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Abstract

The present document, prepared in view of obtaining the Habilitation à diriger des recherches,
reviews my main research subject at PMMH since 2006, which concerns the study of swimming
and flying inspired by nature. Canonical examples of flapping flight and undulatory swim-
ming are explored using simplified experimental models as a starting point. This allows for the
discussion of some fundamental questions related to the physics of bio-inspired locomotion at
“intermediate” Reynolds numbers. In particular, we address the strong fluid-structure interac-
tions that arise in these problems, where we have focused on: simplified models of flapping foils
in hydrodynamic tunnel experiments, especially in the dynamics of vorticity in the wake of an
oscillating foil ; mechanical models of flapping flyers with flexible wings in a self-propelled
configuration (in the spirit of the pioneer experiments of Etienne-Jules Marey), as well as novel
experimental models of undulatory swimming.

Ramiro Godoy-Diana
Paris, 2014

Physique et Mécanique des Milieux Hétérogènes (PMMH)
UMR 7636 CNRS, ESPCI ParisTech, UPMC (Paris 6), UPD (Paris 7)

10 rue Vauquelin, 75005 Paris, France



"I’m as much in the dark as ever, though I’ve grown used in a sense to my
obtuseness."

Henry James
The figure in the carpet





Avant-propos

Je présente ici une synthèse des travaux que j’ai développés au PMMH depuis 2006 sur la
thématique de la propulsion “bioinspirée”. J’ai divisé ce mémoire en 4 chapitres principaux
plus une introduction et un point de perspectives à la fin. Le tout sauf cet avant-propos est écrit
en anglais, histoire de pouvoir partager ceci avec plus de monde... Les travaux décrits dans
ces pages sont pour la plupart le fruit d’un travail en équipe. Je tente ici une brève histoire,
mentionnant les collaborateurs principaux de ces dernières années. Par ordre plus ou moins
chronologique et avec un grand merci à tout le monde.

Depuis mon recrutement au PMMH en 2006, mon objectif a été de développer une activité
autour des problèmes de mécanique des fluides liés à la propulsion animale à “grand” nombre
de Reynolds (les guillemets pour dire que grand peut être de l’ordre de 100 dans certains cas,
ce qui ferait rire à un aérodynamicien). À l’époque la thématique était nouvelle pour moi et
j’ai pu compter sur l’enthousiasme et bon conseil de José Eduardo Wesfreid, qui m’a encouragé
à proposer ce sujet pour mon projet au CNRS (¡Gracias Jefe!). Je me suis donc naturellement
intégré à l’équipe Instabilités, Contrôle et Turbulence, où j’ai pu aussi collaborer avec d’autres
gens, en particulier avec Jean-Luc Aider qui venait d’arriver au laboratoire avec plusieurs projets
autour du contrôle. Le début de la période qui concerne ce rapport corresponde aussi à l’arrivée
de Catherine Marais [1], d’abord en stage de M2 et après doctorante, co-encadrée par J. E.
Wesfreid et moi-même.

En 2008, après une recherche de collaborateurs potentiels dans le paysage français et eu-
ropéen, nous avons mis en place un partenariat avec Jérôme Casas de l’Institut de recherches
sur la biologie de l’insecte (IRBI) à l’Université de Tours et Laurent Jacquin du Département
d’Aérodynamique Fondamentale de l’ONERA pour écrire un projet dédié à la “Physique des
ailes battantes inspirées de l’insecte". Le projet, que j’ai coordonné, à reçu un financement de
l’ANR dans le cadre du programme Blanc et nous a donné les moyens de faire mûrir petit à
petit cette thématique. Le projet a été mené à terme avec succès, en changeant en cours de route
plusieurs des objectifs initiaux, surtout pour suivre des nouvelles idées chez tous les partenaires.

En ce qui concerne le travail au PMMH le point crucial a été de diriger notre attention aux
problèmes d’interaction fluide-structure liés non seulement à la propulsion par ailes battantes
mais aussi ouvrant la porte à l’étude d’autres systèmes de propulsion bio-inspirés comme par
exemple la nage ondulatoire. Cette redéfinition des priorités a été le fruit d’une collaboration
fondamentale de ces dernières années, celle avec Benjamin Thiria, Maître de conférences à
l’Université Paris Diderot, qui est arrivé au PMMH en 2009 et avec qui nous avons peu à peu
établi une petite équipe “Nage et Vol bio-inspirés” en dirigeant ensemble les projets de plusieurs
étudiants. Nous avons encadrés notamment Sophie Ramananarivo (doctorante 2010-2014) [2]
et Verónica Raspa (post-doc 2010-2013), dont les travaux constituent une partie importante des
résultats commentés dans ce mémoire. Les thématiques se diversifient en ce moment, d’une
part en ce qui concerne la locomotion bio-inspirée, en considérant des problèmes de dynamique
collective (thèse de Intesaaf Ashraf, 2014-2017), de miniaturisation des nageurs (thématique
menée par Miguel Piñeirua, post-doctorant 2014-2015 dans le groupe) ou des régimes transi-
toires (thèse de Marion Segall sur la manoeuvre d’attaque des serpents en collaboration avec

http://www.pmmh.espci.fr/?Swimming-and-Flying


l’équipe d’Anthony Herrel au MNHN, 2015-2017); et d’autre part explorant d’autres applica-
tions de l’interaction fluide-structure tels que la conversion d’énergie par des structures souples.
J’en parlerai un peu dans la partie perspectives.

J’ai décidé de ne recueillir dans ce mémoire d’HDR que les travaux concernant la propulsion,
en excluant ainsi une partie de mon activité de recherche de ces dernières années, qui concerne
surtout ma collaboration avec José Eduardo Wesfreid sur les instabilités de sillage. Notamment,
pour une partie de la thèse de Catherine Marais nous avons collaboré avec Dwight Barkley
sur la réponse impulsionnelle du sillage d’un cylindre en régime sous-critique [3]. Puis, dans
le cadre du Laboratoire Internationale Associé "Physique et Mécanique des Fluides" (France-
Argentine), nous collaborons avec Juan D’Adamo sur les instabilités des sillages forcés [4; 5].
J’ai aussi gardé un oeil ouvert sur mes travaux précédant mon arrivée en France sur l’énergie de
la houle [6], thématique qui restera d’actualité avec la perspective de nouveaux projets autour
des énergies renouvelables.

Parmi d’autres collaborateurs que je n’ai pas cité ci-dessus, je voudrais notamment men-
tionner D. Pradal (Mécanicien au PMMH qui a conçu et fabriqué plusieurs des montages ex-
périmentaux dont on parlera dans la suite) ainsi que toute l’équipe de l’atelier du PMMH qui
a un moment ou un autre ont participé au montage des manips. Aussi un grand merci à G.
Bimbard (doctorante à l’IRBI), D. Kolomenskiy (Postdoctorant a l’U. de McGill), O. Marquet
(Chercheur à l’ONERA-DAFE), R. Fernández-Prats et F. Huera-Huarte (Universitat Rovira i
Virgili), G. Spedding (USC) et R. Zenit (UNAM) qui ont été des interlocuteurs importants à
différents moments de ces dernières années.

Un mot sur les finances : en complément des ressources fournis par les organismes de tutelle
du laboratoire PMMH (ESPCI, CNRS, UPMC et U Paris Diderot), les travaux décrits dans ce
document ont été financés par l’Agence Nationale de la recherche (Project ANR-08-BLAN-
0099, The physics of insect-inspired flapping wings, 2008-2012, PI : R. Godoy-Diana) et la
Fondation EADS (Projet Fluids and elasticity for biomimetic propulsion, 2012-2014, PI : R.
Godoy-Diana & B. Thiria). Pour avoir fait tourner toute cette machinerie, un chaleureux remer-
ciement à l’équipe administratif du PMMH, Fred et Claudette aujourd’hui, Amina, Claudine,...
hier. Ainsi qu’aux directeurs Philippe et Eduardo.

Et il ne me reste qu’un petit bout de page pour dire merci à nouveau ! Merci aux membres
du jury qui vont lire les pages qui suivent, double merci aux rapporteurs qui devront écrire en
retour. Merci à tous mes profs, étudiants, collègues et amis qui, au PMMH et ailleurs, ont partagé
coeur et cerveau en sachant (ou peut être pas) que le retour sur investissement serait maigre. Un
abrazo fuerte también a la familia, en especial a Sebas y Malena que me toleran en casa al grito
de "¡Papá, ya no trabajes el fin de semana!"...
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1. Introduction

The following pages deal with various problems related to swimming and flying in na-
ture. Aside from their evident biological relevance, the locomotion strategies found in nature
in the flight of birds, bats and insects and the swimming of fish and marine mammals have long
since served as inspiration for the development of artificial systems. The result of this pluri-
disciplinary appeal is that literature abounds over an ample spectrum of approaches bounded
by biology, physics and engineering. Not pretending to give an exhaustive review of these vast
domains, we will start by pointing out here a few key issues, as well as some of the works that
have been important in guiding our attempt to develop simplified models of flapping flyers and
undulatory swimmers. Along the way we will hint on the questions that we have asked and,
additionally, recall some of the customary analytical tools that have been proven useful in the
quest for reasonable answers.

1.1 Flying

We will focus here in problems related to powered flapping flight, excluding thus some fas-
cinating problems of aerial locomotion found in nature such as gliding or parachuting. From the
biological point of view, the latter have not only been probable precursors of powered flight, but
besides they constitute an ecologically advantageous strategy on their own. And it is needless to
say that they have also inspired human-made devices —quoting Buzz Lightyear: “This is not fly-
ing, this is falling with style!”. From the engineering perspective, gliding can be described using
fixed-wing aerodynamics, something that does not work for flapping wings. In a conventional
aerodynamic picture, the basic model considers an airfoil immersed in an externally imposed
flow, which results in the production of lift and drag forces. Lift opposes the weight of the flying
thing, while drag opposes thrust (see Fig. 1.1). The latter is thus provided independently of the
wing, using a propeller, and determines the fundamental difference with flapping-powered flight,

Figure 1.1: Schematic diagram of forces on a wing section.
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R. Godoy-Diana

Figure 1.2: Left: Wing of Reptile, Mammal, and Bird (From G. J. Romanes, 1892 [11]). Right:
Dragonfly wings (Photo credit: P. Kratochvil).

where both lift and thrust are produced by the moving wing. This results in the appearance of
a collection of unsteady mechanisms that are crucial components of the aerodynamic force bal-
ance [see e.g. 7; 8]. As we will comment in more detail below, the dynamics of vortices around
the wings plays a fundamental role concerning the mechanisms of unsteady force production.

Coming back to the realm of the living, four animal groups have evolved powered flight
independently [9]. In addition to fuelling our intimate awe toward nature, this observation points
our reflection to the concept defined by biologists as evolutionary convergence [10]: The fact that
evolution has independently given rise in different non-related species to analogous structures
that share form and function, as a result of their adaptation to similar environments. The reason
for convergent evolution is the simple fact that a given trait gives a strong advantage to a species
once it has appeared. And flight is definitely a particularly successful strategy for many reasons
that range from local flight, such as escaping predators, catching prey or finding resources, to
migration, where a whole population can move from one place to another, for instance following
more favourable weather [9].

The wings of birds, bats and the now extinct pterosaur are all versions of a modified forelimb
(see Fig. 1.2). In the case of insects on the contrary, wings come from a different body part
altogether, as an independent structure attached to the upper part of the thorax, while the legs
are attached to the bottom. Insects were also the first group to evolve powered flight, and they
are the only winged invertebrates.

