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remercie mon petit neveu Emilio qui a adouci mes séjours en France. Je remercie mes

amis Richard, Chafic et Ralph qui n’ont cessé de m’encourager pendant ces trois années
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Bernard Cousin et Dany Mezher, pour leur soutien et pour toute la confiance qu’ils m’ont

accordée. Je remercie particulièrement Fadi Geara, le doyen de la faculté d’ingénierie de
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leur soutien. Grâce à leurs conseils et orientations fructueuses, ils ont rendu cette thèse
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Résumé

Introduction

La demande de réseaux sans-fil haut débit ne cesse d’augmenter. Il a été rapporté que le

trafic global de données mobiles a augmenté de 81 pour cent en 2013 [Cis14]. De plus,

le trafic mobile mensuel devrait dépasser 15 exaoctets en 2018, près de 10 fois plus qu’en

2013 [Cis14]. Parallèlement à cette croissance impressionnante, les opérateurs mobiles

sont invités à intelligemment investir dans les infrastructures de réseau. Ils sont aussi

ramenés à reconsidérer leurs modèles de tarification forfaitaire, à la recherche de retour

sur investissement positif.

Pour faire face à cette énorme demande de bande passante, les réseaux de nouvelle généra-

tion reposent sur la densification des stations de base. Les cellules ont des structures

hiérarchiques: macro-, micro-, pico- et femto-cellules. Toutefois, une solution rentable est

d’utiliser les technologies d’accès radio (TAR) existantes. Les futurs réseaux 5G sont ainsi

conçus avec la vision de l’hétérogénéité. Diverses TAR, y compris les familles 3GPP (par

exemple, UMTS, HSPA et LTE) et IEEE (par exemple, WiFi et WiMAX), sont intégrées

et gérées conjointement.

Améliorer l’expérience de l’utilisateur est un autre facteur clé pour les réseaux sans fil

hétérogènes. Une meilleure qualité de service (Quality of Service ou QoS en anglais), une

durée de vie des batteries plus longue, et des prix plus faibles résument les besoins typ-

iques des utilisateurs [FT13]. Vu que leurs caractéristiques se complètent mutuellement,

diverses TAR coopèrent pour répondre efficacement aux besoins et préférences des util-

isateurs. Alors que HSPA et LTE fournissent une QoS de bout-en-bout, ils supportent

parfaitement le trafic temps réel. En plus, puisqu’ils peuvent desservir de grandes sur-

faces, ils gèrent efficacement la mobilité des utilisateurs. Cependant, WiFi offre des débits

instantanés élevés sur de petites distances, et est connu pour son efficacité énergétique

et économique. Ainsi, dans les réseaux sans-fil hétérogènes, les utilisateurs sont toujours

connectés au mieux [GJ03] (Always Best Connected en anglais): ils sont non seulement

toujours connectés, mais aussi rattachés à la TAR qui répond au mieux à leurs besoins.

Dans ce contexte, la sélection de TAR est une fonction clé pour améliorer les performances
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du réseau et l’expérience de l’utilisateur. Elle consiste à décider quelle TAR est la plus

appropriée aux mobiles. Quand l’intelligence est poussée à la périphérie du réseau, les

mobiles décident de manière autonome de leur meilleur TAR. Ils cherchent à maximiser

égöıstement leur utilité. Toutefois, puisque les mobiles ne disposent d’aucune information

sur les conditions de charge du réseau, leurs décisions peuvent causer des dégradations de

performance. En outre, déléguer les décisions au réseau optimise la performance globale,

mais au prix d’une augmentation de la complexité du réseau, des charges de signalisation

et de traitement. Dans cette thèse, au lieu de favoriser une de ces deux approches déci-

sionnelles, nous proposons un cadre de décision hybride: le réseau fournit des informations

pour les mobiles pour mieux décider de leur TAR. Plus précisément, les utilisateurs mobiles

choisissent leur TAR en fonction de leurs besoins et préférences individuelles, ainsi que des

paramètres de coût monétaire et de QoS signalés par le réseau. En ajustant convenable-

ment les informations du réseau, les décisions des utilisateurs répondent globalement aux

objectifs de l’opérateur.

Plan détaillé de la thèse et contributions

La sélection de TAR a suscité un intérêt considérable parmi les chercheurs tout au long

des dernières années [WK13, PKBV11, YSN10, KKP08]. Nous exposons dans le chapitre

2 les principales méthodes décisionnelles qui ont été proposées dans la littérature. Nous

les classons en approches orientées réseau et approches orientées utilisateur en fonction de

qui prend les décisions, et soulignons le besoin pour des approches hybrides. En fait, pour

satisfaire les objectifs de l’opérateur entre autre une utilisation efficace des ressources,

les approches orientées réseau ont été adoptées. Les éléments de réseau collectent les

mesures et les informations nécessaires. Ils prennent les décisions de sélection de TAR de

manière transparente aux utilisateurs, afin d’optimiser les performances globales du réseau.

Toutefois, et dans le but de réduire la complexité du réseau, les charges de signalisation

et de traitement, les approches orientées utilisateur ont également gagné en importance.

En se basant sur leurs besoins et préférences, les utilisateurs rationnels choisissent leur

TAR de manière à maximiser leur propre utilité. Alors que les mobiles n’ont pas de

connaissance sur les conditions de charge du réseau, les approches orientées utilisateur

dégradent potentiellement les performances. Bien que les mobiles cherchent à maximiser

individuellement leur utilité, leurs décisions pourraient ne pas être dans leur intérêt. Ce

dilemme est connu sous le nom de la tragédie des biens communs [Har68].

Notre défi est alors de concevoir une méthode de sélection de TAR qui améliore conjoin-

tement la performance du réseau et l’expérience de l’utilisateur, sans pour autant aug-

menter excessivement les charges de signalisation et de traitement. Nous proposons dans

le chapitre 3 une approche innovante de décision hybride, qui combine les avantages des
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approches orientées réseau et des approches orientées utilisateur. Le réseau fournit des

informations pour les mobiles, sur le canal logique de communication proposé par la norme

IEEE 1900.4 [Std09], pour mieux décider de leur TAR. Plus précisément, le réseau masque

ses conditions de charge et se contente de diffuser des incitations de coût monétaire et de

QoS, à savoir des débits minimaux garantis et des débits maximaux. Les mobiles choisis-

sent leur TAR en fonction de leur besoins et préférences, mais aussi des paramètres de coût

et de QoS signalés par le réseau. En ajustant convenablement les informations du réseau,

les décisions des utilisateurs répondent globalement aux objectifs de l’opérateur et évitent

les états indésirables du réseau. Notre approche permet ainsi l’auto-optimisation, un élé-

ment clé des réseaux d’auto-organisation (Self-Organizing Networks en anglais) [3GP10].

Les prises de décisions, côté réseau et utilisateur, sont étudiées. Quand plusieurs stations

de base desservent la même région, les décisions reposent traditionnellement sur la mesure

de la puissance des signaux reçus. Afin de maximiser l’expérience de l’utilisateur, nous

présentons dans cette thèse une méthode de décision multicritère (MDMC) basée sur la

satisfaction. Outre leurs conditions radio, les utilisateurs mobiles tiennent compte des

paramètres de coût et de QoS, signalés par le réseau, pour évaluer les TAR disponibles.

Des fonctions d’utilité pour les trafics inélastique, streaming et élastique ont été définies.

La TAR retenue est bien celle qui maximise l’utilité attendue de l’utilisateur. En com-

paraison avec les solutions existantes, à savoir SAW et TOPSIS, notre algorithme satisfait

au mieux les besoins de l’utilisateur (par exemple, les demandes en débit, la tolérance de

coût, la classe de trafic), et évite les décisions inadéquates. Une attention particulière est

ensuite portée au réseau pour s’assurer qu’il diffuse les informations décisionnelles appro-

priées pour améliorer l’exploitation de ses ressources radio, quand les mobiles cherchent à

maximiser égöıstement leur utilité. Nous présentons deux méthodes heuristiques, à savoir

la Staircase tuning policy et la Slope tuning policy, pour dériver dynamiquement quoi

signaler aux mobiles. Les paramètres de QoS sont modulés en fonction des conditions de

charge selon soit une fonction en escalier, soit une fonction linéaire. Pour une TAR donnée,

quand le facteur de charge augmente, les incitations de QoS se réduisent pour pousser les

mobiles vers les TAR les moins chargées. On se retrouve finalement avec une distribution

efficace des mobiles sur les différentes TAR. Ceci conduit à des performances meilleures,

des utilisateurs plus satisfaits, et des gains d’opérateur plus élevés.

Dans le chapitre 4, nous évaluons minutieusement notre approche de décision hybride.

Nous considérons trois scénarios de simulation. Dans le premier, nous s’intéressons aux

informations de QoS et soulignons l’importance d’offrir des incitations de QoS différen-

ciées, mais aussi des garanties de débit aux mobiles indépendamment des conditions de

charge futures du réseau. Le deuxième scénario compare notre méthode de décision mul-

ticritère basée sur la satisfaction avec d’autres algorithmes très connus dans la littérature,

à savoir SAW et TOPSIS. Puisqu’elle s’intéresse aux besoins des mobiles (par exemple,
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les demandes en débit, la tolérance de coût, la classe de trafic), notre méthode évite les

décisions surdimensionnées et sous-dimensionnées, et maximise par la suite la performance

et la satisfaction des utilisateurs. Dans le troisième scénario, nous évaluons les décisions

côté réseau et prouvons l’efficacité de nos deux heuristiques: la Staircase tuning policy et la

Slope tuning policy. Vu que les incitations de QoS sont modulées au rythme des conditions

de charge, les mobiles sont efficacement distribués sur les différentes TAR. Ceci améliore

les performances globales du réseau et les satisfactions individuelles des utilisateurs.

Dans le chapitre 5, nous comparons notre approche hybride avec des approches orientées

réseau, des approches orientées utilisateur et des approches hybrides. Nous mettons en

évidence l’efficacité de notre solution. Elle répond aux objectifs de l’opérateur et améliore

l’utilisation des ressources, mais aussi aux besoins et préférences des utilisateurs et max-

imise leur satisfaction.

Dans le chapitre 6, nous nous concentrons sur l’optimisation de l’information du réseau.

La dérivation des paramètres de QoS est formulée comme un processus de décision semi-

markovien, et les stratégies optimales sont calculées en utilisant l’algorithme de Policy

Iteration. En outre, et puisque les paramètres du réseau ne peuvent pas être facilement

obtenues, une approche par apprentissage par renforcement est introduite pour dériver quoi

signaler aux mobiles. Les performances des stratégies optimales, basées sur l’apprentissage

et heuristiques, comme la probabilité de blocage et le débit moyen, sont analysées. Lorsque

les seuils sont pertinemment fixés, notre méthode heuristique offre des performances très

proches de la solution optimale. De plus, bien que de moins bonnes performances soient

observées, notre algorithme basé sur l’apprentissage a l’avantage essentiel de ne nécessiter

aucun paramétrage préalable.

Le chapitre 7 conclut la thèse. Nous résumons les principales contributions, et présentons

les orientations futures du travail.

Conclusion et Perspectives

Pour faire face à la croissance rapide du trafic mobile, différentes TAR sont intégrées

et gérées conjointement. Dans ce contexte, cette thèse étudie le problème de sélection

de TAR, une fonction clé de la gestion commune des ressources radio dans les réseaux

hétérogènes. Nous avons proposé une approche hybride de décision, qui combine les avan-

tages des approches orientées réseau et des approches orientées utilisateur. Deux problèmes

de décision interdépendants sont ainsi mis en jeu. Le premier au niveau du réseau consiste

à dériver, pour chaque TAR, des incitations de coût monétaire et de QoS pour aligner

globalement la décision des mobiles avec les objectifs de l’opérateur. Le deuxième au

niveau de l’utilisateur consiste à combiner les besoins et préférences de l’utilisateur aux

informations du réseau, pour sortir une décision de sélection de TAR qui maximise l’utilité
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de l’utilisateur.

Nous avons évalué l’importance d’offrir des incitations différenciées, avec éventuellement

des garanties de débit indépendamment des conditions de charge du réseau. Lorsque les

opérateurs proposent des classes de service Premium, Regular et Economy, qui diffèrent

par leur paramètres de coût et de QoS, nous observons des performances meilleures et des

satisfactions d’utilisateur plus élevées pour les trois types de trafic étudiés (inélastique,

streaming et élastique). Ainsi, quand différentes TAR sont intégrées, il est intéressant

d’offrir aux mobiles une variété de choix possibles, autrement dit de ne pas fournir dans

toutes les TAR les même paramètres de coût et de QoS. Par ailleurs, quand les mobiles se

voient garantir des débits minimaux, les performances des sessions temps réel s’améliorent.

En outre, nous avons comparé notre approche de décision hybride avec cinq autres méth-

odes de sélection de TAR. En comparaison avec les approches orientées utilisateur, notre

solution maximise l’utilité du réseau, définie comme la somme des débits de tous les util-

isateurs, et la satisfaction moyenne de l’utilisateur. Aussi, en comparaison avec les ap-

proches orientées réseau, notre solution améliore significativement la satisfaction moyenne

de l’utilisateur.

Nous avons aussi souligné l’importance de masquer les conditions de charge du réseau, et de

ne signaler que certains paramètres de coût et de QoS. Notre approche hybride surperforme

les méthodes non-réalistes, où les mobiles ont une connaissance parfaite des conditions de

charge du réseau. Ainsi, lorsque les objectifs de l’opérateur sont implicitement intégrés

dans les paramètres de QoS, les ressources radio seront mieux utilisées, et la satisfaction

de l’utilisateur sera maximisée.

De plus, nous nous sommes concentrés sur l’optimisation de l’information du réseau. Pour

maximiser les performances du réseau à long terme, les informations de QoS ne doivent

pas uniquement tenir compte des conditions de charge courantes, mais aussi de la demande

prévue. Ainsi, la dérivation des paramètres de QoS a été formulée comme un processus de

décision semi-markovien et les stratégies optimales ont été résolues grâce à l’algorithme de

Policy Iteration. Dans l’état s, le réseau décide quels paramètres de QoS il faut diffuser

pour maximiser la récompense du réseau à long-terme, tout en s’alignant avec les besoins

et préférences des utilisateurs. Nous avons montré comment le coût de blocage et le co-

efficient d’actualisation (discount factor en anglais) peuvent être réglés pour contrôler les

objectifs d’optimisation, alors que les mobiles cherchent à maximiser leur propre utilité.

Cependant, lorsque le nombre de zones, de classes de trafic et de paramètres de QoS pos-

sibles augmentent, le nombre d’états risque d’exploser. Par la suite, trouver des stratégies

optimales engendrera une énorme charge de traitement. Il serait alors intéressant d’étudier

des techniques de réduction pour résoudre les grands processus de décision markoviens.

En outre, vu que les paramètres du réseau ne peuvent pas être facilement obtenus, une

approche par apprentissage par renforcement a également été introduite pour dériver les
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paramètres de QoS. Lorsque le nombre de visites de chaque paire état-action tend vers

l’infini, on est théoriquement sûr d’atteindre une stratégie optimale. Cependant, en pra-

tique et puisque les paires état-action sont très nombreuses, elles sont partiellement ex-

plorées. Ceci conduit à une stratégie satisfaisante et acceptable plutôt qu’optimale. Pour

surmonter cette limitation, le Q-learning doit être mis en œuvre en utilisant un réseau de

neurones. Au lieu de stocker les valeurs de Q, les réseaux neuronaux les approximent et

peuvent interpoler celles des paires état-action qui n’ont pas encore été visitées.



Abstract

To cope with the rapid growth of mobile broadband traffic, various radio access technolo-

gies (e.g., HSPA, LTE, WiFi, and WiMAX) are being integrated and jointly managed.

Radio Access Technology (RAT) selection, devoted to decide to what RAT mobiles should

connect, is a key functionality to improve network performance and user experience. When

intelligence is pushed to the network edge, mobiles make autonomous decisions regarding

selection of their most appropriate RAT. They aim to selfishly maximize their utility.

However, because mobiles have no information on network load conditions, their decisions

may lead to performance inefficiency. Moreover, delegating decisions to the network op-

timizes overall performance, but at the cost of increased network complexity, signaling,

and processing load. In this thesis, instead of favoring either of these decision-making

approaches, we propose a hybrid decision framework: the network provides information

for the mobiles to make robust RAT selections. More precisely, mobile users select their

RAT depending on their individual needs and preferences, as well as on the monetary cost

and QoS parameters signaled by the network. By appropriately tuning network informa-

tion, user decisions are globally expected to meet operator objectives, avoiding undesirable

network states.

We first introduce our hybrid decision framework. Decision makings, on the network and

user sides, are investigated. To maximize user experience, we present a satisfaction-based

Multi-Criteria Decision-Making (MCDM) method. In addition to their radio conditions,

mobile users consider the cost and QoS parameters, signaled by the network, to evaluate

serving RATs. In comparison with existing MCDM solutions, our algorithm meets user

needs (e.g., traffic class, throughput demand, cost tolerance), avoiding inadequate deci-

sions. A particular attention is then addressed to the network to make sure it broadcasts

suitable decisional information, so as to better exploit its radio resources while mobiles

maximize their own utility. We present two heuristic methods to dynamically derive what

to signal to mobiles. While QoS parameters are modulated as a function of the load

conditions, radio resources are shown to be efficiently exploited. Our hybrid approach is

further compared with different RAT selection methods, highlighting its effectiveness in

enhancing resource utilization and user experience.

xv
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Moreover, we focus on optimizing network information. Deriving QoS parameters is for-

mulated as a semi-Markov decision process, and optimal policies are computed using the

Policy Iteration algorithm. Also, and since network parameters may not be easily ob-

tained, a reinforcement learning approach is introduced to derive what to signal to mo-

biles. The performances of optimal, learning-based, and heuristic policies, such as blocking

probability and average throughput, are analyzed. When thresholds are pertinently set,

our heuristic method provides performance very close to the optimal solution. Moreover,

although lower performances are observed, our learning-based algorithm has the crucial

advantage of requiring no prior parameterization.



List of Abbreviations

3GPP Third Generation Partnership Project

5G Fifth Generation

AAA Authentication, Authorization, and Accounting

AHP Analytic Hierarchy Process

BS Base Station

BLER Block Error Rate

CDMA Code Division Multiple Access

CoA Care-of-Address

CRRM Common Radio Resource Management

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

EDGE Enhanced Data Rates for GSM Evolution

eNode B Evolved Node B

ETSI European Telecommunications Standards Institute

FA Foreign Agent

GGSN Gateway GPRS Support Node

GRA Grey Relational Analysis

GSM Global System for Mobile Communications

HA Home Agent

HiperLAN2 High Performance Radio Local Area Network Type 2

HLR/HSS Home Location Register/Home Subscriber Server

HoA Home Address

HSPA High Speed Packet Access

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

LTE Long Term Evolution

xvii



xviii 0. Résumé
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Chapter 1

Introduction

Along with the rapid growth of mobile broadband traffic, different radio access tech-

nologies, including 3GPP families (e.g., UMTS, HSPA, LTE) and IEEE ones (e.g., WiFi,

WiMAX), are being integrated and jointly managed. Significant standardization efforts

have been invested to integrate heterogeneous RATs. Two generic approaches, namely the

loose coupling and the tight coupling, have thus been introduced. This chapter briefly de-

scribes the two coupling integration approaches, and discusses the common radio resource

management in heterogeneous wireless networks. The objective of the thesis and the main

contributions are further presented.

1.1 Why Heterogeneous Wireless Networks?

The demand for high-quality and high-capacity radio networks is continuously increasing.

It has been reported that global mobile data traffic grew by 81 percent in 2013 [Cis14].

Furthermore, monthly mobile traffic is forecast to surpass 15 exabytes by 2018, nearly 10

times more than in 2013 [Cis14]. Along with this impressive growth, mobile operators are

urged to intelligently invest in network infrastructure. They may also have to reconsider

their flat-rate pricing models [NKG+12], seeking positive return-on-investment.

To cope with this huge demand for capacity, next-generation networks rely on densely

deployed base stations with hierarchical cell structures [Cic13] (i.e., macro, micro, pico

and femto cells). A cost-effective solution is to use existing radio access technologies

(RATs). Upcoming 5G networks are thus being devised with the vision of heterogeneity.

Various RATs, including 3GPP families (e.g., UMTS, HSPA, LTE) and IEEE ones (e.g.,

WiFi, WiMAX), are being integrated and jointly managed. An example of a heterogeneous

wireless network is illustrated in Fig. 1.1.

Another key driver for heterogeneous wireless networks is to enable traffic class-aware

optimal coverage, capacity, and reliability with low cost and energy consumption. Next-
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2 1. Introduction

generation networks focus on delivering high user experience. Better quality of service

(QoS), longer battery lifetime, and lower cost are typical user requirements [FT13]. Since

their characteristics complement each other, various RATs cooperate to cost-efficiently

meet user needs and preferences. While HSPA and LTE provide end-to-end QoS, they

excellently support real-time traffic. Also, as they may cover large areas, they effectively

handle user mobility. However, WiFi offers high peak rates for small ranges, and is popular

for its energy and cost efficiencies. Therefore, in heterogeneous wireless networks, users

are always best connected [GJ03]: they are not only always connected, but also served

through the RAT that best fulfills their requirements.

WiFi

LTE

WiMAX

HSPA

Figure 1.1: A typical heterogeneous wireless network

1.2 Integration of Heterogeneous Wireless Networks

In the recent years, as a leading indicator of the shift to heterogeneous wireless networks,

mobile manufacturers have proposed multi-mode devices [ETS00]. Equipped with either

multiple radio interfaces or a single reconfigurable one, multi-mode devices are able to

connect, simultaneously or not, to different RATs. Concurrently, following the same trend,

standardization bodies have focused their efforts to integrate both 3GPP and non-3GPP

(e.g., IEEE) RATs.

In this context, the European Telecommunications Standards Institute (ETSI) has pre-

sented two generic approaches, namely the loose coupling and the tight coupling, to in-

tegrate heterogeneous RATs [ETS01, LPMK05, Bea08]. Although originally conceived to

interconnect HiperLAN2 and UMTS, these methods remain valid for multiple 3GPP and



1.2. Integration of Heterogeneous Wireless Networks 3

IEEE RATs.

