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Preface: capturing the unicorn

. the fence inside which we hope to have enclosed what may appear as a possible, living creature.

O. Neugebauer, The Ezact Sciences in Antiquity, p. 177.

Otto Neugebauer once recalled, in his masterpiece The exact Sciences in Antiquity, that
his endeavour in restoring the mathematics of the past had a simile in the tale of the
unicorn, which ended with the miraculous animal captured in a fence and gracefully

resigned to his fate.

In this dissertation, I have also erected, out of pieces of evidence, conjectures and indirect
testimonies, an enclosure in order to capture an elusive but (I think) living subject of
research. This subject is provided by the theme of impossibility results in classical and

early modern mathematics.

I started the inquiry which led to this dissertation out of the following, perhaps naive
observation: all the famous impossibility results in geometry (namely, the impossibility of
duplicating the cube, trisecting an angle or squaring the circle by ruler and compass) are
proved by appealing to a rather sophisticated algebraic machinery. Why mathematicians
had turned to algebra in order to prove geometric impossibility results, and what makes
algebra such a powerful resource that it could prove the impossibility of solving certain

problems in geometry, apparently unprovable by geometric means only?
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My original questioning was as much interesting to me as it was broad, and perhaps unfit
for a discussion within a single dissertation. I then decided to develop my inquiry mainly
from a historical viewpoint, and turned to what I considered one of the first examples of
algebraic thinking in geometry, namely, Descartes’ epoch-making La Géométrie. 1 read

this text wondering whether it might contain any deliberation on impossibility.

I found out that Descartes was concerned with the type of impossibilities I was looking
for, although his arguments were at first sight of difficult understanding. In order to
enlighten Descartes’ ideas on impossibility, I enlarged my interest to XVIIth century
geometry, and explored whether considerations about impossibility emerged elsewhere

too.

The results of this study are contained in this dissertation. This dissertation is composed
of two main parts. The first part (chapters [l] - spans from antiquity to Descartes’
Géométrie (1637) but it is mainly focused on the latter work. The aim of this part is to
explore, in a critical manner, the historical setting in which early modern impossibility
results were formulated, with a particular attention for certain salient and problematic
episodes for the historian of mathematics (for instance, the problem of understanding
which rational criterion guided Descartes in order to distinguish geometrical from me-
chanical curves, and to choose the simplest solution for a problem at hand). These

episodes are related to the main focus of this dissertation, namely, impossibility results.

The second part of this study (chapters |§| - E[) covers two salient historical cases dur-
ing the second half of XVIIth century geometry, namely James Gregory’s and G. W.
Leibniz’s attempts to prove the impossibility of squaring the central conic sections. The
connection between the two parts is given by the legacy of La Géométrie. In particular,
this text offered a model in order to formulate, and tentatively prove impossibility results

in geometry.

In pursuing the theme of impossibility in early modern geometry, I left aside other possible
contexts in which impossibility in mathematics might have emerged, as in connection
with irrational, negative and impossible numbers. This dissertation is not about these
issues. This choice has obviously influenced the mathematical results examined in this

dissertation, the context investigated and the conclusions drawn.
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On the other hand, this dissertation is neither about a reconstruction of the historical
setting in which early modern impossibility results emerged. However, in studying im-
possibility results I was guided by a specific concern for mathematical pratices. I was
indeed interested in what motivated the formulation of certain impossibility results, in
the techniques mathematicians had employed in order to argue for the impossibility of
solving a certain problem, and how did these impossibility results differed from actual
impossibility theorems, both from the point of view of the arguments adopted and from

the point of view of their role and importance in their respective theories.

In order to explore these themes, a study of certain mathematical theories and achieve-
ments in their own terms seemed to me unavoidable. For this reason, I devoted large
sections of this works to present and discuss in more general terms some of the mathemat-
ical advances brought about by Descartes, James Gregory and Leibniz, among others, as

far as I judged them important for the theme of my research.

I consider my research on impossibility by no means finished. In order to have a more
complete description and a more satisfying understanding of early modern impossibility
results, the issues discussed in this dissertation should be deepened. An inquiry about
how other prominent XVIIth century mathematicians, besides those I have discussed in
this study, conceived and treated impossibilities in geometry (Newton and Wallis, for
instance), and how new impossibilities emerged in the second half of XVIIth century
and in XVIIIth century with the onset of Fuler’s analysis are among possible, future

investigations.

Salvador de Bahia, 20 August 2014.
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Chapter 1

(zeneral introduction

1.1 The theme of my study

In this dissertation, I will discuss impossibility results in early modern geometryE] More
specifically, I will focus on the period between the beginning of XVIIth century and the
second half of the 1670s, and I will examine some of the arguments advanced by geometers
in order to justify the impossibility of solving a problem by prescribed methods. I will
consider, in particular, the impossibility of solving by certain methods the three ‘classic’
construction problems of antiquity: the quadrature of the circle, the trisection of an angle,
and the duplication of the cube (or the problem of inserting two mean proportionals

between two given segments, to which the former problem can be reduced).ﬂ

It is generally acknowledged that the impossibility of solving those classic construction
problems was not rigorously proved until the 19** century. Moreover, it is also taken

9" century, which were

for granted that the forms ultimately worked out in the end of 1
transmitted to the present, depended on methods unavailable to early modern geometers,

and on an underlying conception of geometry almost foreign to its predecessors.

The impossibility of solving the duplication of the cube and the trisection of a general

angle by straightedge and compass were firstly proved by Pierre Wanztel (1814-1848) in

'The term ‘early modern geometry’ will be employed from now on to designate the collection of texts,
but also the results, problems and related solving methods that occupied mathematical research between
the renaissance and the enlightenment, from 1550 ca. to 1750 ca.

2For a classical survey of the ancient discussions about these problems, see [Heath| |1981], Becker
[1957] (p. 74ff. and p. 93ff.) and Enriques [1912] (in particular the article by L. Conti contained in this
volume).

14
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1837E| On the other hand, the impossibility of squaring the circle was proved for the
first time by Ferdinand Lindemann (1852-1939), in 1882, in a very strong way: in fact he
formulated the first proof of the transcendentality of 7, which implies the impossibility
of squaring the circle with straightedge and compass, and more generally with algebraic

CUI'VGSE

At their ground, all these impossibility proofs rely on the possibility of treating the ex-
istence of mathematical objects in an abstract, indirect way. Developments of algebra,
indeed, offered an adequate machinery in order to model geometric contexts, and there-
fore to handle questions about the existence of an object in a theory (for instance, a
certain geometric object in elementary Euclid’s geometry) without requiring its exhibi-
tion through a construction. It is well known that, relying on the same (or very similar)
resources employed by the aforementioned mathematicians, one can prove that a regular
polygon with 257 sides exists in Euclid’s Plane geometry, by proving its constructability
through ruler and compass, even if this polygon has not been constructed, i.e., even if

its existence has not been proved through an effective Construction.lﬂ

A geometric impossibility theorem can be conceived as the negative counterpart of a the-
orem of constructability. We might envisage it as a theorem proving that a certain object
(namely a problem) does not possess the property of being constructable by prescribed
instruments. The property at stake in such a proof is constructability, which is under-
stood and treated as a property on a par with other properties that may be attributed

to a mathematical (in this case a geometrical) object.

But mathematicians ruled against the possibility of solving the previously mentioned
problems well before their impossibility were actually proved, and within contexts or
within mathematical practices where indirect proofs of existence were in general not al-
lowed. Thus Descartes pronounced, as early as 1637, against the possibility of duplicating
the cube and trisecting the angle by plane means (i.e. straight-line-and-circle construc-
tions). For what concerns the quadrature of the circle, M. Jacob has convincingly argued
in her Jacob| [2005] that the problem was declared ‘unsolvable’ out of ‘an authoritarian

decision of enlightenment’.

3Wantzel| [1837]. Cf. in particular the insightful study in [Liitzen| [2009].

“See [Lindemann| [1882]. One year later, in 1893, Hilbert simplified Lindemann’s proof (cf. [Klein
[1894), p. 53).

°The original proof of constructibility of this polygon is contained in (Gauss| [1801], § VIIL.
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As I will discuss in this study, the belief in the unsolvability of one problem by given
methods was not only dictated by the authority, nor merely by repeated unsuccesses
in trying to solve it. The conviction on the impossibility of squaring the circle, dupli-
cating the cube and trisecting the angle by ruler and compass was in fact grounded on
arguments which, although they appeared either flawed or lacking in rigour if examined
from our viewpoint, enjoyed some circulatation during the second half of XVIIth cen-
tury, and were studied and discussed. In particular, my examination will consider some
of the earliest instances of impossibility results and correlated arguments given by René
Descartes (1596-1650) in La Géométrie (1637), then an important impossibility result
about the quadrature of the circle by algebraic or analytical methods, argued by James
Gregory (1638-1675) in his Vera Circuli et Hyperbolae Quadratura (1667), and finally,
the same impossibility result discussed by G.W. Leibniz (1646-1716), in an unpublished
work, which had however a vast resonance among contemporary mathematicians: De
quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria
sine tabulis (ultimated in 1676).

1.2 A difficult context

My choice to privilege XVIIth century geometry might appear infelicitous. In the early
modern period, in fact, geometry was a constructive enterprise, and it is by no means
clear which status might be attributed to impossibility results and arguments in such a

framework and within early modern mathematical practice.

By stressing the constructive character of early modern geometry, I refer foremost to an
aspect of the mathematical practice, which has been defined as the "classical conception

of proof and knowledge" in mathematics.lﬂ

According to this conception, problems and theorems, namely the fundamental types
of propositions, or modes of argumentation, in classical and early modern geometry
possessed an undeniable constructive component. Let us consider one of the standard
and most influential accounts of the distinction between these geometric propositions,

namely Proclus’ Commentary on the first Book of Euclid’s Elementsﬂ

5See [Detlefsen| [2005).

"Proclus’ text, written in the fifth century A.D., was available in print since 1533. The latin trans-
lation (Procli Diadochi Lycii in primum FEuclidis elementorum librum commentariorum ad universam
mathematicam disciplinam principium eruditionis tradentium libri IV') appeared in 1560, and was made
by F. Barozzi (c¢f. |[Proclus| [1948], pp. xxiff.). See also |[Bowen| [1983] for a reconstruction of hellenistic
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The propositions that follow from the first principles he [Euclid| divides into
problems and theorems, the former including the construction of figures, the
division of them into sections, subtractions from and additions to them, and
in general the characters that result from such procedures, and the latter

concerned with demonstrating inherent properties belonging to each ﬁgureﬁ

According to Proclus, who drew his conceptions of problems and theorems on the tradi-
tion of Euclid’s geometry and on other traditions, not preserved to us,ﬂ problems involve
the construction of a figure in the plane from some given or known figures, or the per-
forming of some operations on a given configuration of geometric entities, and concern
the properties which result thereby, whereas theorems show the intrinsic properties of

given geometric figures.

This very idea is developed in another passage of |Proclus [1992]:

|[geometry]| calls ‘problems’ those propositions whose aim is to produce, bring
into view, or construct what in a sense does not exist, and ‘theorems’ those
whose purpose is to see, identify and demonstrate the existence or nonexis-
tence of an attribute. Problems require us to construct a figure, or set it at a
place, or apply it to another, or inscribe it or circumscribe it about another,
or fit it upon or bring it into contact with another, and the like; theorems
endeavor to grasp firmly and bind fast by demonstration the attributes and

inherent properties belonging to the objects that are the subject matter of

geometrym

Hence, problems involve a construction in order to pass from something given to what
is sought for in the givens. An undeniable constructive component is also involved, in
Proclus’ view, in the conception of theorem. Even if Proclus states that most theorems do
not require an explicit constructionE yet they can be characterized as well by something
‘given’ in an ‘enunciation’ and something sought for. The given figure or object must

be present to our visual inspection (let us recall that the purpose of theorems is to "see,

views on problems and theorems.

8Proclus| [1992], p. 63.

9Proclus surveys several positions in the tradition of Greek mathematics, on the definitions of prob-
lems and theorems, that I will not explore here: cf. |Proclus|[1992], p. 65-66.

YProclus| [1992], p. 157.

'1See, for instance, [Proclus| [1992], p. 159.
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identify and demonstrate"), if not as a physical diagram, at least as a representation in

the imagination, I surmise.

In another passage of the Commentary, Proclus explains more plainly that the figure of
which we want to prove certain attributes should be made present to our contemplation
by means of a construction, as it is the case in the ordering of the first proposition of
Euclid’s Elements. In fact, the first theorem of Euclid’s FElements (namely, El., I, 4) is
preceded by three problems, in which the subject matter of the theorem is constructed
or exhibited:

The propositions before it have all been problems ... our geometer follows
up these problems with this first theorem. ... For unless he had previously
shown the existence of triangles and their mode of construction, how could he
discourse about their essential properties and the equality of their angles and
sides? And how could he have assumed sides equal to sides and straight lines
equal to other straight lines unless he had worked these out in the preceding
problems and devised a method by which equal lines can be discovered? ...It
is to forestall such objections that the author of the Elements has given us
the construction of triangles. ... These propositions are rightly preliminary
to the theorem. .. [

This view about the primacy of constructions was possibly contested in classical antiquity,

as it can be gleaned through Proclus Commentary,lE but it exerted a tangible influence

2Proclus| [1992], p. 182-183.

13T am referring, in particular, to the dispute, related by Proclus, risen in the Academy, between
the followers of Speusippus and those of Maenechmus (See [Proclus| [1992], p. 63ff.). According to the
former (and to his followers), the word ‘theorem’ is more appropriate than ‘problem’ in order to denote
arguments in geometry, since this science treats of eternal objects, for which it is not appropriate to
use the language of construction. According to the school of Speusippus, constructions do not produce
geometric objects, but they offer means for knowing such (eternal) geometric objects. On the contrary,
Maenechmus, and his school, defended the thesis that all geoemetric inquiries are problems, which can be
further subdivided in two types. On one hand, problems may serve to exhibit a figure by construction;
on the other, they may be employed to investigate the properties of a given object. Proclus tries to
harmonize this view, remarking that the followers of Speusippus are right in claiming that geometry
does not deal (unlike mechanics) with concrete, perceptible objects, which undergo changes and motion,
and that the followers of Maenechmus are right too in asserting the constructive aspect of geometric
propositions: "in going forth into this matter and shaping it, our ideas are plausibly said to resemble
acts of production; for the movement of our thought in projecting its own ideas is a production (...)
of the figures in our imagination and of their properties" (Proclus| [1992], p. 64). Hence, Proclus
insists, geometers are legitimated in talking about construction and dissection of figures, provided they
understand that these changes occur in the imagination, whereas the "contents of our understanding"
remain immutable, thus granting geometry the status of science (Proclus|[1992], p. 64).
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over early modern geometers, as it is attested both by the activity of the mathematicians,

and by their methodological pronouncements.lﬂ

As an example of the latter, let us consider how Clavius, one of the leading figures of
renaissance mathematics, who exerted a long-standing influence over the subsequent cen-
tury too, interpreted the ancient distinction into problems and theorems in terms of a
distinction between types of demonstration: "All demonstrations of mathematicians are
divided by ancients into problems and theorems. A demonstration that demands that
something be constructed and teaches how to construct it they call a problem (prob-
lema vocant eam demonstrationem, quae tubet an docet aliquid constituere) ... but they
call the demonstration that examines only some aspects or property of one or several
magnitudes at once a theorem (Theorema aut appelatur eam demonstrationem, quae
solum passionem aliquam, proprietatemve unius vel plurium simul quantitatum perscru-
tatum)"m As an example of theorem, Clavius chooses the following: "in every triangle,
the three angles are equal to two right angles", because "it does not prescribe to, not
teach how to construct a triangle, or anything else, but contemplates merely this prop-
erty of a constructed (constituti) triangle , namely that its angles [i.e. their sum| are

equal to two right angles".lﬂ

The kinship between Clavius’ and Proclus’ definitions eloquently points towards a direct
influence of the latter over Clavius’ reflection. It is, moreover, the mark of a deeper
influence on the structure of early modern mathematics, since geometers continued to
rely on Proclus’ account of the distinction between problems and theorems throughout
XVIIth century (for more seventeenth century examples, see chapter |§|, p. .

In this setting, which constitutes the background of ancient and early modern geometry,
the principal types of inquiry consisted either in the construction of a geometric object
(for instance, a figure) from given ones, according to certain clauses, or in proving that

a figure thus constructed, or given, possessed some properties. Hence, it is at first sight

14The constructive character of ancient mathematics was emphasized by Zeuthen, in his famous paper
Zeuthen| [1896]. Zeuthen’s thesis can be briefly resumed: constructions serve, in ancient geometry, as
proof of existence of the constructed figures. The historical plausibility of this thesis has been criticized,
notanly by W. Knorr (Knorr|[1983]). I am not endorsing, in this study, the thesis that ancient geometers
consciously endorsed a constructivist position towards existential claims, but that in the structure of
ancient and early modern geometry existential claims were established by exhibiting geometric objects
through constructions, or by assuming them as given, on the ground of intuitive properties of geometric
figures, like continuity.

15¢f. [Euclid| [1589], p. 23, trad. in|Jesseph|[1999], p. 21.

16 ¢f. [Buclid| [1589], p. 24
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unclear which logical status might be attributed to negative, impossibility arguments,
like those purporting to show that a certain construction cannot be accomplished by

selected tools.

1.3 Types of impossibility arguments

1.3.1 An ancient example

It should be pointed out that impossibility proofs were not completely extraneous to
the context of ancient and early modern geometry. Indirect proofs, namely proofs using
reductio ad absurdum, can be in fact considered impossibility proofs, in the following,
trivial sense: any theorem p can be proved by proving that its negation is impossible.

This viewpoint is contemplated by Proclus, who comments upon reductio in these terms:

Every reduction to impossibility takes the contradictory of what it intends to
prove and from this as a hypothesis proceeds until it encounters something
admitted to be absurd and, by thus destroying its hypothesis, confirms the
proposition it set out to establishﬂ

Reductio is a standard argumentative pattern in Euclid’s Flements. In order to under-

stand it through a concrete example, let us consider El. 1, proposition 27:

If a straight line falling on two straight lines make the alternate angles equal

to each other, the straight lines will be parallel to one another.lE

Euclid claims that given two straight lines AB and CD, and a transversal EF, if EF
forms alternate equal angles AEF, EF D, then the straight lines AB and C'D are parallel.

Euclid argues indirectly, by supposing that straight lines AB and C'D are not parallel.
If this is so, then they will concur in a point, lying either on one or the other side with
respect to the transversal. It is assumed that they meet, on a given side, in a point G.
This point, together with the intersection points £ and F' can form triangle EFG. But
such a triangle will have, by hypothesis, one exterior angle (namely AEF') equal to the
opposite interior angle (namely EFD): which is impossible, in virtue of El. I, 16: "In

any triangle, if one of the sides be produced, the exterior angle is greater than either

"Proclus| [1992], p. 198.
8T refer to the translation in [Heath| [1956 (first edition 1908.
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Figure 1.3.1: Elements, 1, 27.

of the interior and opposite angles”E Once discovered this contradiction, Euclid can
conclude by denying the thesis that the straight lines will meet. Therefore AB and C'D
are parallel. Accordig to Euclid’s definition, in fact: "parallel straight lines are straight
lines which, being in the same place and being produced indefinitely in both directions,

do not meet one another in either direction" (EL, I, df. 23).

This theorem is proved by assuming an impossible configuration: a triangle in which an
external angle is equal to the opposite, internal one. Such a triangle is impossible, in so
far it possesses properties which are inconsistent or incompatible with other properties

that have been proved to hold true of this figure.

Impossibility arguments like the one deployed in El. I, 27, occur in reductio modes of
argumentation, which are common in pre-modern mathematics. They can be considered
‘local’ impossibility arguments, at least in the context of Euclid’s first six Books of the

Elements: their aim is to prove theorems about given or constructed figures.
1.3.2 Impossibility in the theory versus impossibility in the meta-
theory

Contriving a little Euclid’s text, proposition 27 can be interpreted as stating that it is

impossible to construct the intersection point between a segment C'D produced and a

9Eng. tr. in|[Heath| [1956 (first edition 1908|.
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segment AB produced, such that they form equal alternate angles with respect to a
transversal EF. In other words, El. I, 27 can be read as an impossibility theorem, or a
theorem of non-existence, since it states that an intersection point between straight lines

which obey the conditions specified in the protasis does not exist.

Another, well known example of such an impossibility proof is the proof of the incom-
mensurability between the side of a square and its diagonal. Let us recall that, according
to Aristotle, mathematicians: "prove that the diagonal of a square is incommensurable
with its sides by showing that, if it is assumed to be commensurable, odd numbers will be
equal to even" (Szabd [1978|, p. 214). Adopting the interpretation advanced by Becker
and reported in Szabd’s account, on which I refer here, this argument leads from the as-
sumption that the side of a square is commensurable with its diagonal to the conclusion
that the side can be associated to a number both even and odd. From this conclusion, a
contradiction results (Szabo| [1978], p. 215)@

However, an important difference can be singled out between impossibility results oc-
curring in indirect proofs in geometry, like in El. I 27 above, and impossibility claims
concerning the non constructability of a certain object by prescribed means. Let us con-
sider, for instance, the impossibility of constructing, by ruler and compass, a cube whose
volume is double of a given cube. The claim to the unsolvability of this problem does not
entail that the object we wish to construct (namely, a cube with volume double of a given
cube) involves a contradiction, but that the tools demanded for its construction (in the
case at point, the ruler and compass) are insufficient with respect to the task set at the
beginning. One could certainly assume, on the ground of an intuition of continuity, the
existence of a double cube without contradiction, and employ more ‘powerful’ methods
than the ruler and the compass in order to obtain the required solution (several examples
of such methods, available to Greek geometers, will be discussed in the next chapter).
We can call this kind of impossibility result ‘conditional’ impossibility result, because

the impossibility depends on the use of particular means to solve the problem.

On the contrary, proving that the intersection point between two straight lines, forming
alternate equal angles with the same transversal, cannot be constructed (FEl., I, 27)
implies that such a point cannot be constructed tout court, independently from the
methods employed, because its existence would imply an impossible configuration. These

impossibility results can be called ‘absolute impossibilities’.

208ee also (Gardies| [1991], p. 33 in particular.
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Did classical geometric reasoning could countenance also the conditional impossibility
results that I will address in this study, like the impossibility of solving the problem
of trisecting an angle, duplicating the cube or squaring the circle by a given set of
instruments, e.g. ruler and compass? In other words, did classical geometry, conceived
as a constructive enterprise, possess the resources in order to study constructibility and

therefore and prove conditional impossibility results?

In order to venture an answer, let us sharpen, by reverting to a more modern framework,
the distinction between absolute impossibility proofs and conditional impossibility proofs.
In order to capture the gist of this distinction, I shall expound, on broad strokes, an
example of the latter kind of impossibility result, namely the proof that a cube cannot

be duplicated by ruler and compass.

Although examples of this impossibility proof are commonplace in modern expository
textbooks in algebra, I shall follow the structure of the classical account offered in
Smorynski [2007] (p. 87-131) because it relies solely on considerations which do not
go beyond the scope of elementary algebra and geometry. Even in this case, I shall take

for granted few theorems whose proofs are not requisite for the sake of my argument.

My starting point will be a clarification of the meaning attached to the expressions
‘construction by ruler’, ‘construction by compass’, that I have so far used on an intuitive
base. Let us thus call a ‘configuration’ a finite collection C of points, segments and circles
lying in the plane. Let us define a ‘curve’ in C to be either a segment or a circle. Let us

call a ‘construction step’ one of the three following operations:@

e (ruler) Given two distinct points A and B belonging to C, trace the line AB which
connects A and B, and add AB to the configuration C.

e (compass) Given two distinct points A and B belonging to C, and a distinct point
O in C, trace the circle with center in O and radius equal to AB (namely the line

joining A and B), and add the circle to the configuration C.

e (intersection) Given two distinct curves in C, pick one point common to both curves,

and add it to the configuration C.

21See for instance [H. et al.|[1974], p. 199.
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Next we can state that a point, line or circle is ‘constructible’ by ruler and compass from
C, if it can be obtained from C after applying a finite number of constructions steps. Let
A and B two distinct point in the plane P. The first two operations just defined license
to add to the configuration both the line joining A and B, and the circle with center in
A and radius AB.

We can now ask the question standing at the core of the cube duplication problem: is it
always possible to construct a point C' such that the cube built on AC' is the double of
the cube built on AB?

An answer can be given by going through two main steps@ The first step requires to
endow our plane with a system of coordinates over the reals. The notion of ruler-and-
compass constructability can be then characterized in algebraic terms, by relying on the

following:

Lemma A basic configuration {A, B} is given in the real cartesian plane, such that
A(0,0), B(0,1). Then it is possible to construct a point Q(«, 8) by ruler and
compass if and only if & and S can be obtained from A and B by arithmetic
operations (4, —, =, -) and by the solution of a finite number of successive
linear and quadratic equations, involving the square roots of positive real

numbers.

A number « is called ‘constructible’ if it can be obtained from rational numbers, by a finite
sequence of arithmetic operations (+, —, =, -) and successive extractions of square roots.
Consequently, a point is called ‘constructible’ if its coordinates, in a real cartesian plane,
are constructible numbers. I point out that the above lemma allows us to characterize

constructability, introduced as a purely geometric notion, in algebraic terms.

I will assume the above lemmaﬁ and confine myself to remarking that this lemma offers
an algebraic criterion to decide the general possibility of a straightedge and compass
construction. Hence, in the real cartesian plane, the question whether a point C(z,0)
can be constructed by ruler and compass, in such a way that the cube built on AC is
the double of the cube with edge AB, where A has coordinates (0,0) and B coordinates
(1,0), boils down to inquire whether the abscissa x, satisfying the equation: 2® = 2, is

constructible.

22My presentation is indebted to [Laugwitz [1962].
23The proof is elementary: see [Hartshorne| [2000] p. 122.
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This is the second step of our proof. A negative answer will follow from this other:

Lemma  Consider the polynomial of the form: P(X) = X3 + aX? + bX + ¢, with
a,b,c € Q. If the equation P(x) = 0 has a constructible solution, then P has

a rational solution as well P4

The equation 2° — 2 = 0 is a special case of P(z) =0 (fora =0, b= 0 and ¢ = —2). It
can be proved that the equation: z3 — 2 = 0 has no rational solutions@ In virtue of the
preceeding lemma, the equation has no constructible solutions as well, so that point C

cannot be constructed by ruler and compass from the original configuration {A, B}.

Looking at today treatments of impossibility proofs, the translation of a statement in
a given theory (i.e plane constructive geometry) into another (i.e. algebra or analysis)
seems a requisite condition for proving conditional impossibility claims. Michael Otte

correctly and precisely observes in Otte| [2003]:

Impossibility proofs (...) are not only indirect proofs but also depend on
the choice of a certain representation. In order to prove, for instance, that
the doubling of the cube is impossible, one has to represent the constructible

numbers to show that the third root of 2 is not a constructible number.@

In the above passage, Otte only recalls the proof of the impossibility of duplicating the
cube by ruler-and-compass constructions, but similar examples will hold for the other

classical construction problems.

In the context of today mathematical knowledgem we thus recognize that ‘the choice
of a certain representation’, from which impossibility proofs in geometric problem solv-
ing depend, requires the systematic translation of a mathematical theory into another

mathematical theory, for example a translation from geometry to algebra or analysis.

21 A fully-fledged proof can be found in [Smorynskil [2007], p. 92.

2%Hartshorne| [2000], p. 243. Let us suppose that the polynomial: P(z) = x* — 2 could be factored
over Q. Then it will have at least a linear factor, so it will have a rational root. Let us assume that the
polynomial has the root: ¢, with @ and b both in Z and relatively prime. Then: a® = 2b3, and it follows
that a is even. If 2 divides a, then 2® divides a®. Since a® = 2b°, 2° will divide 2b°, hence 2* will divide
b. b is therefore even, which contradicts the hypothesis that a and b were relatively prime.

260tte| [2003], p. 183.

2"We might say, using a kuhnian terminology, that the picture I have offered holds, in ist generality,
for today normal science’, for instance, the content of mathematics as it is apprehended in standard
textbooks.
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This viewpoint is clearly stated in the classical booklet by F. Klein Famous Problems of

Elementary geometry:

The singular thing is that elementary geometry furnishes no answer to the
question. We must fall back upon algebra and the higher analysis. The
question then arises: How shall we use the language of these sciences to
express the employment of straight edge and compasses? This new method
of attack is rendered necessary because elementary geometry possesses no

general method, no algorithm, as do the last two sciences@

According to Klein’s views, that have become nowadays current@ it results that state-
ments about the possibilities of different solving methods were not amenable to inves-
tigation unless one could appeal to algebra and analysis, conceived as meta-theories of

geometry, in order to translate geometric problems and construction procedures.

In the light of these considerations, the distinction between absolute and conditional
impossibility results can be now reformulated as a distinction between two types of im-
possibility proofs. On one hand, proofs that a construction cannot be obtained within a
certain context C' if a specific choice of the construction tools is required. Such impossi-
bility proofs are obtained by appealing to another context C’ for speaking of C', and can
be called ‘extra-theoretical’. On the other hand, we also recognize proofs showing that
if it were the case that an object obtained in a given context C', something impossible
would follow: these proofs do not require another context C’ to speak of the context C|,
and can be called ‘intra-theoretical’. Indirect arguments as the one deployed in El. 1, 27

are, generally, intratheoretical impossibility proofs of this kind.

1.4 Impossibility statements as meta-statements

Scholars agree, when considering examples of extra-theoretical impossibility results, that
ancient geometers hardly possessed any argument that could qualify as (or equivalent

to) an extra-theoretical impossibility proof in the modern sensem Indeed, it is difficult

28Klein| [1895], p. 2.

2For instance: |Courant and Robbins| [1996], p. 120, [Smorynski| [2007], p. 89.

30The opinions of the scholars is in general concordant on the issue. See for instance Becker’s con-
sideration: "It is not known whether they [the ancients| could prove that, for instance, the problem of
duplicating the cube is not solvable by ruler and compass alone. We do not even know with certainty
whether a method in order to carry out such an impossibility proof obtains, which remains within the
territory of Greek mathematics" (Becker|[1957], p. 75).
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to envisage an analogous impossibility proof framed within the geometric manner of the
ancients. It may be conjectured, for instance, that a method able to prove the impossi-
bility of solving a problem (e.g. the duplication of the cube) by prescribed methods (e.g.
straight lines and circles only), within the framework of classical analysis and geometry,
should be able to survey all possible (plane) constructions and conclude that no one of
them can solve the problem. I have not been able to find, however, which methods or

arguments, in classical Greek geometry, could attain such a level of generalityﬂ

However, evaluating ancient attempts to solve problems like the duplication of the cube,
the trisection of the angle and the squaring of the circle, a scholar like Heath states
unhesitantly that: "Greek geometers came very early to the conclusion that the three
problems in question were not plane, but required for their solution either higher curves
than circles, or constructions more mechanical in character than the mere use of the ruler

and compass in the sense of Euclid’s postulates 1—3”.@

Heath does not delve further into this claim, but surveys in detail the ancient constructive
solutions to the classic problems. Of course, solving a problem by higher curves than
circles is not sufficient to claim that the problem is not plane: we can thus wonder on
which ground Greek geometers could have based their conviction that the classic problems

of construction were unsolvable by plane methods.

Occasional deliberations about the impossibility of solving a problem by given means
can be found, especially among authors of late antiquity (I will try to explain later on
a plausible reason why earlier Greek geometers remained silent). A shining example is
the Mathematical Collection, a miscellaneous work written by Pappus of Alexandria in
early fourth century AD. This is not only an outstanding text in ancient mathematics,
but also one of the most influential sources in late XVIth and XVIIth century.lﬁ

3Interesting considerations with respect to the scope and limits of ancient methods for problem-
solving can be found in [Hintikka and Remes| [1974], p. 57, and |Saito and Sidolj [2010|, p. 587. The
fact that ancient geometers had not produced, to my knowledge, such a proof, does not imply that this
impossibility proof is itself impossible, in the framework of a theory which formalizes relevant aspects of
ancient geometric theories. An interesting to raise, with regard to this problem, concerns the conditions
that a formal system should comply with in order to derive extra-theoretical impossibility proofs within
the theory itself.

32Heath| [1981], p. 219.

33The Collection is a treatise of which most of books II through VIII are extant. These books preserve
a wealth of material on the ancient geometric tradition, much of which would otherwise be unknown to
us. But as the leading teacher of mathematics and astronomy at Alexandria, Pappus was most influential
in his own time for his commentaries on Ptolemy and Euclid (for general information on Pappus’ life, his
work and mathematical agenda, see Pappus|| 1986} p. 2-62;|Cuomo| [2007], and Mansfeld| [199§], in partic-
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At the beginning of book III of the Collection, Pappus criticizes the sketch of an alleged
plane solution (that is, a solution appealing to circles and straight lines only, employed
according to Euclid’s first three postulates) of the problem of finding two mean pro-

portionals in continuous proportion, proposed, so Pappus states, by an "inexperienced
geometer"@

The mean proportionals problem is the problem of constructing, given two line segments
a and b, two segments x and y such that the following proportion holds: a : x = x :
y =1y :0b. Itis easy to see that: ay = 22, bx = y?, xy = ab, and therefore: 3 = a?b.
Since this is an irreducible equation of third degree, we know that the problem cannot
be solved by plane means.lﬂ I observe that if we posit: b = 2a, the solution of this
problem will solve also the duplication of a cube with side equal to a: the reduction of
the duplication problem to the insertion of two mean proportionals was well known to

Greek mathematicians P9

The content of Pappus’ criticism is not easy to define, because it mingles various argu-
ments, and Pappus’ exposition relies on several intricate digressions. At any rate, his
objections can be grouped around three main points:lﬁ whereas two of these objections
concern certain fallacies allegedly committed by the inexperienced proponent, that I shall
not explore here, the third objection will interest more closely my narration. In fact, while
scrutinizing, at the outset of Book III of the Collection, the flawed solution to this very
problem advanced by the "inexperienced geometer", Pappus remarks that the former has
taken: "the thing sought for as admitted", and has been deluded by the impossibility of
constructing the givens, since the problem of inserting two mean proportionals "is indeed
solid by nature" P9

ular chapter 2). Concerning the fortune of the text, in XVIIth century, I signal Pappus’ latin translation
prepared by F. Commandinus, appeared posthumously in 1588 (in bibliography: |Commandinus| [1588]).
The Mathematical Collection, however, was also known before, thanks to Greek manuscripts circulating
among mathematicians and humanists (see [Bos| [2001], p. 37, [Treewek| [1957]).

34Pappus refers to someone who "puts the thing forward in an inexperienced way" (nws dpeipws
npofdiiwy), Cf. [Pappus| [1876-1878], vol. I, p. 31, line 16.

35 An important catalogue of solutions of the mean proportionals problem (obtained either by mechan-
ical methods or curves higher than plane ones) can be found in Eutocius’” Commentary On Archimedes’
The Sphere and the Cylinder (Archimedes| [1881], vol. 3).

36 According to Proclus’ account, it should be attributed to the mathematicians Hippocrates of Chios:
"Reduction is a transition froma problem or a theorem to another one which, if known or constructed,
will make the original proposition evident. For example to solve the problem of the duplication of the
cube geometers shifted their inquiry to another on which this depends, namely, the finding of two mean
proportionals" [Proclus| [1992], p. 167.

37Cuomo [2007], p. 132.

38Pappus| [1876-1878], vol. I, p. 40, 42. See [Hintikka and Remes [1974], p. 79.
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The core of this criticism lies, so it seems, in the fact that the unskilled geometer has
improperly applied straight line-and-circle constructions to a solid problem, namely a
problem that can be adequately solved only by higher curves, like conic sections, or
by equivalent mechanical methods. I remark that Pappus assumed the unsolvability of
the problem of inserting two proportionals by plane method as a matter of principle,
and expressed no desire to prove or argue for it.lﬂ In book IV of the Collection (Pappus
[1876-1878| vol. I, p. 271), we learn that Pappus suggested that the trisection of an angle
was unsolvable by planar means. Also in this case, he did not offer any justification for

unsolvability of the trisection problem by straight-lines-and-circles constructions.

Pappus did not justify the impossibility of solving the classical problems of cube dupli-
cation (and insertion of two mean proportionals) or the trisection of the angle by ruler
and compass. We might thus suppose that he grounded his conviction on a tradition
of commentary and research on these problems. It should be recalled, in fact, that the
cube duplication and the trisection of the angle were topical problems in Greek classical
geometry, and could claim a long tradition of research and numerous attempts to their
solution@ It is thus possible that mathematicians became convinced that these two
problems were ‘plane by nature’@ Pappus might refer to such a tradition when he ruled
out attempts to solve solid problems by planar means, and thus conclude, on this ground,
that embarking in the attempt to construct two mean proportions or trisect an angle by
ruler and compass was an investigation into the impossible, which revealed, at most,
ignorance about the previous tradition of research on these problems. Conclusively, at
least in the context of Pappus’ discussion, and probably among mathematicians of late
antiquity too@ conditional impossibility claims had the status of principles regulating

the activity of problem-solving, rather than that of mathematical theorems.

Are these deliberations on the nature of certain problems to be found in earlier texts
belonging to the Greek corpus? I am not aware of any such case in earlier mathematical
literature properly (for instance, Euclid, Archimedes or Apollonius). One reason for
thos silence on impossibility claims in mathematical texts is probably due to the fact

that methodological considerations about mathematics (which included considerations

39The point is made in [Liitzen| [2010], p. 5-6, to which I am particularly indebted.

40For the cube duplication, see in particular [Saito [1985], p. 119. For the trisection of the angle, see,
in particular: [Heath| [1981], p. 235.

“See also [Knorr| [1986], p. 361.

42 A similar judgement about the problem of inserting two means is expressed also in Hero’s mechanics,
quoted in [Knorr|[1989], p. 11.
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about legitimate and illegitimate methods) were treated, during the hellenistic period,
in philosophical rather than mathematical texts. Such a rigid division of tasks lost its
strenght later on, so that for someone like Pappus it would have been admissible to enrich

mathematical discussions with methodological and philosophical considerations.lﬂ

Consistently with this image of the ancient mathematics, I recall that the earliest sur-
viving claims about the unsolvability of the circle-squaring problem, the third classic
problem of antiquity, are to be found not among the considerations of a mathematician,

but of philosophers like Aristotle, that I will discuss in the next section.

1.4.1 The unsettled nature of the circle-squaring problem

The circle-squaring problem stood presumably as the most elusive case among the three

classic problems of antiquity, since its solution was not successfully settled by the ancients.

I recall that the term ‘quadrature of the circle’ did not concern for ancient, and for a good
part of early modern geometers too, the problem of measuring an area, provided a unity
of measurement is established in the backdrop. The concepts of length, area and volume,
as we understand them today, namely as numerical measures of certain magnitudes (a
line, a surface or a body) were extraneous to Greek geometry. Thus we never encounter,
in the writings of ancient Greek geometers, a general concept of area (volume or lengh),
nor claim like: " the area of the triangle is the half product of its basis by its height", nor
a question like: "what is the area of the circle (by which we mean what is the number

which expresses its surface)?" would have been formulated as such@

The meanings of ‘lenght’ of a segment or ‘area’ of a surface were tacitly understood as
known from intuition (see Boyer| [1959], p. 32). In the tradition of Greek geometry, the
problem of squaring a given figure consisted in the construction of a polygons equal to
that figure, or a polygon whose ratio with the figure to be squared could be expressed
numerically. In the latter case, moreover, it would be easy to convert the proportion so

obtained in an exact construction procedure@

430n the methodological considerations in Pappus’ Collection, see |(Cuomol [2007], p. 170ff.

4 0f. Boyer| [1959], p. 32.

45Tt should not be forgotten, on the other side, that reference to area could occur, in classical mathe-
matics, in the context of the operation of the ‘application of area’: ‘To apply an area to a (straight) line’
meant ‘to construct a parallelogram along that line’. The parallelogram might have the line segment as
one of its sides, known as ‘the parabolic application’ of area (Elements 1. 44), or it may exceed the seg-
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The common way of proceeding would require to bound the figure to be squared —
generally delimited by a straight line and a curved line, if it was not a closed figure
already, like a circle or an ellipse - by a parallelogram, and then determine their ratio.
Thus, while we say that ‘the area of a triangle T" measures one half of the product of
its base by its height’, a classical geometer would have reached an analogous conclusion
by writing down a proportion between the triangle T', a rectangle R constructed on the

same basis, and a couple of numbers, like: T': R =1 : 2.

In general, squaring a polygon is a problem within the purview of Euclid’s Elements:
it can be solved, in an elementary way, by constructing a rectangle equal to a given
polygon (El. I, 45), and the by squaring the rectangle thus obtained (EI. II, 14)@
Greek geometers obtained important results concerning problems of a higher order of
difficulty, like the quadratures of some curvilinear surfaces (and volumes): one of the
most outstanding was obtained by Archimedes and established that that the area of a
parabolic segment P (namely the figure buonded by a parabolic arc and having as basis
a chord of the parabola) is % of the triangle T having same basis and same height as the
parabolic segment: P : Ty = 4 : 3[7]

However, no similar results were found for the case of the squaring of the circle: the reason
appears for us obvious, since the ratio between a circle and a suitably chosen rectangle
(for instance the square built on the diameter of the circle) cannot be expressed as a
ratio of numbers conceivable within the bounds of classical mathematics. Nevertheless,
Greek geometers tried to solve the circle-squaring problem, and eventually came up if
not with definitive, yet with outstanding results. According to the classical survey given
by Tropfke, they pursued three main directions of research. The first one consisted in
trying to construct a square equal to a given circle by ruler and compass only. The
second method required higher order, mechanical curves, whereas the third method did
not consist in finding a construction properly, but an approximate computation of the

area of the circle (we should more correctly refer, in this case, to the measurement of the
circle).@

ment — "the hyperbolical application" (Elements, VI. 29), or fall short of it — ‘the elliptical application’
(El., VI. 28).

46 ¢f. [Proclus| [1992], p. 334-335.

47Cf. |Archimedes| [1881], vol. 2, p. 293fF; for an english translation: [Heath| [1897], p. 233.

“ETropfke| [1902], p. 110.
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Tropfke also adds, few lines later, that: "only the modern times have brought about the
knowledge that the first way is wholly impossible",@ so that a solution of the circle-
squaring problem could be found either by infinite methods or by special curves. But it
should be remarked that claims to the impossibility of effectuating the quadrature of the
circle by elementary methods occurred already in antiquity, and exerted a considerable

influence on early modern geometers.

Possibly the fundamental and most influential among the ancient contributions to the
understanding of the circle-squaring problem came from Archimedes. In particular,
Archimedes proved, in the first proposition of the Dimensio Circuli, an important theo-
rem stating that the area of any circle is equal to a right-angled triangle, in which one of
the sides about the right angle is equal to the radius, and the other to the circumference
of the circle. This theorem entails a noteworthy consequence: it is sufficient to construct
a straight line equal to the circumference of a given circle in order to construct a triangle

equal to the circle, and solve, in this way, the quadrature of the circle.lﬂ

The Archimedean reduction of the quadrature problem to the rectification of the cir-
cumference is based on the rounding off of the circumference by the construction of the
sequence {p,} of inscribed regular polygons, and the sequence {P,} of similar circum-
scribed regular polygons, each polygon of the sequence being obtained by successively
halving the sides of the previous one. In order to understand how the rounding off pro-
cess intervenes in such reduction, one can venture the following reconstruction of the

archimedean reasoning underlying the proof of proposition 1 of Dimensio Circuliﬂ

To establish the result stated in Archimedes’ text, one would need to assume the following

premisses (implicit in the extant version of the Dimensio circuli):

1. The perimeters of every inscribed polygon is smaller than, and the perimeter of

every circumscribed polygon is greater than the circumference of the circle.

2. The in-radii of the polygons inscribed and circumscribed to a given circle are re-

spectively less than and equal to the radius of the circle.

3. The area of a regular polygon is equal to the rectangle formed by one-half its

perimeter and its in-radius.

“9See [Lindemann| [1882].
50See [Archimedes| [1881], vol. I, p. 257fF.; Dijksterhuis and Knorr| [1987], p. 222.
51Archimedes| [1881], vol. I, p. 260-262.
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On the strenght of 1, 2 and 3 one can note that the rectangle formed by one-half the
circumference of a circle C and its radius is greater than the area of every regular polygon
inscribed in C, and smaller than the area of every regular polygon circumscribed to it.
From this, it can be proved, by the method of exhaustion, that the difference between
the area of the circle and the rectangle formed by one-half the circumference and the
radius can be made less than any preassigned quantity (this last proof is contained in
the text of Dimensio Circuli)@

It should be pointed out that Archimedes did not solve the circle-squaring problem,
but proved its equivalence with the problem of rectifying its circumfereneeﬂT his result
might have suggested a way to attack the quadrature problem by passing through the
rectification of its circumference, but this route was not an easier one: ancient geometers
probably encountered deep technical and conceptual difficulties as they sought actually
to construct a segment equal to the circumference of a given circle. I will confine myself
to discussing two issues concerning the problem of rectifying the circle, which emerged
in ancient geometry and exerted a long-standing influence over XVIIth century debates

around the possibility or impossibility of solving the quadrature of the circle.@

The first issue concerns the constructability of a straight line equal to the circumference
of a circle. Ancient and medieval commentators felt bound to supplement the proof
of theorem 1 of the Dimensio Circuli with a postulate stating that one can produce a

straight line equal to a circleﬂ

The reason which urged ancient geometers to explicate this assumption may be traced
back to an Aristotelian standpoint, which was highly influential especially on early mod-
ern geometers, as mainline historiography of mathematics has often stressed.lﬂ In the

seventh book of Physics (VII, 4, 248 a-b), for instance, Aristotle advanced an argu-

528ee [Knorr| [1986], p. 153-154.

53Incidentally, T observe that this theorem represented a paradigmatic example of the reducibility of
quadrature problems to rectification ones, which became a general desideratum among geometers in the
second half of XVIIth century. We read, for instance, in a letter written by Leibniz to Huygens in the
1690s: "je souhaitte de pouvoir tousjours reduire les dimensions des aires ou espaces, aux dimensions des
lignes, comme plus simples. Et c’est pour cela qu’Archimede a reduit 'aire du cercle a la circomference"
(AIII5, 17, p. 96). On the issue of reducibility of quadratures to rectifications, see Blasjo| [2012].

%My discussion is particularly indebted to [Molland| [1991].

5The postulate is explicit in Eutocius’ Commentary (Cf. [Archimedes| [1881], vol. 3, p. 267), and in
two medieval commentaries, the Cambridge and the Corpus Christi manuscripts of the Dimensio Circuli
(Clagett| [1964], p. 68, 170, 382ff., 414ff.).

®See [Baron| [1969], p. 223-228;Bos| [2001], p. 342 Hofmann| [2008], p. 101-103.
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ment for the ‘non-comparability’ between circular and straight motion. This argument,

although tantalizing in its vagueness, can be captured by the following scheme:

e Let us suppose that every movement is comparable (symbleta) in speed with every
other.

e Hence, straight and circular motions are comparable (symbleta).

e Movements of equal speed are those that cover equal distances in equal times (which
is admitted).

e There will be curvilinear movements which cover equal distances in equal times

with rectilinear movements.
e Therefore, there are curves equal to straight lines.

e Thus, segments and arcs will be comparable, which is absurd.m

Aristotle did not directly argue for impossibility of comparing arcs and straight lines,
but took this claim for granted in the course of an argument concerning the impossibility
of comparing straight and circular motions. On the ground of this example, we might
suppose that a belief in the ‘non comparability’ of circles and straight lines was circulating

among mathematicians, in Aristotle’s time, namely by the fourth century B.C.

By claiming that arcs and straight lines cannot be compared, Aristotle possibly meant
that circles and lines could not be made to coincide with each other, through some licensed

geometric construction.lﬁ If the possibility of comparing circular and straight segments

5"The translation of the original passage can be found inHeath| [1998]: "The question may be raised
whether every motion is comparable with every other or not. If all motions are comparable and things
have the same speed when they move an equal amount in an equal time, then we may have a circular arc
equal to a straight line, while of course it may be greater or less". Few lines later we can read: "...but
once more, if the motions are comparable, we are met by the difficulty aforesaid, namely that we shall
have a straight line equal to a circle. But these are not comparable; therefore neither are the motions
comparable". [Heath| [1998|, p. 140-141.

8 A different interpretation is given by Ross: "One would have expected him [Aristotle] to accept as
obvious that a curve may be longer or shorter than a straight line, even if he did not admit that it could
be equal to one; for this is suggested by very obvious facts of experience. It seems probable that the fact
on which he is relying is that a straight line and a curve are ol cuvBAntd, i.e. that there is no unitary
line of which both are multiples, and that from this he wrongly infers that a straight line cannot be
either equal to or lesser than a curve" (Aristotle| [1936], p. 677-78). Ross’ interpretation tends to read
the non compatibility between straight and curved lines in terms of incommensurability, in analogy with
the famous incommensurability between the side and diagonal of a square. I am not competent enough,
on the exegesis of Aristotle, to question Ross’ interpretation, but I can stress that later interpreters took
Aristotle’s passage as a vindication of the belief that circular and straight lines are not comparable. I
shall offer examples below.
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were denied, one would also lack the conditions under which it could be operationally
decided whether, given a circular arc B, a segment A could be constructed such that
A< B,or B< A,or A= B. Hence the rectification of the circle, namely the construction
of a segment A equal to a given circular arc B, would be in principle impossible. On
the contrary, we know from other sourceﬂ that Aristotle might allow the solvability in
principle of the circle-squaring problemm Aristotle might not be expressing incoherent
views here, as we cannot exclude that he ignored the equivalence between the quadrature

of the circle and the rectification of its circumference, proved only later, by Archimedes.@

However, the aristotelian passage was emphasized in a medieval commentary on the sev-
enth book of the Physics, written by Averroes during the twelfh century, and translated
into latin during the renaissance. If, on one hand, Averroes stressed, in the footsteps of
Aristotle, that there cannot be a straight line equal to a circular arc, on the other he
admitted the possibility of comparing, via superposition, straight segments with other
segments, and arcs with other arcs on the same circle, since in either of the two cases,
they belonged to the same kind.@ In Averroes’ commentary, in particular, the incompa-
rability between straight and circular lines is explained on the ground that these entities
belong to different kinds: this view might have been shared by Aristotle himself, as it

probably grew up as a fundamental divide within ancient classifications of curves.@

The Aristotelian standpoint on the impossibility of comparing straight lines and circular

arcs, mediated by Averroes’ interpretation, exerted a long-range influence onto early

59 0f. chapter 7 of Aristotle’s Categories (Cf. [Knorr| [1986], p. 361).

50Qccasionally, we find among Aristotle’s writings critical discussions of contemporary or earlier at-
tempts to solve the circle-squaring problem. A survey of Aristotle’s opinions on the different quadratures
of the circle can be found in Mueller| [1982].

51This hypothesis is advanced, for instance, in Mendell [2008].

521 report Averroes’ explanation in the latin translation of 1550-1552, by Bagolinus: "non est pro-
portionalitas secundum veritatem inter lineam rectam et circularem ... et intendebat per hoc, quod
impossibile est de quantitatibus esse aequales nisi rectas tantum aut circulares tantum, scilicet quae sunt
ejusdem speciei, cum istae sibi superponantur; et ideo dicimus, quod quantitates curvae non aequabuntur
nisi sint ejusdem circuli" (in [Hofmann| [1941/42|, p. 6: "there is no proportion betwen the straight line
and the circular, according to the truth ... and he [Aristotle] meant by this, that it is impossible for
these quantities to be equal, unless they are both straight or both circular lines, which are indeed of the
same species, since in this case they can superimpose; and in the same way we say that curved quantities
cannot be made equal unless they belong to the same circle").

63 Aristotle also embraces a fundamental classification of curves into straight and circular in De Caelo,
12, 268 b, 17-20: "But all movement that is in place, all locomotion, as we term it, is either straight or
circular or a combination of these two, which are the only simple movements. And the reason of this is
that these two, the straight and the circular line, are the only simple magnitudes" (eng. tr. in|Aristotle
[1922]). Cf. also note [32]in this dissertation.
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modern geometry@ It eventually acquired the role of a ‘mathematical dogma’, a precept
against the exact solvability of rectification problems, and therefore against the solvability
of the quadrature of the circle too, which loomed large in the mathematical community
until the half of XVIIth century, as I shall discuss in chapter @m

Despite the evidence for any definitive conclusion concerning the view about the non-
comparability between straight and curvilinear lines is tenuous, a conjecture can be
gleaned from the previous discussion. I suggest that the ‘dogma’ of the non-comparability
between straight and curved lines, possibly originated in the geometry of Aristotle’s time,
and later revived through the circulation of the aristotelian corpus and through its com-
mentaries (Averroes is but one among them), might have exerted a durable, although not
uncontested influence on later mathematics, as an example of impossibility ‘in the begin-
ning’. As far as the impossibility of solving the circle-squaring problem was not derived
from a mathematical proof, but it was grounded on a belief on the non-comparability
between straight and curves, perhaps justified on broad metaphysical reasons (curvilin-
ear and straight lines belong to different kinds), it might have acquired the status of a
principle in order to regulate the very activity of problem-solving, rather than a theorem

within the corpus of mathematics.

However, this view was contested since antiquity: objections can be found, in particular,

in the archimedean tradition. As a start, let us point out that the impossibility of com-

54Compare, on this concern, the informed study by J. E. Hofmann in[Hofmann||1941 /42|, and |[Hofmann
[2008], p. 101ff.

5 Aristotle’s dogma resonates in Descartes’ Géométrie as we can read in [Descartes| [1897-1913|, vol.
6, p. 412: "La proportion, qui est entre les droites et les courbes, n’est pas connue, et mesme ie croy
ne le pouvant pas estre par les hommes, on ne pourroit rien conclure de la qui fust exact et assuré".
See also Baron| [1969], p. 223-228;Bos| [2001], p. 342. Both the expressions "mathematical dogma" and
"axiom" are employed by Hofmann in the already quoted study [Hofmann| [1941/42|, and in Hofmann
[2008], p. 101. The latter, in particular, notes: "Er muss aber in kirchlichen Kreisen eine grosse Rolle
gespielt, und sich schlieslich, von einem Aristoteles-Kommentars in den andern iibernommen, zu einem
Art von mathematischem Dogma entwickeln haben. Leider, lasst sich dieser Vorgang im Augenblick
nicht ndher verfolgen, da von den zahlreichen Tratkaten der Spatscholastiker tiber der Kreisquadratur,
nur der kleinste Teil im druck zuganglich und wahrscheinlich viele Interessante fiir immer verloren ist."
(Hofmann|[1941/42], p. 16: "It must have played a tangible role in ecclesiastic circles, and finally, it must
have turned, trasmitted from one commentary of Aristotle to the other, into a kind of mathematical
dogma. Unfortunately, this process is no more extant close to our eyes, since of the numerous treatises of
late Scholastics on the quadrature of the circle, only the smallest part was printed, and plausibly many
interesting ones are forever lost"). Claims to the impossibility of comparing circular arcs and straight
lines, or curvilinear arcs and straight lines are advanced, for instance, by numerous scholars from the
early XVIIth century, among them, for instance, Viéte and Kepler, as the investigation led by Breger
shows (Breger| [1991], p. 36ff.). I could not ascertain (nor Breger’s analysis carries information on this
concern) which was the origin of this tradition, or whether this belief spread from a relevant episode or
a main publication.
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paring segments and circular arcs is denied by one of the fundamental assumptions in
Archimedes’ proof of the first theorem of the Dimensio circuli, evoked above: the perime-
ters of every inscribed polygon is smaller than, and the perimeter of every circumscribed
polygon is greater than the circumference of the circle. This assumption can be seen as
obvious in virtue of two postulates, formulated by Archimedes at the outset of the first
book of the Sphere and the Cylinder: the shortest distance between two points is the
segment joining them, and of two curves with the same extremities and convex in the
same direction, the one which contains the other has greater length (the same postulate

can be generalized to curved surfaces)@

Robust objections against the aristotelian thesis on the non-comparability between straight
and circular lines were raised by commentators of Archimede’s work. Eutocius, an early
VIth century author of influential commentaries on Archimedes and Apollonius, wrote,

commenting the first proposition of the Dimensio circuli:

For it is somehow clear to everyone that the circumference of the circle is some
magnitude, I believe, and this is among those extended in one [sc. dimension|
while the straight line is of the same kind. Even if it seemed not yet possible to
produce a straight line equal to the circumference of the circle, nevertheless,
the fact that there exists some straight line by nature equal to it is deemed

by no one to be a matter of investigationm

Eutocius strongly affirms that the existence of a straight line equal ‘by nature’ to a
circumference is a matter beyond doubts, even if its actual construction had not been
found out yet. By separating a concern for existence from a concern for constructability,
Eutocius possibly intended to rule out the non-comparability in principle between straight
and curve magnitudes, and thus establish the problem of rectifying the circumference as

a legitimate question, a question still worth investigating.

The medieval Corpus Christi version of the Dimensio Circuli (Clagett| [1964], p. 170ff.)
incorporated the claim to the existence of a straight line equal to a circle, and more gener-
ally, the concern for the comparability of straight and circular segments, by interpolating
the original archimedea text with three postulates, "known per se and recognized by

anyone" (ibid.):

59Archimedes [1881], vol. 1, p. 8-9. These postulates were probably implicit in his Dimensio circuli,
as suggested in [Knorr| [1986], p. 155.
57Archimedes| [1881], vol. 3, p. 266. Eng. tr. in: [Knorr| [1986], p. 362.
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Primum est, quor arcus sit maior corda["?|
Secundum petitorum est, quod linea curva sit aequalis rectae.l@

Tercium petitorum tale est: quaelibet linea curva duobus terminis arcus cir-
cumferencialis conterminata ex parte convexitatis arcus arcum ambiens maior
est illo arcul™|

Even when the comparability between straight and curves was conceded, ancient sources
recorded some disagreement on what should count as a legitimate solution to the rec-
tification problem: this is the second conceptual issue related to this problem I shall
sketch here, and that I shall develop in this study. A simple, almost naive way to go
about with the rectification of the circumference would be to wrap a string around a
circle and subsequently straighten it, or let a circle roll along a line: both procedures are
evoked by the anonymous medieval commentator of Archimedes’ Corpus christi version,
although not as solution to the rectification of the circumferenceﬂ It can be doubted,
in fact, whether such an ‘empirical’ solution were ever taken as offering any insight into

the structure of the problem, and thus whether they ever qualified as geometricalm

On a higher level of sophistication, ancient geometers defined special curves, like the

quadratrix or the spiral, both generated by the composition of two simultaneous motions,

%Eng. translation in [Clagett| [1964], p. 171: "The first of the three postulates is that an arc is greater
than [its] chord".

59Clagett| [1964], p. 171: "The second of the postulates is that a curved line be equal to a straight
line.".

"0Clagett| [1964], p. 173: "the third of the postulates is as follows: any curved line sharing the two
termini or a circumferential arc and including it in the direction of the convexity of the arc, is greater
than the arc."

"n [Clagett| [1964], p. 171: "For if a hair or silk thread is bent around circumference-wise in a plane
surface and then afterwards is extended in a straight line in the same plane, who will doubt - unless he
is hare-brained (cerebrosus) - that the hair or thread is the same, whether it is bent circumference-wise
or extended in a straight line and is just as long as the one time as the other". This example, together
with the well-known case of a wheel rolling on a tangent plane surface, is considered in order to justify
the admissibility of the second postulate as a truth endowed with great evidence, not as a solution to
the rectification problem.

"28till in the second half of XVIIth century, Leibniz went back on the question, and referred to such
attempts at rectifying the circumference by chords as "empirical quadratures": "Tamdiu quaesierint
Geometrae, quid enim facilius quam rectam circumferentiae aequalem invenire, Circulo materiali filum
circumligando, idque postea in rectum extendendo, ac mensurando ..." (AVII6, 19, p. 170: "But for
a long time, geometers wondered what could be easier than finding a straight line equal to a circum-
ference, by revolving a thread around a material circle, and afterwards straightening and measuring
it."). However, Leibniz aptly recalled: "Verum sciendum est, tale quiddam a Geometris non quaeri"
("But it must be acknowledged that such a solution is not the one desired by the Geometers"). The
role of chords in mathematical endeavors will be critically discussed by XVIIth century geometers: On
Descartes’ contributions to the question, see this study,
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uniform in time. As I shall discuss in the next chapter (see, in particular, section [2.3.2]
2.3.3]) these curves did not obviously fit the bill of geometricity, since they were the target
of ancient objections (especially concerning the quadratrix), known and revived by early

modern geometers (see below, chapter [5)).

These difficulties (as I will have the occasion to expound in the sequel, especially chapter
sec. reveal that the ancients were divided on the nature of the circle-squaring
problem. As a consequence, when XVIth and XVIIth century mathematicians read
ancient writings, they could find to no extant arguments and techniques in order to solve
the quadrature of the circlem

On one hand, the aristotelian belief on the non-comparability between straight and circu-
lar lines did circulate and exerted a non-negligible influence in the mathematical practice
of early XVIIth century, in order to inhibit mathematicians from accepting the rectifica-
tion of the circumference, and therefore the quadrature of the circle as a problem solvable
in geometry. On the other, especially from the end of XVIth century, the diffusion of
the latin version of Pappus’ Collection (1588) instilled the hope that the circle-squaring
problem could be overcome, if the geometrical nature of curves like the quadratrix or the

spiral could be established on firm grounds.

The question became therefore incumbent on geometers, from the end of XVIth century
onwards, to find criteria in order to decide which means should be considered as geo-
metrically reliable as the circle and the straight lines, employed according to Euclid’s
postulates. These construction means constituted, at the time, the paradigm of exact-
ness in geometry. In the backdrop of these considerations, I am now ready to broach the

subject matter of my study.

1.5 Impossibility results in early modern geometry

The main problems and questions I shall address in my study are the following. How did

early modern geometers prove (or argued for) the impossibilities of solving construction

"®Bos observed, on this concern, that in XVIth century mathematics several attempts to solve the
circle-squaring problem by elementary means were discussed, and refuted. Although I cannot establish
the motivations behind each of these attempts, I can advance the hypothesis that these attempts might
be the consequence of the unclear status about the nature of the circle-squaring problem (Cf. |Bos|[2001],
p- 25). One late XVIth century endeavor to provide a flawed solution by ruler and compass is analyzed
in [Hogendijk| [2010].
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problems by prescribed means? Can we identify similar structures and similar roles in

different instances of these impossibility arguments?

Early modern geometry was deeply imbued with the legacy of ancient mathematics. As I
shall argue in this dissertation, such a legacy did not only concern a body of challenging
technical questions, with which early modern geometers could test the virtues of their
own methods, but also metatheoretical views regarding, for example, classifications of

geometric problems and curves.

In the previous sections, I have conjectured that impossibility results might have been
conceived by the ancients as metastatements, i.e. norms which fixed the most adequate
methods in problem-solving and sanctioned certain conducts as ungeometrical. As a key
role in the transmission of such metatheoretical views was exerted by Pappus’ Mathe-
matical Collection, mediated by its numerous readings and interpretations, I shall start
my investigation by inquiring whether early modern geometers inherited the views about
impossibility results that I have attributed, on the basis of the texts, to the ancients, or
whether they departed from ancient predicaments, or even corrected them in the light
of new mathematical advances, represented, for instance, by the incorporation of algebra

in geometric pursuits.

As a general methodological remark, I note that we cannot take for granted what a
certain problem was, independently from its historical context. We can rather think
of the context of a proof as its ‘underlying narratives’, constituted, for instance, by the
earlier assessments and by the historical evolution of this very proof, by its circulation and
the subsequent critiques, and more generally, by the philosophical and cultural influences
in force at a given time, within a certain community: in brief, what constitutes a historical
tradition. My study shall set out to describe the nature of impossibility results within a
precise historical setting (from the beginning of XVIIth century and the second half of
the 1670s) by selecting and investigating some relevant contexts in which these results

were deployed.

In the first part of my dissertation (from chapter [2| to ch. @, after a general overview of
the main results contained in Book IV of Pappus’ Collection, 1 shall examine Descartes’
content and division of the subject matter of geometry, according to the programme pre-
sented in his epoch-making work La Géométrie. Broadly speaking, Descartes introduced,

on the ground of an explicit criticism to the ‘ancients’, criteria for acceptable geometric
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constructions, and offered a rational classification of the existing domain of problems on
the basis of their constructability. My examination of La Géométrie will mainly concern
the methodological points of this treatise: the foundations of the distinction between geo-
metrical and mechanical curves, and the classification of curves and problems. A general
thesis I shall illustrate is that conditional impossibility claims exerted a methodological,
or metatheoretical role on two levels. Firstly, they contribute to frame the demarca-
tion between acceptable and non acceptable curves. Secondly, conditional impossibility
claims enter in the classification of problems on the ground of the curves which construct
them, sketched in the third Book of La Géométrie and commented by Van Schooten in
his latin editions from 1649 and 1659. The presence of impossibility claims in a treatise,
like Descartes’ Géomeétrie, dedicated to lay down the fundamentals of a method to solve
all problems of geometry, is not surprising, in so far such a method should provide the

guidelines in order to solve each problem according to the most adequate means.

An interesting sketch of a classification into possible and impossible problems can be
found in Descartes’ correspondence with Mersenne. In chapter [6 I will analyze this
classification, and inquire about the nature of the circle-squaring problem with respect
to the edifice of Descartes’ geometry. The circle-squaring problem stood as an intriguing
problem in the context of XVIth and XVIIth century research: it was not only a difficult
mathematical question, but it had an important metatheoretical role, I surmise. Indeed
decisions about its solvability in principle would contribute to frame the subject matter
of geometry, by demarcating legitimate from illegitimate solving methods, as in the

outstanding attempt led by Descartes in La Géométrie.

Furthermore, in the second half of XVIIth century, arguments asserting that the quadra-
ture problem could not be solved by algebraic method would be invoked in order to
demarcate finite from infinitesimal analysis (I shall investigate, in chapter [7| and |8 the
case of J. Gregory and G. W. Leibniz, respectively).

In chapter [7]and [§] in particular, I shall investigate some fragments of two mathematical
works in detail: James Gregory’s work Vera circuli et hyperbolae quadratura (1667), and G.
W. Leibniz’s De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium
est trigonometria sine tabulis (1676). In this part of my work, I shall argue the general
thesis that impossibility claims concerning the circle-squaring problem acquires a new
status in the second half of XVIIth century. In order to defend this claim, I will detail a

critical examination of James Gregory’s work Vera circuli et hyperbolae quadratura. In
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this text, in fact, Gregory sets out to search for a way to reduce the problem of squaring
any sector of a central conic (the circle, the ellipse and the hyperbola), to an algebraic
equation, and comes up with an argument in order to prove that the impossibility of this
endeavor. Gregory’s argument is faulty and was heavily criticized by his contemporaries,
but it shows an uncommon insight, for his time, into impossibility results. Moreover, Gre-
gory’s thesis on the impossibility of finding an algebraic quadrature of the central conic
sections are historically relevant because they exerted, through a subsequent controversy

with Christiaan Huygens, a deep influence on Leibniz’s mathematics.

Chapter [8] of my dissertation will be indeed dedicated to Leibniz’s lenghty treatise De
quadratura arithmetica circuli ellipseos et hyperbolae, composed and ultimated during
Leibniz’s stay in Paris. Although the treatise circulated, under different versions, among
Leibniz friends and colleagues mathematicians from 1674, and historical evidence shows
that Leibniz had a manuscript ready for publication in the year 1676, this document
got lost, and the treatise never saw the publication in Leibniz’s lifetime. My interest
for the De quadratura arithmetica will be mainly directed towards the the concluding
proposition LI, considered by Leibniz as the ‘crowning’ of his treatise: a theorem on the

impossibility of squaring the circle, the ellipse and the hyperbola.

Leibniz allegedly proves, by an indirect argument, that there is no quadrature of the
central conic sections (namely, the circle, the ellipse and the hyperbola) that is more
geometrical than his own. Since the solution presented in the De quadratura arithmetica
is obtained through an infinite series, the above claim amounts to saying that the solution
to the quadrature of the circle, the ellipse and the hyperbola cannot be obtained by
a finite algebraic equation. In this chapter I shall examine in detail the influence of
the controversy between Gregory and Huygens over the genesis, the conception and
certain results presented in Leibniz’s De Quadratura Arithmetica. 1 shall then discuss
the mathematical and methodological meaning of Leibniz’s impossibility result, and I
argue that Gregory’s Vera Circuli et hyperbolae quadratura played a dependable role
concerning the function of Leibniz’s impossibility argument within the organization of

the treatise on the arithmetical quadrature of the circle and the conic sections.

Finally, in a concluding chapter, I shall respond to the questions raised in the beginning
of this section by assessing the function of impossibility results in the context of XVIIth
century mathematics and, more particularly, with respect to the case studies that will be

discussed in this dissertation. On this concern, I shall assess both with respect to today
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extrathereotical impossibility theorems, and with respect to the metatheoretical claims

of antiquity.



Chapter 2

Problem solving techniques in

Ancient geometry

2.1 Introduction

In the context of XVIIth century, geometry was predominantly presented as a problem-
oriented activity. Consistently with this, the basic facts of mathematics were not propo-
sitions whose truth or falsity was to be judged, but tasks - for instance, geometrical

problems - to be performed by means of constructions.

Until well into XVIIth century, many problems and problem-solving methods were in
various degrees inspired to ancient Greek sources. As I have already noted, besides basic
core concepts and a collection of challenging problemsE] ancient geometry also exerted a
major influence on deliberations about the ordering of problems and the acceptability of

solutions in force within a mathematical practicef]

In the context of early modern mathematics, such views were either tacitly assumed

or overtly invoked in order both to fix admissible problem-solving procedures and to

! Among the challenging problems from antiquity, we can quote two outstanding examples: the prob-
lem of Pappus (discussed in ch, and the so-called ‘problem of Apollonius’, a tangency problem consist-
ing of constructing a sphere, or a circle, tangent to three given spheres or circles (see|Boyer and Merzbach
[1991], p. 129, for a general presentation, and Bos| [2001], p. 111ff. for its early-modern assessments).

ZAs W. Knorr remarked, such deliberations concerned: "... How the ancients divided the geometric
field according to the types of problems and the solving methods; what they viewed the special role
of problems to be (...) what conditions they imposed on the techniques admissible for the solution of
problems, and whether they judged that satisfactory solutions for the three special problems had actually
been found" Knorr| [1986], p. 6.

44
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determine admissibility conditions for curvesf]

I thus surmise that a survey on the principal methods and techniques in ancient problem-
solving is important in order to understand the subsequent elaborations by early modern
authors. In the following lines, I will confine myself to presenting three main techniques
for solving geometric problems in the plane, following the classification proposed by Henk
Bos (namely Bos| [1984]), and addressing the interested reader to exhaustive studies on
the topicﬁ As Bos remarks:

The first category consists in constructing by means of a straight line which
is shifted in a certain way along the given figure until a position is reached in
which two line segments (both, or one of them, determined by the position of
the straight line) are equal (...) the second category consists of constructions
performed by instruments devised for the purpose of one special construction.
The third category consists of constructions by means of the intersection of

straight or curved lines, including higher order curves .. E|

This presentation, albeit succinct, will serve as an introduction for the subsequent section,
in which I shall discuss in more detail Pappus’ Mathematical Collection, and especially its
fourth book, which contains the most influential metatheoretical deliberations for early

modern geometric practice.

The first category concerns the constructive technique known as neusis. The neusis can
be depicted as operation in which a straight line AB pivots around a fixed point P, until
the intercept AB between two given lines m and [, forming a fixed angle, is equal to a
given segment § (see fig. . At the end of the process, the segment § can be thought
of as being placed between the givens [ and m, in such a way that it inclines towards P

(this is the literal meaning of neusz’s)ﬁ

Neusis constructions were pervasive in Greek constructional practice: they were crucially
employed, according to the surviving accounts, to solve the classical problems of inserting

two mean proportionals and trisecting an arbitrary anglem

3See Bos| [2001], in particular chapter 1.

“For instance [Bos| [1984], p. 333; [Panzal [2011], especially p. 58-73.

Bos| [1984], p. 333-334.

9Bos| [1984], p. 334. A particular example of a solution to a problem employing a neusis construction
is discussed in |Bos|[2001], p. 28-29.

" Ancient instances are attested, by indirect evidence, already in Hippocrates [Knorr| [1986], p. 34].
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Figure 2.1.1: Neusis.

The use of the neusis in the construction of the problem of two mean proportions is
described, for instance, in Eutocius’ commentary to Archimedes’ treatise on the Sphere
and the Cylinder (Archimedes [1881], vol. III, p. 123-124), and it is attributed to the
geometer Hero of Alexandria. A similar construction occurs in Pappus’ Collection (Book

IV, proposition 24).

Neusis is employed, in Pappus’ Collection, also in relation with the trisection of a given
angle (Book IV, proposition 32). In order to trisect the given acute angle CAB =
@, following Pappus’ procedure, let a right angled triangle ABC with CAB = © be
constructed (fig. . Complete the rectangle ABCM, call AC = a, and construct a
line g passing through C and parallel to AB. In order to trisect the angle ¢ it is sufficient
to insert, by neusis, a segment of given length 2a between lines C'B and g. The angle
DAB will be in fact the required angle.

As we will examine, a full constructive solution also invoked the elaboration of a protocol

in order to exhibit the required neusis via intersection of curves!”

8See, for the easy proofiBos||2001], p. 54-55; |Sefrin-Weis| [2010|, p. 148-150; |Panzal [2011], p. 60. The
locus classicus of this construction can be found in Pappus’ Mathematical Collection, Book IV, proposi-
tion 32 (Pappus| |1876-1878|, I, 275-276.Sefrin-Weis| |2010], loc. cit., for a modern english translation), a
text well known by early modern writers, as I will comment later.

9This suggests that solutions obtained via neusis might not have been considered fully satisfactory,
at least in late antiquity, therefore they required to be supplemented by a construction, either through
intersection of curves or by means of a suitable instrument. Interestingly, though, the possibility of
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Figure 2.1.2: Neusis for the trisection of the angle.

The second category of construction methods concerns a special use of instruments in
problem solving, consisting in making them indicate some points (which are then taken
to be obtained) under the condition that some of their components coincide with some
given geometrical objects, or meet some other conditions relative to given objects: when
instruments are used in this way in order to solve mathematical problems, they are said

to be used "in the pointing Way".lg

A well-known example in the early modern and in the ancient tradition is offered by
an instrument attributed to the ancient mathematician Eratosthenes and called, in the

Latin tradition, ‘mesolabum’E

neusis of "any predefined distance" was revived, and given the special status of an additional postulate
by Frangois Viéte, in his 1593 Supplementum Geometriae (see [Bosl |2001], p. 168-169). This possibility
was never considered in antiquity and hardly received among Viéte’s contemporaries.

0Panzal [2011], p. 62.

"'The Greek name for this instrument was literally ‘taker of means’ (Knorr| [1986], p. 211). The term
‘mesolabum’ was originally contained in the latin translation of Eutocius’ Commentaries on Archimedes’
"On the sphere and the cylinder”. This text became available in print from the beginning of XVIth
century (first in works of Valla and Werner), and subsequently in the edition of the works of Archimedes,
published in 1544 and edited by Th, Geschauff (Opera ... omnia ... nuncque primum et Graece et
Latine in lucem edita ... Futocii Acalonitae in eosdem Archimedis libros commentaria item graece et
Latine ...), and later in the edition of 1615, edited by D. Rivault (1571-1616): Archimedis Opera quae
extant. Novis demonstrationibus illustrata.
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Figure 2.1.3: Eratosthenes’ Mesolabum.

Erathostenes’ mesolabe is a mechanical device that can be described as formed by three
rectangular plates of equal height, set out as in figure 3, which have the property of
gliding one under the other.

By virtue of its design, this instrument was employed in order to solve the so-called
problem of inserting two mean proportionals between two given segments,@ namely the
problem of constructing, given two line segments a and b, two segments x and y such
that the following proportion holds: a : © = x : y = y : b. It can be easily shown,
moreover, that the same instrument can solve the problem of inserting any number
of segments z1 ...z, between given segments a and b, so as to satisfy the proportion:

Q:T1=T1:T9=...:%yp =Ty : 0.

Let us consider the case of inserting two mean proportionals between a and b (with

a < b). The plates which form the mesolabe can be so conceived that their height will

12An extant solution can be found in Eutocius’ Commentary On Archimedes’ The Sphere and the
Cylinder (|Archimedes) [1881], vol. 3, p. 109), another one in Pappus’ Book III of the Collection
(Pappus| [1876-1878|, vol. I, p. 57). I recall that the solution using the mesolabum was just one among
the numerous procedures for constructing, in antiquity and especially in the early modern period, the
well-studied problem of the two mean proportionals (see |Bos| [2001], p. 27-34, |Panza) [2011|, p. 64-70).
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Figure 2.1.4: The insertion of two mean proportionals with the Mesolabum.

be equal to b (whereas the width can be arbitrarily chosen), and that on AD, edge of
the first plate, a segment AH equal to a shall be marked off (in figure . Let us
move the plates, or imagine them to be moved, and call @) and K the intersection points
marked by the diagonals and the occluding edges between the third and second plate,
and the second and first plate, respectively, when the plates are both gliding. In order to
construct the required mean proportionals, the plates must be slid until points @) and K
fall in a line with points D and H. If this configuration is reached (the final configuration,
after the motion, is represented in figure , the segment [, projection of K on the base
of the mesolabe, and segment j, projection of () will be the desired mean proportionals
between a and b. The proof can be easily supplemented by considering the similarity of

the triangles in the final conﬁgurationﬁ

The solution of the problem of inserting two mean proportionals illustrates how Eratos-

thenes’ mesolabe works in the so called ‘pointing way’: the instrument is not employed

13 Knorr| [1986], p. 211-212. The problem of inserting any number n of mean proportionals can be
solved by applying the same protocol, once a suitable number of plates has been added: in particular, if
n is the number of mean proportionals to be constructed, the number of plates to be added will be n+ 1.
The possibility of modifying this instrument in order to solve the problem for increasing values of n was
certanly known to the ancients, as we can read in Eutocius: " a nobis autem methodus per instrumenta
habilis inventa est, qua inter duas lineas datas non modo duas medias sumamus, sed quotcumque quis
voluerit" (Archimedes| |1881], vol. III, p. 107)
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for tracing a curve, but directly exhibits the required points (namely @ and K) in order

to solve the problem.