Insects cannot control the shape and motion of the wings within the wing itself as vertebrates
do, since they do not have joints or muscles out in the wing. They have however a branching
arrangement of veins that carry blood and air passages that can be used to control the stiffness
of the wing [12]. These veins in certain insects work as springs and hinges permitting the wing

12



Bio-inspired swimming and flying

structure to fold. Insect wings are thus compliant structures [13] and their elastic properties
are certainly a fundamental issue of the mechanics of their flapping-based aerodynamic force
production [14]. Part of the works reviewed here have been devoted to the study of such a fluid-
elasticity problem, where the observation of insect wings in motion have served as inspiration
for the development of laboratory models.

1.2 Swimming

We will not converse a lot here about the diverse diving and splashing feats achieved by
humans, but a little about more professional swimmers such as fish. Using body undulations
to produce a propulsive force is a widespread technique embraced by many different organ-
isms over a wide range of scales [15]. Physically, as we will discuss further below, the size of
the organism determines the type of forces at play in the dynamical balance of the locomotion
problem: microscopic swimmers such as sperm or flagellated bacteria evolve in a dynamical en-
vironment entirely governed by viscous friction [see e.g. 16], whereas in macroscopic organisms
like aquatic vertebrates, friction forces are confined to a thin region surrounding the body —the
boundary layer— and the production of a propulsive force relies also upon inertial momentum
transfer to the fluid [see e.g. 17]. However, some features appear as crucial for every swimmer
regardless of its size, such as the establishment of a propagative kinematics for the undulating
wave that describes the body deformations. This question is at the core of the fluid-structure
interaction problem of the artificial swimmers that appear in the following pages.

In what follows we will focus mostly on these inertial fish-like swimmers. The locomotion
of fish or, more generally, of aquatic vertebrates has been extensively studied, in the first place
from the biological perspective [18; 19], but also as a source of inspiration for engineering ap-
plications [20; 21]. Different strategies to produce locomotive forces for swimming are found
in nature (see Figure 1.3), which can be broadly separated in median and paired fin propul-
sion (MPF) and body and caudal fin propulsion (BCF) [19; 22; 23]. On the latter category one
can further distinguish the periodic steady regime observed during cruising, from transient ma-
noeuvres such as sharp turns and fast starts. It has been shown that the main locomotor strategy
observed in a given species is linked to the feeding problem: for instance, BCF steady swimmers
feed from a widely dispersed source whereas species constantly performing transient fast-start
and turn maneuvers rely on locally-abundant prey such as fish schools [22].

Aquatic vertebrates rely on muscular action distributed all along the body to prescribe the
kinematics of any given swimming gait. And it has been shown that the wave of muscle ac-
tivation travels down the fish much more rapidly than the wave of bending [24]. Speaking of
bio-inspiration or biomimetism, the design elements of an artificial swimmer or flyer that one
would like to copy from an animal can be envisaged at different levels. One approach is to
reproduce a solution found in a real animal, say, an anguilliform swimmer, using sophisticated
actuation and control to fine-tune a given body kinematics that has been "tested and approved"
by nature to perform efficiently for a given task 1. Impressive examples of this can be found in
the literature, such as the robotic eel of EPFL’s Biorobotics Lab [25] or MIT’s robotuna [26].

1. I had written here "...to be optimal for a given task" but I am evading the debate on optimality in the
multi-dimensional space of evolution...

13



R. Godoy-Diana

Median and paired fin 
propulsion 

Body and caudal fin 
propulsion Other 

Figure 1.3: Swimming modes (modified from Webb, 1994 [23]).

In our work on bio-inspired swimmers a different approach has been pursued, one where the
kinematics is not actively enforced, but is the passive outcome of the body elasticity of model
swimmers where the actuation is localised: a strong fluid-structure interaction problem that has
received considerable attention recently [see e.g. 27–29].

1.3 Fluid-structure interaction

In these problems of bio-inspired propulsion, it is thus the active motion of a structure (e.g.
a wing or a fin) that produces a propulsive force by its interaction with the surrounding fluid (e.g.
air or water). From the fluid dynamics point of view, where the moving structure determines the
boundary conditions for the fluid motion, the problem will be strongly dependent on the types
of forces driving the dynamical balance in the Navier-Stokes equations

∂u
∂ t

+(u ·—)u = � 1
r

—p+n—2u+
1
r

F , (1.1)

— ·u = 0 , (1.2)

that describe the motion of the fluid. Eqs. 1.1 and 1.2 rule the dynamics of an incompressible
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fluid of constant density r and constant kinematic viscosity n , described by its velocity and
pressure fields, u and p, respectively, and subject to an external force F (the derivation of these
equations from basic principles can be found in any hydrodynamics textbook, e.g. [30]). Writing
U and L for the characteristic velocity and length scales of the problem in question one can
rewrite these equations as

∂u
∂ t

+(u ·—)u = �—p+
1

Re
—2u+F , (1.3)

— ·u = 0 , (1.4)

where all variables are now dimensionless and Re = LU/n is the Reynolds number, which rules
the aforementioned dynamical balance by settling the relative importance of inertial vs. viscous
forces. The two limit cases in terms of Re have been widely studied: when Re � 1 the vis-
cous term is negligible and in practice the Euler equations for an ideal fluid are recovered, the
pressure gradient being balanced by fluid inertia. In these high-Reynolds number flows, such
as the flow around an airfoil, the effects of viscosity are confined to a thin boundary layer that
matches over a small length scale the "outer" inviscid flow and the actual solid boundary, where
the no-slip condition applies and the velocity of fluid particles must match the velocity of the
boundary. In the other limit, for Re ⌧ 1, it is the viscous term that governs the dynamics. This
limit, known as Stokes flow, describes for instance the propulsion of microscopic organisms
using cilia or flagella. The Reynolds numbers relevant to animal swimming and flying cover
a broad range (see Table 1.1), a lot of cases being “intermediate” with respect to the two lim-
its mentioned above, those that conventional analytical methods are capable of handling [31].
Physical insight relevant to this intermediate range usually requires the correct modelling of
the vortex dynamics detaching from the swimmer or flyer and considerable efforts in this sense
have been widely documented in the literature [see e.g. 32–34, and references therein]. Control
of vortices produced by flapping wings or fins to generate propulsive forces is the everyday task
of birds, insects and swimming animals. And many studies of actual flapping extremities have
been indeed driven by the need for a better understanding of this form of propulsion with the
ultimate goal of enhancing man-made propulsive devices [see extensive reviews in 21; 35–38].

Table 1.1: Cruising Reynolds numbers

Bacterium ⇠ 10�5

Marine invertebrate larvae ⇠ 0.1�10
Drosophila ⇠ 102

Small fish (e.g. guppy) ⇠ 103

Dragonfly ⇠ 104

Tuna ⇠ 105

Blue whale ⇠ 106
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Fluid&Solid& Interface&

Displacement,and,
deforma1on,of,the,solid,

Navier5Stokes,
equa1ons,

Kinema1c,condi1on,
(Boundary,condi1ons,for,the,,

fluid,problem),

Fluid,forces,on,the,structure,

Reynolds Mass Elastoinertial Cauchy Elastoviscous
number ratio number number number

Re ⇠ f luid inertia
f luid viscosity M ⇠ solid mass

f luid mass Nei ⇠ solid inertia
solid elasticity Cy ⇠ f luid inertia

solid elasticity Sp ⇠ f luid viscosity
solid elasticity

Figure 1.4: Schematic diagram of the fluid and solid dynamics two-way coupling in a fluid-structure
interaction problem (inspired from Doaré, 2010 [39]) and some usual dimensionless numbers.

Now consider the motion of the structure, i.e. the swimmer or flyer. While it constitutes
the boundary condition for the fluid problem, its own dynamics is of course coupled to that of
the surrounding fluid, establishing the two-way coupling described schematically in Fig. 1.4.
The dominant features of the different branches in this full fluid-structure interaction problem
picture are ruled by various non-dimensional parameters that weigh the relative importance of
the different physical mechanisms at play. Some of these numbers are built solely from the
comparison of different dynamical properties of either the fluid (e.g. the Reynolds number) or
the solid physics, but others are intrinsically built from the comparison between the dynamics of
the fluid and the structure. The table in Fig. 1.4 summarises some of the dimensionless numbers
that can be built considering a model system where a slender flexible structure of characteristic
length scale L, thickness h and bending rigidity B ⇠ Eh3 (e.g. a beam or a plate) propels itself
through a fluid of density r and viscosity µ at an average cruising speed U as the result of a
harmonic oscillation of angular frequency w = 2p f and amplitude A

w

imposed at one of its
ends. Such a simple model allows for the introduction of the key parameters that can be used
to describe the locomotion problem of a flexible body in a fluid. We have already noted the
dynamical regimes defined by the Reynolds number. Additionally, the mass ratio quantifies the
effect of the surrounding fluid on the inertia term in the equation of motion of the structure,
whereas Nei, Cy and Sp ponder, respectively, the solid inertia, the fluid loading (the dynamic
pressure) and the viscous forces with respect to the elasticity of the structure.

In the following chapters we will develop further these ideas for two particular cases, a
flapping wing in air and a slender undulatory swimmer in water. The fluid-structure coupling
arises in different manners in these two cases, although the basic solid model can be described
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Figure 1.5: Beam model for a flapping wing (a) or an undulatory swimmer (b). The characteristic
velocity of the imposed actuation Aw and the resulting cruising velocity U are represented schemat-
ically in both cases. Additionally indicated: for the flapping wing, the angle f that characterises
the ratio of these two velocities; and for the undulatory swimmer, the phase velocity of the bending
wave v

j

.

by the same Euler-Bernoulli beam (see Fig. 1.5), described in the small amplitude regime by
[see e.g 40]:

µhtt +Bhxxxx +FNL = F f /s +W (t) . (1.5)

Here h(x, t) is the lateral displacement of the beam (i.e. along a direction y perpendicular to the
mean locomotion direction x), F f /s is the effect of the fluid appearing as a force on the equation
for the dynamics of the structure, and W (t) is the imposed actuation, which for a flapping wing
or fin can be usually modelled as above by a harmonic oscillation ⇠ A

w

sinwt.
But before considering the full fluid-structure interaction problem (that where the wing or

fin is deformed under the action of the surrounding fluid), even the one-way problem where an
effectively rigid but moving structure serves as boundary condition to the fluid problem can be
non-trivial at these intermediate Reynolds numbers, in part because of the unsteadiness related
to the dynamics of vorticity. We discuss in the following chapter some of the characteristic traits
of the unsteady flows produced by a rigid structure oscillating in a fluid, focusing on a quasi-
two-dimensional view of the vorticity dynamics in the wake of a very idealised flapping wing or
fin.

1.4 Plan

This review is organised as follows: Chapter 2 is dedicated to our work using flapping foils in
a hydrodynamic tunnel as a basic model to study vorticity dynamics in a simple propulsive wake.
The chapter ends with a modified experimental setup with a self-propelled geometry where we
explored the role of wake symmetry properties in the swimming performance. It is followed in
Chapter 3 by the discussion of our flapping flyer models with flexible wings using a merry-go-
round setup. Chapter 4 summarises our work with a real biological model, a Pierid butterfly,
where we focused on a transient regime: the take-off maneuver. Our undulatory swimming
studies are the subject of chapter 5 and, finally, the manuscript is closed in chapter 6 by a brief
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account of current projects and perspectives. Chapters 2 to 5 open with a brief summary and a
list of the corresponding references that are included in the selected publications appendix.
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2. The flapping foil experiments

Figure 2.1: Fluorescein-dye visualisation
of the vortex streets in the wake of a pitch-
ing foil. Flow is from left to right. On top
the reverse Bénard-von Kármán wake, on
bottom an asymmetric wake. (Figure from
[41])

Summary

This chapter reviews our work on propulsive wakes
using experiments with flapping foils. The goal of
these studies was to explore simple models that con-
tain key dynamical elements, such as the creation and
organisation of vorticity, that are crucial in every sys-
tem involving flapping wings or fins as a means of
producing propulsive forces. The first part is devoted
to the study of the wake of a rigid flapping foil, in
particular to the establishment of an ubiquitous fea-
ture related to propulsive flapping motion, which is a
vortex street with the sign of vorticity of each vortex
reversed with respect to the typical Bénard-von Kár-
mán (BvK) wake. We study the relationship between
the evolution of the wake structure as a function of
the flapping parameters and the drag-thrust transition
[42], the symmetry breaking of the reverse BvK wake
[41] and the effect of using a flexible foil instead of

a rigid one [43]. We close this chapter opening a broader perspective on the problem of wake
topology considering a two-foiled self-propelled swimmer [44].