1.2.1 Loose Coupling Integration

With loose coupling integration, various RATs exist independently. They are not directly

connected; instead, they are connected to the Internet. Fig. 1.2, taken with modifications

from [Bea08], illustrates an example of a loosely coupled hetergeneous wireless network.

HSPA, WiMAX, WiFi, and LTE data traffics are transmitted to the Internet over different

core infrastructures.

Node B

BS

AP

 WiMAX Gateway

WiFi Gateway

RNC

SGSN

GGSN

HLR/HSS

Central AAA Server

eNode B

Serving GW

PDN GW

HLR/HSS

HSPA

WiMAX

WiFi

LTE

MME

Figure 1.2: Loose coupling architecture

As serving RATs share the same Authentication, Authorization, and Accounting (AAA)
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server, mobile users may have a single subscription, and yet have access to several RATs.

Furthermore, to handle inter-RAT mobility, border gateways usually implement Mobile

IP (MIP). While moving across neighboring RATs, mobiles keep their IP address, stay

connected, and maintain the ongoing communication sessions.

Loose coupling approach seems to be a short-term solution to integrate heterogeneous

RATs [Bea08]. Mobile operators take advantage of multiple deployments with no major

investment. However, because RATs are connected only through the Internet, it is not pos-

sible for them to easily and quickly communicate dynamic cell information (e.g., cell load,

interference measurements, received power level, and transmitted power level). Therefore,

common radio resource management functionalities (e.g., common admission and conges-

tion control, RAT selection, inter-RAT handover, and common packet scheduling) are not

efficiently provided. Usually, when RATs are loosely coupled, real-time services hardly

survive during inter-RAT handovers [LPMK05].

1.2.1.1 Mobility Management

Regarded as the least common mobility denominator, MIP is far from being the only

solution to provide seamless inter-RAT handovers. Mobility management can be performed

at either the network layer, the transport layer, or even the application layer.

We present below some of the macro-mobility solutions. However, MIP and Session Initi-

ation Protocol (SIP) are the two major mobility protocols.

1.2.1.1.1 Mobile IP MIP is a network layer solution to mobility management. It

provides transparent handover support, including the maintenance of active Transmission

Control Protocol (TCP) connections and User Datagram Protocol (UDP) port bindings.

As illustrated in Fig. 1.3, MIP introduces three functional entities: Mobile Node (MN),

Home Agent (HA), and Foreign Agent (FA) [Per97]. MNs have two IP addresses: a

fixed Home Address (HoA) that serves as their unique identity, and a temporary Care-

of-Address (CoA) that identifies their present point of attachment, while away from their

home RAT. The HA, residing on MN home RAT, and the FA, residing on MN foreign

RAT, are used to bind the MN HoA to its CoA. They are in charge of packet forwarding,

while mobiles roam across serving RATs.

When a MN moves to a foreign RAT, it obtains a new CoA. It then needs to inform its

home RAT of its present location (i.e., CoA). The HA intercepts the traffic destined to

the MN, and tunnels it to the MN present point of attachment. Later, if using MIPv6,

direct communications are possible between the MN and its correspondent node.

To implement MIP, operators need to introduce HA and FA entities. Moreover, when

MNs are far away from their HA, they suffer from long handover delays.
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Home Agent Foreign Agent

`

Correspondent Node

Mobile Node

Figure 1.3: Mobile IP entities

1.2.1.1.2 Mobile Stream Control Transmission Protocol Handling mobility at

the transport layer has proved to achieve better performance than at the network layer

[WHB08]. Higher layers can quickly adapt to route changes. Therefore, Mobile Stream

Control Transmission Protocol (mSCTP) has been introduced as a transport protocol to

support inter-RAT handover [MYLR04]. It benefits from the multihoming feature and

the dynamic address reconfiguration extension of SCTP. Mobiles may be configured with

multiple IP addresses. As they move across various RATs, they can dynamically add,

delete, and change their primary address, enabling seamless handover support.

mSCTP provides a network-independent solution to handover management: network com-

ponents need not to be modified. However, as mSCTP replaces TCP, applications should

use mSCTP sockets instead of TCP sockets. This practically limits the deployment of

mSCTP.

1.2.1.1.3 Session Initiation Protocol SIP is an application layer solution to mobil-

ity management. It aims to keep mobility support independent of the underlying transport

and network layers. SIP users are completely identified by a uniform resource identifier

(URI) that is independent of their location. However, a mapping from their URI to their

present IP address is established, and can be updated as mobiles roam across serving

RATs.

Furthermore, SIP can be used to create, modify, and terminate two-party (unicast) and
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multi-party (multicast) sessions. The modifications involve changing IP addresses and

ports, as well as inviting more participants.

When a mobile changes its serving RAT, it obtains a new IP address. It then needs to

generate a re-invite message to its correspondent node. Therefore, packets destined to the

mobile are sent to its new address.

To implement SIP, operators need to introduce SIP servers (i.e., SIP proxy, registrar).

Yet, as it operates at the highest level, SIP causes long handover delays [PBB+01].

1.2.2 Tight Coupling Integration

Within tight coupling integration, serving RATs are directly connected to a 3GPP core

infrastructure component (i.e., SGSN, GGSN, Serving GW, PDN GW). They appear as

several access infrastructures to a single core network. An example of a tightly coupled

heterogeneous wireless network is presented in Fig. 1.4. When HSPA is directly connected

to the LTE serving gateway, non-3GPP RATs such as WiFi and WiMAX are connected

to the LTE PDN gateway [3GP08].

Node B

BS

AP

 WiMAX Gateway

WiFi Gateway

RNC
SGSN

eNode B Serving GW

PDN GW

HLR/HSS

HSPA

WiMAX

WiFi

LTE

MME

Figure 1.4: Tight coupling architecture

Serving RATs are totally transparent to the LTE core infrastructure. Border gateways
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hide HSPA, WiFi, and WiMAX particularities. Mobile IP, mSCTP, and SIP are no more

necessary; instead, border gateways implement LTE procotols, and act as virtual LTE

components. They are in charge of protocol translation and signaling exchange.

Moreover, WiFi and WiMAX can be tightly connected to an HSPA infrastructure, at

either the SGSN level, the GGSN level, or even the RNC level [LPMK05, Bea08].

Tight coupling approach provides efficient common radio resource management, particu-

larly reducing inter-RAT handover latency. Yet, by injecting WiFi, WiMAX, and HSPA

data traffic into the LTE core infrastructure, the design of LTE components needs to be

revisited [Bea08].

1.3 Radio Resource Management

The 3GPP Common Radio Resource Management (CRRM) functional model assumes that

radio resources are divided into radio resource pools [3GP01]. Each includes a subset of

radio resources managed by an RRM entity. More precisely, a radio resource pool consists

of one or several cells, typically under the control of one RNC in UTRAN, or one access

point controller in WiFi. Moreover, in LTE and WiMAX, either centralized or decen-

tralized RRM are envisaged [LTE14, Ahm10]. When in centralized RRM, an additional

central RRM entity is introduced, base stations exchange radio resource information and

make local decisions in decentralized RRM.

Furthermore, to optimize network performance, radio resources belonging to different pools

need to be jointly managed. CRRM gains, for both real-time and non-real-time traffics,

have been evaluated in [THH02]. As illustrated in Fig. 1.5 that is taken from [PRGS08],

CRRM entities are introduced to control local RRM entities. Centralized and decentralized

CRRM are presented in [3GP01]: CRRM entities are either additional central nodes, or

integrated in RRM entities.

CRRM  

RRM  

Information reporting

Information reporting

Information reporting

RRM decision support RRM decision support

entity
RRM  
entity

RRM  
entity

RRM  
entity

entity
CRRM  

entity

Figure 1.5: CRRM functional model

The interactions between RRM and CRRM entities support two basic functions, namely

the information reporting and the RRM decision support functions. The information
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reporting function allows RRM entities to communicate relevant measurements and in-

formation to their controlling CRRM entity. Static cell information (e.g., cell relations,

capabilities and capacities) and dynamic cell information (e.g., cell load, interference mea-

surements, received power level, and transmitted power level) are reported either periodi-

cally, or when triggered by an event. Moreover, the information reporting function enables

CRRM entities to share information, as represented in Fig. 1.5.

The RRM decision support function describes how RRM and CRRM entities interact to

make RRM decisions. The CRRM entity can either make decisions and impose them on

local RRM entities, or only advise RRM entities in their decisions. Thus, RRM functions

may be splitted over RRM and CRRM entities.

Admission and congestion control, RAT selection, inter- and intra-RAT handover, packet

scheduling, and power control are the main RRM functions. Depending on the degree of

interaction between RRM and CRRM entities, some may be delegated to CRRM entities.

Three illustrative examples are found in [PRGS08]. In the first, no RRM functions are

associated to CRRM entities. However, RAT selection is performed using directed retry.

In the second, only long-term functions (i.e., RAT selection and inter-RAT handover) are

moved to CRRM entities. In the third, long- and short-term functions (i.e., admission

and congestion control, RAT selection, handover, and packet scheduling) are delegated

to CRRM entities. Yet, only frequent technology-dependent procedures, namely power

control, remain associated to local RRM entities.

1.3.1 Packet Scheduling and RAT Selection

When resource allocation is jointly performed (i.e., packet scheduling is moved to CRRM

entities), traffic is splitted over many RATs. Mobiles can concurrently make use of re-

sources belonging to different pools, as in [KIC+11]. Yet, since packet scheduling is a

short-term RRM function, and therefore has to be repeated at very short time intervals

(in the order of milliseconds), allocating resources at the CRRM level turns out to be

costly. Moreover, traffic splitting seems not to be necessary. When WiFi and WiMAX are

integrated, it has been proven in [KIC+11, CTG09] that elastic users should optimally be

connected to a single RAT. This, however, remains true as long as mobiles are associated

with their best RAT.

RAT selection, devoted to decide to what RAT mobiles connect, is a long-term RRM

function. It is performed at session initiation (initial RAT selection), and eventually during

session lifetime (inter-RAT handover). Yet, to maximize resource utilization, decisions

should take into account information about serving RATs (e.g., network load conditions).

RAT selection is then ideally moved to CRRM entities, as it involves many local RRM

entities. An illustrative example is when the CRRM entity collects cell load measurements

from local RRM entities, and accordingly associate mobiles with the less loaded RAT.
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In this thesis, we tackle the RAT selection, regarded as a key CRRM functionality. Mobiles

are connected to a single RAT, and packet scheduling is locally performed in each cell.

Recall that RAT selection and packet scheduling are on different time scales. Our aim

is, however, to design efficient algorithms to exploit network integration. This involves

answering the following questions:

• Who makes RAT selection decisions?

• How, and based on what criteria, decisions are made?

• What objectives are to be met?

1.4 Thesis Contribution

RAT selection has triggered considerable interest among researchers in the past few years

[WK13, PKBV11, YSN10, KKP08]. To meet operator objectives, including efficient re-

source utilization, network-centric approaches have been proposed. Network elements col-

lect necessary measurements and information. They take selection decisions transparently

to end-users, in a way to optimize overall network performance. However, to reduce net-

work complexity, signaling and processing load, mobile-terminal-centric approaches have

also gained in importance. Rational users select their RAT, depending on their needs and

preferences, in a way to selfishly maximize their utility. Yet, when mobiles have no in-

formation on network load conditions, mobile-terminal-centric approaches potentially lead

to performance inefficiency. Although mobiles try to selfishly maximize their utility, their

decisions may be in no one long-term interest. This dilemma is known as the Tragedy of

the commons [Har68].

Our challenge is then to design a RAT selection approach, that jointly enhances network

performance and user experience, while signaling and processing burden remains reduced.

In the present contribution, we propose an innovative hybrid decision method, that com-

bines benefits from both network-centric and mobile-terminal-centric approaches. The

network provides information for the mobiles to make robust RAT selections. More pre-

cisely, network load conditions are masked, and only monetary cost and QoS incentives,

namely minimum guaranteed throughputs and maximum throughputs, are provided. Mo-

biles select their RAT depending on user needs and preferences, as well as on the cost

and QoS parameters signaled by the network. By appropriately tuning network infor-

mation, mobile decisions are globally expected to meet operator objectives, avoiding un-

desirable network states. Our approach then enables self-optimization, a key feature of

self-organizing networks [3GP10].

When several base stations are available, decisions are traditionally based on received-

signal-strength measurements. In this thesis, so as to maximize user experience, we intro-
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duce a satisfaction-based Multi-Criteria Decision-Making (MCDM) method. In addition

to their radio conditions, mobile users consider the cost and QoS parameters signaled by

the network, to evaluate serving RATs. In comparison with existing MCDM solutions,

our algorithm meets user needs (e.g., traffic class, throughput demand, cost tolerance),

avoiding inadequate decisions. A particular attention is then addressed to the network to

make sure it broadcasts suitable decisional information, so as to better exploit its radio

resources while mobiles maximize their own utility. We present two heuristic methods to

dynamically derive what to signal to mobiles. While QoS parameters are modulated as a

function of the load conditions, radio resources are shown to be efficiently exploited.

Decision makings, on the network and user sides, are investigated and evaluated separately.

Our hybrid approach is then compared with multiple network-centric, mobile-terminal-

centric and hybrid methods, highlighting its effectiveness in enhancing resource utilization

and user experience.

Further, we focus on optimizing network information. Deriving QoS parameters is for-

mulated as a semi-Markov decision process, and optimal policies are computed using the

Policy Iteration algorithm. Also, and since network parameters may not be easily ob-

tained, a reinforcement learning approach is introduced to derive what to signal to mobiles.

The performances of optimal, learning-based, and heuristic policies are analyzed. When

thresholds are pertinently set, our heuristic method provides performance very close to the

optimal solution. Moreover, although lower performances are observed, our learning-based

algorithm has the crucial advantage of requiring no prior parameterization.

1.5 Thesis Organization

The remaining of this thesis is organized as follows: RAT selection is surveyed in Chapter

2. We discuss and classify a wide range of methods, according to who makes RAT selection

decisions. Chapter 3 introduces our hybrid decision approach. Decision makings, on the

network and user sides, are also investigated. More precisely, our satisfaction-based multi-

criteria decision-making method is presented, and two heuristic methods are proposed to

dynamically tune network information.

In Chapter 4, we thoroughly evaluate our hybrid decision approach. As a matter of fact, we

consider three simulation scenarios. In the first one, QoS information is investigated. We

study the performance improvement achieved by providing differentiated service classes

and minimum throughput guarantees to mobiles, regardless of future network load condi-

tions. The second scenario compares our satisfaction-based multi-criteria decision-making

method with other existing algorithms, namely SAW and TOPSIS. In the third scenario,

we illustrate the gain from using our tuning heuristics in comparison with static network

information.
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Chapter 5 compares our RAT selection method with multiple network-centric, mobile-

terminal-centric, and hybrid approaches. We prove the effectiveness of our solution in

enhancing resource utilization and user experience.

In Chapter 6, we optimize network information using Markov decision processes. We

show how to dynamically maximize long-term network reward, aligning with user prefer-

ences. Further, and since network parameters may not be easily obtained, a reinforcement

learning approach is introduced to derive what to signal to mobiles. The performances of

optimal, learning-based, and heuristic policies are then analyzed.

Chapter 7 concludes the thesis. We summarize the main contributions, and present future

research directions.





Chapter 2

Radio Access Technology Selection

Radio Access Technology (RAT) selection, devoted to decide to what RAT mobiles con-

nect, is a key functionality to improve network performance and user experience. When

intelligence is pushed to the network edge, mobiles make autonomous decisions regarding

selection of their most appropriate RAT. They aim to selfishly maximize their utility. How-

ever, because mobiles have no information on network load conditions, their decisions may

lead to performance inefficiency. Moreover, delegating decisions to the network optimizes

overall performance, but at the cost of increased network complexity, signaling and pro-

cessing load. This chapter reviews a wide range of RAT selection methods, and classifies

them according to who makes decisions. We further identify the need for efficient hybrid

approaches, that jointly enhance network performance and user experience, while signaling

and processing burden remains reduced.

2.1 Introduction

When several radio access technologies cover the same region, deciding to which one mo-

biles connect is known as the RAT selection functionality. This appears at session initia-

tion, and during session lifetime through inter-RAT handovers. Initial RAT selection and

handovers can generally be separated into three phases [KKP08, CSH+01]:

• Information Gathering: User information (e.g., user needs, preferences, and qual-

ity of service), and contextual information (e.g., radio link availability, and cell load

measurements) are collected. During session lifetime, information is gathered pe-

riodically, and may trigger inter-RAT handovers. Typically, as user QoS degrades,

handovers can be initiated by either the network or the mobile.

• Decision: At session initiation and inter-RAT handovers, decisions as to what RAT

mobiles connect need to be made. They usually depend on the previously collected

13
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information.

• Execution: After decisions are made, messages are exchanged to (re)-establish user

connectivity. When mobiles handover between serving RATs, their traffics need to

be seamlessly rerouted.

User and contextual information can be gathered using the IEEE 802.21 [DLOBS+08] or

the IEEE 1900.4 [Std09] standards. They provide mobile users with information on serv-

ing RATs, but do not make RAT selection decisions. Furthermore, inter-RAT handovers

can be handled using MIP in loosely coupled heterogeneous wireless networks, and 3GPP

mobility management protocols in tightly coupled networks. They ensure seamless ser-

vice continuity. However, RAT selection decisions remain a challenging task that will be

addressed throughout this thesis.

2.2 RAT Selection Criteria

RAT selections are usually based on user radio conditions (i.e., received-signal-strength

measurements), and resource availability. Yet, to maximize network performance and user

experience, decisions need to involve additional criteria. The main are as follows:

• User QoS requirements

• Network load conditions

• Network and user energy consumption

• Operator and user preferences: cost and various subjective criteria

When multiple criteria are involved, particularly as some vary dynamically, RAT selection

turns out to be a complex decision-making problem. Further, in [GAM05], RAT selec-

tion has been isomorphically mapped to a multiple choice multiple dimension knapsack

problem, known to be NP-hard.

2.3 RAT Selection Objectives

Network elements and mobile users are able to make RAT selections either autonomously or

collectively. Decision objectives are usually defined as utility or cost functions, and decision

makers are regarded as utility maximizers or cost minimizers, respectively. In [KIC+11],

RAT selection is formulated as a non-linear optimization problem. The network assigns

persistent elastic users to either WiFi or WiMAX in a way to minimize global network

cost, defined as the sum of individual user costs. The cost function represents user service



2.3. RAT Selection Objectives 15

time, that is the expected amount of time required to send a data unit. Therefore, it

depends on user radio conditions and network load conditions. Further in [KIC+11], RAT

selection is portrayed as a non-cooperative game. Mobile users selfishly strive to minimize

their cost. They try to reach a Nash equilibrium strategy, where no mobile can decrease

its cost by changing only its serving RAT. To wrap up, RAT selections are expected either

to minimize decision maker costs or to maximize decision maker utilities.

Generally, utility and cost functions reflect operator interests and user experience. They

describe the suitability of RAT selections with respect to one or multiple decision maker

objectives. In [CKG08a], the network routes elastic users to either WiFi or HSDPA de-

pending on user spatial distribution and network load conditions. Decisions are expected

to maximize long-term average network utility, defined as the sum of individual user utili-

ties and a blocking cost. The user utility function represents user satisfaction, and mainly

depends on user throughput. The blocking cost is the penalty inflicted on the network

when blocking arriving mobiles. In other words, network decisions aim to maximize the

sum of user satisfactions and to minimize the user blocking probability. However, accept-

ing more elastic users, particularly with unfavorable radio conditions, may reduce user

throughputs and thereafter the sum of user satisfactions. Therefore, for example due to

the CSMA/CA-based multiple access technology in WiFi, it may be better to block a user

with bad radio conditions so as not to penalize all individual user throughputs. Deci-

sion maker objectives are then heterogeneous and potentially conflicting: the sum of user

satisfactions and the user blocking probability need to be weighted and normalized. In

[CKG08a], the user blocking probability is multiplied with a normalization and weighting

factor.

Moreover, to deal with heterogeneous and conflicting objectives, multi-criteria decision-

making methods are introduced [KKP08, SNW06]. Decisions are expected to maximize

multi-criteria utility functions, that depend on weighted and normalized decision param-

eters. Various normalization techniques are implemented. For illustration, we assume

that mobiles autonomously select their serving RAT, in a way to jointly maximize their

throughput and minimize their monetary cost. They can choose between WiMAX and

LTE, designated by W and L respectively. The throughput a user can achieve, when con-

nected to WiMAX and LTE, is denoted by d(W ) and d(L) respectively. Also, the cost a

user pay, when connected to WiMAX and LTE, is denoted by cost(W ) and cost(L) respec-

tively. Mobiles estimate a utility function for each of the two serving RATs, and select

the one with the highest score. However, using the Simple Additive Weighting (SAW)

method, the expected utility of RAT x denoted by U(x), x ∈ {W,L}, is defined as the

weighted sum of the normalized decision parameters:

U(x) = wd · d̂(x) + wcost · ĉost(x)
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where wp and p̂(x), p ∈ {d, cost}, respectively represent the weight and the normalized

value of decision parameter p. Besides, d̂(x) and ĉost(x) are defined as follows:

d̂(x) =
d(x)

max [d(W ), d(L)]

ĉost(x) =
min [cost(W ), cost(L)]

cost(x)

Furthermore, using the Technique for Order Preference by Similarity to Ideal Solution

(TOPSIS) method, the utility function U(x), x ∈ {W,L}, represents the relative closeness

to the ideal solution, and is defined as follows:

U(x) =
S−(x)

S−(x) + S+(x)

where S+(x) and S−(x) respectively denote the distance of alternative x from the positive

ideal and the negative ideal solution, and are defined as follows:

S+(x) =

√{
wd · (d̂(x)−max [d(W ), d(L)])

}2
+
{
wcost · (ĉost(x)−min [cost(W ), cost(L)])

}2

S−(x) =

√{
wd · (d̂(x)−min [d(W ), d(L)])

}2
+
{
wcost · (ĉost(x)−max [cost(W ), cost(L)])

}2

The normalized decision parameters d̂(x) and ĉost(x) are however defined as:

d̂(x) =
d(x)√

d(W )2 + d(L)2

ĉost(x) =
cost(x)√

cost(W )2 + cost(L)2

Many other multi-criteria decision-making methods and normalization techniques can be

found in [KKP08, SNW06]. Yet, as for SAW and TOPSIS, resultant decisions exclu-

sively depend on user preferences (e.g., weights of the decision criteria), as well as on the

characteristics of available alternatives. As they ignore user QoS requirements and cost

tolerance, state-of-the-art methods often make inadequate decisions. To overcome this

limitation, we introduce in Chapter 3 a satisfaction-based multi-criteria decision-making

method. In addition to user preferences, our algorithm considers user needs (e.g., traffic

class, throughput demand, and cost tolerance parameter), meeting user objectives.
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2.4 RAT Selection Approaches

RAT selection has triggered considerable interest among researchers in the past few years.