As we will see, the mesolabe presents a certain kinship with the compass that Descartes
described in his early reflections collected in the Cogitationes Privatae (a series of notes
written between 1619-21), and subsequently with the instrument described in the second
book of La Géométrie (see chapter |3|of this dissertation), which can be thought of as an

evolution of both Descartes’ early instrument and Eratosthenes’ one.

Despite the similarity of their design, though, I point out that Descartes did not use
his instrument in the pointing way, in his problem-solving techniques. On the contrary,
Descartes employed it, as well as other geometrical instruments that he studied, in order
to trace curves, which in turn could be used in order to construct problems.@ The stan-
dard method for problem-solving adopted by Descartes fell indeed into a third category

described above in |Bos| [1984], that of solutions obtained by intersection of lines.

As an example of problem solved according to the third category, let us consider once
more the procedure, illustrated in the Collection, in order to solve the trisection of an
arbitrary angle. Pappus described, in proposition 32, how the construction of an angle
equal to one third of a given angle could be obtained via a neusis (see figure . In
the previous proposition 31, he had described how to to construct that neusis by an

intersection of two curves, a circle and an hyperbola.

Let us consider the second step, as it is dealt with by Pappus (figure [2.1). Given two
perpendicular segments a and b intersecting at point A, a point O on the perpendicular
to a at point B, and a given segment c, it is required to intercept, on the segment OF,

a segment FF'| between lines a and b, such that FF = c.
1. Complete the rectangle ABOC, and extend BO.

2. Describe, through point C, an hyperbola whose asymptotes are the lines BO (pro-
longed) and BA (prolonged, namely the line labelled as a). Let us recall that
a hyperbola can be univocally described, since it is univocally determined if its

asymptotes and a point through which it passes are given (Cf. Pappus, IV, 33).

3. Draw a circle with center C' and radius equal to ¢. The circle so constructed will

intersect the hyperbola in D.

14Bos| [2001], p. 240-243, p. 339-340. [Panzal [2011], p. 74-78.
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Figure 2.1.5: Pappus, Collection, IV, 31.

4. Through D, draw a parallel to AC, call F' its intersection point with BA prolonged.
5. Draw segment OF and mark in F its intersection with AC.

6. The problem is thus solved, since EF = CE

This construction provides a neusis, which can be employed to solve the trisection of the
angle, as I have explicated above (see in particular, sec. fig. [2.1).

The few examples here offered show with sufficient clarity that the three categories listed
above did overlap: a problem solved via a neusis might be supplemented with a con-
struction of the neusis by the intersection of two curves (as in the case of the trisection),

or by an instrument used in the pointing way (for instance Erathostenes’ mesolabe).

'5An easy proof (Bos| [2001], p. 54-55, where the original argument given by Pappus is resumed)
consists in showing that FECD is a parallelogram, and therefore that segment EF = CD = c¢. One
can reason, as Pappus did, by tracing the parallel to a passing from D, which intersect BO in G. Since
point D and C lie on an hyperbola whose asymptotes are the lines BO (prolonged) and BA (prolonged,
namely the line labelled as a), the rectangles FBGD and ABOC are equal, because of the fundamental
property (symptom) of this curve. From this equality we can derive the following proportion between
the sides: BF : BA = AC : FD (*). Considering the similarity between triangles BFO and COE,
moreover, we obtain: BF' : BO = CO : CE,i.e. BF : CO = BO : CE. Since CO = BA and BO = AC,
we have also: BF : BA = AC : CE (**). In virtue of (*) and (**) we get: AC : FD = AC : CE, and
therefore: FD = CE. Since the segments are supposed parallel, the figure FECD is a parallelogram.
Q.E.D.
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It appears, however, from Books III and IV of the Collection, that the solution of prob-
lems via intersection of curves played a central methodological role in Pappus’ view on
the architecture of mathematics, and that such a role had a longstanding influence on

the practice of early modern geometers too.

2.2 Pappus’ division of problems into three kinds

As historians have shown, Pappus’ Mathematical Collection, both in Greek and in Latin
translation, largely circulated among mathematicians from the end of XVIth century, and
had a recognizable role in systematizing aims and methods within the field of geometrical

problem solving in early modern geometryE

As I have noted in the introduction to this study, the historical importance of this text
is not restricted to the fact that it offered a rich insight into the tradition of ancient
mathematical problem solving. In fact it spread its influence over broadly methodological
concerns. Among them, I will pay special attention, in this chapter, to his attempt to
classify geometric problems, and in the next chapter, to one of the few surviving ancient

accounts of the method of analysis.

The most extensive presentation of Pappus’ classification of problems is contained in
Book TV:

When the ancient geometers wished to trisect a given rectilinear angle, they
got into difficulties for a reason such as the following. We say that there are
three kinds (yévr) of problems in geometry, and that some <of the problems>
are called ‘plane’ (énineda), others ‘solid’ (oteped), and yet others ‘linear’
(veopuxd). Now, those that can be solved by means of straight line and circle,
one might fittingly call ‘plane’. For the lines by means of which problems of
this sort are found have their genesis in the plane as well. All those problems,
however, that are solved when one employs for their invention either a single
one or even several of the conic sections, have been called ‘solid’. For it is
necessary to use the surfaces of solid figures — I mean, however, (surfaces)
of cones — in their construction. Finally, as a certain third kind of problems

the so-called ‘linear’ kind is left over. For different lines, besides the ones

16Bos [2001], chapter 3 in particular. Let us recall that the influence of Pappus’ Collection spread well
into XVIIth century, as it is attested by the case of Newton (cf., on this concern |Guicciardini [2009], p.
294ff. for instance).



CHAPTER 2. PROBLEM SOLVING TECHNIQUES IN ANCIENT GEOMETRY 53

mentioned, are taken for their construction, which have a more varied and
forced genesis, because they are generated out of less structured surfaces, and

out of twisted motions /"]

Pappus classified problems into ‘genera’ according to the means needed to solve them
(a similar passage can be read in Book III). In this context, a ‘genus’ can be taken to
qualify a collection of items (namely problems) linked by a relation (‘being solvable’) to
certain objects (namely curves) and to one another. For instance, an item a belongs to
the genus of plane (respectively solid, linear) problems if and only if it can be solved by
straight and circles (respectively straight lines, circles + conic sections, or by any of the

previous curves and higher curves)ﬁ

Curves are also sorted out in three genera, according to the mode of their generation.lﬂ
More precisely, Pappus starts his classification by listing plane problems, namely prob-
lems solved by means of straight lines and circles. These curves, it is asserted in the

Collection, have both their genesis in the plane.

Pappus might not be referring, for these definitions, to Euclid’s Elements, in which the
straight line and the circle are not defined with a direct reference to their ‘genesis in
the plane’@ On the contrary, it is possible that Pappus alluded to other Workﬂ in
which straight lines and circles were introduced by specifying their generation. A case at
point is, for instance, the definition of circle that we encounter in a treatise on geometric
definitions that was attributed to Hero of Alexandria (a scholar from III century A.

D). According to Hero, indeed, a circle is described by a segment rotating in a plane

Pappus |1876-1878| vol. I, p. 271; |Sefrin-Weis| [2010], p. 144.

18This characterization of genus might be borrowed from the contemporary philosophical literature.
For instance, in Porphyry’s Isagoge, an Introduction to Aristotle’s Categories, we read: "Thus we call a
genus an assembly of certain people who are somehow related to some one item and to one another" (§
1, 18, see [Poprhyry| [2003], p. 3).

19Tt should be pointed out that, in the philosophical literature, the term‘genus’ could also be used
in order to denote a collection of items having a common origin, or genesis, for instance a collection of
individuals grouped by having one and the same precessor (see |Poprhyry| [2003], p. 3). Therefore, once
again, Pappus might have borrowed the term from the contemporary philosophical usage of these terms.

20FEuclid defines the line as a "breadthless length" (df. 3) and the straight line as "the line which lies
evenly with the points on itself" (df. 4) and the circle as: "a plane figure contained by one line such that
all the straight lines falling upon it from one point among those lying within the figure are equal to one
another" (df. 15).

2!The coexistence of several traditions is confirmed by Proclus, who surveys, in his Commentary to
the first Book of the FElements, several definitions and classifications of line, including the straight line
(cf. [Proclus| [1992], p. 84ff.).
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around one of its extremes?| On the other hand, the same author offers the following
defintion of a straight linet: "that line which, when its ends remain fixed, itself remains
fixed when it is, as it were, turned round the same plane".ﬁ Thus Hero does not give
a genetic definition of straight line, but characterizes it with a reference to the plane, as
he specifies that such a line remains fixed in the same plane, provided its ends remain
fixed.

The second genus contains solid problems, solvable by intersection of one or several
conic sections, which have their genesis in the cutting of a circular cone or a cylinder
by a plane@ As we know, these curves allow us to solve two of the major problems
untreatable by Fuclidean means: the trisection of the angle and the insertion of two
mean proportionals, which could be solved, for instance by the intersection of a circle,

or a parabola and an hyperbola.ﬁ

Finally, the third kind of problems does not seem to posseess well-defined features, but
rather to collect problems which apparently require, for their solution, curves different
from circles or conic sections, for which two different modes of genesis are contemplated in
Pappus’ account: either they are generated either out of "less structured surfaces" than
the cone, or out of "twisted motions", as we read in the Collection. In the subsequent

lines, Pappus mentions some of these curves:

. the line that was also called “the paradox” by Menelaus. And of this same
kind <i. e., the linear kind> are also the other spiral lines, the quadratrices
and the conchoids and the cissoids 2]

On the same subject, we read in Book III that the curves belonging to the third kind of

geometry are: "Helices or spirals (...) quadratrices, conchoids or conchiforms, cissoids,

220f. Heath’s Commentary in [Heath| [1956 (first edition 1908|, p. 189.

230f. Heath’s Commentary in [Heath| [1956 (first edition 1908|, p. 168.

2Let us remember that in the first book of the Conics, Apollonius introduces our familiar conic
sections as curves generated by the intersection of a plane with a double oblique circular cone: a cone
with a circle as its base, and with a vertex whose projection on the plane of the circular base does not
necessarily coincide with the center of the circle. The name ‘solid’, therefore, refers to the generation
of these curves from the cone, a three dimensional figure. In Pappus’ time, the class of solid lines was
probably already well-grounded in the tradition (see in particular |(Cuomol [2007], p. 157; |Sefrin-Weis
[2010], p. 272)."

“°For the trisection of an angle, see chapter [2 p. For what concerns the mean proportionals
problem, its construction through a parabola and an hyperbola is attributed to Maenechmus: see, for
instance, Eutocius’ Commentary to the Sphere and the Cylinder (in |Archimedes| [1881], vol III, p. 93).
For a modern commentary, see: [Heath|[1981], p. 251fF.

26Sefrin-Weis| [2010], p. 145. [Pappus| [1876-1878|, vol. I, p. 271.
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or curves similar to ivy-leaves ... "[P7|

Pappus mentions several sources where problems of the third kind were studied and
solved; but since all these cited works are no longer extant, our reconstructions of the
features of problems and curves of the third kind are irremediably conjectural and based
on the sole few examples mentioned in the Collection. Some of the lines of the third kind
mentioned by Pappus are of uncertain identiﬁcation@ although the description of other
relevant curves of the same genre survived in the work of ancient mathematicians, as
in the already mentioned Pappus himself or in Archimedes, and through them, entered

pervasively the practice of early modern geometers.

The ordering of curves presented by Pappus may offer a hierarchy based on the complexity
of their genesis. Although in the Collection there are no references to complexity as a
criterion chosen in order to distinguish plane, solid and linear curves, such considerations

may not have been extraneous to ancient geometers, and particularly to Pappus himself.

Let us start by considering the straight line and the circle. As it has been observed in
the secondary literature, these curves had a privileged status in ancient mathematical

practice, presumably on both pedagogical, methodological and philosophical grounds.

As an illustration of these thesis, we may evoke the classical study by H. Hankel, Zur
Geschichte der Mathematik in Altertum und Mittelalter (1874), in which it is suggested
that the straight line and the circle were the only geometric means of construction ac-
cepted by ancient geometers, precisely on metaphysical grounds, as a consequence of
the influence of Plato’s philosophy over ancient mathematical practice. Hankel’s thesis,
which had a vast resonance among late XIXth and XXth century historians of mathemat-
ics, is certainly overrestrictive: later studieﬁ have established that both pre-euclidean
geometers and geometers of the hellenistic period had no qualms in employing higher
curves and several methodologies in order to solve problems untreatable by the straight

line and circle.

2TPappus| [1876-1878], vol. I, p. 55.

28 An example quote before is the “paradox” of Menelaus, whose nature is still controversial. Paul
Tannery proposed the attractive (but ungrounded) conjecture that the paradoxical curve of Menealus
could be Viviani’s curve, a three dimensional curve generated by the intersection of two solid surfaces
(Tannery| [1883], p. 289-291). It does not seem, however, that the reading of Pappus had any role in the
discovery of Viviani, which occurred in late XVIIth century.

220f. in particular the outstanding seminal work [Steele] [1936].
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However, an undeniable preference for the straight line and the circle can be found on
the side of philosophers, although it is not clear how far these philosophical views pen-
etrated into the mathematical practice of mathematicians of antiquity or late antiquity.
Such a philosophical predilection for the straight line and the circle is still evident in
later authors as Proclus, who conceived, in his Commentary to the first Book of the
Elements, these lines as the "simplest" and "most fundamental" geometric items. Their
geometrical primacy was well grounded in Proclus’ neo-platonic philosophy: the circle
represented, among geometric figures, the metaphysical principle of the "Limited", and
the straight line exemplifies the metaphysical principle of the "Unlimited". Eventually,

the combination of these fundamental lines generates all the other "mixed" lines.lﬂ

In particular, Proclus considered the circle: "the first and simplest and most perfect of
the figures (...) superior to all solid figures because its being is of a simpler order, and
it surpasses other plane figures by reason of its homogeneity and self—identity”.lﬂ This
opinion is rooted in a classical view, to be found in Plato (summoned by Proclus himself
in the Commentary), and in Aristotle, according to which the circular shape and motions

embody the perfect and primary shapes and motions.lﬂ

But the preference for constructions requiring the straight line and the circle could be
justified on purely mathematical or pedagogical grounds too. As Proclus, once again,
notices, straight lines and circles can be considered the simplest lines not only on meta-
physical grounds, but on epistemic ones, because "most people have a conception [of
them| without being taught" (Proclus [1992], p. 96).

Moreover, straight lines and circles might have been considered ‘elementary’ geometric
objects, in the sense that they did only require Euclid’s plane geometry, in order to be
studied and understood, without the necessity of having recourse to higher theories, like
that of conic sectionsﬂ The elementary aspect of circles and straight lines is stressed
by Proclus too, when he remarks that the problem of trisecting an acute angle can be

obtained by higher, ‘mixed’ lines, and it is therefore: "difficult for a beginner to follow" |f|

39%Proclus [1992], p. 84. On the problem of the generation of mixed lines, see below, section m

3Proclus| [1992], § 147, p. 117.

32See [Proclus| [1992], p. 14. Remarks on the circle as the simplest and most perfect shape can be
found, in Aristotle’s corpus, in Metaphysics, 1078a, 10-13 and De Caelo, 268b, 15-17.

33Both points are clearly made in [Roque| [2012], p. 161. See also [Heath! [1981], p. 175-176.

34Proclus| [1992], p. 212.
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In this sense, constructions requiring the sole ruler and compass, namely plane con-
structions, could have been considered, by mathematicians from late antiquity, simpler
than constructions involving higher means, solid or linear curves, that were conceived as

composed out of the former, and therefore a subject matter for advanced studies.

2.2.1 A conjecture about the origin of Pappus’ classification of prob-
lems

A conjecture on the origins of Pappus’ classification of problems has been advanced by A.
Jones (see |Pappus| 1986, vol. 2, especially pp. 395-396, and p. 539) and tackled by W.
Knorr (in Knorr| [1986], p. 344ff.). Let us observe, in fact, that Pappus also evoked, in
Book VII of the Collection, a classification of loci related to the classification of problems

and curves expounded in Book IV.

The mathematical concept of ‘locus’ (t6nos) in Greek geometric practice is of difficult
characterization, and Pappus does not provide any definition. He rather presents the
following sketchy ordering of ‘loci’, whose analogy with the classification of problems in
Book IV has been duly underlined in the secondary literatureﬁ

The loci about which we are teaching, and generally all that are straight
lines or circles, are called ‘plane’ (eninedot); all those that are sections of
cones, parabolas or ellipses or hyperbolas are called ‘solid’ (otepeof); and all
those loci are called ‘curvilinear’ (ypouuixol) that are neither straight lines

nor circles nor any of the aforesaid conic sections Y|

I remark that the terminology here employed is consistent with the one used, in Book
IV of the Collection, for the distinction into problems (Jones chooses to render the
Greek ‘“ypouuxol” with the word ‘curvilinear’, whereas the translation by Sefrin-Weis
has privileged: ‘linear’), and is telling of a more substantial analogy betwneen the two

classifications.

It is important to point out that the concept of locus in ancient Greek mathematics (or
at least, in the geometry of the late antiquity, to which our main sources on this issue

belong) differs in an important respect from the modern one.

358ee, for instance, [Knorr| [1986], p. 342.
36Pappus| [1986], vol. 1, p. 104.
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Our modern understanding of locus is forged by the development of analytic geometry
and by the germane concept of equation. It is, at its core, a set, or collection of points
satisfying some conditionsm On the contrary, in ancient mathematics, as Jones clearly
explains: "a locus is (...) not the aggregate of all possible points or lines subject
to specified conditions, but a definable geometrical object, on which any point or line
satisfying the conditions will be found, and such that any point that lies on the object
will satisfy the conditions of the problem ... The ‘solution’ or ‘demonstration’ of a locus

is the construction of that object, and proof that is indeed the locus"@

Hence, a locus-problem may be understood as a proposition asking to construct a ge-
ometric object,lﬂ given one or more geometric objects (point or lines), with respect to
which any point on the object to be constructed must obey particular conditions; and
conversely a locus-theorem can be defined as: "a proposition asserting that all objects
of a specific kind (points, straight or curved lines, solids) that satisfy certain given con-
ditions (...) lie on or are part of some determined object, the ‘locus’".lﬂ An example of

solid locus-theorem is evoked by Proclus:

The parallelogram inscribed in the asymptotes and the hyperbola are equal,

for the hyperbola is clearly a solid line, since it is a section of the cone.@

This is proposition 12 of the second book of Apollonius’ Conica, that I quote here in
Heiberg’s version (Apollonius [1891-1893]):

Si ab aliquo puncto sectionis duae rectae ad asymptotas ducuntur angulos
quoslibet efficientes, iisque parallelae ad aliquo puncto sectionis ducuntur,
rectangulum retis parallelis comprehensum aequale erit rectangulo compre-

henso rectis , quibus parallelae ductae sunt@

3"In today practice, a locus may be defined as: "Any system of points, lines or curves, which satisfies
one or more given conditions" (in [Robert| [1992]).

3&Pappus| [1986], vol. 2, p. 395.

39This object could be a curve, a surface or a point: see Pappus| [1986], vol. 2, p. 540. I will not
enter here this further distinction concerning the nature of the locus, as I will confine myself to curves:
another example of locus’ problem, namely the problem of Pappus, will be discussed in the sequel, since
it will have a pivotal role in the development of cartesian geometry.

“OPappus| [1986], vol. 2, p. 539.

“TProclus [1992], p. 311.

42Tn Heath’s paraphrase: "If Q, ¢ be any two points on a hyperbola, and parallel straight lines QH,
gh be drawn to meet one asymptote at any angle, and QK gk also parallel to one another, meet the
other asymptote at any angle, then: HQ.QK = hq.qk" (Heath| [1896], p. 59).
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I note that this proposition was not presented as a locus-theorem by Apollonius, but
it was interpreted in these terms by Proclus. In other words, by enunciating that any
point on an hyperbola displays the property proved above, this theorem was understood
by Proclus as characterizing the hyperbola by means of a condition to which its points
obey (I also remark that this condition is not the symptom, or fundamental property
of the hyperbola). This boils down to characterize the curve as a locus: a solid one,
in particular, since the hyperbola is a curve generated by cutting a solid. Constructing
the locus, in reverse, would mean to construct the hyperbola whose points satisfy the

locus-property enunciated in the theorem above.ﬁ

In the light of this explanation, it seems that the classification of loci proposed by Pap-
pus entails an analogous classification of locus-problems too. Accordingly, plane locus-
problems will result into the construction of a straight line or a circle, solid-locus problems
into the construction of a conic sections, and so on. As observed by Knorr, this is a de-
scriptive classification of problems, since it is based on a classification of curves on the

ground of their genesis, and the solution of a locus-problem is always a unique curve.@

However, when we pass from a classification of locus-problems to a more general classifi-
cation of geometric problems, as the one presented by Pappus in Book III and IV of his
treatise, logical difficulties emerge. For instance, in the cases of the problem of trisecting
a general angle, or of the problem of inserting two mean proportionals it is required, as
Pappus’ discussion amply shows, to construct one or more segments by the intersection
of curves (or by other solving methods). In the context of these problems, curves did
not enter as solutions, but as means in order to obtain these solutions. These means
should be selected among several, available ones, and a problem solved by curves of a
certain kind could be often solved by curves of a different kind. On the contrary, the
wrong choice of solving means may lead to no solution at all. These difficulties related to
the problem, or metaproblem of establishing the adequate solution to a specific problem
might have justified the normative aspect of Pappus’ classificatory scheme, that I shall

consider in the next section.

43This example of locus-theorem is discussed, in particular, in a conference paper written by S. Unguru
and M. Fried, as part of an ongoing project with Michael Fried on Geometrical Loci in Hellenistic
Mathematics (see [Unguru and Fried)).

4P, Acerbi remarks that questions of unicity and existence are not so easily separable. According
to him, ancient accounts about locus-problems, as Pappus’ one, took for granted the uniqueness of the
locus: the property in terms of which a curve must be constructed always determine a unique solution,
if the problem is well formulated. See [Euclide| [2007], p. 464.
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2.2.2 Normative aspects in Pappus’ classification

The classification in Book IV is introduced, so Pappus relates, in order to explain the
difficulties occurred to the ancients when they tried "to trisect a given rectilinear angle".
An analogous classification is tackled in Book IIT (Pappus| [1876-1878|, vol. I, p. 55) after
a preliminary discussion about a misgiven attempt to solve the problem of inserting two

mean proportionals by means of plane methods (see ch. [1} section .

In Book IV, Pappus addresses the trisection of the angle, in the foreword to his classifi-
cation of problems, as a problem the ancients could overcome only with difficulty. Later
on, Pappus relates in these terms about the ‘difficulties’ met by the ancients in solving

such problem:

. the earlier geometers were not able to find the above mentioned problem
on the angle, given that it is by nature solid, and they sought it by means
of plane devices. For the conic sections were not yet common knowledge for
them, and on account of this they got into difficulties. Later, however, they

trisected the angle by means of conic sectionsﬁ

Failures in solving the trisection problem by means of plane methods are thus related, in
the account offered by Pappus, to a misunderstanding about the essence of the problem
and to a still imperfect knowledge of conic sections. The problem could be solved - so
we read in the Collection - once a sufficient knowledge of conic sections was acquired [
More general constraints on the appropriate methods employable in solving mathematical

problems are set by Pappus himself, in the course of the same discussion:

Somehow, however, an error of the following sort seems to be not a small one
for geometers, <namely> when a plane problem is found by means of conics
or of linear devices by someone, and summarily, whenever it is solved from a
nonkindred kind, such as is the problem on the parabola in the fifth book of
Apollonius’ Conics and the neusis of a solid on a circle, which was taken by
Archimedes in the <book> about the spiral@

45Sefrin-Weis| [2010], p. 146; [Pappus| [1876-1878|, vol. I, p. 273.

460f course, it must be recalled that certain trisections are perfectly possible by straight lines and
circles: for instance, a right angle can be trisecting by plane methods. This case was singled out by
the ancients, as proved by Pappus, in prop. 32 (Pappus| [1876-1878|, vol. 1, p. 276). However, it
is disputable whether Pappus (and more generally, ancient geometers) possessed a method in order to
single out those angles trisectable by plane means, which is generaly done by means of algebra.

“TIn Sefrin-Weis| [2010|, p. 145; [Pappus| [1876-1878|, vol. I, p. 271. I remark that there is not an
analogous requirement in Book III of the Collection.
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At its face value, this requirement enjoins that a problem solvable by straight lines and
circles (namley a plane problem), should not be solved by conics or by linear curves and,
more generally, that a problem should not be solved by an improper kind of curves. For
this reason, H. Sefrin-Weis refers to Pappus’ predicament as an ‘homogeneity require-
ment’ (Sefrin-Weis [2010], p. 273).

After having recalled the attempts to solve solid problems by plane means, Pappus cites
two examples of problems that were solved "by a nonkindred kind of curve", thus violating
the homogeneity requirement. The first one concerns, in Pappus’ words: "the problem on
the parabola in the fifth book of Apollonius’ Conics". Scholars agree in identifying this
problem with the one, discussed by Apollonius in Conica, book V, 51, of constructing
the normal ED (in fig. to a given parabola, with vertex in A and latus rectum
equal to OB, from a point F outside it@[n the extant version in Book V, this problem
is solved by intersecting the given parabola with a hyperbola (passing through points E
and D in the figure) and thus falls within the category of solid problems, according to
Pappus’ classification. But the same construction can be also effectuated by employing a
circle instead of an hyperbola. Although no ancient sources leave trace of this procedure,
we can conjecture that its discovery was in the purview of Greek mathematicians.@ If
the parabola is supposed given, only a circle is required in order to solve the problem of
constructing the normal to a given parabola. Hence the problem should be considered

plane, according to Pappus’ schemem

48For an english paraphrase, see Heath [1896], p. 182. For the relations between this proposition and
Pappus’ statement, see, dor instance |Zeuthen| [1886|, p. 286, Heath|[1896], p. cxxviii, [Sefrin-Weis| [2010],
p- 274. An exception is represented by Hultsch, who relates this passage to the first Book of Apollonius’
Conica (see [Pappus| [1876-1878|, vol 1, p. 273). I recall that latus rectum and latus transversum are
latin terms for certain line segments entering the defining properties of conic sections. With hindsight,
let us suppose that the X-axis coincides with the axis of the conic, and the Y-axis is taken perpendicular
to it, while the vertex of the conic section coincides with the intersection point of the axis. The latus
rectum a and the latus transversum b enter in the analytical equations of the conics in this way: x> = ay
(parabola); y* = ax — %xQ (ellipse); y? = ax + %x2 (hyperbola). For the case of the parabola, the
latus rectum is, in a terminology closer to Apollonius, the segment a such that, if is a point B on the
parabola, C' the corresponding point on the axis, and A the vertex, the following proportion holds:
AC:CB=CB:a.

49 0f. [Heath| [1896], p. cxxviii-cxxxix.

59T note that Huygens seems to be the first who advanced this interpretation of Pappus’ passage
(Huygens| [1888-1950], vol. 3, p. 61, vol. 12, p. 81-82). Huygens’ remarks about the construction of the
perpendicular to a parabola were not published, but they were known, and mentioned, for instance, by
van Schooten in his commentary to Descartes’ Géométrie: " ... we can suggest the problem of Apollonius
on the parabola, in the fifth Book of the Conics, that Pappus from Alexandria recalls in the Scholium
of his proposition 30 of the fourth Book of the Mathematical Collection." see for instance: [Descartes
[1659-1661|, vol. 1, p. 322-324
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Figure 2.2.1: The normal to a parabola.

In the second example of solutions violating his precept, Pappus evokes a solid neusis
"taken by Archimedes in the <book> about the spiral". Despite Pappus’ remark is poorly
informative, it is generally accepted that Pappus was referring here to the problem of
determining whether a neusis employed in propositions 7, 8 of Archimedes’ treatise on
Spirals, and successively employed in proposition 18 of the same work, was constructable
by solid or plane meansﬂ I shall not enter into the details of this construction which,
contrarily to the case of the normal to the parabola, was not discussed during XVIIth
century, but I confine myself to pointing out to the likely analogy between these two
examples of erroneous understanding of the kind of a problem. It seems, indeed, that the
question at stake, in both the cases cited by Pappus, concerns attempts to demarcate
plane from solid problems, by arguing that a problem known to have been by means
of conic sections could be indeed solved plane methods, entailing that it was a plane

problem, in the end.

I observe that neither solving a plane problem by means of a solid or linear curve, nor
solving a solid problem by means of a linear curve constitutes per se a technical error,
nor it was understood as a technical error by Pappus himself. This fact can be illustrated
by an example discussed in the Collection: even if it seems that Pappus had no doubts
about the solid nature of the problem of inserting two mean proportionalsﬂ he still

accepted, probably for reasons of practicality, a solution to this problem based on a

51Sefrin-Weis| [2010], 302ff; [Knorr| |1986], p. 176-178.
5ZPappus| [1876-1878], vol. I, p. 55, p. 271.
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neusis constructable by means of a linear curve, namely the conchoid (Collectio, book

IV, proposition 23).

On the other hand, Pappus’ requirement can be read as including another sort of error.
As I have discussed the introduction of this study, in fact, it was also considered unwise to
attempt employing plane means in order to solve a solid problem. Pappus cites examples
of such flawed attempts, both in Book III (as we know: see ch. p- and more

succinctly in Book IV (with the case of the trisection of an acute angle).

From today perspective, this error stems from a mathematical impossibility. Certainly
Pappus might have suspected that solid problems could not be solved by plane means.
However, it should be pointed out that Pappus never explicates such a conjecture, but
confines himself to declare, without explanation, the solid nature of certain problems.
Pappus’ requirement can be conceived as a norm, whose rationality was ingrained in
the mathematicians’ practice and was justified both by a long record of failed attempts,
and by a tradition of studies dealing with a certain class of problems, like solid ones.
Therefore we could qualify any violation of Pappus’ requirement as a ‘metatheoretical
misbehaviour’ﬂ either in the sense of solving a problem by a more complex curve, or in

the opposite sense, of trying to solve a problem by a too simple one.

We can also inquire whether Pappus’ classification and requirement were known in the
context of Greek mathematics, and whether Pappus possess a general methodology in
order to decide whether this requirement had been met, or a method in order to decide

the class of a problem as plane, solid or linear.

As for the latter question, scholars tend to limit the influence of Pappus’ requirement and
of his classification upon ancient Greek mathematics. It seems, in fact, that: "Pappus is
the only explicit authority on this mathematical pigeon-holing, and says nothing about
how it developed, or When"@ On the other hand, it can be ventured the hypothesis that
the possibility of associating one solution only to each given problem was still preferred,
at least in late antiquity, to the usual situation of a mathematical practice, in which a
problem could be tackled and solved by using several methods. For instance, Proclus
does not hesitate in judging solutions of problems which "can be effectuated in only one

way" more "elegant" than constructions which can be effectuated in finitely many or

53The expression can be found in [Hgyrup| [2001], p. 242.
5 |Pappus, |1986], vol. II, p. 530. See also [Knorr| [1986], p. 345, 348.
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indefinitely many Waysﬂ If read in this context, Pappus’ requirement might have been
viewed as a prescription aiming towards a more ‘elegant’ problem solving practice, where
by ‘more elegant’ one might understand a less time-consuming and more easily cognizable
to the intellect.

For what concerns the former issue, namely the question whether methods for deciding
the nature of problems had been developed in ancient mathematics, it can be argued
that despite Pappus’ precept being readable as a strict directive on the adequate or
legitimate kind of geometrical constructions for a given problem or a given collection of
problems, it seems to be hardly workable in the context of Greek mathematics. Indeed,
if it is sufficient to solve a problem by plane means in order to classify it as plane, it is
not equally sufficient to solve a problem by solid or linear lines in order to range it into
the correspondent category. In order to have a mathematically sound classification, one
should be able to find a solution for a problem at hand, and then prove that the problem
is not solvable by means belonging to a lower class than the class of lines which actually
solve it. However, the methods ultimately worked out in order to classify problems on
the ground of their solvability crucially depend on algebraic techniques unavailable to

Greek mathematicians P9

However, Pappus’ classificatory scheme might be interpreted, instead of an abstract
classification of types of geometric objects (i. e. problems), according to their solutions,
as an attempt to organize and describe the scattered, or only partially ordered material
that came down to Pappus from a long tradition of problem-solving. Consistently with
this interpretation, the three ‘genera’ or kinds of problems might be as well envisioned
as three distinct traditions in geometry, either pre-existent Pappus’ compilative effort,
or conceptualized by Pappus himself on the ground of previous material, in order to
have a grip on the variety of results consigned by ancient geometers.lﬁ According to this
historical reading, Pappus was describing a practice evolved in the tradition of problem
solving, and the requirement of solving each problem according to its own kind mirrored

such a tradition.

5 Proclus| [1992], p. 172-173.

S6Knorr| [1986], p. 347; see also chap. p- In the same vein, H. Sefrin Weis remarks that: ".

. Pappus’ general homogeneity requirement was not fully developed, or integrated, into geometry, it
seems. Pappus’ meta-theory claims more than the practice, or the theory, could do"Sefrin-Weis| [2010],
p- 274-275.

57Sefrin-Weis| [2010], p. 271-272, and in particular, |Cuomo| [2007], p. 151f.
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Then how are we to understand Pappus’ requirement, in the light of this interpretation?
As I have also observed in chapter [1| of this study, geometers from late antiquity shared
a tradition of commentary and research on topical problems, like the problems collected
in FEuclid’s plane geometry, or the trisection of the angle and the duplication of the
cube (i.e. the insertion of two mean proportionals), considered as solid ‘by nature’, and
therefore outside of the problem-solving technique adopted in the Elements. I surmise,
in other words, that later geometers, like Pappus, identified the trisection and the cube
duplication problems with a veritable tradition of problems, that we can label "solid
geometry", characterized by the correlative development of special methods for their so-
lutions, namely conic sections. We can thus conjecture that it would have been sufficient
to prove that a certain problem, apparently not related with either the trisection of the
angle or the insertion of two mean proportionals, was reducible to either of them, in order
to ascribe it to the same tradition, and thus construct it by the methods allowed within
this tradition.

Conclusively, any decision about the plane, solid or linear nature of a problem ultimately
depended on how the mathematical tradition had treated the problem at hand: this
would determine, or contribute to determine, the ‘nature’ of a problem in the eyes of a

late-antiquity thinker as Pappus.

This interpretation may also explain the peculiar characteristic of problems of the ‘linear’
kind. It is doubtful, indeed, whether linear problems and curves may be said to form a
‘kind’, in analogy with the other two kinds of problems. Standing to Pappus’ account,
indeed, these problems and curves seem to be identifiable in no other way than by their
otherness: Pappus groups in one class those geometrical problems irreducible either to
plane or solid ones, and these curves whose genesis is more complex than straight lines,

circles and conic sections.

Moreover, there is little doubt that linear problems and curves constituted a vast (cer-
tainly vaster than the examples survived till us) but not-fully understood subject, even
in Pappus’ time, probably a subject matter of which mathematicians had cognizance,
but not complete domain. In the light of this situation, Cuomo| [2007] claims that: "...
Pappus’ main focus [in the Collection] is to present the curves as successful problem-
solving tools, whose utility is proved by applying them to a number of constructions, and

whose homogeneity is underscored by streamlining their definitions and the descriptions
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of their main properties"@

It is arguable, standing to Cuomo’s observations, that one of Pappus’ purposes (or even
his main purpose) in presenting the third kind of geometry as he did in the Collection,
might have been that of giving legitimacy to curves thus far considered poorly familiar,
or ‘exotic’ by the mathematical tradition of antiquity and late antiquity, because of their
complex descriptions (below, I shall offer some examples of these complex curves) and of

their unclear employment in problem-solving.

2.3 Curves and problems of the third kind

When Pappus’ Collection circulated in latin, by the end of XVIth century, the problem
solving practice that Pappus might have direct or indirect endorsed was for the most
part lost. Consequently, the question about the applicability of Pappus’ classification of
problems came utility and to the fore again, with urgency. I will discuss this theme and

the developments that it gave rise to in chapters [3] and [5]

As we shall meet problems and curves of the third kind on several occasions in this
study, it is worth describing in more detail the definitions and properties of the best
known among them, following the account offered in surviving ancient texts, in particular

Pappus’ Collection.

2.3.1 The conchoid

One of the most important curves of the third kind mentioned by Pappus is the conchoid,
described in Book IV of the Mathematical Collection in connection with the two mean
proportionals problem. The conchoid will become, in XVIIth century geometry, a familiar
curve to mathematicians, to the point that it will be mentioned twice in Descartes’
Géométrie as an example of a curve properly geometrical (see chapter (3] p. contra

Pappus, who considered it a linear curve on the ground of its genesis:

Set out a straight line AB, and a <straight line> C'DZ at right angles to
it, and take a certain point ¥ on C'DZ as given. And assume that, while
the point F remains in the place where it is, the straight line CDFEZ travels
along the straight line ADB, dragged via the point F in such a way that D
travels on the straight line AB throughout and does not fall outside while

58Cuomol [2007], p. 167-168.
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Figure 2.3.1: Conchoid.

CDEZ is dragged via E. Now, when such a motion takes place on both
sides, it is obvious that the point C will describe a line such as LC'M is, and
its symptoma is of such a sort that, whenever some straight line <starting>
from the point E toward the line meets it, the <straight line> cut off between
the straight line AB and the line LCM is equal to the straight line CD. For,
while AB remains in place, and the point E remains in place, when D comes
to be upon <a point> H, the straight line CD reaches HT, and the point
C will fall onto T'. Therefore, C'D is equal to HT'. Similarly, also, whenever
some other line <starting> from the point E toward the line meets <it>, it

will make the segment cut off by the line and the straight line AB equal to

CDP

As we can read in the above passage, Pappus illustrates the generation of the conchoid
starting from a fixed couple of axis CZ and AB, perpendicular one to the other. Then,
he marks a point D, intersection point of the axis, and on C'Z he marks another point
E, that will be maintained fixed during the generation of the curve. Its genesis is in fact
obtained by pivoting the straight line CDEZ around point E (“dragged via point E”,
Pappus writes), in such a way that point D is carried along the axis AB and, as Pappus
remarks, “ does not fall outside” this axis. Point C, which is carried along in this motion,

will eventually describe a conchoid, as it is shown in figure 2:3.1]

59Sefrin-Weis| [2010|, p. 126. [Pappus| [1876-1878], vol. I, p. 243-44.
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In the subsequent lines, Pappus recalls that this curve can be traced ‘épyocvm&g’@ that
is, by the aid of an instrument. FKutocius’ commentary on Archimedes’ treatise On the
Sphere and the Cylinder, offers the description of a suitable device for the tracing of the
conchoid: this instrument is conceived simply by converting Pappus’ description into a
mechanism forming by two perpendicular fixed rulers, and a third sliding one, as in figure
(the bold lines can be taken to represent the components of the instruments).

The fundamental property of this curve, namely its symptoma@ can be easily inferred
from the description given in the Collection. In fact the conchoid is generated in such a
way that the distance C'D remains fixed during the motion. Therefore, any segment HT
intercepted on the pivoting line C'DZ between the curve and AB is equal to CD. This
property obviously foreshadows the possibility of using the conchoid to mark segments of
given length, and therefore to employ this curve, or the compass employed for its tracing,

in order to perform a neusis construction "]

2.3.2 The Quadratrix

The curve known as ‘quadratrixﬁ is described in the fourth book of the Mathematical
Collection (§ 25-26):

Set out a square ABC' D and describe the arc BED of a circle with center A,
and assume that AB moves in such a way that while the point A remains in
place, <the point> B travels along the arc BED, whereas BC follows along
with the traveling point B down the <straight line> BA, remaining parallel
to AD throughout, and that in the same time both AB, moving uniformly,
completes the angle BAD, i.e.: the point B <completes> the arc BED, and
BC passes through the straight line BA, i.e.: the point B travels down BA
(...) Now, while a motion of this kind is taking place, the straight lines BC'

and BA will intersect each other during their traveling in some point that

50The word is translated with instrumentaliter by Commandinus (|Commandinus} [1588], 56r).

51The notion of symptoma of a curve is thus explained by Sefrin-Weis: "In order to study the math-
ematical properties of such curves, one has to come to a quantifiable characterization, as a proportion,
or an equality that applies to all the points on the curve and only to them. All mathematical proper-
ties have to be derived from, or related back to, this original characterizing property. It is called the
symptoma of the curve", (in |Sefrin-Weis [2010], p. 223).

52An example of a neusis obtained via a conchoid is explained in prop 23 of book IV (Sefrin-Weis
[2010], p. 127-128; [Pappus| [1876-1878|, I, 247-248).

53Tts attribution is controversial, as the names of several pre-euclidean geometers (Hippias, Nicomedes,
and Dinostratus, for instance) are associated to it by the commentators (see Folkerts, Menso (Munich).
"Quadrature of the circle." Brill's New Pauly. Antiquity volumes edited by: Hubert Cancik and ,
Helmuth Schneider. Brill Online, 2013).
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B C

Figure 2.3.2: The quadratrix.

is always changing its position together with them. By this point a certain
line such as BZH is described in the space between the straight lines BA
and AD and the arc BED, concave in the same direction <as BE D>, which

appears to be useful, among other things, for finding a square equal to a given

circle 84

As Pappus explains, the quadratrix BZH (fig. is traced by the moving point
Z, intersection between the segment AE which pivots with uniform velocity around the
centre A of the circle and the segment BC, which moves uniformly along the vertical
direction BA during the same time-interval. The symptom of the curve, as Pappus

relates, is expressed by the following property:

Whichever arbitrary <straight line> is drawn through in the interior toward
the arc, such as AZF, the straight line BA will be to the <straight line> ZT
as the whole arc <BED is> to the arc ED.@

In other words, the quadratrix has the property that for any two points on it, their
distances from the given straight line AD are in the same ratio as the angles formed by
the lines that join them to the center of rotation of the pivoting radius and AD. As 1

will discuss in the next session, thanks to this fundamental property the curve can be

64Sefrin-Weis| [2010], p. 131. [Pappus| [1876-1878], vol. I, 253.
55Sefrin-Weis| [2010], p. 132; [Pappus| [1876-1878|, vol. I, 253.
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immediately employed to solve the problem of dividing an arbitrary angle into a number

n of equal parts.

Moreover, as its very etimology recalls, this curve can be used in order to solve another,
more prominent problem: the rectification of the circumference, and therefore the squar-
ing of the circle. Indee, in the same book IV of the Collection, Pappus proves that
the length of the pivoting radius AB is the mean proportional between the length of a
circular quadrant BED and the limiting length AH, the point H being obtained when
the pivoting radius AB and the shifting line BC' coincide. Since, in virtue of Elements,
VI, 11, one can construct a segment X which is the fourth proportional given the seg-
ments AH and AB, this line will be equal to BED. In this way, the rectification of the

circumference ca be solved too [0

Already in antiquity, doubts were raised concerning the role of the quadratrix as a con-
struction method, particularly in relation with the circle-squaring problem. For instance,
after having illustrated the construction of this curve, Pappus himself related two objec-

tions attibuted to a commentator named Sporus/%|

56See below for a reconstruction of Pappus’ proof. The latin term ‘quadratrix’ simply translates the
greek: ‘tetpaywviovoa’. The relation between the curve and the circle-squaring problem, besides being
evoked by the very name of the curve, is mentioned in Pappus’ account: "... For the squaring of
the circle a certain line has been taken up by Dinostratus and Nicomedes and some other more recent
(mathematicians). It takes its name from the symptoma concerning it. For it is called ‘quadratrix’
by them..." (Sefrin-Weis| [2010], p. 131). I note that Pappus’ narration appears slightly inconsistent:
whereas here he seems to consider as the symptoma of the quadratix the possibility of using it for
squaring the circle, in the passage quoted before Pappus attributes a different symptoma to the same
curve, namely the possibility of cutting arcs into a given proportion. One hypothesis to explain this
inconsistency away would be to assume that the two problems were, for the ancient, equivalent under
certain relevant aspects. This supposition is however not grounded on any evidence, except the fact that
curves known to solve one problem were also known to solve the other, and vice versa.

57 A digression may be useful at this point, since our understanding of Sporus’ passage can be sensibly
different from the way in which early modern geometers understood it. Indeed Commandinus, the Latin
editor and translator of Pappus’ text, heaviliy interpolated the original passage concerning Sporus’
critiques, and substituted the name of the mathematician ‘Sporus’ with the verb ‘spero’; dramatically
changing the meaning of the introductory sentence, which in his version reads as: "this line - I hope
- is, rightly and with merit, not satisfying ..."( "Hec autem linea spero iure ac merito non satisfacit
propter haec ...", |Commandinus| [1588|, 57v. The meaning of the whole passage resulted consequently
changed: readers of Pappus in Commandinus’ translation might have considered that such criticism
circulated among the ancients, and was not limited to few individuals. This might help understanding, for
instance, why Descartes refers generically to the ‘ancients’ when he relates, in La Géométrie, the passage
of Pappus’ book IV that we are examining here. Before the publication of Descartes’ Géométrie (1637),
Christophorus Clavius, one of the first, and most influential readers of Commandinus’ Collectiones,
discussed the same passage about Sporus in his second edition of his Commentary to Euclid’s Elements
and claimed that Pappus (and not Sporus) rejected the quadratrix as useless and not amenable to
description ("... a Pappo reijciatur, tanquam inutilis et quae describi non possit ... ", |Euclid| [1589)], p.
894). Thus, early modern readers helped spread the opinion that the view on the mechanical nature of
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Sporus’ twofold critique was moved against the construction of this curve by composition
of motions, the same discussed by Pappus and summarized above. According to the first
one, the construction of the quadratrix was inconsistent because it would be based on a
circularity; in fact, in order for the moving segments to reach at the same moment the
axis, the ratio of their movement had to be known in advance. But the knowledge of this
ratio presupposes the knowledge of the ratio between the radius and the arc, and thus,

it presupposes to have solved the rectification problem in advance.

The second objection, instead, is related by Pappus with these words:

Consider what is being said, however, with reference to the diagram set forth.
For when the <straight lines> C'B and BA, traveling, come to a halt simul-
taneously, they will <both> reach AD, and they will no longer produce an
intersection in each other. For the intersecting stops when AD is reached,
and this <last> intersection would have taken place as the endpoint of the
line, the <point> where it meets the straight line AD. Except if someone
were to say that he considers the line to be produced, as we assume straight
lines <to be produced>, up to AD. This, however, does not follow from the
underlying principles, but <one proceeds> just as if the point H were taken
after the ratio of the arc to the straight line had been taken beforehand.@

Contrarily to the first one, which can be forestalled, as H. Bos explains,@ the second
objection remains valid also todaym Therefore, the last point H could not be determined
by the generation of the curve by two motions. The tracing of the quadratrix remained

therefore incomplete, unless it was supplemented by a different description or one had

the quadratrix was a well accepted fact among the ancients. The opinion is held also by [Tannery| [1883],
p- 285.

58Sefrin-Weis| [2010], p. 133.

59Bos |2001], p. 43, notices that it is not necessary to pre-install a special ratio of velocities to construct
the quadratrix. Indeed it is sufficient to start from two given segments AEF and AD, and to suppose
that the first of the two moves counterclockwise around A, while the second moves upward parallel to
itself, both motions being uniform, starting and finishing at the same instants of time. The curve will be
thus traced, and it will intersect the perpendicular to AD at A in a point B. We can therefore complete
the square, and obtain the same configuration as described by Pappus. Of course, the quadratrix so
conceived can be used to square the circle of radius AB, but since the ratio between the radius and the
circumference (or between the square built on the radius and the circle) is constant (Euclid, Elements,
XII, 2), once the quadrature problem is solved for the particular circle with radius AB it will be solved
for any other circle.

"1f we write down the parametric equation for the quadratrix (which can be easily determined from its
construction), and call 0 the angle DAE, formed by AD and by the sweeping segment AE, we obtain the
following expressions: ¢ = =29 ¢ = 2%. Thus, the segment AH where the curve meets the horizontal

wtand’

axis AD can only be obtained as the limit of #Gng when 6 tends to zero. Such limit is % = AH.
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previously found the ratio of the quadrant to the radius. These considerations induced

Sporus to conclude that - so Pappus says:

Without this ratio being given, however, one must not, trusting in the

opinion of the men who invented the line, accept it, since it is rather mechan-

ical[

The term employed by Pappus, namely: ‘unxavixéc’, should be differentiated from the
term ‘Opyovix&c’, seen before in connection with the conchoid. In the latter case, the
organic character of the curve is related to its concrete tracing by an instrument. The
former case is of a less easy understanding, because of the variety of possible and contro-
versial meanings connected with mechanics, in antiquity. For the sake of my argument,
I shall point out to two relevant aspects in the classical description of the quadratrix,
which may be connected with its ‘rather mechanical’ nature. Firstly, the term mechani-
cal may indicate the fact that this curve, just like the spiral and the cylindrical helix, is
generated by a couple of independent motions. But the sole reference to the genesis of
the curve by motions does not seem to fully explain Sporus’ intentions, in qualifying the

curve as ‘rather mechanical’.

Additional information can be gleaned through from the context in which the quadratrix
is judged a mechanical curve, and in particular, from the problematic aspect of its genesis,
discussed above. It can be conjectured, on the ground of Sporus’ objections, that the
quadratrix is qualified as mechanical, because its genesis, described in the Collection,
does not offer an exact construction of the curve, but only an approximate one. We have
seen, indeed, that the foot of the curve cannot be exhibited by the twin motions which
generate it; moreover, it might not have escaped to Pappus that this point could be
precisely approximated, for example, by the tracing of a smooth curve passing through
the other points of the quadratrix.lﬂ

These observations are relevant, particularly for the posterity of this text. Indeed the
term ‘mechanical’ would continue to be used in the early modern classifications of curves
and, especially with Descartes, came to denote such curves as the quadratrix, the spiral

and the cylindrical helix, generated by a couple of independent motions.lﬁ

"!Sefrin-Weis| [2010], p. 133.

"2Cf. [Van der Waerden| [1961], p. 192. A similar reasoning will be deployed, in the early modern
period, in the Commentary written by Clavius to Euclid’s Elements (see ch. [5] sec. .

"This topic shall be discussed in ch.
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2.3.3 The Archimedean spiral

The third curve that I want to examine is the Archimedean spiral. Pappus describes the

curve in these terms:

Let there be given a circle with center B and radius BA. Assume that
the straight line BA has been set in motion in such a way that, while B
remains in its place, A travels uniformly along the circumference of the circle,
and together with it <i.e., together with the rotating BA> a certain point,
starting from B, is assumed to travel uniformly along it, in the direction of A,
and assume that within the same time the point from B passes through BA
and A passes through the circumference of the circle. Now, the point moving
along BA will describe a line such as BEZA during the rotation, and its
starting point will be the point B, while the starting point of the rotation
will be BA[™]

From Pappus’ protocol, we gather that the spiral is, like the quadratrix, generated by
a couple of motions. Indeed, given a circumference of center B, the curve is generated
by a mobile point A which covers the radius BA while the latter rotates, both motions
being uniform and starting at the same time. Since in Pappus’ construction the circle is
given, the generation of this curve falls into the same objection mentioned for the case
of the quadratrix: in order to start and terminate at the same time, the motions should
be syncronized according to the ratio 2w : r, and their synchronization requires the

knowledge of 7.

However, the same argument advanced in order to explain away Sporus’ objection in the
case of the quadratrix can be invoked in this case too: the knowledge of 7 (that is, the

solution of the rectification problem) is required only when a circle is given, as in the

TSefrin-Weis| [2010], p. 119, Ed. [Pappus| [1876-1878|, vol. I, 235. The construction of the spiral can
be continued beyond the endpoint A. It is sufficient, in fact, that segment BA makes a second rotation,
with uniform velocity, while the point A travels uniformly on the segment BA extended. Since both the
rotational movement and the translational one can be indefinitely protracted, we can always construct
new branches of the spiral. The portion of the arc of the spiral bounded between consecutive returns of
the ray to its initial position is called a “turn.” Pappus limits his considerations to the one-turn spiral.
Archimedes comments about the possibility of extending the spiral by iterating the same construction
(see for instance, the prefatory letter to the treatise On Spirals, in [Heath| [1897], p. 154), therefore it
was well known, among ancient mathematicians, that this curve could potentially intersect the straight
line on which BA lies in an infinite number of times.
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Figure 2.3.3: The Archimedean spiral.
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case presented by Pappus, and a specific spiral must be traced. On the other hand, the
knowledge of 7 is not requisite if we start the construction of the curve from a point

translating on a radius rotating around one of its extremitiesm

Also for its symptoma, the spiral can be put on a par with the quadratrix:

And its principal symptoma is of the following sort. Whichever <straight
line> is drawn through the interior toward it, such as BZ, and produced
<to C>, the straight line AB is to the <straight line> BZ as the whole

circumference of the circle is to the arc ADC[|

The mode of generation of the spiral allows us to establish a proportion between two
segments and two circular arcs (or the corresponding angles), so that the problem of
dividing an angle into any given ratio can be easily solved through this curve, as I will

detail later on.

2.3.4 The Apollonian helix

I will finally introduced a fourth curve, which is employed in propositions 28 of book
IV in order to generate the quadratrixm but never defined in this book. However, we
encounter its description in book VIII of the Collection, in connection with the shape

of a machine called cochlea (xoyhas), probably employed for moving columns of water
upward 9]

According to Pappus’ account, the helix is generated out of the composition of two
motions. Given a finite cylindrical section, this curve is traced by a point translating

uniformly along a straight line, that rotates uniformly on the surface of the cylinder, in

"The second way is followed by Archimedes in his treatise On Spiral, Df. 1: "If a straight line drawn
in a plane revolves at a uniform rate about one extremity which remains fixed and returns to the position
from which it started, and if, at the same time as the line revolves, a point mvoes at a uniform rate along
the straight line beginning from the extremity which remains fixed, the point will describe a spiral in
the plane" (Heath|[1897], p. 165) . As one can evince from this treatise, the spiral was also involved in
the solution of the circle-squaring problem, although no explicit discussion on this concern can be found
in Pappus’ book IV. The connection is examined in Archimedes’ treatise instead, as I will discuss in the
next section.

"0Sefrin-Weis| [2010], p. 119, [Pappus| [1876-1878|, vol. I, 235.

"7See [Sefrin-Weis| [2010], p. 137. Pappus’ intention, in generating the quadratrix from the helix, was
probably to find an alternative genesis of this curve, that could circumvent the objections advanced by
Sporus. In the subsequent proposition 29, in fact, Pappus shows how the quadratrix can be generated
out of a complex surface, named "plectoid" (Sefrin-Weis| [2010], p. 140). The plectoid here evoked is a
hapazr in ancient mathematical literature.

"®Tannery| |1883], p. 288.
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Figure 2.3.4: The Apollonian Helix.

such a way that in the same time the point has traversed the whole segment, the segment

has accomplished a full rotationm

The same description by composition of motions can be found in other ancient mathe-
matical texts, as in Hero’s Mechanics, or in Proclus’ Commentary in the first book of
Euclid’s Elements. It is worth reporting Proclus’ definition, as it was also read during
XVIth and XVIIth century, and clearly shows the connection between this curve, Pappus’

description of the quadratrix and his description of the spiral:

the cylindrical helix is traced by a point moving uniformly along a straight
line that is moving around the surface of a cylinder. This moving point
generates a helix any part of which coincides homeomerously with any other,
as Apollonius has shown in his treatise On the Cochlias (...) the very mode
of generating the cylindrical helix shows that it is a mixture of simple lines,
for it is produced by the movement of a straight line about the axis of a

cylinder and by the movement of a point along this linem

The helix is thus generated by a couple of "dissimilar simple motions". By this expression,

as we can understand from the context, Proclus might refer to the uniform rotations and

"Pappus| [1876-1878|, vol. 3, p. 1110-1111.
80Proclus [1992], p. 86.
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traslations occurring at the same time: the kinship between the helix, the quadratrix

and the spiral is thus revealed by the common mode of generation of the three curves.@

The difficulty of explaining the genesis of complex curves of the third kind in terms of
elementary motions is evoked in a subsequent passage of the Commentary, when Proclus

discusses the nature of the helix as a "mixed line" £2

...although a simple line can be produced by a plurality of motions, not
every such line is mixed, but only one that arises from dissimilar motions.
Imagine a square undergoing two motions of equal velocity, one lenghtwise
and the other sidewise; a diagonal motion in a straight line will result. But
this does not make the line a mixed one, for it is not brought into being by a
line different from itself and moving simply, as was the case of the cylindrical
helix mentioned B?

Although linear curves did not form a well defined group in late antiquity, we can thus
spell out, on the ground of the previous quotations, a generic trait of homogeneity un-
derscoring their characterization. Indeed, even if these curves were described in the
plane, their genesis, as provided by Pappus and presented with analogous terms in Pro-
clus, required cynematical elements (uniform rotations and translations occurring at the
same time) that ancient mathematicians were not able to reduce to more elementary

constructions in the plane itself, hence their ‘dissimilarity’ noted by Proclus.@

81Proclus mentions the quadratrix in another locus of his commentary, referring to it as a "mixed"
line as well (Proclus|[1992], p. 212).

82Proclus introduces a classification, ascribed to Geminus, between mixed and simple lines. This
ordering of curves is different than Pappus’ tripartite one, although it is still based on the mode of
generation of curves (Proclus [1992], p. 90-91).

83Proclus [1992], p. 86.

84See[EUCLIDE [2007], p. 104. I will not discuss here the reference, made by Pappus, to the generation
of linear curves out of complex surfaces, since they had a minor role in early modern debates (see the
previous footnote 44). As I have suggested, the fundamental motivation behind Pappus’ choice to present
these spatial constructions might have been connected to the attempts at providing a more geometrical
description of curves whose genesis through motions was problematical and criticized, as the case of
the quadratrix. By describing this linear curve as an intersection between two solids, in fact, ancient
geometers might have tried to offer a complete description of the quadratrix, with its foot included.
Pappus’ attempts, however, failed to offer the crucial intersection point between the curve and the axis
(see |Sefrin-Weis| [2010], p. 137-139). By constructing linear curves through the intersection of solid
surfaces different than the cone, Pappus might have also wanted to stress the irreducibility of the curves
of the third kind to the second kind, so that the constitution of a third class of curves beyond the
conic sections was fully justified, on the ground that: a) the movements which produced these curves
in the plane were not reducible to one rotation (producing the circle) or one translation (producing the
straight line), and b) that the surfaces from which these curves could be engendered by projection or
by sectioning were more complex than the cone or the cylinder, and there was no known procedure for
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A possible exception among linear curves is offered by the conchoid: in the genesis of
this curve, in fact, we do not encounter two motions subject to uniformity constraints;
there is rather one principal motion (the swinging of the line CDE around point E),
the constraint being determined by the segment of fixed pre-assigned length C'D [see
fig. . As we know, there are mathematically meaningful reasons which underline
the different geometric description of the curve, and that motivate a distinction between
the conchoid and the other linear curves described above | but it is plausible that these
reasons passed unnoticed until the advent of Descartes’ Géométrie, in which they are are

pointed out explicitly and with a critical intentﬁ

2.4 Problems from the third kind of geometry

The examples of problems from the third kind of geometry treated by Pappus are dis-
cussed in propositions 26-30 of book IV of the Mathematical Collection, propositions
35-38 and propositions 39-41 of the same book. These three groups of propositions are
centered around the following issues: the problem of the rectification of the circumference
(propositions 26-30, 39-40) and the problem of the general angle division (propositions
35-39).

2.4.1 General Angle Division (Collection, IV, proposition 35)

The problem of the General Angular Section can be stated as follows:

Given an arbitrary angle ¢ and two natural numbers p and o it is required to

divide ¢ in two angles w1 and s such that p1: 2 = p: 0.

This problem can be reduced to that of the division of the angle ¢ into p + 0 = p equal

parts. In order to obtain ¢; it will be sufficient to take a number p of the equal parts

obtaining these curves out of the intersection between a plane and a cone.

85To this concern, Paul Tannery has remarked: "le rapprchement de la courbe d’Hippias avec la
conchoide, au point de vuew géométrique, ne peut, d’autre part, étre regardé que comme passablement
forcé..." (Tannery| [1883], p. 284). In modern parlance, the conchoid is an algebraic curve, that is, a
curve described by a finite polynomial equation, while the quadratrix and the spiral are transcendental,
that is, the relation between the abscissas and the ordinates are expressed by transcendental functions.
A similar reasoning holds for the cissoid, another curve listed by Pappus as ‘linear’, although it is which
is described by an algebraic equation.

861 The conchoid of the ancients" is evoked, for example, in Book II of La Géométrie (Descartes| [1897-
1913|, vol. 6, p. 395). As I will discuss in the next chapter, Descartes explicitly recognized that the
motions which generate, according to Pappus’ description, a curve like the conchoid could be reduced to
an ordered succession of rotations and translations and, on this ground, the locus of the curve could be
described by an algebraic equation.
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obtained by the previous division, and in order to obtain 9 it will be sufficient to take

a number g of equal parts.

Since Pappus’ book IV represents the only extant source which mentions the problem, it
is worth dealing briefly with its role in the treatise and with the methods applied for its

solution. As Pappus states:

Now, trisecting a given angle or arc is a solid problem, as has been shown
above, whereas dividing a given angle or arc in a given ratio is a linear prob-
lem, and while it has been shown by the more recent mathematicians, it will

be shown as well in a twofold way by me@

As declared, Pappus gives two solutions of the problem, one through the quadratrix and
the other using the archimedean spiral. Both constructions follow similar patterns, as it
can be remarked from the protocols detailed below.

Solution via the quadratrix

In virtue of Euclid’s Elements, 111, 27, the problem of dividing an arbitrary angle ¢
into a given ratio can be reduced to the problem of dividing into the same ratio an arc
of circumference, corresponding to an angle at the centre equal to . Pappus proceeds
indeed by dividing the arc, in the following way:

Protasis: Divide an arc LT into the ratio a : b.

1. Construction:

e Complete the quadrant BK LT and inscribe the quadratrix K AC.

e Draw the perpendicular AE onto BC.

Draw point Z on AFE such that AZ : AE =a : b.

e Draw ZD parallel to BC.

Draw segments BD and DH, the latter perpendicular to BT

The arc L/M is to the arc J\ZT as a is to b.

2. Proof
87Sefrin-Weis| [2010], p. 155. [Pappus| [1876-1878|, I, 285.
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Figure 2.4.1: General angle division by the Quadratrix.

° IQ\T : ﬁ = KB : AF, I?T : ]\ZT = KB : DH. These proportions hold, according
to Pappus, because they are the "symptoma of the line" namely, the defining

properties of the quadratrix mentioned in proposition 26 of Pappus book IV.

e Since L} : ]\2 T = AFE : DH, because of the symptoms of the quadratrix, and
ZFE = DH (by construction), we shall have: LT : MT = AE : ZE.

e By Euclid, El. V, 17, the following proportion can be obtained: (LT — ]\2T) :
MT = (AE — ZE) : ZE, namely: LM : MT = AZ : ZE.

e Since AZ : ZE = a : b, by construction, then: L/]\\J : ]\ZT =a:b.

Solution via the spiral

—~

It is required to divide an angle ¢, or the corresponding circular arc AC' (fig. [2.4.1)), into

the ratio a : b. (a, b are natural numbers).

1. Construction
e Draw the radii BA and BC.

e Describe the spiral BZDC' inscribed in the circle ACH, with center B.
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Figure 2.4.2: General angle division with a spiral.

e Trace on DB a point E, such that DE : EB = a : b (this can be done in an

elementary way).

Through F draw EZ, arc of a circle with center B and radius BE, which intersects
the spiral in point Z.

e Extend BZ to point H, on the circumference of the circle.

AH is to HC as the given ratio.

2. Proof

e Calling AH C denotes the circle with radlus AB and center B, we have that:
BC : BD = AHC’ AC BC : BZ = AHC’ HC As for the quadratrix, these

proportions hold because they describe the symptoma of the spiral.

e BD:BE = AC : HC(Euclid, V, 22).
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° DE:EBzA%:E?C.

o Therefore, AH : HC = a : b. (Euclid, V, 17).

2.4.2 Problems related to the general angle division

Pappus adds some problems related to the General Angle division, because they are easily
solvable given the solution of the former problem. For instance, we read in proposition
36:

it is possible to cut off equal arcs from unequal CircleS{g_g]

In the subsequent proposition 37:

<Let the task be> to put together an isosceles triangle with both angles at

the base possessing a given ratio to the remaining oneF’r_g]

And in proposition 38:

it is obvious that it is possible to inscribe an equilateral and equiangular

polygon that has as many sides as anyone might prescribe into a Circle.m

Together with proposition 41, on the construction of incommensurable angles, these
problems conclude the subgroup of propositions directly related to the General Angle

Division problem.

2.5 The rectification problem

A second set of problems in Pappus’ Collection is correlated to the rectification of the
circumference, which allows us to solve the circle-squaring problem, the second central
issue belonging to the third kind of geometry, according to Pappus’s narration. Book IV
of the Collection contains in fact the best documented record of an ancient technique for

solving this problem, which had recourse to the quadratrix.

88Sefrin-Weis| [2010], p. 157. [Pappus| [1876-1878], vol. I, 287.
89Sefrin-Weis| [2010], p. 157.
90Sefrin-Weis| [2010], p. 158.
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Other sources attest solutions of the rectification of the circumference that employed

different curves. For instance, the philosopher and commentator Iamblichus remarks:

Archimedes effected it [the rectification of the circumference| by means of the
spiral-shaped curve, Nicomedes by means of the curve known by the special
name quadratriz, Apollonius by means of a certain curve which he himself
calls "sister of the cochloid" but which is the same as Nicomedes’ curve, and
finally Carpus by means of a certain curve which he simply calls (the curve

arising) from a double motion@

The solutions mentioned in the above passage are not extant for us, except for Archimedes’
construction, which can be derived from theorem XVIII of treatise On Spirals. In this
work, it is proved that the subtangent to a spiral at the endpoint of its first turn is equal

to the circumference of the circle, whose radius equals the generating radius of the spiral.

This construction, as well as the one using the quadratrix, will be discussed in the sequel.

2.5.1 The rectification of the circumference via quadratrix (Pappus,
Collection, IV, proposition 27)

In this section I will present the procedure for rectifying the circumference, and thus
solve the circle-squaring problem, relying on the quadratrix, as it is presented by Pappus
in the Collection

Let us construct a quadratrix BF M in a given quadrant BAD, as in the diagram of fig.
The quadratrix possesses the following propertywhich can be successfully employed
for rectifying the circumference: the point M at which this curve cuts the horizontal line
AD is such that the radius AD is mean proportional between the arc of circle B/b and
the segment AM, cut by the quadratrix on AD.

In order to prove it, Pappus recurs to an indirect argument not so transparent at a

first glance. Reasoning by absurd, he assumes that:

BD: AB + AB : AM

91See [Heath| [1981], p. 225.
92The invention of the quadratrix, attributed, in the above quoted passage of Iamblichus, to Nicomedes,
is dubious. For a discussion see [Tannery| [1883], [Knorr| [1986], p. 84-86.
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Figure 2.5.1: Rectification of the circumference by a Quadratrix.
Given this disproportion, he is able to write:

BD: AB = AB : AK,

the two situations using the symbol “>":

where the point K is another arbitrary point of the lineAD), distinct from M. It follows
that K lies on one or on the other side of AD with respect to M. We can discriminate

e The first situation is represented by the expression: AK > AM,
e whereas the second by: AK < AM.

Assume the first case. With center in A and radius AK, trace the arc KF'L, where F' is
the intersection point between the arc and the quadratrix. Thus, we will have:

BD: AB = AB : AK
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Moreover, Pappus asserts that:

BD:AB = KFL: AK

as arcs on equal angles are proportional to their radii.

As a consequence:
AB =KFL

From the definition of the curve, we also have that BAD : Efb = AB : FFH, while
BD:ED=KFL:FK.

Since AB = KFL, it follows that FK — FH.

For Archimedes’ assumption 1 in The Sphere and the Cylinder, FK < F/}( while FK
is the hypothenuse of the right triangle F'H K, therefore, FH < FK. As a consequence,
FH < F/}(, which contradicts the previous conclusion that: F/}( = FH. Pappus can
therefore discard the possibility that point K is situated between A and M.

Let us assume then the second case, and let us suppose a point K given, such that
AK < AM (fig. [2.5.1). Let a circular arc LK be described, with center A and radius

AK. The reasoning following by Pappus in disproving this case is almost analogous to

the previous one, with the exception that the arc LK cannot cut the quadratrix. Let
then the perpendicular K F to AD be raised, which intersects the quadratrix in F', and
let AF be joined and extended to E (lying on the circumference). We will call C' the
point of intersection between segment AE and the arc L/.}(, and C'H the perpendicular
from point C to the segment AD.

By the same reasoning displayed before, Pappus can write: LK = AB. Asin the previous

case, the following proportions will hold, too:

BED :ED =LK :CK = BA: CH

9310f all lines that have the same extremities the straight line is the least", [Heath [1897], p. 3.
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Figure 2.5.2: Rectification of the circumference by a Quadratrix.

This proportion entails: C’AK = C'H, which is contradictory, as C’AK > CK > CH, by

virtue of Archimedes’ first assumption in the Sphere and the Cylinder.

Eventually, both cases lead to an absurdity, so that neither AK > AM nor AK <
AM hold. Consequently, Pappus can conclude that AK = AM, and thus consider the

following proportion:

BD:AD = AD : AM
to be proved.
Given this proportion, the problem of rectifying the arc BD can be easily solved too.

Moreover, since the arc corresponds to a quarter of circonference, a segment equal to the

whole circumference can be construced consequently. Finally, thanks to a result given by
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Archimedes in Dimensio circul@ it is easy to pass from this conclusion, which solves,
properly speaking, only the problem of the rectification of the circumference of the circle,

to the quadrature of the circle itself.

The rectification of the circumference can be solved through the quadratrix, by applying
the construction protocol described above, if point M, foot of this curve, is given or
constructed. As we know from Sporus’ remarks, the very construction of M was not
assured by the generation of the quadratrix curve by a couple of motion. In proposition
36, however, Pappus does not raise any problem in connection with the construction of M,
arguably presupposing its existence, at least in the geometric context of this proposition,

on the ground of some intuition about the nature of continuous magnitudes.lﬁ

Conclusively, the construction exposed in Pappus’ Collection heavily relies on our intu-
ition of continuity, to which the geometer must make appeal in order to assume point M
as given. Such a reliance on intuition raised a serious concern from the end of XVIth cen-
tury, when attempts flourished to ground the existence of point M on explicit construc-
tions. These attempts went together with the efforts made by early modern geometers to
circumvent Sporus’ second objection to the construction of the quadratrix: indeed, if a
method to construct the foot of the quadratrix could be found, the rectification problem
would be solved as well[9]

94Gee this study, p.

9Incidentally, this example is chosen by W. Knorr in order to defy Zeuthen’s classical interpretation
on constructions as existence proofs in ancient geometry (See [Zeuthen| [1896|, and [Knorr| [1986], [Knorr
[1983| for the criticism). Indeed, this example could be taken as a counterinstance to Zeuthen’s thesis,
according to which the solution of problems of construction is intended to establish the existence of the
resulting configurations and of the geometric objects thereby denoted. In our case, on the contrary, the
existence of point M is simply assumed, although it is clear from the context of Pappus’ construction
that the point is not obtained via a construction.

9The best known case is certainly the one of Clavius, who dedicated important studies to the quadra-
trix (see [Bos| [2001], p. 159-165, Mancosu| [1999], p. 75-77). The search for alternative descriptions of
the curve might not respond only to a strictly mathematical concern, namely, solving the circle-squaring
problem, but also to a more general, metatheoretical or broadly philosophical questioning: how is a curve
to be represented for the geometer to have knowledge of it? Is motion eliminable from the generation
of Pappus’ curves of the third kind, or is the complex combination of motions reducible to a simpler
generation? As I will show in the next chapters, this complex bundle of questions informed the context
in which Descartes’ Géométrie saw the light.
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2.5.2 The converse problem: to construct a circumference equal to a
given segment

In proposition 39, Pappus solves the converse problem of the rectification of a circumfer-

ence, namely:

...How one finds a circle the circumference of which is equal to a given
straight line. . .["7]

The problem can be easily solved if we know how to solve the rectification of the circle;
however, Pappus’ protocol is instructive, as it offers a partial example of the analytic-
synthetic argumentative mode, the synthesis being omitted from his account. Pappus’

solution can be reconstructed as it follows.

Analysis

1. Assume that the problem has been solved: a circle a whose circumference is equal

to a given segment ¢ has been found.
2. Construct an arbitrary circle b.

3. Construct, by means of the quadratrix, a segment d equal to the circumference of
b.

4. If we call r, the radius of the first circle and 7, the radius of the second one, then

the following proportion will hold: d:c =1} : ra@

5. Since the ratio of d to c¢ is given, so is the ratio of r, to r,. Since 1 is given,

therefore r, is given@

97Sefrin-Weis| [2010], p. 159.

98Using modern symbolism, one can observe that, by construction,, d = 277, . Moreover it is known
from the starting point of our analysis that: ¢ = 27r,. As a consequence, d : ¢ = rp : 7. The same
proof can be given, in a more extended form, by relying on the fifth book of the Collection, proposition
XI (Pappus| [1876-1878], I, p. 335).

99Formulary expressions of the kind "The ratio, however, of d to ¢ <is given.>> Therefore, the ratio
of the radii to each other <is given>, also"(Sefrin-Weis| [2010|, p. 160) are commonplace in the ancient
technique of analysis. Analysis used in fact a collection of inferential patterns, codified in Euclid’s Data
in order to plot a path from the primary given geometric elements to the ones immediately constructible
from them, and so on, until the geometer reached the last step of analysis. In particular, in the analysis
of Pappus here reproduced, the inference from the givenness of the ratio of ¢ to d to the givenness of
the ratio of r, to rp relies on the results contained propositions 1 and 2 of Euclid’s Data, together with
definition 5 of the same treatise.
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Synthesis (Commandinus)

Pappus omits the synthesis of the problem, which is given instead by Commandinus in

his 1588 edition.m Commandinus starts by enunciating the problem:

e Let a given finite straight line ¢, to find a circle, whose circumference is equal to c.

Commandinus then constructs the problem according to the following protocol:

1. Construct a circle b with radius 73, and rectify it by means of the quadratrix, so as

to obtain a segment d equal to the circumference of b.
2. Construct a segment 7, such that: r, : r, = d : c.
3. Construct a circle a with radius r,. The circumference of a equals the segment c.

4. Proof. By construction, we have that: rp : r, = d : ¢. The following proportion
holds too: 74 : 7, = b : a. If we indicate the circumference of circle a with the
symbol @, then the following proportion will ensue: b: a = /b\ : @. Therefore, we
will also have: d : ¢ = ; : ‘@, and, permutando: d : E = ¢: a. By construction,
the circumference of b equals the segment d. Therefore the circumference of a is

equal to the segment c.

2.5.3 Rectification through the spiral (Archimedes, On Spiral lines,
prop. XVIII)

As I have anticipated, no rectification of the circle requiring the spiral is extant in ancient
sources. However, precious indications on how to solve the rectification of the circumfer-
ence (and thus the quadrature of the circle) by means of the spiral can be collected from
Archimedes’ treatise On Spimlsm In particular, a theorem is proved by Archimedes,
establishing a property of the tangent to the spiral in the endpoint of its first turn, from

which a constructive solution of the circle-squaring problem can be promptly deduced.

We read, in fact, in proposition XVIII of the mentioned treatise (I refer to figure 12 below,
which reproduces with minor differences the diagram as it can be found in Heiberg’s

critical edition):

109Commandinus| [1588], 70r.
19 A rchimedes| [1881], vol 11, p. 3-140; Heath| [1897], pp. 151-188.
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"

Figure 2.5.3: Rectification property of the spiral.

If OA be the initial line, A the end of the first turn of the spiral, and if the
tangent to the spiral at A be drawn, the straight line OB drawn from O
perpendicular to OA will meet the said tangent in some point B, and OB

will be equal to the circumference of the ‘first circle’. |Tl?|

In other terms, if the tangent to the spiral at the endpoint of its first revolution (point
A in fig. is extended to meet the perpendicular to the initial position of the radial
generator OA of the curve, then the segment cut off ths line (namely, the subtangent
OB) will be equal to the length of the circumference of the circle with radius equal to

the radial generator (namely ACH ).

2. Proof (figure [2.5.3))

It is demanded to prove that the segment OB is equal to the circumference ACH.

Let ACH be the circle with radius OA (the generator of the spiral) and center O.
Archimedes relies on theorem 16 of the same book as a lemmam in order to state that
the tangent to the spiral at A will cut the circle in a point C (). Moreover, since angle

OAC is less than one right angle, by Euclid’s fifth postulate the tangent to the spiral

102Heath| |1897], p. 171. The theorem is contained in proposition XVIII of the treatise (Heiberg, II,
171).

193Gee [Heath| [1897], p. 169. With respect to fig. m th. 16 can be thus formulated: "If BF is a
tangent to the spiral at A, AF being the ‘forward’ part of BF', and if OA be joined, the angle OAF is
obtuse, while the angle OAB is acute".
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at point A will also cut off a segment OB on the perpendicular from O to the radius
OA. Archimedes states, in proposition XVIII, that the segment OB is equal to the

circumference ACH.

