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THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
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Grenoble, 13th November 2014





Scene Flow Estimation from RGBD Images

Abstract:

This thesis addresses the problem of reliably recovering a 3D motion field, or scene
flow, from a temporal pair of RGBD images. We propose a semi-rigid estimation
framework for the robust computation of scene flow, taking advantage of color
and depth information, and an alternating variational minimization framework for
recovering rigid and non-rigid components of the 3D motion field. Previous attempts
to estimate scene flow from RGBD images have extended optical flow approaches
without fully exploiting depth data or have formulated the estimation in 3D space
disregarding the semi-rigidity of real scenes. We demonstrate that scene flow can be
robustly and accurately computed in the image domain by solving for 3D motions
consistent with color and depth, encouraging an adjustable combination between
local and piecewise rigidity. Additionally, we show that solving for the 3D motion
field can be seen as a specific case of a more general estimation problem of a 6D
field of rigid motions. Accordingly, we formulate scene flow estimation as the search
of an optimal field of twist motions achieving state-of-the-art results.

Keywords: motion, depth, scene flow, rgbd, variational, semi-rigid





Estimation du Flot de Scène à partir des Images RGBD

Résumé:

Cette thèse aborde le problème du calcul de manière fiable d’un champ de
mouvement 3D, appelé flot de scène, à partir d’une paire d’images RGBD prises à
des instants différents. Nous proposons un schéma d’estimation semi-rigide pour le
calcul robuste du flot de scène, en prenant compte de l’information de couleur et
de profondeur, et un cadre de minimisation alternée variationnelle pour récupérer
les composantes rigides et non rigides du champ de mouvement 3D. Les tentatives
précédentes pour estimer le flot de scène à partir des images RGBD étaient des
extensions des approches de flux optique, et n’exploitaient pas totalement les
données de profondeur, ou bien elles formulaient l’estimation dans l’espace 3D sans
tenir compte de la semi-rigidité des scènes réelles. Nous démontrons que le flot de
scène peut être calculé de manière robuste et précise dans le domaine de l’image
en reconstruisant un mouvement 3D cohérent avec la couleur et la profondeur, en
encourageant une combinaison réglable entre rigidité locale et par morceaux. En
outre, nous montrons que le calcul du champ de mouvement 3D peut être considéré
comme un cas particulier d’un problème d’estimation plus général d’un champ de
mouvements rigides à 6 dimensions. L’estimation du flot de scène est donc formulée
comme la recherche d’un champ optimal de mouvements rigides. Nous montrons
finalement que notre méthode permet d’obtenir des résultats comparables à l’état
de l’art.

Mots-Clés: mouvement, profondeur, flot de scène, rgbd, variationnelle, semi-
rigide
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Notation

R set of real numbers

|a| =
p
a2 absolute value, a 2 R

a = (a1, ..., aN )T column vector

|a| =
p
P

ai2 Euclidean norm, or magnitude of the vector

|f |p = (
P

|f |p )
1

p lp norm, f with countable domain

kfkp =
( R

|f |p
) 1

p Lp norm, f with uncountable domain

Ω image domain

x = (x, y)T image point

Ic(x) color image

I(x) brightness image

Z(x) depth image

{Ic(x), Z(x)} RGBD image

rf = (∂ f
∂x

, ∂ f
∂y

) gradient operator

Ig(x) magnitude of the gradient image

r · f = ∂ f
∂x

+ ∂ f
∂y

divergence operator

X = (X,Y, Z)T 3D point

X̃ = (X,Y, Z, 1)T homogeneous 3D point

π(·) projective function

π−1(·, Z(·)) inverse projective function

u = (u, v)T 2D motion vector

v = (vX , vY , vZ)
T 3D motion vector

ξ = (ω, τ)T twist motion



xii

ω = (ωX , ωY , ωZ)
T 3D rotation vector

τ = (τX , τY , τZ)
T 3D translation vector

u(x) image flow, or 2D motion field

v(x) scene flow, or 3D motion field

ξ(x) twist motion field, or field of rigid motions

ω(x) rotational field, or field of rotations

τ(x) translational field, or field of translations

{R, t} Rigid body motion

R 3⇥ 3 rotation matrix

t 3D translation vector
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1
Introduction

1.1 Thesis theme

In the real world everything changes. Changes occur for many reasons but nothing
remains the same. Some of these changes are sudden while others are subtle. Some
are induced while others are provoked, but always these changes reveal information
that was hidden from our initial perception. Visual changes brought by relative
motions of the environment are particularly meaningful, allowing the perception of,
and interaction with, the surrounding world. For instance, a chaotic motion alerts
us to possible dangers. A peculiar way of motion tells us that someone known is
approaching. A subtle gesture of the hand is enough to communicate our dislike.
Being able to understand visual changes is a wonderful ability of human beings,
which inspires the development of computer vision systems aiming to improve the
way we perceive, and we are perceived, in our environment.

A computer vision system sees the world through a camera, which usually
corresponds to a color-sensitive retina providing a planar representation of the scene.
Visual changes in the world are perceived as displacements of the color patterns
on the retina, and the computation of such those motions enables understanding
of a changing environment. Image motion estimate provides powerful cues for
visual systems, and has been exploited in a wide variety of applications including
autonomous navigation, action recognition, human-machine interaction, three-
dimensional (3D) reconstruction. For example, by estimating and learning motion
patterns, visual systems are able to recognize actions, activities and gestures. By
using a single moving camera and tracking a set of key points it is possible to recover
the 3D structure of a static scene. Even, the shape of a time-varying 3D surface
can be estimated, after a sufficiently long observation. Nevertheless, this planar
representation of the scene is only a projection of the 3D world, and therefore
the perception and estimation of some motions may become a challenge. For
instance, the lack of texture hinders motion estimation, because there is not enough
information to disambiguate between all of the possible motions that can explain
the observations. Moreover, it is complicated to handle with partial occlusions,
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which can severely confound motion estimation. For such of challenges, motion
estimation using monocular color images is still a very active area of research.
There is a physical limitation due to the use of a single view, which prevents the
reliable estimation of the full 3D motion field of the scene. If a fully calibrated stereo
or multi-view camera system is available, it is possible to estimate both the motion
and the structure of the scene. Evidently, when the number of views increases,
there is more information available to deal with occlusions and motion ambiguities,
but at the same time, such system becomes less affordable and portable.

Recently with the arrival of depth cameras, based either on time-of-flight (ToF) or
structured light sensing, it has been possible to have direct measurements of the 3D
structure of the scene. Such cameras are also known as RGBD (RGB and Depth)
cameras, since they simultaneously provide color and depth information. Access
to structure information opens the door to the estimation of motions directly in
the 3D scene, using a single view. For this reason, current depth sensors have
decreased the requirements of the system needed for this kind of tasks. Moreover,
the availability of RGBD representation of the scene demands the reformulation
of the 3D motion estimation problem. Usually, when only color information is
available, motion is solved to be consistent with the displacement of color patterns.
However, for RGBD cameras, both color and 3D structure can be simultaneously
exploited. For instance, action recognition is usually based on features obtained
from 2D trajectories computed on the image. The simple addition of the depth
information to every trajectory significantly improves the recognition performance.
However, it is clear that this way depth data is not fully exploited. The combined use
of color and depth can yield more accurate trajectories, incorporating at the same
time, the 3D structure information. In general, the use of depth data in addition
to color can yield better results for computer vision tasks, such as recognition,
interaction and reconstruction. Both color and depth data complement each other
and can be combined as whole to obtain the most benefit from RGBD images.

Scene flow is defined as the motion field in 3D space, and can be computed from
a single view when using an RGBD sensor. Being able to confidently estimate the
scene flow makes it possible to directly take advantage of real world motion. In
this thesis, we address the problem of scene flow estimation from RGBD images; by
rethinking the way color and depth are exploited. The two main questions for scene
flow estimation from RGBD images are: how to fully exploit the data?, and which
motion model should be used?. We go beyond previous works and propose a scene
flow framework that exploits the local and piecewise rigidity of real world scenes. By
modeling the motion as a field of twists, our method encourages piecewise smooth
solutions of rigid body motions. We give a general formulation to solve for local
and global rigid motions by jointly using intensity and depth data. In order to deal
efficiently with a moving camera, we model motion as a rigid component plus a
non-rigid residual and propose an alternating solver. The evaluation demonstrates
that use of the proposed framework achieves the best results in the most commonly
used scene flow benchmark. Moreover, through additional experiments we indicate
the general applicability of our approach in a variety of different scenarios.
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1.2 Thesis outline

The following six chapters present the basics, methods and results for scene flow
estimation from RGBD images.

Chapter 2. The first part of this chapter introduces two important concepts
about the scene: the RGBD representation, based on color and depth data, and the
scene flow, which models the motion observed in the scene and is the main concern
of this thesis. The second part presents three useful tools for motion representation
and estimation. Fundamentals of rigid body motion are reviewed, particularly,
the twist motion representation that we use to model the motion in the scene.
We summarize the concept of total variation, describing its role and properties as
regularizer and presenting some basic solvers. Finally, we present the basics of
robust least-squares estimation.

Chapter 3. The chapter analyses the estimation of 3D motion when color and
structure of the scene are available. We first define the scene flow estimation
problem, pointing out the main challenges of this task and analyzing properties
of real scenes that can be exploited to aid the estimation. We then present a survey
of the most relevant work done in scene flow estimation, where the advantages and
limitations of most known techniques are studied. Simultaneously, we explain how
the ideas supported by this thesis go beyond previous methods. Having presented
the state of the art for scene flow estimation, we finally give a brief exposition of
the main components of our approach.

Chapter 4. In this chapter, we present alternative representations for 3D motion
in the image domain. First, we introduce the parameterization of the scene flow
as a field of rigid motions, using a twist representation. Here we define a warping
function to constrain every twist motion on the image, and which is also provided
with a linear version allowing an incremental solution of rigid motion. Alternatively,
we present the direct representation of the scene flow as a 3D motion field, using
a warping function to exploit RGBD data. Finally, we review other possibilities
for motion representation and we conclude with a table containing the three cases
considered in this thesis.

Chapter 5. The framework for scene flow estimation from RGBD images is
presented. We begin by motivating the semi-rigid constraint of the 3D motion field
on the image and then we formulate the scene flow energy based on the twist motion
representation. Subsequently, each of the components of this energy is described.
By considering the 3D motion representation, we formulate an alternative scene
flow energy, which is also described in detail. We then present the minimization of
both energies and a coarse-to-fine procedure. Finally, we introduce an approach to
estimate the scene flow with a moving camera using the proposed framework.
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Chapter 6. This chapter presents the experiments performed using the proposed
framework. The first part contains the motion estimation results on the Middlebury
stereo dataset. Using this benchmark we compare the accuracy of our approach
with the most relevant scene flow methods. Also, we analyze the different
components our framework and the alternatives that it supports. The second part
of the experimentation considers images from RGBD sensors. We investigate the
performance of our method in different and interesting scenarios presenting non-
rigid and rigid motions.

Chapter 7. We conclude by reviewing the formulated questions and describing
how this thesis contributes to their resolution. We summarize the limitations of
this approach and propose some directions for future work. Finally, we conclude by
discussing the impact of our work, some of the lessons learned and perspectives on
scene flow estimation from RGBD images.



2
Background

2.1 RGBD representation of a scene

Let Ω be the image domain defined as a regular Lx ⇥ Ly grid of pixels, indexed
as x = (x, y), for x = 1, 2, ..., Lx, y = 1, 2, ..., Ly. The use of a RGBD camera,
e.g., Microsoft Kinect for Xbox or Asus Xtion Pro Live, enables color (RGB) and
depth (D) discrete representations of the observed scene in the image domain. For
every time t the scene is registered as a RGBD image St(x) = {Ic(x), Zt(x)} where
images I(x) and Z(x) provide color and depth, respectively, for every pixel x 2 Ω.
Figure 2.1 shows a pair of color and depth images captured by a Kinect for Xbox.

Fig. 2.1: RGBD representation. (a) RGB image and (b) depth image. The depth image is encoded
in gray levels, where the closer a point is at the brighter is drawn. Pixels having no valid depth
measures are drawn in black. Note that field of views of RGB and depth cameras are different.

This kind of camera provides both RGB and depth with VGA resolution (640⇥480
pixels). The RGB image uses 8-bit pixel representation with a Bayer color filter.
The depth image uses 11-bit pixels to encode the 3D structure of the scene, using
Light Coding by PrimeSense. This technology codes the scene with near-IR light
and with an infrared camera that captures distorted light to measure the relative
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Fig. 2.2: The RGBD image is displayed by showing the gray valued of every pixel having a valid
depth measure. We also incorporate information about 3D structure as contour lines, which are
defined as a function of the point-wise changes in depth data.

distance of the surface. As is shown in Figure 2.1 b), some pixels do not have a valid
depth measure for one of these reasons: i) a depth out of the sensor range (80cm to
400cm for the Kinect for Xbox ), ii) an occluded point in the triangulation between
IR emitter and IR camera, iii) a point out of the field of view of the depth sensor
but visible for the RGB camera, or iv) a poor or non reflective surface to IR light.

In this RGBD representation every pixel x 2 Ω, having valid depth measure,
represents a 3D point X of the scene, or scene point. For illustration, in some cases
we display the RGBD image as a single image, by blending gray values and depth
data, as is described in Figure 2.2. Below we present the camera model used to
define a bijective mapping between 3D space and image domain.

2.1.1 Camera model

The camera frame is defined with its origin at the optical center and its (X,Y, Z)
axes respectively in the direction of the image axes and the optical axis, with positive
Z pointing in the direction of sight, as is shown in Figure 2.3.

In the RGBD representation, every 3D point that is visible for the sensor, is
parametrized into the image domain Ω. The projection π : R3 ! R

2 maps a 3D
point X = (X,Y, Z)T onto a pixel x = (x, y)T on Ω by:

π(X) =

✓

fx
X

Z
+ cx, fy

Y

Z
+ cy

◆T

, (2.1)

where fx and fy are the focal lengths of the camera and (cx, cy) its principal point.
The inverse projection π−1 : R2 ⇥ R ! R

3 back-projects an image point to the 3D
space for a given depth z, as follows:

π−1(x, z) =

✓

z
x− cx
fx

, z
y − cy
fy

, z

◆T

. (2.2)
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X

Y
Z

x

y

Xt

Xt+1

v(xt)

St

St+1

Image Plane

Camera Frame

Optical Center

(u, v)
xt xt+1

Fig. 2.3: Motion of a rigid surface point in 3D space and in the image domain

Given a RGBD image S(x) = {Ic(x), Z(x)}, the notations X or π−1(x, Z(x)) are
equivalently used as the 3D representation of image point x.

2.1.2 Scene flow definition

Let Xt = (Xt, Yt, Zt)
T be coordinates at time t of a scene point in the camera

reference frame. The scene flow, v(x) : Ω ! R
3, is defined as the 3D motion field

describing the motion of every visible 3D point between two time steps:

Xt+1 = Xt + v (xt) . (2.3)

The 3D motion of every visible scene point induces a motion in the image domain,
which is defined as image flow and corresponds to the 2D motion field u(x) : Ω !
R
2, given by the projection of the scene flow. Figure 2.3 shows the motion and

projection of a 3D point belonging to a rigid surface. An illustration of 2D and
3D motion fields is present in Figure 3.1. Note that the image flow should not
be confused with the optical flow, which is defined as the apparent motion of the
brightness patterns in the image, since they both may not coincide. For instance,
not every 3D motion in the scene yields to a change in the brightness images, e.g.,
the motion of an untextured surface, and conversely, not every change in brightness
is brought by a the motion of a 3D surface, e.g., a change in illumination.
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v(x)

Ω

u(x)

Ω

Fig. 2.4: From left to right: (a) 3D and (b) 2D motion fields represented in the image domain.

2.2 Rigid body motion

On a rigid surface the distance between any two given points remains constant in
time regardless of external forces exerted on it. Accordingly, a rigid body motion, or
rigid motion, is defined as a motion which preserves distance between points of the
moving surface. The group action of a rigid body transformation can be written as
T (X) = RX+ t, where t 2 R

3 is a translation, and R is a 3⇥ 3 matrix belonging
to SO(3), the special orthogonal group of rotation matrices in R

3, defined as:

SO(3) =
{

R 2 R
3⇥3 : RRT = I3⇥3, det(R) = ±1

 

. (2.4)

A rigid body motion can be seen a rotation R followed by a translation t, as is
illustrated in Figure 2.5. Using homogeneous coordinates, under the action of rigid
motion G, a 3D point X̃ = (X, 1)T is transformed into X̃0, according to:

X̃0 = GX̃, with G =

 

R t

01⇥3 1

!

2 SE(3), (2.5)

with SE(3) the special Euclidean group representing rigid transformations in R
3:

SE(3) =
{

(R, t) : t 2 R
3,R 2 SO(3)

 

= R⇥ SO(3). (2.6)

The group of matrices, SE(3), is a group with the multiplication as operation,
and the identity matrix, I4⇥4, as the identity. Therefore, the composition of two
rigid motion, G1 and G2, is done by a matrix multiplication, yielding to the rigid
motion G = G1G2. Moreover, every rigid motion G has inverse an inverse given by
G−1. It is important to remark that SE(3) and SO(3) are Lie groups, i.e., groups
with a smooth manifold structure. Any Lie group G defines a Lie algebra g through
an exponential function. Below we define the exponential function relating the Lie
group SE(3) with its Lie algebra se(3). Unlike Lie groups, Lie algebras are linear
spaces allowing to understand and solve problems on the Lie group in a easier way.



2.2. Rigid body motion 9

X

RX

RX + t

O

t

R

Fig. 2.5: Rigid body motion represented as a rotation followed by a rotation.

2.2.1 Twist representation

Since any G 2 SE(3) has only 6 degrees of freedom, a more convenient and compact
representation is the 6-parameter twist. Every rigid motion can be described as a
rotation around a 3D axis ω = (ωX , ωY , ωZ)

T and a translation along this axis,
giving as a function of a 3D translation τ = (τx, τy, τz)

T , see Figure 2.6. Therefore
it can be shown that for any arbitrary G 2 SE(3) there exists an equivalent ξ 2 R

6

twist representation. A twist ξ = (ω, τ) can be converted into the G representation
with the following exponential map:

G = eξ̂ = I4⇥4 + ξ̂ +
(ξ̂)2

2!
+

(ξ̂)3

3!
+ · · · , (2.7)

where

ξ̂ =

 

ω̂ τ

01⇥3 1

!

, with ω̂ =

0

B

B

@

0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

1

C

C

A

. (2.8)

Every twist vector ξ corresponds to a 4⇥4 matrix ξ̂ 2 se(3), which is the Lie algebra
of SE(3), via the hat operator given by the left side of equation (2.8). Similarly,
every rotation vector ω is related to a 3 ⇥ 3 skew-symmetric matrix ω̂ 2 so(3),
the Lie algebra of SO(3), via the right side of equation (2.8). Alternatively, the
exponential map (2.7) can be expressed in a compact form as follows:

eξ̂ =

 

eω̂ Aτ

01⇥3 1

!

, (2.9)
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θ

kωτ

ξ = (ω, τ )

 −ω

O

3D rotation

3D traslation

Fig. 2.6: Motion induced by twist ξ = (ω, τ). The 3D rotational component is expressed as
ω = θ −ω , where scalar θ = |ω| is the amount of rotation, and the unitary vector denoted by the
over-arrow,  −ω = ω/|ω|, is the axis of rotation. The translational component, τ , gives the motion
along the 3D axis by kωτ , where kω = ω̂/|ω|2. The 3D axis is a line in  −ω direction going through
the point ω̂τ/|ω|2.

where the rotation matrix eω̂ is given by Rodrigues’s formula:

eω̂ = I3⇥3 +
ω̂

|ω|
sin |ω|+

ω̂2

|ω|2
(1− cos |ω|), (2.10)

and

A = I3⇥3 +
ω̂

|ω|2
(1− cos |ω|) +

ω̂2

|ω|3
(|ω| − sin |ω|), for ω 6= 0. (2.11)

The exponential map (2.7), or equivalently (2.10), goes from se(3) to SE(3).
Correspondingly, for each G 2 SE(3) there exists a twist representation given
by the logarithmic map:

ξ = log(R, t) = (ω,A−1t), (2.12)

where

ω̂ =
1

2 sin θ
(R−RT ), with θ = cos−1

✓

trace(R)− 1

2

◆

, for R 6= I3⇥3, (2.13)

and

A−1 = I3⇥3 −
ω̂

2
+

2 sin |ω|− |ω|(1 + cos |ω|)

2|ω|2 sin |ω|
ω̂2, for ω 6= 0. (2.14)
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2.2.2 Small-rotation model

Any given rotation vector ω encodes the amount, or angle, of rotation in its
magnitude, |ω|, and the axis of rotation as the unitary vector ω/|ω|. In the case of
the angle of rotation approaches zero, Rodrigues’s formula (2.10) yields to:

lim
|ω|!0

eω̂ = I3⇥3 + ω̂ . (2.15)

Therefore, for a small-rotation rigid motion, the rotation matrix is well approx-
imated as eω̂ ⇡ I3⇥3 + ω̂ (Fang and Huang, 1983). Similarly, if |ω| ! 0 we have
A ⇡ I3⇥3 in equation (2.11) and the full rigid motion can be approximated by:

eξ̂ ⇡ I4⇥4 + ξ̂, (2.16)

which implies that t ⇡ τ . This linear approximation is useful to analyze a small
rigid motion in the 3D space and in the image domain. Moreover, equation (2.16)
allows to write the scene flow induced by a small-rotation rigid motion as a linear
function of the twist. Let ξ be a twist motion for a small rotation, under the rigid
motion, the 3D point X is transformed into X0 inducing the scene flow given by:

X0 −X = ([X]⇥ | I3⇥3 ) ξ, (2.17)

where the operator [·]⇥ takes the elements of X to construct a skew-symmetric
matrix (the cross product matrix), as is done in the right side of equation (2.8).

2.3 Total variation

Total variation was introduce to Computer Vision by Rudin, Osher and Fatemi
(ROF) in their seminal work (Rudin et al., 1992) for image denoising. The ROF
denoising model can be written as:

min
u

Z

Ω

|ru(x)|dx+
η

2
ku− fk22 , (2.18)

where Ω ⇢ R
2 denotes the image domain, and f : Ω! R, the degraded observed

image. The right side of the model (2.18) is the fidelity term, which encourages
the restored image u to be close to the input image f in L2, the space of square-
integrable functions. The left term is the total variation (TV), which is used a
Tikhonov regularization and has the capability to preserve discontinuities (edges)
while removing noise and other undesired details, see Figure 2.7. The constant η
balances the tradeoff between a good fit to the data and a smooth solution. In the
TV term, ru(x) is the gradient of u evaluated at x and its magnitude is given by:

|ru(x)| =

s

∂u

∂x

2

(x) +
∂u

∂y

2

(x) . (2.19)
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Fig. 2.7: ROF-model denoising. From left to right: (a) original image, (b) noisy image and (c)
denoised image. (Images courtesy of Mark Werlberger).

The solution of (2.18), which is also known as the primal formulation, is a
challenge, since is non-differentiable at |ru(x)| and is highly nonlinear. For this
reason the dual formulation of the ROF-model has also been studied (Chan et al.,
1999) and has been shown that the desired denoised image u⇤ can be solved by:

u⇤ = f +
1

η
r ·w⇤, (2.20)

where w⇤ : Ω! R
2 is the solution of the dual problem:

min
|u|1

kr ·w + λfk22 . (2.21)

The solution of the dual formulation presents its own challenges since it brings
extra constraints and its solution is not unique, see (Zhu et al., 2010) for more
details. However, the dual problem was the first to allow an exact solution of
the ROF model by using a projection algorithm (Chambolle, 2004). The ROF
model (2.18) has been successfully used in other computer vision tasks. Particularly,
for motion estimation, TV is preferred to other strategies, since TV: i) does not
penalize discontinuities of the motion, ii) does not penalize smooth functions and
iii) preserves exactly the location of discontinuous edges, see Figure 2.8.