In this section, we review some relevant work, and classify them into network-centric and

mobile-terminal-centric approaches, according to who makes decisions.

2.4.1 Network-centric Approaches

Network elements, namely either centralized or decentralized CRRM entities, collect nec-

essary measurements and information. They take selection decisions transparently to

end-users, in a way to meet operator objectives. In [PRSA05], mobiles are associated with

their RAT according to straightforward allocation principles. Voice GSM/EDGE (VG),

Voice UMTS (VU), Indoor (IN), and VG*IN policies are presented: they associate mobiles

with either GSM/EDGE or UMTS, based on their service types (i.e., voice or data), and

eventually on their radio conditions.

In [KIC+11, SWMG08, PK06], RAT assignment is formulated as an optimization problem.

Exact and heuristic algorithms are used to derive an optimal or a near optimal solution,

that optimizes global network utility or cost. In [KIC+11], the global network cost is

defined as the sum of individual user service times, and depends on user radio conditions

and network load conditions. In [SWMG08], the network utility represents the network

revenue, and is expressed as the sum of individual user utilities. Further, the user utility

is a concave, non-decreasing function of user throughput. In [PK06], the network utility

accounts for user TCP throughputs, and depends on user radio conditions, TCP packet

size, channel access parameters (e.g., backoff window and inter-frame space in WiFi), and

network load conditions. Moreover, in [LEnGSS12], RAT selection and resource allocation

are simultaneously performed. The proposed CRRM algorithm considers the discrete

nature of radio resources, and is thus based on integer linear programming optimization

techniques. Radio resources, namely GPRS and EDGE time slots, and HSDPA codes,

are distributed in a way to maximize the lowest user utility. The user utility function

represents user throughput for web and email services, and the percentage of correctly

transmitted video frames for real-time video services. In [GLEnSS12], based on the CEA

(Constrained Equal Awards) bankruptcy rule, selection decisions try to equally satisfy

mobile users: they are assigned the same amount of resources, without exceeding their

individual demands.

In [ZJJ+12, ZYNT12a, ZYNT12b, SAAS10, IKT09, GPRSA08, CKG08a, CKG08b, KAK06,

YK05], a Semi-Markov Decision Process (SMDP) is used to model the RAT selection prob-

lem. A set of states, actions, rewards, and transition probabilities are defined. Linear or

dynamic programming algorithms are adopted to find out an optimal access policy, that

maximizes long-term network reward function (i.e., an expected utility calculated over an
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infinitely long trajectory of the Markov chain). In [CKG08a], elastic users are assigned

to either WiFi or HSDPA depending on user spatial distribution, and network load con-

ditions. WiFi access points and HSDPA base stations are co-localized, and their cells are

assumed to be overlapping. The peak throughput a user can obtain, when present alone

in the cell, differs depending on its geographical position. Therefore, as illustrated in Fig.

2.1, the cell is divided into r rings with homogeneous radio characteristics. Users in ring i,

i = 1, ..., r, have a peak throughput of D̃1
i and D̃2

i when connected to WiFi and HSDPA,

respectively.

Ring r Ring k Ring 1

Figure 2.1: WiFi and HSDPA cell divided into r concentric rings

Network states are the 2r-tuple (n11, ..., n
1
r , n

2
1, ...n

2
r), where nji represents the number of

mobiles in ring i that are connected to RAT j. WiFi and HSDPA are designated by j = 1

and j = 2, respectively. To ensure that all mobiles achieve an acceptable throughput,

the number of mobiles that can be assigned to serving RATs is limited:
∑r

i=1 n
j
i ≤ n

j
max.

Moreover, decisions are state-dependent, and are expected to maximize long-term average

network utility calculated per time unit. The network utility function depends on user

throughputs and blocking probability. Using the Policy Iteration algorithm, an optimal

policy is solved. It determines, for each state s, the action a(s) = (a1, a2) to take, where

aj , j ∈ {1, 2}, is equal to 1 if arriving mobile is accepted in RAT j, and is null otherwise.

Furthermore, in addition to network load conditions and user radio conditions, decisions

in [IKT09] involve user traffic classes. State actions depend on the location and traffic

class of arriving mobiles.

In [HBJG07], a fuzzy multi-criteria decision algorithm, based on simple If X and Y then

Z rules, is presented. Individual decisions, resulting from various fuzzy rules, are aggre-

gated to provide RAT selections. Pattern aspects (i.e., fuzzy inference rules, membership

functions, and their shapes) are however empirical, and rely on prior field experience.

Moreover, in [GAPRS09, GAPRS08, GAPRS06], a fuzzy neural solution is introduced to

jointly decide of the RAT selection and the bandwidth allocation. A reinforcement signal is

generated to optimize the decision-making process: the means and the standard deviations

of the input and output bell-shaped membership functions are adjusted accordingly.

As network elements gather information about individual users, namely their

QoS needs, and their radio conditions in the different serving cells, network-

centric approaches generally optimize resource utilization. Yet, network com-

plexity, processing, and signaling load are drastically increased.
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2.4.2 Mobile-terminal-centric Approaches

Rational users select their RAT depending on their needs and preferences, in a way to self-

ishly maximize their utility. Mobile-terminal-centric heuristics are proposed in [MILK12].

Distance-based, probabilistic distance-based, peak rate-based, and probabilistic peak rate-

based algorithms are introduced: they indicate the probability to assign mobiles to the

primary (IEEE 802.11g) and to the secondary (IEEE 802.11b) RATs, based on their dis-

tance from the two access points, or on the peak rate they can achieve when connected to

these access points.

As users utility does not only depend on their own decisions, but also on the decisions of

other mobiles, game theory is used as a theoretical framework to model user interactions in

[AKHWC13, KIC+11, IKT10, NH09, CTG09, Erc08, KAK06]. Players (i.e., the individual

users) try to reach a mutually agreeable solution, or equivalently a set of strategies they

unlikely want to change. However, the convergence time to the equilibrium assignment

seems to be long [KIC+11].

In [NVACT13, CM12, FC11, WB09, BL07, SNW06, SJ05b, SJ05a, Zha04], multi-criteria

decision-making methods, including SAW, TOPSIS, Multiplicative Exponent Weighting

(MEW) and Grey Relational Analysis (GRA), are presented. They capture the hetero-

geneity of decision criteria (e.g., QoS, cost, energy, and security parameters). Users with

widely varying requirements gather their QoS information (e.g., peak throughput when

connected alone to a cell), calculate decision metrics, and select their RAT accordingly.

In [Zha04, FC11, CM12], fuzzy logic is also used to deal with the imprecise information of

some criteria and user preferences.

In [TFC12, DO12b, DO12a], RAT selection is formulated as a reinforcement learning

problem. A set of states, actions, and rewards are defined. Mobiles iteratively learn

selection decisions, through trial-and-error interaction with their environment, in a way to

maximize their utility. They discover a variety of actions, and progressively favor effective

ones.

As mobiles autonomously select their RAT, network operations remain re-

duced. Furthermore, decisions can easily involve user needs and preferences,

and various mobile-terminal-related parameters. However, when mobiles do

not cooperate, mobile-terminal-centric approaches potentially lead to perfor-

mance inefficiency.

In Chapter 5, we investigate some network-centric and mobile-terminal-centric approaches,

and compare their performance in terms of network and user utilities. While the network

utility function is defined as the sum of user throughputs, the user utility function repre-

sents user satisfaction, and mainly depends on user QoS and cost parameters.
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2.4.3 Incentives for Hybrid Approaches

Network-centric approaches can optimize operator objectives, but at the cost of increased

network complexity, signaling and processing burden. An illustrative example is found in

[IKT09], where RAT selection is formulated as a semi-Markov decision process. Mobiles

are associated with either UMTS or WiMAX, based on cell load measurements, user radio

conditions (i.e., spatial distribution), and QoS needs (i.e., traffic class, and throughput

demands). Optimal decisions are derived in a way to maximize the long-term network

reward. This, however, increases processing and signaling load, particularly as information

about individual mobiles need to be gathered.

Moreover, mobile-terminal-centric approaches have also gained in importance. Mobile

users autonomously select their RAT in a way to maximize their own utility. However, as

mobiles do not cooperate, mobile-terminal-centric approaches are known for their potential

inefficiency. Although mobiles strive to selfishly maximize their utility, their decisions may

be in no one long-term interest. This dilemma is known as the Tragedy of the commons

[Har68]. A simple example is found in [SJ05b, SJ05a], where Analytic Hierarchy Process

(AHP) and Grey Relational Analysis (GRA) are integrated to introduce a multi-criteria

decision-making method for RAT selection. When mobiles have no information on network

load conditions, they use static QoS parameters (e.g., peak throughput when connected

alone to a cell) to evaluate serving RATs. In real networks, this obviously lead to congestion

and overload conditions.

Our challenge is then to design a RAT selection approach, that jointly enhances network

performance and user experience, while signaling and processing burden remains reduced.

In this thesis, we propose an innovative hybrid decision method, that combines benefits

from both network-centric and mobile-terminal-centric approaches. The network provides

a common information for the mobiles to make robust RAT selections. Network load con-

ditions are masked, and only monetary cost and QoS incentives to join serving RATs are

provided. As radio resources may be heterogeneous in nature, such as GPRS and EDGE

time slots, HSPA codes, power and allocation times, and LTE OFDMA slots, QoS incen-

tives need to be homogenized: they are expressed as minimum guaranteed throughputs

and maximum throughputs. Further, mobile users select their RAT depending on their

individual needs and preferences, as well as on the cost and QoS parameters signaled by

the network. By appropriately tuning network information, user decisions are globally

expected to meet operator objectives, avoiding undesirable network states.

As a matter of fact, our hybrid approach involves two inter-dependent decision-making

processes. The first one, on the network side, consists in deriving appropriate network

information, so as to guide user decisions in a way to meet operator objectives. The second

one, where individual users combine their needs and preferences with the signaled network

information, consists in selecting the RAT to be associated with, in a way to maximize
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user utility. Since, in their turn, user individual decisions influence the upcoming network

information, the two decision makings are considered to be inter-dependent. Thus, RAT

selections dynamically involve operator objectives, and user needs and preferences.

2.5 Conclusion

In this chapter, we reviewed the main RAT selection methods, and classified them into

network-centric and mobile-terminal-centric approaches, according to who makes decisions.

We then outlined the benefits and drawbacks of each approach. In Chapter 3, we introduce

a new hybrid decision method, that:

• minimizes network complexity, signaling and processing burden: RAT selections are

pushed towards the mobiles. However, a common network information assists them

in their decisions.

• efficiently utilizes radio resources, despite of the non-cooperative behavior of mo-

bile users: by appropriately tuning network information, user decisions are globally

expected to meet operator objectives (e.g., enhance resource utilization).





Chapter 3

A Hybrid Approach for RAT

Selection

In this chapter, we tackle the RAT selection problem in heterogeneous wireless net-

works, and propose a hybrid decision approach. Mobile users are assisted in their decisions

by the network, that broadcasts monetary cost and QoS information. Two inter-dependent

decision-making problems are thus brought into play. The first one, on the network side,

consists in deriving appropriate network information, so as to guide user decisions in a

way to meet operator objectives. The second one, on the user side, consists in selecting

the RAT to be associated with, in a way to maximize user utility. We first focus on the

user side, and present a satisfaction-based multi-criteria decision-making method. Mobiles

select their RAT depending on their needs and preferences, as well as on the cost and QoS

parameters signaled by the network. In comparison with existing solutions, our algorithm

meets user needs (e.g., traffic class, throughput demand, and cost tolerance), avoiding in-

adequate decisions. Further, we introduce two heuristic methods, namely the staircase and

the slope tuning policies, to dynamically derive what to signal to mobiles, so as to enhance

resource utilization.

3.1 Hybrid Decision Framework

3.1.1 Network Topology

We consider a heterogeneous wireless network composed of NT RATs. The modulation and

coding scheme, that can be assigned to a user connected to RAT x, differs depending on its

radio conditions in the cell, more precisely on its signal-to-noise ratio denoted by SNRx.

As the number of possible modulation and coding schemes is limited, we decompose the

cell into Nx
Z zones with homogeneous radio characteristics [IKT09, CKG08a, CKG08b].

23
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Users in zone Zxk , k = 1, ..., Nx
Z , are assumed to have a signal-to-noise ratio between δxk

and δxk−1, and then to use modx(k) with codx(k) as modulation and coding scheme:

(modx(k), codx(k)) =


none if SNRx(k) < δxNx

Z
,

(modxNx
Z
, codxNx

Z
) if δxNx

Z
≤ SNRx(k) < δxNx

Z−1
,

...

(modx1 , cod
x
1) if δx1 ≤ SNRx(k) < δx0 =∞.

(3.1.1)

where δxNx
Z

is the minimum signal-to-noise ratio, that allows transmission at the lowest

throughput, given a target error probability.

Furthermore, and for the sake of simplicity, users in a same zone are assumed to have the

same peak throughput, realized when present alone in the cell.

In the remainder, let the Nx
Z-tuple nx = (nx(k)), for k ∈ {1, ..., Nx

Z}, be the state of RAT

x. nx(k) represents the number of users, in zone Zxk , that are connected to RAT x. The

state s of the heterogeneous wireless network is the concatenation of RAT x substates, for

x ∈ {1, ..., NT }: s = (nx), for x ∈ {1, ..., NT }.

3.1.1.1 Cell Decomposition

Because of fading effects, radio conditions are time-varying. User signal-to-noise ratio can

take all possible values, leading to different modulation and coding schemes. However, as

RAT selections are made for a sufficiently long period of time (e.g., session duration, user

dwell time in the cell), users are distributed over logical zones depending on their average

radio conditions, rather than on their instantaneous ones.

Another approach is found in [IKT09], where an analytical radio model, that accounts

for interference, path loss, and Rayleigh fading, is used. It has been demonstrated that

users need to be situated at rk ∈ [Rxk−1, R
x
k [ from their base stations, so as to have a

signal-to-noise ratio between δxk and δxk−1, with at least a high probability Pth. This means

that the cell may be divided into concentric rings, as illustrated in Fig. 3.1, and mobiles

in ring Zxk will use modx(k) with codx(k) as modulation and coding scheme, with at least

a high probability Pth. Further, to define the different rings, the distances Rxk have been

analytically derived, mainly as a function of δxk , Pth, and radio model parameters.

Ring NZ Ring k Ring 1
x

Figure 3.1: RAT x cell divided into Nx
Z concentric rings
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3.1.2 Network Resources

Prior to the RAT selection process, a common admission control is assumed to be per-

formed. New and handover sessions are admitted to the extent that joint available re-

sources are able to meet their requirements, while not compromising the QoS level of

ongoing ones. Further, after sessions are accepted, decisions are made as to what RAT

they should be associated with. Robust decisions are crucial to avoid network congestion,

and enhance user experience.

In RAT x, the radio resource is divided into elementary resource units (RU). Typically,

in OFDM(A)-based technologies (e.g., LTE and WiMAX), resource units are defined as

OFDM symbols (one-dimensional allocations), or OFDMA slots (two-dimensional allo-

cations: m subcarriers by n OFDMA symbols). However, in CDMA-based technologies

(e.g., HSPA), codes, power and allocation times are regarded as RUs.

In the time domain, transmissions are organized into radio frames of length T x. At each

scheduling epoch, RUs are allocated to individual users, based on a predefined scheduling

algorithm. User throughputs depend on their allocated RUs (i.e., their description and

amount), and modulation and coding schemes. Typically, when fair time scheduling is

employed, cell resources (e.g., codes, power and allocation times in HSPA, OFDMA slots

in LTE) are equally distributed to mobile users [THK+10]. Yet, mobiles with good radio

conditions (e.g., cell center users) experience a higher throughput than those with bad

radio conditions (e.g., cell edge users).

3.1.3 Network Information

Periodically or on user request, network information is sent to all mobiles, using the logical

communication channel (i.e., radio enabler) proposed by the IEEE 1900.4 standard [Std09].

This logical channel allows information exchange between the Network Reconfiguration

Manager (NRM) on the network side, and the Terminal Reconfiguration Manager (TRM)

on the mobile-terminal side (Fig. 3.2). The purpose is to improve resource utilization and

user experience in heterogeneous wireless networks.

In our work, by appropriately tuning network information, the network globally controls

user decisions, in a way to meet operator objectives (e.g., enhance network performance,

minimize energy consumption). Network information may then be static or dynamic, so

as to optimize short- or long-term network utility.

When a new or a handover session arrives, the mobile decodes network information, eval-

uates serving RATs, and selects the one that maximizes its own utility. As a matter of

fact, selection decisions depend on user needs and preferences, as well as on the signaled

network information.

The network is fully described by its state s. Yet, in our work, only monetary cost and
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partial QoS parameters are sent to mobiles. This reduces signaling load. Furthermore,

by masking RAT load conditions, QoS information may reflect not only the current net-

work state s, but also other network-related parameters (e.g., energy consumption). For

instance, QoS parameters may be tuned, so that mobile decisions are consistent with op-

erator energy-saving objectives. This flexible design allows the network to derive cost and

QoS parameters in a way to optimize a generic utility function.

RAT1

RAT2

RATN

NRM

Network side

Radio Enabler

Terminal side

TRM

Radio Enabler

Network information

Mobile Terminal

 Network Elements

Figure 3.2: Hybrid 1900.4 network architecture

Moreover, cost and QoS parameters, signaled by the network, are seen as incentives to

join serving RATs:

• Cost parameters: Because flat-rate pricing strategies waste resources [EV99], result

in network congestion, and thus degrade network performance [ZYA04], they are not

optimal in supporting QoS. A volume-based model is therefore proposed: mobile

users are charged based on the amount of traffic they consume. In our work, costs

are defined on a per kbyte basis.

• QoS parameters: The amount of resource units (RUs) to be allocated to future

arrivals are broadcasted:

– Mobiles are guaranteed an average minimum amount of RUs, denoted by nmin.

– They also have priority to occupy up to an average maximum amount of RUs,

denoted by nmax.
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Because the smallest allocation unit (i.e., RU) has different descriptions in the dif-

ferent RATs, there is a need to homogenize the QoS information. QoS parameters

are then expressed as throughputs: dmin and dmax instead of nmin and nmax. How-

ever, as user throughputs strongly depend on their radio conditions, dmin and dmax

are derived for the most robust modulation and coding scheme (i.e., modxNx
Z

with

codxNx
Z

).

Therefore, when evaluating serving RATs, mobiles should combine their individual

radio conditions with the provided QoS parameters: for that, they multiply dmin

and dmax with a given modulation and coding gain, denoted by g(M,C).

Although QoS parameters are provided, our decision framework is independent of local

resource allocation schemes. First, the minimum guaranteed RUs, namely nmin, are di-

rectly granted. Then, any priority scheduling algorithm, including opportunistic schemes

[Kha06, GB09, KM10, NHT12], could be adopted to share out remaining resources. Grants

are, however, limited to nmax. Residual resources are afterwards equitably distributed:

when all mobiles have received their maximum throughput, they are considered to have

the same priority, leading to fair allocation.

3.1.4 RAT Selection

The network proposes one or more alternatives, that are the available RATs. For each

alternative a, the network broadcasts the three parameters: dmin(a), dmax(a), and cost(a).

From the user point of view, these parameters are the decision criteria to be used to

evaluate serving RATs. As in all multi-criteria decision making methods, mobiles define

and compute a utility function for all of the available alternatives. This utility is obtained

after normalizing and weighting the decision criteria.

In the next section, we present our Satisfaction-Based (SB) Multi-Criteria Decision-Making

(MCDM) method. The particularity of our algorithm resides in the normalization step,

that takes into account user needs (i.e., traffic class, throughput demand, cost tolerance).

By avoiding inadequate decisions, our algorithm overcomes some limitations of well-known

MCDM methods.

3.2 Satisfaction-based Decision Method

3.2.1 Normalization and Traffic Classes

The normalization of the decision criteria dmin(a), dmax(a), and cost(a) takes into con-

sideration session traffic class, throughput demand, and cost tolerance. For traffic class c
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and alternative a, d̂cmin(a), d̂cmax(a), and ĉost
c
(a) are respectively the normalized values

of dmin(a), dmax(a), and cost(a).

In our work, we define three traffic classes : inelastic, streaming, and elastic classes.

Before we give the normalizing functions for each traffic class, we note that p̂c(a), p ∈
{dmin, dmax, cost}, can be viewed as the expected satisfaction of a class c session, with

respect to criterion p, when alternative a is selected:

• Inelastic sessions (c = I): since designed to support constant bit rate circuit em-

ulation services, inelastic sessions require stringent and deterministic throughput

guarantees. dmax should have no impact on RAT selections. Besides, the satisfac-

tion with respect to dmin has a step shape (Fig. 3.3). When alternative a is selected,

mobiles expect to be satisfied provided that their minimum guaranteed throughput

dmin = dmin(a) · g(M,C) is greater or equal to their fixed throughput demand Rf ;

otherwise, they are not satisfied.

d̂Imin(a) =

{
0 if dmin(a) · g(M,C) < Rf

1 if dmin(a) · g(M,C) ≥ Rf
(3.2.1)

0

1

Throughput
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Fixed demand R
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Figure 3.3: Inelastic sessions: Throughput satisfaction function

• Streaming sessions (c = S): since designed to support real-time variable bit rate ser-

vices (e.g., MPEG-4 video service), streaming sessions are fairly flexible, and usually

characterized by a minimum, an average and a maximum throughput requirement.