Collaborators : C. Marais, V. Raspa, B. Thiria, J. L. Aider, J. E. Wesfreid

References :

Godoy-Diana, Aider, Wesfreid Phys. Rev. E 77, 016308 (2008). [42]
Godoy-Diana, Marais, Aider, Wesfreid J. Fluid Mech. 622, 23-32 (2009). [41]
Marais, Thiria, Wesfreid, Godoy-Diana J. Fluid Mech. 710, 659-669 (2012). [43]
Raspa, Godoy-Diana, Thiria J. Fluid Mech. 729, 377-387 (2013). [44]

2.1 Transitions in the wake of a flapping foil

The primary goal of our work on this subject was to use one of the simplest flapping models,
a pitching foil, with careful measurements on a hydrodynamic tunnel setup to explore the basic
features of one of the landmarks of these bio-inspired propulsive wakes: the reverse Bénard-von
Kármán (BvK) vortex street (see Figures 2.1 and 2.2).
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Figure 2.2: Transition from the Bénard-von Kármán wake (top frame) to a reverse wake (bottom
frame) seen in the vorticity field behind a flapping foil obtained from PIV measurements in a hydro-
dynamic tunnel. The section of the foil is represented schematically. The Reynolds number based
on the maximum width of the foil d was set to 255 (which corresponds to a chord-based Reynolds
number of ⇠ 1200).

The indicator feature of this type of wake is a vortex street with the sign of vorticity of each
vortex reversed with respect to the typical Bénard-von Kármán (BvK) vortex street behind a
cylinder. Such reverse BvK vortex streets have not only been observed in the wakes of swimming
fish [see e.g. 45; 46] but also studied in detail through laboratory experiments with flapping foils
[47–54] and numerical simulations [50; 55–59]. In general, flapping-based propulsive systems,
either natural or man-made, are often discussed in terms of the swept-amplitude-based Strouhal
number [49; 60]:

StA = f A/U0 , (2.1)

defined as the product of the flapping frequency f and amplitude A (the latter being a length
scale similar to the width of the wake), divided by the cruising speed U0. Physically, the Strouhal
number represents the ratio of the flapping characteristic speed f A to the cruising velocity U and
is thus related to the mechanical efficiency of the system. Biological swimmers and flyers are
found to lie mostly in the range 0.2 . StA . 0.4 [60; 61]. Another crucial parameter in these
problems is the aspect ratio of the flapping body, because it determines to what extent a quasi-
two-dimensional (Q2D) view can capture the main elements needed for an adequate description
of the real three-dimensional (3D) flow. In particular, in the case of a flapping body propelling
itself in forward motion, at least two qualitatively different situations have been evidenced from
flapping foil experiments and numerical simulations: high span-to-chord ratio foils produce the
aforementioned reverse BvK vortex street [see e.g. 47; 49], where the most intense vortices are
aligned with the foil span. A Q2D analysis accounts for the key dynamical features in this case
where the mean flow has the form of a jet and results in a net propulsive force. As the span-
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Figure 2.3: Left: Transitions in the wake of a flapping foil in the AD vs. St map for Re = 255 [from
41]. Experimental points are labeled as ⇤: BvK wake; ⌅: aligned vortices; +: reverse BvK wake;
M: deflected reverse BvK street resulting in an asymmetric wake. Solid line: transition between BvK
and reverse BvK. Dashed line: transition between reverse BvK and the asymmetric regime. Typical
vorticity fields are shown as inserts on each region. Right: Contours of a mean drag coefficient
CD/CD0 surface estimated using a momentum-balance approach (here CD0 is the drag coefficient
for the non-flapping foil at zero angle of attack) [42]. The black line corresponds to CD = 0 where
the estimated drag-thrust transition occurs. The shaded area represents the estimated error for the
CD = 0 curve due to sensitivity on the choice of the control volume. The blue line is the transition
from BvK to reverse BvK reproduced from the left panel. The dashed line corresponds to StA = 0.3.

to-chord ratio decreases towards unity, 3D effects come into play and modify dramatically the
structure of the wake. In this case a series of vortex loops (or horse-shoe vortices) are engendered
from the vorticity shed from all sides of the flapping foil [see e.g. 54; 62; 63].

The experiments summarized here were performed with a 4:1 aspect ratio foil, which is high
enough to produce Q2D regimes in the near wake. The foil section was chosen with a semi-
circular leading edge that defines the maximum width of the foil, narrowing symmetrically to
join the trailing edge along straight lines. The geometric simplicity and symmetry of this profile
has motivated its use in further studies on the subject of flapping-based propulsion found in the
literature [64–66]. Our experimental approach was inspired by the works on vorticity control in
the cylinder wake forced by rotary oscillations conducted in previous studies at PMMH [67]. We
showed that a two-parameter description that permits to vary independently the frequency and
amplitude of the oscillatory motion is the optimum framework to fully characterize the quasi-
two-dimensional regimes observed in the wake of a pitching foil. The transition from a BvK
vortex street to the reverse BvK street characteristic of propulsive regimes (see Figure 2.2), as
well as the symmetry breaking of the reverse BvK street reported in [41; 42] are summarized
in the (St,AD) phase space shown in Figure 2.3 (left). The Strouhal number St = f D/U0 and a
dimensionless amplitude AD = A/D have been defined using a fixed length scale (the foil width
D). Note that the product of these two parameters gives the flapping amplitude based Strouhal
number from Eq. 2.1 that is often used. One of the main results of obtained form these ex-
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periments is that the drag-thrust transition, which we estimated from mean flow measurements,
does not coincide exactly with the inversion of the vortex street (see Figure 2.2, right), a fact
that is usually assumed in the literature where "thrust-producing wake" is used interchangeably
with "reverse Karman wake". In fact, a region in the (St,AD) plane exists where a reversed BvK
pattern can be observed in the wake of the flapping foil, but the relative thrust engendered by the
flapping motion is not yet enough to overcome the total mean drag.

2.1.1 Symmetry breaking of the reverse BvK wake

The lateral deflection of the reverse BvK vortex street observed above a certain threshold
in the forcing parameter space (above the green dashed line in Figure 2.3, left) was thoroughly
scrutinised in these experiments, leading to the establishment of a symmetry breaking criterion
[see 41, for details]. The latter is based on the qualitative observation that the deflection of
the vortex street results from the formation of a dipolar structure from each couple of counter-
rotating vortices shed on each flapping period. Above a certain threshold, the self-advection
of the dipolar structure formed over one flapping period is strong enough to decouple from the
subsequent vortex in the street and generate a deflection of the mean flow. This mechanism
and symmetry breaking criterion have been subsequently verified by other studies [68–71]. The
asymmetric wakes occurring in a region of the parameter space that overlaps the high-efficiency
Strouhal number range used by flapping animals makes the precise definition of the symmetry-
breaking threshold potentially important for the design of artificial flapping-based propulsors
and their control.

2.1.2 Effect of the Reynolds number

The Reynolds number dependance of the previous results was only barely mentioned in our
initial work. An interesting point is that, although natural vortex shedding exists for the steady
flap at these Reynolds numbers (the critical Reynolds number for the flap is approximately 140)
even at zero-angle of incidence, no mode competition is observed in the strongly forced flapping
regimes studied here. The flapping frequency used to define St is thus equivalent to the main
vortex shedding frequency. However, even if for a fixed flapping configuration, i.e. fixed St and
AD, one finds as expected a well defined wake structure, changing the Reynolds number does
change the intensity of the vortices, since these are built from the boundary layer vorticity on
either side of the foil, which is evidently dependent on the Reynolds number. This is shown in
Figure 2.4, where the vorticity field in the wake of the flap for a non-flapping case is compared to
a case flapping at St = 0.25 and AD = 1.42, a point in the parameter space where a clear reverse
BvK street is produced, for various Reynolds numbers. We remark for the non-flapping case
(left column in figure 2.4) that small oscillations appear downstream of the flap at Re = 150 and
a natural BvK vortex street is clearly established from the Re = 200 case. In the flapping case,
increasing the Reynolds number for fixed St and AD produces more intense vortices in the wake.
We note not only the increasing vorticity of the structures nearest to the symmetry plane, but also
that of the filaments connecting opposite signed structures. Particularly in the cases of Re = 255
and 305, the filaments can be seen to concentrate producing two outer fringes of vortices with
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Figure 2.4: Effect of the Reynolds number on the vorticity field in the wake of the foil. Left column:
no flapping. Right column: flapping at St = 0.25 and A/D = 1.42. Values for Re are 100, 150, 200,
255, 305 from top to bottom. [Previously unpublished data]

local maxima weighing up to 30% in absolute value the vorticity of the inner array of vortices at
the same horizontal position.

2.1.3 Foil flexibility

As mentioned in the introduction, a major part of our recent work has been devoted to ex-
amining model flapping-based propulsion problems in cases where the elastic properties of the
propulsive appendage come into play. In the following chapters we will review the problems
that we have addressed in a full fluid-structure interaction framework. Before that, the case of
the flapping foil in a hydrodynamic tunnel that we have been discussing in the previous sections
permitted us to show how adding flexibility plays a strong dynamical role on the wake. We
performed a detailed comparison of the vortex dynamics in the near wake of the flapping foil for
two cases: the rigid foil (our benchmark case which is the foil of our previous studies), and a
flexible foil with the same shape but made of a compliant material (Figure 2.5).

On the one hand, the effective amplitude obtained passively due to the deformation of the
flexible foil while flapping (Fig. 2.5, right) leads to an increase in the propulsive force with
respect to the case of the rigid foil [43]. On the other hand, the interaction of the shed vortices
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Figure 2.5: Left: Photo of the flexible foil and schematic diagram. Right: Effective flapping ampli-
tude Ae f f as a function of the Strouhal number StD = f D/U for q =5� (+), 7.5� (⇥), 10� (⇤) and
15� (?) (which means AD =0.7 (+), 1.1 (⇥), 1.4 (⇤) and 2.1 (?) for the rigid foil).

Figure 2.6: Top row: Isocontours of a mean drag coefficient CD/CD0 surface estimated using a
momentum-balance approach. The black contour corresponds to CD = 0 where the estimated drag-
thrust transition occurs [see 42]. Bottom row: Cross-stream (y) profiles of the mean horizontal
velocity on the downstream boundary of the control volume used for the thrust force estimation
(solid lines) and corresponding rms (dashed lines) for a typical case (marked with a square symbol
in the top plots) where the symmetry breaking is inhibited by the effect of foil flexibility. Insets:
Snapshots of the mean < Ux > field showing the jet flow in the wake of the flapping foil.
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with the flexible structure inhibits the trigger of the symmetry breaking of the reverse Bénard-von
Kármán wake, neutralising thus the deflection of the propulsive jet that has been widely reported
in the literature (see Fig. 2.6 and [43]). The latter result evidences that wing compliance needs
to be considered as a key parameter in the design of future flapping-propelled vehicles: since
not only it is determinant for thrust and efficiency, but also as we show here because of its role
in dictating the vortex dynamics that governs the stability properties of the wake.