2.3.1 Discrete ROF model

The discrete total variation of a scalar function u : Ω! R is defined by:

TV(u) =
X

x2Ω

|ru(x)| =
X

x2Ω

q

u2x(x) + u2y(x), (2.22)

where the components of the gradient ru = (ux, uy), are computed using forward
differences, see Chambolle (2004). Accordingly, the discrete ROF model is given
by:

min
u

TVS(u) +
η

2

X

x2Ω

|u(x)− f(x)|2, (2.23)
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Fig. 2.8: Comparison of regularization strategies using the Army optical flow dataset by Baker
et al. (2007). From left to right: (a) ground truth of the motion, (b) motion estimate using
l2-regularization (Horn and Schunck, 1981), and (c) motion estimate using TV-regularization
(Wedel et al., 2009). Unlike l2-regularization that over-smooths the solution because its quadratic
penalty, TV respects motion discontinuities thanks to its l1-based penalty. (Images courtesy of Mark
Werlberger)

Chambolle’s projection algorithm

Problem (2.23) can be solved using the projection algorithm by Chambolle (2005),
which works on the dual formulation and provides the solution:

u(x) = f(x) +
1

η
r · p(x) (2.24)

where the dual variable p : Ω! R
2 is computed iteratively as:

pn+1(x) =
pn(x) + (ην)run(x)

max {1, |pn(x) + (ην)run(x)|}
(2.25)

with p0 = 0 and ν < 1/4. However, this approach is only a choice between a large
set of alternatives to solve this kind of problems, see Chambolle and Pock (2011).

Arrow-Hurwicz primal-dual algorithm

Algorithms that simultaneously solve the primal and dual formulation converge
significantly faster than methods based solely on the primal or dual formulation.
An efficient and simple primal-dual formulation is presented by Zhu and Chan
(2008), where the dual variable is iteratively computed as:

pn+1(x) =
pn(x) + (ν1)ru

n(x)

max {1, |pn(x) + (ν1)run(x)|}
(2.26)

and the solution u is iteratively given by:

un+1(x) =
un(x)− ν2r · p(x) + (ην2)f

1 + ην2
(2.27)

with p0 = 0 and u0 = 0, and the parameters ν1 > 0, ν2 > 0 and ν1ν2 < 1/2.
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Staircaising Effect

When total variation is used to regularize, it can suffer from the staircaising
problem. This effect is characterized by artificial constant areas in the solution.
It is possible to correct these artifacts by replacing the l1 norm in the TV term
(2.22) by the Huber norm (Werlberger et al., 2009):

|u|α =

(

|u|2

2α |u|  α

|u| − α
2 |u| > α

, (2.28)

where α > 0 is a small parameter balancing between the l1 and the l2 penalization.
Quadratic regularization is applied on small values while TV regularization is used
with larger values, thus diminishing the staircase effect. The Huber norm can be
easily used with any of the algorithms presented above.

The starcaising problem can also be solved by penalizing the variation of higher
derivatives of u, as is propesed by Bredies et al. (2010) with the total generalized
variation (TGV). Particularly, the second order TGV is defined by:

TGV2(u) = min
v

α0

X

x2Ω

|ru(x)− v(x)|+ α1

X

x2Ω

|rv(x)|, (2.29)

where α0 and α1 balance between the first and second order derivative terms.
Penalizing the variation of the second order derivative benefits smooth solutions,
eliminating the staircase effect.

2.3.2 Vectorial total variation

The idea of total variation can be extended to a vector-valued function u : Ω! R
N .

Goldluecke et al. (2012) analyze some of the options to define a vectorial total
variation (VTV). Such approaches can be divided in two classes: those that compute
the TV channel by channel and those that consider the Riemann geometry of the
image manifold. An intuitive way to define the VTV is to sum up the contribution
of every channel. The channel-by-channel VTV is defined by:

TVS(u) =

N
X

i=1

TV(ui). (2.30)

This definition allows a fast and simple regularization separately by channel, where
any of the two algorithms shown above can be used. However, since there is no
coupling between channels, the correlation between the different components is
not exploited. For instance, depending of the nature of u, its discontinuities may
appear at the same position in multiples channels and this information can benefit
the regularization to preserve the multidimensional edge. This is the case when TV
regularization is applied to color images or a motion field, the latter is the main
concern of this thesis.
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By considering u as a two-dimensional Riemann manifold, the derivative matrix,
Du := (ru1,ru2...,ruN )T : Ω ! R

N⇥2, can be used to compute the metric
tensor g(u) = (Du)TDu. In this case, the eigenvector λ+ corresponding to the
largest eigenvalue, gives the direction of the vectorial edge. Goldluecke and Cremers
(2010) propose the use of the Jacobian J1 from geometric measure theory, which
corresponds to

p
λ+ and can be computed as the largest singular value of matrix

Du. Accordingly, the VTV can be defined by:

TVσ1
(u) =

X

x2Ω

σ1(Du(x)) , (2.31)

where σ1 is the largest singular value of the derivative matrix. The metric TVσ1

has two main properties: it weighs the contribution of every channel, unlike TVS ,
and it supports a common edge direction for all channels. This latter property is the
main advantage of TVσ1

with respect other metrics. For example, the Frobenius
norm of Du can be used to define the metric:

TVF (u) =
X

x2Ω

kDu(x)k , (2.32)

allowing a coupling between all channels, but since it does not support a
common edge, the vectorial edge is strongly penalized. It can be shown that
TVσ1

(u)  TVF (u)  TVS(u) (Goldluecke and Cremers, 2010), reflecting the
softer penalization performed by TVσ1

which protects the vectorial edge.

2.4 Robust Lucas-Kanade framework

The goal of Lucas-Kanade algorithm is to align a template image, T (x), to an input
image, I(x), therefore, it allows to compute optical flow or to track an image patch
between two frames. Following (Baker and Matthews, 2004), this problem can be
stated as finding the parameter vector θ = (θ1, ..., θn)

T which minimizes a squared
sum of differences between the template T an the current image I:

θ = arg min
θ

X

x

[I (W(x,θ))− T (x)]2, (2.33)

where the warp W(x,θ) maps each template pixel x to a pixel on the image.
The warping function can be defined using an image motion model, e.g., one of
those presented in Chapter 4. This approach was introduced by Lucas and Kanade
(1981) for image registration, assuming that the optical flow corresponds to a single
(continuously varying) motion locally; that is, the variation inside the patch is
assumed to be Gaussian. Formulation (2.33) is a least-squares problem, which can
be seen as a particular case of maximum a posteriori estimation as is shown below.
Bayesian reasoning can provide an alternative solution.
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2.4.1 Bayesian derivation of the Lucas-Kanade framework

Assume that we want to estimate parameters θ = {θ1, ..., θn} given a set of
observations ρ = {⇢(x1,θ), ..., ⇢(xL,θ)}, where each observation is defined as the
residual between the warped image and the template according to ⇢(xi,θ) =
I (W(xi,θ))− T (xi). Let P (θ) be the a priori distribution of the parameters.
Baye’s law converts the prior belief about parameters θ, into a posterior probability
P (θ|ρ) by using the likelihood function as follows:

P (θ|ρ) =
P (ρ|θ)P (θ)

P (ρ)
, (2.34)

thus, the maximum a posteriori (MAP) estimate is defined as:

θ̂ = argmax
θ

P (θ|ρ). (2.35)

Because of noise, residuals are not zero, but follow a particular distribution
P (ρ|θ). Assuming that the noise of all observations is independent and identically
distributed, and since P (ρ) does not depend on θ, the MAP estimate becomes:

θ̂ = argmax
θ

Y

x

P (⇢(x,θ)|θ)P (θ). (2.36)

The prior P (θ) models the prior distribution of the parameter. In the Lucas-Kanade
framework this belief corresponds to the prior distribution of image motions, which
is assumed uniform, so that every possible parameter, or motion, is equiprobable
and P (θ) can be dropped from (2.36). Therefore, the MAP estimate is equivalent
to minimizing the negative log of the likelihood function:

θ̂ = argmin
θ

−
X

x

log (P (⇢(x,θ)) . (2.37)

If the noise is Gaussian, e.g., P (⇢(x,θ)|θ) ⇠ N (⇢(x,θ), 0,σ), the MAP estimate
applied to the Lucas-Kanade framework, gives:

θ̂ = argmin
θ

1

2σ2

X

x

⇢2(x,θ), (2.38)

where the constant related to σ can be removed.

2.4.2 Robust least-squares

If the noise distribution is not Gaussian, the least-squares estimate may be
skewed from the real (or desirable) solution. This is a very common case for
motion estimation using the Lucas-Kanade framework. The Gaussian assumption
is commonly violated due to occlusion or multiple motions, yielding undesired
solutions. Particularly, in a least-squares approach, outliers contribute too much
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to the overall solution, because they are not expected in the prior distribution. In
order to improve robustness, the estimator should be able to recover the structure
that best fits the majority of the data while identifying and rejecting outliers.

The goal of a robust estimator is to find the values for the parameters, θ, that
best fit model W(xi,θ) for the observed measurements ρ, in cases where the data
differs statistically from the model assumptions. For this reason the quadratic, or l2-
, penalty, brought by the Gaussian assumption, is replaced by a function  , which is
called a M -estimator since it is related to the maximum-likelihood estimate, shown
in Equation 2.37. Robust least-squares estimation is formulated as:

θ̂ = argmin
θ

X

x

 
(

⇢2(x,θ)
)

, (2.39)

The specific M -estimator,  (s2), characterizes the insensitivity to outliers or
deviations (robustness) of the estimation. The case  (s2) = s2 corresponds to the
quadratic penalty, where all square residues are treated the same and outliers may
skew the solution. If Equation (2.39) is differentiable, the derivative of the M -
estimator weighs every observation in the solution, and can be used to analyse the
influence of outliers in the estimate. For instance, the Lorentzian is a M -estimator
defined as:

 a(s
2) = log

✓

1 +
s2

2a2

◆

, with  0
a(s

2) =
1

s2 + 2a2
, (2.40)

has a derivative which decreases as s2 moves away from zero, reducing the influence
of outliers. A less robust M -estimator, i.e., with a slower decreasing derivative, is
the Charbonnier penalty, is given by:

 ε(s
2) =

p

s2 + "2, with  0
ε(s

2) =
0.5p
s2 + "2

, (2.41)

corresponding to a differentiable approximation of the l1 norm. This penalty has
shown to perform better than other M -estimators for optical flow estimation (Sun
et al., 2010). Figure 2.9 shows these three penalties and their derivatives.

2.4.3 Iterative solution

The robust Lukas-Kanade estimate is defined by:

θ̂ = argmin
θ

X

x

 
(

[I (W(x,p))− T (x)]2
)

, (2.42)

which is a nonlinear optimization problem, which can be solved by iterative
reweighted least squares (IRLS) with the Gauss-Newton algorithm. Assuming that
an initial estimate θ is known, the input image I can be approximated around it,
by using the first-order Taylor expansion. Accordingly, (2.42) becomes the problem
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Quadratic
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ψ(s2 )
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2
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Quadratic
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2

Fig. 2.9: Comparison of quadratic, Lorentzian (a = 1) and Charbonnier (ε = 0.001) penalties.

of finding an incremental ∆θ that minimizes

X

x

 

 



⇢(x,θ) + Ix
@W

@θ
∆θ

]2
!

, (2.43)

with ⇢(x,θ) = I (W(x,θ))−T (x) the image residue, and where Ix = (@I/@x, @I/@y)
denotes the input image gradient and @W/@θ the Jacobian of the warp, at evaluated
at W (x,θ). Finding the minimum of expression (2.43) requires an iterative
solution. Taking the partial derivative with respect to ∆θ gives:

2
X

x

 0(⇢2(x,θ +∆θ))

✓

Ix
@W

@θ

◆T ✓

⇢(x,θ) + Ix
@W

@θ
∆θ

◆

, (2.44)

and at the minimum of (2.43), equation (2.44) is zero, so that the incremental scene
flow ∆θ can be computed by the following iterative procedure:

1. Initialize: ∆θ = 0.

2. Update weights with the current estimation, ✓, and compute the increment:

∆✓ = −H−1
X

x

 0(⇢2(x,θ))

✓

Ix
@W

@θ

◆T

⇢(x,θ), (2.45)

where H is the Gauss-Newton approximation of the Hessian matrix:

H =
X

x

 0(⇢2(x,θ))

✓

Ix
@W

@θ

◆T ✓

Ix
@W

@θ

◆

. (2.46)

3. Updating step: θ  θ ◦∆θ, with ”◦” the composition operation.

4. If termination criteria stop, otherwise goto 1.
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Problem Analysis

3.1 Problem definition

The 3D motion field of a scene, or scene flow, is useful for several computer vision
applications, such as action recognition, interaction, or 3D modeling of nonrigid
objects. Scene flow methods can be classified into two main groups depending on if
the 3D structure of the scene is estimated or provided. The first group of methods
uses a stereo or multi-view camera system, where both scene flow and depth are
estimated from images. The second group uses RGBD images as input. In this
case, the depth given by the sensor may be used directly for scene flow estimation.
This thesis proposes a new formulation for this second group.

The two main questions for scene flow estimation from RGBD images are: (a) how
to fully exploit both sources of data, and (b) which motion model should be used to
compute a confident scene flow. Regarding the first question, 2D motion estimation
has made a great progress in the last years and powerful tools are available to
estimate optical flow from color images (Sun et al., 2010). Optical flow is defined
as the apparent motion of brightness pattern in the image and is closely related to
image flow, which is the projection of the 3D motion field on the image. However,
optical and image flow may not coincide, as is show in Figure 3.1. Moreover,
changes on the motion field are not always reflected in the optical flow or can be
hard to estimate, such as the motion of untextured surfaces. Also, changes in depth
and occlusions are a challenge for current optical flow methods since there is no
3D knowledge to disambiguate the possible 2D motions. Thanks to the RGBD
sensor, information about the 3D structure of the scene is available. By using
depth data alone it is possible to estimate a global rigid motion, e.g., the camera
motion, as is proposed by Newcombe et al. (2011) using Iterative Point Cloud
(ICP) (Besl and McKay, 1992). However, solving for a nonrigid motion field is a
more challenging problem having a wider scope. Although it is possible to perform
nonrigid registration of depth data (Li et al., 2009), low-noise and high-resolution
depth data is required, which prevents the use of current RGBD sensors. The
availability of RGBD data opens the door to a new scenario for motion estimation,
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where some of these drawbacks can be overcome.

When both color and depth are provided, there is no consensus on how to most
effectively combine these two sources of information. A straightforward approach
would be to compute the optical flow from RGB images and to infer the scene flow
from the depth data. Alternatively, the texture of depth images can be used to help
the 2D motion estimation and simultaneously used to compute the changes in depth.
It is also possible to generate colored 3D point clouds or 3D patches by exploiting
the depth data and try to estimate a 3D transformation consistent with the input
images. Nevertheless, it is not necessary to explicitly represent points in 3D: the
scene structure can be represented in the image domain, where color and depth data
can be coupled using a projective function. This way, depth changes influence the
motion in the image domain and consistency constraints can be formulated jointly
over the color and depth images. We survey some of these alternatives by reviewing
the related work to this thesis in the next Section.

The second question, concerning the representation of the motion, has been
addressed less. Scene flow estimation using intensity and depth is an ill-posed
problem and regularization is needed. Instead of solving for 2D motions, as in
optical flow estimation, the 3D motion vector of each point can be directly solved
to minimize color and intensity constraints in a data term. Moreover, the whole 3D
motion field can be regularized to get spatially smooth solutions while preserving
discontinuities. Since depth data is available, it can be used in the regularization to
preserve motion discontinuities along depth edges, where independent motions are
probable to appear, and also can be exploited to define a prior of the local rigidity.
However, solving for a piecewise smooth solution of the 3D motion field may not
be the best choice for some motions of interest. For example, a 3D rotation of a
rigid surface induces a great variety of 3D motions that are hardly well regularized
by such an approach. A similar issue occurs when the RGBD sensor is moving
with respect to the scene. For this reason the motion representation should be
able to model rigid and nonrigid components of the scene flow, while favoring the
regularization procedure. Moreover, scene flow estimation can be formulated in 3D
space or in the image domain and is not clear in which domain the parametrization
of the scene yields more accurate results. While 3D space is the natural domain
of the scene flow, RGBD images are sensed and provided in the image domain and
this 2D parametrization can be exploited.

This thesis aims to make a step forward towards a better understanding of scene
flow estimation from RGBD images. For this reason, in order to cover the two
questions previously formulated, this study focuses in four main aspects: i) the
coupling of intensity and depth, ii) the representation of motion, iii) the constraints
of motion in RGBD data and iv) the regularization. Temporal consistency of the
scene flow is out of the scope of this thesis and the estimation problem is formulated
on a frame-to-frame scenario.
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Fig. 3.1: Difference between apparent and real motion. From left to right: (a) a barber’s pole
rotating to the right, (b) optical flow and (c) 2D motion field. While the pole is rotating, the color
patterns make perceive an upward motion, which does not correspond with the motion field.

3.2 Related work

Scene flow was first introduced by Vedula et al. (1999) as the 3D motion field of the
scene. Since this seminal work several approaches have been proposed to compute
the 3D motion field. If a stereo or multi-view (SoMV) camera system is available,
scene flow can be computed by enforcing consistency with the observed optical
flows (Vedula et al., 2005), by a decoupled (Wedel et al., 2008) or joint (Huguet
and Devernay, 2007; Basha et al., 2010) estimation of structure and motion, or by
assuming a local rigidity of the scene (Vogel et al., 2011). On the other hand, if
a depth sensor is available the estimation of the structure is not needed and color
and depth information can be simultaneously used. In this case scene flow can
be computed by considering the depth data as an additional image channel (Spies
et al., 2000), by coupling color and depth in the image domain with a projective
function (Quiroga et al., 2012, 2014b) or by reasoning directly in 3D space (Hadfield
and Bowden, 2014; Hornacek et al., 2014). Although in this thesis we assume that
a depth sensor is available and the estimation of the structure is not needed, below
we summarize the most relevant previous methods based on SoMV systems and
RGBD images. Scene flow estimations from SoMV and RGBD images are very
related, as well as with optical flow estimation, so that their jointly survey could
help to a better understanding of this motion estimation problem. A more detailed
survey is done for RGBD-based methods in order to clarify the main contributions
of this thesis.

3.2.1 Scene flow from stereo or multi-view

Most scene flow methods assume a stereo, or multi-view camera system, in which
the motion and the geometry of the scene are jointly estimated, in some cases,
under a known scene structure. Inspired by optical flow methods, the most common
approach for estimating scene flow is to perform an optimization on a global energy,



22 Chapter 3. Problem Analysis

including photometric constraints and some regularization. Since optical flow is
an approximation of the projection of the 3D motion field on the image plane,
an intuitive way to compute scene flow is to reconstruct it from the optical flow
measured in a multi-view camera system, as proposed by (Vedula et al., 1999), or
including a simultaneously structure estimation as by Zhang and Kambhamettu
(2001). Although it is possible to estimate optical dealing with large displacements
(Brox and Malik, 2011) and preserving small details (Xu et al., 2012), it is difficult
to recover a scene flow compatible with several observed optical flows that may be
contradictory. Moreover occlusion handling is a challenge since it could affect both
the per-view optical flow computation and the posterior scene flow estimation using
multiple views.

Some authors introduce constraints from a fully calibrated stereo or multi-
view camera system. Huguet and Devernay (2007) simultaneously compute the
optical flow field and two disparities maps by extending the variational optical flow
framework by Brox et al. (2004) to a stereo system: optical flow constraints for
each camera (left, right) and stereo constraints for each time (t, t+ 1). This way a
temporal consistency is enforced on the disparity map estimation between t and t+1.
Nevertheless, this approach may be impractical due to its high computational time.
Wedel et al. (2008) decouple disparity and motion estimation to achieve real-time
computation, since each problem can be separately solved more efficiently. Although
the spatio-temporal information is not fully exploited, the optical flow is enforced
to be consistent with the computed disparities. Valgaerts et al. (2010) generalize
the stereo-based scene flow formulation by embedding epipolar constraints in
the energy functional, showing that scene flow and the stereo structure can be
simultaneously estimated. Since motion and depth discontinuities do not necessarily
coincide, regularization is performed separately. All these methods suffer from
the smoothness constraints brought by 2D parametrization, especially due to the
regularization on the optical flow rather than directly on the scene flow. Basha et al.
(2010) improve estimation by formulating the problem as a point cloud in 3D space
supporting multiple views. In this method scene flow and the estimated disparity are
regularized independently using total variation (TV). In a closely related approach,
Vogel et al. (2011) regularize the scene flow by encouraging a locally rigid 3D
motion field, outperforming TV regularization. In a later work,Vogel et al. (2013)
present a more constrained assumption and represent the 3D scene by a collection
of rigidly moving planes. The scene flow is computed by iteratively alternating
three procedures: plane fitting, pixel-to-plane assignation and motion estimation
for every plane. This methods achieves state-of-the-art results in the KITTI stereo
flow benchmark Geiger et al. (2012).

Alternatively, other methods formulate scene flow estimation as a 3D tracking
problem. On one hand, it is possible to use an explicit model of the scene
and compute a 3D motion consistent with the pre-frame reconstruction and the
photometric information. Neumann and Aloimonos (2002) use a subdivision surface
model, where the shape and motion of an object are initialized independently,
frame to frame, and then refined simultaneously. Fukurawa and Ponce (2008) track
an initial 3D mesh model of the scene by a local estimation and a posterior full
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deformation of the mesh. The motion of each vertex is estimated using photometric
information across different views, afterwards the full mesh is deformed enforcing
smoothness and local rigidity. Another possibility is to track a sparse set of 3D
points or surface elements (Carceroni and Kutulakos, 2008; Devernay et al., 2006).
Carceroni and Kutulakos (2008) model the scene as a set of planar surfels (surface
elements) and solve for their pose and motion using photometric constraints across
different views. This approach requires a well-controlled lighting and acquisition
setup, and because its complexity, scene flow solution is only suitable in a limited
volume. Devernay et al. (2006) directly get a set of 3D trajectories for 3D
points from which the scene flow is derived. However, this method suffers from
drift problems and its proposed method for point visibility handling is difficult to
perform.

3.2.2 Scene flow from RGBD images

The first work using intensity and depth was by Spies et al. (2000), where the
optical flow formulation by Horn and Schunck (1981) is extended to include depth
data. In this approach, depth data is used simply as an additional channel in the
variational formulation of the optical flow trough the definition of a range flow
equation encouraging the consistency between 2D motion and changes in depth.
This way both intensity and depth image gradients are combined to jointly estimate
the optical and the range flow, which are enforced to be smooth.

Lukins and Fisher (2005) extend this approach to multiple color channels and one
aligned depth image. Nevertheless, in both methods, the scene is assumed to be
captured by an orthographic camera and there is no an optimal coupling between
optical and range flows. Moreover, due to the Horn-Schunck framework, these
methods suffer from the early linearization of the constancy constraints and from
over-smoothing along motion boundaries because of the L2-regularization. The
coupling issue can be solved by using a projective function that allows to constrain
the 3D motion in the image domain. Because depth information is available it
is possible to define a projective function for every pixel using its depth measure.
This way changes in depth are used to support the constraint of motion in the
image domain. Following this idea, Letouzey et al. (2011) project the scene flow
in the image domain using a projective matrix to relate 3D motion and image
flow. Thus scene flow can be directly solved by using photometric consistency
constraints. However, this method uses a projective function that only supports
smalls changes in depth, also it suffers for the well known drawbacks of the Horn-
Schunck framework. Furthermore the depth data is not fully exploited since there
is no range flow constraint and is only used to support the projective function.