Therefore, when alternative a is selected, their expected satisfaction with respect to

dmin and dmax is represented by an S-shaped function (Fig. 3.4):

d̂′
S

(a) = 1− exp(
−α(d

′(a).g(M,C)
Rav

)2

β + (d
′(a).g(M,C)

Rav
)
) (3.2.2)
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where d′ = {dmin, dmax}.

Rav represents session needs: an average throughput demand. α and β are two

positive constants necessary to determine the shape of the S-shaped function.

Average demand
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Figure 3.4: Streaming sessions: Throughput satisfaction function, (α = 9, β = 10)

• Elastic sessions (c = E): since designed to support traditional data services (e.g.,

file transfer, email and web traffic), elastic sessions typically using the TCP protocol

adapt to resource availability. As they require no QoS guarantees, dmin has no

impact on RAT selections. Moreover, the satisfaction with respect to dmax has a

concave shape as illustrated in Fig. 3.5.

Comfort demand
0

0.63
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ThroughputR
c

Figure 3.5: Elastic sessions: Throughput satisfaction function

User satisfaction is expected to increase slowly as its throughput exceeds its comfort

throughput demand Rc (i.e., the mean throughput beyond which user satisfaction

exceeds 63% of maximum satisfaction):
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d̂Emax(a) = 1− exp(−dmax(a).g(M,C)

Rc
) (3.2.3)

Furthermore, the monetary cost satisfaction is modelled as a Z-shaped function for all

sessions (Fig. 3.6): the slope of the satisfaction curve increases rapidly with the cost.

ĉost
c
(a) = exp(−cost(a)2

λc
), c ∈ {I, S,E} (3.2.4)

0

1

Sa
ti

sf
ac

ti
on

Cost

Figure 3.6: Monetary cost satisfaction function, (λc = 25)

λc represents the cost tolerance parameter: a positive constant to determine the shape of

the Z-shaped function.

3.2.2 User Profile and Utility Function

The user profile defines the cost tolerance parameter and the weights to be applied to

normalized criteria. More precisely, the user profile is the set of vectors (λc, wcdmin
, wcdmax

,

wccost), c ∈ {I, S,E}, where wcp is the weight of p̂c, p ∈ {dmin, dmax, cost}. When alternative

a is selected, the expected utility of a class c session is defined as follows:

U c(a) = wcdmin
· d̂cmin(a) + wcdmax

· d̂cmax(a) + wccost · ĉost
c
(a)

Note that predefined user profiles (e.g., cost minimizing profile, QoS maximizing profile)

may be introduced. Thereby, end-users do not worry about technical details: they can use

default values for the cost tolerance parameter, and the decision criteria weights.

Fig. 3.7 summarizes the decision process:

• For each alternative a, the mobile combines its radio conditions with the QoS pa-

rameters signaled by the network: it multiplies dmin(a) and dmax(a) with a given
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modulation and coding gain, to determine its perceived QoS parameters, as provided

by the network.

• Then, based on user needs (i.e., traffic class c, throughput demand and cost tolerance

λ), it computes the normalized decision criteria: d̂cmin(a), d̂cmax(a) and ĉost
c
(a).

• Next, it combines user preferences (i.e., wcdmin
, wcdmax

and wccost) with the normalized

decision criteria, so as to compute the weighted normalized criteria: wcdmin
· d̂cmin(a),

wcdmax
· d̂cmax(a) and wccost · ĉost

c
(a).

• Finally, it computes the utility function for each alternative a, and selects the one

with the highest score.

Session traffic class c

Throughput demand

Cost tolerance λ

Decision criteria

(Network information)

Normalized criteria Decision criteria weights

Utility function

User profile

Figure 3.7: Satisfaction-based multi-criteria decision process

This decision process is performed at session initiation and possibly also during session

lifetime. Mobiles decide of their serving RAT based on their individual needs and pref-

erences, as well as on the broadcasted network information. However, they can migrate

to another RAT following changes in their radio conditions. At this point, mobiles check

whether their serving RAT is still their best choice, or in other words, whether it is still

expected to maximize user utility. An inter-RAT handover is triggered only when another

RAT can provide users with significantly higher satisfaction level. This helps to reduce

unnecessary handovers (i.e., ping-pong effect).

3.3 Tuning Policies

Because mobile users also rely on their needs and preferences when selecting their RAT,

the network does not completely control individual decisions. Yet, by signaling appropriate

decisional information, the network tries to globally guide user decisions, in a way to meet
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operator objectives. These may include energy savings: mobiles are pushed to some base

stations, while others are switched to sleep mode so as to save energy. In our work, we

assume that operators are only concerned by efficiently utilizing their radio resources:

providing better network performance, higher user satisfaction, and larger operator gain.

When a RAT dominates all the others (i.e., provides higher QoS parameters for the same

cost, or the same QoS parameters for a lower cost), common radio resources are inefficiently

utilized, causing performance degradation. In fact, mobile users would select the dominant

alternative, leading to unevenly distributed traffic load. While a RAT is overcrowded, the

others are almost unexploited. This inefficiency is very similar to that of the mobile-

terminal-centric approaches. To avoid it, QoS parameters, signaled by the network, needs

to be modulated as a function of the load conditions.

In this section, we present two heuristic methods, namely the staircase and the slope tuning

policies, to dynamically derive QoS information. In order to reduce network complexity

and processing load, one of the drawbacks of network-centric approaches, our policies are

made simple. Yet, they help to efficiently distribute traffic load over the available RATs,

and thus to better utilize radio resources.

3.3.1 Staircase Tuning Policy

The load factor represents the amount of throughput guarantees, and is defined as the

ratio of the number of guaranteed allocated RUs to the total number of RUs. Fig. 3.8

illustrates how QoS parameters, namely dmin and dmax separately, are tuned as a function

of the load factor using the Staircase policy. When RAT x load factor is low, the network

can promise high throughput guarantees to arriving mobiles to join RAT x. The highest

dmin(x) and dmax(x) values are signaled. However, as RAT x load factor exceeds S1

threshold, the network needs to reduce QoS incentives in RAT x so as to avoid RAT x

congestion, or in other words, to avoid resource shortage in RAT x. QoS parameters are

separately decreased, following a step function. Moreover, as S2 is reached, the network

no longer provides incentives to arriving mobiles in RAT x.

Low-load

Load factorS1 S2

QoS parameters

parameters

Figure 3.8: QoS parameters reduction using the Staircase policy
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Usually, dmin and dmax have different values. For instance, at low load factor, dmin(x) and

dmax(x) are equal to 1 and 1.5 Mb/s, respectively. They are respectively reduced to 0.5

and 1 Mb/s as S1 is reached, and are both set to zero when S2 is exceeded. Furthermore,

it is worth noting that the different serving RATs can have different S1 and S2 values.

3.3.2 Slope Tuning Policy

As radio access technologies are progressively loaded, the Slope policy gradually tune QoS

parameters as a function of the load factor (cf. Fig. 3.9). When RAT x load factor is

low, the highest dmin(x) and dmax(x) values are signaled. Yet, when S1 is reached, QoS

parameters are linearly and separately reduced down to zero. The slope helps to better

respond to traffic load fluctuations.

Low-load

Load factorS1 S2

QoS parameters

parameters

Figure 3.9: QoS parameters reduction using the Slope policy

As QoS parameters are dynamically modulated, arriving mobiles are pushed to the less

loaded RATs, enhancing long-term network performance. However, using both policies,

the challenge is to properly set S1 and S2. In the same load conditions, QoS parameters to

signal strongly depend on tuning threshold values. In other words, for a given load factor,

different dmin and dmax can be provided depending on S1 and S2, leading to different user

decisions. The impact of S1 and S2, on network and user utilities, are further discussed in

Chapter 5.

3.4 Conclusion

In this chapter, we proposed a new hybrid decision approach for RAT selection in heteroge-

neous wireless networks. Using the logical communication channel proposed by the IEEE

1900.4 standard, the network provides information for the mobiles to make robust RAT

selections. More precisely, mobile users select their RAT depending on their needs and

preferences, as well as on the cost and QoS parameters signaled by the network. By appro-

priately tuning network information, user decisions are globally expected to meet operator

objectives, avoiding undesirable network states. We first presented a satisfaction-based
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multi-criteria decision-making method, so that mobiles can efficiently evaluate serving

RATs. Then, we introduced two heuristic methods, namely the staircase and the slope

tuning policies, to derive QoS parameters as a function of the load conditions. They follow

a linear decreasing (slope) or a staircase function.

In Chapter 4, our satisfaction-based multi-criteria decision-making method, and our tuning

heuristics are thoroughly and separately evaluated.



Chapter 4

Performance Evaluation of Our

Hybrid Approach

We introduced, in Chapter 3, a hybrid decision approach for RAT selection in hetero-

geneous wireless networks. Mobile users select their RAT depending on their needs and

preferences, as well as on the cost and QoS parameters signaled by the network. We

also presented a satisfaction-based multi-criteria decision-making method to evaluate serv-

ing RATs, and two heuristic policies to dynamically derive network information. In the

present chapter, we thoroughly evaluate our RAT selection method. We consider three sim-

ulation scenarios. In the first one, we focus on network information, and investigate the

effect of providing mobiles with differentiated services and throughput guarantees. The sec-

ond scenario compares our satisfaction-based multi-criteria decision-making method with

other existing algorithms, namely SAW and TOPSIS. In the third scenario, we illustrate

the gain from using our tuning heuristics, in comparison with static network information.

4.1 System Model

We consider a heterogeneous wireless network composed of NT generic OFDM(A)-based

RATs. RAT x capacity is fixed to Cx. The radio resource is divided into Nx
RU resource

units (i.e., OFDM symbols or OFDMA slots). In the time domain, transmissions are

further organized into radio frames of length T x.

At each scheduling epoch, resource units are allocated to individual users, based on their

priority and current needs (i.e., amount of traffic waiting for transmission). Before any

scheduling is applied, the minimum guaranteed RUs are directly granted. The Weighted

Fair Queuing (WFQ) is then adopted to share out remaining resources. However, grants

are limited to nmax. Session weights, in WFQ schedulers, are based on the cost users pay

per unit of traffic. Residual resources are afterwards equitably distributed, according to

35
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the Round Robin service discipline. In fact, as long as resources are not fully committed,

mobiles are allocated more than their guaranteed throughputs. Further, to avoid wasting

resources, they can even have more than their maximum throughput announed by the

network.

Because network information may be dynamically tuned, typically as a function of the

load conditions, all mobiles do not necessarily perceive the same cost and QoS parameters

at the time of selection. This affects their decision makings. In our work, we suppose

that mobiles arrive sequentially. The total number of users is limited to Ntotal; it sets the

traffic load. Their sojourn time is considered to be much greater in comparison with the

simulation time Tsimulation. Consequently, the network dynamics will progressively slow

down until a pseudo-stationnary regime is attained, where all measurements are performed.

To improve the statistical significance of the results, simulations are repeated 500 times,

and performance metrics are averaged.

After they arrive, mobiles randomly select a user profile (cf. Table 4.1). As a matter of

fact, they initiate either an inelastic, a streaming, or an elastic session, and determine

their cost tolerance parameter λ and the weights wdmin
, wdmax , and wcost they apply

to normalized decision criteria. In Table 4.1, the weights of the decision criteria are

normalized such that they sum up to 1 for each user profile. Further, mobiles decode

current cost and QoS information, evaluate their expected satisfaction levels, and rank

the different alternatives. The needs of inelastic and streaming sessions are respectively

expressed as fixed (i.e., Rf ), and average long-term throughput (i.e., Rav). We assume

that the set of possible throughput demands is given by D = {0.5, 1, 1.5, 2} Mb/s.

Profile No. Traffic class λ wdmin
wdmax wcost

1 Inelastic 60 0.7 0 0.3
2 Streaming 60 14/30 7/30 0.3
3 Elastic 60 0 0.7 0.3

4 Inelastic 25 0.3 0 0.7
5 Streaming 25 0.2 0.1 0.7
6 Elastic 25 0 0.3 0.7

Table 4.1: User profiles

Inelastic and streaming traffic is packetized into small units of fixed length Lc, c ∈ {I, S}.
Inelastic sessions generate packets according to a deterministic distribution, whereas stream-

ing sessions generate packets according to a Poisson process. These packets are segmented

into blocks sized to fit one RU. In our work, we fix delay constraints for the latter session

types. A maximum delay requirement of ∆c, c ∈ {I, S} is fixed. Since resources are lim-

ited, some packets may miss their deadline. They will be dropped as they are no longer

useful.
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Furthermore, the needs of elastic sessions are expressed as comfort throughput (i.e., Rc).

We suppose that the set of possible comfort throughputs is given by C = {0.75, 1.25}
Mb/s. Inelastic and streaming sessions uniformly choose one of the possible throughput

demands, regardless of the user cost tolerance parameter. Yet, we assume in the following

that the comfort throughput of elastic sessions is related to the user willingness to pay,

and thus imposed by the user profile.

To provide a detailed performance evaluation, three simulation scenarios are considered.

In the first one, we focus on network information, and assess the effect of providing mo-

biles with differentiated service classes and throughput guarantees. The second scenario

compares our satisfaction-based multi-criteria decision-making method with other existing

algorithms, namely SAW and TOPSIS. In the third scenario, we illustrate the gain from

using our tuning policies in comparison with static network information.

4.1.1 Scenario 1: QoS Information

In this first scenario, we are interested in the performance improvement achieved by pro-

viding differentiated service classes, and minimum throughput guarantees to mobile users,

regardless of future network load conditions.

We consider a realistic and cost-effective deployment, where NT RATs are co-localized:

the same base station site is used, leading to cell overlapping. For the sake of simplicity,

all users are assumed to belong to the same zone Zk: they all have the same modulation

and coding schemes, and thus exploit in the same manner their allocated grants. General

simulation parameters are listed in Table 4.2.

Parameters Values

NT 3
Cx, x = 1, ..., NT 35 Mb/s
Nx
RU , x = 1, ..., NT 700
T x, x = 1, ..., NT 10 ms

Tsimulation 300 s
Lc, c = I, S 125 bytes
∆c, c = I, S 100 ms

Table 4.2: Simulation parameters for the first and second scenarios

To evaluate long-term network performance, five major key performance indicators are

defined: throughput, mean waiting delay and packet drop probability (for inelastic and

streaming sessions), user satisfaction, and operator gain. In our work, the waiting delay

represents the time that a packet spends in the queue before being transmitted, and the

packet drop probability represents the probability that a packet is rejected due to exceeding

its deadline.
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4.1.1.1 Service differentiation

To examine the impact of service differentiation on global network performance, we com-

pare the following two situations:

• Situation 1: Differentiated services network. Radio access technologies provide dif-

ferentiated service classes, namely, Premium, Regular and Economy. They differ in

their QoS and cost parameters. A QoS-aware pricing scheme should then be adopted:

mobiles are charged based on their priority. Otherwise, all sessions would select the

premium service class, and our differentiated services model would lose its interest.

• Situation 2: Mono-service network. Radio access technologies provide a unique

service class, namely Regular plus.

QoS parameters as perceived by mobile users, namely their dmin and dmax, and cost

parameters are depicted in Table 4.3. They are assumed fixed, and do not change as the

RAT load changes, except when the RAT is no longer able to provide arriving mobiles

with the initial QoS parameters.

Service class dmin (Mb/s) dmax (Mb/s) Cost (unit/kB)

Premium 1.5 2 6
Regular 1 1.5 4

Economy 0.5 1 2

Regular Plus 1 2 4

Table 4.3: Scenario 1: Static QoS and cost parameters

As inelastic sessions are inflexible in their requirements, selection decisions need to meet

their fixed throughput demands. When the RAT is highly loaded, the resource scheduler

is no more able to provide them with more than their minimum guaranteed throughputs,

eventually leading to performance degradation. So as to enhance their QoS level, typically

at high traffic load, mobiles should be provided with high enough throughput guarantees,

or equivalently with high enough priority. Regardless of the user profile, selection decisions,

when differentiated services are provided, are reported in Table 4.4.

Throughput Needs (Mb/s) 0.5 1 1.5 2

Premium X X
Regular X

Economy X

Table 4.4: Satisfaction-based decisions for inelastic sessions
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Fig. 4.1 and 4.2 respectively show the mean waiting delay and the packet drop probability,

as a function of the total number of arrivals. When differentiated services are provided,

throughput-intensive sessions select the Premium service class with the highest priority,

leading to a shorter delay, a lower drop probability and subsequently a better QoS level.
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Figure 4.1: Scenario 1: Mean waiting delay for inelastic sessions
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Figure 4.2: Scenario 1: Packet drop probability for inelastic sessions

We depict in Fig. 4.3 the average user satisfaction. We notice that, at low traffic load,

user satisfaction is higher when a unique service class is provided. The Regular plus ser-

vice class fulfills strict QoS requirements, while charging mobiles on average with lower

cost. Yet, when the network gets loaded, throughput-intensive sessions see their perfor-
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mance degraded. The Regular plus service class is no more able to meet their inflexible

throughput demands, thus strongly decreasing the average user satisfaction. However,

when differentiated services are provided, throughput-intensive sessions always opt for the

Premium service class, and then enjoy higher throughput guarantees. This leads to a

larger overall satisfaction, as illustrated in Fig. 4.3.
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Figure 4.3: Scenario 1: User satisfaction for inelastic sessions

Furthermore, since streaming sessions are fairly flexible, mobiles may be less restrictive in

their choices. Based on their preferences, users may actually look for fair enough content

quality (average long-term throughput), high content quality (higher throughput), or even

poor content quality (lower throughput). Selection decisions are put forward in Tables 4.5

and 4.6.

Throughput Needs (Mb/s) 0.5 1 1.5 2

Premium X X X
Regular X

Economy

Table 4.5: Satisfaction-based decisions for streaming sessions: users are ready to pay for
better performance

Throughput Needs (Mb/s) 0.5 1 1.5 2

Premium X
Regular X

Economy X X

Table 4.6: Satisfaction-based decisions for streaming sessions: users seek to save up money
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The mean waiting delay and the packet drop probability are respectively illustrated in Fig.

4.4 and 4.5. When differentiated services are provided, better performances are observed

mainly at medium traffic load: demanding sessions could be provided with higher through-

put guarantees (i.e., with the Premium service class), and even low-priority sessions may

be granted more than their minimum guaranteed throughputs.
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Figure 4.4: Scenario 1: Mean waiting delay for streaming sessions
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Figure 4.5: Scenario 1: Packet drop probability for streaming sessions

However, when the network gets loaded, mobiles that seek to save up money, and thus have

on average lower throughput guarantees, suffer from poor performance. Further, mobiles

that are ready to pay are always provided with high enough throughput guarantees, and
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consequently have better QoS than when a unique service class is offered. Therefore, at

high traffic load, performances are on average very close. Streaming sessions that are

ready to pay offset the performance degradation of those that seek to save up money.

Besides, user satisfaction is constantly higher when differentiated services are provided

(Fig. 4.6). In contrast to inelastic sessions, users that seek to save up money sacrifice

within limits their service quality (i.e., select a cheaper service class), thus leading to a

higher overall satisfaction, typically at low traffic load.
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Figure 4.6: Scenario 1: User satisfaction for streaming sessions
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Figure 4.7: Scenario 1: Average throughput for elastic sessions
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Because elastic sessions have no QoS needs, selection decisions exclusively depend on user

preferences. Mobiles, that are ready to pay, select the Premium service class, and enjoy the

highest throughput. However, those who seek to save up money select the Economy class,

and have the lowest throughput. Furthermore, when a unique service class is provided, all

sessions have similar priorities, leading to similar throughputs, as shown in Fig. 4.7.

As they are associated with the service class that best meet their preferences, elastic

sessions have significantly higher satisfaction (Fig. 4.8), when differentiated services are

provided.
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Figure 4.8: Scenario 1: User satisfaction for elastic sessions
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Figure 4.9: Scenario 1: Operator gain
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Moreover, when differentiated services are proposed, the operator gain is maximized, as

depicted in Fig. 4.9. Also, although mobiles pay on average more, they have a significantly

higher satisfaction (Fig. 4.10). As a matter of fact, when differentiated service classes are

provided, mobiles avoid undersized and oversized decisions, and select the service class

that best meets user needs and preferences.
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Figure 4.10: Scenario 1: User satisfaction

4.1.1.2 Throughput guarantees
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Figure 4.11: Scenario 1: Mean waiting delay for real-time sessions
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We also discuss the impact of throughput guarantees on the performance of real-time

sessions. When real-time sessions (i.e., inelastic and streaming sessions) are provided with

minimum throughput guarantees (i.e., dmin 6= 0 ) regardless of future load conditions,

they have a shorter delay (Fig. 4.11), a lower drop probability (Fig. 4.12), and thus a

better QoS level. As real-time sessions are always provided with, at least, their minimum

guaranteed RUs, their performances are enhanced, particularly when RATs get loaded.
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Figure 4.12: Scenario 1: Packet drop probability for real-time sessions

4.1.2 Scenario 2: Multi-Criteria Decision-Making Methods

In this second scenario, we compare our Satisfaction-Based (SB) multi-criteria decision-

making method with the well-known SAW [SNW06] and TOPSIS [FC11, CM12] algo-

rithms. As in the first scenario, hybrid cells include NT co-localized RATs. Since we

mainly focus on the decision makings, and for the sake of simplicity, all mobiles are sup-

posed to belong to the same zone Zk. Thus, they are assumed to have the same peak rate.

General simulation parameters are depicted in Table 4.2.

Each RAT proposes three different service classes, namely Premium, Regular and Econ-

omy. QoS and cost parameters, as perceived by mobile users, are depicted in Table 4.7.

Once again, they are supposed fixed and do not change as the RAT load changes, except

when the RAT is no longer able to provide future arrivals with the initial QoS parameters.

Before we discuss simulation results, let us recall the SAW and TOPSIS methods. When

normalizing decision criteria dmin(a), dmax(a), and cost(a), SAW and TOPSIS ignore user

needs (i.e., traffic class, throughput demand, cost tolerance), and exclusively depend on

available alternatives. We note A the set of available alternatives and ã any element that
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Service class dmin (Mb/s) dmax (Mb/s) cost (unit/kB)

Premium 1.5 2 6
Regular 1 1.5 4

Economy 0.5 1 2

Table 4.7: Scenario 2: Static QoS and cost parameters

belongs to A.

