvable via curves generated

out of special motions and explicitly ruled out by Descartes, like the spiral and the cycloid,

or else, curves traced by revolving a string around some material objects.127

124Leibniz maintained that Wallis’s "expression" was good for approximations, "but cannot be consid-
ered as an exact expression, taken as a whole" (“sed non pro exacta expressione per infinitam seriem
considerata semel in universum”, De serie Wallisiana, 1676, AVII, 3, p. 824). Generally speaking, Leib-
niz expresses doubts about the convergence of Wallis’ sequence (Probst [2004], p. 192), on one hand,
and on the other he disapproves of Wallis’ inductive procedure, which relies, according to Leibniz, too
heavily on intuition. Generally speaking, Leibniz characterized Wallis’ method of quadratures as being
still dependent on intuition and on a classical approach: "Mr Wallis, in order to make his investigations
easier, gives us by means of induction the sums of certain rows of numbers, whereas the new analysis of
infinites considers neither figures nor numbers but quantities in general, as does ordinary algebra" (This
excerpt, translated by P. Beeley, comes from a later text of 1692, De la Chaînette. Similar opinions
are extant in earlier texts, dating from the parisian period. Cf. for instance: De progressionibus et de
arithmetica infinitorum, A VII3, p. 102).

125Huygens [1888-1950], vol. 12, p. 131.
126AIII, 46, p. 203: "The subsequent class is the mechanical one, which can be exact, but it is effected

by means of material curves applied to a length, as through the evolution of a chord, wrapped around a
material curve, or through the rolling of a material curve in the plane, or applyng a rule in order to find
the tangent to a material curve. This is the rectification of the circle or of a circular arc by the cycloid,
or by the tangent to the archimedean spiral".

127Leibniz was arguably thinking of the theory of evolutes which he had come to know through the
third book of Huygens’ Horologium Oscillatorium (Leibniz’s annotations to Huygen’s Horologium dated
back to Spring 1673, as shown in AVII4, n. 2). The dual notions of evolute and involute were introduced
by Hygens by describing the following physical device. Huygens demands to consider a smooth curve
without cusps or changes in its concavity, and to imagine a taut string wrapping a part of the curve
or the whole curve, while it is constrained at one extremity. If the string is then tighty unwrapped
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Such ‘mechanical’ quadratures, Leibniz insists, can be considered ‘exact’. Leibniz was

possibly suggesting that these quadratures were obtained by ‘exact’ curves, certainly on

the ground of a different ideal than the one in force in Cartesian geometry, which rejcted

mechanical curves. It is by no means evident here, though, to understand the criterion

arguably adopted by Leibniz in order to consider exact, and therefore geometrical, curves

like the spiral, the cycloid and the evolutes, generated by physical devices. The context

of Leibniz’s exploration in the theory of curves may help us here, though. Later on, in

section 8.9, I shall come back on this theme, in order to venture some hypothesis on the

exact and geometrical nature of certain non-cartesian curves.

The standard of exactness Leibniz has here in mind is not clearly specified in the letter.

Certainly, it is sufficient to consider that Leibniz is discussing quadratures obtained

through mechanical curves, in order to exclude that he is referring to the exactness as

conceived by Descartes, in his geometry.

starting from the free extremity, this motion will trace another curve, called "involute" of the given
curve, or, in Huygens’ terminology, the curve described by evolution. The curve around which the chord
is wrapped is called, on the other hand, "evolute" (this corresponds to the fourth definition contained
in the Horologium Oscillatorium). It is implicit in this procedure that a given evolute can be associated
to an infinite number of involutes, since Huygens assumes that the string has an arbitrary length, and
its extremity can coincide with any point on the initial curve (Huygens [1888-1950], vol. XVIII, p.
189). The very construction of the involute reveals a property of the curve which is rigorously proved
in the Horologium: the tangents to any point of an evolute are by construction normals to the involute.
Hence, the evolute can be defined as the envelope of all the normals to an involute. This property
offered to Huygens the ground for the determination of the evolute, as a locus which could be described
analytically if the involute was a geometrical curve itself. Hence, in order to construct a point on the
evolute, Huygens considered on the given involute two points at infinitely close distance, and, having
traced their normals, he marked their intersection point (the normals intersect provided the original
curve is not a straight line). Proceeding in this way for an arbitrary number of points, a locus could be
pointwise constructed, which is the evolute of the given curve (this is the construction called "artificial"
by Leibniz, in the above passage, probably because it could not be supplied by a continuous tracing
through an instrument). A second property studied by Huygens was crucial to Leibniz’s argument: the
generation of the evolute from a given curve provides also its rectification. This property is intuitive
if we consider the generation of the involute by means of a string: since the string is supposed tighty
adhering to the curve, as a part of the string unwraps, a part of the curve (namely the evolute) on which
the string was lying is rectified. Therefore, if an evolute is given, the construction of one of its involute
rectifies also the evolute or part of the evolute itself. However, Leibniz saw an obvious inconvenient to
the use of the related couple evolute/involute in order to solve the general problem of the rectification
of curves. Indeed, the construction of the evolute from a given curve solved, via a construction, also the
problem of its own rectification, but not the rectification of the companion curve. Huygens’ work on the
evolutes failed to provide a reverse analytical technique for finding the equation of the involute given its
evolute. The case of the circle is salient on this concern, since its involute could be described by Huygens
only "qualitatively", let us say, as the result of a geometrical construction, but not analytically via an
equation (See Yoder [1988], p. 93).
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‘Arithmetical’ quadratures come next in Leibniz’s classificatory scheme. Leibniz does

recall that Mercator has obtained an arithmetical quadrature of the hyperbola, but insists

in claiming for himself the priority in the discovery of the quadrature of any circular

sector, and of the circle too. The arithmetical quadrature of the circle, Leibniz stresses,

is somehow the apex of possible quadratures discovered thus far, as it: "exhibits not

a number, but an infinite series of numbers exactly equal to the sought-for magnitude

. . . ".128

The arithmetical quadrature of the circle, Leibniz emphasized, in the draft of another

letter from 1675, probably intended for Gallois (AIII1, 73), consisted of a result funda-

mentally different than a geometrical quadrature, since it did not directly come up with a

rule in order to exhibit, by a geometric construction in a finite number of steps, a square

equal to a given circle.129

However, even without knowing whether the limit of the infinite series:
∑∞

n=0
(−1)n

2n+1 could

be expressed by a known, algebraic number, Leibniz was convinced that the series itself

offered, uniquely in virtue of its law of formation, an epistemic access to the nature of

the ratio between a circle and the square built on its diameter. Thus, Leibniz judged his

arithmetical quadrature as the "true quadrature of the circle in numbers", remarking:

. . . qua nescio an simplicior dari possit, quaeque mentem aciat magis. Hactenus

appropinquationes tantum proditae sunt, verus autem valor nemini quod

sciam visus nec a quoquam aequatione exacta comprehensus est, quam hoc

loco damus, licet infinitam, satis tamen cognitam, quoniam simplicissima

progressione constantem uno velut ictu mens.130

This suggestive passage relates the simplicity of the alternating series for the quadrature

of the circle to the immediacy through which its unique law of formation can be seized

and represented through an adequate symbolism (uno ictu mens). The possibility of

expressing such a law of formation, by means of a description involving only a finite

128"Sequitur quadratura arithmetica, qui exhibetur magnitudini quaesitae exacte aequalis non numerus
quidem, sed series numerorum infinita . . . ", AIII1, 46, p. 203.

129"Quadrature arithmetique (. . . ) n’est pas geometrique, car je ne pretends pas décrire un quarré
egale à un cercle", AIII1, 73, p. 356.

130AVII6, 51 p. 601: "I do not know if it is possible to give a simpler one [i.e simpler than the series:
∑∞

n=0
(−1)n

2n+1
], and one which impresses more the mind. So far, only approximations have been given,

but no one seems, to my knowledge, to have seen and understood its true value by means of an exact
equation, which i give here, although infinite, nevertheless sufficiently known, since the mind pervades
it all, as if through a single stroke, thanks to the extremely simple progression".
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number of words, grounds our intellectual grasp of an infinite object, like the series

under examination, and consequently our intellectual grasp of the nature of the ratio

between the circle and the square constructed on its diameter, in modern terms, our

understanding of π.131

Arithmetical quadratures ought be distinguished not only from geometrical ones, but

also from ‘analytical’ quadratures. An ‘analytical quadrature’ of the whole circle, or of

one of its sectors, obtains when one can express the ratio between the circle (resp. a

sector) and an inscribed or circumscribed polygon through a number, rational or surd:

Leibniz probably intended a number obtained by composing positive numbers by the

known algebraic operations.

But Leibniz also pointed out, in the 1675 draft for Oldenburg, to another kind of an-

alytical quadratures, whose result is exhibited: "through an expression of the kind of

those that I call transcendental" ("per expressionem quandam ex earum genere, quas

ego appello transcendentes").132

This last remark, which is not further developed in the draft to Oldenburg,133 is certainly

worth of a commentary. It seems, at a first reading, that Leibniz might want to venture

the idea that equations of a different kind than those promoted by Viète and Descartes

could possibly express the relation between circular and rectilinear magnitudes. But

which kind of equations?

The consideration of contemporary texts reveals that the term ‘transcendental’, at least

in Leibniz’s early mathematical production, generally denoted problems and curves irre-

ducible to algebraic equations.134However, Leibniz also gave a positive characterization

131Cf. Granger [1981], p. 17ff . See also Debuiche [2013], p. 422ff. Leibniz, who probably examined
several series discovered up to his time in order to determine π, as his catalogues of quadrature reveal
(one example is contained in the draft of the letter to Oldeburg, examined above), did not find in any
among the known results the virtues of his series. This conclusion may seem to us excessively severe.
Without entering into the study of the methods for the computation of π, it is sufficient to think of
Wallis’ series presented in the Arithmetica infinitorum as an infinite series of rational numbers which
defines, just like Leibniz’s series, the ratio between the circle and the square built on the diameter, and
can be understood in virtue of its law of formation. However, as discussed before, Leibniz saw a crucial
difference in method between his investigation and Wallis’ arithmetical quadrature.

132AIII1, 46 p. 203-204.
133Leibniz probably decided to drop these allusions to ‘transcendental’ equations in the copy of the

letter eventually sent to Oldenburg, possibly fearing that his remark was not sufficiently developed, and
therefore may result obscure (see Breger [1986], p. 122).

134More precisely, in his 1674-76 production, Leibniz employed the expressions: "Figura transcendens",
"curva transcendens", "problema transcendens". The term ‘transcendental’ was employed by Leibniz



CHAPTER 8. THE ARITHMETICAL QUADRATURE OF THE CIRCLE 420

of transcendental equations. For instance, we can read in a draft of De quadratura arith-

metica, written in 1676:

ope aequationis (transcendentis licet sive infinitae) calculi analytici institui

possunt circa magnitudines, quae hactenus creditae sunt Calculo non subjec-

tae.135

In this passage, Leibniz refers to a new calculus performed by means of "transcendental

equations" or "infinite equations". ‘Infinite’ equations presumably represented those

relations between geometric objects, like a circular arc and its corresponding tangent,

expressible by a (infinite) series. But what kind of objects did "transcendental equations"

or "transcendental expressions" might have denoted?

Another excerpt from a letter to Oldenburg written in October 1676,136 is perhaps useful

in order to elucidate Leibniz’s reference to "transcendental expressions" and "transcen-

dental equations". In this letter, Leibniz attempts to derive an equation for the cycloid,

and obtains the following "analytical expression" for a transcendental curve:

2v − 1 =
ω
2z

√

± b

2
+

√
b2

4
− 1 +

2ω
z

√

± b

2
−
√

b2

4
− 1

This equation relates the abscissa z and the ordinate v of a cycloid, generated by a

rolling circle of radius 1, such that ω is a given arc, and b the corresponding chord.137

I shall not explore here how Leibniz obtained this equation, but point out to the fact

that this equation constitutes a new symbolic expression with respect to those treated

by Descartes in La Géométrie. We can notice, indeed, that it contains the unknown z

appearing at the index of the root.

from 1673 onwards, in order to denote curves, figures and problems non expressible by finite polynomial
equations, like the logarithmic curve (see AVII3, Introduction, in particular p. XXIV, and cf . an early
occurrence such as: AVII3, 23, p. 267.). The dating suggested by Parmentier in Leibniz [1989] (p. 65),
who fixed the first use of the term to the draft of the letter to Oldenburg that we are examining, is
therefore corrected.

135AVII6, 28, p. 331: "By means of this equation (transcendental or infinite) analytical calculi can be
effected about quantities that so far have been thought not subject to the calculus".

136The letter is published in AIII1, 96.
137AIII1, 96, p. 649.
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Leibniz returned on similar considerations in the article: De vera proportione circuli. . .

(1682). This paper was published much later than the period we are examining, but

it is thematically close to the research led by Leibniz in the mid seventies. Moreover,

it presents a classification of quadratures too. In connection with the issue here at

stake, we read in the De vera proportione circuli : "An analytical transcendental is one

of the quadratures obtained by an equation of indefinite degree, so far considered by

noone, as when we let: xx + x = 30, and x is searched, the result will be 3, because

33+3 = 27+3 = 30: I will give such equations for the circle in due time)".138 Leibniz was

thus inquirying, in the 1682 article, whether an "analytical, transcendental quadrature"

of the circle could be obtained by means of an ‘indefinite equation’, which was an open

question, by that time (Cf. Leibniz [1989], p. 75).

These remarks, together with the example of the cycloid, may offer the ground for the

conjecture that, by the words "transcendental expression", Leibniz was referring, already

in his 1675-76 drafts to Oldenburg, to a finite equation of indefinite degree, in which the

unknown appears as the index of a root, or as an exponent. Such an equation would be

obviously different from a polynomial equation of the kind treated by Descartes, but it

would be also different from an infinite equation, as the one expressing the arithmetical

quadrature of the circle, since it would not be constituted by an actually infinite expres-

sion or equation, like the ones associated with the arithmetical quadrature of a circular

sector. Hence, Leibniz might have introduced, in the draft of a letter to Oldenburg, a

distinction into two kinds of ‘analytical’ expressions: one referring to algebraic expres-

sions and equations, the other referring to transcendental expressions and equations.

When referred to the outcome of a quadrature, analytical quadratures are distinct from

an arithmetical one, since they consist of finite symbolic expressions. Meanwhile, while

algebraic equations coincide with Descartes’ and Viète’s algebra, transcendental equa-

tions represent symbolic expressions of a new kind, a veritable "supplement of algebra",

as Leibniz would later define it.139

Let us return to the text of the draft to Oldenburg. A ‘geometrical quadrature’, Leibniz

eventually points out, is the ‘apex’ of all quadratures, and it is obtained by a ruler and

compass, or by a suitable composition of these instruments, namely: "regulis aut circinis

138"Analytica transcendens, inter alia habetur per aequationes gradus indefiniti, hactenus a nemine
consideratas, ut si sit xx + x aequal. 30, & quaeratur x, reperietur esse 3, quia 33 + 3 est 27 + 3 sive 30:
quales aequationes pro circulo dabimus suo loco" (in Leibniz [2011], p. 9).

139Cf ., for instance, LSG, V, p. 232.
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inter se compositis seque compellentibus aut ducentibus".140 We can read here a clear

reference to geometric linkages, so that a ‘geometrical quadrature’ will be a quadrature

solvable by curves acceptable in cartesian geometry. Analytical (algebraic) and geomet-

rical quadrature are therefore closely connected, since if the algebraic quadrature of the

circle could be discovered, then a geometrical quadrature could be obtained as well. Con-

versely, Leibniz ought to admit that if a quadrature could be solved geometrically, by

constructing a square equal to a given circle through the intersection of curves traced

by cartesian linkages, then the constructed square (or its side) would be the root of

a finite polynomial equation too. The equivalence between algebraic and geometrical

quadratures demands, as a necessary condition, to assume that curves constructable by

geometric linkages can be always associated to finite algebraic equations, and vice versa,

that algebraic equations can be associated to curves generated bssy legitimate linkages.

As examined in chapter 3, this equivalence was assumed by Descartes as valid, and

Leibniz did not contest it.

Even if the repertoire of quadratures sketched by Leibniz is not definitely distinguished

and elaborated,141 arithmetical quadratures are clearly discriminated from analytical

ones, and among the latter, quadratures reducible to finite polynomial equations (we

may call them ‘algebraic’ quadratures in order to avoid ambiguities, although Leibniz

does not employ, at least in his 1675-76 works, this term) are further distinguished from

quadratures reducible to transcendental expressions. An arithmetical quadrature of the

circle can be judged exact, according to Leibniz, and if the impossibility of the algebraic

quadrature of the circle were eventually proved, the arithmetical quadrature of the circle

should be considered the most exact quadrature attainable.

8.6 The impossibility of giving a universal quadrature of the

circle

8.6.1 Leibniz’s criticism of Gregory’s arguments

In the drafts of his letters to Oldenburg from March 1675, Leibniz did not exclude that

an algebraic quadrature of the whole circle might be found, against Oldenburg’s own

convictions. On this occasion, Leibniz unravels his dissatisfaction for Gregory’s impos-

sibility claims, expounded and argued in the Vera Quadratura and in the Exercitationes

140AIII1, 46, p. 204: ". . . rulers and compasses intertwined and pushing and guiding each other".
141Hofmann [2008], p. 129.
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Geometricae, mentioning how ‘new’ objections could be added to those already discussed

by Huygens in the Journal des Sçavans .142

These objections are not explicated in the draft from 1675, though. Some light on what

Leibniz could have in mind might be thrown by examining few manuscripts written in

1676, which contain critical remarks towards Gregory’s arguments on the impossibility

of giving an analytical (i.e. algebraic) quadrature of the central conic sections. The most

prominent tracts, for our theme, are the following: Quadraturae Circuli Arithmeticae

Pars Secunda (AVII6, n. 28, dated June or July 1676); Series convergentes seu substi-

tutrices (AVII3, 60, from June 1676); Series convergentes duae (AVII3, 64, June 1676).

Let us observe that the tracts AVII6, 28, AVII3, 60 and 64 were also written while Leibniz

was presumably elaborating his ultimate version of the De Quadratura arithmetica, the

one including proposition LI. It can be supposed, therefore, that Leibniz’s work on the

impossibility result later added as the last proposition of his treatise, occurred in the

backdrop of an intense study of Gregory’s arguments for the impossibility of giving an

indefinite and a definite quadrature of the circle.

A further confirmation of this hypothesis comes from the tract AVII6, 28, ‘Quadratu-

rae Circuli Arithmeticae Pars Secunda’. As remarked in the introduction, this draft is

closed by a proposition on the impossibility of giving a more geometrical quadrature of

the central conic sections, which looks almost identical to proposition LI (AVII6, 51, p.

348-349), except for its conclusion. In fact Leibniz appended to the last proposition of

AVII6, 28 a long critical Scholium occupied by a discussion about the impossibility re-

sults contained in the Vera circuli et Hyperbolae Quadratura . It is arguable that Leibniz

intended to enrich the impossibility argument expounded in AVII6, 28 with additional

142AIII1, 46, p. 204: ".. . . praeter objectiones ab illustri Hugenio factas, quibus nondum est satisfac-
tum universis, habeo et ego peculiares, unde satis judicari potest, nondum geometras ab hac inquisitione
desistere debere" ("Besides the objections made by the celebrated Huygens, which do not yet satisfy
everyone, I have peculiar objections too, from which one can adequately conclude that the geometers
must not give this research up"). In another draft of the same letter, Leibniz invokes Huygens’ critiques
(‘rationes Hugenio intactae’) to Gregory - he presumably refers to the objections advanced by Huy-
gens in the Journal des Sçavans, discussed in the previous chapter of this study - in order to endorse
them. Finally, in a subsequent letter to Oldenburg, dating from 27 August 1676, Leibniz maintained
his conviction that Gregory’s proofs of impossibility is imperfect and not fully rigorous, although the
rationale behind this opininion is still left implicit ("Ceterum ejus demonstrationi editae de impossibil-
itate quadraturae absolutae circuli et hyperbolae multa haud dubie desunt", AIII1, 89, p. 580. In my
translation: "Moreover, many things are without doubt lacking in his published proof of the impossibility
of the absolute quadrature of the circle and the hyperbola").
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critical remarks towards Gregory’s impossibility claims. Hence, the discussion contained

in AVII6 28 provides further evidence in order to claim for a link between Leibniz’s im-

possibility arguments, developed firstly in AVII28 and later in AVII, 51, and his ongoing

criticism to Gregory’s claim to the impossibility of solving analytically the quadrature of

central conic sections.

Let us consider in more detail Leibniz’s examination of Gregory’s arguments. Leibniz’s

examination begins by expounding Gregory’s definition of convergent series and the strat-

egy ("vis argumenti") deployed in VCHQ in order to prove the analytical impossibility

of squaring a sector of the circle, once this problem has been reduced to the problem of

finding the limit, or terminatio, of a certain succession.143

Successively, Leibniz enters the pars destruens of his considerations. The first of Leibniz’s

criticisms concerns the claim that a sector of a central conic, freely chosen, is composed

analytically from the inscribed and circumscribed polygons (VCHQ, XI, p. 27; and

Scholium to proposition XI, p. 28). Leibniz acknowledged the correctness and inge-

niousness of Gregorie’s procedure for handling series ("haec omnia pulcherrima sunt"),

but pointed out an alleged logical flaw ("quodammodo in ratiocinandi forma peccasse")

in Gregory’s reasoning leading to the impossibility of the analytical quadrature of an

arbitrary sector.