In order to prove this theorem Archimedes reasons indirectly: he assumes that either
OB > ACH or OB < ACH and then derives a contradiction from each of these

cases@

It will useful to sketch the first part of this proof. Let us therefore assume:

OB > ACH

and cut off a segment OD such that: OB > OD > AEH (fig. [2.5.3). Referring to
the chord AC and the perpendicular to it OI , we will have therefore the following

disproportion:
AO: 0D > AO : OB

A radius OP can be traced, such that if it is extended to meet the tangent AB in F', the
following proportion will result:lzgl

FP:PA=AO:0D

Since AO = PO, and alternating the previous proportion, we will have:

FP:PO=PA:0D

19%Heath| [1897], p. 171.

105 Archimedes’ proof depends on the previous proposition 7 of the treatise On spirals, which allows
this possibility and performs the construction of the line OPF through a neusis. Incidentally, this is the
neusis - construction also evoked by Pappus, in Book IV of the Collection, in connection with violations
of the homogeneity requirement, that we have examined above. I observe in fact that Archimedes
assumed the possibility of the neusis, but did not specify how it was to be effected (see Knorr| [1986], p.
176-178, and in particular [Knorr| [1978]).
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Since PA < ];A (on the ground of Archimedes’ first assumption in On the Sphere and
the Cylinder) and on the assumption that OD > ACH, we can deduce:

PA:OD < PA: ACH

which entails:

FP:PO < PA: ACH

Componendo the previous proportion, we obtain:

(FP+ PO): PO < (PA+ ACH) : ACH

Since AC'H denotes the circumference of the circle, the defining property of the spiral
(namely, the arcs and the corresponding radial generators have the same ratio) yields
that the right-hand ratio above equals, namely the ratio OQ : OA.

From this result, the following disproportion can be derived:

FO: PO < 0Q:0A

From FO : PO < OQ : OA, and from the equality between PO and OA (both radii
of the same circle), the following inequality can be also derived: FO < OQ. But
this is impossible, because by construction point () lies between points P and F'. This
terminates the reductio ad absurdum argument, and leads to the conclusion that segment
OB is not greater than AaH .

Subsequently, Archimedes treats the other branch of the alternative, by supposing: OB <
ACH. Although the argumentative steps differ with respect to the previous case, the

general procedure follows a similar reductio strategy. I will thus refer to the discussion in
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Dijksterhuis and Knorr| [1987| for a precise reconstructionm and skip to the conclusion
of Archimedes’ argument: since OB is neither greater nor smaller than ACH, it must

be equal to the circumference.

As I have observed, although no rectification of the circle requiring the spiral is extant
in ancient sources, it is not difficult to sketch, from the above theorem, a construction

protocol in the following manner{"’]

1. Construction
e Let a spiral be constructed, with center O, and radial generator OA.

e Let a circle ACH with center O and radius OA be constructed. Let us call AEH

its circumference.
e Let a straight line OF be cut perpendicularly to OA.

e Let the tangent AC' to the spiral in point A be traced, and let B be the intersection
point between the tangent and the line OF.

e By virtue of theorem 18 of Archimedes’ On Spirals, segment OB is equal to the
circumference AC' H. Since the ratio between the circumference of a circle and its
diameter is constant, the rectification of the circle ACH allows us to deduce the

rectification of any given circle.

Since there are no extant documents containing a solution of the rectification problems
by mean of the spiral, we can only conjecture whether such a solution was or would have
been accepted as a correct and sound construction of the problem. It is arguable that
doubts against the soundness or the feasibility of the above solution were raised, already
in antiquity, in connection with the construction of the spiral. The description of this
curve required, in fact, to tackle the difficult task of coordinatizing a radial and a circular

uniform motion.

106See [Heath| [1897], p. 172; Dijksterhuis and Knorr| [1987], p. 270.
107 A similar protocol is described, for instance, in F. Viétes’ Variorum de rebus mathematicis (Vidte
[1593], p. 24).
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Figure 2.5.4: Rectification property of the spiral.



CHAPTER 2. PROBLEM SOLVING TECHNIQUES IN ANCIENT GEOMETRY 95

A second hindrance to the acceptability of this construction could have been represented
by the auxiliary construction of the tangent to this curve. Indeed, even if the spiral was
the object of intense study since the late middle ages, thanks to the circulation of the
first Latin version of Archimedes’ works and the connection between the construction of
the tangent and the rectification of the circle was noted and discussed by commentators,

no one, to my knowledge, had conceded the exact constructibility of the tangentFEl

The riddle about this construction received a definite clarification well into XVIIth cen-
tury, with the emergence of infinitesimal calculus, and when the tangent to a curve
passing from one of its points was finally conceived as the limit of the secants to this

curve.

2.6 On the quadrature of the circle

In the structure of the fourth Book of the Collection, the problems of rectifying the
circumference and squaring the circle are evoked after plane and solid ones, and together
with the general angular division, they are instances of ‘linear’ problems. However, it
should be noted that it is not required, in order to solve the problem of the General Angle
Division, to construct the (problematic) intersection point between the quadratrix and
the axis, but only to assume the quadratrix (or the spiral) as given. On the contrary,
the solution of the rectification of the circumference by means of the quadratrix involves

the supplementary problem of exhibiting its terminal point.

In the previous section, we have also inquired whether the solution of the rectification
problem through the spiral, which, unlike the quadratrix, is not touched by Sporus’
objection on the non- constructibility of its points, would have provided a fully-fledged
solution of the rectification of the circle. We listed few reasons for doubting that a
construction employing the spiral could be accepted by ancient mathematicians as a

satisfactory solution to the rectification of the circumference.

The issue of the quadrature of the circle surfaces on several occasions in commentaries to
the aristotelian corpus from late antiquity, posterior to Pappus. Although the context is

that of commentaries to philosophical works, the commentators themselves did not lack

198Gee |Clagett| [1964-1984], vol. 2 and vol. 5 in particular. Useful information can be found, for
instance, in [Hofmann| [1954]. Hoffman’s article also contains the exposition of an early-modern attempt
to provide an approximate method for the tracing of the tangent of the spiral, due to Viéte.
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good mathematical credentials, and the way in which they engaged with the mathemat-
ical examples summoned by Aristotle can cast a light on the contemporary knowledge of

these themes.

Consistently with what remarked in chapter [I] of this work, we can infer from the tes-
timony of commentators that the circle-squaring problem (and therefore the problem of

rectifying the circumference too) was still regarded as an open problem in late antiquity.

A remaﬂ@ at point is, for instance, the one made by Ammonius (ca. 435/445-517/526),
a commentator of Aristotle and pupil of Proclus{T|

Having erected a square equal to a rectilinear figure, geometers also sought,
if possible, to find a square equal to a given circle. Many geometers - in-
cluded the greatest ones - looked for it, but did not find it. Only the divine
Archimedes discovered anything at all close, but so far the exact solution has
not been discovered. Indeed it may be impossible. And this is, in fact, why
Aristotle says: ‘if indeed it is something to be known’ [It is perhaps because
he produced a straight line not dissimilar to the circumference <that he was
in doubt> whether it is or is not something to be known.| He therefore says
that if indeed the squaring of the circle is something to be known although
the knowledge of it does not yet exist, it follows from this that what is known
is prior to knowledgefn_TI

Ammonius is commenting, in the passage above, upon a remark on the quadrature of
the circle made by Aristotle in the course of a discussion, which occurs in chapter seven
of the Categories, about knowledge as belonging to the category of ‘relative’. In the
course of this discussion, Aristotle chose the example of the circle-squaring problem in
order to illustrate the relation between knowledge and knowable, and in particular the
following thesis: "for if there is not a knowable there is no knowledge - there will no
longer be anything for knowledge to be of - but if there is not knowledge there is nothing
to prevent there being a knowable"m The squaring of the circle was indeed a case at

point of something that may knowable, although not yet known.

1097 shall follow, in the subsequent lines, the account offered by Knorr (Knorr| [1986], p. 361-381).

110 Although primarily known for his commentary to Aristotle, Ammonius was a distinguished geometer
himself (see [David| [2012]).

A mmonius| [1992], 75, 10. See also [Knorr| [1986], p. 362.

12 Aristotle [ 1963, 7b 30-35.
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The example of the quadrature of the circle offered to Ammonius the occasion to comment
upon the current status of this geometric problem. Ammonius, who probably had some
knowledge in mathematics and must therefore be considered reliable, conceded that the
question about the solvability of the circle-squaring problem had not been assessed yet.
Analogous opinions about the solvability of the circle-squaring problem echo also among

contemporary and later commentators too.lE

Let us recall, for instance, Marinus’ commentary to Euclid’s Data, a text written in the
fifth century of our era, in which the quadrature of the circle was even representative of

a category of problems, called ‘aporon’. As Marinus wrote:

That which we are now able to construct - i.e., to bring to our thought - is
porimon (...) The opposite is aporon. For example, squaring a circle, for
this is not yet in our power, even if it can be attained and falls under some

science, for the scientific knowledge of it has not yet been graspedFEI

In other words, the class of problems labelled by the term ‘aporon’ groups all those
problems "whose investigation is undecided (adiakritos)", under which Marinus ranged
the quadrature of the circle. By the term undecided, namely ‘adiakritos’, Marinus meant,
in particular, arguably problems in want of a satisfactory solution, and for which it is

unknown whether a satisfactory solution did actually exist.@

But what might have been a ‘satisfactory’ solution, in the context of Marinus’ consid-
erations? We do not precisely know of constraints on the acceptability of curves and
solutions in force within Greek mathematics, although there is evidence that a distinc-
tion between acceptable and non acceptable constructions was contemplated, at least
among geometers and commentators from the late antiquity. In his commentary on

Aristotle’s Categories, for instance, Simpliciuﬂ referred to the circle-squaring problem

113G5ee again the survey contained in [Knorr |1986], p. 362. We read, for instance, in Simplicius’
Commentary to the seventh Book of the Physics (1083, 1): "[In Aristotle’s days], it was still being
investigated whether it is possible for a straight line to be equal to a curve, or rather it had been given
upon. And hence the squaring of the circle had not yet been discovered either, and, even if it seems to
have been discovered now, nevertheless it is accompanied by certain disputed hypothesis. The reason
why the squaring of the circle, though not yet discovered, is still being investigated, as well as [the
question| whether a straight line is equal to a curved one, is that it has also not been discovered that
these things are impossible, as for instance [it has that] the diagonal is incommensurable with the side.
This is why the latter is not still being investigated".

410 [Buclid| [2003], p. 244-245.

"3Euclid| |2003], p. 245.

16Simplicius was probably born towards the end of V century A. D, and was himself a discipline of Am-
monius. As for his teacher, we can find sparse remarks about the circle-squaring problem in Simplicius’
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and remarked that geometers had come up, by the time he was writing, only with ’in-
strumental’ (‘organike’) constructions or discoveries instead of providing 'demonstrative’

(‘apodeiktike’) ones.

Anyway, the distinction at stake here between ‘organical’ and ‘demonstrative’ construc-
tions seems to concern a distinction into geometrically legitimate and illegitimate meth-
ods in problem solving. I remark that the term employed by Simplicius is ‘organikos’
(‘Opyavixdc’), which refers, as we have seen, to the use of instruments for the generation
of curves. Simplicius does not employ the term ‘mekanikos’ (‘unxavixéc’), which was
used by Sporus in order to qualify the generation of the quadratrix, instead. W. Knorr
advances the conjecture that Simplicius might be conflating both terms, treating ‘instru-
mental methods’ as a synonym with ‘mechanical methods’. An ‘organic’ construction
of the quadrature of the circle would be, therefore, a construction of the problem which
makes appeal to curves of the third, linear class, like the quadratrix, or to approximate
methods, as it occurred with the classical techniques consisting in approximating the

surface of the circle by sequences of inscribed and circumscribed polygons.lzl

If we confine to the solution of the circle-squaring problem by means of intersection of
curves, Pappus’ Collection represented, among ancient source, the most complete survey
into the problem. In Book IV of the Collection, in particular, Pappus had offered an
insight into a possible way to solve the problem, together with its formal justification. A
fully-fledged construction of the quadrature of the circle according to the protocol devised
in the Collection depended on the condition of defining the quadratrix as a geometrical
curve, so as to be able to use it as a reliable means of construction. This implied,
moreover, that a method for generating the quadratrix had to be described, such that

the foot of this curve could be constructed too.

The positions I have surveyed allow us to conclude that, although it was not excluded
by late mathematicians and commentators that the problem of the quadrature of the
circle might be impossible, nevertheless it was still considered as a rational, and even

plausible endeavor to investigate its construction, possibly by more geometrical method

commentaries to Aristotle. In spite of their non-technical character, these remarks are valuable, as Knorr
observes, since: "the commentators often avail themselves of the authorities from the technical literature
as well as from the historical and philosophical writings in geometry. Thus, one might expect that they
would reflect whatever conclusions had been drawn concerning the status of the circle quadrature among
the ancient geometers." (Knorr| [1986|, p. 361). See alsdKnorr| [1986], p. 364.

7This approximation is described by Archimedes in his A Measurement of the Circle (Archimedes
[1881], vol. I, p. 257).
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than ‘linear’ curves, or curves of the third kind. Conclusively, in spite of its indirect
character, the evidence offered by late antiquity commentators represents an important
source of information on the status of the circle-squaring problem during that period:
this was an ‘open problem’;, because it had received thus far no acceptable and fully
satisfactory solution. Even if the solutions to the circle-squaring problem which made
appeal to ‘linear’ curves were known to mathematicians from late antiquity, they probably
have failed to meet proper standards for geometricity in force within those historical

settings.

On the aftermath of the publication of the latin translation of the Collection (1588),
due to Commandinus, mathematicians saw in perfectly clear terms the question at stake:
the study of alternative descriptions of the quadratrix with respect to the ones given by
Pappus might offer a construction of the foot of this curve, and thus provide a solution for
the sought-for circle-squaring problem. Some of these attempts, as well as the ultimate

criticism advanced by Descartes on this subject will be examined in the next chapters.



Chapter 3
The geometry of René Descartes

3.0.1 Descartes’ geometry and its methodological presuppositions

XVIIth century was a period of profound changes in the image and content of geometry.
With the exception of the theory of conic sections, that had reached a high level of
sophistication thanks to the work of Apollonius, in particular, ancient Greeks lacked
a systematic treatment of more complex curves, although they studied and employed
in problem-solving some interesting special curves (I have discussed some of them in
the previous chapter). On the contrary, from the 1630s the field of known geometric
curves recorded, over a short period of time, a considerable growth with respect to
the curves accessible to ancient geometers. In [Bos| [1981], for instance, three directions
of research are individuated through which new curves could enter the mathematical
discourse. Curves could be introduced as given objects of study: this is the case of the
cycloid, the curve described by the rim of a rolling circle, whose properties as its area,
the areas and centres of gravity of its segments and the contents and centres of gravity of
solids arising by rotation of its segments were studied in response to a famous challenge
proposed by Pascal in 1658 (cf. Bos| [1981], p. 295-296). Otherwise, curves could be
introduced as means for solving problems (one can think, for instance, of the cartesian
parabola constructed by Descartes in order to construct the roots of equations in fifth
and sixth degree, and illustrated below, at p. . Finally, curves arose as solutions
to problems (for example the ‘linea proportionum’, a curve nowadays considered as a
primitive representation of an exponential function, which arose in connection with the

problem of compound interestE]

!'See [Bos| [2001], p. 246.

100
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However, this undeniable enrichment in the domain of curves, and consequently in the
domain of problem-solving methods, should not adumbrate the fact that classical geom-
etry exerted a pervasive influence on the early-modern period. Not only ancient sources
still dictated, until well into XVIIth century, the agenda of problems to be solved and of-
fered a basic repertoire of techniques to be used in this activity, but Greek mathematical
texts, which survived and circulated among XVIth and XVIIth century practitioners (it
is the case, as I have recalled in the previous chapter, of Pappus’ Mathematical Collec-
tion), also contained important predicaments on the way of framing the global activity

of solving problems and organizing the body of mathematical knowledge.

It should be noted that the availability of diverse techniques for problem-solving hardly
entailed their overall acceptability in geometry. Early modern geometers were often called
to decide, through a tacit or explicit recourse to extramathematical deliberations, which
curves and methods could be legitimately used in order to solve a problem at hand, and
which ones, on the contrary, were not to be used for the same goal. Thus, several early
modern geometers seriously considered the following cluster of questions: ‘how curves
themselves were to be constructed? Which construction methods satisfied the requisites
of exactness that one wishes to attribute to any geometric procedure, and which ones,
on the contrary, lacked the exactness of proper geometric thinking?’ Answers obviously
varied, depending on available technical knowledge, but also on the ideal of exactness

that the single geometer might embraceﬂ

It is admitted that a turning point in this history is represented by Descartes’ work in
geometry, culminated with the publication of La Géométrie, in its french first edition
(1637), and successfully in two latin editions, from 1649 and 1659—61.E| Descartes’ geom-

2For a book-lenght discussion of these questions, at least during the period between 1590 and 1650,
I refer to the ground-breaking [Bos| [2001]. Bos gives a general characterization of ‘exactness’, as the
quality of mathematical procedures that, in the opinion of some mathematicians, makes them acceptable
as leading to genuine and precise mathematical knowledge. An important clarification on the matter
of exactness is offered in the contributions by Panza (see [Panzaj [2011]). Concerning the definition of
exactness, Panza explains: "The exactness concern for classical geometry was not a matter of accuracy.
Accuracy was certainly a requirement for practical or applied geometry, but the exactness requirement
concerned pure geometry, and was quite different: whereas, for the purposes of practical geometry, it was
required to perform some (material) procedures with a sufficient degree of precision, in pure geometry
it was required to argue in some licensed ways. This is what the exactness concern was about" (Panza,
[2011], p. 46).

3The second latin edition of Descartes’ geometry, published in two volumes in 1659 and 1661, re-
spectively, included some papers from Van Schooten’s students and colleagues. These papers contained
results of their research on Descartes’ geometry. For instance, Jan de Witt (1625-1672) treated conic
sections; Jan Hudde (1628-1704) studied in one article the factorization of polynomial equations, and in
a second paper, he simplified Descartes’ method of normals. Finally, Hendrick Van Heuraet (1634-16607)
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etry exerted a considerable influence over the mathematicians of XVIIth century, as it

framed a new and general method for problem-solving.

A survey of Descartes’ method will be the starting point of my inquiry too. In particular,
I will probe into the guidelines, or norms, governing the search for solutions to geometrical
problems and the criteria for the acceptability of solving-methods deployed by Descartes

in his Géométrie.

A methodological point I am going to unravel - in chapter [5] of this study - concerns the
demarcation between legitimate and illegitimate solving methods, deployed in the second
book of Descartes’ treatise. Since Descartes relied on the solution of geometric problems
by intersection of curves, for him the criteria in order to demarcate the collection of ac-
ceptable methods ought to depend on a distinction between acceptable, or "geometrical"

curves, and "mechanical" ones, the latter being excluded from the scope of geometry.

In chapter 4] T will examine a second aspect of Descartes’ programme instead, namely his
classification of curves and the internal constraints imposed on the solvability of problems.
The legacy of ancient geometry was significant with respect to this issue. For instance,
the "metatheoretical" passage on the classification of problems, in Book IV of Pappus’
Collection, exerted a palpable influence over the choice of the most adequate solution to

a given problem, and it shaped, in this way, Descartes’ problem solving strategyﬁ

contributed some material to Geometria, addressing the problem of the rectification of curves. In his
Phd dissertation, S. Maronne interestingly argues that the Géométrie of 1637 is but one among four
‘Geometries’. A ‘second geometry’ consists of the collection of critiques to Descartes’ Géométrie and of
his own replies, mainly consigned to correspondence, A ‘third’ and a ‘fourth geometry’ are represented
by the two first latin editions mentioned in the main text: the first one from 1649, and the second
one from 1659-61. This corpus is certainly rich and varied, and it offers precious evidence of the way
in which the key questions and problems brought to the fore by Descartes Géométrie of 1637 evolved
throughout a period of about thirty years. I observe, nevertheless, that the issues I will discuss in this
and the following chapters, namely the demarcation between acceptable and unacceptable curves, and
the constraints on the acceptability of curves as legitimate solutions to given goemetric problems, were
hardly ever discussed, at least until 1667-1668, and when it happened, they were by no means object of
criticism.

4In Commandinus’ translation, Pappus’ "homogeneity requirement" sounded even more peremptory
than the original, and assumed moralistic tones: "Videtur autem quodammodo peccatum non parum
esse apud Geometras, cum problema plano per conica, vel linearia ab aliquo invenitur, et ut summatum
(summatim?) dicam, cum ex improprio solvitur genere ..."(Commandinus| [1588|, fol. 61r.): "It seems
a somehow non small sin, among geometers, when someone solves a problem of plane kind by means
of conics, or linear curves, and, to speak generally, when it is solved by a non-kindred kind (improprio
genere)".
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Descartes reinterpreted this precept in the light of the representation of problems and
curves via algebraic equations, and incorporated it into his problem-solving practice, to
the point of considering any of its violation an error in geometry ("une faute", as written
in Descartes| [1897-1913|, vol. 6, p. 443). In fact, as it is clearly stated in the third
Book of La Géométrie, Descartes required a solution to a mathematical problem to be
not only logically correct and obtained by the intersection of acceptable curves, but also
be as simple as possible. Algebra will reveal a fundamental tool in order to measure
simplicity, and therefore to assess the nature of a problem by excluding too simple (and

therefore impossible) solutions, and too complex ones.

As I will argue, Pappus’ homogeneity requirement, reinterpreted by Descartes in the
light of algebra, exerted a long-range influence on mathematical practice throughout
XVII century. This requirement was not straightforward though, and gave rise to broad

disagreement among early-modern geometers.ﬂ

My examination will take into account what I deem to be the original tension, lying at the
basis of this disagreement, between two different constraints on problem-solving set and
contrasted by Descartes, that I will call: "dimensional simplicity" and "easiness". The
preference for the former, manifested by the author of La Géométrie, is counterintuitive
under several aspects and was thus perceived by many readers of this work. My goal
will be to motivate Descartes’ choice for dimensional simplicity in the light of the ancient

classification of problems and curves.

3.0.2 Descartes’ early methodology of problem solving

Concerns with the proper methodology for problem-solving and with the constraints on
the acceptability of curves accompanied Descartes’ reflection on mathematics since the

earliest sketches of the program he would later develop in 1637.

One of the first broad considerations is committed to a letter from 26th march 1619 ad-

dressed by the young Descartes to one of his closest fellows at the time, Isaac Beckmann.lﬂ

SInstances of criticism to the cartesian view on what should count as the proper solution of a problem
have been analized in |Bos| [1984], especially p. 358ff.

50n the Dutch savant Isaac Beeckman, see [Sasaki [2003], p. 95-103. The meeting between Descartes
and Beeckman occurred in Autumn 1618, and it is worth noting in which terms Descartes recalled to
Beeckman the role of the latter on his own scientific maturing: "You are truly the only one who awoke
[me] from sloth, recalled erudition which had almost passed away from memory, and bettered my mind
which was drifting away from serious occupations" (translation inSasaki [2003|, p. 95).
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In this letter, Descartes outlined his mathematical aspirations, whose highest goal con-
sisted in the foundations of a "new science" capable of determining the most adequate
means to solve any given geometric problem, such that no problem would finally remain
unsolved. Since this programme lay the groundwork for the future inquiries developed

in La Géométrie, I will reproduce Descartes’ account of it in its entirety:

Et certe, ut tibi nude aperiam quod moliar, non Lullij Artem brevem, sed sci-
entiam penitus novam tradere cupio, qué generaliter solvi possint quaestiones
omnes, quae in quodlibet genere quantitatis, tam continuae quam discretae,
possunt proponi. Sed unaquaeque iuxtam suam naturam: ut enim in Arith-
meticd quaedam quaestiones numeris rationalibus absolvuntur, aliae tantum
numeris surdis, aliae denique imaginari quidem possunt, sed non solvi: ita
me demonstraturum spero, in quantitate continua, quaedem problemata ab-
solvi posse cum solis lineis rectis vel circularibus; alia solvi non posse, nisi
cum alijs lineis curvis, sed quae ex unico motu oriuntur, ideoque per novos
circinos duci possunt, quos non minus certos existimo & geometricos, quam
communis quo ducuntur circuli; alia denique solvi non posse, nisi per lineas
curvas ex diversis motibus sibi invicem non subordinatis generatas, quae certe
imaginariae tantum sunt: talis est linea quadratrix, satis vulgata. Et nihil
imaginari posse existimo, quod saltem per tales lineas solvi non possit; sed
spero fore ut demonstrem quales quaestiones solvi queant hoc vel illo modo
et non altero: adeo ut pene nihil in geometria suprsit inveniendum; Infinitum
quidem opus est, nec unius. Incredibile quam ambitiosum; sed nescio quid
luminis per obscurum hujus scientiae chaos aspexi, cujus auxilio densissimas

quasque tenerbas discuti posse existimo.ﬂ

"Descartes| [1897-1913], vol. 10, pages 154-155:"And to tell you quite openly what I intend to under-
take, I do not want to propound a Short Art as that of Lullius, but a completely new science by which
all questions in general may be solved that can be proposed about any kind of quantity, continuous as
well as discrete. But each according to its own nature. In arithmetic, for instance, some questions can
be solved by rational numbers, some by surd numbers only, and others can be imagined but not solved.
For continuous quantity I hope to prove that, similarly, certain problems can be solved by using only
straight or curved lines, that some problems require other curves for their solution, but still curves which
arise from one single motion and which therefore can be traced by the new compasses, which I consider
to be no less certain and geometrical than the usual compasses by which circles are traced; and, finally,
that other problems can only be solved by curved lines generated by separate motions not subordinate
to one another; certainly such curves are imaginary only; the well known quadratrix is of that kind. And
in my opinion it is impossible to imagine anything that cannot at least be solved by such lines; but in
due time I hope to prove which questions can or cannot be solved in these several ways: so that hardly
anything would remain to be found in geometry” (English translation in Bos| [2001], p. 232).
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The ambitious program presented in this letter concerns continuous and discrete mag-
nitudes, whose paradigmatic sciences are, respectively, geometry and arithmetic. Arith-
metic and geometric problems are considered in parallel and classified according to tri-
partite distinctions. In particular, these disciplines mirror each other, but do not mix:
it seems that Descartes excluded, by 1619, the use of arithmetic in geometric problem-

solving.

Let us consider more closely the organization of geometry as it shines through Descartes’
letter to Beeckman. Geometric problems are classified on the ground of the curves
used to solve them. Analogously to what will be done almost twenty years later in La
Géométrie, curves are distinguished according to the motions intervening in their gen-
eration (and, ultimately, according to the instruments employed for their construction):
a major divide is made between curves obtained through a single motion (generated by
the ordinary compass and by other instruments, called in the letter "new compasses")
and curves obtained through several non-subordinate motions. These latter curves are

called “imaginary”, and among them Descartes mentions the quadratrix.

It cannot be assessed with precision whether by 1619 Descartes had read about the
quadratrix in Pappus’ latin translation. Another possible source for Descartes’ knowledge
might have been Clavius’ Geometria practica, in which the curve is studied (see, Clavius
[1604], book VII, p. 320-327), since we know that Beeckman possessed a copy of it, and

references to this treatise are extant in his diariesl

Nor can it be assessed with certainty whether Descartes was familiar at all, in 1619, with
Pappus’ classification of problems and curves. There are, at any rate, evident analogies
between Descartes’ classification exposed in the letter to Beeckman and the one proposed
by Pappus: both admit a class of problems solvable by the intersection of straight lines
and circles and a class of problems solvable by lines generated by separate motions, like

the quadratrix.

Perhaps the aspect in which Descartes moves away the greatest from the traditional
classification of problems based on their curve-solutions concerns the emphasis put on
the instrumental generation of curves, evoked above and in other locus of the same letter,

like the following:

8Sasaki| [2003], p. 95-96.
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Quatuor enim a tam brevi tempore insignes et plane novas demonstrationes
adinveni, meorum circinorum adjumento. Prima est celeberrima de dividendo
angulo in aequales partes quotlibet. Tres aliae pertinent ad aequationes cu-
bicas, quarum primum genus est inter numerum absolutum, radices et cubos,
alterum inter numerum absolutum, quadrata et cubos, tertium denique inter

numerum absolutum, radices, quadrata et cubos.ﬂ

Descartes claimed that he could use compasses ("meorum circinorum") in the demonstra-
tion of four problems: the first was the classical problem of sectioning an arbitrary angle
in equal parts, the latter three problems were algebraic, and related to the construction
of three general classes of cubic equations (in modern notation, these are equations of
the form: 2% = +az® + ¢, 2% = +br? £ ¢, 2% = +az? £ bo + ¢) [

These compasses are probably the same instruments discussed in some of Descartes’s
unpublished notes from 1619-21, known as Cogitationes Pm’vataeE We find in this
manuscript, in fact, the description of a device for solving the problem of sectioning
an angle into three and more equal parts (Descartes calls it: "circinus ad angulum in
quotlibet partes dividendum", i.e.: "compass to divide an angle into however many equal

parts"), and two other instruments applied in the solution of certain cubic equations.

The compass to divide an angle into three equal parts is described by Descartes as follows
(Descartes [1897-1913|, vol. 10, p. 240). We consider a configuration formed by four
segments or rulers AB, AC, AU and AT, such that while the first is kept fixed the other
three (namely AC, AU and AT') rotate around point A. On these segments, four points

Descartes| [1897-1913|, vol. 10, p. 154-155: "In such a small time, in fact, I have found four notable
and fully new demonstrations with the help of my compasses. The first is the very famous problem of
dividing an angle into any number of equal parts. The other three pertain to cubic equations: of which
the first kind between an absolute number, roots and cubes; the second between an absolute number,
squares and cubes; the third, finally, between an absolute number, roots, squares and cubes" (english
translation in |Sasakil [2003], p. 100).

198ee [Schuster| [1980].

"This is a manuscript presumably written by Descartes in the years 1619-21 which collected the
results of his broad scientific activity during the time (cf. |Descartes| [1897-1913|, vol 10, p. 234-241;
and particularly: Descartes| [1897-1913|, vol. 10, p. 234-35, p. 238-40). This work came down to us
through a somewhat tortuous route. Indeed it was perused and copied by Leibniz in 1676. Leibniz’s
annotated copy was deposited at Hannover Library, and later published by Fouché de Careil in the first
volume of the Oeuvres inédites de M. Descartes. Unfortunately, this edition contained notable errors,
but remains the only available source of Descartes’ Cogitationes, since both the original manuscript and
Leibniz’s copy went lost (the latter, in fact, disappeared after Fouché de Careil could peruse it). Finally,
thanks to endeavours of Gustav Enestrém, Henri Vogt, and Henri Adam Fouché de Careil’s version was
thoroughly amended, and published in vol. 10 of Descartes’ Oeuvres.
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Figure 3.0.1: Trisector compass.

are subsequently marked, such that AF = AG = AQ = AS. At points F and Q two
segments of equal length (and equal to AF') are thus constructed, joining in a common

extremity at J.

The same construction is repeated, so as to obtain two other congruent segments SR
and GR, connected at point R on AU (figure [3.0.2)). In this way, when the segment AC
pivots around A, the trajectory of point R traces a curve, by whose means a given angle,

on which the compass so designed is applied, can be trisected.[?]

Descartes remarks that one could dispose of the problem of dividing an angle into 4, 5, 6...
and n sections, provided more and more intermediate rulers are added to the original
configuration, and corresponding sectrix curves will be traced, corresponding to each

instance of the problem of dividing an angle into n equal partsﬁ

It is important to remark that this dispositive does not solve the problem of the general
section of an angle, that is, all angular divisions, by tracing one curve only. The compass

devised by Descartes, in other words, traces infinitely many curves, each apt for the

2Descartes| [1897-1913|, vol. 10, p. 240-241. The full solution is reconstructed in Bos| [2001], p. 239.
Let us consider the problem of trisecting a given angle TAB = 6. In order to trisect it, the compass
must be positioned so that one of its arms coincide with AB (as in the figure), and point R traces the
curve NRM (marked in red in the figure), until the trisector is opened with amplitude 6. It is then
sufficient to mark off a segment AS = a on AT, and with center in S, trace a circle with radius equal to
a. Named R the intersection point between the curve NRM and the circle, the angle TAR is one third
of the angle TAB. The proof is immediate from the construction of the segment.

3Descartes| [1897-1913], vol. 10, p. 241.
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Figure 3.0.2: Generalization of a trisector compass.

solution of a particular instance of the multisection of the angle (therefore, this instrument
will trace a trisectrix, a quadrisectrix, ... an n—sectrix provided an adequate number of
rulers is added). In figure for instance, the compass has been suitably extended
in order to perform a division of an angle into five equal parts through the curve traced
by the moving point Dq. As the figure shows, the curve so obtained sensibly differs from

the curve traced by the moving point R.

The instruments mentioned in the Cogitationes for the solution of cubic equations were
adaptations of a more general compass, perfunctorily mentioned in the Cogitationes as
"mesolabe compass" (circinus mesolabi). Even if the description of this compass is
unclear from the Cogitationes, there is a general agreement among commentatorﬁ in
considering the mesolabe compass as an early exemplification of an instrument later
described in La Géométrie in order to solve the problem of inserting an arbitrary number
of mean proportionals between two given segments (the instrument appear, without a
name, in: Descartes [1897-1913|, vol. 6, p. 391, p. p. 443).|E|

1See for instance [Sasaki| [2003], pp. 112fF; [Bos| [2001], p. 239ff; [Schuster| [1980| et alii. I will notice
that this similarity was already indicated by Leibniz, in his marginal notes to the Cogitationes, at least
according to Fouché de Careil’s edition (Descartes| [1859], p. 38, 41).

15 As it is convincingly argued by Sasaki (Sasaki| [2003], p. 120-121), Descartes might have been in-
spired by ancient examples in devising his mesolabe compass. Because of the similarity of structure (see
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As suggested by Bos (Bos| [2001] p. 243-244) the universality to which Descartes aspired
by the use of both his instruments was legitimated by the configuration of geometric
problems at the turning of XVIth century. Indeed, a part from the problems solvable
within Euclid’s geometry, solid problems, like the insertion of two mean proportions
and the trisection of the angle were certainly known and discussed, especially after the
publication of Commandinus’ translation of Pappus. Among higher problems than the
solid, the only known problems concerned the construction of regular polygons and the

quadrature of the circle.

By supplementing instruments in order to solve solid problems, together with the problem
of dividing the angle into an arbitrary number of equal parts (and therefore to solve
the construction of any regular polygon too), and by adding to these instruments an
imaginary curve like the quadratrix (Descartes had not excluded it from geometry, as
he would do in the subsequent years), Descartes could reasonably admit that: "it is
impossible to imagine anything that cannot at least be solved by such lines". In this way,
he also deemed to have provided with his programme the guidelines in order to achieve
the "infinite task" (Infinitum Opus) consisting in solving "any problem, concerning either
discrete or continuous quantities, according to its own nature, without leaving unsolvable

questions".

Descartes’ challenge responds to another well-known passage from Viéte’s In Artem An-
alyticam Isagoge, in which the author praises his new analytic technique by boasting its
capacity to solve the "problem of all problems, which is TO LEAVE NO PROBLEM
UNSOLVED".

Descartes|[1897-1913], vol. 6, p. 391, and below) Descartes might have studied the design of the mesolabe
from the extant passage of Pappus’ book III, or from Eutocius’ Commentary (proving, in the first case,
that he could know of Pappus’ Collection already at the beginning of the 20s). Another possibility is
that Descartes had knowledge of the ancient Mesolabe through early modern work in which it appeared,
for instance: J. J. Scaliger, Mesolabium (Leiden, 1594); Victe, Variorum de rebus Mathematicis Re-
sponsorum Liber VIII (Tours, 1593); Idem, Pseudo-Mesolabum (Paris, 1595). A third plausible, early
modern antecent of Descartes’ Mesolabe might be an instrument conceived by Galileo and illustrated
in the following manual, published in 1606: Le operazioni del compasso geometrico e militare. Galileo’s
"geometric and militar compass" is a graduated instrument devised for the purpose of executing geomet-
ric operations and physical measurements without the recourse to numerical computations (for a survey
of the various purposes of Galileo’s compass, see [Righini [1974], and |Sasaki| [2003], p. 103-105). The
context in which Galileo’s compass is studied is that of practical geometry, ballistic, land surveying and
astronomy, hence an utterly different context than the one of Descartes’ project in geometry. Never-
theless, we can detect a structural similarity between Descartes’ mesolabe or proportions compass and
Galileo compass: the principle on which both instruments are based is the similarity between triangles
popping up in the configuration of the compass (Righini [1974], p. 207).
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These ideas may not have come to Descartes directly from Viétem In fact, ambitious
declarations like the ones of Viéte were not rare among XVIIth century mathematicians,
and could even be seen as a consequence of the widespread optimistic turn occurred
in connection with the rise of algebraic methods in geometry, which has been called

"mathematical utopianism" E|

We can define "mathematical utopianism" as: "... the doctrine that the whole of
mathematics can be developed simply, straightforwardly, and seamlessly from a few easily
grasped general precepts." I will quote only two outstanding examples of this intellectual

posture. In his An Idea of Mathematics, for instance, John Pell set out to show:

how manie Mathematician that will take the pains, may prepare himself,
S0, as that hee may, though hee bee utterly destitute of Books or Instruments,
resolv anie Mathematical Probleme as exactly as if hee had a complete Li-
brarie by himE

Later mathematicians were also imbued by similar utopian visions. A well-studied case
at point is Leibniz, for instance, who showed this attitude from his early deliberations.

Hence, We read in a manuscript of 1673:

I dare say that this has been discovered by me, and that I have opened the
sources of the archimedean geometry which, if one follow them, can perform
what is boasted by apollonian geometry: to solve a problem, or to show its
unsolvability@

These considerations must be referred to the specific mathematical context represented by
problems of quadratures in Leibniz’s mathematical practice. However, they seem inspired

more by a general philosophical attitude than by concrete technical achievements.

161t is noteworthy that in the 1631 edition of Viéte’s works, edited and commented by Jean de Beau-
grand, the formulary expression: "to leave no problem unsolved" appears several times, like a refrain
(cf. [Sasaki [2003|, p. 247). Descartes read Viéte’s works in this edition, only between 1631 and 1632,
and indeed complained with Mersenne about the excessive self-confidence shown by Viéte: "... Ie vous
remercie du liure d’Analyse que m’auez enuoye; mais entre nous, ie ne vois pas qu’il soit de grande vtilite,
ny que personne puisse apprendre en le lisant la fagon, ie ne dis pas de nullum non problema soluere,
mais de soudre aucun probleme, tant puisse-t-il estre facile. Ce n’est pas que ie ne ve’uille bien croire
que les auteurs en sont fort sgauans, mais ie n’ay pas assez bon esprit pour iuger de ce qui est dans ce
livre, non plus que de ce que vous me mandez du probleme de Pappus: car il faut bien aller au dela des
sections coniques & des lieux solides, pour Ie resoudre en tout nombre de lignes donnees, ainsi que Ie
doit resoudre vn homme qui se vante de nullum non problema soluere, et que ie pense I'auoir resolu."
(Descartes| [1897-1913]|, vol. 1, p. 245).

T"For more information, see D. Jesseph’s comments in [van Maanen| [2006].

18van Maanen| [2006]p. 227.

19T eibniz, Fines Geometriae, in AVII4, 36, p. 595.
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I surmise that Descartes’ early deliberations, sketched in the letter to Beeckman, can be
ascribed to the utopian ideas that we find in Pell and Leibniz. Even if it is a controversial
issue whether Descartes’ mathematical thought developed without discontinuities in the
subsequent years, from the noteworthy but still immature insight from 1619 to its highest
mathematical peak reached with La Géométrieﬂ a kinship can be certainly detected,
at least at a programmatic level, between Descartes’s earliest programme in geometry
and some of the key-points at the core of the mathematical program presented in La

Géométrie.

Firstly, we can envisage a similarity with respect to the emphasis on the rational classifi-
cation of problems and techniques and to the requirement to solve each problem according
to its own nature. As I will expound in the rest of my chapter, Descartes adhered to

these general desiderata particularly in La Géométrie.

A second motif of continuity between the early programme and the more mature achieve-
ments presented in La Géométrie concerns the emphasis on the instrumental generation

» "new

of curves. The invention of new compasses is in fact at the core of Descartes
science", in 1619, both because the employment of these devices allowed him to solve,
by tracing appropriate curves, many of the questions lying open in the problem-solving

configuration of early XVIIth century practice, and because these instruments offered to

29Particularly controversial are the role and significance, for the subsequent development of Descartes’
geometric thought, of the Regulae ad directionem ingenii (as Bos summarized it: "Descartes’ unfinished
attempt to formulate rules of reasoning" [Bos|[2001], p. 261), a text written in latin and dating presumably
composed between 1619/20 and 1628 (see |Gaukroger| [1992b], p. 586), although never published during
Descartes’s lifetime. The question about what do the Regulae tell us concerning Descartes’s knowledge
of mathematics and his ideal of exactness has been dealt, among others, in |Gaukroger| [1992a], Bos
[2001], in particular chapter 18 (p. 261 ff.), and [Rabouin| [2010]. Both Bos| [2001] and Rabouin| [2010]
agree upon the fact that one must be very cautious in tracing a continuity between the Scientia penitus
nova evoked in 1619, the program ventured in the Regulae, and the general program expounded in the
Discours de la méthode and in the Essais appended to it. As Rabouin explains: "The general context
[of the Regulae] is an investigation into what makes possible the unity of mathematics - which is indeed
the traditional context of reflection on a possible "general" or "universal" mathematics (...) there is no
reason to merge what seem to be different projects (the "entirely new science" of 1619, the alia disciplina
and the mathesis universalis of the Regulae, the "general algebra" of 1628) into a single grandiose view
culminating in La Géométrie" (Rabouin| [2010], p. 435). In a sense, Descartes’ silence, in the Regulae,
on some crucial matters bears evidence against the continuity between the project cultivated in 1628 and
the later programme developed in La Géométrie. To mention few but significant examples, we cannot
find any mention, in this text, about the classification of problems based on the classification of curves,
nor about the use of algebra as a tool in order to analyze the nature of problems (Rabouin| [2010], p.
434, p. 441). Even if it is highly plausible that some of the ideas expounded in the Regulae were still
considered valid by the later Descartes, yet it is dubious to consider this treatise as an intermediate
step between the program for the new science illustrated in 1619 and the programme expounded in La
Géométrie.
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Descartes a rational and expedient means in order to organize geometrical knowledge.

In La Géométrie, Descartes circumscribed the curves usable in solving geometric prob-
lems to those generated by a well-defined class of devices ("geometrical linkages"), whose
paradigmatic example, chosen by Descartes primarily for its illustrative value, was an

instrument designed for inserting an arbitrary number of mean proportions (ref.).

As it has been conjecturedE Descartes arguably devised this instrument (or a instrument
very similar, for its design and function, to the one depicted in La Géométrie) already in
1619-20: it was one of the "new compasses" that he boasted of in the letter to Beeckman.
This certainly represents an important link between Descartes’ geometry of 1637 and his

original project depicted to Beeckman.

Undeniably, though, Descartes deeply reshaped his early program under the urge of
methodological and technical acquisitions. In order to show the significance of this re-
shaping, I will point out two elements of discontinuity between Descartes’s geometry
of 1637 and his early 1619 program, which constituted fundamental innovations in the

development of his mathematical thought.

The first element of discontinuity concerns the exclusion from geometry of certain curves,
previously held as fully goemetrical. A case at point is the quadratrix, a curve called
"imaginary" in 1619, but not explicitly considered, at that time, ungeometrical. Descartes’
view about the nature of this curve had changed by 1637, although the quadratrix was
still described, in La Géométrie, as a curve generated by two indipendent motions. What
change did happen, in Descartes’ conception of geometry, that might have led him to
consider this curve as illegitimate, and range it among mechanical, or ungeometrical

ones?

An answer might be advanced by considering a second element of discontinuity between
the earlier programme and its mature development: it concerns the role of algebra, which
had become dominant in La Géométrie. Not only Descartes devoted a large part of his
treatise (especially the third book) to algebraic techniques relating to the solution of
equations. Algebra (understood, as I will discuss in more detail below, as a language in

order to express proportions in a more compact way) assumed a fundamental method-

2L Cf. Bos| [2001], p. 240-241.
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ological role in establishing a classification of geometrical constructions according to their

simplicity, and in permitting a thorough insight into the structure of problems.

3.1 Analysis and Synthesis in Descartes’ geometry

3.1.1 Cartesian analysis as transconfigurational analysis

In 1637, Descartes admitted the view, reverberating in his early 1619 deliberations, and
common within ancient and early modern mathematics, of geometry as a problem-solving
activity. This viewpoint shapes both the surface form of this treatise and the very content
of the mathematics dealt with by Descartes.@

For what concerns the form, it must be observed that La Géométrie, without lacking a
foundational aim (see previous footnote), does not deploys its content according to an

outstanding deductive structure, as the one deployed, for instance in Euclid’s Elements.

The lack of a clearcut deductive concatenation explains why the order in which the three
books appear (namely: "Des problesmes qu’on peut construire sans y employer que des
cercles & des lignes droites" (book I), "De la nature des lignes courbes (II) and "De
la Construction des Problesme solides ou plusque solides" (book III) may not coincide
with the order in which they can or should be read: this flexibility in reading had been
remarked already by Descartes himself, who, for instance, suggested to Mydorge (one
of his early readers) to postpone book II to book III, without any loss in the overall
understanding.@

On the other hand, Descartes did not consider his book as a mere collection of results ,
but rather he shaped its content according to a method whose core evidently escaped to

the ancients’ insight:

ce que je ne croys pas que les anciens aient remarqué, car autrement

ils n’eussent pas la peine d’escrire tant de gros livres, ou le seul ordre de

2214 is perhaps too reductive to consider Descartes’ treatise merely the display of a method or art of
problem solving, as Henk Bos seems to concede: "Descartes wrote his book from a particular view of
geometry. He saw geometry as an art of solving geometrical problems" Bos|[2001], p. 352. Against this
hypothesis, see [Panzal [2011], where some of the the foundational aspects of Descartes’ geometry are
discussed.

281 . on doit aussy lire le trosiéme livre avant le second, & cause qu’il est beaucoup plus aysé",

Descartes| [1897-1913], vol. 2, p. 22.
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leurs propositions nous fait connaitre qu’ils n’ont point eu la vraye methode
pour les trouver toutes, mais qu’ils ont seulement ramassé celles qu’ils ont

rencontréPEl

We can immediately refer Descartes’s criticism to such a treatise as Pappus’ Collection:
a large work, whose structure is however loosely articulated. On the contrary, Descartes

placed himself in the opposite position while writing, in the closing lines of this treatise:

Mais mon dessein n’est pas de faire un gros livre, & je tache plutost de
comprendre beaucoup en peu de mots: comme on iugera peuestre que j’ay fait,
si on considere, qu’ayant reduit a une mesme construction tous les problesmes
d’un mesme genre, j'ay tout ensemble donné la fagon de les reduire & une

infinité d’autres diverses; & ainsi de resoudre chacun d’eux en une infinité de
facons .. E

It is also interesting to note that Descartes did not essentially develop the results ob-
tained in La Géométrie, but rather conceived his program achieved with it. On various
occasions, both in La Géométrie and in his correspondence, Descartes claimed to have
unfolded a general strategy in order to construct any problem of ever higher degree, and
thus maintained to have laid the guidelines of an epistemologically accomplished science,
in which any question that may be raised could in principle find an answer in virtue of
one and the same method P9

Although Descartes admitted that there still remained problems "unsolved", those were
either considered "impossible", i.e. problems constitutively outside the boundaries of ge-
ometry, or they were judged solvable by applying the method introduced in La Géométrie,
but only at a cost of greater WOI‘kE This attitude bears a clear resemblance to the inten-

tions expressed in Descartes’ 1619 letter to Beeckman, discussed in the previous section.lﬁ

2" Descartes| [1897-1913|, vol. 6, p. 376.

25Descartes| [1897-1913|, vol. 6, p. 413.

26Cf.for instance, [Descartes| [1897-1913], vol. 6, p. 485, and Descartes| [1897-1913|, vol. 2, p. 83:
"j’en fais la construction - wrote Descartes to Mersenne in a letter from 31 March 1638 - comme les
Architectes font les batiments, en prescrivant seulement tout ce qu’il faut faire, et laissant le travail
de main aux charpentiers et aux masons". Although Descartes is discussing a specific problem, this
judgement may hold for any problem which can be treated via the precepts of his method.

27 Cf. Descartes| [1897-1913|, vol. 2, p. 90-91.

28Henk Bos has made a similar point, by writing that: "After 1637 Descartes occasionally returned
to geometrical matters but he did not essentially develop the results reached in The geometry (...) In
the letter to Beeckman of 1619 he had written that he intended to achieve a ’completely new science by
which all questions in general may be solved’; this goal he now had reached for geometry, the science
which from the beginning inspired his vision of the scientic method"Bos| [2001], p. 399.
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Therefore, there is room to examine whether and to what extent the cartesian goal for a
"new science" is achieved in La Géométrie, and his hope about proving "what questions
could be solved either in this or that way" is fullfilled by the method applied in this
treatise. In order to get a clearer grasp of this position, I will concentrate on book I and

I1, and successively skip to to book III, in chapter [I55] of the present work.

Descartes’ principal problem in organizing his treatise is to provide it with structure and
limits. La Géométrie starts with a clear explanation of how the method for solving any

problem in geometry must proceed:

Tous les problesmes de Geometrie se peuvent facilement reduire a tels termes,
qu’il n’est besoin par aprés que de connoistre la longueur de quelques lignes

droites, pour les construire@

Descartes’ problem-solving strategy, as it is illustrated in the first book of La Géométrie,
is in fact composed by two parts, which we may call, after the traditional terminology,
"analysis" and "synthesis". The analytical part consists in reducing to lines all geomet-
rical objects figuring in a given construction problem, and coding the problem into an
equation. In the second part, namely the synthesis, the equation so obtained is solved
by constructing a segment by the intersection of adequately chosen geometrical curves,
or by finding infinitely many points entertaining with a given configuration of segments
certain geometrical relations specified in the equation itself: these points would therefore
form a locus described by the equation. In each case, anyway, the geometer can offer a

solution to the original problem by solving geometrically the equation obtained from the
analysis )

This description is of course reminiscent of the traditional twin method of analysis and
synthesis, known to early modern geometers through ancient mathematical texts and few
classical accounts, like the one contained in a famous section of Pappus’ Book VII of the
Collection. B1]

?9Descartes| [1897-1913|, vol. 6, p. 169.

30Descartes| [1897-1913|, vol. 6, p. 369.

3TAmong the surviving mathematical texts where the argumentative mode of analysis is applied, we can
list Book II of Archimedes’ Sphere and Cylinder, together with Eutocius’ commentary on propositions
II-1 and I1-4, and with Pappus’ Collection. Also Euclid’s Data was recognized as a source of theorems
applicable in the analysis of plane problems (See [Bos| [2001], p. 95). The best known exposition of this
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This account has been the object, in past and recent years, of an enormous amount
of studies to which I am reluctant to add, and it has caught the attention of a larger
group of scholars than the sole historians of mathematics;lﬂ hence I will only summarize
the main properties of the process of analysis, according to Pappus, and stress some
relevant differences with respect to the cartesian model of analysis that shines through

La Géométrie.

Pappus distinguished, in his account, two kinds of analysis: one called "problematical",
and the other one called "theorematical". The case of problematic analysis, to which
I will confine myself here, as it seems the most relevant one for Descartes and many
early modern geometers, applies to a geometrical problem asking for the construction of

a geometric object, satisfying certain spatial conditions relative to other given objects.

This procedure can be thus sketched: the sought-for object of the problem is given at
the outset of analysis and represented in a diagram involving the givens too. The initial
configuration is eventually extended, via licensed inferences and auxiliary constructions,

to another configuration, itself represented in a sub-diagram of the original diagram.

According to Pappus’ methodological considerations, analysis does not provide per se
a solution to the problem at hand, but has to be converted into a synthesis, in which
a geometric construction is effectuated. The connection between the analytical and
the synthetical part of the method is secured by the fact that analysis is achieved by
producing a configuration which shows how the sought-for object can be geometrically
related to some of the givens. Hence, the synthesis proceeds by a kind of reversal of the
analytical steps: starting from some given objects and data in the configuration with

which analysis terminates, it exhibits the sought-for object by licensed constructions,

argumentative strategy is however the one by Pappus’. The seventh book of Pappus collection contains,
as the author himself remarked: "Lemmas of the domain of analysis". The book is subdivided into a
preface, which contains the well-known exposition of the method of analysis and synthesis, and a list of
these books, there follows a series of synopsis of most of these books, and sets of lemma that are deemed
necessary for their reading (see [Pappus| [1986], vol. 1, p. 66ff.).

32For an annotated biography on analysis, not restricted to mathematics, see Beaney, Michael, "Anal-
ysis", The Stanford Encyclopedia of Philosophy (Winter 2012 Edition), Edward N. Zalta (ed.), URL =
<http://plato.stanford.edu/archives/win2012/entries/analysis/>. Among the works more specifically
dedicated to the changes in the method of analysis produced after the incorporation of the algebraic
mode of reasoning, we can recall: Hintikka and Remes| [1974], [ Méaenpaé| [1993] (this work unpublished),
Otte and Panzal [1997], Bos| [2001]| and, among the articles specifically dedicated to early modern geom-
etry |Panzal [2007], Panzal [2006], [Hintikka) [2012].
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and thus solves the problem ]

The form of problematic analysis sketched above is not the only one we encounter in
the context of ancient greek geometrical practice. A different type of analysis concerns,
for instance, such problems in which a geometric object is sought for, which satisfies
purely quantitative conditions, expressible either in the form of proportions between
homogeneous geometric objects, or between a pair of homogeneous geometric magnitudes
and two numbers, or in the form of equalities between two sums of mutually homogeneous

magnitudes ]

As an example of this kind of analysis, let us consider the construction of the problem of
inserting two mean proportionals between two given segments related by Eutocius, in his
Commentary to the archimedean treatise on the Sphere and the Cylinder, and ascribed
by him to Maenechmusﬁ

The problem goes as follows. Let be two given lines A and E (with A > F), it is is
required to find two mean proportionals B and I' between them. According to the first
step of analysis, let us assume the problem solved. Let a line OA be given in position,

and let us trace on it a point N, such that the segment ON = B. Let us trace the
perpendicular NP =T, as in fig.

Since we have: A : B = B : I, by hypothesis, we can deduce that the rectangle with
sides A, T, namely: R(A,T) is equal to the square with side B, namely: sq(R). Since
NP =T and ON = B, we obtain the following equality: R(A, NP) = sq(ON). This
equality expresses the symptom of a parabola passing through P, having vertex in O,

OM for axis, A for latus rectum.

Let us then trace OM and M P equal and parallel to NP and ON, respectively. Since we
also have that: A: B =1": FE, the rectangle with sides A and F is equal to the rectangle
with sides B and I'. But we have set B = ON, so that: B= MP,and'= NP =0OM.
Hence we derive the following equality: R(A, E) = R(MP,OM). This second equality
expresses a locus property of an hyperbola which passes through P, with O as center
and OM and ON as asymptotes.lﬂ

33The precise logical nature of the process of analysis and synthesis and their mutual relation is still
an open problem (See the illuminating studies: Hintikka and Remes| [1974], [Maenpaal [1997].

34The terminology is due to [Panzal [2007], p. 116.

35 Archimedes| [1881], vol III, p. 84-85.

36See also [Heath! [1981], p. 253-255, and chapter p. ﬁ
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Figure 3.1.1: Insertion of two mean proportionals.

Since the curves are univocally determined in the plane, they can be both constructed
in the synthesis, so that their intersection point P can determine the sought for mean
proportionals B(= NP) and I'(= M P).

Let us observe that a fundamental step in the analysis of this problem, as reported above,
consists in the derivation, from the proporition: A: B= B :I'=1: E, assumed at the
beginning of analysis, of the couple of proportions: A: B=B:T"and A: B=1:E,
from which the symptoma of the constructing curves can be derived too. The inference
leading from the first proportion to the subsequent ones is a non positional one, since it

does not depend on the configuration in which the segments A, B, I' and F appear.

We might thus employ the term: "trans-configurational analysis" in order to refer to
this type of transformative analysis, consisting in relying on geometrical non-positional
inferences, in order to reduce a geometrical problem which can be formulated in the
language of proportions, like the problem of inserting two mean proportionals, into new
problem or problems, like that of constructing the curves whose symptoma are expressed

by the couple of proportions: A: B=B:T"and A: B=1": Em

3TThe term is used in [Panzal [2006], p. 280, and [Panzal [2007], p. 121-122.
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The cartesian model of analysis may be also conceived as a transconfigurational type of

analysis. Descartes sketches his strategy in the following terms:

Ainsi, voulant resoudre quelque problesme, on doit d’abord le considerer
comme deja fait, & donner des noms & toutes les lignes, qui semblent nec-
essaires pour le construire, aussy bien & celles qui sont inconnues, qu’aux
autres. Puis, sans considerer aucune difference entre ces lignes connues et
inconnues, on doit parcourir la difficulté, selon ’ordre qui montre le plus na-
turellement de tous en quelle sorte elles dependent mutuellement les unes des
autres, jusqu’a ce que’on ait trouvé moyen d’exprimer une mesme quantité
en deux facons: ce qui se nomme une Equation, car les termes de 'une de ces

deux facons sont esgaux a ceux de l’autreﬂ

As we read in the passage above, a problem at hand, considered as solved, is reduced via
geometrical non-positional inferences not into another geometric problem, but into a finite
polynomial equation (namely, "a way to express the same quantity in two manners"), i.e.
an algebraic objectﬁ The equation obtained by "unravelling the problem" (parcourir la

difficulté) must be then constructed, in order to solve the original geometric question.

38Descartes [1897-1913]|, vol. 6, p. 300. The general characters of the process of analysis are discussed
also in the Rule XVII of the Regulae ad directionem ingenii, composed in the late 1620s. Here is how
Descartes describes it: "We should make a direct survey of the problem to be solved (proposita difficultas
directé est percurrenda), disregarding the fact that some of its terms are known (cogniti) and some are
unknown (incogniti), and intuiting, through a train of sound reasonings, the dependence of one term on
another (...) the trick here is to treat the unknown ones as if they were known. This may enable us
to adopt the easy and direct method of inquiry even in the most complicated of problems. There is no
reason why we should not always do this, since from the outset of this part of the treatise our assumption
has been that we know that the unknown terms in the problem are so dependent on the known ones
that they are wholly determined by them. Accordingly, we shall be carrying out everything this Rule
prescribes if, recognizing that the unknown is determinded by the known, we reflect on the terms which
occur to us first and count the unknown ones among the known, so that by reasoning soundly step by
step (gradatim € per veros discursus) we may deduce from these all the rest, even the known terms as
if they are unknown." (Eng. tr. in Maenpaa P., From backward reduction to configurational analysis, in
Otte and Panzal[1997], p. 207-208).

39T observe that the transformation of a geometrical problem into an algebraic problem abstracts
from those particular conditions on the content of the original problem that depend on the relative
positions of geometrical objects in a particular configuration: rightly speaking, then, Descartes refers
to the transformation of a geometric problem into an algebraic expression by calling it a "reduction".
Using a word from logic and computer science, we may say that translation from geometry into algebra
is a kind of forgetful translation, namely a translation that removes a specific kind of information. See,
for instance |Carnielli et al.|[2009).
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Despite Descartes judged his method "clearer and safer" than the analysis of the an-
cients and the algebra of the modernsm the general illustration offered in Book I still
contains ambigous aspects. For instance, it seems that Descartes alludes, by stressing
that one must choose "the most natural order" in deriving the equation corresponding
to a problem, to the possibility that more than one equation can be obtained from the
same problem. But which criterion one must choose in order to avoid equations more
complex than necessary? Descartes eschews a direct answer In Book I (this issue will
be discussed in book III), and observes, quite mysteriously indeed, that the simplest
possible equations corresponding to a problem can be obtained by "making all possible
divisions" H]

I will return to this issue in next chapter. In order to illustrate an example of cartesian
analysis, let us now consider how he dealt with the classical problem of finding two mean
proportionals between given segments a and ¢, whose solution was known since ancient
Greek geometry, and has been discussed also above. The first step is to reduce the

problem to an equation:

si on veut donc suivant cette regle trouver deux moyennes proportion-

nelles entre les lignes a et ¢, chacun sait que posant z pour 'une, comme a
2 2 3 3

N S N 2 22 N Z ’” : z
est & z, ainsi 2z a Z-, et £~ a %, de fagon qu’il y a Equation entre g et %7,

a
cest a dire 2% = a?q[?]

49Tn his Discours de la methode, Descartes observed: "Puis, pour I’analyse des Anciens et 1’algebre des
modernes, outre qu’elles ne s’estendent qu’a des matieres fort abstractes, & qui ne semblent d’aucun
usage, la premiere est toujours si astrainte a la consideration des figures, qu’elle ne peut exceder
I’entendement sans fatiguer beaucoup l'imagination; et on s’est tellement assuieiti, en la derniere, a
certaines regles & a certaines chiffres, qu’on en a fait un art confus & obscur, qui embarrasse 1’esprit,
au lieu d’une science qui le cultive. In particular: " Descartes disparaged the ancients for having con-
cealed their methods of discovery and having proceeded in such an unorderly way in their research, that
they wrote too long books: "ou le seul ordre des leurs propositions nous fait connoistre qu’ils n’ont
point eu la vraye methode pour les trouver toutes, mais qu’ils sont seulement ramassées celles qu’ils ont
rencontrées" (Descartes| [1897-1913|, vol. 6, p. 376). Although he was not lenient in his criticism of
Greek mathematicians, Descartes would also stress a fundamental continuity underscoring his techniques
for problem-solving and the techniques of the ancients: "Ils connoissent pas aussy ma Demonstration -
Descartes wrote to Mersenne in the already quoted letter from 31 March 1638, referring to his readers -
a cause que j’y parle par a b. Ce qui ne la rend toutefois en rien differente de celle des anciens, sinon que
par cette fagon je puis mettre souvent en une ligne ce dont ils remplissent plusieurs pages, & pour cete
cause elle est incomparablement plus claire, plus facile et moins suiete a erreur que la leur" (Descartes
[1897-1913]|, vol. 2, p. 83).

*“Descartes| [1897-1913|, vol. 6, p. 374: "... pourvli qu’en desmelant ces Equations on ne manque
point a se servir de toutes les divisions qui seront possibles, on aura infailliblement les plus simples
termes auxquels la question puisse estre reduite".

“ZDescartes| [1897-1913|, vol. 6, p. 469.
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Descartes’ notation is the one we are familiar with, where x, ¥y, z denote unknowns, and
letters a, b, ¢ etc. denote knowns segments. The problem actually asks to solve the prob-
lem of inserting two unknown segments denoted by = and z, given two known segments a
and ¢, in such a way that: a: 2 =z : 2z =z : ¢. Since the unknown z can be expressed in
terms of z and a, so the equation corresponding to the problem will be in one unknown,
namely: 2% = a?q.

This example illustrates how the construction of problems of ancient geometry is amenable
to a finite algebraic equation. Descartes claimed that his method of analysis could be
extended to problems "not entirely determined"@ namely problems admitting an in-
finity of solutions, as in Pappus’ locus problem. Let us recall that this problem (which
includes, in fact, several instances: it constitutes, therefore, a class of problems) is cen-
tral in Descartes’ Géométrie: in fact Descartes takes it up as a test-case in order to
demonstrate the superiority of his problem-solving strategy with respect to the geometry
of the ancients, who lacked a true method in order to discovery solutions to problems in
an exhaustive and orderly way. In explaining this problem I shall rely on Bos| [1981] (p.
299), and Bos [2001] (p. 271ff.). Let a number of lines L; given in the planes, and let ¢;
denote a number of given angles. Let P be a given point, and d; the line joining P to L;,

and cutting L; at a fixed angle ¢; (fig. [3.1.1)). Let o : 8 be a fixed ratio, and a a given

segment. It is required to find points, which satisfy either the following properties:

(di-dy...-dp): (dpg1...-dop—1-a)=a:

For any given number of odd lines; or the following property:

(dl‘dg...‘dn):(dn+1...d2n):al,8

For any given number of even lines.

As an example, I will resume, on broad strokes, the statement and analysis of Pappus’
problem for four lines (figure @ The problem can be thus related. Given four

438ee [Descartes| [1897-1913|, vol. 6, p. 372.
“40f. |Bos| [2001], p. 272fF., p. 314ff.; Mancosu| [1999], p. 69-71; Mancosul [2007], p. 113-114.



CHAPTER 3. THE GEOMETRY OF RENE DESCARTES 122

Figure 3.1.2: Pappus’ problem in 5 lines.

lines in position (but not in length) AB, AD, EF, GH, and four angles «, 3, ¢, 7, it
is required to find a point C, such that lines CB, CF, CD, CH can be drawn forming
angles «, 3, 0, v (as in fig. [3.1.1)), and such that the following equality is satisfied:

CB.CF=CD.CH

This is an instance of ‘locus-problem’; according to the terminology of the ancients: in
fact the problem characterizes a certain relation that a point C' possesses, in virtue of
its belonging to a special curve. The construction of this curve will eventually solve the
problem (in this case a conic section). Descartes, while maintaining the same terminology
of the ancients, and while recognizing this problem as a locus problem as well, subtly
but thoroughly changed the very concept of ‘locus’. As a start, he gave the following
definition of locus (‘lieu’), quite different from the one we can desume from Pappus’ or

Proclus’ accounts:

ces lieux ne sont autre chose que, lorsqu’il ets question de trouver quelque

point auquel il manque une condition pour estre entierement determiné (.. .)
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Figure 3.1.3: Pappus’ problem in four lines.

tous les points d’un mesme ligne peuvent estre pris pour celuy qui est de-
mandé 5]

A locus-problem, from Descartes’ viewpoint, asks to find points ("trouver quelque point")
that obey to specific conditions: more precisely, a locus-problem is an indeterminate
problem, and admits infinitely many points as solutions. Proceeding in compliace with
the general guidelines of analysis, Descartes starts by supposing: "la chose comme deja
faite", and considers the lines AB and BC' as "principal", namely lines in terms of which
all the other lines in the configuration are to be expressed. Descartes names segments
AB and BC with the letters x and y, and names with other letters (z, b, ¢, d and
so on) the other segments appearing in the configuration of the problem (as depicted
in figure). Since the triangle ARB, which pops up in the configuration by a simple
elementary auxiliary construction, is such that its angles are known by constructions,
the ratio between sides AB and BR is given too. Descartes can thus write down the
following proportion: AB: BR=b: z. Since AB = x, segment BR can be expressed as:
BR = b?x. Descartes relies on a chain of similar relations in order to express segments
CF, CD and CH in terms of x, y and of the other known segments.

The second step of Descartes’ analysis consists in setting the equation CB.CF = CD.CH
with the expressions of segments C'B, C'F, CD and C'H obtained in terms of the un-

knowns x and y. As a result, Descartes obtained an equation in the second degree in

“SDescartes| [1897-1913|, vol. 6, p. 407.
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x and y. More generally, the analysis of an indeterminate problem, in the context of

Descartes’ Géométrie, yields a polynomial equation of the form: F(x,y) = 0.

The synthetic part of the cartesian model in order to solve determinate and indeterminate
problems consists in the geometric construction of the equation obtained at the end
of analysis. According to the standards in force in early modern geometry, Descartes
required to solve the equation through a geometric construction, and not through an
algebraic manipulation. The latter solution, which for the problem at hand would amount
to express the unknown z as a ‘function’ of the known terms (for instance: z = m ) was
judged insufficient and non informative, because it did not tell us how z, corresponding to
the real root of the third degree equation, could be constructed, and thus how the original
geometric problem could be solved. As I will explain more extensively in the next section,
the importance of a geometric solution becomes clearer as we bear in mind that, in the
process of translating a construction problem into algebra, letters denoted segments
rather than abstract quantities, and equations were primarily shorthand notations for
proportions obtaining of segments. Accordingly, in Descartes’ synthesis of a determinate
problem, the solution to an equation ought to exhibit a geometric magnitude (for instance

a segment), that would thus enable to solve the original construction problem.lﬂ

If we remain to Descartes’ general deliberations offered Book I, it seems that once a
problem has been reduced to an equation, after having applied all ‘possible divisions’, its

construction could be effected by consequence, in the simplest Way.lzl

But Descartes seems to conceal here, with rethorical ability, a real difficulty in the
problem-solving practice. For instance, before presenting his solution to the problem
of inserting two mean proportionals, by constructing the corresponding equation via the
intersection of a circle and a parabola (see chapter 4| for the details of this construction),
he warns that solving the same problem by more complex means is configurable as an

error in geometry. Yet, as we know from the previous chapter, the mean proportionals

49Bos [1984], in particular pp. 339-342. Let us remark that the equation 2% = a®q has two solutions
in the field of complex quantities (see [Stewart| [2003], p. 9), whereas we can judge from the examples
deployed in La Géométrie that Descartes’ considerations were confined to the field of real quantities (or
on a structure isomorphic to it), where the equations has one solution. The fact that the two imaginary
roots of the equation z = m were not considered in the process of the geometric solution seems to
follow from Descartes’ emphasis on the geometrical character of the synthesis. What geometric object
might correspond to such solutions, in fact?

4"Descartes even pleads the question as unworthy of being discussed in detail, and leaves it to the
student as a delightful and useful exercise (Descartes| [1897-1913|, vol. 6, p. 374).
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problem can solved, correctly, by several curves: what sort of inference led Descartes to

his particular choice, and why did he discard alternative solutions?

Later, in the next chapter, we shall consider this problematique more closely. In order
to complete my illustration of Descartes’ procedures for the construction of problems,
I point out that, in the case of an indeterminate problem (reducible, as seen above, to
an equation in two unknowns), Descartes’ synthesis simply consisted in transforming it
into a determinate problem, simply by taking one of the unknowns (generally the one of
higher degree) and replacing it by a constant term so as to obtain a new equation in the

other unknown. Descartes explained this procedure in book I:

Puis, a cause qu’il y a toujours une infinité de divers poins qui peuvent
satisfaire & ce qui est ici demandé, il est aussy requis de connoistre et de
tracer la ligne dans laquelle ils doivent tous se trouver ... on peut prendre
a discretion I'une de deux quantités inconnues x ou ¥y, & chercher 'autre par
cete equation (...) mesme prenant successivement infinies diverses grandeurs
pour la ligne g, on en trouvera aussy infinies pour la ligne z, & ainsi on aura
une infinité de divers poins (...) par les moyens desquels on descrira la ligne

courbe demandée |

Iterating this process for arbitrary values of the gy, one could obtain a distribution of
points on the curve with any required degree of density, namely, a pointwise construction
of the curve. It seems, from this procedure, that Descartes might have indulged in a
modern conception of locus as an aggregate of points obeying to specific conditions, and
which constitute the curve itself. However, other considerations invite to a more cautious
interpretation. For instance, on one occasion Descartes clearly reminds to Mersenne that
considering a line as the aggregate of all its points in actu is mere "phantasy" ("une
imagination toute pure ")@ We can conjecture, also in the backdrop of Descartes’ way
of proceeding in La Géométrie, position seems to be that a locus characterized as an
aggregate of points, cannot be considered on a par with a curve; curves, in order to enter
the number of legitimate geometric objects, must be constructed by a continuous tracing.
As I will discuss later, construction of curves will be the central issued discussed in Book

II of La Géométrie.

“EDescartes| [1897-1913|, vol. 6, p. 380, 385.
“IDescartes| [1897-1913|, vol. 2, p. 384.
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3.1.2 The constitution of the algebra of segments

Descartes grounded the possibility of expressing a problem through an equation (let us
think, for instance, of the two mean proportionals problem seen above) on the possibility
of employing arithmetical operations in order to to denote geometrical constructions. It
is important to clarify how Descartes understood the relations between arithmetic and
geometry, which, according to him, were grasped only obscurely by the ancients.lﬂ Hence

we read, in the second paragraph of Descartes’ text:

Et comme toute I’Arithmetique n’est composée, que de quatre ou cing oper-
ations, qui sont I’Addition, la Soustraction, la Multiplication, la Division, &
I’extraction des racines, qu’on peut prendre pour une espece de division: Ainsi
n’at on autre chose a faire en Geometrie touchant les lignes qu’on cherche,
pour les preparer a estre connués, que leur en adjouter d’autres, ou en oster,
Oubien en ayant une, que ie nommeray l'unité pour la rapporter d’autant
mieux aux nombres, & qui peut ordinairement estre prise a discretion, puis
en ayant encore deux autres, en trouver une quatriesme, qui soit a I'une de ces
deux, comme 'autre est a I'unité, ce que est le mesme que la multiplication,
oubien en trouver une quatrieme, qui soit a I'une de ces deux, comme l'unité
est a l'autre, ce qui est le mesme que la Division, ou enn trouver une, ou
deux, ou plusieurs moyennes proportionnelles entre I'unité & quelque autre

ligne, ce qui est le mesme que tirer la racine quarrée, ou cubique &CH

The possibility of equations as meaningful expressions coding relations among segments
ultimately rests, for Descartes, on the definitions of specific geometrical operations of
sum, product, division, and extraction of square and n roots, which possess the same

properties as their arithmetico-algebraic analogues.

In order to do so, Descartes proceeds by stating the necessary and sufficient conditions
which any triple z; a; b of segments in the plane must satisfy for these operations to
hold. Subsequently, he offers geometrical constructions which produce a segment x as the
result of, respectively, addition, multiplication, division, or nth root extraction between

two given segments a and b.

59"Or je vous prie de remarquer, en passant, que le scrupule, que saisoient les anciens d’user des
termes de I’Arithmetique en la Geometrie, qui ne pouvoit proceder, que de ce qu’ils ne voyoient pas asses
clairement leur rapport, causoit beaucoup d’obscurité, & d’embaras, en la fagon dont ils s’expliquoient"
(Descartes| [1897-1913], vol. 6, p. 378).

*"Descartes| |1897-1913|, vol. 6, p. 369.
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Defining operations of geometrical sum and difference between geometric quantities (like
segments or polygons) was not a problem: geometric operations analogous to addition
and subtraction can be defined, for instance, by joining two segments AB and C'D or by
cutting off a segment C'D from AB, provided CD < ABE

A fundamental conceptual difficulty from which Descartes had to extricate his geometric
algebra occurs with changes in dimensionality introduced by the operations of multipli-
cation and division. Whereas arithmetic quantities are dimensionless, and the product,
division (and the extraction of root), in brief, the result of any operatory combination on
numbers is itself a number, analogous geometric operations apply to objects of different

dimensions: segments, figures in the plane and solids.

In the tradition of geometrical algebra, equations were interpreted geometrically accord-
ing to the following principle: the unknown x was associated to a segment, 2 to a square
in the plane, and z* to a cube in the space. Moreover the multiplication and the division
between geometrical magnitudes were not defined so as to preserve homogeneity. For in-
stance, the product of two magnitudes of a given dimension was a magnitude of a higher
dimension, and, conversely, the quotient of two magnitudes was not a magnitude of the

same dimension of the dividend:

Le produit de deux quantités a et b, respectivement d’ordre m et n est de
ce fait identifié & une quantité d’ordre m + n; de méme, leur quotient est
identifié & une quantité d’ordre m—mn. Ceci conduit naturellement & introduire
des restrictions concernant l’addition et la soustraction: deux quantités ne
peuvent étre additionnées entre elles et I'une d’elles ne peut étre soustraite

de I'autre qu’a condition qu’elles soient du méme ordre ]

In all early XVIIth century attempts at constructing a geometric algebra, which pre-
ceeded Descartes, the multiplication and division between segments, contrarily to their
arithmetic correlates, are not operations preserving homogeneity. It is sufficient to con-
sider the product between two segments, interpreted on the ground of the classical Eu-
clidean canon, in order to see that the result is not a segment anymore, but a surface.
Consequently, an expression like ab + ¢, where a, b, ¢ denoted three segments, turned out

to be an ill-formed expression in geometry, before the advent of cartesian geometry, as

52These operations rely on Euclid’s El., I, 2; EL, 1. 3.
53See [Panzal [2005], p. 22. In particular, see [Freguglial [1999a], p. 153-155, for an overview of the
principle of dimensionality.
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it is inconceivable to sum a one-dimensional magnitude with a two-dimensional one. A
correct geometric interpretation of the above expression would consist, according to the

constraints in homogeneity, in interpreting ‘a’ and ‘0’ as segments, and ‘c’ as a figure in
the plane@

The introduction of a unity segment constitutes the crucial step in Descartes’ procedure
of encoding geometrical relations into algebraic operations. As it occurs with the ordinary
product and quotient between numbers, the product and quotient of two segments, and,
more generally, between two arbitrary homogeneous magnitudes, can yield a magnitude
homogeneous with the given previous ones, provided a unitary magnitude is introduced.

Consequently, even if homogeneity is not abandoned, its fulfilment becomes almost trivial:

Il est aussy a remarquer que toutes les parties d’une mesme ligne, se doivent
ordinairement exprimer par autant de dimensions 'une que l'autre, lorsque
l'unité n’est point determinée en la question (...) mais que ce n’est pas de
mesme lorsque I'unité est déterminée, a cause qu’elle peut estre soustendue
par tout ou il y a trop ou trop peu de dimensions: comme s’il faut tirer la
racine cubique de aabb — b, il faut penser que la quantité aabb est divisée
une fois par I'unité, & que 'autre quantité b est multipliée deux fois par la

mesme]g_gl

In this context, the role of unity looks more similar to the role of a multiplicative unity
within a semi-group, than the one of a number expressing the measure of a length. This
role clearly shines through the definitions of product and quotient stated in the beginning
of La Géométrie. Fundamentally, the necessary and sufficient conditions imposed to a
quadruple of magnitudes (x;a;b;1) for x to be either the product or the quotient of
a and b, or the n-th root of either a or b, where 1 is the unity (note that here the
symbol ‘1’ is simply a name, that can be substituted by any other letter) boil down to
their codability into proportions. More specifically, given three homogeneous magnitudes
a; b; 1, Descartes defines the product between a and b as a magnitude x satisying the

following proportion:

54Tn slightly anachronistic terms, we could say that, in renaissance and early modern geometry, before
1637, whereas arithmetic was endowed with the structure of a field (with addition and multiplication),
geometry had the structure of a group (or semi-group) with respect to addition defined in the domain of
segments or polygons, for instance. The product between two segments, on the contrary, was not defined
as a segment: the operation of multiplication was not an internal operation in Euclid’s geometry, which
cannot be endowed with the structure of a field.