Rather than computing a dense scene flow, we define a 2D warping function to
couple image motion and 3D motion (Quiroga et al., 2012), allowing for a joint
local constraint of scene flow on intensity and depth data. The local 3D motion is
modeled as a 3D translation and solved as a tracking problem in RGBD data, using
a Lucas-Kanade based framework (Lucas and Kanade, 1981; Baker and Matthews,
2004). Unlike the projective matrix (Letouzey et al., 2011), this warping function
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allows to project the true 3D motion on the image and can be approximated by a
linear model, to iteratively solve for the scene flow. Although the method is able
to deal with large displacements, it fails on untextured regions and more complex
motions, such as rotations. In order to solve for dense scene flow, a regularization
procedure that preserves motion discontinuities is required. Inspired by optical flow
methods, the 3D motion field can be assumed to be piecewise smooth, and total
variation (TV) can be applied as regularizer.

The work by Herbst et al. (2013) follows this idea, but as (Spies et al., 2000),
it lacks a coupling between optical and range flows, and the regularization is done
on the optical flow rather than on the scene flow. Such that approach lacks of the
accuracy to recover a confident scene flow, and it suffers of the same drawbacks that
optical flow methods. The regularization of 3D motion field is more reliable than
encouraging smoothness on the apparent motion in the image domain. In (Quiroga
et al., 2013) we present a variational extension of the local method for scene flow
(Quiroga et al., 2012). In this work, the tracking approach in intensity and depth is
regularized to compute a dense scene flow enforcing piecewise smoothness. In order
to preserve motion discontinuities along depth edges, a weighted TV is applied on
each component of the 3D motion field.

All these methods assume spatial smoothness of the scene flow, which is a
reasonable assumption for translational motions but not the optimal choice for
rotations. Under a rotation, even close scene points present different 3D motions.
Particularly, in the case of a moving camera the regularization of the motion field
can be a challenge. For this reason, we present an over-parametrization of the scene
flow (Quiroga et al., 2014a), where each scene point is allowed to follow a rigid
body motion. This way, the regularization can be done on a field of rigid motions,
favoring piecewise solutions, which is a better choice for real scenes. A similar
idea is presented by Rosman et al. (2012), where a regularization of a field of rigid
motions is proposed. However, our work (Quiroga et al., 2014a) differs from such
that by Rosman et al. (2012), in three ways. First, a more compact representation
is used of the rigid-body motion via the 6-parameter twist representation, instead
of a R

12 embedding. Second, this approach solves and regularizes the rigid motion
field at the same time. Finally, it is proposed a decoupled regularization of the
rotational and translational fields, which simplifies the optimization and allows the
use of different TV strategies on each field. Also, as we present in (Quiroga et al.,
2013), a depth-based weighting function is used to avoid penalization along surface
discontinuities and a warping function is defined to couple the twist motion and the
optical flow. A very similar warp is presented by Kerl et al. (2013) to solve for a
global rigid motion from RGBD images. However, we use the warping function to
locally constrain the rigid motion field in the image domain, while the global rigid
motion estimation can be seen as a particular case of this formulation. Moreover,
unlike Kerl et al. (2013), a depth consistency constraint is defined to fully exploit
both sources of data.

An alternative approach is the representation of the scene in 3D space. Hadfield
and Bowden (2014) estimate the scene flow using particle filtering in a 3D colored
point cloud representation of the scene. In that approach, a large set of 3D
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motion hypotheses must be generated and tested for each 3D point, leading to
high computational costs. Also, although the propagation of multiple hypotheses
could avoid to get stuck at local minima, it is not clear the benefit brought by
formulating the problem on an unstructured 3D point cloud. Hornacek et al.
(2014) compute scene flow by matching rigid patches of 3D points identified as
inliers of spheres, where RGB and depth information are simultaneously used to
define a matching cost. Rather than solve for 3D motions, this approach estimates
an optimal rigid motion for every patch, by generating and propagating a set of
hypotheses. The scene flow is Iteratively regularized by enforcing local rigidity,
which is done as a labeling optimization problem. This approach is very related to
our work (Quiroga et al., 2014a), in the sense that both solve for a dense field of rigid
motions and encourage local rigidity. However, these two approaches differ in several
aspects, such as the kind of RGBD consistency constraints, and the optimization
strategy: while Hornacek et al. (2014) use discrete optimization via a modified
PatchMatch (Hornacek et al., 2013), Quiroga et al. (2014a) use a Gauss-Newton
algorithm to perform continuos optimization. Nevertheless, the main difference
concerns our scene flow framework that minimizes a local/global energy, which
enables an adjustable combination between local and piecewise rigidity.

3.3 Proposed approach

In this thesis, we take advantage of the fact that most real scenes can be well
modeled as locally or piecewise rigid, i.e., the scene is composed of 3D independently
rigid components. We define a semi-rigid scene as one that its 3D motion field is well
approximated as locally or piece-wise rigid, or a combination of both, see Figure 3.2.
This way scene flow estimation can benefit from the rigid properties of the scene
while allowing motion discontinuities and outliers, being able to model complex
motion patterns. In order to exploit this assumption, we define a framework for
scene flow estimation from RGBD images, using an over-parametrization of the
motion. We represent the scene flow as a vector field of rigid body motions, which
is expressed as a field of twist motions and solved directly in the image domain. This
representation helps the regularization process, which, instead of directly penalizing
variations in the 3D motion field, encourages piecewise smooth solutions of rigid
motions by using a weighted TV regularization to preserve motion discontinuities
along surface edges. Moreover, this semi-rigid approach can be constrained in the
image domain to fully exploit intensity and depth data. For this purpose, we define
a projective function that makes it possible to constrain every rigid motion on
the image and to define an incremental solver, which is embedded in a robust
least-square estimation to exploit local rigidity. Thus, we can solve for the local
twist motion that best explains the observed intensity and depth data, gaining
robustness under noise. The local solver, in conjunction with the TV regularization
of the twist field, provides an adjustable combination between local and piecewise
rigidity. This formulation is flexible enough to support different data constraints
and regularization strategies, and it can be adapted to more specialized problems.
By using the same general framework, it is possible to model the scene flow as
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(a) (b) (c)

Fig. 3.2: Local and piecewise rigidity assumptions. (a) Input image, (b) local rigidity and (c)
piecewise rigidity. Every color patch indicates that inner scene points present (approximated) the
same rigid motion. Local rigidity favor the best rigid motion explaining the motion inside every
patch. Piece-wise rigidity encourage a set of rigid moving segments.

a global rigid motion plus a nonrigid residual, which is particularly useful when
estimating the motion of deformable objects in conjunction with a moving camera.
As we present in the experiments, this framework is flexible enough to estimate a
global rigid body motion or to solve for a general 3D motion field in challenging
setups. This way, we are able to model the motion of the scene as a global rigid
motion and a nonrigid residual.



4
Scene Motion Representation

Real world scenes are composed of a set of 3D surfaces, which in the more general
case, are free to move and deform independently. Using a depth sensor we are
provided with a finite set of samples of the scene. This is assumed to be enough
to represent the most important details of the 3D structure and to observe the
motions of interest in the scene. In the RGBD representation, every valid sample
of the scene, or scene point, is characterized by a RGB color and a depth measure.
If between two time steps there exists a motion of any 3D surface or of the RGBD
camera, or both simultaneously, the RGBD representation of the scene changes,
enabling the estimation of the 3D motion field.

Perhaps the most intuitive approach to solve for the scene flow is to use the
RGBD data without imposing any rule about the 3D motion. If any scene point
moves freely there are no limitations for the motions that can be modeled. However,
this independence between scene points, which may favor the richness of motions
modeled, leads to a very ill posed problem for two main reasons. First, the color of
every scene element is not discriminative since several scene points may have the
same color. Moreover, because of the presence of noise and illumination changes,
color-based consistency assumptions are commonly violated. Second, using each
depth measure alone does not make it possible to constrain 3D motion since depth
measures change with the motions in the scene. Therefore, any scene point with a
similar color would be a potential candidate for the new position of the scene point
and the 3D structure information cannot be exploited.

An appropriate motion model is required to reliably estimate the 3D motion of
every scene point . This model should be general enough to cover a wide variety of
interesting 3D motions but also it should allows constraints on the set of motions,
making it possible to state the scene flow formulation as a well-posed problem.
Most real world scenes are composed of 3D surfaces that can be well approximated
as locally or piece-wisely rigid, even very complex scenes. We define a semi-rigid
surface as a surface that any of its feasible motions can be well approximated as
a locally or piece-wise rigid motion, or a combination of both. This assumption is
fundamental because allows the use of a smoothness prior on the motion of scene
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points. Note that the assumption of semi-rigidity does not imply planar surfaces.
On a locally rigid surface, the 3D distance between scene points remains constant
and the 3D motions of these points are closely related, as well as the motion of their
projections on the image. Usually this assumption is exploited by assuming local
solutions of the optical flow or the 3D motion field. However, points belonging to
a rigid surface only have the same 3D motion if the rotational component is zero.
Otherwise, every point performs a different 3D displacement, as is observed from
Equation (2.17). Although that kind of regularity yields a better statement of the
problem, it does not totally exploit the properties of a locally rigid scene. Similarly,
the properties of a piece-wise rigid scene explain the benefits of using a TV-based
regularization, as is done in optical flow methods, but it is the chosen representation
of motion which determines the degree of utilization of the semi-rigid assumption
in the motion solution.

In this thesis we go beyond previous approaches by considering a semi-rigid scene.
For this purpose, scene flow is represented by a field of twist motions, where local
and piece-wise rigidity can be fully exploited. This over-parametrization makes it
possible to model scenes containing rigid and nonrigid motions, and as is presented
in Section 4.4, it includes and generalizes other motion representations.

4.1 Twist-motion representation

Every 3D point X, or scene point, is assumed to belong to a rigid surface S, which
is free to move between two time steps. Let ⇠ be the 6-vector twist representing the
rigid motion of the surface S. Under the twist action, every surface point performs
a 3D motion and the assemblage of motions of all surfaces generates the observed
scene flow. Instead of directly representing the elements of the motion field as 3D
vectors, we use an over-parametrized model to describe the motion of every point
as the rigid transformation of the surface. The 3D motion field of the scene is
embedded in a twist motion field, ⇠(x) : Ω ! R

6, where the motion of a 3D point
X, between two time steps, is modeled by:

X̃t+1 = eξ̂(xt)X̃t . (4.1)

In the twist-motion representation, every scene point follows a rigid motion,
which is represented by 6 parameters. This way is possible to encourage piecewise
smooth or constant solutions on this field of twist motions. This representation
exploits the local rigidity of the scene in order to better approximate complex 3D
motions. Nevertheless, this representation does not expect any a priori semi-rigid
configuration enabling a flexible formulation of the scene flow estimation, as is
presented in Chapter 5.

Between any two time steps, the scene flow, v(x), can be directly recovered from
a given twist motion field, ⇠(x), as follows:
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v(x)

1

!

=
⇣

eξ̂(x) − I4⇥4

⌘

X̃ . (4.2)

4.1.1 Twist motion on the image

Under the action of a twist ⇠ between t and t + 1, the motion of every 3D point
induces an image flow (u, v) in its RGBD representation. Changes and invariances
of the RGBD data can be used to solve for the scene flow, as is described in Section
5.2. For this purpose, it is useful to define a warping function that allows the
constraint of a rigid motion in the image domain, enabling the exploitation of
color and depth images. Particularly, because the twist representation, this warp is
required to map the twist action to the image domain. Let Wξ(x, ⇠) : R

2⇥R6 ! R
2

be the warping function that maps each (non-occluded) scene point to its new
location after the rigid motion ⇠. The warping function is defined as:

Wξ(x, ⇠) = ⇡
⇣

eξ̂X̃
⌘

, with X̃ =

 

⇡−1(x, Z(x))

1

!

. (4.3)

Accordingly, under the action of twist motion ⇠, a 3D point Xt becomes Xt+1, and
its projection on the image is modeled by:

xt+1 = Wξ(xt, ⇠). (4.4)

Let Sk(x) be a component of the RGBD image, e.g., brightness or depth, evaluated
at x 2 Ω, and let ⇢Sk(x, ⇠) be a differentiable consistency function between Sk

t (x)
and Sk

t+1 (Wξ(x, ⇠)). Every twist motion vector ⇠ is solved aiming to minimize
one or multiple consistency functions like ⇢Sk(x, ⇠). Optimization problems on
manifolds, such as SE(3), can be solved by calculating incremental steps in the
tangent space to the manifold. Particularly, the tangent space of the Lie group
SE(3) corresponds to its Lie algebra se(3). If a gradient-based procedure is used,
it requires computation of the derivatives of the warp with respect to the twist
motion ⇠, where ⇠̂ 2 se(3), see Equation (2.8). The warp (4.3) is nonlinear in ⇠

yielding to a complicated expression for its Jacobian. However, this can be well
approximated by a linear approximation around any small neighborhood on the
manifold, as is presented below. The definition of this linearized approximation
simplifies the optimization procedure providing a simple expression of the Jacobian,
which benefits the efficiency of any solver. Moreover, the linearization makes it
possible to analyze how each component of the twist motion affects the motion in
the image domain.

4.1.2 Linearization of the warping function

Let x be the projection on the image of a given 3D point X. Under the action of
twist ⇠, the pixel x becomes xξ = Wξ(x, ⇠). Moving away from ⇠, on the manifold,
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induces an additional image flow on the projection of the 3D point. Let ∆⇠ be a
small twist increment, i.e, close to the identity in SE(3), applied from ⇠, yielding to

the equivalent twist motion ⇠∆ = log(e∆̂ξeξ̂). The projection of 3D point X, under
the action of ⇠∆, can be expressed using the warping function as follows:

Wξ(x, log(e
∆ξ̂eξ̂)) = Wξ(xξ,∆⇠) = xξ + δx(xξ,∆⇠), (4.5)

where δx(xξ,∆⇠) is the image flow induced by the twist increment ∆⇠. Knowing
that ∆⇠ is close to the identity, the twist induces a small rotation and so that

the exponential function can be well approximated by the linear expression e∆̂ξ ⇡
I+ ∆̂⇠, see Section 2.2.2. Therefore, the image flow can be written as follows:

δx(xξ,∆⇠) = ⇡
⇣

e∆̂ξX̃ξ

⌘

− ⇡
⇣

X̃ξ

⌘

⇡ ⇡
⇣

(I+ ∆̂⇠)X̃ξ

⌘

− ⇡
⇣

X̃ξ

⌘

, (4.6)

with Xξ = ⇡−1(xξ, Z(xξ)), and where we abuse of notation of ⇡ to project 3D
points directly in homogeneous coordinates. Applying the twist and the projective
function in (4.6), we have:

δx(xξ,∆⇠) ⇡

0

@

fx
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A , (4.7)

with (∆X,∆Y,∆Z)T the vector that contains the components of the 3D displace-
ment induced by the twist ∆⇠, which are given by:
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Equation (4.9) can be simplified if the Z-component of the 3D motion is very small
with respect to the depth of the 3D point. By assuming that |∆Z/Z| ⌧ 1 then
Zξ(Zξ +∆Z) ⇡ Zξ

2, and the induced flow becomes:

δx(xξ,∆⇠) ⇡
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A
. (4.9)

Therefore, by defining J(xξ) as the Jacobian matrix evaluated at xξ, as follows:

J(xξ) =
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and given a small twist increment ∆⇠, the warping function can be well approxim-
ated around the twist ⇠, by the following linear version:

Wξ(x, log(e
∆̂ξeξ̂)) = Wξ(x, ⇠) + J(xξ)∆⇠. (4.11)

4.2 3D-motion representation

The scene flow can be represented directly as a 3D motion field, which is its original
definition in Section 2.1.2. In this representation, every 3D point X is also assumed
to belong to a moving rigid surface S, but instead of an explicit representation of
the rigid motion, the 3D displacement of every surface points is considered. Let x
be the projection of X. Under the motion of the surface, the 3D displacement of
X can be written as v(x) = (vX , vY , vZ). The assemblage of all motions forms the
scene flow, v(x) : Ω! R

3, where the motion of every 3D point, between two time
steps, is modeled by:

Xt+1 = Xt + v(xt) . (4.12)

In the 3D-motion representation, every scene point performs a 3D displacement
that is directly represented by 3 parameters. Under this representation, the local
rigidity assumption cannot be directly exploited. However it is still possible to
encourage smooth piecewise solutions, favoring semi-rigid motions. Moreover, it is
also possible to easily fit a local rigid motion, which can be useful to encourage
semi-rigid solutions, as is presented in Section 5.3.2.

4.2.1 3D motion on the image

The 3D motion of a scene point induces an image flow, (u, v), in its projection on
the image. The definition of a warping function makes it possible to constrain every
3D motion vector on the RGBD images. In order to define the 3D-motion warp,
we use the twist warping function (4.3), by considering the 3D displacement as the
particular case of the twist motion, where the rotational component is zero. Let
Wv(x,v) : R

2⇥R
3 ! R

2 be the warping function that maps every scene point into
its new location, after the action of 3D motion v, as follows:

Wv(x,v) = ⇡ (X+ v) , with X = ⇡−1(x, Z(x)). (4.13)

Therefore, if between two time steps, the point Xt performs a 3D motion v,
becoming Xt+1, its projection on the image is modeled by:

xt+1 = xt +Wv(xt,v). (4.14)

4.2.2 Linearization

The warping function (4.13) can be linearized around a given 3D motion v. Under
3D motion v, scene point x becomes xv = Wv(x,v). Let ∆v = (∆vX ,∆vY ,∆vZ)

T
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be a small 3D motion increment, then the projection of the 3D point X, after the
motion given by v +∆v, can be expressed using the warping function as follows:

Wv(x,v +∆v) = xv + δx(xv,∆v), (4.15)

with δx(xv,∆v) the image flow induced by ∆v. Knowing that v can be seen as a
twist with a zero rotational component, we use the result (4.10), from Section 4.1.2.
By defining J(xv) as the Jacobian matrix evaluated at xv as follows:

J(xv) =
1

Zv

0

@

fx 0 −xv

0 fy − yv

1

A , (4.16)

and given a small increment ∆v, the warping function can be well approximated
around v, by the following linear version:

Wv(x,v +∆v) = Wv(x,v) + J(xv)∆v. (4.17)

4.3 Other motion representations

4.3.1 Rigid body model

The inter-frame image flow induced by the 3D motion of a rigid surface has been
modeled in the literature using different assumptions. For brevity, let the focal
lengths, {fx, fy}, be the unit and the optical center, (cx, cy), be at the image origin.
The instantaneous velocity of a retinal point (x, y), corresponding to a given 3D
point with known depth Z, is modeled by Longuet-Higgins and Prazdny (1980) as:
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, (4.18)

with (u, v) = (@x/@t, @y/@t), and where t = (tX , tY , tZ)
T and ! = (!X ,!Y ,!Z)

T

are the instantaneous translation and angular velocity vectors, respectively. Horn

and Weldon (1988) use this instantaneous velocity model to describe the inter-frame

pixel motion, where velocities become displacements between t and t + 1, and the

optical flow is defined as (u, v) = (xt+1 − xt, yt+1 − yt). Adiv (1985) shows that

equation (4.18) approximates the image flow induced by a rigid motion under the

assumptions that the view of field of the camera is not very large, and VZ/Z ratio

and rotational velocities are very small. This model is named rigid body model in

the hierarchy classification of motions proposed by Bergen et al. (1992), and it is

characterized by the 6 degrees of freedom (DOF) of the rigid motion. Also, this

model coincides with the linearized warping function of the twist motion (4.11) and

is only valid to capture the image motion for rigid motions close to the identity.
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4.3.2 Affine flow model

When the distance between the background surfaces and the camera is large, it

is possible to approximate the image motion as an affine transformation (Bergen

et al., 1992) using the following model:
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A . (4.19)

This affine flow model can be seen as the particular case of the rigid body model

with only 4 DOF, where the rotational components !x and !y are assumed to be

negligible. Following equation (4.18) we can write the image flow as:
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This way the induced flow is modeled by the coefficients {a1, ..., a6}, which are

functions of the 3D displacement (tX , tY , tZ) and the rotational component !Z .

4.3.3 Planar surface flow model

Equation (4.18) assumes that the depth of every pixel is known, which is not always

the case for many applications. If the optical flow corresponds to the projection of a

planar surface, kXX+kY Y +kZZ = 1, the plane parameters (kX , kY , kZ) constrain

the flow induced by the 3D motion of the surface. The depth variable in (4.18)

can be removed by using the plane equation, thus the image flow is expressed as a

function of 8 parameters (Adiv, 1985):
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where coefficients {a1, ..., a8} depend on the rigid motion parameters (tX , tY , tZ)
T

and (!X ,!Y ,!Z)
T and the surface parameters (kX , kY , kZ)

T . This 8 DOF optical

flow model is called planar surface flow model by Bergen et al. (1992). Also, this

model is known as the homography model by Baker and Matthews (2004).

4.3.4 Orthographic camera models

Rigid body and affine models depend on depth data to compute the induced motion.

Therefore they make it possible to use depth data jointly with RGB information to

constrain motion in the image domain. However, it is also possible to consider a
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simpler camera model, as an orthographic camera, which is the most widely used

assumption in optical flow methods. In this case, the scene flow is inferred from the

computed optical flow and the provided depth data. Considering an orthographic

camera model allows to assess the contribution of incorporating depth data in the

2D motion constraint.

The action of a rigid transformation G = {R, t} can be written as Xt+1 =

RXt + t, so that the orthographic projection of the resulting 3D point Xt+1 is

given by:
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@
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1
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where the orthographic projection ⇡o : R3 ! R
2 maps a 3D point X = (X,Y, Z)T

to a pixel x = (x, y)T on Ω, by:

⇡o(X) = (kxX + cx, kyY + cy)
T , (4.23)

with kx and ky parameters of the camera, and (cx, cy) its principal point. For the

sake of simplicity, we assume that kx = ky = 1 and cx = cy = 0. Therefore, the

induced image flow, u = (u, v)T , between t and t+ 1, is given by:

u = ⇡o(Xt+1)− ⇡o(Xt), (4.24)

and can be represented by the following model:
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which corresponds to the affine motion model. In this case, the depth information

Z is irrelevant and is combined with the independent coefficients a1 and a4 of the

affine model, see equations (4.19) and (4.20). This 4 DOF model is used by Nir

et al. (2008) to compute an over-parametrized optical flow. A simpler model is

defined by assuming a negligible rotation with an orthographic camera model. In

this simplified model the image flow is given by:
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where the 3D surfaces are assumed to only perform 3D translations and be captured

by an orthographic camera. This 2 DOF model, which we name 2D-motion

representation, is the most used in the optical flow literature. The warping function,

Wu(x,u) : R
2⇥R2 ! R

2, is defined to map a pixel to its new location as a function
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of the perceived optical flow u, according to:

Wo(x,u) = x+ u. (4.27)

The scene flow, v(x), can be inferred using the optical flow u and the depth image

Z(x), as follows:

v(x) = ⇡−1(x+ u, Z(x+ u))− ⇡−1(x, Z(x)). (4.28)

4.4 Summary of motion representations

In this thesis, we consider three different motion representations, as is shown in

Table 4.1. We are mainly concerned in the proposed twist-motion representation,

which enables the direct use of the semi-rigid properties of the scene for the 3D

motion field estimation. We also use the 3D-motion representation, which allows

the direct solution of the scene flow and can be seen as particular case of the

twist-motion representation. Both twist-motion and 3D-motion representations

exploit depth data through a projective warping function. On the other hand,

the 2D-motion representation considers an orthographic camera, neglecting the

depth changes in the constraint of motion in the image, and yielding to a simpler

formulation of the motion estimation problem. Although every representation have

its own warping function, for the sake of simplicity, the generic expression W(x, ·)

is used, and the parameter ⇠, v, or u is used to identify the respective motion

representation.