Leibniz’s objection moves from the examination of the concluding remarks of proposition

X of the Vera circuli et hyperbolae quadratura (VCHQ , p. 23). In order to find the

terminatio of a convergent series - Gregory argues there - it is sufficient ("opus est

solummodo" Leibniz reports, quoting the original: see VCHQ , X, p. 24) to exhibit an

invariant analytical composition with respect to the terms of the series and its terminatio.

Leibniz concedes the correctness of this claim, but contests that Gregory has unjustifiedly

concluded the reciprocal. So Leibniz remarks:

Si non possit dari hujusmodi formula analytica, non posse dari terminationem

Seriei convergentis. Id tamen facit ille . . . ponit ergo tacite, si non detur

hujusmodi formula, non posse dari terminationem. Et hinc, inquit evidens

est quod sector non componatur analytice ex triangulo inscripto et trapezio

circumscripto. At consequentiam istam probare ne conatur quidem, usque

143"Quadratura ergo Sectoris huc redit, ut inveniatur seriei convergentis terminatio."AVII6, n. 28, p.
350-351.
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adeo claram credidit.144

Leibniz interprets Gregory’s proposition X as a sufficient condition in order to find the

limit of a converging sequence to a conic sector (if one can find an invariant analytical

composition of the convergent terms, then he can find the limit of the sequence), and

objects that Gregory took this condition as necessary too, by tacitly assuming that: "if

an invariant analytical composition of the first and second couple cannot be found, then

the terminatio is not analytical with the terms of the convergent series", which is the

reciprocal of the conclusion stated in proposition X.

In summary, Leibniz contests that Gregory grounded the analytical impossibility of the

quadrature of an arbitrary sector of the circle, of the ellipse and of the hyperbola, on

the following assumption: a convergent sequence tends to an analytical limit only if this

limit can be found according to the method prescribed by Gregory (or that any method

capable of computing the limit was eventually reducible to Gregory’s procedure).

But this assumption, Leibniz objects against Gregory’s tacit belief, is by no means evi-

dent, and requires a proof: Gregory’s argument is therefore not fully justified.145 I remark

that this objection develops a critical note made by Huygens, in a letter from 2nd july

1668 (see previous chapter, for Gregory’s replies), according to which the impossibility of

the analytical quadrature of a central conic could not be deduced merely on the ground

of the arguments deployed in proposition X and XI of VCHQ , unless one could add the

‘only if’ condition evoked above.

In the same tract AVII6, 28 and in the contemporary tract AVII3, 60 (p. 757), Leibniz

discusses a second objection against Gregory’s impossibility claims. Indeed, he observes,

with reference to proposition XI of VCHQ :

Imo vero inquiet, demonstratum est, quoniam ostendimus non posse dari for-

mulam analyticam ex a. et b. formatam, eodem modo quo ex
√
ab. 2ab

a+
√
ab

.

Concedo. Si ergo non datur talis formula analytice composita; non datur

144AVII6, 28, p. 353: "But Gregory must not derive the reciprocal: if such an analytical formula could
not be given, then the limit of the covergent series cannot be exhibited. However, he does this. . . he
tacitly assumed, if a formula of this kind is not given, then the limit cannot be given. But he does not
even try to prove this consequence, that so far he believes to be clear".

145Leibniz remarks that Gregory: "Does not even attempt to prove this conclusion, to the point that
he believes it is clear" ("consequentiam istam probare ne conatur quidem, usque adeo claram credidit"),
AVII6, 28, p. 354).
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quantitas analytica per hanc formulam significata. Potest enim fieri ut quan-

titas sit analytica et nota, verbi gratia numerus; formula autem secundum

quam illa eodem modo componitur ex terminis duobus primis quo ex duobus

secundis poterit esse ignota et non analytica.146

This objection may be related to the criticism raised by Wallis, and echoed by Huygens

too, in two letters from 1668, that have been discussed in the previous chapter (cf . ch.

7, sec.7.5). I recall that, according to Wallis, Gregory’s impossibility argument, even if

sound, would not entail the impossibility of giving an analytical quadrature of the whole

circle, or of one of its rational sectors. In fact, Gregory’s proof concerned the impossibility

of finding a (unique) analytical formula in order to square any given sector of a central

conic. By analogy, the impossibility of trisecting an angle, argued Wallis, did not mean

that no angle is trisectable by ruler and compass (as it was known since antiquity, there

are angles perfectly trisectable by ruler and compass, like the right angle), but it meant

that that there is no a (unique) ruler and compass construction that allows one to trisect

any given angle (or to trisect an angle, without information on its measure). In order

to distinguish the impossibility of finding an analytic composition, in order to square

any given sector of a circle (or of a central conic) from the impossibility of squaring a

particular sector, Huygens coined the expressions: "indefinite quadrature" and "definite

quadrature".

I suggest that this conceptual distinction and the reasoning lying in its backdrop can be

also considered the gist of Leibniz’s criticism expounded in the passage quoted above.

In another, related tract, Leibniz remarked that Gregory’s ungrounded claim to the

impossibility of the analytical quadrature of the whole circle lies on a conceptual confusion

between ‘formulas’ and ‘quantities’.147

146"He [namely Gregory] will say that this is proved [i.e. that the sector is not analytical with the
sequence of inscribed and circumscribed polygons] since an analytical formula formed by a and b, in the
same way as from

√
ab and 2ab

a+
√
ab

cannot be given. I concede this. But if such a formula, analytically

composed, is not given, then an analytical quantity expressed by this formula is not given. It can be
that the quantity is analytical and known, for instance a number; but the formula through which it is
composed in the same way from the first couple and from the second couple of terms may be unknown
and non analytical".

147"One thing is to speak of quantities, another thing is to speak of formulas" ("Aliud est enim de
quantitatibus aliud de formulis loqui"), AVII3, 60, p. 759.
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It seems to me that Leibniz stresses a distinction already noticed by Wallis and Huygens.

Although it is not mentioned,148 the case of the trisection problem comes immediately to

the mind, as an exemplification of Leibniz’s demarcation between ‘formulas’ and ‘quan-

tities’: the impossibility of trisecting an angle boils down to the impossibility of finding

a ‘formula’, namely a ruler-and-compass protocol, in order to solve the trisection for any

angle. This result, on the contrary, does not claim the impossibility of trisecting any

angle: in fact there are trisectable angles. Therefore, on the ground of this impossibility

result only, we would not be able to decide, in principle, whether an angle α, having a

certain measure, is trisectable or not.

Generalizing from this example, we can get to Leibniz’s very conclusion: since there are

non-analytical formulas or operations, which may yield analytical quantities as a result,

when applied to analytical quantities, the impossibility of finding an analytic formula for

the quadrature of any sector of a central conic, does not entail the non squarability of

particular sectors, like the whole circle.

The manuscript AVII6, 28 provides sufficient evidence in order to conclude that Leibniz

studied with particular care, in the year 1676, Gregory’s arguments about the impossibil-

ity of squaring the central conic sections. I surmise that these studies might contribute

to explicate the elliptic remarks to be found in Leibniz’s letters to Oldenburg - dating

from March 1675 - according to which Leibniz not only endorsed Huygens’ criticism to

Gregory, but also possessed ‘new’ objections (see: AIII1, 46, p. 204, quoted above).

Leibniz’s objections were certainly not new, if considered in the backdrop of Huygens’

and Wallis’ discussions, but we must take into account also the fact that Leibniz himself

had not a full knowledge of the contributions of his predecessors, and therefore he could

have been legitimately thinking that his own contribution was valuable, as it shed light on

arguments merely sketched in Huygens’ letters (in particular, the conceptual distinction

between "formulas" and "quantities").

148In order to exemplify the distinction just evoked between ‘formulas’ and ‘quantities’, Leibniz confines
himself to (vague) numerical examples instead: he remarks in fact that given the numbers 3, 4, 6, 9 and
13 one might find a non-analytic or transcendental operation that, applied to numbers 4 and 6 can yield
the number 3, and such that, applied to numbers 9 and 13, they yield the number 6.AVII3, 60, p. 759:
". . . Verbi gratia possibile est fortasse aliquam reperiri operationem, per quam eodem modo proveniat
numerus 3 ex 4 et 6 quo ex 9 et 13, sed quis illam divinabit". (for instance it is perhaps possible to find
an operation, through which the number 3 is computed, in the same way from 4 and 6, as the number
6 is composed from 9 and 13, but someone will find it). Compare the analogous example in AVII6, 28,
p. 355.
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Moreover, the arguments examined in this section explain why Leibniz was dissatisfied

with Gregory’s arguments, and why he finally opted for a new argument establishing

that there is not a unique analytical formula which gives the quadrature of an arbitrary

sector of the circle and the hyperbola.

8.7 An impossibility argument

8.7.1 Universal and particular quadratures

In order to understand precisely the significance of Leibniz’s impossibility argument, let

us turn to another discussion related to Gregory, in a note from 1676 (written between

April and June 1676), and titled Impossibilitas quadraturae circuli universalis. In this

tract, Leibniz introduced the following distinction:

Quadratura duplex est, universalis et particularis: Universalis , quae regulam

exhibet cujus ope quaelibet Circuli portio possit mensurari, seu cujus ope ex

data tangente (vel sinu) possit inveniri arcus sive angulus. Particularis , quae

certam circumferentiae portionem, (: et eas, quarum ad hanc portionem nota

est ratio:) exhibet. Unde et si quis totum circulum totamve circumferentiam

exhiberet, non vero nisi eas partes, quarum ad circumferentiam nota jam tum

est ratio, is quadraturam, qualis desideratur, Universalem non dedisset.149

Leibniz’s considerations, in the excerpt reproduced above, are confined to the quadrature

of the circle. A distinction between two types of quadratures is introduced, which reminds

of another distinction formulated by Huygens, in a letter from 12th November 1668,

between ‘definite’ and ‘indefinite’ quadrature of the circle.150 On one hand, Leibniz

defines the ‘universal quadrature’ of the circle, namely the problem of finding a general

formula, or a rule in order to determine an arbitrary sector of the circle or an arbitrary

arc; and on the other he defines the problem of the ‘particular quadrature’ (also called

"specialis" in another passage of the same text), namely the problem of finding the length

of a given arc or the area of a sector, or the whole circle (the classical problem of the

149AVII6, n. 18, p. 165: "There are two quadratures, universal and particular. The universal quadra-
ture exhibits a rule, by whose aid any portion of the circle can be measured, or by whose aid, from a given
tangent (or sine) the arc or the angle can be found. And then there is the particular quadrature, which
exhibits a certain part of the circumference (and these, whose ratio with that part is known). Hence,
if one exhibited the whole circle or the whole circumference, and nothing but these sectors, whose ratio
with the circumference is already known, he would not give the desired universal quadrature".

150Cf . this study, ch. 7, sec. 7.5.
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quadrature of the circle, discussed in Archimedes’ Dimensio Circuli , falls evidently under

such category).

Leibniz had probably reached, upon the reading of the controversy between Gregory and

of Huygens, and in the light of the criticism discussed in the previous section, a firm

conviction that the problems of universal and particular quadratures ought to be distin-

guished as two conceptually different endeavors. One the motivations for this distinction

was plausibly the criticism moved to Gregory, according to which the impossibility of

finding an algebraic universal quadrature (namely an algebraic formula relating each

sector with its inscribed and circumscribed polygons) does not necessarily entail the

impossibility of the particular quadrature of the circle.

Leibniz was arguably influenced by his mentor Huygens, and maintained that the im-

possibility of the universal quadrature of the circle, even if correctly proved, did not

have a bearing on the impossibility of the particular quadrature, namely on the prob-

lem of whether the circle might be analytical, or even commensurable with the square

constructed on its diameter.151

This belief, which shines through the draft of the letter to Oldenburg from March 1675,

was maintained also in the De Quadratura Arithmetica, where Leibniz gave, on one hand,

an argument for the impossibility of the universal quadrature and, on the other, kept a

cautious attitude towards the possibility of finding the sum of his series for π
4 .

As the evidence in manuscripts shows, we can conclude that Leibniz had not yet dis-

carded, by 1676, the possibility that the expression of the area of the circle through an

infinite series could be effectively computed so as to obtain a rational or an irrational al-

gebraic number. Leibniz must have conceived the problem of the ‘particular’ quadrature

of the circle, by the end of his parisian stay, still as an open problem. Unfortunately,

his mathematical work in the period 1676-1684 is still unknown for the most part,152 so

that precise reconstructions of the evolution of Leibniz’s ideas about the problem of the

particular quadrature of the circle between 1674-76 and 1684 cannot be given here, and

151Cf. in particular: AIII1, 46, p. 210. In AVII18 (p. 166-167), Leibniz affirmed: "Certas autem
partes - Leibniz claimed in AVII6, 18- vel etiam totum Circulum (: sed non quamlibet ejus portionem:)
analytice inveniri posse, nondum despero" ("I have not lost the hope yet that precise parts ("certas
autem partes") or even the whole circle (but not any of its portion) can be found out analytically").

152A survey of Leibniz’s mathematical work during this period is given in Hess [1991].
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requires further work on unpublished manuscripts.153

8.7.2 The impossibility of the universal quadrature

The impossibility claim formulated in proposition LI of the De Quadratura Arithmetica

refers to the universal quadrature of the central conic sections. Leibniz enunciated this

impossibility result, with minor variations, in various texts from 1676 (Cf. AVII6, 18,

p. 166, AVII6, 19, p. 176, AVII6, 28 p. 350ff , AVII6, 51, p. 675), among which I

will consider the one belonging to the De quadratura arithmetica, namely proposition LI

of AVII6, 51, since it presumably corresponded to Leibniz’s ultimate viewpoint on this

issue, before leaving Paris in September 1676.

Leibniz claimed the impossibility of the universal quadrature of the central conic sections

by way of a peculiar grammatical construction, recurring to a couple of comparatives:

it is impossible - Leibniz wrote - to find a better solution to the quadrature of the

circle and the hyperbola, the ("meliorem quadraturam"), or a more geometrical relation

("relationem quae magis geometrica sit") than the one presented in the treatise (resumed,

in this study, in equations 8.4.4 and 8.4.5).

But in which sense a solution of a quadrature problem might be better than another

one? An answer can be sketched in the light of Leibniz’s contemporary mathematical

manuscripts examined in the previous sections, starting from the 1675 draft of a letter to

Oldenburg, in which Leibniz had sketched a taxonomy of the various solutions offered to

the circle-squaring problem, ordered from the least to the most exact one. An improved

version of this classification was proposed again in a tract from Spring 1676, titled:

Praefatio opusculi de Quadratura Circuli Arithmetica (AVII6, 19),154 so that Leibniz

had possibly this scheme in mind when he stated his impossibility result.

153Sparse indications that Leibniz could believe the quadrature of the circle to be impossible, in all its
occurrences, can be found too. Thus in the already evoked tract Numeri Infiniti (April 1676, in AVI1,
69), Leibniz inclined towards the belief about the impossibility of expressing the ratio between the area
of the whole circle as an algebraic number, in agreement with an opinion he would reveal, several years
later, in the published article De vera proportione circuli . We read in fact in the De Vera proportione
circuli : "et licet uno numero summa ejus seriei [namely, of the infinite series for π

4
] exprimi non possit,

et series in infinitum producatur. . . " (p. 120). A similar judgement can be found in a letter to Clüver
from 1686 (A III, 4, N. 148, p. 286-287).

154I recall that Leibniz did not mean to preface, by this tract, the De Quadratura Arithmetica, but
another essay (that might be either the AVII6, 15, 20 or 28, all written before Summer 1676), which was
nevertheless temporally and thematically close to the De Quadratura (Cf. Knobloch Knobloch [1989],
p. 129-130).
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Let us recall that in the classification of quadratures contained in the letter to Oldenburg,

the ‘highest’ level was attained by the ‘geometrical quadrature’. This type of quadrature

would be achieved if the problem of squaring the circle, or one of its sectors, could be

solved by expressing the relation between an arc and its chord, or tangent (or between a

sector and an inscribed or circumscribed polygon) by an equation of finite degree, and by

constructing such an equation by means of curves admissible in cartesian geometry.155

The geometrical quadrature of the circle was included by Leibniz, for instance in the

Praefatio (AVII6, 19), among ‘perfect quadratures’.

By excluding, in the De quadratura arithmetica, the possibility of a ‘better’ quadrature

of the circle or the hyperbola than the one obtained in his work, Leibniz was plausibly

referring to the impossibility of obtaining a perfect quadrature of either of these curves.

In a similar way, a ‘more geometrical’ relation between an arc and its tangent woul

consist of a relation expressed through a finite polynomial equation (in this context, the

term ‘geometrical’ employed by Leibniz follows Descartes’ terminology). Analogously, in

virtue of the known relation between the surfaces of the hyperbolic sectors and their bases,

a ‘better’ quadrature of the hyperbola would boil down to the finding of an algebraic

relation between a logarithm and its number.

This elucidation leads us to the core of Leibniz’s impossibility argument expounded in De

Quadratura Arithmetica. Strictly speaking, proposition LI of De Quadratura Arithmetica

contains two distinct impossibility results, one concerning the circle, the other concerning

the hyperbola, whose argumentative structures however mirror each other.156

For the sake of simplicity, let us consider in more detail the case of the circle.157 Accord-

ing to our previous discussion, theorem LI of De Quadratura Arithmetica can be thus

paraphrased:

155"Relationem arcus ad sinum, in universum certa aequatione determinati gradus exprimi" (AVII6,
19, p. 176: "to explicit the general relation of the arc with respect to the sine by an equation of finite
dimension"). If such an equation could be found, the problem could also be solved by geometrical curves,
in the cartesian sense: "Perfecta autem Quadratura quae lineis aequabilibus, ad certarum dimensionum
aequationes revocabilibus, construatur" (AVII6, 19, p. 175: "The perfect quadrature, constructed by
algebraic curves, reducible to equations in a finite degree").

156I point out that one can consider the circle as a special case of the ellipse, so if there were a solution
for the ellipse, there were also one for the circle, and in the other direction no solution for the circle
implies no solution for the ellipse.

157The theorem is also discussed in Knobloch [2006], p. 129.
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Figure 8.7.1: A circular arc and its tangent.

Given a circle with center A and radius AB (= 1), and an arbitrary arc

BC =
⌢
a on its circumference (less than a quarter of the circumference itself),

there is no algebraic relation between the arc and its corresponding tangent

BD = t (fig. 4.1).

Leibniz’s proof proceeds by a reductio argument. Hence, Leibniz supposes that the

relation ("relatio") between the arc
⌢
a and its tangent t can be expressed by a cartesian

equation in a fixed, finite degree n, indipendently from the chosen arc,158 and advances

the following hypothesis:

Sit t tangens, a arcus, radius 1 et aequatio relationem inter arcum et tangen-

tem exprimens sit I. ct+ma aequ. b. vel II. ct+ dt2 + eta+ n2a+ma aequ.

b. vel III. ct+ dt2 + eta+ ft3 + gt2a+ hta2 + pa3 + na2 +ma aequ. b. et ita

porro.159

158AVII6, 51, p. 674: "Quaedam inter arcum et tangentem inventa esse magis geometrica quam nostra
sit, id est quae finita quadam formula constet; utique illa relatio includi poterit in aequationem" ("Let
us suppose, if it can be done, that a relation between an arc and its tangent has been found, more
geometrical than our own, i.e. which consists of a finite formula, so that this relation can be included
into an equation").

159AVII6, 51, p. 674: "Let t be a tangent, a the arc, 1 the radius, and the equation expressing the
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In other words, Leibniz assumes that the supposedly algebraic relation between an arc and

its tangent can be expressed through "general formulas" ("formulae generales"), namely

a polynomial equations of degree n in the unknowns a and t and in the undetermined

coefficients c,m, b, d . . .

Leibniz proposes three examples of such general formulas:

ct+ma = b

ct+ dt2 + eta+ n2a+ma = b

ct+ dt2 + eta+ ft3 + gt2a+ hta2 + pa3 + na2 +ma = b
...

This list may be indefinitely extended by constructing higher and higher general algebraic

equations in the same unknowns a and t.

Presumably, Leibniz relied on the cartesian technique of undetermined coefficients in

order to express a polynomial equation of arbitrary degree in a sufficiently general form

for the purpose of his proof.160 Leibniz remarks in fact, few lines later:

Scilicet in quolibet gradu formula generalis exhibeatur, ad quam speciales

semper poterunt reduci, literas b. c. d. e. f. etc. pro numeris aequationis

specialis propositae sumendo, cum suis signis, aut aliquas harum literarum,

quarum termini scilicet absunt, nihilo aequales ponendo.161

relation between an arc and its tangent be: I. ct +ma = b or II. ct + dt2 + eta + n2a +ma = b or III.
ct+ dt2 + eta+ ft3 + gt2a+ hta2 + pa3 + na2 +ma = b, and so on".