2.2 Two parallel foils

We close this chapter discussing an experiment based on the same type of flapping foils
actuated by a pitching oscillation that we have described above, but in a radically different
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1Figure 2.7: (a) Simplified schemes illustrating the topology and velocity fluctuations (ũ) of the
considered wakes. Left: symmetric (S mode, jellyfish-like wake) where counter-rotating pairs of
vortices are simultaneously shed into the wake. Right: asymmetric (A mode, fish-like wake) where
counter-rotating vortices are alternatively shed into the wake by the flapping motion. (b) Swimmer’s
reduced displacement (Dx/c) for the same distance between foils and forcing frequency in both flap-
ping configurations. Substantially different displacements are achieved from the same momentum
input. The driving curves are also shown, the phase lag (Df ) being the only difference between both
cases. [Figure from 44]
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Figure 2.8: (a, b) mean velocity measurements, (c, d) lateral fluctuations of the mean velocity and
(e, f) pressure fields calculated from Eq.2.2 for a typical case of the two flapping configurations:
Symmetric mode (Left column) and Asymmetric mode (right column).

setup. The idea came from the observation that, depending on the species, propulsive wakes
found in nature can differ according to the spatial ordering of the main vortex structures. We
used two foils placed in a side-by-side layout to analyse the role of the topology of the wake in
the generation of propulsion by comparing two prototypical cases in a quasi-two-dimensional
view. One configuration is jellyfish-like, with symmetric shedding of vortex pairs, and the other
one is fish-like, with alternating shedding of counter-rotating vortices (see Figure 2.7). The setup
was mounted in a water tank with a free surface in order to support the swimmer by means of
an air-bearing rail outside of the water and achieve a self-propelled configuration [see 44, for
details]. The crucial point to compare the role of vortex topology in the wake was to provide
the same momentum input to produce the two different cases tested. This was carried out by
tuning the imposed kinematics as shown in Figure 2.7, where it is also clear that the symmetric
mode gives better swimming performance. PIV measurements showing the average velocity
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field in the direction of the propulsive jet huxi and the lateral fluctuations hũyi are displayed in
Figure 2.8, together with a calculation of the average pressure field hpi derived from the lateral
component of the mean Navier-Stokes equation in the turbulent approximation for developing
jets (i.e. when the average lateral velocity huxi and the stream wise gradient of the Reynolds
stress are negligible), which reads [72]:

hpi� po = �r

⌦
ũ2

y
↵

, (2.2)

po being the pressure away from the wake (y ! •), where
⌦
ũ2

y
↵

is zero. These fields allowed
for the calculation of the average propulsive force per unit span Fp, which can be expressed as a
simple contribution from the momentum r hui and the pressure hpi [73; 74]:

Fp = �
Z

Se

r hui hui ·ndS �
Z

Se

hpindS. (2.3)

This very simple experiment allowed us also to identify the physical mechanism behind
the better performance of the symmetric mode: a pressure effect related to the intensity of the
velocity fluctuations in the near wake [44].
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3. Le petit manège: a flapping flyer on a
merry-go-round

Figure 3.1: Top: Etienne-Jules Marey’s
petit manège (from [75]). Bottom:
PMMH’s petit manège

Summary

The work described in this chapter stems from two
ideas that developed during our previous work with
flapping foils in the hydrodynamic tunnel. We
wanted: (1) a system in a self-propelled configu-
ration, and (2) a simpler model to study the effect
of wing flexibility on the performance of insect-like
flapping wings. The result was the petit manège (Fig.
3.1, bottom) inspired by the classic setup conceived
by Etienne-Jules Marey to record the kinematics of
insect wings (Fig. 3.1, top). We have used this
merry-go-round of a flapping device as an experi-
mental platform for a thorough study of the effect of
chord-wise flexibility on the performance of flapping
wings [76; 77]. Additionally, a modified setup has
also served to study the effect of forewing-hindwing
interactions in a four-winged flyer.

Collaborators : S. Ramananarivo, M. Centeno, P.
Jain, A. Weinreb, B. Thiria

Thiria, Godoy-Diana. Phys. Rev. E 82, 015303R (2010). [76]
Ramananarivo, Godoy-Diana, Thiria. Proc. Natl. Acad. Sci. USA 108 (15), 5964-5969 (2011). [77]
Godoy-Diana, Jain, Centeno, Weinreb, Thiria. In Selected topics of computational and experimental
fluid mechanics (Editors: Klapp et al.) Springer (2015). [78]

3.1 A flexible-wing flyer in a self-propelled geometry

A self-propelled geometry may sound like the evident choice to study a flapping-powered
model, but experimentally it brings a certain amount of complications with respect to the usual
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Figure 3.2: Schematic diagram of the flapping flyer in the merry-go-round setup during (a) cruising
speed measurement and (b) thrust force measurement [From 76]. (c) Photo of the mechanical "in-
sect" and (d) three instants of the flapping cycle superposed showing the bending wing from a frontal
view (in white the leading edge, its tracking in blue; in green the tracking of the trailing edge).

testing facilities (e.g. a wind tunnel or the hydrodynamic tunnel of the previous chapter) where
an oncoming uniform flow is driven independently of the flapping motion. 1 In particular, the
actuation mechanism has to be mounted on the system that will move relative to the laboratory
frame, and power needs to be supplied. The petit manège was designed with these requirements
in mind, providing a setup (Figure 3.2) enabling measurements of the cruising speed, the thrust
force, as well as the consumed power as functions of the imposed wing motion (flapping fre-
quency and amplitude) and wing design. The design of the flyer itself also brought a set of
constrains (additional to the choice of materials and actuation), since we wanted a system that
performed reasonably well in terms of cruising speed but that remained simple enough to be
tractable using basic models for the flexible wing deformation. We found inspiration for the
final design of the wings from the literature on insect flight, in particular from Combes & Daniel
[13], who showed for a wide variety of insect wings that span-wise flexural stiffness is 1–2
orders of magnitude larger than chord-wise flexural stiffness. We thus opted for wings with a
rigid leading edge to focus on chord-wise deformation, and a semi-circular planform was used
in order to minimise span-wise bending modes.

1. However, if one thinks of cruising flapping flight, the very fact of decoupling the flapping dynamics and
the forward speed makes it difficult also to extrapolate any conclusions about flight performance to the
case of a free-flying animal or machine.

30



Bio-inspired swimming and flying

3.2 Wing compliance

When considering a flexible wing in the dynamic regime, the forces acting to induce de-
formation can come from both the fluid dynamic pressure acting on the surface of the wing
and the inertial force due to the oscillating acceleration of the wing itself. A measure of the
importance of these two bending forces can be given using a simplified model for the flapping
wing as a plate of length L, mass surface density µs, and bending rigidity B (for a plate of
thickness h and Young?s modulus E, B ⇠ Eh3) whose leading edge is heaving sinusoidally with
frequency w and amplitude A. The moment of the mean fluid pressure force scales then as
Mf ⇠ r f u2

f L
3 = r f w

2A2L3, where r f is the fluid density and u f = Aw is the maximum flapping
velocity, whereas the moment of the inertia force scales as Mi ⇠ µsL3Aw

2. The ratio of these
two moments Mi

M f is actually a mass ratio µs
r f A , which is greater than 10 for all the wings tested in

our experiments [76]. The main bending factor in this case is thus the inertia force, which will
be counterbalanced by the elastic restoring force produced by the bent wing. This is consistent
with the analysis by [79] who concluded for most wings moving in air that the feedback between
fluid pressure stresses and the instantaneous shape of the wing is negligible with respect to the
inertial-elastic mechanisms. Comparing the moment of the inertial force Mi to that of the elastic
restoring force that scales as Me ⇠ B, we defined the elasto-inertial number [76]

Nei =
µsAw

2L3

B
=

✓
L
Lb

◆3

, (3.1)

the latter form being expressed in terms of the bending length Lb = (B/µsAw

2)1/3. Nei measures
thus to what extent the inertial force due to the oscillating acceleration will be balanced by
the elastic resistance to bending (analog definitions of this bending length arise in problems
where other forces drive the bending, see [80; 81] for capillary and hydrodynamical forces,
respectively). This definition determines for instance that for Nei ⌧ 1 the wing is too rigid for
the inertia of the oscillating wing to have an observable effect, or in terms of the bending length,
Lb � L so that no deformation can be observed over the length scale L of the wing chord.

Physically, the form of the bending wing can be seen as a “shape factor” that redistributes
the contribution of the aerodynamic forces in both directions –of the flapping motion normal to
the wings FD

1 and of the forward displacement– as sketched in Fig. 3.3. During the flapping
motion, the wings experience strong drag as they push fluid up and down during a stroke cycle.
Because of the flexibility of the wing, the experienced drag scales on a length depending on Lb
[81–83], instead of L as it would for the rigid case. On the other hand, the change in shape
induces a contribution of the aerodynamic pressure load in the forward direction that is also
dependent on the wing bending.

Interestingly, the elasto-inertial number can also be expressed as a function of the ratio be-
tween the forcing and relaxation frequencies times the non-dimensional forcing amplitude of
the driving motion, which allows to express directly the bending rate as function of a non-

1. FD is the drag force that opposes the flapping motion so that in the standard reference frame, where
the thrust force is in the direction of the cruising velocity, it is actually a fluctuating lift force, not to be
confused with the drag that limits the cruising velocity.
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Figure 3.3: Schematic diagram of the redistribution of aerodynamic forces by a bending plate model
(top) with respect to a rigid plate (bottom). FTr is the thrust force and FDr the drag forces for a rigid
wing, respectively. [Figure from 76]

dimensional oscillator forcing term:

Nei =
A

w

L

✓
w f

w0

◆2

(3.2)

an expression therefore useful to explore the nearness of the resonance which we have used to
analyze the experimental data obtained with our flapping flyer [77].

The first two plots in figure 3.4 show the raw data for cruising speed and thrust force as
a function of the flapping frequency for a series of wings of different thicknesses (and hence
bending rigidities). The effect of wing flexibility is readily seen, the most flexible wings per-
forming better, up to a certain frequency where the thrust force and thus also the cruising speed
drop. All data can be analysed together using a non-dimensional representation for the thrust
power given by the product of the dimensionless thrust force fT = FT L/B and cruising velocity
u = U/A

w

w . The bottom row plots in figure 3.4 show the dimensionless thrust and consumed
powers, pT = UFT L/BA

w

w and pi = PiL/Bw , respectively, as a function of the reduced fre-
quency w̄ f = (w f /w0) = (NeiL/A

w

)1/2. A clear maximum appears in the dimensionless aero-
dynamic power. Notably, this maximum is located significantly below the structural resonant
frequency w f = w0. We remark also that there is no sign of a resonant behaviour in the con-
sumed power curve (Fig. 3.4 (d)).