Representation Warping function Small-increment model Scene flow

6-Twist Wξ(x, ξ) = π
⇣

eξ̂X̃
⌘

Wξ(x,∆ξ) = x+ Jξ(x)∆ξ
⇣

eξ̂ − I4⇥4

⌘

X̃

3D-motion Wv(x,v) = π (X+ v) Wv(x,∆v) = x+ Jv(x)∆v v

2D-motion Wo(x,u) = x+ u Wo(x,∆u) = x+∆u π−1(x+ u)− π−1(x)

Table 4.1: Summary of motion representations.





5
Scene Flow Model

The RGBD representation of a scene changes when the observed 3D surfaces move

or the camera undergoes motion, or both simultaneously. These changes in RGBD

data, together with the definition of a set of invariants of the representation, allow

the estimation of the 3D motion field presented in the scene. For example, the color

patterns of a given surface are expected to remain unchanged when it moves in the

scene, but also its color must differ from that of other surfaces, in order to perceive

its motion in the RGB data. Similarly, when a rigid surface moves in the scene,

it is expected that its 3D structure does not change and its intrinsic properties

remain consistent in the observed depth data. However, at the same time, the

representation should be able to capture the relative motion between the surface and

the sensor. Figures 5.1 and 5.2 present examples of changes and invariances in the

RGBD representation when surfaces move relative to the sensor. The definition of

an appropriate RGBD-based framework for scene flow estimation makes it possible

to take advantage of both sources of data: color and depth. However, there are

several ways to define the scene flow model and different assumption can be used

on the scene, in order to exploit the RGBD data. We base our framework on the

assumption of a semi-rigid scene and on the use of constancy constraints directly on

the RGBD images. Below we describe below our approach to exploit color and depth

data for scene flow estimation, using the twist- and 3D-motion representations.

The scene flow estimation problem is formulated as the determination of the inter-

frame 3D motion between two time steps. Accordingly, given two pairs of RGBD

images {Ic1, Z1} and {Ic2, Z2} the goal is to solve for the 3D motion field that best

explains the observed data, aiming to determine the real 3D motion executed in

the scene. The use of an appropriate representation of motion makes possible to

project 3D motions into the image domain and define consistency assumptions on

color and depth data. This way plausible 3D-motion vectors can be solved to satisfy

or minimize one or several RGBD-based constraints.
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Fig. 5.1: RGBD changes using a fixed camera. Form left to right, top to bottom: (a) first image,
(b) second image, and absolute difference in (c) intensity and (d) depth. Moving surfaces produce
changes in intensity and depth, while static scene points remain unchanged, except by the noise.

A motion constraint example

Let Ik(x) be a color component of a scene point X, after an inter-frame 3D motion

v, it is intuitive to assume that component Ik remains unchanged, yielding to the

constraint:

Ik1 (x) = Ik2 (⇡(X+ v)). (5.1)

This constancy constraint is not linear on v, but can be linearized, using a first-order

Taylor series expansion, to incrementally solve for the 3D motion. This linearization

assumes that the image changes linearly with the projection of X+v, which is not

always the case, especially under large motions in the image domain. This effect can

be reduce by solving iteratively for small increments of v, where the linearization is

more reliable. However, it is clear that only one equation as (5.1) does not uniquely

determine the 3D motion v for a given scene point X: one equation with three

unknowns. Since the full RGB information is available it seems reasonable to define

similar constancy constraints to exploit the three color components. Nevertheless,

the gradient information of the RGB component is highly correlated yielding in

most cases to a ill conditioned system of equations that do not allow a reliable

estimation of motion. Such limitation is known as the aperture problem in optical

flow estimation and implies that only the component of the 2D motion, normal to
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Fig. 5.2: RGBD changes with a moving camera. From left to right, top to bottom: (a) first image,
(b) second image, and absolute difference in (c) intensity and (d) depth. The movement of the
camera, as well as that of the person, produce a 3D motion of every scene point. Particularly, the
head turning produces more changes in intensity than in depth, while the camera motion is better
perceived on depth data in some regions, such as neck and t-shirt.

the gradient direction, can be determined from a single constraint. This disability

is not exactly the same in the scene flow estimation problem for two main reasons:

i) a 3D representation of the scene is provided by the depth data and ii) we aim to

solve for a 3D motion rather than simply the 2D motion on the image. Therefore, it

is evident that at least a second assumption is needed. The depth data can be used

to formulate an additional constraint to ensure the consistency of the 3D motion

with the 3D structure of the scene, as is presented in Section 5.2.2. Solving for

the 3D motion using single constraints on depth and a color images, yields a kind

of 3D aperture problem. Motion in the image domain can be determined only if

is normal to the gradient direction in color or depth images. Moreover, color and

depth gradient information could coincide yielding to the 2D aperture problem.

Conversely, any change in the Z-component of the motion can be determined since

it is directly reflected on the depth data, only limited by physics restrictions of the

depth sensor. Besides, vanishing gradients, noise and outliers are also very common

in color and depth images, making of the 3D motion computation an ill-posed

problem that cannot be solved independently for each point.

We present below a variational framework to estimate scene flow by exploiting

local and global properties of semi-rigid scenes.
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5.1 Scene Flow Energy

In order to get a reliable estimation of the scene flow, it is required to impose a

set of assumptions on the 3D motion field. In the case of optical flow estimation,

mostly a local or global regularity is used to model motion. On one hand, a local

method assumes that the motion in a local neighborhood on the image is constant.

This way it is possible to locally solve for the motion that best explains the local

data, ignoring the surrounding information. This idea dates from the seminal work

by Lucas and Kanade (1981) for stereo registration, which have been widely used

in optical flow. On the other hand, a global method assumes that the motion

field is smooth. In their seminal work Horn and Schunck (1981) introduce a global

variational approach, where a (global) dependency is defined on the motion at every

pixel with those at all the other pixels. Although local methods are robust to noise

and can handle larger displacements, current global variational methods are by far

the top performer in motion estimation tasks (Sun et al., 2010). Nevertheless, as

is proposed by Bruhn et al. (2005), it is also possible to benefit from local and

global approaches in the same formulation. We follow this belief to exploit the

semi-rigidity properties of real scenes from RGBD images. For this purpose, we

use local methods to take advantage of the local rigidity of the scene while global

methods are used to encourage piecewise smooth solutions, which are expected to

be observed due to the assumed piecewise rigidity of the scene. Accordingly, we

formulate the scene flow computation as the minimization problem of the energy:

E(⇠) = ED(⇠) + ↵ES(⇠), (5.2)

where the twist-motion representation is used, aiming to better exploit the semi-

rigidity of the scene and which, at the same time, being able to cover other motions

models. The first term, ED(⇠), is the data term, which measures how consistent

is the estimated scene flow with the observed intensity and depth data. The

smoothness term, ES(⇠), is defined to favor smooth motion fields but preserving

motion discontinuities. The local rigidity assumption can be exploited both in

the data and smoothness terms. By using this formulation is possible to get an

adjustable combination between local and piecewise rigidity in the solution. We

describe below the definition of each of components of the scene flow energy, aiming

to exploit the RGBD representation of the scene.

5.2 Data term

Our goal is to solve for the scene flow that best explains the observed color and

depth data. The definition of the data term is based in two main assumptions: i)

the color of the scene points remains (approximately) unchanged and ii) the depth

data is able to reliably capture the 3D structure of the scene at every time step.
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In order to constrain motion in the RGBD data the scene flow has to be projected

to the image domain. Considering the twist-motion representation, the warping

function given by Equation (4.3), models the motion of each scene point, enabling

the formulation of RGBD constraints for elements of this twist field on the image.

5.2.1 Color-based constraint

As in most optical flow methods, we exploit the color invariance through the gray

value image by defining a brightness constancy assumption (BCA):

I2(W(x, ⇠)) = I1(x), (5.3)

where I(x) represent the gray value of pixel x. Although it is also possible to

define constraints by using each of the RGB components or another color space,

the BCA has proved to be simple and effective. The main drawback of the BCA is

its sensitivity to illumination changes, which are common in real scenes. Moreover,

current RGBD sensors perform automatic white balance and exposure control by

default, which can alter gray values when the composition of the scene change

suddenly or when surfaces approach or move away from the camera. Therefore the

invariance expected in (5.3) is often violated. In order to gain robustness against

slight changes in brightness, Brox et al. (2004) define a gradient invariance of the

gray value image. However this assumption fails under rotations, especially around

the Z-axis since the gradient orientation changes. Nevertheless, the magnitude of

the gradient, Ig(x) = |rI(x)|, is expected to remain unchanged under a rotation,

and in general under any rigid motion. Accordingly, we define a gradient constancy

assumption (GCA) as:

Ig2 (W(x, ⇠)) = Ig1 (x). (5.4)

Figure 5.3 shows an example of how changes in the gray value image, not related

with the motion in the scene, affects brightness and gradient images.

5.2.2 Depth-based constraint

Variations of the 3D structure, induced by the scene flow, must be consistent with

the observed depth data at any time step. Therefore, it is possible to define a depth

variation constraint (DVC ) as follows:

Z2(W(x, ⇠)) = Z1(x) + δZ(x, ⇠), (5.5)

where δZ(x, ⇠) denotes the variation in depth induced on the 3D point ⇡−1(x, Z1(x))

by the twist motion ⇠. Let δ3D(x, ⇠) = (δX , δY , δZ)
T represent the 3D variation
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Fig. 5.3: Brightness constancy violation. From left to right, top to bottom: (a) first image, (b)
second image, (c) image difference, (d) first and (e) second images of the magnitude of the gradient,
and (f) their difference. While the camera is moving, there exists an automatic white balance that
modifies the gray value image, as can be noted in the image difference (c), changes that are not
related to the motion. On the other hand, the magnitude of the gradient is too little affected since
it measures the image structure, or texture, regardless uniform changes in luminance.

induced on x by twist motion ⇠, defined as:

δ3D(x, ⇠) =
⇣

eξ̂ − I4⇥4

⌘

X̃, with X̃ =

0

@

⇡−1(x, Z1(x))

1

1

A . (5.6)

Accordingly, the variation in depth, δZ , is obtained from the third component of

vector δ3D. This constraint enforces the consistency between the motion captured

by the depth sensor and the estimated motion.

3D-motion case. If the 3D-motion representation is used for the scene flow,

v = (vX , vY , vZ)
T , the DVC takes a simpler form, which is given by:

Z2(W(x,v)) = Z1(x) + vZ , (5.7)

reflecting that the third component of the 3D motion field must be consistent with

the observed change in depth.

5.2.3 Consistency measure

Different factors make the measurement of these consistency constraints a challenge.

First, the presence of noise on color and depth data produces perturbations in the
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RGBD data, frequently violating the consistency terms. Second, lens distortions

and the inaccuracy of the depth measures may bring errors in the projection of

the 3D motion on the image. Third, partial or total occlusions of the 3D surfaces

have to be handle since consistency constraints are not valid at these regions and

could strongly affect the motion estimation. Finally, external changes uncorrelated

to the 3D motion, as illumination changes, specular surfaces and shadows, produce

inconsistency between the RGBD representation of the scene and the scene flow.

For these reasons, RGBD based constraints are not obeyed in general and it is

required to measure how consistent is a given estimation with the observed data.

Let ⇢I , ⇢g and ⇢Z be the residuals of BCA, GCA and DVC constraints, respectively,

given by:

⇢I (x, ⇠) = I2(W(x, ⇠))− I1 (x) , (5.8)

⇢g (x, ⇠) = Ig2 (W(x, ⇠))− Ig1 (x) , (5.9)

⇢Z (x, ⇠) = Z2(W(x, ⇠))− (Z1 (x) + δZ(x, ⇠)). (5.10)

In order to cope with outliers in brightness and depth brought by noise, occlusions

or motion inconsistencies, a robust norm is required. In contrast to quadratic

penalties that give too much influence to outliers in the motion estimation, l1 norm

has proved to be very effective to deal with outliers in the data term in global optical

flow methods (Wedel et al., 2008). We use the Charbonnier penalty Ψ
(

s2
)

=p
s2 + 0.0012, which is a differentiable approximation of the absolute value, see

Figure 2.9. This penalty is applied jointly to BCA and GCA, and separately to

DVC, to get the total RGBD consistency measure:

⇢data (x, ⇠) = Ψ
(

⇢2I (x, ⇠) + γ⇢2g (x, ⇠)
)

+ λΨ
(

⇢2Z (x, ⇠)
)

, (5.11)

where the constant γ balances brightness and gradient residuals, while λ weights

intensity and depth terms.

5.2.4 Local consistency encouragement

It is well known that local methods are often more robust under noise than global

methods, allowing reliable motion estimations even facing contradictory or missing

data. Although local methods allow fast sparse solutions, they fail to provide dense

estimations since the surrounding information is not exploited to disambiguate

for motion in untextured regions. Local methods properties can benefit and

complement the global motion estimation, as is proposed by Bruhn et al. (2005).

Most scenes of interest can be well modeled as locally rigid scenes, i.e. they can

be seen as scenes composed by independent 3D rigid parts. Under this context, the

local assumption can benefit the motion estimation. However, the local assumption

can bias the estimation if the representation of motion does not properly model these



44 Chapter 5. Scene Flow Model

ψ(s2 )

s
2s

tr

2

ψ '(s2 )

s
2s

tr

2

Fig. 5.4: Truncated Charbonnier penalty. From left to right: (a) truncated version of the robust
norm Ψ

(

s2
)

=
p
s2 + 0.0012, for a given S2

tr, and (b) its derivative. This truncated penalty drops
all square residues larger than S2

tr from the local estimation.

local properties. For example, under the rotation of a small rigid surface, neither

the optical flow nor the 3D motion field should be straightforward encouraged to be

locally consistent since motion patterns differ between them. Conversely, the twist

representation is able to reflect the local rigidity of the scene on the image and

a local estimation allows to directly exploit this properties. Therefore we define

a local consistency error ⇢ldata, which measures how well a given twist ⇠ locally

satisfies the RGBD constraints, according to:

⇢ldata (x, ⇠) =
X

x02N(x)

w(x0) ⇢data
(

x0, ⇠
)

(5.12)

whereN(x) is an image neighborhood centering on x, and w is a specific weighting

function. The local neighborhood N(x) can be setting to a fix size or adjusted as

a function of the depth in order to cover a constant size in the scene. It is clear

that if N(x) = {x} that local measure ⇢ldata becomes the point-wise error ⇢data.

The weighting function can be chosen to follow a given distribution, e.g. uniform

or Gaussian, or to be defined using the observed data. In this thesis we consider

a fixed-size square function, for two cases: the uniform distribution, where weights

are the unity, i.e., w(x0) = 1, and a depth-driven weighting function, where weights

decay with the difference in depth relative to the window center, defined as:

w(x0) = eβ|Z(x)−Z(x0)|, (5.13)

reflecting the belief that close scene points are more likely to follow the same rigid

motion, and avoiding the inclusion of scene points from both sides of a depth edge.

Finally, we modify the robust norm, which is able to deal with a tractable

percentage of outliers, smaller than 50%, however, because total or partial occlusion

of 3D surfaces, this percentage can be larger and skew motion estimation. In order

to deal with of outliers brought by occlusion, the robust norm is truncated from
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a given value, s2tr, as is shown in Figure 5.4, cropping these scene points from the

estimation to reduce the effect of partial occlusions.

Full data term

The full data term can be written as:

ED(⇠) =
X

x

X

x02N(x)

w(x0) ⇢data
(

x0, ⇠
)

. (5.14)

5.3 Smoothness term

Without regularization, equation (5.11) alone is not sufficient to constrain the twist

motion for a given point since there is an infinite number of twists that satisfy these

constraints. On the other hand, equation (5.12) allows to solve for a local motion

on well textured regions but in most cases fails to capture the full motion field. We

exploit the semi-rigidity of the scene to define a regularization term on the field

of twist motions, which aims to favor piecewise smooth solutions. Particularly, we

use TV as regularizer on this field of rigid motions for three reasons: i) does not

penalizes discontinuities, or edges, ii) does not penalizes smooth functions and iii)

preserves exactly the location of discontinuous edges. Moreover there exist efficient

solvers for TV-based regularizers.

5.3.1 Regularization on the twist field

A twist motion field ⇠ can be decomposed into a rotational field !, with eω̂ : Ω!

SO(3), and a 3D motion field ⌧ : Ω ! R
3. Since they are decorrelated by nature,

we regularize each field independently using a weighted TV, which allows piecewise

smooth solutions while preserving motion discontinuities. Although discontinuities

of these two fields are expected to coincide, a decoupled regularization scheme

is preferred for three reasons: i) it allows to benefit from available, efficient TV

regularizers, simplifying the optimization of the energy, ii) it yields a general

framework for the twist-motion and 3D-motion representations of the scene flow

and iii) it let to apply different TV regularization strategies to each component.

Moreover, thanks to the depth data is possible to define a weighting function to

preserve discontinuities.

Depth-based discontinuities preserving

In a semi-rigid scene it is expected that close 3D points move under the action of

the same rigid body motion, while distant points may or may not follow the same

rigid motion. However, in most cases, discontinuities of the motion field coincide
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with the boundary of the observed 3D surface. This fact can be exploited using the

2D parametrization of the 3D surface given by the depth image Z(x). Particularly,

the magnitude of the gradient |rZ(x)| encodes the 3D distance between neighbor

scene points and expose the edges of the surface as is shown in Figure 5.5. We

define the decreasing positive function

c(x) = e−β|rZ(x)|2 (5.15)

to quantify the continuity of the surface in a given point x, as is shown in Figure

5.5. The use of the weighting function c(x) prevent the regularization across the

discontinuities of the surface, as is presented below.

Translational field regularization

Regularization of the fields ! and ⌧ poses different challenges. Elements of ⌧ lie in

the Euclidean space R
3, and the problem corresponds to a vector-valued function

regularization. Different vectorial TV approaches can be used to regularize ⌧ , such

as those described in (Goldluecke and Cremers, 2010). Particularly, the channel-

by-channel l1 norm has been successfully used for optical flow (Wedel et al., 2009).

We follow this approach to define the weighted TV of ⌧ as:

TVc(⌧) =
X

x

c(x) kr⌧(x)k , (5.16)

where kr⌧k := |r⌧X | + |r⌧Y | + |r⌧Z | and c(x) is the weighting function (5.15),

which helps to preserve motion discontinuities along edges of the 3D surface. The

absolute value can be replaced by the Huber norm (Werlberger et al., 2009), which is

given by (2.28), to reduce the staircasing effect. Efficient solvers for both norms exist

and some of them are presented in (Chambolle and Pock, 2011). The staircasing

effect can also be reduced if TV is replaced by the total generalized variation (TGV)

Bredies et al. (2010), where higher order derivatives of ⌧ are not penalized.

Rotational field regularization

Elements of ! are rotations in the Lie group SO(3), embedded in R
3 through the

exponential map (2.7), and the regularization has to be done on this manifold. In

order to apply a TV regularization, a notion of variation should be used for elements

of SO(3), which is not a vector space. Given two rotations eω̂1 , eω̂2 2 SO(3), the

residual rotation can be defined as eω̂2e−ω̂1 , representing the rotation required to go

from eω̂1 to eω̂2 in SO(3). The product in logarithmic coordinates can be expressed

as eω̂1eω̂2 = eµ(ω̂1,ω̂2), where the mapping µ can be expanded in a Taylor series
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Fig. 5.5: Depth-based discontinuities preserving. From left to right: (a) depth image, Z(x), (b)
magnitude of the gradient, |rZ(x)| , and (c) depth-based weighting function, c(x).

around the identity, using the Baker-Campbell-Hausdorff formula:

µ(!̂1, !̂2) = !̂1 + !̂2 +
1

2
[!̂1, !̂2] +O(|(!̂1, !̂2)|

3), (5.17)

where [·, ·] is the Lie bracket in so(3). Close to the identity, equation (5.17) is well

approximated by its first-order terms, yielding to eω̂2e−ω̂1 ⇡ !̂2− !̂1. Therefore, for

small rotations the variation measure can be defined as the matrix subtraction in

so(3), or equivalently, as a vector difference for the embedding in R
3. Accordingly,

with r being the image gradient operator, the derivative image matrix, D! :=

(r!X ,r!Z ,r!Z)
T : Ω ! R

3⇥2, approximates the horizontal and vertical point-

wise variations of ! on the image. Following (Goldluecke and Cremers, 2010), we

define the TV as the sum over the largest singular value σ1 of the derivative matrix:

TVσ(!) =
X

x

c(x)σ1(D!(x)) . (5.18)

This TV approach supports a common edge direction for the three components,

which is a desirable property for regularization of the field of rotations. Moreover,

deviations are less penalized with respect to other measures, e.g., the Frobenius

norm (Rosman et al., 2012), and efficient solvers are available. However, this TV

definition approximates the real structure of the manifold, yielding biased measures

when it is far from the identity. The more the rotation is away from the identity,

the more its variations in SO(3) are penalized as is shown hereinafter. Given two

rotations !1 = ✓1
 −!1 and !2 = ✓2

 −!2, with ✓ the angle and  −! the unitary axis vector
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of the rotation, and writing ✓2 = ✓1+δ✓, leads to !2−!1 = ✓1(
 −!2−

 −!1)−δ✓
 −!2. This

linearly dependent penalization usually is not a problem, since large rotations imply

larger motion on the image. Thus, a stronger regularization can be reasonable.

Moreover, large rotation caused by a global motion of the scene or the camera can

be optimized separately and compensated, as we present in Section 5.6. Optionally,

this over-penalization can be removed by expressing each rotation as ! = ✓ −! and

applying a vectorial TV on  −! and a scalar TV on ✓. This alternative definition

does not increase the computational cost much, since the solver for (5.18) computes

the norm of every element of ! and the field generated by ✓ is efficiently regularized

using a scalar TV solver.

Full regularization term

The regularization on the twist field is formulated as:

ES (⇠) = TVc(⌧) +TVσ(!). (5.19)

5.3.2 Regularization on the 3D motion field

When a rigid surface moves in the scene, the 3D distance between any two of

its points remains constant. Therefore, it is intuitive to expect that close points

perform the same, or a very similar, 3D motion, and encourage piecewise smooth

solutions through the regularization. This assumption has been successfully used

in the regularization of the optical flow. However, although 3D distances remain

unchanged, 3D motions performed for points of the moving rigid surface are not

the same in general. Using the small-rotation model for a rigid motion, given by

Equation (2.16), the scene flow v induced on a 3D point X, is given by:
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1

C

C

A

, (5.20)

from which is clear that if the rotational component is not zero, the scene flow

is a function of the 3D point, and so that, it differs from one point to another

on the rigid surface. Only a zero rotation component of the rigid motion, i.e., a

pure translational motion, guarantees a constant scene flow. Using the 3D-motion

representation of the scene flow is not possible to directly exploit the piecewise

rigidity of the scene. However, close 3D points that follows the same rigid motion,

are expected to present similar 3D motions and piecewise smoothness of the 3D

motion field is a valid approximation. Therefore, we propose a regularization

approach using this piecewise smoothness assumption combined with a rigid motion

prior (Vogel et al., 2011), which encourages a local rigidity without an explicit
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computation of the rigid motion field. This way local and piece-wise rigidity are

combined into the regularization of the 3D motion field.