160The method of undetermined coefficients is defined, according to the Encyclopédie, in these terms:
"La méthode des coefficiens indéterminés est une des plus importantes découvertes que l’on doive à
Descartes. Cette méthode très en usage dans la théorie des équations, dans le calcul intégral, & en
général dans un très - grand nombre de problèmes mathématiques, consiste à supposer l’inconnue égale
à une quantité dans laquelle il entre des coefficiens qu’on suppose connus, & qu’on désigne par des lettres;
on substitue ensuite cette valeur de l’inconnue dans l’équation; & mettant les uns sous les autres les termes
homogenes, on fait chaque coefficient= 0, & on détermine par ce moyen les coefficiens indéterminés".
The method presented and employed by Van Schooten can be found, for instance, in his commentary to
Descartes’ geometry (Descartes [1659-1661], p. 324), and it is applied in order to determine the solution
of a cubic equation by the intersection of a circle and a parabola or, as seen in chapter 4 of this study,
in order to reduce quartic equations. Leibniz himself applied this method, after 1676, in the analysis of
quadrature problems, so that the use in De quadratura arithmetica might be one of the first instances of
such a practice, as it is suggested by Parmentier in Leibniz [2004], p. 357. It is unclear, however, where
Leibniz derived the formulas I, II, and III (in his text) from, and for which reason did he believe that
they could represent general forms of quadratic equations, cubic equations, and so on.

161AVII6, 51, p. 674: "Indeed, a general formula in whatever degree may be exhibited, to which special



CHAPTER 8. THE ARITHMETICAL QUADRATURE OF THE CIRCLE 434

For instance, it can be shown that a particular equation ("specialis formula") like: 3t+

4t2 − 6t3 − t2a+ 5a = 10 can be reduced to one of the equations above of corresponding

degree (namely the third) simply by setting: c = 3, d = 4, e = 0, f = −6, g = −1, h = 0,

n = 0, p = 0, m = 5, b = 10.

One may proceed in a similar way for any other special equations, by comparing homo-

geneous terms and setting the undetermined coefficients equal to particular numerical

values.

In a second stage of the proof, Leibniz chooses one among the formulas given in the

previous passage above, namely the third one:

ct+ dt2 + eta+ ft3 + gt2a+ hta2 + pa3 + na2 +ma = b (8.7.1)

and supposes that it expresses the general relation between an arc (less that a quadrant)

and its corresponding tangent. This is an equation of third degree in the variables a

and t, since the equation 8.7.1 generalizes all particular instances of cubic equations.

Leibniz’s choice of a cubic equation does not imply, at any rate, any loss of generality in

the proof: one may choose another general equation in a fixed arbitrary degree n (for n

natural number), and likewise assume that it expresses the relation between an arc and

its tangent, without altering the structure of the argument.162

Let us then consider, following Leibniz’s reasoning, the problem of dividing a given

arbitrary arc
⌢
a into an arbitrary number of equal parts. Leibniz starts by discussing,

without loss of generality, the case for n = 11. Solving the problem of the division of the

arc
⌢
a into 11 equal parts will boil down to construct the arc

⌢

θ = a
11 , whose corresponding

tangent will be, for example, t′ (fig. 8.7.2).

Since the 8.7.1 has been assumed to express the relation between any given arc and its

tangent, it will also express the relation between
⌢

θ and t′. Hence Leibniz replaces, in

formulas may always be reduced, by taking the letters: b, c, d, e, f , or any of the other letters for the
numerical coefficients (with their signs) of the special proposed equation, or by setting equal to zero the
remaining letters, whose corresponding numerical coefficients are indeed lacking".

162The point is stressed in Knobloch [2006], p. 128.



CHAPTER 8. THE ARITHMETICAL QUADRATURE OF THE CIRCLE 435

Figure 8.7.2: Division of the arc.

8.7.1, a by a
11 and t by t′, thus obtaining the following equation:

ct′ + dt′2 + et′(
a

11
) + ft′3 + gt′2(

a

11
) + ht(

a

11
)2 + p(

a

11
)3 + n(

a

11
)2 +m

a

11
= b

Assuming the arc
⌢
a as given, the tangent t′ (and consequently the corresponding arc

⌢

θ = a
11) can be found by constructing the above equation. Since t′ occurs only up to

the third power, Leibniz concludes that the problem of dividing an arc into 11 parts is a

solid problem.

Leibniz crucially observes that any subtitution of the form: a → a
n

in the equation 8.7.1

leaves the degree of the equation unchanged: the problem of the n-section of an arc
⌢
a

can be always solved by a family of equations of third degree, or, more generally (let

us remember that the restriction to degree 3 was arbitrarily chosen), by a familiy of

equations of fixed, finite degree.

But this conclusion contradicts a well-known result on the theory of angular sections,

given in a posthumous work by François Viète, Ad angularium sectionum analyticen
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theoremata Καθολικωτερα:163

Quod est absurdum, constat enim ex Vietae sectionibus angularibus pro an-

guli in partes sectione secundum numeros primos semper altiore atque altiore

opus esse aequatione Anguli bisectionem esse problema planum, anguli tri-

sectionem esse problema solidum sive cubicum, anguli quinquesectionem esse

problema sursolidum, et ita porro in infinitum: absurdum est ergo generalem

anguli sectionem esse problema cubicum. Eodem modo impossibile est gen-

eralem anguli sectionem esse problema ullius gradus determinati finiti; cum

ut dixi aliud semper aliudque sit, pro alio atque alio partium in quas secandus

est angulus, numero.164

As precisely resumed by Leibniz, we can find in Viète’s treatise the very reduction of

the problem of the arc (or angle) division into 3,5, and 7 parts to their corresponding

algebraic equations. If we agree to call c the cord subtending the arc of a given angle ϕ

inscribed in a circle with radius= 1, and to call x the cords subtending the arcs of the

given angle ϕ, of its third, of its fifth, its seventh, and so on, the resulting equations can

be derived (in modern notation):

c = x

For the division in "one part" (actually, no division occurs);

c = 3x− x3

for the trisection of an arbitrary angle; then:

c = 5x− 5x3 + x5

163The treatise was published only posthumously by A. Anderson in 1615. The text was known to
Leibniz through Van Schooten’s edition of Viète’s Opera (1646). Several tracts written between 1674
and 1676 bear evidence to Leibniz’s interest for the problem of the angular section: AVII1, 13, AVII1,
27 (April 1676), AVII1, 24 (May 1676), AVII1, 29 (May 1676), and AVII6, 27, (29 June 1676).

164". . .Which is absurd. It results in fact from the angular sections of Viète that we need an equation of
ever higher degree for the section of the angle in equal parts according to prime numbers. The bisection
is a plane problem, the trisection is a solid or cubic problem, the division of the angle in five parts is a
sursolid problem, and so on, to the infinite. Hence it is absurd that the general section of the angle is
a cubic problem. In the same way, it is impossible that the general section of the angle is a problem of
any finite determined degree; as I said, it is always varying, according to the varying number of parts in
which the angle must be divided" (VII6, n. 51, p. 675).
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for the division into five equal parts; and:

c = 7x− 14x3 + 7x5 − x7

for the division into seven equal parts.165

Viète did not confine himself to finding the equations corresponding to these problems,

but tabulated in a schema the coefficients of the equations corresponding to successive

(odd and even) divisions of an arc of an arbitrary angle ϕ, up to 21 parts. His schema

of coefficients (Canon) is constructed according to a recursive rule, which enables one to

extrapolate the equations corresponding to the division of the angle into any number n

of parts (where n is an integer). In this way Viète claimed to have given the analytical

translation of the more general problem of finding: "one angle to another as one number

is to another", namely the general section of the angle, a problem already discussed in

Pappus’ Collection.166

As an interesting consequence of the analytic treatment of the problem of the n−th

section of an angle, Leibniz remarked a correspondence between the number of angular

divisions and the degree of the corresponding equation: namely, for every n, the n−th-

section of an arbitrary angle is associated to an equation of n−th degree.167

On the top of this, he conjectured that "we need an equation of ever higher degree for

the section of the angle in equal parts according to prime numbers". This statement

165Viète [1983], p. 301-303. See also Bos [2001], p. 215. In the treatise, Viète derives several equations
corresponding to the same instances of the problem according to different choices of the unknown,
namely, several equations corresponding to the trisection problem, several equations corresponding to
the division into five parts, and so on. Nevertheless, all equations corresponding to a division of the
angle into, say, n parts, have degree n: for the sake of our argument, the above choice is then sufficient.

166Viète [1983], p. 443; Viète [1646], p. 300. I note that the problem is not solved by giving a single
solution for any n (where n is the number of division), but by giving a method in order to determine, for
any given n, the corresponding equation (which changes according to the number of divisions). In this
way, Viète could survey a problem admitting an infinite instance of cases. In the same way, he derived
other tables for coefficients, corresponding to equations resulting from different choices of the unknowns.

167Leibniz could have derived this result as an immediate corollary from his study of Viète’s tables
Viète [1983], p. 434; Viète [1646], p. 295, for instance), although it is never explicitly remarked by Viète,
to my knowledge.
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involves the impossibility of reducing the problem of the general angular division to

one polynomial equation of finite degree, a result which contradicts Leibniz’s initial

assumption, that that the relation between an arc and its tangent, and therefore the

angular division problem, could be expressed by a cartesian equation in a finite fixed

degree.

In the light of this conclusion, Leibniz denies that the relation between an arbitrary arc

of the circle and its corresponding arc could be reduced to an algebraic equation, and

concludes that a "more geometrical" solution to this problem than the one obtained in

the De Quadratura Arithmetica - which relied on an infinite formula, as we have seen -

cannot be found.

8.7.3 The impossibility of finding a general quadrature of the hyper-

bola

An analogous reductio proof holds for the the hyperbola, Leibniz argued in the final

section of proposition LI:

. . . nam, quemadmodum generali relatione inter arcum et latera inventa

posset haberi sectio anguli universalis, per unam aequationem certi gradus;

ita generali inventa quadratura hyperbolae sive relatione inter numerum et

logarithmum, possent inveniri quotcunque mediae proportionales ope unius

aequationis certi gradus, quod etiam absurdum esse, analyticis constat (. . . )

Impossibilis est ergo quadratura generalis sive constructio serviens pro data

qualibet parte Hyperbolae aut Circuli adeoque et Ellipseos, quae magis geo-

metrica sit, quam nostra est.168

As for the case of the circle, Leibniz excluded that the quadrature of an arbitrary sector

of hyperbola could be expressed by a finite algebraic equation. He grounded his argument

on the fact that the hyperbola-area offers a geometrical model in order to interpret the

concept of logarithm. Hence, the possibility of an algebraic quadrature of any sector of

168AVII6, n. 51, p. 674. "Indeed, just like a general relation between arcs and cords will offer a general
section of the angle through one equation of determinate degree, so finding a general quadrature of the
hyperbola, namely a relation between a number and its logarithm, would allow us to find as many mean
proportions through one equation of determinate degree; which is absurd, as mathematicians know (. . . )
hence it is impossible to find a general quadrature, or a construction applying to any given sector of the
hyperbola, or of the circle and the ellipse, which is more geometrical than our own". See also Knobloch
[2006], p. 129.
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the hyperbola would involve the possibility of expressing the relation between a number

and its logarithm by a finite algebraic equation too, which is absurd.

In order to understand Leibniz’s argument, let us remark that the problem of finding n

mean proportionals between two segments a and b (a < b), or equivalently, the problem of

dividing the ratio a
b

into n+1 terms169 is the problem of finding a sequence of segments:

x1, x2, x3 . . . xn such that the ratio of any two consecutive segments in the sequence: a,

x1, x2, x3 . . . xn, b is constant. Since the terms of this sequence have a constant ratio,

they will form a geometric progression. By setting a = 1 for simplicity, the progression

can be also represented in these terms: x01 = 1, x11, x
2
1, x

3
1 . . . x

n
1 , x

n+1
1 = b.

A pairing can be built between the geometric progression: x01, x
1
1, x

2
1, x

3
1 . . . and an arith-

metic progression formed by the exponents of the previous progression: 0, 1, 2, 3 . . .. In

this way the product of two terms in the geometric progression (for instance: xl1 · xk1) is

equal to a term (namely:xm1 ) whose exponent is equal to the sum of the corresponding

terms on the arithmetic progression (namely: m = l+k). If we indicate by the symbol: ‘f ’

such a pairing between the geometric progression of the xi1 and the arithmetic progression

of their exponents i, the following equality is satisfied: f(xl1 · xk1) = f(x1) · f(x1) = xl+k.

If the relation between a number and its logarithm, denoted above by the symbol ‘f ’,

were algebraic, then the problem of inserting an arbitrary number of mean proportionals

between segment 1 and segment b (which amounts to the construction of a term in the

progression of numbers, whose corresponding logarithm is known) could be expressed by

an algebraic equations in a fixed finite degree, namely: m+1 = f(b), for any number m of

desired mean proportionals. However it is known from Book III of Descartes’ Géométrie

169The expression ‘division of a ratio’ ("sectio rationis") is thus explained by Leibniz: "Sectionem
autem rationis sive Logarithmi idem esse constat, quod inventionem mediarum proportionalium, est
enim trisectio rationis, idem quod inventio duarum mediarum, et sectio rationis in quinque partes ae-
quales est inventio mediarum quatuor. Et bisectio rationis est inventio unius mediae, seu extractio
radicis quadraticae quemadmodum contra duplicata ratio est ratio quadratorum, et triplicata cuborum,
ex veterum loquendi more, qui plane cum hodiernis per Logarithmos operationibus consentit, duplicatio
enim logarithmi quadratum dabit, et triplicatio cubum, et compositio rationum fiet additione Logarith-
morum" (AVII6, 51, p. 555-556): "It is clear that the section of the ratio or of the logarithm amounts
to the same as the finding of mean proportionals. Indeed, the trisection of the ratio it is the same as
the finding of two means, and the section of the ratio in five equal parts coincides with the finding of
four means. And the bisection of the ratio is the finding of one mean, or the extraction of a square
root, in the same way in which, conversely, the doubling of the ratio is the ratio of the squares, and the
tripling is the ratio of cubes, according to the language of the ancients, which plainly corresponds with
the modern operations with logarithms. In fact the duplication of a logarithm will yield a square, and
the triplication a cube, and the composition of ratios will be obtain by the addition of logarithms".
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that the problem of inserting an arbitrary number n of mean proportionals between two

given segments a and b can be expressed by an equation in the form: (x1)
n = abn+1,

with n ever increasing according to the number of inserted means.

Probably relying on Descartes’ considerations contained in La Géométrie, Leibniz dis-

cussed the nature of the relation between the logarithms and their numbers along similar

lines to the case of the relation between an arc and its tangent. He could thus state

that the degree of the equations associated to every instance of the problem of inserting

a prime number m of mean proportionals increases according to m so that, contrary

to our presuppositions, the general problem of inserting m mean proportionals between

given segments cannot be expressed, for any m, through an algebraic equation of fixed

degree.170 Such considerations will lead to the following conclusion, which closes the De

Quadratura Arithmetica:

Impossibilis est ergo quadratura generalis sive constructio serviens pro data

qualibet parte Hyperbolae aut Circuli adeoque et Ellipseos, quas magis geo-

metrica sit, quam nostra est.Q. E. D.171

8.8 Underdeveloped parts in Leibniz’s impossibility argu-

ment

Leibniz’s proof of theorem LI is flawed, or at most incomplete, although the missing

arguments were not generally recognized by his contemporary readers. I will confine

myself to the case of the circle, since the same structural weakness holds for the ‘dual’

case of the hyperbola. A major missing point of his proof concerns the reducibility of

the equations associated to the angular sections. In fact, even if Leibniz could associate,

on the basis of Viète’s Angular Sections , any instance of the angular section problem

to a finite polynomial equation, he did not supplement a method to check whether the

connected equation could be factored, and therefore lowered in degree. This remains a

dependable point to be clarified, since the possibility of associating equations of higher

and higher degree to corresponding higher and higher angular divisions depends on the

absence of this phenomenon, otherwise this correspondence might collapse, as well as the

whole proof of proposition LI.

170AVII6, 51, p. p. 556.
171AVII6, 51, p. 676: "It is thus impossible a general quadrature, namely a construction fit for any

given part of the hyperbola, the circle and the Ellipse, which is more geometrical than our own".
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In the context of Viète’s treatise, the problem is not raised. This is not surprising

though, if we consider the historical context: indeed, up to Descartes’ Géométrie (1637),

the relation between the geometrical constructibility of a problem and the degree of the

corresponding equation was not fully understood.172

Of course, it was well known that the problem of dividing an angle into 4,8 . . . and gen-

erally into 2n parts could be conceived as the result of successive bisections and it was

therefore a plane problem, despite it could be associated to an equation of higher degree

than two, as it was well known that the problem of constructing an heptagon was a

solid one, although it could yield an equation higher than a cubic. Similar considerations

occurred for the division of an angle into a number m of sections, where m could be

decomposed into prime factors. Nevertheless, either these cases were not studied sys-

tematically, or mathematicians solved them geometrically, through the reduction of a

geometric problem into easier problems, rather than through the algebraic study of the

reducibility of the correlated equations.173

Leibniz was certainly aware of these cases, since in the proof of theorem LI he considered

only angle divisions into a prime number of parts, and, in this way, he countenanced the

eventuality that a certain problem could be reduced to easier instances.174

However, he never addressed, in the De Quadratura Arithmetica, a concern about the

possible factorization of the associated equations. We can suppose either that he ignored

this problematics, or that he did not judge it relevant for the problem of the angular

division. The first eventuality must be excluded, as there are manuscripts proving that

Leibniz studied the problem of lowering the degree of an equation, before 1676, even

172See also Bos [2001], p. 214, and p. 393-397.
173As Viète himself showed in his Ad problema quod omnibus mathematicis totius orbis construendum

proposuit Adrianus Romanus Responsum (1595), reproduced in in Viète [1646], p. 305, the problem of
dividing an angle into 45 parts was indeed reducible to the successive solution of a quinquisection and
two successive trisections. Another example treating the subject of angular divisions, with a particular
emphasis on the reduction of problems, was a tract written by van Schooten, which Leibniz might have
consulted during his parisian years: Aequationes ad dividendum angulum seu arcum, in partes aequales,
numero impare. The tract is contained in the work Exercitationum mathematicarum libri quinque,
published in 1656 (see van Schooten [1656-57], book V).

174We stress, on this concern, a slight but significant difference between the argument offered in AVII6,
51, LI and the argument offered in the alleged preface to this text, namely, AVII6, 19. In this text,
Leibniz does not refer to the division of the angle into a prime number of parts, but only to the division
into an odd number of parts: "constat enim tot esse varios gradus problematum, quot sunt numeri
(saltem impares) sectionum". Maybe Leibniz had overlooked the detail that sections must be not only
an odd, but also a prime number.
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without reaching a conclusion.175

I therefore turn to the second eventuality. In La Géométrie, Descartes stressed as a

requisite of the analysis of a problem that the chosen end-equation must be of the lowest

possible degree. This requirement was dictated by his method of construction of geomet-

ric problem, since the degree of an equation associated to a problem indicated its class,

and therefore gave also indication on the curves one must employ for its construction.

With such an aim in mind, Descartes presented in book III of La Géométrie several

rules in order to manipulate polynomial equations and eventually check whether it could

be transformed into an equation of lower degree. The algebraic transformations which

changed the degree of an equation P (x) = 0 were basically of two kinds. The first one

concerned the factorization of the polynomial P (x), namely the possibility of rewriting

it as the product two other polynomials Q(x) and R(x), so that the equation could be

also rewritten as: P (x) = Q(x)R(x) = 0. In this case, the coefficients of Q and R

could be constructed by plane means (ruler and compass) from the coefficients of P . If

such a reduction was possible, and both Q(x) and R(x) were not reducible any further,

then the equation P (x) = 0 could be solved either by solving Q(x) = 0 or R(x) = 0,

where polynomials Q(x) and R(x) had lower degree than the P (x). The second kind of

transformation, known by Descartes too, occurred when the equation P (x) = 0 could be

rewritten as Q(R(x)) = 0. In this case, the reduction obtains through two steps: at first,

the equation Q(y) = 0 is constructed, and then the equation y = R(x) too.

The rule studied by Descartes in book three of La Géométrie applied in particular to

the first kind of reducibility. However, despite the importance of reducibility for the

adequate construction of a problem was well remarked by Descartes, this concept re-

mained somewhat "fluid" in the context of cartesian geometry, probably also because

the required notions for its rigorous definition in the modern sense were either lacking

or stated ambigously. Moreover, when applied to the problem of the angular division,

the question of reducibility was not merely grounded on a fluid concept, but became

extremely convoluted, since it required a survey of an infinity of cases.