4.1.2.1 Simple Additive Weighting (SAW)

For alternative a, the normalizing functions regardless of the session traffic class c are:

d̂′(a) =
d′(a) · g(M,C)

maxã∈A d′(ã) · g(M,C)
(4.1.1)

where d′ = {dmin, dmax}, and

ĉost(a) =
minã∈A cost(ã)

cost(a)
(4.1.2)

The utility function of a class c session for alternative a is defined by :

U c(a) = wcdmin
· d̂min(a) + wcdmax

· d̂max(a) + wccost · ĉost(a)

Mobiles actually select the alternative with the highest score (i.e., utility function).

4.1.2.2 Technique for Order Preference by Similarity to Ideal Solution (TOP-

SIS)

For alternative a, the normalizing functions regardless of the session traffic class c are:

d̂′(a) =
d′(a) · g(M,C)√∑
ã∈A (d′(ã) · g(M,C))2

(4.1.3)

where d′ = {dmin, dmax}, and

ĉost(a) =
cost(a)√∑
ã∈A (cost(ã))2

(4.1.4)

The positive and the negative ideal solutions, respectively denoted by a+ and a−, are then

determined as follows:

a+ = (d+min, d
+
max, cost

+) = (max
ã∈A

d̂min(ã),max
ã∈A

d̂max(ã),min
ã∈A

ĉost(ã)) (4.1.5)
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a− = (d−min, d
−
max, cost

−) = (min
ã∈A

d̂min(ã),min
ã∈A

d̂max(ã),max
ã∈A

ĉost(ã)) (4.1.6)

These ideal solutions do not necessarily exist: a+ and a− are defined as virtual alternatives

with respectively the best and the worst decision criteria values.

The distance of alternative a from the positive ideal and the negative ideal solution,

respectively denoted by S+(a) S−(a), are furthermore computed as:

S+(a) =
√

[wcdmin
(d̂min(a)− d+min)]2 + [wcdmax

(d̂max(a)− d+max)]2 + [wccost(ĉost(a)− cost+)]2

(4.1.7)

S−(a) =
√

[wcdmin
(d̂min(a)− d−min)]2 + [wcdmax

(d̂max(a)− d−max)]2 + [wccost(ĉost(a)− cost−)]2

(4.1.8)

The relative closeness (i.e., utility function) is however defined as:

C(a) =
S−(a)

S−(a) + S+(a)
(4.1.9)

Mobiles select the alternative with the shortest distance from the positive ideal solution

and the farthest distance from the negative ideal solution, or equivalently the alternative

with the highest relative closeness.

Because they ignore user needs, SAW and TOPSIS often lead to undersized and oversized

decisions. When selections are independent of session throughput demands, users with a

demand of 2 Mb/s make the exactly same decisions as those with a demand of 0.5 Mb/s.

As a matter of fact, their decisions exclusively depend on user preferences (i.e., weights

of the decision criteria), as well as on the characteristics of available alternatives. On the

one hand, when users seek to save up money, they always opt for the Economy service

class (i.e., their best trade-off between QoS and cost parameters). As a consequence, the

performance of throughput-intensive sessions are dramatically degraded. On the other

hand, when they are ready to pay for better performance, they always select the Premium

service class. Consequently, sessions with relatively low throughput demand will uselessly

pay more: premium guarantees may not improve their performance in comparison with

regular or economy ones.

Yet, our proposed Satisfaction-Based (SB) algorithm provides the best performance for

the best cost. On the one hand, when session needs are stringent and inflexible, a high

enough priority service class is selected, thus enhancing user performance. On the other

hand, when higher throughput guarantees do not improve session performance, SB leads
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to a low enough priority service class, thus charging mobile users with lower cost. So as to

make the comparison more fair, enhanced SAW and TOPSIS are used: they only explore

feasible alternatives. When user throughput demand is greater than the provided dmax,

the alternative opted for is considered to be infeasible, and thus rejected. This will prevent

SAW and TOPSIS from making some undersized decisions. However, as discussed in the

following paragraph, our proposed method continues to outperform them.

4.1.2.3 Comparison results

So as to enhance network performance, and as stated above, enhanced SAW and TOPSIS

only explore feasible alternatives. Yet, they continue to lead to some undersized, but

mostly oversized alternatives. For inelastic sessions, selection decisions, according to the

different multi-criteria decision-making methods, are reported in Tables 4.8 and 4.9.

Decision Method SAW/TOPSIS SB

Session Needs (Mb/s) 0.5 1 1.5 2 0.5 1 1.5 2

Premium X X X X X X
Regular X

Economy X

Table 4.8: Decisions for inelastic sessions: users are ready to pay for better performance

Decision Method SAW/TOPSIS SB

Session Needs (Mb/s) 0.5 1 1.5 2 0.5 1 1.5 2

Premium X X X
Regular X X

Economy X X X

Table 4.9: Decisions for inelastic sessions: users seek to save up money

When users are ready to pay for better performance, SAW and TOPSIS always single

out the Premium service class. Intuitively, and since inelastic session needs are fixed, this

decision is oversized for 0.5 and 1 Mb/s sessions. As SB respectively opts for the Economy

and the Regular service classes, QoS requirements are always perfectly satisfied, while

charging mobile users with lower cost.

Also, when users seek to save up money, enhanced SAW and TOPSIS lead to the Economy

service class for 1 Mb/s sessions, and to the Regular service class for 1.5 Mb/s sessions.

These decisions are undersized. When the RAT is highly loaded, fixed QoS requirements

are not satisfied, thus dramatically degrading session performances.

Fig. 4.13 and 4.14 respectively show the mean waiting delay and the packet drop proba-

bility, as a function of the total number of arrivals. Since it avoids undersized decisions,
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SB provides a shorter delay, a lower drop probability, and subsequently a better overall

QoS level.
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Figure 4.13: Scenario 2: Mean waiting delay for inelastic sessions
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Figure 4.14: Scenario 2: Packet drop probability for inelastic sessions

We depict in Fig. 4.15 the average user satisfaction. We notice that, at low traffic load,

enhanced SAW and TOPSIS provide higher satisfaction. First, undersized decisions are

able to fulfill strict QoS requirements, while charging mobile users with lower cost. Sec-

ond, although oversized decisions decrease user satisfaction, the reduction is not significant

enough to offset the impact of undersized decisions. In other words, at low traffic load, un-

dersized decisions considerably increase user satisfaction, because the corresponding users
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seek to save up money. Their QoS needs are perfectly met, while paying less. However,

oversized decisions do not significantly decrease user satisfaction, because users in question

are originally ready to pay. We further note that, when traffic load is moderate, SB brings

the largest satisfaction, since it always meets the strict QoS requirements. As a matter of

fact, using SAW and TOPSIS, undersized decisions are no more able to meet user needs,

when traffic load is relatively high.
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Figure 4.15: Scenario 2: User satisfaction for inelastic sessions

For streaming sessions, selection decisions are put forward in Tables 4.10 and 4.11.

Decision Method SAW/TOPSIS SB

Session Needs (Mb/s) 0.5 1 1.5 2 0.5 1 1.5 2

Premium X X X X X X X
Regular X

Economy

Table 4.10: Decisions for streaming sessions: users are ready to pay for better performance

Decision Method SAW/TOPSIS/SB

Session Needs (Mb/s) 0.5 1 1.5 2

Premium X
Regular X

Economy X X

Table 4.11: Decisions for streaming sessions: users seek to save up money

When users are ready to pay for better performance, for 0.5 Mb/s sessions, SAW and
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TOPSIS lead to the Premium service class, and SB to the Regular one. SAW and TOPSIS

decisions are oversized. The Regular service class actually provides users with twice their

average long-term throughput.

The mean waiting delay and the packet drop probability are respectively depicted in Fig.

4.16 and 4.17. Since all methods provide the same QoS level, the Premium service class

proves to be oversized for 0.5 Mb/s sessions. In comparison with SB, no performance

improvement is observed. Therefore, on average, SB charges less and carries out higher

user satisfaction (Fig. 4.18).
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Figure 4.16: Scenario 2: Mean waiting delay for streaming sessions
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Figure 4.17: Scenario 2: Packet drop probability for streaming sessions
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Figure 4.18: Scenario 2: User satisfaction for streaming sessions

Because elastic sessions accomodate with available bandwidth, undersized and oversized

decisions do not technically exist. When SB takes into account user comfort throughput,

it may theoretically reach different solutions from SAW and TOPSIS. Yet, given our

simulation model and parameters, they practically all lead to the same decisions, providing

the same user satisfaction (cf. Fig. 4.19).
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Figure 4.19: Scenario 2: User satisfaction for elastic sessions

When users are ready to pay for better performance, they systematically select the Pre-

mium service class. Nevertheless, when they seek to save up money, they choose the

Economy one. As illustrated in Fig. 4.20, Premium sessions enjoy higher throughputs



4.1. System Model 53

than Economy ones.
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Figure 4.20: Scenario 2: Average throughput for elastic sessions

The comfort metric is defined as the ratio of the perceived throughput to the comfort

throughput. Although Premium sessions have higher throughputs, their comfort metric

is similar to the Economy ones except at low traffic load (cf. Fig. 4.21). Thereby, our

solution ensures fairness with respect to different comfort throughputs.
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Figure 4.21: Scenario 2: Mean comfort metric for elastic sessions

Furthermore, when a RAT is no longer able to guarantee to future arrivals the initial QoS

parameters, network information is modified. As they have lower throughput guarantees
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for the same initial monetary cost, new arrivals are considered to be disadvantaged. We

depict in Fig. 4.22 the Disadvantaged Sessions Rate, denoted by DSR, and defined as

the number of disadvantaged sessions over the total number of on-going sessions. Since

it avoids oversized decisions, SB brings the lowest DSR. At high traffic load, higher QoS

guarantees are provided respectively with SB, SAW and TOPSIS.
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Figure 4.22: Scenario 2: Disadvantaged session rate

To wrap up, SB avoids undersized decisions, best meets QoS requirements and brings the

best performance. By eliminating infeasible alternatives, enhanced SAW and TOPSIS

bring similar performance as SB, for streaming and elastic sessions. However, SB consid-

erably outperforms them for inelastic sessions, where QoS requirements are stringent and

inflexible.

Also, by evading oversized decisions typically for inelastic and streaming sessions, SB

charges on average less than enhanced SAW and TOPSIS. Thereby, SB leads to better

performance, lower cost and therefore higher user satisfaction.

4.1.3 Scenario 3: Tuning Policies

In this third scenario, we illustrate the gain from using our tuning policies in comparison

with static network information. When a RAT dominates all the others (i.e., provides

higher QoS parameters for the same cost or the same QoS parameters for a lower cost), QoS

information are either modulated as a function of the load conditions using the staircase or

the slope tuning policies, or maintained fixed leading to performance inefficiency. Recall

that, prior to the RAT selection process, a common admission control is assumed to be

performed. General simulation parameters are however listed in Table 4.12.
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Parameters Values

NT 2
Cx, x = 1, ..., NT 70 Mb/s
Nx
RU , x = 1, ..., NT 700
T x, x = 1, ..., NT 10 ms

Tsimulation 300 s
Lc, c = I, S 125 byte
∆c, c = I, S 100 ms

Table 4.12: Simulation parameters for the third scenario

Each RAT is assumed to propose three different service classes, namely Premium, Regular

and Economy. All RATs are supposed to initially signal the same QoS and cost parameters

listed in Table 4.13.

Service class dmin (Mb/s) dmax (Mb/s) Cost (unit/kB)

Premium 1 1.35 6
Regular 0.7 1 4

Economy 0.35 0.7 2

Table 4.13: Scenario 3: Initial QoS and cost parameters

We further assume that mobiles randomly select a set of modulation and coding gains.

These multiplicative factors reflect the user radio conditions in the different technologies,

and are supposed to remain constant in time. Two sets of gains are considered and reported

in Table 4.14. They typically illustrate the network topology of Fig. 4.23.

Set No. RAT 1 RAT 2

1 1.5 1.5
2 2 1

Table 4.14: Modulation and coding gains

2 1

RAT 1 RAT 2

Figure 4.23: Scenario 3: A possible network topology

When the two RATs provide the same QoS parameters, users that are associated with

set no. 2 would select RAT 1. They expect to have better radio conditions, and thus
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to perceive higher throughputs in RAT 1. All other alternatives, proposed by RAT 2,

are subsequently dominated. Also, users that are associated with set no. 1 randomly

join their RAT, since they expect to perceive similar throughputs in the two available

RATs. This situation leads to unevenly distributed traffic load. However, when network

information is dynamically modulated, according to the staircase or to the slope tuning

policies, QoS parameters are tuned in a way to globally drive future arrivals to the less

loaded RAT: loaded RATs provide lower QoS parameters, thus pushing future users to less

loaded RATs. When staircase policy is adopted, reduced QoS parameters are presented

in Table 4.15.

Service class dmin (Mb/s) dmax (Mb/s)

Premium 0.5 0.7
Regular 0.35 0.5

Economy 0.2 0.5

Table 4.15: Reduced QoS parameters for the staircase tuning policy

Other scenarios may also lead to unevenly distributed traffic load. For instance, when

mobiles have the same modulation and coding schemes, a RAT is preferred if it initially

broadcasts higher QoS parameters for the same cost, or the same QoS parameters for

a lower cost. While static information absolutely leads to performance inefficiency, dy-

namic tuning helps to better distribute mobile users over the available RATs, and thus to

efficiently utilize radio resources.

When using the staircase or the slope tuning policies, we assume that S1 and S2 are

respectively set to 0.5 and 0.9 times the RAT capacity. Before S1, the network provides

constant QoS parameters. After S2, QoS incentives are no longer provided to future

arrivals: the network keeps a margin of about 10% of the RAT capacity to provide on-

going sessions with more than their minimum guaranteed throughputs. These parameters

will be thoroughly studied in Chapter 5.

Results have shown the same trend for different simulation scenarios and parameters.

Typically, we came to exactly the same conclusions with different modulation and coding

gains, initial network information, network model parameters, tuning thresholds (i.e., S1

and S2), and also when a unique service class is provided.

Because real-time (RT) sessions (i.e., inelastic and streaming sessions) require tight delay

constraints, access technologies should meet their throughput demands. However, users

with a demand of 2 Mb/s may suffer: even the Premium guarantees may be lower than

their throughput demand. When the RAT is highly loaded, the resource scheduler will

not be able to provide them with more than their minimum guaranteed throughputs, thus

leading to packet loss. So as to reduce the packet drop probability, we should avoid that

a RAT gets overloaded long before the others. Load balancing should then be achieved.
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Fig. 4.24 and 4.25 respectively show the mean waiting delay and the packet drop proba-

bility, as a function of the total number of arrivals.
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Figure 4.24: Scenario 3: Mean waiting delay for real-time sessions
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Figure 4.25: Scenario 3: Packet drop probability for real-time sessions

When the slope tuning policy denoted as Dynamic information (2) is adopted, it best

responds to traffic load fluctuations, and thus provides a shorter delay, a lower drop prob-

ability and subsequently a better overall QoS level. Besides, the staircase tuning policy

denoted as Dynamic information (1) is disadvantageous when all RATs have exceeded

their S1: while load conditions are critical, RAT 1 is once again privileged until the oper-

ator guarantees exceed S2 (i.e., until RAT 1 no longer provides QoS guarantees to future
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arrivals). Yet, the performance of real-time sessions are always significantly enhanced in

comparison with the static scenario, denoted as Static information.

Moreoever, when sessions are better distributed over the two RATs, they will be allocated

on average more RUs. Typically, when QoS parameters are tuned as a function of the load

conditions, elastic sessions experience higher throughput and subsequently higher comfort

metric, as shown in Fig. 4.26. However, at low traffic load (since tuning policies are not

yet triggered) and at high traffic load (since all RATs become similarly occupied regardless

of the tuning policy), performance enhancement is not that significant for elastic sessions.
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Figure 4.26: Scenario 3: Mean comfort metric for elastic sessions
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Figure 4.27: Scenario 3: Average throughput



4.1. System Model 59

Furthermore, when tuning policies are triggered, QoS parameters are reduced. To benefit

from the same initial throughput guarantees, mobile users may have to select a higher

priority service class, and thus pay more. Also, because fewer real-time packets are dropped

(cf. Fig. 4.25) and more elastic packets are served (cf. Fig. 4.26), users consume on average

a larger amount of traffic (Fig. 4.27), and once again pay more. We illustrate in Fig. 4.28

the average operator gain. When operators dynamically intervene, they gain more.
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Figure 4.28: Scenario 3: Operator gain
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Figure 4.29: Scenario 3: User satisfaction

We depict in Fig. 4.29 the average user satisfaction. Although mobiles may pay more, we

notice a higher satisfaction when tuning policies are implemented. Higher costs are then



60 4. Performance Evaluation of Our Hybrid Approach

justified, since users benefit from significantly better performance. At low traffic load,

tuning policies are not yet triggered. Equivalent performance, costs and subsequently

satisfactions are intuitively observed. However, at very high traffic load, the performance

gain over the static scheme begins to reduce; henceforth, it slightly offsets the cost con-

siderations, leading to low discrepancy among user satisfaction.

To conclude, in comparison with the static scheme, performance results show that our

tuning policies enhance network performance, provide larger operator gain and higher user

satisfaction. Since it best responds to traffic load fluctuations, the slope tuning policy has

proved to be an efficient strategy that enhances resource utilization. Further, in Chapter

6, we formulate tuning policies as a Semi-Markov Decision Process (SMDP), and derive

optimal solutions.

4.2 Concluding Remarks

In this chapter, we evaluated our hybrid decision approach. We separately investigated

decision makings, on the network and user sides. Below, we outline the main conclusions:

• When operators propose differentiated services, better network performance, higher

user satisfaction, and larger operator gain can be observed. Therefore, when hetero-

geneous RATs are integrated, it is always beneficial if all do not provide the same

QoS and cost incentives, giving mobiles a variety of possible choices.

• When mobiles are provided with minimum throughput guarantees, regardless of

future network load conditions, real-time sessions see their performance enhanced.

• In comparison with well-known multi-criteria decision-making methods, namely en-

hanced SAW and TOPSIS, our satisfaction-based algorithm meets user needs (e.g.,

traffic class, throughput demand, and cost tolerance), avoiding oversized and under-

sized decisions.

• When QoS parameters are modulated as a function of network load conditions, radio

resources can be efficiently exploited. As a matter of fact, when QoS parameters are

tuned according to our staircase or slope policies, better performance, higher user

satisfaction, and larger operator gain are obtained, in comparison with static network

information.



Chapter 5

Comparison of Our Hybrid

Approach With Different Methods

In Chapter 4, our multi-criteria decision-making method, and our tuning heuristics

were separately evaluated. In this chapter, we first focus on tuning thresholds, namely S1

and S2, and investigate their impact on network and user utilities. When QoS parameters

are dynamically tuned according to the slope policy, streaming and elastic sessions are

examined individually. Further, we compare our hybrid decision approach with different

network-centric, mobile-terminal-centric, and hybrid methods. Peak rate maximization,

Average rate maximization, Satisfaction-based using peak rate, Satisfaction-based using

average rate, and exhaustive search methods are considered. Simulation results prove the

effectiveness of our solution in enhancing resource utilization and user experience.

5.1 System Model

For illustration, we consider a heterogeneous wireless network composed of Mobile WiMAX

and LTE RATs. They are supposed to utilize a channel bandwidth of 5 and 10 MHz

respectively. Although our solution adapts to different deployment scenarios, we focus on

a realistic and cost effective one, where the two RATs base stations are co-localized. The

intersection of their respective zones leads to NZ heterogeneous zones.

For the sake of simplicity, the cell is assumed divided into two zones (i.e., NZ = 2). While

users with good radio conditions are considered adopting the (64 - QAM, 3/4) modulation

and coding scheme, users with bad radio conditions are supposed to employ the (16 -

QAM, 1/2) one. Their peak rates are reported in Table 5.1.

Prior to the RAT selection process, a common admission control is assumed to be per-

formed. Further, radio resources are allocated using fair time scheduling. Yet, when

mobiles select their RAT using our hybrid method, they are first provided with their mini-

61
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RAT 64-QAM: 3/4 16-QAM: 1/2

Mobile WiMAX (5 MHz) 16.6 Mb/s 7.4 Mb/s
LTE (10 MHz) 33.5 Mb/s 14.9 Mb/s

Table 5.1: Peak rates in Mobile WiMAX and LTE

mum guaranteed throughput, given by dmin. Then, fair time scheduling is used to provide

them with up to their maximum throughput, given by dmax. As long as resources are not

fully committed, remaining resources are equitably distributed. Moreover, after all mobiles

have received their maximum throughput, they equitably share residual resources.

Streaming and elastic sessions are individually considered in simulations. Mobiles are

randomly ready either to pay for better performance, or to sacrifice within limits their

service quality seeking to save up money. When user decisions need to be evaluated,

or typically when their perceived satisfaction is to be computed, a set of cost tolerance

parameter and QoS and cost weights is used according to user preferences (cf. Table 5.2).

Set No. λ wQoS wcost

1 60 0.7 0.3
2 45 0.3 0.7

Table 5.2: Cost tolerance parameter and QoS and cost weights

We assume that streaming sessions have an average long-term throughput of 1 Mb/s. So

as to improve their content quality, they can furthermore benefit from throughputs up to

1.5 Mb/s (i.e., Rav = 1 Mb/s and Rmax = 1.5 Mb/s). We depict in Table 5.3 the cost

tolerance parameter λ and the weights of the decision criteria wdmin
, wdmax and wcost, used

in our hybrid approach. When profile no. 1 is assigned to users that are ready to pay for

better performance, profile no. 2 is attributed to those that seek to save up money.

Profile No. λ wdmin
wdmax wcost

1 60 14/30 7/30 0.3
2 45 0.2 0.1 0.7

Table 5.3: User profiles for streaming sessions

Profile No. λ wdmin
wdmax wcost Rc (Mb/s)

1 60 0 0.7 0.3 1.25
2 45 0 0.3 0.7 0.75

Table 5.4: User profiles for elastic sessions

Besides, the comfort throughput of elastic sessions, denoted by Rc, is assumed related
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to the user willingness to pay, and thereafter imposed by the user profile (cf. Table

5.4). Typically, when users are ready to pay for better performance, they have a comfort

throughput of 1.25 Mb/s. Yet, when they seek to save up money, they are content with a

comfort throughput of 0.75 Mb/s.