%Descartes| [1897-1913|, vol. 6, p. 299.
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(ab=2x)=g (1:b=0a:x).

The quotient between two homogeneous magnitudes a and b can be defined along a

similar line:
(3=2)=¢ (r:a=1:D).

And so can be defined the extraction of the n-root (where n is a natural number) of a

magnitude a:

(Wa=2z)=¢ (l:x=2:21=21:...Tp-2:a).

With the above definitions, Descartes confines himself to show that the operation of
dividing a magnitude by another, homogeneous magnitude is tantamount to establishing
a proportion between these magnitudes, the result of this operation and the unity. A
similar case occurs in the case of root extraction: extracting the n-th root of a magnitude

a is equivalent to establish a proportion between 1, a and n — 2 mean terms.

I observe that, in virtue of these definitions, expressions like: "the magnitude x is the
product of the magnitudes a and b" or "x is the cube root of a" remain meaningful, even
if it is not known how to exhibit this magnitude through a geometric construction, since,
as observed by M. Panza: "lorsqu'une proportion porte sur des quantités d’un genre
particulier, elle dit en effet quelque chose de ces quantités; en particulier, elle dit que ces
quantités satisfont certaines conditions définies en termes de 'opération d’addition, de la
relation d’égalité, et de la relation d’ordre qui sont définies sur elles"@ An algebra thus

defined can be called, following the suggestion in |Panza [2005] (p. 25-26), an assertive
algebra 7]

The reason for this terminology is clear if we consider that Descartes construes, at the
outset of La Géométrie, a formalism which enables him to rewrite polynomial equations
as a proportion or a system of proportions, and conversely, to code any proportion or

system of proportions into equationsﬁ On this ground, in fact, one can say that an

58Panzal [2005], p. 25.

5"The word "assertive" is my rendering of the french term "assertif" employed in [Panzal [2005]. I
surmise that the english term, which the Ozford Dictionary supplements with the following definition:
"characterized by mere assertion" conveys the original meaning in a fairly acceptable way. Descartes’ def-
initions allow one to specify several special geometric "assertive" algebras, all sharing the same structure.

8Panzal [2005], p. 25.
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expression like 2% = a?q asserts something about z as a magnitude of a certain kind (for
instance, that the magnitude z appears in a certain proportion, or chain of proportions)

even if it is not known how z might be constructed.

I do not exclude that Descartes conceived also a different view of algebra, understood not
as a theory of quantities, but as a theory of operations governing these quantities, or the
structure common to the several assertive algebras[?] Nor I exclude that Descartes took
over the study of algebraic objects understood in this sense. On the contrary, in Book
III of La Géométrie Descartes defined equations independently from their geometrical

references, as:

. sommes composées de plusieurs termes, partie connus et parties inconnus,

dont les uns sont esgaux aux autres, ou, plutost, qui, considérés, sont esgaux

a rien@

Such definition emphasizes a formal conception of equation, since it refers only to literal
signs and numbers (termes) as well as to operations among them. A similar remark holds
for those rules of transformation and algebraic reducibility, exposed and commented by
Descartes in the same book, which allow one to work on the structure of the equation as

an object per se@

It is beyond my purpose to study here this idea of algebra and Descartes’ related achieve-
ments. I will rather consider, in the next section, a second fundamental step undertaken
by Descartes in the first Book of La Géométrie. As I have observed, the definitions just
given of product, quotient and root extraction are not constructive, in the sense that

they do not contain the instructions for exhibiting the results of the operations defined,

59This idea of algebra incorporates certain aspects of what Mahoney characterized as the "algebraic
mode of thought": "this mode of thought is characterized by the use of an operative symbolism, that is,
a symbolism that not only abbreviates words, but represents the working of the combinatory operations
or, in other words, a symbolism with which one operates ..." (Mahoney| [1980], p. 142). According to
the suggestion I want to convey, the algebra employed in the study of geometric problems (therefore
in the first two books of La Géométrie) was not merely a formal theory of operations. In order to
make things clearer, we may recur to the useful analogy introduced by J. Macbeth: "whereas Viéte’s
logistice speciosa functions as an uninterpreted calculus, one that can be interpreted either geometrically
or arithmetically, Descartes’ symbolic language is always already interpreted" (Macbeth|[2004], p. 99).

%9Descartes| [1897-1913], vol. 6, p. 444. As K. Manders observed, this definition complies with: "...
the most obvious feature of polynomials, cossist quantities and equations (...) as sums or aggregates of
terms, and have roots, which are typically sought", Manders| [2006], p. 187.

%1 Descartes introduced the following degree-general transformations as rules of thumb: the sign of rule
(1), its reverse (ii), the substitution of z + a for z (iii), its effects and applications (Descartes| [1897-1913),
vol. 6, p. 373, 374-378). See also Manders| [2006], p. 197ff.
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when quantities a or b are quantities of a certain kind, for instance, segments. In Book
1 Descartes proceeds to constructively define the operations of addition, subtraction,
multiplication division and extraction of square roots as internal operations within the
class of segments. In the successive Book 2 he will show how the extraction of any root
of the form {/a, with n natural number, can be exhibited in geometry too. Descartes
obtains in this way a "determinative" algebra of segments, namely an algebra in which
it is possible to exhibit, by means of accepted geometric constructions, the result of any

operation on given segments, perfectly isomorphic to the arithmetical algebra.@

3.1.3 The construction of the ‘four figures’

The second fundamental moment of Descartes’ geometry, after the redefinition of the five
arithmetical operations between magnitudes, consists in supplementing these definitions
with geometrical constructions. In order to do so, Descartes confines himself to the class
of segments in the plane. Given two segments in the plane, denoted by a and b, it is easy
to define addition and substraction as geometric operations between them: Descartes
interprets the sum a + b as a segment ¢ obtained by juxtaposing segment b to segment a

(the operation is licensed by Euclid, Elements 1, 2).

The geometric interpretations of multiplication, division and square root extraction be-
tween two segments rely, on the other hand, on Book VI of Euclid’s Elements. Thus,
given a triple of segments a, b, 1, the multiplication between a and b can be defined in the
following way. Let two segments BC' = b and BD = a be drawn under any angle, as in
figure[3.1.3] and let the segment BA = 1 be traced. Let the segment C'A be traced. From
point D, let a segment parallel to C' A be traced and let the intersection with the segment
BC extended be called E. The product ab will be defined as the segment BE = .

The same configuration allows the geometer to define the division between segments a
and b. Indeed, if we set: BE = b, BC =1, BD = a, the quotient { can be interpreted

geometrically as the segment BA = x.

5ZPanzal [2005], p. 23. By "arithmetical algebra" I am referring to a symbolic language together with
a set of rules and techniques for forming and manipulating complex expressions - therefore, what we
may call a syntax- in order to deal with problems concerning numerical quantities (a developmental
history of this discipline is briefly sketched in [Panzal [2005], p. 9-12). My choice of "determinative",
on the other hand, translates the french "déterminatif" originally employed in Panza [2005]. According
to the Oxford Dictionary, determinative is defined as "Serving to limit or fix the extent, or the specific
kind or character of anything: said of attributes or marks added with this purpose". I assume that my
translation conveys the original meaning with sufficient clarity.
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Figure 3.1.4: Descartes’ treatment of product and division.

Figure 3.1.5: Square root extraction.

The operation of square root extraction between segments is defined in La Géométrie in
these terms: let a segment AO = a and an adjacent segment OF = 1 be constructed.
Let us then trace a circle with diameter AF, and from point O, let the perpendicular
toAFE be traced, which intersect the circle in B. The segment OB will be the square
root of a. Again, the definion of square root extraction rely on a Euclidean construction,
exposed in Elements, VI, 13@

After the constructive definition of the operation of square root extraction, given at the
beginning of book I, Descartes refrains from supplementing a constructive definition for

the operations of extracting the n-th root of a segment:

53Heath| [1956 (first edition 1908|, book VI, 13.
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...le ne dis rien icy de la racine cubique ny des autres, a cause que i’en

parleray plus commodement cy-aprés.@

He will indeed resume the problem in the Third book. Cubic and n-th root extraction
(where n is a natural number different than 2™, for m natural) represents indeed an
interesting phenomenon in Descartes’ geometry. In the previous paragraphs, I have used
the term "constructive definition" in order to refer to the geometric interpretation of the
operations of addition, multiplication, division and square-root extraction as operations
occurring among segments. For the sake of precision and coherence with my previous
terminology, I will rather use, following again [Panza| [2005|, the expression determinative
algebra in order to denote an algebra where it is possible to exhibit, through standard

constructions, the result of any operation between given quantities.

If Descartes’ geometry relied solely on the constructions licensed in Euclid’s geometry or,
to use a pappusian terminology, on ‘plane’ constructions, the algebra of segments would
fail to be a determinative algebra. Indeed, Euclid’s plane geometry fails to supplement
a constructive definition already for the extraction of the cubic root of a segment, since
the problem of inserting 2, 4 and in general 2n mean proportions cannot be solved by

ruler and compass, employed according to Euclid’s constructive clauses.

Descartes was well-aware of this impossibility, already asserted in Pappus’ Mathematical
Collection (see this dissertation, chapter section for instance), and for which
he even provided an argument in the third book of La Géométm’eﬁ Therefore, he
tackled, in the second Book of this treatise, the methodological problem of extending the
constructive methods admissible in geometry beyond the limits of Euclid’s constructive

clauses, in order to endow the algebra of segments with its determinative character.

3.2 Descartes’ construal of geometricity in 1637

3.2.1 FEuclidean restrictions reconsidered

But how to effectuate such extension? Descartes’ response depended on the answer to a
second question, that he tackled in the second book of La Géométrie: ‘which curves can

be received in geometry?@

5%Descartes| [1897-1913|, vol. 6, p. 371.
55Descartes| [1897-1913|, vol. 6, p. 475.
56Descartes| [1897-1913], vol. 6, p. 388
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In asking this question, Descartes was continuing, albeit on a different plane of abstrac-
tion and generality, a long debate concerning the role and classification of curves in
the solution of problems, that was transmitted to early-modern mathematicians such
as Viete, Marino Ghetaldi, Johannes Kepler, and Fermat by way of PappuSmDescartes
directly confronted with Pappus’ considerations on the ordering of problems, offered in
third and in fourth books of the Mathematical Collection. If Descartes praised the pap-
pusian viewpoint of classifying problems on the basis of the curves required for their

constructions, he had also few reservations about the traditional views on curves:

Les anciens ont fort bien remarqués, qu’entre les Problesmes de Geometrie, les
uns sont plans, les autres solides, et les autres lineaires, c’est a dire, que les uns
peuvent estre construits, en ne tracant que des droites, et des cercles, au lieu
que les autres ne le peuvent estre, qu'on n’y employe pour le moins quelque
section conique; ni enfin les autres, qu’on n’y employe quelque autre ligne
plus composée. Mais je m’étonne de ce qu’ils n’ont point outre cela distingué
divers degrés entre ces lignes plus composées, et je ne saurois comprendre

pourquoy ils les ont nommees mechaniques, plustost que Geometriques.@

In the above passage, we can distinguish two types of inroads made by Descartes against
the "ancients". Firstly, Descartes blamed ancient geometers to lump together curves
which should be more properly separated in distinct classes. Secondly, he contested to
them the fact of having called "mechanical", and cast out of geometry all those curves
"more composed" than straight lines and circles. Few lines later, Descartes suggested
that ancient geometers had some compunction also in countenancing the conic sections

among geometrical curves[”]

Descartes did not deny that some curves ought to be excluded from geometry and ranged
in Mechanics: he was in fact convinced that the quadratrix, the spiral, and few kindred
curves (although never specified in La Géométrie) did not fit the bill for geometricity.
Nevertheless, Descartes considered overrestrictive and unjustified the traditional restric-

tion to the straight lines and circles as the sole acceptable constructive means.

According to Molland’s careful analysis (Molland, [1976], in particular p. 35) Descartes

committed a blatant error in attributing to the ancients the view that curves more com-

57Guicciardini [2009], p. 42.
58Descartes| [1897-1913|, vol. 6, p. 388.
59Descartes| [1897-1913|, vol. 6, p. 389.
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plex than circles and straight lines were mechanical rather than geometrical. Confining
myself to the Mathematical Collection, presumably one of the main sources of Descartes’
knowledge about ancient geometry, I notice that Pappus shows few or no explicit qualms
about admitting curves like conic sections or linear curves in geometry, although plane
means of construction had traditionally enjoyed a theoretical primacy among geometrical
method.

However, even if Molland’s criticism is correct, on the historiographical levelm it is ques-
tionable whether one should speak of an "error" on Descartes’ side. In fact, Descartes’
assessment of the ancient mathematics of higher curves might be as well rooted in a

communis opinio of XVIIth century.lﬂ

It may also be possible that the criticism to the "ancients" concealed Descartes’ disap-
proval towards a construal of geometricity adopted by some of his contemporaries instead.
This conjecture cannot be easily settled because, as far as it could be ascertained, math-
ematicians from XVIth and early XVIIth century did not propose positive criteria to

assess acceptable geometrical constructions|]

However, some light on this matter can be shed by Descartes’ Géométrie itself. In fact,

after having criticized the view of the ancients, Descartes sets out to carefully debunk, in

T0Cf. also |Sefrin-Weis| [2010], p. 226. An different stance than that endorsed by Molland is held by V.
Jullien, who remarks: "Lorsque celui-ci [Descartes| reproche aux anciens de n’avoir pas véritablement
recu les courbes dans leur géométrie, il a raison; mais c’est surtout dans la mesure ou un tel programme
d’étude (étude intrinséque des courbes comme objets déterminés) n’était pas, pour eux, a lordre du
jour" (Jullien| [1996], chapter 2, "Critique de la Géométrie classique"). If my understanding of Jullien’s
viewpoint is correct, the chore of Descartes’ criticism to the ancients may be resumed, for him, in these
words: the ancients lacked a sufficiently general definition of curve, which could also ensure a systematic
classification.

"L A similar idea was ventured, by the end of XVIth century, by Francois Viéte (1540-1603). Viete
remarked, while discussing the problem of cube duplication in his Variorum de rebus mathematicis re-
sponsorum (1593), that the ancients believed the problem of doubling of the cube to be an irrational
(&royov) and an unspeakable (8ppntov) problem: "not because it cannot be explicated in numbers, as
lines are called irrational, but because its structure is devised not by reason but by an instrument"
("Non quod numeris explicari non possit, ut ypoppol dhoyot dicuntur, sed cujus fabrica non ratione, sed
instrumento constituatur"!Viete| [1646], p. 348)).The view that ancients restricted geometrical curves
to the sole straight lines and circles might go well into XVIIth century and in the XVIIIth. For in-
stance, still in XVIIIth century, Claude Rabuel, in his Commentaires a la Géométrie de M. Des Cartes
(1730), accepted an analogous view as an alleged historical fact: "Les Anciens Geometres n’ont appelé
Geometriques, que ce qui se fait avec la Regle & le Compas; nulle autre operation n’estoit Geometrique;
de toutes les lignes, la droite et la circulaire etoient les seules Geometriques. toutes les autres lignes
courbes (...) passoient pour mécaniques, & toute Operation, par laquelle on les employoit, estoit aussy
appelée mécanique" [Rabuell [1730], p. 97].

"2 4. in particular, [Bos| [2001], p. 34-36.
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the second Book of this treatise, three arguments for the alleged theoretical primacy of

constructions by Euclidean means, that might as well have circulated among geometers
between XVIth XVIIth century.

Firstly, Descartes attacks against the idea that only the straight line and the circle ought
to be considered properly geometrical curves because they can be generated without the
appeal to instruments ("machines", in the french text)m But if one labels a procedure
or a construction "mechanical" and excludes it from geometry provided it makes appeal
to an instrument - Descartes remarks - then constructions employing circles and straight
lines according to Euclidean clauses should be considered mechanical as well, as far as the
constructions licensed by Euclid’s three constructive postulates can be seen as derived,
by way of abstraction, from operations mediated by specific instrument, namely the ruler
and the compass[’]

One may object, Descartes retaliates, that the difference between ruler and compass
constructions and constructions by more complex instruments boils down to a matter of
precision or accuracy. In order to debunk this claim, Descartes resorts to a conceptual

distinction that will indeed turn out to be costitutive of his ideal of geometry:

Ce n’est pas non plus, a cause que les instruments, qui servent & les

tracer [namely, to trace higher curves|, estant plus composés que la regle

"3Descartes [1897-1913], vol. 6, p. 389. This view might have been shared by at least some of
the early modern geometers Descartes could know of. For instance, R. Bombelli (1526-1572) remarks,
in his Algebra (1572), that contemporary solutions to the problem of inserting two mean proportions
had been found only "instrumentally" ("instromentalmente", in |Bombelli [1579], p. 48), and therefore
not geometrically. Analogous statements are encountered in the third and fourth book of Stevin’s
Problematum Geometricum. .. libri V (1583), where Stevin claimed that solid problems were: "... found
(...) not by a Geometrical method ..." but by means of instruments, instead (Stevin|[1958], vol. 2, p.
301).

741 note that neither the ruler nor the compass are mentioned, as instruments devoted to the construc-
tion of curves, neither in Euclid’s Elements, nor in Pappus’ discussion of plane geometry, although the
first does not eliminate, from the Flements, the appeal to mechanical conceptions, like the rotation of
plane figures around fixed axes for the generation of solids (Elements, XII, Df. 18. See also Apollonius’
Conics, Book I, Df. 1). As an aside, I observe that I have not been able to find, in the panorama of
historical studies, a precise reconstruction of the route through which tracing devices entered mathemat-
ical discourse as objects of study - for instance in connection with their constructing power. Certainly
Descartes’ geometry gave an important contribution to this field of study by associating his criterion for
geometricity to the constitution of devices for tracing curves, as I will explore below. Another direction of
study, not taken over in this dissertation, but still worthwhile to be investigated, in my conviction, would
concern the study of the kinds of problems solvable by different employments or suitable modifications
of the Euclidean collapsible compass: what problems are and can be solved, for instance, using the ruler
and a compass with a fixed opening? On the other hand, what problems are solvable by restricting the
clauses for licesing legitimate constructions to the sole use of the compass for the tracing of circles, thus
excluding the ruler and the straight lines as solving means?
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et le compas, ne peuvent estre si justes; car il faudroit pour cete raison les
reietter des mechaniques, oil la justesse des ouvrages qui sortent de la main
est desirée; plutost que de la Geometrie, ou c’est seulement la iustesse du

raisonnement qu’on recherchem

I have already distinguished, at the beginning of chapter one, a concern for exactness
in problem solving from a concern for accuracy or precision. Due to its importance,
this conceptual distinction ought to be stressed once more. By considering geometry
as an exact discipline, Descartes is not contrasting accurate versus approximate proce-
duresm geometry - insists in fact Descartes - does not pursue the practical accuracy of
a construction ("la justesse des ouvrages qui sortent de la main"), which is the highest
attainable virtue in mechanics, but the exactness of reasoning ("la justesse du raison-
nement") which must obtain of every geometrical procedure. In the light of this ideal
of geometry, it made no sense to exclude a curve because the instrument employed for
its tracing could not assure a precise construction as the one granted by the ordinary

compass and straightedge.

Thirdly and finally, Descartes suggests that the geometers’ restrictions to the straight
lines and the circle as the unique means of construction might be rooted in the desire to
keep to a minimum the clauses licensing geometrical constructions, and to avoid enriching
geometry with more postulates beyond those established in Euclid’s Elements. However
this argument, based on what one might call the ‘logical simplicity’ of geometry, runs

against the very practice of geometers:

... je ne dirai pas aussy, que ce soit a cause qu’ils n’ont pas voulu augmenter
le nombre de leurs demandes, & qu’ils se sont content és qu’on leur accordait,
qu’ils pussent joindre deux points donnés par une ligne droite, & descrire un
cercle d’un centre donné, qui passait par un point donné, car ils n’ont point
fait de scrupule de supposer, outre cela, pour traiter des sections coniques,

qu’on pust coupper tout cone donné par un plan donné. . |Z|

"Descartes [1897-1913], vol. 6, p. 389. I have not been able to trace, among early-modern geometers
before Descartes, any explicit argument that explicitly excluded higher curves because their tracing was
imprecise.

™1 do not fully agree, therefore, with the claim advanced by M. Baron (Baron| [1969], p. 163), for
whom Descartes was: "... always careful to distinguish between precision methods and approximate
method in mathematics". The turning point in Descartes’ conception of mathematics was not, I surmise,
the distinction between precise and approximate methods, but between exact and non-exact procedures
and objects.

"Descartes| [1897-1913|, vol.6, p. 389. I note that Descartes lists here only the first and the third of
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Once demoted these counterarguments, Descartes turned to the pars construens of his
programme. Firstly, he conceded that that the ancient decision (he plausibly had in
mind Pappus’ book IV of the Collection) to exclude from geometry certain curves, like
the spiral or the quadratrix, obeyed to a well-grounded rationale, since these curves are
imagined as: "descrites par deux mouvements separés & qu’ en ont entre eux aucun
rapport qu’on puisse mesurer exactement"m On the other hand, curves receivable in

geometry are singled out by Descartes on the ground of specific properties of their genesis:

il n’est besoin de rien supposer pour tracer toutes les lignes courbes, que
ie pretens icy d’introduire, sinon que deux ou plusieurs lignes puissent estre
miies I'une par 'autre, & que leur intersection en marque d’autres (...) Mais
il est, ce me semble, trés clair, que prenant comme on fait pour Géométrique
ce qui est precis et exact, et pour mécanique ce qui ne ’est pas; et considérant
la Geometrie comme une science, qui enseigne généralement & connoitre la
mesure de tous les cors, on n’en doit pas plutot exclure les lignes les plus
composées que les plus simples, pourvu qu’on les puisse imaginer estre de-
scrites par un mouvement continu ou par plusieurs qui s’entresuivent et dont
les derniers soient entiérement reglés par ceux qui les précédent, car par ce

moyen on peut toujours avoir une connaissance exacte de leur mesure["”|

This passage has been given several interpretations@ which contribute to underline its
importance for the understanding of Descartes’ overall mathematical project. For the
sake of my argument, I will limit to depict the standard of geometricity which shines

forth through the previous passage.

In Descartes’ view, not only straight lines and circles must be included among acceptable
solving methods in geometry, but also all the curves that can be constructed on the basis

of a definite rule, that we may call ‘exactness norm’ E establishing that "two lines can

the five Euclidean postulates. However uses of the second postulate ("to produce a finite straight line
continuously in a straight line") are implicit in the text (for instance, at p. 320, one must concede the
possibility of extending straight lines KL and BA continuously into a straight line, in order to enable
the tracing of the hyperbola, there at stake). The reference to the sectioning of a cone by a plane is of
course to Apollonius’ Conics, Book I, Df. 1.

"®Descartes| [1897-1913], vol. 6, p. 390.

"Descartes| [1897-1913|, vol. 6, p. 388.

80See for instance: |Serfati| [1993], Serfati [2002] in [Serfati and Bitbol| [2002], p. 39-104] [Bos| [2001],
Panzal [2005|, [Panzal [2011] (this is a non exhaustive list).

1T deem, following the enlightening discussion in [Panzal [2011], that the expression ‘exactness norm’
should be preferred to ‘postulate’ (or even to ‘axiom’, suggested in Boyer and Merzbach|[1991], p. 315)
because Descartes - unlike Apollonius, whose definition 1 of the Conics is evoked above - is not directly
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be moved one onto the other, so that their intersections will trace others".

Consider, for instance, the following curve-constructing device, introduced in La Géométrie
as the first instance of a compass complying with Descartes’ exactness norm@ This in-
strument is never called with a proper name in La Géométrie. 1 will call it hereinafter
"proportions compass" @ since it is conceived for the purpose of constructing an arbitrary

number of mean proportions between two given segments.lﬁ

Following the figure reproduced in book II, we can described the proportions compass
as follows. Consider two rulers YZ and Y X pivoting around Y. At point B of Y X
a ruler BC is fixed perpendicularly to Y X. A number of sliding rulers CD, EF, GH
are inserted along Y Z, and similar sliding rulers DFE and FG are inserted along Y X,
perpendicularly to it. When Y Z is fixed and the ruler Y X rotates around Y, BC is
supposed to push DC along YZ, C'D then pushes DE along Y X, DFE pushes FE, in
such a way that the angles formed by the rulers with rulers YZ and Y X remain constant.
Points B, D, F' and H are thus supposed to trace in a continuous way a family curves,

each of which is recevable in geometry.lﬂ

Descartes in fact observes:

. je ne voy pas ce qui peut empecher, qu'on ne concoive aussy nettement,
et aussy distinctement la description de cette premiere, que du cercle, ou du
moins que de sections coniques, ny ce qui peut empecher, qu’on ne concoive
la seconde, & la troisieme, & toutes les autres, qu’on peut descrire, aussy
bien que la premiere, ny par consequent qu’on ne les recoive toutes de mesme

fagon, pour servir aux speculations de Geometresﬁ

establishing which curves should be included in geometry, but fixing a criterion in order to decide the
permissible constructions, through which curves are to be described and hence ranged among legitimate
geometrical arguments.

82Descartes| [1897-1913|, vol. 6, p. 391.

83Panzal [2011], p. 74.

89 Descartes||1897-1913|, vol. 6, p. 443. A previous version of this compass was probably envisaged by
Descartes’ manuscript notes now known as Cogitationes privatae, dating back to the beginning of the
20s.

85Descartes| [1897-1913|, vol. 6, p. 391.

80Descartes| [1897-1913|, p. 392. I note, on this concern, that these instruments cannot obtain objects
in the "pointing way", and consequently cannot enter directly in the problem-solving activity, but only
through the mediation of the curves described by them.
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Figure 3.2.1: Descartes| [1897-1913], vol. 6, p. 391.

Roughly speaking, Descartes’ reasoning can be interpreted as the attempt at taking the
clauses stated in Euclid’s postulates (licensing ruler and compass constructions) as a
basis for iterative constructions describing other curves, different from straight lines and

circles, with which, nevertheless, share the same character of exactness.

Indeed, if we grant the acceptability in geometry of the ruler and the compass, employed,
according to the clauses established in Euclid’s postulates, as instruments for the tracing
of straight lines and circles, then the more composite devices ought to be accepted as
well, provided they are construed as systems of rulers allowing one degree of freedom

movements between the two links that they connect.

For reasons that my discussion has now made obvious, this criterion of acceptability can
be called by ‘coordinated continuous motionﬂ or ‘by reiterated ruler and compass’@

Moreover , the instruments which realize these criteria can be called ‘geometrical link-

ages’ E

87This terminology is used by Henk Bos. See 2001], p. 336.

88The name has been given by Panza. See 2005|, pp. 63, 64.

890n the meaning of the term ‘linkage’ in the mathematical literature, Courant and Robbins write [in
|Courant and Robbins|[1996], p. 155]: "A linkage consists of a set of rigid rods, connected in some manner
at movable joints, in such a way that the whole system has just enough freedom to allow a point on it to
describe a certain curve". In their discussion, Courant and Robbins do not refer directly to Descartes, but
to a discussion occurring much later, well into XIXth century, concerning whether a system of connected
rulers could be conceived in order to trace a straight line (Courant and Robbins| [1996], p. 156-7). The
problem is certainly relevant (see the classical ), but did not directly concern Descartes’
geometry, though, since the constructability of a segment that can be arbitrarily extended is grounded
on Euclid’s postulates, and it is therefore the basis for more complicated constructions.
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The generation by geometrical linkages is not the only way of constructing geometrical
curves discussed by Descartes, although it has a clear foundational primacy over other
methods@ It is therefore important to understand some of the most noticeable properties

of the constructions produced by geometrical linkages.

I observe, as a starting point, that a constructional device as the proportion compass
not only assures continuous motions, but assures the tracing of each curve described by
the moving points D, F', H ... according to a unique continuous motions. This is due, I

surmise, to two relevant conditions which geometrical linkages comply with.

Firstly, these instruments must be so conceived that the local motions of any of their
parts are dependent on a principal motion. In the case of the proportion compass, for
instance, the principal motion is imparted by the rotation of the ruler Y X, which governs

the sliding motions of the interconnected rulers@

A survey of the other linkage@ described in La Géométrie allows one to easily identify,
for each examined device, a principal motion on which local motions depend. Consider,
for instance, the following device introduced by Descartes in order to construct a branch
of hyperbola (GCFE in fig. [3.2.1). The compass employed is formed by a pivoting joint
G L hinged at a segment C'L sliding vertically along AB. In Descartes’ account, given in
Descartes| [1897-1913|, vol. 6 (p. 393) a principal motion can be easily identified: it is

the rotation of the ruler GL, which enables the connected ruler to translate along AB.

9Descartes also discussed constructions of curves based on the construction of finitely many points
on the curve and constructions based on strings (Cf. especially |Bos| [1990] and [Mancosu| [2007]). Some
of these constructions will be evoked in the following sections and chapters.

91 As we read in La Géométrie: "a mesure qu’on l’ouvre [namely, the linkage depicted in fig. la
reigle BC, qui est jointe a angles droites avec XY pousse vers Z la reigle CD ...". It clearly appears
from Descartes’ description that a principal motion can be singled out, namely the pivoting of XY
around Y.

92Tt must be stressed that one cannot find in La Géométrie a catalogue of curves, nor a systematic
description of their generation by linkages. Descartes offers only few examples of linkage constructions,
and assumes the constructibility of a large class of curves (namely the curves we would nowadays call
algebraic). It is likely that, in the author’s view, the few examples of tracing devices proposed in the
book are sufficently clear instances of the ideal of geometric constructibility derived from his exactness
norm. Descartes even remarks that it is superuous to add the description of other devices: "... Je
pourrais mettre ici plusieurs autres moyens, pour tracer et concevoir des lignes courbes qui seraient de
plus en plus composées par degrés a U'infini ... "
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Figure 3.2.2: |Descartes| [1897-1913], vol. 6, p. 393.

Geometrical linkages, as they are conceived and presented in La Géométrie, meet a sec-
ond condition, derivable from the previous one:[g_gl the compasses are conceived in such a
way that, when they move, the trajectories of all their motions are totally constrained.
In other words, the motions generated by geometrical linkages obey to purely kynematic
movements, and the shape of the curves thus constructed are independent of the mechan-
ical components of the movements, as the speed of the rotating joints and other physical

interrelations.

A third property should be added to the previous ones. In order to expound this con-
dition, let us return to the example depicted above, concerning the hyperbola-tracing
linkage: after having proved that the curve traced by the device in fig. is an hy-
perbola, Descartes described a similar instrument, in which he substituted a circle to
the ruler KNC, and claimed that it would generate the "first conchoid of the ancients".
This is the name by which it was classically known Nichomedes’ conchoid, also described
by Pappus in the Collection (see |Commandinus| [1588|, fol. 56r.). Descartes does not
illustrate the construction of the conchoid with any figure in La Géométrie, but one can

evince from his verbal description a possible generation, as the one offered in fig.

93See especially [Panzal [2011], p. 81.
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The curve FKN is generated by a linkage formed by the moving point F', extremity of
the radius F'E of a circle hinged to the pivoting ruler AE. When AFE rotates, E slides
along the vertical BD, and the circle of radius E'F translates along the same direction.
Since EF remains fixed, the curve traced by F' will cut on the pivoting segment AFE an-
other segment of constant length (namely F'E). This property endows the curve traced
"

by F with the traditional symptoma of the conchoid described by Pappus, namely the

first conchoid".

The proof that the first conchoid of the ancients could be traced by a geometrical link-
age, and therefore did qualify for geometry, stood as an important achievement in the
backdrop of the classification into plane, solid, and linear curves offered by Pappus. By
contriving to generate the conchoid through a geometric linkage, in fact, Descartes had
managed to show that a curve traditionally ranged with the spiral and the quadratrix
(genuinely mechanical, in Descartes’ view), ought to be more properly grouped with the
family of plane and solid curves. Even if the geometrical linkage devised by Descartes
for the tracing of the conchoid embodies the traditional genesis of the curve as described
by Pappus and by Eutocius, it brings forth, in virtue of its articulation, a structural
similarity with the compass for the hyperbola, described above, and lastly grants that
also the conchoid, being generated by reiterated ruler and compass, ought to be accepted

as geometrical on a par with the conic sections or the circle.

If then a parabola - a curve that Descartes correctly assumed to be generated by a
linkage, without however offering a construction in La Géométrie - is taken at the place
of the ruler KNC, then the linkage will generate another curve QCD (in fig. [3.2.1
See Descartes| [1897-1913|, vol. 6, p. 477), more complicated, and unknown to ancient
geometers. Even so, this curve will still be acceptable in geometry, since it complies with

the exactness norm set by Descartes.

These examples show a peculiar characteristic of geometric linkages: as soon as a curve
has been traced by a system of connected joints with one degree of freedom movement,
it can become itself a component of the system, and thus trace other new curves, which

in their turn can become parts of more articulated devices.

As Descartes suggests, the compositional nature of linkages induces a tower of devices
with increasing complexity (the complexity of a device can be measured by the number

of subdevices employed for generating each component) at whose basis stand ruler and
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Figure 3.2.3: Descartes’ conchoid.
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Figure 3.2.4: |Descartes| [1897-1913], vol. 6, p. 477.
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compass, taken as elementary linkages for tracing straight lines and circles, which by

iterative constructions can produce all other admissible curves ]

By licensing the construction of the class of curve-tracing linkages, endowed with the
properties spelled out above, Descartes’ exactness norm can extend the clauses of con-
structibility fixed by Euclid’s constructive postulates, in order to enrich the domain of
legitimate, geometrical curves. As I will discuss in the next section, this extension war-
rants the possibility of supplementing any expression in the formalism of the algebra of
segments with a construction, thus warranting the determinative character of Descartes’

algebra of segments.

3.2.2 Early instances of geometrical linkages

An interesting question to be raised, as an addendum to the previous discussion, is
whether there is a way to reconstruct the historical development which brought Descartes
to the systematic characterization of geometrical curves offered in La Géométrie. In
the already quoted passage from the 1619 letter to Beeckman, we read in fact that
Descartes envisaged a class of problems solvable by curves, raising from a unique motion
and traceable by "new compasses" (novos circinos) as certain and geometrical as the

comino1n commpass.

By spelling out the property of unicity of motion as early as 1619, in his letter to Beeck-
man, Descartes seems to have insightfully anticipated one of the relevant properties we
can ascribed to geometric linkages on the ground of their presentation in La Géométrie,
namely the property of defining totally constrained trajectories, in which a principal mo-
tion can be singled out. We can thus wonder whether the tracing devices discussed in
the Cogitationes incorporated this constraint, and whether, more generally, these devices

can be considered as primitive instances of geometric linkages.

Leaving aside the case of the mesolabe compass, of which we can only have a conjectural,
although plausible, reconstruction, I would like to consider the case of the trisector.
This instrument, as examined above, is formed by a system of rigid, interconnected
rulers, to which new rulers can be added so as to trace more complicated curves. Is
this description sufficient in order to consider the trisector a linkage, on a par with the

proportions compass and the other instruments presented in La Géométrie?

9Descartes| [1897-1913|, vol. 6, p. 394-395.
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As remarked by Panza (Panza [2011], p. 86), the trisector can be certainly considered
a geometric linkage, provided it is constructed in such a way that the principal motion
is identified with the rotation of the arm AC (I refer to fig. above). This can be
done if we can imagine the trisector to be constructed starting from a given segment
AB, to which we join at A a segment AC forming with AB an arbitrary angle. Then a
segment AFof arbitrary length is marked on AB, and the rest of the construction can
be then easily completed, in an elementary way, by multiplying the angle CAB. In this
way, the principal motion will be the rotation of the ruler AC around A , and the curve
will be traced by point R. On the contrary, this compass cannot be built as a geometric
linkage starting from the given segments AT and AB. In this case, in fact, AU and
AC would be then constructible provided we already knew how to the trisect the angle
T AB (which would obviously beg the question), or through a process of adjustement and
deformation of the arms, in order to contrive the connecting joints to have equal length
in the final configuration. Such a contrivance would introduce a physical component in
the functioning of the trisector: through the inclusion of forces, this instrument would
thus be reduced to a physical device, and therefore to something remarkably different

from a geometric linkage@

In the text of the Cogitationes, the principal motion of the ruler AC, a property which
crucially characterizes the trisector as a geometrical linkage, is not emphasized. Descartes
does not say in fact how the compass is constructed, but tells us only that the rulers are
rigidly connected ("but one be unable to be augmented or diminished without the others’
being moved") and the instrument can be opened by rotating segment AT (I refer, in
particular, to fig. which drags in its turn the other connected lines AU and AC
(ac and ad in the original). Descartes singles out the correct point which generates the
curve’ On the ground of this text, it seems that Descartes had understood some of the
characteristics he would later attribute to linkages, but it is not clear whether he was
aware of all the conditions to be imposed on a trisector, in particular, in order to consider
this instrument a geometric linkage, on a par with those discussed in La Géométrie, and

not as a physical device instead.

In conclusion, even if Descartes had already emphasized, in the early 20s, the importance

of the instrumental generation of curves as a means for extending Euclid’s constructive

95See [Panza [2011], p. 86. The distinction between the geometric nature of cartesian linkages versus
the physical nature of other devices will be discussed again in the next chapter.

91 Elevo lineam ba in partem b, quae secum trahit lineam ac & ad..." (Descartes| [1897-1913|, vol.
10, p. 241).
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clauses, he probably lacked a precise concept of geometric linkage back then. Only in the
subsequent years, his answers to the questions about which family of constructing instru-
ments is admissible beyond ruler and compass, and which relevant properties should such
an admissible instrument possess became precise, and eventually reached their definitive

form in La Géométrie.

3.2.3 The determinative character of cartesian algebra

All curves acceptable in Descartes’ geometry can legitimately enter in the synthetic part
of the problem solving procedure, allowing the construction of any polynomial equation
with finite arbitrary degree. This conclusion rests on one of the groundbreaking insights
which La Géométrie has brought to mathematicians: the construction of a curve by a
geometrical linkage implies the possibility of exhibiting all points of the curve by an
algebraic equation in two unknowns of the form: P(z;y) = 0. The entailment from
constructability to algebraic expressability is conceded by Descartes, as the following

passage explains:

. tous les poins, de celles [of the curves| qu'on peut nommer geometriques,
c’est a dire qui tombent sur quelque mesure précise et exacte, ont neces-
sairement quelque rapport a tous les poins d’une ligne droite, qui peut estre

exprimé par quelque equation, en tous par une mesmeﬂ

As an example, Descartes determines the nature the curve GCFE constructed by one of
the geometric linkages (cf. figure 3.2), by finding the equation satisfied by all the points
belonging to the curve. Descartes considers another point A on the straight line AB.
From a point C, arbitrarily chosen on the curve, a straight line is drawn to AB at a given
angle: the segments C'B and BA, both unknown ("quantités indeterminées", |Descartes
[1897-1913]|, vol. 6, p. 394), are named by Descartes with the letters y and z. Following
the problem-solving strategy deployed in Book I, Descartes names the other relevant
magnitudes: GA = a, NL, parallel to C'B, will be called ¢ and KL = b. Working
then on the elementary relations between similar triangles K NL and KC B, the relation
between segments CB = y and CA = x can be finally expressed as an equation of the

form: F(x,y) = 0, namely:

CT

2 y—ay+ac=0 (3.2.1)

y? —cy +

9MDescartes| [1897-1913], p. 392.
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Since point C' has been chosen arbitrarily, Descartes can conclude, by generalization, that
all the points belonging to the curve constructed with the geometric linkage described
above satisfy equation[3.2.1] From this equation - Descartes claims, without explanations

- we know that the curve is an hyperbola@

The correctness of Descartes’ conclusion can be verified by proving that equation [3.2.1
expresses a geometric property which characterizes univocally an hyperbola. Following
the suggestion advanced by Van Schooten in his commentary to La Géométrie, it can be

shown, in fact, that the equation [3.2.1] implies the following geometric equality:

R(IC,BC) = R(DA, EA)

Namely, the rectangle with sides IC and BC' is equal to the rectangle with sides DA and
EA. Relying on proposition 10 of the second Book of Apollonius’ Conica, we recognize
that this equality characterizes indeed the curve GCFE as an hyperbola whose asymptotes
are F'A and F D, which confirms Descartes’ claim.@

A more detailed proof can be found in Van Schooten’s Commentary (see in particular,
Descartes| [1659-1661], p. 170-171), which I will follow hereinafter. Hence, let us complete
Descartes’ original construction, as shown in fig. @ AQG is extended to point D,
such that DG = FA = NL, and let a parallel to CK be traced from point D, which
meets in a point K the segment AB extended.

Having worked out these auxiliary constructions, let us rewrite equation [3.2.1] as:

(a—i—c—%— )y = ac

“®Descartes| [1897-1913|, vol. 6, p. 394.

99The reference to Apollonius’ Conica is made by Van Schooten in [Descartes| [1659-1661], p. 172.

100 he figure reproduces Van Schooten’s diagram in his commentary to the latin edition of La Géométrie
(Descartes| [1659-1661], p. 171).
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o

Figure 3.2.5: [Descartes| [1659-1661], vol. 1, p. 171.
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By setting: AG=DA=a, KL=b, NL=FEA=c¢, DH=AB =1z, BC =y, it can be
proved that: a + ¢ — G —y = IC, and therefore:

IC x BC=DAx FEA

Since DF and CK are parallel, angles DF A and CK A are equal. Let us then produce
BC, so that it meets DF in a point I, and raise from D the parallel to AF', meeting
the line BC extended in a point H. The triangles: DHI, KLN, and FAD are thus
similar (indeed it can be easily proved that all their angles are equal), and the following

proportion holds:
KL:LN=DH:HI

As an immediate consequence from the proportion above, we have that: HI = .

From fig. the following equality can be deduced: HB — HI = IB = DA — HI.
Since HI = §§ , DA=a+c¢, IB=a+c— %FEI the segment IC' can be eventually
determined as: IC' = IB — BC = a + ¢ — ¢ —y. By consequence, from the equation:
(a+c— % —y)y = ac we can infer: IC x BC = DA x EA.

I point out that Van Schooten refers to a property satisfied by all points lying on an
hyperbola, proved by Apollonius in the Conics, Book II, prop. 12, and singled out also
by Proclus in connection with a discussion about solid loci.FEI This reference may not
be casual, but indicative of the fact that an equation was conceived, by Descartes and
by his readers, as incorporating not only the symptoms of curves known since Antiquity,
but also their properties (and theoretically all the properties) by which a curve can be
characterized as a locus. It is therefore understandable why, in order to verify that the
curve traced by the linkage in fig. [3.2.1] is an hyperbola, Van Schooten relied on a

property asserted by a well-known solid locus theorem.

In an important article on the conceptual origins of cartesian geometry, A. G. Molland has

pointed out how Descartes’ algebra of segments can enrich the possibilities of denoting

1017 fact, we have that: DA = AG + DG, and by hypothesis it is also: DG = NL = ¢. Hence
DA=a+ec.

192Proclus [1992], p. 311; see sec.
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a curve, by allowing the reference either to its equation, or to its geometrical description
via a suitable linkage, and refererred to these two modes for describing a curve in terms
of "specifications". More precisely, he observed that the construction of a curve by one
of the cartesian linkages is an instance of a "specification by genesis", while the way of
describing a curve by giving its equation in x and y is a case of ‘specification by property’:
"An equation in terms of x and y - Molland observes - could determine the curve, by
specifying a property all its points had to obey (...) this has close similarities to such

ancient procedures as Apollonius’ establishment of symptomata”@

The similarity between the meaning and role of symptomata in ancient geometry and the
role of equations as specifications of curves, in Descartes’ geometry, is indeed manifest.
I have already remarked (chapter p how the symptoms of a curves can be un-
derstood in terms of relations expressing the fundamental properties of the curve under
examination. More precisely, for the case of the conic sections: "the symptoma refers to
a single arbitrary point on a given curve by relating a single square to a single rectangle
(...) Thus, once a conic section is given, the symptoma gives an immediate criterion for a
point to be on that conic section".lTEI Analogously, the equation can be understood
as referring to an arbitrary point belonging to the curve drawn by a geometric linkage,
by relating its distances from a couple of given segments, and by giving, in this way, a
criterion in order to recognize the curve thus drawn as a particular conic section, namely
an hyperbola. But, as the example of the hyperbola discussed by Van Schooten shows,
an equation associated to a geometric curve incorporates not merely the information on
the symptomata, but theoretically all information on the properties of a curve. Descartes
is explicit on this: "Pour trouver toutes les propriétés des lignes courbes - he subtitles
a paragraph of La Géométrie - il suffit de sgavoir le rapport qu’ont tous leurs points a

ceux des lignes droites", and explains:

Or, de cela seul qu’on scait le rapport qu’ont tous les poins d’une ligne courbe
a tous ceux d’une ligne droite, en la fagon que j’ay expliquée, il est aysé de
trouver aussy le rapport qu’ils ont a tous les autres poins et lignes données &,
en suite, de connoistre les diametres, les assieux, les centres, & autres lignes
ou poins a qui chasque ligne courbe aura quelque plus particulier, ou plus

simple, qu’aux autres. . Flgl

193Molland| [1976], p. 38.
104\ ichael N. Fried| [2001], p. 88.
195 Descartes| [1897-1913], vol. 6, p. 412-413.
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According to Molland, moreover: "Descartes held the possibility of representing a curve
by an equation (specification by property)" to be equivalent to its "being constructible in
terms of the determinate motion criterion (specification by genesis)" FE] This equivalence
is only suggested but not proved by Descartes. If, on one hand, constructability by
geometric linkages implies the representability of curves by equations in virtue of the
very constitution of the licensed linkages, on the other Descartes seems confident that
any algebraic curve can be constructed by a legitimate tracing device, although he does

not bother giving a proof of this claimm

If this equivalence is uncontrovertible from the mathematical viewpoint (a curve con-
structed by a geometrical linkage can be specified via an algebraic equation, and con-
versely, a curve corresponding to a given algebraic equation can be constructed by a
suitable geometric linkage) the same may not be said from an epistemic viewpoint. In
other words, specification by genesis (in terms of geometric constructions) and specifica-
tion by property do not seem to stand on a par for Descartes when it comes to secure

the knowledge of a geometrical object, in this case a curves.

On the contrary, I surmise that in the context of Descartes’ geometry, the specification by
genesis of a curve still exerted a primary role in securing epistemic access to it. The first
evidence in order to support this claim consists in the plain observation that curves are
dealt with, in La Géométrie, notwithstanding their algebraic description: for instance,

Descartes discussed several curves without giving their equation or barely mentioning

them [[99]

A second evidence can be retrieved from the arguments given above, concerning the
acceptability of curves. Descartes often combined words like "tracer" with "connoistre",
"concevoir", in such a way that that legitimate procedures for tracing curves supposedly
bear a standing to warrant epistemic access to the produced objectsFigI Van Schooten’s

later commentary was still more explicit on the point. Thus, in the prefatory words

1%Molland| [1976], p. 38.

1077t is held that such a conjecture was proved by Kempe, in a famous paper from 1876 (Kempe
|1876]) in which he lay down the important result that any algebraic curve was traceable by a series
of interconnected moving joints called "linkages". However: "we may conclude from the intricacy and
the late date of Kempe’s method that a general tracing method for algebraic curves was not within
Descartes’ reach, let alone one which satisfied his further criteria" (Bos|[2001], p. 405).

108 A5 it is the case of the description of the optical ovals. See H. Bos. The structure of descartes’
geometry, in [Belgioioso and Costabel| [1990], p. 54.

109Bos| [1981], p. 308.
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to the second book he emphasized the role of the construction by geometrical linkages,
effectuated in respect of Descartes’ exactness norm, as the mode of knowing (modus

cognoscendi) a curve:

Secundus liber agit de lineis curvis, earumque naturam explicat, docendo,
quaenam illae sint, quuas in geometriam recipere oportet, quaeque geomet-
ricae appellandae sunt, itemque quo pacto possint cognosci. Modus autem
eas cognoscendi in eo consistit, quod describi possint per motum aliquem

continuum, vel per plures eiusmodi motus, quorum posteriores regantur a

prioribus@

Hence, the construction of a curve according to the standards in force within Descartes’
geometry, namely, its ‘specification by genesis’ secured the giveness of the curve itself in

geometry, and therefore the very possibility of its knowledge.FEI

Moreover, the representability of curves through equations, stands as the conclusive step
in order to endow cartesian algebra of segments with its determinative character. In fact,
through the possibility of associating acceptable curves to finite polynomial equations,
Descartes managed to to work out a procedure in order to construct any (real) root of a
given polynomial equation in a finite arbitrary degree, through the intersection of a pair
of geometric curves. The specification of curves through algebraic equations played an
essential role in constituting a criterion for the ordering of curves, as I will explicate in

the following chapter.

"9Descartes| [1659-1661], p. 167: "The second book [of La Géométrie] concerns curve lines, explains
their nature, teaching which lines they are, which it necessary to receive in geometry, and which are to
be called geometrical, and likewise how they can be known. And the way of knowing them (modus eas
cognoscendi) consists in this, that they can be described by a continuous motion, or by several motions
of this kind, of which the subsequent ones are governed by the preceding ones".

1Ty this sense, we are allowed to talk about Descartes’ ‘constructivism’, as suggested in [Serfati and
Bitbol| [2002].



Chapter 4

Simplicity in Descartes’ geometry

4.1 Introduction

As anticipated in chapter [3] Descartes lays down precise methodological guidelines, in La
Géométrie (1637), in order to solve a problem in the most appropriate way. These rules
involve a clearcut restriction in the domain of acceptable curves to those constructible

by geometric linkages, with the exclusion of few, ‘mechanical’ curves.

But the demarcation between mechanical and geometrical curves was not sufficient, from
Descartes’ viewpoint, in order to solve a problem geometrically. In fact Descartes ex-
plicitly recommended to use the ‘simplest’ solving means for a problem at hand. For
the case of problems reducible to quadratic equations, the choice of the simplest means
was uncontroversial. Descartes had given, in Book I, a method for the construction of
quadratic equations by means of circles and straight lines, therefore it was natural to
consider these curves as the simplest available ones. The choice became harder for the
case of problems whose analysis had led to higher equations. What were the ‘simplest’

curves, in these cases?

Although the notion of the maximal simplicity for the solution of a problem had probably
been accepted as a desideratum since antiquityE] Descartes proposed the first attempt
(to my knowledge) in order to disambiguate the concept of simplicity in mathematics,

more particularly in geometry:

Encore que toutes les lignes courbes, qui peuvent estre descrites par quelque

mouvement regulier, doivent estre reciies en la Geometrie, ce n’est pas a dire

Van der Waerden| |[1961], p. 263, and chapter [2| of this study, in particular section

155
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qu’il soit permis de se servir indifferemment de la premiere qui se rencon-
tre, pour la construction de chaque Problesme: mais il faut avoir soin de
choisir toujours la plus simple, par laquelle il soit possible de le resoudre. Et
meme il est a remarquer, que par les plus simples on ne doit pas seulement
entendre celles, qui peuvent le plus aysement estre descrites, ny celles qui ren-
dent la construction ou la demonstration du Problesme proposé plus facile,
mais principalement celles, qui sont du plus simple genres qui puisse servir a

determiner la Quantité qui est Cherchéeﬂ

I interpret Descartes’ passage as offering an accurate distinction into two main types of

simplicity:

e Easiness: A curve C is simpler than a curve D with respect to a given problem,
if both C and D solve the problem at hand, but curve C can be described in a
way that is ‘easier’, namely more transparent to understanding (I will discuss this

concept in more detail in the sequel) than the description of D.

e Dimensional simplicity. A curve C is simpler than a curve D if the first curve belongs
to a class inferior to the class of the second curve, according to a numerical order
of classes established in La Géométrie. Since the fact that a curve belongs to a
given kind is established by its equation, it can be said that algebraic considerations

ultimately guide the choice of the simplest curve in Descartes’ practice.

In Descartes’ view, only the second type must be taken into account in problem solving.
This distinction has a strong normative aspect which constrains so much the problem-
solving strategy that any violation is explicitly considered an error in geometry ("une
faute", as written in [Descartes [1897-1913|, vol. 6, p. 443).

More precisely, Descartes imposes, in La Géométrie, two constraints in order to avoid
such errors in geometry. Firstly, one must refrain from trying to solve a problem by
too simple means with respect to the class to which the problem belongs, and secondly,
one must also refrain from using too complex methods with respect to the class of the
problemﬁ

ZDescartes| [1897-1913], vol. 6, p. 370.
3Descartes| [1897-1913], vol. 6, p. 444.
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However, not only the preference for dimensional simplicity is not justified in La Géométrie,
but it can also be questioned whether it is the most rational or obvious choice, when it
comes to decide the best methods in order to construct a problem. In this chapter, I
will provide an argument in order to justify the motivations behind the choice of dimen-
sional simplicity, in the light of Descartes’ attempt to find a rational systematization of
problems and solving methods which could improve the ancient ones. This justification
will also offer the context in which the first attempts to prove some impossibility results
of extratheoretical kind (namely, the impossibility of solving solid problems by ruler and

compass) occurred.

4.2 Simplicity in early modern geometry

Although the previously quoted passage from Book III of La Géométrie, in which Descartes
lays down the methodological rules for problem-solving, does not contain any explicit ref-
erences to Pappus, there is little doubt that the homogeneity requirement explicated in
Book III and IV of the Mathematical Collection (Cf. Ch. [2]) was envisaged as a di-
rect reference in Descartes’ discussion about the simplicity requirement. In his latin
commentary of Descartes’ Géométrie, van Schooten even paraphrased the requirement
to solve a problem by the simplest curves, employing a terminology evidently borrowed

from Commandinus’ latin version of the Collection:

Ubi observandum est quod, cum peccatum sit non leve apud Geometras,
Problema planum construere per Conica aut Linearia, hoc est, ipsum per
improprium solvitur genus, ita quoque sit cavendum, ne in constructionem
ejus adhibeamus lineam aliquam curvam, quae magis sit composita, quam

ipsius natura admittit 4

The closeness to Pappus’ statement can be better appreciated considering how Com-

mandinus rendered Pappus’ proposition 30 of Book IV:

Videtur autem quodammodo peccatum non parum esse apud Geometras, cum
problema plano per conica, vel linearia ab aliquo invenitur, et ut summatum

(summatim?) dicam, cum ex improprio solvitur genere .. E|

4Descartes||1659-1661], 277: "Where it must be observed that, as it is not a small sin by the geometers
to construct a plane problem with conics or linear curves, namely, to solve it by a non kindred kind, so it
must be paid attention not to employ in its construction a curve which is more composed than conceded
by its nature".

JCommandinus| [1588], fol. 61r: "It seems a somehow non small sin, among geometers, when someone
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There is no doubt, therefore, that Descartes’s methodological guidelines for solving prob-
lems in the ‘simplest’ way were deeply indebted (or at least were considered so by
Descartes’ contemporaries and fellows) to what has been called, in the first chapter

of this study: "Pappus’ homogeneity requirement".

As we can infer from the frequent references in the contemporary literature, Pappus’ con-
straint was often interpreted by early-modern geometers as a constraint on the simplicity
of solutions: it was considered an error, or in any case an illegitimate move to solve a

problem with means more complicated than necessary.

An example of reading of Pappus’ norm in terms of simplicity is offered by Marin
Mersenne, in his Harmonie Universelle (1636), where curves are classified into plane,
solid and linear, probably on the grounds of their constructional simplicity. Indeed,
circles and straight lines (plane curves), whose construction - points out Mersenne - is
postulated by Euclid at the beginning of the Elements, are also the simplest geometrical
curves. Conic sections follow plane curves in an ordering of decreasing simplicity, since
they are produced by cutting a cone, in its turn generated by the rotation of a straight
line around the circumference of a circle. Finally, Mersenne groups those curves tra-
ditionally excluded from the other two classes: conchoids, spirals, quadratrices, whose

description is barely judged "almost impossible".lﬂ

Mersenne also reformulated Pappus’ requirement, according to the virtue of simplicity:

Il semble raisonnable que tout Probleme qui peut estre resolu par les lieux
plans, soit resolu par les lieux plans, et que celuy qui ne pouvant estre resolu
par les lieux plans seuls, le peut estre par les lieux solides seuls, ou meslez

avec les lieux plans: en fin quand un Probleme est de telle nature qu’il ne peut

solves a problem of plane kind by means of conics, or linear curves, and, to speak generally, when it is
solved by a non-kindred kind (improprio genere)".

5The passage in its entirety is reproduced here: "Or comme les anciens, au rapport de Pappus, avaient
estimés que c’était une grande faute de resoudre par les lieux solides ou lineaires, un probléme, qui de
sa nature pouvoit etre resolu par les seuls lieux plans, j’estime semblablement que la faute n’est pas
moindre, de resoudre par des lieux lineaires, ou par des mouvements impliqués, ou par des descriptions
é tatons, un probléme que de sa nature peut etre resolu par des lieux solides. Car puis qu’entre les lieux
l'ordre est tel, que ceux que nous appelons plans sont les plus simples, a sgavoir la ligne droite, et la
circonférence du cercle, la description desquelles Euclide demande luy estre accordée au commencement
de les Elements: apres lesquels suivent les lieux solides, qui prennent leur origine de la section d’une
superficie conique, engendrée d’une ligne droite et de la circonference d’un cercle (...) qui sont suivis des
lieux que I'on appelle lineaires, engrendrez le plus souvent par deux mouvement impliquez, comme les
Choncoides, les Spirales, les Quadratrices et une infinité d’autres, dont la description est pour 'ordinaire
presque impossible. .. |Mersenne [1636]], vol. 2, p. 407.
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estre resolu par les lieux plans ou solides, alors il est permis de le resoudre
par les lieux lineaires seuls, ou meslez avec les lieux plans, et solides: de
sorte toutefois que 1’on se serve le plus que ’on pourra des lieux plans, et le
moins que 'on pourra des autres; et qu’une construction soit plus estimée, en
laquelle il n’entrera qu’un lieu solide, le reste estant plan, que celle en laquelle
entreront deux lieux solides, puis qu’a 'imitation de la nature, nous devons

tout faire par les moyens les plus simples.ﬂ

According to Mersenne, therefore, simplicity is rooted in the way nature operates, so
that a violation in the simplicity of the solution would result in a misunderstanding of

its nature.

An echo of this thesis is to be found in Fermat’s Dissertatio Tripartita, written after
december 1637

Puriorem certe Geometriam offendit qui ad solutionem cujusvis problema-
tis curvas compositas nimis et graduum elatiorum assumit, omissis propriis
et simplicioribus, quum jam saepe et a Pappo et a recentioribus determina-
tum sit non leve in Geometria peccatum esse quando problema ex improprio

solvitur genereﬂ

Fermat’s direct reference was Descartes, who offered a similar view in his Géométrie of
1637.

We can therefore conclude that a reading of Pappus’ classification of problems presented
in Book IV, in terms of the simplicity of their solving curves, was current, or at any rate
not new during the first half of the XVIIth century, and that such a reading had influence
also Descartes’ understanding of Pappus’ requirement. Less clear were the directives
about how simplicity ought to be interpreted. In this setting, Descartes had certainly
the merit to propose a clearcut interpretation of simplicity as a fundamental criterion
for the classification of curves, which represented a touchstone for several generations of

future geometers.

Tibid.

8Mahoney| [1973], p. 130.

9TCertainly it is an offense against the more pure geometry if one assumes too complicated curves
of higher degree for the solution of some problem, rather than taking the simpler and more proper
ones, because, as Pappus, and recent mathematicians as well, have often declared, in geometry it is a
considerable error to solve a problem by means that are not proper to it"(in [Aranal [2003|, p. 256).
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4.3 Classifications of curves and problems

4.3.1 Ancient and modern classifications

In Descartes’ geometry, the concept of dimensional simplicity is directly dependent on
a classification of curves into kinds ("genres"), articulated in Book II and IIT of La
Géométrie, and ultimately on the degree of their associated equationsm In this section,
I would like to evaluate it with respect to the ancient classificatory scheme proposed by

Pappus.

At the beginning of Book II of La Géométrie, Descartes praised the ancients for having
introduced a distinction between plane, solid and linear problems. I stress that Descartes
gave a positive assessment of this distinction, that he presumably had learned from
Pappus. This is confirmed by the fact that Descartes did not reject it but incorporated
the ancient classification into his own classificatory scheme: as I will explicate more
precisely below, problems are sorted out, in La Géométrie, into classes on the ground of

the nature of curves entering their solution.

Descartes remained however critical towards two aspects of the classifications of the
ancients. Firstly, he argued, ancient geometers had allegedly proposed a misgiven dis-
tinction between geometrical and mechanical curves; secondly, they lacked a more fine-

grained distinction into classes of geometric curves beyond the conic sections.

But Descartes might have perceived another quandary with respect to the ancients’
grouping of problems and curves. As I have commented before (in particular, in chapter
of this study), in Books IIT and IV of Pappus’ Collection, we encounter a classification of
construction problems based on the means needed for their solutions. This classification
entailed a major logical difficulty: one problem could in priciple be solved by methods
and curves of different kinds in such a way that, except for certain cases, deciding the
appropriate level of a construction problem may turn out to be a complex, and perhaps

undoable task in classic geometric reasoning.

I shall thus argue, in what follows, that Descartes’ reform of the classifications of the
ancients, obtained through the substantial contribution of algebra, could represent an ad-
vance over ancient models because it offered a more reliable method in order to establish

the nature of a proposed problem.

198ee, for instance: Sasaki| [2003] (p. 222ff) and in Bos| [2001], p. 355(.
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4.3.2 A classification of curves

Descartes elaborated in book II of La Géométrie a classification of curves into successive

classes ("genres") determined by the degree of the associated equations:

. lorsque cette equation ne monte que iusques au rectangle de deux quan-
tités indeterminées, ou bien au carré d’'une mesme, la ligne courbe est du
premier et plus simple genre, dans lequel il n’y a que le cercle, la parabole,
I’hyperbole et l'ellipse qui soient comprises. Mais que, lorsque ’equation
monte iusques a la trois ou quatrieme dimension des deux ou de 'une des
deux quantités indeterminées: car il en faut deux pour expliquer icy le rap-
port d’un point a un autre: elle est du second. Et que, lorsque ’equation
monte jusqu’a la cinq ou sixiesme dimension, elle est du troisiesme: et ainsy
des autres a l'infini[H]

Descartes explains that a curve is more complex ("composé") than another one when it
belongs to a kind higher than the kind of the second curve. This ordering of curves into
kinds proceeds, in La Géométrie, in a pairwise manner: the first class (genre) includes
curves associated with equations in degres 1 and 2 (the degree of an equation is to be
understood in the modern sense, namely, it concerns both unknowns taken together. In
this way, the monomial ‘xy’ will have degree 2), that is straight lines, circles and the other
conic sections; the second class includes curves associated with equations in degrees 3
and 4, like the cartesian parabola introduced in book III of La Géométm'eﬂ the third
class will include curves expressible with equations in degree 5 and 6, and so on, for any

couple of equations of degree 2n, 2n — 1.|E

The motivations of this pairwise grouping are thus explained:

Au reste je mets les lignes courbes qui font monter cette Equation jusqu’au
quarré du quarré au mesme genre que celles qui ne la font monter que iusques
au cube. & celles dont ’equation monte au quarré du cube, au mesme genre
que celle dont elle ne monte qu’au sursolide, & ainsi des autres. Dont la

raison est, qu’il y a reigle generale pour reduire au cube toutes Is difficultés

"Descartes| [1897-1913], vol. 6, p. 392-393.

2Descartes| [1897-1913|, vol. 6, p. 481ff.

13T remark that Descartes’ classification does not take into account the case of degenerate curves of
any degree.
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qui vont au quarré du quarré, & au sursolide toutes celles qui vont au quarré

de cube, de facon qu’on ne les doit point estimer plus composées.lE

Even after this explanation, the rationale of Descartes’ pairwise classification is not ob-
vious. It might have been based on purely algebraic concerns, as Bos| [2001] suggests.
Descartes might have thought, for instance, to import into the structure of his classifi-
cation of curves two important algebraic facts known and currently applied by the mid
XVIIth century: on one hand the fact that equations of 4** degree can be reduced to
equations of 3" degree, and on the other, the fact that third degree equations withstood
all attemps to be reduced to quadratic equations.lE On this ground, it would make sense
to range together in the same class problems described by quartic and cubic equations,
for instance, and in contrast to range curves described by cubic and quadratric equations

in different classes, respectively.

This could have been the starting point taken by Descartes in order to generalize the
pairwise classification holding for curves, until the 4t degree, to successive couples of
curves, associated to equations of degree 2n and 2n — 1, respectively (with n > 2). This

interpretation is endorsed by Fermat, for instance, who noted:

Similiter quoque cubocubicam aequationem ad quadratocubicam sive sequa-
tionem sexti gradus ad equationem quinti deprimet, licet aliquanto difficilius,
Vietaeus aut Cartesianus Analysta. Ex eo autem quod in praedictis casi-
bus, in quibus una tantum ignota quantitas invenitur, sequationes graduum
parium ad aequationes graduum imparium proxime minorum deprimuntur,
idem omnino contingere in aequationibus in quibus duae ignotae quantitates
reperiuntur confidenter pronunciavit Cartesius pagina 323 Geometriae lingua

gallica a ipso conscriptaem

"Descartes| [1897-1913|, vol. 6, p. 395-396.

15The notion of reducibility here considered is a technique which obtains of equations of the form
H(z) = U(V(x)). In order to reduce such equations, it is necessary at first to solve U(y) = 0, then,
inserting the value for y, to construct y = V(x). Descartes followed this technique in solving quartic
equations: at first he transformed a 4" degree equation into a 6** degree one, and subsequently he
transformed the latter into a third degree equation in 2*. See[Bos|[1984], p. 342-343. ‘Reducibility’ is, in
this context, a technical term employed to denote a particular algebraic process. As I will explain later
on, it should be distinguished from another type of reducibility, obtained by factoring a given polynomial.

16 As we read in Mahoney’s translation: "In a similar manner, (though with somewhat more difficulty)
the Vietian or Cartesian analyst will reduce a cubo-cubic equation to a quadrato-cubic, i.e an equation
of the sixth to one of the fifth degree. And, because in the aforesaid cases, in which there is only one
unknown quantity, equations of even degree can be reduced to the next lower odd degree, Descartes has
confidently asserted on p. 323 of the French version of his geometry that exactly the same thing holds
true of equations in which there are two unknown quantities" (Mahoney| [1973|p. 134).
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However, Descartes’ commitment to such a strong and unproved conjecture in order to
ground his classication of problems remains stunning, and grounded on ouright false
premisses. Indeed, his claim about reducibility could be proved only for n = 2, as
Ferrari’s and Viéte’s rules for solving quartic equations show, but there is no possible
reduction of sextics to quintics, and, at any rate, no argument (even flawed) was advanced
by Descartes to warrant this factﬂ

Anyhow, Descartes’ choice to privilege a criterion of classification based on equations re-
mains a noteworthy fact. Since an equation incorporated, according to Descartes’ saying,
all information about the properties of a curve, we shall conclude that Descartes’ classi-
fication into kinds is primarily based on the ‘specification of properties’ of curves. This
is a relevant difference with respect to Pappus’ classification of curves, which depends
on their genesis, or even from the classification of curves adopted by Descartes himself

in his early Writings.ﬁ

The ancients were certainly not ignorant of ways of characterizing curves by their prop-
erties. For instance, by solving locus-problems or proving locus-theorems, they were
possibly able to endow supplementary properties to the curves they could construct and
characterize via their symptoms. But I want to stress another point already emerged in
this study: while ancient geometers lacked a systematic means in order to express all the

properties of a curve, Descartes possessed, on the contrary, a compact symbolic notation

'"But, as suggested especially by Freguglia (Freguglial [1999b], p. 173ff.) the mention of a "general
rule in order to reduce to the cube all difficulties that go to the quadrato-quadratic (quarré du quarré)"
might be also read as a reference to the fact that Descartes possessed a technique, detailed in Book III
of La Géometrie, in order to construct both 4" and 3"¢ degree equations (in one unknown) by means
of the same choice of curves, namely a parabola and a circle (I shall delve into an example in one of
the next sections). As I have discussed in the previous chapter, an equation issued from the analysis
of an indeterminate problem, thus an equation in the form: F(z,y) = 0, can be associated to a curve
constructible point by point, according to Descartes’ problem-solving protocol, by taking one of the two
unknowns, i.e. y, and replace it by a letter denoting a known segment (i.e. the letter a), so that the
resulting equation will be: F(x,a) =0 . So, if F(z,y) = 0 has degree 2, it can be pointwise constructed
by ruler and compass; if F'(z;y) = 0 has degree 3 or 4 (namely, if it is a cubic or a quartic), its points are
costructible by intersections of a circle and a parabola, which is indeed the standard procedure adopted
by Descartes, in Book I1I of La Géométrie. Likewise, Descartes constructed equations of degree 5 and 6
(in one unknown) by means of the same apparatus, and was confident that this pattern could be extended
indefinitely. Might this be the rationale in the backdrop of Descartes’ classification into genres of curves?
This possibility cannot be ruled out, although it seems problematical. Let us suppose, for a moment,
that it were the case. Then we would have a classification scheme for curves grounded on a technique for
constructing equations, which in its turn depends on the choice of the simplest curves, as I will explicate
in the next section. This amounts to saying that Descartes’ technique for constructing equations depends
itself on a classification of curves into kinds, so that it cannot ground that very classification.

8For instance, ch. [3] p.
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for this aim, since he could rely on equations.lg

R. Rashed has underlined, in his [Rashed| [2005|, the historical significance of the shift
from classifying curves on the ground of their mode of generation to classifying curves

on the ground of their properties, remarking:

C’est en effet un événement dans I’histoire des mathématiques lorsque le
mode de génération de la courbe et sa formule président conjoinctement a sa
classification. C’est d’abord pour les coniques qu’un tel événement se produit,

au X siécle (...) puis pour les courbes algébriques avec Descartes@

According to Rashed, the criterion of classification adopted by Descartes was the culmi-
nating point of an evolution whose seeds can be found already in arabic mathematics. I
will not discuss this thesis here, except for observing that Descartes’ classification scheme,
although being grounded on the ‘specification by property’ does not rule out the mode

of generation of curves as a principle for ordering curves.

On the contrary, Descartes recognized the existence of a layer of complexity of curves
not fully captured by the classification of curves into kinds. For instance, conic sections
and the circle are all curves of the first class, according to the scheme presented in
La Géométrie, although Descartes conceded that one could solve more problems using
conic sections than by using solely circles and straight lines. Descartes agreed, as a
consequence, that his classification into kinds of curves did not fully express, in itself,
the ‘power’ of curves in problem solving. This property is portrayed, perhaps a bit

vaguely in La Géométrie, with the following words:

mais il est a remarquer qu’entre les lignes de chaque genre, encore que la
plupart soient esgalement composées, en sorte qu’elles peuvent servir a déter-
miner les mesmes points, & construire les mesmes Problesmes, il y en a
toutefois aussy quelques unes, qui sont plus simples, & qui n’ont pas tant
d’estendue en leur puissance, comme entre celles du premier genre (...) le
cercle, qui manifestement est plus simple, & entre celles du second genre il

y a la Conchoide vulgaire (...) & il y en a encore quelques autres, qui bien

19See [Descartes| [1897-1913], vol. 6, p. 412, in particular the title of the paragraph: "Pour trouver
toutes les propriétés des lignes courbes il suffit de sgavoir le rapport qu’ont tous leurs points a ceux des
lignes droites". Cf. also |Sasaki| [2003], p. 220f.

20Rashed| [2005]. p, 5.
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qu’elles n’ayent pas tant d’estendue que la plus part de celles du mesme genre,

ne peuvent toutefois estre mises dans le premier@

With hindsight, we can recognize here a dim intuition of the notion of constructional
complexity of curves, worked out in a fully-fledged form only in late XIXth and early
XXth century@ The distinction advanced by Descartes between curves that, within
the same kind, have a less or more extended application in problem solving, remains
grounded on a mix of qualitative considerations, either concerning the genesis of the
curve itself, or the knowledge of its employment in solving problems, derived from the
geometers’ experience. For instance, Descartes was well conscious that ruler and compass
(or, analogously, straight lines and circles) cannot solve problems that are solvable by the
use of conic sections instead. On the other hand, Descartes noted that the circle is also
generated in a simpler way than the hyperbola, for instance, which is a curve of the same
Class@ Analogously, the conchoid, being generated by a pivoting line that moves a circle
will be simpler, from the point of view of its constitution, than a cartesian parabola,
generated by a pivoting line and a moving parabola, although both curves belong to the

same class (both constructions are analyzed in chapter |3} sec. and sec. [3.2.1]).

2'Descartes| [1897-1913|, vol. 6, p. 396.

22The possibility of associating analytic operations to geometric constructions in order to determine
the constructional possibilities of the diverse instruments, or curves, offers also a criterion in order to
judge the range of problems a given set of instruments or curves can solve. In this way, it is possible to
define, in mathematically precise terms, the "constructional power" of a curve. This issue is discussed
by Federigo Enqriques in [Enriques| [1912], vol. 2, p. 583, for instance: "Since we can associate to
any instrument (whose mode of employment has been fixed in advance) a body of solvable problems,
the power of the instrument can be rightly appreciated with respect to the extension of this field. If
two instruments, or groups of instruments, correspond to the same body, they must be regarded as
equivalent ...". Enriques refers then to the problem of determining the constructional possibilities of
several instruments, namely ruler and compass, ruler alone, and compass alone. A companion article,
written by Castelnuovo, provides further insight into the question, from the viewpoint of the latest
advances in the field of algebra and analytic geometry: "The examination of the problems solvable by
ruler and compass, and more generally by other instruments, involves two stages, one concerning analytic
geometry, the other concerning algebra or analysis. It must be examined which effects are produced,
upon a geometrical figure, by a construction performed through a given instrument. And because, by
the means of analytic geometry, any geometric operation corresponds to an analytic operation, one must
search for the analytic operation equivalent to a construction performed by some instruments (a ruler, a
compass ...)" ((Enriques| [1912], vol. 2, p. 314). Underscoring this programme, we find several concepts
foreign to the conceptual framework of Descartes’ geometry. It is the case, for instance, of the idea of
an analytic geometry over the reals, that cannot be found in force within Descartes’ geometry, where
algebra is but a compact notation for expressing proportions between geometric quantities, as seen in
the previous chapter.

23 Of. |Descartes| [1897-1913], vol. 6, p. 395:.
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It can be inferred from the above examples that Descartes did not dismiss, alongside
with a classification of curves based on degree, a classification of curves based on the
complexity of their generation. Descartes indeed set up, in Book II of La Géométrie,
a correspondence, never elaborated any further though, between the complexity of the
linkages which construct geometric curves and the kinds to which the constructed curves
belong. This correspondence can work, in principle, on the ground of the compositional
nature of linkages: in brief, the fact that a curve traced by some linkage can enter in the

composition of a new linkage makes the latter more complex.

On the ground of this intuition, Descartes observed that if one removes, from the linkage
employed in order to construct a curve of the first kind (e.g., an hyperbola), one of
its components (for instance, a ruler) and he replaces this ruler with a curve of the
first kind (for instance, a parabola) a curve of the next kind can be obtained, like the
cartesian parabola described in chapter [3| (p. [143). Descartes extrapolated from this

correct example an incorrect generalization it to successive kinds of curves:

Mais si, au lieu d’une de ces lignes courbes du premier genre, c’est en une du
second genre qui termine le plan CNK L on en descrira, par son moyen, une
du troisieme: ou, si c¢’est une du troisieme, on en descrira une du quatrieme;

et ainsi a U'infini, comme il est fort aysé a connoistre par le Calcul.@

Calculations themselves fail to come up with Descartes’ expectations. In fact, as Fermat
will show with a simple but accurate counterexample, if one inserts in the linkage de-
scribed in the second Book of La Géométrie (see Descartes |1897-1913|, vol.6, p. 393),
following Descartes’ instructions, a particular curve of the third class (namely, the cubic:
y3 = z), the new geometric linkage will trace a curve of the third class again, and not of

the next higher class, as Descartes predicted@

From this counterexample, we can conclude that the cartesian classificatory scheme of
curves based on the degree of their associated equations fails to capture some relevant
aspects of the constructional and, more generally, geometrical complexity of curves. I
surmise that this failure engenders a tension, in Descartes’ ordering of problems and
curves, between specification by genesis and specification by property, in the sense that
curves constructionally more complex than other ones does not necessary fall into a higher

kind. An analogous tension caused by an imperfect mirroring between the complexity of

2"Descartes| [1897-1913|, vol.6, p. 395. See this study, chapter section
25 Cf. Mahoney| [1973[, p. 136.
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the construction of a curve, on one hand, and its algebraic characteristics like the degree,
on the other, will emerge also in the opposition between simplicity and easiness, as I will

develop in the sequel.

4.3.3 A Classification of problems

Similarly to the case of curves, Descartes sketched a hierarchy of problems by sorting them
out into classes according to the degree of their associated equations. This classification
does not occupy a dedicated section in the treatise, but it is deployed throughout Book
I to Book III of La Géométrie.