175Cf . AVII1, 109, titled: Aequationum depressiones, p. 667: "Toutes ces méthodes [different methods
for decomposing equations, that Leibniz had illustrated in the previous lines] ne sont point assurées. Et
je ne voys point de moyen encore de demonstrer geometriquement ou analytiquement qu’une equation
donnee est indeprimable". Moreover, the second volume of Leibniz’s mathematical writings contains
numerous manuscripts, written between 1675 and 1676, dedicated to the topic of reducibility of equations
(I refer, in particular, to: AVII2, 3, 51, 20).
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Nevertheless, even if Leibniz was unable to solve the problem of reducibility, or to give it

a clear formulation, it seems that he could have mentioned it as a possible difficulty. The

only hints to be found in the available documents seem to indicate that Leibniz considered

the analytical treatment of angular sections as a well known fact to mathematicians,

which therefore did not need to be surveyed in detail:

et notum est analyticis, pro anguli in partes sectione secundum numeros

primos semper altiore magis magisque opus esse aequatione ut Anguli bi-

sectionem esse problema planum, anguli trisectionem esse problema solidum

sive cubicum, anguli quinquesectionem esse problema sursolidum; et ita porro

in infinitum (. . . ) Hanc propositionem ejusque demonstrationem analyticis

claram esse confido. Aliis ne scripta quidem esto. Nam si in lineis exhibenda

esset ejus demonstratio ingenti apparatu opus foret.176

Leibniz’s impossibility argument was probably known by the end of XVIIth century,

since it circulated in an unpublished and later in a published form, although consider-

ably shortened with respect to the version found in the De quadratura arithmetica.177

However, his readers did not raise any objections , probably agreeing with Leibniz’s

opinion that the correspondence between equations in ever higher degree and ever higher

number of angular sections was a well-known fact to mathematicians. Hence, we can

conclude on the basis of the previous remarks that Leibniz’s omission is not surprising

in the backdrop of mathematical context of his time, and probably was not perceived as

such by other practitioners.178

This opinion seemed to persist up to the middle of XVIIIth century. For instance, in his

book Histoire des recherches sur la Quadrature du cercle (1758), J.E. Montucla presented

176AVII6, 28, p. 350: "It is known to the analysts, that one needs higher and higher degree equations
in order to divide the angle in equal parts, according to the prime numbers, so that the bisection of
the angle is a plane problem, the trisection is a solid or cubic one, the quinquisection is a supra-solid
problem, and so on in infinitum (. . . ) I trust that this proposition and its proof is clear to the analysts.
I will not write anything else. Indeed, if one must exhibit it with curves, its proof would require a vast
apparatus."

177See for instance: Leibniz [1686], also in LSG, 5, pp. 226-233; for a french modern translation, in
particular: Leibniz [1989], p. 134.

178See LSG5, p. 226-233, and also Leibniz [1989], p. 126-143. When the problem of the angular
division was touched by other authors, however, considerations on reducibility do not seem to have been
raised either. Thus, in his Traité Analytique sur les Sections Coniques (1707), L’Hôpital introduced
the problem of the angle divisions within a discussion about the construction of regular polygons, and
explicitly remarked that the equations derived by Viète for each instance of the general angular division
problem were: "les plus simples qu’il est possible, lorsque le nombre des parties égales est un nombre
premier" (Traité, p. 418).
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an argument analogous to the one given by Leibniz (without mentioning him, though)

in a discussion on the unsolvability of the circle squaring problem.

After having introduced the distinction between the indefinite and the definite quadrature

of the circle (which follows the same lines as Huygens’ and Leibniz’s distinctions), and

having discussed several arguments for the impossibility of the universal quadrature of

the circle, which although not fully satisfying, might add to the impossibility of the

indefinite (or universal) quadrature of the circle "une probabilité qui approche beaucoup

de la certitude", Montucla proposes his own argument, which turns out to be equivalent

to the one read in theorem LI of the De Quadratura Arithmetica.

In fact, at the core of Montucla’s reasoning we find the following claim: if the relation

between an arc and its tangent were expressed by a finite polynomial equation, we would

obtain a contradiction with the analytical treatment of the problem of the angle division.

Concerning this latter problem, the conclusion reached by Montucla agrees with the one

reached by Leibniz:

Quel que soit le nombre n, il ne peut donc être fini et déterminé, puisqu’il

doit répondre à tous les cas imaginables des sections angulaires, et qu’il y en

a une infinité qui conduisent à des équations d’un degré infini.179

As a concluding remark, we observe that the second edition of the Histoire contains

an interesting addendum to this argument made by the editor S. F. Lacroix. Lacroix

confines himself to observe that Montucla’s reasoning cannot be taken as a proof yet.

Since this note was added for the second edition of 1831, it might be taken to show that

by this time Montucla’s, and a fortiori Leibniz’s arguments were viewed as problematical.

Unfortunately, the editor does not specify why these impossibility proofs are incorrect,

but in the light our our previous remarks, it does not seem too far fetched to conjecture

that the he might point to the problem of the reducibility of equations, which would soon

acquire a different meaning thanks to Galois theory.180

179Montucla [1831], p. 107-110.
180Whereas early modern geometers tried to establish the proper level of each instance of the general

angular section problem with respect to the cartesian classification of problem into classes, the modern
approach to the problem of angular division considers rather the construction of regular polygons, un-
derstood as a particular case of the general angle division. One of the most significant results obtained
on this concern was made by Gauss few years earlier than the second edition of Montucla’s book, in
1801: Gauss proved that the construction of all regular n-gons for n of the form 2αp1p2 . . . pn , where
the pi’s are different Fermat primes, namely, primes of the form 22k +1 (α, k ∈ N), and claimed, without
giving the proof, that one cannot construct any other regular n−gon with any number of sides (Lützen
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8.9 The transcendental nature of curves

It is now evident, in the light of the previous arguments, that Leibniz’s impossibility

proof advanced in the last proposition of the De Quadratura Arithmetica, concerns the

"universal" quadrature of the circle and the hyperbola. With hindsight, we may say

that Leibniz’s result concerns the impossibility of expressing the tangent-function (or its

inverse) and the logarithmic (or exponential) function in terms of a finite composition of

algebraic operations. As I have already observed with respect to Gregory’s impossibility

theorem, a knowledge of the transcendental nature of some functions might be obtained in

a more straightforward way than through the complex arguments deployed by Leibniz,

and by Gregory, simply by proving the periodicity of the curves which describe these

functions.

An insight into this property could have been reached by early modern geometers, for

instance by showing that certain curves intersect a given straight line in infinitely many

points. This argument can hold for several transcendental curves and relations, like

trigonometric ones, which are involved in the indefinite quadrature of the circle, al-

though it does not hold, at first sight, for the logarithmic or exponential: this might have

been one of the reasons why this graphical argument was considered as lacking sufficient

generality.181

It was probably evident to Leibniz that the correspondence established between the

operations of multiplication and addition, or between a geometric and an arithmetic pro-

gression, which stand at the root of the concept of logarithms, could not be interpreted,

in the framework of XVI and XVII century geometric algebra, without violating homo-

geneity. A similar phenomenon occurred in the case of trigonometric relations, which had

[2009], p. 387). Gauss’ result corresponds to the if-part of the following "classical" theorem nowadays:
"A regular n-sided polygon is constructible by straight-edge and compass alone if and only if n is of
the form 2αp1p2 . . . pn for an integer α and distinct primes pi of the form 22k + 1" ( see for instance its
proof inHartshorne [2000], p. 258), whose proof can be found for the first time in Wantzel. This results
is crucial in order to solve the following problem, also related to the general angle division, and to our
previous discussion: for which natural numbers n > 2, does it exist a geometric construction in a finite
number of steps to divide an arbitrary angle into n equal parts, using straightedge and compasses alone?
In this perspective, it becomes relevant to characterize the set of such numbers n, which we can call T .
On the ground of Gauss’ result, and on the elementary facts that (1) if n ∈ T and k|n, then k ∈ T and
(2) if n ∈ T , then n2 ∈ T , one can prove that the set T contains only the powers of 2. In other words, an
arbitrary angle can be divided into n parts by ruler and compass if and only if n = 2k (with k ∈ N). A
proof of this result is given, for instance, in Buckley and Machale [1985].

181As we know, the exponential function is a periodic function too (in fact, it is periodic with imaginary
period: 2πi, and can be written as: eai+b = ea(cos b + i sin b)) but this could not have been guesses by
the methods available to early-modern geometers.
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appeared in the form of numerical tables, and they could not be translated in the lan-

guage of geometry, unless one accepted the homogeneity between circular and rectilinear

magnitudes. 182

Trigonometric and logarithmic relations could be expressed, in XVI and XVIIth century

by tabulating their numerical instances or, graphically, by generating curves through

pointwise constructions. It was for instance common in XVIIth century to represent the

logarithmic correspondence between an arithmetic progression and a geometric progres-

sion in a graphical form, namely as a curve constructed in a pointwise way.183

Leibniz reproduced these discoveries on the logarithmic curve and discussed them in sev-

eral manuscripts from his parisian period. Also in De Quadratura Arithmetica there are

discussions about the pointwise construction of this curve.184 The known constructions

which engendered the logarithmic or exponential curve were ‘specific’ pointwise construc-

tions (see this study, ch. 5 sec. 5.3) since they were obtained by interpolating the points

individuated through the pairing of the respective terms of a geometric and an arithmetic

progression could be constructed geometrically (namely by algebraic curves). It is cer-

tainly possible to construct as many points on the logarithmic curve as one wishes: it is

sufficient to insert a higher number of mean proportionals between two given segments:

this can be done, as we know, using algebraic curves, and by forming a dense net of

points belonging to the curve. However it is not possible, with the sole tools of cartesian

geometry, to exhibit any arbitrary point on the logarithmic or exponential curve. On

this ground, and on the ground of the lack of known methods for producing the loga-

rithmic through a linkage, Leibniz called, especially in his studies from 1673-1674, the

logarithmic curve ‘mechanical’, thus endorsing a cartesian standpoint.185

182See Giusti, in Belgioioso and Costabel [1990], p. 429.
183I have already discussed in this dissertation the case of the logarithmic (or exponential) curve,

described as early as 1619 in the Cogitationes Privatae by Descartes (the curve was known by Descartes
as ‘linea proportionum’). Leibniz did studied the Cogitationes in 1676, but he could certainly have learned
about this curve from many other sources. For instance, the logarithmic curve is thus described by G.
Pardies, one of Leibniz’s sources on this subject (cf. AVII3, 3812, p. 484), by graphically representing the
correspondence between two sequences: " ... Soit la ligne droite AE divisée par parties égales AB, BC,
CD, DE, etc. Par les points A, B, C soient imaginées les lignes droites Aa, Bb,Cc parallèles entre elles,
qui soient en progression géométrique (...) nous aurons deux progressions de lignes, l’une arithmetique,
l’autre geometrique ..." (Pardies [1671], p. 89).

184Cf . proposition XLIII (AVII6, 51, p. 618).
185Cf. for instance the following words sent by Leibniz to Oldenburg: "Pardies dabit dissertationem de

linea logarithmica ejusque usu in solvendis problematis graduum omnis generis: eam lineam attigit in
suis Elementis geometriae. Sed ea linea describi non nisi per puncta, ni fallor, potest, id est geometrica
non est..." (Leibniz to Oldenburg, March 1673, AIII1, 9. p. 43: Pardies will give a disseration on the
logarithmic curve and its use in solving problems of any kind of degree. He explicates this curve in his
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However his position changed in the course of the two successive years. In the already

quoted Praefatio from Spring 1676, Leibniz introduced a second curve analogous to

the logarithmic, while discussing an argument for impossibility of expressing the relation

between an arc and its sine through an equation of fixed, finite dimension. This argument,

although related to the one presented in the closing proposition of the De Quadratura

Arithmetica, relies on a slightly different reasoning. We read in fact in Leibniz’s words:

Sed relationem arcus ad sinum in universum aequatione certae dimensionis

explicari impossibile est. Quod facile sic demonstratur. Esto aequatio illa

inventa, gradus cujuscunque certi, verbi gratia, cubica, quadrato-quadratica,

surdesolida seu gradus quinti, gradus sexti, et ita porro, ita scilicet ut maxima

aliqua sit aequationis inventae dimensio, exponentem habens numerum fini-

tum. Hoc posito linea curva ejusdem gradus delineari poterit, ita ut abscissa

exprimente sinus, ordinata exprimat arcus, vel contra. Hujus ergo lineae ope

poterit arcus, vel angulus in data ratione secari, sive arcus, qui ad datum

rationem habeat datam, inveniri sinus; ergo problema sectionis anguli uni-

versalis certi erit gradus, solidum scilicet, aut sursolidum, aut alterius gradus

altioris, quem scilicet natura vel aequatio hujus lineae. dictae ostendet. Sed

hoc absurdum est; constat enim tot esse varios gradus problematum, quot

sunt numeri (saltem impares) sectionum; nam bisectio anguli est problema

planum, trisectio problema solidum sive Conicum, quinquesectio est prob-

lema surdesolidum, et ita porro in infinitum, altius fit problema prout major

est numerus partium aequalium, in quas dividendus est angulus; quod apud

Analyticos in confesso est, et facile probari posset universaliter, si locus pa-

teretur. Impossibile est ergo relationem arcus ad sinum, in universum certa

aequatione determinati gradus exprimi.186

Elements of geometry. But that line can be described only by points, if I am not wrong, that is it is not
geometrical"). By observing that the logarithmic could be described: "per puncta", Leibniz arguably
referred to the procedure of pointwise description of the quadratrix, for instance (see ch. 5, sec. 5.2.3)
which cannot be supplemented by a continuous construction by linkages.

186AVII6, p. 176. "But it is impossible to unravel the relation of the arc to the sine, universally,
through an equation of a certain dimension. This is easily proved in this way. Let an equation of a
certain degree whatsoever be invented; for instance, a cubic, a quadrato-quadratic, a supersolid or an
equation of fifth degree, or of sixth, and so on, in such a way that the invented equation is in a certain
highest degree, since it has a finite number as exponent. Once this is conceded, a curve of the same
degree can be described, so that while the abscissa expresses the sines, its ordinate will express the arcs,
or viceversa. Thus, by means of this line, the angle or the arc can be divided in a given ratio, or the
sine having a given ratio to the given arc can be found. Thus, the problem of the universal section of
the angle will be of finite degre, either solid, or supersolid, or of another higher degree, which the nature
or the equation of this curve will show. But this is absurd: it is well known indeed that there are as
many degrees of problems as many are the numbers of the odd sections, at least. Indeed, the bisection
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This passage might be considered a primitive version of the impossibility argument ex-

pounded in proposition LI, and analyzed before in this chapter. Leibniz describes here

the curve, later called "figura sinuum" or "linea sinuum",187 whose abscissas (understood

as the segment-distances from each point lying on the curve to a couple of straight lines

intersecting at right angles, as it is currently assumed in De Quadratura Arithmetica)

express the sines of the arcs described in a circle with given radius, and whose ordinates

express the corresponding arc-lenghts (i.e. the measure of the length of the arcs in the

domain of segments). Although Leibniz remains silent about the method for constructing

this curve, the figura or linea sinuum can be traced pointwise by plotting an arbitrary

number of points whose abscissas correspond to successive sines in a given quarter of

circle, for instance, and whose ordinates express the corresponding arc-lenghts.

The curve so imagined is a sectrix curve by definition, since it will allow us to construct

the n-th part of any arc by exhibiting its corresponding sine. On this ground, Leibniz

presents, in the passage from the Praefatio reproduced above, an argument analogous

to the one we read in proposition LI, in order to exclude that the linea sinuum can

be associated to a finite degree polynomial equation, and therefore in order to exclude

this curve from geometrical curves, in the cartesian sense. Reasoning by absurdum,

Leibniz associates to the curve a finite algebraic equation with a fixed degree, and derives

immediately a contradiction, since the curve of the sines can solve the problem of the

general section of the angle and thus construct algebraic equations of ever-higher degree

(each corresponding to a division into a prime number of sections). Since the linea sinuum

has been constructed following the rule of associating to each arc its corresponding sine,

one shall conclude that this very rule is not grounded on any algebraic relation, so that the

curve at stake is not a geometrical one, in the cartesian sense. From this, Leibniz could

also conclude: "it is impossible to express the relation between arc and sine universally,

with a single equation of determinate degree".

of the angle is a plane problem, the trisection a solid or conic problem, the quinquisection a supersolid
problem, and so on infinitely. The problem becomes of higher degree accordingly, as the number of equal
parts in which the angle must be divided increases. That it is admitted by Analytics, and it could be
proved universally, if we had space. Thus, it is impossible to express the relation between arc and sine
universally, with a single equation of determinate degree."

187Cf. for instance in a letter to Huygens from 1694: "Voicy un Exemple aisé pour les differences
secondes pro linea sinuum, c’est-à-dire lors que les arcs de cercle étendus en ligne droite estant les
ordonnées, les sinus sont les abscisses", Huygens [1888-1950], vol. 10, p. 677. G. Loria (Loria [1930]p.
179) identifies this curve with a sinusoid, but since in the setting of XV IIth century geometryone
coordinate was not preferred to another, the curve might be identified with the graph of the arcsin
function.
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Leibniz decided to replace this argument with the one presented in theorem LI of the

De Quadratura Arithmetica, probably because the reference to the ‘curve of the sines’

is not necessary for the proof to reach its goal, and can be therefore eliminated from its

structure.

However, Leibniz did not completely dismiss the figura or linea sinuum in De Quadratura

Arithmetica, since he evoked in the course of the treatise (but not in the last proposi-

tion, where an impossibility proof is at stake), and pointed out its similarities with the

logarithmic curve with respect to their mode of construction, and to their expressability

through non-algebraic, i.e. transcendental equations.188

In fact, both the logarithmic and the curve of the sines should be considered mechanical,

according to the cartesian demarcation. In the period between 1673 and 1675, Leibniz

gradually substituted the word ‘mechanical’ with the new word ‘transcendental’, in order

to denote those curves which, contrarily to ‘algebraic’ ones, could not be associated to

polynomial equations.189

The terms ‘algebraic’ and ‘transcendental’ were introduced, with respect to curves as

part of a broad attempt, conducted by Leibniz, to reconceptualize the ontology of ge-

ometry as it was framed by Descartes in his geometry: I remark that the dichotomy

algebraic/transcendental was not a simple renaming of the cartesian demarcation be-

tween geometrical and mechanical curves, since Leibniz’s research was accompanied and

subtended by an intense critique of the cartesian construal of geometricity.190

As a result of this critique, Leibniz modified the cartesian canon of exactness for curves

and for constructions (we have already seen, in section 8.5.2, how Leibniz had defined

quadratures obtained by mechanical curves as "exact"). It can be ventured the hypoth-

esis that Leibniz admitted, by the end of his stay in Paris, the possibility that a curve

might be exact, and therefore geometrical, provided it could be described according to

a precise rule ("describendi ratione"), even if this rule could not be expressed by an

algebraic equation, but by a transcendental one.191 By referring to a ratio describendi ,

188Cf. for instance: AVII6, 51, p. 636.
189See this chapter, sec. 8.5.2 for a study of the notion of ‘transcendental’ with respect to the quadrature

of the circle. One can also compare a tract from autumn 1673, in which the logarithmic is explicitly
ranked as a ‘transcendental’ curve (AVII3, 23, p. 265-266).

190Cf. Knobloch [2006], Breger [1986], p. 122-123.
191As Leibniz remarks: ". . . potest etiam fieri, ut quae lineae nobis geometricae non sunt, ut loga-

rithmica fiant aliquando, reperta eas describendi ratione" (AVII3, 3812, p. 486: "it can happen, that
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Leibniz ventured the possibility of extending the number of legitimate methods of char-

acterizing curves, either with respect to their constructions or to their properties. The

case of the logarithmic curve is noteworthy from this respect: in a tract from 1675 (De

detrimento motus contemplatio geometrica quae mirabili naturae ingenio repraesentat

logarithmos , published only in 1689 with the title: Schediasma de resistentia medii et

motu projectorum gravium in medio resistante. In Acta Eruditorum, January, 38–47),

in fact, Leibniz generated it by recurring to a continuous motion ensured by a physical

mechanism "which cannot be exactly constructed by the common geometry" (where, I

surmise, a curve constructed by "common geometry" should be interpreted as an alge-

braic curve).192

We can suppose that the physical mechanism involved in the continuous generation of

the logarithmic curve constituted an acceptable way of describing the curve, a "ratio

describendi". Nevertheless Leibniz never specified, in a definite and univocal way, how the

extension of geometricity beyond cartesian limits should be effectuated. The redefinition

of the cartesian construal of geometricity enhanced by Leibniz is a complex phenomenon,

only partially known due the paucity of available documents (mostly confined to his

parisian sojourn, from 1672 to 1676), and which certainly requires a supplementary

examination into Leibniz’s unpublished documents. For this reason I cannot enter this

issue here, but leave it to further developments.

8.10 Conclusions

8.10.1 On the limits of cartesian geometry

Let us now resume our analysis of Leibniz’s impossibility argument, concerning the

quadrature of the central conic sections, and presented in the De Quadratura arithmetica.

As I have tried to clarify in my examination, this result can be envisaged as stemming

from Leibniz’s attempts, conducted between 1675 and 1676, in order to assess the con-

troversy between Gregory and Huygens on the impossibility of squaring the central conic

sections analytically.

lines which are not geometrical for us, like the logarithmic, sometimes will become geometrical, once the
means for describing them are discovered". See alsoKnobloch [2006], p. 118).

192The motion which generates a logarithmic curve is obtained when a body undergoes a uniform
motion, retarded in proportion to the distance traversed. Cf . Knobloch [2006], p. 118-119.
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One, or perhaps the main source of inspiration for Leibniz’s research on the quadrature

of the circle was Huygens himself, who probably encouraged Leibniz to embark in a

deeper study of Gregory’s Exercitationes Geometricae and Vera Circuli et Hyperbolae

Quadratura, with the aim of answering, eventually, o the question whether the circle

could be squared geometrically.193 I have argued, in chapter 7 of this dissertation, that

the controversy between Huygens and Gregory came to an end substantially without any

‘winner’. It is not implausible, therefore, that Huygens still cultivated, almost six years

later, the hope that Gregory’s beliefs on the impossibility of the definite and indefinite

quadratures could be refuted, and found Leibniz’s inquiry on the arithmetical quadrature

promising in order to solve this issue.