TV-based regularization on the 3D motion field

In order to favor smooth piecewise solution of the scene flow, a weighted TV is

applied. The regularization is done channel by channel according to:

TVc(v) =
X

x

c(x) krv(x)k , (5.21)

with krvk := |rvX |+ |rvY |+ |rvZ | and c(x) the weighting function (5.15).

Rigid-motion prior on the 3D motion field

Aiming to exploit the semi-rigidity of the scene, the 3D motion field is encouraged

to be locally consistent with a rigid motion. Let NR(v) be the nonrigid residual

functional, defined as:

NR (v) =
X

x

Ψ
⇣

∣

∣RigN
v (x)− v(x)

∣

∣

2
⌘

(5.22)

where RigN
v (x) is the local N ⇥N projection of the scene flow v onto the closest

rigid motion subspace. The functional NR (v) measures the total non-local rigidity

of the scene flow and it is provided with the robust norm Ψ
(

s2
)

=
p
s2 + 0.0012,

to deal with outliers. The definition of the local rigid projection RigN
v (x) is based

on the local fitting of a rigid motion (!, t), using the small-rotation approximation

(5.20). With N(x) being a N ⇥ N neighborhood centering at x, the local rigid

motion (!, t) is defined via the following weighted least-squares problem:

min
(ω,t)

X

x02N(x)

w(x,x0)

∣

∣

∣

∣

∣

∣

(

[X0]⇥ | I3⇥3

)

0

@

!

t

1

A− v(x0)

∣

∣

∣

∣

∣

∣

2

, (5.23)

with X0 = ⇡−1(x0, Z(x0)) and [·]⇥ the cross product matrix. The weighting

function wx(x,x
0) aim to favor points belonging to the same surface of x. For this

purpose, each pixel x0 is weighted by e−kd(x,x0)2 , where d(x,x0) is the 3D Euclidean

distance between x and x0, and k an adjustable parameter. We follow the solution

of problem (5.23) presented by Vogel et al. (2011). Let M 2 R
3N2⇥6 and P 2

R
3N2⇥1 be the concatenation of matrices ([X0]⇥ | I3⇥3 ) 2 R

3⇥6 and scene flow

vectors v(x0) 2 R
3, respectively, whose elements are taken from Nx. Let µ 2

R
3N2⇥3N2

be the diagonal matrix, whose elements correspond to the weights given
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by wx(x,x
0). Using this notation, the rigid motion that solves (5.23) is given by:

0

@

!

t

1

A = (MTµM)−1MTµP , (5.24)

therefor, the projection of v(x) onto the local rigid motion subspace is given by:

RigN
v (x) = ([X]⇥ | I3⇥3 ) (M

TµM)−1MTµP . (5.25)

The rigid projection requires the inversion of the matrix (MTµM) 2 R
6⇥6, which

can be done efficiently. Although equation (5.25) allows the projection of a local

scene flow without the explicit computation of the rigid motion, due to the linear

approximation it assumes a small rotation. It is also possible to iteratively compute

the full rigid motion that best fit the local scene flow, in which case, is required to

explicitly compute (!, t).

Full regularization term

The regularization term of the scene flow is defined as:

ES (v) = TVc(v) + ⇣NR(v), (5.26)

where ⇣ balances the total variation and the locally-rigid terms.

5.4 Optimization of the energy

The minimization of the proposed energy (5.2) is a challenge due to the l1-norm used

in the regularization term, which is non-differentiable. However, it is possible to

introduce an auxiliary variable (Wang et al., 2008) to decompose the optimization

into two simpler problems. In particular, the auxiliary twist field χ is used to

reformulate the minimization problem as follows:

min
ξ,χ

ED(⇠) +
1

2

X

x

|⇠(x)− χ(x)|2 + ↵ES(χ) (5.27)

where  is a small numerical variable. Note that the linking term between ⇠ and χ

is the distance on the tangent space at the identity in SE(3). The solution of (5.27)

converges to that of (5.2) as  ! 0. Minimization of this energy is performed by

alternating the following two optimization problems:
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i. For fixed χ, estimate ⇠ that minimizes:

X

x

⇢ldata (x, ⇠(x)) +
1

2
|⇠(x)− χ(x)|2. (5.28)

ii. For fixed ⇠ = (!, ⌧), compute χ = ($,⇡) that minimizes:

(

TVc(⇡) +
⌘

2

X

x

|⇡(x)− ⌧(x)|2
)

+

(

TVσ($) +
⌘

2

X

x

|$(x)− !(x)|2
)

, (5.29)

where ⌘ = (↵)−1. Below we present how to solve for data-based and smoothness-

based problems, which are defined as the minimization of (5.28) and (5.29),

respectively. Afterwards, the minimization of the scene flow energy for the 3D-

motion representation is presented.

5.4.1 Data-based energy minimization

The optimization of (5.28) can be done pointwise by minimizing:

1

2
|⇠ − χ|2 +

X

x2N(x0)

Ψ
(

⇢2I (x, ⇠) + γ⇢2g (x, ⇠)
)

+ λΨ
(

⇢2Z (x, ⇠)
)

. (5.30)

This minimization corresponds to a nonlinear optimization problem, which can be

solved by IRLS (Green, 1984) with a Gauss-Newton numerical algorithm. For this

purpose, the energy is linearized at a given estimate ⇠, to calculate a rigid motion

increment, ∆⇠, on the tangent space to the manifold. This procedure is applied

iteratively and the twist motion updating is done via ⇠  log(e∆̂ξeξ̂).

Linearization of the data-based energy

Energy (5.30) can be linearized around the current estimate ⇠, using a first-order

Taylor series expansion. Particularly, for the brightness residual we have:

⇢I

⇣

x, log(e∆ξ̂eξ̂)
⌘

⇡ I2(xξ) + Ix
@W

@⇠
∆⇠ − I1 (x) , (5.31)

where Ix = (@I2/@x, @I2/@y) is the image gradient and @W/@⇠ is the Jacobian J

of the warp, which is given by (4.10), and both evaluated at the current estimate

of the scene point position, xξ = W(x, ⇠). Therefore, the residual becomes:

⇢I

⇣

x, log(e∆ξ̂eξ̂)
⌘

⇡ ⇢I (x, ⇠) + IxJ∆⇠, (5.32)
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and, similarly, for the gradient residual we have:

⇢g

⇣

x, log(e∆ξ̂eξ̂)
⌘

⇡ ⇢g (x, ⇠) + IgxJ∆⇠. (5.33)

Using the first-order expansion for the depth residual yields:

⇢Z

⇣

x, log(e∆ξ̂eξ̂)
⌘

⇡ Z2(xξ) + ZxJ∆⇠ −
⇣

Z1 (x) + δZ

⇣

x, log(e∆ξ̂eξ̂)
⌘⌘

, (5.34)

where Zx = (@Z2/@x, @Z2/@y) is the depth image gradient evaluated at xξ. The

last term, δZ , is the variation in depth which can be linearized by approximating

the 3D motion, δ3D, induced by ∆⇠, as follows:

δ3D(x, log(e∆ξ̂eξ̂)) =
⇣

e∆̂ξeξ̂ − I
⌘

X̃ ⇡
⇣

(I+ ∆̂⇠)eξ̂ − I
⌘

X̃

⇡
⇣

eξ̂ − I
⌘

X̃+ ∆̂⇠
⇣

eξ̂X̃
⌘

= δ3D(x, ⇠) + ∆̂⇠X̃ξ. (5.35)

Therefore, the depth residual can be written as:

⇢Z

⇣

x, log(e∆ξ̂eξ̂)
⌘

⇡ ⇢Z (x, ⇠) + (ZxJ−K)∆⇠, (5.36)

where the 1 ⇥ 6 vector K is defined as K = D ([Xξ]⇥|I3⇥3), with D = (0, 0, 1)

isolating the third component and [·]⇥ denoting the cross product matrix. Finally,

the linearized version of the data term can be expressed as:

1

2

∣

∣

∣
log(e∆ξ̂eξ̂)− χ

∣

∣

∣

2
+

X

x2N(x0)

Ψ
⇣

|⇢I + IxJ∆⇠|
2 + γ |⇢g + IgxJ∆⇠|

2
⌘

+ λΨ
⇣

|⇢Z + (ZxJ−K)∆⇠|2
⌘

, (5.37)

where the parameters (x, ⇠) are considered implicit.

Twist motion increment

Taking the partial derivative of (5.37) with respect to ∆⇠ and setting it to zero, the

increment ∆⇠ can be computed as:

∆⇠ = −H−1g, (5.38)

where the 6⇥ 1 gradient vector g is given by:

g =
X

x2N(x0)

{

Ψ0
(

⇢2I + γ⇢2g
) ⇥

(IxJ)
T⇢I + γ(IgxJ)

T⇢g
⇤

+λΨ0
(

⇢2Z
)

(ZxJ−K)T ⇢Z

o

+
1


log
⇣

(eξ̂)−1eχ̂
⌘

, (5.39)
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with Ψ0 the derivative of the robust norm, which is always evaluated at the current

estimate ⇠. The 6⇥ 6 matrix H is the Gauss-Newton approximation of the Hessian

matrix, which is given by:

H =
X

x2N(x0)

Ψ0
(

⇢2I + γ⇢2g
)

h

(IxJ)
T (IxJ) + γ (IgxJ)

T (IgxJ)
i

+ λΨ0
(

⇢2Z
)

(ZxJ−K)T (ZxJ−K) +
1

2
I6⇥6. (5.40)

A reliable computation of (5.38) requires that the Hessian matrixH is invertible and

well conditioned. The construction of H is done as a weighted linear combination

of 6 ⇥ 6 matrices, which are computed using gradient images Ix, I
g
x and Zx, and

the Jacobian J. The main drawback of local methods following the Lucas-Kanade

framework (Baker and Matthews, 2004), occurs on regions presenting vanishing

gradients, in both intensity and depth images for RGBD data. In such that case, the

Hessian matrix H is non-invertible and/or ill-conditioned, and so that, being unable

to perform dense motion estimation. However, in our approach, the regularization

applied includes the auxiliary field χ, which provides an interesting stability to

the optimization procedure. The identity matrix I6⇥6 allows to smoothly switch

between the Gauss-Newton algorithm and a gradient descent algorithm. On one

hand, if the gradients vanish, H tends to a constant diagonal matrix and the twist

increment equation (5.38) leans to a gradient descent updating where the initial

estimation is favored. On the other hand, if the gradient information is meaningful,

H−1 guides the twist motion increment according to the gradient images and the

Jacobian, in a Gauss-Newton method. This way, equation (5.38) avoids to estimate

motions on flat regions of the image, giving to the smoothness procedure the task

of completing the estimation. Unlike the 2D motion on the image plane, depth

changes can always be computed as is demonstrated in Section 5.4.3, where a close

look to the Hessian Matrix is done for the 3D-motion representation case.

5.4.2 Smoothness-based energy minimization

Each side of the energy (5.29) can be seen as vectorial image denoising problem

with a TV-L2 model. The left side corresponds to a channel-by-channel TV. This

regularization is done independently per channel and coincides with the ROF-model

(Rudin et al., 1992). This problem is solved using the Chambolle’s projection

algorithm (Chambolle, 2005), which is based on gradient descent and re-projection

on the dual-ROF model. The right side is a vectorial TV regularization proposed by

Goldluecke and Cremers (2010). This problem can be solved using the Bermudez-

Moreno algorithm (Bermudez and Moreno, 1981; Goldluecke et al., 2012), which is

a generalization of the Chambolle’s projection algorithm (Aujol, 2009). Below we

describe the solution of both TV-based problems.
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Channel-by-channel TV

Given a fixed 3D motion field ⌧ = (⌧X , ⌧Y , ⌧Z), the goal is to compute ⇡ =

(⇡X ,⇡Y ,⇡Z) that minimizes the left side of the energy (5.29). For every channel

i = {X,Y, Z}, this problem corresponds to the following weighted formulation of

the ROF image denoising model:

X

x

c(x) |r⇡i(x)|+
⌘

2
|⇡i(x)− ⌧i(x)|

2. (5.41)

An efficient solution, using the dual ROF-model, is given by the Chambolle’s

projection algorithm (Chambolle, 2005) according to:

⇡i(x) = ⌧i(x) +
c(x)

⌘
r · p(x) , (5.42)

where p = (p1, p2) : Ω ! R
2 is the solution of the dual problem, which is defined

(almost everywhere) as the unite vector r⇡i/|r⇡i|. Setting p0 = 0, ⇡0i = ⌧i and

choosing ⌫  1/4, the dual variable p can be computed recursively following:

pn+1(x) = ΠS (pn(x) + (⌘⌫)r⇡ni (x)) , (5.43)

with the projection ΠS defined as:

ΠS (p(x)) =
p(x)

max {1, |p(x)|}
. (5.44)

Vectorial TV

Given a rotational field ! = (!X ,!Y ,!Z) one wants to solve for $ = ($X ,$Y ,$Z)

that minimizes:
X

x

c(x)σ1(D!(x)) +
⌘

2
|$(x)− !(x)|2 , (5.45)

This problem is solved using the Bermudez-Moreno’s framework (Aujol, 2009). This

is a general projection-based algorithm that can be used to solve the dual problem

of a vectorial TV image denoising, as is presented by Goldluecke et al. (2012). Using

the Bermudez-Moreno’s algorithm the minimizer of (5.45) is given by:

$(x) = !(x) +
c(x)

⌘
DivP(x) , (5.46)

where P = (p1,p2,p3) : Ω! R
3⇥2 is the solution of the dual problem, and DivP,

the divergence matrix defined as DivP := (r·p1,r·p2,r·p3)
T : Ω! R

3. Setting

P0 = 0, $0 = ! and choosing ⌫  1/4, the dual variable P can be computed
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recursively following:

Pn+1(x) = ΠK (Pn(x) + (⌘⌫)D$n(x)) , (5.47)

with D! := (r!X ,r!Z ,r!Z)
T : Ω ! R

3, the derivative matrix of !, and the

projection, ΠK , defined as:

ΠK (P(x)) = PVΣ+Σl1V
T . (5.48)

Being P = UΣV the singular value decomposition of P, andΣ, the diagonal matrix

containing the singular values {σ1,σ2}, matrix Σ+ denotes the pseudo inverse of Σ

and matrix Σl1 the projection of the elements of Σ onto the l1-unit ball.

5.4.3 Minimization on the 3D motion field

Using the 3D-motion representation of the scene flow, the problem is formulated as

the minimization of the following energy:

E(v) = ED(v) + ↵ {TVc(v) + λNR(v)} , (5.49)

where the data term, ED, is given by (5.14), with ⇠ = (0,v), i.e., a zero rotational

component, and the smoothness term is formed by the total variation and nonrigid

terms. The minimization of the energy (5.49) is done by introducing two auxiliary

motion fields to decompose the optimization into three simpler problems. Let u

and w be 3D motion fields, then the scene flow v is solved to minimize:

ED(v) +
1

2

X

x

|v(x)− u(x)|2 + ↵TVc(u) +
1

2

X

x

|v(x)−w(x)|2 + ↵λNR(w).

(5.50)

The minimum of (5.50) converges to the solution of (5.49) as  ! 0, and can be

computed by alternating the three following optimization problems:

i. For fixed u and w, estimate v that minimizes:

X

x

⇢ldata (x,v(x)) +
1

2

n

|v(x)− u(x)|2 + |v(x)−w(x)|2
o

. (5.51)

ii. For fixed v, compute u that minimizes:

TVc(u) +
⌘

2

X

x

|u(x)− v(x)|2, (5.52)

where ⌘ = (↵)−1.
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iii. For fixed v, compute w that minimizes:

NR(w) +
⌘

2

X

x

|w(x)− v(x)|2, (5.53)

with ⌘ = (↵λ)−1.

Problem ii. is solved using the channel-by-channel TV approach presented in

Section 5.4.2. The minimization of problem i., or data-based energy, and of problem

iii., or nonrigid-based energy, is presented below.

Data-based energy minimization

The optimization of (5.51) can be done pointwise by minimizing:

1

2

n

|v − u|2 + |v −w|2
o

+
X

x2N(x0)

Ψ
(

⇢2I (x,v) + γ⇢2g (x,v)
)

+ λΨ
(

⇢2Z (x,v)
)

.

(5.54)

This problem can be solved using IRLS with a Gauss-Newton algorithm, where

the scene flow increment, ∆v, is iteratively calculated by linearizing the energy at

the current estimate v. Thus, the scene flow solution is updating via v v+∆v.

Following (5.37), energy (5.54) is linearized around the current estimate v as follows:

1

2

n

|v − u|2 + |v −w|2
o

+
X

x2N(x0)

Ψ
⇣

|⇢I + (IxJ)∆v|2 + γ |⇢g + (IgxJ)∆v|
2
⌘

+ λΨ
⇣

|⇢Z + (ZxJ−D)∆v|2
⌘

, (5.55)

where the Jacobian J of the warp, is given by Equation (4.16) and the 3D vector

D = (0, 0, 1) isolates the Z-component. Taking the partial derivative of (5.55) with

respect to ∆v, and setting it to zero, the increment ∆v can be computed as:

∆v = −H−1g, (5.56)

where g is the 3⇥ 1 gradient vector defined as:

g =
X

x2N(x0)

{

Ψ0
(

⇢2I + γ⇢2g
) ⇥

(IxJ)
T⇢I + γ(IgxJ)

T⇢g
⇤

+λΨ0
(

⇢2Z
)

(ZxJ−D)T ⇢Z

o

+
2



✓

v −
u+w

2

◆

, (5.57)
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with the derivative of the robust norm Ψ0 evaluated at the current estimate v, and

the 3⇥ 3 approximation of the Hessian matrix H given by:

H =
X

x2N(x0)

Ψ0
(

⇢2I + γ⇢2g
)

h

(IxJ)
T (IxJ) + γ (IgxJ)

T (IgxJ)
i

+ λΨ0
(

⇢2Z
)

(ZxJ−D)T (ZxJ−D) +
1


I3⇥3. (5.58)

The construction of H is a weighted linear combination of 3⇥ 3 matrices, which

are computed from gradient images Ix, I
g
x and Zx, and the Jacobian, J, of the warp.

For this reason, the gradient information determines the ability to estimate motion

in the image domain for a given region. For instance, each of the matrices which

depends on the intensity gradient, can be written as:

(IxJ)
T (IxJ) = JT

0

@

I2x IxIy

IxIy I2y

1

AJ =
1

Z(x)2

0

B

B

@

I2x IxIy IxIΣ

IxIy I2y IyIΣ

IxIΣ IyIΣ I2Σ

1

C

C

A

(5.59)

with IΣ = − (xIx + yIy), combining horizontal and vertical components of the

gradient as a function of the pixel location. The 2 ⇥ 2 inner matrix in (5.59),

ITx Ix, characterizes the gradient information pointwise, and when summed with all

matrices in the neighborhood, produces the covariance matrix of the gradient, which

has been used to determine regions that can be tracked well (Shi and Tomasi, 1994).

The full 3⇥3 matrix takes into account the projective transformation depending on

the pixel location, and the inverse square of its depth, which weighs the contribution

of every matrix. If the point-wise gradient vanishes or Ψ0 ! 0, due to the presence

of an outlier, there is a null contribution of this pixel into the overall construction

of H. Gradient and depth images also contribute in the solution, particularly, the

gradient of the depth image brings a decorrelated information, capturing the texture

of the 3D surface which benefits the characterization of the region. The matrices

depending on the depth gradient take the following form:

(ZxJ)
T (IxJ) =

1

Z(x)2

0

B

B

@

Z2
x ZxZy Zx (ZΣ − 1)

ZxZy Z2
y Zy (ZΣ − 1)

Zx (ZΣ − 1) Zy (ZΣ − 1) (ZΣ − 1)2

1

C

C

A

(5.60)

with ZΣ = − (xZx + yZy). This way gradient information from intensity and depth

images complement each other, allowing motion estimation on regions where the

use alone of each source of data cannot. However, when both intensity and depth

gradients vanish, it is not possible to estimate motion in the image since IxJ, I
g
xJ

and ZxJ in equation (5.56) go to zero. Observe that even on this untextured region

the matrix H is still invertible thanks to the regularization. This is an important
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properties because it prevents the estimation of the 2D motion on regions with no

enough gradient information, conversely, it is still able to compute the Z-component

of the motion. Observe that when gradients vanish the 2D motion estimation is

done in the regularization step, which corrects and completes the estimation using

the global information. However, at the same time, if intensity and depth gradients

vanish the increment equation (5.56) becomes:

∆v = H−1

2

4

X

x2N(x0)

{

λΨ0
(

⇢2Z
)

DT⇢Z
 

+
2



✓

v −
u+w

2

◆

3

5 , (5.61)

allowing to compute the changes in depth by minimizing the depth residual ⇢Z .

nonrigid-based energy minimization

The minimization of (5.53) is done per-pixel by solving:

min
w

Ψ
⇣

∣

∣RigN
w −w

∣

∣

2
⌘

+
⌘

2
|w − v|2, (5.62)

where the parameter x is considered implicit. By setting the initial estimate as

w = v, the scene flow can be iteratively computed via w  w + ∆w, where the

3D motion increment, ∆w, is given by:

∆w =
2Ψ0

⇣

|⇢NR|
2
⌘

⇢NR + ⌘(v −w)

2 + ⌘
, (5.63)

with ⇢NR = RigN
w −w, the nonrigid residual, and Ψ0 the robust norm derivative.

5.5 Coarse-to-fine estimation

Current RGBD sensors are able to provide more than 15 registered images per

second, so that, inter frame 3D motions are expected in the range of few centimeters.

However, the displacement on the image brought by the projection of the motion of

a scene point becomes larger, the closer the 3D surface is from the camera, yielding

quiet often to motions of more than one pixel of magnitude. Similarly, when the

sensor itself moves rigidly relative to the scene, further scene points can induce

large displacements in the image domain, even for a subtle camera motion. In

such those cases and many others, images displacements are larger than one pixel

between two frames and the scene flow energy is expected to be multi-modal, i.e.

having multiple local minima. For this reason, the proposed minimization can be

easily stuck in a local minimum. In order to find the global minimum, it is possible

to apply multi-scale strategy (Anandan, 1989; Brox et al., 2004): solving coarser

and smoothed versions of the problem, each of which may have a unique minimum,
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hopefully close to the global minimum of the original problem. In this strategy,

every coarser version of the problem is formulated by downsampling the original

images and its solution is used to initialize the solution of a finer version.

This multi-scale strategy is adopted in order to deal with larger motions. We

construct a RGBD image pyramid with a downsampling factor of 2. A Gaussian

anti-aliasing filter is applied to the intensity image at the original resolution and

the intensity image pyramid is built using bicubic downsampling. For the depth

image, a 5⇥ 5 median filter is used at the original resolution and the depth image

pyramid is constructed by averaging pixels in non-overlapped neighborhoods of 2⇥2,

where only pixels with a valid depth measure are used. Averaging on depth images

is avoided to prevent the propagation of pixels having no valid depth measures.

Having a pyramid with levels l = {0, 1, ..., L}, with 0 the original resolution, the

computation is started at level L an the estimated twist field is directly propagated

to the next lower level, as is shown in Figure 5.6, for a pyramid of 2 levels. The

camera matrix is scaled at each level by the factor 2l, compensating the changes

in the projection of scene points due to downsampling. At each level M loops are

performed, consisting of MGN iterations of the Gauss-Newton procedure followed

by MTV iterations of the TV solver. The linking constant  is styled at each scale.

Algorithm 1 presents the general scheme of the scene flow estimation using the

twist-motion representation. In order to reduce computational time, the domain of

⇠ is set to correspond to the domain of RGBD images at each level of the pyramid.

For this reason, before moving to a finer level, a linear interpolation is applied on ⇠

to match the appropriate image domain.