Observations of the wing deformation using high-speed video showed that it is reasonable
to consider that the wings bend mostly over the first deformation mode, allowing for a forced-
oscillator description where the oscillation of the leading edge is the forcing and that of the
trailing edge is the response. Video tracking of the wing deformation was used as shown in
Fig. 3.2(d) for the full parameter space, producing data for the non-dimensional amplitude a
and phase g of the response, i.e. of the trailing edge motion in the reference frame moving with
the leading edge. Results are displayed in Fig. 3.5 where, in addition to all the experiments
in a standard atmosphere, the experiments for the two most flexible wings were also performed
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Figure 3.4: (a) Cruising speed, (b) thrust force and nondimensional (c) thrust (pT ) and (d) input (pi)
powers as a function of w̄ f . The gray area represents the optimum region, the dashed line indicates
the location of the reduced natural frequency of the wing (linear resonance) [Figure from 77].
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Figure 3.5: Evolution of the non-dimensional amplitude a) and phase b) of the trailing edge wing
response as a function of the reduced driving frequency for both flapping amplitudes A

w

= 0.8L and
A

w

= 0.5L (filled symbols correspond to measurements in air, open symbols in vacuum). Those
results are compared to nonlinear predictions from the model in Eq. 3.3 with (gray line) and without
(black line) nonlinear air drag [Figure from 77].
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in a vacuum chamber at 10 % of the ambient pressure. The latter permitted to test the role of
the damping due to aerodynamic drag in the dynamics of the flexible wing. In order to analyse
the previous results from a fluid-structure interaction point of view we used a non-linear beam
model, i.e. Eq. 1.5 where FNL consists of non-linear terms due to inertia and curvature and F f /s
is a quadratic damping term to account for aerodynamic drag. Introducing a new dimensionless
variable w(x, t) = (h(x, t)�W (t))/L to describe the system in the reference frame of the leading
edge the beam equation reads:

Linear beamz }| {
w0000 + ẅ =

Curvature non-linearityz }| {
�(w0w002 +w000w02)0

Inertial non-linearityz }| {

� 1
2

"
w0

Z x

1

∂

2

∂ t2

"Z x

0
w02dx

#
dx

#0

Linear dampingz}|{
�x ẇ

Quadratic dampingz }| {
�xnl|ẇ|ẇ

Inertial forcingz }| {
� A

w

L
Ẅ (3.3)

Keeping only the first mode of an expansion of the displacement as w(x, t) = Â•
1 Xp(t)Fp(x)

(where Fp are the non-dimensional linear modes for clamped-free beams) and using a classical
multiple scales method [see details in 77], the amplitude a and phase g of the oscillation of the
trailing edge can be obtained (lines in Fig. 3.5).

The main observations from Fig. 3.5 are the following: (1) the amplitude of the response
increases rapidly with frequency, which is readily explained by the inertial forcing to the system
(last term in Eq. 3.3), until it saturates because of the geometric limitation imposed by the finite
chord length of the wing. Measurements in air and vacuum are approximately the same, in
accordance with the hypothesis stated above that solid inertia is the main bending factor. (2) No
clear resonance is observed around w̄ f = 1 at these large-amplitude oscillations —only a barely
visible peak is observable when testing a lower flapping amplitude as shown in the insert in
Fig. 3.5(a). A slight but rather broad peak can nonetheless be observed in the nearness of w0/3
in the amplitude curve, which can be explained as a super-harmonic resonance consequence of
the cubic nonlinearities in Eq. 3.3 [see 77]. (3) Concerning the phase g , the present results
recover the trend of what has been reported previously in the literature [84–87]: |g| increases
monotonically with w̄ f . A remarkable point is that, contrary to what we have noted for the
amplitude a, there is a large difference in the evolution of the phase g between the case in vacuum
and that in air at atmospheric pressure: It is clearly observed that g decreases more slowly in
the low density environment within the whole range of flapping frequencies studied. From the
beam model point of view, this shows that the quadratic damping term due to aerodynamic drag
is responsible for the rapid phase lag observed when increasing the flapping frequency. Now,
considering together the performance increase in the first part of the aerodynamic power curve
pt(w̄ f ) (Fig. 3.4(c)), and the corresponding increasing phase lag, supports the idea of a more
favourable repartition of the aerodynamic forces by the bent wing sketched in Fig. 3.3. Indeed,
as g increases the wing experiences a larger bending at the maximal flapping velocity where
the beneficial effect of bending the wing is most useful. Connecting the phase dynamics to the
propulsive performance has been done in other configurations [85; 86] and it would mean that
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Figure 3.6: Evolution of the two characteristic angles of the wing motion q and f as a function of
the reduced driving frequency w̄ f . Two regimes can be distinguished: (I): f < q corresponding to the
performances increasing stage due to a useful phase lag. (II): f > q corresponding to the transition
to under-performances due to a loss of the effective wing area. The optimum occurs therefore when
f and q point at the same direction (best phase lag). [Figure from 77]

the thrust power should increase with the phase lag until the point where the wing experiences
its largest bending at g = p/2, a point from which further increasing the phase lag would be
counter-productive. However, while the previous argument can explain the initial trend of the
performance curve in Fig. 3.4(c), it is clear that the maximum performance does not actually
occurs at the expected g = p/2, but relatively far below at around g ⇠ p/4.

Examining the wing deformation kinematics we showed that the optimum is actually ruled
by an aerodynamic constrain: the previous argument for the theoretical optimal value g = p/2
is only valid if the surrounding flow is totally attached to the wing (i.e. if separation occurs only
at the trailing-edge). A measure of the susceptibility to separation from the kinematics is given
by the ratio of the effective angle of attack at the leading edge f (equivalent to the advance ratio
in propeller theory, see also [88, part III] and [89]) to the angle of the tangent to the wing at the
trailing edge q . A situation where q > f is strongly subjected to flow separation before the wing
trailing edge. In this case the effective surface relative to the aerodynamic load can be expected
to be drastically reduced leading to a loss of aerodynamic performance (see Figure 3.6).

Summarizing, the instantaneous wing shape is given by the two following ingredients: Iner-
tia provokes the bending (gives the amplitude) and damping, by controlling the phase lag, allows
this bending to be usefully exploited. From there, the aerodynamic mechanism described in Fig.
3.6 determines the limit of the beneficial effect of bending.
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3.3 Four-winged flyer

From a biological point of view, the case of four-winged flyers capable of out-of-phase mo-
tion between forewings and hindwings such as dragonflies is particularly interesting. In the
words of [90]: “Dragonflies can hover, fly at high speed and maneuver skillfully in the air in
order to defend their territory, feed on live prey and mate in tandem formation”. Forewing-
hindwing phase-lag has been shown in hovering configurations to be determinant for flight per-
formance [91]: optimal efficiencies have been found for out-of-phase beating whereas in-phase
motion of forewings and hindwings has been shown to produce stronger force [92; 93]. The
physical mechanisms behind these differences in performance have nonetheless not yet been
completely elucidated, and open questions remain in particular when considering the role of
wing elasticity. Wing deformation is important because it can passively modify the effective
angle of attack of a flapping wing, determining thus its force production dynamics. We have
used a modified version of our mechanical insect with two pairs of wings (Figure 3.7) to address
these questions experimentally.

The two wings are driven by a single direct-current motor with a set of gears that allows to fix
the phase difference between the forewings and the hindwings. All wings beat thus at the same
frequency which was varied between 15 and 30 Hz. We have reduced the parameter space in the
experiments reported here by fixing the physical characteristics of the flyer. Namely, the distance
between the wings d, the stroke amplitude q0 and the chord-wise flexural rigidity of the wings.
It should of course be noted that these parameters in the present tandem wing configuration, in
particular the wing spacing d, should in general be analysed simultaneously with the forewing-
hindwing phase lag [91; 94]. The motion of the wings is described using the angles of the
forewing and hindwing leading edges in the flapping plane, q f w and qhw, respectively, as

q f w = q0 sin(2p f t) and qhw = q0 sin(2p f t �j) , (3.4)

where f is the flapping frequency and the phase lag j is varied between 0 and 2p . For 0 < j < p

the forewing is leading whereas for p < j < 2p it is the hindwing that leads. The Reynolds
number Re = Uc/n based on the cruising speed and the chord length was in the range of 1000
to 4000.

The performance results are summarised in Fig. 3.8. In the first frame U is plotted in

Figure 3.7: Photos of the flapping flyer with forewing-hindwing phase lags 0 (left) and p (right).
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Figure 3.8: Cruising speed, consumed power and efficiency (see text) as a function of the forewing-
hindwing phase lag and the flapping frequency. Only the first half o the phase-lag j range where the
forewing is leading was examined here.

coloured contours in a (j, f )-space for j 2 [0,p] and scanning the full range of flapping fre-
quencies available experimentally. For all phase lags, a clear maximum of the attained cruising
speed occurs always around 24Hz (the optimal frequency can be expected to be dictated by the
elastic properties of the wings). The second plot in Fig. 3.8 shows the consumed power Pi in
the same parameter space. Here the main observation is that, while not surprisingly consumed
power increases monotonically with increasing flapping frequency, phase lag plays an impor-
tant role for energy expenditure, regardless of the flapping frequency. We use the two previous
measurements to define the following expression of efficiency, considering that the aerodynamic
thrust power is proportional to U3 (velocity times thrust force, the latter being ⇠ U2):

h =
1
2 rSU3

Pi
(3.5)

where S is the effective wing surface. Other definitions of efficiency using purely dynamical
parameters [e.g. 95] should give equivalent results to the expression 3.5 chosen here in terms
of the measured consumed power Pi. It can be seen that the optimum in terms of efficiency
is shifted toward larger phase lags (around j ⇡ p/2) than the optimum in terms of maximum
cruising speed [More details in 78].
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4. Playing with Pieris rapae

Figure 4.1: Successive stages of the but-
terfly take-off over half wingbeat period
[From 96].

Summary

The present chapter reviews a project that emerged
from the collaboration with Jérôme Casas’ group at
IRBI in Tours. We used the small white cabbage but-
terfly Pieris Rapae to study the take-off maneuver,
which remains an elusive phase of insect flight rela-
tively poorly explored compared to other maneuvers.
Focusing on the first downstroke, we have addressed
the different mechanisms involved in the force pro-
duction during take-off from a force balance perspec-
tive, in butterflies taking-off from the ground. In or-
der to determine if the sole aerodynamic wing force
could explain the observed motion of the insect, we
have firstly compared a simple analytical model of
the wings force to the acceleration of the insect’s cen-

ter of mass estimated from video tracking of the wing and body motions. Secondly, the wing
kinematics has also been used for numerical simulations of the aerodynamic flow field. Similar
wing aerodynamic forces were obtained by the two methods. Both are however not sufficient,
nor is the inclusion of the ground effect, to predict faithfully the body acceleration. We have to
resort to the legs forces to obtain a fitting model. We show that the median and hind legs dis-
play an active extension responsible for the initiation of the upward motion of the insect’s body,
occurring before the onset of the wing downstroke. We estimate that legs generate, at various
times, an upward force which can be much larger than all other forces applied to the insect’s
body. The relative timing of leg and wing forces explain the large variability of trajectories
observed during the maneuvers.

Collaborators : G. Bimbard 1, D. Kolomenskiy, J. Casas

Reference :

Bimbard, Kolomenskiy, Bouteleux, Casas, Godoy-Diana J. Exp. Biol. 216, 3551-3563 (2013) [96].

1. This work was part of Gaëlle Bimbard’s PhD project at IRBI.
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4.1 Take-off force balance

We focus on the first downstroke of Pieris rapae (Lepidoptera: Pieridae) butterflies taking off
from a horizontal flat surface. Starting from a natural position prior to take-off with both wings
pointing upwards, the first downstroke starts producing the lift force that drives the ground-to-
air transition (see Fig. 4.1). A high-speed video recording setup with three cameras (see Fig.
4.2) was used to record spontaneous take-offs, giving access to time-resolved wing and body
kinematics. In particular, tracking of the centre of mass of the insect was used to test the simple
balance of forces in the vertical (z) direction:

mz̈cm = Fz(t)�mg , (4.1)

in terms of the position zcm of the centre of mass of the insect, its mass m and the gravitational
acceleration g. The upward force Fz(t) can thus be calculated from the measured position zcm(t)
and used to elucidate the mechanisms of of force production during take-off.