Leibniz’s examination partly endorsed Huygens’ conviction that the arguments advanced

in the Vera Quadratura and in the Exercitationes Geometricae were flawed. Fundamen-

tally, Leibniz reenacted two main objections originally advanced by his mentor Huygens.

Firstly, Leibniz judged Gregory’s argument presented in proposition XI of the VCHQ

insufficiently gemeral in order to conclude that no analytical composition could be ex-

hibited, relating a conic sector to the inscribed and circumscribed polygons, constructed

according to the protocol specified by Gregory (VCHQ , p. 11). Moreover, Leibniz argued

that even if no analytical formula could be expressed, that may relate the area of a partic-

ular conic sector to the terms of the convergent series of its inscribed and circumscribed

polygons, yet the area of the sector could be a quantity analytical with the terms of the

series. On this ground, Leibniz introduced and clarified a distinction between the ‘uni-

versal’ quadrature and the ‘particular’ quadrature of the circle. Although Gregory was

right in claiming that an analytical formula relating each circular (or hyperbolic) sector

and its inscribed and circumscribed polygons could not be exhibited, he committed an

error - argued Leibniz - in deducing from the universal impossibility the impossibility of

squaring the whole circle too.

Leibniz’s impossibility claim formulated in proposition LI of the De Quadratura Arith-

metica refers only to the universal quadrature of the circle and the hyperbola, leaving

untouched the problem whether the area of the whole circle could be expressed analyti-

cally (algebraically) with respect to the radius, or to a square built on it.

193Cf. Hofmann [2008], p. LV. See also Hofmann [2008], p. 63, and Probst [2008a], p. 817.



CHAPTER 8. THE ARITHMETICAL QUADRATURE OF THE CIRCLE 452

As we are entitled to conclude from the extant documents,194 by the end of his stay

in Paris (namely, September 1676), Leibniz endorsed Huygens’ critiques to Gregory’s

impossibility argument, but diverged from Huygens’ position concerning the possibility

that the quadrature of the whole circle (namely the definite or "particular" quadrature,

in Leibniz’s terminology) might be solved by a geometrical construction. Leibniz con-

jectured, on the contrary, the impossibility of the particular, or definite quadrature of

the circle too (in other words, he ventured the hypothesis that the ratio between a circle

and a square constructed on its diameter could not be expressed by a rational or an ir-

rational algebraic number), but did not provide, at least by 1676, any argument capable

of convincing himself and his fellow geometers.

At any rate, the material presented in this chapter allows us to conclude that the critical

evaluation made by Dijksterhuis,195 according to whom the controversy between Gregory

and Huygens remained substantially inconclusive, ". . . and was doubtless forgotten

by most of the participants as were many harsh disputes of the century" should be

essentially reconsidered. The evidence deployed in the preceding sections shows that the

controversy between Gregory and Huygens was not forgotten and, up to 1676, was still

a lively question, since it inspired to Leibniz the impossibility result that he judged as a

‘crowning’ of his inquiry into the quadrature of the central conic sections.

I also point out that the arguments on the impossibility of the circle-squaring and the

hyperbola-squaring problems played a significant role in framing Leibniz’s deliberations

towards Descartes’ view on the extent and limits of geometry.

Although it is difficult to give a unitary description of Leibniz’s views about the subject

matter and boundaries of geometry, as they underwent several and even dramatic refor-

mulations even in the space of few years,196 an enduring feature of Leibniz’s methodolog-

ical considerations is the criticism of Descartes’ geometry and of his analytical method

based on the algebra of segments.197

As Breger has argued,198 Leibniz’s criticism to Descartes’ geometry touches, broadly

speaking, two methodological points. The first point of Leibniz’s criticism concerned the

194Cf., for instance, Hofmann [2008], p. 127, and Knobloch [1999b], p. 220.
195Dijksterhuis’ opinion can be found in Gregory [1939], p. 480.
196An overview of Leibniz’s early and rapidly changing views on mathematics is given in Knobloch

[2006].
197See Breger [1986], the already quoted Knobloch [2006] and Probst [2012].
198Breger [1986], p. 123.
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type of problems that fell within the scope of cartesian geometry. According to Leibniz,

Descartes had restricted the content of geometry to the sole problems reducible to finite

polynomial equations, whereas Leibniz believed that the subject matter of geometry

ought to include a vaster range of problems and methodologies (the discussion in this

chapter has offered us some noteworthy examples).199

The second, connected critical stance concerns the restriction of Descartes’ geometry

to problems which demand to find one or more an unknown segments from a given

configuration of segments in the plane. In other words, Leibniz considered cartesian

geometry as a geometry in which unknown and known quantities of a problem can only

be segments.200

In an early unpublished manuscript, titled Fines Geometriae ("on the limits, or territo-

ries of geometry", from 1673), we encounter a systematic discussion on the meaning of

geometry which contains, presumably for the first time, elements of the two lines of crit-

icism just presented. According to Leibniz, geometry could be divided in three realms,

on the ground of the domains of problems investigated and the methods involved:

Horum porro omnium rursus tres sunt gradus, est enim geometria vel Eu-

clidea, vel Apolloniana (quam Vieta et Cartesius resuscitavere), vel Archimedea,

cui Guldinus, Cavalerius, aliique incubuere.201

199Breger [1986], p. 123. In addressing this cricism, Leibniz had in mind a precise passage of Descartes’
geometry, that he read in book III: of Van Schooten’s translation: "... per methodum qua utor, id omne,
quod sub geometricam contemplationem cadit, ad unum idemque genus problematorum reducantur, quod
est, ut quaeratur valor radicum alicujus aequationis, satis judicabitur, non difficile esse ita enumerare
viae omnes, quibus inveniri possunt" (Descartes [1659-1661], vol. I, p. 96). In the original French: "par
la méthode dont je me sers, tout ce qui tombe sous la consideration des Geometres se reduit a un mesme
genre de Problesme, qui est de chercher la valeur de racines de quelques Equation, on iugera bien qu’il
n’est pas malaysé de faire un denombrement de toutes les voyes par lesquelles on les peut trouver, qui
soit suffisant pour demonstrer qu’on a choisi la plus generale et la plus simple" (Descartes [1897-1913],
vol. 6, p. 475). The passage is even quoted by Leibniz in AVII6, 491. See also AVII6, 41, p. 437.

200These methodological remarks were developed since the first acquaintance of Leibniz with Descartes’
geometry. They are clearly resumed, for instance, in the following passage, taken from a letter to
Mariotte (1674): “Monsieur Descartes a travaillé après Viète, à reduire les questions de Geometrie, aux
resolutions de Equations, dont le calcul est entierement Arithmetique. Mais ny luy ny Viete n’ont touché
qu’aux Questions Rectilignes, c’est a dire dans les quelle son ne cherche ny suppose que la grandeur de
quelques lignes droites, ou figures rectilignes, à quoy se resuident en effet tous les problemes plans,
solides, sursolides, etc. ” (AIII, 1, p. 139).

201"Indeed, of all these there are three levels: the Euclidean geometry, the Apollonian (which Viete
and Descartes rebuilt), the Archimedean, which Guldinus, Cavalieri and others dealt with.", AVII4, p.
594.
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Whereas Euclidean geometry "traces and measures rectilinear figures and finds rectilinear

figures of the desired quantity" by use of ruler and compass, "sometimes rectilinear ob-

jects of a desired quantity cannot be found but once having described certain other curves,

or so-called loca. Apollonius illustriously embellished that territory, Viète, Descartes and

Sluse widened it".202

Hence, cartesian geometry was considered by Leibniz as part of a larger field,203 that

Leibniz called "Apollonian geometry", and which included problems requiring the con-

struction of segments by the intersection of “geometrical” curves in Descartes’ sense, or

problems whose solution was represented by a geometrical curve itself (namely, locus

problems). Evidently, Apollonian geometry increases the resolutory capacity of the Eu-

clidean one, as it extends the number of permissible solving methods by allowing the

solution of problems expressible in the language of Euclidean geometry (for instance, the

trisection of the angle), and the solution of new problems, not expressible in the language

of Euclid’s geometry (for instance, the construction of the tangent to a parabola).

Nevertheless, Leibniz acknowledged that some of the properties of the very objects be-

longing to Apollonian and Euclidean geometry, like the measure of arcs or surfaces cut by

curves belonging to Apollonian geometry, were not studied with the methods developed

within these geometries. As we read in the 1673 tract Fines Geometriae, such problems

rather belonged to the third type of geometry, that he called "Archimedean".

In 1674 Leibniz returned on his systematic speculation on the nature and division of

geometry in similar terms, noting that:

La Geometrie qui passe les Elements se peut diviser commodement, en deux

Especes, scavoir celle d’Apollonius, et celle d’Archimede, dont l’une a este

resuscitee par Viete et des Cartes, l’autre par Guldin, Cavalieri, et le Pere

Gregoire de S. Vincent. Celle d’Apollonius traite des Problemes rectilignes, en

donnant la determination de quelques lignes droites demandees par l’intersection

des courbes ou lieux appropriez, ce qui se connoist par le moyen des Equa-

tions rendues aussi simples que faire se peut. Mais quoyque elle ait besoin

202Ibid .
203See also AII, 138, p. 481. I provisionally use the term ”field” in the sense specified by E. Grosholz:

". . . a branch of mathematical inquity with its own distinctive items, constitutive problems, techniques
and methods, expectations concerning how classes of problems are to be solved, and sometimes, but not
always, formal theories" (Grosholz [1980], p. 167).
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de la description des Courbes, elle n’en cherche ny suppose pourtant pas la

dimension . . . 204

The subdivision proposed by Leibniz were probably directly influenced by his acquain-

tance with the development of mathematics between the 50s and the early 70s. Indeed

new problems, derived from the development in physics or within mathematics itself, had

promoted a significant shift in what could be considered the relevant and the peripheral

questions in geometry. In particular, the traditional construction problems which acted

as the main driving force behind the conception and the genesis of Descartes’ geome-

try lost their impact and became rather peripheral in the mathematical practice of the

second half of XVIIth century.

Descartes’ geometry did not cover problems of quadratures, its method of tangents was

applicable to the sole geometric curves, and it was of little use with respect to the problem

of determining a curve, given its tangents (the inverse tangent problem), basically, with

respect to the problems forming the ‘Archimedean geometry’, which gradually became

the main issues studied by geometers during the second half of the century. Concomi-

tantly, just like new mathematical problems had made fundamentally obsolete the role

of Descartes’ geometry in problem-solving activity, so the discovery of new curves, either

as objects of study or tools in problem solving, enriched the landscape of mathematical

objects, to the effect of making soon overrestrictive the cartesian limitation to geomet-

rical curves (namely, curves constructible by geometric linkages) as the only legitimate

ones.205

Eventually, Leibniz criticized the exclusive focus of Descartes’ geometry on ‘rectilinear’

problems reducible to finite polynomial equations as an untenable constraint in the light

of the contemporary mathematical advances. Indeed, in Leibniz’s view, Descartes had

assumed that:

Methodo sua geometriam ad perfectionem perductam esse, quanta ab homine

optari possit; nullum esse problema, cuius non aut solutionem aut solvendi

impossibilitatem monstret. Certas sibi rationes esse praescribendi limites in-

tellectui, deniendique quicquid aliquando inveniri possit. Sed quantopere in

eo negotio lapsus sit, vir caetera utique magnus, docuit eventus. Crediderat

204AVII6, 7, p. 88.
205Bos [2001], p. 424; Knobloch [2006], p. 118.
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enim arte humana curvam rectae aequalem inveniri non posse quod in Ge-

ometria diserte satis expressit, forte quod ex ea quam sequebatur geometriae

methodo, cui nihil addi posse putabat aditus et ad hanc speculationem nullus

aperiretur. At Wrennus certe ac Heuratius ac novissime Hugenius praeclaris

speciminibus, spem intellectui humano reddidere.206

Leibniz was certainly inspired in this criticism by Descartes’ claim on the non-comparability

between straight and curved lines, that he must have perceived as an excess of self- con-

fidence on Descartes’ side.207 Indeed, a major limit of cartesian mathematics was, in

Leibniz’s view, that of having artificially and unjustifiably restricted geometry to a do-

main in which all questions about solvability of problems could be answered. By doing

so, Descartes would have wrongly believed to have offered with his Géométrie a solu-

tion to Viète’s problem - or ’meta-problem’ as we may call it - of "leaving “no problem

unsolved".

This presumption, Leibniz emphatically claimed in the above passage, entailed also the

relevant epistemic consequence of imposing undue limitations to the power of our intel-

lect: the concern for the constitution of a closed domain, in which any problem could be

ranged into a class and solved accordingly (Leibniz had probably also in mind the closing

lines of La Géométrie) overcame the concern for adapting our mathematical knowledge

in order to meet the demands posed by new unsolved problems.

Hendrick van Heuraet is mentioned by Leibniz, together with Wre and Huygens, as a

mathematician whose results contributed to give confidence back to the human intel-

lectual endeavors constrained by Descartes.208 One can find clear and evident reasons:

206AVII,4, p. 594-595: "By his method geometry had been led to perfection, so much as can be wished
by men : there is no problem, whose solution or impossibility to solve he will not show. [Descartes also
claimed] that he had the methods to prescribe certain limits to the intellect and to define anything that
could be discovered some time. But the event taught how much a man so great in all other things erred
in this task. In fact he had thought that no curve equal to a straight line could be found by human art,
a view which he expressed in the geometry clearly enough, maybe because by means of this geometrical
method that he followed, to which he believed nothing could be added, no approach could be opened to
that speculation. But surely Wren, and Heuraet, and most recently Huygens gave hope back to human
intellect with noteworthy examples".

207See, for instance, also: A III, 1 p. 139; VII6, n. 7, p. 88.
208The mention is not casual, as Van Heuraet is often named by Leibniz in connection with the discovery

of rectifications. Heuraet, together with Huygens’ and Wren’s, was in fact involved in the debate about
the discovery of the rectification of an algebraic curve : I remind that Van Heuraet’s letter was written in
1658 and published in 1659. The same results had already been obtained by W. Neil, in 1657, although
they were exposed by Wallis only in 1659, in his treatise on the Cycloid, probably as a reaction against
the primacy of Van Heuraet’s discovery. Particular instances of Van Heuraet’s theorem had been proved
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solving for the first time the problem of rectifying a geometrical curve constituted a mo-

mentous achievement in the history of early modern mathematics, and Leibniz, writing

about fifteen years after these facts, was prompt to recognize their historical value, es-

pecially when confronted with Descartes’ own skepticism. In the years after 1673, while

adhering to the main tenets of his criticism to Descartes’ geometry, Leibniz further artic-

ulated it and examined, among 1674-76, the technique of rectifications explained in Van

Heuraet’s letter.209

Leibniz was not the only one who hailed Van Heuraet’s result with the intent of criticizing

Descartes’ own views. Let us recall, for instance, Sluse’s opinion, evoked in ch. 6, about

how Van Heuraet’s result uncovered the "error made by Descartes".210

It should be pointed out that, by mentioning van Heuraet, Leibniz possibly wanted to

criticize Descartes’ own opinion on the extent and limits of geometry, not the opinion of

the mathematicians who promoted cartesian mathematics. Indeed, especially in the light

of van Heuraet’s result, they were not always prompt to accept Descartes’ presupposition

on the non-comparability between straight and curve lines.211

by Fermat (1660) and Huygens in 1657.
209Leibniz referred to: "the method of Heuraet" or "the calculus of Heuraet" in AVII5, 30 (in the tract

titled: ‘Curvae mensurabiles heuratianae’), and AVII5, 52. See also III,1 67, where Leibniz wondered
whether one could extend this method so as to give the rectification of the hyperbola, a still unsolved
problem by then (III,1 67, p. 307).

210See Ch. 6, sec. 6.3.
211It must be pointed out that Descartes’ Géométrie was far from being perceived as a clear, consistent

and well structured text by his contemporaries. Van Schooten’s editorial work can be indeed conceived
as the project of giving a more consistent and gapless structure to the Géométrie, in order to make it
suitable as an instructional text. It is perhaps significant that Van Schooten did not comment about
Descartes’ claim that straight and curve lines cannot be set into an exact proportion: by promoting Van
Heuraet’s result, he might have wanted to downplay and conceal Descartes’ claim and stress how the
method of geometry could be profitably employed for solving certain rectification problems, instead. The
defense of cartesianism promoted by the mathematician and Leibniz’s friend E.W. Tschirnhaus (relevant
exchanges between this mathematician and Leibniz are contained in vol AIII1, and AIII2 of Leibniz’s
mathematical correspondence) can be possibly read as a consequence of this attitude. While Tschirnhaus
admitted, in the course of his 1675-1676 correspondence with Leibniz and other mathematicians, the
possibility of solving certain rectification problems algebraically, and therefore geometrically (he was
likely thinking of the rectification of the quadrato-cubic parabola) he excluded that problems like the
quadrature of the circle could be given other solutions but mechanical ones. It seems, therefore, that
he restricted the validity of Descartes’ belief about the non-comparability between straight lines and
curves only to circular arcs, which merely entailed the impossibility of rectifying the circumference and
any of its arcs. It must be recalled, on the other hand, that Leibniz was not alone in mentioning van
Heuraet’s name with the intent to criticize Descartes’ geometry. A similar attitude was taken, around
the same years, by the English mathematician John Collins. In an important exchange with Tschirnhaus,
which took place in 1676, Collins disparagingly listed several flaws which could be found in Descartes’
Géométrie, and on this ground he argued that this text was outdated. Among the relevant errors, Collins
mentioned Descartes’ opinion that curves and straight lines were not amenable to comparison, and listed
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But even if van Heuraet’s result could refute Descartes’ belief on the non comparability

between the straight and the curve, it remained a special contribution, and on its ground a

general analytical treatment of rectifications and quadratures based on Descartes’ algebra

of segments could not be grounded. This conclusion is an immediate consequence of the

impossibility of giving an algebraic quadrature of the conic sections, known by Leibniz

through Gregory’s books, as we have seen, and reproved in a way judged more rigorous

by the former.

One of the meta-theoretical consequence of this impossibility result was to cut short any

hope to discover a general method of rectifications based on Descartes’ algebra of seg-

ments. This impossibility claim might have exerted, I surmise, a dependable role in per-

suading Leibniz to maintain the distinction between the apollonian and the archimedean

domains of geometry, and to consider these domains separate on the ground of the meth-

ods of analysis that could be specifically employed in each one of them.

Our previous exposition allows to establish that Leibniz’s concrete efforts in proving the

impossibility of giving a general quadrature of the circle in algebraic terms started around

the beginning of 1676, but also that Leibniz had matured a belief in such impossibility

since the previous years. For instance, this very idea surfaces in a letter probably sent to

Gallois, from december 1675, and connected with a version of De quadratura arithmetica

Leibniz had terminated during that month. We read, in Leibniz’s words:

Il est constant que la meilleur voye de rendre les problemes de Geometrie

traitables, est celle de les rapporter aux nombres. Ce que Viete et Des

Cartes ont fait dans les problemes rectilignes, en les reduisant aux Equations

d’Algebre, comme si on cherchoit que des Nombres. Mais dans les problemes

curvilignes, lors qu’il s’agit de trouver les centres de gravité et la dimen-

sion des lignes courbes, des figures, des surfaces et des solides, on ne peut

pas encore renfermer l’inconnue qu’on cherche dans une equation; et les trop

grandes promesses de Mons. Des Cartes, qui parle dans sa geometrie, comme

si tous les problemes se reduisoient aux equations, se trouvent courtes.212

Van Heuraet as one of the mathematicians who contributed to show the falsity of this belief. Finally,
the view that van Heuraet’s rectification acted as a refutation of Descartes’ belief might have become
a communis opinio in the subsequent years. Still at the end of the century we find this opinion voiced,
for instance, by Jakob Bernoulli in his annotations to the 1695 latin edition of the Géométrie. In fact
Bernoulli explicitly mentioned van Heuraet in connection with the criticism to the belief that curves and
straight lines were not amenable to comparison (see Descartes [1695], 1695, p. 436).

212AIII1, 73, p. 358.
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A similar point is made, few months later, in AVII6 41, a text which Leibniz intended to

use as preface to the De quadratura arithmetica, and later discarded:

. . . cum curvilineae quantitates, et quae ex his pendent anguli, logarithmi,

centra gravitatum, calculum ingrediuntur; cessat Algebra, quae hactenus pub-

lice nota est. Talia autem problemata ad aequationem non revocantur; nec

dici potest cujus sit gradus quadratura circuli, planumque an solidum locum

desideret, cum dici possit gradus esse nullius nisi forte infinitesimi.213

In the above passages, Leibniz clearly connects an impossibility claim (briefly speaking,

the claim that we cannot express ‘curvilinear problems’ by finite polynomial equations)

to the critique on the limits of Descartes’s and Viète’s analytic method.

In the backdrop of these passages, the argument on the impossibility of squaring the

central conic sections can be interpreted as implying that the class of ‘curvilinear prob-

lems’ concerning the quadrature of figures or the rectification of arcs cannot be reduced

to finite algebraic equations, and consequently, cannot fall into the scope of the class of

problems and methods that Leibniz had baptized "apollonian geometry".