We report in Table 5.5 the QoS and cost parameters signaled by the network at low

load factor, when using our hybrid method. We recall that the load factor represents the

amount of throughput guarantees, and is defined as the ratio of the number of guaranteed

allocated RUs to the total number of RUs. As RATs get loaded, dmin and dmax are

linearly and separately reduced down to zero (i.e., dynamically tuned according to the

slope tuning policy). However, when different thresholds (i.e., S1 and S2) are considered,

different QoS parameters may be signaled for the same load conditions. This may lead to

different decision makings depending on S1 and S2. Consequently, and before we compare

our hybrid approach with other RAT selection methods, let us study the effect of S1 and

S2 thresholds on network performance and user satisfaction.

RAT dmin (Mb/s) dmax (Mb/s) cost (unit/kB)

Mobile WiMAX 1 1.5 4
LTE 1.5 2 6

Table 5.5: Initial QoS and cost parameters

To evaluate selection decisions, network and user utilities are introduced. The network

utility reflects operator objectives: it is defined as the network total throughput. Further-

more, the user utility reflects the average user satisfaction: it depends on their needs and

preferences, and thus take into account both QoS and cost considerations.

5.2 Effect of S1 and S2

Initial

parameters

Load factorS1 = 0.3 S2

QoS incentives

S1 = 0.6

Figure 5.1: S1 effect on signaled QoS parameters

We illustrate in Fig. 5.1 the effect of S1 on signaled QoS parameters. The lower S1 is, the
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earlier dmin and dmax get reduced, pushing more mobiles to less loaded RATs. Yet, the

higher S1, the steeper the slope. The decay rate of the QoS parameters actually increases

with S1.

Moreover, figure 5.2 depicts the effect of S2 on signaled QoS parameters. The lower S2,

the steeper the decrease of dmin and dmax. Tuning becomes then more sensitive to load

conditions. In other words, the lower S2 is, the lower the QoS parameters are for the same

load conditions, pushing more mobiles to less loaded RATs.

Initial

parameters

S1 S2 = 0.8

QoS incentives

S2 = 0.95

Figure 5.2: S2 effect on signaled QoS parameters

5.2.1 Streaming Sessions

We first fix S2 to 0.9 and vary S1, so as to study its effect on network performance and

user satisfaction.

We respectively show in Fig. 5.3 and 5.4 the network utility and the average user utility, as

a function of the total throughput demand defined as the sum of user maximum throughput

demands (i.e., sum of user Rmax). At very low traffic load, regardless of S1, initial QoS

parameters are broadcasted. Consequently, mobile WiMAX is generally preferred: it

perfectly meets user QoS needs, while charging them less. Only users, with bad radio

conditions, that are ready to pay would select the LTE technology. Equivalent decision

makings are then observed for different S1 values, leading to similar network and user

utilities.

As WiMAX gets loaded, its broadcasted QoS parameters start to be reduced, pushing

more arrivals to LTE. When different S1 are examined, mobiles are differently distributed

over the two RATs. Typically, when S1 is fixed to 0.3, users are encouraged to join LTE

much earlier than when S1 is fixed to 0.6. As a result, at low and medium traffic load, the

lower S1 is, the more users join LTE and thus pay more. Similarly, the higher S1 is, the

more users continue to prefer mobile WiMAX competing for the same common resources.

Yet, as shown in Fig. 5.3, mobiles can still achieve throughputs up to their Rmax even for
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S1 = 0.6.
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Figure 5.3: S1 effect on network utility for streaming sessions
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Figure 5.4: S1 effect on user utility for streaming sessions

Actually, since their throughput demands are limited, no performance difference is ob-

servable for streaming sessions depending on S1 (cf. Fig. 5.3). Even for S1 = 0.6, at low

and medium traffic load, where more users join mobile WiMAX in comparison with other

cases, the network total throughput can still follow the throughput demand increase. Yet,

since less users join LTE and pay more, users experience the highest satisfaction when

S1 = 0.6 (cf. Fig. 5.4). However, at high traffic load, the proportion of users that are

associated with LTE significantly increases for high S1 values. While the QoS parameters
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signaled by the WiMAX technology are being roughly reduced (high decay rate), more

and more mobiles join LTE. Therefore, in the long term, the average proportion of users

that are connected to LTE becomes quite similar, regardless of S1 values. This leads to

fairly close network and user utilities at high traffic load.

Furthermore, we fix S1 to 0.6 and vary S2, so as to study its impact on network performance

and user satisfaction.
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Figure 5.5: S2 effect on network utility for streaming sessions
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Figure 5.6: S2 effect on user utility for streaming sessions

Following the same reasoning, the lower S2 is, the more users are pushed to LTE. However,
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unlike for S1, even when the total throughput demand is about 30 Mb/s, the proportion

of users that are connected to LTE remains higher for lower S2 values. As a matter of

fact, the higher S2 is, the longer can WiMAX provides attracting QoS guarantees for

users. This leads to higher satisfaction (cf. Fig. 5.6), seeing that users perceive similar

performance (cf. Fig. 5.5).

5.2.2 Elastic Sessions

Here again, we first fix S2 to 0.9 and vary S1, to study its impact on network performance

and user satisfaction.

Fig. 5.7 and 5.8 respectively illustrate the network utility and the average user utility,

as a function of the total number of users, denoted by Ntotal. The lower S1 is, the more

efficiently mobiles are distributed over the two RATs. Typically, when S1 = 0.3, broad-

casted QoS parameters start to be reduced much earlier in comparison with other cases.

As a result, more users particularly with good radio conditions join LTE, thus enhancing

resource utilization.
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Figure 5.7: S1 effect on network utility for elastic sessions

As a matter of fact, as tuning starts earlier, even mobiles with good radio conditions, that

are typically ready to pay (i.e., having a comfort throughput of 1.25 Mb/s), start earlier

to join LTE. Consequently, and since elastic sessions adapt to resource availability, the

network total throughput (i.e., the network utility) is improved as shown in Fig. 5.7.

At low and medium traffic load, when S1 is fixed to 0.3, more users particularly with

good radio conditions join LTE in comparison with other cases. This better exploits LTE

resources, enhancing network utility. Since less users are connected to WiMAX, and more
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users including those with good radio conditions join LTE, users have on average better

performance. Yet, as they pay on average more (more users are connected to LTE), users

perceive equivalent satisfaction regardless of S1 values (cf. Fig 5.8).
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Figure 5.8: S1 effect on user utility for elastic sessions

As Ntotal increases, the lower S1 is, the higher is the average proportion of users with good

radio conditions that are connected to LTE. This leads to continuously higher network

utility. Moreover, and since in the long term the average proportion of users that are

connected to LTE becomes close regardless of S1 values, users perceive higher satisfaction

for lower S1 values.
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Figure 5.9: S2 effect on network utility for elastic sessions
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Hereafter, we fix S1 to 0.3 and vary S2, so as to study its effect on network performance

and user satisfaction. Following the same reasoning, the lower S2 is, the more users

particularly with good radio conditions join LTE leading to higher network utility (cf.

Fig. 5.9). Further, as for streaming sessions, the higher S2 is, the more users join WiMAX

even for Ntotal = 30. As a consequence, for different S2 values, cost considerations offset

performance improvement leading to close user satisfaction (cf. Fig. 5.10).
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Figure 5.10: S2 effect on network utility for elastic sessions

To conclude, we demonstrated the network ability to globally control the decisions of

streaming and elastic sessions. User decisions strongly depend on how the network derives

its cost and QoS parameters, and thereafter on S1 and S2 tuning thresholds. For the same

load conditions, different threshold values have lead to different network and user utilities.

Moreover, we showed that S1 and S2 should be set depending on session traffic classes.

When a common admission control is assumed to be performed prior to RAT selections,

high and low threshold values are adapted for streaming and elastic sessions, respectively.

5.3 Comparison With Multiple RAT Selection Methods

In what follows, we compare six different RAT selection methods, including our hybrid

decision approach:

• Peak rate maximization: Mobile users have no information on the global network

state. Based on their radio conditions, they select the RAT that offers them the best

peak rate.
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• Average rate maximization: Mobiles are assumed to know the exact number of

users that are connected to available RATs. Assuming that fair time scheduling is

employed, they select the RAT that offers them the best throughput, at the time of

selection. Their estimated throughput in RAT x, denoted by Dx, is computed as:

Dx =
Dx

1 +Nx
(5.3.1)

where Dx represents the user peak rate when connected to RAT x, and Nx represents

the number of users that are connected to RAT x at the time of selection.

• Satisfaction-based using peak rate (SB - PR): Using their peak rates, mobiles adopt

the Satisfaction-based multi-criteria decision-making method to select their best

RAT. In order to evaluate serving RATs, the provided QoS parameters, in Eq. 3.2.2

and 3.2.3, are replaced with the peak rate that mobiles can achieve when connected

to these RATs.

• Satisfaction-based using average rate (SB - AR): Mobiles use the Satisfaction-based

multi-criteria decision-making method to select the RAT that maximizes their ex-

pected utility. In Eq. 3.2.2 and 3.2.3, the provided QoS parameters are replaced

with the estimated average throughput that mobiles can obtain.

• Exhaustive search: The network considers all possible associations involving all users.

It finally selects the combination that optimizes its own utility. Actually, it assigns

mobiles with either WiMAX or LTE in a way to maximize the network total through-

put. This is known to be the optimal method with respect to operator objectives:

it leads to the highest network utility.

• Our hybrid approach: The network periodically sends decisional information (i.e.,

cost and QoS parameters) to assist mobile users in their decisions. A RAT is con-

sidered to be low-loaded when its load factor is below S1. Initial dmin and dmax

are then signaled (cf. Table 5.5). Yet, when its load factor exceeds S2, a RAT is

considered to be highly loaded, providing no QoS guarantees.

When using the peak rate maximization and the SB - PR methods, mobiles select their

RAT without any network assistance. Decisions are then mobile-terminal-centric. How-

ever, when employing the average rate maximization and the SB - AR methods, load

conditions signaled by the network assist mobile users in their decisions. The latter two

methods are thus considered to be hybrid. Finally, when adopting the exhaustive search

method, decisions are network-centric, since they are made by the network transparently

to end-users.
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Because in practice telecom operators will not reveal neither the exact numbers of users

that are connected to their RATs nor the scheduling algorithm they adopt, the average

rate maximization and the SB - AR methods are not realistic. Yet, they serve as a means

to illustrate the gain from masking network load conditions and only signaling cost and

some QoS parameters, so as to enhance resource utilization.

5.3.1 Streaming Sessions

Fig. 5.11 and 5.12 respectively show the network utility and the average user utility, as a

function of the total throughput demand.

The network utility, defined as the network total throughput, generally increases with

the total throughput demand. Yet, when a RAT gets overloaded, its total throughput

stagnates and no longer increases with additional throughput demand.

5 10 15 20 25 30
0

5

10

15

20

25

30

Throughput demand (Mb/s)

N
et

w
o
rk

 u
ti

li
ty

 (
M

b
/s

)

Peak rate maximization

Av. rate maximization

SB − PR

SB − AR

Exhaustive search

Our hybrid approach

Figure 5.11: Network utility for streaming sessions

When the SB - PR method is used, all users select the mobile WiMAX technology (i.e.,

Mobile WiMAX is their best trade-off between cost and QoS decision criteria). Regardless

of user preferences and radio conditions, mobile WiMAX is expected to provide mobile

users with the highest utility. Since mobiles use their peak rate in estimating their utility,

their decisions do not depend on network load conditions. As a result, mobiles continue

to select the WiMAX technology even when it gets overloaded.

At low traffic load, mobile WiMAX can meet user QoS needs, while charging them less.

When users benefit from throughputs up to their Rmax and pay less, they have the highest

utility (i.e., satisfaction). However, when WiMAX gets loaded, it becomes no longer able
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to fulfill user QoS needs. Typically, at medium and high traffic load, WiMAX becomes

saturated leading to a significant decrease of the user throughput below Rav (cf. Fig.

5.11). As a consequence, user satisfaction will also dramatically decrease (cf. Fig. 5.12).

Furthermore, when the peak rate maximization method is adopted, all users select the LTE

technology. Independently of their modulation and coding schemes, mobiles can achieve

the best peak rate when connected to LTE. Here again, their decisions do not change with

network load conditions. As a consequence, at high traffic load, user throughput goes

below Rmax. Yet, it continues to be greater than Rav.
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Figure 5.12: User utility for streaming sessions

Further, since LTE charges more than WiMAX does, mobile users experience the lowest

satisfaction level at low traffic load. Actually, when all RAT selection schemes meet user

QoS needs, the peak rate maximization method assign all users to the LTE technology,

thus charging them more. At high traffic load, because user throughput decreases, their

experienced utility also diminishes.

Moreover, when the SB - AR method is employed, users combine their needs and pref-

erences with network load conditions to select their best RAT. As a consequence, at low

traffic load and regardless of their radio conditions, all users select the mobile WiMAX

technology: their QoS needs are perfeclty met while paying less. This leads to the highest

user utility, as in the case of the SB - PR method. However, when the mobile WiMAX gets

loaded, users may start to join LTE according to their radio conditions and preferences

(i.e., their willingness to pay for better performance). Based on their modulation and cod-

ing scheme, as well as on their cost tolerance parameter and decision criteria weights (cf.

Table 5.2), users estimate the utility they can obtain in both available RATs. They then
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select the RAT with the highest expected utility. In fact, users with bad radio conditions

that are ready to pay for better performance are the first to start to join LTE. Besides,

users with good radio conditions that seek to save up money are the last to join LTE.

Consequently, since users are not proportionally distributed over the two RATs, mobile

WiMAX gets overloaded before LTE. Thus, the growth rate of the network utility decreases

as the total throughput demand increases (cf. Fig. 5.11). This means that the average

user throughput decreases. Yet, it remains greater than Rav. When some users start

joining LTE and so pay more while others, connected to WiMAX, start perceiving lower

throughputs, the average user satisfaction also decreases as the total throughput demand

increases (cf. Fig. 5.12).

Furthermore, our hybrid approach and the average rate maximization method perfectly

meet user QoS needs, even at high traffic load. Their network utility, as depicted in Fig.

5.11, is very close to that of the exhaustive search method, known to be the optimal one

with respect to resource utilization. Yet, as shown in Fig. 5.12, our hybrid approach

provides the highest user utility.

On the one hand, when the average rate maximization method is used, mobiles select the

RAT that offers them the best throughput. Therefore, load balancing is achieved: Mobile

WiMAX and LTE are similarly occupied with respect to their maximum capacity. As a

result, the network utility can likely follow the throughput demand increase. On the other

hand, when our hybrid approach is employed, the network modulates the broadcasted

QoS parameters as a function of its load conditions. It tries to push future arrivals to less

loaded RATs, thus enhancing resource utilization. By integrating their needs and prefer-

ences, mobiles can avoid oversized decisions, and so improve their perceived satisfaction.

Typically, at low traffic load, when both RATs can perfectly meet user QoS needs, mobile

WiMAX will be preferred since it charges less. This explains why, when using our hybrid

method, user utility is constantly higher than when adopting the average rate maximiza-

tion method. The latter ignores user preferences (i.e., its willingness to pay for better

performance or to save up money) and mainly deals with load balancing. However, be-

cause the proportion of users that are connected to the LTE technology is almost constant

and the user throughput is always close to Rmax, user utility hardly changes as a function

of the total throughput demand. On the other side, when using our hybrid method, since

the proportion of users that are connected to LTE increases with the total throughput

demand, the average user utility decreases, since LTE charges more than WiMAX. Yet, it

always remains greater than that of the average rate maximization method.

Moreover, when using the exhaustive search method, the network involves all users at each

decision epoch: it considers all possible combinations and selects the one that maximizes

its own utility. Since user needs and preferences are ignored, and RATs are not statistically

similarly occupied, this network-centric method provides the lowest user utility amongst
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the average rate maximization method and our hybrid approach. As a matter of fact,

the network seeks to optimize its own utility, regardless of user preferences. In other

words, when different combinations lead to the same network utility, they are assumed

equivalent. The one that better distributes mobiles over the two RATs has no priority,

since it does not improve the network utility defined as the network total throughput. As

a result, the proportion of users that are connected to LTE is statistically higher than

those of the average rate maximization method and our hybrid method, leading to lower

user satisfaction.

To conclude, so as to illustrate the gain from masking network load conditions and only

signaling cost and some QoS parameters, we compare our hybrid approach with the SB -

AR one. Actually, when using our hybrid method, we can push users to LTE long before

WiMAX really gets overloaded. By reducing the broadcasted QoS parameters in WiMAX,

even with S1 = 0.6 and S2 = 0.95, future arrivals are encouraged to join LTE much earlier

than the SB - AR scenario. Thereby, sessions are better distributed over the two RATs,

leading to higher network utility as shown in Fig. 5.11.

At low traffic load, both methods perfectly meet user QoS needs. Yet, since the proportion

of users that are connected to the most expensive RAT (i.e., LTE) is higher when our

hybrid approach is used, user satisfaction is lower than that of the SB - AR method.

However, at high throughput demand, because future arrivals start to join LTE much

earlier than the SB - AR case, WiMAX is on average less loaded when using our hybrid

approach. As a consequence, WiMAX can better serve its on-going sessions, leading to

higher user throughput. Therefore, although mobiles may pay more (i.e., the proportion of

users that are connected to LTE is higher), they experience significantly better performance

leading to higher satisfaction (Fig. 5.12). After all, by dynamically tuning QoS parameters,

the network enhances resource utilization while mobiles maximize their satisfaction (cf.

Fig. 5.12).

5.3.2 Elastic Sessions

We respectively depict in Fig. 5.13 and 5.14 the network utility and the average user

utility, as a function of the total number of users denoted by Ntotal.

When connected alone to a RAT, an elastic session can occupy all of the available resources.

However, when several sessions are present, they all share these resources. As a result,

the network utility, defined as the network total throughput, do not usually change as a

function of the total number of users Ntotal (cf. Fig 5.13). Yet, the average user throughput

is reduced.

As in the case of streaming sessions, when the SB - PR method is used, all users are

connected to mobile WiMAX regardless of the network load conditions. As shown in
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Fig. 5.13, the network total throughput (i.e., the network utility) is close to 12 Mb/s

independently of Ntotal: it actually corresponds to the weighted average total throughput,

taking into account users with both good and bad radio conditions. However, the average

user throughput linearly decreases with Ntotal, leading to a significant decrease of the user

satisfaction (cf. Fig. 5.14).
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Figure 5.13: Network utility for elastic sessions
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Figure 5.14: User utility for elastic sessions

Moreover, when the peak rate maximization method is adopted, all users select LTE.
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The network utility is then, on average, higher than that of the SB - PR method. As

a consequence, user throughput is also higher. But, since all users are connected to

the most expensive RAT (i.e., LTE), the satisfaction improvement with respect to the

perceived throughput criterion fails to offset the satisfaction decrease with respect to the

cost criterion. This leads to a lower user satisfaction in comparison with the SB - PR case

(cf. Fig. 5.14).

Furthermore, when the exhaustive search method is employed, optimal resource utilization

is achieved as shown in Fig. 5.13. Yet, the average user utility is not that interesting.

First, when assigning mobiles to the available RATs, this network-centric method do not

consider user preferences. It actually ignores user willingness to pay for better performance

or to save up money, and only seeks to maximize the network total throughput. Second, in

order to better exploit the available resources, only few users with good radio conditions

may be assigned to LTE. The majority, with bad and also good radio conditions, will

be connected to mobile WiMAX, all competing for the same resources. As a result, few

users connected to LTE will have excellent throughputs, that far outweigh their Rc. The

others will experience relatively low throughputs, that may be well below their Rc. This

association optimizes the network total throughput, but not the user satisfaction (cf. Fig.

5.14).

In comparison with the exhaustive search method, mobiles are better distributed over the

two RATs, when the average rate maximization method is adopted. In fact, users select the

RAT that offers them the best throughput, leading to load balancing as in the streaming

case. As a result, mobiles with equivalent radio conditions will have close throughputs

regardless of their access technology. Since even users with bad radio conditions may be

connected to LTE, the network utility is on average lower than that of the exhaustive

search method, known to be the optimal one. However, because on average perceived

throughputs better meet user needs (i.e., their Rc), the user utility is significantly higher

than that of the exhaustive search approach.

Moreover, when the SB - AR method is used, mobile users combine their needs and

preferences with the network load conditions, so as to select their best RAT. At low

traffic load (typically for Ntotal = 5), more users select the mobile WiMAX technology in

comparison with the average rate maximization method. When WiMAX can meet user

needs very well, it charges them less. Occasionally, based on the current load conditions,

a user with bad radio conditions, that is ready to pay for better performance, would

select the LTE technology. As Ntotal increases, more users including those with good

radio conditions start to join LTE, leading to higher network utility. The latter remain

almost constant at medium and high load conditions. On average, it is slightly lower than

that of the average rate maximization method. Yet, since selection decisions take into

account user needs and preferences, typically their cost considerations, the user utility is
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significantly better than that of the average rate maximization method.

Lastly, by masking network load conditions and only signaling some cost and QoS param-

eters, our hybrid approach drives user decisions in a way to enhance resource utilization.

At low traffic load, more users typically those with bad radio conditions, that are ready

to pay, select LTE. This leads to a higher network utility in comparison with the SB - AR

method where, as explained before, users may occasionally join LTE (cf. Fig. 5.13). As a

result, and although users pay on average more, they experience higher satisfaction since

they have quite better throughput.

As Ntotal increases, QoS parameters are reduced with S1 = 0.3 and S2 = 0.8. As a

consequence, future arrivals are encouraged to join LTE much earlier than the SB - AR

case. However, users with good radio conditions that seek to save up money are the last to

start joining LTE. In comparison with the SB - AR method, most users that are connected

to WiMAX have good radio conditions, and more users with either good and bad radio

conditions are connected to LTE. This leads to higher network total throughput, as shown

in Fig. 5.13. Yet, the user utility is pretty close to that of the SB - AR scenario, since

users having better performance pay on average more.