For instance, the classification of curves articulated in the second Book of La Géométrie
is applied, few lines after having been introduced, in order to classify the various cases

of Pappus’ problem, as the following survey made by Descartes reveals:

Or aprés avoir ainsy reduit toutes les lignes courbes a certains genres, il m’est
aysé de poursuivre en la demonstration de la reponse, que j’ay tantost faite
a la question de Pappus. Car premierement ayant fait voir cy dessus, que
lorsqu’il n’y a que trois ou 4 droites données, I’equation qui sert a determiner
les points cherchés, ne monte que iusqu’au carré; il est evident que la ligne
ou se trouvent ces points est necessairement quelque une de celles du premier
genre, a cause que cete mesme equation explique le raport, qu’ont tous les
points des lignes du premier genre a ceux d’une ligne droite. Et que lorsqu’il
n’y a point plus de 8 lignes droites données, cete equation ne monte que
iusqu’au quarré du quarré tout au plus, et que par consequent la ligne cherchee

ne peut estre que du second genre tout au plus .. @

Descartes proceeds, in the same Book II, to prove the results stated above, at least for the
problem of Pappus in three or four given lines, and shows that one can obtain all conic
sections as solutions; then he goes on to examine cases of Pappus’ problem in a higher
number of lines, and discusses the corresponding curve-solutions. Recently, scholars have
investigated in detail both Descartes’ exposition of the solution of the problem of Pappus,
made in the second Book of La Géométrie, and the ancillary discussions raised by the
recipients and correspondants within Descartes’ Circlem This section of Descartes’ work

is therefore well known, and since it is not directly relevant to my present theme, I shall

20Descartes| [1897-1913|, vol. 6, p. 396.
2"In particular: |Bos [1981], p. 299-300, 315, 332ff. Bos [2001], chapter 23 in particular; see also:
Maronne| [2007].
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confine myself to schematizing the core of Descartes’ classification as it results from the

summary offered in the above passage:

e [f the locus is in 3 or 4 lines, the equation of the locus is of degree at most 2, the

locus is of the first class, on the ground of the previous classification of curves.

e If the locus is in 5, 6, 7 or 8 lines, the equation of the locus is of degree at most
4, the locus is of the second class (even if, in exceptional cases, the locus is of the

first class).

e [f the number of given lines is between 9 and 12, the equation of the locus is of
degree at most 6, so that the locus is of the third class, and of the lower class in

exceptional cases.

e ctc.

But this is not the only classification of the problems of Pappus discussed in Descartes’
Géométrie. In the final section of Book I, in fact, Descartes sketches another general
classification that, in his hopes, ought to encompass all instances of Pappus’ problem.
As in the previous classification, different cases are singled out into classes according to
the degree of the equation (namely F(z,y) = 0) obtained as a result of their analysis.
Hence, if we call n the number of given lines and k the degree of the equation associated
to the problem, the classification deployed by Descartes boils down to the following
schemef®|

e For n = 3,4 and n = 5, in the case of five non-parallel lines, the degree of the
associated equation will be at least k& = 2, and the points on the locus can be

constructed by ruler and compass;

e For 5 parallel lines, 6 <n < 8, and n =9, if 9 lines are non parallel, the degree of
the associated equation will be k = 3, 4: the points on the locus can be constructed

by intersection of conic sections;

e For 9 parallel lines, 10 < n < 12, and n = 13, if the configuration of the problem
presents thirteen, non parallel lines, the degree of the associated equation will be
k = 5,6. Descartes asserts that the points on the locus cannot be constructed

without the employment of curves more complicated than conic sections.

28See [Descartes| [1897-1913], vol. 6, p. 386-387. For an exhaustive discussion of Pappus’ problem, the
derivation of the equation for its locus and the constructions, see Bos|[2001], especially chapter 23.
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The rationale of the classification presented in the first book is subtly different from
the one of the second Book, that I have presented before. Indeed, it reflects a hierar-
chical order among the cases of the problem of Pappus with respect to the pointwise
constructability of the curve-solutions: this classification is not grounded on the class of
the curve or locus that offers the solution to the problem, but on the means (namely, the

curves) that can effectuate its pointwise construction.

As seen in the previous chapters, Descartes set up a uniform methodology in order to
treat the constructions of indeterminate and determinate problems alike. Essentially,
indeterminate problems are solved once their corresponding equations in two unknowns,
i.e. F(x,y) =0 are reduced to equations in one unknown. i.e :F(z,a) = 0. The problem
of Pappus in 3 and 4 lines, for instance, is reducible to a second degree equation, and
can be constructed - so Descartes relates - in the same way as a determinate problem of

the same degree, namely by ruler and Compass.@

If one wishes to construct the curve-solution of a case of Pappus’ problem in higher
number of lines, the ruler and the compass soon become inadequate. As Descartes
suggests in Book I, the case of Pappus’ problem in five lines, four of which are parallel,
illustrates well this difficulty: the corresponding equation will be of third degree and -
Descartes maintains - cannot be constructed by ruler and compass, but will require conic
sections instead. In an analogous way, when the equation to which the problem has been
reduced is of degree five of six, then its solution will admit of curves "one degree higher
than the conic sections" (Descartes| [1897-1913], vol. 6, p. 387).

I point out that Descartes does not explain, in Book I, why a problem of Pappus in
more than three or four lines, reducible to an equation of degree higher than 2, is not
constructible by ruler and compass. The relation between degree and constructability
is further studied in the third book of La Géométrie, where Descartes discusses the

construction of equations and correlated problems in a more thorough way.

Perhaps not surprisingly, we find, in that book, a classification of problems (both determi-

nate and indeterminate) into classes, which follows the same rationale of the classification

29Gee [Descartes [1897-1913]|, vol. 6, p. 374, p. 386. In exceptional cases, the equation corresponding
to a locus of the problem of Pappus is in one unknown only. This occurs when the given 2n and 2n — 1
lines are all parallel: the result will be an equation in one unknown, of degree at most n, and the locus
will consist in a number of straight lines parallel to the given lines (Bos [1981], p. 300).
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of locus problems presented in the first Book (and schematized above). Basically, the

kind to which a problem belongs is grounded on the degree of the associated equations:

. si la quantité inconnue a 3 ou 4 dimensions, le Problesme pour lequel on
le cherche est solide, et si elle en a 5, ou 6, il est d'un degré plus composé, &
ainsi des autres (...) .. m

Few lines below Descartes adds:

Or, quand on est assuré que le probléme proposé est solide; soit que I’equation
par laquelle on le cherche monte jusqu’au quarré du quarré, soit qu’elle monte

jusqu’au cube, on peut toujours en trouver la racine par l'une des trois section

coniques . . E

On one hand, Descartes sketches, in these passages, a pairwise classification of problems
based on the degree of their associated curves, and claims that the degree of the equation
(provided the equation cannot be factored any further: I will discuss the problem of
factorization, in more detail below) on which a problem depends gives information on

the required solving means.

Descartes’ classification did not end here, at any rate, but was conceived as indefinitely
continuing. For instance, problems of higher degree than the five or sixth are mentioned

elsewhere, as we can read in a letter to Mersenne dating from 1638:

de fagon que ceux qui ont envie de faire paroistre qu’ils scavent autant
de Geometrie que j'en ay ecrit (...) devroient plustost s’exercer (...) a
construire tous les Problesmes qui montent au quarré du quarré du quarré,
ou au cube de cube, comme j’ay construit tous ceux qui montent jusqu’au
quarré de Cubeﬂ

Generally speaking, Descartes maintained that a class of level n should contain problems
reducible to equations of degree 2n and 2n—1. Starting with n = 1, problems reducible to
equations of degree 2 or 1 belong to the same class, then problems reducible to equations

of degree 4 and 3 ought to be ranged in the same class, different from the previous

30Descartes| [1897-1913|, vol. 6, p. 464. The term "degré" is here vague. In fact it can be doubted
that it refers to the algebraic notion of degree of the equation, for which Descartes generally employed
the french term ‘dimension’. Descartes might be referred to the level of the problem, in the hierarchy
established by the degree of the associated equation.

31Descartes| [1897-1913|, vol. 6, p. 464.

32Descartes| [1897-1913|, vol. 1, p. 493.
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one, and so on, along the same pattern, for any n. This numerical classification is of a
descriptive type: a problem belongs to the first, second . .. n'" class because its associated

equation has recognizable properties, expressed by its degree.

Let us remark that Descartes also gave concession to the classical, pappusian terminology,
as he currently employed adjectives as "plane" and "solid" in order to refer to the nature
of problems, together with newly cashed-out terms as "one-level more complex" ("un
degré plus composé") which stood for geometric questions never or hardly ever addressed

by the ancients, or generally ranged among the "linear" ones, according to Pappus’
lexicon P

The use of such a classical terminology underscores, I surmise, an important connection
between Descartes’ and Pappus’ classifications. Problems reducible to quadratic equa-
tions are judged, in fact, ‘plane’ because they can be solved by the intersection of circles
and straight lines. Likewise, problems reducible to third and fourth degree equations
are ‘solid’ as they require the use of at least one conic section for their solution. Hence,
the hierarchy of problems classified according to the degree of their associated equations,
at least for what concerns the first and the second class, incorporated the classical dis-
tinction into solid and plane problems into a larger scheme, extendible in principle to
any geometric curve and problem, provided it could be reduced to a finite polynomial

equation.

But the pairing between Descartes’ numerical classification based on the degree of the
associated equation (provided it cannot be further reduced: this point will be touched
also later on) and the pappusian classification into plane and solid problems, asserted

already in the first Book of La Géométrie is not obvious.

If we remain to Descartes’ general deliberations offered in Book I, it seems that the
construction of a problem, once it had been reduced to an equation, and after having

applied all ‘possible divisions’ in order to see whether its degree can be lowered, would

33Indeed the only problems unsolvable either by conic sections or plane means known to the Greeks
either concerned the rectification of the circumference, or the division of the angle into an arbitrary
number of parts. For instance, there are no extant sources attesting that ancient Greeks geometers
occupied themselves with the construction of regular polygons non constructible by ruler and compass
(these were dealt with in Euclid’s Book IV of the Elements) or by solid techniques (the only case,
concerning the construction of a regular heptagon, is extant in arabic, but not in Greek sources: see
HoGENDIIK| [1984]), like the regular polygon with 11 or 13 sides, two examples of polygonal constructions
evoked in Descartes’ Géométrie (Descartes| [1897-1913|, vol. 6, p. 484) as instances of problems "one-
degree more complex" than the solid ones.
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follow as an almost obvious consequence.lﬂ We can concede that questions reducible to
quadratic equations did not pose any problem for Descartes: as it was sanctioned by a
long tradition of studies, the appeal to "la Geometrie ordinaire", namely to by straight

lines and circles "tracées sur une superficie plate", represented the most natural choice.lﬂ

On the contrary, the choice of the solutions in the case of higher degree problems was

not an obvious matter for early modern geometers, nor for Descartes.

As our overview in chapter [2 has shown, problems unsolvable by Euclidean means, like
the insertion of two mean proportionals or the trisection of an angle were not treated in
a unitary way before the advent of Descartes’ problem-solving strategy, but broached by
several techniques. These problems were either treated by means of neusis constructions
(see ch. 2] p. , or by employing conic sections (forexample, an hyperbola and a circle,
employed in order to construct the neusis required for the trisection discussed in the
Collection. See ch. [2] p. B0} or an hyperbola and a parabola, for the well-known case of
the insertion of two mean proportionals, handled by Maenechmus. For this last example,
see , ff.), or linear curves, as in Pappus’ construction of two mean proportionals,
which demands to trace a conchoid (see ch. [2] sec. 2.3.1)).

In these cases, it was not the lack of solving methods, but their excess which might cause
troubles for a rational organization of curves and problems. How can one decide, in
fact, the most adequate method in order to construct an equation or a problem, when
different possibilities are available, and are all technically correct? In order to answer
to this question, Descartes introduced the normative requirement which proclaims to
solve each problem in the dimensionally simplest manner, that we have examined in the
first section of this chapter. On the ground of this principle of simplicity, Descartes
could adopt the classical terminology of ‘plane’, when referring to problems reducible to
quadratic equations, and ‘solid’, when referring to problems reducible to equations in the

fourth or third degree.

31Cf. [Descartes| [1897-1913|, vol. 6, p. 374.

35Cf. [Descartes| [1897-1913|, vol. 6, p. 374. On the construction of quadratic equations by ruler and
compass, before Descartes, see: [Bos|[2001], chapter 4. In particular, Descartes states, in the first Book of
La Géométrie, that if a problem is "plane", then: "... lorsque la derniere equation aura esté entierement
démeslée, il n’y restera tout au plus qu'un quarré inconnu, esgal a ce qui se produit de I’Addition, ou
soustraction de sa Racine multipliée par quelque quantité connue, et de quelque autre quantité aussy
connue" (Descartes| [1897-1913|, vol. 6, p. 374). As correctly observed in |Liitzen| [2010] (p. 13) this
statement is not proved. A proof of the converse claim is given instead: if a problem can be associated to
a quadratic equation, at the end of analysis, then it is constructible by the means of ordinary geometry
(Descartes| [1897-1913]|, vol. 6, p. 375ff.).
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I shall discuss, in the following section, this requirement in the context of a case study,
namely the problem of inserting two mean proportionals, and argue that the choice
of dimensional simplicity is by no means an obvious strategy to take, especially if we

confront it with other possible strategies arisen in the very activity of problem solving.

4.4 Construction of third and fourth degree equations

A core result in the domain of solid problems, obtained by the end of XVIth century,
was the following: any problem leading to fourth or a third degree equations could be
effected by means of ruler and compass, and by either solving the problem of inserting
two mean proportionals or by solving the trisection of an arbitrary angle. This result was
stated in the final proposition of Francois Viéte’s Supplementum Geometriae, published
in 1593@ Certainly aware of Viéte result, early modern geometers must have concluded,
in the backdrop of their knowledge of Pappus’ Collection, that any problem leading to
fourth or third degree equations could be effectuated by straight lines, circles and by conic

sections: it was therefore a solid problem, according to the classification of Pappusﬂ

Starting from these results, Descartes succeeded in framing into a unitary strategy the
different cases of problems leading to cubic (and quartic) equations, based on a unified
geometric procedure in order to construct fourth and third degree equations, that he
published for the first time in La Géométm’eﬂ

Let us recall that in cartesian geometry, all equations code proportions between segments,

and are therefore algebraic equations of finite degree. The construction of an equation

36This result is contained in proposition XXV, labelled: "Consectarium generale" (Viéte |1646], p.
256). For conciseness, we might resume the procedure followed by Viéte by observing that it conflates
an algebraic and a geometric part. Firstly, Viéte relied on a result obtained in another work of him, the
De aequationum recognitione et emendatione tractatus duo (published only in 1615) in order to state
that all fourth degree equations could be reduced, via quadratic equations, to third degree ones, and any
equation of third degree could be reduced to the following forms forms by removing the quadratic term:
(1) 23 = a®b; (31) x° + o’z = a?b; (i41) 2° — a*x = a?b; (iv) o’z — x> = a®b, with a,b > 0. Subsequently,
Viéte argued that the cases of third degree equations just listed not only formed a complete set, in the
sense that any cubic equation could be reduced to one of these forms, but they (or their suitable variants)
corresponded either to the problem of inserting two mean proportionals, or to the trisection of an angle
(for a presentation of this result, see Bos| [2001], ch. 10). Hence, any fourth or third degree equation
could be solved by straight lines, circles (let us recall, indeed, that quadratic equations are involved in
the reduction of a fourth degree equation) and by constructing either the problem of inserting two mean
proportionals between given segments or by trisecting an angle.

37T point out, however, that Viéte did not rely on the intersection of curves in order to solve solid
problems, but on constructions by neusis, that he grounded on a specific postulate, in his Supplementum
geometriae. See|Viéte| [1646], p. 240.

38 Although the discovery of both constructions dates back to the 1620s (See Bos| [2001|, chapter 17).
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was, in Descartes’ programme, a technique consisting in exhibiting, through the inter-
section of a pair chosen curves, as many segments as the number of real positive root(s)
of the equation at hand@ Generally speaking, the aim of Descartes’ solving strategy
consists in finding, given an algebraic equation in one unknown, like H(z) = 0, resulting
as the outcome of the analytical stage, two curves F' and G of equation, respectively,
F(z;y) = 0 and G(x;y) = 0, such that the roots of H(x) = 0 occur among the abscissae

of their intersection points.

In more formal terms, this comes down to state that the first member of the equation
H(xz) = 0, that we consider irreducibleﬂ must be a factor of Rp.g(x) = 0, i.e. the
equation obtained by eliminating y from F(x;y) =0 and G(z;y) = 0@

I will refer to Bos [1984] for a general presentation of the technique for constructing
equations. Let us consider, in order to offer sketch of its main tenets, the general case of

a problem, whose analysis has provided the following equation:

H(z) = anz™ + an_ 12" 4 ap_02™ ...+ a1z + a9 =0

Constructing this equation boils down to exhibit two geometric curves F and G of equa-
tion, respectively, F'(z;y) = 0 and G(x;y) = 0, such that the roots of H(z) = 0 occur

among the abscissae of their intersection points. These curves are required to obey to the

39The technique for solving equations geometrically was a subject of research in mathematics and
part of current teaching between 1637 (indeed, the first contributions made by Descartes are exposed in
Book III of La Géométrie) and approximately 1750. The subject is exposed in detail in Bos| [1984]. In
here, the author does not limit to treat it as a "technique" in geometry, but it goes on to consider it
a "mathematical theory" strictly related to the theory of curves and the algebraic theory of equations,
and offers a study of the reasons of its rise and subsequent decline during the half of XVIIIth century.

40T he algebraic structure to which the coefficients of the equations discussed in La Géométrie generally
belong is the ring Zla,b,c...], obtained from the ring of the integers by adding a finite number of
independent quantities, that express the given segments of the problem from which the equation to be
studied derives.The polynomials considered by Descartes are always monic, namely, they have leading
coefficient equal to 1, or ae always reducible to monic polynomials. The reason of choosing the special
ring Zla,b,c...] is well grounded in the text of La Géométrie. In fact Descartes gives, in Book III,
general rules in order to transform all the rational coefficients appearing in an equation H(z) = 0 into
integers, and all irrational into rationals, whenever it is possible (Descartes| [1897-1913|, vol. 6, p. 454).
Once performed these transformations, one can obtain an equation in integer coefficients, with leading
coefficient equal to 1, while the degree remains unaltered. Descartes illustrated other transformations,
which modify the equation still leaving unchanged its degree: he taught how to change all negative roots
into positive ones, and how to suppress the term z"~! in a n'"-degree equation (Descartes| [1897-1913|,
vol. 6, p. 455-456).

410n the peculiar notion of reducibility evoked here, see below, section of this chapter.
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following conditions: (i) they both have to be geometrical curves (a condition assured by
their expressability through algebraic equations); (ii) the abscissas of their intersection
points must be roots of the equation Rrg(z) = AH(x) = 0, where A is a constant, or
a polynomial in . The Rrg(xz) = 0 is the equation obtained by eliminating y from
F(z;y) = 0and G(x;y) = Oﬁ (iii) the curves F and G must belong to the simplest kind

which construct the equation.

We do not meet this abstract presentation anywhere in La Géométrie, although we find
in this treatise noteworthy applications to the construction of particular equations, and

to the solution of associated geometric problemsﬁ

Let us now examine how the cartesian technique of the construction of equations works,
for the cases associated to special problems discussed in La Géométrie, like the problem
of finding two mean proportionals between two given segments, offered in Book III of La

Géométrie.

4.4.1 Construction of a cubic equation

As I have pointed out in chapter [3| (sec. [3.1.1)) the geometric analysis of the problem has

3

lead to a cubic equation: 23 —a?q = 0, with a single real root for any choice of the givens

a and q.

Descartes derives the construction of this equation by adapting to this specific case a
general procedure for constructing third and fourth degree equations. He discusses several
constructions, corresponding to the different cases of the equations: 23 = 4apz + a%q
and 2% = +apz? + a®qz + aﬂﬂ and obtains, as a general result, that the (real) roots of
third and fourth degree equations can be constructed by intersecting a given Parabola
with a Circle@ Let us consider, for instance, how Descartes’ procedure can be applied

to the construction of a general third degree equationﬁ

42Gce [Bos| |1984], especially p. 342-345 for the technical details; and Bos| [2001], chapter 26.

43Gee, in particular, chapter See also (Galuzzi [2010], p. 551.

“Descartes |1897-1913|, vol. 6, p. 464. Descartes did not use this notation, which is a modern
reformulation adopted, for instance, in the English translation by Smith and Latham. In fact we read
in the original: "z* =* .apzz. aaqz", and "z> =* .apz. aaq".

4>Descartes also states, without proof, that the same result can be obtained by substituting to the
Parabola an Ellipse or an Hyperbola: see Descartes| [1897-1913], vol. 6, p. 464.

“6Descartes| [1897-1913|, vol. 6, p. 465. I shall not give here the analysis, which is not offered by
Descartes either. An example of analysis can be found in Van Schooten’s Commentary: [Descartes
[1659-1661|, vol. 1, p. 324.
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P(z)=2+pz+¢=0

According to the cartesian protocol, a parabola is supposed given, with axis POT, vertex
O and latus rectum a =1 (see fig. . A segment OC = % is then taken on the axis,
together wth a point P, whose distance from C' is CP = %p (P must be chosen within
the parabola if p < 1, and upward if p > 1). From point P, Descartes’ procedure requires
to trace a segmen PR = %q (I note that PR is traced to the left, since ¢ is positive in the
equation P(x) = 0. If ¢ is negative, PR must be constructed on the right). With R as
center, the circle with radius RO is traced, which intersects the parabola in another point
(for the case at hand). Let us call ‘S’ the intersection point. ST will be the required
(real) root of the equation P(z) = 0, which must be taken as negative if S lies on the

left of T' (positive otherwise).

A justification of the soundness of the above construction can be given, following Descartes’

reasoning, by solving this geometric problem:

Problem. Given a parabola with vertex O, axis POT and latus rectum equal to 1, and
a circle with center R and radius RO, to find the length of ST, intersection between the
parabola and the circle, provided segments OC, CP, PR are given ({4.4.2)).

Following Descartes’ analytic strategy, we can name the segments: ST = —z, and
OT = y. Since RO and RS are radii of the same circle of center R, RO = RS. More-
over, ROP is a right-angled triangle by construction, hence: RO? = RP? + PO?. By
tracing the perpendicular SM from S to RP, a second right-angled triangle RM S can
be constructed, such that: RS? = RM? + M S?.

Let us consider the latter equality. We have set: ST = —z and RP = %q. Hence
RM? = (RP — ST)? = (3q + 2)?. It is clear from the diagram that MS = PT,
and PT = PO + OT, and by setting OT = %p — %, PT =y + (%p — %) Therefore
MS? = (y+ (3p — 3))?. We can write, by consequence:

1 1 1
RM? + MS* = RS? = (5a+ 2)? + (y + (5P - 5))2. (4.4.1)
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Figure 4.4.1: Construction of a cubic equation.
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Let us then consider the equality: RO? = RP? + PO?. Since RP = %q and PO =
(3p—1), we infer:
1, 1 1

RO? = 10 (51) — 5)2. (4.4.2)

If we equate the and the the equation for the circle with center R and radii
RO and RS will be:

1 1 1., 1, 1 1

- 2 O VA “p_ )2
(Ga+2)"+ W+ (Gp-5)" =0 +Gp—3)
Simplifying this expression, we obtain:
2 2 2 _
vy +2+qz+(p—1)2°=0 (4.4.3)

If ST = —z, then TO = y = 22, since, by the nature of the parabola, we have (let us

recall that we have the latus rectum equal to 1):

TO : ST = ST : latus

We can substitute z2 in the and obtain:

z4+p22+qz:0.

But this equation can be simplified, since: 2%+ 22+ qz+ (p—1)22 = 2(23 + pz +q) = 0,
which is equal to the equation P(z) = 0 multiplied by a factor z. If we leave this factor
out, the remaining roots of the equation z%+pz?+¢gz = 0, are the same roots of P(z) = 0.
Therefore the length of ST can be found by constructing the equation P(z) = 0. This
conclusion warrants the correctness of the previous procedure for the construction of

equation 2% + pz 4 ¢ = 0.
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Figure 4.4.2: The insertion of two mean proportionals according to Descartes.

4.4.2 The insertion of two mean proportionals

The problems of inserting two mean proportionals and the problem of trisecting an
angle, both reducible to cubic equations, are constructed by Descartes, in Book III of La

Géométrie, by adapting the above protocol to particular geometric situations.

Let us consider in more detail the case of the problem of inserting two mean proportionals
between the given segments a and ¢. Following Descartes’ argument in La Géométrie,
let us suppose that a parabola P is given with vertex A (which is its highest point) and
with latus rectum AO = a (fig. . Let us mark a point C' on the axis, such that
AC = %a, and from C raise the perpendicular C'E to the axis, such that EC = %q. A
circle C must then be constructed, with center E, and which cuts the parabola at its
vertex A (see . As shown in figure, the circle will cut the parabola at another point
F. Segments FL, namely the distance of F' from the principal axis of the parabola, and
segment AL, cut on the principal axis, will be the sought for solutions for the problem

of inserting two mean proportionals between a and qﬂ

“TDescartes| [1897-1913|, vol. 6, p. 469.
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3 — a%q = 0 according to the

We can verify that both curves construct the equation z
general protocol for the construction of equations, and on this ground they can construct
the original geometric problem too. Firstly, it is immediate to check that the circle and
the parabola are geometrical curves. It is less easy to verify that the resultant Rp.c(z),
namely the equation obtained by eliminating y from P: F(z,y) =0 and C: G(z,y) =0,

3

equals the polynomial equation: 2% —a?q = 0, in case multiplied by a factor z ( condition

ii above).

Condition (ii) can be verified in the following way. Let usset: F'L = z and AL = y. Since
F lies on the parabola P with parameter OA = a, we can derive the following equation for
P: F(x,y) = 22 —ay = 0. Let us draw the auxiliary segment F'M, perpendicular to EC.
By construction, EC?+ AC? = EA?, and EM?+FM? = EA?. From this we can deduce:
EA? = % + %. But we also have by construction: FM? = (AL — AC)? = (y — $)?,
and EM? = (FL — EC)? = (z — 4)?. At this point, we can elementarily derive: EF? =
EM?*+FM? = (z—4)2+(y— %) = 2%+ q —qz+yi+ % 4 —ay Since EF = EA (they are
both radii of the same circle), this equahty will follow: z + 7 qz+y + 4 4 —ay =9I + ‘2—2
, which yields the following equation for the circle C: G(z, y) =224y —qz—ay=0.

We can now form the system:

F(z,y)=2>—ay=0
G(r,y)=2"+y* —qz—ay=0

And by eliminating y from both equations we obtain Z—; —2q = 2(2% — a®q) = 0. But
this equation yields exactly the equation associated to the problem of inserting two mean

proportionals (namely: 2% — a?q), multiplied by a factor z@

48 A geometric proof of the correctness of Descartes’ construction was provided not by Descartes himself,
but by two outstanding mathematicians, Mydorge and Roberval, who also attained the same result,
probably independently. I remark that Descartes firstly communicated to Mersenne, during the year
1625-1626, the construction (without proof) of the mean proportional problem, by intersecting a circle
with a given parabola. Hence, this solution was discovered well before the writing of La Géométrie.
Descartes’ construction, accompanied by a proof given by Roberval, was published by Mersenne in his
Harmonie Universelle (1636). Meanwhile, in 1628, Descartes showed his construction to Beeckman too,
together with a proof (this time the proof had been given by Mydorge), and a general construction for
the roots of the third and fourth degree equations, later elaborated in the third Book of La Géométrie.
Cf. [Bos| |2001|, p. 255. For details on Roberval’s proof, see |Descartes| [1897-1913|, vol. X, p. 655-657.
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A construction by a parabola and a circle is given by Descartes for the problem of
trisecting an angle too.@ Hence, Descartes’ general procedure for constructing fourth
and third degree equations proves that any problem reducible to them is constructable
by the same apparatus, formed by a conic section plus the use of ruler and compass:
hence, any problem reducible to a fourth or third degree equation will be solid, in the

sense of Pappus’ classification.

This conclusion, as I have argued in the foregoing, was already well-known by the time the
Géométrie went into pressﬂ Nevertheless, Descartes made an original contribution to
the history of the trisection and mean proportional problems. Indeed, for what concerns
the trisection problem, the only construction transmitted in ancient texts contemplated
the use of a hyperbola and a circle: it can be found in Pappus’ Collection, in prop. 31
(Cf. ch. p- . Descartes probably considered his own achievement, consisting in
a solution obtained by means of a parabola and a circle, as a gain in simplicity with
respect to the construction provided by the Ancients, as he judged the parabola the

simplest conic section.@

On the other hand, the problem of inserting two mean proportionals had been effectively
solved through a parabola and a circle before XVIIth century. However, this solution
can be encountered only in the book titled: Istikmal ("Perfection"), and written in the
Xth century by the Andalusian mathematician Yusuf Al-Mu’taman ibn Hud.lﬂ However,
it seems unlikely that early modern mathematicians or, at least, those mathematicians
acquainted with Descartes, had any knowledge of this work. Therefore a construction
of the problem of inserting two mean proportionals, obtained by a parabola and a circle

was probably a novely when Descartes produced it@

Descartes |1897-1913|, vol. 6, p. 473. The idea of simplicity here evoked is certainly not ‘dimensional
simplicity’, because all conic sections are associated to equations in the same degree. However, Descartes
did not explain why the parabola should be considered simpler than the other conic sections, like the
hyperbola. This judgement might depend on the fact that the parabola, via an opportune choice of the
axis, can be endowed with a simpler equation that the one associated to the hyperbola (Cf. |Descartes
[1659-1661|, vol. 1, p. 174ff.).

5UDescartes was certainly aware of the results obtained by Viéte, concerning the relation between fourth
and third degree equations and solid problems. Indeed the Supplementum geometriae was published
during Viéte’s lifetime, and most of Viéte’s principal works had besen published in 1615 by Anderson,
and in 1631, by Beaugrand. However, let us recall that Descartes maintained a disparaging attitude
maintained towards Viéte: [Descartes| [1897-1913], vol. 1, p. 479-480.

51Descartes| [1897-1913|, vol. 6, p. 464.

520f . Hogendijk| [1992].

53This invention was highly valued by Descartes himself, as we can read from Beeckman’s testimony:
"Mr Descartes values this invention so much that he avows never to have found anything more out-
standing, indeed that nothing more outstanding has been found by anybody" (Descartes| [1897-1913),
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To these remarks, we should add the fact that construction by conic sections were
rarely employed by XVIth and XVIIth century geometers, before the publication of
La Géométrie, so that Descartes’ solutions appeared as a novelty, in the backdrop of the
constructional tradition of the problems of trisecting an angle and duplicating the cube

(or inserting two mean proportionals)@

On the top of that, Descartes’s protocol for constructing quartic and cubic equations
might have represented a valuable contribution towards a rational organization of prob-
lems into classes. In fact, despite the solvability of fourth and third degree equations
by conic sections and plane means was known to mathematicians before Descartes, no

uniform feasible procedure was available in order to construct them.

We can extrapolate from Viéte’s narration an abstract argument, proving that prob-
lems reducible to equations in the fourth and third degree are constructable by conic
sections (and by circles). However, we cannot find anywhere, in Viéte’s work, a unique
procedure in order to solve both quartic and cubic equations and the related geometric
problems.Indeed, no constructional procedure was available, in Viéte’s overall problem
solving technique (presented, in particular, in the Supplementum geometriae), in order
to directly construct quartic equations. He rather opted for reducing fourth degree equa-
tions to third degree ones, via purely algebraic transformations. The (real) roots of the
third degree equation so obtained could be constructed by solving either the problem
of inserting two mean proportionals or trisect the angle, via a neusis construction (Cf.

Supplementum geometriae, proposition V, IX, in |Viete| [1646]|, p. 240ff.).

But whereas Viéte had merely proved the constructibility of fourth degree equationsﬂ
Descartes had framed, in La Géométrie, a uniform strategy for their construction, to-
gether with the construction of cubic ones. In his eyes (as well as in the eyes of his
fellow mathematicians) this result might be seen as a felicitous consequence of the choice
of relying on the simplicity of curves, measured by algebra, in order to perform the

construction of equations and problems.

vol 10, p. 346: "Hanc inventionem tanti facit D. des Chartes, ut fateatur se nihil unquam praestantibus
invenisse, imo a nemine unquam praestantius quid inventum").

54 0ne of the more extensive treatments of solid problems by means of conic sections (and plane means)
remained Commandinus’ Commentary of Pappus’ Collection, especially on propositions 31 and 34 (cf.
Commandinus| [1588|, fol. 62r, fol. 64r).

°°Bos| [2001], p. 259.
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Descartes did not limit his considerations to the organization of conic-constructible prob-
lems. In fact he extrapolated, from the construction of plane and solid cases, a general
protocol in order to construct higher degree problems. This protocol is resumed in the

closing paragraph of the text:

Puis outre cela, qu’ayant construit tous ceux qui sont plans, en coupant d’un
cercle une ligne droite, & tous ceux qui sont solides, en coupant aussy d’un
cercle une parabole, & enfin tous ceux qui sont d’un degré plus composé, en
coupant tout de mesme d’un cercle une ligne qui n’est que d’un degré plus
composée que la Parabole, il ne faut que suivre la mesme voye pour construire

tous ceux qui sont plus composésa l’inﬁni.lﬂ

With these final words, the route to follow in order to solve problems of any class was
thus traced. Descartes’ choice relied on a generalization of the protocol adopted for
the construction of equations up to degree four (and their corresponding problems):
in fact any higher degree equation should be constructed, according to his scheme, by

intersecting a circle with another curve, selected on the basis of dimensional simplicity.m

4.5 Easiness versus simplicity

4.5.1 Two solutions compared

Descartes was also aware that the preference for dimensional simplicity, in deciding the

most adequate curve for a problem at hand, was not the only available choice.

In fact nothing, in the algebraic procedure which underscores the construction of an
equation, constraints to the choice of a certain solution. This underdetermination has
a precise mathematical explanation, related in these terms by H. Bos: "algebraically,
the problem of constructing equations is an inverse elimination problem. In a direct
elimination problem the equations F'(z,y) = 0 and G(z,y) = 0 are given and it is required
to eliminate y, that is to determine Rp.. Here H(x) is, however, given and F'(z,y) and
G(x,y) have to be found such that Rp.q(z) = H(z), or Rp.q(x) has H(z) as a factor"

50Descartes| [1897-1913|, vol. 6, p. 485.

57Even if we restrict our freedom in choosing curves to the dimensionally simpler, yet several choices
are still available for the same problem (see, on this point, Bos| [1984], p. 345). The precept, in this
sense, is not too overrestrictive: this fact gave rise to discussions on the best canon to adopt in order to
solve problems in any degree (the core of Bos|[1984] is dedicated to such discussions).

%Bos| [1984], p. 344.
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Not only the required equations F'(x,y) and G(z,y) are more complicated than the one
derived from the problem (namely H(z)), because they involve two unknowns, but the

inverse elimination problem also admits many (even infinitely many) solutions.

Descartes ventured another plausible ways of dealing with simplicity in geometry in
reference to curves and their constructions: one might choose curves that yield an easy
("facile") solution. The concept of easiness of solutions is illustrated by the following

example, in Book III of La Géométrie:

Je ne crois pas, qu’il y ait aucune facon plus facile, pour trouver autant
de moyennes proportionnelles, qu’on veut, ny dont la demonstration soit plus
evidente, que d’y employer les ligne courbes qui se descrivent par 'instrument
XY Z. Car, voulant trouver deux moyennes proportionnelles YA et Y E, il ne
faut que descrire un cercle dont le diametre soit Y E: & pource que ce cercle
couppe la courbe AD au point D, Y D est 'une des moyennes proportionnelles
cherchées. Dont la demonstration se voit & l'oeil, par la seule application de
cet instrument sur la ligne Y D, car, comme Y A ou Y B qui lui est egale, est
aYC, ainsy YC est a YD, et YD a YFE (...) Mais pource que la ligne AD
est du second genre, et qu’on peut trouver deux moyens proportionnelles par
les sections coniques, qui sont du premier; & aussy pourcequ’on peut trouver
quatre ou six moyennes proportionnelles, par des lignes qui ne sont pas de
genre si composés que sont AF & AH, ce seroit une faute en Geometrie que

de les y employer. @

In this passage, Descartes presents another construction for the problem of inserting two
mean proportionals between segments YA and Y E, such that YA < YE (see fig. .
Let us draw a circle with diameter Y F, and let us next apply to point A a proportions
compass (ch. (3] fig. , with opening YA = a, which will trace the curve AD. Let
us call D the point in which the curve intersects the circle with diameter Y F, and let us
trace the segment Y D. Let a new circle with radius YA and centre Y be traced, such
that B the intersection between the circle and the line Y D. Let the perpendicular from
D to the line Y E be drawn, and let the intersection be called C. The segments Y C' and

Y D are the sought for mean proportionals.

One can prove the correctness of this construction geometrically, by considering triangles
YBC,YCD, YDE (fig. [4.5.1), which are similar by construction. From the similarity

"IDescartes| [1897-1913|, vol. 6, p. 442-443.
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Figure 4.5.1: Insertion of two mean proportionals (easy solution).
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of these triangles one can derive the following continuous proportion: YB : YC =Y (' :
YD =YD : YE, Since YB = YA, segments YC e YD are two sought-for mean
proportionals between Y A and YE@

The reason why the solution employed by means of a parabola and a circle is considered
by Descartes simpler than the solution to the same problem obtained by a curve traced via
the proportion compass is obvious, in the light of Descartes’ explanations. ‘Simplicity’, as
Descartes disambiguates at the beginning of Book III, is a property that depends on the
degree, and consequently on the kind to which a curve belongs. Therefore it is sufficient
to compare the curve traced by the proportions compass, on one hand, and the parabola,
on the other, in order to decide whether they are of different kinds, and which one among
them is simpler. Let us consider, for a start, the curve depicted in fig. Its equation
can be easily determined: if we set angle BYA =0, YE = ¢q YA = YB = a, then
YC=_%,YD= 5%y YE= 54 ..., point D will lie, by construction, on a curve of
polar equation: a = pcos® 6 (upon setting YD = p). This equation can be transformed
into a cartesian equation in the unknowns z and y (provided we set: YC = z, DC =y,
and 22 4+ y? = p?), namely: 2% = a?(22 + y?). Consequently, the curve traced by point D
(in fig. is a curve of the second kind, hence a curve of higher kind than the conic
sections 1]

4.5.2 Easiness, simplicity and the algebraic ordering of curves

The proportions compass is evoked twice in La Géométrie. As noted by H. Bos (Bos
[2001], p. 358) Descartes’ argumentative pattern seems to unfold in a puzzling way
for someone who reads La Géométrie according to the order of the books. At first, the
proportions compass is introduced in book II, in order to offer a paradigmatic instance of a

geometric linkage, namely an instrument which contrives the tracing of geometrical curves

59Let us recall that Descartes probably devised such a solution, in a purely geometrical way, as early
as 1619 (see Bos| [2001], p. 239ff.).

1Let us verify, for the sake of completeness, that the construction of the problem of inserting two mean
proportionals by means of the curve traced by a proportions compass complies with the requirement for
constructing equations (except, perhaps, for the requirement of simplicity). Let us recall that the problem
of inserting two mean proportionals between given segments a and g, is solvable, according to Descartes’
protocol, by constructing the corresponding equation: H(z) = 2* — a%q = 0. Tt is sufficient to take, for
instance, the following couple of equations: U(z,y) = 2* — p?(z2 +4%) =0, V(z,y) = 2> + y* —qz = 0:
it is immediate to verify that the original equation H(z) = 0 can be found by eliminating the y from
both U(z,y) = 2* —a®(2®> +¢?) = 0 and V(2,y) = 22 +4* — gz = 0. The result, obtained by eliminating
y, will then be: z* — a?qz = 2(2® — a®q) = 0, which proves that the curves associated to equations
U(z,y) =0 and V(z,y) = 0 can construct the equation. While one recognizes the equation V(z,y) =0
as the equation of a circle, the first equation is satisfied by the curves traced by the proportions compass.
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(see chapter 3] section . Successively, in book III, the same linkage is evoked in order
to illustrate the ‘easiest’ solutions for a (large) class of geometric problems, namely the
construction of arbitrarily many means between two given segments. Eventually, though,
Descartes subverts the privileged status of the proportions compass, and discards this
instrument as an unreliable method to be employed in problem solving, since it introduces

a systematic violation of dimensional simplicity@

Let us observe, firstly, that the use of the proportions compass systematically produces
dimensionally too complex (and therefore erroneous) solutions. This phenomenon ob-
tains not only of the problem of inserting two mean proportionals, but of the general
problem of inserting an arbitrary number of mean proportionals between given segment:
in other words, there is no instance of this problem for which its construction through
the application of the proportions compass can trace curves of the lowest possible degree,
and thus comply with the requirement of dimensional simplicity.@ Hence, the precise
separation between dimensional simplicity and easiness in problem solving reflects into
an accurate distinction into two non-overlapping categories of solutions to the generalized

problem of inserting n mean proportionals.

However, discarding easy solutions in favour of dimensionally simple ones, at least for

what concerns the problem of inserting n mean proportionals , it is not an obviously

52See [Bos| [2001], p. 358.

53See [Descartes| [1897-1913|, vol. 6, p. 442-443. In [Panzal [2011], it is proved that: "whatever the
positive integer n might be, solving the n mean proportionals problem by relying on a curve traced by
a proportions compass does not comply with Descartes’s simplicity precept" (Panzal [2011], p. 77). For
n > 1, we distinguish two cases in the problem of inserting n mean proportions between given segments
a and q: either n is even, or n is odd. Let us consider the case of inserting an odd number n of mean
proportionals (i.e. n =2y — 1). For any positive integer y, the 2 — 1 mean proportionals problem can
be reduced to the problem of inserting a single mean proportional and to the problem of inserting p — 1,
and then, by reiteration, either to the single mean proportional problem alone, or to the single mean
proportional and to problem of inserting 2m mean proportionals, for some positive integer m such that
2m < 2p—1 (Panza|[2011], p. 77). Thus, we need only to consider only the case of n = 2 (p is a positive
integer). Let us consider, therefore, the problem of inserting 2; mean proportionals, whose algebraic
analysis yields the equation in the general form: 2! = 4?*q. The use of the mean proportions compass
allows us to construct this equation (and, consequently, the related class of geometric problems) through
the intersection of the circle and a curve with equation in the following form: z** = a?(z? 4 ¢?)?*~!
(the equation of the corresponding curve, for each instance of the problem of inserting an even number
of means can be found by relying on the design of the mesolabe). I note that the equation of the solving
curve has degree 4. On the other hand, it can be proved that for every positive integer u, there exist
curves, with degree less than 4u, that solve the problem of inserting 2 mean proportionals. In order to
show this, let us consider the equation: 2?71 = ¢?*¢, which expresses the general geometric problem of
inserting 2; mean proportionals. For any positive integer i, the equation can be obviously constructed
by relying on two curves of equations yz* = a* and a”qy = z**!, respectively, which clearly belong to a
lower class than the curves of equation: z* = a2(:c2 +y2)2“71, constructed by the proportions compass.
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rational choice. Descartes was certainly aware that mathematical procedures leading to
easy solutions could possess significant virtues, besides being technically correct. Let
us consider, once again, the case of the problem of inserting n mean proportionals.
Descartes indulges in praising the curves traced by the proportions compass as offering
evident constructions ("demonstration evidente"), or constructions that can be seemn

‘by the eye’ (as we read in La Géométrie: "la demonstration se voit & l’oeil").ﬁ

Resuming Descartes’ words, I refer to the solutions obtained through the proportions
compass as ‘perspicuous’ solutions. By the quality of ‘perspicuity’, I refer, for the case of
the problem at hand, to the fact that for any number of desired mean proportionals the
construction of the corresponding insertion problem can be immediately given, or given
in few steps by referring to a single diagram, represented by a certain configuration of
the proportions compass (see, for instance fig. and the corresponding construction
in sec. . Extrapolating from Descartes’ account, I can conclude that easiness can
be understood as an epistemic or cognitive type of simplicity: a problem solved in an
‘easy’ way is solved in a way that is transparent to the solver himself, by allowing an
immediate grasp of the inferential process leading from the data of the problem to its
construction. Hence, there is room to conjecture that Descartes’ downplaying of easy
solutions to problems, far from being a natural or expected way of proceeding, comes

with a cost, since it dismisses evident cognitive and epistemic virtues.

Since easiness should have appeared as a virtue in geometric pursuits, its demise, in favor
of a different strategy in problem solving, demands for adequate justification. In contrast,
Descartes offered no justification for his choice (as H. Bos recalls, Descartes made "a
sudden reversal of direction (...) and ordered, without argument, that nevertheless
one should employ curves of lowest possible degree", Bos [2001], p. 358), so that his
adamantine preference for dimensional simplicity should have appeared puzzling and
unjustified to a reader who had followed the linear deployment of the treatise from book
I to book III.

But if we consider the developmental history of Descartes’ mathematical thought, such a
tension between two general strategies in problem solving may conceal a more profound
antithesis between two different projects liying behind them, both having to do with the
rational ordering of problems and curves in geometry. An interpretation in this direction
is prompted by H. Bos (see Bos|[2001], p. 359/f.). According to him, the contrast between

59Descartes| [1897-1913|, vol. 6, p. 442-443.
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‘easiness’ and ‘simplicity’ stages a more fundamental contrast between the standpoint of
the "Descartes, author of La Géométrie" and of his ‘previous self’, namely the Descartes
‘author’ of the letter to Beeckman (1619) and soon later, of the Cogitationes privatae. let
us recall how Descartes, already in 1619, had sketched the groundwork of a programme
in order to solve each problem according to the most adequate solving method (for its
illustration, see chapter [3| p. . According to Bos’ interpretation, Descartes would
have reversed that very programme in La Géométrie: whereas he originally structured
the edifice of geometry according to a classification of problems on the basis of the type
of instrument required for their solutions and their intuitive cogency, in La Géométrie he
came to privilege algebraic expressions as a means for ordering curves, and, by relying

on dimensional simplicity, of ordering problems too.

As Bos suggests, the abandonment of the inchoate project of classifying problems accord-
ing to the design of the instruments which traced the curve-solutions, like the trisector
or the proportions compass, was probably due to the difficulty of generalizing the kine-
matic approach to problems other than solid onesﬁ Meanwhile, such abandoment must
have involved the retraction of easiness, as the main quality associated to the intuitive
cogency of instruments, like the proportions compass, originally developed in the early

’20s in order to solve a specific class of problems.

The rationale suggested by Bos can be thus explicated. The preference for dimensional
simplicity - and the correlative downplaying of easiness - can be also explained in the
backdrop of the programme expounded in the geometry of 1637. This was not to be un-
derstood, in fact, as a mere catalogue of piecemeal results, but had the aim of classifying
problems and curves in a systematical way, imposing strict guidelines on the choice of

the solving methods.

Descartes did not fail to grasp that algebra offered clear methodological advantages for the
purpose of reaching such a systematical classification. Firstly, he provided unambiguous
claims for the preference accorded to the choice of classifying curves on the basis of their

degree. We read for instance, in La Géométrie:

. Je pourrois mettre ici plusieurs moyens pour tracer & concevoir des lignes
courbes, qui seroient de plus en plus composées par degré a I’infini, mais pour

comprendre ensemble tous celles qui sont en la Nature, & les distinguer par

55Bos| [1984], p. 359fF.
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ordre en certains Genres; je ne sache rien de meilleur que de dire que tous les
Poins, de celles qu'on peut nommer Geometriques (...) ont necessairement
quelque rapport a tous les poins d’une ligne droite, qui peut estre exprimé

par quelque equation, et tous par une mesme. . .

Descartes insists, in the passage just quoted, on the conceivability of several methods
for tracing the same curve. This theme is repeated elsewhere, in the same workﬁ
underscoring what might have been perceived as a real concern in cartesian geometry,

with respect to the problem of classifying curves on the ground of their genesis.

This concern can be explained in a more plain form. Descartes had certainly understood
that the compositional nature of geometric linkages allowed one, in principle, to adopt
a criterion for ordering curves on purely geometric grounds. For instance, the family of
curves traced by a proportions compass can be ordered according to a hierarchy of higher
complexity, depending on the number of connected joints which trace a curve, as it is

pointed out in La Géométm‘e.lz]

In Descartes’ geometry however, and beyond the exemplary case of the proportions com-
pass, it appears difficult to judge the simpler among two competing, although both ac-
ceptable constructions of the same curve. This is because several elements can enter the
composition of geometric linkages, like already accepted curves (consider, for instance,
the circle in the construction of the conchoid, discussed in chapter |3 p. of this
study), which increases the difficulty of defining a uniform measure of complexity for
them. On the other hand, the determination of the complexity of a curve based on the
complexity of linkages would demand to determine the linkage of minimal complexity

which can trace it: this is a difficult problem, to my knowledge unsolved.

Hence, I suggest that there is a fundamental reason why an ordering of curves based on
the complexity of their genesis might not have been considered a suitable choice in the
context of Descartes’ geometry. For Descartes, the nature of a curve is determined by

its specification by genesis. However, one cannot attribute to a curve, traced according

56 Cf ., for instance, Descartes| [1897-1913|, vol. 6, p. 427: "... on pourrait encore trouver une infinité
d’autres moyens pour décrire ces mesmes Ovales ... ".

5"Descartes certainly envisaged this possibility, as we can read in [Descartes [1897-1913|, vol. 6, p.
392: "Or, pendant qu’on ouvre ainsi ’angle XY Z, le point B descrit la ligne AB, qui est un cercle; et
les autres points D, F', H, ou sont les intersections des autres regles, descrivent d’autres lignes courbes
AD, AF, AH, dont les derniéres sont par ordre plus composées que la premiére, et celleci plus que le

cercle". See also ch. [3] sec.
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to some rule or device, properties that are being predicated of its genesis, if the same
curve can be generated through other legitimate procedures, and there are no evident
guidelines at disposal in order to limit such a freedom, by preferring one among the

various available construction for the same curve.

On the other hand, in the context of cartesian geometry, all points belonging to a geo-
metric curve, or better, their distances (understood as segments) from a fixed axis, are
related by one and the same algebraic equation, which describes the curve. And even if
one curve may be described by more than one equation (I will present in the following
lines two examples of this phenomenon) this situation is by no means analogous to the
one occurring about curves and their construction means. Whereas the latter case was
characterized by the possibility of associating diverse methods of description to one and
the same curve, all the equations that can be associated to one curve share a fundamen-
tal property, namely, their degree. We might reformulate this insight by stating that,
in cartesian geometry, any curve can be associated to a one degree-invariant family of

homogeneous equations in rational, and eventually integer coefficients.

This argument does not rely on obvious premisses, though. Firstly, depending on the
choice of the reference axis, different equations may be associated to the same geometri
object. This inconvient can be bypassed by proving (in a slightly anachronistic terminol-
ogy with respect to the context of La Géométrie), that an algebraic equation associated
to a curve is degree-invariant under changes of coordinates, namely rotations, transla-
tions and changes of the unitary segment. Descartes did not supplement a proof of this

statement, or any equivalent proof, but made the following claim: "..

. encore qu’il y ait
beaucoup de choix pour rendre ’équation plus courte, et plus aisée, toutefois, en quelle
fagon qu’on les prenne, on peut toujours faire que la ligne paraisse de mesme genre, ainsi
qu’il est aisé a démontrer" (Descartes [1897-1913|, vol. 6, p. ), that we may take as
an indication that he had foreseen the objection, and did not consider it particularly
difficult. Probably Descartes considered that only linear transformations are involved in

changes of coordinates, so that invariance of degree may be easily verified.

But Descartes was also aware that the analysis of a problem (either determinate or
indeterminate) might result into equations in different degrees, depending on the initial
choice of the unknown: in fact he had not set up, in the analysis of a problem, any precise
procedure in order to guide the geometer towards the right choice of the unknown. As

a significant example in order to illustrate this fact, Descartes evokes a plane neusis
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Figure 4.5.2: Heraclides’ problem.

problem already solved by Pappus (Descartes [1897-1913|, vol. 6, p. 462). This problem

can be thus resumed:

Problem (Heraclides). Given a square AD and a line BN, it is required to extend
AC to a point E, such that EF, where F is the intersection point between EB and C'D

is equal to a given segment BN (fig. |4.5.2)).

This is - we might say - an ‘exemplary example’ in Descartes’ treatise. Indeed, if we
apply the standard cartesian transconfigurational analysis, the most obvious, or natural
choice of the unknown will lead to attribute to this problem a solid nature. But this

conclusion is false, since the problem at hand is a plane neusis problem, as correctly

proved by Pappus@

Let us examine in detail Descartes’ reasoning. Descartes remarks that the most ‘natural’

way of proceeding, according to his canon of analysis, is the following:
e Choose segment DF = x as unknown.

e Let then CD=BD =a; EF =¢; CF =a—x.

58 Of . [Pappus| [1986], p. 202-205.
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e Since CF : EF = DD : BF (triangles CEF and BDF are similar by construction),
we will have that BF = . Then, by Pytagoras’s theorem: FD? + BD? = BF?,

a
or a4+ x? = (%)%

e A little manipulation leads to the following equation in the fourth degree:

zt — 2023 + (20® — *)2? —2d%z +a? =0 (4.5.1)

Other choices of the unknown, for instance when BF = x or CE = z, will also lead to
equations in the fourth degree, namely: z* + 2caz® + 22(c? — 2a?) — 2a’cx — a®c®> = 0 or
2t + 2a2® + 2a22% — 2% — 2axc? — a?? =0, respectively@

Since the equation obtained is of the fourth degree, the sole application of the canon
of construction deployed in Descartes’ geometry would prescribe, for this problem, a

construction by a parabola and a circle: therefore the problem will be solid.

Descartes was also aware that the problem could be constructed by ruler and compass.
Astutely, he reported only the construction by plane means, as given by Pappus in the
synthesis of the problem (Descartes| [1897-1913|, vol. 6, p. 462; Pappus, Collection, VII,
prop. 72, Pappus| [1986], p. 202(f.):

e Let extend segment BD until point G, such that DG = DN m
e Let a circle be drawn, with diameter BG.

e Let us extend AC, and mark as E the intersection point between this line and the

circle.

e Let us join F and B: we shall have FF' = BN, therefore the segment EF will

solve the problem.

The proof, omitted from La Géométrie, is given in Pappus’ Collection, instead (Pappus,
Collection, VII, prop. 72; Pappus [1986], p. 202-204. I refer, for a modern paraphrase,
to: Bos| [2001], p. 394, 395).

59Gee [Descartes| [1897-1913|, vol. 6, p. 462.
0T have reported the auxiliary constructions with dotted lines in fig. m
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Proof. Since DG = DN by construction, we derive: sq(DG) = sq(DN) = sq(BN) +
sq(BD) (*)H Let the semicircle built on BG as diameter be traced. The segment DG
is greater than DC' (indeed: DH = DN > BD = DC(), therefore point C' will fall in
the circle with diameter BG. From E, intersection point between AC' extended and the
semicircumference on BG, let us trace segments £ B and EG. Pappus invokes, at this
point of the proof, the following lemma, proved in a previous proposition: sq(CD) +
sq(EF) = sq(DGQG) (**)H By equating (*) and (**) we obtain: sq(BN) + sq(BD) =
sq(CD) + sq(EF). Since BD = CD, sq(CD) = sq(BD), whence: sq(BN) = sq(EF).
Since the squares built on BN and EF are equal between them, so segments BN and
EF will be equal too.

I point out that Descartes did not seem so much interested in giving a justification of
the above construction, but on stressing the diffculty of its discovery. On this concern he
remarked: "Pour ceux qui ne sgauroient point cette construction, elle seroit assez difficile
a rencontrer, & en la cherchant par la methode icy proposée, ils ne s’aviseroient jamais
de prendre DG pour la quantité inconniie, mais plutost CF ou F'D, a cause que ce sont

elles qui conduisent plus aysement a I’Equation" m

In fact, starting from the construction offered by Pappus, one can associate to the problem
a quadratic equation: it is sufficient to set CD = BD = a DG = z, BN = ¢, Descartes
remarks, in order to obtain the second-degree equation: z? — a?> — ¢ = 0. The problem
will be constructable by ruler and compass, the required neusis will be therefore plane,

as the ancients had correctly stated[]

I observe, as a start, that the quadratic equation can be derived in a straightforward
way from the configuration described in fig. in virtue of the equality: sq(DG) =
sq(BN) + sq(BD). But even if the problem can be effectively reduced to a quadratic
equation, setting DG = x is considered by Descartes a somewhat unnatural choice of the
unknown. The segment DG, in fact, is not evoked in the protasis of the problem, nor does
it immediately pops up in the resulting configuration. In order to make DG available, in
fact, an auxiliary construction is required, which, as Descartes emphasized, "is difficult

to find". I point out, moreover, that Descartes omits to report, in his narration, Pappus’

"'The notation: ‘sq(a)’ denotes the square built on the segment a.
"2Cf. Collection VII, prop. 71. See Pappus| [1986], p. 202.
"Descartes| [1897-1913|, vol. 6, p. 462.

T Descartes| [1897-1913|, vol. 6, p. 463.
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analysis of the problemm In this way, a reader can gain an even stronger impression
that the auxiliary construction producing DG appears out of nothing, and that the most

obvious way of performing an analysis of the problem will be to reduce it to a quartic

equation (like eq. [4.5.1)).

Conclusively, the example of Pappus’ neusis problem can be seen to undermine the
cogency of the algebraic ordering of problems and curves: according to Descartes’ canon
of problem-solving, in fact, a fourth degree equation requires a parabola and a circle,
whereas a quadratic equation requires the employment of the ruler and compass only (or

a straight line and a circle).

Descartes probably was aware of other occurrences of a similar phenomenonm but the
problem of Heraclides, discussed in La Géométrie, was well-known among early modern

mathematicians E]

How to prevent that a particular choice of the unknown might lead to associate to the
same problem equations in different degrees, and ultimately make us attribute the wrong

level to a certain problem?

Descartes partially made up to such a freedom connected to the choice of the unknown,
by giving clear and exhaustive (in his view) directions in order to check the reducibility

of an equation obtained at the end of the process of analysism

Let us point out that the notion of reducibility here at stake differs from those that I have
sketched in note [I5] The concept of reducibility I would like to examine in this context
concerns in fact the possibility of factoring a polynomial H(z), in one variable, appearing
in an equation H(x) = 0 associated to a geometric problem, into the product of two
factors, U(x) and V(x) that are polynomials of degree at least one, and whose coefficients
can be constructed by ruler and compass from the coefficients of the original equation.
If such a reduction is possible, then the roots of the equation H(z) = V(x)-U(x) =0

"5Ct. [Pappus] [1986], p. 202.

"6 Another instance is discussed in van Schooten’s Commentary to the first latin adition of the
Géométrie, and it is reproduced in the second (Descartes| [1659-1661|, vol. 1, p. 317).

"See [Brigaglia and P.| [1986].

8 As Descartes emphatically noted the neusis problem was instructive: "pour (...) avertir que, lorsque
le Problesme proposé n’est point solide, si en le cherchant par un chemin on vient a une Equation fort
composée, on peut ordinairement venir a une plus simple, en le cherchant par un autre" (Descartes
[1897-1913|, vol. 6, p. 463).
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will be roots either of V(z) or of U(x), both of degree less than the degree of H(z), so
that it will be sufficient to construct either one of these factors in order to construct the

original equation.

Descartes worked out a theory of reducibility of equations in the form of a series of tech-
niques with examplesm Although these rules of reducibility are conceived, in principle,
so general that they apply to any polynomial equation,lﬂ Descartes discussed in detail
only the reducibility for the case of the cubics and quartic polynomial equations in one

variable.

Hence, if we are given a cubic equation H (z) = 0, in a monic polynomial H (x), and whose
coefficients belong to the ring Z[a, b, c. . .|, Descartes asks to search for an integer divisors
a of the constant term of H(z), and then divide H(z) by a linear factor (z + a)@[f the
test is successful, then the polynomial H(x) will be divided by a linear factor (x +a) with
no remainder. We we will have therefore: H(z) = (z £ a)U(x) = 0, for some polynomial
U(z) in the second degree. The equation H(z) = 0 will be constructible by ruler and
compass, and the original geometric problem is plane. If, on the contrary, the test is
not successful, then the equation will be judged irreducible, and the original geometric

problem will be a solid one[?]

The same procedure can be applied in the case of a quartic equation, and to the cubic
polynomial that may result from a first division. The procedure continues until we obtain

an irreducible cubic factor, or a quadratic factor.

In the case of a fourth-degree equation, Descartes devised a more complex method in
order to check whether the equation could be decomposed into two quadratic factors.
In illustrating Descartes’ way of proceeding, I will follow the interpretations offered by

Galuzzi and Rovelli [1996], in order to explicate those points (sometimes crucial in order

"The following presentation is particularly indebted to |Galuzzi and Rovelli [1996].

89Descartes was confident that these rules were infallible, and could be applied to higher degree equa-
tions: "je pourrois aussy en adiouter d’autres - explains Descartes, referring to rules for the reducibility
of equations - pour les equations qui montent jusqu’au sursolide, ou au quarré de cube, ou au dela..."
(Descartes| [1897-1913], vol. 6, p. 463-464).

8TDescartes| [1897-1913|, vol. 6, p. 454, 455 (continuing from the quotation in the previous note):
"... puis, en examinant par ordre toutes les quantités qui peuvent diviser sans fraction le dernier terme,
il faut voir si quelqu’une d’elles, jointe a la quantité inconniie par le signe 4+ ou —, peut composer un
binome qui divise toute la Somme". I note that Descartes grounded this procedure on the tacit rule that
any rational root of an equation is a factor of the constant term.

82Descartes| [1897-1913|, vol. 6, p. 456-457.
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to understand Descartes’ reasoning) left implicit in the text of La Géométrie. Briefly

speaking, given an equation in the form (with p,q,r € Z[a,b,c...], and ¢ # 0):@

Px)=a'+pz® +qz4+r=0

in which the second term in degree three is eliminated, thanks to a rule previously
specified in Descartes| [1897-1913] (vol. 6, p. 449), we can still search for the divisors of
the known term. If, for instance, « is such a divisor, then P(z) can be factored in the
product: (z —«)f(z), where f(x) is a third degree polynomial. The same procedure can
be applied by searching whether f(z) can be factored into the product of a quadratic

and a linear factor.

But it can also happen that the polynomial P(x) cannot be factored simply by searching
the divisors of the known term. In this case, we can still ask (with Descartes) whether

P(z) may be factored in the following W&yﬁ

Px)=a'+pa® +qz +7r= (2 + ax + ) (2® — ax +) = 0.

From the above equality and by comparing the coefficients «, 5 and -, left undetermined,

the following system can be set up:

B+y=p+a?
B—y=-2
fy=r

83See also: [Vuillemin| [1987] (p. 163), [Bos| [2001] (p. 391-392) and [Liitzen| [2010] (p. 16-17).

84The method T will sketch in the subsequent lines corresponds to a plausible pattern of discovery
followed by Descartes, which is explicated, however, not in La Géométrie, but in van Schooten’s Com-
mentary. On the ground of Schooten’s and Hudde’s explanation it will become current to interpret
Descartes’ reducibility of a quartic in these terms: "la méthode de Descartes - so Lagrange notes in his
Legons élementaires - qu’on suit communément dans les éléments de I’Algebre (...) consiste & supposer
immédiatement que la proposée soit produite par la multiplication de deux équations du second degré"
(in |Vuillemin| [1987], p. 161).



CHAPTER 4. SIMPLICITY IN DESCARTES’ GEOMETRY 198

The first two equations form a linear system in 5 and +y, so that v = %(oz2 + pa+ %), and

8= %(p +a® — ). By taking into account the third equation, By = r, we will have:

ol +2pat + (p* — 4r)a® — ¢ =1 (4.5.2)

By setting r = 0, this equation can be considered, as stressed in [Vuillemin| [1987] (p.
163), a sixth degree ‘resolvent’ associated with the original quartic. But substituting with:
a? =y, we obtain a third degree equation instead: Q(y) = >+ 2py?+ (p> —4r)y—q¢*> = 0.
The can be therefore considered a cubic resolvent of our original equation P(z) = 0.
In fact, if y; is a root of the then P(z) = 0 can be factored into the following
product:

L

1 q
P(x):(xz—yix—kiyi +§p+7%

1 1
) (2 + yix + §y§ + oP~ %) = 0. (4.5.3)
(2

Hence, if the equation Q(y) = 0 can be divided by a binomial factor (this factorization
can be performed by searching the divisors of the constant term ¢?, following the rules
prescribed above), it will have a real root y; constructable by ruler and compass. In this
case, each factor in which P(z) has been divided is a quadratic one, in the unknown x
and in the coefficient y;, constructable by ruler and compass. P(x) = 0 will be therefore
constructable by ruler and compass too, and the associated problem will be plane. If
the cubic resolvent cannot be factorized, on the other hand, the equation will not be

decomposable into quadratic ones, and the associated problem will be a solid problem.ﬁ

Descartes applied these rules precisely to the case of the fourth-degree equation obtained
from the analysis of Pappus’ neusis problem, and succeeded in decomposing that equation

into the product of two quadratic factors@ He thus managed to express segment DF

(fig. [4.5.2) as:

4 4 2 2

1 1 1 1 1
DF = \/4a2 + -2 — \/02 ——a?+ —ava®+ 2.

85Descartes’ proof of the reducibility of the fourth degree equation connected with the problem of
Heraclides, discussed above, can be interpreted, with the benefit of hindsight, as a strategy for checking
the factorization of a polynomial over a field obtained by the adjunction of square roots (see (Galuzzi
[2010], p. 538).

8See [Descartes| [1897-1913|, vol. 6, p. 462-463.
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Since this expression contains only square roots, Descartes could conclude that D F would
be constructable by ruler and compass, and the corresponding neusis problem solvable
by plane means, just like the ancients had claimed (it is in fact sufficient to determine

point F' in order to solve the neusis problem).

Virtues and limitations of Descartes’ techniques of factorization have been analyzed

through the lense of modern mathematics in a number of recent studies |

It is important to underline, with respect to the theme discussed in this chapter, that
Descartes’ belief that his rules for reducibility was certain and ‘infallible’ is partially
justified in the light of the examples treated in the Book. Indeed, at least for the simplest
cases (namely, third and fourth degree equations discussed in Book III of La Géométrie)
Descartes’ reducibility techniques can be envisaged as representing an ‘effective method’,
namely: "a method for computing the answer [to a problem| that, if followed necessary
and as far as it may be necessary, is logically bound to give the right answer (and
no wrong answers) in a finite number of steps" (in [Hunter| [1973], p. 14) in order to
decide whether a problem leading to fourth or third degree equations with coefficients in
Zla,b,c,...] can be further factored, and therefore whether it corresponds to a solid or
a plane problem. On this ground, Descartes prescribed the guidelines of a more general

method for reducibility, that could be virtually applied to equations in any degree:

Lorsque on a tasché de les reduire [namely, the equations| a mesme forme
que celles, d’autant de dimensions, qui vienent de la multiplication de deux
autres qui en ont moins, & qu’ayant denombré tous les moyens par lesquels
cette multiplication est possible, la chose n’a pli succeder par aucun, on doit
s’assurer qu’elles ne scaroient estre reduites a de plus simples. En sorte que,
si la quantité inconnué a 3 ou 4 dimensions, le Probleme, pour lequel on la
cherche, est solide; et si elle en a 5 ou 6, il est d'un degré plus composé, et

ainsy des autres.lﬂ

87 Among the numerous studies, I refer in particular to the following ones: [Vuillemin| [1987], p. 154ff.,
Galuzzi and Rovelli| [1996], Bos| [2001] (especially p. 391ff.), [Liitzen| [2010], p. 16-18.
®"Descartes| |1897-1913|, vol. 6, p. 464.
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The procedure here described can be thus paraphrased: let us suppose that we want to
evaluate whether an algebraic equation P(x) = 0, of degree higher than 2 is reducibleﬁ
Then we must consider all the finitely many integer divisors of the known term (provided
this can be done: Descartes takes this point for granted), and check whether it exists
a divisor a such that: P(z) = (z + a)Q(x), where Q(x) will have degree smaller than
the degree of P(x). If the polynomial Q(x) has degree 2, then the procedure terminates
here: the equation is a quadratic one, and the corresponding problem will be plane. If
Q(x) has degree higher than 2, the same factorization procedure can be applied to this
polynomial, until we can factor it into the product of an irreducible polynomial of degree

higher than 2, or into the product of a quadratic factor, and finitely many linear factors.

I note that Descartes never required that quadratic factors should be decomposed into
the product of linear binomials, even when this could be done over the ring Z[a, b, c. . ].
This restriction underscores that the motivations behind the techniques of reducibility
expounded in La Géométrie remained geometrical: in the context of Book III, Descartes
was primarily interested in the reducibility of equations in order to determine whether
an apparently solid problem was in fact plane, and thus avoid the error of solving it by

overcomplicated methods.

Descartes omitted the details of this general procedure, leaving the task to perform the
required demonstrations to the intelligence of the reader. This does not appear as an
easy task, but such moves consisting in leaving on the shoulder of the readers the burden
of completing the demonstrations are a characteristic of Descartes’ style. At any rate,
the core of the techniques of reducibility expounded in La Géométrie is partially justified,
with the benefit of hindsight, in the light of today treatments, which recast and improve
Descartes’ inchoate procedures with the aid of tools essentially extraneous to cartesian
mathematics]

However, Descartes’ technique for the decomposition of equations also presents open is-
sues. Let us consider, for instance, the equation in this case, the polynomial P(x)
is factored into two quadratic factors in which the coefficient y; are constructable by ruler
and compass from the coefficients of the original quartic equation. In a slightly anachro-

nistic terminology, we can say that the quartic polynomials considered by Descartes are

89Let us recall that P(z) is a monic polynomial, whose coefficients can be generally considered in the
ring Z[a, b, ¢, ...], and a,b, ¢, ... are finitely many quantities, given of the original problem.
9For polynomials in one variable, see |Childs| [2008], ch. 13.
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not factored over the ring Z[a, b, ¢, ...] but over another structure, obtained, in modern
parlance, by the adjunction of quadratic irrationals to the field of the rational quantities.
But the very possibility of unique factorization of polynomials in this new structure is
an open question, though, as underlined in [Bos| [2001] (p. 391), and in Liitzen| [2010] (p.
18).

Given this premiss, the meaning of reducibility becomes unclear, at least in the context
of the decomposition of quartic polynomials over the field obtained by the adjunction of
quadratic irrationals.Therefore, the effectiveness of Descartes’ technique of reducibility
is also undermined. These considerations alert us against taking Descartes’ method of
reducibility as an effective method, since, in so far the notion of reducibility is not clearly

defined, the method is not logically bound to always give the right answer.

Let us now resume the main tenets of Descartes’ interpretation of simplicity in relation
with problem solving. In this and the previous chapters I have endeavoured to show that
Descartes’ long-term program, whose first formulation can be retrieved in the 1619 letter
to Beeckman, and whose mature accomplished is to be found in La Géométrie, aimed to
provide a method by which all problems of geometry could be solved, each by the most

adequate means.

A central methodological role in this project was played by Pappus’ precept, according to
which it is a sin (in Commandinus’ translation: "peccatum") to solve a problem through
an inappropriate genre of curves. In La Géométrie, simplicity is the key word in order
to understand Descartes’ interpretation of the Pappusian requirement: geometers should
always choose the most appropriate curves for a problem by avoiding committing the

errors ("fautes") of using too simple and too complex solutions.

Since simplicity is primarily measured by the algebraic equations associated to curves,
the latter becomes the key resource in order to secure knowledge about the solution of a

problem, or, we may say, about its ‘nature’.

Descartes’ reliance on equations as a privileged means in order to denote and order curves
and, consequently, as a means for choosing the most geometrical solution of problems too,
can be motivated on the backdrop of different measures of simplicity, certainly available
to Descartes, like the measure dictated by the constitution of the linkages employed for

the construction of a curve. As I have related in chapter [3] the compositional nature
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of linkages could offered a criterion for ordering curves, according to the complexity of
their tracing devices. But the possibility of associating to a certain curve a particular
tracing procedure is not sufficient, in the context of La Géométrie, in order to exclude

that simpler combinations of linkages might be found, for the same curve.

In fact, there was no available method either to Descartes or to his contemporaries,
in order to assess the minimal number of linkages necessary and sufficient for tracing
a curve.lﬂ On the contrary, as I have illustrated in the previous section, Descartes’
techniques of reducibility offered, in principle, a quasi-algorithmic method (at least in
Descartes’ mind) in order to associate any curve to one and the same class of degree

invariant equations.

The very existence of an effective procedure (at least in Descartes’ view) in order to
associate any geometric curve to a class of irreducible equations, in the same degree (that
is also the lowest possible degree for the curve at hand) probably made, or contributed to
make algebraic equations a preferred modality of reference in order to give information

on a curve as such, rather than on the mechanisms for its construction.

Reducibility techniques could be also applied to equations associated to problems. In-
deed, as I have illustrated in the previous section, equations allowed the geometer to
extract information on the nature of problems, namely, information on their constructibil-
ity. This point is clearly resumed in Van Schooten’s summary of Book III of Descartes’

Géométrie:

Postquam igitur ea, quae ad aequationum recognitionem ac emendationem
pertinent, exposita sunt, et quidem ex aequationum cognitione (...) de-
pendeat quoque problematum cognitio, ac prout aequatio est vel Quadrata,
vel Cubica ... Problema, quod ad ipsam reducitur, dicatur vel Planum vel
Solidum (...) illudque exinde construi queat vel per rectas lineas et circulos,

vel per Sectiones Conicas”]

91Nor I do know of the existence of such methods, even today.

92Descartes| [1659-1661], vol. 1, p. 279: "Hence, after that all that concerns with the understanding
and amendment of equations have been expounded, and after it has been expounded that the knowledge
of the problems depends on the knowledge of equations too, and accordingly the equation is either
Quadratic, or Cubic (...) the Problem, to which it can be reduced, will be said Plane or Solid (...) and
it will be constructible thereby either through straight lines and circles, or through conic sections."
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As we can evince from Van Schooten’s remarks, which paraphrase, in their turn, the
programme deployed by Descartes in the central part of Book III, the ‘knowledge of
a problem’, i.e. of its nature, depends on the knowledge of the (irreducible) equation
obtained as the end result of its analysis. Descartes judged it would be sufficient, on
the ground of the rule of simplicity established by Descartes, to know the degree of the
equation associated to a certain problem, in order to choose the simplest solving curves,
and therefore determine the plane, solid or linear nature of the former. This dictated a
hierarchical organization of geometric problems based on their constructional complexity,

although only the plane/solid divide is probed along broad lines in the La Géométrie.

4.6 Impossibility and the interpretation of Pappus’ norm

4.6.1 Impossibility arguments in La Géométrie

A crucial question for the completion of Descartes’ programme remains to be answered:
on which grounds are we entitled to claim, when the end result of the analysis of a
problem is an equation of a certain degree, constructible by prescribed means according
to Descartes’ protocol, that the same equation cannot be constructed by other, simpler

curves?

Descartes did tackle the question explicitly, in the final sections of Book III:

Il est vray que je n’ay pas encore dit sur quelle raison je me fonde, pour oser
ainsy assurer si une chose est possible, ou ne l’est pas. Mais, si on prend
garde comment, par la methode dont ie me sers, tout ce qui tombe sur la
consideration des Geometres, se reduit a un mesme genre de Problesmes, qui
est de chercher la valeur des racines de quelque Equation, on iugera bien qu’il
n’est pas malaysé de faire un denombrement de toutes les voyes par lesquelles
on les peut trouver, qui soit suffisant pour demonstrer qu’on a choisi la plus

generale et la plus simplePE]

And added on these general remarks a fully synthetic impossibility argument, with the

purpose of showing why a solid problem cannot be solved by "plane" means, instead:

Et particulierement pour ce qui est des Problesmes Solides, que j'ay dit ne

pouvoir estre construits sans qu’on y employe quelque ligne plus composée que

9 Descartes| [1897-1913|, vol. 6, p. 475.
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la circulaire, c’est chose qu’on peut assez trouver, de ce qu’ils se reduisent a
deux constructions; en I'une desquelles il faut avoir tous ensemble deux poins,
qui determinent deux moyennes proportionnelles entre deux lignes données,
& en autre les deux poins, qui divisent en trois parties esgales un arc donné:
Car d’autant que la courbure du cercle ne depend, que d’un simple rapport
de toutes ses parties, au point qui en est le centre, on ne peut aussy s’en
servir qu’ a determiner un seul point entre deux extremes, comme a trouver
une moyenne proportionnelle entre deux lignes droites données, ou diviser en
deux un arc donné, au lieu que la courbure des sections coniques, dependant

toujours de deux diverses choses, peut aussy servir a determiner deux poins

differents P4

Descartes generalized the same argumentative scheme to problems of "one degree higher
than solids", "...et qui presupposent 'invention de quatre moyennes proportionnelles,
ou la division d’un angle en cinq parties esgales”ﬁ in order to prove that these prob-

lems cannot be solved by conic sections, but require higher curves, like the cartesian
parabola 9|

Descartes’ impossibility argument has been viewed as "the earliest attempt to prove or
explain the impossibility of constructing certain problems (such as the trisection of the
angle) with certain means (such as straight lines and circles) ".@ This judgement might
be not wholly correct, though. As remarked by J. V. Field: "a very early example of an
attempt to prove that a construction is impossible" is represented by Kepler’s attempt,
in the Harmonices mundi libri V (1619) to prove, in a merely geometric way, that a

regular heptagon cannot be constructed by ruler and compass.@

Nevertheless, Descartes was probably the first to have ventured an argument that the an-
gle cannot be trisected by plane means.@ Because of the entanglement between algebraic
and geometric reasoning in Descartes’ argument, its structure is certainly remarking, and

it is worth being examined.

9Descartes| [1897-1913], vol. 6, p. 475-476.

95 Descartes| [1897-1913|, vol. 6, p. 476.

96T Tigne courbe qui se descrit par I'intersection d’une Parabole et d’une ligne droite (...) car jose
assurer qu’il n’y a de plus simple en la nature, qui puisse servir a ce mesme effet", ibid.