Consequently, not even van Heuraet’s method, despite its applicability to the rectification

of a class of curves, can be configured as a general method of rectification, since even

the quadrature of geometrical curves like the conic sections cannot be reduced to finite

algebraic equations, and therefore solved geometrically.

Leibniz’s pseudo-impossibility theorem, enunciated in the closing proposition of De quadratura

arithmetica, proved that the boundary between Apollonian and Archimedean geometry,

conceived as separate domains of geometry, was rationally grounded.

8.10.2 The constitution of transcendental mathematics and Leibniz’s

new calculus

It is clear from the foregoing considerations that the boundary between the separate

domains of Apollonian and Archimedean geometry was dictated by the limitation of the

resolutory capacity of Descartes’ method.
213AVII6, 41, p. 437: "As soon as the curvilinear quantities, and those which depend on the angles,

logarithms, centers of gravity, enter the calculus, the algebra which is commonly known comes to a stop.
Such problems, actually, are not reducible to an equation, nor it can be said which is the degree of the
quadrature of the circle, whether it requires a plane or solid locus, since we can say it is of no degree, or
maybe infinitesimal".
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We have already discussed about the appearance of the term ‘transcendental’ (transcen-

dens) in Leibniz’s mathematics, in order to refer to curves and problems which tres-

passed the constructional possibilities of cartesian geometry, or could not be reduced to

Descartes’ algebra of segments.

Let us recall that a ‘transcendental problem’ was originally characterized negatively by

Leibniz, as a problem irreducible to a finite algebraic equation. as pointed out in Breger

[1986] (p. 125), Leibniz should have presumably ranged, among transcendental problems,

the universal squaring of the central conic sections, together with the general angular

section and the problem of dividing a ratio into an arbitrary number of parts (both are

discussed, let us recall, in the last proposition of De quadratura arithmetica, and are

considered irreducible to a unique algebraic equation).

We have also hinted to the fact that Leibniz accompanied this negative characterization

with a positive one. Consistently with his general attitude in mathematical and scientific

investigations, Leibniz did not merely see the territory of Archimedean geometry as a

collection of diverse problems untreatable by finite cartesian analysis, but envisaged the

possibility of setting up a ‘universal’ method of problem-solving, which, as he wrote in a

text of 1674, De la méthode de l’universalité:

nous enseigne de trouver par une seule opération des formules analytiques et

des constructions géométriques générales pour des sujets ou cas différens.214

Early modern mathematicians had certainly framed general methods, either geometrical

(like in Cavalieri, Torricelli and also in Gregory, at least in the context of the GPU ) or

algebraic (as in Wallis’s or Mercator’s quadrature of the hyperbola) in order to find the

areas of the greatest number of curvilinear figures and solids, by replacing the classical ap-

peal to the method of exhaustion with routine calculations or geometric transformations

between figures.

What was lacking, though, at least from Leibniz’s perspective, was a calculus, namely a

symbolism together with rules in order to operate on these symbols, which could solve

the problems of squaring an arbitrary figure or rectify an arbitrary arc, or the problem

of finding an (arbitrary) curve given its tangents.

214Couturat [1903], p. 97. See also Mahnke [1925], p. 60.
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In the light of the pseudo-impossibility theorems proved in the De quadratura arith-

metica, Descartes’ algebra of segments did not seem to offer an adequate model for such

a universal method. Also in the backdrop of the inadequacy of the cartesian calcu-

lus, Leibniz often invoked, as an alternative method of discovery within the territory of

Archimedean geometry, a "new calculus", endowed with "equations of a new kind", "new

constructions" and even a "new kinds of curves":

Neque aequationes neque curvae Cartesianae nos expedire possunt; opusque

est novi plane generis aequationibus, constructionibus curvisque novis; denique

et calculo novo, nondum a quoquam tradito, cujus si nihil aliud saltem spec-

imina quaedam, mira satis, jam nunc dare possem. Sed quid Cartesium

in errorem duxerit, judicatu facile est, versatior erat in Apollonio quam

Archimede; et in Vieta quam Galilaeo; unde nondum illi occurrerat via

ac ratio perveniendi ad dimensiones curvilineorum: cumque nimia forte sui

[fi?]ducia, eosdem methodi suae et cognitionis humanae limites esse putaret,

oblitus solitae circumspectionis, relationem inter rectas curvasque negavit li-

bro Geometriae secundo ab hominibus cognosci posse. Quae postea eventus

refutavit. Haec ideo monui, ut intelligant homines, esse quasdam in Geome-

tria inveniendi artes, quas in Cartesio frustra quaerant.215

These desiderata did not remain hollow phrases. In fact, Leibniz’s study of series applied

to investigating problems of quadratures (a noteworthy example was the quadrature of

a sector of the circle, examined in the previous sections) and of tangent-determination

would lead, from 1675 onwards, to forge the programme later known as ‘Leibnizian

calculus’.216

The apparatus of Leibniz’s calculus appeared in print in 1684, in the famous article:

‘Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec

irrationales quantitates moratur, et singulare pro illis calculi genus’, Acta Eruditorum,

(1684), (467–473+ Tab. xii. October issue), but were devised by Leibniz since October

1675.217

215AVII6, 491, p. 504: "Neither cartesian equations nor cartesian curves can help us, we need equations
of a plainly new kind, constructions and new curves. Indeed we need a new calculus, not yet transmitted
by anyone, of which I may now at least give wonderful examples. It is easy to judge what led Descartes
to error: he was more expert in Apollonius than Archimedes, and in Viète than Galileo, but the path
and the method to obtain, from there, the measurement of curves had not come to him yet."

216I will address, for an exhaustive account of Leibniz’s calculus, to the so far unsurpassed Bos [1974].
217AVII5, 38, 40, 44. See also: Scriba [1963], p. 114.
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Moreover, as we have seen, Leibniz referred to symbolic, "transcendental" expressions

already from 1675 (and occasionally before), in order to represent "mechanical" curves

and to treat problems. In a letter from 1679, Leibniz explained to Huygens that he

had enhanced algebra so much beyond the limits of Descartes and Viète, as these ones

advanced over ancient geometers. Leibniz was confident, in fact, tha he had found out a

method of discovery in order to solve in a systematical and terse way the ‘most important

problems’ of geometry, where Descartes could only proceed, so to speak, à tâton:

Je pretends donc qu’il y a encor une toute autre analyse en Geometrie que

celles de Viete et de des Cartes: qui ne sauroient aller assés avant, puisque les

problemes les plus importans ne dependent point des equations, aux quelles

se reduit toute la Geometrie de M. Des Cartes. Luy même non obstant ce

qu’il avoit avancé un peu trop hardiment dans sa Geometrie (sçavoir que

tous les problemes se reduisoient à ses equations et à ses lignes courbes) a

esté contraint de reconnoistre ce defaut dans une de ses lettres, car M. de

Beaune luy ayant proposé un de ces estranges mais importans problemes

Methodi Tangentium inversae, il avoua qu’il n’y voyoit pas encor assés clair.

Et j’ay trouvé par bonheur que ce même probleme pourra estre resolu en

trois lignes par l’analyse nouvelle dont je me sers. Mais j’irois trop avant si

je voulois entrer dans le détail, et il suffit de dire que la Geometrie enrichie

de ces nouveaux moyens peut devancer celle de Viete et de des Cartes autant

et plus sans comparaison que ces Messieurs n’ont surpassé les anciens. Et

cela non pas en curiosités seulement, mais en problemes importans pour la

mechanique.218

This ‘new analysis’ represented, in Leibniz’s views, not only as an enrichment of Viète

and Descartes’ methods, but as the refutation of the belief, attributed by Leibniz to

Descartes, that several problems in geometry, labelled by the latter as "curiosités",219

could not be subsumed under an appropriate and general method of analysis.

A bright example of the ease and progress brought into problem-solving techniques by

Leibniz’s calculus was de Beaune’s problem, an instance of inverse tangent problem,

namely the problem of finding a curve given the properties of its tangents.220 In Leibniz’s

218AII2, p. 662.
219Cf . Mahoney [1984], in particular, p. 419.
220The case of De Beaune’s problem is discussed by Leibniz, in particular, in AVII5, 90, from July 1676.

See also the commentary by Belaval in Belaval [1960], p. 311-312. The modern equivalent of this class
of problems is the solution of a first-order differential equations.
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view, his analyse nouvelle could solve in an expedient way ("ce même probleme pourra

estre resolu en trois lignes") and by means of an optimal symbolic notation a whole class

of transcendental problems, namely quadrature and inverse tangent problems, which

represented a crucible for the cartesian paradigm in problem solving, since they often

involved non-algebraic solutions.

Further considerations on the organization of transcendental mathematics can be found

in the published article De Geometria Recondita (1686), a late article with respect to

the temporal band I am considering, which can be read, nevertheless, in continuity, for

its content and argumentative style, with Leibniz’s mathematical research started during

the Paris period.

In this article, Leibniz ordered transcendental problems, namely problems of "no definite

degree" ("nullius sunt certi gradus") into two classes: the first kind derived from the

section of the angle, the second kind derived from the general section of a ratio (namely,

the insertion of an arbitrary number of mean proportions between given segments). The

transcendental nature of both classes of problems can be justified in the backdrop of

the impossibility of giving an algebraic quadrature of a circular sector or arc, and the

quadrature of an hyperbolic sector, respectively. Indeed the problem of the general

section of the angle corresponds, in analytical terms, to the problem of computing such

expressions as sin(nv) or cos(nv), where v is a given angle, whereas the problem of

the general section of a ratio corresponds to the problem of studying the associated

logarithmic function.

On the ground of this broad classification, Leibniz envisaged the possibility of classifying

unknown quadratures by reducing them, through the symbolic manipulations enhanced

by the differential and integral calculus, either to the problem of the universal quadrature

of the circle or of the quadrature of the hyperbola. I have not been able to ascertain,

though, how far this view fit within the common views of the practitioners by the end of

XVIIth century, nor whether Leibniz envisioned further classes of transcendental prob-

lems, beyond the two discussed so far.221

However, it is worth noting that in presenting such ideals of classification, Leibniz explic-

itly referred to Descartes’ and Pappus’ views on geometricity. In the Geometria recondita,

221Concerning Leibniz’s assessment of transcendental mathematics and the reception of his late XVIIth
century contemporaries, see:Bos [1988].
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for instance, Leibniz evoked the criticism moved by Descartes to Pappus’ alleged restric-

tion of geometry to the sole plane and solid problems (or curves), and turned this very

criticism to the separation between geometrical and ungeometrical (or mechanical) curves

introduced by Descartes in La Géométrie.222

The attempt to remodel the scope and limits of cartesian mathematics, according to a

similar project to the one undertaken by Descartes, when he remodeled the organization

of mathematics in Pappus’ Collection, shows that Leibniz did not conceive Descartes’

programme, aims, and underlying organization as inconsistent or flawed. Leibniz’s criti-

cism was rather directed, as we have seen, to challenge the limits of cartesian analysis.

This implies that the principles and methodologies around which cartesian geometry

is organized or that were brought to the fore by cartesian geometry, for instance the

classification of problems and curves according to their degree, or the procedure for the

construction of equations, might be still taken as a useful model in order to organize

the new field of transcendental mathematics. Of course, it makes no sense to apply

criteria based on finite equations in order to study problems irreducible to finite poly-

nomial equations, but it makes sense to query whether, in the domain of transcendetal

equations, curves and problems, there were similar structural constraints as those set

up by Descartes within his geometry. Can we single out requirements exerting, in the

domain of transcendental mathematics, a prescriptive role analogous to the one exerted

by the constraint on simplicity (cf. ch. 4) in the organization of problems and solving

method in cartesian geometry? Did the problems of the quadrature of the central conic

sections (particularly, the quadratures of the circle and the hyperbola) played, according

to Leibniz, a central role in the organization of the subject matter of transcendental

mathematics, analogous to that of Pappus’ problem in cartesian ordering of problems

and curves? Answering these questions requires to explore a mathematical practice that

lies beyond the chronological interval we have set for our study, although it takes, as a

starting point, the very results explored in this chapter.

8.10.3 Appendix: primary sources

Gottfried Wilhelm Leibniz: Sämtliche Schriften und Briefe. Ed. Akademie

der Wissenschaften zu Göttingen and Berlin-Brandenburgische Akademie der

Wissenschaften: Akademie-Verlag, 1923- :

222Cf . for instance: LSG, V, p. 226, p. 228.
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AII1: 1663-1685. Sämtliche Schriften und Briefe Zweite Reihe: Philosophischer

Briefwechsel (Leibniz [1926]).

AIII1: 1672-1676. Mathematischer, naturwissenschaftlicher und technischer Briefwech-

sel , published in 1976. Editor: Joseph Ehrenfried Hofmann (Leibniz [1976]).

AIII2: 1676-1679. Sämtliche Schriften und Briefe. Dritte Reihe: Mathematischer,

naturwissenschaftlicher und technischer Briefwechsel (Leibniz [1995a]).

AIII3: 1680-1683. Sämtliche Schriften und Briefe. Dritte Reihe: Mathematischer,

naturwissenschaftlicher und technischer Briefwechsel (Leibniz [1995b]).

AIII4: 1684-1687. Sämtliche Schriften und Briefe. Dritte Reihe: Mathematischer,

naturwissenschaftlicher und technischer Briefwechsel. (Leibniz [1995c])

AVI2: 1663-1672. Sämtliche Schriften und Briefe Sechste Reihe: Philosophische

Schriften Bd. 2: (Leibniz [1966]).

AVII1: 1672-1676. Mathematische Schriften: Geometrie - Zahlentheorie - Algebra

(Leibniz [1990]).

AVII3: 1672-1676. Mathematische Schriften: Differenzen, Folgen, Reihen (Leibniz

[2003]).

AVII4 1670-1673. Infinitesimalmathematik (Leibniz [2008a]).

AVII5 1674–1676. Infinitesimalmathematik (Leibniz [2008b]).

AVII6 1673-1676. Arithmetische Kreisquadratur (Leibniz [2012]).

Leibniz’ Mathematische Schriften. Ed. C. I. Gerhardt. 7 vols. Berlin, 1849-

63:

LSG3 (2 vols) Correspondence with Jacob Bernoulli, Johann Bernoulli, Nicolaus

Bernoulli, 1855, 1856 (Leibniz [1849-63a]).

LSG5 Dissertatio de arte combinatoria; De quadratura arithmetica circuli, ellipseos

et hyperbolae ; Characteristica geometrica. Analysis geometrica propria.

Calculus situs ; Analysis infinitorum, 1858 (Leibniz [1849-63b]).



Chapter 9

Epilogue

9.1 A survey of early-modern impossibility results

In this study, I have undertook the task of exploring XVIIth century geometry, especially

concerned with the impossibility of constructing the problems of trisecting an angle,

inserting two mean proportionals and solving the quadrature of a sector of the circle or

the hyperbola, with respect to their outlook, their inner structure and their roles in the

contemporary mathematical practice.

My inquiry into XVIIth century impossibility results has started with an investigation

of some methodological aspects of Descartes’ La Géométrie, where we can also find the

first known proofs that solid problems (i.e. the trisection of the angle and the insertion

of two mean proportionals) cannot be solved by ruler and compass.

As I have argued in chapters 3 and 4, one of Descartes’ driving aims in composing this

treatise was to offer guidelines in order to undertake the ambitious programme of solving

all geometric problems, each according to its most adequate means. In order to realize

this programme, Descartes elaborated a method of analysis, that should be applicable, in

principle, to all problems in geometry, and was based on the reduction of any problem to

an finite polynomial equation. Moreover, he introduced clearcut criteria for selecting the

most adequate solution for any problem. In brief, in Descartes’ view, a problem should

always be solved by the ‘simplest’ curves, according to a dimensional, or algebraic notion

of simplicity.

466
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Two tasks became therefore crucial for the completion of the cartesian programme: firstly

to circumscribe the number of acceptable curves in geometric problem solving; and sec-

ondly, to determine which curves are most appropriate in order to solve a given problem.

The impossibility results expounded in Descartes’ geometry emerged in connection with

both tasks. In the context of Descartes’ canon of problem solving, deliberations about

the impossibility of solving a geometric problem by certain means (I have investigated

them thoroughly in chapter 4), can be interpreted as establishing which curves are in-

appropriate, because too simple, for a problem at hand: a paradigmatic case at point is

the impossibility of solving problems reducible to cubic or quartic equations by straight

lines and circles, discussed in Book III of La Géométrie.

My investigation about the criteria in order to separate acceptable from non acceptable

curves has also shown that an impossibility claim entered into Descartes’ articulate an-

swer to this methodological question. In my view, argumented in chapter 5 and 6 of

this study, the impossibility of knowing with exactness the proportion between curvi-

linear arcs and segments of a straight line exerts a foundational role in the economy of

Descartes’ geometry, since it contributes to exclude certain curves (like the spiral and

the quadratrix) from the number of acceptable ones.1

Descartes did not mean, when he termed the circle-squaring problem an ‘impossible prob-

lem’, that this problem could not be solved in any manner whatsoever.2 The quadrature

of the circle was ‘impossible’, in the sense that it was unsolvable within Cartesian ge-

ometry, in which the exact proportion between straight and curvilinear segments was

denied. Even if no justification for the exact unknowability between curvilinear arcs and

segments is advanced by Descartes, this unjustified assertion may be explained in the

light of the conviction, of Aristotelian origin, that curves (and in particular arcs of the

circle) and straight lines cannot be compared. I have argued for this thesis in chapter 6,

on the basis of a shared opinion among scholars.3

During XVIIth century, the very tradition on whose grounds Descartes had probably

stated the illegitimacy of the circle-squaring problem was "knocked down on the head".4

1My reading is particularly indebted to Mancosu [1999], andMancosu [2007].
2Cf. chapter 6, p. 271, sparsim.
3Cf . the following works, often cited in this study: Bos [2001], Baron [1969], Mancosu [1999], Mancosu

[2007].
4Hofmann [2008], p. 101.
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Let us recall that the belief in the exact unknowability of the proportion between straight

and curvilinear arcs involved, in virtue of Archimedes’ theorem 1 of the Dimensio Cir-

culi , the impossibility of solving, in an exact and geometrical way, the circle-squaring

problem.5 As I have illustrated in this study (chapter 7), the impossibility of solving

in an exact way the quadrature of the circle was precisely the conclusion questioned by

James Gregory, in the Vera Circuli et Hyperbolae Quadratura (1667, hereinafter VCHQ).

In this work, Gregory chose the problem of the quadrature of the central conic sections

as the theme of his investigation. A variant of the classical Archimedean squeezing

procedure is applied in order to perform an analysis of the problems of squaring a sector

of a central conic, arbitrarily chosen. It is then inquired, in the same book, whether

a finite algebraic equation, relating the circular or hyperbolic sectors to the converging

series of inscribed and circumscribed polygons might be obtained as the end result of this

analysis. Gregory’s conclusions, as we know, is a negative one: he claimed and allegedly

proved that there is no finite algebraic relation between a given sector of a central conic

section and the terms of the double sequence formed by the inscribed and circumscribed

polygons to the sector itself.

In order to argue for this impossibility result, Gregory relied on the cartesian algebra

of segments, but also on two innovations that cannot be found in Descartes’ geometry.

Firstly, I surmise, he tacitly assumed the possibility of employing the algebra of segments

in order to measure surfaces of figures. Secondly, he elaborated a ‘new analysis’ in order to

reduce problems of quadrature to analytical expressions (namely, convergent sequences).

By establishing that no simpler, nor more geometrical solution to the problem of squaring

a sector of a central conic could be given, Gregory’s impossibility result did not entail

that this problem had not solutions at all.

On the contrary, Gregory solved this problem by means of certain ‘non-analytical oper-

ations’, i.e operations which involved the use of infinite converging sequences in order

to express the area of the sought-for sectors. Gregory’s impossibility result eventually

legitimated the geometrical nature of the solutions obtained by infinite series, because

it showed that no simplest solutions were in fact available (i.e. there is no algebraic or

5See, on this concern, Descartes’ letter to Mersenne, from 31 March 1638. See Descartes [1897-1913],
vol. 2, p. 90-91.
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analytical formula expressing the area of a sector of a central conic). But if one can

argue that no simpler method exists, in order to treat the quadrature of a central conic

sector, than methods relying on infinite sequences and series, then such methods should

be admitted as legitimate, provided one intended to warrant the solvability of problems

of quadratures too.

The boundary between legitimate and illegitimate problems was questioned along similar

lines in Leibniz’s De Quadratura Arithmetica.6 Indeed, Leibniz exhibited a solution, in

the ‘positive’ part of this treatise, consisting in expressing the relation between the length

of a circular arc and its corresponding tangent through an infinite series. This solution

did not comply with the standards of exactness in force of La Géométrie, since it was not

recast into a finite algebraic equations, nor it showed a geometric constructional procedure

(at most, it showed an approximate, or mechanical construction), but it was nevertheless

judged an ‘exact’ one, certainly in the backdrop of a different ideal of exactness and

geometricity than the one in force in cartesian geometry.7

Of course, one might still desire a ‘perfect’ solution to quadrature problems, namely a

simpler solution obtained by a finite, algebraic formula or through a geometric construc-

tion, in the cartesian sense. However, the impossibility argument discussed in the De

Quadratura Arithmetica made it obvious that searching for such a solution for the prob-

lem of squaring any sector of a central conic would be a loss of time and energy, in the

same way as any attempt to solve the problem of trisecting an angle, or duplicating the

cube by ruler and compass.8

Leibniz broadened the methods and language of mathematics, and castigated what he

considered the restricted views of his predecessors, and among them, principally the views

of Descartes (cf . ch. 8, in particular section 8.10, p. 450 ff .). The ambitious aim of

solving all problems of geometry was still one of Leibniz’s desiderata, but in a different

sense that the one presumably intended by Descartes. The latter had in fact restricted

the scope of the quantifier ‘all’: ‘all’ problems did not take into account such problems in

6I have discussed Leibniz’s reception of James Gregory in ch. 8, section 8.6.1 of this dissertation.
7Even if the meaning of ‘exact’ in the ambit of Leibniz’s practice differed from the meaning of the

same word in cartesian geometry, it was nevertheless well defined, as we can evince from this study, ch.
8, sec. 8.5.2.