To wrap up, in comparison with different RAT selection schemes, including network-

centric, hybrid and mobile-terminal-centric approaches, simulation results prove the ef-

ficiency of our hybrid approach in enhancing resource utilization and maximizing user

satisfaction. In the streaming sessions scenario, it optimizes the network total throughput

and maximizes the average user utility, except at low traffic load where the non-realistic SB

- AR method provides higher user satisfaction. Also, in the elastic sessions scenario, our

hybrid approach significantly enhances resource utilization and maximizes user utilities,

in comparison with various hybrid and mobile-terminal-centric methods. Furthermore,

compared with the exhaustive search method, known to be the optimal one with respect

to resource utilization, our hybrid approach provides significantly higher user satisfaction.

5.4 Concluding Remarks

In this chapter, we further investigated our tuning heuristics, and studied the impact

of S1 and S2 thresholds on network and user utilities. Simulation results showed that

user decisions strongly depend on network information, and thereafter on S1 and S2 val-

ues. Moreover, we compared our hybrid decision approach with multiple network-centric,

mobile-terminal-centric, and hybrid methods.

When users do not cooperate neither with each other nor with the network, they have

no information on the global network state. As a result, their selection decisions may

be in no one long-term interest, leading to performance inefficiency. Moreover, when

network elements take selection decisions transparently to end-users, resource utilization
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is optimized. Yet, user needs and preferences are not efficiently met, leading to relatively

low user satisfaction. However, when our hybrid approach is used, the network partially

cooperates with mobiles assisting them in their decisions. As a matter of fact, the network

masks its load conditions, and only signals cost and some QoS parameters. This decisional

information guides user decisions in a way to enhance resource utilization. Besides, as user

needs and preferences are also involved, selection decisions maximize user satisfaction.

We proved as well the efficiency of masking network load conditions, and only signaling

cost and some QoS parameters, in enhancing resource utilization and user satisfaction. In

fact, our hybrid approach outperforms non-realistic methods, where mobiles have a perfect

knowledge of the network state (i.e., number of users connected to available RATs). So,

when operator objectives are implicitly integrated within signaled QoS parameters, radio

resources are better utilized, and user satisfaction is maximized.

Finally, to conclude, compared with various hybrid and mobile-terminal-centric meth-

ods, our hybrid approach maximizes the network total throughput and the average user

satisfaction. Also, compared with the optimal exhaustive search method, our approach

provides significantly higher user utility.



Chapter 6

Optimizing Network Information

for RAT Selection

The basic idea of our hybrid decision approach was first presented in Chapter 3, where

heuristic policies are introduced to tune network information as a function of the load con-

ditions. Simulations considered static scenarios, where mobiles are assumed to arrive

sequentially, and to stay long connected to their serving RAT. A common admission con-

trol is assumed to be performed, thus limiting the total number of arrivals. In the present

chapter, deriving network information is formulated as a Semi-Markov Decision Process.

We first define network states, actions, state dynamics and rewards. An optimal policy

(i.e., network information to signal in each state) is derived through the Policy Iteration

algorithm, in a way to dynamically optimize long-term network reward. User dynamics,

namely user arrivals and departures, are taken into account. Morevoer, transitions between

network states depend not only on network actions, user arrival and departure rates, but

also on user needs, preferences and decison-making algorithms. When all these parame-

ters can not be easily obtained in constantly varying networks, a reinforcement learning

approach is further presented to derive network information. The performances of optimal,

learning-based and heuristic policies are analyzed. When tuning thresholds are pertinently

set, our heuristic method provides very close performance to the optimal one. Moreover,

although lower performances are observed, our learning-based algorithm has the crucial

advantage of requiring no prior parameterization.

6.1 Introduction

We introduced, in Chapter 3, a hybrid RAT selection approach. The network provides

information for the mobiles to make robust decisions. More precisely, mobile users select

their RAT depending on their needs and preferences, as well as on the monetary cost and

79
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QoS parameters signaled by the network. By appropriately tuning network information,

user decisions are globally expected to meet operator objectives, avoiding undesirable

network states. We also presented two heuristic methods, namely the staircase and the

slope tuning policies, to derive network information as a function of the load conditions.

Simulations considered static scenarios, where mobiles are assumed to arrive sequentially,

and to stay long connected to their serving RAT. A common admission control is assumed

to be performed, thus limiting the total number of arrivals. The network dynamics will

then progressively slow down until a pseudo-stationnary regime is attained, where all

measurements were performed.

However, to maximize long-term network performance, network information should depend

not only on current load conditions, but also on expected future demands. Deriving net-

work information is then formulated as a Semi-Markov Decision Process (SMDP) [Put94].

The aim is to dynamically meet operator objectives, while mobiles maximize their own

utility. Simulations consider dynamic scenarios, where user arrivals and departures are

taken into account. Also, when network parameters are not perfectly known, a reinforce-

ment learning approach is introduced to derive what to signal to mobiles. The network

learns user needs, preferences and decision-making algorithms through interacting with

them. Among the different existing reinforcement learning (RL) algorithms, we select the

Q-learning method for its simplicity.

Furthermore, and as discussed in Chapter 2, SMDP and Q-learning have been widely

employed in RAT selection. In [ZYNT12b, ZYNT12a, ZJJ+12, SAAS10, IKT09, CKG08a,

CKG08b], RAT selection is modeled as a semi-Markov decision process. The network

finds an optimal policy that maximizes its long-term reward, without aligning with user

preferences. Also, in [TFC12, DO12b, DO12a], mobiles learn selection decisions through

trial-and-error interaction with their dynamic environment. Yet, because of the non-

cooperative behavior of mobile users, their performance may be degraded. In this chapter,

SMDP and Q-learning are used in a hybrid decision approach. They enable the network

to derive information for the mobiles to make decisions.

6.2 Network Model

6.2.1 Network Topology

Consider a heterogeneous wireless network composed of two OFDM(A)-based radio access

technologies. Let x1 and x2 designate the two serving RATs within the network. Although

our method adapts to different deployment scenarios, we focus on a realistic and cost

effective one, where the two RATs base stations are co-localized. The modulation and

coding scheme, that can be assigned to a user connected to RAT x, differs depending on

its radio conditions in the cell. As the number of possible modulation and coding schemes
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is limited, we decompose the cell into NZ zones with homogeneous radio characteristics.

Users in zone Zk, k = 1, ..., NZ , employ modx(k) with codx(k) as modulation and coding

scheme, if connected to RAT x. Moreover, and for the sake of simplicity, users in a same

zone are assumed to have the same peak throughput, realized when connected alone to

the cell.

6.2.2 Network Resources

The radio resource is divided into time-frequency resource units (RUs). Users in zone Zk

can transmit up to bx(k) bits per resource unit, when connected to RAT x:

bx(k) = Nx
s ·Nx

f · log2[modx(k)] · codx(k) · (1−BLER) (6.2.1)

where Nx
s and Nx

f respectively denote the number of OFDM symbols and subcarriers per

RU, and BLER the block error rate obtained as a function of the user signal-to-noise

ratio. At decision epochs, because RAT selections are made for a sufficiently long period

of time (e.g., session duration, user dwell time in the cell), mobiles are interested in their

average radio conditions, rather than in their instantaneous ones.

In the time dimension, resources are organized into frames of length T x. When RAT x

allocates NRU resource units per frame to a user in zone Zk, its average throughput d is

given by:

d =
NRU · bx(k)

T x
(6.2.2)

6.2.3 Traffic Model

Users belong to NC traffic classes. In our work, we focus on both streaming (c = 1) and

elastic (c = 2) traffic classes. Class c arrivals, in zone Zk, follow a Poisson process of

rate Λ(k, c). We assume that streaming sessions have an average long-term throughput of

Rav. Yet, to improve their content quality, they can benefit from throughputs up to Rmax.

Their duration is considered to be exponentially distributed with a mean of 1/µ1.

Moreover, elastic sessions adapt to resource availability. Their needs are expressed as com-

fort throughput denoted by Rc, and their size is assumed to be exponentially distributed

with a mean of L bytes. However, in addition to their size, their service rate µ2 also

depends on their average throughputs.
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6.3 Hybrid Decision Framework

6.3.1 Network Information

Periodically or upon user request, network information is sent to all mobiles using the

logical communication channel (i.e., radio enabler) proposed by the IEEE 1900.4 standard

[Std09]. In our work, depending on network information, user needs and preferences,

mobiles make final decisions regarding selection of their most appropriate RAT. However,

by appropriately tuning network information, user decisions are globally expected to meet

operator objectives, avoiding undesirable network states.

We recall that, for RAT x, the network broadcasts partial QoS parameters, namely dmin(x)

and dmax(x), and the cost to pay per amount of traffic, namely cost(x). More precisely,

mobiles are guaranteed an average minimum throughput dmin(x), and have priority to be

allocated up to an average maximum throughput dmax(x). As dmin(x) and dmax(x) are

derived for a generic user with the most robust modulation and coding scheme, individual

users need to deduce their own QoS parameters. For that, mobiles in zone Zk multiply the

QoS parameters, signaled by the network, with their modulation and coding gain, denoted

by g(k).

6.3.2 RAT Selection

Using the satisfaction-based multi-criteria decision-making method we have introduced in

Chapter 3, mobiles compute a utility function for each of the available RATs, and select

the one with the highest score. This utility depends on user radio conditions, needs and

preferences (i.e., traffic class, throughput demand, QoS-maximizing or cost-minimizing

preferences), as well as on the cost and QoS information sent by the network.

In our work, when cost(x) is maintained fixed, dmin(x) and dmax(x) are dynamically tuned

trying to globally control user decisions. Let Nx
I be the number of possible (dmin(x),

dmax(x)) couples, that may be signaled to incite mobile users to join RAT x. In the

next section, selecting the (dmin(x), dmax(x)) couple to be broadcasted, for each RAT x,

is formulated as a Semi-Markov Decision Process (SMDP). The goal is to dynamically

optimize the long-term discounted network reward, while mobiles maximize their own

utility.

6.4 Semi-Markov Decision Process

At each user arrival or departure, signaled network information may have to vary. In this

section, the SMDP is used to dynamically decide of the QoS parameters in a way that

optimizes the long-term network reward. We first start by defining network states, actions,
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state dynamics and rewards. Next, using the Policy Iteration algorithm, we compute the

optimal solution.

6.4.1 Network States

For {k = 1, ..., NZ , c = 1, ..., NC , i = 1, ..., Nx
I }, we define a state of RAT x to be the (NZ

× NC × Nx
I )-tuple nx(t):

nx(t) = (nx(k, c, i, t)),

where nx(k, c, i, t) is a stochastic process representing the number of class c users in zone

Zk, that have joined RAT x with the ith (dmin(x), dmax(x)) couple, at time t. In the

remaining, we omit t as we assume stationarity.

To protect ongoing sessions, an admission control policy is applied: new arrivals may

join RAT x, with the ith (dmin(x), dmax(x)) couple, to the extent that RAT x available

resources are enough to meet their dmin, while not compromising the QoS guarantees of

ongoing sessions. Consequently, the set of admissible states in RAT x is:

N x
a =

{
nx ∈ NNZ×NC×Nx

I |
NZ∑
k=1

NC∑
c=1

Nx
I∑

i=1

nx(k, c, i) ·Nx
min(i) ≤ Nx

total

}
(6.4.1)

where Nx
min(i) is the number of RUs necessary to guarantee the dmin of the ith QoS

parameters couple, and Nx
total is the total number of RUs used for data transmission in

RAT x.

Let the (NZ × NC × Nx1
I + NZ × NC × Nx2

I )-tuple s = (nx1 , nx2) be the state of the

heterogeneous network, defined as the concatenation of RAT x1 and RAT x2 substates.

The state space S of the network is then defined as:

S = {s = (nx1 , nx2) | nx1 ∈ N x1
a , nx1 ∈ N x2

a }

6.4.2 Network Actions

In each state, an action is taken by the network: QoS incentives to join serving RATs are

derived. An action a is the quadruple defined by a = (dmin(x), dmax(x)), x ∈ {x1, x2},
where dmin(x) and dmax(x) represent the QoS parameters of RAT x, for the most ro-

bust modulation and coding scheme. Based on their needs (e.g., traffic class, throughput

demand) and preferences, as well as on their modulation and coding scheme (i.e., geo-

graphical position), users act differently upon these actions.
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Obviously, Nx1
I · N

x2
I actions are possible. However, given a state s = (nx1 , nx2), not all

actions are feasible. We then denote by A the set of all possible actions, and by A(s) ⊂
A the subset of feasible actions in state s.

When both RATs provide no QoS incentives (i.e., dmin(x1) = dmax(x1) = dmin(x2) =

dmax(x2) = 0), action a is blocking and new arrivals are rejected.

6.4.3 State Dynamics

As the network does not completely control individual decisions, transitions between net-

work states do not only depend on network actions, user arrival and departure rates, but

also on user needs and preferences. Consequently, the decision making on the mobile side,

using a multi-criteria decision-making method, has a probabilistic impact on the transition

rates.

Let px(k, c, a) represent the probability that class c users in zone Zk select RAT x, when

action a is adopted. As action a may be blocking, px1(k, c, a) + px2(k, c, a), ∀k, c, is not

necessarily equal to one: it can be either zero or one. Transition rates T (s, s′, a) between

states s = (nx1 , nx2) and s′ are then expressed as:



Λ(k, c) px1(k, c, a) if s′ = (nx1 + ex1(k, c, i), nx2)

Λ(k, c) px2(k, c, a) if s′ = (nx1 , nx2 + ex2(k, c, i))

nx1(k, c, i) µx1c (s) if s′ = (nx1 − ex1(k, c, i), nx2)

nx2(k, c, i) µx2c (s) if s′ = (nx1 , nx2 − ex2(k, c, i))

0 Otherwise

(6.4.2)

where ex(k, c, i) is defined as a (NZ ×NC ×Nx
I )-tuple containing all zeros except for the

(k, c, i)th element, that is equal to one, and new arrivals join RAT x with the ith QoS

parameters couple proposed by action a. Hence, for example, when a class c user in

zone Zk joins RAT x1, with the ith QoS parameters couple, the network moves to state

s′ = (nx1 + ex1(k, c, i), nx2).

The state dynamics can equivalently be characterized by the state transition probabilities

p(s, s′, a) of the embedded chain:

p(s, s′, a) = T (s, s′, a) · τ(s, a) (6.4.3)

where τ(s, a) is the expected sojourn time for each state-action pair, defined as follows:

{∑
x

∑
k

∑
c

[Λ(k, c)px(k, c, a) +
∑
i

nx(k, c, i)µxc (s)]

}−1
(6.4.4)
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6.4.4 Network Reward

To formulate optimization objectives, let r(s, a) denote the permanence reward earned by

the network in state s, when action a is adopted. Unlike the impulsive reward, received

upon transitions, the permanence reward represents the benefit and penalty continuously

received by the network whilst in state s (i.e., it is actually defined on a per unit time

basis). In our work, we express r(s, a) as the sum of a network utility N(s, a) and a

blocking term B(s, a):

r(s, a) = N(s, a) +B(s, a) (6.4.5)

The network utility is given by:

N(s, a) =
∑
x

∑
k

∑
c

∑
i

nx(k, c, i)dx(k, c, i) (6.4.6)

where dx(k, c, i) represents the average throughput of class c users in zone Zk, that have

joined RAT x with the ith (dmin(x), dmax(x)) couple. In fact, mobiles are first provided

with their minimum guaranteed throughput given by dmin·g(k). Then, fair time scheduling

is used to provide them with up to their maximum throughput given by dmax · g(k). Re-

maining resources may afterwards be equitably shared (i.e., after receiving their maximum

throughput, all mobiles have the same priority leading to fair time scheduling).

Furthermore, the blocking term reflects the penalty of rejecting future arrivals. B(s, a) is

thus proportional to the arrival rates in blocking states, and is expressed as follows:

B(s, a) = − b ·
∑
k

∑
c

Λ(k, c)(1−
∑
x

px(k, c, a)) (6.4.7)

where b is the cost per unit time inflicted on the network for blocking a new arrival.

6.4.5 Uniformization

In our work, we make use of the Policy Iteration algorithm to solve the SMDP problem

(i.e., to determine the action the network takes in each state). A stage of uniformiza-

tion is thus required. The continuous-time Markov chain is transformed into its discrete

equivalent.

Time is first discretized into intervals of constant duration τ , that is smaller than the

expected sojourn time in any state: 0 ≤ τ < τ(s, a), ∀s ∈ S.

Transition probabilities are then modified as follows:
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
p̄(s, s′, a) = p(s, s′, a) τ

τ(s,a) for s′ 6= s

p̄(s, s′, a) = 1−
∑
s′ 6=s

p̄(s, s′, a) Otherwise (6.4.8)

where p̄(s, s′, a) represents the probability that the network moves from state s to s′ within

τ , when action a is adopted.

Moreover, the reward is also modified as follows: r̄(s, a) = r(s, a)τ , where r̄(s, a) is the

reward earned for a time τ .

6.4.6 Policy Iteration Algorithm

A policy π is a mapping from S to A. π(s) represents the action to take in state s. Let

Hπ(s) = s, s1, s2, ..., sn, ... be a trajectory of the Markov chain, when policy π is adopted.

The long-term discounted reward dr(Hπ(s)) of state s is the discounted sum of the rewards

earned on that trajectory (that starts from s), and is expressed as follows:

r̄(s, π(s)) + ψr̄(s1, π(s1)) + ...+ ψnr̄(sn, π(sn)) + ...

where ψ is the discounting factor (0 < ψ < 1). In our work, we set the value function of

state s, denoted by Vπ(s), as the expected value of dr(Hπ(s)) over all possible trajectories.

Our goal is to find an optimal policy πopt, that maximizes the expected long-term dis-

counted reward of each state:

Vπopt(s) ≥ Vπ(s), ∀s, π

We therefore use the following Policy Iteration algorithm:

• Step 0 (Initialization): We choose an arbitrary policy π.

• Step 1 (Value Determination): Given the current policy π, we solve the following

system of linear equations to calculate the discounted value function Vπ of all states:

Vπ(s) = r̄(s, π(s)) + ψ
∑
s′∈S

p̄(s, s′, π(s))Vπ(s′)

• Step 2 (Policy Improvement): When any improvement is possible, we update the

current policy π. For each s ∈ S, we find:

π̂(s) = arg max
a∈A(s)

{
r̄(s, a) + ψ

∑
s′∈S

p̄(s, s′, a)Vπ(s′)

}
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• Step 3 (Convergence test): If π̂ = π, the algorithm is stopped with πopt = π.

Otherwise, we set π to π̂, and go to step 1.

6.5 Reinforcement Learning

In the previous section, knowing r(s, a) and p(s, s′, a), an optimal policy πopt is solved

through the Policy Iteration algorithm. The transition probability function p(s, s′, a)

depends on user arrival and departure rates, needs, preferences, and decision-making al-

gorithms. However, when p(s, s′, a) may not be easily obtained, reinforcement learning

(RL) turns out to be a good fit to derive network information. The network does not esti-

mate user behavior, but rather learns what action to take by trial-and-error. Among the

different existing RL algorithms, we select Q-learning [WD92] for its simplicity. Although

originally used to solve Markov decision processes, Q-learning may be applied with slight

modifications to semi-Markov decision processes [Rya02].

6.5.1 SMDP Q-learning Algorithm

The network interacts with its environment over a sequence of discrete time-steps (t, t +

1, t+ 2, ...), trying to learn what QoS parameters to signal. These time-steps refer to time

intervals of fixed duration τ . The quality function of state-action pair (s, π(s)), denoted

by Qπ(s, π(s)), is defined as the expected long-term discounted reward of state s, using

policy π. Our aim is to find an optimal policy πopt, that maximizes the quality function

of each state s, also referred to as its Q-value:

πopt(s) = arg max
a∈A(s)

Qπ(s, a), ∀s, π

Without knowledge of p(s, s′, a), the network, also referred to as the agent, iteratively

learns optimal Q-values. At discrete time-steps, when the network state has changed,

the network action terminates. QoS parameters to be signaled may have to vary. Unlike

in Markov decision processes, where all actions are assumed to take constant time to

complete, actions in our work can span several time-steps. They are said to be temporally-

abstract. At time-step t, when state-action pair (s, a) is visited (i.e., when the network in

state s selects and performs action a), the network earns reward R, and ends in state s′

at t+ k. The Q-value of state-action pair (s, a) is then updated as follows:

Q(s, a)← Q(s, a) + ρ
(
R+ ψk max

a′∈A

{
Q(s′, a′)

}
−Q(s, a)

)
(6.5.1)

where ρ is the learning rate (0 < ρ < 1), that determines to what extent the learned

Q-value will override the old one. When ρ = 0, the network does not learn. When ρ = 1,
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the network considers only the most recent Q-value. R is the discounted accumulation of

all single-step rewards rτ , received while executing action a for a time τ , and is given by:

R =

k−1∑
i=0

ψi rτ

Moreover, it has been proved that, while the number of visits of each state-action-pair is

sufficiently large, and ρ is reduced to zero over time, Q(s, a) is guaranteed to converge to

Qπopt(s, a) [WD92].

6.5.2 Exploration and Exploitation

At decision epochs, the network decides, randomly or based on previously learned Q-values,

what QoS parameters to signal. To receive high reward, the network may prefer actions it

has tried in the past and found effective. This is known as the exploitation mode. Yet, to

discover effective ones, the network needs to try actions it has not selected before. It may

then randomly select one of the possible actions, aiming to enhance its future decisions.

This is known as the exploration mode. Since Q-learning is an online iterative learning

algorithm, exploration and exploitation should be simultaneously performed. The agent

must discover a variety of actions, and progressively favor effective ones. However, to

estimate reliable Q-values, actions need to be sufficiently tested.