9TBos| [2001], p. 380.

98Field|[1994], p. 226.

99As observed by J. V. Field, Kepler probably shared the view of many of his contemporaries, according
to which the trisection was an unsolved problem, although it was unknown whether it was an unsolvable
one (see [Field| [1994], p. 226).
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As reported in the above passages, Descartes introduced his reflections on impossibility
by general considerations concerning the construction of equations: "il n’est pas malaysé
de faire un denombrement de toutes les voyes par lesquelles on les peut trouver, qui soit
suffisant pour demonstrer qu’on a choisi la plus generale et la plus simple". But when
Descartes examined the case of solid problems, he did not seem to follow the approach

just skecthed, and offered a quite different argument, that can be resumed in three steps:

1. If a problem - Descartes argues - is reducible to a fourth or third degree equation
(Descartes employed the expression: "Problesmes Solides" in order to refer, I sup-
pose, to such problems), it can be constructed either by solving the problem of
trisecting an angle (plus auxiliary ruler and compass constructions), or by solving

the trisection problem (plus auxiliary ruler and compass constructions).

2. The problems of inserting two mean proportionals between two segments and of

trisecting an angle are unsolvable by ruler and compass.

3. Therefore, problems reducible to fourth and third degree equations cannot be con-

structed by ruler and compass only.

The first claim, according to which any solid problem can be reduced either to the
problem of inserting two mean proportionals or to the problem of trisecting a given
angle, is crucial for the structure of Descartes’ impossibility argument, and it is proved,
relying on algebra. Indeed, as Descartes observed in Book III, one could show that all
solid problems are reducible to the insertion of two mean proportionals between given
segments, or to the problem of trisecting an angle (or the corresponding arc), by an

algebraic reasoning:

En considerant que leur difficulté peuvent toujours estre comprises en des
Equations qui ne montent que iusques au quarré de quarré ou au cube; et que
toutes celles qui montent au quarré du quarré se reduisent au quarré, par le
moyen de quelques autres qui ne montent que iusques au cube, et enfin qu’on

peut oster le second terme de celles cy[O7)

This result, let us recall, had been already proved by Viéte in the Supplementum Geome-
triae (1593), though. Descartes did not give any credit to his predecessor, and offered
a new argument, along the following lines. Since quartic equations can be reduced to

quadratic ones by means of cubic resolvents, Descartes could restrict his scope to the

199Descartes| [1897-1913], vol. 6, p. 471.
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exam of the sole cubic equations, that he reduced to the following cases by applying

standard rules of transformation{ /04

2 =pr+g;
2 =pr—g;
23:—pm+q.

For the sake of conciseness, we can set: | P |= p and | @ |= ¢, and conclude that any

cubic equation can be written, ultimately, as: z° = Pz + Q.

The exam of the discriminant led Descartes to distinguish two situations: either (%)2 >
(?)3 or (%)2 < (?)3. In the former case, the unknown could be expressed by a rule

"attributed by Cardan to a certain Scipio Ferreus":

z=§/§+ <§)2<§>3+§/§ &y - Ly

As, by hypothesis, we have that: (%)2 > (£)3, the unknown z can be found by determin-
ing a cubic root, or by constructing two mean proportionals between 1 and the known

quantities appearing under the cubic root signs in the formula above@

On the contrary, the case corresponding to: (%)2 < (%)3 represents the so-called casus

irreducibilis, because it involves uninterpretable square roots of negative quantities. In
this case, Descartes proved, by giving the construction, that the problem could be reduced
to the trisection of an angle@

101 A fourth case, namely: 2 = —px — ¢ is not discussed by Descartes. The reason, according to Bos,
is that Descartes: "implicitly assumed that at least one solution was positive" (Bos| [2001], p. 377).

102Descartes| [1897-1913), vol. 6, p. 472.

1938Descartes| [1897-1913], vol. 6, p. 474-475.
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Ultimately, the examination of the cases in which (%)2 > (g)?’ and in which (%)2 < (g)?’
allowed Descartes to conclude that any solid problem (in this case, any problem reducible
to a cubic equation) can be reduced either to the geometric problem of the insertion of
two mean proportionals, or to the trisection of an angle. On these grounds, Descartes
could infer that it was sufficient to prove that either the problem of inserting two mean
proportionals or the trisection problem cannot be constructed by plane means, in order

to prove that any problem reducible to quartic or cubic equations is unsolvable that way.

But the argument deployed in La Géométrie in order to prove the unsolvability of the
trisection and the insertion of two mean proportionals (see above: |Descartes [1897-1913|,
vol. 6, p. 475-476) is not perspicuous. I shall try to disentangle it here, following

Descartes’ narration as closely as possible:

1. Since the curvature of the circle depends on one ‘simple relation’ (to be understood
as the distance to the center of all the points on the circumference), this curve
can be used to construct at most one point between the extremes of a segment or
arc. Since the curvature of a conic section (namely a Parabola, an Hyperbola, or
an Ellipse) depends on two "things" or relations, it can be employed in order to

determine at most two points between two (given) extremities.

2. The problem of bisecting an angle or of finding one mean proportional demands
the construction of one point only, whereas the problem of trisectiong an angle
or of finding two mean proportionals between two given segments requires the

determination of two points.

3. Hence, circles alone, or circles and straight lines, cannot be employed to solve either
the trisection problem or the problem of inserting two mean proportionals, because
in order to construct them it is required to determine at most two points between

two given extremities.

The point 1 above can be followed as far as it establishes that the curvature of a circle
is constant and depends on the distance of each point on the circumference from the
centre. The generalization to conic sections is less evident, though, probably because
Descartes’ notion of curvature is barely analyzed in La Géométrie, and remains treated
on a mere intuitive level. At any rate, I will follow H. Bos’ suggestion, according to
which: "Probably Descartes had focal properties in mind when he wrote about the two

‘things’ (‘choses’) involved in the curvature of conics as opposed to the single relation (to
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the center) involved in the curvature of a circle. One may say that he saw the variability

of the curvature as the essential feature that determined the power of curves in solving
problems”FEl

Even on the ground of this explanation, though, it is difficult to see how this qualitative
distinction relates to the possible use of curves in solving the problems of a certain class.
Descartes’ remark reported in point 2 might be tentatively explained in this way: in order
to construct the bisection of a given angle it is sufficient, according to a simple euclidean
construction (it can be found proposition I, 9 of the Elements), to determine one point
only on the bisectrix of the angle. Morever, in order to insert one mean proportional
between two given segments, we can rely on proposition VI, 13 of Euclid’s Elements (also
evoked in Book I of La Géométrie), so that it will be sufficient, again to construct one

point in order to solve the problem[[07]

On the other hand, by claiming that the trisection of an angle or an arc is solved by the
finding of two points between two extremes, Descartes was probably referring to one of
the previous sections of La Géométrie, where he had discussed the trisection problem
(in particular to the diagram reporduced in Descartes |1897-1913|, vol. 6, p. 470, fig.
below), where points ) and T are inserted between the extremities N and P, so
that the angle NOQ is one third of the angle NOP. 1t is less clear how to understand
the reference to the problem of inserting two mean proportionals: Descartes might be
referring to the construction of the couple of points O and T (in fig. above) or
points C' and D (with respect to the construction by the proportions compass, in fig.
4.5.1]).

However, it is by no means clear why, on this ground, the sole circles (or circles and
straight lines coupled together) cannot be successfully employed for solving solid prob-
lems. Actually, as convincingly pointed out by Liitzen (in Liitzen|[2010], p. 22-23), the
employment of the circle and straight lines (or ruler and compass) can solve problems in
which the construction of two points between two extremes are required, as in the case of
the trisection of a given segment. One can certainly iterate the application of ruler and
compass, and obtain the division of an angle in four parts, for instance. On the other

hand, in order to solve the problem of trisecting a given angle, it is sufficient to construct

194Bos| [2001], p. 380.
105For instance, with reference to the fig. [3.1.3] p. [3.1.3 it will be sufficient to construct point B in
order to solve the problem of inserting one mean proportional between FO and OA.
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Figure 4.6.1: [Descartes| [1897-1913], vol. 6, p. 470.

only one point by means of a conic section, corresponding to one third of the given angle
(with reference to the figure, it is sufficient to construct point @, for instance), whereas
the other point can be constructed by ruler and compass (it is sufficient to duplicate the

angle previously obtained).

Conclusively, it seems that Descartes did not succeed in making sufficiently clear in
which sense the notion of ‘curvature’ of the circle and of the conic sections, respectively,
is related to the constructional capacities of these curves, and in which sense their con-

structional power makes the circle unsuitable in order to solve solid problems.

4.6.2 A case for unrigorous reasoning

If we consider the structure of Descartes’ reasoning when dealing with impossibility
results, it will probably come as a matter of surprise for us that this argument is grounded,
unlike modern impossibility proofs, on sole geometric considerations. Such an emphasis

on geometric impossibility proof might be explained on several grounds.

Firstly, it should be pointed out that Descartes’ algebra of segments does not seem to

possess the resources in order to recast salient differences in the ‘constructional power’ of
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curves, to which I have referred above. Descartes acknowledged, among curves belonging
to the same genre, curves having a more or less extended application in problem solving:
he admitted, for instance, that the circle could solve less problems than the conic sections
(see this chapter, p. [164]). But such a difference in constructional power, which enters
crucially in the impossibility of solving solid problems by plane means, did not correspond
to any salient algebraic property. Indeed the principal characteristic of equations, namely
their degree, does not allow one to distinguish between the circle and the conic sections,

which are both associated to quadratic equations.

Secondly, I surmise that Descartes could have inquired about whether cubic equations
were solvable by means of quadratic equations. He probably lacked the means to offer
an answer, yet he should have realized that had he found a negative answer, this answer
would correspond to an impossibility theorem cast into an algebraic form. But it was
probably not easy to generalize this algebraic-proof structure to other relevant cases.
For instance, how could one prove, by reasoning on algebraic equations alone, that the
division of the angle into five equal parts cannot be solved by conic sections? The answer
was arguably not obvious to Descartes (as it is not obvious for us, either): we might
therefore envisage also an intention of generality on Descartes’ side, behind his choice of

grounding an argument of impossibility on a purely geometric argument.

A third reason concerns the role that algebra played with respect to geometric problems
in the early modern mathematical practice. Algebra was generally conceived, during
that period, as a method of discovery rather than a method of proof. As the case of
Descartes’ geometry illustrates too, the algebra of segments constituted, in the views of
his author, a powerful method for searching the construction of problems, but it was
hardly ever applied as a method for theorem proving. It seems that geometric arguments
were invoked when it came to prove a theorem, either in geometry (it goes without saying)
but also in algebra: the latter case is testified by Al Kwarizmi’s proof for solving quadratic

equations, or for Cardanos’ proof of the algorithm for solving cubic equations.@

Impossibility claims, as they are formulated in La Géométrie, are closer to theorems
than to problems, since they are assertions whose truth is to be proved or disproved,
rather than problems which express tasks to be accomplished. Therefore it must have
been natural, for Descartes, to prove such impossibility results by means of a synthetic,

geometric proof.

196Both cases are evoked in [Liitzen| [2010], p. 9-10.
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In conclusion, Descartes deployed a loosely deductive, and in some points obscure argu-
ment in order to claim that solid problems could not be solved by plane means. However,
even if this argument could not be recast either into an algebraic form or into a gapless
deductive structure, it did not went forgotten, but it was the source for further consider-
ations on impossibility, during the following years. In this sense, Descartes’ impossibility
argument can be considered an instance of ‘unrigorous reasoning’, according to the sense
specified by P. Kitcher, with respect to those kinds of argument that: "appear to be
candidates for adoption within the system of accepted proofs (...) however, there is no

known way of recasting them as arguments which accord with the background constraints

on proofs" FEI

Just like other examples of unrigorous reasonings in a practice@ later mathematicians
did not discard Descartes’ argument on the impossibility of solving a third degree prob-
lem by ruler and compass, but tried to recast them into forms which agree with the

background constraints on acceptable proofs.

Thus, as the historical analysis in Liitzen [2010] shows, Descartes’ aforementioned impos-
sibility claims represent the starting point for a discussion on the impossibility of solving
the classical problems (duplication of the cube and trisection of the angle) put forward

by E. Montucla, in his Histoire des recherches sur la quadrature du cercle (1754).

Montucla valued the importance of impossibility arguments for pragmatical reasons, re-
hearsing motives that we have already seen in force in Descartes’ Géométrie: by proving
that a problem like the trisection was unsolvable by ruler and compass, Montucla argues,
one could undermine the aims of "trisectors", by preventing geometers from searching

vainly for the solution of solid problems without having examined their nature in ad-

vance @

Briefly speaking, Montucla envisaged a role for impossibility results similar to that sug-
gested by Descartes in his Géométrie: these results should indicate the correct way of

finding the solution to problems, by inhibiting impossible attempts. Moreover, the legacy

107Kitcher| [1984], p. 182.

108 itcher evokes, as paradigmatic examples of unrigorous argument are those reasonings using in-
finitesimals, since: "The problem is not simply that we cannot recast the argument as a deduction from
accepted premises. As the mathematicians of the seventeenth and eighteenth centuries found, it is hard
to present it in any way which does not introduce premises which are obviously false" (Kitcher| [1984],
p. 182).

109See Montuclal [1754], p. 235.
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of cartesian geometry is explicit in Montucla’s account of the classical problems, as we

can read in his Histoire:

Ce n’est qu’a la Geometrie moderne qu’est due leur solution compléte. Ce sont
en effet seulement les Lumiéres qu’elle nous fournit, qui nous mettent en état
de faire voir qu’ils sont d’une nature & ne pouvoir étre généralement résolus
par la Géométrie élémentaire, ce qui était un point nécessaire & démontrer
avant de cesser ses efforts pour y parvenir par cette voye. Mais 'analyse

moderne léve toute doute a cet égard [T

Presumably dissatisfied by Descartes’ impossibility argument, Montucla advanced a proof
of his own in order to claim that solid problems were not solvable by circles and straight
lines. I will not enter into the details of this proof here, since it will bring me far from the
historical setting I am investigating, but I shall remark that Montucla recast Descartes’
geometrical argument into a more algebraic one. It should be pointed out that this
algebraization of the cartesian argument does not yield an impossibility proof analogous
to the modern, existing ones, since Montucla still relies on the the fundamental guideline
of the theory of the construction of equations, that we have previously discussed in
connection with Descartes’ solution of solid problems: the gist of his argument lies in the
(unproven) claim that a circle and a straight line necessarily cut in two pointsF_TI and
therefore cannot be employed in order to exhibit the three roots of a cubic equation, to
which both the trisection of the angle and the insertion of two mean proportionals can

be eventually reduced.

Montucla was not the only one who attempted to reformulate Descartes’ impossibility
claim in a more algebraic vest. I shall point out, as another remarkable, although concise
example, the following considerations expressed by James Gregory in a work from 1668,

Geometriae pars universalis:

Hic conabor ostendere nullam vel aequationem cubicam posse resolvi ope

solius regulae et circini: omnes aequatio cubica habet vel unam solam vel

HOMontuclal [1754], p. 273.

T Euclid’s Elements it is proved that two circles meet at most in two points (Euclid III, 10), and
it can be inferred, from proposition III, 2, for instance, that a straight line and a circle meet at most in
two points (Heath|[1956 (first edition 1908|, p. 10). Moreover, it is proved that a straight line touches
a circle in one point (this condition expresses the fact that a line is tangent to the circle), but I cannot
find any proof of the claim that a straight line cuts the circle in two points, or, equivalently, that if a
straight line cuts (but does not touch) the circle in one point, it cuts it into another, distinct point.
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tres radices reales, quae si invenirentur ope solius regulae et circini, seu in-
tersectione circuli et lineae rectae, linea recta circulum secaret vel in uno solo

puncto vel in tribus, quod utrumque est absurdissimum . .. B

Gregory sketched, in the above passage, an argument in order to prove that no cubic
equation could be solved by ruler and compass. Differently than Descartes, he did not
make any direct reference to the trisection problem or to the problem of inserting two
mean proportionals, but he referred instead to the problem of constructing solid equations
(in the same way Montucla would do, after him). Gregory’s starting point is the following
true fact: every cubic equation has either one or three real roots. In order to construct
these roots by a geometric procedure, we should construct either one or three intersection
points between two curves. If these curves were the circle and the straight line, then the
real roots could be found either by finding one or three intersection points between these

curves. But, Gregory concludes, this is "very absurd" (absurdissimum) in both clases.

As no explanation is added to this sketch of a reductio argument, we can try to reconstruct
the missing steps of Gregory’s reasoning. As remarked above, it was known from Euclid’s
Elements that a circle and a straight line cannot intersect in more than two points. On
the other hand, Gregory assumed that they cannot intersect (secaret) either in one point
only. He was probably distinguishing, alongside with a classical tradition in geometry,
two ways in which a straight line can meet a circle. A meeting between these curves
could happen either when the straight line cut the circle (in this case, the straight line
would be a secant to the circle) or when the straight line touched it (in this case, the
straight line would be a tangent to the circle). Hence, Gregory had probably assumed
that if a straight line cuts (but does not touch) the circle in one point, it should cut it

in a second point too (see also above, note [111)).

This topic is not dealt with any further in the Geometriae Pars Universalis, but it was
certainly remarked as noteworthy by Gregory’s contemporaries. For instance, Gregory’s
argument on the impossibility of solving cubics is reported almost literally in the review

of Geometriae Pars Universalis, appeared in the Philosophical Transactions, in 1668.@

12 Qeometriae Pars Universalis, preface, unnumbered sheet: "I shall try to show here that no cubic
equation can be solved by means of the circle and the straight line. Any cubic equation has either three
or one real root, so that if it could be found by means of the sole ruler and compass, or by the intersection
of a circle and a straight line, the straight line would cut (secaret) the circle either in only one, or in
three points, but this is very absurd".

138ee [account of some Books| [1668], p. 686.
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Moreover, a perusal of Huygens’ marginal notes reveals that the former geometer had
meditated upon this very passage of Gregory’s Book, writing in margin the following

comment:

an non aeque impossibile est circulum secare sectionem conicam in uno vel

tribus punctis. Et tamen hujusmodi intersectione aequationes cubicae solvun-

turJT_Ml

It can be read as a consideration in favour of Gregory’s reasoning, since it pointed to
the use of a conic section (Descartes employed a parabola) as a legitimate and correct

method in order to construct cubic equations.

4.6.3 Impossibility results as metastatements

I shall conclude my survey of Descartes’ impossibility results by considering their function
in the economy of the geometry. Descartes’ assertions on the impossibility of solving
problems by prescribed means assume a peculiar form. Firstly, let us remark that their
content does not concern properties or configurations of geometric objects, but rather

the general conditions under which a problem can be solved.

This point marks an important difference with respect to modern impossibility results.
From the second half of XIX century, in fact, impossibility results assume the form of
existential theorems, whose proofs requires to show the non-existence of a particular
type of solution by an indirect argument: as an example, the modern proof that angles
cannot be trisected by ruler and compass constructions starts from the assumption that
the resulting third degree equation has roots in a quadratic extensions of the rationals,

and from this assumption a contradiction is derivedm

In the context of La Géométrie, instead, Descartes employs the same word, ‘faute’ (clearly
reminiscent of Pappus’ norm), in order to denote two different errors from the mathe-
matical viewpoint. They are, on one hand, that of consisting in solving a problem by
inadequate means, namely by using too complex curves with respect to the nature of a
problem; on the other, the error consisting in trying to solve a problem by too (dimension-
ally) simple curves, which is an unattainable task. This latter error should be qualified

as a practical rather than a mathematical one, in so far trying to construct a problem by

1410 [Hess| [1980], p. 36: "But it is not impossible that a circle cuts a conic section in one or three
points. And then, cubic equations are solved by such intersections"

115866 ch. [1] sec.
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inadequate means is a ‘useless’ activity, which may waste energies and efforts but it is in
no way an activity that we may qualify as mathematicsm In Descartes’ narration, both
errors are methodological faults, because they stem from a common source: indeed they
are imputable to the use of ‘improper procedures’ in problem solving, which ultimately
depended on the ‘ignorance’, shown by the geometer, about the nature of a problem.
It seems correct to claim that ignorance can be avoided, according to Descartes, when

Pappus’ original requirement, reinterpreted in algebraic terms, is respected.

This view of impossibility results complies with the structure of early modern mathe-
matics, which can be considered as a constructive enterprise,lT_n] in which non-existence
proofs like the one demanded by modern impossibility results do not seem to fit properly.
Assuming this thesis, we may conclude, following J. Liitzen’s analysis, that an impossi-

"n

bility result cannot stand as: a mathematical result (...) but a metaresult saying

that there is no reason to continue to look for a solution because there is none" 18]

However, in contrast with ancient meta-statements, as the impossibility claims arguably
in force in the mathematics of late antiquity, Descartes justified the impossibility of
solving the insertion of two mean proportionals and the trisection of the angle by ruler

and compass by a mathematical argument.

4.6.4 The legacy of the cartesian programme: simplicity at stake

It should be noted that Descartes’ reading of Pappus’ norm in terms of dimensional
simplicity left contemporary and later critics dissatisfied. Indeed the interpretation of
Pappus’ norm in terms of a simplicity requirement, to be set entirely upon algebra, was

pointed out as a weakness of Descartes’ programme.

Newton, for instance, took an opposite stance with respect to Descartes, considering
the construction of solid problems by curves of higher degree than the parabola and
the circle (namely conchoids) as a legitimate procedure, on the basis of a criterion of
simplicity founded on easiness of geometrical construction, on an ideal similar to the

‘easiness’, excluded by Descartes as a criterion leading to errors.@ Simplicity remained

16Descartes disqualifies such attempts as "useless": "...se travailler inutilement a vouloir construire
quelque problesme par un genre de lignes plus simple que sa Nature ne permet", |[Descartes| [1897-1913],
vol. 6, p. 444.

UL iitzen| [2009], p. 388.
8L iitzen| [2009], p. 388; see also |Liitzen| [2009], p. 6.
19Bo0s| [1984], p. 3594
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a virtue in geometry, Newton observed, but algebra could not be the right measure for
it. Geometrical simplicity, namely the simplicity of describing a curve, should be the

criterion to be used in geometric problem solving.

A suggestive example in order to grasp Newton’s adherence to significantly difference
principles in problem-solving is the following passage, taken from the Arithmetica Uni-
versalis (1707), in which Newton invokes the importance of including in goemetry me-

chanical curves like the cycloids, in virtue of the easiness of their description:

Si trochoides in geometriam reciperetur, liceret eius beneficio angulum in data
ratione secare. Numquid ergo reprehenderes siquis haec linea ad dividendum
angulum in ratione numeri ad numerum uteretur, & contenderes haec lineam
per aequationem non definiri, lineas vero quae per aequationes definiuntur,
adhibendas esse? Igitur si angulus e.g. in 10001 partes dividendum esset,
teneremur curvam lineam aequatione plusquam centum dimensionum defini-
tam in medium afferre, quam tamen nemo mortalium describere, nedum in-
telligere valeret; et haec anteponere trochoidi quae linea notissima est, et per

motum rotae vel circuli facile describitur.@

In thia passage, Newton deliberately subverted Descartes’ line of thought, refusing the
methodological distinction between geometrical and mechanical curves (to be examined
in more detail in next chapter), on one hand, and the precept of simplicity, on the other.
Similar positions can be encountered elsewhere among XVIIIth century mathematicians,
to the point that, on the long run, constructions through mathematical instruments,
which could secure the easiness of construction, were considered superior to: "... that
usual one so long in vogue, of first obtaining an algebraic equation by means of the given
conditions of the problem; and then finding the linear roots of that equation, which in
almost all cases is troublesome, unelegant and unnatural, and in many other cases is

intolerable, and almost impossible"lzrl

120Newton| |1745], p. 238: "If the trochoid were received into geometry, it would be possible by its aid
to divide the angle in a given ratio. Then, would you maybe criticize someone if he used this line in
order to divide an angle in the ratio of a number to another number, and argue that this line is not
defined through an equation, and that only such lines which are defined by an equation should be used?
Indeed, if an angle were to be divided in 1001 parts, we would have to employ a curve line defined by
an equation of more than one hundred dimensions, which however no mortal would dare describe, and
not even understand, and we would have to prefer this line to the trochoid, which is a well known line,
and which is described easily by the motion of a wheel or a circle".

12IStone| [1723], p. 324. See also [Bos |1984], p. 367.
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The use of algebra as a guide for the art of discovery in geometry could be seen as
compromising the major virtues of classical geometry. Indeed, Newton stressed once
more, at the beginning of the '80s, when algebra is regarded as a criterion and a guideline

in geometric problem-solving;:

progress has been brought and far-reaching, if your eye is on the profuseness
of the output but the advance is less of a blessing if you look at the complexity
of its conclusion. For these computations, progressing by means of arithmeti-
cal operations alone, very often express in an intolerably roundabout way

quantities which in geometry are designated by the drawing of single lines.lTEI

In a similar vein, Jakob Bernoulli’s critique contained in his Notae et animadversiones
tumultuariae in universum opus (published in 1695 as an appendix to the fourth latin edi-
tion of geometry) are instructive to this effect. I will merely quote the core of Bernoulli’s

criticism, leaving aside the example he produced to illustrate it:

Si sola Dni. Descartes auctoritate standum sit, e pluribus curvis, per quas
aliquod Problema construi potest, semper illa eligenda venit, quae generis
est simplicissimi, ut maxime constructionem et demonstrationem Problema-
tis multo impeditiorem reddat, quam alia, quae uno alterove gradu magis
composita est. At si asserti rationes desideremus, altum silentium ... Nam,
quamquam curva gradus altioris quiddam forte habeat in natura sua magis
compositi, quam alia inferioris, ratiocinium tamen quo id colligimus, in con-
structione problematis non attenditur, sed tamquam jam antea factum sup-

ponitur; et nunc solummodo spectatur curvae descriptio@

Bernoulli agrees that the dimensional simplicity reflects a property of the nature of curves
("quamquam curva gradus altioris quiddam forte habeat in natura sua magis compositi":
I remark that Bernoulli does not mention Descartes’ ordering by couples of degrees, but

by single degrees), but disagrees upon the choice of the dimensionally simplest curve

'221n (Guicciardini| [2009], p. 77.

1231 my translation: "If we had to stay to the sole authority of M. Descartes, among the several curves
by which a problem can be constructed, it must be always chosen the one of the simplest kind, so that it
makes the construction and demonstration of the Problem much more convoluted, than the other, which
is more complex for this or that degree. But if we wish the motivations for such an assertion, then a
deep silence ... Indeed, although the curve of higher degree has maybe something more composite in
its nature, than the one of lower degree, the reasoning through which we seize this, is not respected in
the construction of the problem, but it is presupposed as already done, and then only the description of
the curve is regarded." (in |Descartes| [1695|, p. 444-45).
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in problem solving, since when it comes to the construction of a problem, only the

description of a curve (a criterion related to ‘easiness’) should matterFEl

On the other side, Descartes’ requirement of solving a problem by the curve of the simplest
kind became an important factor in the shaping of mathematical practice throughout
XVIIth century, in particular with respect to a subject closely connected to geometric

problem solving, namely the construction of equations.

Dimensional simplicity was indeed emphasized as an important properties that solutions
of problems ought to possess. Many outstanding mathematicians became engaged in
this research program almost until the beginning of XVIIIth century. Let us recall that
constructing an equation meant to find two curves whose intersection points (or more
precisely, the abscissa of the intersection points) offered the geometrical solutions to the
equation itself. Since the problem generally admits infinite solutions, it gradually became
customary to select, among the possible solutions, the curves of lowest degree, on the

ground of Descartes’ requirement.lzgl

On a related note, Descartes’ discussion of simplicity can be considered a common source
for the methodological reflections of two authors who shall be examined in the sequel:

James Gregory and G. W. Leibniz.

Descartes’ criteria for simplicity are evoked, for instance, in a noeworthy unpublished
tract written by Leibniz in 1674: De Constructione[l8| This tract is a methodological

survey, in which Leibniz considered the role of simplicity in the choice of solving methods,

1243, Bernoulli used the word “ayeouetencios’ in order to refer to the flaw of using illegitimate means
in the solution of a problem : "nihil prorsum video, quid CARTESIUM hoc in passu ab "ayecopetpnoios
vitio, quod ipsemet perstringit saepius, liberare queat ...". In Henk Bos’ translation : "I can see nothing
that could in this case acquit Descartes from the vice of acting ungeometrically, which he mentions so
often" (in Bos|[1984], p. 365).

125The construction of degree up to four became a standard topic on expository writings on algebra and
geometry from the second half of XVIIth century, among which we may name: F. de Sluse’s Mesolabum,
seu duae mediae proportionales inter extremas datas per circulum et ellipsim vel hyperbolam infinitis
modis exhibitae (1659), de la Hire’'s Nouveaux elemens des sections coniques, les lieux geometriques,
la construction ou effection des équations Paris 1679, Wallis’ Algebra (1685, 1693), Sturm’s Mathesis
enucleata (1689, Engl. tr. 1700), Ozanam’s Dictionaire Mathématique (1691), and Nouwveauz elements
d’Algebre (1702), Harris’ Algebra (1702) and Lexicon (1704), Guisnée’s Application de l’algébre & la
géométrie (1705), L’Hopital’s Traité analytique des sections coniques et de leur usage pour la résolu-
tion des équations dans les problemes tant déterminez qu’indéterminez (1707), Newton’s Arithmetica
universalis (1707) and Reyneau’s Analyse demontrée (1700). See |Bos|[1984], p. 354ff.

126Now published in AVII1, 45.
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within a more comprehensive discussion on the virtues of the synthetic geometry of the

ancients and the analysis of the moderns.

With respect to our theme, it should be pointed out that Leibniz expressed the necessity
of adopting general rules (regulas constructionum elegantium) in problem solving, in order
to avoid to employ useless curves, or avoid not to employ those curves that fall within

our power[”?"| and thus perform ‘elegant’ constructions.

Indeed, according to Leibniz, a geometric construction should not be merely understood
as the exhibition of a geometric objects or of a configuration of objects, starting from

given ones. This process should also occur in the most ‘elegant’ way:

Ergo constructio eo censeri debet elegantior, quo lineae quas ducere necesse
est simpliciores paucioresque sunt. Simpliciores censentur geometricae me-
chanicis, et inter geometricas eae quae gradus sunt inferioris, superioribus.
Si duae sint ejusdem problematis constructiones, quarum altera paucioribus,

altera simplicioribus lineis utatur, posterior praeferenda plerumque est.@

It can be inferred, from the above passage, that Leibniz’s notion of elegance in geometriz-
ing was clearly influenced by the cartesian concept of dimensional simplicity: simplest
lines, namely lines of the lowest possible class should be always preferred to solutions

recurring to fewer lineSFigl

1271pe scilicet inutilibus utamur, aut ne quibusdam utilibus in nostra potestate siti non utamur.", AVI1,

45, p. 417.

1281 Thus, a construction must be considered the more elegant the simpler and fewer are the lines it
is necessary to draw. Geometrical lines are thought to be simpler than mechanical, and among the
geometrical ones, those which are of lower degree are thought to be simpler than those of higher degree.
If there are two constructions of the same problem, one of which employs fewer lines, and the other
simpler lines, the latter is to be preferred in general" (in AVI1, 45, p. 418).

129Cf. De constructione, AVI1, 45, p. 418: "Hinc patet, non esse utendum linea superiore ad problema
inferius, nisi ea linea superior jam tum adsit sive quod data sit in problemate, sive quod alia ex causa
describenda fuerit" ("From these things it appears that one should avoid using a higher line for a lower
problem, unless this higher line is already available, either because it is given in the problem, or it
had to be described for other reasons"). It should be pointed out that Leibniz had to restrict the
validity of Descartes’ simplicity precept, as a consequence of a problematic asymmetry concerning the
correspondence between algebra and geometry, although he recognized the global validity of the norm.
The exception indicated here concerns a problem already explored by Schooten and Huygens (cf. for
instance Descartes| [L659-1661], vol. 1, p. 322ff.), for instance, like the construction of a normal to a
given parabola, from a point located outside the curve. The problem can be analyzed and reduced to
a cubic equation, which can be constructed, through Descartes’ protocol, by a circle and a parabola.
But in the problem at hand, the parabola is given, so that, strictly speaking, it is sufficient to construct
a circle in order to solve the problem. This caused a serious fracture between geometric and algebraic
criteria in judging the proper level of a problem: geometrically, the problem was plane, since it required
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the sole construction of a circle, which could intersect the given parabola in the correct points so as to
produce the unknowns. Algebraically, the problem yielded an equation of third degree, and was therefore
solid, according to the classification of La Géométrie (Bos|[|1984], p. 356-357).



Chapter 5

Mechanical curves in Descartes’

geometry

5.1 Mechanical curves in Descartes’ geometry

In the second Book of La Géométrie, Descartes excludes from geometry and ranges
into mechanics the spiral, the quadratrix and other similar but unspecified curves, and
motivates his judgement on two grounds. On one hand they are generated by a couple
of separate motions, and on the other, these motions do not entertain an exact relation

between them [1]

The distinction between geometrical and mechanical curves is a cornerstone in Descartes’
program, since it shapes the boundaries of geometry and dictates the legitimate proce-
dures in the synthetic part of problem solving. However, despite the centrality of this
issue and Descartes’ self confidence about the non-geometrical nature of certain curves,

the rationale of his distinction still defies the interpretation of modern scholars.

As I have anticipated above, we can evince from Descartes’ considerations that the criteria

for excluding a curve from geometry rely on the way in which the curve is generated.

Descartes was acquainted with the genesis of the quadratrix and the spiral from the

available traditional sources dealing with linear problems and curves, which included

In .. la Spirale, la Quadratrice, & semblables (...) n’appartiennent veritablement qu’aux

mechaniques, & ne sont point du nombre de celles que ie pense devoir icy estre receues, a cause qu’on
les imagine descrites par deux mouvements separés & qu’ en ont entre eux aucun rapport qu’on puisse
mesurer exactement" Descartes| [1897-1913], vol. 6, p. 390.

221
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Pappus’ Collection, Archimedes’ treatise On Spirals and indirectly Proclus’ Commentary
on the first book of Euclid’s Elements P

Unlike the case of the circle and other curves constructible by geometric linkages, in
the construction of the quadratrix or the spiral reported, for instance, by Pappus, two
movements are set independently one from another except from certain kynematical
parameters, as the speed of the moving segments or points, which is assumed uniform
for both of them.

Descartes arguably knew, via ancient and early modern sources, other curves that could
be characterized through a similar description. One of them is the cylindrical helix: a
curve, let us recall, mentioned in Proclus’ Commentary and, before it, in Pappus’ Book
IV of the Collection (proposition 28), although its fully-fledged description is set out in
book VIII, devoted to mechanics

A reader of Pappus apud Commandinus could also find, already in Book IV, a sub-

stantial anticipation of the description of the cylindrical helix, thanks to the following

2There is evidence that, by 1637, the spiral and the quadratrix were well-known curves to geometers.
Several sources can be found dealing with the description of these curves (for a detailed survey, see |Ulivi
[1990], in particular, pp. 517- 541). Techniques for the construction of the spiral are discussed in J.
Besson, Theatrum instrumentorum et machinarum (1578); S. Stevin, Hypomnemata mathematica (1605-
1608), p. 23; (and in Stevin, Oeuwres, p. 351), D. Schwenter, Geometriae practicae novae et auctae
(1625), p. 163; V. Leotaud, Geometriae practica (1630), pp. 436-39; S. Marolois, Géométrie contenant la
théorie et pratique d’icelle, in Oeuvres mathématiques (1628), p. 10. The quadratrix started to capture
the attention of mathematicians a bit later, after the publication of Pappus’ Collection in latin, and
mostly under the suggestion of Clavius, who dedicated a study to this curve in his second edition of
the Elements [Elementa (1589), p. 894 - 918]. The quadratrix was studied, between 1598 and 1637, by
F. Viéte, Variorum de rebus mathematicis responsorum, Llber VIII, (1593) p. 11, again by Clavius, in
his Geometria Practica (1604), p. 320-329, by P. Van Lansbergen, Cyclometriae novae libri duo (1616),
in V. Léotaud, Elementa ..., p. 441-442, T. Bruni, Dell’Armonia astronomica et geometrica (1631),
p. 37-38, and by B. Sover, Curvi ac recti proportio (...) libri sex, (1630), p. 388-390. This list may
not be exhaustive, but it is indicative, I surmise, of the interest for the spiral and the quadratrix in
the 60 years preceding the publication of La Géométrie. Most of these works (which Descartes was, in
part, acquainted with) involved attempts to offer alternative constructions of the curves under exam,
and were deployed in the backdrop of the classical accounts of Pappus (for the spiral and especially the
quadratrix) and Archimedes (for the spiral). Extant documents reveal that Descartes was acquainted
with the quadratrix since 1619: the curve is in fact mentioned in his letter to Beeckman that I have
reproduced above, and it is considered as a geometrical curve. It is possible that Descartes learned about
the quadratrix from Beeckman himself (who indeed studied the curve in 1614-15, as we can evince from
his diary), but he did not explicitly discard this curve from the number of geometrical ones until 1629 -
from the end of this year dates in fact a critique to the construction of this curve presented by Clavius in
his commentary to the Elements. Concerning the spiral, we can assume that Descartes knew it through
the accounts in Pappus’ Collection and possibly Archimedes (on Descartes’ early acquaintance with
Archimedes’ works, see [Sasaki| [2003], p. 118-121).

3 A second important source for the helix is Proclus’ Commentary (Proclus| [1992], p. 86).
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commentary added by the editor:

Describetur autem linea spiralis in dicti cylindri superficie, si intelligatur in
linea CM punctum aliquod incipiens a C aequaliter ferri usque ad M, et
eodem tempore lineam CM rectam ad planum circuli permeare circumferen-
tiam C' DA punctum etenim illud lineam spiralem describet, cujus principale
accidens est, ut sumpto quovis puncto in ipsa, quod exempli gratia sit H
ductaque HD ad planum perpendiculari, habeat HD ad circumferentiam

DC' eam proportionem, quam tota CM habeat ad circumferentiam CDAE|

The helix is called by Commandinus a "spiral line on the surface of a cylinder", and
shares similar properties with the spiral in the plane and with the quadratrix, even if
it is a three-dimensional curve. It results in fact from the combination of two motions,
a uniform translation of a point along a segment which revolves, at the same time,

uniformly around a circumference.

Several studie{| allow us to claim that Descartes was acquainted with this curve before
1637. A curve named ‘helix’ (ligne hélice) is in fact summoned by Descartes, in the
course of an exchange with Mersenne from autumn 1629, in the context of a discussion
about a ‘mysterious’ problem of dividing circles in 27 and 29 parts. The only mention of

this problem is contained in a letter written by Descartes on October 8, 1629:

De diviser les cercles en 27 et 29, ie le croy, mechaniquement, mais non pas en
Geometrie. Il est vray qu’il se peut en 27 par le moyen d’un cylindre, encore
que peu de gens en puissant trouver le moyen; mais non pas en 29, ny en tous
autres, & si on m’en veut envoyer la pratique, I'ose vous promettre de faire

voir qu’elle ne’est pas exacteﬁ

According to the interpretation advanced in [Bos| [2001], this problem can be plausibly
identified with that of dividing an angle into an arbitrary number of partsm

4Commandinus| [1588|, fol. 58v: "A spiral line will be described on the surface of the said cylinder,
if one conceives that a point is moved uniformly (aequaliter) along line CM from C to M, and at the
same time the straight line C M, orthogonal to the plane of the circle, revolves around the circumference
CDA. In fact the point [C] will describe the spiral line, whose symptom (principale accidens) is such
that, taken any point in it, for example H, and traced HD perpendicular to the plane, HD has to the
arc DC the same proportion that the whole line C'M has to the circumference CDA". This description
is summarized also few pages later (fol. 60r).

®See in particular: [Mancosul [1999], [Mancosu| [2007] and [Mancosu and Aranal [2010].

9Descartes| [1897-1913], vol 1, p. 25-26.

"Even so, some reservations can be advanced towards this interpretation. The reference to two circles
in the text of the problem (in Descartes’ account) is obscure, since one arc (and eventually one circle) is
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Descartes returned on the subject one month later, commenting upon an alleged solu-
tion due to an unknown Mr. Gaudey, which seems to have made appeal to the curve

designated by the name ‘helice’:

L’invention de Mr Gaudey est tres bonne & tres exacte en prattique; toutesfois
affin que vous ne pensiés pas que ie me fusse mespris de vous mander que cela
ne pouvoit estre Geometrique, ie vous diray que ce n’est pas le cylindre qui
est cause de leffait, comme vous m’aviés fait entendre, et qu’il n’y fait pas
plus que le cercle ou la ligne droitte, mais que le tout depend de la ligne helice
que vous ne m’aviés point nommee & qui n’est pas une ligne plus receue en
Geometrie que celle qu’on appele quadraticem, pource qu’elle sert a quarrer
le cercle & mesme a diviser ’angle en toutes sortes de parties esgales aussy
bien que celle cy & a beaucoup d’autres usages que vous pourrés voir dans

les elemans d’Fuclide commantés par Clavius.lﬂ

As we can read in the text above, the ‘ligne helice’ is explicitly treated on a par with the
quadratrix of the ancients: one of the reasons on which Descartes grounds their similarity
lies on the fact that they are generated out of two independent motions, as he remarks
in the sequel of the same letter from 13th November 1629E| Such a description recalls
the characterization of mechanical curves in La Géométrie. Even without advancing any
definitive argument, [Mancosu [2007], and especially Mancosu and Arana [2010], argue
convincingly that the curve named "hélice" by Descartes, in the aforementioned letter,

may be the cylindrical helix whose description can be also found in Pappus’ C’ollectionm

usually invoked in the statement of the problem (see for instance proposition 35 of the Book IV of the
Mathematical Collection, in|Sefrin-Weis||2010|, p. 155). Moreover, Descartes claims specifically that only
the division in 27 parts can be done by a cylinder (also evoked in the subsequent letter from November
13, 1629), so he might be convinced that the problem of dividing the circles in 27 and 29 parts could
be solved by different methodologies. To these puzzles we may add the following one: the division of an
angle into 27 parts is a simple case of a reiterated trisection, whereas the division in 29 parts cannot be
simplified (being 29 a prime number). Descartes was probably aware of this fact. But if it is the case,
we should conclude that Descartes believed that the problem of dividing the circle in 27 parts was not
doable in geometry: a conviction in striking opposition with the construal of geometricity presented in
La Géométrie. Indeed, since the division of a circle in 27 parts is reducible to a solid problem, recognized
as fully geometrical, it must be a geometrical problem too.

8Descartes| [1897-1913], vol 1, p. 70-71.

9Tn the letter to Mersenne from November 13, 1629, Descartes noted several similarities between the
helix and the quadratrix, among them the fact that both curves are generated by "deus mouvemans
qui ne dependent point 'un de autre" (Descartes [1897-1913|, vol. 1, p. 70-71). The other analogies
highlighted by Descartes (concerning their pointwise construction and their use for the quadrature of
the circle) will be examined later.

0Besides, it should be pointed out that in the mathematical literature of XVIIth century, "la ligne
helice" could refer either to the Archimedean plane spiral, or to the cylindrical helix; therefore Descartes’
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Conclusively, this interpretation of the 1629 letter, together with the addenda of Com-
mandinus version of the Collection, add plausibility to the hypothesis that Descartes was
acquainted by 1637 with the cylindrical helix, and to the thesis that he considered this

curve as mechanical, on a par with the quadratrix and the spiral.

In the commentary to the first (1649) and second (1659) latin edition of Descartes’
geometry, Frans Van Schooten enriched the number of mechanical curves discussed in
the french 1637 edition by studying the generation and the main properties of the cycloids,
those curves traced by any point on the plane of a circle (or, more generally, of a convex
figure), which rolls without gliding on a straight line.|E| The best known and studied
example in XVIIth century was represented by the ‘ordinary cycloid’ generated by any
point on the circumference of the rolling circle, as Van Schooten explains (fig. :

Ut si super recta linea AFE circumvolvatur circulus, rota sive circulus ABCD,
donec punctum ejus A, in quo dictam lineam tangit, eidem rursus occurrat
in E: describet punctum A hoc motu lineam curvam AFE, quae Trochoides
sive Cycloides appellatur. Idem intellige de quovis alio puncto, extra vel intra

rotam sive circulum assumpto, excepto tantum ejus centroB

mention is ambiguous as such (Mancosu and Aranal [2010|, p. 408). Bos had preferred the identification
of "la ligne helice" with an archimedean spiral (see |Bos| [2001], p. 345), whereas Mancosu and Arana
suggest that nothing goes against interpreting Descartes’ helice as a cylindrical helix, since he presumably
possessed sufficient knowledge of this curve by the time, and this curve can successfully solve the problem
of dividing the angle into equal parts. I point out that one of the sources through which Descartes
might have come to know the cylindrical helix was Pappus’ Book IV of the Collection in the version of
Commandinus.

"Descartes| [1659-1661], p. 268-269. For the history and the main properties of this curve, one can
consult the modern studies contained in (Teixeiral [1995], vol. II, pp. 133-150) or (Loria |[1930] , vol.
2, chapter VIII). The cycloid was studied in depth in the early modern period, although already in
XVIIth century its origins were debated (see also Teixeira [1995], pp. 133-134). Incidentally, the history
of the curve was investigated sistematically for the first time in an informed account given by Wallis,
in a letter published in 1695, in the Philosophical Transactions of the Royal Society (see Wallis| [1695]).
Wallis traced the first mentions of this curve back to Mersenne - who supposedly identified it in 1615-
and Galileo, who knew this curve since 1590. But Wallis went even farther, boldly stating that neither
Mersenne, nor Galileo were the first who discovered this curve. Even before Bovillus, Wallis added,
it results that this curve was known to Cusanus. In order to lend credence to this hypothesis, Wallis
mentioned a mechanical solution of the rectification of the circumference, presumably due to Cusanus.
This solution is simply obtained by the rolling of a circle (interestingly, Wallis copied the original drawings
in the manuscripts that he perused); from this, Wallis deduced that Cusanus must know how to describe
a cycloid. Despite this bold, and ultimately poorly grounded conjecture, Wallis showed more caution in
the end of his letter, remarking that, even if there are elements to date the cycloid back to XVIth century,
only during his own century this curve had been studied in depth. Indeed the study of the cycloid of the
circle in XVIIth century, pioneered by Roberval, revealed interesting properties, whose study prompted
the fruitful development of new methods for the computation of area, tangents and volumes, which were
later extended to other curves.

2Descartes| [1659-1661], p. 265: "And if a circle or a wheel ABCD is revolved over line AE, until
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Figure 5.1.1: |Descartes| [1659-1661], p. 265.

Descartes himself had unhesitantly excluded cycloids from geometry, as he wrote to
Mersenne, on 23rd August 1638:

. Les courbes descrites par des rouletes sont des lignes entierement mechaniques

& du nombre de celles que j’ay rejettées de ma Geometrie . .. |E|

Following Descartes’ opinion, Van Schooten ranged cycloid among those lines "quas pro

geometricis pari jure habere non licet "E The reason is further detailed in these terms:

De supra dicta linea AF E notandum, eam duobus motibus describi, inter se
distinctis; recto nempe, quo circulus ABC' D defertur ab A ad E, et circulari,
quo puncto in ejus circumferentia A (quod Trochoidem describit) rotatur circa

centrum, dum movetur per lineam rectam ipsi AE aequalem & parallelam.lﬂ

The same criterion adopted for ruling the spiral and the quadratrix out of geometry is
extended in order to exclude cycloids too: these curves are in fact generated by two

distinct motions ("duobus motibus describi, inter se distinctis").

one of its points A, which touches the said line, returns again to itself in point F; such a point A will
describe, out of this motions, the curve line AF'E, which is called Trochoid or Cycloid. Understand the
same of any other point, taken outside or inside, or on the wheel or circle, except only for its center".

¥Descartes [1897-1913], vol. 2, p. 312-313. I remark that Descartes was well familiar with the cycloid
of the circle, of which he computed the area in 1638, as we know from the correspondence with Mersenne
(for a technical account of Descartes’ achievement, see, for instance, |[Costabel [1985], p. 46-48).

“Descartes| [1659-1661], p. 264: "which is not legitimate to consider to equal right geometrical".

5Descartes| [1659-1661], p. 266: "Concerning the above mentioned line AFE it must be remarked
that it is described by two motions, distinct one from the other ; indeed a rectilinear one, by which the
circle ABCD is deplaced from A to E, and a circular one, by which the point A on its circumference
(which describes the trochoid), rotates around the center, while moving through a straight line equal
and parallel to AE".
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5.2 On Geometrical and Mechanical constructions

From our vantage point, the cartesian distinction between geometrical and mechanical
curves appears as a forerunner of the distinction between algebraic and transcendental
curves. The idea of separating geometrical from mechanical curves on the ground of their
expressability through algebraic equations is certainly grounded in Descartes’ geometry
(as we learn in La Géométrie, the possibility of expressing a curve via a finite polynomial
equation is posited as an essential property of acceptable curves), and was also adopted
by later commentators, as I will remark below, as the fundamental rationale in order to

separate acceptable from non-acceptable curves in geometry.lE

However, despite the opinion of some scholarsE I surmise that it remains disputable
whether Descartes adopted an algebraic criterion as the touchstone for distinguishing

geometrical from mechanical curves.

As a start, whilst holding the possibility of associating a curve to an equation as a fun-
damental achievement of Descartes’ Géométrie, it should be remarked that Descartes
defined a curve as an exact, and therefore geometrical object on the ground of its ‘speci-
fication by genesis’. Unlike the case of the circle and other curves which are constructible
in a canonical way through a suitable geometric linkage, mechanical curves are not con-
structed, according to Descartes’ account, by employing a unique device, but through a
system formed by two segments, whose movements are set independently one from an-
other except from certain kynematical parameters, as the speed of the moving axes, which
are required to be uniform for both of them. It is true that also geometrical linkages are
movable configurations but, in their cases, the kynematic components of the motions (for
instance, the velocity) do not enter essentially in determining the shape - and therefore
the nature - of the curve traced@ The distinction between the genesis of a curve by
a geometric linkage and the genesis of a curve in a mechanical way is mathematically
clear: only the second kind of genesis involves the appeal to kynematic constraints as
an essential component of the construction of such curves, like the quadratrix and the

spiral, that are henceforth called "mechanical".

Y9Descartes| [1897-1913], vol. 6, p. 392.

17See, for instance, |Sasakil [2003], p. 71.

'8This point might be at the origin of the somewhat puzzling remark made by Descartes, who avowed
to one of his correspondents, Ciermans, that he had not dealt with motion in La Géométrie ( the letter
is from 23rd March 1638. SegDescartes| [1897-1913|, vol. 2, 70-71).
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Such a clearcut distinction is however hindered by two pitfalls, which do not make it
a workable criterion in order to separate geometrical from mechanical curves. The first
difficulty originates within the early modern history of curve constructions. As I shall
argue with more details in the sequel, renaissance and XVIIth century geometers had
developed procedures - some of them certainly known to Descartes too - in order to
legitimate the construction of the spiral, the quadratrix and the helix, namely those
‘mechanical curves’ mentioned by Descartes in La Géométrie, avoiding a direct appeal

to independent motions@

I shall discuss two kinds of procedures, elaborated in XVIth and XVIIth century, in
order to describe mechanical curves, such as the quadratrix and the spiral, without any
direct appeal to twin independent motions. The first alternative procedure consists in
contriving the twin motions into a unique mechanism, or a unique apparatus, involving
the use of strings or threads, or the possibility of twisting concrete objects in order to
adapt them to curvilinear surfaces. The second procedure consists in generating the

desired curve by a pointwise constructionm

As a consequence, the problem could be raised of understanding whether, in the light
of those new construction procedures, mechanical curves could be judged recevable with
respect to the standards in force within cartesian geometry. I shall argue that a reference
to both methods can be found in La Géométrie. Descartes was presumably aware of
this conceptual difficulty, and provided an answer in La Géométrie through a detailed

distinction between acceptable and unacceptable methods for constructing curves.

The second pitfall can be introduced by the following remark: procedures for the mechan-
ical generation of curves via independent motions can be employed for the description
of geometrical curves as well. A simple case at point is that of the parabola: this curve
can be described either via the composition of two independent motions, one horizontal
and uniform, the other vertical and uniformly accelerated, as in Galileo, Discorsi e di-
mostrazioni matematiche, for instanceE or through a suitable geometric linkage, as it is

illustrated in Frans Van Schooten’s treatise De organica conicarum sectionum in plano

19Consult, for instance: [Bos| [2001], in particular chapters 1, 9, 11, 12, 14; Mancosu| [1999], chapter 3.
20 . . . . .
I do not exclude that other tracing procedures might exist, to the same effect. A promising, still
unexplored domain of research (at least to my knowledge) concerns studies in solid geometry in renais-
sance and early modern period. In fact, as known from ancient examples, curves can be also generated
by the intersection of solid figures. In particular, attempts are made, in Pappus’ Collection, to generate
the quadratrix in this way, by an appeal to ‘loci in the surface’ (see Pappus, Collectio, IV, 28-29).
218ee |Galilei| [2005], vol II, p. 772-807.
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descriptz’one@ This example is sufficient to cast doubts on the appropriateness of a
criterion based on properties inherent to the procedures for constructing curves, in order
to classify curves themselves: nothing impedes, in principle, that a curve which has not
been constructed by a geometric linkage is constructible in this way, and is therefore a

geometrical curve, according to cartesian standards[?]

This being said, I will search for reasons that may rationally justify Descartes’ self-
confidence about the mechanical nature of the curves evoked above, namely the spiral,

the quadratrix and the cylindrical helix.

5.2.1 Constructions by means of twisted lines or strings
Construction of the cylindrical helix (Guido Ubaldo)

Constructions of mechanical curves that made essential use of the possibility of twisting
a segment or a polygon so as to adapt it to a curved surface or line mostly appeared in
treatises of practical geometry, architecture or mechanics. In the following lines, I will
confine myself to a couple of examples taken indeed from such contexts: on one hand,
a construction of the cylindrical helix, included in the treatise written by Guido Ubaldo
del Monte (1545-1607), a disciple of Commandinus: Mechanicorum libri (1577), and
on the other, a construction of the archimedean spiral devised by the german geometer
Daniel Schwenter (1585-1636) in his Geometriae Practicae novae libri (1625). The latter
construction, in particular, presents similarities with a construction devised by Christiaan

Huygens, and contained in a manuscript written in 1650@

The cylindrical helix has a crucial position in Book VIII of the Mathematical Collec-
tion - a book dedicated indeed to mechanics - because it represents the form assumed
by the thread of a screw, one of the fundamental machines in ancient and renaissance

mechanics E

228cee [van Schooten| [1656-57], p. 356-359.

23The point has been raised and discussed in|Mancosu| [1999], [Mancosul [2007] and [Mancosu and Arana
[2010].

“Huygens| [1888-1950|, vol. 11, p. 216.

25Tn Commandinus’ translation of Pappus’ Collection, in fact, this machine figured as one of the five
simple machines, to which, according to Hero of Alexandria, all complex machines could be reduced (the
other ones were (lever, wheel and axle, pulley, wedge). See [Laird and Roux] [2008|, in particular the
Introduction, p. 4.
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Probably because of its essential role played in the realization of fundamental machines,
the description of the helix often recurred in early modern treatises of mechanics. A note-
worthy example can be found in the treatise Mechanicorum Libri. In this momentous
work, Guido Ubaldo pioneered the attempts to give a systematic account of mechanical
knowledge contained in ancient sources, specifically Pappus and Hero, while taking as
a methodological model the deductive architecture of Euclid’s and Archimedes’ mathe-

matical works 9]

In particular, Guido Ubaldo centered the last chapter of his treatise on screws ("De
cochlea", in Del Monte, [1577], p, 120). In the first proposition of this Chapterﬂ Guido
Ubaldo claimed that a wedge, appropriately coiled around an axle, constructs a screw.
In order to prove this claim, he exposed a geometric procedure in order to construct a

helix revolving around a cylinder of finite height.

Guido Ubaldo constructs a cylindrical helix about a given cylinder of finite height M N
(fig5.2.1] which reproduces the original in [Del Monte| [1577], p. 121) by wrapping around
its surface a right-angled triangle FFG, whose greatest leg GF' equals the base of the
cylinder, whereas the other leg EF'F, equal to half of the height of the cylinder, is made
to coincide with a generatrix M N of the cylinder itself. In this way, the hypothenuse
GE, wrapped around the cylindrical surface, describes the path of an helix, which starts
at the base ON of the cylinder and terminates at point P, middle point of M N. In
order to construct the remaining part of the helix, Guido Ubaldo places on the cylinder
another right-angled triangle, KIH equal to the former, but in such a way that its leg
K1 is wrapped around base LM of the cylinder, and the leg I H lies on M N. Therefore,
the hypothenuse K H of the second triangle, twisted around the cylindrical surface, can
extend the path of the helix NQP, until it reaches point M.

Let us observe that the procedure just resumed engenders a helix on the surface of a given
finite cylinder without direct appeal to a pair of independent motions;@ it has recourse,

instead, to the ‘twisting’ of a segment (namely, the greatest leg in both triangles in fig.

26 Cf. |Becchi et al| [2015].

?TDel Monte|[1577], p. 121.

28 An analogous construction can be found in Hero’s Mechanics, which was not known to renaissance
and XVIIth century geometers (see Mancosu and Aranal [2010], p. 415). The same construction is given
in Pappus’ Book VIII (Pappus| [1876-1878|, III, p. pp. 1109-1111), a likely source of Guido Ubaldo’s
construction. A third construction of the helix, similar to Hero’s and Pappus’ one, in so far it is based
on the bending of a segment into a around a cylinder, is given by Vitruvius, in the De Architectura, X.
6 (Mancosu and Aranal [2010], p. 416).
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Figure 5.2.1: Del Monte| [1577], p. 121.

5.2.1)) so as to adapt it to a circumference (I observe that this construction requires that
one can rectify the circumference, since sides GF and I K have the same length as the

circumferences of diameters ON or LM.

However, it should be pointed out that, even if Guido Ubaldo’s discourse is about geomet-
rical figures- he refers, in fact, to "triangles" that are made to coincide with a "cylinder"
- he considers, from the beginning of his proposition, that the triangles required for the
construction of the helix are obtained from the splitting of a wedge, namely a concrete
objects, possibly made of a supple material that can be twisted around a cylindrical
shaft@ It seems, therefore, that the physical properties of the wedge enter essentially in

the description of the helix reported in the Mechanicorum Libri.

5.2.2  Construction of the spiral (Schwenter, Huygens)

We find, among renaissance and early modern geometers, other techniques for describing
mechanical curves based on similar devices to the ones described by Guido Ubaldo. A
noteworthy example is represented by the tracing of the archimedean spiral. Following
a suggestion made by H. Boﬂ one can find an example of such instrument in one of

Huygens’ notebooks, more precisely in a manuscript of 1650.E|

29Del Monte| [1577], p. 121
30Bos| [2001] p. 347-348; [Panzal [2011], p. 81-82.
3'Huygens| |1888-1950|, vol. 11, p. 216.
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Figure 5.2.2: Huygens [1888-1950|, vol. 11, p. 216.

The instrument described by Huygens and depicted in the figure 5.2.2] according to the
original drawing, works as follows. It is composed of a flat circular disk (called "cylinder"
by Huygens, and denoted by the letter C' in the original figure) on which lies a concentric
smaller cylinder ("cylindrus minor" in Huygens’ parlance). A ruler F'A is fixed to to the
center of its basis, call it B. A string ("chorda") winds around the circumference of the
larger cylinder, and is tied to points A and B. At the extremity of the string a tracing pin
is attached (BD in the figure). The pin can freely glide along AF' (imagine, for example,
that the pin can move along a groove dug in the ruler F'A), and AF can turn around
B, together with the smaller cylinder. Since points A, B and E (an arbitrary point on
the basis of the first cylinder) are tightly connected by a string, when F'A turns around
B, the string unwraps upon the circular basis, and the pin BD is pushed forward in the
groove. The spiral is traced by B: in fact, this point is contrived to move uniformly

("aequabili motu" remarks Huygens) along F'A, which rotates around B.

Even if this sketch dates from the year of Descartes’ death, H. Bos (Bos [2001], p. 348)
points out that, being an early mathematical piece by Huygens, it might have been

inspired by Descartes himself, who was one of Huygens’ early acquaitances.

Since this evidence is tenuous, we wonder whether similar mechanisms were known to
practitioners before 1637. The answer is positive: Daniel Schwenter, for instance, in
his Geometriae Practicae novae libri IV (1625) offers a construction of the spiral by
means of a thread, that presents the same functioning of Huygens’ device, although its
description is not as detailed as the latter. The mechanism described by Schwenter is
formed by a thread or string, whose extremity is connected to a tracing pin and the other
to a cylinder. As the cylinder turns, the thread, remaining in tension, wraps around the

cylinder, and its extremity traces a spiral, because the tracing pin moves uniformly along



CHAPTER 5. MECHANICAL CURVES IN DESCARTES’ GEOMETRY 233
a rotating radius 7]

From the descriptions given above, we can single out a similar process at work in the
mechanisms for the tracing of the spiral and in the one for the construction of the helix,
described in Guido Ubaldo’s book on mechanics. In all these cases, the tracing of the de-
sired curve involves the twisting of a concrete object like a thread or a triangular wedge.
Hence, the possibility of these constructions can be seen to depend, as a necessary con-
dition, on the physical properties of the objects involved in their genesis: the triangular
wedge in Guido Ubaldo’s and the threads in Huygens’ or Schwenter’s mechanisms are to
be imagined as composed of a material that can be suitably twisted in order to fit in the

construction protocolm

But the physical properties of these devices also constrain the very process of construc-
tion. For instance, the number of spires that one can trace with Huygens’ or Schwenter’s
device depends on the length of the thread, whereas, in Guido Ubaldo’s procedure, the
number of twists in the helix depends on the height of the given cylinder. Such insistence
on the material aspect of the instruments involved in curve construction is not surprising
in the authors discussed in this section: indeed, the constructions I have illustrated in
the previous lines belong to treatises of mechanics or practical geometry, where practical

elements usually overshadowed any concern over theoretical questions.

Yet I venture to conjecture that the apparata for the construction of mechanical curves,
presented in this section, did not have a mere practical import for early modern authors
who promoted and discussed them. For instance, according to the witness of David
Rivault, a French literate and mathematician, author of a momentous commented edition
of Archimedes’ works,@ an instrument called ‘helixograph compass’ was used in order to
construct the archimedean spiral "by a rotation in the manner of a vine leaf" ("pampini

modo circumductio", Rivault| [1615], p. 380), in such a way that:

32Ulivi| [1990], p. 539. Schwenter’s mechanism was probably not original. According to E. Ulivi, in
fact, constructions of the spiral involving the torsion of strings were known in XVIth century, as a brief
remark in Besson’s Theatrum instrumentorum, a work published in 1578, attests. The latter mentions
the existence of constructions obtained " funiculi circumplicatione" (Besson||1578|, p. 6), without giving
examples. Another interesting, although brief remark, can be found in D. Rivault’s Commentary to
Archimedes’ Spirals (more on this below).

330f. [Panzal [2011], p. 81.

34The edition of Archimedes prepared by Rivault was published in 1615 with the title: Opera quae
extant. Novis demonstrationibus Commentariisque illustrata (see Rivault|[1615]). This edition remained
influential for the whole XVIIth century. As a sign of its circulation, let us remark that the first german
edition of Archimedes’ collected works: Des unvergleichlichen Archimedis Kunst-Biicher oder heutigs
Tags befindliche Schrifften, edited by Sturm and published in 1670, was still based on Rivault’s edition.
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Qui volet defendere Helixographi circini operationem, quae unica revolu-
tione opponet communem of3¥{Tn¢ materiam etiam constare, manu duci,
oculis videi, sensu tangi: nec propterea mechanicas ipsius censeri opera-
tiones, admitti eas a Geometris: licet propterea mathematicam fidem etiam

illi eMoypdpe praestareﬁ

Although this passage is of difficult interpretation, yet we can still glean from Rivault’s
words the conclusion that a device for constructing the spiral (possibly a model analogous
to those devised by Schwenter and by Huygens) was judged, in the opinion of some
unspecified practitioners, as geometrical as the common compass. Even if the passage
does not tell it overtly, those practitioners might have also grounded, on the alleged
geometrical character of their compass, the geometrical nature of the curve traced by its

application, like the spiral@

5.2.3 Pointwise construction of mechanical curves
Rivault’s pointwise construction

A second technique, frequently employed in order to describe curves of the third kind
(according to Pappus’ classification) without appeal to motions, consisted in constructing
- by legitimate instruments like the ruler and the compass - a net of points on the curve
and, in order to describe it, interpolating these points by the continuous tracing of the

pen.

A notable example among the numerous ones which flourished during XVIth and early
XVIIth centuryP’| concerns the construction of the archimedean spiral, and it is ex-
pounded by the aforementioned David Rivault. It can be found in a commentary to the

latin version of Archimedes’ treatise On Spirals translated by Rivault himself]

33Rivault [1615], p. 380: "Some would like to defend the operation of the helixograph compass, which
by a sole rotation shows that [like] the common compass it is made of matter, guided by the hand, seen
by the eyes, touched by the senses; and it does not follow that its operations are judged mechanical, but
they are admitted by geometers, in virtue of which we can bestow mathematical reliability upon such
helixograph compass".

361 have not been able to find other occurrences of such a ‘helixograph compass’ in the corpus of
XVIth and XVIIth century mathematics, in order to test my conjecture. I envisage to undertake further
investigations in this direction in future works.

3"This manner of construction became well-known and occassionally criticized between late XVIth and
early XVIIth century, as the survey in [Bos| [2001] (in particular, p. 75, and sparsim chapter 9, chapter
11 and 12) confirms.

38See [Rivault| [1615], p. 339-405.
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Figure 5.2.3: [1615], p. 347.

As we recall from chapter [2| section the spiral (or, more precisely, the first turn of
a spiral) is defined at the outset of Archimedes’ treatise, as a curve resulting from the
motion of a point along a diameter of a given circle, while the said diameter executes
one complete revolution. Rivault translates and comments this definition, adding that a

similar one can be found in Pappus’ Collection, Book 4, proposition 19.@

Like Pappus (and unlike Archimedes), Rivault proposes the problem of describing a spiral
("spiralem describere") within a given circle, and solve it by a pointwise construction of

the curve. Rivault’s construction protocol can be thus sketched [N

e Trace a circle v with radius BA (fig. [5.2.3]).

e Divide v into n equal sections ("multas partes aequales"). In the diagram that
exemplifies Rivault’s text, the circle has been divided in 24 parts (see which
reproduces the original, in , p. 347). Such a choice is plausibly
motivated by the fact that a regular polygon of 24 sides is constructible with ruler
and compass. Obviously, not all divisions of the circle into equal parts can be done

in an elementary way: Rivault probably knew that the division in seven or nine

39Rivault| [1615], p. 347.
19Rivault| [1615], p. 347.
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points, for instance, requires higher curves, but no considerations with this respect

are to be found in Rivault’s commentary.

e As a next step, divide the radius BA into the same number of parts. This operation

can be effectuated by ruler and compass, for any number of divisions.

e Name the points thus traced from B to A, by an increasing sequence of numbers:

1,2,3... (in the diagram, the sequence terminates with point 24).
e With centre B, trace circles with radii: B1, B2, B3, ... BA (where A = 24).

e Starting from BA, and proceeding clockwise, mark the intersection point between
the circle with radius B1 and the first radius of v encountered (namely BM). Then
proceed in the same way, and mark the intersection point between the circle with
radius B2 and the second radius BN.

Iterating the same procedure, a net of points can be constructed, which belong to a spiral
(as Rivault notices, the more parts the angle is divided, the more precisely the pointwise
description of the spiral will approximate its continuous shape). The correctness of
Rivault’s procedure can be inferred from the the very symptom of the spiral. Indeed, let
s1 and s9 be the distances traversed, in times t; and f9, by the translating point from
A to B. Then, let aA1 and L/Z; be the distances covered, in the same times ¢; and to, by
the radius starting its rotation from the initial position BA. Since the twin motions are
supposed uniform, the following proportion will ensue: s1 : s = a1:ay =ty : to. Hence,
any couple of points on the spiral will thus satisfy the proportion: s1 : sy = a; : a3, where
s1 and sy stand for the distances of the points from the centre, and a;, as represent the
angular distances from the points to BA. It can be immediately verified that all the
points constructed by Rivault’s protocol satisfy this condition. Therefore, these points
lie on a spiral traced by a translating point on a segment BA, which pivots around its

centre B, both motions occurring uniformly.

Epistemic considerations

I notice that the protocol just illustrated does not give a continuous tracing of the spiral,
but only a net of points through which the curve had to pass. I argue that Rivault
may have judged his pointwise description of the spiral as a source of legitimation for
the continuous construction of the curve, given by Archimedes and Pappus (see chapter

2)). Firstly, Rivault’s pointwise description of the spiral defines the curve avoiding the
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petitio principii, pointed out originally by Sporus (see chapter [2] sec. , consisting
in assuming the ratio between the rotational and translational motions, and therefore the
rectification of the circle. Moreover, the pointwise construction can be obtained solely
by ruler and compass (provided the circle is divided in a number of parts constructible
by Euclidean means). Thirdly, and finally, the pointwise description can be performed
in a more expedient way than by recourse to motions, since it does not require to impose
specific conditions on the velocities, that are difficult to control during the practical

tracing of the curve, or during its tracing in the imagination.

I remark that Rivault dedicates interesting considerations to the difficulties inherent to
the generation of the spiral by twin motions. In particular, Rivault points to a difference,
that we may define of epistemic order, between the genesis of the circle according to

Euclidean clauses, that he deems fully geometrical, and the construction of the spiral:

Circulum mens breviter concipit, quae in apprehendenda helica turbatur.
Motus simplex familiaris est, atque hoc circulis constat: mixtus vero seu
compositus quo voluta oritur, remotior est a communi conceptu, difficilisque

phantasiae inhaeret, eoque facilius in errorem est praeceps. @

The core difference between the construction of the circle and that of the spiral is based,
in Rivault’s narration, on the different capacity of representing the genesis of each curve
to the mind. Rivault takes for granted that, while the action that allows him to trace
a circle can be easily cognized, since it consists in one, simple and familiar motion, the
construction of the spiral depends on the composition of two motions, namely a rotation
and a translation, occurring at the same time and with uniform speed. Hence, Rivault
concludes, the process which generates a spiral is not as transparent to the mind as the
generation of the circle. On this ground, he states that a curve like the spiral appears

somewhat mechanical ("mechanicum redoleret").

Even if some may defend the geometrical nature of a spiral on the ground of its generation

by instruments, like the "circinus helizographus" discussed above@ Rivault maintains

HRivault |1615], p. 381: "The mind can quickly (breviter) cognize the circle while it is troubled in
cognizing the spiral (helica). A simple motion is familiar, and the circle consists of this: but the mixed
or composed one, from which the spiral is engendered, is distant from the common opinion (a communi
conceptu), and it remains fixed with difficulty in our imagination, and for this it is more liable to error".

“2Rivault| [1615], p. 380.
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that a curve thus traced does not become more perspicuous to us, because it is still

engendered in a complex manner:

At indignum est mathematica certitudine quodcumque primo intuitu non
patet vel perspicua rationcinatione non elicitur, vel perplexum est, vel mix-

tum, vel compositione sua erroneum@

In conclusion, it is possible that Rivault regarded his own pointwise construction as closer
to mathematical certaintly, because it eliminates both the reference to uncontrollable

motions and the recourse to complex instruments.

Whether the above reflections were developed by Rivault in connection with an original
philosophy of mathematics, I am not competent to decide. However, I can still venture the
hypothesis that Rivault envisaged the actions of the geometer (in terms of construction of
curves and figures) as deploying in the abstract space of the imagination, which might be
thought as a sort of mental analogue of the paper on which geometrical constructions and
diagrams are drawn. Exact constructions would thus be perspicuous ones (notice: the
word ‘perspicuus’ is used by Rivault himself in the excerpt reproduced above), namely
constructions which appealed to simple and familiar actions (i. e. the case of the circle)
and that enjoy, consequently, immediate evidence. Similar views can be encountered in
the reflection of other mathematicians writing around the same period,@ so that it is

not implausible to interpret Rivault’s claims within this constellation of ideas.

Clavius’ pointwise construction of the quadratrix

The second pointwise construction I want to consider regards another curve discussed
in Pappus’ Collection, namely the quadratrix. The pointwise construction of this curve
was elaborated by the Jesuit mathematician Christophorus Clavius around 1589, on the

aftermath of the publication of Commandinus’ first edition of Pappus’ Collection. This

“3Rivault| [1615], p. 381: "But it is not worth of mathematical certainty anything that is not evident
at first sight, or is not made manifest through a perspicuous reasoning, or it is intricate, or embroiled,
or vague because of its intricacy".

“1n his Bos| [2001], for instance, Henk Bos mentions at least two geometers, Johannes Molther and
Willebrod Snellius, who held similar opinions on the mental status of geometrical constructions. As Bos
remarks: "Molther stressed that motion was very common within pure geometry; a line was generated
by motion of a point; spheres, cones and cylinders were generated by the motions of circles and straight
lines (...) constructions still had to be performed in the mind by an inner sense, and this was done
by procedures idealized from the actual physical construction procedures" (Bos| [2001], p. 200), whereas
Snellius: "stated that motion in pure geometry was imaginary in the sense that it was conceived in the
mind of the geometer" (ibid.).
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construction appeared for the first time in an appendix to the second edition of Fuclidis
elementorum libri XV (1589) and in his Geometria practica (1606)@ and enjoyed a

considerable fortune in the subsequent years[™|

In his Euclid [1589], in particular, Clavius argued that if a truly geometrical construc-
tion of the quadratrix were given, it could profitably extend the number of curves fully
acceptable in geometry, and thus fulfill the ambitious project of solving geometrically
the circle-squaring problem, the general angle division, and the construction of regular
polygons of any number of sides, namely the main problems in want of a solution by the
time of his Writingﬂ Arguably, one may suppose that in Clavius’ view the problem on
which mathematicians should focus their effort was not to find a new construction for
the squaring of the circle, but to give a description of the quadratrix which may comply
with the requirements of mathematical acceptability in force within Clavius’ conception

of geometry.

Indeed Clavius’ fundamental contribution to the study of the quadratrix consisted in
offering a way to circumvent the difficulties inherent in Pappus’ construction of the curve

through movable axes:

Quamquam autem praedicti auctores huiusmodi lineam conentur describere
per duos motus imaginarios duarum rectarurm, qua in re principium petunt,
ut propterea a Pappo reijciatur, tamquam inutilis, et qua describi non possit,
nos tamen eam sine illis motibus Geometrice describemus per inventionem
quotius punctorum, per quae duci debeat, quaemadmodum in descriptionibus

conicarum sectionum fieri solet.@

45Clavius’ construction can be found in the appendix to [Euclid [1589]: "De mirabili Natura lineae
cuiusdam inflexae per quam et in circulo figura quotliber laterum aequalium inscribitur, &circulum
quadratur & plura alia scitu iucundissima perfinciuntur". The study on the quadratrix, in particular,
was incorporated in (Clavius| [1604], p. 320-329). Both the Geometria Practica and the Elementorum
libri XV were reprinted in Clavius’ mathematical works (1611-1612). See also [Bos| [2001], p. 160 and
Mancosu| [1999], p. 74, for an overview of Clavius’ discussion on the quadratrix, to which I am especially
indebted.

6Garibaldil [1996], p. 81.

YMEuclid [1589], p. 894.

“EBuclid| [1589], p. 894: "But although the said authors [i.e. Hippias and Dinostratus, among the
ancients| try to describe a curve of this sort [namely, the quadratrix] via two imaginary motions of two
straight lines, which beg the question, so that, henceforth, the curve is refused by Pappus as useless
and for this reason impossible to be described, we describe this line geometrically instead, without these
motions, by the invention of so many points, through which it can be traced, in the same way as it
happens in the description of conic sections".
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Clavius wrote these considerations under the spur of the recent publication of Command-
inus’ translation of the Collection, occurred in 1588, and specifically after his attentive
reading of book IV. We find indeed resumed, in the above passage, the objections to
the generation of the quadratrix that can be traced in Pappus’ account too (Book IV,
propositions 26). Firstly, Clavius recalls that the quadratrix is described by a couple
of motions which ‘beg the question’. Clavius revives here the objection originally at-
tributed to Sporus@ a particular quadratrix cannot be described via the appeal to a
couple of motions, according to the protocol set out in Collectio, IV, 26, unless one knows
beforehand the ratio between the velocities of the tracing motions, and ultimately the
ratio between diameter and circumference. Clavius maintains that the quadratrix, as
described in the Collection, is useless, because it presupposes the very problem that it
should solve ]

But Clavius had clearly in mind also the other objection originally advanced by Sporus,
concerning the fact that the foot of the quadratrix cannot be determined, when the
curve is described by a couple of motions. Clavius indeed points out to the difficulty
concerning the construction of the terminal point of the quadratrix when he underlines
that it: "cannot be found geometrically, because all intersections of the lines will at that

moment cease" F1]

A new description of the quadratrix is thus advanced by Clavius:

Quare nos Geometrice eandem lineam Quadratricem describemus hoc modo.
Arcus BD in quotius partes aequales dividatur, & latus utrum AD, BC in toti-
dem aequales partes. Facillima divisio erit, si et arcus DB et utrumque latus
AD, BC secetur primum bifariam, deinde utraque semissis iterum bifariam,
etc., ita deinceps, quantum libuerit. Quo autem plures existerint divisiones,

eo accuratius linea describebitur. . @

49Clavius’ reading of Collection, Book IV, 26 is however vitiated by Commandinus’ interpolation of
the proper name Sporus with the verb "spero", hence there is no mention of the ancient geometer who
criticized the generation of the quadratrix.

50Gimilar considerations return one page later, in [Euclid| [1589], p. 895. I recall that this objection
holds only if we want to construct a particular quadratrix, for instance inscribed in a given circle (see
chapter 1). To my knowledge, Clavius makes no considerations on this point.