The same multi-scale strategy can be applied if the 3D-motion representation

is used. The scene flow v is filtering by component with a 5 ⇥ 5 median filter,

before being propagated from one level to the finer one, robustly integratating flow

estimates over large spatial neighborhoods (Sun et al., 2010). Algorithm 2 presents

the general scheme of the scene flow estimation using the 3D-motion representation.

5.6 Rigid plus nonrigid model

In many applications, the sensor itself moves relative to the observed scene and

causes a dominant global motion in the overall motion field. In this situation,

compensating for the motion of the camera can simplify the estimation and

regularization of the scene flow. Figure 5.7 presents an example of how global

rigid compensation modifies the motion estimation problem. Moreover, for some

applications, such as SLAM and 3D reconstruction, the camera ego-motion is

required. Particularly, for 3D reconstruction of deformable objects, the camera

motion is needed to register partial 3D reconstructions, which are constructed by

compensating the nonrigid motions. Therefore, we consider splitting the motion of

the scene into a globally rigid component, ⇠R = (⌧R,!R) 2 R
6, capturing the camera
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Algorithm 1 Scene flow estimation using the twist-motion representation.

Super-scripted l denotes the pyramid level.

Input: two RGBD images S1 = {I1, Z1} and S2 = {I2, Z2}
Output: scene flow v from S1 to S2

Construct RGBD pyramids Sl
1 and Sl

2, l = 0, ..., L;
Initialize ⇠ = (!, ⌧) = 0, χ = ($,⇡) = 0, and l = L;
while l ≥ 0 do

for w = 1 to M do

for n = 1 to MGN do

Warp images I l2 and Z l
2 using ⇠; Eq. (4.3)

Calculate residues ⇢lI , ⇢
l
g and ⇢lZ ;

Update ⇠; Eq. (5.38)

end for

for n = 1 to MTV do

Iterate once for solving $; Eq. (5.42)

Iterate once for solving ⇡; Eq. (5.46)

end for

end for

end while

Compute the scene flow v from ⇠; Eq. (4.2)

Algorithm 2 Scene flow estimation using the 3D-motion representation.

Super-scripted l denotes the pyramid level.

Input: two RGBD images S1 = {I1, Z1} and S2 = {I2, Z2}
Output: scene flow v from S1 to S2

Construct RGBD pyramids Sl
1 and Sl

2, l = 0, ..., L;
Initialize v = 0, w = 0, u = 0, and l = L;
while l ≥ 0 do

for w = 1 to M do

for n = 1 to MGN do

Warp images I l2 and Z l
2 using ⇠; Eq. (4.13)

Calculate residues ⇢lI , ⇢
l
g and ⇢lZ ;

Update v; Eq. (5.56)

end for

for n = 1 to MTV do

Iterate once for solving u; Eq. (5.42)

end for

Encourage local rigidity on w; Eq. (5.63)

end for

Median filter on v;
end while
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w(x, ξ)
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2

Fig. 5.6: RGBD image pyramid of 2 levels. Intensity and depth pyramids are built with a
downsampling factor of 2. Camera parameters f = {fx, cx} and c = (cx, xy) are scaled at each
level l, with l = {0, 1, 2}, by the factor 2l. The field of rigid motion ξ is directly propagate from one
level to the next, starting from the coarsest level, given by images {S2

1 , S
2

2}, to the finest, images at
the original resolution {S0

1 , S
0

2}.

motion relative to the dominant object/background, plus a nonrigid residual field,

⇠ = (⌧,!). We assume that a large part of the scene follows the same rigid motion.

Accordingly, the scene flow can be recovered from the composition of twist fields

given by χ = log(eξ̂ + eξ̂R − I4⇥4), and the estimation problem is formulated as:

min
χ

ERig(χ) + ERes(χ) , (5.64)

with ERig(χ) and ERes(χ) the rigid and nonrigid energies, respectively. It

is worth noting that the separation of the camera motion is in addition to the

framework presented above, i.e., the nonrigid part can still deal with local motion.

5.6.1 Rigid energy

The estimation of a global rigid motion can be seen as a particular case of the

framework given by (5.2), where every twist of the motion field follows the same
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Fig. 5.7: Rigid motion compensation. From left to right, top to bottom: (a) first image, (b) second
image, (c) difference between input images, (d) second image warped to compensate rigid motion,
(e) image blended using first image and the compensated, and (f) difference between first image
and the compensated. Once the rigid motion has been compensated the motion estimation becomes
the computation of the nonrigid residual of the motion.

rigid motion and so that, no regularization is needed. The camera motion, or the

dominant rigid motion, can be estimated using the data term (5.14), by considering

every pixel (or a subset of Ω) to solve for a unique twist ⇠R in a robust least-squares

estimation. Accordingly, the rigid component of the energy is defined as:

ERig(χ) =
X

x

wI(x)Ψ
(

⇢2I (x,χ) + γ⇢2g (x,χ)
)

+ wZ(x)Ψ
(

⇢2Z (x,χ)
)

, (5.65)

where wI(x) and wZ(x) weigh the per-pixel contribution of intensity- and depth-

based terms. Setting wI(x) = 1 and wZ(x) = λ yields the same formulation given by

(5.12), but in general they can be defined as per-pixel functions of the confidence

in intensity and depth data. Also it is possible to use only intensity or depth

constraints. For example, setting wI(x) = 0 and wZ(x) = 1 corresponds to estimate

a rigid transformation consistent only with the observed 3D surface.

5.6.2 Nonrigid energy

The residual nonrigid motion can be computed following the framework (5.2) for

scene flow estimation. Accordingly, the nonrigid energy is given by:

ERes(χ) = ED(χ) + ↵ES(χ). (5.66)
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5.6.3 Rigid plus nonrigid estimation

The estimation of rigid and nonrigid components of the motion is a challenge since

both are superimposed in the overall motion field affecting its separately estimation.

If the rigid body motion is extremely dominant, covering by far most of the observed

scene, it can be estimated independently as is done in the example of Figure 5.7.

However, if the nonrigid motion is dominant, the independent estimation of the

rigid motion is strongly biased by the nonrigid component. Similarly, the rigid

component, especially when is brought by the camera motion, can produce large

displacements on the image making harder the separately estimation of the nonrigid

component. In order to reliably estimate the rigid and nonrigid components of

the scene flow, we alternately estimate both components into the coarse-to-fine

procedure. Accordingly, and knowing that χ = log(eξ̂ + eξ̂R − I4⇥4), energy (5.64)

is minimized by the following iterative, alternating estimation of ⇠R and ⇠:

a. Given a fixed ⇠, solve for the twist motion ⇠R that minimizes ERig(χ).

b. Given a fixed ⇠R, solve for the twist field ⇠ that minimizes ERes(χ).

Step a. is equivalent to minimize ERig(⇠R) as is done in Section 5.4.1, but adding

to the warp of every scene point x, the 3D motion offset given by (eξ̂−I4⇥4)X̃, which

compensates the nonrigid component. This minimization is done by iteratively

applying (5.38), with a zero auxiliary flow, i.e., cropping the last term of equations

(5.39) and (5.40). Accordingly, the increment ∆⇠R is computed as follows:

∆⇠R = −H−1
R gR, (5.67)

where gradient vector gR is given by:

gR =
X

x2Ω

Ψ0

I,G

⇥

(IxJ)
T ⇢I + γ(Ig

x
J)T ⇢g

⇤

+ λΨ0

Z (ZxJ−K)
T
⇢Z ,

and the approximation of the Hessian matrix is given by:

HR =
X

x2Ω

Ψ0

I,G

h

(IxJ)
T
(IxJ) + γ (Ig

x
J)

T
(Ig

x
J)
i

+ λΨ0

Z (ZxJ−K)
T
(ZxJ−K).

On the other hand, step b. is equivalent to minimize ERes(⇠) as in Section 5.4,

by iterating steps i and ii. The 3D motion offset, given by (eξ̂R− I4⇥4)X̃, should be

added into the warping function of point x, to compensate for the rigid component.

Algorithm 3 presents the general scheme of the scene flow estimation by modeling

motion as a global rigid component plus a nonrigid residual.
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Algorithm 3 Rigid plus nonrigid scene flow estimation.

Input: two RGBD images S1 = {I1, Z1} and S2 = {I2, Z2}
Output: nonrigid scene flow v and global rigid motion ⇠R, from S1 to S2

Construct RGBD pyramids Sl
1 and Sl

2, l = 0, ..., L;
Initialize ⇠R = 0, ⇠ = 0, and l = L;
while l ≥ 0 do

for k = 1 to K do

for w = 1 to M do

for n = 1 to MGN do

Warp images I l2 and Z l
2 using χ = log(eξ̂ + eξ̂R − I4⇥4); Eq. (4.3)

Calculate residues ⇢lI , ⇢
l
g and ⇢lZ ;

Update ⇠; Eq. (5.38)

end for

for n = 1 to MTV do

Iterate once for solving $; Eq. (5.42)

Iterate once for solving ⇡; Eq. (5.46)

end for

end for

for n = 1 to MGN do

Warp images I l2 and Z l
2 using χ = log(eξ̂ + eξ̂R − I4⇥4); Eq. (4.3)

Calculate residues ⇢lI , ⇢
l
g and ⇢lZ ;

Update ⇠R; Eq. (5.67)

end for

end for

end while

Compute the scene flow v from ⇠; Eq. (4.2)
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Experiments

6.1 Middlebury datasets

The Middlebury stereo dataset (Scharstein and Szeliski, 2003) is commonly used

as benchmark to compare scene flow methods (Huguet and Devernay, 2007; Basha

et al., 2010; Hadfield and Bowden, 2011, 2014; Quiroga et al., 2012, 2013, 2014a;

Hornacek et al., 2014). Using images of one of these datasets is equivalent to a

fixed camera observing an object moving in X direction. As in previous methods,

we take images 2 and 6 as the first and second RGBD images, respectively. Gray

images are obtained from the RGB images, while the ground truth disparity map

of each image is used as depth channel, see Figure 6.1. These datasets present a

simple 3D motion field, where the ground truth for the scene corresponds to the

camera motion along the X axis, which coincides with the baseline of the stereo

setup. For this reason, Y - and Z-components of the scene flow are zero while the

X-component is constant. On the other hand, the optical flow is not constant and

is given by the disparity map of the first image, as is shown in Figure 6.2. For

the experiments we consider three Middlebury datasets: Teddy, Cones and Venus.

Particularly, Teddy and Cones datasets present a large displacement optical flow,

whose magnitude in pixels is in the range (12.5, 52.75) and (5.5, 55), respectively.

6.1.1 Error measures

Error metrics for optical flow

In order to compare with previous methods, the scene flow error is firstly measured

in the image domain using the root mean squared error (RMSE) and the average

angle error (AAE) of the optical flow. Let (u, v) and (uGT, vGT) denote the image

flow vector and the ground-truth flow vector, respectively. The angular error (AE)
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Fig. 6.1: Teddy stereo dataset. From left to right: (a) first and (b) second RGBD image pairs.
Every depth image is computed from the disparity map of the corresponding view.

is the angle in 3D space between (u, v, 1) and (uGT, vGT, 1), which is computed as:

AE = cos−1

0

@

u · uGT + v · vGT + 1
p
u2 + v2 + 1

q

u2GT + v2GT + 1

1

A .

Note that the AE corresponds to an angle in the range [0,⇡]. Accordingly, the AEE

is defined by:

AAE =
1

|Ωv|

X

x2Ωv

AE(x), (6.1)

with |Ωv| the cardinality of set Ωv, which is defined as the subset of Ω containing

the non-occluded pixels having a valid depth measure.

The endpoint error (EE) is defined as the Euclidean distance on the image

between (u, v) and (uGT, vGT), and is given by:

EE =

q

(u− uGT)
2 + (v − vGT)

2.
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Fig. 6.2: Optical flow for the Teddy dataset. From left to right: (a) Blend of first and second
brightness images, (b) ground truth of the optical flow, and (c) optical flow color coding. Observe
that every pixel performs a purely horizontal motion, whose magnitude is a function of its depth.

Using the EE, the RMSE of the optical flow is defined by:

RMSE =

s

1

|Ωv|

X

x2Ωv

EE(x)2. (6.2)

Error metric for changes in depth

In order to measure how consistent is Z-component of the scene flow with the

changes in depth, we use the root mean squared error of the Z-motion (RMSEZ).

This measure has been used to compare scene flow methods (Hadfield and Bowden,

2011, 2014; Hornacek et al., 2014). Being uGT the ground-truth flow vector and vZ
the Z-component of the 3D motion field v, and with {Z1, Z2}, the first and second

depth images, the RMSE-Z is defined by:

RMSEZ =

s

1

|Ωv|

X

x2Ωv

[(Z2(x+ uGT)− Z1(x))− vZ(x)]
2, (6.3)

Error metrics for scene flow

The computation of 2D motion errors does not necessarily reflect the errors

in the scene since even small 2D displacements can produce large 3D motions.

Moreover, it is preferable to compute 3D motions errors directly rather than measure

independently errors of the optical flow and changes in depth, which can partially

hide 3D motion errors. For instance, in Middlebury datasets the Z-component

of the motion is zero, so that any scene flow estimation having no changes in

depth will achieve a perfect score in RMSEZ . In order to measure the overall

scene flow error we define the average normalized error of the scene flow (ANEV).

The point-wise scene flow error is defined as the Euclidean distance between the
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estimated 3D motion vector, v = (vX , vY , vZ), and the ground-truth 3D motion,

vGT = (vGT
X , vGT

Y , vGT
Z ). Subsequently, every error measure is normalized by the

magnitude of the ground-truth scene flow, which is assumed to be non-zero, to

present the error as a percentage of the motion magnitude. Accordingly, the ANEV

is defined by:

ANEV =
1

|Ωv|

X

x2Ωv

q

(vX − vGT
X )2 + (vY − vGT

Y )2 + (vZ − vGT
Z )2

|vGT|
. (6.4)

Particularly, for the Middlebury datasets the magnitude of the scene flow is constant

and is given by the baseline of the stereo setup. Additional to the ANEV, we

compute the statistic Rp% to show the percentage of pixels having a normalized

scene flow error smaller or equal to p% of the ground truth magnitude.

6.1.2 Baseline methods

We consider two baseline methods that follows the proposed framework presented

in Chapter 5: 6TwistFlow and 3DmotionFlow. We named 6TwistFlow the method

that uses the twist-motion representation to minimize the scene flow energy (5.2).

The algorithm using the 3D-motion representation to minimize energy (5.49), is

called 3DmotionFlow. The main parameters are listed in Table 6.1.

For both baseline methods we set the following parameters the same: L = 5,

↵ = N2 β = 0, γ = 0, s2tr = max (off), MTV = 50, MGN = 5. Now, for

the 6TwistFlow method we independently set: λ = 0.1, N = 5, M = 5, and

(l) = N−210−310l. Finally, for the 3DmotionFlow we set: λ = 1, N = 11,

M(l) = {1, 2, 3, 4, 5, 5}, ⇣ = 0 (the local-rigid prior set off in ES), Nζ = 5, and (l) =

N−2 ⇥ {2−2, 10−1, 100, 102, 104, 106}. For both methods, the weighting function in

the data term (5.12) follows a uniform distribution.

6.1.3 Comparison with other methods

We consider three groups of methods in the comparison: i) optical flow methods,

ii) stereo-based methods and iii) RGBD-based methods.

Optical flow methods

Optical flow methods use only the RGB information of first and second images to

estimate the 2D motion. The scene flow is computed by inferring the 3D motion with

the provided depth data, as is shown in Table 4.1 for the 2D-motion representation.

We consider the large displacement optical flow algorithm by Brox and Malik (2011)

(OpticalFlow1 ) and the motion detail preserving algorithm by Xu et al. (2012)
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L maximum level of the RGBD pyramid

↵ smoothing parameter

β decreasing parameter of the adaptive TV

γ gradient constraint parameter

λ depth constraint parameter

 linking parameter

s2tr bound of the robust norm

N size of the local neighborhood, N ⇥N centering window

M number of alternations in each level of the pyramid

MTV iterations of the TV solver

MGN iterations of the Gauss-Newton algorithm

⇣ local-rigidity parameter (3DmotionFlow)

Nζ size of the local neighborhood for the rigid fitting (3DmotionFlow)

Table 6.1: Parameters of baseline scene flow methods.

(OpticalFlow2 ). Comparison with optical flow methods allow to asses the relative

contribution of using depth data in addition.

Stereo-based methods

Stereo-based methods do not assume RGBD images and simultaneously estimate

the optical flow and disparity maps by considering RGB images 2, 4, 6 and 8 of each

dataset. Images 2 and 4 form the first stereo pair, and images 6 and 8 the second

one. We consider the variational method from stereo by Huguet and Devernay

(2007) (StereoFlow1 ), which was the first to use these datasets for scene flow, and

the multi-view variational algorithm by Basha et al. (2010) (StereoFlow2 ).

Scene flow methods

RGBD-based methods, as those proposed in this thesis, use simultaneously RGB

and depth images for the estimation. We consider two scene flow methods: the

particle filter based algorithm by Hadfield and Bowden (2014) (SceneFlow1 ) and

the sphere flow algorithm by Hornacek et al. (2014) (SceneFlow2 ).

Results

Table 6.2 presents the results on the Middlebury datasets for the eight algorithms

considered. The proposed algorithm 6TwistFlow achieves the best results for

RMSE and RMSEZ , confirming the benefit brought by the twist representation.
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Teddy Cones Venus

RMSE AAE RMSEZ RMSE AAE RMSEZ RMSE AAE RMSEZ

OpticalFlow1 2.83 0.39 1.75 3.20 0.39 0.47 0.72 1.28 0.14

OpticalFlow2 1.66 0.21 1.15 1.70 0.28 0.50 0.3 1.43 0.22

StereoFlow1 1.10 0.69 n/a 1.25 0.51 n/a 0.31 0.98 n/a

StereoFlow2 0.58 0.39 n/a 0.57 1.01 n/a 0.16 1.58 n/a

SceneFlow1 1.24 1.01 0.06 0.83 0.83 0.03 0.36 1.03 0.02

SceneFlow2 0.54 0.52 0.02 0.35 0.15 0.01 0.26 0.53 0.02

6TwistFlow 0.35 0.35 0.02 0.40 0.34 0.02 0.15 0.84 0.01

3DmotionFlow 0.71 0.67 0.04 0.51 0.31 0.04 0.2 1.02 0.00

Table 6.2: Comparison with other methods using Middlebury datasets. First and second best
performances are highlighted in red and orange, respectively.

Observe that in most cases this method outperforms SceneFlow2, which also use

a field of rigid motion, but in a discrete optimization scheme, which could benefit

from the propagation of the correct rigid motion. AEE results of both methods

are very similar, differing only in about 1/4 of degree. On the other hand, the

alternative approach 3DmotionFlow outperforms most of the considered methods,

except SceneFlow2. Particularly, it is interesting to remark that 3DmotionFlow

outperforms SceneFlow2, which directly represent the scene in 3D and solve for

the scene flow testing and propagating 3D motion hypothesis. Although the 3D

motion of every scene point is the same and few correct hypothesis could favor the

final solution through the particle filtering, the incremental 3D motion estimation

done by 3DmotionFlow performs better. Moreover, the 2D parametrization of the

scene, used both by the 6TwistFlow and by the 3DmotionFlow algorithms, allows to

accurately solve for the 3D motion field. It is important to remark that SceneFlow1

and SceneFlow2 use a 3D representation of the scene, as a 3D point cloud and a

set of 3D patches, respectively. Therefore, there is no any advantage of using a 3D

representation for the motion estimation on these datasets.

Regarding stereo-based methods, the measured errors are higher in most cases

since the depth information is estimated at the same time. However, thanks to

the two additional views these methods benefits from smaller occluded regions,

and the constraints brought by the stereo setup favor the estimation of the purely

horizontal 2D motion. Finally, optical flow methods are the worst performer, which

is expected since they only use the brightness of two views. Particularly, Teddy and

Cones datasets are challenging motion estimation problems because the observed

optical flow presents a wide range, around 40 and 50 pixels, respectively. Unlike

their RMSE is between the highest errors, for both methods, the AEE is very

low. This accurate angular estimation is explained by the strong TV regularization

done directly on the optical flow and because all pixels move in the same direction.

Finally, it is observed from Table 6.2 that the critical measure for optical flow
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methods is the estimation of changes in depth, although there is no Z-motion in

these datasets. Due to the lack of depth information in the motion estimation, even

small errors on the image motion yield to large error in the 3D motion inferred

using the provided depth data. Accordingly, the jointly use of brightness and depth

data allows to a more accurate estimation of motion on the image domain, and

simultaneously, changes in depth.

6.1.4 Analysis of the scene flow framework

The proposed scene flow framework allows the implementation of different ap-

proaches through the setting of parameters. For example, local and piecewise

rigidity can be adjusted by varying the size of the local neighborhood, N(x),

and the weight of the smoothness term, ↵, respectively. Similarly, it is possible

to configure the balance between several terms, such as brightness and gradient

constraints, brightness- and depth-based constraints, and data en smoothness

energies. We analyze below how the configuration of some of these parameters

affects the performance of the scene flow framework on Teddy and Cones datasets.

Additional to RMSE, AAE and RMSEZ , we compute ANEV and R5% to directly

compare 3D motion errors.

Local rigidity

The scene flow is assumed to be semi-rigid, i.e., local and piecewise rigid. While

6TwistFlow directly encourages local rigidity in data term, 3DmotionFlow allows

to incorporate the local rigidity in both terms: in the data term it is done by

encouraging a constant 3D translation, while in the smoothness term a local rigid

motion is fitted and the residual motion minimized. Using baseline methods, we

perform an experiment varying the size of N(x), thereby controlling the amount of

local rigidity assumed in the data term. We start from N(x) = {x}, i.e., no local

rigidity, to N(x) being a 11 ⇥ 11 window, as is presented in Table 6.3. In the 3D-

motion case, the bigger the neighborhood the more accurate the results, showing

that a strong local rigidity encouragement favors the scene flow estimation. On the

other hand, the best performance is obtained for middle size windows, 5 ⇥ 5 and

7⇥ 7. Although RMSE subtly decreases as the size of the window increases, ANEv

and AAE present an inflection point around 5⇥5, as is shown in Figure 6.3. This is

a meaningful result for 6TwistFlow, showing that a bigger local neighborhood does

not imply a better estimation of the 3D motion, even for this constant scene flow.

Moreover, unlike 3DmotionFlow, accurate results for 6TwistFlow start from with a

small window, 3 ⇥ 3, therefore it can be inferred that the amount of local rigidity

assumption has less significance in the final results.

Particularly for 3DmotionFlow, local rigidity can be encouraged in data and

smoothness terms. In order to asses the benefit of each strategy, we consider
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Teddy Cones

N(x) RMSE AAE ANEv P5% RMSE AAE ANEv P5%

3DmotionFlow

1⇥ 1 9.81 5.21 19.1 43.17 13.1 8.70 29.1 29.4

3⇥ 3 1.83 1.58 4.16 78.26 1.66 1.11 3.22 87.1

5⇥ 5 1.30 1.18 3.28 82.65 0.99 0.57 2.15 90.1

7⇥ 7 1.02 0.918 2.71 85.74 0.73 0.51 1.91 94.0

9⇥ 9 0.81 0.76 2.30 87.92 0.71 0.44 1.73 95.2

11⇥ 11 0.71 0.67 2.01 89.69 0.51 0.34 1.37 98.1

6TwistFlow

1⇥ 1 1.26 0.96 5.14 52.1 1.60 1.02 7.60 34.6

3⇥ 3 0.44 0.46 2.37 97.9 0.40 0.30 1.32 100.

5⇥ 5 0.43 0.33 1.57 100. 0.41 0.33 1.17 100.