Considering first the aerodynamic force, at t = 0 the butterfly is on the ground and as the
wings start moving downwards they will produce a lift force. We attempted first to compare a

Figure 4.2: (A) Video recording setup. (B) Reference frames and definition of the points used for
the video tracking. Oxyz is the frame fixed on the earth; O0x0y0z0 is the frame fixed on the wing,
with its origin at the wing root. The y0�axis, along which wing elements of various area dA follow
each other, spans the wing from the root (red circle) to the tip (orange triangle). The blue diamond,
the green triangle and the yellow square represent the head, the center of mass and the tip of the
abdomen of the insect, respectively. (C) Tracked points in the Oxyz reference frame for the first half
wing beat [From 96].
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Figure 4.3: Evolution of the net vertical forces produced during take-off flight for one case. The
dotted line represents the evolution of the total vertical force actually acting on the insect (mz̈) while
the solid curve punctuated by points symbolises the analytical wing force model Fam

z (t), calculated
using Eq. 4.2. The black line punctuated by crosses represents the tethered numerical simulation
[From 96].

rough estimate of the force produced by the wings during the first half wingbeat period to the
acceleration of the actual force Fz(t) calculated from the motion of the centre of mass.

For each wing, we consider the dynamic pressure r|~u|2, where r is the fluid density and~u is
the instantaneous velocity acting on an element the area dA of the wing (Fig. 4.2B). It produces
a force d~F that is oriented at each instant in the direction normal to the wing surface. Using for
each wing a reference frame with the origin at the wing base, chosen so that one of its axes is
aligned with the plane of motion during the first half wingbeat period (see y-axis in Fig. 4.2B).
Furthermore, the velocity of a slice of wing element can be written u = y0

q̇ , considering a wing
surface described by a chord that varies along the span as the function c(y0). Here q̇ is the angular
velocity of the wing, i.e. q(t) is the angle describing the wing motion (and the direction of the
y0-axis), which is obtained from the kinematics measurements. The element of force projected
in the direction of gravity can be thus written dF = 2ry02

q̇

2c(y0)cosq cosgdy0, where g is the
angle between the x0-axis and the horizontal (see Fig. 4.2B) and where the element of area of
the wing dA = c(y0)dy0 is written in terms of the chord c(y0). Integrating along the wing span
gives the lift force as a function of time

Fam
z (t) = 2rq̇

2(t)cosq(t)cosg

Z span

0
c(y0)y02dy0 . (4.2)

The output of this rough model was not able to explain the upward force values Fz(t) from
the centre of mass motion measurements, hinting to the necessity of including other sources
of force. Numerical simulations of the aerodynamic flow field using the wing kinematics were
carried out for flight setups assuming tethered and free flight conditions, and with or without the
presence of the substrate to test for the ground effect [see details in 96]. The simulations showed

41



R. Godoy-Diana

Figure 4.4: Legs forces and forces integration from numerical simulations three types of take-offs.
Column A. Time evolution of the vertical forces acting on the insect’s body during the three different
types of take-offs. The vertical components of the force generated by the legs model and of the total
aerodynamic force of the two wings obtained in the free/ground numerical simulation are shown.
The gravity force mg is also represented for reference. Column B. Time evolution of the vertical
position of the insect’s centre of gravity. The downstroke time in milliseconds is also shown here for
each take-off type. [From 96].

that the global trend of the aerodynamic force was relatively well predicted by the previous rough
model (see Fig. 4.3) and also that the ground effect played only a minor role (mainly because
of the transient nature of the take-off maneuver). We thus showed that the leg extension has to
be taken into account as one of the main elements in the take-off force balance. The lift force in
Eq. 4.1 can thus be written Fz(t) = Faz + Flz, where Faz and Flz are the forces produced by the
wings and the legs, respectively. Using a linear compression spring model for Flz, we proved
that these legs forces can be active from the very beginning of the maneuver or at the same time
as the peak of aerodynamic lift, in the second portion of the first downstroke (see Fig. 4.4 and
[96]).
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Figure 5.1: Snapshots of an undulating
swimmer defining the cruising speed U
and the phase velocity v

j

of the body un-
dulation.

Summary

Swimmers in nature use body undulations to gen-
erate propulsive and manoeuvring forces. The un-
dulatory kinematics is driven by muscular actions
all along the body, involving a complex temporal
and spatial coordination of all the local actuations.
Such swimming kinematics can be reproduced artifi-
cially, in a simpler way, by using passively the elas-
ticity of the body. Here we present experiments us-
ing this idea with self-propelled elastic swimmers in
the inertial regime. The first experiment is based on
magnetically-actuated self-propelled swimmers on a
free surface [97]. By addressing the fluid-structure
interaction problem of undulatory swimming, we
show that our artificial swimmers are well described
by coupling a beam theory with the potential flow
model of Lighthill [29]. In particular, we show that

the propagative nature of the elastic wave producing the propulsive force is strongly dependent
on the dissipation of energy along the body of the swimmer [98]. In the second experiment we
use rectangular flexible foils forced by a rotational oscillation at one extremity and allowed to
self-propel along a fixed direction, enabling the discussion of the problem of drag on an undu-
lating self-propelled swimmer [99]. The foil experiment was then used to discuss the interaction
of a swimmer with a solid boundary (see [100] included in the appendix).

Collaborators : S. Ramananarivo, V. Raspa, M. Piñeirua, R. Fernández-Prats, F. Huera-Huarte,
B. Thiria
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5.1 Lighthill’s elongated body theory

In order to describe the production of a propulsive force by an undulatory swimmer one
can think of the sum of the contributions of each section of the undulating body. In the inertial
regime, two main physical ingredients have to be considered: (1) the hydrodynamic drag and
(2) the acceleration reaction, both acting on each section of the swimmer’s body. These two
ingredients have been formalised giving rise, respectively, to Taylor’s resistive theory [101] and
Lighthill’s reactive theory [102]. The former case is a quasi-static model, where the instanta-
neous force is determined at each time by the value of the instantaneous velocity of the section
of the body —hence not considering the effect of acceleration—, and in that sense it resembles
the theoretical framework describing low-Reynolds-number swimmers [103], excepted that the
friction force opposing the lateral displacement of each body section is not linear but quadratic.
In the reactive model on the contrary, lateral forces come from the reaction force following the
acceleration that the body motions have given to the surrounding fluid, and they can thus be
described by a potential flow theory. The latter model has been the most widely used to describe
large-Reynolds-number swimmers, however, for realistic modelling purposes it has been cus-
tomary to couple it to additional models that account for viscous effects, bringing in practice the
resistive theory back into play [see e.g. 104].

We recall briefly here the main points of Lighthill’s reactive theory, which we have used
to describe our artificial self-propelled swimmers. Lighthill showed that the estimation of the
thrust force only requires the knowledge of the local kinematics at the tail of the deformable
body [see also 17; 31; 105]. In the small lateral displacement approximation, the mean thrust
force T can be written in terms of the local deflection of the slender body with respect to the
axis of swimming h(x, t) as:

T =
m
2

" ✓
∂h
∂ t

◆2

�U2
✓

∂h
∂x

◆2
#

x=L

. (5.1)

where m is the added (or virtual) mass of fluid, which can be written for a slender swimmer as
m = rS (with r the fluid density, and S the swimmer cross-section). The subscript x = L means
that the derivatives in Eq. 5.1 are evaluated at the tail. This expression of the force is obtained
by writing that the swimming power TU (i.e. the product of the thrust force times the swimming
velocity) corresponds to the rate of working W done by the fish through its lateral forces (i.e.
the integral of the work done by the instantaneous lift per unit length in making a displacement
h(x, t) at a rate of ∂h/∂ t), minus the rate of shedding of the kinetic energy associated with lateral
fluid motion, which can also be expressed in terms of the derivatives of h(x, t). This swimming
energy conservation then reads:

swimming powerz}|{
TU =

muscle powerz}|{
W �

rate of shedding of kinetic energyz }| {
m
2


∂h
∂ t

+U
∂h
∂x

�2

x=L
U . (5.2)

The part corresponding to the energy transferred to the fluid can be seen as a source of dissipation
for the mechanics of the swimming fish, as this energy is lost into the flow and will not be used

44



Bio-inspired swimming and flying

8 Nage Anguilliforme

d = 460 m

aimant  

( )  

FIGURE 1.4: (a) Nageur constitué d’une queue flexible en élastomère de section
circulaire (diamètre d = 460µm), et d’une tête dans laquelle est incorporée un ai-
mant cylindrique (de dimensions : diamètre 1mm - hauteur 2mm). (b) Mesure de
la rigidité en flexion de la queue en mesurant la déformation d’un échantillon en-
castré à une de ses extremités.

B du matériaux, ainsi que par les conditions aux limites imposées (ici encastré-
libre). En comparant la déflection verticale de la longueur pendante de la queue,
avec la forme obtenue numériquement par intégration des équations d’équilibres
d’une poutre encastrée-libre, on peut donc remonter à la valeur de B . Après avoir
réalisé plusieurs mesures pour différentes longueurs pendantes, on obtient B =
5.4�10�10 ±1.0�10�10N .m2.

1.3.2 Dispositif expérimental

Le nageur est déposé sur un bac d’eau de dimensions 12�6�27cm et se main-
tient à la surface grâce aux forces capillaires. Sa tête est actionnée à l’aide d’une
paire de bobines placée de part de d’autre du bac (voir Figure 1.5(b)) ; ces der-
nières sont disposées en configuration Helmoltz (c’est à dire distantes d’un rayon)
de façon à générer un champs magnétique spatialement uniforme. En imposant
un courant alternatif aux bornes des bobines, on exerce un moment oscillant sur
l’aimant T(t ) = m�B(t ) ; où m est le moment magnétique de l’aimant et B(t ) =
Bo cos(2� f t ) le champs magnétique appliqué (voir Figure 1.5(c)). Ce forçage in-
duit un mouvement combiné de rotation et de translation de la tête ; l’aimant pi-
vote pour s’aligner avec le champs magnétique oscillant, mais à cause de la pré-
sence de la queue qui "traîne" derrière, cette rotation s’accompagne également
d’un mouvement de translation latérale (est-ce qu’il faut développer plus ? genre
dire que c’est le centre de gravité du nageur est pas tout a fait situé à la tête ou

t 

U 
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v!"

#"x 

y 
$"

!
B(t)

x
y

z

Figure 5.2: Experimental setup (Left): a water tank is placed inside a Helmholtz coil pair. Right:
schematic diagram of the flexible swimmer with the magnet embedded at its head [Figure from 2].

for sustaining the body deformation. Together with its large-amplitude version [106], this theory
has been extensively used in the literature as mentioned above, although only recently extended
to a three-dimensional framework and confirmed using numerical simulations [107].

The question of efficiency can be also addressed within this framework defining it as the
ratio between the propulsive power to the muscle power [102]:

h =
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, (5.3)

which measures the ability of the swimmer to produce useful propulsive power from the work
exerted by its body motions.