51Euclid| [1589], p. 896: "inveniri Geometrice non potest, cum ibi omnis sectio rectarum cesset".

52Euclid [1589], p. 895: "Thus, we describe geometrically the quadratrix line in this way: Let the arc
BD be divided in a number of equal parts, and either side AD or BG be divided in the same number
of equal parts. This division will be very easy, if the arc DB and one of the two sides AD, BG are
firstly bisected, then any half side will be again divided in two, and so on, as much as we like. The more
divisions will be, the more accurately will the line be described...".
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ﬁll- -f-ivdﬁ_.....-- “

Figure 5.2.4: [1589], p. 895.

The protocol detailed in the passage can be thus schematized:

e In a given circle with radius AD, divide AD and the arc BAD into the same number

of equal parts (this operation can be accomplished by ruler and compass).

e From the points of division so obtained on AD and BD, let the parallels to AB

and the radii be traced, respectively.

e The intersection points of corresponding segments will lie on the quadratrix.

The proof is immediate, since the quadratrix is the sectrix curve of the arc corresponding
to a quarter of the circumference (this property is implicit in the very symptoma of
the quadratrix, as reported by Pappus. Cf. chapter [2 section [2.3.2)), so that all points

constructed in the way explained by Clavius in the above passage lie on that curve.

In this way, Clavius concluded that his pointwise description of the quadratrix was more
geometrical than the construction of Dinostratus, as it possessed the advantage of deter-

mining the curve without the dubious appeal to a pair of independent motions.lg

53As we read in , p, 897: "esse autem hanc lineam inflexam DFE a nobis per puncta
descriptam geometrice eandem, quam Dinostratus et Nicomedes per duos illos motus imaginarios describi
concipiebat, perspicuum est" ("It is clear that this curve DE, described by us geometrically point by
point, is the same that Dinostratus and Nicomedes conceived described by these two imaginary motions").
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On the other hand, the pointwise construction of the quadratrix could not secure the
continuous tracing of the curve. Clavius was certainly aware of the discrete character
of his pointwise description, as he recommended that one should carry out a continuous

description of the curve:

Per ea puncta Quadratrix linea congruenter ducenda est, ita ut not sit sinuosa,
sed aequabiliter semper progrediatur nullum efficiens gibbum, aut angulum

alicubi, qualis est linea inflexa DE, secans semidiametrum AB in EE

According to this passage, the quadratrix should be traced ("duci") by connecting all
the points constructed by ruler and compass with a smooth continuous line, that does
not make bents or angles anywhere. He even recommended to increase the number of
divisions in order to obtain a more accurate tracing of this curveﬁ It is not clear,
though, by which means the continuous tracing of the quadratrix should be effectuated.
Probably Clavius was confident that the continuity of the quadratrix could be ensured
by the classical generation via two motions. Hence, the pointwise construction offered
by Clavius would legitimate the soundness of Dinostratus’ construction, but it would be

no substitute for the latter.

A second difficulty connected with Clavius’ pointwise construction of the quadratrix
concerns the fact that, even if it could deploy, through continual bisections of the radius
and the arc, an infinite collection of points belonging to the quadratrix, it could not
construct any point among those on the quadratrix. In particular, it could not construct
the intersection point with the horizontal axis (point E in figure . But Clavius
trusted that his method offered an accurate way of tracing the whole curve, included
point E, and consequently could circumvent the second objection raised by Sporus (or

Pappus himself, in Clavius’ reading of Commandinus’ version).

In order to determine point F, Clavius illustrated the following, special procedure:

e Bisect the arc BD and the segment AD repeatedly, until obtaining a very small

("perezigua", in Clavius’ words) segment AF and its corresponding arc BI.

e Bisect segments AF', and call G the midpoint of AF.

SBuclid| [1589], p. 896: "The Quadratrix must be traced through these points in a fitly way, so that
it is not wavy (sinuosa), but proceeds uniformly (aequabiliter), without making any bent (gibbum), or
angle anywhere, like it is the curved line DF, which cuts the semi-diameter AB in point E".

55See for instance [Euclid| [1589], p. 895: "Quo autem plures existerint divisiones, eo accuratius linea
describebitur" ("the more divisions will be made, the more accurately the curve will be described").
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Figure 5.2.5: [1589], p. 896.

e Construct point M, symmetrical of G with respect to A. On point B, and per-
pendicular to AB, construct a segment BL = AG. Then construct a point N,
symmetrical of L with respect to B. Since GA = M A = BL = BN by construc-
tion, segments GL and M N will be parallel and equal.

e Bisect the arc BJ, and call K the midpoint of the arc.

e The intersection between segment GL and AK will yield a point H, belonging by

construction to the quadratrix.

e Construct point P, symmetric of H with respect to the axis AB (the point will
lie on M N) and connect with a continuous tracing all points thus constructed,

included point P.

Clavius assumed (implicitly) that the curve joining points H and P, lying on opposite
sides with respect to the axis AB, would cut AB in a point which coincides with E,

below "a noticeable error, that is, an error that could be perceived by the senses"m

With hindsight, we might be tempted to interpret Clavius’ construction as suggesting

a geometric representation of a limiting process, in the following wayﬂ Consider the

5611Sine notabili errore, qui scilicet sub sensum cadat."Euclid| I1589l, p- 896.
5Tas we can recognize from the model offered in (Becker |1957 , p- 97-98) in order to determine the
foot of the quadratrix point E as the limit of two converging sequences through an iterative construction
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Figure 5.2.6: Clavius’ pointwise construction.

quadrant of side AB (fig. [5.2.3)), let points point Fy, Fy ... F, ... be constructed according
to Clavius’ protocol: point F7 will be obtained by bisecting the angle BAD and the side
AB; the chain of points F;, will be obtained by successive dichotomies of the angle and
the side.

Let the perpendiculars F1 Ky, FhbKs...F, K, ... to the line AD be dropped. As n in-
creases, points F;, get closer and closer to the intersection point F, that we assume to
exist by continuity, without ‘touching’ it. Similarly, as n increases, it is clear from the
diagram that also points K,, tend to point E. Thus, two sequences of points (or seg-
ments, taking A and B, respectively, as their origins) have been constructed in order to
approach F from below and from above. It is therefore implicit, in Clavius’ procedure,

the determination of point E as a limit of two converging sequences of points.

is studied, for instance, Becker, however, omits to mention Clavius as a predecessor of this technique.
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Moreover, it can be easily proved that segments F),F, 11, obtained by joining two suc-
cessive points constructed by Clavius’ method are perpendicular to the corresponding
segments AF,, 1. Let us take, for instance, the segment FyF in figure [5.2.3] Let us re-
mark that the triangle AF;F5 can be considered the half of an isosceles triangle, having
vertex in A, one side AF} and the other side lying on AD (in fact the angles DAF; and
F>, AF) are equal, in virtue of Clavius’ construction). Therefore AF; will bisect the base
of the isosceles triangle at point F5, and will be perpendicular to F} F5. The same result

holds, without loss of generality, for successive segmentsF, Fj, 1.

On this ground, using trigonometry, and setting AB = 1, we will have that: AFy = cos 7,
Ay = AF cos% = COs % cos g, AF3 = AF5 cos 1—”6 = Cos % cos % cos 1”—6, and so on. After

n bisections we will have:

T T T T
AF,, = AF,,_q cos ol = cos 1 cos 5 cos 6" . COS TSR
In an analogous way, we can express segments AKy, AKs ..., AK, as: AK; = AFjcos ] =

cos? T AKs = AKjcos g = cos%cos2 §, AK3 = AF3cos {5z = cos%cos%cos2

AKy = AF;, cos 551 = €OS 7 €OS 5 COS 7¢ - - - cos? gngr- Clavius’ geometric construction

e
15> and

shows that point F is squeezed in the interval AF,, — AK,, namely:@

AFn—AKn:cosgcosz...c 1 — cos

™ ™
3 OSW( 2n+1)<1—c

05 Jni1-

Hence the difference between segments AF,, and AK, is smaller than the difference
1 — c08 5r51, which tends to zero as n grows. This reconstruction can justify why Clavius
was confident that his procedure could determine point E "sine notabili errore", the
more one proceeds in subdividing the side and the angle. However, it should be pointed
out that Clavius did not explicate, in the Commentary to Euclid or in other works, a
notion of limit akin to the modern one. In other words, he did not (at least explicitly)
define point F as the limit point of two converging sequences of points, in the sense that,
for any chosen interval AF, — AK,,, there exists a couple of points (Fj, 41, Kp4+1) such
that the interval AF,, 11 — AK,4+1 is smaller than AF,, — AK,,.

58Becker| [1957], p. 98.
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The discussion of the quadratrix contained in the second edition of his Commentary to
Euclid’s Elements raised a long and lively debate, mainly centered around the geomet-
rical character of the construction there proposed, and around the acceptability of the

quadratrix as a geometrical curve.

We can remark that the latter claim is not fully and clearly justified by Clavius: if the
pointwise description of the quadratrix avoids any appeal to motions, nevertheless it does
not warrant the continuous tracing of this curve. Moreover, Clavius’ construction of the
foot of the quadratrix contains some obscurities too, as some of his early readers, like
Van Roomen and Lansbergen did not fail to remark. For instance, Van Roomen wrote to
Clavius in 1592, observing that his construction was simply of "no help in calculation"ﬂ
and Lansbergen, in his Cyclometriae libri duo (1616), noticed that Clavius’ effort was of
"no significance" (" conatu irrito"), since the termination of the quadratrix is not exactly

captured by his procedure@

As a response to these and other critiques, Clavius later modified his views on the ge-
ometrical nature of the quadratrix. Probably aware of the difficulties inherent to the
pointwise construction of this curve, in the 1603 edition of his FElements he published the
appendix on the quadratrix with a small, but significant correction: he stated in fact that
his procedure allowed to trace the eponymous curve not "geometrice" but "quodammodo
geometrice", namely "somewhat geometrically". One year later, In 1604, Clavius pub-
lished the Geometria practica. We find, at the end of book VII, dedicated to isoperimetric
problems, an appendix: " De circulo per lineas quadrando", where Clavius illustrates sev-
eral methods for solving the circle-squaring problem, and manifests his conviction that

the quadratrix constitutes the most accurate way.lg

Conclusively, it seems that Clavius did not abandon his conviction that the quadratrix,
redefined according to his own description, could be a curve that we might accept as
geometrical, even if it did not possess the same character of exactness of the circle and
the straight line. In summary, the pointwise construction of this mechanical curve might

represent, in Clavius’ viewpoint, a satisfactory compromise between practical accuracy

¥See [Bos| [2001], p. 165.

59Tt did not escape to Lansbergen that Clavius was well aware of this flaw: . Clavius ipse fateri
cogitur, ipsius tetragonisouses finis eo modo numquam deprehenditur" (van Lansbergen||1616], p. 107).

51"Haec via licet ad Geometricé inveniendum punctum quoddam nonnihil in ea desideretur, accuratior
tam est omnibus alijs quas hactenus videre potui" (Clavius| [1604], p.320). In the subsequent section,
Clavius illustrates the pointwise construction of the quadratrix, reproducing the protocol and, almost
literally, the text of his 1589 and 1603 editions.

n
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and geometrical exactness. The evolution of Clavius’ ideas on the quadratrix, and es-
pecially his final deliberations on the quasi-geometrical status of this curve, make Bos’
suggestion plausible, according to which Clavius: "took practical precision as guideline

for deciding on geometrical exactness" (Bos [2001], p. 166).

5.3 Descartes’ appraisal of string-based mechanisms and point-

wise constructions

In this section, I will provide evidence that Descartes was not only acquainted with
the two modes for constructing mechanical curves presented in the foregoing sections,
namely constructions performed by the twisting of a straight line into a circular arc
and pointwise construction, but that he critically discussed, compared with analogous
constructions for geometrical curves and eventually discarded the methods for describing
mechanical curves as methods that ought to be truly ranged among mechanics, where,

Descartes glossed, only: "la justesesse des oeuvrages qui sortent de la main est désirée" @

Acceptable and non-acceptable uses of strings

Let us revert to the construction of the helix presented in Guido Ubaldo’s work or the
description of the spiral given by Daniel Schwenter. Evidence that Descartes might be ac-
quainted with either of these mechanisms comes from the following controversial passage,
taken from a letter, evoked above, written by Descartes to Mersenne in November 1629.

As we have seen, the letter mentions a curve called helix ("la ligne hélice"), described:

. par le moyen d’un filet, car tournant un filet de biais autour du cylindre,
il decrit justement cete ligne 14, mais on peut avec le mesme filet quarrer le

cercle si bien que cela ne nous donne rien de nouveau en Geometrie/”|

As T have also explained above, scholars are divided on the exact significance of Descartes’s
description. Arana and Mancosu claim, in [Mancosu and Aranal [2010], that this pas-
sage relates the construction of a cylindrical helix, obtained through "a thread turning
obliquely around a cylinder", a procedure that we recognize similar or analogous to the

one expounded in the Mechanicorum of Guido Ubaldo.

5ZDescartes| [1897-1913|, vol. 6, p. 389.
53Descartes| [1897-1913|, vol. 1, p. 71.
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I recall, on the other hand, that the term helix ("hélice", in french, and "helica" in latin)
could be used in XVIth and XVIIth to denote either the cylindrical helix, as in the previ-
ous interpretation, or the archimedean spiral. On the ground of this attested ambiguity,
the line obtained through "a thread turning obliquely around a cylinder" has been in-
terpreted as the archimedean spiral: Descartes’ concise description may be immediately
referred to Huygens’ mechanism (see Bos|[2001], p. 348) or more likely, I suggest, to the

mechanism presented by Schwenter for the construction of the Archimedean spiral.

It is not my purpose to assess here whether Descartes was referring, in his 1629 letter,
to the helix or to the archimedean spiral. I will merely confine myself to remarking
the following: the letter suggests that Descartes was acquainted, by 1629, with such
mechanisms for the tracing of mechanical curves based on the twisting of strings or

threads 4]

Another indication of such acquaintance shines through the text of La Géométrie. In
fact Descartes carefully distinguishes, in a section of the second book eloquently ti-
tled: "quelles sont aussy celles qu'on descrit avec une chorde, qui peuvent y estre re-
ceues" ("which are the curves described with a string, that can be received in geometry",
Descartes| [1897-1913|, vol. 6, p. 412), two modes of employing string-like constructions

in geometry:

Et on n’en doit pas reietter non plus celles ou I'on se sert d’un fil, ou d’une

chorde repliée, pour determiner 1’esgalité ou la différence de deux ou plusieurs

54 An isolated remark that we find in the Cogitationes Privatae (written between 1619 and 1621) con-
firms this hypothesis, showing that Descartes has some knowledge of the use of strings for tracing curves
already by the beginning of the 20s: "Si funis mathematicus admittatur, is erit communis mensura recti
et obliqui. Verum dicimus hanc lineam admitti posse, sed a mechanicis tantum: ea scilicet ratione qua
uti possumus statera ad aequandam cum pondere, vel nervo ad eandem comparandam cum sono; item
spatio in facie horologii contento ad metiendum tempus, et similibus in quibus duo genera conferun-
tur" ("If a mathematical chord is admitted, there will be a common measure between the straight and
the oblique. Indeed, we say that such line can be admitted, although only by practitioners of mechanics:
for the very same reason on which we can use a lever to make it [namely a line| equal to a weight, or
a string to compare the line with a sound, or the interval on the quadrant of a clock to measure time,
and in similar things in which two different kinds are compared"). The expression "funis mathematica"
(mathematical chord) may indeed refer to the process of adapting a segment onto an arc or a curved
surface until the two coincide, the same process we detect in the genesis of the spiral and the helix by
strings. Notice that Descartes confines such a process among mechanics ("we say that such line can be
admitted, although only only by practitioners of mechanics"). The reason, according to what the passage
from the Cogitationes tells us, is that the operation engendered by a "mathematical chord" would stand
on a par with the measuring of physical magnitudes, like the flow of time or the intensity of a sound,
by means of geometrical magnitudes, like the line traced on the clock dial or the vibration of a chord,
respectively. In all these cases -Descartes affirms - two "kinds" of magnitudes are conflated.
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lignes droites qui peuvent estre tirées, de chasque point de la courbe qu’on
cherche, a certains autres poins, ou sur certaines autres lignes, a certains
angles, ainsi que nous avons fait en la Dioptrique, pour expliquer I’Ellipse ou
I’hyperbole. Car, encore qu’on n’y puisse recevoir aucunes lignes qui semblent
a des chordes, c’est & dire qui devienent tantost droites et tantost courbes,
a cause que la proportion, qui est entre les droites et les courbes, n’est pas
connue, et mesme ie croy ne le pouvant pas estre par les hommes, on ne

pourroit rien conclure de la qui fust exact et assuréﬁ

Descartes opposes here a legitimate and an illegitimate use of strings in curve construc-
tion. In the first case, strings are employed with the sole purpose of determining: "...
the equality or difference of two or more straight lines drawn from each point of the
required curve to certain other points, or making fixed angles to certain other lines".
This use is exemplified by such procedures for the construction of conic sections through

the so-called gardener’s method, explained, for instance, in Descartes’ Dz'optm'que.l@

Let us consider, for instance, the construction of the ellipse, offered there. Descartes
starts by tying a string taut between two pins, coincident for instance with the two foci
of the ellipse. Fixing a pencil against the string, it is sufficient to pull the taut string

with the pencil, and then move this one in a large arc keeping the string taut.m

These constructions can produce geometrical curves, although by means of a procedure
different from the ones using geometrical linkages only, and it is judged by Descartes
"very coarse and not very exact" ("fort grossiére et peu exacte"), but sufficient in order
to make the nature of the curve "better known". I note that the procedure presented

in the Dioptrique respects the constraints on the legitimate use of strings specified in La

5%Descartes| [1897-1913], vol. 6, p. 412. In order to better understand this important passage, I will
report here the translation proposed by Smith and Latham: "Nor should we reject a method in which a
string or loop of thread is used to determine the equality or difference of two or more straight lines drawn
from each point of the required curve to certain other points, or making fixed angles to certain other
lines. We have used this method in La Dioptrique in the discussion of the Ellipse and the Hyperbola.
On the other hand, geometry should not include lines that are like strings, in that they are sometimes
straight and sometimes curve, since the ratios between straight and curved lines are not known, and I
believe cannot be discovered by human minds, and therefore no conclusion based upon such ratios can
be accepted as rigorous and exact" (Descartes| [1952], p. 91).

56Let us recall that the Discours de la méthode was published along with three treatises: the Diop-
triques, the Météores, the Géomeétrie. Although they were published together, the Dioptrique was
probably already completed by 1630 (Descartes| [1897-1913|, vol. 1, p. 179).

57 An analogous procedure can be set up in order to construct an hyperbola. See|Descartes |1897-1913,
vol. 6, p. 166 and p. 176.
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Géométrie: indeed, the strings employed for the construction of the ellipse (or the hy-
perbola) constrain every point on the curve in such a way that the sum (resp., difference,
in the case of the hyperbola) of the segments joining it to the two pins is constant. Even
if string-constructions of the ellipse and the hyperbola were not considered by Descartes
on a par with constructions by geometrical linkages, yet Descartes might have recognized
that strings are sometimes useful as heuristic devices, when they suggest how to con-
ceive a geometrical linkage which could be employed for the construction of the curve at
hand [f9]

On the contrary, the illegitimate use of strings in geometry concerns those constructions
employing cords which become "sometimes straight and sometimes curve". Moreover,
Descartes explains that string-like lines are not receivable in geometry because the pro-

portion between curves and straight lines cannot be exactly known.

It is not obvious to grasp how these two claims can go together. In order to venture
an interpretation of Descartes’ argument, I shall start by remarking that, although
no examples of strings which are "sometimes straight and sometimes curve" appear in
La Géométrie, Descartes might think of certain devices involved in the construction of
curves. These could be, for instance, either the instruments tracing of spirals obtained
through the devices described by Huygens or Schwenter, or the construction of the helix
which, either in Pappus or in Guido Ubaldo, requires the twisting of a string or of a figure
in order to trace the desired curve. As we have read in the foregoing section, it is plau-
sible that Descartes was acquainted with these or analogous constructions, elaborated
in the course of XVIth century and early XVIIth century, that involved the twisting of

strings in order to trace mechanical curves.

I remark, on the ground of the analysis given in |Panza [2011], that all these devices with
which Descartes might have been familiar, and that involve the twisting of lines in order
to construct the desired curves, are concrete instruments, since they are able to function
thanks to specific physical properties of their components. The sources I have examined
are quite eloquent on this point: both Guido Ubaldo and Huygens, for instance, insist on
such physical characteristics of the objects entering their respective constructions, be it
the material of which the triangular wedge is made, or the length of the chord wrapping

on the cylinder.

58Molland| [1976], p. 42, [Panza [2005] p. 84.
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As a consequence, it can be noticed that the instruments or procedures for the tracing of
mechanical curves were so designed to work only insofar as some forces are exerted by and
upon their components, for instance in order to suitably bend strings and adapt them to
curved surface: the constraints imposed to the construction of the spiral or the helix are
undoubtedly of a mechanical nature@ These properties suggest an important difference
with respect to the procedure involving the use of strings for the construction of conic
sections. It is true that also in these cases concrete objects are employed, namely moving
strings fixed to some pins. However, these strings can be conceived as instances of purely
geometrical systems, in the sense that the only constraints to which the motions of these
strings obey in order to trace an ellipse or a hyperbola can be expressed geometrically, as,
in the case at hand, in terms of the sum or the difference between each point individuated

by the moving strings and two fixed points.

From this discussion, we can venture the conclusion that, in the backdrop of a distinc-
tion between admissible and non admissible uses of strings deployed in La Géométrie,
Descartes succeeded in isolating a certain type of curve constructions involving strings,
whose behaviour was judged unacceptable in geometry, because it resulted from obvious

mechanical constraints imposed on the traced curve.

However, the ground in order to discriminate between acceptable and unacceptable use
of strings for curve-tracing devices does not seem immediately related to the reason
explicitly invoked by Descartes, namely, the fact that the exact proportion between
straight lines and curvilinear ones is unknown to men (a similar point is made in |Panzal
[2011], p. 82). I suggest that Descartes might be convinced that, had the exact proportion
between straight and curvilinear segments been known, the mechanical devices for the
construction of the spiral or the helix could be replaced by geometrical linkages, in the
same way in which, the construction of the conics by the strings can be easily substituted
by constructions obtained via geometrical linkages. Hence, Descartes’ peremptory denial
that such a ratio could be exactly known would warrant the illegitimate status of those
instruments, analyzed in the previous sections, employed for the tracing of the helix and

the spiral.

In order to bear more evidence to this conjecture, I shall return later on an more precise

interpretation of the expression ‘exact proportion’, crucial in Descartes’ considerations.

59Panzal [2011], p. 83.
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i

Figure 5.3.1: |Descartes [1897-1913|, vol. 6, p. 424.

Acceptable and non acceptable pointwise constructions

As explored in chapter [3] pointwise constructions play an important role in Descartes’
Géométrie, for instance in connection with indeterminate problems, like Pappus’ problem
discussed in first and second books of the Géométrie. But, in Descartes’ geometry, we
come across pointwise constructions also independently from any occurrence of Pappus’
problem: this is case of the ovalsf_U] which are described both by a pointwise construction
and by a method involving strings (this one analogous to the gardener’s method employed

in La Dioptrique for the construction of the ellipse and the hyperbola.

In the following lines I will deal only with one pointwise construction offered by Descartes,

namely, the first one he presented in the treatise of 1637. Let FG and AR (fig. in
Descartes| [1897-1913|, vol. 6, p. 424.) be two lines intersecting at point A (between F
and G) with a given angle. Let the ratio ﬁ—g be given. Let then AR = AG. From point
5, arbitrarily taken on AG, let the circle with center F' and radius F'5 be traced. Let
the segment 56 be traced, perpendicular to AR. Then, describe the circle with center
in G and radius R6. The intersection points between circle F'5 and circle R6 belong

to the oval. By reiterating the same construction starting from other points arbitrarily

"For a discussion of the ovals in Descartes’ Géométrie, see [Maronne| [2010)].
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chosen on AG, we can provide a distribution of points on the same curve,lﬂ which indeed
describes one of the cartesian ovals. Changing a little this method Descartes could obtain,

always by a pointwise construction, ovals with different shapesm

As for the constructions with strings, Descartes posited certain limits to the acceptability

of pointwise constructions as legitimate descriptions of curves:

Ayant expliqué la fagon de trouver une infinité de poins par ou elles passent,
je pense avoir assés donné les moyens de les décrire. Mesme, il est a propos
de remarquer qu il y a grande difference entre cette fagcon de trouver plusieurs
poins pour tracer une ligne courbe, et celle dont on se sert pour la spirale, et
ses semblables. car par cete derniére on ne trouve pas indifféremment tous
les points de la ligne qu’on cherche, mais seulement ceux qui peuvent étre
determinés par quelque mesure plus simple, que celle qui est requise pour la
composer, et ainsi a proprement parler, on ne trouve pas un de ses points,
c’est & dire pas un de ceux qui luy sont tellement propres qu'’ils ne puissent

etre trouvés que par ellem

In this passage, Descartes distinguished two types of pointwise constructions. A first
type is the one in which any point belonging to a curve can be found. We may call this
construction: ‘generic pointwise construction’. Descartes also recognizes a second type,
through which one can find only some points on a curve. This construciton can be called:

‘specific pointwise construction’m

The first case is exemplified by those curves which are expressed by finite polynomial
equations of the form: F(z,y) = 0. In such cases, any point on the curve is in principle
constructible geometrically, for instance by solving corresponding equations in one un-
known. Also the construction of the ovals can be seen as an instantiation of the ‘generic’
pointwise construction evoked by Descartes: indeed it allows us to find any point belong-
ing to that curve by following a finite ruler-and-compass stepwise procedure, starting
from a point arbitrarily chosen on a straight line: in this sense any point on an oval

"may be found at pleasure".

"n other terms, the curve so constructed is the locus formed by the vertex of a triangle FIG which
contains three given collinear points A, 5, 7, and whose sides F'I and F'G have fixed length.

"Descartes| [1897-1913|, vol. 6, p. 424-425.

"Descartes| [1897-1913|, vol. 6, p. 411-412.

"Both terms are employed in [Bos| [2001], p. 343-345.
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Specific pointwise constructions concern, on the other hand, those constructions in which
only some points on a curve can be found, determined by a "simpler measure" that the
one employed for the construction of the curve. Although examples of specific pointwise
constructions cannot be found in La Géométrie, our previous discussion on Clavius and

Rivault reveals illuminating on this concern.

In particular, several studies agree on the opinion that Descartes, while discussing specific
pointwise constructions, had in mind the very construction of the quadratrix offered by
Clavius, in the appendix to book VI of his Commentary to Euclid’s Elementsm In fact,
we notice that the pointwise construction of the quadratrix given by Clavius does not
yield indifferently any point belonging to the curve, but only those constructible by ruler

and compass lying on a bisectrix of the angle Z .

on
But we can also venture the hypothesis that Descartes was familiar with Rivault’s point-
wise description of the spiral, although I have not found any evidence proving a direct
connection between the two authors. I point out, though, that similarly to Clavius’ point-
wise construction of the quadratrix, also Rivault’s pointwise generation can be considered
an instance of a specific pointwise construction, because it cannot determine any point
on the spiral, but only those obtained by a previous division of the angle at the center
of the circle into m equal parts. In particular, if m = 2", the pointwise construction of
the spiral can be effectuated by ruler and compass, following exactly the same protocol

adopted by Clavius, for the case of the quadratrix.

Descartes claims, in a correct and insightful way, that there is a ‘great difference’ between
generic and specific pointwise constructions, but he does not claim that it is sufficient for
a curve to be constructed in a specific pointwise way in order to be excluded from geom-

etry. Whereas he certainly believes that a curve described through a generic pointwise

"See in particular: [Mancosu [1999], p. 74ff, Mancosu| [2007], p. 116. The first piece of evidence
proving Descartes’ acquaintance with Clavius’ study of the quadratrix is indirect: around 1614-1615,
I. Beeckman, with whom Descartes would collaborate between 1618 and 1619, made a reference in
his journal to Clavius’ passage on the quadratrix, with respect to a problem in hydraulic (Beeckman
[1939-1953|, 1, p. 42-43). Since Descartes worked closely to Beeckman during the following years, it is
plausible that he had heard of this construction. Direct evidence that Descartes knew about Clavius’
pointwise construction is also given by the letter to Mersenne from 1629, quoted on previous occasions
in this chapter. In this letter, Descartes is particularly critical about the pointwise description of the
quadratrix and of the curve named "hélice" because, I quote: "encore qu’on puisse trouver une infinité
de points par ou passe I'helice et la quadratrice, toutefois on ne peut trouver Geometriquement aucun
des poins qui sont necessaries pour les effaits desires tant de 'une que de 'autre" (Descartes| [1897-1913),
vol. 1, p. 71).
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construction is geometrical, such a belief does not obviously entail that if a curve is not
described through a generic pointwise construction it is not constructible by geometric

linkages, either.

5.4 Specification by genesis and specification by property:

the case of mechanical curves

In the light of our previous considerations, Descartes’ inquiries about methods for con-
structing curves, as they appear in La Géométrie, can be interpreted as a clear-cut
criticism against the attempts to argue for the geometricity of certain curves, like the
spiral and the quadratrix, on the ground of their constructibility by points or by means
of strings. Acceptable methods, in Descartes’ geometry, consisted either in constructions
obtained by a geometric linkage, or in constructions obtained by generic pointwise con-
structions, or in construction effectuated by strings, employed only in order to determine:
"

. the equality or difference of two or more straight lines drawn from each point of the

required curve to certain other points, or making fixed angles to certain other lines".

On the other hand, known procedures for describing the geometric nature of curves like
the quadratrix, the spiral and the helix were crucially different from the standard methods
just recalled, because they either made an essential appeal to independent motions, or
had recourse to tracing devices or procedures which required the application of forces
in order to properly function (like in those mechanisms in which strings are bent from

straight to curve) or finally, they were based on specific pointwise constructions.

However, whereas Descartes had successfully succeeded in disqualifying attempts to legit-
imate the geometricity of mechanical curves, he still did not possess, solely on this ground,
an effective criterion in order to discern geometrical from non-geometrical curves. Even
if it is sufficient to describe a curve through a geometrical linkage in order to accept the
curve in geometry, to provide a mechanical construction of a curve is not sufficient to show
its mechanical nature. In brief, constructibility by geometric linkages provides necessary
and sufficient conditions for accepting a curve as “geometrical”’, and certain necessary,
though not sufficient conditions in order to sort out a curve as non-geometrical. Since
identity conditions for curves are extensional, namely, they do not depend on how curves
are constructed, we need a kind of impossibility proof unavaible to Descartes, and more

generally to the mathematics of XVIIth century, in order to prove that a curve, exhibited
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by a mechanical construction, is not receivable in geometrym

In Mancosu, [1999], and more specifically in [Mancosu| [2007], P. Mancosu argues that the
classification of several curves as mechanical is motivated by a local criterion, namely a
criterion not necessarily shared by all curves that, with hindsight, we may want to rule
out from geometry, but only by a subclass, certainly relevant with respect to Descartes’
geometry, as it included most of the mechanical curves known to Descartes. On the
ground of important textual evidence, this local criterion is identified with the possibility

of solving the quadrature of the circle["]

According to this suggestion, Descartes’ decision of excluding such curves as the quadra-
trix, the spiral and, possibly, the cilyndrical helix from geometry depended on his belief
about the impossibility of knowing the exact proportion between straight and curved

lines, that I have evoked above:

Car, encore qu’on n’y puisse recevoir aucunes lignes qui semblent a des
chordes, c’est a dire qui devienent tantost droites et tantost courbes, & cause
que la proportion, qui est entre les droites et les courbes, n’est pas connue,
et mesme ie croy ne le pouvant pas estre par les hommes, on ne pourroit rien

conclure de 1a qui fust exact et assuré.lﬁ

This belief involved a belief in the impossibility of solving geometrically the rectification

of the circle, and therefore its quadrature too.

Since the precise significance of this belief and its role in the economy of the treatise

have raised several interpretations in the scholarly literature, it is worth analyzing it

"The point is discussed in Mancosul [2007], p. 117, and [Mancosu and Arana) [2010], p. 404. These
objections may not have been unknown to early modern geometers themselves. Proclus, in his Com-
mentary to the the First Book of the Elements of Euclid, reports the following opinion, attributed to
Geminus: "Geminus has rightly declared that, although a simple line can be produced by a plurality of
motions, not every such line is mixed (...) Imagine a square unfergoing two motions of equal velocity,
one lenghtwise and the other sidewise; a diagonal motion in a straight line will result" (Proclus| [1992],
p.- 86). Hence, in Geminus’ opinions, even lines we would accept as geometrical can be generated by
a plurality of (independent) motions. The puzzle is solved by Proclus (supposedly reporting Geminus’
view) by remarking that these motions are rectilinear and simple, contrarily to the motions which pro-
duce a linear curve like the helix (see ch. [2] sec. [2.3.4). However Proclus’ explanation, which is not fully
convincing (also the motions which generate mechanical curves, in fact, result from simple, circular and
rectilinear motions) might not have been accepted by later readers.

"See Mancosul [1999], p. 77-79, and [Mancosul [2007], p. 117-122.

"®Descartes| [1897-1913|, vol. 6, p. 412.
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with more care. I therefore observe, again with Mancosu (Mancosu| [2007], p. 119), that

Descartes assumed, in La Géométrie, two distinct and equally crucial assertions:
A. The proportion between straight and curved lines is not known (exactly).

B. The proportion between straight and curved lines cannot be known (exactly).

Assertion A. reports a piece of knowledge shared by the author and his audience: since, at
the time of Descartes’ writing no general methods were known and available to early mod-
ern geometers in order to solve rectification problems, the proportion between straight
and curved lines was not known. Assertion B., instead, reports an utterance, in the form
of a propositional attitude report (stressed by the verb "je croys") relating the opinion of
the author himself on the unknowability of the proportion between straight and curved

lines.

Descartes could infer, on the ground of B., that the proportion between segments and
circular arcs could not be exactly known. Hence he could also infer a belief on the
impossibility of rectifying the circumference, and thus solving the quadrature of the
circle geometrically. This conviction, Mancosu argues, especially in Mancosu, [1999] and
Mancosu, [2007], and not the general belief on the non-rectifiability of curves, could have
played an essential role in separating geometrical from mechanical curves in the economy
of Descartes’ geometry. Indeed, Descartes might have been guided by the following
inference, in order to demarcate legitimate from illegitimate curves: if a curve, together
with other geometrical curves and constructions, allowed one to solve the quadrature of
the circle, then it would be illegitimate in geometry, since the quadrature of the circle is
judged by Descartes geometrically impossible. Eventually, the impossibility of solving the
circle-squaring problem geometrically, asserted by Descartes on several occasions, both
in La Géométrie and in his correspondence[™] would have endowed him with a sufficient
condition in order to exclude from geometry certain curves, like the quadratrix, the helix
and, as it was known from Pappus and Archimedes, also the archimedean spiral, on the
ground of their eﬂ’ects@

™See, for instance,Descartes| [1897-1913], vol. 1, p. 70-71; p. 486.

80 As pointed out in (Mancosu |2007], p. 118), this criterion is local, in so far it does not exclude from
geometry all curves that one wants to consider mechanical. An example of a curve that was probably
considered mechanical by Descartes, without satisfying this local criterion, is the linea proportionum,
discussed in the Cogitationes (Descartes| [1897-1913], vol 10, p. 222-223). Descartes introduced this
curve in order to solve problems of compound interest, ie. problems concerning the computation of a
debt increasing according to a geometrical rate in equal intervals of time. If we depict the problem
geometrically, the linea proportionum would relate segments forming an arithmetical sequence (their
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Mancosu’s thesis is mathematically sound and based on textual evidencePY However,
I would like to supplement it with another hypothesis, which might contribute to shed
more light on Descartes’ self-confidence in delineating the boundary between geometrical

and mechanical curves.

In order to deploy my argument, I shall recall that the specification of a curve by genesis
has a bearing on the specification of its essential properties. In other words, Descartes
conceded that all the points on a curve constructed by a geometric linkage, and "which
we may call Geometric (...) must bear a definite relation to all the points on a straight
line, and that this relation must be expressed by means of a single equation".lﬂ As an
equation codes a proportion or a system of proportions, we also recognize that an explicit
connection is established, in Descartes’ geometry, between a geometric curve, namely a
curve constructed by one of the acceptable linkages, and the possibility of expressing its
symptoms by means of an algebraic equation (chapter [3] section .

Let us consider, on the other hand, the original passage of La Géométrie in which
Descartes contrasts geometrical and mechanical curves. So far, I have focussed my atten-
tion on the kynematical characterization of mechanical curves qua curves generated out
of independent uniform motions, leaving aside another detail emphasized by Descartes:
these motions do not entertain an exactly measurable relation namely: "aucun rapport

qu’on puisse mesurer exactement "@

constant difference represents the unit interval of time. If the unit interval is ¢, then the sequence will
be: t,2t,3t,4t,...nt ) to corresponding segments forming a geometrical sequence with constant ratio (if
the ratio is 7, the sequence will be: 1,7%, 72,73, ... r™"), indicating the increase of the interest. The curve
thus obtained is an exponential or logarithmic curve. The name "linea proportionum" bears a relation
to the fact that the curve can be employed to find n-th mean proportions between two given segments. If
we represent the segments ¢, 2t, 3¢, 4¢, . . . nt forming an arithmetical sequence, on a straight line, and the
segments increasing according a geometrical sequence on another line perpendicular to the first, it would
be sufficient to consider the segment of length (n + 1)¢: all the segments corresponding to ¢,2t,3t...nt
on the geometrical sequence will form the n mean proportionals between the initial segment of the
geometric progression and the segment corresponding to (n+ 1)¢. Interestingly, Descartes considered, in
the Cogitationes, this curve on a par with the quadratrix, since the latter raises from two non subordinate
motions, a circular and a rectilinear one (Descartes| [1897-1913|, vol 10, p. 223). The same cannot be told
about the former, though. Even Descartes remains silent on this point, he probably conceived the "linea
proportionum" as a line of the same nature of the quadratrix because it arose out of the combination of
a uniform motion and an accelerated motion, whose velocities varies proportionally to the corresponding
equal interval of time (Bos| [2001], p. 248). This curve was probably judged by Descartes on a par
with the quadratrix because it was difficult to envisage a geometric compass suitable for its generation.
Although the linea proportionum is not discussed on other occasions, we can arguably assume that
Descartes envisaged it as a mechanical curve, in the light of the partition proposed in La Géométrie.

81 Of . Mancosul [1999], p. 78-79.

82Descartes| [1952], p. 48.

83Descartes| [1897-1913|, vol. 6, p. 390. For a discussion of this passage, see [Bos| [2001], p. 341-342.
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Descartes also denies, as I have already reported, the possibility of knowing with exact-
ness what he calls "proportion" between a curve and a straight line ("la proportion qui
est entre les droites et les courbes"). Such a belief has been interpreted as the source of
Descartes’ conviction that it is impossible to measure with exactness the relation (rap-
port) between the rotational and translational motions in the genesis of the quadratrix
and of the Spiralﬁ But what did Descartes refer to when he spoke about such a "rap-
port" between the motions which generate mechanical curves, that we cannot measure

exactly?

I remark that the word "rapport" reappears, in La Géométrie, few pages later, in order

to designate the opposite situation of geometrical curves:

. tous les poins, de celles qu’on peut nommer Geometriques, c’est a dire qui
tombent sous quelque mesure précise et exacte, ont necessairement quelque
rapport a tous les points d’une ligne droite, qui peut estre exprimé par quelque

equation, et tous par une mesme.ﬁ

And again few lines later, while studying the hyperbola, Descartes set out to find the
rapport between the unknowns x and y which characterize every point of the hyperbola.
Indeed any point that we may arbitrarily choose on the curve traced by the linkage
described by Descartes (I am referring to Descartes [1897-1913|, vol. 6, p. 395) is such

that its distances from axes GA and AK entertain the same relation, coded by the

equation: ay +cy — Gy — y? = ac@

In these cases, the word "rapport" refers to the relation that a point on a curve, con-
structible by a geometric linkage, entertains with the points on given straight lines: in
other words, ‘rapport’ refers here to a proportion or an equation which characterizes the

curve itself.

If we assume that Descartes employed his lexicon univocally, we might also refer the term

‘rapport’, appearing in the description of mechanical curves, to the relation between the

89Bos| [2001], p. 341ff.

85Descartes| [1897-1913|, vol. 6, p. . The emphasis is mine.

86T share here the suggestion made by (Descartes| |2009], p. 716): "le mot rapport ne signifie pas ici
proportion, ou raison, mais relation numérigue; et bien qu’il soit question d’une seule ligne droite (un
axe de coordonnées), et non de deux, il s’agit bien d’une equation avec deux variables x et y". See
also Molland: "Descartes’s interpretation of what was meant by an exact knowledge of the measure of a
curve may have undergone some development, but in the Geometric he clearly explicates it in terms of
equations" (Molland| [1976], p. 37).
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distances of any point on the curve from given straight lines (or axes of references, in a
modern parlance), and therefore to the possibility of coding the fundamental properties

of such curves as the quadratrix and the spiral into an algebraic equation.

Descartes was certainly aware that in ancient geometrical thinking, the articulation be-
tween the exhibition of a curve through its construction and the subsequent determination
of its fundamental properties concerned the study of curves even beyond conic sections.

The same opinion can be gathered from a short but informative remark made by Proclus:

This is the way in which other mathematicians also are accostumed to dis-
tinguish lines, giving the property of each species. Apollonius, for instance,
shows for each of his conic lines what its property is, and Nicomedes likewise
for the conchoids, Hippias for the quadratrices, and Perseus for the spiric
curves. After a species has been constructed, the apprehension of its inherent

and intrinsic property differentiates the thing constructed from all others.lﬂ

It cannot be overlooked that the quadratrix is mentioned in the previous passage. Its
symptoms, together with those of the spiral, are described by Pappus, another source

well known to Descartes, in these terms, for the quadratrix:

And its principal symptoma is of the following sort. Whichever arbitrary
<straight line> is drawn through in the interior toward the arc, such as
AZE, the straight line BA will be to the <straight line> ZT as the whole
arc <BED is> to the arc E/b

Whereas for the case of the spiral:

Its principal symptoma is of the following sort. Whichever <straight line>
is drawn through the interior toward it, such as BZ, and produced <to C'>,
the straight line AB is to the <straight line> BZ as the whole circumference
of the circle is to the arc ABC’ . This, however, is rather easy to understand
from the genesis <of the spiral>. For in the time in which the point A
passes through the whole circumference of the circle, in that time the <point
starting> from B <passes through> BA, also, whereas in the time in which
A <passes through> the arc ABC, in that time the <point starting> from
B <passes through> the straight line BZ, also.lﬂ

8TProclus [1992], p. 277.
88Proclus| [1992], p. 277.
89Proclus| [1992], p. 277.
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In his commentary, Commandinus also adds an important note about the cylindrical

helix:

cuius principale accidens est, ut sumpto quovis puncto in ipsa, quod
exempli gratia sit H, ductaque HD ad planum perpendiculari, habeat HD
ad circumferentiam DC' eam proportionem, quam tota CM habet ad cir-

cumferentiam DCA. illud vero ita esse ex ipso ortu manifestum apparet.m

The fundamental properties of the mechanical curves known to Descartes can be thus
schematized (c¢f. ch. sec. and sec. . In the case of the quadratrix, they
are expressed by the proportion: BA : ZT = BED : EAD, (keeping the same letters as
in Pappus’ passages quoted above), whereas for the spiral the analogous proportion is:
BA: BZ = circ: ABC , where ‘circ’ denotes the circumference mentioned in the above
passage. Finally, Commandinus’ commentary reports the symptom ("accidens") of the
cylindrical helix too: if we call HD and CM the two perpendiculars to the base of the
cylinder from points H and M, both on the helix, DAC the arc cut on the base by the
foots of these perpendiculars, and DE’A the length of the circular base, we have that:
HD:DC =CM : DCA,

As a reader of Pappus apud Commandinus, Descartes was certainly aware that the
symptoms of curves like the quadratrix, the spiral and similar curves involve a proportion
between segments and arcs of a circle, derivable from the uniform motions generating
these curves. Counter to the case of conic sections and of the other geometric curves,
whose symptoms can be expressed by proportions between segments (and ultimately via
equations), the symptoms of the quadratrix, the spiral or the cylindrical helix, as they
are expounded in Pappus’ Collection, cannot be expressed in such a form, since Descartes
had assumed that the proportion between circular arcs and a straight lines (and more

generally, between straight and curves) defied exact knowledge.

Let us recall, moreover, that Descartes admitted the equivalence between curves con-
structible by linkages, and curves expressible by algebraic equations (chapter 3] section
3.2.3). On this ground, he could immediately infer from the impossibility of express-

ing the properties of a curve by an algebraic equation, the impossibility of constructing

99Commandinus| [1588], 58v.: "Whose [i.c. of the cylindrical helix] fundamental property is that, taken
any point in it, which for instance is H, ad traced H D, perpendicular to the base, HD has to the arc
DC the same proportion, that all CM has to the circumference DC'A. But in fact it appears that this
is evident from the very genesis."
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the curve by a geometric linkage. This conclusion complies with the characterization of

mechanical curves as curves constructible solely by separated motions.

Conclusively, the impossibility of representing the fundamental properties of a curve by a
system of proportions, and therefore by means of the apparatus offered by algebra, could
represent a further reason in order to explain Descartes’ self-confidence in excluding
certain curves as mechanical, although it remains a sufficient, not a necessary criterion of
ungeometricality, just like the criterion studied in [Mancosu [1999] and Mancosu| [2007],
to which it is evidently related: both criteria are in fact ultimately grounded on the

incomparability between straight and curvilinear lines.

Certainly, there are curves non expressible by algebraic equations, but whose symptoms
do not depend on the proportion between segments and arcs (Mancosu| [2007], p. 122).
The case of the linea proportionum, already mentioned in this dissertation, is an eloquent
couterexample with this respect@ But we can still maintain that the appeal to the
impossibility of finding an exact proportion between straight lines and circular arcs offered
a sound justification, when Descartes was preparing La Géométrie, in order to exclude
from geometry those few special curves, like the spiral, the quadratrix and the cylindrical

helix, transmitted by ancient sources, and mostly studied by early modern practitioners.

On this connection, I surmise, Descartes showed, by underlying the inexact character of
the pointwise constructions and the constructions by strings of the quadratrix the spiral,
and the helix, that all the attempts to exhibit the geometrical nature of these curves
(as we have seen, several geometers were engaged in this ‘research programe’, between
late "500 and the following century) had globally failed. Moreover, by excluding such
mechanical curves from geometry, perhaps on the ground of their symptoms, and there-
fore relying on classical considerations (let us recall that the symptoms of the mechanical

curves are already described in Pappus’ Collection) Descartes might want to assert, once

91See note Descartes became acquainted, after the publication of La Géométrie, with other curves
like De Beaune’s curve (which is a logarithmic curve), or the logarithmic spiral, both explicitly recognized
as mechanical, although not in the backdrop of the incomparability between straight and curvilinear
segments. For a detailed investigation about Descartes’ study of this curve, see |Vuillemin| [1987], p. 1-
25. Descartes judged De Beaune’s curve mechanical, on the ground of its generation by two movements:
"tellement incommensurables, qu’ils ne peuvent estre reglé exactement I'un par ’autre; et ainsi que cette
ligne est du nombre de celles que j’ai rejettées de ma Geometrie, comme étant Mechanique", [Descartes
[1897-1913|, vol. 2, p. 517. The logarithmic spiral was introduced by Mersenne in his Harmonie
Universelle , and was the curve represented by a body descending on an equally inclined plane (Descartes
[1897-1913]|, vol. 2, p. 360).
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established a clear-cut canon of geometricity, that any investigation aiming at probing
the geometrical nature of the quadratrix, the spiral or the helix, was destined to fail.@
Such a methodological choice did not imply that mechanical curves had to be abandoned
as objects of mathematical interest. Let us recall, indeed, as it has been amply studied

in the literatureﬂ that Descartes dealt with mechanical curves outside geometry.

Conclusively, I would like to stress that the possibility (resp. impossibility) of expressing
their symptoms of curves via equations eventually became the usual way of shaping the
bounds between geometrical and mechanical, or transcendental curves, when Descartes’

method in problem solving became one of the staple of eighteenth century mathematical

textbooks 4

As an evidence for this claim, I will offer two examples, both taken from expository
treatises written during the first half of XVIIIth century. The first example is taken from
Guisnée’s treatise Applications de l'algebre a la Geometrie, ou Methode de demonstrer par
l’Algebre, les Theorémes de Geometrie, et d’en resoudre et construire tous les Problémes
(1733). The last section of this book is dedicated to "mechanical or transcendental curves,
their descriptions and the problems one can solve by them". In this chapter of Guisnée’s
book, mechanical curves are not primarily introduced by a specification of their genesis,
as it happens in Descartes’ Géométrie. On the contrary, Guisnée characterizes them as

those curves for which:

on ne peut point trouver d’equations qui expriment geometriquement
la relation de leurs coordonnees; car il y a des courbes mechaniques dont
une des coordonnees est une ligne droite, et I’autre une ligne courbe dont la
rectification est geometriquement impossible. Il y en a d’autres dont les deux
coordonnées sont deux lignes courbes; d’autres dont les appliquées partent
toutes d’'un méme point, et d’autres qui sont figurées de maniére que leurs

axes les rencontrent en une infinité de points . . ﬁ

At the root of the distinction between curves whose coordinates can be "expressed ge-

ometrically" and curves whose coordinates cannot undergo the same treatment, we can

92The possibility that Descartes was addressing to the practice of curve-construction, still lively in the
1630s is also ventured in |Giusti| [1999], p. 232.

93For instance: |Costabell [1985[, [Mahoney| [1984], [Jullien| [1996], [Jullien| [2006], [Vuillemin| [1987].

9 An overview of XVIIIth century expository treatises on cartesian geometry can be found in [Shabel
[2003], p. TOff.

P Guisnée| [1733|, p. 233.
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still find the cartesian characterization of geometrical curves, as those curves such that
the distances of any of their points from one given straight line (the first occurence of
what would later be called axis of coordinates) can be expressed by means of a finite
algebraic equations. On the other hand, a point on a mechanical curve like the spiral
(discussed by Guisnée in the same text few lines later) can be individuated by expressing
a proportion combining segments and circular arcs, whose rectification, Guisnée observes

above, is held to be "geometrically impossible".

As it was already known to Descartes, not all mechanical curves could be associated to
proportions involving segments and circular arcs. The local character of this criterion
would become even clearer during XVIIth century and XVIIIth century, when the number
of mechanical curves grew considerably, and only a small part turn out to depend on the
rectification of arcs. This fact is underlined by Guisnée too, who gives, in the passage
we can read above, a brief survey of several types of mechanical curves, each being
characterized by a specific property of their coordinates. On the other hand, all these
curves have in common the (negative) property of not being relatable to finite algebraic

equations.

Along similar lines, Ozanam defines mechanical curves, in his Dictionnaire des mathé-

matiques (1696), without reference to the motions which generate them:

La ligne mechanique est une ligne courbe qui n’a point d’Equation propre a
exprimer la Relation de tous ses points sur quelque ligne droite. Telle est la

Quadratrice de Dinostrate, et plusieurs autres. . @

A final significant example is reported by Rabuel, who wrote an extensive commentary

on Descartes’ geometry, and noted:

Les courbes Géométriques sont celles, dont on peut exprimer et determiner
la nature par le rapport des ordonnées et des abscisses, qui sont les unes et
les autres des grandeurs finies. Les Méchaniques sont celles, dont on ne peut

ainsi exprimer la Nature, parceque les ordonnées et les abscisses n’ont point

de rapport regléﬂ

Examples might be multiplied, among contemporary treatises on cartesian geometry.
This brief survey is however sufficient in order to show that the bound between geo-

metrical and mechanical curves ended up being currently understood and formulated,

960zanam| [1691], p. 94.
9TRabuel| [1730], p. 99.
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from late XVIIth to the beginning of XVIIIth century, as a bound between curves ex-
pressible by a finite algebraic equation, and curves which could not be expressed by a
finite algebraic equations, thus exploiting a suggestion that, I think, was originally in La

Géométrie 8

980n the history of analytic geometry, especially after the publication of La Géométrie, see [Boyer
[1956].



Chapter 6

Impossible problems in cartesian

geometry

6.1 On the cartesian distinction between possible and im-

possible problems

According to my reconstruction, the impossibility of finding an exact proportion be-
tween segments and arcs of circles offers a rationale in order to understand the clear-cut
separation, in Descartes’ geometry, between geometrical and mechanical curves. In par-
ticular, the latter curves are not generated according to a legitimate procedure, and their
‘symptoms’, or fundamental properties, cannot be characterized by a quantifiable relation

expressible through a proportion between segment, or through an algebraic equation.

In Descartes’ Géométrie, though, the claim that segments and circular arcs are incom-
mensurable magnitudes or, at least, magnitudes that stay to each other in an exactly
unknowable proportion, does not rely on any proof or argument. Probably on this ground,
Bos referred to it (or, more precisely, to its possible generalization) as: "the axiom of
incommensurability of the straight and the curved", and traced the axiom back to an

aristotelian view on the nature of curves, still influential in the first half of seventeenth

centuryE]

Can we find any trace, in Descartes’ mathematical activity, of attempts to justify this

so-called "axiom"? This is the question I have in view in this and the following sections.

'See [Bos| [1981], p. 314; [Bos| [2001], p. 342; [Hofmann! [2008], p. 101-103.

266
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As a start, I remark that Descartes occasionally discussed, during his mathematical
career, the problem of the quadrature of the circle. These discussions might, in principle,
be pertinent to our inquiry, since, as Archimedes’s Dimensio circuli does show, the
circle-squaring problem is reducible to the rectification of the circumference. We expect
therefore, coherently with Descartes’ view about incomparability between straight and

curves, that Descartes judged this problem unsolvable in geometry.

On the other hand, Descartes rarely entered into considerations which might offer ar-
guments for the possibility /impossibility of solving the circle-squaring problem by given

solving-methodsﬂ

An interesting exception can be found in a letter to Mersenne from 31 March 1638.
In a section of this long letter, Descartes comments upon some objections raised by
contemporary geometers, in particular Fermat and Roberval, concerning those: "...
questions de Geometrie qu’ils ne peuvent soudre et croient ne pouvoir estre resolues par

ma methode. .. " (Descartes| [1897-1913], vol. 2, p. 90).

In his response, Descartes did not deal with the specific content of these objections, but
proposed a methodological discussion about problems that could or should be proposed

as legitimate ways in order to challenge the method proposed in La Géométrie:

car premierement, c’est contre le style des geometres de proposer aux
autres des questions qu’ils ne peuvent soudre eux mesmes. Puis il y en a
d’impossibles, comme la quadrature du cercle, etc. ; il y en a d’autres qui,
bien qu’elles soient possibles, vont toutefois au dela des colonnes que j’ai
posees, non a cause qu’il faut d’autres regles ou plus d’esprit, mais a cause
qu’il y faut plus de travail. Et de ce genre sont celles dont j’ay parlé dans ma
réponse a M. de Fermat sur son escrit de mazximis et minimis, pour 'avertir
que, s’il vouloit aller plus loin que moy, c’estoit par la qu’il devoit passer.
Enfin il y en a qui appartiennent a 1’Arithmetique et non a la Geometrie,

comme celles de Diophante . .. E|

2Few remarks can be be found in Descartes’s correspondence, which relate his scornful opinion with
respect to alleged solutions to the quadrature of the circle. The first documented situation which saw
Descartes’s involvement with the squaring of the circle was brought about by a letter from Van Schooten
(10th March 1649), Descartes| [1897-1913|, vol. 5, p. 318-320. On that occasion, Descartes criticized
the work of Gregorius of St. Vincent. See also [Descartes| [1897-1913|, vol. 5, p. 343, where Descartes
dismisses a flawed solution to the quadrature of the circle by Longomontanus.

3Descartes| [1897-1913|, vol. 2, p. 90-91.
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In the passage quoted above, Descartes mentions the quadrature of the circle as an
"impossible problems", and contrasts it with arithmetical problems, on one hand, and
on the other, with "possible problems" which, though solvable in principle, still demand

an effort ("travail") for their solution.

Correspondence and correspondence networks played indeed a major role, within the
community of early-modern mathematicians, for the circulation of theories and methods.
Problems often laid at the core of these exchanges: they were in fact proposed in order
to challenge a given method, to test its generality or the ability of his proponent in
front of difficult cases, and eventually enhance or downplay his rank in the community

of mathematicians[

In this general context, Descartes was concerned with the overriding task of regulating
the ways in which his method could be legitimately challenged. In the backdrop of this
attitude, I propose to interpret the above distinction into different types of problems as
an explicit attempt, on Descartes’s side, to set norms in order to tailor the development
of geometry, and the correlative practice of problem-solving according to the method and

the rules set in La Géométrie.

At first, it should be noted that Descartes disqualifies as contrary to the style of geometers
proposing problems that " they cannot solve themselves. .. " ("questions qu’ils ne peuvent
soudre eux mesmes"). This remark does not aim so much at isolating a category of
problems, but rather at deterring geometers from proposing "open" problems, namely
problems not only in want of a solution (which is an obvious requirement if a method
must be challenged at all), but for which it is not known whether a solution can be found
at all, in order to challenge a certain method (and, in the specific context of the letter,
his own method).ﬂ

“Compare on this subject the recent studies Goldstein| [2009] and |Goldstein| [2013].

®Such a distrust towards open problems is by no means original with Descartes. As an example,
let us recall that Fermat did pose open questions, to the effect that his recipients were displeased
by this attitude, fearing that behind these questions impossible problems might lurk (Fermat
|1891-1896], vol. 2, p. 260-261). On the contrary, Fermat defended the importance of asking open
problems and theorems. He was in fact confident of the significance for the development of mathematics;
as we read in a letter to Mersenne from August 1643, he remarked: "...il y a beaucoup de problémes
desquels, comme a dit autrefois Archiméde, o0x eduédoda & mEMTEY Pavévia xeove ™y eepyaoiay
AopBévovt".  Vid. |Heath| [1897], p. 151: "In fact, how many theorems in geometry which
had seemed at first impracticable are in time successfully worked out!" (Fermat’s quote slightly
modifies Archimedes’s original, to be found in the treatise On Spirals).
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Furthermore, Descartes evoked three categories of problems: problems from arithmetic,
possible and impossible problems. I surmise that two distinct issues are at play in the
backdrop of this tripartite distinction. One issue is of disciplinary nature (I borrow
the term ‘disciplinary’ from (Goldstein [2013]), since it concerns the distinction betwee
arithmetic and geometry: arithmetical problems are in fact isolated and as extremely

laborious, but useless, and therefore not worth of discussion and Challenge.ﬁ

On the other hand, Descartes did not consider all problem concerning geometric entities
as suitable cases in order to challenge his method. To this effect, I note that, whereas
La Géomeétrie contains explicit criteria for separating acceptable from non-acceptable
curves, thus demarcating the ontology of Descartes’ geometry, there are no further dis-
tinctions, in this treatise, between acceptable and non-acceptable problems, in analogy
with the distinction between permissible, or geometrical, and non permissible, or me-

chanical curves.

This silence might be explained on the ground of the practice, current among early-
modern mathematicians and practitioners, to delegate to epistolary exchanges the task of
challenging a method for problem-solving. Correlatively, defining the kind of admissible
questions (i.e. problems) would have been considered as an activity (that we might label
as ‘meta-theoretical’, since it concerns the setting of rules in order to shape mathematical

activity itself) to be more properly performed in correspondence than in a treatise.

SDescartes remarks: "...non pas pour ces dernieres [arithmetical questions| qu’elles soient plus dif-

ficiles que celles de Geometrie; mais pource qu’elles peuvent quelquefois mieux estre trouvées par un
homme laborieux qui examinera opiniastrement la suite des nombres, que par I'adresse du plus grand
esprit qui puisse estre, et que d’ailleurs elles sont tres inutiles, je fais profession de ne vouloir pas m’y
amuser" (Descartes| [1897-1913|, vol. 2, p. 91). I point out that by "problems of arithmetic" Descartes
probably meant questions concerning the theory of numbers, whose main proponent was, by that time,
Pierre de Fermat. Descartes’s disparaging attitude is similar in outlook to the opinions of other geome-
ters who looked favourably to the "new" analysis exeplified by the canon of problem-solving promoted
in La Géométrie, as De Beaune: "Je vous supplie de me dispenser de la recherche de ceste question -
he wrote to Mersenne on March 1639, concerning a problem of arithmetic - pour m’apliquer, aus heures
de mon loisir, & de plus sérieuses : ceste question n’estant d’aulcun usage et ne tombant poinct soubs
la science des rapports, qui les considere universelement aussi bien entre les lignes commensurables et
incommensurables si bien que la recherche en seroit extremement laborieuse et de nul proffict, ce qui
n’arrive pas en celles de geometrie et celles d’arithmétique qui tombent soubs la science des proportions,
les autres estant de peu de consideration et n’estant d’aulcun usage" (Mersenne| [1986], vol. VIII, p.
360). The problem De Beaune wanted to avoid concerned the determination of a class of numbers that
are sums of squares: it was therefore a problem concerning integer numbers, at its core, although it was
presented in a geometric garb, as a problem about ellipses (Goldstein| [2013], p. 266). Even without
entering the details of the problem, its presentation is sufficient to show that the distinction between
geometrical and arithmetical problems was not so obvious as it may seem.
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Indeed, this delimitation is arguably implied by the second distinction, articulated by
Descartes in the above letter to Mersenne, between ‘possible’ and ‘impossible’ problems.
As we can evince from the general description and from the examples evoked in that
letter, ‘possible’ problems are problems which, though solvable in principle, still demand
"more effort" ("plus de travail") for their solution. Among them, Descartes counts those

problems discussed in another letter written to Mersenne, in January 1638.|Z|

That letter contains a lenghty response on Fermat’s method for finding the tangent to a
given algebraic curve (for example, a parabola)ﬁ Descartes refuses to consider Fermat’s
achievement as a legitimate challenge to his geometry, and encourages, on the other
hand, geometers to turn towards other challenges: to solve the general problems of the
composition of the sursolid loci (namely, the problems yielding indeterminate equations
in degree 6 or 5) or the construction of all problems of degree 6 or 9, or, eventually, the
construction of burning mirrors composed of a sphere and a conoid in order to test their

knowledge and understanding of the cartesian method.ﬂ

These examples clarify that the ‘possible problems’ mentioned in the 1638 letter are, in
Descartes’ view, problems for which a solution is envisionable within the canon of his
geometry, because they can be reduced to an equation or a system of equations expressing
the dependance between segments designated by the unknown(s) and the known terms,

according to the protocol expounded at the beginning of La Géométrie.

In the backdrop of this characterization of ‘possible problems’, I surmise that ‘impossible’
ones, exemplified by the quadrature of the circle, are purportedly excluded from the
scope of La Géométrie because they are not problems in the sense countenanced by the

opening paragraph of this treatise, namely they are not reducible to equations expressing

Descartes| [1897-1913], vol. 1, p. 486.

8Here the quotation from Descartes’ letter: "De facon que ceux qui ont envie de faire paroistre qu’il
savent autant de Geometrie que j’en ay escrit, ne doivent pas se contenter de chercher ce Probleme par
d’autres moyens que j’en ai fait, mais ils devraient s’exercer plutost a composer tous les lieux sursolides,
ainsy que j’ai produit tous les solides, et a expliquer la figure des verres brulants, lorsque l'une de ces
superficies est une partie de Sphere ou de Conoide donné", Descartes| [1897-1913], vol. 1, p. 492-93. The
peculiarity of Fermat’s method (see [Stromholm| [1969], for a reconstruction) lies in the idea of idetifying
the tangent to a curve as its secant of maximal length. Descartes dissented about this conception,
preferring, in order to solve the problem of tracing a tangent to a given algebraic curve, to develop a
method of normals, but he shared the view according to which the general problem of tracing the tangent
to a curve (or, in his perspective, tracing a normal) can be considered as a specific example of a problem
of extremum.

T remark that an example of problem neither plane nor solid is discussed in [Descartes| [1897-1913],
vol. 2, p. 317.
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the relations between known and unknown segments, and are obviously unfit in order to

test the canon of problem-solving set out in La Géométrie.

This conclusion not only confirm Descartes’ conviction that the circumference cannot be
rectified geometrically. The case of the quadrature of the circle is also telling for another
reason. Probably around 1625-1628, in fact, Descartes wrote a brief text which purports
to give the best way to solve this problem by means of an approximation argument
based on iterated bisections, akin to Archimedes’s method for approximating the length
of the circumferencem Descartes solved the circle-squaring problem by giving a rule in
order to produce, through an interative ruler-and-compass construction, a sequence of
points converging towards a limit-point z. This point is determined through an infinite
approximation procedure, hence it is by no means ‘constructed’, according to the meaning
of this word in force within Descartes’ geometry: in other words, point x is not found by

the intersection between geometric curves.

The fragment on the circle-squaring problem is not only an interesting mathematical
achievement per se, but it indirectly elucidates the meaning of ‘impossible’ problems,
according to Descartes’ use made in the letter to Mersenne. It should be noted, indeed,

that the cartesian solution of the quadrature of the circle relied on a practice which made

198ee [Descartes| [1701], p. 6-7, and [Descartes| [1897-1913|, vol. 10, p. 304-305. This piece was
published only posthumously, in the Ezcerpta ex Mss R. Des-Cartes (1701), so that the precise occasion
which inspired its composition is unknown. The brief text can be reported here in full: "CIRCULI
QUADRATIO. Ad quadrandum circulum nihil aptius invenio quam si dato quadrato bf adiungatur
rectangulum cg comprehensum sub lineis ac et cb, quod sit aequale quartae parti precedentis; item
rectangulum dh, factum ex lineis da, dc aequale quartae parti precedentis ; et eodem modo rectangulum
et, atque alia infinita usque ad x; quae omnia simul aequanbantur tertiae parti quadrati bf. Et haec linea
ax erit diameter circuli, cujus circonferentia aequalis est circumferentiae huius quadrati bf, est autem
ac diameter circuli octagono, quadrato bf isoperimetro, inscripti; ad diameter circuli inscripti figurae 16
laterum, ae diameter circuli inscripti figurae 32 laterum, quadrato bf isoperimetrae, et sic in infinitum"
("To square the circle, I find nothing more adequate than that, being given a square bf, to add the
rectangle cg delimited by lines ac and c¢b, equal to the fourth of the preceding figure, and then to add the
rectangle dh, formed by the segments da, dc, equal to the fourth of the previous one, and in the same
way to add rectangle ei, and other ones, infinitely, until point x is reached. All together, they will make
one third of the square bf. On the other side, ac is the diameter of the circle inscribed into the octagone
isoperimeter to the square bf, ad the diameter inscribed in the figure of 16 sides, ae the diameter of the
circle inscribed in the figure of 32 sides, isoperimeter to the square bf... and so on infinitely."). The title
Circuli quadratio was added in Adama-Tannery critical edition, on the basis of an index excerptorum
that accompanied Descartes’s mathematical fragments collected in Descartes|[1701]. The authenticity of
this fragment can be hardly put into doubt. The text was indeed known to Huygens, at least since 1654,
as it is quoted in the introduction to his De Circuli Magnitudine Inventa of the same year. Descartes
was himself an acquaintance of Huygens’s family, and Christiaan Huygens himself acknowledged, only
four years after Descartes’s death, that Descartes had written some pieces on the quadrature of the circle
(Vid. Huygens| [1888-1950], vol. 12, p. 119-120). As for a mathematical analysis of the content of this
fragment, see |Costabel| [1985].



CHAPTER 6. IMPOSSIBLE PROBLEMS IN CARTESIAN GEOMETRY 272

appeal to different constraints on solvability and unsolvability of problems than those in
force in La Géométrie. Hence, the ‘impossibility’ of solving a problem, at least in the
context of the 1638 letter, did not entail, for Descartes, its unsolvability tout court, but
its unsolvability by means of the techniques and the method deployed within cartesian

geometry.

On a par with the quadrature of the circle, we recognize other problems, studied and
solved by Descartes in his correspondence, that might be ascribed to the same category
of "impossible problems". These are, for instance, problems concerning the construction
or the properties of objects explicitly recognized as non geometrical, like mechanical
curves. Remarkable examples are the problem of determining the tangent to a point
on the cycloid, a mechanical curve according to Descartes, discussed by Descartes in a
letter to Mersenne from 23rd August 1638 (in Descartes [1897-1913|, vol.2, p. 307ff.),
the problem of determining the area under a cycloidal arc, discussed by Descartes with
Mersenne, in two letters, from May 1638 and July 1638 (see Descartes| [1897-1913], vol.2,
pp. 135-137 and 257ff.) or the problem of describing the equiangular spiral, defined as
the (mechanical) curve making a constant angle with the radius vector at every point
(see [Descartes [1897-1913|, vol.2, p. 360).

I surmise that, consistently with the characterization of "impossible" problems that I
have tried to elucidate in this section, all the problems evoked above can fall into this
category because, even if they could not be counted within the subject matter of geome-
try, they could nevertheless be solved by appeal to diverse techniques, well-mastered by
Descartes[H]

6.2 Impossibility claims as a meta-statements

Even if the meaning of ‘impossible problem’ can be clarified in the light of Descartes’
methodological considerations about problems, yet two questions remain to be answered:
on which grounds the quadrature of the circle could be judged impossible? Could the task
of proving such an impossibility be considered a legitimate task at all in the mathematical

practice of XVIIth century?

Firstly, I point out that even if the impossibility of constructing a certain geometric

entity might be posed as a problem in disguise, proving an impossibility boils down to

"'Compare, on this concern, the technical analysis in |Costabel [1985] and |Jullien| [1999)].
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proving a theorem. But the activity of theorem-proving occupied a peripheral role in the

network of exchanges between mathematicians Descartes was part of[”

Moreover, proving impossible theorems was an activity generally met with disregard
by mathematicians of XVIIth centuryE One reason can be found in the nature of
such propositions: impossible theorems departed from the current view, still inspired by
the standard definition found in Proclus’ Commentary, according to which a theorem

establishes a property of a given or constructed ﬁgureE

A further reason that might have deterred Descartes from attempting to prove the impos-
sibility of squaring the circle geometrically concerns the very structure of impossibility
arguments. Even if no one had produced, by the half of XVIIth century, a proof that the
circle-squaring problem could not be constructed in a geometrical way, it was envisionable

that such a proof ought to rely on a reductio argumentation.

Descartes expressed an unmitigated judgement concerning proofs involving indirect ar-
guments, for instance in his critique to the method of Fermat (in Descartes| [1897-1913],

"...la fagon de demonstrer

vol. 1, p. 489-490) which relied on indirect proofs, namely:
qui reduit & I'impossible (...) la moins estimée et la moins ingenieuse de toutes celles
dont on se sert en Mathematique". This criticism was by no means the expression of a
personal belief, as it was shared by a large audience and motivated on the ground of a
precise philosophical position, as the analysis in [Mancosu| [1999] has amply illustrated.
Arnauld and Nicole, for instance, evoke demostrations by impossibility as a "defect" in
geometry: "demonstrations by impossibility ... while they may convince the mind, they

do not enlighten it, which ought to be the chief result of knowledge; for our mind is not

12¢f. |Goldstein| [2013], p. 258-259: "Theorems when mentioned are facts to be used, eventually to be
commented, more than results of a necessary demonstrative procedure".

13Significant is the example of Fermat who, since the beginning of his mathematical career (cf. |Gold-
stein| [2013|, p. 270), proposed impossible problems in arithmetic, which failed to raise the interest of his
recipients. Moreover the ‘bad habit’ of proposing impossible problems caused some epistolary relations to
cease (Fermat| [1891-1896], vol. 2, p. 260) or could raise the irritation of mathematicians (noteworthy
is Wallis’ reaction, in [Fermat| [1891-1896|, vol. 3, p. 468; cf. |[Liitzen| [2010], p. 8).

14 0f. Introduction of this study. If we consider a work that well represents XVIIth century practice,
as the Dictionnaire mathématique (1691) by Jacques Ozanam, we can note that Proclus’ conception of
problems and theorems is fundamentally accepted: "le probleme - wrote Ozanam in the Dictionnaire
- est une proposition qui tend & la pratique, comme de diviser une ligne terminée en autant de parties
égales que l'on voudra ... " (Ozanam| [1691], p. 2). On the other hand, Ozanam also agrees with
Proclus’ characterization of a theorem: "le theoreme est une proposition speculative, qui exprime les
proprietez d’une chose. Comme quand on dit que dans un triangle rectiligne la somme des trois angles
est égale & deux droits, et que dans un triangle spherique la somme des trois angles est plus grande que
deux droits ... " (Ozanam [1691], p. 8).
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satisfied until it knows not only that a thing is, but why it is, which cannot be learnt
from a demonstration which reduces it to the impossible." (quoted in Mancosu| [1999], p.
101).

These considerations suggest that Descartes might not consider the claim that ‘the
quadrature of the circle is impossible’ on a par with usual geometric theorems. In other
words, he did not deduce an impossibility from the supposition that the circle could be
squared geometrically, as in a reductio ad absurdum, but inferred the impossibility of
squaring the circle geometrically as a consequence from the ‘axiom of incomparability of

the straight and the curved’.

Although this axiom or, more precisely, its restriction to the case of segments and arcs
of the circle, invested the very activity of problem-solving and contributed to shaping a
meaningful separation between geometrical and ungeometrical curves, as I have argued

in the previous chapter, it was not justified by Descartes, nor explained any further.

As suggested by Bos or by Hoﬁmanﬂ Descartes’ belief on the impossibility of finding
an exact proportion between a straight line and a curved line might be traced back to an
ancient classification of lines, which echoes in Aristotle’s Physics, and was later resumed
by Averroes. In particular, straight lines and arcs of circles, on one hand, and polygons
and circles, on the other, cannot be compared, since they ultimately belonged to different
kinds (see ch. |1} sec. . It can be conjectured that Descartes was influenced by this
aristotelian-averroistic view on curves at some stages of his career, although the details
of such influence (by which mediator, and through which sources was he exposed to this
view? and why did he accept it?) are at present unknown, and certainly worthwhile of

further investigations in the futurem

5See Bos| [1981], p. 314; Bos| [2001], p. 342; [Hofmann| [2008], p. 101-103.

Descartes was educated according to the 1599 Ratio Studiorum, a practical handbook in educational
method and college management which established the influential system of jesuitic education. It is well
known that the teaching of Aristotle had an extant role in that training, although it is dubious whether
a specific teaching on the squaring of the circle were imparted too; on the contrary, the difficulty of the
subject made it a topic for research mathematicians rather than for apprentices (See |[Romano| [2000],
especially on pp. 255-266, for details about the educational system in Jesuit schools). It is worth
mentioning, with respect to the problem of the quadrature of the circle, the jesuit father Antoine Jordin
(1562-1636), who was responsible, between 1604 and 1606, for the education of students in philosophy
at Collége de la Madeleine, in Bordeaux. As it can be read in the manuscript of his courses, Jordin
dedicated an entire section of his geometry class to a discussion of the problem of the squaring of the
circle. Although expositions on the quadrature of the circle were by no means the rule, in the jesuitic
elementary teaching, Jourdin’s exception leaves the possibility open that Descartes might have been
acquainted with the problem since his early formation. Among Jordin’s sources, we can list Clavius’
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Leaving aside the origins and plausibility of the Aristotelian standpoint, we can still
inquire about the reason why Descartes did not feel bound to offer any justification
for this belief. I surmise that the impossibility of expressing the proportion between
segments and arcs of the circle in an exactly knowable way could have assumed the role
of a ‘meta-statement’ with respect to Descartes’ geometry and to the canon of problem-
solving established in it.lzllf we suppose that Descartes adopted the non-comparability
between straight and circular magnitudes as a sort of meta-statement guiding the practice
of problem-solving (for instance, by ruling out certain problems from the ambit of those
that the geometer should tackle), it is not obvious that such a meta-statement could or
should be proved on a par with common theorems. Therefore, it is not surprising either
that Descartes did not produce any mathematical justification for the claim that the
proportion between straight and curves cannot be known exactly, nor it is astounding
that he might have simply relied on a rather ‘metaphysical’ position, as Bos and Hoffman
(among others) claim. In this, Descartes was continuing a custom that was proper of

ancient mathematicians, or mathematicians of late antiquity, who took for granted the

Geometria Practica (published in 1604) and, more probably, the second edition of his commentaries on
Euclid’s Elements (from 1589), since both works contained substantial digressions on the quadrature
of the circle. It should be pointed out that Clavius was very influential at La Fléche, where Descartes
took his first training in mathematics. Hence it can be supposed with some likeliness that Descartes
knew of Clavius by 1615-16, the years in which he graduated from the school, although we cannot say
with certainty that Descartes knew by this time Clavius’ remarks on the quadrature of the circle (See
Sasaki| [2003], p. 51). I note, in particular, that the passage from Aristotle Book VII of the Physics,
concerning straight and curved lines, is critically evoked in Clavius’ commentary to the Elements, a text
certainly perused by Descartes in later years. Clavius’ opinion about Aristotle’s axiom is negative, as
we can read: "Hae etenim [namely, straight lines and curves| ita differre inter se videntur, ut Aristoteles
liquido affirmarit, unam alteri aequalem esse non posse, quod tamen (pace Aristotelis dictum sit) verum
usquequaque non est, cum Archimedes in lib. de lineis spiralibus demonstraverit, quaenam linea recta
aequalis possit esse circumferentia cujusvis circuli dati, idemque in quadratura circuli ostenderimus",
(Euclid| [1589], p. 374). It is not known whether Descartes had read this passage, in particular. On
the other hand, Descartes disapproved Clavius’ proposal, also evoked in the quoted passage, to solve
the quadrature of the circle by the quadratrix, suitably redefined through a pointwise construction (see
Euclid| [1589], p. 894ff.). Since Clavius’ inquiry arguably presupposed the possibility of finding an exact
proportion between straight and curves, its refusal by Descartes might have been also motivated by
his adherence to the opposite conviction. Some interesting notes on this concern can be found in Isaac
Beeckman’s Journal, at one time Descartes’ mentor: "Quadratura circuli estne possibilis? Respondeo: Si
physicé dicas, maximeé. Nulla enim res physica infinité secatur; primordia igitur physica erunt communis
mensura circuli et quadrati, ergo aequalis numerus talium mensurarum circulum et quadratum perficiunt.
Verum, quoniam haec eadem primordia physica hnoni infinité secari possunt, dubitatur mathematice,
quamquam quadratum majus et minus dari possit, aut physicé aequale cogitari possit. Nec mirum. Recta
enim rectae, et rectilineum rectilineo, est incommensurabile. Quidni ergo circularis linea ad rectam et
circulus ad rectilineum &oVupetpoc dici posset?" (Beeckman| [1939-1953|, Vol. 1, p. 26, written around
1613-1614). It cannot be excluded that Descartes discussed with Beeckman about this issue too during
the time spent with him in 1618-1619. This would suggest that Descartes was exposed, since his early
mathematical education, to the thesis that rectilinear and circular magnitudes cannot be compared.
7of. chapter sec.
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unsolvability of certain problems by prescribed means (see ch. |1} sec. ).