8On a related note, concerning the quadrature of the whole circle, we can recall that Leibniz wrote
to Conring that his own solution to the circle-squaring problem is not what mathematicians commonly
desire, for instance a geometrical construction, but it is what they should desire, namely the exhibition
of π through a series (Leibniz to Conring, 19.3.1678, AII, 1, p. 402).
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which the comparison between straight and curvilinear segments were involved, at least.

On the contrary Leibniz considered these kinds of problems as part of geometry, together

with the methods applicable to their solution (See ch. 8, sec. 8.10).

In summary, my study has brought to the fore the importance of impossibility results

in early modern geometry on two levels: these results constituted relevant mathematical

advances per se, because they represented novel achievements in the landscape of early

XVIIth century mathematics, but they also had a prominent methodological role, because

they framed the range of possible solving methods and contributed to the erosion of

existing restrictive methodologies. For example, the impossibility of trisecting an angle

by ruler and compass had the practical consequence of dissuading any effort towards

the search for plane solution and, concomitantly, it could be seen as warranting the

acceptance into geometry of other solving methods beyond the ruler and the compass.9

This function of early modern impossibility results is also evident in the case of the

circle-squaring problem, that I have examined in Gregory’s and Leibniz’s accounts. The

impossibility of solving this problem by algebraic methods acted as a sort of ‘backward

legitimation’ in order to alter the bounds of geometry and of the methods considered

exact.

It should be pointed out that even if these impossibility results warranted the inclusion

in geometry of new curves and new solving methods, they were not the sole nor the

primary forces acting in this process of extending the bounds of geometry. Gregory’s and

Leibniz’s investigations, for instance, developed in the backdrop of different conceptions

of exactness than the one in force within Cartesian geometry. These conceptions were

prompted by changes in the practice (for instance, changes in the kinds of problems

which attracted most efforts and attention in a certain period of time) and often, these

shifts in the conceptions of exactness represented a necessary condition for legitimation

of new curves and new methods in geometry.

9.2 The structure of early modern impossibility results

9.2.1 The role of algebra in XVIIth century

The early modern period brought about an outstanding development and diversification

of algebraic techniques, together with their incorporation into geometric pursuits, in
9The point is raised by J. Gregory, in GPU , preface, fol. 10.
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particular into the analysis of geometric and arithmetical problems. According to a

well-known historiographical hypothesis, algebraic reasoning allowed the geometer to

reformulate and solve arithmetic or geometric problems in a systematical and effective

way: it allowed to apply the same type of constructions to a vast range of problems (let

us think, for instance, of the technique for the construction of equations), and it possesses

algorithmic, or quasi-algorithmic character (let us think, for example, of the techniques

of reducibility. In this way, the use of algebra could ampliate the resolutory capacity of

classical geometric techniques or, in the views of some, restore the methods of discovery

concealed by the ancients.10

But efficiency and systematicity in problem-solving may not be the only contributions

that algebra had to offer to geometry. I have argued at lenght (in ch. 4), that alge-

bra represented the most adequate means, in Descartes’s views, in order to reformulate

Pappus’ classification, because it allowed to associate to geometric objects (curves) that

can be generated in a multiplicity of ways, an invariant like the degree of the associated

equations.

This reformulation also involved a new understanding of the constraints to which the

solutions of a problem should undergo: on one hand, one should not employ curves of

too high a degree in order to solve a certain problem, and on the other, one should not

try to solve a problem by curves of too low a degree. Since Descartes was confident that

algebraic manipulations of equations could offer a method in order to decide the equation

in the lowest possible degree associated to a problem or to a curve, namely, to decide

10Baron [1969], p. 5; Boyer [1959], p. 98. The convinction that analytical methods, integrated with
algebraic symbolism, could improve and replace the ancients methods of analysis, which in contrast
allowed one to come to the solutions of problems only in a haphazard way, was also an ingrained
view among early modern authors. Cf ., for instance, a passage from Descartes’ correspondence, already
quoted in this study (chapter 3, p. 114) where it is remarked how the "analysis of the moderns" is "clearer,
easier and less liable to errors" than that of the ancients (Descartes [1897-1913], vol. 2, p. 83). Also
in La Géométrie, Descartes lamented the prolixity and unorderliness of ancients mathematicians, who
filled their treatises with the solutions to problems encountered by chance (Descartes [1897-1913], vol. 6,
p. 376). In a similar vein, Barrow explained, in his latin translation of Archimedes’ works, that one was
entitled to translate the analytical method of Archimedes into the language of algebra, because, besides
leaving unchanged the geometric content of the original, algebra either unravelled the true method of
discovery adopted by the ancients, or offered a systematic way of deducing the same conclusions reached
by them, apparently only by chance (I will quote, for conciseness, the english translation to be found
in Whiteside [1961], p. 192): "This [the language of algebra] is the exact equivalent of the proportion
deduced by Archimedes (and, to insert a general remark, it reveals sufficiently the sort of analysis he used;
for that he arrived at the result through application of these various compositions, divisions, alternations
and inversions he produces is almost beyond belief: and if he did so, it must be supposed by chance
rather than by any design that he came on the true solution, and that this happened time after time
can scarcely be believed)".
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of their natures, he must have also thought to possess a method in order to avoid those

errors issued from the violations of the requirement of Pappus, duly reinterpreted as a

requirement of simplicity.

I surmise that such a reformulation of Pappus’ requirement by means of algebraic consid-

erations could have opened up the possibility of stating and justifying certain conditional

impossibility claims in the form of mathematical results, namely theorems, or ‘pseudo-

theorems’ (I shall discuss this term in the sequel) of impossibility. This consequence is

not fully brought to the fore in Descartes’ geometry, since the argument he advanced in

order to justify that problems reducible to quartic or cubic equations cannot be solved by

ruler and compass is based on a mixture of algebraic and geometric reasons (ch. 4, sec.

4.6.1), but it would be perfectly clear to his successors, like Gregory and in particular

Montucla, who relied on the technique for the construction of equations in order to assess

Descartes’ impossibility results (ch. 4, section 4.6.2).

The sistematicity and efficiency of algebraic techniques paved the way in order to apply

these techniques to the proof of other impossibility statements, like those related to the

indefinite, or universal quadrature of the circle.

I can only level here the question whether ancient, classical geometry did possess anal-

ogous resources, through which Greek geometers, for instance, could configure impos-

sibility arguments analogous to the early modern ones. On the other hand, I shall

turn now to sketching, in the light of the case studies examined in this dissertation, an

answer to the following question: in which sense the employment of algebra in early mod-

ern impossibility results differed from the employment of algebra in actual impossibility

extra-theoretical theorems?

With hindsight, I have called the impossibility of solving the problems of duplicating the

cube, trisecting the angle and squaring the circle by ruler and compass "extratheoretical

impossibilities".11 From our vantage point, in order to prove that a construction by

prescribed means is impossible in a certain theory C (like Euclid’s plane geometry), a

theory C ′ is required in order to model the former theory and thus give a mathematical

proof of impossibility.12 Our setting C ′ might be then represented by the coordinate

11See chapter 1, section 1.3.2.
12We may take the following definition of theory: "A piece of mathematics characterized by the domain

of objects which it is about, that is (. . . ) a mathematical theory is identified if and only if a certain
domain of objects is so, and - if this is the case - I say that this theory is about these objects" (Panza
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geometry over the field R of real numbers. In this case, statements concerning geometrical

entities belonging to C are translated into statements of C ′, concerning algebraic or

analytical objects, and the very impossibility of solving a problem by certain means of

construction can be formulated, in the logical framework of the real cartesian plane,

as a theorem stating that a a certain element in the cartesian plane, corresponding to

the absissas and the ordinates of the points, or to the lenghts of the segments to be

constructed, does not belong to the field associated to the geometrical constructions in

respect of which the impossibility at stake is formulated. In the end, algebra and analytic

geometry offer a ‘lens’ in order to examine and interpret the impossibility of solving the

problems of duplicating the cube, trisecting the angle and squaring the circle.

A received view among mathematicians even projected back onto Descartes the creation

of analytic geometry as we conceive it today. This is the same view presupposed by

Hilbert, when he wrote in his lecture on Projective geometry that:

Da war es Descartes - der Begründer der neueren Philosophie - welches ein

neues allgemeines Princip in die Geometrie (1637) einführte. Einführung der

Coordinaten in die Geometrie (. . . ) Dieser Gedanke macht mit einem Schlage

jedes geometrische Problem der Analysis zugänglich. So wurde Descartes der

Schöpfer der analytischen Geometrie.13

However, the investigation led in the previous chapters has brought to light some of

the peculiarities of early-modern analysis and algebra, which make the hypothesis of

Descartes as an originator of modern analytic geometry historically untenable.

In a famous article on the meaning and origins of algebra, Hans Freudenthal noted that

there is "no Supreme Court" to decide what algebra is.14 On the ground of this admission,

he recognized that certain procedures and techniques of the past have the same right to

be considered part of the algebraic thinking as techniques that we now recognize, without

qualms, as belonging to algebra, and thus he felt justified in applying modern algebra in

order to understand ancient examples.

[2007], p. 94).
13Hilbert [2000a], p. 24: "Then came Descartes - the founder of modern philosophy - who brought a

new general principle in geometry (1637). The introduction of the coordinates in geometry (. . . ) This
thought made, with one blow, all geometrical problems available to analysis. So Descartes became the
originator of analytic geometry".

14Freudenthal [1977], p. 193.
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I do not want to contest this viewpoint, which has turned out fruiftul in the past,15 but I

suggest that Freudenthal’s remark on the absence of a last authoritative word about the

essence of algebra, opens up for the possibility that the word ‘algebra’ might have had

different meanings in different historical contexts. In particular, it might have a different

meaning in today mathematical practice with respect to the practice of XVIIth century

geometers (an analogous reasoning might holds for the word ‘analysis’).

9.2.2 Algebraic proofs of impossibility theorems

In the ambit of Descartes’ mathematics, algebra constituted a system of symbols (letters

and arithmetical symbols) together with a set of operations (addition, multiplication,

division and root extraction) and relations (the only relation denoted in the system

is that of equality. Other relations, like the relation of order, usually belong to the

metalanguage, while relations of proportionality are subsumed under equations), that

could be applied either to arithmetic or geometric quantities.16 Hence early modern

geometers could deal with several algebras, according to the particular kind of quantities

of which they obtained. These particular algebras are to be considered "assertive",

according to the terminology employed in chapter 3, and used originally in Panza [2005].

Moreover, in so far formal or structural properties of algebraic expressions could be

referred either to geometric or arithmetical objects, they could be studied indipendently

from either of these disciplines. As I have examined in chapter 3 (p. 120ff .) there is

also room to speak of "algebra", in the context of early modern geometrical practice, in

order to indicate the formalism shared by several assertive algebras, and those properties

which depend solely on this formalism: Descartes, for instance, relied on this notion of

algebra when he devoted an important section of Book III of La Géométrie in order to

illustrate the techniques for the transformation of equations, and the connected study of

their properties, such as reducibility.17

15Moreover, this critical task has been duly taken over by S. Unguru, for example in his famous:
Unguru [1975].

16See also Panza [2005], p. 35.
17Among the cases discussed in this dissertation, it is also illuminative to mention Gregory’s definition

of ‘analytic composition’ as a finite composition of arithmetic operations applied to unspecified ‘quanti-
ties’ (see df. 6, p. 9 of his VCHQ). In this context, quantities can be either arithmetic or geometric, but
their nature is not declared. This silence is perfectly justified on the ground that the operations here
defined, which can hold both of geometric and arithmetical quantities, are structurally identical.
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The employment of formal properties of algebraic expressions, like equations, and on

their rules of transformation is particularly evident in the cases of impossibility results

examined in this dissertation. For instance, the reasoning deployed in proposition XI

of James Gregory’s Vera circuli et hyperbolae quadratura (discussed in this study, ch.

7, section 7.4) relies on considerations inherent to the degree and the structure of the

polynomials obtained as the end result of the analysis of the circle (and hyperbola) -

squaring problem; such properties are independent of the nature of the quantities these

polynomials design.18 Even Leibniz’s argument, expounded in the last proposition of the

De quadratura arithmetica, makes appeal to such formal properties of equations: as we

have discussed in chapter 8 (particularly in section 8.6), in order to argue indirectly that

no finite degree polynomial equation can express the relation between an arbitrary arc

and its tangent, he employed the method of undetermined coefficients, and utilized the

irreducibility of certain equations associated to angular divisions: in both cases, Leibniz

dealt primarily with the structure of equations rather than the objects these equations

denote.

But I stress that equations, at least in the contexts I have examined (that is from the be-

ginning of XVIIth century to 1675-1676), may not to be understood as algebraic objects

belonging to a theory autonomous with respect to geometry and arithmetic.19 On the

contrary, these algebraic expressions always depend, for their meaning and justification,

on geometry or arithmetic. This interpretation complies with the considerations, some-

what common among early modern geometers, of algebra as an ‘art’, or an instrument

subservient to both the aforementioned disciplines: geometry or arithmetic.20

18Incidentally, I remark that Gregory himself acknowledged the algebraic nature of his proof, and
hoped for a clearer geometric argument in order to ground the impossibility of effectuating the squaring
of a central conic sector. See, for instance, VCHQ , p. 5: "It is certainly true that I have not reduced
the whole of my demonstration to the language of geometry, indeed, in order to do this, one would
need a non small volume on the mutual relations and on the incommensurability between analytical
quantities, in a kind that I am surprised that noone has ever written about". Gregory’s later studies on
the theory of proportions and on book V of Euclid’s Elements may be related to the same desideratum.
Unfortunately, these studies, of which there is a record in the catalogue of Gregory’s writing conserved
in Edinburgh’s library (See Gregory [1939], p. 40-42), are no longer extant.

19According to the definition of theory I have endorsed above, in note 12. It cannot be excluded that,
under different understandings of what a theory is, algebra might be considered a theory as well (cf .
Freguglia [1999b]).

20As we have discussed in chapter 7 (see, specifically p. 297) this thesis was emphasized in the treatise
De concinnandis demonstrationibus geometricis ex calculo algebraico, written by Frans van Schooten
and published posthumously by his brother Peter (Descartes [1659-1661], vol. 2. See also Brigaglia
[1995], p. 231). In this final work, Frans van Schooten shared in fact the conviction that algebra
was, at least in the context of Descartes’ geometry, a language which coded geometric information, and
consequently, algebraic expressions could always be ‘decoded’ and interpreted in terms of the language
of classical geometry. At its core, the project he presented in De concinnandis aimed to convince his
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I therefore surmise that, when formal properties of equations were singled out and stud-

ied per se, in the context of XVIIth century geometry, they did not concern equations

properly, but schemes of equations, namely metalinguistic expressions that stand for an

infinity of equations and could refer, in their turn, either to geometric or arithmetic

quantities.21

This interpretation warns us against projecting back to XVIIth century mathematics our

own disciplinary and theoretical distinctions: even if, in the historical setting of XVIIth

century geometry, a correspondence between geometric constructions and arithmetical

operations is explicit and well justified on some occasions (as our examination of the

Géométrie has brought to the fore), algebra did not frame an autonomous theory C ′,

which could describe facts about a different theory C (C might be Euclid’s geometry,

or one of its suitable extensions in order to include conic sections and other curves

constructible via linkages).

9.2.3 Early modern constructions and constructibility

Another aspect of today impossibility theorems is the possibility of mirroring successive

geometric constructions into a succession of algebraic operations, by means of cartesian

coordinate geometry, so as to associate to different curves different ranges of problems

solvable via these curves.22 For instance, any finite succession of constructive steps,

which involves the sole use of ruler and compass, employed according to Euclid’s clauses

fixed in the Elements, can be associated to a finite succession of operations yielding

rational and quadratic irrational quantities only. The employment of the ruler and the

compass can be then distinguished from constructions employing higher degree curves,

by considering the succession of algebraic operations associated with the latter curves,

readers that any algebraic manipulation (rewriting) of a finite polynomial equation, based on defined
syntactical rules, could be systematically interpreted in terms of operations among proportions, or in
terms of constructions and results expressible in the language of classical geometry. But perhaps, one
of the first formulations of the thesis that algebra did not have its own objects, but dealt with either
geometry or arithmetic was not given by an early modern geometer. Indeed, this thesis is explicit in the
work of the Persian mathematician Omar Khayyam. As he wrote in a treatise named Algebra: "Whoever
thinks algebra is a trick in obtaining unknowns has thought in vain. No attention should be paid to
the fact that algebra and geometry are different in appearance. Algebras are geometric facts which are
proved" (quoted in Michael N. Fried [2001], p. 26). In other words, algebra was a suitable language for
expressing geometric facts proved geometrically.

21The term ‘schema’ is employed, in the context of cartesian algebra, in Panza [2005], p. 43.
22Cf. Coolidge [1940], p. 53: "It is clearly impossible to make an adequate discussion of the possibilities

of various geometrical instruments without the aid of analytic geometry. I do not know who first grasped
this idea, but it seems evident enough to-day".
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and the quantities which can be constructed thereby.23

In order to decide whether a given construction problem in the plane is solvable by the

employment of a certain type of curves, it is sufficient to consider whether the equation

associated to the problem can be solved24 by applying, to the lenghts of the given seg-

ments of the problem, a finite succession of those (and only those) algebraic operations

associated to the allowable geometric constructions.

In virtue of this twofold algebraic characterization of problems and constructive proce-

dures, obtained through the use of analytic geometry, each construction instrument or

curve can be associated to a range of solvable problems. A logical characterization of

the ‘constructive power’ of various instrument can be thus obtained, in principle, in the

following way. Broadly speaking, if the same range of problems corresponds to two differ-

ent constructing instruments, then these instruments can be regarded as equivalent. On

the other hand, if the range of problems solvable by one instrument includes the range

of problems solvable by the second one, then the constructive capacity of the former will

be greater than the constructive capacity of the latter.25

In contrast, even if Descartes’ algebra of segments could offer a correct analytical re-

duction of several geometric problems into algebraic equations, and could thus recast

the property of being constructible by certain means (for instance, ruler and compass)

into the property of being relatable to an equation in a certain degree (in the case of

plane problems, these are reducible to quadratic equation), it did not as well set up an

explicit translation into algebra of the stepwise procedures involved in the construction

of a geometric problem.

As I have argued at length in this study, Descartes’ canon of construction, which became

paradigmatic during XVIIth and part of XVIIIth century, is composed by an analytical

part, in which a certain construction problem is reduced to an algebraic equation, and

by a synthesis, in which this equation is constructed through the intersection of a couple

of curves. Consequently, proving that the use of certain lines cannot solve a problem at

23Cf . the elementary exposition by G. Castelnuovo, in Enriques [1912], vol. 1, p. 315.
24In this context, ‘solving an equation’ has a sensibly different meaning than in the context of early

modern geometry. A solution is obtained, in the former case, when the unknown can be expressed as
an algebraic function of the coefficients of the equation: no geometric construction by the intersection
of curves is needed anymore.

25I am indebted on the exposition contained in Enriques [1912], vol. 2, p. 583.
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hand boils down to proving that the algebraic equation associated to the latter cannot

be constructed by intersecting a pair of lines among those admissible.

Fundamentally, what seems to be missing from this technique was an explicit study

of the successive structure of the auxiliary construction involved into the solution of a

problem.26 In fact, even if Descartes did not completely overlook this aspect, at least for

what concerns special constructive tools27 he certainly downplayed it, and restricted his

considerations on the construction of a problem to the sole construction of the equation

obtained as the end result of the analysis of the latter.

As a result of this missing connection between geometric constructions and algebraic

operations, it seems that differences in the constructional power of curves were justified,

at least in cartesian geometry, only on the basis of qualitatively geometrical considera-

tions.28 It is the case, for instance, of the constructive power of the circle, on one hand,

and of the conic sections, on the other: Descartes acknowleged that the range of problems

solvable by the former was more restricted that the range of problems solvable by the

latter, but could not express such a difference in algebraic terms. Both curves belonged

in fact to the same class, as far as we consider their algebraic characterization given in La

Géométrie, because they can be associated to quadratic equations. The only explanation

ventured by Descartes on the reason why the sole use of the circle (plus the straight

line) did not allow one to construct certain problems, solvable by conic sections (or by a

circle and a conic section) instead, concerned the different curvature of these curves. I

have stressed elsewhere the unrigorous character of Descartes’ argument (see chapter 4,

p. 164).