In our work, we adopt an ε-greedy exploration-exploitation policy. At decision epochs, the

network in state s explores with probability ε(s), and exploits stored Q-values with prob-

ability 1 − ε(s). To enhance long-term network performance, exploring is never stopped,

but rather reduced over time. We define β(s, a) to be the number of visits of state-action

pair (s, a) up to current time-step, and choose ε(s) to be as follows:

ε(s) =
1

ln(
∑

a∈A β(s, a) + 3)
(6.5.2)

ε(s) then belongs to [0, 1], and has a logarithmic decay. Furthermore, for Q(s, a) to

converge to optimal Q-values, we set ρ to be a state-action pair varying over time:

ρ(s, a) =
1√

β(s, a) + 3

Algorithm 1 describes our SMDP Q-learning algorithm for deriving network information.

We summarize below the main steps. Q-values are first set to zero. The network state

is randomly initialized. Once in state s, depending on ε(s), exploration or exploitation

is executed. In exploration mode, the network randomly selects and performs action

a. However, in exploitation mode, it opts for the action with the maximum Q-value:
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a = max
a

Q(s, a). After, at each time-step, the network state is observed. While the

network is in state s, action a is maintained, and the discounted accumulation of single-

step rewards R is updated. Yet, if it is in state s′ (i.e., the network state has changed),

action a is terminated, and Q(s, a) is updated according to equation 6.5.1. This is repeated

until the end of the learning period.

Initialize

• Q-values: Q(s, a)← 0, ∀s ∈ S and a ∈ A

• Number of state-action visits: β(s, a)← 0, ∀s ∈ S and a ∈ A

• Time-step: t← 0

repeat

Observe state s
if exploration then

choose action a at random
else

choose a = max
a

Q(s, a)
end

β(s, a)← β(s, a) + 1
Update ε(s) according to equation 6.5.2
R← 0
k ← 0

while the network is in state s do

Perform a
Wait for a fixed duration τ
Observe reward rτ
R← R+ ψk rτ
k ← k + 1

end

Observe state s′

Update Q(s, a) according to equation 6.5.1
s← s′

t← t+ k

until End of the learning period ;

Algorithm 1: SMDP Q-learning

6.6 Performance Results

For illustration, we consider a heterogeneous wireless network composed of mobile WiMAX

and LTE, respectively designated by W and L. For simplicity, users are of two types: those

with good radio conditions (i.e., cell-center users) and those with bad radio conditions (i.e.,
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cell-edge users). Their peak rates, when connected alone to mobile WiMAX and LTE cells,

are depicted in Table 6.1. Further, class c arrivals are assumed to be uniformly distributed

over the two zones, and to follow a Poisson process of rate Λc = Λ (i.e., Λ(k, c) = Λ/NZ ,

∀k, c).

RAT k = 1 k = 2

Mobile WiMAX (3 MHz) 9.9 Mb/s 4.4 Mb/s

LTE (5 MHz) 16.6 Mb/s 7.4 Mb/s

Table 6.1: Peak rates in Mobile WiMAX and LTE

Moreover, for streaming sessions, we suppose that Rav = 1 Mb/s, Rmax = 1.5 Mb/s, and

1/µ1 = 45 s. For elastic sessions, we consider that L = 5 Mbytes, and RC is fixed to either

1.25 or 0.75 Mb/s, depending on the QoS-maximizing or cost-minimizing preferences of

mobile users. For network information, we assume that cost(W ) = 4, cost(L) = 6, NW
I =

NL
I = 3, IW = {(0, 0), (0.5, 1), (1, 1.5)}Mb/s, and IL = {(0, 0), (0.75, 1.25), (1.5, 2)}Mb/s.

The probabilities px(k, c, a) are calculated according to the satisfaction-based multi-criteria

decision-making method, we have introduced in Chapter 3. They mainly depend on user

preferences, traffic class and throughput demand. Note that half of the users are ready to

pay for better performances.

For comparison purposes, we also investigate the staircase tuning policy. We recall that

load factors are defined as the ratios of the number of guaranteed allocated RUs to the

total number of RUs. The highest QoS parameters are first signaled. Next, when a RAT

load factor exceeds S1 threshold, QoS parameters are reduced following a step function

(cf. Fig. 6.1). However, if S2 is reached, QoS incentives are no longer provided. QoS

parameters to signal in RAT x, depending on the load factor φx, are reported in Table

6.2.

Low-load

Load factorS1 S2

QoS parameters

parameters

Figure 6.1: QoS parameters reduction using the Staircase policy

Before we discuss performance results, we remind in Table 6.3 some notations, useful in

what follows.
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QoS parameters φx < S1 S1 ≤ φx ≤ S2 φx > S2
dmin(W ) 1 Mb/s 0.5 Mb/s 0

dmax(W ) 1.5 Mb/s 1 Mb/s 0

dmin(L) 1.5 Mb/s 0.75 Mb/s 0

dmax(L) 2 Mb/s 1.25 Mb/s 0

Table 6.2: QoS parameters depending on the load factor φx

Parameters Notation

Tuning thresholds of the staircase policy S1, S2
Discount factor ψ

Cell arrival rate Λ

Blocking cost b

Blocking term (penalty term) B

Duration of learning periods T

Duration of time-steps τ

Table 6.3: Summary of notations

6.6.1 Staircase Policy

Using the staircase policy, we study the impact of S1 and S2 thresholds on network per-

formance. Fig. 6.2 and 6.3 respectively show the average network throughput and the

blocking probability, as a function of the cell arrival rate Λ, for different threshold values.
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Figure 6.2: Staircase policies: Network throughput

For fixed S1, the higher S2 the more mobiles are admitted. Yet, higher S2 thresholds limit

user throughputs to their guaranteed ones. Besides, for fixed S2, the lower S1 the less

mobiles benefit from the largest QoS guarantees, but much more are admitted with reduced
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QoS parameters. Therefore, the average number of simultaneous sessions increases.
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Figure 6.3: Staircase policies: Blocking probability

Obviously, the more mobiles are admitted for a fixed cell arrival rate (i.e., the lower S1

or the higher S2), the lower the blocking probability. Also, the network total throughput

augments. Typically, streaming sessions have limited throughput demands, and hence the

more mobiles are admitted the larger the network throughput will potentially be.

6.6.2 Optimal Policy

The optimal policy, solved through the Policy Iteration algorithm, and the staircase policy

are compared. Using the optimal policy, we study the impact of the blocking cost b, and

the discount factor ψ on network performance.

6.6.2.1 Impact of the blocking cost

We start by inspecting the impact of the blocking cost b on network performance. So as to

enlarge the number of states involved in the value function, the discount factor ψ is fixed

at 0.99.

Fig. 6.4 illustrates the average reward as a function of the cell arrival rate Λ, for different

blocking costs. When b is null, the reward function is reduced to the network utility

representing the sum of user throughputs. Otherwise, it also includes a penalty term, that

is proportional to the blocking cost b and to the cell arrival rate.

At low arrival rate, no blocking occurs leading to similar rewards regardless of b. The

reward function, reduced to the network total throughput, then increases with the cell
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arrival rate. Yet, as the latter increases further, or equivalently, when the average number

of simultaneous sessions augments, network resources are always nearly exhausted, and

not enough are left to cope with future arrivals. Therefore, the blocking probability (i.e.,

the long-term fraction of time spent in blocking states) also increases. Moreover, and since

the penalty term is proportional to the cell arrival rate, the reward function received by

the network whilst in a blocking state is as reduced as the arrival rate is increased. For

all these reasons, the average reward decreases more when the cell arrival rate increases,

except for b equals zero. In fact, when b is null, the average reward stagnates at high arrival

rate. It represents the long-term sum of user throughputs. Otherwise, the average reward

obviously decreases with increasing blocking costs. We further note that the optimal policy

always outperforms the staircase one. However, when S1 and S2 are respectively set to

0.3 and 0.95, the staircase policy provides higher network reward in comparison with the

case when S1 = 0.35 and S2 = 0.85, denoted as Staircase policy (2).
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Figure 6.4: Impact of b on network reward

Moreoever, the higher b the more the network avoids blocking actions, even if at the

expense of the network utility. Also, the lower b, the more the network tries to maximize

its total throughput, even if leading to more blocking states. We, respectively, depict in

figures 6.5 and 6.6 the network total throughput and the percentage in number of blocking

states, as a function of the cell arrival rate. The optimal policy is illustrated for different

values of b. Particularly, when b is zero, the network total throughput, but also the

percentage of blocking states, are maximized. Therefore, the blocking cost b may be tuned

to control optimization objectives. Further, when S1 = 0.3 and S2 = 0.95, the staircase

policy achieves a higher throughput in comparison with when S1 and S2 are respectively

set to 0.35 and 0.85. As a matter of fact, when these thresholds are carefully chosen, the
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staircase policy provides quite similar performances as the optimal one (b = 50). They

both effectively avoid blocking actions and guide user decisions. In the remaining, we only

consider the case where S1 = 0.3 and S2 = 0.95.

It is worth noting that for a given b, when the cell arrival rate is different, the state

dynamics and penalty terms are also different. This may lead to dissimilar optimal policies.

Thus, and as shown in Fig. 6.6, the percentage in number of blocking states first increases

with the cell arrival rate. Then, when the latter increases further, for b different from zero,

this percentage decreases as the penalty term becomes relatively very significant.
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Figure 6.5: Impact of b on network throughput

Moreover, the blocking probability Pb depends not only on the number of blocking states,

but mostly on the stationary distribution achieved by the different policies (i.e., on the

long-term fraction of time spent in the different states). In the following, to efficiently

analyze the impact of the blocking cost on Pb, we separately consider streaming and

elastic sessions.

The service time of elastic sessions depends both on their size assumed to be exponentially

distributed with a mean of 5 Mbytes, and on their perceived throughputs. As shown before,

the lower b, the higher the network total throughput leading to lower average service times.

When the optimal policy is adopted (i.e., the actions are fixed to the optimal ones), the

SMDP may be reduced to a Markov chain, where departure rates increase with decreasing

blocking costs. As a result, for a given cell arrival rate, the lower b, the lower the long-term

number of simultaneous sessions. This also means that, although the lower b the higher

the percentage of blocking states, the long-term fraction of time spent in these states is

reduced as b is low. Accordingly, the lower b, the lower Pb for elastic sessions as illustrated

in Fig. 6.7.
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Figure 6.6: Impact of b on the percentage of blocking states
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Figure 6.7: Impact of b on blocking probability for elastic sessions

Nevertheless, the service time of streaming sessions exclusively depends on their duration,

considered to be exponentially distributed with a mean of 45 s. Thereby, maximizing the

network total throughput will not reduce their average service times. Consequently, as

the number of blocking states increases with decreasing b, the blocking probability for

streaming sessions also increases (cf. Fig. 6.8). The long-term fraction of time spent in

blocking states will actually be higher. Here again, for both traffic classes, the performance

of the staircase policy, with carefully chosen S1 and S2 thresholds, is comparable to the

optimal one (b = 50).
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Figure 6.8: Impact of b on blocking probability for streaming sessions

6.6.2.2 Impact of the discount factor

In this paragraph, we investigate the impact of the discount factor ψ on network perfor-

mance. When the blocking cost b is set to zero, the network reward is reduced to the sum

of user throughputs.
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Figure 6.9: Impact of ψ on network throughput

Fig. 6.9 and 6.10 respectively illustrate the network total throughput and the blocking

probability as a function of the cell arrival rate, for different ψ values. Recall that the

higher ψ, the larger the number of states involved in the value function. Also, next
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states contribute more to the expected long-term network reward as ψ gets higher. The

discount factor ψ can thus be tuned to control the optimization scope. Typically, higher ψ

values imply more long-run optimization, leading to higher throughput and lower blocking

probability.
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Figure 6.10: Impact of ψ on blocking probability

Further, we note that the network total throughput at low arrival rate and the blocking

probability at high arrival rate are obviously quite similar, regardless of the discount factor.
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Figure 6.11: Optimal vs. staircase policies: network throughput

Fig. 6.11 and 6.12 compare the optimal policy with the staircase one. On the one hand,
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we notice that, at low arrival rate (typically below 1), the staircase policy outperforms the

optimal one with ψ = 0.3 and ψ = 0.8. This means that the intuitive and low-complexity

staircase policy efficiently guides user decision at low arrival rate. Yet, to maximize net-

work performance, the number of states that are involved in the value function should be

large enough. This can be seen with ψ = 0.99. On the other hand, when the cell arrival

rate increases, taking into account next states becomes more relevant. In fact, when the

network is expected to approach its saturation, deriving QoS parameters considering fu-

ture arrivals enhances long-term network performance. Also, reducing QoS parameters in

all serving RATs, following the staircase policy, proves to provide close performance to the

optimal one (cf. Fig. 6.11 and 6.12).
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Figure 6.12: Optimal vs. staircase policies: blocking probability

6.6.3 Learning-based Policy

In what follows, the learning-based (ψ = 0.99) policy, the optimal (b = 0, ψ = 0.99) policy

and the staircase policy are compared. Using the Q-learning algorithm, the agent interacts

with its environment over a sequence of T = 100000 and T = 250000 time-steps, of fixed

duration τ = 0.5 s. Performance metrics are then averaged over 20 learning periods.

Fig. 6.13 and 6.14 respectively show the network total throughput and the blocking prob-

ability, as a function of the cell arrival rate. The optimal solution, solved using the Policy

Iteration algorithm, provides an upper bound on the network total throughput. It also

brings the lowest blocking probability, and consequently the best network performance.

However, the optimal policy suffers from high computational complexity. For a fixed dis-

count factor, the Policy Iteration algorithm is shown to run in at most N2
s (Na−1)
1−ψ · log( N2

s
1−ψ )
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iterations, where Ns is the number of states, Na the number of actions, and ψ the fixed

discount factor [Ye11].
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Figure 6.13: RL-based vs. optimal vs. staircase policies: network throughput
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Figure 6.14: RL-based vs. optimal vs. staircase policies: blocking probability

Moreover, and as discussed before, the staircase policy provides very close performance to

the optimal one despite its low complexity. Yet, a practical challenge is to efficiently set

S1 and S2 values. When our heuristic requires no knowledge on network parameters, its

performance strongly depends on the choice of the tuning thresholds.

Furthermore, unlike the optimal and the heuristic solutions, the learning-based one needs
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no parameterization. Theoretically, after an infinite learning period, our Q-learning algo-

rithm converges to the optimal solution. In our work, we stop learning after a realistic

duration of T = 100000 and T = 250000 time-steps. Better performances are obviously

observed when T = 250000, in comparison with when T = 100000. Yet, when learning

periods are voluntary limited, both the optimal and the heuristic policies outperform the

learning-based ones.

6.7 Conclusion

In Chapter 3, we proposed a hybrid RAT selection approach, aiming to jointly enhance

network performance and user experience. As a matter of fact, the network provides infor-

mation for the mobiles to make final decisions, regarding selection of their most appropriate

RAT. In this chapter, deriving network information was formulated as a semi-Markov de-

cision process, and optimal policies were solved through the Policy Iteration algorithm.

We showed how the blocking cost b and the discount factor ψ may be tuned to control

optimization objectives, aligning with user needs and preferences. Note that user mobility

can be integrated into our SMDP model. When user dwell time in zones is exponentially

distributed, transitions between network states happen with an additional rate, due to

user mobility.

Furthermore, we have introduced a RL-based algorithm to determine what to signal to

mobiles. The performances of optimal, learning-based and staircase policies were analyzed.

When S1 and S2 thresholds are pertinently chosen, our low-complexity heuristic provides

close performance to the optimal solution. Moreover, although lower performances are

observed, our learning-based algorithm has the crucial advantage of requiring no prior

parameterization.



Chapter 7

General Conclusion

This chapter concludes this thesis report. We summarize the main contributions, and give

the future research directions that stem from this work.

7.1 Summary of Contributions

This thesis has investigated Radio Access Technology (RAT) selection. Our work is placed

in the context of heterogeneous wireless networks, where various RATs covering the same

region are being integrated and jointly managed. One of the main motivations behind

heterogeneous wireless networks is to cope, in a cost-efficient way, with the rapid growth

of mobile broadband traffic. Another motivation is to deliver high user experience, as the

different serving RATs complement each other in their characteristics.

RAT selection, devoted to decide to what RAT mobiles connect, is a key common radio

resource management functionality to improve network performance and user experience.

When intelligence is pushed to the network edge, mobiles make autonomous decisions re-

garding selection of their most appropriate RAT. They aim to selfishly maximize their

utility. Yet, because mobiles have no information on network load conditions, their deci-

sions may cause performance degradation. Moreover, delegating decisions to the network

optimizes overall performance, but at the cost of increased network complexity, signaling

and processing load.

Our challenge is however to design a RAT selection approach, that jointly enhances net-

work performance and user experience, while signaling and processing burden remains

reduced.

In this thesis, combining benefits from both network-centric and mobile-terminal-centric

approaches, we proposed a new hybrid decision method. Using the logical communication

channel (i.e., radio enabler) proposed by the IEEE 1900.4 standard, the network provides

information for the mobiles to make robust RAT selections. More precisely, mobile users

101
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select their RAT depending on their needs and preferences, as well as on the monetary

cost and QoS parameters signaled by the network. By appropriately tuning network

information, user decisions are globally expected to meet operator objectives, avoiding

undesirable network states. Our approach thus enables self-optimization, a key feature of

self-organizing networks.

When several base stations are available, decisions are traditionally based on received-

signal-strength measurements. In our work, so as to maximize user experience, we in-

troduced a satisfaction-based Multi-Criteria Decision-Making (MCDM) method. Mobiles

compute a utility function for each of the available RATs, and select the one with the high-

est score. This utility however depends on user radio conditions, needs and preferences

(i.e., traffic class, throughput demand, QoS-maximizing or cost-minimizing preferences),

as well as on the cost and QoS information sent by the network. Utility functions for

inelastic, streaming, and elastic traffic classes were detailed. In comparison with existing

MCDM solutions, namely SAW and TOPSIS, our algorithm meets user needs (e.g., traffic

class, throughput demand, cost tolerance), avoiding oversized and undersized decisions.

Furthermore, we investigated network information. While cost parameters are maintained

fixed, QoS parameters are dynamically tuned trying to globally control user decisions. We

presented two heuristic methods, namely the staircase and the slope tuning policies, to

derive QoS information as a function of network load conditions. They follow a linear

decreasing (slope) or a staircase function, and proved to efficiently exploit radio resources

while mobiles maximize their own utility. As QoS parameters vary with load conditions,

mobiles are effectively distributed over the different serving RATs, leading to better per-

formance, higher user satisfaction, and larger operator gain.

Also, we studied the impact of providing mobiles with differentiated services and through-

put guarantees. When operators propose Premium, Regular, and Economy service classes,

that differ in their cost and QoS parameters, better network performance, higher user sat-

isfaction, and larger operator gain can be observed. Therefore, while heterogeneous RATs

are integrated, it is always beneficial if all do not offer the same QoS and cost incentives,

giving mobiles a variety of possible choices. Moreover, when mobiles are provided with

minimum throughput guarantees, regardless of future network load conditions, real-time

sessions see their performance enhanced.

Further, we compared our hybrid decision approach with different network-centric, mobile-

terminal-centric, and hybrid methods. Peak rate maximization, Average rate maximiza-

tion, Satisfaction-based using peak rate, Satisfaction-based using average rate, and ex-

haustive search methods were considered. We highlighted the effectiveness of our solution

in enhancing resource utilization and user experience. As a matter of fact, compared with

mobile-terminal-centric and hybrid methods, our decision approach maximizes the network

utility, defined as the network total throughput, and the average user satisfaction. Also,
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compared with the optimal exhaustive search method, our solution provides significantly

higher user satisfaction.

We assessed as well the gain from masking network load conditions, and only signaling

cost and some QoS parameters. Our hybrid approach outperforms non-realistic methods,

where mobiles have a perfect knowledge of network load conditions. So, when operator

objectives are implicitly involved within signaled QoS parameters, radio resources are

better utilized, and user satisfaction is maximized.

Moreover, we focused on optimizing network information. Deriving QoS parameters was

formulated as a semi-Markov decision process, and optimal policies were solved through

the Policy Iteration algorithm. The aim is to dynamically optimize the long-term network

reward, while mobiles maximize their own utility. We showed how the blocking cost

b and the discount factor ψ may be tuned to control optimization objectives, aligning

with user needs and preferences. User mobility can be further integrated into our SMDP

model. Also, and since network parameters may not be easily obtained, a reinforcement

learning approach was introduced to derive what to signal to mobiles. The performances of

optimal, learning-based, and heuristic policies were analyzed. When tuning thresholds are

pertinently chosen, our low-complexity heuristic provides close performance to the optimal

one. Moreover, although learning-based tuning achieves lower performance, it does not

need to know network parameters.

7.2 Future Directions

To optimize long-term network performance, QoS information needs to depend not only

on present load conditions, but also on expected future demands. Thus, in our thesis,

deriving QoS parameters was formulated as a semi-Markov decision process. In state

s, dmin and dmax are decided in a way to dynamically maximize the long-term network

reward, aligning with user needs and preferences.

Nevertheless, when the number of zones, traffic classes, and possible QoS parameters

increase, the number of states becomes huge. This leads to a heavy computational load

to find optimal policies. It would then be interesting to investigate reducing techniques to

solve large MDP problems.

Furthermore, as network parameters can not be easily obtained, a reinforcement learning

approach was also introduced to derive QoS parameters. When the number of visits

of each state-action-pair is infinite, the network is theoretically guaranteed to reach an

optimal policy. However, practically as the state-action pairs are huge in number, they

are partially explored, leading to a satisfying policy. To handle this limitation, Q-learning

needs to be implemented using a neural network. Instead of storing Q-values, neural

networks approximate them, and can interpolate those of state-action pairs that have not
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been visited.

Moreover, our hybrid decision approach fits within the larger framework of self-organizing

networks. Under overload conditions, QoS and cost parameters are tuned in a way to

enhance resource utilization. It would be interesting to go further in the self-optimization

mechanisms. We can investigate parameter tuning under interference conditions.
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[GB09] Cédric Gueguen and Sébastien Baey, A Fair Opportunistic Access Scheme

for Multiuser OFDM Wireless Networks, EURASIP Journal on Wireless

Communications and Networking (2009) (2009).

[GJ03] E. Gustafsson and A. Jonsson, Always Best Connected, IEEE Wireless Com-

munications 10 (2003), no. 1, 49 – 55.

[GLEnSS12] J. Gozalvez, M. C. Lucas-Estañ, and J. Sanchez-Soriano, Joint Radio Re-
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