6.3 On the significance of early rectifications for Descartes’

meta-statement

The general conviction that arcs of curves could not stand in an exact proportion started
to waver soon after 1637.|E| Nearly nine years later, for example, Mersenne pointed out
in a letter to Torricelli that the problem of rectifying curvilinear arcs was an unsettled

question worth being pursued:

Sexto gratissimum facies, si doceas quid nuper inveneris, quidque mente pre-
mas, gauderetque summopere Fermatius, si laborares in spiralibus, aut aliis

curvis reperiundis, quae rectis lineis forent aequales, caret enim ejusmodi

genio E

By mentioning "...other curves equal to straight lines", Mersenne might want to refer to
the rectification of algebraic curves too. As a further confirmation of this hypothesis, I
recall that in a previous letter from 1645, Mersenne had inquired about the possibility of
rectifying a portion of the parabola in a geometrical way (vid. Torricelli [1919], p. 269).
These exchanges were but a preamble of an intense research started in the fifties - hence
soon after Descartes’ death - which led to important results concerning the rectification

of geometrical curves, and eventually knocked on the head Aristotle’s axiom.

One of the first outstanding results concerned the oft-invoked rectification of the parabola.
In 1657, in fact, Huygens informed his recipients and associates that he had discovered
the equivalence between the problem of rectifying a parabolic arc and the quadrature
of a corresponding sector of an equilateral hyperbola. Huygens gave his result as a
theorem, but omitted the proof (a sketch of Huygens’ reasoning that might have led to
the formulation of his theorem can be found in|Hofmann||2008|, pp. 106-107). Meanwhile,
as we learn from Huygens’ correspondenceﬂ the dutch geometer Hendrick van Heuraet
(1634-16607) had reached the same result on the equivalence between the problem of the

rectification of the parabola and the squaring of the hyperbola. Van Heuraet’s discovery

18 Cf. Hofmann| [2008|, in particular chapter 8; [Yoder| [1988], chapter 7.

19w And; sixtly, you will make such a beloved thing if you teach what you have just found, and which
occupies your mind, and Fermat would be greately pleased, if you worked on finding spirals, or other
curves equal to straight lines. He lacks indeed of such an insight." (Paris 26th August 1646, in [Torricelli
[T919], p. 411).

200f., for instance, [Huygens| [1888-1950], vol. 2, p. 353.
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was soon published in the second latin edition of Descartes’ geometry (1659), as part of a
letter with the title: " Epistola de transmutatione curvarum linearum in rectas" ("Letter

on the transmutation of curves into straight lines")ﬂ

The "Letter on the transmutation of curves" contains a lot more than Huygens’ result
on the rectification of the parabola, as we come to know from the praise-worthy words

of Frans Van Schooten, on the eve of its publication:

he [namely, van Heuraet| has furthermore invented a Method (as he has
shown to me by letter) with which he can rectify several curves absolutely
perfectly (perfecte omnino). This he has explained so lucidly and briefly that
he hardly required two pages for the whole work. Moreover, his method was
such that what was said about the quadrature of the Hyperbola resulted from
it smoothly as if it were a corollary (...) his Method for transforming curves
is already in press and will come out one of these days. If God so wishes,

along with the first part of Descartes’ Geometria.@

Van Heuraet’s Epistola contains indeed, beyond the above-mentioned result on the
parabola, a general theorem regarding the correspondence between rectifications and
quadratures, from which a method for the rectification of algebraic curves could be de-
rived, by reducing the problem of rectifying the arc of a given (algebraic) curve to the
problem of the quadrature of a certain figure constructed from the given curve. In the
same letter, van Heuraet offered two applications of his method: firstly, he obtained a rec-
tification of an arc of quadrato-cubic parabola (namely, the curve of equation y? = :c?’a)ﬁ
and secondly he derived, as a "corollary" of his Method, to employ Van Schooten’s terms,
the result concerning the equivalence between the rectification of an arc of a parabola

and the quadrature of an hyperbolic sector.

2Descartes [1659-1661|, vol. 1, p. 517-20. For an English and Dutch translation of van Heuraet’s
piece see: |Grootendorst A. W.| [1982]. For an attempt to reconstruction van Heuraet’s life and his
mathematical achievements, see [van Maanen| |1984].

2ZHuygens| [1888-1950|, vol. 2, p. 353. English translation in [van Maanen| [1984], p. 243.

23Van Heuraet’s rectification of the quadrato-cubical parabola was possibly the first published rectifi-
cation of an geometrical curve, even if it must be recalled that during the same year Wallis gave, in his
Tractatus de cycloide, an account of the rectification of a higher parabola obtained by the english math-
ematician William Neil. Fifteen years later, in 1673, a controversy arose between Wallis and Huygens
concerning the priority of the first rectifications. The detailed study contained in [Yoder| [1988| allows me
to eschew such questions of priority, and confine myself to evaluating the consequences that the early
rectifications of geometrical curves had onto the reception of Descartes’ geometry, and in particular on
the reception of one of its cornerstones, namely the distinction between geometrical and mechanical
curves and the related separation between possible and impossible problems.
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The content of the mathematical discoveries deployed in the brief Letter on the Transmu-
tation of curves has been explored in few detailed inquiries, reported in bibliography.@
In the following lines, I will summarize the main points of van Heuraet’s reasoning in
order to understand why the Epistola, whose does not deal, apparently, with any of the
themes treated by Descartes in his Géométrie, was appended as a commentary to this
text.

Let us consider, firstly, the theorem stated by Van Heuraet. Let two curves AM L and
END (as in fig. , referred to the same axis AH, be given such that, for any point P
on this axis, the perpendicular to AH from P meets the curves on two points, M and
N, in such a way that:

PM: MG=K:PN (6.3.1)

(MG being the normal to AM L, and K a segment of constant length). If this condition
holds, then the surface BDC A equals the rectangle built on a segment K and another
segment whose length is equal to the length of the arc AM L, taken on the first curve,
and corresponding to arc CN D on the second

In order to prove this theorem, van Heuraet did not rely on any of the algebraic techniques
exposed in Descartes’ geometry, but on the method of indivisibles and on the geometry
of Euclid’s Elements. In order to reconstruct his argument, let us suppose curves AM L
and END given (fig. , such that they comply with the only condition of satisfying
proportion [6.3.1] once an arbitrary point M on the first curve has been chosen. I note
that van Heuraet does not require these curves to be constructed, they need not be

geometrical curves.

In order to complete the proof, let the tangent M F' and the normal MG to the curve
AML be also given. Being P the foot of the perpendicular from M to AH, let us take
two points O and @ on AH, from opposite sides with respect to the perpendicular PM.
Let also OU and QV, perpendiculars to AH from O and @, be drawn. Next, let us
suppose that M F' cuts these perpendiculars in points I and T, respectively, and that I.J
perpendicular to QV is dropped. At this point, Van Heuraet can exploit the fact that

248ee, in particular, Panzal [2005], p. 119-132; |van Maanen| |1984]; [Edwards| [1994], for a rendering of
Heuraet’s argument with the tools of modern analysis.
ZDescartes| [1659-1661|, vol.1, p. 519.
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Figure 6.3.1: Van Heuraet’s method for the rectification of certain algebraic curves.



CHAPTER 6. IMPOSSIBLE PROBLEMS IN CARTESIAN GEOMETRY 280

two right angle triangles (PMG and IJT') have been constructed, in order to derive the
following proportion:
PM:MG=1J:IT.

If we compare it with the we can infer:

I1J:IT=K:PN.

By applying Euclid VI, 16, it is immediate to conclude from the above proportion that
rectangle r(QV;UV), with sides OQ = IJ and QV = PN is equal to the rectangle
constructed on I'T and K:

r(QV;UV) =r(IT; K).

Van Heuraet’s reasoning rests, so far, on an elementary geometric arguments: a triangle
(IJT) is constructed similar to a given one (PMG), and from the comparison of their
homologous sides a proportion can be written. This proportion allows van Heuraet, in
its turn, to conclude the equality between the two rectangles r(QV;UO) and r(IT; K),

stated above.

In order to pass from considerations of rectilinear figures and segments to considerations
of curvilinear figures and arcs, and in order to compare them, van Heuraet resorts to a

method akin to Cavalieri’s method of indivisibles %]

26The basic conception in the backdrop of Cavalieri’s method, exposed in the influential treatise
Geometria indivisibilibus continuorum nova quadam ratione promota (1635. hereinafter: Geometria
indivisibilibus) was to consider the surface of a plane figure or region (or the volume of a solid body)
as the aggregate of all the chords (resp. all the planes) intercepted within the bounds of the figure
when we trace infinitely many parallel lines crossing the figure itself. On the ground of this suggestive
interpretation, Cavalieri could state a principle, that still bears his name: if two plane surfaces are cut
by a system of parallel lines, which intercept corresponding equal chords over each figure, then also their
surfaces are equal. If corresponding chords have a constant ratio, then the surfaces entertain the same
ratio (for a presentation and discussion of Cavalieri’s method, see |[Andersen| |[1986|, and |Giusti| [1980]).
As I will explain in more detail later, Van Heuraet seems to conceive the curvilinear surface BN DCA as
composed by rectangles with infinitely small height, rather than as an aggregate of all the chords. This
was a current interpretation of Cavalieri’s original ideas by the end of the fifties.
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Van Heuraet’s argument proceeds as follows: since the distance of O and @ from P has
not been fixed, it can be taken arbitrarily small, and certainly sufficiently small that
segment [T cannot be distinguished from the corresponding section of the curve AM L,
and the rectangle r(QV; UV') cannot be distinguished from the corresponding portion of
the curvilinear figure BDC AP

If we indicate, slightly anachronistically, with As the length of a small hypothenuse IT,
tangent to the curve, and with Az the length of a small leg I.J, then we can state the
following proportion:

Ax:As=K: PN.

From which derives, by elementary geometry:

r(Az; QV) = r(As, K).

If the arc of the curve AM L between A and L is considered as the sum of all its small
tangents (that we may indicate as follows: AML = > As ), we can conclude from it that
the curvilinear figure BDC A, equal to the sum of rectangles r(Az; QV') of infinitesimal
width, is equal to the rectangle built on K and on a segment of length equal to the length
of the arc AJ/\}L, between points A and L, namely:

> r(AzQV) =) As K). (6.3.2)

The appeal to indivisibles or infinitesimals (namely rectangles or line-segments of infines-
imal breadth or length) is fundamental, in the proof of van Heuraet’s theorem, in order
to consider an arc of the curve AML (as the arc AML between points A and L in the
example) as the sum of infinitely small sections of its tangents, each drawn to a point on
the curve infinitely close to a point previously drawn, and the trapezoid BN DC' A as the

sum of infinitely small rectangular sections. Only on this ground, in fact, van Heuraet

2"This point is made explicit, in particular, in [Panza |2005], p. 121.
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can establish that the the trapezoid BDC’A is equal to a rectangle whose sides are the
segment K and a segment equal to AM L, and therefore conclude the proof

This proof concludes the first part of the Epistola. In the second part, van Heuraet
expounds his method for rectification by solving few exemplary problems.@ The two
moments in which van Heuraet’s tract can be divided are obviously related. Not only
the theorem of van Heuraet is required in order to solve the first problem discussed in the
text, namely the rectification of the quadrato-cubic parabola, but the very method for
rectification, that shines through the examples discussed in the Epistola, can be envisaged
as a synthetic reversal of the inferential path which led from to the proof of van
Heuraet’s theorem. As a result of such a synthesis, van Heuraet explicitly conceives
his method as a method of rectification, undergoing the following constraint: it does
not permit to rectify an arc of any curve, but only arcs of curves associated to given
curves, whose quadrature (or the quadrature of corresponding sectors) can be solved or

has already been solved.

I observe that the applicability of van Heuraet’s method is subject to another important
restriction: in order to obtain the rectification of a proposed curve, it is required to solve
the auxiliary problem of finding the normal MG for any point M on the curve. Since
the example chosen by van Heuraet concerns the rectification of a particular algebraic
curve, its normals can be determined with cartesian techniques. The appeal to cartesian

geometry certainly facilitates the determination of the normal, but it is not necessary.

Let us then suppose to rectify an arc of the curve AM L, expressed by the algebraic
equation: F(z,y) = 0 with respect to the coordinate system with origin in P (AP = x
and PM = y). Since AML is an algebraic curve, its normal MG = s can be expressed

algebraically, using Descartes’ method for tangents, exposed in La Géométrie and in few

28In Van Heuraet’s words (I point out that the letters used by Van Heuraet differ from the ones I
have employed): "Quapropter omnia haec rectangula simul sumpta aequalia erunt rectangulo sub X &
alia recta aequalia omnibus tangentibus simul sumptis. Unde cum illud verum sit, quotcumque rectan-
gula atque tangentes extiterint, & figura ex parallelogrammis constans, si eorum numerus in infinitum
augeatur, definat in superficem AGHIKLF', ac tangentes similter in lineam curvam ABCDE, liquet
superficiem AGHIKLF aequalem esse rectangulo sub ¥ & recta aequali curvae ABCDE. Quod erat
demonstrandum" ("Therefore these rectangles taken together will be equal to the rectangle contained
by ¥ [K in our notation] equal to the curve ABCDE", in|Grootendorst A. W [[1982], p. 519).

29 As Heuraet avowed: "methodum a me inventum, cujus beneficio complures curvae lineae (...) in
rectas possunt transmutari": "the method I have invented, by whose aid several curved lines can be
transformed into straight ones", [Descartes| [1659-1661], vol.1, p. 517. See also Descartes| [1659-1661|,
vol.1, p. 519.
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remarks appended by Van Schooten in his commentary to the latin edition.m

If PN is set equal to z, the equation of the second curve END can be obtained from
the following system (the second equation figuring in the system is simply derived from
6.3.1)):

zy = Ks

and by substituting y in the first equation. The curve EN D will be finally expressed by
an algebraic equation in the unknowns x and z with respect to the same coordinate axes
AP, MP: let us call the equation of END: G(x,z) = 0.

This result is obtained by the sole application of the cartesian machinery for algebraic
manipulations on equations and for the method of tangents. On the other hand, in order
to pass from the algebraic expression of the curve to an expression for the area subtended
by the curve, namely, the trapezoid ABC' D, Van Heuraet must suppose that measures of
areas can be expressed, in general, in algebraic terms. The same supposition holds for the
measure of arcs. Both moves demand, in order to be rigorously justified, an insight into
the foundations of the theory of areas, which is lacking or is implicit in Van Heuraet’s
solution. Nevertheless, in order to work out the content of Van Heuraet’s solution, we
might proceed as suggested in (Panza [2005], p. 124ff.) and take momentarily for granted

the algebraic expressability of areas and arcs.

Since the trapezoid ABCD is conceived as the collection of infinitely small rectangles
of ordinate z, varying from point A (with abscissa 2 = 0) and point B (with abscissa
x = &), we can express its surface, according to the suggestion advanced in [Panza [2005|
(pp. 123-125), by the following symbol: 2(5) [z]. Similarly, the arc bounded by points
A and L can be expressed by the symbol: Ag[y]. The result in can be suitably

reformulated as: ¢

> 2] = R(K, A[y)).

0

308ee in particular [Descartes [1659-1661|, vol.1, p. 43-59, p. 246-253.
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If Zg [2] is expressed algebraically, for instance by a formula in which only the variable
& occurs, then also Ag [y] can be expressed algebraically, since it can be obtained as the
result of the division ofzg[z] by K (K being a constant, the algebraic expression for
Ag [y] will contain only the variable ).

This procedure is firstly applied by Van Heuraet to solve, by an analytical procedure, the

particular problem of the rectification of an arc of a cubic parabola, of equation y? = %3
The first step exposed by Van Heuraet consists in finding the normal MG for a point
M of the curve. Van Heuraet reasons on the curve AML drawn within the system of

orthogonal axes AH, BD.

If the normal MG to the point M is supposed already drawn in the diagram, its length
can be computed applying Descartes’ strategy. As prescribed by it, the problem of
constructing a normal MG to a curve in one of its points M can be solved by constructing
a circle with center G and radius MG, and posing the condition that the circle intersects
the given curve AM L in a double point.lﬂ

This geometrical condition can be expressed only analytically. Let us name the segments
in the diagram as follows: PM =y, AP =x, FQ =s, MG =v, PN =z, GP = s — z,
GP? = s> —2sx + 2%, Since GM? = ¢? = %, applying Pytagoras’ theorem one will find:
MG? = s —2sx + 22 + % = v2 This is an algebraic equation (let us call it ¢(x) = 0)
of the general form f(z)% + (s — x)? —v? = 0.

The analytical counterpart of Descartes’ geometrical condition for the double point is
expressed by the condition that equation ¢(x) = 0 possesses a double root. In order to
find the (double) root of 52—25x+a:2+%3 = v2, and thus find s(= FQ) and v(= MG), van
Heuraet employs Hudde’s method, an algorithm which simplified Descartes’ techniques

exposed in La Géométrie.

Without entering the details of the algorithmﬂl will limit myself to state the final result

obtained for the segment s, namely: s = FQ = x + %, and for segment GP, equal to

%. Another application of Pythagoras’ theorem will give us the length of the normal

o o 9r4 3
v=MG=/75+*.

31See [Panzal [2005], pp. 83-118, and also |Giusti| [1986], pp. 26-37.

32Descartes| [1659-1661], vol.1, p. 519.

33An exhaustive explanation can be found in [Panzal [2005], pp. 104-113. See also Whiteside, Newton
Mathematical Papers, 1, pp. 213-215.
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By setting K = % (as Van Heuraet remarks, K can assume arbitrary values: "licet enim
pro libitu assumere"), will yield:

1 1
PN(=2z) = 792+ §a2.

It results that the curve G(z, z) = 0 associated to the semi-cubical parabola of equation:

y? = % is a parabola with vertex F, such that FA = %a, and latus rectum ia

Without further explanation, van Heuraet concludes that the length of arc AM L mea-
sures X?S — 2—870,, with y=FEB=AB+ FEFA=z+ %a.

Van Heuraet possibly assumes that the region under by the curvilinear figure ABCD is
expressed by the algebraic formula: Zg[z] = ( X 2£a) (in this case, £ = AB)

Consequently, the length of A]\Af L can be obtained by dividing the value of the area by
1.
% 8 -
sV~ X308
Ay = " —— =/~ — a.

1
3 a 27

The second example discussed by Van Heuraet concerns the rectification of a parabolic
arc, and had a different, "negative" outcome. Indeed, let the parabola y = % be given.
The subnormal PG, determined by Hudde’s rule as in the previous case, is equal to %3,
whereas the normal PS is equal to %ﬁ—l—i—g. By setting K = a, the curve associated to the
parabola will be defined by the equation z = v4z2 + a2, which expresses an hyperbola.
Hence, van Heuraet’s procedure showed that the rectification of the parabola depended

on the quadrature of this figure, an unsolved quadrature at his time. For this reason

3Descartes| [1659-1661], vol.1, p. 520.

39Descartes [1659-1661], vol.1, p. 520. Note that van Heuraet employs the symbol v to denote segment
EB.

36Van Maanen and Grootendorst suggest that van Heuraet might have relied on well-known results by
Cavalieri, who had given the quadratures for the class of paraboloids of cartesian equation: y = z*, with
k a positive natural number (see|Grootendorst A. W.[|1982], p. 108). Yoder refers directly to Archimedes’
result on the quadrature of a parabolic sector, that van Heuraet certainly knew as well. I will sketch
below a possible reconstruction of van Heuraet’s reasoning based on the archimedean quadrature.
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Van Heuraet concluded his letter not by solving the rectification of the parabola, but by

merely pointing out the relation between the two problemsﬂ

From the survey of van Heuraet’s main contributions to the rectification of curves, it is
clear why this inquiry was appended to a translation of Descartes’ geometry: it provided
in fact an unsuspected application of algebraic techniques, developed by Descartes in

order to solve the problem of tangents, into the different problem of rectifications.

Van Heuraet’s mathematical results were hailed by his contemporaries as momentous
achievements. F. de Sluse (1622-1685), for instance, who entertained in the fifities a rich
correspondence with Schooten and Huygens, and was therefore informed on the latest
results concerning the rectification problem, thus commented on the recently published

letter on the rectification of curves:

Novum autem illud de Parabolicae lineae, et Hyperboles dimensionis mutuo
nexu, dici non potest quantum mihi placuerit, praesertim cum Heuratio oc-
casionem dederit inueniendj rem quam inter &d0vata hactenus recensueram.
In quo errore et Cartesium et plures alios, vt scis, socios habuj; ideoque
maximo desiderio teneor videndj Commentarij Schotenianj, cuius editionem

postremam nondum aspexi .. @

Sluse evokes, in this passage, the equivalence ("mutuo nezu") between the rectification
of an arc of the parabola and the quadrature of an hyperbolic sector as a fundamental
discovery leading to another one, associated with van Heraet’s name. This result consists,
in all likelihood, in the analytical rectification of an arc of a quadrato-cubic parabola, a
result that Sluse himself - so we read in the passage reproduced above- together with sev-
eral other geometers (including Descartes) erroneously ranged "among impossibilities".
We can read here a reference to the axiom about the incomparability between straight
and curved, against which the application of Heuraet’s method provided an astounding

counterexample.

3""Quod ipsum docet, longitudinem curvae Parabolicae inveniri non posse, quin simul inveniatur
quadratura Hyperbolae, & vicé versa", Descartes| [1659-1661], vol.1, p. 520. In van Maanen’s and
Grootendorst’s translation: "and from this exactly we learn that the length of the parabolic curve
cannot be found unless at the same time the quadrature of the hyperbola is found, and vice versa."
(Grootendorst A. W.[[1982], p. 105).

EHuygens| [1888-1950], vol. 2, p. 354: "It cannot be said how far I enjoyed this news about the
parabola and its mutual relation with the quadrature of the hyperbola, in particular, because it gave to
van Heuraet the occasion to discover a thing that I have so far confined among the impossible [&80vortal.
As you know, Descartes and several others were fellows to me in such an error. Thus I am gripped by
desire to see the Commentary of Schooten, whose last edition I have not yet looked upon".
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Henk Bos suggests, in Bos|[1981] and in[Bos [2001], that the first rectifications of algebraic
curves might have represented more than a refutation of an axiom or a dogma believed
for a long time (a conclusion that, as attested by the excerpt reproduced above, was taken
also by Sluse). In fact, Bos argues that by refuting the incomparability of straight and
curves, the first rectification of geometrical curves would also undermine the fundamental

dichotomy, in Descartes’ classification of curves, between geometrical and mechanical

ones@

However, Bos’ conjecture on the revolutionary character of the first rectifications clashes
against an obvious historical fact, stressed in [Mancosu| [1999] (p. 77-78), and Mancosu
[2007] (pp. 119-120): not only van Heuraet’s rectification of the semi-cubical parabola
was inserted in the second latin edition of Descartes’ geometry (1659) as an exemplifica-
tion of cartesian method, but no one at that time nor during the following years, claimed

that this result undermined the foundations of Descartes’ geometry.

I think that these objections are sound. But I also point out, with Mancosu,lﬂ that
it is sufficient to hold, as a ‘meta-statement’, the non-comparability between straight
segments and circular arcs (that is, the impossibility of stating exactly a proportion
between the two kinds of quantities) in order to demarcate as ungeometrical curves like

the quadratrix, the spiral and the helix, known to Descartes via ancient sources.

Indeed van Heuraet’s method for rectification did not succeed in refuting the non-
comparability between segments and circular arcs. Only an algebraic rectification of
the circle and of its arcs, or equivalently, the algebraic quadrature of the circle, that we
know to be impossible, would achieve such a refutation. Hence, the contemporaries of
van Heuraet probably realized that the restrictions inherent to the latter’s method of
rectification (restrictions analyzed above) rendered it unfit in order to tackle the prob-
lem of rectifying an arc of the circle, and therefore they also realized that van Heuraet’s

method could not threaten the foundational edifice of Descartes’ geometry.

On the other hand, I surmise, one must be also cautious in excluding that the early rec-

tifications of algebraic curves, like the one obtained by means of van Heuraet’s method,

39Compare, in particular, Bos| [2001], p. 342: "The central role of the incomparability of straight and
curves in Descartes’ geometry was the reason why the first rectification of algebraic (i.e. for Descartes:
geometrical) curves in the late 1650s were so revolutionary: they undermined a cornerstone of the edifice
of Descartes’ geometry".

40This proposal has been advanced in the worksevoked in the previous note.
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had any consequences on the reception of Descartes’ geometry and on Descartes’ belief
about solvable and unsolvable problems. It should be pointed out that Descartes plausi-
bly grounded his conviction about the non-comparability between straight segments and
circular arcs on a preliminary conviction on the non comparability between straight and

curvilinear magnitudes, whose universality, at least, was refuted by van Heureaet.

The following conjecture can be ventured: even if the first algebraic rectifications of al-
gebraic curves did not refute the conviction that the rectification of circular arcs was
impossible, and therefore they did not directly undermine the distinction between geo-
metrical and mechanical curves, one of the cornerstones of Descartes’ geometry, yet they

partly undermined the grounds of this conviction.

Probably as a consequence of such undermining, in 1667, less than ten years after the
second latin edition of the geometry was published, James Gregory was still dubious
about whether the quadrature of the circle could be solved by cartesian means, and
eventually came up with a negative answer, published in his Vera Circuli et Hyperbolae

Quadratura.

6.4 Problems of quadratures and the problem of area

In my effort to clarify and interpret van Heuraet’s solution, I have expressed the length

of the arc of quadrato-cubic parabola through the following symbolic notation: ‘Ag [y] =
¢

%’. The expression: ‘Zg[z]’ represents the area of the section of the parabola

delimited by abscissas 0 and £, and the expression: ‘Ag [y]” represents the length of an

arc between the same abscissas.

So far, I have not questioned how a seventeenth century geometer like van Heuraet might
have understood the concepts of area and arc-lenghts. On this concern, Van Heuraet’s
account, at least the one published in the Geometria, is not illuminating either. In
fact, Van Heuraet employs the symbolism of Descartes’ algebra of segments in order to
express the length of an arc and the area of a figure, without justification. Van Heuraet’s
reticence on this concern leaves us with crucial questions: was the algebraic formalism
employed by van Heuraet in order to express the measure of a surface and a arc the

same as Descartes’ formalism for the algebra of segments? And which tacit conditions

“IThis notation is employed in [Panzal [2005], p. 122ff.



CHAPTER 6. IMPOSSIBLE PROBLEMS IN CARTESIAN GEOMETRY 289

made such an extension of the cartesian symbolism possible and accepted without any

objection?

Problem of quadratures were dealt with, in the period 1630-1660 ca., by a number of
mathematicians who tried to constitute a general framework in order to solve the largest
possible number of quadratures of special figures, by combining the cavalerian method
of indivisibles with arithmetic procedures. On the contrary, the formalism of Descartes’
algebra of segments was not employed, in this framework, in order to solve quadrature

problems.

The reason was not accidental, but can be found in the difficulty of expressing the result
of quadrature and correlatively with rectification problems through the algebra of seg-
ments exposed in La Géométrie. At least for what concerns quadratures, this difficulty
was not related to any explicit methodological caveat: whereas Descartes explicitly de-
nied, in La Géométrie, that problems of rectifications could be solved in an exact way,
he simply eschewed discussing quadrature problems. On the other hand, I surmise that
the possibility of extending the algebra of segments in order to obtain an assertive and
determinative algebra, capable of treating problems of quadrature and rectification, con-
flicts with two major conceptual problems. The first one is related with the concept of
surface as magnitudes, and the other with a limitation inherent to Descartes’ algebra of

segments.

Let us consider the first problem. Given a pair of polygons («, ) it is always possible,
relying on Euclid’s plane geometry, to constructively determine whether: o < 8, a = 8
or B < «, and to endow with a geometric meaning the result of the addition a + 5. On
the ground of Fl. VI, 25 we can construct two rectangles A and B, having the same
height, and being equal to polygons a and f respectively. It will be therefore easy, on
the basis of the Elements, to compare these rectangles, in order to determine whether
A < Bor B < A, and to construct the rectangle A + B[

Once clarified this point, we can define an assertive ‘algebra of polygons’ on the model
of the algebra of segments (a supplementary problem, on which I will not enter, would
be to endow this algebra with a determinative character: in order to do this, we should
also be capable of constructing the product and division of two polygons, and offer a

geometric interpretation for the operation of extracting its square root, for example).

“2Panzal [2005], p. 2-6Mueller| [2006], p. 122.
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On the contrary, the possibility of comparing trapezoids among them and with rectilin-
ear figures (i.e. polygons) cannot be established in an equally general way, either relying
on Euclid’s plane geometry or in other available theories to early modern geometers.
It is true that in ancient mathematical practice, polygons and curvilinear figures could
be compared employing a variety of techniques, and certain quadrature problems could
be thereby solved in an exact, rigorous way.@ But the very method of exhaustion was
classically applied for the quadrature of particular figures, from which one could not ex-
trapolate general conditions that allowed not only to compare trectilinear and curvilinear
figures involved in specific problems, but in general, to compare arbitrary curvilinear and
rectilinear figures (for instance curvilinear regions, or trapezoids, bounded by geometrical
curves). This would represent a noticeable difficulty against the setting up of an assertive

algebra holding of figures in general, either curvilinear and rectilinear ones.@

The second qualm against the possibility of treating quadrature problems in an algebraic
way can be briefly stated: even if we had a criterion in order to compare and add
curvilinear figures, a problem would remain concerning how to denote, using Descartes’
algebra of segments, a trapezoid as a magnitude. Indeed any operation on segments will
always yield, within the cartesian formalism, a segment as a result. How can the algebra
of segments be employed in order to express a different magnitude than a segment, for

instance a polygon or a curvilinear figure?

Probably aware of the difficulty of explicating and incorporating these conditions within
the structure of the cartesian algebra, Descartes accurately avoided to mention quadra-
ture problems in his treatise, and even when he dealt with them, outside of La Géométrie,
he employed several techniques (included the method of exhaustion) arguably without
the intent of constructing a unifiying procedure (namely a calculus) analogous to the one

developed in La Géométrie.

But, as a survey of XVIIth century mathematics will confirm, the silence of van Heuraet
on the rationale and motivations of his application of the cartesian formalism to areas
and arcs is not surprising. It seems that no argument was explicitly given, in XVIIth or

XVIIIth century, in order to ground the extension of algebraic symbolism from segments

“3For an overview of ancient examples, see [Baron| [1969], chapter 1.

440n the XVIIth century discussions around the problem of redefining the classical notion of equality,
in order to cope with the problem of comparing rectilinear and curvilinear figures, see |de Risi [2007], p.
150ff.
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to areas: either cartesian algebra was ignored when dealing with problems of area, or the

possibility of its extension was tacitly assumed, like Van Heuraet did.ﬁ

In the absence of any explicit position held by XVIIth century mathematicians, it is still
possible to venture a conjecture in order to explain under which conditions the expression
S %3 — 2%a)’, that would denote a segment, in the framework of cartesian geometry,
can tacitly refer to an area, in the context of Van Heureat’s work. The hypothesis I want
to propose and endorse here has been advanced by M. Panza, in his [Panza [2005] (see,

in particular, the discussion at pp. 125-128).

As a first remark, it should be pointed out that no general formal restrictions enjoin
geometers from employing symbols, that in the formalism of cartesian algebra denote
segments, in order to express magnitudes other than segments@ We might, therefore,
envisage to employ symbols belonging to Descartes’ algebra of segments in order to
measure, within the the domain of segments, other magnitudes, like the surface of a
plane bounded region. In order to understand how this process is in principle possible,
and how it might have effectively occurred, I will start from a basic example. Formulas
for computing the areas of figures are among the basic facts of elementary geometry:
for instance, the area of a parallelogram is the product of its base and its height; the
area of a triangle is % of the product of its base and height. But measuring a surface
via the application of these formulas requires several presuppositions.@ For instance,
such presuppositions may include the availability of a number system endowed with
multiplication, and a way of assigning numbers to lines and figures in order to express
their lenghts and breadth, respectively. Thus, when someone states that: "the area of a
parallelogram ABC'D is the product of its base v and its height 3, namely: A(ABCD) =
af, he is not using, in this context, the symbols ‘a’ and ‘3’ as names for two segments,

but as measures of these segments, expressed for instance through numbers.@

“SPanzal [2005], p. 127.
46CF ch. , p- .
47 Cf. also ch. , sec.

48 According to the interpretation of Descartes’ geometry I have endorsed in this study, the formula
stating: "the area of a parallelogram is the product of its base and height" works in an utterly different
way with respect the formalism of Descartes’ algebra of segments: in the latter, symbols denote segments,
not the measures of these segments. For a discussion of the modern concept of area, see [Moise| [1990],
chapter 13 and 14.
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Taking the lead from this remark, I observe that another way can be envisioned to
measure the content of a figure, avoiding the appeal to numbersﬁ To this effect, let us
consider once again the elementary example of the parallelogram. Its base AB and height
DH are segments that can be denoted, within the cartesian formalism, with letters,
e.g: ‘a’ and ‘D’. These letters do not express any measure, but denote the segments
themselves. Hence, according to the internal multiplication in force within Descartes’
algebra of segments, we can write the product of a and b as: ab = ¢, where ‘¢’ denotes a

segment too, namely the unique segment which satisfies the proportion: 1:a=10: c.

But it can also be supposed that ¢, while denoting the product of segments a and b,
expresses the area of the rectangular region whose base and height are, respectively a
and b.lﬂ More generally, it can be supposed that a segment x can measure, in the domain
of segments, a magnitude X different than a segment, provided x behaves with respect
of any other segment in the same way that X behaves with respect to the magnitudes
of the same kind. In order to refer to the fact that the segment x measures X in the
domain of segments, one may adopt the following notation, following (Panza, [2005], p.
128-129):
s[X] = x.

I stress that such a supposition and the consequent correspondence between segments
and magnitudes other than segments (for instance, surfaces or volumes) is not made
explicit either by Van Heuraet or by any other early-modern geometer. However, it is
arguable that the algebraic measure of the parabolic surface obtained by Van Heuraet
might be inferred from algebraic expressions denoting segments, by means of procedures
that comply with the theory of proportions and with the metrical relations licensed by
it.

49The possibility of measuring the content of a two-dimensional figure was rigorously proved in David
Hilbert’s Grundlagen der Geometrie, for the first time. Roughly speaking, Hilbert proved that it is
possible to associate to the content of a figure a certain area-function with values in the additive group
of segment arithmetic, which is itself isomorphic to the field of the real numbers. If the existence and
unicity of this function are proved (as it is done in the Grundlagen der Geometrie) then the area of
a rectilinear figure can be measured by associating to it a certain value expressed by a member of the
field of segment arithmetic. Obviously, the axiomatic treatment provided in Hilbert’s foundational work
cannot be found anywhere in XVIIth century mathematical thought, and it would be an anachronism
to suppose the contrary.

59Moise derives the theorem in a rigorous way, stating that the area of a parallelogram is the product
of its base and its height can be derived from the postulates defining an area-function (Moise, [1990], p.
185-186).
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In order to understand this crucial claim, I will propose a plausible reconstruction of van
Heuraet’s inferential path leading from the derivation of the algebraic expression for the
parabola associated to the curve to be rectified, to the algebraic determination of the

arc-lenght of the semi-cubical parabola.

The most direct way to square geometrically the parabolic sector ABDC' (fig. would
be to consider it as the difference between the parabolic sector EBDC and the sector
ECAE (the conclusion is obvious on the ground of the diagram), and then to square
sectors EBDC and EC AFE by relying on known procedures, like Archimedes’ quadrature
of the parabola. Since the parabola z = w/%aw + éa2 has EB as axis, vertex in F and
latus rectum equal to %a, the following equalities can be immediately derived: EBDC =
%R(EB,BD), FACE = %R(EA,AC)E On this ground, each parabolic sector can
be squared, according to a classical, euclidean procedure: it is sufficient to construct a
rectangle equal to two thirds of the rectangle with sides EB and BD, and transform
it into a square. Once the quadratures of the two sectors have been accomplished, the
quadrature of the sector ABDC immediately follows: it is sufficient to take the difference
between the square equal to the sector EBDC' and the square equal to the sector ECAFE,

and transform this difference into a square.

In order to express this solution algebraically, Van Heuraet might have proceeded in the
following way. By simplicity, one may choose point E as the origin of the axis, so that
the equation of the parabola with respect to the new origin will be: z = %\/azm, and:
EACE = 2R(3a, 3a) and EBDC = 2R(x, 3\/aX), if x= EB = AB+ FEA =2z + ja.

If it is assumed that the surface of a rectangle is measured in the domain of segments
by the segment equal to the product of its sides, then the geometric relation between
parabolic sectors, namely: ABDC = EBDC—ECAE, yields the area Zg [z] of the sector
ABDC in algebraic terms (in virtue of the change of the origin, we are now looking for the
area of the trapezoid ABDC between the abscissa x = %a and the abscissa z = %a—i—ﬁ , but

I note that the area can be assumed as an invariant with respect to any transformation

51Both results can be inferred as corollaries from Archimedes’ Quadrature of the parabola, proposition
17 (Archimedes| [1881], vol. 2, p. 335). In Heath’s paraphrase: "the area of any segment of a parabola
is four-thirds of the triangle which has the same base as the segment and equal height" (Heath|[1897],
p. 246).
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of the coordinates involving the translation of the origin along one axis):

: 3
S[Z[ZH = gs[R(X, %\/ax)] — gs[R(ga, éa)] = éa X; _ S%GQ
0

In other words, the segment measuring the surface ABDC' in the domain of segments,
namely S[Zg [2]] is equal to 2 of the segment equal to the difference between the segments
measuring the surfaces of rectangles EBDC and EACE, respectively.

The algebraic expression ‘g ( X?g — %a)’ can therefore denote a segment, in full compli-
ance with the cartesian formalism, and at the same time express the measure of a surface

(hence, a magnitude different than a segment).

In virtue of Van Heuraet’s theorem, moreover, the surface of the trapezoid ABCD is
equal to a rectangle bounded by a segment K and by the arc AM L, in symbols: Zg[z] =
R(K, Ag [y]). In order to infer from the measure of the trapezoid the measure of the
arc AJ\A/[ L, Van Heuraet arguably made two simple, but tacit assumptions. Firstly, an
assumption, already in force in the deduction of the algebraic measure of ABCD, is
required: a rectangle is measured, in the domain of segments, by the product of its sides.
Secondly, van Heuraet had to assume the following too: if a magnitude A is measured
by segment «, then any magnitude B = A (provided a suitable notion of equality has
been given within the class of magnitudes to which A belongs) is measured by the same
segment .

Hence, if the area Zg [2] is measured by segment & X?g — £a), according to the above
conclusion, the area of R(K, Ag [y]) will be measured by the same segment. Consequently,
$0/% 40

the length of side Ag [y] will be expressed by the quotient: , in agreement

wih the result found in van Heuraet’s Epistola.

On the methodological level, the conclusion reached by van Heuraet contains a simple but
deep consequence. In fact, it shows that the scope of the formalism of (determinative)
cartesian algebra could be extended to the measuring of curvilinear surfaces bounded by
algebraic curves and to arc-lenghts of algebraic curves. It should be pointed out, however,

that Van Heuraet limited the range of application of his method, and therefore of his
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representational innovation too, to the sole case of the parabola, whose quadrature was
known since antiquity, and therefore did not present any difficulty) and to the rectification
of its associated curve, namely the quadrato-cubic parabola. Despite van Heuraet’s
confidence that his method for rectification would be applicable to the family of curves
with equations y?" = # it is not clear how the rectification of these higher parabolas
might be obtained, since van Heuraet did not possess a procedure in order to square the

associated sectors or, at any rate, he did not report such a method in any known text.lg

52Descartes| [1659-1661|, vol. 1, p. 520.
53 0f. [van Maanen| [1984], p. 268; [Panzal [2005], p. 129.



Chapter 7

James Gregory’s Vera Circuli

Quadratura

7.1 Introduction: the quadrature of the circle

Descartes’ Géométrie contains explicit criteria for separating acceptable from non ac-
ceptable solving methods, thus demarcating the ontology of Descartes’ geometry and its
strenght in problem solving.E] However, in this treatise there are no further distinctions
between acceptable and non acceptable problems, in analogy with the distinction between
permissible, or geometrical, and non permissible, or mechanical curves. In particular, I
have found, in the context of Descartes’ mathematical production, no use of the word

"mechanical" with reference to problemsf]

A criterion for classifying problems was delineated, as I have discussed before, in a
letter to Mersenne from 1638. According to my reading of it, Descartes grounded on
the techniques presented in his Géométrie a sketchy distinction between possible and
impossible problems, according to whether the content of a given problem could be
reduced to an equation, and thus the problem admitted a geometrical solution. Probably
reminiscent of the traditional view on the non rectifiability of circular arcs in geometry,
Descartes denied that such a reduction was possible in principle, for the case of the

squaring of the circle.

!See, for instance Jullien| [1999], [Panza| [2005], [Panza) [2011].

It seems that later writers, when commenting upon Descartes’ geometry, simply overlooked these
terminological restrictions. On this, confront Collins’ remarks on Descartes’ Géométrie (Hofmann||2008],
p. 203).

296
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Obviously, proving that a problem can be solved mechanically (as it is the case, for
instance, of the squaring of the circle or the rectification of its circumference) is not
sufficient to exclude it from geometry: the trisection of the angle, for instance, can be
solved either using a mechanical curve like the quadratrix, or an acceptable construction
through a couple of geometrical curves. Nothing could have prevented, in principle, a
XVIIth century mathematician to conceive that a similar situation would hold also for
a problem like the quadrature of the circle, that can be solved, to our knowledge, solely

on the basis of mechanical methods ]

Moreover, the circle-squaring problem possesses this further peculiarity: while it could
not be allegedly expressed through an algebraic equation, nor solved by intersection of
geometrical curves, its content could be understood without appeal to notions extraneous
to Euclid’s plane geometryﬁ This might have been one of the reasons why efforts towards
a solution by euclidean means were recorded for at least two centuries after the period
we are considering, and it might also have been the occasion of more serious reflections
on the relationships between cartesian analysis and the non algebraic methods adopted

by ancient geometers.

Early modern geometers, and particularly cartesian geometers, were concerned with such
considerations, as a tract written by Frans Van Schooten: De concinnandis demonstra-
tiontbus geometricis ex calculo algebraico might showE| The preface of this text, written
by Pieter Van Schooten (Frans’ brother), who also published this text, after Frans van
Schootens’ death, maintains two broad claims that would soon become commonplace
opinions concerning algebraic methods in geometry. The first claim is that algebra, un-
derstood as an analytic art, has been accurately concealed by ancient mathematicians,
who “exhibited only the synthesis, in a vulgar form”. Therefore, the analytical method
has been forgotten, and its certainty occasionally cast into doubt. In fact, in Pieter Van

Schooten’s words, his brother:

...neque dubitabat, quin pleraque omnia, quae Veteribus tantum gloriae
peperissent, Analyseos beneficio ac ope reperta essent, sed quae illi, ut inven-

torum maior admiratio foret, dissimulato hoc artificio et suppresso, vulgari

31 recall that the observation is made by [Mancosu |2007], p. 117.

4One could object that the notion of “circle” as a magnitude is never introduced in Euclid’s plane
geometry, because Euclid never offers a procedure in order to sum circles. This claim is debatable, though,
since a suitable generalization of Pythagora’s theorem to semicircles would be sufficient to introduce an
operation of addition among circles. Nevertheless, it doesn’t seem to me that, even if the circle is never
defined as a magnitude in the Elements, the meaning of the problem of squaring the circle remains.

This tract is contained in [Descartes| [1659-1661|, vol. 2.
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tantum syntheseos forma exhibuissent. Sed cum Veterum dissimulatione fac-
tum videret, hunc Analyticae methodi praestantem usum non modo a multis
ignorari ac negligi, sed ipsam ejus certitudinem ac evidentiam a nonnullis

suspectam haberi . . ﬁ

The second broad claim is that the algebraic method employed in cartesian geometry is
able to translate and demonstrate everything that can be expressed in the language of
pure geometry and that, conversely, every algebraic inference corresponds to a geometric
inference. This correspondence would be sufficient to warrant, in Van Schooten’s view,

the legitimacy of using algebra in order to solve geometric questions:

Ipsum quoque syntheticum demonstrandi modum in analysi contineri atque
ex ea elici posse; ut eo argumento quemvis convinceret, quantum illa et

prevaleat, et praeferenda sitm

Nevertheless, the vocation of algebra as a universal language of geometry - this was, at
least, the ideal endorsed by Van Schooten - was hindered by two general quandaries.
This first one concerned the applicability of the cartesian model of analysis: could all
the concepts and operations of geometry be translated into algebraic operations? The
second one was the reciprocal problem: could all concepts and operations of algebra be

translated into geometry?

The problem of trisecting an angle already constituted a major stumbling block to a
mathematician like Ghetaldi, who was skeptical as to whether this problem could fall
under algebra, because its formulation concerned a magnitude like an angle, and not
line segmentsﬁ However, the treatments of Viéte and later of Descartes illustrated that
the problem of trisection can be easily converted into an equation, namely a proportion
between segments. However, reducibility of geometric problems to algebra remained an

open question for other problems.

8 Geometria, vol 2, p. 343. "...did not doubt, that most of these achievements, which engendered
so much glory for the Ancients, had been obtained with the benefit and aid of Analysis, but that they
concealed and suppressed this technique and, in order to increase the wonder for their discoveries, they
exhibited them only in the vulgar form of the synthesis. But although this appeared to be caused by
the dissimulation of the Ancients, the rewarding use of the analytical method not only was ignored
and neglected by many, but its very certainty and evidence was suspected by several people". My
understanding of the programmatic aspects of this treatise is particularly indebted to Brigaglial [1995].

"Descartes| [1659-1661], vol 2, p. 343. “Also, the very synthetical method of proof is contained in
analysis, and can be derived from it. Therefore by this argument anyone can be convinced, how much
analysis is more fruitful and preferable than synthesis”.

8See [Panza and Roero [1995], p. 225.
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The impossibility of solving the circle-squaring problem was occasionally evoked in con-
nection with this issue. In the same spirit of Frans Van Schooten’s, the question about
the range of problems that may fall under the scope of analysis is explicitly posed in the

preface of a work written by Frangois Dulaurens: Specimina mathematica (1667)E|

Here Dulaurens offers a summary or plan of his work, and in the end of it he evokes
some thoeretical problems arisen with analysis — namely the anaysis of the moderns, in
which Dulaurens conflated both Viéte’s Ars Analytica and Descartes’ algebra of segments.
In particular, the author points to a still unachieved or possibly unachievable part of
analysis, concerning the reducibility to equations of problems dealing with as quadratures

or cubatures:

Restat Analyseos pars altera, quae nonnullas questiones spectat, pro quibus
solvendis impossibile, aut admodum difficile est ad aliquam aequationem per-
venire, quales sunt fere omnes quae planorum, vel solidorum curvilineorum

quadraturas, aut cubationes investigari proponuntm

Among such difficult questions we find problems of rectification. Probably Dulaurens
was thinking about the rectifications of circular arcs, when he observed that, in cartesian

n

geometry: nam in hujuscemodi questionibus media desunt, aut saltem difficillime

apparent ad instituendam curvi cum recto comparationem ... "E

Indeed Dulaurens mentioned the circle-squaring problem, for which no equation had
been produced in order to infer a construction by geometrical means, so that the sole
solutions available were still those of the ancients, by means of mechanical curves like
the quadratriXE

9Dulaurens’ book was an elementary treatise in algebra, illustrating the recent advances in the field
brought by Descartes, Harriot and Viéte. The second part has some interest, though, as Dulaurens
studies there the solutions of 5th and 7th degree equations, in connection with the geometrc problem of
angular sections. He obtained, for these specific cases, a resolutive formula, that enabled him to express
one root numerically, in terms of the coefficients. The book became however known as a result of a
polemic with John Wallis, whose name was mentioned in the Specimina in connection with an algebraic
problem that he had presumably proposed. Wallis denied furiously that he had any part in this, and
attacked Dulaurens and his Specimina. Thanks to this attack, the book became known to Collins, and
through it, to Gregory as well (See |Stedall| [2011], p. 59-60).

101 There remains another part of analysis, which concerns several questions, for whose solution it
is impossible or very difficult to obtain an equation, as are almost all those that ask to investigate
quadratures of plane or curvilinear solids, or their cubatures" (from the preface, unnumbered sheet).

In  indeed the means are lacking in questions of this kind, or at any rate they seem to be very
difficult [to find], in order to establish a comparison of the curve with the straight." (pref.).

12nNulla aequatio elici potest ad propositam circuli quadrationem arguendam ... " ("No equation can
be set out in order to solve the proposed quadrature of the circle”, pref.).
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The study of quadratures occupied a central place in the development of mathematics
during the second half of XVIIth. Following the publication of Cavalieri’s Geometria
Indivisibilium (1635), several mathematicians strove in order to combine the principles of
the method of indivisibles with the algebraic formalism issued from Descartes’ geometry,
in order to derive a more general analytical method able to encompass a large class of
curvilinear figures. One of the principal aims of these inquiries was to collect preparatory

results in order to solve the squaring of the circle.

Behind these ideas we can still find the conception, ventured also in Van Schooten’s
De concinnandis, that Descartes’ algebra of segments might be a fragment of a general
method of analysis, whose principles had been secretly developed by the ancients, and
whose applications allowed them to solve problems and present them in the synthetic
form in which they were mostly trasmitted to us. If duly re-discovered, this method
of analysis would lead to new and important results, like solving in a systematic way

quadratures and rectiﬁcationsﬁ

However, as pointed out in Panza| [2005], a major conceptual difficulty was inherent to the
attempts at applying to quadrature problems the fundamental idea of the cartesian model
of analysis, namely, the reduction of a geometrical statement to a symbolic expression in
the form of an equation. This difficulty concerned the very expression of the result of a

quadrature problem.

It is significant, for instance, that one of the most influential early modern treatises
on quadratures, the Arithmetica infinitorum (1656) of John Wallis, Savilian professor
of geometry at Oxford for the whole second half of XVIIth century, was still grounded
on a traditional approach to the problem: Given a curvilinear figure delimited by the
origin and the absissa x = z, the problem of its quadrature consisted for Wallis in the
determination of the ratio between the curvilinear figure and the parallelogram, with side

z, constructed around the curve[]

Squaring the curve would thus come down to determine a proportion which we can

express in the following form, denoting by A the figure to be squared and by P the

13This theme, which appears in Van Schooten’s De concinnandis, and before him in Viéte, can be found
in several writers dealing with quadratures. On this concern, Stedall observes: “Torricelli supposed that
Cavalieri’s methods were those by which the Greeks had found their results, and that by reintroducing
them not only would ancient methods be made clear, but new results might be discovered (exactly the
hopes Viete had for his ‘analytic art’).”]Stedall| [2002], p. 157.

“Panzal [2005], p. 51-52.
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parallelogram:

If we read this proportion as the equality between two ratios (an interpretation accepted
by Wallis), the determination of the fourth proportional z would boil down to the de-
termination of a number expressing the ratio between the curvilinear figure and the
parallelogram. Once this ratio is supposed determined, a square or a parallelogram equal
in area to the figure A can be also constructed. Therefore, at least in the Arithmetica
infinitorum, Wallis did not conceive a quadrature as the operation of calculating an area
under a closed figure, applicable to any known curve or portion of curve bounded by a
system of axes, but held a rather traditional view, which considered a quadrature prob-
lem as the determination of a ratio between a curvilinear and a rectilinear figure, and the

subsequent construction of a rectilinear figure equivalent to the given curvilinear one.E|

Two major conceptual aspects of Wallis” work can help understand his approach to
quadratures. Firstly, he adopted the indivisibilistic point of view, prompted by Cavalieri
and Torricelli, which consisted in thinking a plane region as an aggregate of lines, or
a solid figure as an aggregate of planes. Secondly, Wallis’ way of proceeding in the
Arithmetica infinitorum relied on an arithmetical approachm in virtue of which he did
not formulate the solution of a quadrature problem, including the quadrature of the
circle, within the structure of the cartesian algebra of segments, nor did he associate the
problem to an equation, but relied on the apparatus of divergent series and numerical
interpolations in order to express the ratio between the figure to be squared (in our case,
a circle or one of its rational factors) and a polygon circumscribed to it (for instance, a

square circumscribed to the given circle) as a ratio of a number to a number.

Such an arithmetical approach to the circle squaring problem, however, presented Wallis
with a thorny question. We know that the ratio between a square and its inscribed circle
cannot be expressed but throughout a ratio involving a transcendental number. In the
classical framework in which Wallis still operated, all the attempts to provision a positive

solution to the problem of the quadrature of the circle had therefore to fail: indeed it

Y9Panzal [2005], p. 53.

16The primacy of arithmetic over geometry is discussed and justified by Wallis especially in his Mathesis
universalis (See the Dedicatio, in |Wallis| [1695, 1693, 1699|, vol. 1, especially the fourth unnumbered
sheet).
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is not possible to express the ratio of a square to an inscribed circle in terms of a ratio

between known numbers, either rational or surds.

As it has been analyzed in [Panza |2005|E Wallis circumvented the problem by hypoth-

esizing the existence of a number w, expressing the fourth proportional:

Q:C=1:w

and observed, about the ratio %: "I am inclined to believe (what from the beginning
I suspected) that this ratio we seek is such that it cannot be forced out in numbers
according to any method of notation so far accepted, not even by surds, so that it seems
necessary to introduce another method of explanining a ratio of this kind, than by true
numbers or even by the accepted means of surds"H Hence Wallis conjectured that
the hypothetical number @ could not be expressed in any number so far known, either
rational or surds, although it could be calculated to any degree of accuracy and clearly
satisfied all the usual rules of arithmetic: it was therefore a number on a par with the

other, commonly accepted, numbersH

Wallis’ treatise offered important insights on the nature of number 7, but his arithmetical
approach was of little guidance in settling the question posed above with respect to the
cartesian stance: is the squaring of the circle air of any of its sectors an impossible
problem, namely a problem not expressible by the language of algebra and subject to

the method of cartesian analysis?

In this chapter and the following one, I will consider two historical and conceptual de-
velopments related to the XVIIth century debate about the quadrature of the circle and
of other conic sections. The first case I will consider one is offered by James Gregory’s

Vera Circuli et hyperbolae Quadratura (1667) and by the subsequent controversy which

'"In particular, chapter 1. See also Stedall| [2002], chapter 6)

'8Wallis| [2004], p. 161.

'9Although, with hindsight, we can state that Wallis’ negative answer is correct, I stress that it
remained on the level of a conjecture (Wallis himself spoke of " conjectura mea" when referring to it). The
point is stressed, among others, by Yoder: "All these techniques for delimiting 7, be they geometrically
or algebraically garbed, involved repeated processes that were considered to proceed ad infinitum but
were truncated at some arbitrary point for evaluation purpose. Of course, today we know that any
method for determining 7 will inevitably involve an appeal to the infinite, because & is transcendental.
However, in the XVIIth century the question was still open ..." (Yoder|[1988], p. 138).
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opposed Gregory to Christiaan Huygens as one of his main recipients. The second one,
that I will discuss in the next chapter, is offered by Leibniz’s treatise De quadratura
arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tab-
ulis, conceived and written in the years 1674-76, which also contains an argument for
the impossibility of reducing the squaring of the circle to an algebraic equation. As I
will argue, the argument presented by Leibniz maintains important links with Gregory’s

argument and with the debate between the scottish mathematician and Huygens.

7.2 The controversy between James Gregory and Christiaan

Huygens

James Gregory’s work Vera circuli et hyperbolae quadratura (hereinafter VCHQ) was
published in Padua in 1667, and reprinted few months later, in Spring 1668, as an

appendix to another treatise, Geometriae pars universalis (hereinafter GPU )m

The first edition, printed in 150 copies, circulated among Gregory’s acquaintances, dis-
tinguished mathematicians and learned societies. In particular, a copy was promptly

sent to Huygens for a critical appraisal@

However, the Dutch mathematician never responded to Gregory; he chose instead to
publish, in the form of a letter to the director of the Journal des Scavants a review in
which he pointed out what he considered major flaws of Gregory’s WOI‘kE As T will
expound in the sequel, if proved correct, Huygens’ critique would substantially demolish
all the original contributions brought by VCHQ.

20See |Gregory| |1667], |Gregory| [1668b|. See also [Gregory| [1939], p. 45; [Huygens| [1888-1950|, vol. 6,
p. 154. The book underwent a reprint during Gregory’s lifetime, as an appendix to GPU (published
in Spring 1668), and had only one subsequent edition, as part of XVIIth edition of Huygens’ Opera
(Christiani Hugenii Zuilichemii, dum viveret Zelhemii toparchae, opuscula posthuma ... 1728). Around
1670, Gregory was probably preparing another, enriched edition of his VCHGQ), but this never saw the
light (a mention of this edition can be found in a letter to Collins, from 23 November 1670. See|Gregory
[1939], p. 118).

ZIGregory accompanied the copy of his book for Huygens with a letter in which he vehemently re-
quested his opinion ("... mihique censuram tuam remittas, quam inprimis expecto et vehementer a te
peto ... "), dated from 26th September 1667. Indeed, Huygens could be considered an authority in the
field: after having studied quadrature problems by means of the centers of gravity, in 1651 (Huygens
[1888-1950|, vol. XI, p. 273) he published in 1654 a well known work on the quadrature of the circle,
namely De circuli magnitudine inventa (see [Huygens [1888-1950|, vol. XII, p. 93). Both works are
evoked by Gregory in his accompanying letter.

22Letter from Huygens to Gallois, 2nd July 1668, in [Huygens| [1888-1950|, vol 6., p. 228.
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This severe review probably probably caught Gregory unprepared, since the VCH(@) had
so far received favourable commentaries@ and caused an angry polemic between Gregory
and Huygens, starting in the month of July 1668 and lasting for few subsequent months.
This polemics was mostly consigned to letters addressed for publication in the two major
journals of the time: the already quoted Journal des S¢avants and the Philosophical

Transactions @

This controversy, which saw the involvement of other leading scientific personalities, as
John Wallis, Robert Moray, Henry Oldenburg, Lord Brouncker and John Collins, reached
an end, at least for which concerns its public dimension, by 1669@ The following words,
written by Robert Moray to Huygens, on 15th February 1669, can be taken as a final

and equitable judgement about the the quarrel which opposed the two mathematicians:

23Gee, for instance the review appeared on the Philosophical Transactions of the Royal Society, in
March 1668 (Philosophical Transactions, 3, 1668, p. 640-4): " This tract perused by some very able
and judicious Mathematicians, and particularly by the Lord Viscount Brouncker, and the Reverend Dr.
John Wallis, receiveth the character of being very ingenuously and very Mathematically written and
well worthy the study of men addicted to that Science..." (Wallis [1668a], p. 641).

24The first reply by Gregory dates from 23rd of July 1668 (Huygens||1888-1950|, vol. 6, p. 240). Soon
later, in the introduction to his book Ezercitationes Geometricae (hereinafter FG), which was probably
terminated in midsummer 1668 and published soon after, Gregory returned, this time with particularly
harsh tones, on Huygens’ criticism. Huygens ignored the attack, though, but replied to Gregory’s
letter from July with another critical paper published in november 1668 on the Journal des Sc¢avants
(Huygens| |[1888-1950], vol. 6, p. 272-276). Gregory’s answer, written in the form of a letter to Henry
Oldenburg, on 25th December 1668, was eventually printed in the Philosophical Transactions on 15th
February 1669 (Huygens [1888-1950], vol.6, p. 306-311). Subsequently, Huygens planned a response to
Gregory’s Ezercitationes, but never published it (Huygens [1888-1950], vol. 6, p. 321). The main pieces
of the controversy are also reproduced in the volume Christiani Hugenii Zulichemii, Dum viveret Zelemii
Toparchae, Opera Varia. Volumen primum. Lugduni Batavorum, 1724. Under the title De circuli
et hyperbolae quadratura Controversia the following pieces can be found: Vera Circuli et hyperbolae
Quadratura authore Jacobo Gregorio (p. 405-462); Hugenii Observationes in librum Jacobi Gregorii, De
Vera Circuli et hyperbolae quadratura (pp. 463-466); Domini Gregorii Responsum ad animadversiones
Domini Hugenii, in ejus librum, De Vera Circuli et hyperbolae quadratura (p. 466-471); Excerpta ex
literis Domini Hugenii de responso ... (p. 472-474); Excerpta ex epistola D. Jacobi Gregorii, impressa
in vindicationem ... (p. 476 - 482). See also Dijksterhuis| [1939], p. 485.

25 After February 1669, echoes of the dispute continue to be found sporadically in private communi-
cations, both by Huygens (see for instance, 30 march 1669, p. 397) and Gregory (see for instance, the
letter sent to Collins from 6th January 1670, in |Gregory| [1939], p. 75-77). One of the main reasons
which caused the controversy to end concerned the political undertones which accompanied it. Gregory’s
responses were published on the Transactions of the Royal Society, to which Huygens belonged as the
most distinguished foreign member. Huygens’ influential opinion and Gregory’s lack of care for public
relations contributed to isolate Gregory within the Royal Society, of which he was also a member. Thus,
in the arc of few months, Gregory managed to lose the support of the intellectual world of London, and
in particular of Robert Moray, an important political man, and of John Wallis, who had backed him
firstly, at least mathematically speaking (See |Malet, [1989], p. 36). Nevertheless, Hofmann remarks a
smoothening of the tension, at least on Huygens’ side, towards the year 1671: for instance, Huygens
proposed Gregory’s name as a future member of the Académie des Sciences, and even sent him, as a
present, a copy of his Horologium Oscillatorium (AIll, 1, p. LV.).
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Il n’est pas necessaire que j'entre dans la matiere dont il y a question entre
vous. Mais permettez moy de vous dire franchement ce que je pense de
laigreur qui en est produite. Monsieur Gregoire est & la verité bien sgavant
dans la Mathématique mais le feu de sa jeunesse a besoin d’adoucisement.
Je ne scaurois approuver son procedé envers vous quelque iustification qu’il
en presente, il a failly contre les regles de la morale en se laissant emporter
comme il a fait. Je le blasme donc fort de ce qu’il vous a traitte d’une maniere
si rude. Mais d’autre part il ne faut pas que Je vous cele, que de la fagon
qu’il s’est represente vostre procedé en son endroit, il auroit besoin d’une
retenue plus grande qu’il n’a pour ne s’en piquer en quelque facon. Non pas
tant de ce qu’au lieu de luy representer par lettre ce que vous auriez trouvé a
redire a ce qu’il avoit publié, comme il avoit desiré, vous ’avez fait imprimer
sans luy escrire, comme de ce que d’abord vous le traittez, a ce qu’il luy
semble, nettement de plagiaire. Je ne veux pas examiner s’il sy est mépris ou
non. Mais Je vous diray que Je scay plusieurs instances ou deux personnes
ont inventé une mesme chose sans que lun ait rien pris de 'autre (...) de
sorte qu’en telles rencontres on doibt se bien garder de traitter quelqu’un de
plagiaire sans le pouvoir prouver formellement, veu qu’a mon avis il ne se

peut rien dire de plus cuisant a un honeste homme.lﬂ

This judgement bore, to quote Moray again, on the "circumstance et maniere d’agir"
rather than on the matter of the dispute.E]

On the other hand, if we turn to the issues at stake in the controversy, we can note that
the structure of the latter escapes the usual argumentative scheme of most of XVIth and
XVIIth century disputes over the quadrature of the circle. As the cases of Longomon-
tanus’ or Van Roomen’s illustrate, early modern controversies generally raised after an
alleged solution to the quadrature was proposed; the flawed solution was then followed
by negative responses by one or several expert mathematicians, pointing to the errors in
the alleged quadrature@

29Huygens| [1888-1950|, vol. 6, p. 370.

27See the letter from Meray to Huygens, of 26th April 1669: [Huygens| [1888-1950], vol. 6, p. 423.

2¥Many examples from XVIIIth century can be taken from |[Jacob| [2005]: the exchanges between
countless "circle-squarers" and the mathematicians of the Académie des Sciences, charged to judge, and
eventually refuted all faulty attemps, obeyed to the same dynamics.
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In the case I am here examining, on the contrary, Gregory did not propose a constructive
solution to the problem, but argued that it was impossible to express, by any finite
succession of ‘analytic’ operations, that is, operations we would call today ‘algebraic’
(addition, subtraction, multiplication division and extraction of roots of k order, for
k € N) starting from polygonal areas of rational measure, the measure of any Portion of

a Circle, Ellipse or Hyperbola.

The problem considered by Gregory is more general than the traditional circle-squaring
problem, since it concerned the quadrability of an arbitrary sector of a central conic.
Gregory also believed that the impossibility of solving this problem analytically entailed
the impossibility of solving analytically the quadrature of the whole circle, that is, the

quadrature problem in the traditional sense.

The controversy which opposed James Gregory and Christiaan Huygens developed around
three main points of divergence@ Firstly, Huygens addressed to Gregory an accusation
of plagiarism, as he recognized two proposition of VCH@ (namely the XX and the XXI)
supposedly similar to a couple of propositions formulated in his own work De Circuli
magnitudine inventa (1654)@ The second point of divergence regards another accusa-
tion of plagiarism moved by Huygens, concerning, in this case, a method for calculating
logarithms based on the quadrature of the hyperbola, that Gregory had presented in
VCHQ as original. Huygens objected that Gregory’s method had been already known to
him and communicated to the French Académie des Sciences and to the Royal Society,
before the publication of the VCH QE

The third group of objections advanced by Huygens regarded, instead, the soundness of
Gregory’s impossibility theorem and the validity of deducing from it the impossibility of
an analytical quadrature of the whole circle (this is proposition XI in Gregory’s treatise
and in its subsequent corollary). Eventually, as I will discuss later, Huygens denied both
the validity of Gregory’s proofs and expressed doubts as to the truth of the impossibility

theorems proposed.

Only this point of divergence will interest my narration. In the following sections, I will
firstly describe the strategy pursued by Gregory in order to formulate an impossibility

claim in the form of a theorem, and I will study the proof he eventually supplemented.

?IDijksterhuis| [1939], p. 483.
30Huygens| [1888-1950], vol. 6, p. 231.
3'Huygens| [1888-1950|, vol. 6, p. 231.
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My focus will deal with the attempts, pursued by Gregory, in order to merge the tech-
niques for approximating the circle by polygonal sequences with the structure of cartesian
analysis: such attempts, as Dehn and Hellinger resumed it in their survey paper on Gre-
gory’s mathematical achievement, led Gregory to transform the archimedean geometric
method of approximation into "an algebraic one (...) a sort of calculus", and on this

basis to formulate his impossibility Claimg

My second line of interest will concern the role played by impossibility results, like the
ones alleged proved in VCHQ@, in Gregory’s view about the architecture of mathematics
and, more particularly, in his view about the deliminations of the boundaries of geometry.
Indeed, Gregory expressed the conviction that certain impossibility results might act as
a source for legitimating the enrichment of geometry with new entities and operations. I
will argue that this view follows two conceptual threads which originated with Descartes’
reflection on simplicity in problem solving, on one hand, and with Wallis’ considerations
about the role of impossibility proofs in mathematics, mostly consigned to his Arithmetica
Infinitorum (1656), on the other.

7.3 Analyzing the quadrature of the circle

7.3.1 The aims of analysis

The body of the short treatise VCHQ is organized in a rather traditional fashion: after the
preface, written in the form of a dedicatory letter to a friend, Gregory lists ten definitions
and two postulates (petitiones), followed by the thirty-five propositions (divided into

theorems, problems and scholia) which compose the whole treatise.

My survey of VCHQ@ will be limited to the first eleven propositions (plus the definitions
and postulates), which occupy less than half of the whole treatise, but can be seen as
forming a unitary body: on one hand, they are somehow preparatory for Gregorys’
impossibility argument; on the other, the saliency of these propositions is recognized by
Gregory himself, who admitted their theoretical import in contrast with the remaining

ones, added "for facilitating the practice”ﬂ

32Gregory] [1939], p. 469.

33This point was made, as a clarificatory remark, from Gregory to Wallis, on 26th March 1668. See
Gregory| [1939], p. 49. By the expression "facilitating the practice", Gregory might have referred to the
new procedures for the approximate measure of the area of the circle and the hyperbola and for the
calculation of logarithms, exposed in his treatise, especially in propositions XXIX-XXXIV.
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Cartesian geometry, and in particular Descartes’” method of analysis are evoked at the
outset of the VCH(Q, where we read, in a prefatory letter to the "friendly reader", the

following words:

Mecum alinquando cogitabam, amice lector, num analytica cum suis quinque
operationibus esset sufficiens, et generalis methodus investigandi omnes quan-
titatum proportiones, ut in initio suae Geometriae affirmare videtur Carte-
sius; si enim ita esset, possibile foret ejus ope toties decantatam circuli
quadraturam exhibere: cumque hac mente revolverem, facile percepi ex hactenus
repertis circuli proprietatibus nullam posse analysin institui tali structurae
inservientem: deinde mihi alias quaerenti incidit in mentem huius secunda,
prima enim in circulo vulgo est cognita: ex hisce percepi seriem polygono-
rum convergentem, cujus terminatio est circuli sector, ubi statim vidi aliquod
analysios vestigium. Deinde serierum convergentium naturis non solum in
facilioribus quibusdam casibus, sed etiam in genere consideratis, et praedic-
tis circuli proprietatibus ad ellipsim et hyperbolam nullo negotio reductis,

infallibilis mihi videbatur omnium sectionum conicarum quadratura .. @

This dense passage requires some clarifications. Gregory starts his letter resuming the
motivations and rationale of his work: Gregory considers the problem of the quadrature
of the circle as a test-case in order to question the generality of the cartesian transcon-
figurational analysis, and immediately concludes that the structure of the circle-squaring

problem could not be unfolded by the tools of Descartes’ analysis.

For a reader of Descartes, this is certainly not so stunning, since the latter had postulated
the non-comparability between straight and curved lines within geometry. However it
cannot be established whether Gregory had a first-hand knowledge of La Géométrie

during his mathematical studies in Padua; it is probable, on the contrary, that he had

3411 have been wondering sometimes, my friendly reader, whether Analysis with its five operations was
a sufficient and general method to investigate all proportions between quantities, as Descartes seemed
to affirm in the beginning of his geometry; if it was so, it would be possible, by its aid, to exhibit the
so illustrious quadrature of the circle: thinking with this idea in mind, I could easily perceive, from
the properties of the circle so far discovered, that no analysis could be construed so as to serve such a
structure [namely, the structure of the problem]: then it came to my mind a second kind of analysis, while
I was searching for others (the first, concerning the circle, was indeed known to the laymen). Through
these I understood the convergent series of polygons, whose limit (terminatio) is a sector of the circle,
where, immediately, I saw some trace of analysis. Then, considered the natures of the convergent series
not only in the easier cases, but also in general, and reduced the properties predicted for the circle to
the ellipsis and the hyperbola with little trouble, the quadrature of every conic sections seemed infallible
to me" (VCHQ, p. 4).
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had only an indirect acquaintance with Descartes’ geometry, during his stay in Italy
as a mathematics trainee, through the work and teaching of italian analysts, like Carlo
Renaldini (1615-1698) 7]

Moreover, by 1667 Descartes’ conviction about the impossibility of solving the circle-
squaring problem in an exact way had been deeply questioned among mathematiciansﬂ
so that, in this historical setting the question, raised by Gregory, whether the "Analysis
with its five operations" was a sufficient and general method to investigate the quadrature

of the circle, was a genuine one.

At any rate, after having correctly pointed out the inadequacy of known methods in
order to study the circle-squaring problem, Gregory invokes, in the same preface (see
the above excerpt) a "second kind of analysis", more apt to study the quadrature of
the circle and the other conic sections (at the sequel will make it clear, Gregory will
discuss only the central conic sections). The structure of such "second kind analysis"
can be tentatively reconstructed both from the elliptic account presented in the preface

and from the content of the Vera circuli et hyperbolae quadmtumm

To provide a clearer account, I will distinguish two steps constitutive of it. The first
one consisted in the elaboration of a geometric approximation method, detailed in the
opening lines of VCH(Q), in order to compute the area of the circle by the successive
construction of inscribed and circumscribed polygons. The second step consists in ex-

trapolating an infinite double sequence from the previous geometric process. Gregory

3% According to [Hofmann [2008], p. 70, Gregory was not yet conversant with cartesian geometry by
the late sixties. I note that Descartes’ latin edition of the geometry is mentioned in another treatise
by Gregory, the Geometriae Pars Universalis, published in 1668 (in particular, proposition 70, p. 132),
together with the work of Carlo Renaldini, De resolutione atque compositione mathematica libri duo
(Patauii: typis ac impensis heredum Pauli Frambotti, 1668). The latter, in particular, was teaching in
Padua around the same period in which Gregory was there a student. Thus Renaldini was a likely source
of Gregorys’ early knowledge about cartesian geometry.

36Cf. ch. |§|, sec.

37Gregory contrasts his own method with an analytical method for treating the circle-squaring problem
"known to the laymen" ("wulgo ... cognita"), although he is not explicit about his sources. He might
be envisaging known archimedean-like procedures for approximating the area of the circle: Viéte’s ap-
proximate procedure, contained in Variorum de rebus mathematicis (published in 1593 and subsequently
in Francisci Vietae Opera mathematica, edited by F. van Schooten and published in 1646 - Francisci
Vietae Opera mathematica in vnum volumen congesta ac recognita ..., 1646, Ex Officina Bonaventurae
et Abrahami Elzeviriorum, Leiden) could be one of these. Evidence, though tenuous, for a connection
between Gregory’s techniques and Viéte’s achievement is offered by Dehn and Hellinger who note that
the formula for area given by Viéte (in modern notation: % = cos7cosgcos{ - . .) allows one to derive
one of the recursive formulas given by Gregory, specifically for the case of the semicircle (Gregory| [1939),
p. 469).
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defined this sequence recursively, by specifying its law of formation, independently from

the original geometric model which originated it (compare df. 9, quoted below).

The starting point of Gregory’s analysis was the traditional archimedean method for the
measurement of the circumference. However, Gregory introduced an important novelty
with respect to the tradition, as he conceived only one approximation procedure appli-

cable to any central conic section (i.e. a circle, an ellipse or an hyperbola, showed in fig.

30 and F30) P

Gregory’s construction is presented in the first proportions of VCH@ (p. 11) can be thus

summarized according to the following scheme:

1. Let A]/SB be the given sector with center A. Trace the tangents PF and BF , and
join points F' and A so as to yield points @, intersection between segments F'A and
PB, and point I, intersection between F'A and the arc delimiting the sector. In
the case of a circle or an ellipse, this construction yields a triangle ABP called by
Gregory "inscribed" in the sector and a trapezium ABF P circumscribed to it. The
same construction can be applied to an hyperbola (fig. 3.2). In this case, though,

the triangle will be circumscribed and the trapezium inscribed to the figure |

2. The same protocol can be applied to sectors BZI and 1 ZP, so as to obtain a sec-
ond inscribed (resp. circumscribed, in the case of the hyperbola) polygon, namely
ABIP, and a a new circumscribed (resp. inscribed) pentagon ABDLP (or vicev-
ersa, in the case of the hyperbola). Moreover, if points D and L are joined with the
center A, a couple of new points F and O is obtained on the perimeter of the sector,

and the hexagon ABETOP can be thus traced. Similarly, by tracing a new couple

38The concept of ‘center’ is defined, for the hyperbola and the ellipse, in Apollonius’ Conica. For the
ellipse, the centre is the midpoint of the principa diamter. For the case of the hyperbola, the center
is defined as the midpointof the segment cut on the principal diameter by the intersection points with
the hyperbola and the opposite branch (Cf. Hogendijk| [1991], p. 9-10). For the case of the circle, the
concept of center is defined in the Elements, df. 15 and 16: "A circle is a plane figure contained by one
line such that all the straight lines falling upon it from one point among those lying within the figure
are equal to one another; and the point is called the centre of the circle". Gregory’s general method for
the squaring of the central conic sections fits surprisingly with Newton’s results obtained in the 1666
treatise De Methodis. Newton’s achievement concerned the non-algebraic quadrability of a large class of
what we call today ’elliptic functions’, and may stand as the first step of the modern theory of elliptic
functions. However it is excluded, I think, that Gregory could have consulted, in 1667, Newton’s treatise
of 1666. Hence the two results are independent and also very different, although consistent one with the
other. Therefore Gregory’s contribution in VCHQ can be taken as a parallel starting point of the theory
of elliptic functions as Dehn and Hellinger also seem to suggest (Dehn and Hellinger| [1943], p. 156).

¥ VCHQ, p. 9
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