7⇥ 7 0.35 0.35 1.63 100. 0.40 0.34 1.22 100.

9⇥ 9 0.38 0.32 1.80 100. 0.39 0.32 1.39 100.

11⇥ 11 0.35 0.31 1.74 100. 0.40 0.31 1.8 100.

Table 6.3: Variation of the local rigidity in the data term. Top results in red and blue for
3DmotionFlow and 6TwistFlow, respectively. Baseline methods are highlighted in green.
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Fig. 6.3: Averages of Teddy and Cones datasets for the motion errors RMSE, AAE and ANEZ ,
as functions of the size of the local neighborhood.

two variations of the baseline method: 3DmotionES and 3DmotionALL. The first,

3DmotionES , removes the local encouragement in the data term by setting N(x) =

x, i.e., one pixel neighborhood, and includes the local rigid prior in the smoothness

term. We modify the linking parameter to improve the accuracy by setting

(l) = {10−2, 10−1, 100, 100, 101, 101}, giving more weight to the regularization in

order to improve the stability in the minimization of the data term. The second

approach, 3DmotionALL, applies the local-rigid prior both in data and smoothness

term, which is equivalent to add the local-rigid prior in the regularization of the

baseline method. In both cases, the local fitting is done on a 11⇥11 neighborhood,

i.e., Nζ = 11, and the local-rigid parameter is set as ⇣ = 3. The use of the local-

rigid prior in addition to the local estimation in the data term, yields to a more

accurate estimation of the motion, as is presented in Table 6.4. On the other hand,

the encouragement alone of the local motion seems to be more effective in the data
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term than in the regularization procedure.

Teddy Cones

RMSE AAE ANEv P5% RMSE AAE ANEv P5%

3DmotionFlow 0.71 0.67 2.01 89.7 0.51 0.34 1.37 98.1

3DMotionES 1.41 1.27 3.80 78.2 1.50 1.49 4.26 77.7

3DMotionALL 0.68 0.64 1.98 89.9 0.48 0.32 1.30 98.2

Table 6.4: Local rigidity in the smoothness term. Top results are shown in red. The best results
are achieved when the local-rigid prior in the smoothness term is applied in addition to the local
rigidity assumption in the data term.

Piecewise rigidity

Piecewise rigidity is encouraged in the smoothness term by TV regularization. We

investigate the influence of this assumption in the performance of 6TwistFlow and

3DmotionFlow, by varying the number of iterations of the TV solver, MTV. As is

shown in Table 6.5, a stronger piecewise rigidity yields to a better results since the

global rigid motion of the dataset. Also observe that for MTV = 0, there is no TV

regularization favoring piecewise rigidity but there exists a Tikhonov regularization

on the energies from the linking term controlled by . This kind of regularization

favors small norm solutions. In this case, unlike 6TwistFlow that provides totally

wrong estimations, the performance of 3DmotionFlow is still acceptable. This is

explained by the median filtering on 3DmotionF low, which is directly related with

l1 minimization (Sun et al., 2010) and therefore favor piecewise smooth solutions.

Motion representation

This experiment compares the different motion representation. Alternatively

to 6TwistFlow and 3DmotionFlow, it is also possible to use a simpler motion

representation considering a orthographic camera, as in most optical flow methods.

As is explained in Section 4.3.4, in this case, the depth data is no directly used to

model the image motion. The proposed framework can be straightforwardly used

with the 2D-motion representation. We named 2DmotionFlow the method based

on energy (5.49), with the warping function given by (4.27). This baseline method

is set with L = 5, ↵ = N2, β = 0, γ = 0, s2tr = max (off) λ = 0.1, N = 7, M = 5,

MGN = 5, MTV = 100, ⇣ = 0, Nζ = 5 and (l) = N−2 ⇥ {2, 101, 20, 102, 103, 103}.

Table 6.6 shows errors for the three representations, and includes GroundTruth,

which is obtained by applying the ground truth 3D motion given by the baseline

of the stereo setup. Note that for GroundTruth the RMSE is not zero due to the

dataset disparities, which are used to compute the ground truth optical flow, have

quarter-pixel accuracy. As it was concluded from previous experiments, the method

based on the twist representation performs better that the method using the 3D
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Teddy Cones

MTV RMSE AAE ANEv P5% RMSE AAE ANEv P5%

3DmotionFlow

0 1.42 1.12 3.13 85.4 0.84 0.58 2.09 92.8

10 1.14 0.97 2.71 86.7 0.72 0.5 1.86 1.14

50 0.71 0.67 2.01 89.7 0.51 0.34 1.37 98.1

100 0.60 0.58 1.78 91.8 0.43 0.28 1.14 98.6

6TwistFlow

0 15.5 14.7 24.9 36.1 21.6 23.3 40.0 18.6

10 2.04 0.59 5.03 68.6 1.25 0.62 3.87 77.8

50 0.35 0.35 1.63 100. 0.40 0.34 1.22 100.

100 0.33 0.28 1.29 100. 0.33 0.25 0.79 100.

Table 6.5: Variation of the piecewise rigidity assumption. Top results in red and blue for
3DmotionFlow and 6TwistFlow, respectively. Baseline methods are highlighted in green.

Teddy Cones

RMSE AAE ANEv P5% RMSE AAE ANEv P5%

GroundTruth 0.13 0.00 0.00 100. 0.24 0.00 0.00 100.

6TwistMotion 0.35 0.35 1.63 100. 0.40 0.34 1.22 100.

3DmotionFlow 0.71 0.67 2.01 89.7 0.51 0.34 1.37 98.1

2DmotionFlow 3.44 0.89 10.4 56.6 3.04 0.74 10.7 68.2

Table 6.6: Comparison of motion representations. Groundtruth results are highlighted in red. The
twist-motion representation achieves the best performance.

representation. Observe that the use of the 2D-motion representation does not bring

any advantage over optical flow methods for the estimation of the image motion, see

Table 6.2. For this reason, the use of depth data only as an additional brightness

channel, wastes useful information for the constraint of the image motion. On the

other, the estimation of changes in depth by 2DmotionFlow outperforms optical flow

methods; disparity errors are 0.06 and 0.12, for Teddy and Cones, respectively. This

is thanks to the use of a depth constancy assumption, which allows to regularize the

estimation of the Z-component of the scene flow. Conversely, optical flow methods

only infer the 3D motion field from the provided depth data. Finally, optical flow

results are presented in Figures 6.4 and 6.5.

Brightness and depth balance

The use of a warping function allows to constrain the scene flow on the image and

therefore to exploit both intensity and depth data. We experiment by varying the

balancing term λ to modify the contribution of brightness and data terms in the

scene flow energy. We consider λ = {0, 0.1, 1,1}. Notation λ = 1 stands for the

case where only depth constancy constraints are used in the data term. Table 6.7

presents the results. It can be noted that the simultaneous constraint of the motion

in brightness and depth achieves the best performance for each representation.
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Fig. 6.4: Optical flow estimates for the Teddy stereo dataset. From left to right, from top to bottom:
(a) Ground-truth, and (b) twist-motion, (c) 3D-motion and (d) 2D-motion representations.

Teddy Cones

λ RMSE AAE ANEv P5% RMSE AAE ANEv P5%

2DmotionFlow

0 3.41 0.94 14.2 57.0 3.12 0.79 26.1 66.6

0.1 3.44 0.89 10.4 56.6 3.04 0.74 10.7 68.2

1 3.63 1.42 11.6 50.9 4.06 0.78 12.3 64.8

1 9.25 9.78 28.0 28.4 7.07 2.92 46.7 25.0

3DmotionFlow

0 1.12 0.91 13.2 28.2 1.19 0.94 15.7 22.1

0.1 0.98 0.76 2.38 89.1 0.72 0.60 1.85 93.3

1 0.71 0.67 2.01 89.7 0.51 0.34 1.37 98.1

1 3.26 4.33 8.47 67.7 1.18 0.82 3.13 86.3

6TwistFlow

0 0.38 0.36 1.66 100. 0.47 0.42 4.09 70.2

0.1 0.35 0.35 1.63 100. 0.40 0.34 1.22 100.

1 0.54 0.57 2.21 93.17 0.45 0.25 1.18 99.2

1 0.88 0.59 3.5 70.3 1.28 1.19 3.85 67.5

Table 6.7: Variation of the balance between brightness and depth. Top results in orange, red
and blue for 2DmotionFlow, 3DmotionFlow and 6TwistFlow, respectively. Baseline methods are
highlighted in green. The simultaneous constraint in brightness and depth achieves the best results.

Particularly, for the twist representation there is subtle difference between the

baseline method and the constraint only on the brightness image. This can be
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Fig. 6.5: Optical flow estimates for the Cones stereo dataset. From left to right, from top to bottom:
(a) Ground-truth, and (b) twist-motion, (c) 3D-motion and (d) 2D-motion representations.

explained by the zero Z-component of the scene flow and by the ability of the twist

representation to constrain this simple motion on the brightness image. However,

the same difference becomes larger for the 3D-motion representation. On the other

hand, for the 2D-motion representation the addition of depth constraints brings

a very slight advantages respect of the optical flow case (λ = 0), even this latter

performs better in some cases. The constraint of the motion only on depth data is

the worst performer in each case, since the texture of depth images is by far less

meaningful that such of brightness images. Finally, it is important to remark that

the best balance varies from one motion representation to another, and therefore it

is no possible to conclude about the optimal combination.

Processing time and resolution

We measured the runtime of non-optimized implementations of baseline methods

3DmotionFlow and 6TwistFlow, using the single-core 64-bit Intel Xeon E5520

@ 2.27GHz with 8 Gb of RAM. Table 6.8 summarizes the computational times

of both approaches, and includes the runtimes reported of SceneFlow1 (Hadfield

and Bowden, 2014), which also uses a single-core machine. Proposed methods

3DmotionFlow and 6TwistFlow requires less than 1/10 and 1/5 of runtime than
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Teddy Cones

3DmotionFlow 42.2 s 44.3 s

6TwistMotion 80.5 s 79.4 s

SceneFlow1 418. s 493. s

Table 6.8: Runtime comparison.

SceneFlow1, respectively, and both achieve better estimations. Also observe that

thanks to its simpler parametrization, 3DmotionFlow runs almost twice faster than

6TwistFlow. Comparison with SceneFlow2 was not possible because its runtime

is not reported (Hornacek et al., 2014), but authors claim it takes about 300 s.

Computational speed is not our primary concern but there are several ways to

speed up the scene flow methods. Particularly, we focus in a simple modification

using our implementations in the same machine. For this purpose, we modify the

resolution of the scene representation to get faster estimations, and at the same

time, we measure the accuracy of the obtained estimate. First, we experiment with

an early stop of the coarse-to-fine procedure as follows. Being at level l = PyrStop

of the RGBD pyramid, the estimation is stopped and the final motion field at

the original resolution is obtained by linear interpolation. Table 6.9 presents the

average results on Teddy and Cones datasets. Observe that with PyrStop = 1, the

computation is stopped at the first octave (half of the initial scale) and runtimes are

reduced by about 2 and 4, for 3DmotionFlow and 6TwistFlow, respectively, while

the accuracy is almost equivalent to that obtained at the original resolution.

Finally, we consider only every mth pixel of the motion field for the Gauss-

Newton procedure in the data term. The result of each operation is copied to the

surrounding pixels. For example, setting m(l) = {4, 4, 2, 2, 1, 1} as a function of

the pyramid level l, for 3DmotionFlow, the runtime is reduced to 5.9 s, i.e., about

7 times faster, while the accuracy stands almost unchanged. Similarly, setting

m(l) = {6, 6, 4, 4, 2, 2} for 6TwistFlow, the runtime becomes 13.8 s, i.e., about 6

times faster, with nearly the same accuracy.

3DmotionFlow 6TwistFlow

PyrStop RMSE AAE ANEv P5% Time(s) RMSE AAE ANEv P5% Time

5 5.30 4.91 17.9 6.64 0.13 6.79 4.73 19.9 0.00 0.61

4 2.01 1.84 7.46 43.8 0.60 1.19 1.01 4.19 75.3 0.79

3 0.90 0.81 3.09 79.7 2.25 0.57 0.55 2.08 99.2 1.69

2 0.71 0.64 2.09 92.8 7.07 0.45 0.40 1.64 100. 5.30

1 0.62 0.52 1.84 93.0 19.3 0.40 0.36 1.47 100. 20.2

0 0.61 0.50 1.69 93.9 43.3 0.37 0.34 1.42 100. 79.9

Table 6.9: Early stopping in the coarse-to-fine procedure. PyrStop stands for the level of the
pyramid where the computation is stopped. The resulting motion field is linearly interpolated to
compute the final motion field.
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6.2 Scene flow from RGBD images

We performed further experiments on more complex scenes using two RGBD

sensors: the Microsoft Kinect for Xbox and the Asus Xtion Pro Live. We consider

three different setups: i) a fixed or moving camera assuming a nonrigid motion, ii) a

fixed or moving camera observing a rigid scene and iii) a moving camera capturing

deformable objects. In each case, we show the input images, the optical flow, and

one or more components of the scene flow. Also, depending of the experiment we

present the warped images, the resulting brightness and depth residuals and the 3D

reconstruction. The following example presents a scene flow estimation example.

A fixed camera is observing a non rigid scene, as is showed in Figure 6.6. The

scene is segmented in the image domain using the observed depth measures of the

first depth image. For this example, the estimation is done only for scene points

within 50 cm and 200 cm from the RGBD sensor. The bottom images in Figure

6.6 give an idea of the segmentation. It is assumed that the 3D surfaces of interest

are within this given range. No motion estimation is done for the remaining points.

Nevertheless, all points of the second image, having a valid depth measure, are

considered for the scene flow estimation. Results are presented as is shown Figure

6.7. The optical flow is visualized using the Middlebury color code (Scharstein

and Szeliski, 2003). For the scene flow, we show each component using a cold-

to-warm code, where green color is zero motion, and warmer and colder colors

Fig. 6.6: Inputs for scene flow estimation. From left to right: (a) brightness and (b) 3D surface
of the first and second frames. The 3D surface is illustrated using directly the depth image, where
a decreasing function of the magnitude of the gradient modulates the visualization, giving an idea
of the 3D structure. Only the 3D surface within 50 cm and 200 cm from the sensor is shown.
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Fig. 6.7: Scene flow results. From left to right, and from top to bottom: (a) optical flow, and (b)
X-, (c) Y - and (d) Z-components of the scene flow, respectively.

represent positive and negative velocities, respectively. Finally, Figure 6.8 shows

the brightness and depth residuals, which correspond to the differences between the

original and warped RGBD representations of the scene.

Fig. 6.8: Brightness and depth residuals. From left to right: (a) warped image, and (b) brightness
and (c) depth residuals, respectively. The top row shows results assuming a null scene flow. The
bottom row presents the warped image and differences with the estimated scene flow. Brightness
differences are scaled by 8 for visualization, and depth differences go from black to white, for 0 cm
to 1 cm, and which for larger differences. Cyan color stands for an invalid depth difference.
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6.2.1 Nonrigid motion estimation

In this section we perform some nonrigid estimation experiments. Firstly, we

consider a large Z-motion case presented by Hornacek et al. (2014), where it is

possible to compare some of the current scene flow methods. Secondly, four further

experiments are performed using the proposed approaches.

Large Z-motion experiment

Hornacek et al. (2014) propose to estimate in both directions, the motion

represented by the pair of RGBD images shown in Figure 6.9. This is a challenging

setup due to the large displacement in Z-direction, illumination changes, partial

occlusions and the low resolution of the RGB images, 320 ⇥ 240 pixels. Results

of four scene flow methods are presented in Figure 6.10, including our approach

(Quiroga et al., 2013), which corresponds to the baseline method 3DmotionFlow in

the previous section. Observe that (Herbst et al., 2013) and (Hadfield and Bowden,

2014) fail capturing the coarse motion, while (Hornacek et al., 2014) and (Quiroga

et al., 2013) are able to give a rough idea of the observed motion. However, it

is not possible to measure the accuracy using only the estimated optical flow.

We replicated the experiments using the methods 6TwistFlow and 3DmotionALL,

and also include the estimation using the large displacement method (LDOF) by

Brox and Malik (2011), to have an idea of the performance of current optical flow

methods. Results are presented in Figure 6.11, where it can be seen that all methods

are able to capture the rough motion with some small differences.

Fig. 6.9: Large Z-motion experiment proposed by Hornacek et al. (2014). From left to right: (a)
color image, (b) 3D surface and (c) RGBD image. First and second images are presented in the
top and bottom rows, respectively. The experiment estimates the motion in both directions.
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(a) Hornacek et al.

(2014)
(b) Hadfield and
Bowden (2014)

(c) Herbst et al. (2013) (d) Quiroga et al.

(2013)

Fig. 6.10: Optical flow results of the large Z-motion experiment presented by (Hornacek et al.,
2014). The top images present the estimation from frame 1 to 2, while the bottom images for the
contrary sense. Observe, that only (a) and (b) are able to estimate the motion in both cases.

(a) 6TwistFlow (b) 3DmotionALL (c) LDOF

Fig. 6.11: Optical flow results of the large Z-motion experiment. All methods are able to overcome
the large change in depth and give a roughly estimation of the performed motion.

In order to have an idea of the accuracy, we warp second images using the

estimated motion. The resulting warped images are shown in Figure 6.12. It can

be seen that 6TwistFlow models the best the large Z-motion performed by the

person on the right, especially visible in the warped texture of the face. However,

there exist some problems estimating the motion of one of the hands in the second

case, due to the low resolution of depth data and the splitting of the surface from

frame 2 to 1. On the other hand, 3DmotionALL is able to model the motion of

both hands in both cases but it deforms the texture of the face due to the strong

regularization that domains the estimation. The optical flow method only gives a
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(a) Reference image (b) 6TwistFlow (c) 3DmotionALL (d) LDOF

Fig. 6.12: Warped images for the large Z-motion experiment. The use of depth data allows a better
modeled of the observed motion. Particularly, 6TwistFlow performs the most accurate estimate of
the Z-motion. None of the method is able to model the large head rotation on the left side.

roughly estimation of the observed motion. Note that none of the methods is able

to estimate the head motion of the woman on the right, which presents a large

rotation between both frames. Figure 6.13 shows the Z-component of the scene

flow, where is evident the benefit of using the depth constraints in conjunction with

a projective warp that models the image motion. The optical flow method is unable

to determine the motion boundaries and suffers from the depth data noise, since

changes in depth are directly estimated using the raw depth data.

(a) 6TwistFlow (b) 3DmotionALL (c) LDOF

Fig. 6.13: Changes in depth for the large Z-motion experiment. 6TwistFlow and 3DmotionALL
are able to accurately estimate the changes in depth. Conversely, the optical flow method suffers
from the 2D regularization and the lack of depth data, failing to estimate the motion boundaries.
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Hand rotation

This experiment presents a hand rotating in the middle of the scene, moving quasi-

rigidly, as is shown in Figure 6.14. The depth range is set to include only the

surface that belongs to the arm and forearm. Figure 6.15 presents the resulting

optical flow and two components of the scene flow, for each method. Regarding

the optical flow, it can be noted that 3DmotionALL subtly distorts the motion

field due to smoothness performed on the 3D motion field. The distortion of the

motion is more evident for the optical flow method, since the regularization is

done on the 2D motion field. On the other hand, thanks to the regularization

done on the twist motion field, 6TwistFlow performs the most accurate estimation.

The advantages of the proposed methods are more evident when observing the

components of the scene flow. Unlike LDOF that estimates the X-component of

the 3D motion as curve levels, 6TwistFlow and 3DmotionALL are able to accurately

reflect the smooth transition brought by the 3D rotation. Similarly, the estimation

of the Z-component from both methods, reveal the smooth changes in depth of the

3D surface while rotating. Contrary to the results obtained by using the optical

flow estimate, which is affected by the 2D errors and the noise in depth data.

Fig. 6.14: Inputs for the hand rotation experiment. From left to right: (a) first and (b) second
pairs, of brightness and 3D structure images, respectively.
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(a) 6TwistFlow (b) 3DmotionALL (c) LDOF

Fig. 6.15: Results of the hand rotation experiment. From top to bottom: (a) optical flow, and (b)
X-component and (c) Z-component of the scene flow.

Two arms rotation

In this experiment a fixed camera observes a motion performed with arms and

hands. While hands are rotating inwards, the elbows lift, as is shown in Figure 6.16.

This composite motion generates a varied optical flow, which is well estimated by

our two methods, as is presented in the top images of Figure 6.17. Moreover, it can

be seen that small rotations and articulated motions are well described. Observe

that the optical flow method provides a smoother solution, showing be less sensitive

to the specular highlights appearing on the skin. This is because its simpler 2D

motion model, which is stronger regularized on the image. A higher parametrization

seems to be more sensitive to this specular effect and a stronger regularization may

be required. However, as is observed in the bottom images of Figure 6.17, this

smoother optical flow does not imply a more accurate estimate of the scene flow.

The 6TwistFlow method performs the best estimation of changes in depth, being

able to model the motion of thumbs, palm hands and elbows.
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Fig. 6.16: Inputs for the two arms rotation experiment. From left to right: (a) first and (b) second
image pairs, of brightness and 3D structure.

(a) 6TwistFlow (b) 3DmotionALL (c) LDOF

Fig. 6.17: Results of the two arms rotation experiment. From top to bottom: optical flow and
Z-component of the scene flow. LDOF provides a smoother optical flow estimation, but it does not
correspond with the most accurate scene flow estimate. On the other hand, 6TwistFlow is more
sensitive to the small rotation and deformation, and is able to model the motion of thumbs, palm
hands and elbows. 3DmotionALL also provides an accurate estimation.
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Poster stretching

This experiment presents the stretching of a poster, as is shown in Figure 6.18.

This is a challenging motion for the semi-rigid assumption due to the non-uniform

deformation of the 3D surface. Figure 6.19 presents the resulting optical flow and

Z-component of the scene flow. The two proposed methods are able to capture the

poster deformation, thus it is possible to accurately estimate the changes in depth

when the poster is folded. The gradient constancy constraint plays an important

role here, since the sensor applies an automatic white balancing. Observe that the

smoothness of the optical flow, inside the poster, varies according to the motion

representation where the regularization is applied. Also, as can be seen on the

left side of the poster, the partial occlusion brought by the stretching is estimated

in a different way for each approach. Particularly, 6TwistFlow and 3DmotionALL

suffer from the misalignment between the poster edges in brightness and depth data,

and from the depth uncertainty near to the object boundaries. On other hand,

LDOF estimates a sharp motion discontinuity since it does not have to explain the

ambiguous observed data and thanks to the good contrast between the poster and

the background. However, depth changes are better captured by our two methods,

as is shown in the bottom images of Figure 6.19. Particularly, 3DmotionALL

achieves the best performance in this experiments, accurately estimating the Z-

motion and dealing in a better way with the partial occlusion, as is shown in the

resulting warped images in Figure 6.20. Note that we do not use explicit occlusion

awareness, but the robust norm is able to reduce its effect.

Fig. 6.18: Inputs for the poster stretching experiment. From left to right: (a) first and (b) second
image pairs, of brightness and 3D structure.
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(a) 6TwistFlow (b) 3DmotionALL (c) LDOF

Fig. 6.19: Results of the poster stretching experiment. From top to bottom: optical flow and
Z-component of the scene flow. 3DmotionALL achieves the best performance in this experiments.

(a) Reference image (b) 6TwistFlow

(c) 3DmotionALL (d) LDOF

Fig. 6.20: Warped images for the poster stretching experiment. Unlike LDOF, 6TwistFlow and
3DmotionALL are able to correctly warp the poster. However, observe that these two methods
expand the shirt sleeve close the poster, due to the partial occlusion. In order to reduce these
artifacts is required to include an explicit occlusion awareness in the estimation.
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Teddy bear

This experiment considers a pair of images of the RGBD dataset (Sturm et al.,

2012), where a moving camera observes a rigid scene. Figure 6.21 shows the input

images. Unlike Middlebury stereo datasets, the observed motion in this experiment

has a nonzero rotation component and therefore the scene flow is not constant.