5.2 Elastic filament swimmer on a free surface

We present now our experimental setup with self-propelled swimmers on a free surface. The
swimmers, modelled as flexible thin filaments, are composed of a cylindrical body of diame-
ter d 0.5mm made of a flexible polymer (polyvynil syloxane), with a small embedded magnet
constituting the head. They float through capillary forces at the free surface of a water tank. A
time-varying but spatially-uniform magnetic field is generated using a Helmholtz pair of coils
powered by an AC voltage. The field actuates the head of the swimmer by producing an oscil-
lating magnetic torque as the permanent magnet attempts to align with the alternating field. The
rotational oscillations of the magnet generate a backward-propagating wave along the flexible
tail, causing it to swim forward. Fig. 5.2 shows schematically the experimental setup and the
geometry of the swimmer. Fig. 5.3 presents snapshots of a swimmer a 5cm long swimmer with
its head oscillating at 13Hz where the wake is visualised by colouring the body of the swimmer
with fluorescein dye prior to starting the experiment.
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Figure 5.3: Flourescein-dye visualisation of the wake of an elastic swimmer on a free surface.
From left to right, snapshots every 0.5 s are shown [Figure from 97]. [See video in URL:
http://vimeo.com/77356211]

We have followed two ideas to understand the dynamics of these artificial swimmers: on the
one hand, we resort to the fluid-structure interaction framework discussed previously (Eq. 1.5)
to describe the deformation of the flexible filaments subjected to the actuation at one extremity.
The crucial finding on this line has been that the propagative nature of the elastic wave that
mimics the anguilliform kinematics is strongly dependent on the energy dissipation along the
body of the swimmer due to fluid damping [29; 98]. On the other hand, we have coupled the
thrust estimation from Lighthill’s theory for slender fish swimming (Eq. 5.1) with a global drag
model, in order to describe the self-propelled regime where the final cruising swimming speed
U is determined by a balance between the forward thrust generated by the body undulations and
the drag experienced by the filament.

Considering the first point, the resulting beam equation now reads:

Linear beam with added massz }| {
(1+ m̃)ÿ+ y0000 +

“Flag” termsz }| {
m̃
⇥
2Ũ ẏ0 +Ũ2y00⇤ +

Quadratic dissipationz }| {
ã

��ẏ+Ũy0��(ẏ+Ũy0) = 0 , (5.4)

which is written in dimensionless variables 1 and differs from the case of Chapter 3 for the model
of the insect wing in that: (1) the effect of added mass term is now non negligible, (2) a potential
flow model for the surrounding fluid brings two extra terms that depend on the swimming veloc-
ity (labelled “flag” terms in the equation since they are responsible of the flapping flag instability
when an outer flow of sufficient velocity is imposed, see e.g. [108]), and (3) because smaller

1. Ũ = UL
p

µ/B is the reduced velocity, m̃ = M/µ the mass ratio and ã = 1
2 rdCdL/µ the non-dimen-

sionalized damping coefficient. Note that ã depends on L, which reflects the increasing effect of damping
when the filament is longer [29].
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Figure 5.4: Comparison of experimental measurements (points) and output of the model (lines).
(a) dimensionless phase velocity v̄

j

= v
j

/w0L and (b) Dimensionless amplitude of the oscillations
Ā = Ar/A f . [Figures from 29]

amplitudes are involved, the non-linear inertial and curvature terms that appeared in Eq. 3.3 can
here be neglected. The quadratic dissipation term opposing lateral motions is again present here
and, remarkably, it turned out to be by large the most important effect of the fluid for the beam
model, always one to two orders of magnitude larger than the added mass and flag terms 1. The
output of this model successfully recovered the elastic wave kinematics measured experimen-
tally (see Fig. 5.4), and brought our attention to a crucial point: the irreversible loss of kinetic
energy transferred from the swimmer body to the fluid (represented in the beam model by the
quadratic dissipation term) is the dynamical ingredient that enables a propagative bending wave
to be established. Indeed, removing this term completely changes the response of the system,
where the bending wave no longer propagates but becomes a standing wave. We further anal-
ysed this problem in a simplified system with elastic strips vibrating in air and in water, which
confirmed the previous observations (see [98]).

Now, back to Lighthill’s model, considering a simplified kinematics h(x, t) = Ar cos(2p( f t �
x/l )) characterised by the amplitude Ar and phase velocity v

j

= f l of the deformation wave
recorded for the experimental swimmers (see Fig. 5.4), the estimate for the average propulsive
force of Eq. 5.1 can be written as

T =
m
4

A2
r

✓
2p

l

◆2 ⇥
v2

j

�U2 ⇤ , (5.5)

while Eq. 5.3 for the efficiency becomes:

h = 1� 1
2
�
v

j

�U
��

v
j

. (5.6)

1. In the range of parameters of the experiment: m̃ ⇡ 1, Ũ ⇡ [0.2 � 4] and ã ⇡ [50 � 150]. Eq. 5.4 is
solved numerically using the experimental parameters (see [29]).
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Figure 5.5: (a) Implementation of U = G(l ,AR;CD)v
j

using experimental data. The line of slope
unity around which the data lines up is the identity defined by Lighthill’s theory. A single value of
CD ⇡ 0.23 was used, which is obtained as an adjustable parameter giving the best fit of all points.
(b) Hydromechanical efficiency, calculated from Eq.5.6, plotted against g which is a function of
the kinematic characteristics of the swimmer. The dotted line corresponds to the h(g) = 1/2(1 +p

g/(1+ g)) function issued from Lighthill’s theory. [Figures from 29]

On the other hand, during cruising, the average thrust produced by a self-propelled swimmer
is balanced by a mean drag force. We will discuss further this question in the next section. For
the swimming filaments, we chose an equivalent bluff-body drag using the area swept by the tail
of the swimmer as characteristic size, so that the average propulsive force is balanced by a mean
global drag:

D =
1
2

rU2CDS0, (5.7)

where CD is a drag coefficient and S0 = 2Ar ⇥d the effective section. Writing T = D using Eqs.
5.5 and 5.7 we get an expression for the swimming speed in terms of the kinematic parameters
of the swimmer U = G(l ,AR;CD)v

j

—see Fig. 5.5 (a)—, where CD serves as an adjusting
parameter. The equation for the efficiency can now also be written in terms of the kinematics
as h = 1

2(1 +
p

g/(1+ g)) with g = g(l ,Ar;CD) [see details in 29]. Figure 5.5 (b) shows the
efficiency calculated directly from Eq. 5.6 using the experimental values for v

j

and U , as a
function of g , together with the theoretical prediction h(g), which gives a good representation
of the experimental points. It can be seen that the efficiency increases with g , giving in the
present experiment values systematically higher than 1/2, which was shown by Lighthill [102]
to be the maximum efficiency attainable by swimmers using standing waves as body undulations.
To get a clearer view in terms of the body undulation kinematics we can write an approximate
expression for l ( f ) using the dispersion relation of a beam submerged in quiescent fluid, which
shows that g µ Ar f [29]. The tendency in Fig. 5.5 (b) is thus that h increases with frequency, in
spite of the diminishing flapping amplitude at the tail that accompanies an increasing frequency
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in the present setup —see Fig. 5.4 (b)—.
The energy loss along the swimmer (represented in the beam model by the quadratic dissipa-

tion term) brings therefore an increase in efficiency, by determining the propagative dynamics to
be established. Of course the same mechanism that enables the propagative dynamics by giving
energy to the fluid, diminishes the amplitude of the oscillation. An interplay that will have to
be considered in any design of flexible swimmers with localised actuation that use the elastic
properties of the body to establish the undulation kinematics [2].

5.3 Self-propelled swimming foils

As we have mentioned, during cruising, the average thrust produced by a self-propelled
swimmer is balanced by a global drag force. For a given object shape, this drag can involve
skin friction or form drag, both being well-documented mechanisms. However, for swimmers
whose shape is changing in time, the question of drag is not yet clearly established [see e.g.
109–111]. In the experiment described in the previous section with the free-surface swimmers,
a form drag model using the area swept by the tail as characteristic size was assumed to balance
the average thrust calculated using Lighthill’s elongated-body theory and permitted to describe
the observations [29]. Other experiments have used a skin friction model to complete a potential
flow description of undulatory self-propelled swimmers [27].

We designed another experiment to address this problem, one that uses undulating thin flex-
ible foils fully-submerged in a water tank, actuated by a pitching oscillation at one extremity to
achieve self-propelled swimming (see Fig 5.6). Measurements of the propulsive performance
together with full recording of the elastic wave kinematics were used to discuss the question
of drag for different aspect ratio swimmers. The results showed, remarkably, that neither skin
friction, nor form drag as used in the previous section, which both give expressions for drag
per-unit-span, could explain the observed behaviour of the thrust coefficient CT (see Fig. 5.7).

(a) 
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θ(t) = θmax sin (2π f t)  
U 
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h (x,y,t) 

x 

y 

Figure 5.6: Experimental setup. (a) Sketch of the mechanical swimmer submerged in the tank.
Definition of driving parameters as well as swimmer’s dimensions and velocity. (b) Camera view of
the swimmer. The local body deflection h(x,y, t) is also indicated [Figure from 99].
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Figure 5.7: Top rows: (a) Self-propelled swimming velocity U as a function of the forcing frequency
f for four aspect ratios. (b) and (c) Propulsive force F as a function of the forcing frequency and of
the foil width, respectively. In (b) measurements are presented in symbols for different swimmers,
together with the corresponding Lighthill’s prediction using Eq. 5.1 (dashed lines), which allowed
to calculate the added mass coefficient AM for each data set. The inset in (c) shows the added
mass coefficient AM as a function of the aspect ratio AR. (d) Dimensionless thrust coefficient as a
function of the aspect ratio. Bottom row: visualisation and schematic representation of the stream-
wise vortices rolling up at the lateral edges of two foils of different spans. [Figures from 99].
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This prompted our attention to analysing the system considering finite size effects. We showed
that a major part of the total drag comes from the trailing longitudinal vortices that roll-up on
the lateral edges of the foils (see Fig. 5.7, bottom). This result gives a comparative advantage to
swimming foils of larger span thus bringing new insight to the role of aspect ratio for undulatory
swimmers (see [99]).
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6. Perspectives

Rather than closing this review with a summary of the results and conclusions mentioned in
the previous chapters, let us attempt a brief account of the research lines that we can foresee for
the future (some of which are by now already being pursued). A few sections follow, grouped in
subjects that sometimes appear too rigid, when the questions we ask overlap among more than
one theme, revealing of course the richness of these subjects.

6.1 Insect flight

Our future goal concerning flapping flyers is to get a bit closer to the engineering perspective
of the problem of insect flight. We would like to ask which are the fundamental points, beyond
the well studied aerodynamical aspects, to be understood if we want to consider building insect-
inspired flying robots that are both versatile and energy efficient?

Although bio-inspiration is not a new concept in the search for innovative solutions to engi-
neering problems, in the case of flapping-wing flyers a review of the literature tells us that most
research efforts have been concentrated in the aerodynamic questions. Wing aerodynamics is
certainly a major player in this problem, as shown in the problems discussed in Chapter 3, but
recent studies also point out that the outcome of wing motion, in terms of production of useful
propulsive or manoeuvring forces, is intimately linked to the dynamics of other parts of the body
such as the thorax, abdomen and legs (e.g. the initial leg force in the take-off of the butterflies
of Chapter 4). This observation constitutes the seed for one of the main objectives we attempt to
follow in the future, which is to go beyond the sole aerodynamics of flapping wings, a subject
where a large amount of studies is now available [84], and to consider different aspects of the
relevant multi-body dynamics. To this end, we propose to pursue a cross-disciplinary program
involving experimental biology tasks with a few insect species, as well as physics and mechanics
modelling using experimental and theoretical tools [see e.g. 113]. In addition to further work
concerning the take-off maneuver with the white cabbage pierid described in chapter 4, we have
identified the common green lacewing Chrysopa carnea as suitable model to study forewing-
hindwing interactions with very flexible wings, and the spider wasp (pompilidae) as an extreme
model to investigate multi-body dynamics (see Figure 6.1). Studying the biomechanics of the
whole insect will let us ponder the role of the diverse mechanisms that govern performance and
efficiency in flapping flyers.

Biologically-inspired flying robots are by now the object of several engineering programs be-
cause of a vast set of useful applications. Among other things, one may think of military or civil
surveillance missions, or maintenance and remediation tasks in environmentally compromised
sites. Well-controlled small-scale flapping wing vehicles are by now starting to become a reality
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Figure 6.1: (a) Pieris rapae, (b) Chrysopa carnea, (c) Pompilidae wasp [Photos from 112].