A possible exception, in the context of XVIIth century geometry, might be represented

by Gregory’s characterization of analytical quantities, offered in the introductory part of

26See Lützen [2010], p. 31.
27For instance, Descartes mentioned, although in passing, that auxiliary constructions should be ac-

complished by adding all the lines that seemed necessary for the construction of a problem. Moreover
Descartes assumed, but without delving into this issue, a correspondence between stepwise construc-
tions by circles and straight lines and successive algebraic reductions involving quadratic equations, for
instance when he considered the factorization of cubic equations into quadratic ones.

28This being said, the successive structure of constructions was not completely overlooked in Cartesian
geometry, though. For instance, Descartes briefly mentioned, in illustrating the guidelines of his problem-
solving methodology, that auxiliary constructions might be accomplished by adding all the lines that
seemed necessary for the construction of a problem (Descartes [1897-1913], vol. 6, p. 372). Moreover,
he assumed (without delving into the issue, though) a correspondence between stepwise constructions
by circles and straight lines and successive algebraic reductions involving quadratic equations, involved,
for example, in the algebraic reduction of a cubic equation to a quadratic one (when this was possible).
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VCHQ . Starting from definition 5, for example, Gregory managed to clarify the meaning

of ‘analytical composition’ and ‘analytical quantity’ in terms of a finite succession of

algebraic operations, and conversely, he characterized non geometrical constructions in

terms of the non analytical nature of the quantities and the operations exhibited.29

However, it is difficult to evaluate Gregory’s influence over the successive generations, and

in particular over the gradual emergence of analytic geometry, during XVIIIth century. It

can be observed, at any rate, that not even the algebraization of Descartes’ impossibility

result, later obtained by Montucla (ch. 155, sec.4.6.2), did introduce a correct and

transparent algebraic characterization of the employment of the diverse constructing

instruments, but kept the same structure of Descartes’ argument, and did not really

succeed in shifting its focus from the attempt to prove that a certain equation associated

to a problem could not be constructed through a pair of selected curves, to the proof that

the roots of this equation could not be expressed as the result of a sequence of algebraic

operations, associated to a finite sequence of constructions obtained through allowable

tools (for instance, ruler and compass), and applied to some given objects.30

In conclusion, my study had revealed that the very idea of ‘extratheoretical impossibility’,

as I have characterized it in the foregoing discussion, had not yet pierced its way through

the considerations of early modern geometers. In order to sweep away conceptual and

terminological confusions, one should more properly talk about ‘pseudo-theorems’ and

‘arguments’ of impossibility, in order to speak about those claims, together with their

correlated justificatory packages, formulated in the historical setting of XVIIth century

mathematics. With this clarification in mind, I want to suggest that pseudo-impossibility

theorems and arguments are not merely ill-formed theorems and proofs, or statements

which we could accept in our modern mathematical practice, provided adequate additions

and revisions were supplemented. In the light of our previous considerations, it seems

plausible to conclude that the shift from pseudo-impossibility to impossibility theorems

required a deep conceptual change in mathematics in the backdrop, instead of a mere

refinement of the techniques available at a certain time and within a certain community.

9.2.4 From the constructive paradigm to the conceptual paradigm

Further investigations are certainly welcome, in order to integrate the already existing

research and to cast light on the transition from pseudo-theorems to extratheoretical

theorems of impossibility.

29See chapter 7, section 7.3.2.
30See also Lützen [2010], p. 31.
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As it has been convincingly argued in recent publications (for instance Otte [2003], Lützen

[2009] and Sørensen [2009]), extra-theoretical impossibility theorems became an inte-

grated part of mathematics in the backdrop of a change in the image and structure of

mathematics itself, initiated in the first half of XIXth century, and definitely assessed

at the turn of XXth century. Impossibility theorems stood as an exemplary instance of

such a change, to the point that they might be considered the "birth certificate of pure

modern mathematics".31

This shift can be understood in terms of a passage from a ‘constructive paradigm’,

predominant in XVII and XVIII century geometry, to a ‘conceptual paradigm’. The

emergence of the latter paradigm was envisioned in these terms by the mathematician

N. Abel, in his tract Sur la résolution algébrique des équations (1839):

Un des problèmes les plus intéressantes de l’algèbre est celui de la resolu-

tion algébrique des équations (. . . ) mais malgré tous les efforts de Lagrange

et d’autres géomètres distingués, on ne put parvenir au but proposé. Cela

fit présumer que la resolution des équations générales était impossible al-

gébriquement; mais c’est sur quoi on ne pouvait pas décider, attendu que la

méthode adoptée n’aurait pu conduire à des conclusions certaines que dans

le cas où les équations étaient résolubles. En effet, on se proposa de résoudre

les équations, sans savoir si cela était possible (. . . ) pour parvenir infailli-

blement à quelque chose dans cette matière, il faut donc prendre une autre

route. On doit donner au problème une telle forme qu’il soit toujours possible

de le résoudre (. . . ) au lieu de demander une relation dont on ne sait pas si

elle existe ou non, il faut demander si une telle relation est en effet possible.32

In the passage above, Abel sketches what he considers a ‘new road’ in order to tackle the

problem of solving the quintic equation. Instead of directly searching for a solution in

a haphazard way ("à l’aide d’une espèce de tatônnement et de divination", Abel [1839],

vol. 2, p. 24), Abel recommended that a mathematician should reformulate the problem

of searching for a solution to the quintic expressible through a closed algebraic formula

in terms of the coefficients of the equation, in order to transform it into the question

about whether such a solution by radicals is possible. Abel noted that the change from

a question about the existence of a solution to a question about its possibility contained

the ‘germ of its solution’ already in its enunciation. Two possible answers are in fact

31Otte [2003], p. 182. See also Lützen [2009], p. 389-390.
32Abel [1839], vol 2., p. 185. See also Otte [2003], p. 181, for an English translation.
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admissible once we ask about the possibility of the solution to a problem: either ‘yes’,

and the problem is solvable, or ‘no’, and the problem cannot be solved. If this answer

is negative, a theorem of impossibility will ensue, like the one proved by Abel himself in

his Mémoire, considered a a solution to the original problem by all means.33

Abel insightfully anticipated a passage from the mere search for constructive solutions

to problems, as the unique ground in order to establish their existence, to an interest for

questions about the possibility of solutions. I could not ascertain whether he explicitly

discussed the possibility of submitting other problems (as those constructive problems of

geometry the duplication of the cube, the trisection of the angle or the squaring of the

circle) to a similar shift or whether, more probably, he inspired other mathematicians.

Let us recall, indeed, that the first proofs of the impossibility of trisecting the angle and

duplicating the cube were obtained by P. Wantzel few years after Abel’s Mémoire, in

the article Recherches sur les moyens de reconnaître si un Problème de Géométrie peut

se résoudre avec la règle et le compas , published in Liouville Journal des mathématiques

pures et appliquées (1837).34

Around the same years, Joseph Liouville (1809-1882) proved another outstanding im-

possibility result: a certain class of integrals cannot be expressed in closed forms,35 and

Niels Henrik Abel (1802-1829) also proved that quintic equations cannot admit solutions

by radicals in his Mémoire sur les équations algébriques où on démontre l’impossibilité de

la résolution de l’équation générale du cinquième degré (1824).36 Wantzel and Liouville,

whose impossibility theorems were published within few years one from the other, were

probably herald of Abel’s change of perspective.

33Cf . Lützen [2009], p. 389.
34The main theorem proved by Wantzel in this article can be reformulated, according to J. Lützen

as it follows: "the irreducible polynomial (with rational known coefficients) having a constructible line
segment x0

n as its root must have a degree that is a power of 2" (Lützen [2009], p. 378). In a first
step, Wantzel translates the geometric problem of constructing a segment by ruler and compass into an
algebraic problem (i). He then shows that (ruler-and-compass) constructable problems lead to equations
of degree 2n (n ∈ N) (ii). Subsequently, he sets out to prove that, under certain assumptions, the
equations so obtained are irreducible over Q[x] (iii).Wantzel then translates the problems of trisecting an
angle and duplicating the cube into algebraic equations, and claims (without proof) that these equations
are irreducible (over Q[x]) (iv). Wantzel’s proof is defective: its major gap can be located at step (ii), as
it is stressed in Lützen [2009], p. 378ff . A correct proof of the impossibility of solving the trisection of
the angle and the duplication of the cube in the style and spirit of Wantzel’s original proof is offered in
the classical study by F. Klein (Klein [1895]), who works out the results obtained by Julius Petersen.

35Cf. Lützen [1990], chapter IX.
36For Abel, in particular see: Sørensen [2004] and Sørensen [2009].
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Only quite later, in 1882, F. Lindemann published the rigorous proof that the number

π is ‘transcendental’ (namely, it satisfies no algebraic equation with integer coefficients),

and therefore the circle-squaring problem cannot be solved algebraically.37

This result was obtained in the same vein of the previous impossibility theorems, but

as the examination contained in the already quoted Lützen [2009] has shown, a décalage

occurred sistematically between the first published proofs of geometric impossibility the-

orems and their acceptance and circulation in the community of mathematicians. It

seems, in fact, that it was only in the last part of the century that their value became

known and appreciated, and they acquired a legitimate standing in mathematics on a

par with positive solutions to problems.

Echoes of the recognized importance of impossibility theorems can be found among David

Hilbert’s considerations, expounded in the epoch-making paper on The Problems of Math-

ematics (1900):

In recent mathematics (der neueren Mathematik) - Hilbert wrote- the ques-

tion as to the impossibility of certain solutions plays a pre-eminent part, and

we perceive in this way that old and difficult problems, such as the proof of

the axiom of parallels, the squaring of the circle, or the solution of equations

of the fifth degree by radicals have finally found fully satisfactory and rigorous

solutions, although in another sense than that originally intended.38

Whereas Abel may have intuited such a change of perspective, when he spoke, in the

passage reported above, about taking another route in problem-solving, Hilbert was fully

conscious that such a new route had been traced and become mainstream towards the

end of XIXth century.

In this setting, the concept of ‘geometric problem’ acquired a new meaning, since it went

from an inquiry about the existence of a solution to an inquiry about its possibility. The

new sense in which problems could be understood and treated can be gleaned through

the case of the quadrature of the circle, one of the paradigmatic examples mentioned by

Hilbert in the above passage. In the formal framework of XIXth century, in fact, algebra

and analysis offered a method for deciding an answer to the question about whether

it was possible to solve this problem by certain means (for instance, the ruler and the

37See Fritsch [1984].
38Hilbert [1901], eng. tr. in Hilbert [2000b], p. 409. Cf . Mancosu [2011], p. 199.
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compass), and eventually allowed mathematicians to prove the negative answer in the

form of an extra-theoretical impossibility theorem.

In this ‘conceptual paradigm’, the solution of a geometric construction problem did not

necessarily coincide with the exhibition of a construction. This phenomenon was salient in

the case of elementary problems in geometry, to which the classical construction problems

belong. For those cases, a method was available, to Hilbert and his contemporaries, in

order to decide whether a problem can be solved by prescribed means. Hence, according

to the new meaning of ‘problem’, a proof that the circle cannot be squared by ruler and

compass would count as a proper solution to the quadrature problems. Likewise, we can

prove that a regular polygon of 17 or 257 sides is constructible by ruler and compass,

without giving the effective construction. In the end, mathematicians could deal with

constructibility as if it were a property of mathematical objects, namely problems, on a

par with other properties, and for this reason the role of effective constructions of the

classical construction problems became subsidiary to the proofs of their constructability

(or non constructability).

On the contrary, in a classical, constructuctive setting, in which we can situate the

historical episodes discussed in this dissertation, questions about the feasibility of a

certain problem by prescribed means could be certainly addressed, but they were not

preceeded by the crucial question about the possibility of solving the problem at hand,

and their answer stood by no means as a solution to the problem. Concomitantly,

mathematicians lacked a fully-fledged, systematic method in order to decide whether a

problem was constructible by prescribed means. As Abel brilliantly resumed it, when a

‘classical’ geometer set out to solve a problem, he started by searching for an adequate

solution, even if it should be pointed out that, contrarily to Abel’s views, this search

might not always have been led à tatôn.

9.3 Impossibility arguments as answers to metatheoretical

questions

It should be noted that early modern geometers criticized the procedures of the ancients

as based on discoveries met by chance, without a proper method. Consequently, attempts

to find the ‘most adequate’ methods in order to tackle a given problem can be seen as

responses to this concern.
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In particular, the cases discussed in this dissertation have brought to the fore that one of

the salient roles of impossibility results within the constructive paradigm of early modern

geometry was methodological, and consisted in contributing to the finding of the most

adequate solutions for a problem at hand, by excluding inadequate, or ‘simpler’ types of

solutions.

I suggest that the methodological role of impossibility results, in XVIIth century geome-

try, can be deepened in the light of a useful conceptual distinction, originally introduced

by Leo Corry, in Corry [2008]. According to Corry, two sorts of questions related to a

mathematical discipline can be distinguished and discussed. The first sort of questions

concerns the subject matter of a discipline, while the second sort of questions concerns

the discipline qua discipline.39

For instance, the solution of the angle trisection deployed in Pappus’ Book IV of the

Collection (Cf. ch. 2, p. 50), Descartes’ solution of the angle trisection or insertion of

two mean proportionals contained in Book III of La Géométrie (cf. ch. 3, p. 173) and

Leibniz’s solution to the circle-squaring problem exhibited by means of the convergent

alternating arctangent series (ch. 8, sec. 8.2) respond to a question related to the subject

matter or "body" of a discipline. These are, as Corry calls them, answers to ‘first-order’

questions or problems (namely: ‘to find a third of a given angle’, or ‘to exhibit the area

of a circle, or of the fourth of a circle, with unitary diameter’).

On the other hand, Pappus’ division of problems into classes and his criterion in order

to decide the most adequate solution to a problem, that we have discussed in chapter

2, or the distinctive criterion in order to separate geometrical and mechanical curves

introduced by Descartes in La Géométrie (discussed, in this study, in chapter 5) shape

the image of knowledge, as they concern geometry qua geometry, not particular problems

formulated within the discipline itself. Likewise, Descartes’ criterion for choosing the best

one among several, equally sound solutions to a given problem does not offer a solution

to a particular problem, but prescribes how we must proceed, in general, when solving

problems in geometry. All claims which concern a discipline qua discipline can be called

‘metatheoretical claims’. Metatheoretical claims and guiding principles of a discipline

form a layer of questions, and answers to those questions, which arise from the body of

knowledge, but cannot in general be answered within this body. We may call this second

layer: ‘the image of knowledge’.

39Corry [2008], p. 411.
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I surmise that, in the context of ancient mathematics, claims that a problem cannot be

solved by certain means (for instance the unsolvability of solid problems by ruler and

compass) belong to the image of mathematics: impossibility statements had rather the

methodological role of principles regulating the practice of problem solving than a proper

mathematical theorem.40 Possibly for this reason, no proof of this impossibility claim

was advanced in the context of Greek mathematics: the justification of such a claim

depended on arguments derived from the tradition of a practice.

Impossibility claims had the same role in early modern geometry: they belonged to the

image of mathematics, rather than to its body. For instance, as discussed at length in

this study, we can ascribe to impossibility statements the role of expressing the limits

of applicability of a method, and the corresponding role of setting the boundaries of a

theory. Let us consider Descartes’ claim that solid problems cannot be solved by plane

means or, more generally, that a problem cannot be solved by too simple methods with

respect to its class. Our study of the third book of La Géométrie makes it clear that

role of such impossibility statements is to restrict the choice of the adequate means in

order to solve a certain problem, and therefore to offer some guidelines for the search of

correct solutions.41

In the context of Gregory’s inquiries into the quadrature of conic sections, as well as

in Leibniz’s De Quadratura Arithmetica too, impossibility results concerned the image

of mathematics, because they answered, negatively, to a question about the resolutory

capacity of cartesian geometry, pointing towards its limits, and warranting the necessity

of extending the accepted problem-solving methodologies, if one wanted to square any

sector of a central conic.

Generally speaking, the impossibility statements I have studied in this dissertation, both

in antiquity and in the early modern period, did concern the activity of problem solving

rather than particular problems. They were, therefore part of the image of mathematics.

But my research into early modern impossibility results has shown another important

novelty with respect to the mathematics of antiquity: in the setting of early modern

geometry, impossibility claims were justified mathematically, albeit in an informal way.

In other words, they can be considered as theorems or, according to the terminology I

have introduced above, ‘pseudo-theorems’.

40See chapter 1, p. 26
41Cf . ch. 4, sec. 4.6.1.
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I can thus conclude by observing that XVIIth century impossibility results are distinct

from the normal activity of problem-solving and theorem-proving, on one hand, and on

the other from philosophical or methodological considerations on mathematics, which

do not rely on the inferential machinery characteristic of mathematical thinking (as the

recourse to codified inferential steps and deductive structures, symbolization, apparata

of calculus).

Whereas the latter activity was common since ancient mathematics (it is sufficient, for

example, to think of Pappus’ classification of problem or of his description of the analysis

and synthesis), the impossibility results presented and argued by Descartes, and subse-

quently, by Gregory in the VCHQ and by Leibniz in the De Quadratura arithmetica might

represent the first attempts to answer questions concerning the image of mathematics

(what are the limits of a certain method of discovery? Which tool can best effectuate

the analysis of a given problem, like the quadrature of the circle?) by mathematical

means: namely, by means of algebra (and in particular by means of Descartes’ algebra

of segments).

As noted by Corry (in Corry [2008]) a distinctive feature of mathematics with respect to

other disciplines concerns the possibility of treating mathematics itself as its own subject

matter; in other words, the possibility of ‘transferring’ the image of a discipline into the

body of the discipline itself: this is what we may call the "reflexive activity of mathe-

matics".42 We might venture the conjecture that the pseudo-theorems of impossibility

discussed in this study constituted salient examples of a practice that might be charac-

terized as "reflexive knowledge", namely a thinking about mathematics that is carried

out by means of mathematical resources.

The programme sketched by Gregory in the preface of the Vera circuli et hyperbolae

quadratura, in which the systematic treatment of impossibility results (let us recall that

Gregory evoked, among these impossibility results, the impossibility of solving solid prob-

lems by ruler and compass, the impossibility to prove in which case a given, algebraic,

equation cannot be decomposed into factors, and thirdly the connected problem to assess

the curves of minimal complexity necessary for the construction of a given problem) is

42Corry [2008], p. 413. This possibility is concretized, today, in what we call ‘metamathematics’. For
instance, it belongs to metamathematics the study of formal systems and their properties, like logical
strength (how much can be done using given mathematical methods) unprovability (insufficiency of given
methods to answer certain mathematical questions), and finally, the study of existence and non-existence
of algorithms (I am particularly indebted, for these distinctions, to A. Bovykin).
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emphasized as a "new field" of research, is exemplary of an awareness for mathematics

as an enterprise that could inquire, by mathematical means, about his own methods.43

The very fact that impossibility results should and could be proved by mathematical

means can be considered as an outstanding advance in the mathematical practice of

XVIIth century. This was part of a tacit legacy that cartesian Geometry left to later

mathematicians. Descartes did present unrigorous mathematical arguments in order to

prove certain impossibility claims, although he did not emphasize this achievement in

La Géométrie. I surmise that mathematicians like Gregory or Leibniz were nevertheless

persuaded by the examples contained in La Géométrie in order to inquire about the

possibility of extending Descartes’ algebra of segments to the squaring an arbitrary sector

of a central conic, and came out with a negative answer. The impossibility of squaring

analytically the central conic sections can therefore be considered part of the cartesian

legacy to subsequent XVIIth century geometers.

The research undertaken in this dissertation confirms that the legacy of Descartes’ ge-

ometry did not merely concern the level of mathematical discoveries and techniques, but

it also concerned ways of shaping the mathematical practice. I am thinking, for instance,

of the attempts to dispose, by appealing to mathematical arguments, of certain questions

about the image of mathematics: which are the adequate means in order to solve a given

problem? Which are the limits of a given method? As we have seen, pseudo-theorems of

impossibility had an essential role in answering these questions.

Descartes’ influence in shaping the mathematical practice did not confine itself to the

episodes analyzed in this study, namely to Gregory’s and Leibniz’s mathematics. With

respect to the issue of impossibility in geometry, this influence might be widespread and

concern numerous mathematicians, both ‘major’ and ‘minor’ characters in the history

of the period, who might have reflected upon the issue of impossibility (let us think,

for example, of Wallis, Newton, but also of Sluse, Van Schooten, often quoted in this

study, and Carlo Renaldini, who influenced Gregory’s reception of cartesian geometry).

Moreover, a ‘mathematical thinking’ about the image of mathematics might be also found

43It is not clear, though, how far Gregory views (certainly far-fetched for the time) received audience
and circulated: let us recall, once more, that Gregory’s influence on the development of mathematics is
skewed and difficult to trace, due to his scarce production and his peripheral position in the mathematical
community of his time, which contrasted with the circulation of his mathematical ideas among the
contemporaries, as recent studies have shown, and as my contribution has, I hope, helped to reveal as
well.
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among XVIIth and XVIIIth century mathematicians, beyond the chronological limit I

have set to this study (I am thinking, specifically, of Tschirnhaus, Leibniz himself, Euler

and Jacob Bernoulli).

These directions, together with many other ones, can be explored in future research.

After all, the study of ‘reflexive activity of mathematics’ in early modern geometry,

which includes the study of impossibility as one of its main chapters, represents a new

and living subject matter, which my dissertation, I hope, has pioneeristically contributed

to unfold.
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