Optical flow results are presented in Figure 6.22, and as is expected because its

motion representation, 6TwistFlow performs the most accurate estimation.

Fig. 6.21: Inputs for the teddy bear experiment. From left to right: (a) first and (b) second image
pairs, of brightness and 3D structure.

Fig. 6.22: Optical flow results of the Teddy bear experiment. From Left to right, top to bottom:
(a) rigid estimation, (b) 6TwistFlow, (c) 3DmotionALL and (d) LDOF.
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6.2.2 Rigid motion estimation

The estimation of a single rigid motion is a particular case of the proposed

framework (5.2) and can be done by minimizing the rigid energy defined by 5.65.

Using this formulation is possible to solve for the rigid motion that best explains

both intensity and depth. For example, for the camera motion shown by the images

in Figure 6.23, we set wI(x) = 1 and wZ(x) = λ = 0.1, to obtain the optical flow

and Z-motion presented in Figure 6.24. In this case, parameter λ allows to control

the balance between brightness and depth constraints in the rigid energy. Also,

it is possible to use only brightness or depth constraints, by setting λ = 0 or

λ = 1, respectively. A comparison of the final residuals of brightness and depth,

for different values of λ, is presented in Figure 6.25.

Fig. 6.23: Inputs for the rigid motion experiment. From left to right: (a) first and (b) second
image pairs, of brightness and 3D structure.

Fig. 6.24: Results of the rigid motion experiment. From left to right: (a) optical flow and (b)
Z-component of the scene flow, respectively.
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(a) λ = 0 (b) λ = 0.1 (c) λ = 1

Fig. 6.25: Brightness and depth residual while varying λ. Brightness and depth residuals are
presented in top and bottom images, respectively. For λ = 0, only the brightness constraints are used
and the depth residual presents higher values, as is expected. On the other hand, if λ =1, only the
depth constraints are used, and the depth residuals achieve their minimum while brightness residuals
becomes large. Setting λ = 0.1 balances the contribution of brightness and depth constraints, jointly
minimizing both brightness and depth residuals.

3D reconstruction

The optimal balance between brightness and depth is an open question and should

be set according to the confidence in the observed measures. Also, this balance

can be defined point-wise, as we proposed in our rigid energy. Throughout

experimentation we found out that setting λ = 0.1, for all pixels, allows accurate

estimation using the Kinect and Xtion sensors. In order to illustrate the precision

of the rigid estimation we perform a 3D reconstruction using both sensors. Getting

a 3D model from a single depth image is not accurate due to noise and occlusions,

but adding a couple of warped views is possible to improve the quality of the

reconstruction. Accordingly, to complete the 3D model, we choose a reference

frame and warp a number of close depth images using the rigid estimations.

The reconstruction is done using the Volumetric Range Image Processing Package

(VripPack) by Curless and Levoy (1996), which merges range images into a

compressed volumetric grid. Experiments using images from the Xtion and Kinect

sensor are presented in Figures 6.26 and 6.27, respectively. Finally, we compare

the quality of the reconstruction while varying the balance between brightness and

depth. In this experiment a fixed camera observes a person seated on a swivel

chair, whom is requested for rotating in front of the camera, as rigid as possible.

The reference frames and limit images are shown in Figure 6.28, giving an idea of the
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visible surface. Observe that the considered images belong to a large rotation and

therefore some parts of the reference surface result partially occluded. Moreover,

the illumination is not uniform and there exist specular highlights, especially on the

skin face. In Figure 6.29 the reconstructions for different values of λ are compared.

In this challenging experiment, the best results are achieved using only the depth

constraints.

Fig. 6.26: Teddy bear 3D reconstruction, images from the RGBD dataset (Sturm et al., 2012).
From left to right: (a) reference image, and 3D reconstruction using (b) the reference depth image
and (c) by warping 12 close views in addition to the reference depth image.

Fig. 6.27: Rotating hand 3D reconstruction. From left to right: (a) reference image, and 3D
reconstruction using (b) the reference depth image and (c) by warping 10 close views in addition
to the reference depth image.
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(a) First frame (b) Reference frame (c) Last frame

Fig. 6.28: Reference and limit frames for the 3D reconstruction experiment. Brightness and 3D
structure images are presented in top and bottom images, respectively.

(a) λ = 0 (b) λ = 0.1 (c) λ = 1

Fig. 6.29: Varying λ in the 3D reconstruction experiment. The only use of brightness constraints
is highly affected by specular highlights, occlusions and the large rotation. On the other hand, the
formulation of constraints only on the depth images, improves the quality of the 3D reconstruction.
The jointly use of brightness and depth constraints, outperforms the only-brightness estimation but
is less accurate than the results by the only-depth approach.
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6.2.3 Nonrigid plus rigid motion estimation

In many applications, the sensor itself moves relative to the observed scene and

compensating for the motion of the camera can simplify the estimation and

regularization of the scene flow, as is shown in Figure 5.7 . Moreover, for 3D

reconstruction of deformable objects, the camera motion is needed to register partial

3D reconstructions. Using the energy 5.64 we are able to split the motion of the

scene into a globally rigid component, ⇠R = (!R, ⌧R) 2 R
6, capturing the camera

motion relative to the dominant object/background, plus a nonrigid residual field,

⇠ = (!, ⌧), as we demonstrate in the two following two examples.

In the first experiment, we use the Xtion sensor to capture the motion of head

and hands performed by a person, as is shown Figure 6.30. We compute the

relative motion from a given reference frame, to a previous and a posterior frames.

Components of the estimated motion are presented in Figure 6.31. Particularly,

the motion of head and right hand are well described by the nonrigid component.

On the other hand, the estimation of the left hand motion is a challenge, especially

from the reference frame to the first frame, due to the sudden deformation and

partial occlusion. Using the estimated scene flow, the first and last frames can be

warped to the reference frame, as we done in Figure 6.32. Observe that despite the

limited resolution of the RGBD images, it is possible to register the observations

even under this nonrigid motion. This can be useful for constructing partial 3D

models of deformable objects using a moving camera. Moreover, occlusions across

(a) First frame (b) Reference frame (c) Last frame

Fig. 6.30: Inputs for the rigid plus nonrigid scene flow estimation using the Xtion sensor.
Brightness and 3D structure images are presented in top and bottom images, respectively. While the
camera is rotating to the right, the head rotates to the left and hands moves in opposite directions,
one becoming partially occluded.
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(b) Rigid optical flow (c) Nonrigid optical flow (d) Nonrigid
X-component

(e) Nonrigid
Z-component

Fig. 6.31: Results of the rigid plus nonrigid scene flow estimation using the Xtion sensor.

(a) First frame warped (b) Reference frame (c) Last frame warped

Fig. 6.32: Warped images for the rigid plus nonrigid scene flow estimation using the Xtion sensor.
Observe that the rigid motion correctly compensates for the body motion. The nonrigid estimation
is able to roughly register the rotating head, as is noted by observing the right location of glasses,
the beard and the ear. The motion estimation of the left hand is not well modeled.

views can be estimated observing the depth and brightness residuals, as we illustrate

in the following experiment.

In the second experiment, a Kinect sensor is subtly moved to observe the motion

of the head of a person, as is shown in Figure 6.33. Components of the estimated

motion are presented in Figure 6.34, where can be observed that the motion of the

camera and head are well estimated. Figure 6.35 presents the resulting warped

images using the estimated scene flow. Note that the head rotation is correctly

compensated except for the occluded regions. By observing the brightness and

depth residuals is possible to determine which regions of the reference frame are

occluded in a given view, as we present in Figure 6.36. Particularly, the depth

data provides confident measures to detect occlusion, unlike the brightness images,

which could suffer from the specular highlights and illumination changes.
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(a) First frame (b) Reference frame (c) Last frame

Fig. 6.33: Inputs for the rigid plus nonrigid scene flow estimation using the Kinect sensor.
Brightness and 3D structure images are presented in top and bottom images, respectively. While
the camera is subtly moving, the head rotates and lifts.

(a) Rigid optical flow (b) Nonrigid optical flow (c) Nonrigid
Y -component

(d) Nonrigid
Z-component

Fig. 6.34: Results of the rigid plus nonrigid scene flow estimation using the Kinect sensor.
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(a) First frame warped (b) Reference frame (c) Second frame warped

Fig. 6.35: Warped images for the rigid plus nonrigid scene flow estimation using the Kinect
sensor.

(a) Fist frame warped (b) Second frame warped

Fig. 6.36: Residuals of the rigid plus nonrigid scene flow estimation using the Kinect sensor.
Brightness and depth residuals are presented in top and bottom images, respectively. Observe that
high and undetermined residuals can be used to reliably estimate the partial occlusions. On the
other hand, occlusions are also visible in the brightness residual, but can be confusable with the
specular highlights which also present high residual.
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Conclusion

There have been two questions guiding the development of this thesis. The first

question concerns the usage of both sources of data: ”How to fully exploit color

and depth to compute a reliably scene flow?” The second question addresses the

way the motion is parametrized: ”Which motion representation should be used to

compute a confident scene flow?” These two questions defined the starting point of

our exploration and inspired us to develop this semi-rigid framework to compute

dense scene flow from RGBD images. Below we summarize the main contributions

of this thesis and conclude with our vision of researching perspectives on this field.

7.1 Contributions

Color and depth exploitation

1. A warping function that allows to constrain the scene flow on RGBD images

is presented. With help from the depth channel, this warp models the image

motion as a fully projective function of the 3D motion. This way is possible

to define consistency constraints directly on RGBD images.

2. In order to take advantage of the depth channel, we define constraints directly

on the depth image, by measuring how consistent is the scene flow estimate

with the observed 3D surface.

3. We simultaneously constrain the scene flow to be consistent with brightness

and depth data. This allows us to exploit both sources of measurements,

which are uncorrelated by nature. This way we are able to solve for the scene

flow that best explains the RGBD observations.

4. The proposed framework is flexible enough to support different data terms.

The set of constraints can be directly expanded, or modified, to work with
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color components in any color space, and also to include constraints from

invariants properties of 3D surfaces, on the depth data.

5. We have introduced different strategies to benefit from the depth channel

for scene flow estimation. Depth data has been used to: i) model the image

motion via the warping function, ii) directly constrain the scene flow in depth

images, iii) guide the TV regularization, preventing smoothness across surface

edges, and iv) estimate a prior of the local rigidity.

Motion representation

1. A semi-rigid framework for dense scene flow estimation is presented, taking

advantage of the local and piecewise rigidity of most real scenes. The

proposed framework supports different motion representation, data terms and

regularization strategies. The evaluation demonstrates that the proposed

method achieves the best results in the most commonly used scene flow

benchmark.

2. We introduce an over-parametrization of the scene flow by using a field of rigid

motions, with a twist motion representation. This way semi-rigid properties

of the scene are directly exploited. This motion representation is provided

with a warping function, allowing the formulation of RGBD constraints on

the image plane.

3. Using the twist-motion representation, a semi-rigid scene flow energy is

defined. Locally-rigid motions are encouraged in the data term, while

piecewise rigid solutions are favor in the smoothness term. The framework

provides an adjustable combination between local and piecewise rigidity.

4. We also present an alternative scene flow energy by directly using a 3D-motion

representation, which is provided of a corresponding warping function. In

this case, we show that the locally rigidity can be exploited in both data and

smoothness terms.

5. We derive a linear version of the warp for each motion representation, enabling

the solution of the scene flow by an incremental minimization. We fully

describe the optimization of the two proposed energies.

6. By using the same general framework, we model the scene flow as a global rigid

motion plus a nonrigid residual. This is particularly useful when estimating

the motion of deformable objects in conjunction with a moving camera.

7. We have performed different experiments to evaluate some of the possibilities

of the proposed framework, such as the motion representation, the brightness

and depth terms balance, and the local and piecewise rigidity assumptions.
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Through additional experiments we indicate the general applicability of our

approach in a variety of different scenarios.

7.2 Open questions

The study done in this thesis moves forward the state of the art in scene flow by

formulating a general framework for scene flow estimation. This is only a first step

in a long journey of 3D motion estimation from RGBD images and our attempt

opens the door to future directions for exploration.

Accuracy

Nowadays there is not an appropriate, available benchmark for scene flow. Because

the 3D motion field resulting from camera translation is constant, Middlebury

stereo datasets are not well suited to fully evaluate the performance of scene flow

methods. Although the quality of the results on the sequences from RGBD sensors

is motivating, and important remarks are done, it was not possible to measure

the 3D errors for interesting nonrigid motions. Therefore, the optimal setting of

parameters or the right balance between assumptions is still a query, as well as

the best configuration of the proposed approach for a given specific task. For

example, it is not clear the correct balance between brightness and depth terms,

which could be controlling by defining pointwise confidence measures of the observed

data. Moreover, further exploration is required on the appropriate amount of local

and piecewise rigidity assumptions. The availability of such benchmark will allow

the comparison with current methods and support the development of the new ones.

It is expected that for the MPI Sintel flow dataset (Butler et al., 2012), which is

derived from the open source 3D animated short film Sintel, the ground truth of

the depth channel be released and can be used as scene flow benchmark. Unlike

Middlebury images, this dataset contains long sequences and nonrigid motions.

Depth data

Current RGBD sensors provide depth measures with a reasonable precision. For

the Kinect for Xbox errors are smaller than 2mm at 1m from sensor (Khoshelham

and Elberink, 2012), but increase quadratically with depth to about 4cm at the

maximum distance of 5m. We have used the Charbonnier penalty to deal with the

error in depth measures. However, a better modeling could be beneficial since errors

in depth have a two-side influence in our approach: on the image motion modeling

and on depth constancy constraints. Moreover, the quality of the registration

between color and depth data is a function of errors in the depth measurement.

For this reason, in some cases is evident the misalignment between color and depth,
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especially close to the borders where there exists a large uncertainty on depth

measures. We have used the automatic registration given by each sensor, which

is based on the factory parameters, but also is possible to calibrate each sensor

to improve the registration (Herrera et al., 2011). Also, a preprocessing step can

improve the quality of depth channel. For example, a hole-filling algorithm and a

bilateral filtering jointly color images to enhace and correct the edges of the 3D

surface (Richardt et al., 2012).

It is important to remark that the precision, resolution and working range of

depth sensors have improved in last years and is possible that some of these current

issues on depth data fade away soon.

Large displacements

How to deal with large displacement is still an open question. In the rigid case, as in

the Middlebury dataset, the semi-rigid assumption benefit from the constant scene

flow. Nevertheless, in a nonrigid case, large displacements are harder to estimate. If

the motion of smaller structures is similar to the motion of larger ones, the coarse-

to-fine approach works well and improves global convergence. However, if the scale

of a structure is smaller than its displacement or its motion is no coherent with

larger structures, the scene flow is not well estimated. Larger structures dominate

the estimation in lower scales, and then local minima in higher scales prevent the

correct estimation. It is possible to include a set of sparse 2D matches in the

variational formulation (Brox and Malik, 2011), e.g., using SIFT or SURF features.

We follow this approach in (Quiroga et al., 2013), where the scene flow is skewed to

satisfy a set of 3D motion hypothesis to deal with large displacements. Nevertheless,

the low quality of brightness images and the lack of texture, as presented on the skin

and uniform clothes, make the matching of 2D features a challenge. Also, most of

these features are located at edges of the brightness image, coinciding with edges of

the 3D surface where depth measures are not reliable or available, and therefore no

valid 3D motion hypothesis. For this reason, a further exploration has to be done.

An interesting alternative can be to combine the proposed framework with a discrete

minimization procedure to avoid get trapped in poor local optima, as is done by

Lempitsky et al. (2008) using graph cuts. Also, it would possible to directly perturb

the field of rigid motions to deal with larger motions, as is proposed by Hornacek

et al. (2014). Finally, according to the specific application, a priori information of

the scene of the deformable object can be exploited to achieve reliable estimations.

Regularization of the motion field

Total variation is of the most popular regularizers for variational motion estimation

because its nice properties on discontinuities. However, its extension to functions

with values in a manifold is an open problem. This is precisely the regularization
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case on the field of rigid motions. We have decoupled the regularization procedure

for the rotational and translational part and proposed some approximations to

simplify the optimization. The decoupled regularization may not be the optimal

choice from the modeling point of view since the discontinuities of both components

are expected to coincide. Moreover, it is only an approximation of the real structure

of the manifold. However, the decoupling allows for a simple and effective solution,

and also allows the framework to support other regularization strategies. Recently,

Lellmann et al. (2013) reformulate TV as a multi-label optimization problem with an

infinite number of labels. This hard optimization problem is approximately solved

using convex relaxation and is applied to regularize three-dimensional rotations.

Future advances on manifold regularization may provide even more accurate and

faster solvers that can be used with our parameterization. On the other hand,

the regularization of the 3D motion field can be exactly formulated using TV.

Nevertheless, there exist different alternatives that can be adopted and a further

exploration is required. Results using channel-by-channel and vectorial TV are very

similar in our experimentation. Also, it is possible to use alternative norms, as the

Huber norm, or consider the total generalized variation (Bredies et al., 2010). An

appropriate scene flow benchmark is required to analyze in detail advantages and

differences among these strategies.

7.3 Future work

Temporal consistency

Most scene flow applications use RGBD sequences as input and therefore temporal

information can be exploited. Enforcing temporal consistency has proved to be

useful for optical flow estimation (Volz et al., 2011), and also recently, it has been

used for scene flow estimation from stereo (Vogel et al., 2014), achieving state-

of-the-art results. Particularly, 3D motion estimation can benefit from temporal

information thanks to the reluctance of objects to change their way of moving

(inertia). For this reason, using a sufficiently high frame rate, real scenes present

temporal consistency over more than two frames due to the inertia of moving

surfaces. Accordingly, locally rigid motions can be assumed to be approximately

constant on a short time interval. Also, for the 3D motion representation, smooth

3D trajectories can be encouraged in the solution. Using more than two frames

yields to a more robust formulation, where the influence of noise, occlusion and

missing data can be reduced.

Real-time implementation

Computational speed was not our primary concern in this work, but there are

several ways to speed up a scene flow method that follows our framework. First
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of all, it is highly parallelizable since computations are done independently per

pixel and only considering few nearby local values. Moreover, the local rigidity is

configurable and can be even reduced to one pixel to accelerate the method. Also,

the image warping can be applied every n iterations instead of every iteration, an

early stopping criterion can be used in the Gauss-Newton and TV solvers. Finally,

depending on the application, a subsampled version of the field of rigid motions

can be computed, i.e., considering only every nth pixel in the motion field, or

alternatively stopping the computation in a coarser scale in the RGBD pyramid.

Time benefit of some of these strategies is analyzed during our experimentation.

Scene flow descriptors

There is no work that directly computes scene flow to perform tasks such as

action recognition, gesture classification or interaction. Probably, this is due to

the fact that most existing methods require fully calibrated stereo or multi-view

camera systems, which are not always available. Besides, most of these methods

require a lot of processing time, becoming not suitable for real time applications,

and their performance is limited facing nonrigid motions, which are frequent in

such tasks. On the other hand, the optical flow, which is related with the scene

flow projection on the image, has been successfully used in motion analysis. For

example, histograms of optical flow are commonly used in state-of-the-art techniques

in action recognition to construct descriptors over spatio-temporal interest points

(Laptev and Lindeberg, 2003; Niebles et al., 2010) and to extract 2D trajectories by

tracking key-points (Messing et al., 2009; Matikainen et al., 2009). Furthermore,

since trajectory based methods outperform other state-of-the-art approaches for

action classification (Wang et al., 2011), it is promising to use scene flow to capture

motion information by extracting accurate 3D trajectories, which can be used to

model in a better way a wider variety of motions.

Using the proposed framework we are able to solve for an accurate dense scene

flow, but is also possible to solve for a set of sparse 3D trajectories, both in a more

precise way than previous methods. Currently methods performing motion analysis

from RBGB data, such as the pose estimation approach by Shotton et al. (2011),

are based on a human body model, which requires a huge database for training

and are constrained to the specific application. Moreover, color information is not

simultaneously exploited. We differ from such approaches and aim to compute a

model-less scene flow. Since we do not use any restriction on the shape of moving

objects or the type of movements, our approach can be used in different tasks

where 3D motion information is useful. The definition of appropriate scene flow

descriptors, encoding the estimated 3D motion field, can yield better and novel

applications on recognition, classification and interaction using RGBD sensors.

For instance, the distribution of rigid motions, histograms of 3D trajectories,

displacements or orientation, can be used as descriptors.
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3D reconstruction of deformable objects

Using the proposed semi-rigid energy is possible to model the motion of the scene

as a rigid component plus a non-rigid residual. This motion split is particularly

useful for modeling non-rigid objects. Usually, the object of interest is captured

using a moving camera, in order to observe regions that are not visible from a

single view. Accordingly, the camera is moved around the 3D surface, capturing

new observations to complement the desired model. However, the deformable object

itself moves in a non-rigid way, and this motion has to be compensated to correctly

create the 3D model. Note that this deformation of the object makes the registration

task a harder problem, but at the same time, can be useful since may reveal occluded

regions of the object that can be used to complete the model. By estimating the

rigid and non-rigid components of the scene flow, as we propose, is possible to

register close RGBD frames into a reference view to create a partial 3D model. A

priori information of the object is required in order exploit the observations from

other frames that are not visible for the reference view, allowing the completion

of the partial 3D model. This process can be repeated for a set of reference views

and partials model can be combined to have a variable 3D model of the object that

varies according to the given view.
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7.4 Discussion

The two questions studied in this work are inspired by a common goal, the

confident estimation of scene flow for a variety of scenarios. The real-time ability of

determining the 3D motion field of a scene can yield computer vision applications

to take full advantage of the changing 3D world. This thesis rethinks the way

3D motion is estimated, to take the most possible advantage from current RGBD

sensors. We strongly believe that the ideas developed in this work will take us a

step closer to reaching this goal.

We have presented a new framework to compute dense scene flow from RGBD

images by exploiting the semi-rigid properties of real world scenes. By modeling

motion by a dense field of twist motions, we are able to directly encourage local

and piecewise rigid solutions. We demonstrate that this motion representation

allows very accurate estimations in a set of interesting experiments. Current

computational tools provide alternatives to develop an implementation that will

be suited for practical applications. Moreover, recent advances of optimization on

manifolds will enable the exact formulation of the problem and its solution.

In order to exploit RGBD images we have developed a projective function

supporting different motion representations. Using this warp is possible to directly

exploit color and depth images provided by a RGBD sensor. In addition to the

classical brightness-based constancy constraints, we introduce a depth constraint

which allows the fully exploitation of depth data. By jointly minimizing the

brightness and depth constraints we incrementally solve for the scene flow that

best explains the provided images. The variational solution is directly formulated

in the image domain, showing be able to accurately estimate rigid and nonrigid

motions. Alternative representations of the scene can be required, particularly for

3D reconstruction applications, and discrete optimization can be used in addition

to the variational formulation, to deal with larger displacement. Future advances

of RGBD sensors will benefit the proposed framework, enabling access to a better

quality data.

In this thesis we go beyond previous RGBD scene flow methods, by generalizing

some of them and reformulating the way physical properties are used for 3D

motion estimation. However, the problem scene flow estimation is not solved and

there are several challenges waiting for being resolved, as some of those we have

described above. Particularly, interesting challenges are posed by the requirement

of measuring the confidence of components of the RGBD data and reliably detecting

partial occlusions, which can take us to a closer point from a confident scene flow

estimation.
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