(see e.g. [114]). However, long-duration power autonomy is still not, and these insect-scale
robots are still tethered to their power chord. How can we increase flight duration and optimise
manoeuvrability? One path to try to solve this problem is of course to pursue research in the
area of small, high-energy-density power sources, which is certainly being done elsewhere (e.g.
[115]). That approach consists in increasing energy availability. Our future efforts will explore
the other, symmetric path: the one that has to do with the way biomechanics, i.e. kinematics of
body parts and material properties, minimise energy consumption. Here the core questions are
to be identified in the relation between body kinematics, performance and energy expenditure 1.

6.2 Smaller swimmers and micro-swimmers

Our work with magnetically-actuated small swimmers described in Chapter 5 has brought
a series of perspectives that we have already started exploring. An interesting path comes from
decreasing the size of the problem, which triggers the question of inertial-to-viscous regime tran-
sition for undulatory swimmers. From the biological standpoint, such a regime transition is for
example associated to the process of development, where the locomotion of young fish or larvae
is subjected to dynamical constraints mostly ruled by viscosity, but which will progressively in-
corporate inertial effects as their body increases in size (see Fig. 6.2 and Ref. [116]). This is one
of the subjects we are currently working on, where diminishing the size of our surface swim-
mers raises other complex questions such as the increasing role of the capillary effects. In the
study described in chapter 5, surface tension was considered only implicitly as an experimental
means of keeping the model two-dimensional by making the swimmer move on the air-water
interface. For smaller swimmers, however, the relative size of the meniscus will most likely per-
turb this simplistic view and call for a new description, where other interesting problems such
as the effect of the surface roughness of the swimmer skin can be included. One may think of
the dynamical role of superhydrophobicity, which has been pointed out as an important matter

1. This project is the subject of an ongoing collaboration with Jérôme Casas (IRBI, Tours).
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Figure 6.2: Reynolds numbers spanned during coasting by zebrafish of different size (Figure repro-
duced from McHenry & Lauder, 2005 [116]).

in some cases such as the locomotion of water-walking arthropods, not only for its well-studied
water-repellency properties but also as a drag reduction mechanism [117].

Forgetting the free surface effects, the subject can also get richer when considering the in-
teraction between many swimmers. This is another goal of our current research, which we are
pursuing in the context of newly developed micro-swimmers. Different sorts of magnetic mate-
rials such as aggregates of micron-sized super-paramagnetic particles [118] are being tested (see
Fig. 6.3) and, undoubtedly, the Reynolds number is shrinking 1.

Biomedical applications abound for artificial micro-swimmers, which go from performing
missions of targeted drug delivery to microsurgery. Wireless micro-robots offer indeed great
promises in the development of minimally invasive medical procedures [119]. The idea of a
swarm of actively-controlled swimmers being able to self-propel and perform a task inside the
human body is certainly appealing, and clever solutions in the form of active control by mag-
netic fields have been offered [120], where the design of the artificial swimmers uses an external
magnetic field to induce motion. An external magnetic field creates a convenient solution to the
problem of supplying power to the swimmer. Not only does externalising the power supply lend
itself to easier scale-down in size, but also, the magnetic field can be incorporated into a mag-
netic resonance scanner, or MRI, a tool already commonplace in hospitals, to combine actuation
and imaging in one [121]. However, many questions still remain open, especially concerning
the interaction of an artificial swimmer with its environment and the collective dynamics in-
herent to a group of swimmers. The latter is a flourishing field of current research known as

1. This project has been developed by Miguel Piñeirua (postdoctoral fellow 2014-2015, co-advised with
Benjamin Thiria).
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Figure 6.3: (a) Example of experimental flagellated PDMS micro-swimmers currently being tested.
(b) Schematic diagram of the magnetic field B(t) used to drive the oscillation of a paramagnetic
head. (Photo and diagram by M. Piñeirua).

active matter [see e.g. 122], which is defined as a fluid constituted by large numbers of active,
self-propelled entities that give rise to collective effects modifying the effective properties of the
solution. Anomalous properties of active suspensions include, for instance, the enhanced diffu-
sion of chemicals or other passive entities due to the presence of swimming bacteria [123], or the
collective clustering of swimmers into biofilms [124]. These unique hydrodynamic properties of
active suspensions promise many exciting new applications, such as the use of artificial micro-
swimmers as active transport agents in the human body. Biological organisms in their natural
environment provide of course inspiration for the design of such artificial swimmers. The exper-
imental backbone of our future research effort on this subject will be built upon a down-scaled
version of the elastic swimmers of Chapter 5, containing a small magnetic head and a cylin-
drical elastic tail. We will consider swimmer-wall interactions [125; 126], swimmer-swimmer
interactions, and many-body collective dynamics, all being fundamental issues concerning the
perspective of using artificial swimmers for the targeted delivery purposes mentioned above.
Additionally, while biological organisms serve as inspiration for the design of artificial swim-
mers [127–130], artificial swimmers in return can lend themselves to a deeper understanding
of the biological organisms they mimic and thus can be used to address biologically-relevant
issues; for instance, in the public health domain, sperm swimming speed is significantly related
to fertilization success [131].

6.3 Undulatory swimming

We have evoked collective and boundary effects in the previous section thinking about
micro-swimmers. But these questions about interactions arise of course also in the larger scales
that we have discussed in chapter 5. Moreover, they are crucial for the understanding of real
systems. For example, batoids and flatfish generally swim very close to the substrate, whereas
most aquatic mammals can spend long periods of time swimming just below the sea surface.
Despite the successes of Lighthill’s theory, the ubiquitous problems of the interaction between a
swimmer and a wall or a free surface are out of its reach. This is also the case for the description
of the interactions between multiple swimmers, which may significantly impact the performance
or cost of locomotion associated with fish schooling, as each swimmer moves in a non-uniform
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Figure 6.4: Two self-propelled swimmers in a side-by-side configuration. Each foil is held by an
independent air-bearing rail. In the image sequence presented the two foils are actuated in anti-phase.

Figure 6.5: Left: Theoretical vortex wakes for interacting swimmers [From Childress, 1981, 31].
Right: Standard tails for guppies (Poecilia reticulata). [From Wikimedia Commons]

and unsteady flow created by its neighbours. We have already used the experiment described in
Chapter 5 on a swimming foil to study the effect of swimming near a wall, establishing the main
physical mechanism, a reorientation of momentum, that leads to a performance enhancement
due to the presence of the wall [100]. The full fluid-structure interaction problem linking the
large amplitude passive deformation of our flexible swimmer to the constraints imposed by the
boundary remains to be addressed, as is the extension of the study to the case of swimming near
a free-surface which is a deformable boundary.

Ongoing work concerns an extension of the previous experiment with the swimming foils to
explore hydrodynamic swimmer-swimmer interactions 1. We concentrate at present on the sim-
plest situation with only two swimmers (see Fig. 6.4), in order to be able to quantify accurately
the interaction processes. We expect in this way to provide a valuable input for the modelling
of collective effects in systems with a large number of swimmers, where one-on-one interac-
tions constitute the building blocks (see e.g. the classic picture in Fig. 6.5, left). An additional

1. This is part of the PhD project of Intesaaf Ashraf (2014-2017, co-advised with Benjamin Thiria).
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Figure 4: First experiments. Start up motion of a flexible sheet from di�erent initial angles,
�. �T=0.1 s.

7

Figure 6.6: Start-up motion of a flexible sheet from two different initial angles. The escape direction
is from right to left, following a counterclockwise rotation of the foil shown here by superposed
snapshots separated by a DT = 0.1s time lapse. (Photos by R. Zenit, publication in preparation
[132]).

experimental project concerning the collective dynamics of swimmers with flexible propulsors
is the use of a real biological model. The idea comes from the observation of small aquarium
fish with very flexible caudal fins where a deformation wave actuated at the peduncle of the tail
is propagated passively, much like the flexible foils of our experiments in Chapter 5. Different
kinds of guppies (see Fig. 6.5, right) seem like an ideal model, and we are currently designing a
swimming channel connected to an aquarium that will allow us to examine swimmer-swimmer
interactions in real swimmers but in a controlled situation. This project brings the additional
technical challenge for our fluid dynamics laboratory of learning the proper experimental proto-
cols to work with live fish, especially if we consider performing PIV measurements.

6.4 Transient regimes

In most of the swimming and flying examples that we have discussed we have considered
the cruising regime, i.e. we have analysed the effect of variations in different geometrical and/or
actuation parameters on the observed average velocity of locomotion. The exception in the
previous pages is the study of the take-off flight of the pierid butterfly, where we have focused
on a transient maneuver. For the case of insects, as we have seen, this take-off maneuver involves
not only aerodynamics but the mechanics of the full insect. We have already noted above that
this multi-body dynamics will be a crucial point of our future work.

But transient maneuvers are everywhere and in the context of bio-inspired swimming and
flying they have been much less studied than cruising regimes. Using our flexible foil models
we have already started considering a minimal model of the C-start maneuver 1, the archetype
of fish fast-start swimming which involves an initial phase where the animal bends its body
into a C-shape before producing a powerful recovery stroke that drives its sudden acceleration.
Using the setup of Chapter 5, described in Fig. 5.6, we produced a synthetic C-start maneuver
by operating an impulsive rotational actuation on one extremity of the foil. The deformation
kinematics being governed by the foil flexibility, as the foil rotates, it pushes the surrounding
fluid, it deforms passively and stores elastic energy. The latter will drive the recovery of the

1. In collaboration with Roberto Zenit from UNAM, México
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Figure 6.7: Schematic diagram of a possible configuration of flexible rods subjected to the action of
a surface wave field.

straight body shape after the motor actuation has stopped as shown in Fig. 6.6. During the
rotation of the foil a thrust force is induced, which drives the synthetic escape maneuver. We
measure the resulting escape velocity and acceleration as a function of the geometric parameters
of the foil and of the imposed forcing.

Another starting project where the important questions intrinsically concern transient regimes
is the study of the aquatic snake strike, a project in collaboration with the Muséum National
d’Histoire Naturelle 1. From the biological point of view, the hydrodynamic constrains are ex-
pected to be a fundamental element in the morphological convergence of the head shapes ob-
served in different aquatic snake species [133]. The questions on drag and added mass that we
have discussed in Chapter 5 will have to be reformulated to establish the different balances that
can be expected when comparing the transient attack maneuver and other swimming regimes.

6.5 Energy transfers in fluid-elasticity problems

An opening that has emanated from our reflection on fluid-structure interaction problems
goes beyond bio-locomotion and into the domain of energy transfers and renewable energies.
Formally the problems are similar, the main difference being that in the locomotion problem the
propulsive appendage is actuated to produce a force, whereas in the energy absorption problem
the net energy transfer is reversed. Recent research abounds on different energy-harvesting
devices using elastic structures [see e.g. 134–136], and the useful analytic tools in such problems
join those that we have used for the locomotion problems. A particularly interesting case, just
like in the case of undulatory swimming, concerns the collective effects of multiple structures
interacting. In this perspective, we are starting a project concerning the interaction of elastic
structures with surface waves (see Fig. 6.7), as a proof of concept for an energy absorbing
system with potential applications in coastline protection and energy harvesting. The idea is
that an array of elastic slender structures (e.g. cylindrical rods) can be installed along the shore,
where wave-energy absorption can be tuned by controlling the transformation of flow kinetic
energy into potential energy in the elastic deformation. The later can in turn be either dissipated
or electrically harvested. Such systems could become integral costal management tools, acting
as artificial underwater canopies with other potential parallel applications such as controlling
transport of pollutants [137].

1. Marion Segall’s PhD project (2014-2017, co-advised with Anthony Herrel, CNRS/MNHN).
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